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Abstract

A system, whose state may be described by a point t in
a bounded set in Fuclidean space, is considered. At every unit
interval of time, attractions Ai towards certain points y, eare
applied with probabilities ﬁi(t), (1 ﬁi(t) = 1), where t is the
state of the system. Given the initial probability distribution
y(t) for the state of the system, the problem is to obtain limiting
theorems for the distribution at the nth unit of time as n - o,
Subject to certain conditions on iAi} and. {ﬂi(t)} such convergence
theorems are obtained. Some particular properties for the case, where

the attractions are toward the Xertices of a simplex, are discussed,

Finally the one-dimensional learning model is considered,
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1. Introduction.

Certain learning models have been introduced by Bush and
Mosteller [1] . These models give rise to a class of transitioh operators
which were studied by Karlin [2] for the case of one dimension, The
mathematical description of the simplest process of this kind can be
formulated as follows:

A particle on the unit interval executes a random walk subject
to two impulses, one of which is applied at the end of every unit of
time. If it is located at the point t, then t =+ At = }Ot with
probability @, (t), and t - At = ME o+ 1 - A , with probability
¢1(t), where @o(t) + ¢,I(t) =1 . If p(t) is the initial probability
measure for the position of the particle, the probability measure TV

at the end of the first time interval, is clearly given by .

Ty (E)
Ag B T

J o ap@+ 1 g0 ap.
? -
1

]

If ¢i(t) (i"= 0,1) are continuous, then T represents a continuous
transformation of the Banach space of Borsl measures on the unit interval,
into itself, Instead of working with the transformation T on this

space, Karlin considers the transformation U, on the space of continuous

functions, defined by
Ux(t) = i. ¢i(t) X(Ait) °
i

He shows that T is the conjugate transformation to U. Thus by
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proving strong convergence for the iterates U", subject to certain
conditions on ¢i(t), weak-star ccnvergence is obtained for Tny .

For prob&bility'measures, weak-star convergence is of course convsrgence
in distribution,

It is the object of this thesis to generalize these results,

A countable set of transformations { Aik of a compact metric space
N into itself is introduced in section 3. These have the property
that e (Agt, As8) £ ne (t,s) (0< N <1), Hach A; represents
an attraction towards a fixed point y; (i =1,2, ... ).

In section L we consider a system whose state may be described
by a point t in 0. . Our Markoff process consists in applying at
every unit interval of time, one of the transformations E Ai} s Ay
being chosen with probability ¢i(t), where & ¢i(t)} is a family of
continuous functions each satisfying a uniform Lipschitz condition,

‘and the sum of whose Lipschitz constants is finite. If v -is a probe
ability measure defined on the Borel sets of fn , giving the probability
distribution of the initial state of the system, then the probability
distribution Ttr, for the state of the system at the end or the first
unit time interval, is

Tp = L g ap ).

vl

This is a continuous transformation oi the space YYL (Il) of finite
Borel measures into itself, The object is to obtain weak-star con~
vergence theorems for an » FProceeding as in Karlin's paper we define

the transformation U of C(x) (the space of continuous functions

on f) ) into itself by
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Ux(t) = °>;_° B,(4) x(Ast).

U is a continuous transformation and T is its conjugate, i.e.,

(Ux, ) = (x,Ty ) xeC(a), yeN()

where

(op) = [x(e) ap ).

It follows, since (Unx,|r) = (x,TnV ) that (Unx,tr) represents the
expectation of x(t) at the end of the n°P time interval.

There is a direct probability interpretation of the trans-—
formation U, It is clear from the definition of U that U¢i(t)
represents the probability that if the state of the systems is initially
at t, then at the first unit of time the attraction Ai is applied;
and in general, Un¢i(t) represents the probability that at the nth
unit of time, the attraction Ai is applied, given that initially the
state of the system is t,

At this stage reference should be made to the work of other
authors - Ocinescu, Mihoc, Doeblin, Fortet, Ionescu Tulcea and
Harinescu [3-9]. e shall refer in the main to the papers [8,9] of
the latter two, for they generalize that part of the work of the others
which is relevant here. Our transformation U is a particular case of
a transformation considered by themyand it follows from their work that
if we consider U as a transformaiion of the space CL(IL) into
itself, where CL(Jx) is the Banach space of continuous functions
x(t), each satisfying a uniform Lipschitz condition on ., with the

norm
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t) -
[l 1y, = maxlx(e)| + s Y

. [}
then U is a quasi-completely continuous transformation. This important

result enables us in section 5, to establish uniform C -1 convergence
on CL(IL) for the iterates Un, and in particular to prove C -1
convefgence for Un¢i.

In order to obtain results for C(£n.) and ML(£.) we must
now specialize L. to be a compact set in finite-dimensional Euclidean
space., We do this in order to have the property that CL(IL) be
dense in C(fn.). In section 6 we obtain by the Banach-Steiﬁhaus theorem
C - 1 strong convergence for " on ¢(aA). In section 7 these results
are translated into the conjugate space and C -1 weak-star convergence
is obtained for an .

In section 8, we consider the case where for each i,

(i =1,2, ... ) the fixed point of A, is an absorbing point, i.e.,

i
¥; 1is an absorbing point (i = 1,2, ... )o This condition is expressed
by #;(y;) = | (1 =1,2, ... ). Inaddition we introduce the additional
and natural assumption that for each i, as Y3, 1is approached, the
p?obability of choosing the next attraction to be Ai, does not decrease,
This is expressed mathematically by assuming ¢i(Ait) > @,(t) for all
t(1=1,2, ... )o Under these assumptions, we obtain the uniform con~
vergence of " on CL(IL), their strong convergence on C(.£.), and

the weak-star convergence of TR in M (L), Moreover the limiting

transformations are explicitly determined.
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In section 9, we consider certain properties of U and T
for a certain class of probabilities {Q&(t) } +« In section 10 a
slightly ﬁifferent class (though strongly overlapping) is considered,
Here the assumption that I @5(t) #3(s) #0 for all t,s in 0
is made, and again converge;ce theorems are obtained. The method used
is exactly that of Karlin [2] and indeed the result is indicated in his
paper., Here however it is difficult to obtain information about the
limiting transformation.

Section 11 introduces the N-dimensional analogue of the model
considered by Karlin., It consists of attractions towards the vertices
of a simplex, each a ttraction being directly proportional to the distance
from the corresponding vertex. This model is a particular example of
the problem treated in earlier sections. Certain properties concerning
the convergence of derivatives of UPx(t) are obtained under further
‘restrictions of @, (t).

The thesis concludes with section 12 which is devoted to
establishing certain additional properties for the one-~dimensional
learning model,

At the start in section 2, those ;roperties of Banach spaces
which will be required, are set out., The main theorem of Ionescu Tulcea
and Marinescu (theorem 2.2) which provides the quasi-complete continuity
of U on CL(IL) (theorem 4.2) is stated, However it is not always
necessary to appeal to this theorem to establish this result, apart
from the verification that the iterates U® are uniformly bounded in
CL(:L), which is easily proved, and is staﬁed as a separate lemma

(lemma 4.8, which is itself derived from lemma 2.1), For example in
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section 9 once the convergence in C(.a) is obtained, it is easily
deduced from theorem 2. (a simpler theorem than that of Ionescu Tulcea
and Mériﬁescu) that U 1is quasi-completely continuous on CL(IL).

For the case of a finite number of attractions this is also true under
the hypothesis of section 8,

It is clear fhat similar theorems may be worked out where
instead of i¢i(t)} satisfying a Lipschitz condition of order 1,
they satisfy a Lipschitz condition of order d, where 0< d <1
[ 9, page 146].

Finally, we note that only the case, where the nﬁmber of
attractions is countable, has been treated. However, it is clear from
the work of Ionescu Tulcea and Marinescu {8,9 ]that subject to certain
assumptions corresponding to those imposed on & ¢i(t)} here,
the transformation U obtained for the non-countable case is quasi-
‘completely continuous on Clﬂ:L)' There seems no reason to- doubt that
convergence theorems similar to those of sections 8 and 10 can be

obtained,
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2. [Theorems on Banach spaces.

- We first consider those properties of Banach spaces which
shall be required in subsequent sections,
Iet E, B be Banach spaces with norms !lx[,E, IIxIIB,
respectively and with the property that as vector spaces B < E.
Let U be a linear transformation of R into itself, which

is continmuous with respect to both norms, i.e.,

(2.1)  Jlullg= s |Jux]lg<e
XeB

xllg <1
and
(2.2) Hull, = sup  [|ox]], < .

E x e B E

Hxllg 21
In addition we assume
(2.3) there exist two constants Ry (0 < r < 1) such that

[oxllg < ol Il Iy * RIx] | x € B

The following lemma is due to Jomescu Tulcea and Marinescu [9]. The

ﬁroof is simple and is given for completeness.
LEMMA 2,1, If HUnHEf_ Hy (n = 1,2, ..,) then

(2.4) ”Un”B <cC N = 1,2, ses

where C 4is some positive constant,

PROCF': For x ¢ B we have from (2,3)



.
0%l | < =llox[ |, + B[ o]

2
2%zl + rellxllg + BEl x|
since llleIE S_Hllx]IF by hypothesis.,
Again

Noxlly < =[xl Iy + (<% + oru + RH) |[x] g
<2l + AP 4 x4 1) [Ix]lg

where A = Max(R, R:H).

(2.5) (0% 1y < = xl I + ol I
= i
where L T - p°

Hence for each x ¢ B, IlUnxllB < ®, Therefore by the

principle of uniform boundedness,

Hollg < c
where C 1is some positive constant, and the lemma is established,

We shall denote by Sr’ the sphere of radius r in B, i.e.,
(2.6) sr=§lchleHB_<_rk.

THEOREM 2.,1. If

(2.7) 8, 1is compact in E (i.e. with respect to | x]].)e
1 E

(2.8)  |*llg<H,  IP%l;<k  n=1,2, ...

(2.9) For each x £ B, there exists an element Vx £ E such that

[t - VxHE -0 as neo
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then V is a linear transformation of B into itself continuous with

respect to both norms; in fact
(2.10) HV! lE < H, HV( [B <K

and the sequence of transformations i converge uniformly in the

B~norm to V, i.e.,

(2.11) HU“-VHB-»O as  n - oo,

PROOF '+ The first step is to establish that for each x ¢ B, Vx € B.

