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ABSTRACT

Theoretical and experimental radiation patterns are given in spectral
form for the thermal radiation from thin slots or heated wires having
dimensions of the order of the comparison wavelength. Maxwell's egquations
and noise theory form the basis of the analyses in which three independent
methods are used to predict a spatial distribution which exhibits inter-
ference minima and maxima. In the first, the wave equation is solved for
a noise-excited transmission line which is suddenly short- and open-
circuited -at alternate ends. By a study of the trapped noise currents,
it is found that the radiation pattern has an interference structure
which is smoothed as the loss is increased. -Secondly, a formula is
derived for the radiation pattern of a heated wire by a computation of
its absorption in an isothermal enclosure and by an aspplication of the
principle of detailed balancing. Finally, the pattern of a long thin
slot is computed directly using the Leontovich-Rytov distributed source
generalization of Nyquist's noise formula.

Fraunhofer pattern measurements are taken for a thin slot excited by
a gaseous discharge at 10,100 * EOOOK. The pattern measuring apparatus
is a Dicke radiometef having the following characteristics: frequency
9200 mc/s, bandwidth to the detector 16 mc/s, modulation frequency
1000 c/s, and residual noise level 0.3 rms°K.

The theory and the experiment demonstrate an interference phenomenon
even though the source excitation is spatially extended and uncorrelated
in time and space. The patterns are not even approximately Lambertiag,
e.g., & thin slot of 9.5x radians length exhibits a pattern having nine

relative maxima in 180o with the maximum emission at 630 from the normal.
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I TINTRODUCTION

The energy emitted by a heated body extends over an unbounded
range of frequencies. The energy content per unit interval of fre-
guency, the spectral intensity, decreases exponentially toward zero
for frequencies well -above Wien's frequency of maximum emission, and
it decreases to a constant value, kT, for frequencies which are much
less than Wien's frequency. For a body in thermal equilibrium at a
temperature T, the spectral distribution of the emitted energy is
given quantitatively by Planck's law. A matter which would éeem to
warfant comparable interest concerns the spatial distribution of the
emitted energy. However, th¢ spatial~distribution question has received
much less attention than that of the spectral-distribution during the
past one hundred or so years, due mainly to the fairly general applica-
bility of a simple formula known as Lambert's law. In one form,
Tanbert's law states that the intensity of the emitted fadiation from a
blackbody surface is proportional to the solid angle subtended by the
body at the point of observation. It is well known that Lambert's law
is approximate, but from the literature one gains the impreséion that
the approximation is due solely to the departure of the bulk broperties
of actual materials from the idealizations hypothesized for a blackbedy
surface. However, it is pointed dut in a recent work of Rytov that
geometric optics ‘is used in deriving Lambert's law. Therefore, it is
regsoned that a significant departure from this law may exist for radia-
tion from bodies of dimensions which are comparable with a wavelength.
The nature of this departure is fundamentally different from that treated
heretofore in that the radiator shape and size become important in deter=-

mining the relative spatial intensity. It is the purpose of this paper



to study the spatial distribution of the radiant energy, with special
emphasis- on those cases for which the body dimensions are expected to
exert a pronounced influence on this distribution.

A problem in heat radiation is a problem which requires the gppli-
cation of Maxwell's electromagnetic theory, except in instances where the
conditions of the problem justify the approximate methods of geometric
optics. In the problems of interest to us, the solution of Maxwell's
equations is required. - Since there is a vast literature on radistion
problems for cases in which the radiator dimension and the wavelength are
‘ comparable, one might wonder, at first, whether or not any of these are
useful in their entirety. The answer is found to be negative, and the
essential reason lies in the marked difference between the source cur-
rents and voltages for the case of the heat problem and for that of the
traditional electromagnetic radiation problem. In the former, the source
is spatially distributed and essentially uncorrelated both in time and in
position. In the latter, the source is usually concentrated and corre-
lated. Thus, logically, the first step in the solution of the heat
radiation problem is the determination of a gquantitative source descrip-
tion in terms of the electromagnetic source parameters; such as the
charge density and the current density. Finally, having obtained the
source description, one must determine the sppropriate solution of Max-
well's equations. The remaining paragraphs of this introduction survey
the pertinent results in the literature and introduce the topics covered
in this paper.

In general, the chaotic motion of the particles, e.g., conduction
electrons in a metal, atoms in a gas, and particles in suspension, gives

rise to thermal radiation or electrical noise. The early work in the
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theory of fluctuations was done by Einstein (1905), Langevin (1908),
deHaas and Lorentz (1913), and Schottky (1918). For our purposes, how-
ever, the theoretical result by Nyquist (1) (1927) for the spectral
distribution of the termihal noise voltage is the most useful starting
point for a source description. Nyquist's results were experimentally
confirmed by Johnson (2) (1927) who studied a heated wire and by
Mumford (3) (1949) who studied the gaseous discharge. Nyquist solved
the general problem using thermodynamic arguments, while Bell (1938)
solved the problem for the speclal case of‘metailic conduction and
Parzen and Goldstein (4) (1950) treated the case of the gaseous discharge.
While the distributed character of random noise was recognized from
the time of the earliest work in the theory of fluctuations, it received
only scant attention from before 1927 until 1952. This long period of
comparative inactivity was due mainly to the lack of experimental
impetus; for while the terminal manifestations of thermal noise became
éo frequent in practical gpplications that, as an example, the noise
figure problem in radio engineering was reduced to a routine design pro-
cedure, no provocative experimental dilemmsa appeared to draw atitention to
the distributed character of random noise. This inactivity was disturbed
by Dicke's microwave receiver (5) (1946), and thereafter, by the rapid
emergence of the new science of radio-astronomy. Then, in 1952, Leonto-
vich and Rytov (6) derived an expression for the distributed random
electric field, i.e., the distributed noise source. Rytov generalized
and applied the theory in a monograph (7) (1953). Levin and Rytov (8)
(1955) derived an expression for the spatial distribution of the thermal
radiation from a linear antenna. However, no accounts have been found of

experimental verification of the Leontovich-Rytov formuls for the thermal



electric field (1959).

In this paper the treatment of the thermal radiator is divided
into four parts. First, the theory is presented for the determination
of the classical radiation pattern. The exceptions to ‘Lambert's law are
introduced in a natural way, by a method apparently first suggested by
Drude. Then, an interesting computation is given which serves to
explain a discrepancy observed by Spiller (9) in 1931 for the radiation
from incandescent‘tungsten. .For the example considered, the deviation
from Lambert's law, arising from the non-blackbody nature of a metallic
surface, is only a modest 15%.

The noise theory of Nyquist and Leontovich~Rytov, 1s presented in
the second part. A simple derivation is given for the Leontovich-Rytov
formula (Sec. 3.4). Then, from an analysis of the standing noise waves
on a non-radiating, open-circuited transmission line, the inference is
drawn that the thérmal radiation pattern of a heated wire will exhibit
pronounced maxima and minima, when its length and the wavelength are of
the same order (Sec. 3.5).

In the third part a study is made of the level of the radiation
from various noise sources. A comparative analysis is given for the
radiation levels obtained from a gaseous discharge source and from a
heated wire. It is shown that a measurement of the microwave radiation
pattern from a gaseous discharge is practical; while for a heated wire
it is not (Secs. 4.1 and 4.3). 1In the course of this study, an analysis
is presented for the thermal radiation pattern of a heated wire which
makes use of the principle of detailed balancing of radiation but which
does not require the Leontovich-Rytov distributed source formulation

(Sec. L.1).



A comprehensive analysis of the thin slot is given in the fourth
part. An expression is derived for the thermal radiation pattern in
terms of an arbitrary source correlation function (Sec. 5.3). Then,
three separate correlation functions are assumed, and their correspond-
ing radiation pattern formulas are derived and plotted. The cases
treated are the delta-correlated source, the exponentially-correlated
source and the spatially-coherent source. Finally, experimental data
are presented for the thermal radlation patterns of various thin slots.

These data are compared with the theory and good agreement is obtained.



IT CLASSICAL THERMAL RADIATION PATTERNS

2.1 Introduction

The term "classical thermal radiation pattern", as used here,
denotes the spatial distribution of radiant energy from a given source
that is obtained by analyses which are based on a combination of
Planck's law and Lambert's law. -Also included in this terminology
are those distributions obtained using refinements of'Lambert's‘law
to include effects such as the variation of the emissivity with tempera-
ture, angle, etc. It is emphasized that the nomenclature (in particular
the "classical") does not imply that this analytical technique is either
outdated or incorrect; but rather it implies a restriction to the range
of applicability of this particular formulation. Specifically, this
formulation gives accurate results when the wavelength is very small in
comparison to the source dimensions and the distance to the bbservera
It is not applicable, however, when the source dimensions and the vave-
length are of the same order of magnitude. The reason for this
limitation, as is described in detail below, is that Lambert's law,
including refinements, 1s based on the principles of geometric optics
which are clearly not valid when the wavelength and the source dimen-
sions are comparable. A more general analysis can be formulated based
mainly on a combination of Planck's law and Maxwell's equations. At
least in principle, this formulation enébles one to determine the exact
thermal radiation pattern for a blackbody source of dimensions com-
parable with a wavelength. However, before turning to this analysis, it
is worth while to present the fundamentals of the pattern determination

for the classical thermal radiastor.



2.2 Planck's Radiation Law (10)

In an isothermal enclosure at a temperature, T, the energy density
in the frequency interval from f %o f + df dis denoted by Wf daf and

is given by Planck's formula as

2
8t hf
v, df = = ar . (2.1)
f 3 ehf/kT 1

The average energy per degree of freedom, E, is given by Eq. 2.2

‘below.

E = ;EE—F—J: e (2°2)

2.3 TLambert's Cosine Law (10),(11),(12)

A simple consideration of an isothermal enclosure, based on the
isotropy of the radiation stream and also based on geometric optics shows
that the intensity of the radiation energy emitted by an infinitesimal
planar blackbody surface for (arbitrary) frequency interval varies as the
cosine of the angle between the normal to the surface and the direction
of the emitted ray, i.e., Lambert's law.

From the above, it can be shown that the power incident in a fre-
quency interval df, on a surface which subtends a solid angle d41),
at s distance R from the blackbody radiator, is given by defldf afn

in Eq. 2.3.

c 2 '
deJldfdﬂ_: I Vp O R afr an.. (2.3)

The solid angles, 4L and d4d{)' , are those subtended by the receiving

area and the emitting area as measured at the emitter and receiver points
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respectively. Equations 2.1, 2.2, and 2.3 are combined to give the

following form of deJl’

2

2f74f
deD_df alL = 02

T R%anan' . (2.4)

2.4 Radiastion Patterns

The radiation from a non-blackbody surface departs from Eg. 2.4
above. Kirchhoff's law, equating the fractional emissivity to the
fractional absorptivity at each frequency £, leads to the following

generalization of Egq. 2.4.

2

_offaf . = 2 T
ap,  df AN = = a, € RaNan . (2.5)

In the equation above, the absorptivity, af, is the selective fractional
absorption when the body is in thermsl equilibrium with its surroundings.

In general, for a given material o is a function of the temperature,

£
the freguency, and the angle of emission.

From Eg. 2.5, the classical thermal radiation pattern of an arbi-
trary source distribution can be calculated. The pattern for the

frequency interval from f +to f + df is simply the integral of

dp_. df over the source, i.e., P

o

fjldf = J( d.Pfﬂdﬂ9 and the total
s

radiation pattern includes, as well, an integration over freqguency; i.e.,
o .

Pn = Jrjf deJidf . Two cases of particular interest are treated in the
0 s

following paragraphs.

2.4.1 Constant Absorptivity. Let C describe an arbitrary simple

closed perimeter in the x-y plane, the interior temperature is T, the



Qe

exterior temperature is zero. The wavelength, N\ = c/f s 1s very small
compared to a typical dimension, e.g., & diameter of the hea%ed inte-
rior if the .curve C is circular. Also, the absorptivity, O%, is inde-
pendent of angle. Hguation 2.5 is applicable and the radiation pattern
is given by integration of Eg. 2.5 over the heated interior. The result
is

2
2faf
Pfﬂdf afn = 5

Qe € AdN cos © (2.8)
c

in which A is the interior surface area and © 1s the polar angle.
Thus, in this idealized example, the radiation pattern follows Lambert's
law (curve 1 in Fig. 2.1).

2.4.2 variable Absorptivity. Let the interior surface A, again at

a temperature T, be metallic. In this case the absorptivity is a func-

tion of the polar angle © . This function, ¢.(6), is obtained from a

t

straightforvard analysis of plane-wave reflection at an air-metal inter-
face. The absorption coefficient when the incident electric field is in
the plane of incidence, Qe 5 is given by Eq. 2.7, and for the case when

1

the electric field is normal, by o

. in Eq. 2.8 (13),(1k).

2

o = kn cos © (2.7)

1 (n2+ k2)0032@ +2n cos @ + 1

bn cos @

Q. = (2.8)
2 (n2+ kg) + 2n cos © + cos6

Equations 2.7 and 2.8 assume that (n2+ k2)>>1.. © 1is the angle of.
incidence, and n;k are the real and imaginary parts, respectively of
the complex index of refraction, n_ = [u(e=:ic/w)/uoeo]l/2= Separated

into real and imaginary parts, this index, n., is given by 58.2 of
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Dwight (15) as follows:

n =n + jk
C
2 1/o 1/2
n ={—2—‘£€—€—— (1« ;’2)/ +l]} (2.9)
H'OO w €
2 1/2
k ——{“e [(l+——§——2-)1/2-11}
68 w e

The absorption coefficient required in our computation is the one that
is applicable when blackbody radiation is incident, i.e., the absorption
coefficient for randomly polarized radiation. This absorption coeffi-

cient, ., is the mean of « and O .
£ £y 5

1
o = 3 (afl+ 9%2) (2.10)

The above formulation for the absorption coefficient, apparently first
suggested by Drude, is accuréte to within a few percent for waveiengths
longer than 2}(].0"6 m. HOWeVer, even at this wavelength, the conducti-
vity of metals is sufficiently high so that cﬁme >>1, and therefore

Eg. 2.9 can be rewritten approximately as follows:

. g \1/2
o= (Eme
(2.11)
. o \1/2
k = —2—(3% .

Now, combining Egs. 2.7, 2.8, 2.10, and 2.11, one obtains the following
relatively simple formula for the absorption coefficient of a metallic

surface when randomly polarized radiation is incident

o= 2n cos © + 2n cos ©

£ 2(n cos @)2+ 2n cos © +1

5 5 (2.12)
(cos ©)™+ 2n cos © + 2n



Substitution of Eq. 2.12 into Eg. 2.5 gives the following result for

the classical radiation pattern of the planar metallic surface.

or° _ 2 on cos o
Pf11_= —>5 € AR 5
c 2(n cos ©) + 2n cos 6 + 1
5 (2.13)
2n cos ©

+

(cos G)2+ on cos O + 2n°

Equation 2.13 is plotted for n = L and for n = 7 in Fig. 2.1.

These radiation patterns differ from that of a blackbody source in

two essential ways. First, the absolute power level is lower. This

is evident by a comparison of curves 1, 2, and 3 which are drawn with

a common normalization factor. Secondly, the form of the curve departs
from a cosine law. This is evident from curve 2A which is a normaliza-
tion of curve 2 to a gray (Lambertian) source having the same intensity
in the © = 0 direction.

The data points in Fig. 2.1 are taken from an experimental paper
by E. Spiller (9). Spiller's experimental results were apparently
definitive enough to settle a then-raging controversy over vwhether any
departure from Lambert's law occurs for metallic radiators. The data
are fit only approximately by Eq. 2.13 for the following reasons.
First, for the wavelength used, A = 6560 ﬁ, there is some uncertainty
as to the value of € +to use in FEg. 2.11; and secondly, there is some
gquestion about using the value of conductivity which is obtained at a
much longer wavelength. With these factors in mind, the fit is sur-

prisingly good.
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2.4.3 Gaseous Discharge Pattern Experiment. While the central

topic of this paper is the thermal radiation pattern at wmicrowave fre-
quencies, it is desirable for completeness to include an experimental
pattern for the "very short" wavelength range using ‘a gaseous discharge
source and essentially the same experimental srrangement which is used
for the microwave measurements (Fig. 5.12P). A description of this
optical experiment follows (see inset in Fig. 2.2). A commercially
available 15w fluorescent source, containing 2 mm. of argon and 6 to
10 p of mercury gas and having an effective microwave noise tempera-
ture of 11,400°K at 30% (3), illuminates a sensitive cadmium-sulphide
photocell, which is placed in the Fraunhofer region at a range of
1.500 m, The radiating aperture is a thin slot 0.1419 m. by 4.0x1072 m.
in a large sheet of polished aluminum. This slot is approximately

2 by l_5ﬁXlOu radians at the peak of the spectral response of

5.5nx10
the photocell, i.e., at 5150 ﬁo* In order to correct for the slight
departures from a square law response, the particular photocell used was
first calibrated’using a.3 m. optical bench. The experimental radiation
pattern is shown in Fig. 2.2, normalized to a measured intensity of
1.60 lumens/m? at normal incidence. It is concluded that the radiation

pattern at optical frequencies follows Lambert's law at least in an ap-

proximate fashion.