V 1is clearly a linear transformation of B into E. For x ¢ 81,

0%ty < ®l1x]lg by (2.8)
<KX (since x ¢ S1).
Therefore for x ¢ S1, QUnx'} £ SK which by (2.7) is clearly a
compact set in E and thus is closed in E. From (2.9) it follows

that VWx e SK’ and hence is in B, Since V is linesr it is clear that

for any x £ B, Vx £ B. Moreover,

Hvllg = xsgpSTIIVxIIB
s.xsgpsxltxilB
=K

o~ IIVI]B < K and we have esgtablished that V is a con-
timious linear transformation of B into itself,
From (2.8),

0% | < ] Iy x B,
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s |luxllg < 8llxllg (by 2.9).
Hence V is continuous in E-norm and 'IV,'E.f He It is also clear
from (2.9), that Vx is a fixed point of U,

It remains to prove (2,11). From (2.8) we see that iﬂn&'k
form an equicontimious family of functions defined on B, with respect
to either norms. By (2.9), ™ converges in E-norm and therefore the

convergence is uniform on every compact set in E; in parficular
llUnx - VX]IE.» 0

uniformly with respect to x ¢ 81 a compact set (by 2.7). The hypothesis

of lemma 2,1 being satisfied,we may use equation (2.5) as follows

0% = vx] |y = 0700 = w) [

n—k

IA

[[U X - VxJIB + LIIU X - Vx]’E .

Choose k 3 ||U"%x - vxll < é% for all x ¢ S,

For x ¢ S1

Now choose
nkl(_e

Nan>Nir %

[0S = vl Iy < %] + [lvx] I

k
..<. ”U ”B+ ”V“B
< 2K.
Hence for x & 31, n>N
o - x|l < £+ £ = ¢,

h - llUnx - VXIIB -+ 0 uniformly with respect to x ¢ S1, or

[o® - v]lg ~ o

which completes the proof of the theorem,
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THEOREM 2.2, Theorem of Ionescu Tulcea and Marinescu,

If
(2.12)  x_ €B, llanB <K, 1lim| Ixn - x| IE =0
implies that

xeB and [leIB < Ke
(2.13)  ||v"ll; <1, D= 1,2, ..

(2.14) U transforms every bounded set in B intoc a compact set in E,

then the norms llUnllB are uniformly bounded and U is quasi-completely

continuous as a transformation of B into itself, i.es, 3 n >
n
[v™ = v]lg <1
where V is a completely contimuous transformation of B into itself.

Corollary: The theorem is valid if in (2.3), (2.14), U is replaced
by " for some positive integer m,

The theorem and corollary are proved in reference [9]. The
guthors also observe that if the unit sphere S1 in B is compact in
E, that (2,12) and (2.14) are satisfied. We prove this in the following

lemma,

IEMMA 2,2, If the unilt sphere S1 in B is compact with respect to
I'XI'E. then the hypotheses (2.12) and (2.14) of the above theorem are
automatically satisfied.

FROOF:  Let x € B, HxnllB.SK- 1im llxn-xHE=O.

n-ow
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x, €S = ix e Bl flxllB <X} which is clearly a com~

pact set in E from the hypothesis., Hence there exists a subsequence

© X converging in Fenorm to an element in § This element must be x,

n, X*
i
Hence x £ Syy i.6.y x € B and le'lB < K. Thus hypothesis (2.12)
is established,
Now let P be a bounded set in B, i.e., x £ P implies

that | |x| lB < K (a constant),

Iet &ka e P

A

o, 1y < 1olly [l

IA

Kl lully = R (say).

Now S = &x e B| llx[lB <R} 1is compact in E, ﬁence
there exists a subsequence {vail which converges in E~norm to an
element y € SR’ i.e.y to an element in B, Hence UP is a condition-
aliy compact set with respect to the E-norm, but the closure of a con-
ditionally compact set in a complete metric space is compact. Hence

UP is contained in a compact set in E. Hence the hypothesis (2.14)

is established and the lemma is proved,

We conclude this section by stating the general ergodic

theorem for Banach spaces as proved by Yosida and Kakutani [I0] and the

THEOREM 2.3, Iet B be a Banach space and U a completely contimious
or quasi~-completely continuous transformation of B into itself such
that l]Unll < C. Then there exists at most a finite number of eigen-
values of U of modulus 1. Denote these values by 19 2 59 see s )]{.

Then there exists a system of completely contimious transformations
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U (each of them # 0) and a completely continuocus or

i}
N TERRAL A k
quasi-completely continuous transformation S (which may vanish) such

that
k n n
(2015) Un = Z )i U) + S ] n= 1’2, [ X R 2
i=1 i
with
w, =U,U= MU, ¥ =U_ , U U =0(i#f})
i My i LF I R F UL
(2.16)
v, 8=s_ =0, [lu, [I<¢€, i=1, «ee 4k
\ i L ™4 |
and
(217) ||| s —2—=, M, £ being positive constants
(1 +¢)
(2.18) For.any complex N\, | | = 1, there exists a completely con-

tinuous transformation LI which maps B into itself, such that

2 n
1 g.u U M -
'n ()+h2+ o+hn)-U}‘ f.n n 1,2, ses

where M 1is a constant independent of n, and U) #0 if and only

if N is an eigen value of U

(2.19) HUnH -0 if and only if U has no eigen-value of modulus
1, If HUnH -» 0 then convergence is geometric, i.e.,
n M . s
HU H < — T M,h being positive
(1 +n) constants,
(2.20) [ o - U, || » o, U, #0  if and only if 1 is an eigen-

value of U and there are no other eigen-.values of modulus 1, Again

if this condition is satisfied,the convergence is geometric, i.e.,

(2.21) ||Un - U1 H < '(T:ﬂ;)_ﬁ’ Hyh being constants,
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3. Description of a Certain Cless of Trangformations on 2 Compact

Metric Space.

Iet O be a compact metric space. Let iAi} be a countable

set of 1-1 transformations of 0. into itself with the property that
(3.1) e (4,8, 4;8) £ 7 e (ty8) i= 1,2y eee

for all pairs of points t,s £ £2 where P is the metric on L) and ™

is a constant such that 0 < A < 1,

LEMMA 3,1, &Ai} form a set of 1=1 bicontinuous transformations of

L into itself, Each A, represents an attraction towards a fixed

i
point ¥so which is the unique fixed point of Ai’ and moreover the
rate of atiraction to the fixed points is uniform with respect to i,

e

n_ _
(3.2) lim Azt = Y3

n =>w
for any t £ QL , the convergence being uniform with respect tc 1

and t e+, For each i, Y3 is the unique solution of

(\3.3) Ay = F4e

PROOF: Tt is clear that if tj -+ t, we have by (3.1)

At » Ait each i,

i7]

Hence A, is a continuous transformation., From (3.1)

e (A’i‘t, A’i‘s) < ¥V p (tss)

<M \? where M is a constant, since ¢ (t,s)
is bounded for a compact set.
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Choose s = Agt. Hence, by above inequality

o (a3t, AT Pt) < m”
for every positive integer p. Hence, since a compact metric space is
complete,
A?t > ¥y

Clearly Aiyi = y.. Moreover Y; is the unique point satisfying this

i

equation,for let Aiyi = yi, then A?yi = y% so that since

n
o Wirps iy 5 '
n

Iet n - o, then
ey =0
L P 4 T
Finally the convergence in (3.2) is uniform with respect to t £ n.
and all i, for
o (45t,y) = e (aft, A7y.) < W M.
Hence the convergence is uniform,

The bicontinuity of A, follows from the fact that a con=-

i
tinuous 1-1 transformation of a compact space into a Hausdorff space
is bicontinuous. Hence the lemma is proved. For convenience in

notation we now introduce a definition.

Definitions APlg= U Ay s eee s A, S for any set S
i.,’oc.’in 1 n

A[n]jl. represents the range of all products of n transformations.
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Since Ain ca 4 it is clear thst

(2]

5 4l

A[1] o seensese o

Hnoo2> A

This is a monotone decreasing sequence of sets,which therefore converges

tc F, where
(3.4) F = !1] A[n]_n_ .

F represents the points of fi which are reached by an infinite npumber
of transformations., We define G to be the complementary set, i.e.,
(305) G = F [ ]

LEMMA 3.2, If the number of transformations &Ai} is N (finite)

then F is a closed set,

PROOF ¢ A, being a continuous transformation maps any compact set

[n]

i
onto a compact set. Hence A" "1, being a finite union of compact
sets and therefore closed sets, is closed. Thus F is a countable
intersection of closed sets and therefore is closed,

An alternative way of writing F 1is provided by the following

lemma, The proof is that of Hausdorff.[11, page 131].

LEMMA 3.3,

o0
(3.6) F=U N A s eees A 0,
o n=1 1 n

where the union is taken over all infinite seguences § ,
0-=(i1’ 12, 13 9 evee )

where the 1i's range from 1 to N.



. PROQOF: Denote the right-hand side of F by F!'s Any element of

F' 1is given as the limit of a sequence of sets

Aizn 2 Ai_]Ai Ai Q dase o

1 273

It is obviocus that the element determined by this sequence is in F (see

(34
On the other hand let x & F (3.4). Then

(3.8) Xeh D, A A,0, O, ... .
4 &4

A
3
4

ALB ALB

1T 72
Consider the first suffix in each of these terms. They form an
infinite sequence &L f } . Since the range of suffixes is 1 to N,
there must be one integer which occurs infinitely often in the
sequence, Let it be denoted by i1. Remove those terms in (3.8)
which do not have 11 as the first suffix., Consider the second
suffixes of the remainder. Apply the same argument to obtain suffixes
12, 13, ess 3 such that

X £ Aifl ’ Ai1A12£1 ’ Ai1A12Aijrl y see o

Hence by (3.7) x e F'. Hence F = F' and the lemma is proved,
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Lo Description of the Markoff Process.

~ First we state a well-known theorem,

THEOREM L.1. Let £ be a compact Hausdorff space, and let CR(II.) be
the real Panach gpace of real continucus functions x(t) defined on L.
with

Hxl] = max |x(t)]
t el

lLet c*(.n.) be the conjugate Banach space of CR(-O-). Define partisl

orderings of both spaces as follows:

x >y, if and only if x(t) >y(t) all te L ; x5 e ().

Iv

t/'_?_\l, if and only if l.r(x)

v

V(x) all x>0, ¢,V £0x),

Denote by WL (1) the space of all real-valued completely-additive
regular set-functions f,/‘ (E), defined for all Borel sets E of L.
If we put [|p]] = sup (E) = inf (£), and >V if and
V Eco V E o) lf F
only if V(E) > V(E) for any Borel set E ¢}, then YL(1) is

isometric and lattice isomorphic to the conjugate space C*Q) of

CR(-Q.). The correspondence is given by
@) Gap) =[x apo.
n

PROQF See Kakutani [12].

We shall denote by C(f.) the Banach space of complex-valued con-

tinuous functions x(t)} defined on L\ .
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We now return to consideration of the compact metric space £
and the transformations i‘Ail introduced in section 3.