*This slot is 8.70% by 0.24n radians at 9200 mc/sw The corresponding
microwave radiation pattern is shown in Fig. 5.15.
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ITT NYQUIST-LEONTOVICH-RYTOV RANDOM NOISE THEORY

3.1 Fourier Integral Form of Maxwell's Equations

Maxwell's equations, including time dependence, are written

Vx B (rt) = - —5——
(3-1)

It

V X ——em ] t
e A

Taking the Fourier transform with respect to the time variable and neg-

lecting "end" values gives

Vx E(r,0) = - io B(r,o)
(3.2)
« B(r,w)
v x :-:—— = J(r,0) + iw D(r,w)
in which, as a typical example, E(E,w) is related to the electric
field intensity g;_l(g,t) as follows:
©
Be) = [ B(mne e
~00
® (3.3)
1 it
B (2,6)- j B(r,0) e
-0

It is convenient throughout this paper to adopt the convention that
E, B, D, etc. denote the Fourier transforms of their corresponding field

variables, and the usual tilde notation willl not be employed. Direct

time dependence will be indicated explicitly in order to avoid confusion,

e.g.y Ba. 3.1. This has the added feature of meking many of the



~16-

equations which arise in the solution of Maxwell's equations formally
the same as those which occur under the assumption of harmonic time
dependence (the ¥ factor must be suppressed). This follows directly

from a comparison of Egs. 3.2, rewritten below, to Egs. 3.1 when they

are rewritten for an elwD time dependence.
VXE = -inB (3.ka)
B o
v x«ﬁ% =J+inD . (3.4p)

3.2 Spectral Density and Correlation Function

The source field for radiation from a hot body is a random function
of position and time. The radiation from such a body is most concisely
‘expressed in terms of the power/area or the power/solid angle in a
given direction. Although it is convenient to analyze this problem in
terms of E and B, these fileld vectors are sample functions of a
stationary random process, and it is only their statistical characteri-
zations, such as the rms value, spectral density, etc., for which there
exist non-statistical functional forms. Certain of these forms and
some of the standard relations between them, are summarized in this
paragraph (16). Consider a stationary random process which is charac-
terized by an ensemble of sample functions, fi(t). The autocorrelation
function of this random process, R(T), is defined as the value of the

product fi(t) fi(t— T) averaged over the ensemble, i.e.,
., o
*(
R(T) = = Z () £ (t-T) .

It is convenient to denote an ensemble average by the following bra-ket

notation: < > or <i '> P Then, the autocorrelation function is
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written

R(T) = {£(t) £ (6-7)) (3.5)

The spectral density, S(w), is defined as the Fourier transform of

the autocorrelation function

S(w) = f R(7) e ¥Tqr . (3.62)

Of course, taking the inverse transform returns the autocorrelation

function
a
R(T) = é% s(w) e Tan (3.6b)
«00

and setting T = 0 gives the following useful expression relating the

spectral intensity to the mean square value of the sample function.

Jew) () = 5 | s@) @ (3.7)

=C0

The time-limited sample function, fT(t), is defined by

(%)

i

£(t) for |t] T

(3.8)

il
(@]

fT(t) for |t| > T

and the corresponding Fourier transform becomes

(8 9)

Fo(o) = J( £(t) e
_li‘n |
Folw) = Jf £(t) e Whqy

=T
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Now, ‘a useful result which relates the spectral density to the time-

limited Fourier transform is quoted (16):

w) F*(w)
. Sy (3.9)

s(w) = lim < ‘1

T -

The results of the above paragraph are generalized for the two-

dimensional case. . Consider the sample function, f£(z,t), of a

stationary random process. The time-limited Fourier transform, FT’

is given by

Fo = [f‘T(z t)e Caw
e (3.10)
T

Fp = f £(z,t)e Py

The two-dimensional correlation function, RRf(D,T), is defined as the

following ensemble average

RRo(0,7) = {E(2,8) f¥(z-p,%-1)) o - (3.11)

The two-dimensional spectral density, SSf(n,w), is defined as follows

[ o N o o}

58,4(n,) =f J’RRf(p,T)e—inp_indp ar . (3.12)

-0 -

Mixed correlation~-spectral density functions can also occur, e.g.,

RSf(p,w) given by the following one-dimensional Fourier transform of

RRf
@

(3-13)
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The two-dimensional analogue of Eg. 3.9 is derived below. The
ensemble average, <FTL(n,w) F%L(n,wi>f', can be written in terms of

f(z,t) as follows

T T L L
<FTL(""D)F;L(T”"°)>f - [ f ff T(zy,8)1 (25 8))
O s s
2 -2,) -do(t, -t
X e Tinlegmeg)-telty g)dz |dzdt dt2> (3.14)

The ensemble average and the integration are commutative; and the
exponential term can be factored out of the ensemble-averaging brackets;

hence Eq. 3.14 is rewritten

(P ()

et e

L
f <f(zl,tl)f*(22,t2)>f
~L -

B3
ék‘“~\ﬂ

-in(zl-zg)—iw(tl t2)
e dzldz2dtldt2 . (3.15)

Making a change of variables from (zl,zg,tl,tg) to (zl,p,tl,T)

where p and T are defined by

and substituting Eg. 3.11 into Eg. 3.15, it follows that

| 0 Ltp 2L L
™ * _
<ETLFTL>f»—jl[dT dt, fdp B(p,T) j dx, + j,dp B(p,T) f dx;
2L ’L 0 Lo

(3.16)



-20~

in vhich @(p,7) is given by

-inp=iwT

¢(D:T) = RRf(Q)T)e (3.17)

Integrating Eq. 3.16 with respect to the variable Xy and writing in

the limits on the T,t., integration lead to Eq. 3.18

1

' 2L 0 T+T 27 T+T
<FTLF§L>f= oL f do(1 - Ipl) [ ar ¢(p,T)f dtl+[d'r¢(p,'r)[dtl
iy

-2L =27 -T 0]
(3.18)
Integrating again, with respect to tl, and rearranging slightly give

the following expression.

2L 2T i i
p T| -inp-iwT
-2L =27

In the limit as L,T - oo, Eg. 3.19 becomes

—1np ieT
TL " TL
Te'm—>> f f Mgl e

-0 =00

and substitution of Eg. 3.12 gives the final form

*
85, (n,0) = lim <'('2'Ifﬂ%) . (3.20)

T L->

Since in the noise problem to be analyzed, the source terms have a
finite non-zero rms value, i.e., the source can supply finite energy in
any finite interval, then

T
o{%f () £*(t) dt < ®

=T
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Hence, f(t) is not usually a function of integrable square;
Plancherel's theorem is not applicable; and thus, there is no
assurance that the Fourier transform, F(w), exists. In a strict
notation then, the various source and field terms which arise later
should be dimension limited, e.g., as the fT(z) in Eq. 3.8; and the
" Fourier transforms in Eqgs. 3.2, 3.3, and 3.4 should be given "T"
subscripts as the FT in Eg. 3.10. From our point of view, however,
this would unduly complicate the notation since our only interest is
to compute spectral densities from Eg. 3.20 and subtleties of exis-
tence and convergence, in which case the notation may be useful, do

not arise.

3.3 Nyquist's Formula for Random EMF

In 1927, Johnson (2) performed the first quantitative experi-
ments relating the statistical fluctuations of electrons in a
conductive medium to the random variation of potential between two
electrodes in the medium, and in that same year Nyquist (1) derived
a formula for this EMF. The derivation, based on thermodynamics and
statistical mechanics, is briefly outlined below.

Consider a system composed of two resistors, R, connected by a
lossless non-radiative transmission line of length 4 and of charac-
teristic impedance R, with the entire system in thermodynamic
equilibrium at a temperature T . The amount of power which each
resistor can deliver under these matched conditions 1s deduced by the
following thought experiment. The line is suddenly short-circuited
at both ends; thereafter the energy trapped on the lines is confined

to modes for which the terminal voltage is zero, i.e., to eigenfre-

quencies, f,, given by
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ne
£, =55 no=1,2,3, ¢ . (3.21)

Now, by Planck's modification of the classical law of equipartition, the

average total energy per degree of freedom, denoted by € , 1s given by

- hf
€ = —FTRT (3.22a)
e - 1

or if hf/kT <1 , then € 1is approximately given by
€ = kT . (3.22p)

Hence, in the frequency interval fn to fn+ Af, the total energy on

the line, supplied equally by both resistors at a rate Pf‘A'f for a
period z/c before shorting, is given by
L A= £
2Pf AT S = 2 € AT 5 (3.23)

Thus, by Eq. 3.23, Nyquist's well-known result for the spectral inten-

sity of the available power is

P, = € . o (3.24)
The total power is given by the integral of Pf over the real frequen-
@
cies from O to oo, i.e., J[ Pf af . Pf is called a one-sided

0
spectral density to distinguish it from the spectral density SP which

is defined as the even continuation of Pf/2 into the negative fre-
w

guencies. Then, the total power is given by Sp df, and this latter
density is of the form implicit in Eq. 3.7. oo Now, Sp can be ex-
pressed in terms of the ensemble average of the terminal noise voltage

as follows
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P LR
(3.25)
o) W
S _af = 1 S arf
o) - IR v
-00 -0
Thus, by Egs. 3.24 and 3.25, the spectral intensity of the open-
circuited voltage across the resistor terminals is given by
Sv(m) = 2€R (3.26a)
and the corresponding autocorrelation function is
RV(T) = 2€R 8(T) . (3.26b)

3.4 Leontovich-Rytov Random Electric Field

Early research workers in the field of thermal electric noise
clearly recognized the distributed nature of the source of this noise,
i.e., distributed as it arises from the chaotic motions of free electrons
within a conductor, but due to the then singular application of noise
theory to lumped circuits, the major interest centered on the formulation
of expressions for total or terminal noise voltages and currents. It
remained for Leontovich and Rytov to derive an expression for fhe dis-
tributed random electric field (6). Their work is further generalized
in a monograph by Rytov in which Maxwell's equations for material media
are augmented by the introduction of noise source field terms, both elec-
tric and magnetic (7). In a later report, this theory is interestingly
outlined, together with selected applications to noise problems in a

waveguide (17).
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The formula for the thermal electric field in a conductive medium
follows in a straightforward fashion from Nyquist's spectral intensity
formula, Eg. 3.25%. Consider a thin cylindrical filament of cross-
section dA and length 4 in a medium of conductivity cva Orient a
cartesian coordinate system so that the axis of the filament is z-
dirécted and the cross-section, dA, is in the x-y plane. The terminal

voltage V(x,y,t) is given by the following sum:

n N
Vix,y,t) = rZ;l‘EZ(x,y,zr,t) dzr (3.27)

in which the n subdivisions of [, de, are chosen small enough so
that the electric field is correlated along this length, presumably
some fraction of a mean free path. From Eg..3.27, the mean square

voltage, <<V(x,y,t) V*(x,y,tx> is expressed as follows:

‘ *
1‘<Ez(x,y,zr,t)EZ(x,y,zs,ti> erdZs

Gi(%,7, )V (x,7,8)> =

1Mo
T agi=

r=1 s

(3.28)

It is assumed that the electric field is uncorrelated for lengths in
excess of the subdivision length, er' Thus in the ensemble average,

terms for which r % s are zero and Eq. 3.28 reduces to Eg. 3.29.

n
<V(X)Y;t)V*<X)Y:t)> = Z <EZ(X:Y3Zr;t)E;_(X:y,Zr:t» dzrdzr . (3.29)
r=1

The mean square value of the electric field is independent of =z ;

" *The derivation given here departs from that of the above~cited
reference, but the underlying philosophy and the result are due to
Leontovich and Rytov.
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hence the right member of Eg. 3.29 can be simplified. Making this sim-
plification, substituting for <NV%> from Eg. 3.26, and rearranging

slightly, one obtains Eg. 3.30

‘ 2ey, 3(t = 0)
<EZ(X:Y:Z:t) E')Z(-(X:Y:Z:t)> = (‘a‘ “dz da . (3-30)
With the ald: of the Dirac-delta notation to incorporate the prior as-
sumption that the electric field is uncorrelated for separations

greater than (dx,dy,dz), Eq. 3.30 leads to the desired result

(B (%,7,2,8) B (28,71, 2-0,5-7)) = (55)5(£)8(n)8(p)8(7)

o<

5 8(e)d(n)8(p)8(r) . (3.31)

RRe( E>nP, T) =

Reduction of Eg. 3.30 to the one-diméensional case, i.e., a line source,

gives the following reésult for the distributed noise field

<:Ez(z,t)E;(z-p,t-TX> ='§E 8(p)8(T)
1

RR_(0,7) - ?E 8(0) 8(r) - (3.32)

The factor oy is the conductivity per unit length, odA . This deri-
vation for the distributed noise field is based on Nyquist's fundamental
result and the assertion that the distributed source field is spatially

completely uncorrelated. The resulting formula encompasses a far

greater range of problems than does Nyquist's formula.
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3.5 1Induced Correlation in a Random Signal

In this section the primary purpose is to demonstrate analytically
that some common radiator configurations can induce spatial correlation
in thelr surface currents even though the source of these currents is a
random generator. Toward this end, an equation is derived for the
correlation function of the distributed current along a transmission
line. Two cases are treated. In the first, the transmission line is
termingted in its characteristic impedance. The noise currents
generated by the terminal impedances travel along the transmission
line and are completely absorbed at the alternate ends. It is of in-
terest to have the correlation function for this case because the
current distribution for the nonradiating matched transmission line
serves as a first approximation to the current distribution for an
important class of antennas, i.e., the Beverage or the ﬁave antenna.

In the second, the same transmission line is abruptly short-circuited
at one end and open-circuited at the other. The noise energy which
was traveling along the line is now trapped, and a standing wave is
set up. Iﬁ this case, the correlation function shows that the energy
is confined to discrete eigenfrequencies and that the standing wave

of noise current is fully correlated. The configuration in which the
transmission line is short- and open-circuited at alternate ends is

of interest because this current distribution serves as a first ap-
proximation for the current on another important type‘of antenné, i.e.,

the long thin wire.

3.5.1 Transmission Line Equations. Consider a lossless nonradiat-

ing transmission line of characteristic impedance R and length 4 .
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This line is oriented along the z-axis with a terminal pair or port
at z =0 and at z = £ . Assume that only the principal or TEM-
mode propagates. Then, the potential difference between correspond-
ing points of the line is uniquely defined and the telegrapher's
equations are applicable. Briefly, for an inductance per unit
length of I and a capacitance per unit length of C , the current
and the voltage along the line, denoted by I(z,t) and V(z,t)

respectively, are solutions of the following differential equations

av(z,t) N BI(z%t) (3.33)
BIéz,t) .. av(f,’t) ) (3.3%)

Combining 9/dt of Eq. 3.33 and 9d/dz of Eg. 3.34% leads to the wave
equation in I(z,t), Eq. 3.35; and combining 9/dt of Eg. 3.34 and

9/0z of Eg. 3.33 leads to Eg. 3.36.

%T(z,t) 1 ¥°1(z,t)

- 5= = 0 (3.35)
322 V2 at2
2 2 .
ovV(z,t) 1 07V(z,t) o (
——————i s —-———-—————’ et . 3'36)
522 v2 8t2

The speed of propagation v 1s related to L,C Dy

2oL (3.37)

and the characteristic impedance R 1is given by

2)1/2

R = (C

(3.38)
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3.5.2 Traveling Waves on a Matched Transmission Line. Let the

transmission line of the preceding section be terminated in its
characteristic impedance by resistors at a temperature T. These
resistors at z =0, z = 4 generate noise voltages given by the
functions 2Vl(t) and 2V2(t), respectively, and by Eq. 3.26, the
autocorrelation function of these sample functions 1s given by

szl(‘l') = R2v2('r) = 2Zer 8(T) . (3-39)

Now, in this case, it can be shown that the solutions of Fgs. 3.35 and

3.36 are given by -

V(z,t) = V(6 - 2) + V(¢ - [,;z> (3.10)
I(z,0) = & |V (t -5 - vy (e - L5, (3.51)

Substituting Eq. 3.40 into the defining equation, Eg. 3.1l, and assum-
ing that Vl(t) and V2(t) are statistically independent, one can

readily compute the two-dimensional correlation function. The result

follows.
RR (p,7) = <V(z,t) V*(Z_p,t_T)>V
RR (p,7) = V(- Dv(t-Z-7 483
"1
+ <V2(t - ,@;z) Vot - /z; z . %)> . (3.42)
V2

The explicit values for these correlation functions are given by Eg.
3.39, and by substituting into Eq. 3.42, one obtains the following

result
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w,(0,7) = & {a(T -9 1t %)} : (3.43)

Thus, the mixed correlation-spectral density function for the voltage

along the transmission line is given by Eq. 3.44 below.

- ,
-iwT
,[ RRV(ZO-zl,T)e ar

~Q0

RSV(ZO—Zl,w)

(3.4L4)

RSv(zo-zl,w) = €R cos B(zo—zl)

By an analogous computation, the mixed correlation-spectral density
function for the current along the transmission line is determined,

and the result is
€
RS, (2,-2,,0) = ——cos B (z_-2)) . (3.45)

From Eq. 3.45, one concludes that the noise currents are correlated
spatially. TFor a long-wire antenna ﬁavingvthis correlation function of
its current, it can easily be shown that this leads to a spatial distri-
bution of the radiation which exhibits pronounced interference minima

and maxima. This general type of computation is treated in Sec. 5.3.