Consider a system whose state may be described by a point
in0) . let ﬁi(t) be a countable family of contimious functions defined

[ea)
on N with the property that 0 < ﬁi(t) <1, and ¥ ;di(t) =1, Our
1

Markoff process consists in applying at every unit interval of time one
of the transformations &Ai} s A; being applied with probability
ﬁi(t), where t ¢ Q) represents the state of the system,

Let F(E) be a probability measure defined on the Borel
sets of L , giving the probability distribution of the initial state
of the system, Let

(b:2) Tp@E) =T J 8.4y apb).

~1
A‘iE

Since g_Ai'k is a set of continuous transformations, it is

clear that 'TK defines a measure defined on all Borel sets of . ,

and represents the probability measure for the state of the system after
unit time. |

Since £} is a compact metric space, it is separable and
therefore the concepts of Baire measures and Borel measures coincide,
Since Baire measures on fL are regular, this means that.Borel measures
are regular, Hence M (Q), defined in theorem 4.1, consists of the
set of all finite Borel measures on {l, Equation (4.2) defines TY
for any eWL(L)., Clearly T is linear and Ty is a Borel
measure ysince &Ai} are continuous. Moreover, T 1is a positive
linear transformation, If v > 0 then llT[’ll = Ty(Q) =[r(fl) =|p]]

by (4+2)}. An arbitrary measure tr may be written as y‘ = yﬁ - V'-,
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with norm given by || y]l = || Y+|i + I!’f-ll. Hence

A

s Tl

Hep = flzp ™ =2yl < [Ty

1+ 1T = 11y

A

s eyl s 1yl

Thus we obtain

LEMMA 4.1, T is a positive linear transformation of Wl () into
itself of norm 1,

Now consider the space C(fL) of contimous complex-valued
functions on £ . We define a linear transformation U of this space

into itself by x - Ux, where
=]

(he3)  Ux(t) = T 4(1) x(a8)
1=

for every continuous function =x(t) € C(fL), It is clear that U is

linear and positive,

[fox]] = sup  |Ux(t)]
ten
< sup |x(t)] since I ﬁi(t) =‘1.
t en .
= |Ix]].
o Juxll 2 lxl], i.e., U is continuous with ||u]} <1,

If x(t) 4is a constant,then Ux = x.

< |fu]] = 1.

llell < 1, but again since U preserves constants, I|U2|! = 1, and

in general l]UnII = 1, Summing up we have that
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LEMMA 4.2, U is a positive linear transformation of C(fl) into
itself of norm 1,which preserves constants,
By theorem 4.1, Y (fL) is the conjugate space of CR(Il)

with identification given by equation (4.1), i.e.,

(x, p ) = | x(v) ay ).

o
As in Xarlin's paper [2],we now connect transformations T and U
by means of the following lemma,

IEMMA 4,3, T is the adjoint of U, i.e.,

(4ek) (Ux, ) = (x, Ty) for each x ¢ CR(-Q), yewm(a),

PROOF: Iet y‘a 0, x 32 Q.

n
et AE) = 3 [ A4 ay@).

7E(E) is a positive measure, and
7‘n(E) 2Ty,

. -1 . . . . : s s
Since Ai is continuous on its domain,and since by the continuity

of Ai’ Ai is a Borel-measurable transformation we may write

n
'I\n(m) = 151' éﬁi(A?t) dr; (A?t)
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() = [ x(6) an_(b)

L.
n

L] =) 4,770 ap a]'v)
i=1

n
I | xam) g8) ap(v)
i=1 Y

.

1

Mp

B30 X)) ap (),

Now (x,)n)*(x, TE’) as n - for
(5 Tp) = (2 = [x(v) alzy -2,

By the above Ty = "\ is a positive measure, and there exists npan > n
y Vv n p eZ " =%

(T‘r - 7\n) () < 5:/HxH. Hence for n > ng
(% Tyr) = (xy A)) <&
oo (X, .!\n) ﬂ (XQ T{f)o

Hence,

(x 7y ) = im(axs ) = nf 14,0 x4 ay (v,

the 1limit being taken under the integral sign since all the terms are

poaitive,
o’ (x, th) = (UX, If).

Since an arbitrary x e Cp(f) can be written as x = x
where x , x= are positive and in’ CR(-O-), and similarly for v e ML)
the result (4.4) immediately follows,and the lemmsa is proved,

We now consider a subspace CL(n_) of C (£r). Ve define

CL(Jl) to be the vector subspace of C(£.) consisting of those complex
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valued functions in C(£L), which satisfy a Lipschitz condition, i.e.,

lx(t{ - x{s![ < o

) w6 = mp 5T

where the sup. is taken over all t,s £ C(), t # s. This set of

functions C;(0) forms a Banach space under the norm lellL, where
(4.6)  Hxlly = Hxll + mx).
We now verify a very important property of CL(LL).
LEMMA 4A.4h. The unit svhere in CL(Il) is compact in C(Q.), i.e.,
2 = {x e o ()| [xllp <1}
is compact with respect to norm lell.
"PROOF: et ixv\ be a sequence in J ;. Hence

lx, (£) = x, (s)]
1

i
(4.7) Hx\,ill * o IO

which implies that
va(t’)' f_ 1’
and

Ix,(8) = x,(s)] < p (t,8).

Thus ixw(t)‘} form a bounded sequence of equicontinuous functions
defined on a compact metric space., Hence by Arzela's theorem,there
exists a subsequence {xv:k converging uniformly to a continuous
function x(t), i.e., ;

i\xv. - x)) = 0.
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It remains to show that x £ X 1+ From (4.7)

IX\,i(t) - xvi(S)'

i STE) <1- levill t # s.
let i1 -« to obtain
Asup.fi(if*)_:}.(.SiL <1 = |]x|]

t#s e(tss)
which proves that x e C; () and x| IL <1, i.e.y xe2,. This
establishes the lemma,

It is now necessary to impose two further restric_tions on

ﬁi(’t) . We assume

(4‘8) ﬁi(t) £ CL(Q) i = ],2’ see

and also

(b9) M= % M(B;) <

This latter condition is automatically satisfied if the number

of transformations is finite.

%

©
Be X 5 = 1, where fLﬁi} are considered as elements of
1

[
C(a), i.e.y cio
]

jéi(t) = 1, the convergence being uniform,

PROOF: By definition °i° {éi(t) = 1, so it only remains to prove
the uniform convergence oi‘1 fhe series. However the partial sums are
positive, contimuous and converge to a contimuous function on a compact
set and so by Dini's theorem converge uwniformly. As is pointed out by

Ionescu Tulcea and Marinescu [8,9], the following is true.



- 25 -

LEMMA 4.6, The transformations U defined by (4.3) applied to the
elements of GL(Il) is a continuous transformation of CL(II) into

itself, and

(4.10)  [lux|l, 2 Nllxlly + R[Ix/]s
where ) s R are constants and 0 < A <1, N being the constant

introduced in (3.1).

PROOF: Doeblin and Fortet [ 4 ] proved the continuity for a finite
number of transformations, but proof goes forward in exactly the same

way under our assumptions,
Ux(t) - Ux(s) = I 4;(t) x(a;8) = I f(s) x(4;s)

S ux(t) -~ ox(s) - s 4 (t)‘ Lx(Ait) - x(48) ) e (4;%, A;s)
s R S A

e (tys) #-E(Ait’Ai)SL) P (tys)

(B,(t) = 8,(s])
+Z e e(t’s)"‘_ X(A:.LS).

Hence by means of (3.1), (4.5) and (4.9) we obtain
M(Ux) < AM(x) + M|]|x|].

Hence if x ¢ CL(II), M(Ux) < o, i.e4y Ux € CL(Il).

ol = [fox] | + (v
[xl |+ D) + ][]

M) + Ml + (1 v w=) [Ix]]
uxll, < Nl + 21 Ix]]

where R=1+M="n,

n AA
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It follows that
oxl I, < 2+ R) x|,
Hence U is a continuous linear transformation of CL(IL) into itself

satisfying (4410), and thus the lemma is proved. It is clear from the

foregoing that we have

LEMMA A7, c(a), CL(IL) satisfy the conditions for the Banach
spaces E and B respectively, introduced in section 2. Moreover the
transformatioﬁ U introduced in this section satisfies the conditions
for the transformation U introduced in section 2 by means of equations
(2.1), (2.2) and (2.3). |

The following lemma is a direct consequence of lemma 4.7 and

lemma 2.1,using the fact that ||U®|| = 1.,

LEMMA A.S, IlUnl 'L 5 C (B. Constant) n= 1,2, see »

We conclude the section with the following thecrem.,

THEOREM 4.2, U is a quasi-completely continuous transformation

of CL(IL) into itself,
This is proved by Ionescu Tulcea and Marinescu. It is a
direct consequence of applying lemmas 4.7, 4.4, 2.2 and the fact that

[ [t"[] =1 to their theorem, i.e., theorem 2.2,
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5. Uniform C - 1 Convergence for U® on CL(SL) .

THEOREM 5,1, There exists a non-zero positive continuous transformation

U1 of CL(II) into itself such that
1 3 .k c =
(5.1) Hn 21 U -U1]|L§n n=1,2, ...
where C 1is some constant independent of n, Moreover, 'U1 preserves
constant functions,
PROCF & Since Ux = x if =x(t) = constant, it follows that ™ = 1

is an eigen-value of U, which by theorem 4.2 is a quasi-completely
continuous transformation of CL(IL) into itself. Using lemma 4.8,
i.e., llUnllL < C, we obtain (5.1) from theorem 2.3. That U, preserves

constant functions is obvious from the fact that (5.1) implies
e 1 2 x -
(5.2) H; 51_' Ux-U1xHL-'0 X € CL(.n.),
which implies that

(5.3) lll'% ¥ -uxl]»+o0 c, (L)
. n ] X 1 .XC L .

The positivity of U, follows also from (5.3). <hus the theorem is

1
established,

It is easy to see from the definition of U, that Unﬂi(t)
represents the probsbility, that given that the initial state of our
system is t, that at the end of the nth time interval, the trans-
formation A, is applied. Since ﬂi(t) £ CL(IL) we obtain from

(5.1) a mean convergence theorem for the limiting probsbilities of



applying the transformation Ai, as n -» o given that the initial
state is t. This has been obtained by Doeblin and Fortet [ 4 ], and

Tonescu Tulcea and Marineseu [81l.
LEMMA 5.1, The following inequalities hold for n =1, 2, .ee
n
1 k c!
(504) “n 21: U ﬁi "U-I ﬁi”LE n
and consequently ,
1 o .k c!
(5.5) ”E 12 U ﬂi"'U‘] ﬁi” f.';;_
where C' is a constant independent of n and i,
PROOF 3 This follows from (5.1) and the fact that
gy 11, < 1111 + u(d,)

_<_ 1 + M by (4.9).

Hence the lemma is established,
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6. Strong C = 1 Convergence for Qf on c(fa).

From now on we restrict consideration to L a compact subset
of Euclidean space. Since {1 1is compact it follows that, since
polynomials are dense in C(L), CL(Ix) is dense in C¢(Q.). It is for

this property that the restriction on L. has been made.
THEOREM 6,1.
1 2 x
(6.1) 'IZ Z Ux-~- U1xi! = 0 as n - o
1

for each x £ C(Q.), where U, is a continuous transformation of c(a)
into itself, and ||U1|| =1, Moreover U, as a transformation on

cL(sx), is the same as that of the last section.

1 3 ox
PROOF: Jet V. == X U
LROUY nn g

v I =1

Ia

but since V = clearly preserves constants I|Vhl[ =1, From (5.1) we

easily obtain that for x ¢ CL(IL)
G
1v,x = Uyl | < [1vx = vxl | < € (el I

ie€ay

lim Ilvnx - U1x|[ =0 for X € CL(Il).
n = .
Since I,anl =1, we have by the Banach-Steinhaus theorem (since

CL(IL) is dense in C(fs.)) that

ln [|vx-ux|] =0

n -+ o
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vhere U, is a continuous linear transformation of C(sn) into itself,
and is in fact the unique extension of U, defined on CL(D.) to the

whole space C(f)., Also HU1 H <1, but since U, preserves constants,

1
HU1 [| = 1. Hence the theorem is established,

Corollary: The following relation holds
(6.2) w, = U1U =0, =U

This follows by standard arguments. See Yosida and Kakutani [10].

Definition: T.Vi(t) = U1ﬁi(t), 1=1,2, ven o

(o]
LEMMA 601. u:'ri 14 CL(-Q.), i= 1’2, see 9 and z Wi = 1, convergence
i=1
being in the sense of C(LL), f.€.,
[=e]
(6.3) 2 7, (t) =1
1
where the convergence is uniform on ). .
PROOF': Since U, transforms CL(.Q_) into itself, V, € CL(.('L).

(=]
By lemma 4.5, 2. ﬁi = 1, convergence being in the sense of C(fL),
1

Since U, is continuous on C(fL) by theorem 6.1, we have that
- _
e

in the sense of C(Q.), which proves the lemma,
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7. Ueak-Star C - 1 Convergence for Tnfc .
THECREM 7.1, For any measure [ & M (Q), we have the following:
n
1 k
(7.1) n % Ty = Tﬂf ?
where the half-arrow denotesweak-star convergence, i.e.,

ka’ Yo

B

(x, T,V )= lim  (x,

n -+ o

_\Ms

and where T1 is a positive continuous linear transformation of norm 1

of WuL(n.) into itself.

PROQOF:  From (4.4), we have for x £ C.(Q)

(Ux, tf) = (x, Ty")

end in general

(x, T ) = (u'%, p).

Thus
1 2 x 1 - k 1 2k 1 2 x
7.2 - T = - z = - . =z .
(7.2) (x,nz:. ) n 2 (x, T ) nji(Ux,y_) (7 ?Ux,ff)
From (6.1) we have
1 2 x

lim = > Ux = U,x (convergence in sense of C(0L)),

n - w 1 '
Let T1 be the conjugate transformation of Ul’ i.e.y
(703) (X, T'ltr) = (U,]X, I-r)

(U1x,}r) = ( lim 1 ; ka, r/‘) = lim (l ; ka,[,r).
n-o n-sow

Hence by (7.2) and (7.3)

n
(x,Tﬂr)= lim (x,%);_ TV)

n - o
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for all x ¢ CR(-Q-). T, being the adjoint of U;, T, is a continuous

1
linear transformetion of YPL (£L) into itself of norm 1. Let V‘ >0,
then T!.r >0, If x>0, it follows from (7.1) that (x, T”u-) > 0,
Hence T, V2 O. Thus T, is positive. The theorem is therefore

established.
Corollary: The following relation holds

(7.4) T, =T,T=T, =T

This is an immediate consequence of (4.4) and (6.2).

LEMMA 7.1, For any open set H C G (defined by (3.5)), T1F‘(H) = 0,
If there are only a finite number of transformations Ai’ then

T1 ff(G) = Qe

PROQF: Let x(t) ¢ C(q) where

x(t) > 0 teH
(7.5)

X(t) =0 t ¢ Hco

HcG, H > F. F,G were defined in section 3. It is clear
b}} the method of definition that there exists N such that for n > N,

sl ¢ o, Thus for >N

"x(t) = ¥ ‘511 (t)ﬁiZ(Ai1t) S A Y W T CYR P

n n-1 ] n 1
=0 by (7.5)-

Hence lim U'x(t) = 0. Let V be any positive measure

n = w
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1 k k
(x, T1V')=(U1X,'f)=(lim§ 12. UX’F)
= (lim Ux, )
= 0.

Jx(t) a(r,p (1)) = 0
IH x(t) AT,y (8)) =0 by (7.5).

Now T, is a positive transformation. Thus T1rf(H) > O; but since

x(t) >0 on H, it follows that T1y‘(H) =0, Since T, is positive
and every measure V‘ may be written as the difference of two positive
measures, it follows that T,y (H) = 0 for all Y « If the number of
transformations is finite then by lemma 3,1, G is an open set. Let

be a positive measure. There exists a sequence of open sets H
V i

H]CHZ ees C.an_ooo -» G

T, p (H)— T“f(G)-
Hence

T1lf(G) = 0,

Hence in the case of a finite number of transformations the whole measure
is concentrated on F.

Hence the lemmas is established.
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8. Convergence Theorems for Un, ™ for & Class of Absorption Problems.

.Throughout this section the following assumptions are made

(8.1)  B,(y;) =1 1=1,2, ...

i.e., there 1s absorption at each of the points Ti» and
(8.2)  fi(ast) = B, (%) sach t,1i,

i.,e,y, the probability of applying Ai does not decrease as s is
approached.,

Under these assumptions convergence theorems will be obtained
for U" and T%, No use will be made of theorem 4.2 (due to
Ionescu Tulcea and Marinescu), which gives the quasi-complete éontinuity
of U relative to CLCIL) until lemma 8.4 is reached., Here fof the
case where the number of transformations Q‘Ai} is finite, the quasi-
complete continuity of U will be a consequence of our convergence
theorems. However in the general case, it has been found necessary
to appeal to theorem 4.2 to establish the quasi—completé continuity of
U relative to CL(jl), although one suspects that this is unnecessary.
Furthermore, until lemma 8,/ is reached no use will be made of sections

5, 6, and 7 which depend on theorem 4.2,

LEMMA 8.1, U preserves thevalues at the points Y; (3 = 152y vee )y

i

(8.3) Ux(yi) = x(yi) 1= 1,2 eee o



- 35 =

PROOF: Ux(t) = L ¢i(t) x(a,%)
i=1

Ux(yy) = 151 By (v5) x(a535).

Since L ﬁi(t) =1 and jéi(t) > 0 it follows from (8.1) that
= 8 &l
ﬁi(yj) 13 (Kronecker delta)
Hence

UX(yj) = X(Ajyj) = X(yj) since Ay = Ve

THEOREM 8.1, If x(t}) is a fixed point of U in C(fN) having the
value zero at each of the vertices Yo j=1,2, vos » then x(t) = 0,
Two continuous fixed points of U which are equal at yj, ki =1 323 ase

are identical.

PROOF: This is an extension of a theorem due to Bellman. Let x(t)

be a real-valued continuous fixed point of U such that x(yj) = Q,

(53 = 1525 aes )

Let t_ be a point where max x(t) is reached.
x(t) = Ux(t ) = I 4,(t)) x(at )
> o]
)11 gt ) [x(t ) = x(a,8)] = 0.
This is a series of positive or zero terms. Therefore
¢i(to){x(to) - X(Aito)] = Q, 1=21,2y ees o

Since 2 ﬂi(to) =1, jdi(to) > 0, there exists at least one 1, say

i = k, such that ﬂfk(to) > 0. Hence
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x(6) = x(ht )

Repeating the above argument with to replaced by A to, we obtain

k
(=<}
}1: gy (e ) [x(a, b)) = x(a;8,8 )] = 0.
By (8.2), ﬁk(Akto) > ﬁk(to), which is greater than zero. Hence
x(At ) = x(4%t )
ko ko’*
Repeating this process we obtain

= = = n = n = =

x(to) = x(Akto) x(Akto) x(1im Akto) x(yk) 0.

Hence
max x(t) = O,
Applying the same argument to y(t) = -x(t) we obtain min x(t) = 0.
#ence
X(t) z 0,

The proof for a complex-valued fixed point follows byseparating it into

its real and imaginary parts. The second part of the theorem follows

from the first part.

THEOREM 8.2, i converges strongly on C(Q.), i.e., there exists a

continuous transformation U1 of C(Q) into itself such that

(8.4) lim || - U1x]l =0

n o

for each x ¢ ¢(Q.).

PROOF: The proof is in several stages.

(I) For each xc¢ CL(Il), iUnx(t) } form a uniformly bounded
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family of uniformly equicontinuous functions on {L .

PROOF:  Since |JU]). <¢ (by lemma 4.8)

o]l < cl =l

and hence in particular
M) < cf x|l

or
(8.5) [0k (t) - Uk(s)] < clixlly o(tys).

Hence {Unx(t)} form an equicontinuous family of functions on L
for each =x ¢ CL(SL). Since HUnH =1 the family is unif§rmly bounded .,
Thus the first part of the proof is established.
(II) There exists a number ® > 0, such that at each point
t € f. there exists an index i (depending on t) for which
¢i(t) >8& . (b is independent of t.)
FROQF Ve set o(t) = sup ﬂi(t). 8(t) is a lower semi-continuous
function on fl and therefoxl'e, on the compact set £l , reaches its
minimum, Since § ﬁi(t) = 1, and each ;di(t) > 0, it follows that at
each point 1 rthere exists at least one index i such that ﬂi(t) >0
Hence @(t) > O for each t & £L , but since it reaches its minimum
' (say)y B >0 and 8(t) > H'. Let d be any positive number
< $', Tt is clear that the assertion is fulfilled for this choice of
8, and the second part of the theorem is establisghed,
(111)  Let x(t) €C(R), x(7)) =0 (3 =142, wer ), then
given any positive number e, there exist spheres Si(e:) with centers
Yy (i = 1,2, .o. ) and each of the radius n , such that if t is in

any one of the spheres, IUnx(t)l < ¢/2, all n. Moreover, there exists a
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n
fixed integer n, independent of t and i such that Aiot £ Si(s)

for all t e £ (i = 1,2, vae Je

PROQF: Ve observe that from (1) by equicontinuity we may choose n such
that @ (t,8) < ) implies that [U"x(t) - U"x(s)| < ¢/2 for all n,
Choose Si(s) to be the sphere of radius n about y. (3% 1529 vea )eo

Then for t ¢ Si(s)

0% (t) - Ux(y,) | < e/2,
but x(yi) = 0 and therefore by lemma 8.1, UnX(yi) = 0, Hence for
t e Si(c) and all n,

U™ (t) | < &/2.