3.5.3 PStanding Waves on a Transmission Line. Let the transmis-

sion‘line of Sec. 3.5.2 suddenly be short-circuited at one end and open-
circuited at the other. This leads to 8 mode confinement which is
similar in its essential details to that which occurs in the model
which Nyquist used to derive the formula for the random EMF (Sec. 3.3).
Here, however, the short-circuit at one end is preferred in order to
emphasize the close relationship between the currents on a transmis-

sion line and those on a long thin wire antenna, e.g., compare Figs.
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L.1 and 4.2. 1In any event, the current, I(z,t), and the voltage,
V(z,t), are determined as solutions of Egs. 3.33 and 3.34 subject to

the boundary conditions that for t >0 ,

(open-circuit) (3.46)

|
o

I(4,t)

(short-circuit) (3.47)

1
@]

v(0,t)

and subject to the initial conditions obtained from setting t = 0 in

Egs. 3.40 and 3.41, i.e.,

!
2ol -
<

I, = I(z0) = -%)-ng'zﬁ (3.L48)

|
<3

V. = V(z,0) = “ %—) + Vg(z-z) . (3.49)

Solving Bg. 3.35 by the separation of variables and imposing the condi-

tion in Eq. 3.46, one obtains

"I(z,t) =

118

(C_sin k vt + D _cos k vt)cos k z
n n n n n

n=0

and likewise from Egs. 3.36 and 3.47

©
V(z,t) = 5 (Ahcgs k vt + B sin knvt) sin k z
n=20
in which
2n + 1 =«
k= —%— 3 » n=01L2- . (3.50)

Either by Eq. 3.33 or by Eq. 3.34, the constants above can be related.
Then using the initial conditions, Egs. 3.48 and 3.49, one obtains the

following result for the current and the voltage along the line.
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e 0] .
I(z,t) = % Y (-Arl sin k vt + B cos knvt)cos k z (3.51)
n=0
@
v(z,t) = ) (Ah cos k vt + B sin knvt)sin k z (3.52)

where the constants are given by

)1/2

R = (L/C (3.53)
y/
2 .
A = 3 J[ Vo(zl)61n k z,dz (3.54)
o)
5 £
B, = 3 Jr Io(%)R cos{k‘nzldzl . (3.55)
3 A

For arbitrary sample functions VO,IO, the solutions in Egs. 3.51 and
3.52 are periodic in time. The fundamental period of the solution is
readily found to be the two-way transit time along the line, and there-~

fore the corresponding fundamental freguency is given by

\
£ = 57 . (3.56)

Now, the correlation fumction for V(z,t) can be computed. Substi-

tuting Eq. 3.52 into the defining equation gives

RR (0,7) = <V(z,%) V(a-p,t-1))
2 Eﬂ/v

(o) = S5 [ [ ey gty e (@7
0 0 Vosl

0

Three subordinate determinations are required in carrying out the indi-
cated integrations and the ensemble average in Eq. 3.57. After

integration with respect to t, the following intermediate form is



. _32-
obtained.

1 E 2 2 i
RRv(p,T)z 337 2:O<<Ah+ Bn:> cos anTJ[ sin k z sin kn(z—p) dz . (3.58)
n=
0

Vosio
The integration with respect to =z 1is more direct and the result is

os)
1 2 2
RRV(p,T)= n E: <%h+-Bn:> cos k vT cos K p . (3.59)
n=0 Vosio

Now, from Egs. 3.39, 3,h9, and 3.54, one can relate <@£§> to the funda-

mental source variables, € and R. The essential details of the

computation are as follows.

£k
A2>= (2)2 <V“ (z )V (z )> sin k z_sin X z dz dz
n 2 J o' o’ o1l n o n"1 70 1
00
- L4 zZ -7
A2 _ heRv 8(-2 l)sin k z sin k z_dz dz
n £2 v n o nli o 1
00
A2 v _—
) = 7 (2€R) . (3.60)

Similarly, from Eqs. 3.39, 3.48, and 3.55, it follows that

<B§>= %(Z_E-R) . (3.61)

Hence, by Egs. 3.56, 3.59, 3.60, and 3.61, the correlation function for

V(z,t) is given by
[80]

RRV(ZO—Zl,T) = 2¢f R nZ;O cos kn(zo—zl)cos kvt (3.62)

By Egs. 3.13 and 3.50, the corresponding mixed correlation-spectral

density function is



_33_

- X 2n+1 2n+1
RSV(ZO—zl,w) = ef R nz;o cos kn(zo—zl) 5(f - S fo)+ S5(f + 5 QQJ .

(3.63)

To obtain the analogous formulas for I(z,t) it is only necessary
to notice that in the computation for RRV the sign of Ah‘ drops out
in the integration with respect to t and the subsequent manipulation
in going from Eg. 3.57 to Eq. 3.58. Hence, c¢omparing Eqé. 351 and
3.52, one can write the following correlation function fér‘ I(z,t)
by direct analogy to Eg. 3.62.

EEfO oo)

= nZ::O cos kn(zo-zl)cos kvt oo ’ (3.64)

RRi(ZO-Zl,T) =

Similarly, by Eg. 3.63, the mixed correlation-spectral density function
is

2n+1
2

fo)+8(f+ggilf )

00
0
RSi(zo-zl,w) = Z; cos kn(zo—zl) 3(f - 5

(3.65)

The above result shows that the trapped noise currents have a discrete

fregquency spectrum as well as having spatial correlation. Using a

2n+1
2

voltmeter probe with a bandpass filter tuned to f = fo and with
a bandwidth which is less than fo’ the readings of the voltmeter are
identical to those which would be obtained from a single-freguency
source.

Since for an antenna the loss per cycle by radiation is very much
less than the total stored energy, it is permissible to extend the
above analysis, gualitatively, to the case of a thermally excited thin
wire antenna. Qonsider what happens to a small amount of thérmal energy

which is delivered to the wire by some lossy element of the system.

Apparently, this energy oscillates between -4 and +4, slowly
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decreasing in quantity due to the losses by radiation. However, the
multiple traverses are periodic; and by analogy to the precéding
analysis, the thermal currents tend to become correlated. Since the
radiation field is dependent upon the total thermal current, the
radiation field,‘itself, can be expected to show traces of the in-
terference phenomenon which is associated with fully correlated
source currents. Since by Eg. 3.65, the freguencies which are

2 ¢

present in the non-radiating case are given by L £, 3 fo, 5f0 s

2 "o’ 2

it is expected that the thermal radiation pattern, say, at a frequency

3

near 3 fo will bear a strong resemblance to that for the same antenna
element when driven by a coherent source at the g fo frequency.
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IV NOISE SOURCES

In this section two sources of thermal noise are considered for
radiation measurements. These are the heated wire and the glow dis-
charge. -Although these two are macroscopically gquite dissimilar, it is
well known that in each of them the same phenomenon, the chaotic motion
of electrons, gives rise to a noise spectrum which is essentially flat
in the radio-frequency band.* Hence, either of these two types of
noise source 'is potentially useful in experimental investigations which
are designed to demonstrate the validity of the spatially distributed
model of thermal-electric noise described in Sec.. 3. However, the com-
putations presented in this section indicate an appreciable advantage in
signal strength for the glow discharge éource due to the considerably
higher average temperature of the plasma electrons as compared to that
of the conduction electrons in a metal. A third type of source, which
could be very useful in this work, but which is not considered further
here, is a simulated distributed noise source, e.g., an array of in-
finitesimal radiators each driven by the amplified output of a
temperature-limited vacuum tube. With this method, the effective noise

temperature could be made extremely high.

4.1 Microwave Emissivity of Heated Wires

The emissgivity of a metsllic surface at a temperature T is
readily computed for the optical frequencies from Fresnel's reflection
formulas and Kirchhoff's radiation law (see Sec. 2.4.2). A similar ap-

proach at microwave freguencies would seem to suggest a consideration

¥An account of the major contributions in this field is given in Sec.
1.
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based on the analyses in the literature for the scattering cross-
section of wires, plates and other objects. This is not a fruitful
avenue of approach, however; for these analyses usually treat only
the perfect conductor case, and absorption, i1f it occurs, is due to
a lumped terminating impedance rather than to distributed wire losses.

In this section a formulation is presented for computing the
microwave emissivity of an antenna. It is based upon the thermo-
dynamic principle of detailled balancing of radiation and upon
antenna theory. - Although presented by an example (for the case of a
long thin wire) which involves computational approximations, the
method itself appears to be exact and readily applicable, at least
in principle, to an arbitrary radiator configuration. The analysis
demonstrates in a direct way that a multi-lobe thermal radiation pat-
tern i1s to be expected whenever a characteristic radiator dimension
and the wavelength under observation are of the same order of magni-
tude. Also, the equations enable one to make, simply, a numerical
estimate of the thermal signal level in the radiation field.

4.1.1 Ineident Poynting Vector in Isothermal Enclosure. Consider

a lossy wire in thermal equilibrium with the walls of a large isothermal
enclosure (Fig. 4.1). From Eq. 2.4, the spectral intensity of the
incident power per unit of receiver area which is incident on the origin

from a portion of the enclosure which subtends a solid angle 41 is

woar = L Tan . | (k.1)

For a sufficiently large enclosure the electromagnetic energy, incident
from this portion of the wall, is a randomly polarized plane wave, with

its components in the El_ 32 plane. The spectral intensity of the
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electric field has components Sel and Se2 corresponding to the
electric field components along u and Uy respectively. They are
defined by
*
s - lim <ET1’2((D) ETl’g(w)> . (4.2)
el,2 2T

T - o0 e

In the time domain, Poynting's theorem applied to this case states that

the power per unit area is the following sum

FXCIE {ei(t)a eé(tﬂ . (.3)

In Eq. 4.3, the lower case letters are used in order to emphasize the time

dependence. From this, the spectral form, Eq. 4.4, follows

3

2
Pt = T [sel+se2] i . (4.4

. The multiplier "2" is introduced because of our convention that PfA is a

one-sided spectral intensity and S_ is two-sided. Equations 4.1 and L.h

are combined noting that for random polarization Sel = Se2’ and the fol-

lowing expression for the spectral intensity of the electric field from
a_ () results.

nofgdf _

df = —-——2— € d_(l . ()'l"S)
2c

S af = 8

el ) e2 L

4.1.2 Induced Current Distribution. The currents induced in the wire by

the incident radiation are calculated in an approximate fashion using the
transmission line model of Schelkunoff (Fig. 4.2) (18),(19). Expressed

in Fourier transform notation, the transmission line equations are
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§X = =721 + E (w)Sin @e—iBR [eiﬁz cos Q+ e_iESZ cos © (M,6)
oz 1

3T |

< - -YV (k.7)

where the distributed nature of the inducing field accounts for the form
of the right member of Eq. 4.6, with the sin © appearing because only
the z-component of the electric field induces currents. Z and Y are
the series impedance/length and the shunt admittance/length, respec-
tively; and their product bBatisfies the relation  ZY = -62. Equations 4.6
and 4.7 give

= 4 521 = —2YEl(w) ¢ 1FR cos(Bz cos @) (4.8)

which must be solved subject to the boundary conditions:

I(g,w) = O
(4.9)
v(o,w) = O
The following solution for the induced current is readily obtained
I(z,w) = AEl(w)[cos Bz cos(B4 cos @) - cos B4 cos(Pfz cos 6)] (4.10)
in which the constant A 1is given by
-ipR
A = 2Ye (l"‘ll)

stin © cos B2

In the final form, an expression containing Y is not convenient. This
is due to the fact that this parameter is only an intermediate variable
which enters into some analyses for the input impedance of a linear an-

tenna, z;, ; and although the literature contains extensive references
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to zin,there is a little about Y . An alternate zin-dependent form
of this constant, A in Eq. 4.11, is derived following Schelkunoff (18)
and Weber (19).

From Eq. 4.10, the current at z = O, I, in Fig. 4.1, is given

by

I, = AEl(w) [cos(Bg cos ©) - cos Bg)] . (4.12)

This current can be related to zin by the reciprocity theorem (Fig.
4.3). Consider transmission from the antenna, effective height h,
to an infinitesimal test dipole of length df . The test dipole current

18 E df
0]

g 2y

where EO is the far-zone field of the transmitting antenna and zZy

is the total impedance of the test dipole. Now, expressing EO in

terms of the transmitter current, one obtains the following equation.

PR ! 1 as . (k.13)

; 1t

¥(z) is the normalized current distribution for the long antenna during

£
7 o topsin Qe g ¥(z) o1iPz cos © dz
g LR %in + Za

transmission, Vg is the generator voltage, and Zin+ Z, is the total
impedance. Now, interchange the generator and ammeter. From the recip-
rocity theorem, the =z = 0 current is exactly Ig . No other definitive
statement is made, however, relating the current distribution during
reception, @#(z), to that during transmission V(z). Define the effective

height h as follows:



I

I = —2— . (h.1k)

The electric field in the far-zone of the test dipole is

iBR V ds

iop e g
E, = . 4.1
1 LR z (k.15)
Since E, = B, sin 6 , Eq. L.14 can be rewritten as
. . -ipR  V dg
p -iowem e & noo. (k.16)
g hnR z (z, + 2 )
t' in a

Equating Egs. 4.13 and 4.16 for Ig one obtains

z .
h = ,/— v(z) eiPz cos @ 4 ‘ (.17)
-

This is substituted into Eq. k.14, giving the following relationship
between the induced load current, Ig’ the z-component of the incident
electric field, EZ, and the normalized current distribution during

transmission, U(z),

I -_ 2 f w(z) e BZCOS 65 (4.18)
Z

and therefore the following exact relationship is obtained for the case
in which z =0 .

a
£

z . ipz cos ©
lo™ 7, J¥(#) e az
in J,

e}

. (4.19)

Using the transmission line analogy again, Egs. 4.6 and 4.7 are solved

for the case of a concentrated source at z = 0, i.e., the generator,
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and the following approximate equation is obtained for V(z).

sin B(4 - |z[) (4.20)

w(z) = sin BY

Substituting Eq. 4.20 into Eq. 4.19 and integrating, one obtains

T _ 2Eg (cos(Bz cos O)r— cos Bz) . (4.21)

o0 BZin sin2@ sin B4

The alternate expression for A is found by comparing Egs. 4.12 and

4.21; the final result is

2
A = Bzy, sin 6 sin B2~ : (k.22)

4.1.3 Absorption and Radiation of Thin Wire in Isothermal Enclo-

sure. In the general case, there is absorption both in the terminating
impedance, Zg7 and in the wire losses. ©Since in the case under consi-
deration z, = 0, the total dissipation is given by the following

integration for the wire loss

2

p,(t) = | 1(z,t)R, dz . (+.23)

L

The current i(z,t) contains an induced term due to the incident field
and an internal term due to thermal agitation. In Eq. 4.23 the resis-

tance /length, RS, is given from eddy current considerations as

s ~ 2na dd

or by
wu B

R, = Toa (L.24)
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where & = (2/04;0)1/2. Equation U4.24 assumes that the skin depth
satisfies the following ineguality, 6‘<<a . It is assumed, for the
sake of simplicity, that the induced and the internal components of
i(z,t) are uncorrelated. Then, in taking the average of Eq. 4.23,
one can separate out the term which represents absorption of the in-
cident radiant energy. The spectral intensity of this absorption is
given by
£
Sp = ‘/- Si(z,w) R, dz , (k.25)

-4
in which Si(z,w) is the spectral intensity of the induced current
alone. Therefore, computing Si(z,w) from Eq. 4.10 and substituting

in Fq. 4.25, it follows that

£
2
= AA¥ - ‘
Spdf AN Rsseljldf -/l[cos Bz cos(Bs cos ©)- cos B4 cos(Pz cos@)] dz
-4
(4.26)

Equation 4.26 is integrated and rearranged, substituting from Egs. 4.5

and 4.22 for Se‘ and -AA¥, respectively. The resulting one-sided

1

expression for the power absorbed, in df, incident from 41, is given

by equation 4.27 below.

a =
Pffl fafL ESP af dn

2n§ 5 e

ar dn = @(e,Bs)df a L (L.27)

P
£.0 (2ﬁ)3a|zinlzsin25£

in vwhich @(e,B4) is defined by
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@(e,B4) = = B [coszﬁﬂ + cosg(Bz cos @)]
sin © -
) 2 Lo
+ sin P4 cos P4 cos (P4 cos ©) [l - 5 J
: 5in ©
2 . 1 4
+ cos B sin(BL cos ©)cos(pL cos Q) {cos 5+ Sin2@ J . (4.28)

By the principle of detailed balancing of radiation (20) which
states that in thermodynamic equilibrium for any space-frequency
interval, d4.(1-df, the power absorbed by a body is equal to the power
radiated by that body, it follows that the power radiated by the lossy
wire into the solid angle d.() is also given by Egs. 4.27 and 4.28.
Furthermore, since the radlant energy emitted by the wire is not
related to the temperature of the surroundings, it follows that the
thermal radiation pattern of the long wire at a temperature T is
likewise given by Egqs. 4.27 and L4.28.

An asymptotic form of Eq. .27 is considered in this paragraph.

A computational comparison in Appendix VI shows that an order of mag-
nitude agreement exists between |Zinl and Izr{, the simple reactive
approximation to the input impedance given by Eq. A-6.9. Hence, the
following approximation to Ziﬁ is made provided p£L»1 and provided
B4 1s not in the range of values which gives a zero of impedance. The

approximation is

7, = Zp = ~iz_ cot B4 (k.29)

in which by Eg. A-6.8, Z is given as
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7z = 120 | in JL + 0,116 + EEE—Eé 1
o _ pa BL |

which is roughly,

1

z_ =120 s 5 (4.30)

Substitution of Egs. 4.29 and 4.30 into Eq. 4.27 leads to the following

approximate form for the radiation intensity.

B €
P, .df d= '
o hna[cos B4 ﬁn(l/ﬁa)]

5 $(e,Be)df d N (4.31)

@(0,p4) 1is given by Eq. 4.28. The reason for the above-stated restric-
tion on the range of B4, so as to avoid the zero of impedance, is
clear from Eg. 4.31. These zeros occur for cos B4 =0, i.e.,

28/\ = (2n+l)/2 where n =0,1,2,3,-+- ; and they introduce a singu-
larity in Pfilf This singularity is a peculiarity of the approxima-
tion; and it is not encountered if an accurate formulation is used for
Zin' This asymptotic form for the radiation intensity is of particular
interest, because the coefficient, &€¢/(Lwa[cos By zn(l/Ba)]2), is
essentially the same as that in the formula for the radiation from a
thin wire which is derived by Levin and Rytov on an entirely different
basis (8). Thus, it is probable that Eq. 4.27 gives a more accurate
approximation than either Eg. 4.31 or the result in the above-cited

reference.

4.1.4 Experimental Aspects of the Detection Problem. The spatial

distribution of thermal energy for 'a heated wire is given by Egs. 4,27

and L4.28, The numerical determination of =z

in is presented in detail
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in Appendix VI. Hence, for arbitrary T, B, 4, a and o , the
absolute level of the radiant energy can be computed. It 1s shown
belqw, that the levels of radiation are qguite low; and in general,
tc measure these low-level patterns one should use the maximum
coupling to the receiving apparatus that is consistent with the

following restrictions:

(1) The solid angle subtended by the receiving apparatus at
the source must be limited in order to prevent undue smoothing of

the radiation pattern.

(2) The receiving antenna should be in the Fraunhofer region of

the radiator.

The determination of the quantitative 1imits imposed by the above
restrictions is described in detail in Appendix IV. The results are
summarized in Egs. 4.32 and 4.33. The controlling range reguirement

is

R = (based on smoothing) : (4.32)

in which 4 is the half-dimension of the radiator and La is the
full-dimension of the receiving aperture. The maximum effective solid

angle subtended by a microwave horn of optimum dimensions is given by

a L L
EOTRE
R
(0.50)(0.81) Li
o= = | (k.33)

L= 2.53x1077 (x/y,)2
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Computation for a representative case, i.e., 2Bf = 9 gives a propaga-
tion loss of 1/1040 (Appendix IV). From Eq. 4.33, the maximum solid

angle is 2,53x_1o‘2/(2,25)2 or 5.0x1073

steradians. Using a sophis-
ticated horn-lens system, a maximum increase by tenfold is envisaged.
The signal level at the input to the receiver is conveniently

characterized by an effective Nygqulst temperature,_za, defined in

accord with Eq. 3.25 by

J(Pffldf afl = e df (4.34)
HoN

where the integration is over the receiving aperture.

A numerical example provides a convenient method of summarizing
the difficulties inherent in the experimental detection of thermal
radiation patterns at microwave frequen¢ie§. -Congider the normal or
broadside direction, 0 = u/2, and assume BgPLl . Then, combining
Egs. 4.27, 4.28, and 4.34, and solving for the ratio Ea/ME , one ob-
tains the equation

6pL B ni.fl
(%.35)

€
2
€ (Zﬁ)salzinlg

Then, eliminating & by Eg. 4.24 and substituting the following numeri-

cal values:

284 = 9.5m
f = 9200 mec/s
L1 = 2=70)c10“3 steradian (by Eq. A-5.1)

one obtains the following equation for the ratio of the apparent re-

ceived temperature to the scurce temperature.
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s 7.28% 10°° '
- 2 1/2 (4.36)
£ alz e}

I inl

In Fig. 4.4, this ratio is ploﬁted as -a function of the conductivity
for three values of the parameter A/a, specifically x/a = 10, 100,

~and 1000. The appropriate values of ‘are computed in Appendix

2
|%4n|
VI. At points (a) and (b) the skin depth is one-tenth of the radius,
i.e., ® = a/10, for the A/a = 100 and A/a = 1000 curves, respec-
tively; and the analysis becomes less adcurate as o decréases from
these points. Also shown in this figure are the conductivities for
two materials capable of operation at elevated temperatureé. The value
of using a "lossy" conductor is evident. FEven so, using a rod of
silicon carbide with an operating temperatﬁre of lBOOOK, the apparent
received temperature is approximately T, e‘(Ea/E)lBOO z 0.18%.
Present-day wideband radiometer receivers can be designed to detect
signals at this level and, in fact, far enough below this level so that
a radiation pattern could be measured. Unfortunately, however, the use
of a wideband recelver is precluded, since it smooths out some of the
interesting pattern varlations. On the other hand, present-day narrow-
band radiometers (up to about 50 mc/s) can detect this signal level; but
it is not a practical level for measuring radiation patterns (see Appen-
dices I,IT,IIT). ﬁithout some technigue for increasing the source tem-
perature well above EOOOOK, the measurement of microwave, thermal-
radiation patterns from metallic rods will have to walt for the
development of & narrow-band recelver with an effective nolise level of

about 0.01 rmso K.
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4.2 Radiation Temperature of a Gaseous Discharge

The noise pfoperties of a gaseous discharge have been studied
‘experimentally and theoretically from a terminal point of view. In a
series of experiments with d-c¢ discharges in mixtures of mercury vapor
and argon, Mumford (3) and later Easly and Mumford (21) report a very
‘close agreement between the kinetic temperature of the plasma electrons
and the effective Nyquist's temperature of the source. The agreement
reported is, typically, within 3%. Parzen and Goldstein (4) have
derived an expression for the spectral intensity of the total electron
current in a  d-c discharge. For the one-sided spectral intensity of
avallable power, Pf, their final result is given, within a few percent,
by

Pp, = kT (4.37)

in which Te is the temperature of the plasma electrons. In the type
of low pressure, low current discharge under consideration, the kinetic
temperatures of the other plasma constituents are much lower than Te
and their effect may be neglected. Thus, the above result is also
expected from Nyguist's general derivation, i.e., Egs. 4.37 and 3.24
are expected to agree. Since from the terminal point of view, the
expected close agreement between the electron temperature and the noise
temperature has been experimentally verified, one can infer that the
electron temperature is also appropriate for the noise temperature in
the Leontovich-Rytov distributed random electric field, i.e., the €
in Sec. 3.k4 .

The electron temperature in the positive column of a d-c¢ discharge
can be computed from a theoretical result derived by Schottky (192k)

and later refined by Tonks and Langmuir and others (22). Consider a
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tube which has the following characteristics™: argon filled, pressure
30.0 £ 0.3 mm Hg, diameter 0.765 cm ID and 0.953 cm OD, length 21.2 cm,

current 200 ma, and voltage drop 71 v. Equation 8.36 of von Engel is
X )
_%75 - 1.2x10" (cpr)® (4.38)
N ‘

Wwhere X = eVi/kT s © is hxlomg for argon, p i1s mm Hg pressure,

. r 1is cm radius; and Vi is the lonization potential. Substituting
the values V, = 15.7v and cpr = 0.459 into Eq. 4.38, one obtains an
electron temperature given by T =ll,3OOOK. This is in comparison to
the measured noise temperature of T = lO,O7EOKo The computed value
and the measured value show falr agreement, and for ocur purposes,
sufficient accuracy is obtained with the assumption that the effective

source temperature is glven by

T = 10,100°K . ‘ (4.39)

From Fq. 4,38, it follows aiso that the kinetic temperature of the
plasma electrons is constant over a wide range in the discharge current.
Now, it is clear that the gaseous discharge is potentially a
better source of thermal radiation than the heated wire. There are two

reasons for this. First, the plasma electrons have a kinetie

¥These values are selected from the manufacturer®s data for the Bendix
Tube No. 6357/TD~llo The commercial use of this tube is as a random~-
noise generator. The manufacturer's specification on the noise tem-
perature is that 10 log (T/290 - 1) = 15.28 £ 0.1 db which
corresponds to a temperature given by T = 10,072 & 200 K.
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temperature which is considerably higher than it is practical to heaf
the conduction electrons. Secondly, the lower conductivity of the
plasma means & higher emissivity. A very simple, approximate com-
putation serves to stress these advantages of the gaseous discharge.
Consider an aperture of dimensions a by b in a metal plane, i.e.,
the slotted plane of Fig. 5.1. The aperture is illuminated by an
argon source for which T = loglOOOK. If one neglects subtletles

of aperture size, slot impedance, and plasma conductivity, then by
Eq. 2.4k, the spectral intensity of power intercepted by a receiver

of selid angle ) 1is given by

P N - 28b €
0 XE

0 (4.40)

Since only one polarization 1s absorbed, the spectrsl intensity of

received power, P_., is given by

T

_ L N
Pe = 5 Fepy

and the effective Nyquist temperature, Eé, defined by anslegy to Eq.

L3k, is given by

.€ ab (L

(b.h1)

The effective Nyguist temperature is computed for two cases of Interest.
First, for the case of maximum coupling, by Eg. 4.33, the solid angle

subtended by the recelver is

N = 5xl0m3 sterad for Pa = 9.5x

and if b/r» = 0.1, then T,  =2LK . (k. 42}
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Secondly, for the pattern recorder which is described in the Appendices
by Eq. A-5.1, the actual solid angle, /L, and the typical slot dimen-

sions are as follows:
L= 2.7x1070 sterad, fa = 9.51, b/A = 0.12
and thus

T = 16%% . (4.43)

Due to the approximate nature of the above computation, these values
must be regarded as order of magnitude determinations only. In any
event, with a radiometer receiver, these temperature increments are
easily measured, and a comparison to the Fig. 4. values clearly shows

the advantage of the gaseous discharge over the heated wire.

4.3 Radiation Characteristics of an Argon Discharge

Tn this section there is a description of a measurement of the
level of radistion received from a thin slot which is excited by a
gaseous discharge. This experiment is a preliminary to the measure-
ment of the complete radiation pattern of a noise-excited thin slot
(see Sec. 5.7). It is présented at this point in order to focus at-
tention on an important observed charscteristic of the noise source,
namely, that the level of the radiation is nearly independent of the
d-c discharge current. Thg experiment 1s described in more detail in
the next paragraph.

In the experiment a thin slot which is 9.5% by 0.24x radians
length at 9200 mc/s is excited by the radiation from a d-c discharge

in an argon column*. The radiation is recorded using & Dicke

¥ The noise source is described in Sec. 4.2.
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radiometer¥. The receiving aperture is positioned in the Fraunhofer
‘region of the slot at a range of 1.50 m, and it subtends an effecti;é
solid angle.of 2°7O>c10“3 steradians. The receiVéd signal is measured
as a function of the d-c current in the argon discharge. Figure 4.5
shows the vafiation in the received signal versus the discharge cur-
rent for two different angles of emission and for three tubes which
represent two separate lots. From this data the following observa;
tions aré made. For- an increase of 3.3 to 1 in the discharge current,
the increase in the signal level averaged over both angles of emission
is 1.25 to 1. The ratio of the emission at an angle of © - n/2 =0
to that at 630 shows a small decrease over this same range of current.
" The absolute level is approximately SOK, which is in good agreement
with the order of magnitude computation of l6OK in Eq. 4 43,

From this experiment it is concluded that the coupling of energy
from the plasma cclﬂmn to the sperture takes place predominantly as
radiation radially outward from the plasma column. It appears that
there is negligible slot excitation resulting from noise energy which
after emission propagates as a gulded mode remalning closely-coupled
to the plasma column. The sbove conclusion is based on the following
reasoning. ¥For the characberlstic parameters of the discharge used,
the attenuvation constant for the propagation of the principal mode is
high and furthermore it is proportional (spproximately) to the square
of the plasma frequency, mg, which ls in turn proportional to the
electron concentration and hence to the discharge current. Therefore,
for the principal mode, a 3 to 1 increase in the discharge current

causes approximately & 3 to 1 increase in the exponent of a term of

*The pattern recording apparatus is described in Sec.5.7 and Appen-
dices I, IT, and III.
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the form e %%, It is assumed that there is a corresponding significant
change in the loss factor for any of the closely-coupled dielectric
modes. Then, from the observed near constancy of the radiated energy
as the discharge current is varied, the above-stated conclusion is

drawn.
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V THERMAL RADIATION PATTERNS AT MICROWAVE FREQUENCIES

5.1 Introduction

In this chapter a study is made of the thermal radiation pattern
of a long thin gperture-excited slot. The principal reason for direct-
ing our attention to the problem of the thin-slot is that the experi-
mental measurements are practical, while for the thin heated wire, they
are not. In the experimenits described in the concluding portions of
this chapter, a glow discharge tube is mounted adjacent to a large metal
plate. There is a long thin slot in the plate which runs along the
axis of the discharge column. The spatial distribution of the radiation
from this aperture is measured as a function of the slot length. This
configuration serves as a practical gpproximation to the following
idealization; a rectangular aperture of dimensions a ’by b 1in one
planar metallic side of a large isothermal enclosure. The length "a"
and the wavelength are of the same order of magnitude, and the length
"b" is much sgaller. Radistion inecident on the aperture from within
the isothermal enclosure is essentially totally reflected if the
polarization of the elecﬁric field is in the "a" direction. However,
for polarization in the "b" direction, there is radiation. Due to the
relatively small size of the aperture, the boundary exerts a consider-
able influence on the radistion. The effect of the boundary in
correlating the resultant aperture illumination is readily aﬁticipated
by enalogy to the transmission line analysis for the trapped-noise
currents (Sec. 3.5). The principal departures caused by the proximity
of the plasma column to the slot are the addition of a small loss fac~-
tor as well as a slight change in the phase velocity for the waves

vwhich propagate along this slot. These effects are taken into account
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in an approximate fashion in the analysis in Sec. 5.4 by the assumption
of a complex propagation factor; 6c} In the remaining-paragraphs of
this introduction, the presentation of Chapter V is outlined.

In Sec. 5.2, the wave equation is solved for the aperture electric
£ield which results from the superposition of an arbitrary distribution
of induced currents; jX or G*Es, in Fig. 5.1. .This induced source
current distribution is a sample function of a random process. The
spectral Intensity of this function is of the form given by the
Leontovich-Rytov formula in Sec. 3.k4.

In Sec. 5.3, a general expression is derived for fhe radiation in
the Fraunhofer region. Equations 5.27, 28, 30 represent a general
formulation into which any assumed source correlétion function may be
substituted.

Tn Sec. 5.4, a delta-correlated source, Eq. 5.31, is assumed and
a formula is derived for the resulting spectral intensity of the
radiated power, Eg. 5.35. Special cases of this formula are considered
in detail. First, the free space phase velocity is assumed for propa-

gation along the slot; a formula for P is derived, Eg. 5.36; and

fn

graphs are shown for several slot lengths and various attenuation con-
stants, Figs. 5.3 through 5.6. Secondly, an attenuation constant of

zero is assumed; Pffl is derived, Eq. 5.37, and plotted, Fig. 5.7.

The spatial distribution of the radiation is in agreement with the
expression of Levin and Rytov for the the thin wire (8). The approxi-

mate nature of the constant multiplier in the expressions for PfJ\ is

stressed. Then, an asymptotic form is derived for P as the angle

£
e . goes to zero, Eg. 5.38.
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In See, 5.5, a partially-correlated source, Egs. 5.46 and 5.47,

ig assumed. The resulting radiated power, s 18 given by Egs. 5.52

PfIL
and 5.53 and ‘a convenient approximate formula is given in Eg. 5.55.
The results are plotted in Figs. 5.8 through 5.11.

In Sec. 5.6, a fully~correlated or spatially-coherent source is

assumed. An expression for P is derived, Eq. 5.65, and plotted,

o
Fig. 5.12.

In Sec. 5.7, several experimental radiation patterns are shown,
Figs. 5.13 thrcugh 5.16. The patterns are seen to be in good agree-

ment with those patterns which result from the analytical model

assumed in Sec. 5.k4.

5.2 *Agproximate‘Aperture T1llumination for the Thin Slot

Consider a metallic plate in the y = O ‘plane having a long thin
z-oriented aperture of dimensions a,b where a >>b (Fig. 5.1). The
aperture is illuminated or excited by a distributed noise source which
is incoherent spatially and timewise, e.g., a closely-spaced hot wire
or a plasma column. -An approximate analysis for the resultant aper-
ture distribution of the electric field is made in the following
paragraphs. The effects of radiation losses are neglected; and fur-
thermore, aside from the generation of the noise, the influence of
this noise medium of contrasting €,u,0 , is assumed calculable by
allowing for a perturbation iﬁ the propagation constant for the region
surrounding the slot.

The vector wave equation for the electric field is obtained by
taking the curl of Eg. 3.4ka and substituting fof V x B from Eg. 3.4b.

For p=0,V -E is equal to zero and Eg. 5.1 follows:
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VEE + weue_E_ = lopJ . (5.1)

The source current, j, is retained to account for the thermal noise
generated in the noise source (Fig. 5.1). .These source currents are
related to the excitation field, E,, by the generalized Ohm's law,

which is usually written as

g = Q‘*ES

where o¥ 1is the complex conductivity. This relationship can also be

expressed in terms of the complex dielectric constant, ep, as

J = iwe
s

and therefore

; . 2
lop g = -w gep@s

(5.2)

l—l
g
T
[
1f

2
_513 Es

where BP is the complex propagation factor in the noise médium. For
a highly-conductive region sp satisfiles the approximate relation:
~§§==iwuo.