It is an immediate consequence of lemma 3,1, that there exists an integer
n
ny» such that 4,% €5, for each i and all t el . Hence (III)

is established,
| (IV) Let =x(t) ¢ CL(IL), x(yj) = 0, Then given any positive

mumber £, there exists an integer m such that

[[o"]] < e.

FROOF:  Suppose this not true, i.e., ||U™x|[| > & all n. Let

[le[ = H., Ve assert that under this assumption
kn
I|o ° x|| < akH k=1,2y a0ee
where n is the integer introduced in (III) and
- 1¢%
(1—1-28 <1
where E is the positive number introduced in (II). We prove this

assertion by induction. It is clearly true for k = 0, Let it be true

for k,
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(k+1)n n_ In
(8.6) U °Cx(x) =u%u °x(®)

kn

=Z¢i1 (t)ﬂiz(Ai1t) oo By (A ees Ay BT k(A een Ay B)

no no-—‘l 1 no 1

Consider t fixed, In accordance with (II), we can choose a positive
integer AL so that 2&(t) >® . But then by assumption (8.2)
2
¢L(Alt) >% , ﬁL(ALt) >H ete., so that
n

(8.7) ;zs!_(t) }%(Azt) ﬁL(A

o] O
t .

From (8.6)

n =1

i kn = n
,U(k e x{t)]| < ¢£(t) 1?52_(1‘21") ﬁe (Azo RILE X(Az%)!

kn
+ i'ﬁi] (t)jdiz(A.l1t) xzfin (Ain IR Ailt)lU ox(Ain...Ai]t)

o o o
where I ' denotes that one term has been omitted in the summation,

kn n
s 2 i = oeee =i o o.,, ©
leeey 1, =1, = =i = A . Replace |U x(a, 1) | vy

kn_ n ° In
(v °x(A&°t)| - o) + o’ and use ||U °k|| < ofH to obtain

(k+1)n

o ¢ ¢ no-1 kno no kﬁ
ju x(e)] 2 8,(6) 4(a8) oon £,(8,° (U x(a, 6) |-a"H)

CI A O () e By (e dy ®) o*H

by the induction assumption, Thus

(k+1)n

o no-—T ' kn n
(8.8) |u x(6)] < -8, ()8, (a8) «.. £, (s, ) (- |U *x(8,°0)])

+ o (since ¥ ﬁi(t) =1),

n
By (III) ALOt e 5, (e) and hence

kn
(8.9) o%H - |U °x(Az°t)| > ofH - £/2.
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kn
By the induction hypothesis, ||U °x|| < oH and then it follows that
oH > €, for othervise the assumption that [1v%]|] > €, all n, would

be violated. Hence in particular, £/2 < 25—, and from (8.9) we have

kn
akH - | ox(Azot)f > akH - S;E = 2;& .

Therefore by (8.7), (8.8)

(k+1)n n Ao
lu %x(t)] < - ‘b°3;H-+akH=akH (1 -.?’2 )=ukﬂn.
The right-hand side of this relation is independent of t, so that
(k+1)n
| fu %|] < «**Th.

kn
Hence our assertion that ||U Ox]l < akH, k=142, ¢es 4 has been
established, However this contradicts our assumption that ||U%k|| > e,

all n. Hence there exists an integer m such that

[10%]] < e.

Hence we have established (IV).

(V) 1f xec (), x(yj) = 0, then HUnx” > O,

PROOF: Thisris an immediate consequence of (IV) and the fact that
o] = 1.

(VI) For each x ¢ CL(IL), there exists an ‘element y £ C(f1)
such that

lim  ||t% - y|| = o.

n - o
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PROOF': By Arzela's theorem we have, since by (1) &Unx(t)}
form a uniformly bounded set of uniformly equicontinuous functions
defined on a compact metric space, that there exists a subsequence

n,
YLU x(t)'k such that
"
U “x(t) » y(t)
the convergence being uniform., Hence y(t) is in C(LL). and we have

(8.10) lim Hunix -vl] = 0.

)

Since U 1is continuous

ni+1
(8.11) lim  |Ju * x - vy]] = o.
i >0
Hence
y
(8.12) 1lim U “(x - Ux) =y - Uy,
: i=>x

the convergence being in the sense of C(L.). Now since by lemma 8,1
Ux preserves values at the points Vs and also since Ux € CL(JL), we
have that x - Ux ¢ CL(IL), with value zero at each of points Yy Hence
by (IV)
n
[[U7(x - ux) || = o,

Therefore (8.,12) gives

y = Uy.

Thus y 1is a fixed point of U and by (8.10) and lemma 8,1, it is
clear that it has values x(yj) at the points yj. However by theorem
8.1, such a fixed point is unique. Thus y is independent of the sub-

n,
i
sequence {U X 1 . Hence
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1im |t - y]| = 0.

n-w
Thus (VI) is established,

(VII) Theorem 8.2 now follows, for if x & C(£L), we have
by the Banach-Steinhaus theorem, since CL(Jl) is dense in C(f%)
and llUnll = 1, that

lim || - Uux|| =0

n - o
where U1 is a continuous transformation of C({l) into itself and
'IU1|| £ 1. However since U preserves constents, so does U1 and

therefore ]]U1ll = 1, Hence we have established Theorem 8.2,

THEOREM 8.3. U1 is a continuous linear transformation of CL(il)

into itself and

(8.13) lim ||0" - v, | [, = 0.
n - w
PROOF: since ||U"|| =1, and ||Un||L < C (by lemma 4.8) we have

by applying lemmas 4.4, 4.7 and theorem 8.2 to theorem 2,1, the fact

that U1 is a contimuous transformation of CL(LL) into itself, with
(8.14) o,y < c
together with (8.13). Hence the theorem is established.

LEMMA 8.2, U1 preserves values at the points yj, i.e.y for x e C(L1)

U1x(yj) = x(yj) . 3 = 1,29 ceoe o

PROOF: This is a trivial deduction from theorem 8.2 and the fact that

U preserves the values of a function at the points Y5 (3 = 1525 vee )e
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LEMMA 8.3, \zfi(t) = U1¢i(t) is the unique continuous fixed point of

U having the values 1 at y, and zeros at all ¥y (j #1). Moreover

]
b

(=]
(8.15) X LA the convergence being that of C(JL).
‘ 1

1]

PROOF:  U¥, (t) = UU, B, (t) = U B, (t) = ¥,(t), since UU; = U by (8.4).

Thus ?i

points ¥s (lemma 8,2) we have from the assumption (8.1) that

is a fixed point of U. Since U1 preserves values at the

(8.16) Wi(yj) = U1¢i(yj) = ﬂsi(yj) =5 (Kronecker.ﬁelta).

1]
Thus wi(t) is a fixed point of U having the value 1 at y; end
value zero at all yj (j # 1), and thus by theorem 8.1 it is unique.
From theorem 8.3, ¥, = U4, isin C (R). By lema 4.5 14, =1,
convergence being in the sense of c({£), but since U1 is continuous

on C(an),it follows that

Y =1,

=M 8

the convergence being in the sense of C(f.), Hence the lemma is

established.

THEOREM 8.4. The following is an explicit form for U,x where

x £ C(a),
(8,17) Ux = ;51 x(yi) ¥,
1=

the convergence being in the sense of C{<fL).



PROOF: Let

n——rep——

a(t) = 2 x(y;) v, (¢)
i=1
< max |x(t) | ; LA
i=1

’ &0

Since X V¥

i=1 1

it follows that the series for q(t) is uniformly convergent. Hence
(e8]

q(t) € c(n1). We thus have q = 3 x(yi) Vs the convergence being
i=1

in the sense of C(£1). Hence using lemma 8,3

(t) = 1, the convergence being uniform (by 8.15)

(29 [=2]
Ug = 2 x(y,) V¥, = 2z x(y;) %= a.
i=1 i=1
Thus by lemma 8.3 and theorem 8,1 we have that g is the unique fixed
point having the values x(yj) at the points yj. Since UU1 = U1

. (by 8.4) we have by lemma 8,2, that U;x is alsc a fixed point of U1
having the values x(yj) at the points yj. Hence by the uniqueness

theorem 8.1, U1x = d, and thus the theorem is proved,

LEMMA 8.4, U 1is a quasi-completely contimuous trensformation of
cL(.n.) into itself with "N = 1 as the only eigen-value of modulus 1.

Also

(8.18)  U'H,(¢) - ¥, (¢)

the convergence being uniform geometric with respect to t and i,

PROQOFs If the number of transformations Ai is finite, we se. from
(8.17) that U, maps CL(KL) into a finite-dimensional space and so is com-
pletely contimuous. Hence from (8.13) we see that U is a gnasi-completely

continuous transformation of CL(SL) into itself. Observe that we have
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not appealed to theorem 4.2 (theorem of Ionescu Tulcea and Marinescu).
However for the general case, we appeal to theorem 4.2 to obtain the
quasi-complete contimuity of U with respect to cL(n.).

Using lemmas 4.7, 4.8 and equation (8,13) we may apply
theorem 2,3 to U relative to CL(-O.), to obtain from (2.18) that U,
is completely continuous relative to CL(.{L), and from (2.20) that

N=1 is the only eigen-value of modulus 1. FEquation (2.21) gives

A

. H
Ho™ = upxl ] Gy [l g

In particular,

| lv; - v,8,1 . - ~ 14l

1A

1
—-ﬂ-————; H', h being constents
(1 +n) (by 4.9).

1A

Since U1¢i =¥ (8.18) is established and the lemma is proved,

THEOREM 8.5, For any V e YN )
(8.19) Txllf — T,y (weak=star)
where T1 is the adjoint of U1. The explicit form of T? is given by
’ o
= is
©.20) Ty = T 1 iqﬁ(t) ay ()

where Ij is a probability measure with all its measure concentrated

at the point yj.
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PROOF:  (8.19) is merely a translation of theorem 8.2 from CR(.D.)
into its conjugate space. The proof is exactly the same as that of

theorem 7.1. We now obtain the explicit form of Tﬂr . From (8,17)

o«

Ux = >1: x(yi) ¥, .

&)

[e]
Hence (U,x, }f) = 12 x(yi) (Wi, e Let Ty = f- Ij(TFj,tf).
This is clearly an element in WL(SX). It is also clear that
(U1x, y) = (x, Ty ) all x ¢ CR(II).

Hence
T =9, =T,,
Thus

v = % Ij(wj,y)

and the theorem is established.,

Probability Interpretation of Wi('t).