Now the influence of the source field ES in the region from =z
to 2z + dz 1s felt everywhere along the gap, éince the cirtulating
induced currents establish a displacement-current field when they re-
encounter the gap discontinuity. An equivalent viewpoint is to regard
the source field as propagating, mainly along the gap with a standing

wave being established by the reflections at =z = £ a/2 . Consider the
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one-dimensional problem in which Ay is regarded as a short section
of a parallel-plane transmission line,gS =&y ES’ and the propagation

constant, Bc’ is complex. Eguations 5.1 and 5.2 reduce to

2

d'E
2 2

5+ B, By = -f) E (2,0) (5.3)

dz

in which the Bc' is given by

ch = + 1ip (5.4)
65 = (Dgp.ec ‘ (5.5)

The free space propagation factor is identified in this analysis by a

subscript zero, i.e., BO,‘and it is given by

=W U € . (5.6)

Since the source distribution, ES, is a sample function of a random
process, it is necessary to solve Eq. 5.3 for an arbitrary function
Es(z,w)n Also, this solution must satisfy the boundary condition of
zero electric field at the short-circuited ends, i.e., Ex(i a/2,w)= 0.
This solution is convenilently formulated in terms of the characteristic
function G(Z,ZO) as follows. The final aperture distribution is

given by

B (z0) = | B2 (z,0) Glz,z)dz, (5.7)

in which the characteristic function is specified as the solution of the

following related problem. G(z,zo) is the solution of the wave
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equation with a Dirac d-function source, i.e., the solution of

2
9_%‘+ 55 G =-8(z-2) (5.8)
dz

subject to the following boundary, slope, and continulty conditions

G(x 5,2) = O (5.9)
dG :
JE’E = =1 (5.10)
2
o
G = O . (5.11)

o' b—q

The general solution of Egs. 5.8 and 5.9 is given by

1]

G(z,zo) A sin Bc(% +2z), z<z

(5.12)

| e a .
G(z,zo) A, sin 6c(§ -z), z> z

Substitution of Eq. 5.12 into Egs. 5.10 and 5.11 leads to the following

conditions on A, A

1772 ¢
‘A cos B (Boz) -A cosp (Baz)=-2L
2 c'2 ‘o 1 e ‘2 o 50
s a & (5'13)
AE sin BC(E-ZO) - Al sin BC (§+ Zo) = 0 )
Solving for ‘Al’AE
, a a ‘
. sin 50(5 - ZO) A sin BC(E-FZO) (5.18)
1 : ’ = : s .
, Bc sin Bca 2 BC sin Bca
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substituting into Eg. 5.12, and rearranging slightly, one obtains

cos Bc[z+zo] -cos Bc[a-(zo-z)]

EBC sin Bca » 2 < %o

il

G(Z,ZO)

(5-15)

cos Bc[z+zo] -COS 60[3-(2-20)]

25c sin Bca

1l

G(Z:Zo) s 2D ZO

Hence, from Eg. 5.15, the characteristic function for the entire inter-

val can be written as

cos Bc[z+zo] -cosfﬁc[a—lz-zo|]

G(z,2,) = , |zl €3 . (5.16)

2Bc sin Béa
Thus, by Eqs. 5.7 and 5.16, an arbitrary source excitation, Es(zo,m)

leads to an aperture distribution EX(z,w) given by
a/2
2
Be) = [ BlE, (0 Glazy)as,
-a/2

(5.17)
a/2 .
: cos B _[z+z ]-cos B [a-|z-z_|]
g (za) = | 63 (2,0) 5% cIi s S 1
__a/2 (¢4 C

5.3 Radiation in the Fraunhofer Region

The (approximate) tangential electric field over the y =0
plane is now determined, i.e., Ex(x,z,w) = EX(z,m) of Eq. 5.17 for
lxl £ b/2 and Izl £ a/2 and EX(x,z,w) = 0 otherwise. The speci-
fication of the tangential electric field over the plane y =0,
together with fhe‘radiation condition for the field as r, = © are

sufficient to uniquely determine the radiation field.* The radiation

*¥Section 1h.11 of Smythe or Section 9.2 of Stratton contain more com-
plete statements of this well-known uniqueness theorem.
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field is convenlently expressed in terms of the Fourier integral analog
of Eg. 1-14.19 in Smythe (23). This formula gives the exact diffracted
vector potential in terms of the aperture distribution for a general
aperture shape. Differentiating, since E = -aé/’at s and suppressing
the eimt factor, one obtains Eq. 5.18 for the diffracted electric field
vector.
1 1+ inr -iéor
E(ro,9?¢,w) = 5= Jf —'—;E__— (n x E) x e das . (5.18)
: 3

The notation is defined as follows:

8 = surface of integration

n = unit inward normal to S

r = distance from 4S to (rd,@,¢)
'= unit vector along r

E = Fourler integral of the electric fleld at d4S

By = @RS,

- In the Fraunhofer region, i.e., for r_ > Li/hh where L, 1is a
characteristic length of the aperture, the l/r2 component is negli-

gible and Eg. 5.18 reduces to

1 -16 r
- 5__[- (n x E) x e as . (5.19)
S

The angle between the radius vectors to the point,(\/xi+ zi ,90,0) in
the aperture region and the point (ro,9,¢) in the far-zone, ¥ in

Fig. 5.2, is given by

cos ¥ = sin ©_ sin © cos ¥ + cos 6, cos 6
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For the thin slot GO = 0 and therefore cos V¥ redﬁces, spproximately,
to

cos ¥ = cos © p

Making the usual far-zone approximation for =r in phase terms, i.e.,

r - VXE + 22 cos ¥
o] 1 1

1§

r
and since B x 2%, taking
o1l

rir -z cos e (5.20)

and noting that the tangential electric field is x-oriented and thus
that (E X gx) xe, = 5§¢ sin @, one can rewrite Eg. 5.19 as follows

~ip.r
-ip sin © e o o b/2 a/2 iB z cos@
O ]

Ex(x,z,w)e dxdz .

E¢(ro,9,¢,w) = 2
-b/2 -a/2 (5.21)

From Eq. 5.17 for Ex’ the above equation can be expressed in terms of

the source excitation. The result is

-ipr
-1 sin © e Pro a/2 a/2 1b/2

21 v

E¢(roig’¢}w) = R

2
ES(XO’ ZO)(D) apG(Zl’ ZO)
-a/2 -a/2 -b/2

X eiBOZlCOS'@ dx dz dz (5.22)
o o 1 .
in which G(zl,zo) is given by Eg. 5.16.
Since Es(x,z,w) is a sample function of a random process, Eg.
5.22 cannot be integrated explicitly, and it is necessary to formulate
the radiation pattern in terms of an average power flow per unit of
space and frequency intervals. In the far-zone, the power radiated

through a solid angle d.f) is given by Poynting's theorem as
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P (0,6)al = eylt) ny(t) ri an
r° 4 (5.23)
p_n_(G,t)d_ﬂ. = eé(t) _iﬁ_
0

where real varlables are assumed for the electric field, e¢, and the

magnetic field, h Recast in the notation of spectral analysis, by

0"
analogy to Egs. 4.3 and L.4, Eq. 5.23 establishes the relationship,
given below, between the spectral distribution of the radiated power

and the spectral intensity of the electric field. Denote the average

power radiated into the space-frequency interval d4f dfL by Pffidjldf’
then by Eq. 5.23, the relationship is
2r§
Pfjldf an = _ﬁ; Se df an. . , (5.24)

Se is the two-sided spectral intensity of the electric field, and

according to the convention used throughout, P is a one-sided spec-

fn
tral distribution, i.e., the average radiated power, <:QJL(G,t)> , is

given by the following one-sided integration.

e

{rpE,8) = f Pondf (5.25)
0

Now, Se is formed from the éxpressidn for the radiaﬁion fleld, Eqg.
5.22, and the resulting ﬂofmula is substituted into Eé. 5.24 in order‘
to obtain PfJ\_“ In computing Se’ the bra-ket average is taken with”
respect to the ensemble of sample functions ES, hence it commutes
-with the integration taken over the aperture, and the following expres-

sion results for the average power‘flow/solid angle/frequency interval.
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Q S

~ ﬁi Sinag a/?' 77< ES‘(XO) Zo)w)E:(Xl:Zl:UJ)> (5.26)
Fen = 72 T :
T -a/2 -b/2 e

8/2 5 5% 150(22-23)cos 2]
% ‘
X -/;[ BpG(zg,zo)ﬁp G(Z3’Zl)e | dZEdZ3 dxodxldzodzl
-a/2
In the notation of Sec. 3.2, the mixed correlation-function, spectral«
density term appearing in Eq. 5.26 is symbolized by RSe(xo-xl,zoﬁzl,m)
and the full definition is
. %
E (XOJ ZO’(D)ES(X]_’ Zl}w)

i s
RSe(xo-xl,zo—zl,w) = Tli?zo << 5 :i . (5.27)

8

And for convenience, the function §(Zd’g) is 1ntroduced by the follow-
ing definition

’ a/2 o iBOzecos e
Beg®) = [ 6 clzpz)e az, (5.28)
-a/2
in which G(zg,zo) is the characteristic function for the aperture.

For the case at hand, this expression can be integrated directly. Sub-

stituting from Eg. 5.16, one obtains the following equation

a/2 .2 .
5z ,0) - B, | cos B.(25%2,) - cos B (a-|z,-z ) elaozgcosgdz
o’ = EBC sin ﬁca 5
-a/2

.This expression is integrated, and after considerable manipulation, the

following form results
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-
(z_,8) =
o’ sin Béa[ﬁi —(BOCOS‘@)E]

. a 8 8
x<sin B §[cos(60 5 cos 8)cos B.2," cos(ﬁocos 8)cos B, Eﬂ
+1 cos B_ = [sin(B_ 2 cos 6)sin B z - sin(p z cos 6)sin B 2]
c 2 o 2 ) o o c 2
(5.29)

Now, Eq. 5.26 for the sPectfal intensity of power, P

£’ is rewritten

below using the shorter notation.

Bisinge a/2 1b/2 N
‘Pfjlz —E;Ef—— ,[,[ J[ RSe(xO—xl,zo-zl,m) @(ZO,G)§ (zl,Q)dedxldzodzl
To -a/2 -b/2 |

(5.30)

The functions RSe and ’§ are given by Egqs. 5.27 and 5.29, respec-
tively. From this form; the notational generalization to the case of an
arbitrary aperture having a random source polarization is quite
apparent. However, the explicit determination of the functions involved

‘may become very difficult.

5.4 Radiation Pattern for the Delta-Correlated Source

The radiation pattern can now be computed for any case which is of
interest, simply by the specification of the correlation function for
the source, substitution into Eq. 5.30, and finally, integration. In
this section, the delta-correlated source of Leontovich and Rytov is
used (see Sec. 3.4).

It is assumed that the loss characteristics of the noise medium are

such that only a thin outer layer contributes to the external noise field.
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For a metal, this is an excellent approximation, and the reduction of
Eg. 3.31 to the two-dimensional case gives Eg. 5.31 for the correlation
function of the tangential noise field at the exterior surface of the

noise source. (Es in Fig. 5.1).

- — prnd * -
RRe(xo *102, Zl’T) ' <iEs(Xo’Zo’t)Es(Xl’Zl’t Ti> e
8
_ (5.31)
2€
RRe(xo—xl,zo-zl,T) = = S(XO-Xl) 5(ZO-Zl) 5(7)

The characteristic equivalent depth associated with compiete absorption
of electromagnetic waves, i.e., the skin depth &, appears in Eq. 5.3l
consistent with the derivation in Sec. 3.4 in which the area, dA in
Eg. 3.30, is interpreted as the effective conduction area. ILikewise,
for the case of a wire of radius "a" at high frequencies, the conduc-
= gdA = o8(2xna).

tivity per unit length; o, in Eq. 3.32 1is given by o

1 1
For a plasma of high conductivity, an analogous absorption phenomenen
takes place; and in this case too, the parsmeter & is the characteris-

tic absorption depth. Taking the Fourier transformrof Eg. 5.31, by Eq-

3.13, leads to the mixed correlation-spectral density function given

o0

Jr RR e‘LmﬁdT
e

Nos)

o€
RSe(xO-xl,zd—zl,w) = B(XO—Xl) 8(20-21)

below.

RSe(xo—xl,zd-zl,m)

(5.32)

-Substitution of Eq. 5.32 into Eg. 5.30 and integration with respect to

XO, Xl’ and zl give
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6§€bsnfgaﬂ3 . |
Peg - | M@ e, (5.33)
T T -a/2
Eguation 5.29 gives the function @(ZO,G), which results from the inte-
gration of the characteriétic function weighted by the phase factor
iBoz cos © ‘
e -, Substitution of this value into Fg. 5.33 and integration

lead in a tedious, but straightforward, way to the intermediate form

given in Eg. 5.34 below.

SR A|ﬁp|usin2@ l . 22
Pon = : — alsin B_ = cos B_ =
f 2 2.2 2,2 c 2 2
L % 7, 08 |sin Bcal |B¢-(5OCOS 0)7] ¢
sinh@a a2 .2 a a2 . 2 a
g [|sin B. §| cos_(BO 5 cos 8)+|cos B, 51 sin (BO 5 cos @)]

sinh Ba . g2 .2 a a2, 2
+ []51n BC-EI cos (BO = cos ©) - |cos B, §| sin

et (B, 5 cos @)]

* sin a
,Bc Bc

+ Re

cos B¥a - cos(B a cos @)} . (5.34
B*i_(aocos 9)2 [ ¢ © } )

The defining equations for the wave numbers, Egs. 5.3, 5.4, and 5.5 are

rewritten below,

ip, = a+ip = 1@\/uec (complex)

1Bp = o + ip; (noise medium)
2 2

B, = @ug €, (free space)

and it is restated that Bc is associated with lossy propagation along
the thin slot (Fig. 5.1), BO is the free-space wave nuﬂber‘arising from
Eq. 5.18, and Bp is the propagation factor in the noise medium defined

in Eg. 5.2.

[
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Equation 5.34 is not in a convenient form for computation. A more
convenient form is found by introducing a (MBO) portion of the coeffi-
cient into the central bracket, replacing ,Bo/no by weo , eliminating
,Bc in favor of @,;B, and BP by ,al,ﬁl. Finally, aftér considerable
manipulation, the following expréssion is obtained for the one-sided
spectral intensity of power which is radiated by the thin inccherently

illuminated aperture.
- 2 2
WeE €D 2((:&l + B

o
P = : S
£ K0 B [cosh 2aa - cos 25&][(62-6§cos29-a2 2 hogﬁg]

)2 sinEQ

where K dis defined by

 [sinh qa o | 1 1
K =19 B,2 {——755—— [cosh.aa - cos(Boa cos ©)cos 6al+ 5 cosh.zaan-ﬁcoszﬁa]

B sin Pa
I [ ~cos Ba + cos(Boa cos ©) coshaa]

B
Lp

0

+ 5 [(63-B§§COSEG4-a2ﬁ)sin BaLcos Ba

(Bg-ﬁicosg@ -GF)2+ 4a25
- cos(BOa cos 6)cosh aa]

-C¥(62+B§COS2@+ og)sinh.aa [cosh(xa-—cos(ﬁoa cos ©)cos ﬁa]} - (5.35)

The above equation represents a first-order aﬁproximation to the radiation
pattern for a thin slot which is excited incoherently both spatially and
timewise. In the preceding analysis, the major gpproximation occurs in
the determination of the aperture illumination by means of the principal-
mode analysls, Sec. 5.2. This approximation is analogous to the tradi-
tional assumption of sinusoidal current distribution in the thin wire

antenna. In the latter case, higher order approximations have been made;
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and in isolated cases, exact solutions have been obtained; and there is
extensive coverage in the literature concerning the amount of error which
is introduced by the sinusoidal approximation. - In general, it is found
that the higher~-order solutions are a necesslty for an accurate determi-
nation of the input impedance; however, quite a good representation of
the far-zone radiation pattern is obtained from the sinusoidal current
distribution for conductor diameters less than A/10 to 2/100.
Extrapolating on these results, it is probable that Eq. 5.35 adequately
represents the far-zone pattern when a comparable limit is placed on

b, say, b <210 to /100 .

5.4.1 Radiation Pattern Examples for the Delta-Correlated Source.

The form of the‘rédiation pattern is fixed if one specifies the slot
length, the free-space wave number, and the complex wave nﬁmber, i.e.,
the parameters a, BO, and o + iB in Egq. 5.35. To establish the
absolute level of the radiation, it 1s necessary to specify also the
source temperature, the conductivity-skin depth product, and the slot
width, i.e., the parameters E, 0%, and b respectively. In this sec-
tion selected; examples are chosen in order to illustrate the effect of
the various parameters; First, an expression 1s derived for the radia-
tion pattern when the wave numbers are equal, i.e., B = BO. Graphs

are presented for later comparison to experimental data in Sec. 5.7.
Secondly, an expreésion is derived for the case B = 50 with =20
too. This is compared to the result of Levin and Rytov for a thin wire.
Finally, the indeterminate form of Eg. 5.35 as © - O 1is examined; and
an asymptotic form, applicable when @ = 0, B = Bo’ and sin @ = 0, is

derived.
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Case I. Equal Wave Numbers with Attenuation (B=P_, af0).

In Eg. 5.35, set B = BO and rearrange slightly. The following
result, Eg. 5.36, is a simpler form for the thermal radiation pattern
under the assumption that the phase velocity along the thin slot is

equal to the phase velocity in free space.

— 2 2,2 '
. we _eb (o + Bl) 5 8in°o .
tn 312 od Bg‘ [_cosh 2qa - cos QBoaJ [(sin2@—A2) 2+11A2] ©
| (5-36)
where Ko is defined by
sinh aa _ 1 1 .
K = Boa[T[ cosh aa cos(Boa cos ©)cos ﬁoa]+ scosh 2@a - 5cos 2BOa]

+ sin B_a [-cos & + cos(ﬁoa cos. @) coshaal] +

A sin29+A2)sin B a[cos B .a- cos(f a cos ©)coshaal
2 2,2 2 fo! o] o]
(sin“6 -A™) "+ kA

- A1+ cos29+A2,) sinh ga[cosh aa - cos(ﬁoa cos @)cos Boa]J

and A is defined by A = /B .
Thermal radiation patterns for several differentv cagses are plotted

in Pigs. 5.3 through 5.6. In each graph P from Eq. 5.36, is plotted

£n’
versus the angle from the normal, n/2 - ©, for values of the loss factor
A  which represent attenuations of 1, 3; 5, and 20 db/Waveleﬁgth. In
these graphs, the ordinate is normalized to [weOZb(a]2_+ Bi)g/ngd'éﬁg]
Figs. 5.3, 5.4, 5.5, and 5.6 correspond to pa/n = 7.3, 7.5, 9.3, and
9.5, respectively. The appropriate values of A , see Table 5.1, are

determined as follows. For propagation along the z-axis the field
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vectors attenuate as e-cxz; hence, in one wavelength the fractional

attenuation is e'gﬂa; and, therefore, the attenuation in decibels per

wavelength, |db| defined by [db[k = 20 log |E(z)/E(z+\)]| , 1is

>\' 2
related to A Dby the equation

- Lox

n 10 .