In section 5, it was pointed out that Unﬁi(t) represents the

probability that given the initial state of our systems was +t, that at

th

the end of the n~ time interval, the transformation A, is applied.

i
1I'i(t) = lim Unjéi(t) thus representsthe limiting probability of

n -» o

applying Ai given that 1initially the state of the system was +t,

Another point of view is obtained from (8,20), If l./’(t) = I,
' )

i.e, the probatbility measure concentrated on point yj, then

Tﬂf = ?' 1;fj(-to) Ij
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so that Wj(to) gives the probability that if the initial state is
to’ the limiting state is yj.
.To sum up, we have two probability interpretations for @B(t):
(1) Limiting probability as n - o that at the ntB step
Ay is applied, where the initial state is t. :
(2) Probability that the limiting state is yj, given that

the initial state is +,
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9. Properties of U and T for the case when there exists an index k

such that ﬁk(t) >0 for all t £ £ with the possible exception of

yk'

In this section we assume the existence of an index ‘k such that

(9.1) B ()>0 for tFy, (024(y) 1)

We generalize a method of Bellman to obtain a fixed point

theorem similar to that of theorem 8.1

THEOREM 9,1, Under the above condition, the only fixed points of U

in C(n) are constants,

PROOF: Let x(t) be a fixed point. Let ty be a point where the
maxirum is achieved.

Assume that max x(t) # x(yk).
x(t ) = Ux(t)) = ?. g () x(a%)

oQ
2B () - x(agty)] = .
Ihis is a series of positive terms. Hence
g6 ) x(t)) - x(a,t )] = 0.

if ¢k(to) = 0 then by (9.1) t, =¥y, and max x(t) = x(yk) contrary

to the assumption, Hence

x(to) = x(Akto).
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Thus Ak

with to replaced by Akto ,to obtain

t, isa maximum point for x(t). Apply the above argument

: 2 _
g la e ) x(at ) - x(als )] = o,
Again, ﬁk(Akto) # 0, otherwise the assumption is contradicted. Hence
x{(A,t ) = X(Azt )
ko ko

and proceeding in this way we obtain

x(8) = x(lyb) = = x(aty) = Lin x(@(e,) = x(ry)

71 - o

since x(t) is continuous, but this violates the assumption that

x(t.) # x(yy).
Hence

x(t ) = x(y,)
se max x(t) = x(yk)

Consider the function y(t) = - x(t). It is a continuous fixed point

of U, Hence

max y(t) = y(y,)

or

min x{t) = X(Yk)
RS max x(t) = min y(t) = x(yk)
or
x(t) = constant.,

The proof for a complex-valued fixed point is immediate by splitting
into real and imaginary parts.

Corollary: U1x(t) = k (a constant dependent on x).
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PROOF: From (6.2) we have that U,x is a fixed point of U, for

each x £ C(f)). Hence the corollary follows from the theorem,

THEOREM 9,2, If 4 is any probability measure, i.e., ’./‘(E) >0

for every Borel set and |/ () =1, then

T, p () =V(E)

where V(E) is a probability measure independent of rl‘ (), so that
n

we msy say % Z Tkrr converges in distribution to Vv , where Vv is
1

a probability measure independsnt of the initial distribution f/‘ .

Moreover VY is the unique probability distribution which is a fixed

point of T,

PROGF: Let [, ['' be two probability measures, lLet Ty =V,
1

so that by (7.1), =

n
2 Tk,r — vV (weak-star convergence).
1

, . 1 2 k
$ = -—
let T”,r V', so that - 3: Ty ' — v . For any -xeCR(.n.)

n n
DTy -g IoTy
1

]

(xy Y =V1') lim (x,

n e«

S=

]

n
lim (x,% : Tk(y—y'))

n - ¢

n
lim (% § ka, y-l_u)

A )

= (U'1x, V-F') by (6.1)

(kx, V— F") by corollary to last theorem
J ko d(y-y)
Ll = e

0.
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Hence V = y ', From (7.4), T} =V is a fixed point of T. Let
\/o be another fixed point of T which is a probability measure,

. = = Vv =
then T, Vo Vo but from above, T, \/o V', Hence Vo.

Thus the theorem is proved,
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10, Convergence theorems for Un and Tn for a class of problems

vt s— i e——— R W Se———  E——

similar to those considered in gection 9.

. ————TE  S————————

In this section we make the assumption that

(10.1) L B,(t) g,(s) #0 tys € N .

This is almost equivalent to the class of problems considered
in gection 9, for if (9.1) were strengthened to ;dk(t) >0 all t, for
some k, then(10.1) would be consequence.

Under thisassumption a convergence theorem for U0 will be
obtained by straightforward application of the method of Kérlin {2].

As is pointed out by Ionescu Tulcea and Marinescu, this could be obtained
by a method of Ocinescu and Mihoe [3 ], tut according to their theorem

as stated, this would apply to the case where ﬁk(t) >0 ali t, for
some k.

We shall not make use in this section of the theorem 2.2 or
its consequence, theorem 4.2, to derive the quasi-complete continuity
of U with respect to CL(IL). This will be a consequence of our
convergence theorem,

We first prove the following lemmz,

IEMMA 10,1. Let two particles start from t, s respectively. We say
that a success occurs at a given unit of time if the same transformation
Ai is applied to both particles at the same time, otherwise we say that
failure occurs. Then a success run of length r (r any positive

integer) is certain to occur in finite time.
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PROOFs The probability of success at initial step is %? ﬁi(t)ﬁi(s).
This being the sum of a uniformly convergent series of continuous
functions (c.f. lemma 4.5) on the product spaces 0 x £ is continuous.
Hence it achieves its minimum § which by (10.1) is > 0. Thus

the probability of success at the initial step is >3 . The con=
ditional probability of success at the second step is > § ,and in
general the conditional probability of success at the kth.step is > & .
Consequently, by the theory of recurrent events, a success run of

Jength r is certain to happen in finite time. Thus the lemma is

established,
THEOREM 10.1. " converges strongly on C(£1), i.e.,

(10.2) lm ok -k |] =

n - <

for each Xx ¢ C(IL), where kx is a constant function dependent on x.
PROOF: Let x(t) e ¢ (n.).

"x(t) - UPk(s) = z. ¢1(m¢ (@hﬁ”xu t\-U xMjs”
,J-l 1

T2 8y (0B (9B, Gy 0y (g TRy by 8 - 0y by )]

=i@#n%#@@;%ﬁmhm%a."¢iu.."A ), (&5 erlys)

T r-1 1 r r-] ]

nN=-1 n-r
[U X(Ai see Ai t) -1 X(Aj Xy Aj S)]o

T 1 T 1

We now divide the right-hand side into two parts §,,S We take all

1272°

the terms for which i,® 3y (k =1y ¢es 4 ), and place these in Sqe
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The sum of the coefficients of these terms clearly represents the
probability of a success run of length r occurring in the first r
trialsof.model discussed in lemma 10,1, The remaining terms are placed
in Si’ and clearly the sum of the coefficient of these terms represents
the probability of not obtaining a success run of length r énding on
the rth trial, We now make a further reduction of terms in 82 as
above, We transfer to ST terms of the type

¢i1(t)¢j1(s)ﬁiZ(Ai1t)¢12(Aj1s)... B, (A5 A, ..ok A 1)

T+l "1 lr--1 2 1

n-r-1
X(h, seeA, A.8)]
re1 tady

g,

1r+1(Air...AizAj1s)[Un-r-1x(Air+1Air...Ai1t)-U
Observe that i1 # j1, otherwise this term would have been ihéluded in
82. The sum of the coefficients of this set of terms is clearly the
probability of a success run of length r ending at the (r+1)st trial
iﬁ the model discussed in lemma 10.1, where the first trial consisted
of failure, Thus the sum of the coefficients in S1 represents the
probability of a first success run of length r ending at the rth
or the (r+1)St trial, Hence the sum of the coefficient of the terms

in 82 represents the probability of no success run of length r in

r+1 trials, Proceeding in this manner

(10.3)  U"x(t) - Px(s) = 8 * 5,

where

|52| < 2 (Probability of no success run of length r in n trials)
max |x(t)].

Iet n - o, by lemma 10,1

(10.4) S, » 0  uniformly with respect to t,s € Q..
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Consider S1 . It is of the form

Zp[ka(Air... Ai1fr ) - ka(Air... Ai1cr)]

where 2p< 1,

k k
|u x(Ai oo Ai{r)-U X(Ai eve A

k
)] < M%) Ay er A THAL ok
T T T 1 T

. o).
l.I )

1
Apply lemma 4.8, i.e., HUnHL < ¢ and (3.1) to obtain

]ka(Ai coedyT) - ka(Ai cedy A e N Ixl], e (7,0
r 1 T 1

<DN [lx]|, since o (7,8 is
bounded on a compact
set,

S sl =on Ixll, 3w
5D7\r HXHL.

Hence for n >r

'Unx(t) - Unx(s)l = lS1 + Sz'

iA

Is; 1 + Is,]

IA

DN Jlxlly + Is,l.

Choose r 3 D 3F HXHL < ¢/2. Having chosen r by (10.4) we can

choose N so that for n > N, |52| <€, Hence n>N

[0 (t) - U%(s)] < €.

Hence

(10.5) 1im  |uk(t) - t"x(s)| = O,

n > <

the convergence being uniform on £ x ). . Consider the set {Unx(s) }
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where s is some fixed point in fL . This is a bounded set of numbers
(bounded by max lx(t)l). Hence there is a convergent subsequence such
that

n,
U 1X(S) - kX.

For any t ¢ L%,

n

0 igs) =k = (0 ix(t) - U
ps -k = p's -

n
x(s)) + (0 *x(s) - K.
Tt follows by (10,5) that

n
lin |U tx(t) - k| =0,

i -» o0
kx being a constant dependent on x, and the convergence being uniform

with respect to t. Choose 1 such that

.]Unix(t) -x]<e all ten
ni+1 © ni
07 %) = =) T 4,000 "x(agt) - k)
(29} ni
L ([T “x(as8) - X, |
T

and in general,

n

ot Tx(t) -k | <.