Table 5.1

VALUES OF LOSS FACTOR, A

ATTENUATTION
(decibels/wavelength) 1 3 5 20
LOSS FACTOR
0.01832 0.05497 0.09162 0.366
(a=a/s) 3 549 9 3665

Two interesting features of these graphs are noted in this para-
graph. First, the spatial distribution of radiant energy is distinctly.
non-Lambertian, with a pronounced maxima in the radiated power at angles
which are quite far from the © = /2 direction. Secondly, the form of
the radiation pattern changes considerably as the loss factor increases.
It is particularly interesting to note that the direction of the change
is such that the relative spatial ripple decreases as the attenuation is
increased. This is in accord with the physical argument presented in
Sec. 3.5, where it is reasoned that the degree of correlation in the
antenna currents, hence the amount of ripple in the radiation pattern,

should decrease as the resistivity of the conductor is increased.

Case 2. Equal Wave Numbers. ILoss Free. (B=:BO, a=0).

For the equal phase velocity case in which there is no propagation

loss along the slot, the thermal radiation pattern is obtained by placing
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B = Bo and ‘@ =0 in Eg. 5.35 or equivalently by setting a =4 =20
in Eq- 5.36. Evaluating the indeterminate form and making trigonomet-
ric simplifications, oné obtains the following result.

- 2 2.2
€ €
_ % b(a] + Bp) K
N ﬂ2 oo Bg

P oS (5.37)

[sin p_a sin NE
4

where Koo is defined by

. 2 g ‘
Koo = 503\[1 + sin"B & - cos B2 cos(ﬁoa cos Qﬂ

+ 8in a
BO[

sin @

- } [ cos B a - cos(BOa cos @)}

Thermal radiation patterns are plotted for Eq. 5.37,'too. These are
curves labeled 0.0 db/k and plotted for 3Oa/n = 7.3, 7.5, 9.3, and
9.5 ih Figs. 5.3, 5.&, 5.5, and 5.6 respectively. The maximum values
for the cases Boa/n = 7.3 and 9.3 are finite although they are out-
side of the range of the graphs shown. Additionsal patterns for
‘Boa/n = 2.5, 4.5, 6.5 and 8.5 are piotted in Fig. 5.7.

In terms of the spectral intensity or the Poynting's vector, it
can beé demonstrated by an application of Babinet's principle that the
radiation pattern for the thin slot and the thin linear antenna are
the same (24). Thus, it is to be expected that the épatial variation
in Eq. 5.37 for the thin slot ‘agrees with that in the formula derived
by Levin and Rytov for the thin wire (8). Indeed, a comparison shows
that they are in agreement, if allowance is made for-a typographical
error which has crept into the final expression for the radiation
pattern in the paper of Levin and Rytov. At this point, it is perti-

nent to note that while the spatial variations are in agreement, no
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attempt is made to compare coefficients. The reason for this is thaﬁ
in the approximate anaiysis in Sec. 5.2, it is assumed that the éntire
slot width is uniformly excited (along A y in Fig. 5.2). This is not
the case, and hence the coefficient in the thin slot amalysis is prob-

ably not guantitatively accurate.
Case TTT. Asymptotic Form for Small Angles.

- Consider Eq. 537 for the lossg-free case as the angle © goes
to zero. From first principles; it is known that the intensity of
‘the radiation must go to zero, too. However, a direct substitution
of the © = 0 value leads to an indeterminate form; and, furthermore,

computations of P for small values of © lead to the inaccuracies

£
which are usually associated with numerical answers which result as
small differences between large numbers. From Eg. 5.37, the angular

variation, Koo/ sin2@, is given by

K

00 1 2 2
= B asin©|1l+sin"p a-cos B a cos(B a cos 9)
sin% sinte | © [ ° 0 o ]
: ' .2 ' :
+ sin B a [4-51n @} [COS'BOa - cos(BOa cos Q)] . (5.38)

A convenient form for small values of © 1is obtained by separately
expanding the numerator ahd the denominator 'as power series in 9.
Terms of order 96 and GLL must be carried in the numerator and
denominator, respectively. In this manner, Eq. 5.38 can be reduced to

K_ cos2ﬁ a sinzﬁoa

00 . .2 3 23 2
5— = O (Boa) ( 5 + =33 ) - 55 (Boa)sin B2

gin ©

and substituting into Eg. 5.37, one obtaing the following expression for
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the thermal radiation pattern at small values of 6.

- 2 2,2 2
we €b (aT+ B) cot™B.a
e} 1 1 3 o} 1 23 2
Pop = —= (B.a)” ( +35) - === (B a)| &7 . (5.39)
N jT2 J Bg o 8 12 120 ‘"o

5.5 Radiation Pattern for the Partially-Correlated Source

In this section the thermal radiation pattern is computed for the
partially-correlated source, In general, if the slot, Fig. 5.1, is
illuminated remotely, i.e., the nolse sgurce is a few wavelengths from
the ‘aperture rather than direetly adjacent, then, the source excitation
field, Es(x,z,w), will be partially correlated. The degree of correla-
tion will be dependent on the geometry and the propagation character-
istics in the intervening medium.  Rather than delving ihto special cases,
it is more convenient for our purposes to generalize the concept of a
random noise source. .Consider a hypothetical noise mediun which has the
following properties. First, the terminal characteristics of this medium
are those specified by Nyquist's theorem (see Sec. 3.3). Secondly;(the
dietributed noise field is exponentially-correlated spatially, and delta-
correlated timewise. Thus anal&tically, the correlation function assumed
for this generalized noise medium is given by

2¢ ‘ —!XO—X1|/UO e_lzo—zll/vo

RRe(xb—Xl’Zo-Zl’T) = = N1N26(T) e (5.40)

where ug and v, are the correlation lengths in the x and y direc-
tions respectively, and Nl and N2 are the normalizatioh constants
which are chosen to make the terminal characteristics of the medium con-
form to Nyquist's theorem. Taking Eq. 5.40 as the correlation function

for the noise excitation field, ES(x,z,w), one can determine N, and
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N2 from Eq. 3.26 in the following manner. For the effective source
sheet which has dimensions b,8,a :along the x,y,z axes respectively,
where from Fig. 5.1 the e component of the‘electric field source is
gppropriate, the terminal voltage averaged over/the d by a cross-

section, v(t), is given by

a/2 b/2 _
v(t) - L J[ Jf e (x,2,t) ax az . (5.41)
-g/2 «b/2 ’

Forming the product v(t) v¥(t-T1),

b/2
v(t)v*¥(t-7) = ;E ,[/

2
J( (x ,zo,t)eg(xl,zl,t—T)dxodxldzodzl (5.42)
Za/2 b2

and taking the ensemble average over the sample functions, e, one

obtains

=
N
4
~
i

s <o) V*(t—Ti>

e

a/2 b/2 ’
‘/-J[_/’J[ RRe(xo-xl,Zo-zl,T)dxodxldzOdzl
“a/2 “b/2 '

From Eg. 3.25, the correlation function for the terminal voltage of the

(5.43)

=¢}
—~
A
~

1
mlH

resistor of length b and cross-section of 8 by a is given by

RV(T) = 2€ R 8(71)
_ 2 b 3(1) (5.4k)
AT el

Eg. 5.43 is rewritten, below, after the substitution from Eq. 5.40 for
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RR_ and from Eq. 5.44 for R, -

afe bjp -2 L . _° 1
2eb 3(r) _ 2ed(T) . o 0
. o~ 2 NlNE e dxodxldzodzl .
-a/ 2

(5.45)

Carrying out the indicated integrations and rearranging slightly, one

obtains the following result for the normalization constants N,. N

1 2
1 | 1
Nl° Ny, = u —’b/u.O h v -a/Vg :
2uo[l - = (1L -e )J EVO[l - = (1 -e )} (5.46)

Equation 5.46 specifies the normalization constants for the exponential
correlation function in Eq. 5.40. The associated mixed correlation-
spectral density function is obtained by taking the Fourier transform

of Eq. 5.40 with respect to the variable T . The result is

©
~1loT
RSe(xo-xl,zo-zl,w) = Jr RR, e dr
‘ o ,
47
el e oo
— u v
2€ o o] o]

The thermal radiation pattern for the partially-correlated source
can now be computed in a straightforward manner. The function RSe 5
Eq. 5.47, is substituted into the general formula for the radiation

intensity, Eq. 5.30, giving
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ﬁi € sin“e
P N_N
£ 2 2, o5 12
lx -x_ | |z -z |
o "1 o 1
a/2 b/2 T T
X J[ $( ZO,G) § (zl,@)e dx dx,dz 4z,

-a/2 -b/2

(5.48)

where § is defined by Eq. 5.29. Integrating Eq. 5.48 with respect to

the variables X and %y and substituting from Eq. 5.46 give

a/2 a2 e
Bo€1>sin e * Vs
Pfﬂ_: —2—-—_—-——1\12] j @(z0,9)§ (zl,G)e | dzodzl. (5.49)
TN, o8 -a/2 -~a/2

The integrations with respect to Z and z4 are performed by separat-

ing the interval of integration as follows:

a/2 a/2 - |Zo;zll
1(e) = 3(z, ,0)3" ( z,,0)e © dz_dz,
-a/2 -a/2
a2 v A z /v
I(0) = J[ dz, $ (zl,@)e o J( dzo§(zo,@)e oo
-a/2 ~a/2
a/2 z_ /v a/2 -z /v
+ f dzlﬁ*(zl,@)e 1o f dz_§(z_,0)e oo (5.50)
-a/2 z4

The general expression for é(zo,@) is given by Eq. 5.29. In order to
simplify the notation and the later computations, it is assumed that the
propagation along the slot is lossless, i.e., 5c - Bo 5 and Eq. 5.29

then reduces to
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262 a a a
§(ZO@) = —5— P 5 sinJSE[COS(B 5 cos 9)cos Bzo-cos(Bzocos @)cosf3§]
B sin Ba sin 6

+1 cos B'%[sin(ﬁ % cos @)sin Bzo-sin(Bzocos ©)sin B %] (5.51)

where the sub~zero notation for the wave number is omitted, i.e., for
notational convenience B replaces 'Bo' Equation 5.50 is integrated
using @(ZO,Q) from Eg. 5.51, and the result is substituted into Eq.

5.49 to form P -After a long computation, the following inter-

£fn -
mediate form is obtained.
- 2 2,2
£ €
o o b(Ozl+ Bl)

P =
£n ﬂz od ﬁ)+

1

[sin Ba sin @]

6(e,pa,v,) (5.52)

The function G 1is given by

@
|

Ba[EVONE][B(l—cos(Ba cos ©)cos Ba) + A sin® Ba]

2(A + B)
. 2
sin’@
-a/2v,
168 N2 v, e [FlF

= B][cos Ba - cos(Pa cos 0)]

..|..

sin Ba[EvONE][

o

3 sinEB % + FEicosgs‘%] . (5.53)

The remaining symbols are defined below.

' 1
A= 5 %
1+ (6VO) cos©
B = L 5
1+ (BVO)
1
N2 = v -a/v

2v [l - —(1-e )]
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a a . a . a
Fi= (A=B)cos B 5 cos(p 3 cos Q)+BVOB sin B 3 cos(p 3 cos 9)

; a . _. a
-Bv _A cos © cos B sin(p 5 cos o)

. a a . a. . a
F o= (A-B)sin B 5 sin(p 3 cos G)-BVOB cos B 5 sin(B 5 Cos 8)

+BV_A cos 6 sin B ‘% cos(B 2 cos @)

2

a a . a ! a a
F3_ -(AeB)cosB-E- cos(B 5 cos @)sinh —2—V—;+ Bv B 51n{3—2-cos(5-2— cos Q)COShE?;

a . a a
-Bv A cos @ cos {3-2- sin(B 5 cos ©)cosh 5

- a
F)= -(A-B)sinp §Sln(5 5C08 @)cosh‘2

a a_. a . a
— - Bv B cos B Esm(B 5COS ©)sinh -2V—O

+Bv A cos® sin,B% cos(B—Z— cosO)sinhE-s—; .
The expression for G, Bq. 5.53, 1s exact, but it is unnecessariiy
complicated if the cor’relation’ length Vo is fairly sﬁall. .For example,
if the ratio vo/a is small, then‘the third line of G 1is much smaller
than the first two, and it can be gpproximated in the following manner.
Provided that vo/a < 3, an error of less than 5% is made by the follow-

ing approximation:

a/2vo
e ) (5.54)

PO

a . a .

sinh = = cosh —— =
2v 2v
e) o

Substituting Eq. 5.54 into the third line of G and dropping terms which
’ —a/v
o
have the exponential coefficient e » one obtains the following ap-

proximate form

GBé BV, {EVONQJ {-(A-B)gsin25-3+([3vo)aB2 ,:%+ -]2—' cos 2Ba-2cos Ba cos(Ba cos G)}

- 2([3vo)2AB cos.@ sin Ba sin(Ba cos @)+(Bvo)2A2<:osg@sin25a . (5.55)
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This approximate form for the third line of G considerably simplifies
computations since the cumbersome F factors are completely eliminated.
In fact, it is clear from Eg. 5.55 that if BVO'<<14 in addition to the
prior assumption that vb/a < 3, then the third line of G 1s com-
pletely negligible, i.e., G3 = 0.

Thermal radiation patterns are plbtted for 'Ba/n =17.3, 7.5, 9.3,
and 9.5 in Figs. 5.8, 5.9, 5.10, and 5.11, respectively. In each graph

P normalized to EDEAE b@xi+—6§)2/ﬁ2 cSBu] is plotted versus the

NN
angle from the normal, =n/2 -0, for the following values of the correla-
tion length Bvo :0,0.30%,0.60%, and 1.0m. The Eg. 5.55 approximation
is used for the third line of G in Eg. 5.53. In these graphs, the
ratio of the maximum résponse to the response in the 06 = ﬂ/2 ‘or
normal direction decreases as the correlation length increases. In-
terestingly, the relative ripple in the fine %tructure of these
patterns‘does not change markedly as the correlation length changes.

In fact, percentage-wise this ripple increases gradually as the corre-
lation length increases. Ultimately, as the excitation becomes fully
coherent, this ripple must increase to lOO%, for it is known that
complete nulls will be obtained (Sec; 5.6).  Comparing the pattern
variation as a function of the correlation length, Figs. 5.8 through
5.11, to the pattern variation as a function of the loss factor,

Figs. 5.3 through 5.6, it is seen--as should be expected--that quite
different changes in form occur.

In Eq. 5.47, as u_,v, g0 to zero, the limiting value of the

‘correlation fumction is given by Eq. 5.32, i.e., since
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) |x5-x7 | _ |Zo'zl|

u v
. . o o) _ _ _
lim NN, e = 5(XO xl)ﬁ(zO Zl)
u ,v -0
0’ o
then RS_, Eq. 5.47, reduces in the limit to
RS (% -X.,2 =2.,0) = EE 8(x -x,) 8(z_ -z.) (5.56)
e‘"o "1’ 177 od o "1 o "1 ’

Hence, if the correlation lengths are set equal to zero, then the
equation for the pattern in the case of the partially-correlated source
should reduce to that for the loss-free, delta-correlated source. The

details of this computation follow. For v, = 0, it follows that

A =1
B = 1
2v01\T2 = 1
= 0

G3 ‘

and therefore Eg. 5.53 for G reduces to

G' = pa [1+ sin26a - cos Pa cos(Ba cos 0)]
v

+ sin Pa { - _}[cos Ba ~ cos(Pa cos G)] (5.57)

8in ©
and by Eq. 5.52, the radiation pattern is

— 2 D2
w€oe'b(al + Bl)

. 1 ‘

= G (5.58

tn n2 0% 64 [sin Ba sin @]2 vizO )
‘ o)
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The equations above for the limiting case of the partially correlated
source are identical to the formula for the radiation pattern for the
delta~correlated source case, Eqg. 5.37. This is to be expected since
the limiting form of the assumed source correlation function is Dirac's
delta function. However, the reduction dokes serve a useful purpose as

a partial check on the lntegration of Eq. 5.50.

5.6 Radiation Pattern for the Spatially-Ccoherent Source

In this section the thermal radiation pattern is computed for the
spatially-coherent source. Spatially-coherent excitation occurs when
the slot is illuminated by a @lane wave traveling in the positive y
direction in Fig. 5.2. The source of these plane waves can be either
a remote point source of thermal radiation¥*, or a remote single fre-
guency oscillator. For the noise source, the correlation function for

the aperture electric field is given by
RRe(xO—xl,zb-zl,T) = C &(T)
and by Eq. 3.13, the mixed correlation function is

RSe(xO-xl,zd-zl,w) = C . (5.59)

* It is well-known that a system of slits, when illuminated by a
remote incoherent point source, will give rise to an interfer-
ence pattern; i.e., Fresnel and Fraunhofer diffraction. Young
was the first to recognize the importance of limiting the spa-
tial extent of the source, and his famous experiments and
deductions were the first conclusive demonstration of the wave
nature of light.
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‘Alternately, for the coherent or single frequency oscillator, the

x-oriented electric-field excitation is of the form

v,
C

(5.60)

e(x,z,t) = e, cos wo(t,-

where Yo is the distance to the remote source. Using the defining
equation for the correlation function, Eq.-3.1l, one can readily

obtain the following result

- - = | o -
RRe(xo X 52 Zl,T) <<e(xo,zo,to)e (xl,zl,tO TX>
e§
RRe(xd—xl,;o~zl,T) = & cos W T | (5.61)

and by Eq. 3.13, the mixed correlation function is

e2 [os]
. _ _© =iwTr
RSe(xo-xl,zO zl,m) = = Jr cos w T e ar
-0
RS, (%, 12,75 ,0) - c, [8(r-2 )+ s(e+£)] (5.62)

where for convenience 02 is defined as

radiation pattern for both of these examples of a spatially-coherent

C, = eg/h . The thermal

source can now be computed by the substitution of REg. 5.59 or 5.62 into

Eg. 5.30. Integrations with respect to X, and x, glve

‘ 1
B2 b c, sinfe 22 N
Pt [ 80 (0,0 as0n (5.63)
0, -a/2

where $(z_,0) is given by Bq. 5.29 and C  is defined below.

3
'C3 = C (for noise source)
(5.6k)
C; = G &(f - fo) (for coherent oscillator).
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Substituting into Eq. 5.63 for @(zo,@), setting the wave numbers egual,
and integrating, one obtains the following formula for the radiation

pattern.

oo 2 a
2n T cos B 5 sin ©

a -

cos(p % cos @) sin B % cos B'% sin(B % cos ©) 2
d
B3 B 5 cos 8 (5.65)

The radiation pattern for the spatiallyscoherent excitation is plotted
for PBa = 7.3x in Fig. 5.12. The spectral intensity. PfJ1_ is nor-
malized to b203/(2ﬁ2q0).‘ It is interesting to compare this graph to
that for the delta~correlated source in Fig. 5.3. For these two cases

the relative amplitudes of the maxima are gquite different, but the

number of the maxima and their approximate positions are the same.

5.7 Experimental Radiation Patterns for the Thin Slot

There are two radiation experiments which would be very interest-
ing to perform in the course of verifying the Leontovich-Rytov distri-
buted noise formula. One of these is the measurement of the thermal
radiation pattern of a thin hot wire of high conductivity. The other
is the pattern measurement for a thin-slotted aperture in a highly-
conducting plane wall of an isothermal enclosure. These experiments
are of particuiar interest theoretically, because they can be treated
analytically with considerable precision. Unfortunately, even using
the most sensitive, present-day recelvers, neither of these experiments

is practical. Sample computations are presented in earlier sections to
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support this assertion as well as to determiﬁe the feasibility of
alternate experiments which may be considered practical compromises.
Fér example, one such computation leads to the conclusion that pattern
measurements even with a lossy wire are not practical, and morecver,
high losses smooth the inferesting interference structure of the
spatial distributién (8ecs. 3.5 and 4.1). Howéver, from another
-computation, the conclusion 1s drawn that pattern measurements are
practical for the case of a thin slot excited by a gaseous discharge
(Secs. 4.2 and 4.3). With this experiment in mind, thermal radiation
patterns ‘are computed for two different idealized slot excitations.

In the first, a spatially-uncorrelated source is assumed with an at-
tenuation factor for propagation along the slot (Sec. 5.4). In the
second, an exponentially correlated source is assumed with a zero loss
factor for propagation along the slot (Sec. 5.5). In this section,
experimental data are presented for comparison to the thecretical

results of these two analyses.

-5.7.1 Description of Pattern Recorder. From a conceptual point

of view, the measurement of a radistion pattern is quite simple.
Briéfly, a transmitter and a receiver are positioned at some fixed
separation. For either‘antenna, the radiation pattern is simply the
received signal as a function of the angular position as the antenna
being measured is rotated about its center. However, the measurement
of microwave thermal rédiation patterns. is made difficult in practice
because of the extremely low signal levels. As an example, consider
the signal return for a typical thin slot. The average signal to
nolse ratio -at the input of a closely coupled low-noise microwave re-

ceiver is approximately 50/(29OO° 6) = 1/350 , and the ratio drops to
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about 1/2000 for a ripplevor spatial fluctuation which is l/5th of the
average signal. Therefore, as a practical matter, it is necessary to
make fairly careful selections of the slot length, the range,,the re-
ceiving aperture, and the receiver in order to obtain the maximum signal
level that is consistent with the‘other requirements imposed on a
pattern recorder; These matters are discussed in the Appendices in
detail. For the receiver, there are discussions of the theory, the
design, and the performance in Appendices I, II, and ITI respectively.
‘The range selection and its relation to the aperture sizes are detailed
in Appendix IV; and the performance of the entire pattern recorder is
reported in Appendix V. Hére, a brief description of the apparatus is
sufficient (Fig. 5.12P). The radiator is typically a 4.75 by 0.12-
wavelength slot in a 28 by 19-wavelength ground plane. The glow dis-
charge tube 1s clamped to’the metallic ground plane directly behind
the thin slot and the entire ground plane assembly is mounted on a
large wooden turntable. The, receiving aperture is positioned at a
1.50 m range with the electric field polarization perpendicular to the
long edge of the radiating slot. The receiver is a narrow-bandwidth,
Dicke radiometer (5). This radiometer has a ferrite modulator driven
at 1,000 cps, a balanced mixer ﬁith Philco type IN263 low-noise
crystals; a grounded-cathode grdunded—grid preamplifier with Western
FElectric type 5842 low-noise tubes, an i-f amplifier and detector, a
band-pass filter, é l;QQO cps balanced phase-detector with Texas
Instruments 2N263 silicon transistors, a d-c amplifier, and a record-
ing potentiometer. Regulated power supplies are used for all d-c
voltages; and in turn, these are powered by a primary source of regu-

lated 60 cps-110v power.
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5.7.2 Accuracy of Measurements. The pattern recorder shown in Fig.

5.12P is designed with the major emphasis on high sensitivity. Wherever
it is necesgsary, precision is compromiséd in order to attain increased
sensitivity. For example, in the selection of an r-f mixer diode, the
sole consideration is sensitivity at low levels, and linearity and
long~term stability of the conversion characteristics are éompletely
ignored. This sacrifice of precision 1s necessary; becausé even with
the emphasis on sensitivity, the microwave thermsl radiatién levels are
very close to the present-day threshold of detection.

The details of the data gathering process are described as a
preface to the actual estimation of erroré. Suppose two radiation
patterns are to be recorded. .This reguires about six hours of actual
expefimental time which is utilized as follows: 1 hour warmup time,

l/ 2 hour for calibration, 2 hours for each pattern, and l/ 2 hour for
calibration. The two hours required for one complete pattern recording
are itemized in more detail in Table 5.2. Dué to the fine structure in
the radiation pattern, it is necessary to read the signal level at in-
tervals of 2.50. Due to the long response time of the demodulator
circuit, a stabilization interval of 30 sec is required after each change
in angular position. Then, a recording time of 40 to 60 sec is used to
provide adequate smoothing of the thermal fluctuations. Finally, a
tedious zero-level determination is required in order to minimize the
errors which are introduced by ambient temperature effects. It isvclear
from the itemized time requirement that quite large experimental errors
can be introduced by slow drifts in the characteristics of the measuring

apparatus .
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Tabile 5.2

TIME REQUIRED FOR PATTERN RECORDING

Item ' ‘Time

For each data point

Setting time 30 sec

Integration time 30

Recording time L0-60
Total 110 sec

For each pattern

Number of signal points _ 45
Number of zero polnts 22
Total time (approx.) 2 hours

An estimation of errors was obtained by a study of a special
four-~hour calibration record and by a.comparison of several different
calibrations taken over a period of five months. The estimated errors
-are tabulated below. Certain of the tabulated fluctuations are par-
tially eliminated by the method used in gathering the data. In the
table this is indicated by enclosing the estimated error in paren-
thesis. For example, the zero-level is determined within a few minutes
of the signal level reading and at every other angular position of the

radiator. This eliminates two potentially large sources of ervor (the
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Table 5.3

HESTIMATES OF EXPERIMENTAL ERROR

Source of Error \ Magnitude (rms®K)
1. Total fluctuation and reflection error 0.3
Thermal fluctuations 0.2
Short-term variation in zero-level 0.1
Long~term variation in zero-level (0.5)
Positional variation in zero-level (0.7)
Short-term variation in gain 0.1
Long-term variation in gain (0.3)
Uncontrolled reflection (Appendix V) 0.17
2, Total calibration error (0.1 db) 20%

0.5 rms’K  and the 0.7 rms"K entries in Table 5.3). Likewise, by
the initial and final calibrations, long-term variations in gain can
be detected and an approximate correction applied. It is assumed
that the remaining errors are random and independent. Computing
their rms value, one obtains a value of 0.3 rms°K for the total
fluctuation and reflection error.

The receiver is calibrated by using an argon noise source and s
variable attenﬁator as a secondary standard (Appendix IIT). Although
these measurements are reproducible to better than 5%, their absolute
accuracy is probably no better than 20%. The use of a well-matched,
variable temperature termination would permit a more precise calibra-
tion; however, this would not lead to any improvement in the measurement

of the shape of the thermal radiation pattern.
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5.7.3 Experimental Radisation Patterns. Experimental thermsl

radiation patterns are shown in Figs. 5.13 through 5.17. Patterns are
presented for slot lengths of Ba/n =7.3, 7.5, 8.7, 9.3, and 9.5, and
for a common slot width of 5b/ﬂ = 0.24, First, these data are com-
pared to the data taken at optical frequencies. It is seen from Fig.
2.2 that for a slot length of 0.1419 m (corresponding to Ba = 8.7x at
9200 mc/s), the optical radiation pattern is approximately Lambertian.
In contrast to this, however, the spatial distribution of the microwave
radiation is not even roughly Lambertian. In agreement with the theory,
whiéh is presented in this paper, the microwave radiation patterns are
guite sensitive to the radian-length of the aperture; they exhibit a
pronounced interference structure and a well-defined polarization; and
the maximum radiation is not generally in the © = n/2 direction. From
this comparison, it is concluded that the classical formulation does not
apply, even as a rough approximation, whenever the radiator dimension
and the wavelength are of the same order of magnitude.

A more detailed study of these experimental radiation patterns is
made in this paragraph. First, by a comparison of the theoretical
curves in Figs. 5.3 through 5.6 to the experimental data in Figs. 5.13
to 5.17, it is seen that there is good qualitative agreement between the
theory and the experiment. -As an empirical result, i1t is noted that the
best fit to the data occurs for an attenuation constant in the range
from 3 to 5 db/x: it is expected from the theory and verified by an
experiment (Sec,'4;3) that this attenuation constant is a function of
the d-c current in the plasma discharge. There are certain discrepan¥
cies, however, between the data and the form of the theoretical result

which is represented by Eq. 5.36. Consider, as an example, the results
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for the slot with a radian length of 7.3n (see Fig. 5.13). The approxi-
mate angles at which the relative maxima occur are given by the theory as
(0°,16°,34°,59°) and by the data as (10°,21°%,37°,60°). The differences
between corresponding angles exceed the experimental error, and there is
also a distinct difference between these two curves at angles which are
close to the normal. Moreover, it is noticed that for a slot length of
8.2x radians the angles for the relative maxima are given by the theory as
(703220,380,630)6 These values are in good agreement with the previously
cited observed'valuﬁs. Similar discrepancies also occur in the other ex-
-perimental‘data, and in each case the number of interference variations
which are observed is slightly largerwthan the theoretical value. 1In other
words, the effective electrical length of each slot is apparently siightly
greater than the physical length. This conclusion can also be drawn by
noticing the manner in which the number of interference variations
increaées with increasing length as shown in Fig. 5.7. The source of this
discrepancy is readily traced to the simplifying assumption that the velo-
city of propagation along the slot is unchanged from the value in free
space (Sec. 5.4.1). Although the geometry makes an exact solution diffi-
cult, it is known that the effect of the glass walls of the tube is

to decrease the phase velocity along the slot while that of the plasna
column itself is to increase this velocity. Apparently their combined
effect is to slightly decrease the value of the phase veloclty from

that in free space. The observed discrepancy is described above in

terms of an increased effective length; however, for quantitative pur-

poses, one cannot simply assign a new effective length to a given slot
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and then compute the thermal radiation pattern from Eq. 5.36. The
reason for this lies in the fact that the free space wave number
enters the analysis as f in Eg. 5.18 and the complex ﬁave number
enters separately as 'Bc =@+ if in Eg. 5.17 for the aperture dis-
tribution. For this reason, the separate identities of these two
wave numbers are retained in the more general form of the thermal
radiation formula givén by Eq. 5.35. Therefore, this equation
should be used in order to obtain & closer approximation to the
experimental patterns. However, further computational results are
not presented due to the lack of a suitable theoretical estimate for
the modified wave number B . Nonetheless, it is clear that the
general equation, Eg. 5.35, which rq¢§3ns both an attenuation

b
constant and a retardation variable,lﬁermits.an even closer fit to

the experimental thermal radiation patterns than that shown in the

figures.
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VI SUMMARY AND CONCLUSIONS

A combined theoretical and experimental investigation has been made
of the spatial distribution of the radiant energy emitted by heated bodies
for wavelengths at which the body dimensions and the wavelength are of the
same order of magnitﬁde° It is shown that in such cases the radiation

pattern has the following characteristics:

1. It exhibits pronounced minime and maxima.

2. it ig sensitive to the radian dimensions .of the body.

3. It can have a well~defined polarization.

4. It is not, in general, a maximum in the direction for which

the radiator subtends the maximum solid angle.

If one wishes to compute, say, a radiation pattern for a transmit-
ting antenna, there are two different analytical approaches. In the
first, one considers the éntenna as a transmitter of electromagnetic
waves and proceeds to the soclution either along the lines of the
assumed-current-distribution technique, or along those of the more
sophisticated boundary-value-problem technique. - In the second, one turns
to the solution of a related problem in which the given antenna is consi-
dered as a receiving antenna. Then, by invoking some form of the
reciprocity principle, one arrives at the desired solution. In this
paper both of these approaches are used, the receiver method in Sec. 4.1
and the transmitter method in Sec. 5.2 and 5.3. It is worth while to
present both of these methods of solution, because they start on quite a
different basis and they use different simplifying assumptions; and
hence, they result in slightly different approximations to the rigorous

solution.
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By direct experimentation, it is demonstrated that the thermal
radiation pattern does exhibit the above-itemized characteristics when
the body dimensions and the wavelength are of the same order of magni-
tude. TIn making measurements of a thermal radiation pattern at
microwave freguencies 1t is necessary to have both a very hot source
and a very sensitive receiver. In the experiments reported a source
temperature of lO,lOOOK is obtained by using the radiation from the
positive column of a d-c discharge in argon, and a receiver sensiti-
vity of 0.3‘rmsOK is obtained by means of g Dicke radiometer.

The experiments reported in this paper provide a succéssful
demonstration of an interference phenomenon using a source excitation
which is incoherent‘and spatially extended. Newton in expressing his
obJjections to the wave theory of light rested his case, in part, on
the failure to observe any interference phenomenon in experiments with

Just such sources. This may be seen from the following quotation (10):

1 [ 11 e 4 n a 2 an 18] A
e nov aii nypolineses erroneous 1in which J.lg,hu

is supposed to consist in pression or motlon propagated
through a fluid medium? If light consists only in
pression propagated ... it would bend into the shadow.
For pression or motion cannot be propagated .+. in right
lines beyond an obstacle."

Since the later success of Young (1801) witl his ingenious scheme
to achieve spatial coherence of the aperture illumination, it has been
widely assumed that interference effects are not observable using a
spatially extended incoherent source. In view of the experiments
reported herein, this assumption;is not correct. In fact, by direct
analogy, 1t appears to be guite practical now to demonstrate the same
interference phenomenon at optical wavelengths using spatially extended

incoherent sources.
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APPENDIX I -~ SURVEY OF RADIOMETER THEORY

The problem of défeéting the thermal radiation from either a heated
wire or a noise excited thin slot is the samé detection problem which is
encountered in radio astronomy. In these two applicatiéns both the
signal and the internal receiver noise have essentially the same wide
uniform épectral density. Dicke devised a practical method for detect-~
ing and measuring such signals even though they are lesé than l/lOOOth
of the lgvel‘of the receiver noise (5). Later improvements in microwave
radiometers have been mainly the result of improvements in technology
and minor revision rather than the result of fundamental innovations

‘(20),(25),(26), A good understanding of the operation of the radiometer
can be gained from the following analysis of a conventional microwave
receiver (5). Consider a receiver that consists of an r-f mixer with
image rejection, an i-f amplifier of bandwidth «, and a square law
diode detector of time constant T . The dverall noise figure of the
receiver is F. Both the signal and the receiver noise are assumed to
be of the following form. .The output amplitude cénsiéts of short pulses
which have an equal probability of being zeroc or FTb' The average
number of output pulses per unit time is limited to «. At the input
to the final long time constant circuit, the root-mean-square value of
the output distribution is FTO/E. Since the detector averages over
aT samples, by the law of large numbers, the expected value of the root-

‘mean-Square deviation is given by FTO/[2(GT)1/2] . This is the "funda-
mental fluctuation" in the output of the receiver. For a small change
in the input temperature, the signal to noise ratio is unity when this

change, ATO, satisfies the following equation.
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AT . ¥
T, 2(0“_)1/2

AT (A-1.1)

: F
a i .
o (am)?

The same functional variation is also obtained for the case of a
linear detector. Although the analysis above i1s not precise, it
demonstrates in a very clear manner how.the threshold of detection can
be improved by increasing the product of the amplifier bandwidth and
the detector time constant.