Hence IUnx(t) - kxl converges uniformly to zero, i.e.,

1lim ||k - k|l =0 for x £ Cy (A1),

n - o
Iet x(t) € (), Since ||U%]] =1 and CL(Ix) is dense in C(L.),

it follows by the Banach-Steinhauns theorem that
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ln ||0%x - Ux|f =0

n -» co
where U1 is a continuous transformation of C(f) into itself such
that [|U, || < 1. Since U, obviously preserves constants, ot} =1,

Since U;x =k _ for xe¢ CL(IL),

(10.6) Ux =k,

a constant dependent on x, for all x & C(fQL), Hence for x £ C(LL)
lim |Ju"x - % || = 0,
n-=>o«x x

and the theorem is established,

THECREM 10.2, U, defined in the last section by

1

U1x = kk

is a continuous linear transformation of C(«) into C(£1) and
¢ (n) into G (Q). HMoreover
(10.7) lin |[0" -1, Il =0
n - oo
and U 1is a quasi-~completely continuous transformation of CL(fl) into

itselfo

PROOF: Ve have |[|U°|] =1. Mso |[u”]]; <C by lemma 4.8. Hence
by means of lemmas 4.4, 4.7, and theorem 10,1 we see that the hypothesis
of theorem 2,1 is satisfied and hence U1 isa continuous linear trans-
formation of CL(Sl) into itself and

. n -
lim HU -U1'|L-O.

n = w

Since U, maps GL(IX) into the one-dimensional space of constants, it
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is completely continuous, Hence U is quasi-completely continuous as
a transformation of CL(Il) into GL(JI). This proves the theorem,

~ Observe again as remarked at the beginning of the section,
that no appeal was made to theorem 2.2 of Ioneseu Tulcea and Marinescu
[85 in order to obtain this result except through the easily proved
fact that IIUnIIL < C, which we gave as a separate lemma (lemma 4.8).
Now that we have obtained the quasi-complete continuity of U, all
the results of sections 5, 6, and 7 are available., It is clear that
the transformation U1, that we have obtained in this section, is the
same as that introduced in those sections.

By means of (10,7) some strong results can be obtained by

appealing to theorem 2,3,

LEMMA 1041, N =1 is the only eigen-value of modulus 1 of U with

respect to CL(IL). Also

(10.8) Unﬁi(tl-'U1¢i(t) = ¥, (constant)

the convergence being uniform geometric with respect to t and i,

PROOF's The first part follows from theorem 2.3, Equation (2.21)

gives

H
[ v - U1x|]L < oA lelIL H,h constants,
In particular
.
”Un¢i = U1¢i” < (1 . h)n “ﬁi”L
< 1 !
e H' ,h constants(by (.9)).
(1 + h)
By theorem 10.1, U1¢i = Wi is a constant. Hence (10.8) is established

and the lemma is proved,
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As has been pointed out, Wi which is a constant represents
the limiting probability of applying the transformation Ai at nth
step as ‘n - o, given that the initial state is %, Then since Wi is a
constant,; this limiting probability is independent of the initial state,
The above lemma was established by Ocinescu and Mihoc for a finite

number of transformations where there exists one k such that ﬁk(t) >0

for all +t.

THEOREM 10,3, For any f/ e ML)
(10.9) an — Ty (weak=-star)

where T, 1is the adjoint of U1.. Moreover if V‘ is a probability

1

measureythen
(10.10) T”r =V

where Y 1s a probability measure independent of y‘ « It is the

unigque probability measure which is a fixed point of T,

PROOF; (10,9) is merely a translation into the conjugate space of
the result of theorem 10.1. The proof is exactly the‘same as that of
theorem 7.1. The proof of the second part of the theorem is the same
as that of theorem 9.2,

‘It would be desirable to have some information concerning
the limiting measure. The following result holds for constant non-

zero probabilities ¢i(t).

THEOREM 10.4e Let ﬁi(t) = ﬁi be a non-zero constant for each i,

Then the limiting probability measure v (10.,10) is continuous, i.e.,
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the measure of each point in L)L is zero., In fact T, ’f is continuous
‘for any measure V' e M(a),

PROQF s let V(to) >0 where t_ is a point in L. . Choose i # toe

There exists an n such that Az_n. does not include t 0" Now sirce

V=17V we have

V(t,) = 2;63.1 oo B, W (A’.1

soe A-:]t ')u .
i, 3

n 31 ©
Each coefficient on the right-hand side is greater than zero and the
sum of the coefficients is 1, Moreover \I(Al:nto) = 0 since

-n, _
Ak to ]Zf. Hence

V(t ) < max \/(A'.-1 oee A'.-‘!t )
o] s J Jy ©
J.],-a-,jn n 1

-1 -1 . _
Hgnce \/(to) < \/(Ajn ces Aj1t°) for some Jys ees Ige

Apply the same argument to t1 = A? ove A?to; we obtain a sequence
n 1

of points to’ t1 s b such that

2, eoe

V(L) < V(b)) < V(t,) < \/(t3) < eee o

\Since there is strict inequality no two of the points coincide, Hence

there is a countable set each of which has measure > \/(to) > Q0.

Hence the measure is infinite, This being a contradiction we have
\/(to) = 0. Thus since the same.proof may be applied to Tﬂr

for any Ve W(N), the theorem is established,

We conclude this section with the following theorem,
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THEOREM 10,5,  If UA,QL =, and if g (t) >0 all i, all te L

then there exists an n such that " is a strictly positive trans-

formation, i.e.,

(10,11) 14f x(t)>0 and $#0 then Ux(t)>0 tedfd,

PROOF': By hypothesis F (defined (3.4)) is the full space {) .
Let to be such that x(tc) > 0, By lemma 3.2 thers exists a sequence

of intsgers i1, 12, eee 9 in’ +«ss such that

A.Q: A. A, .n. ees ses A A, ess A
1 17, 1,7, n

Since x(to) > 0 there exists a neighborhood U of to for which

X(t)>0 t e U,

~ Choose n so that 4, ... Ai O e U,

11 n

n =
Uk (t) Z¢j1(t)¢j2(Aj1t) pjjn(Ajn_1... Aj1‘b) xv(Ajn... Aj1t).

Since A v Ai t £ U, and the coefficients are > 0, it follows

i
1 n :
from the last equation that

0"k (t) > 0,

and the theorem is proved.
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11, A Special problem involving attractions towards the vertices of a

simplex.

We now introduce a special model which is a generalization
from 1 to N dimensions of the learning model considered by Karlin,
Iet ). be a simplex in Ey (Euclidean space of N dimensions),

Let V., V

UL Vi be the vertices of the simplex. Any point

-l’

of L) is given by its barycentric coordinates

= (ty5tys e tyy)
where
N+1
> =
tl 0, 12 t.l 1.

let By denote the (N+1) x (N+1) projection matrix

0 0 O 0
0
11 1 1 ith oW,
0 0 0 0
0 0 O C

i

matrix. We define our transformations on the simplex ) as follows

Observe that B;t =y,. let I denote the identity (N+1) x (N+1)

(11,1) A = 7‘11+(1 - 7‘1) By 0 < 7\151 1= Tyees,N+1
Clearly A, represents a transformation which carries a

i

point R 1into a point R' on the line R\g where

(11.2)  (R'vy) = N(RY,),
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i.e, A_i represents an attraction towards the vertices Vi’

We have by (11,1} that if ¢ = {tqs tosess s tnﬂ) is any

point of AL , the coordinates of the transformed point are given by

Nt )

(1.3)  ag% = (gbys Pybyy wen s Wby + 1= Ry Aty gaeees Aty

It is obvious that

(11.4) a0 = S\t[tiz1 -mi}

A? has as domain Ai.(l and is defined by

A7 = NI+ - W)B.

It is clear that this set of transformations satisfy the

conditions imposed in section 3. 1In particular

Q(Ait, Ais) < NP (tys) all 1i,t,

where N = max h i

N+1 N+1
LEMMA 11,1, U 4,90 = Q if and only if S 2 ;2N
1 1
PROOF: A, O = [Ltlti 21 -2}
¢ = -
(a;0) iltiti< 1=2,]
te N\ (4,0)° if and only if o_<_ti<1-7\i, 15 1, aus 5 W41,

i
In order to obtain a point t satisfying these conditions,

we must select 'bi (1 =1,0.44N%1) to satisfy the above inequalities

and in addition ¥ b, = 1. This can be done if and only if
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N+1
> @ -N) >
1
or
N
h3 7‘1 < N,

1

N+1 N+1
Thus N (AiJl)c is non=void if and only if Z:.%i.< N. By taking
1 1
complements the result follows,

let |S| denote the Lebesgue measure of any set.

N+1 |
LEMMA 11.2, If 3 “hy«|then |7| = 0 where F is defined by

1
(3:4)e

ROOF:  |agn] = MIA] = ] taxing |of =1
N
< U Ainl < I A
i i
N+1
N N
lAj U Aindf. %j Z- 7“ i
gy
U M2
| Y a0l (2D

and proceeding in this manner we obtain
N+1

Wlap< oz b
using the notation introduced in section 3. Hence ln A[n%ll = 0,
i.eey |F| = 0, and the lemma is proved.
Since the model under consideration is a special case of
thoge considered in previous sections, all the limiting theorems
proved hold for this model. However we may obtain some properties con—

cerning the convergence of derivatives of t"x  for this model .,
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We begin by proving a theorem which for this model gives
more 1nformation than lemma 4.8 (i.e., IIU ,IL < C}, when we have
differentiable probabilities ﬂi(t).

Consider t1, t2, eee g tN as independent variables,

t 1 -t -t

N+l 1

2- LR B ] -tN.
We write

X(t) = X(t.]’ tzg eve 9 tN)o

Iet C (11) be the set of m- times continuously differentiable

functions,

THEOREM 11.1.  Iet #,(t) € c™(n), If x(t) e c"(A), then there

exist constants K, depending on x(t) ( £Z=1, ... , m) such

that
£ n
a_ U x(t} <X n=1,2, ...
i N Tt |
ot ses Ot
1 N

for all i}, 12, vee iN such that i, + 3i_ + e+s + iN =4 < m,

1 2

i.e.y all first m derivatives are uniformly bounded, for each x(t)

I3 Cm(ll).

PROOF; 12 ||x]] < kK, then |[[u"x|| < K, so that the theorem

is true for 4 = 0, Suppose the theorem is true for £ -1,

Ux(t) = Z By (8 x(Mgbysenas Dby + 1=Dg500ns Nty)
i=1

+ N+1 (t) X( N+1 1""9 7\N.'.-I'tN)



L N+1 y) 2
Ei) Ux(t). < T ﬁi(t) 7‘:1 max i@ };(t) -
e B | =1 v lat, et ... ot N
| N 11,oo,iN 1 2 e N
oy
+ G max :6L'x(t) jj'q
Lo ot lel Bt
jg -1 1 N

where C 1is a constant bounding sums of absolute values of derivatives
of ﬁi(t) with binomial coefficients. Observe that
N+t L
2 g (t) 7\ < max N\, = p(say)
i

where p < 1.

L.n ¢ n-1 J =1
mex o) ijgtz <p max 3 u ixgtl +C  max 3* U ixgtl
'b,lj natjg ‘t,lj n 6tj‘] j<f -1 natrr

a£ Un'Jx(t)
< p max 7 + ¢! (by induction hypothesis)

b1, natjj
L n-2
i p2 max ..a._.rU—jT.}_{.Cp.). + w‘ + 1
t,i, 5
3 nath
L
sp max |0 }icftl 3 E'p
by, natji'

< constant.