Consider the model of the Dicke radiometer shown in Fig. A-1.1.
Briefly, it consists of a modulator driven at a‘frequency fO,-an
amplifier of bandwidth ‘@ <centered at a frequency fl,«a square law
detector, a band-pass filter of bandwidth y ‘at a frequency of fo,

a synchronous phase detector driveﬁ at fo, and a low-pass filter of
‘bandwidth B. The operation of this receiver is summarized in the
spectral density diagrams shown in Fig. A-1.2. The input signal,
denoted by Eé = kTa, is amplitude-modulated at a frequency fo which
ranges characteristically from 10 to 10,000 cps. The receiver noise
Eﬁ‘ is assumed to be introduced just after the modulation process,
i.e., at point (1) in Fig. A-1.1l. These spectral densities are shown
as Pfl' That portion ofxthe‘input spectral density which is shown
shadowed is amplified and detected. At point (2) the spectral density,
Pf2 has a delta-function component at a frequency f = O which cor-
responds to the rms value of the signal plus noise and another at

iy =.fo which corresponds to the modulated signal above. Now, the

detected signal is filtered and amplified, synchronously detected, and
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-117~

finally, it is filtered again. - At point (3) the spectral density,

P.., consists of a delta-function signal component, S d a fluctua-

tion term, Goldstein has shown that these output spectral den-

8.32'

sities are given by (27)

s31 = 15 % 5(f) (A-1.2)
and
_Clse2 3¢ L z® x
532 5 [zen t 56 T3 €, } ,  0<f< 3 (A-1.3)

in which C 1is 'a gain constant for the system. The output signal

pover is given by

&)
S = -j’ S3l af
0
C —2 :
a - Iéea . v (A-1.4)

In this receiver, the entire fluctuation power constitutes noise.

Hence, the noise output power is given by

B
N = —[. 832 af
0
_ B [, 3e% 1
N o= 5 {QGH 5 T3 5, } . (A-1.5)

€
s 1 ay o 1
= = __.(2;) 5 ‘ . (A-1.8)
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For an output signal to noise ratio of unity, assuming that the input
gignal level is much less than the ianput noise level, i.e., assuming

st

éa << Eﬁ, the minimum detectable signal is given by

€

(E%)min 5.6 g— . (A-1.7)
o}

Now, a numerical computation is presented using the design ﬁalues for
the radiometer which is described in Appendices IT and IIT. The
effective amplification bandwidth is (2)(8) = 16 mc/s; the measured
overall noise figﬁre is F =5 (7db); and the integration time is

T = 1/B = 30s. Therefore by Eq. A-1.7, the approximate value for the
minimum detectable temperature is (5.6)(5)(290)/(23-10+3)= 0.35 rms’K.

The measured value of this fluctuation is O.2‘rmsOK, Table 5.3.
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APPENDIX II - DESCRIPTION OF RADIOMETER RECORDER

A microwave radiometer was designed for the specific purpose of
measuring thermal radiation patterns. While the details of this
design would carry us too far afield, it 1s a matter of some interest
to trace through a brief description of the final equipment. A block
diagram of the receiver is shown in Fig. A-2.1, and the sub-assemblies

-are described below.

2.1 Antenna

The antenna is-a microwave horn of dimensions La = 11.10 cm,
L, = 8.04 cm and a throat length of 17.2 cm, Fig. A-4.2. The mea-
sured absolute power gain is 72 at 9200 mc/s, and the effective solid

angle subtended at a 1.50 m range is 2.70 x ].O-'3 steradian.

2.2 Modulator

A ferrite modulator is used which has fairly uniform performance
characteristics from 8500 to 9600 kmc/s. The insertion loss is less
than O.4 db and the maximum attenuation is in excess of 25 db. The
input and output flanges have a relative rotation of ASO. The driving
coil is 68 turns of 27 AWG, self-resonant at 7 mc/s. -A sinusoidal
current of 0.70 a-rms from a 10 ohm source produces approximately lOO%

modulation of the r-f carrier.

2.3 Isolator

Two permanent-magnet ferrite lsolators are used to prevent the
local oscillator leakage and the crystal noise from being modulated.
The measured forward insertion loss is 0.9 db and the reverse inser-
tion loss is approximately 40 db. The Kearfott Co, type W-177-2K

isolator is used.
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2.4 Reference Oscillator

The reference oscillator supplies 30 v-rms at an lmpedance level
of 600 1-and -a frequency of 1,000 cps. The Hewlett~-Packard type

205AG audio signal generator is used.

2.5 Local Oscillator

A reflex klystron is used to supply r-f power to the mixer. The
frequency is manually adjusted by the setting of a bias voltage which,
in turn, governs the heating rate of a temperature sensitive cavity.

A Raytheon type 6116 klystron is used.

2.6  Balanced Mixer

The balanced mixer consisgts of a magic-tee waveguide component
and a pair of crystals with a very low noise figure. The Philco type

1N263 crystal 1s used.

2.7 I<F Amplifier and Detector

The i-f amplifier has a bandwidth of 8mc/s centered at 30 mc/s.
A noise figure of 1.19 (1.4 db) is achieved with a grounded-cathode
grounded grid input cascade which uses the Western Electric type
5842 tubes. The detector level is approximately -1.0 v-dc. The

effective time constant in the agc circult is approximately 10 ms.,

2.8 Band-Pass Filter

The band-pass filter is centered.at a frequency of 1000 cps;
it is down 3db at 750 and 1,300 cps; and it falls at 241db/octave

outside of the pass<band. The Krohn-Hite type 330-M filter is used.

2.9 Audio Amplifier

The Hewlett Packard type 450A audio amplifier is used to provide

Lo db of audio gain with high stability.
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2,10 Phase Shift Network

A simple L-R-C phase shift network is used to permit slight
! .
-adjustments in the phase of the reference voltage which is coupled to
the balanced phase detector. This adjustment is used to peak the final

output signal.

2.11 Audio Amplifier

This audio amplifier provides isolation and 20db of audlo amp-

lification. The Hewlett Packard type 450A amplifier is used.

2.12 Balanced Phase Dectectbr

The balanced phase detector uses two Texas Instruments type
2N263 transistors in a degenerative common emitter configuration. The

conversion slope is approximately 45 mv-dc output for 10 mv-rms inpub.

2.13 D.C. Amplifier

A time constant of 30 sec at the input of the d-c amplifier is
used to fix the integration—time for this radiometer. The d-c
amplifier is provided to isolate the relatively high impedance of the
RC time constant from the low input impedance of the recording poten-

tiometer. -A Kay Lab type 110A amplifier is used.

2.14 Recording Potentiometer

The recording potentiometer has a full-scale deflection sensi-
tivity of 20 mv, and the paper rate 1s one inch per minute. A Brown

Electronik Potentiometer is used.
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APPENDIX III - SENSITIVITY OF THE LABORATORY RADIOMETER

In Fig. A-3.1l, a c¢alibration curve is shown for the laboratory
radiometer which is described in Appendlix II. The steps are labeled
in degrees Kelvin corresponding to the change in the nolse temperature
of @ well-matched source which replaces the antenna element during
callbration tests. The source used consists of g calibrated r-f
attenuator and an argon noise tube. The change in the source tem—/

perature, say, from T. to T caused by a change in the atitenuator

1 2
:E“r’om,iA:L to A2 is given by an application of Kirchhoff's law as
follows:
T, 5= ‘Ta o To(l - E;";) (A-3.1)
4 1,2 Ly2
| 1 1 ,
T,- T, = (Ta~ TO)(E;,~ ZZ) . (A-3.2)

For the argon source Ta = 10,072 and therefore the temperature dif-

ference is given by

N §
Tg- Tl= 9780 ('Kg = -AI) (A‘3'3)

in which the attenuation A 1is relsted to the decibel attenuation by
|db attenuation| = 10 log . A.

The final radiometer unit is a stable relisble microwave receiver.
‘A comparison of the calibration records taken over a period of several
months shows a variation of only =+ 8% with virtually no maintenance.
A tabulation of the magnitudes of various fluctuations is given in
Seé' 5725

The final radiometer unit shows a Variation in sensitivity of less

than * 6% over the range of freguencies from 8900 to 9600 kmc/s. There
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is no particular effort made in this design to attain a wide band of
operating freguencies and the above-stated range 1s by no means an

upper limit.
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- APPENDIX IV - ANTENNA RANGE CONSIDERATIONS

The selection of a convenient distance or range for‘Fraunhofer
pattern measurements is generally a compromise between pattern accuracy
and signal level, with the primary consideration usually being one of
pattern accuracy. However, due to the very low levels of 'signal
strength in this experiment, the primary consideration is necessarily
one of signal level. Alternatives to the‘measurement of the Fraunhofer
pattern in the Fraunhofer region are described in the literature (28),
but they were not considered advantageous fof‘this experiment.

First, various criteria which appear in the literatﬁre are
reviewved (29). The transition to thé Fraunhofer region occurs for
A'< A/2; this fixes a lower limit on the range given by R, > Li/hh
(Fig. A-k.1). Now, as A decreases from the half wavelength value,
the differential contributioné in signal from the aperture become
more nearly in phase, apd the received signél lével risés approaching
the Fraunhofer level as A - 0. For a typical case, Silver shows
power measurements of 1%, 6%, and 20% accuracy, corresponding to
ranges which are given by R = ELifx, Li/kj and Li/Ex, réspectivelyu
Finally, it is important to limit the amount of smoothing or smearing
in the measurement of the radiation patterno Since important pattern
variations can occur for angular spacings of the order of § = X/Ll
(this is the épproximate central peak to null spacing for an in-phase

array), an arbitrary limit is placed on the span of Lé, as follows.

R Ll A

(A-L.1)

o+
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Limiting the smoothing of pattern variations is guite important in
this experiment, since in general, the nulls to be observed are not
very pronounced. The selection R.«aELlLQ/X is made on this basis.
From above, this fixes the ultimate accuracy of uncorrected power
measurements to approximately l%. However, probable errors due to
other factors degrade this value.

The propagation losses for three cases of interest are computed
in the following three paragraphs. First, consider the case in which
the pattern of a sinusoidally—exciﬁed slot is to be ﬁeasured‘using a
high~gain linear array for the receiver (Fig. A-4.2). .The ratio of
‘the power received, P to the power tranémitted, P> is given by

3¢ G. A
= . Lz (A-k.2)

The maximum gain of the s8lot for sinusoidal excitation is of the

order of the gain for a full-wave dipole, i.e., G, = 2.41 (3.82 db);

1

and the effective area of the receiving array is given by (18)

Lo
Ay = — . (A-k.3)

>’

Thus, for this case, the range reguirements are

R > sz/x (based on power accuracy) (A-k.k)
R > 2Llw2/x (based on smoothing) (A~4.5)
R > 2L2wl/x (based on alignment stability) . (A-L.8)

Since w,,W, << X, Eq. A-L .l establishés R. Clearly, Eq. A-4.6 is
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satisfied for L, as large as L2 = R/2 (Although the estimate of

2
A2 given above is too high for this ratio of LE/R’ it will be used.)

Substitution of these values into Eq. A-4.2 gives

Pr. 1 |
5; =137 (iz) (A-L.7)

and assigning the value Ll = 4.5\ gives the following power ratio.

bpr 1
L — . (a-k.8)
Py 2700

Now, replace the receiving array by a horn of dimensions La’Lb
flared in both planes, Fig.-A-4.2. The controlling range requirement

is

2LlLa

= (based on smoothing) . (A-4.9)

R =

Since Gl = 2.41 and A2 =:aeLaLb, the expression for the power ratioc

reduces to

(a-4.10)

= o
o

The efficlency factor 'ae depends on the horn dimensions. For a horn
of great length (or with a lens), the efficiency is 8/n2, i.e.,

o, = 9081; and for a short horn of optimum dimensions, flared in both
planes Lb/La = 0.81 and o, =0.50 (18). Therefore, with careful

design, a special horn-lens system could be devised for which

ko]
o

|
>
0]

°

20

L

2 001 (A (A-b.11)

(o¢]



-130-

‘assuming that a practical maximum for L 1is L = R/2. Thus for

Ll = 4.5\, the highest practicable value for the power ratio is
p,./p, = 1/116.
For a short horn of optimum dimensions, the power ratio, Eq.

“A-4.10, reduces to

P 2
1
L2 (&)

. (A-L.12)
p,  5L.5 Ly

Thus for Ll = L.5\, the propagation loss at the minimum range is

given by

"dl"d
3 L

te

iﬁ%B : (A-k.13)

The following conclusions are drawn from the above computations. The
horn is clearly superior as a receiving antenna in this application.
Eq. A=4.12 demonstrates an interesting fact, i.e., the propagation
loss is not a function of the (H-plane) gain of the receiving antenna
under the close-coupling condition of Eq A-4.9, Twmprovement results
if the Lb/La ratlo is increased, provided one is willing to incor-
porate a sophisticated horn<lens system. In this latter case,
assuming an idealized uppef limit for Lb’ i.e., Lb = R/E, leads to
an improvement over that in Eq. A-4.12 which is given by Egs A-b.11.
For the example considered, the maximum improvement is approximately

tenfold.
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APPENDIX V = ACCURACY OF PATTERN MEASUREMENTS

In this appendix, a comparison is made between a pattern recorded
using an automatic recorder and an outdoor range, and a pattern
recorded using the radiometer and an indoor range, Fig. 5.12P. From
our point ofw;iew the former measurement fepresents g8 precision
standard agéinst which the radiometer range may be Jjudged.

An F-plane radistion pattern for & metallic horn, La = 19.9 cm,
L, = 15.3 cm, and a throat of 27 cm, is shown in Fig. A-5.1, This
pattern represents a precision measurement taken on a range at the
Hughes Aircraft Company, Culver City, California. The antenna to be
measured 1s used as a receiving antenna, positioned at approximately
250 m from a milliwattuleﬁel microvwave traﬁsmitter. The measured
absolute gain of the horn described is 138. Therefore, the efficiency
factor is computed as follows: o, = Gxg/(hﬁLaLb) = 0.38. As an in-
teresting sidelight, the measured absolute gain can be compared to
the thedretical value. For A = 3.26 cm (f = 9200 mc/s), using
‘Schelkunoff's formulas (30), the gain is found to be
G = é% (42)(35) = 144. The agreement to within four percent between
the measured and computed values is good.

A comparison E-plane radiation pattern for the horn described
above is shown in Fig. A=5.2. This pattern was taken using the radio-
meter receiver and the range shown in Fig. 5.12P. The antenna being
measured is used as the transmitter, replacing the slotted ground plane
shown in the figure. The source of the transmitter power is an argon

discharge tube¥. Tt is important to emphasize that by coupling the

*This tube is described in Sec. L.2.
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noise power from the discharge tube to the horn via a waveguide, spatial
cohefence of the aperture illumination is assured for each spectral
component of the noise continuum, and hence for each component the
fadiation pattern is theoretically identical to that obtained using a
ec~w oscillator. This is, of course, in marked contrast to the pattern
which is obtained from a rectangular aperture which 1s incoherently
illuminated in the space-time domain. The patterns, Figs. A=5.1 and
A-5.2, agree guite well considering that there are vast differences
between the two methnds‘of'measurement, The maximum relative devia-
tion is h%, and the major deviation consists of a filling-in of the
"indoor pattern" at the lower signal levels. .This 1s reasonable
physically, being due probably to multiple reflections from the walls
of the room;

The receiver horn used in conjunction with the radiometer was also
calibrated on the 250 m range. The dimensions of this horn are
L, = 11.10 cm, L = 8.0k cm, with a throat of 17.2 ecm. For X = 3.26
cm, the measured absolute gain is 72 and the computed gain is
G = é% (31.7)(22.6) = 70. The agreement between measured and computed
values is quite satisfactory in this case, too. The effective solid

angle for this horn at the 1.50 m range is given by

2
G\
_(I: ,/»'ﬁ
LgR e b
o oW L§ R
;’ZQ
3
N=2.70 x 1073 steradian . (A-5.1)

From this pattern comparison experiment, it 1s concluded that g
maximum relative error of approximately 4% can be introduced by multiple-
reflections from the walls of the room. This percentage is computed based

on the peak value of the radiation.
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-APPENDIX VI - INPUT IMPEDANCE COMPUTATION

The parameter z, , Which appears in Eq. 4.26, is the input
impedance of a linear antenna of length 24 which is driven at the

mid-point. Suitable approximate formulas for the computation of zin

are summarized in Egs. A-6.1 to A-6.5 below (18). The input impedance

Zin, is given by

z sin B4 - izO cos BY

z, = Z (A-6.1)
in o Z gin B4 - iZd cos BY

in which the lmpedance factor =z 1is given by

z = R+ iX (A-6.2)
R= 30 [2Cin 282 + (Si 4pg - 2 Si 2B2) sin 2pB4
+ (2 Cin 284 - Cin 4Bg)cos 2p4] (A-6.3)
X = 30 [28i 28+ (251 284 ~ 8i LBs)cos 2By
+ (2 Cin 2B4 - Cin bpg - 2 Cin BL + 2 1n 2)sin 2B%] (A-6.4)

and the characteristic impedance, zo, is given by

z = 120 [1n é% + 0.116 + Ci BZ] . (A-6.5)

1

Extensive compilations and graphs appear in the literature for Zin
computed for the following range of variables: 0 < B4 < 2x and

100 < ﬂ/a < 100,000. However, these compilations are not useful here
since the central interest is for relatively long antennas, i.e.,

B4 > 1. In this range, thé above formulas are readily simplified for

computation by the use of the asymptotic forms in Sec. 2 of Japhnke and

Emde. For f£ >> 1, Egs. A-6.3 through A-6.5 can be.reduced to the
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following formulas.

R = 30 [1n b 4+ (0.577 +1n Bg)(2+ cos 26£)—(%-+E§Z)sin 253] (A-6.5)
X = 30 [g (2 +cos 28£)-(-0.810 + In Bf)sin 284
- é&(l + % cos 284 ~ 2 sin B4 sin zaz)] (A-6.7)
) 1 sin By
2, = 120 [1n S+ 0.116 + —-Ez——} . (A-6.8)

A numerical value is tabulated for the case 2B4 = 9:5n. It is
interesting to compare these values of ‘Zinl to those of |zr|

where Z . the simple reactive approximation to the input impedance is

given by (18) as

z, = -iz_ cot B . (A-6.9)

Table A~6.1

INPUT IMPEDANCE FOR A RADIAN LENGTH OF 9.5w

264 R X A a z_ . IZrl
10 76 93 76

9.5% 287 148 100 352 463 352
1000 629 928 629
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