Hence the theorem is established by induction,
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Corollarys Under the conditions of the theorem, the sequence of
functions
- n
W (t) = —5 T [07x(t)]
M at,
1 J

form an equicontinuous system of functions on L for each set of
N .
indices Iy eee s iy such that % lj =r<m-1,
We use the notation Drx(t) to stand for any one of the

r gerivatives of x(t)e

THEOREM 11,2, ILet x(t) ¢ c™(a). If U"x(t) converges uniformly to

U1x(t) then

(11.5) o (1%x(t)) =" (U1x(t}) 0O<r<m-1
the convergence being uniform on L. ,

PROOF: We prove the theorem by induction. By hypothesis the

theorem is true for r = 0, Suppose the theorem is trﬁe for r - 1,

By the corollary to theorem 11,1
Wk(t) = D?ka(t)]

form an equicontinuous family of functions on £} ., Moreover, by
theorem 11,1 they are uniformly bounded. Hence by Arzela's theorem
there exists a subsegquence Wy (t) such that
i
(11.6) lim wk (t) = o(t),
i-w i

the convergence being uniform on ) . Suppose
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by ar

i
t
oty

D =

At least one of the indices ij # 0. Let i # 0., Let

Dr_1 ) ar—1
N i, i
(n at,0) ot
j=2 ¢

By the induction hypothesis

1m0 (0F(e)) = 7 (u,x(¢))

k »

the convergence being uniform, In particular

k,
lim D™ (v?=x@) =0 (5,x(0))
i >0
but by (11.6) this sequence differentiated with respect to t1

converges uniformly and hence
. r .
w(t) =D (Ux(t)) .

Hence WV(t) is independent of the subsequence, and the theorem is
broved.

‘his theorem means that if ﬁi(t) £ Cm(jl), and satisfy either
the conditions of section 9 or those of section 10, and if x(t)
is any function in C™(f.) then the first (m=1) derivatives converge

uniformly over L.,

LEMMA 11,3, Everypoint t in the set F may be represented

in the forn
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(11,7) t=(1 --}.11)_13i1 + 7\11(1 —7«i2) Bi2

+-oo+}\i ...mi (1—7\i)Bi + oce
1 n-1 n n

where 14, iz, cee g in’ ese is a sequence of integers ranging from

1 to N+1, This representation is not necessarily unique.

PROOF: By lemma 3.2 there exists a sequence i;, i,, ... such that

(11.8) A _Q.DAi Ai.ﬂ. > Ai Ai Ai N 2 .eee -t

i ) 1 12 %3

o% limt_=t,
n
where
b= (N, T+(1 =2, )B, J(N, T+(1 =M DB)e(r, I+(1 =N\ )B, s
n .11 i1 i 12 ig i, i, i1,

and s 1is an arbitrary point in Q0 , Now B,B, =B

. Thus we have
J

k.

=N - -
t 117\12... )in1+(1 )i1 )Bi1+ 7‘11(1 )\12)131;

D
1

in—1 n "n

Letting n - «, the result (11.7) follows.
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12, Properties of the One-dimensional Learning Model.

In this section we specialize the model of the last section
to the case where N = 1, This is the model treated by Karlin [2].
Some additional properties are obtained in this section.

Here Q. is the unit interwval., Write t for t1 so that
t2 = 1 - t., We change the notation of the last section in that we
replace the index 2 by the index O, Thus our attractions cénsist of

Ao towards the origin and A1 towards the point 1 where
(12.1) At = nt; A= Nt +1 - ?\1.

By lemma 3.2, the set F is closed. It is shown by
Karlin [2, page 753] that if )1 +")2 < 1, then F consists of a
Cantor-like set. If N, + N, =1, then it is clear that F ={L,

Any sequence a = (a1, 8oy eee ) where a, ranges over the

k

pair of numbers 0,1 gives rise to a point t(a)in 1, according to

lemma 11,3, by the equation

n-1 n=1
2 a, n=1- ¥ a
| @ 7 1 1 3
(12.2)  t@) = (-2 Z a2y % .

If )b + 7‘1 < 1, then each point in F is described by a
unique sequence a. This follows from the fact that no point can be in
the range of both Ao and AI‘

If ')o + 'h1 % 1, there is exactly one point in the range
of both A, and A,, namely, the point b 0(= 1T =)\ 1). At most two
sequences a,, a, give rise to the same point, and such sequences

considered as the coefficients of the dyadic expansion of a number
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between zero and one correspond to the ssme number. Again, this statement
is easily verified.
Let
a = (a1, oy eoe )
at = (a], ab, ... )
Define a < o' if ) < ai for the first inequality of corresponding
elements (i.e.y a; = al, vee , 8, 4 = ai_1). With this convention we

have the following lemma:

LEMMA 12,1, If m_o + 7«1 <1, then a < a' implies that t(a) < t(a')

PROOF:  Let a; = aj, a; = &by eee 5 8y ;4 =8} 4y 8 =0y} =1,
k=1 k=1 n~1 n-1
?ai k—1-)1: a; o sl'zai n—l«:«gc a;
t(ar) = t(a) 2 (1=n,) A A [1- = 3% A ]
17 o 1 0
Kk+1
k=1 k-1

2 a; k-1~ a;

[1- 5 A7)

ERCER IR LI .
k+1
since ak = 0
k=1 k-1
S a, k-1=2 a, ,
i i b
- b 1 1 _ o) -
>0 if and only if "\ +)1<1.

(o)

Ve now define transformations Ao’ A1 on the sequences a =(a1, 8oy ese)

by
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(1203) AOQ = (O, a1, 32, o0 ), A-la, = (1, a.], a2, oo-)
It is clear that

(12.4) t(Aoa) = Aot(a), t(A1a) = A,t(a)

THEOREM 12,1, Let )O + }1 <1, If ;éo(t), ¢1 (t) are constants

ﬁo, ¢1 respectively, and if F(t) is t i cumlative distribution
corresponding to the limiting measure V(E), defined in section 10,

then t, F(t) can be expressed in the following parametric form

n-1 n=-1
z ay n-1- 3} ai\

t(a) = (1 =),) n; e 7\11 7\0 o
n=1 n=1
J - ¥ 8y nel- 2 ai
(12,5) Gla) = (1 - £,) n§1 &y ¢11 % .
L G(t) = Gla(t)) teF,

\EEQQE: It is only necessary to define G on F for V(FC) =0 by
lemma 7.1, It is clear from lemma 12,1 that the first two formulas

in (12.5) are monotonic functions of a, and thus G(t) is well-defined
and is monotonic on ¥, (If .ho + .F1 = 1, then two a's give rise

to the same t(a) but these two a':. give the same G(a), so that there
is no ambiguity.) G(0) = 0, G(1) = 1. Hence G(t) represents a
distribution on F. Clearly it is contimuous on F. By extending it

in an obvious way we have a distribution on (f),.
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Our object is to obtain the unique fixed point of T, i.e.,

V' such that
(12.6)  V(E) = @ \/(A':E) + Qﬁ?v‘(;q]*ﬁ;).

If E is in F°, =0 is 1&;1E, Afg. Thus, since

V(Fc) = 0, it is sufficient to obtain a continuous probability dis-
tribution H(%4) (see theorem 10.4) on F such that (12;6) is satisfied,

If teA O, but not in 4,A, then (12.6) gives
| o -1
(12.7) H(t) = ;dOH(AO t).
If tei 1, but not in A O, then (12,6) gives
(12.8) H(t) = ¢1H(A;1t) + 8

Now teh Q0 A0 if andonly if N+ Ay =1 and t= N ..
For this point, H()\ ) = ;250, which is cersisteni with both the above

equations. *‘hus the continuous distribution H(t) which satisfies
(12.9) H(a t) = B H(t) (from (12.7))

{12.10) H(A1t) = ;251H(t) + 1 - ;zj1 (from (12.8))

is the required distribution,

Now we may obtain for G(a) equations similar to (12.4),
so that we find G(t) satisfies (12.9) and (12,10) for all t & F
and therefore all t ¢ F, and thﬁs is the required distribution,

Hence the theorem is proved,
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An obvious question to be asked in this type of problem is
whether or not the limiting distribution is absolutely continuous or
singulaf. The following theorem provides an answer under very special

conditions.

THEOREM 12.2. Let ')o = ‘)1 = 1/2. Under the conditions of section

10, the fixed points of T are singular except for the case
ﬁo(t) = }51 (t) = 1/2. 1In this case the fixed point is absolﬁtely con=
tinuous,and the unique fixed point which isa probability distribution

is given by F(t) = t.

PROOF: V(E) = TV(R) = f1 ;251 (t) av(t) + f1 ;zSO(t) d\/(ie,).

Ay E A E
o

Let F(t) be the cumlative distribution corresponding to V.
Consider first )1 + )o > 1, *he above equation yields the following

" relstions for F(t):

]

.
Ao
0T <N F(T) = [ fy(6) ar(t)
q’-<1‘")‘l) T
\ — T Ao
1 .
N sTEN s R = pi(0) ar() + [ g (v)ar(e)
o ]
T‘-('l—)-l)
Ly 1
>\ ey - | g,(t) ar(t) + fo g, (£)ar(t).
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T

Suppose F(T ) = j £(t) dt.
o

ee FU () = £f(r) 8.6,

Then the above relations give

O§T< 1"}1; f(’r) = -_;-; ﬁo( ,r/)o) f( ’r/)o) SeCe

_ 1 T "(1"')1) 'r—(1°)1)
YELE VI SRS 561( » )f( >

(12.11) :
+ _7.:; B(TAG) £(TA,) ae.

< <1 _ 1 'r-“ "/\1) 'r"("“)T)
N o<T < 1; £(T) = 7\1;61( ¥ £ Y

Aoy

Now assume the given hypothesis 7% = .)2 = 1/2, Consider the

Fourier coefficients of f

1 .
B(n) = f f(t) eZWint dt.
o

Using the above relations we obtain

1 i 1 . .
f(n) = f ﬁz(x) £(x) o X gy + .{ ¢1(X) £(x) o' 10X ILEL TP
° o

1 2rinx
[ £lx) 20X gy
(o]

o B(2n)

B

#in).
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Thus

B(n) = B(2n) = vvieeerees = 0 Dby the Riemann-lebesgue lemma,

Hence #(n) = O, all n., Therefore, f£{x) = const.
Since T is a probability distribution, it follows that

f(x) =1, From (12,11) we have

0<T<1/2 £f(T) = 2¢°(2’r) £(21)
1= 20 (2T).
Hence
g (t) =1/2 all t.
o B(t) = /2.

The transformation T ovreserves absolute contimuity, and singularity.
Since any measure V = VH + Vé where VH ig absolutely continuous
and Vé is singular, the decomposition being unique, we héve from
the uniqueness of the fixed point V of T (under the conditions of
section 10) that the fixed point is either absolutely continuous
or singular. Hence the theorem is proved. _
Finally we note that if 251 (t) = 7\1, ¢2(t) = 7\2 then
the unique fixed point of T 18 given by F(t) = t. This may be

verified directly or it is easily seen from 12.5.
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