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PREFACE AND ACKNOWLEDGEMENTS

This thesis is an outgrowth, indeed the only truly productive outcome, of a
mofe ambitious and general research plan: Static structural stability, non-linear
response and imperfection-sensitivity in reticulated-shell structures of a fairly
broad, though initially undefined, class of geometries. Results were to be applied
towards analysis of Large Space Siructures; in particular, structures like the
Mc Donnel- Douglas geodetic-cylinder beam [12] (see introduction, Fig. 1-8) which
displays triplex modal interaction, were in mind. The approach was to be a

closed-form one, leaving numerics as a last resort.

It so happened, however, that at the initial phase of the research a paper by
Crawford and Benton [33] was encountered, dealing with duplex modal interac-
tion in three-legged columns of large space structures, and which, it was
thought, could be improved upon. This seemed a worthy-enough first step, and
indeed, the results (which were to become Chapter 3 of this thesis) were
encouraging. Still there remained a doubt as to the practical value of that
analysis, in which discontinuous-pinned longerons and infinite shear rigidity
were assumed. it took some work to clear the first assumption, yet the second
one Kkept on resisting till it was recognized (in the course of assisting Ae 104 stu-
dents in analyzing a rigid-jointed three-legged colummn with which they were
experimenting during the third term of 1981/82) that another problem was
involved; any practical finite-rigidity shear web was apt to intreduce coupling
between bending and compression, coupling which did not exist in the idealized
problem, was specific to the web design details and was probably of greater

importance than the finiteness of the shear rigidity.

With this recognition the three-legged column was put aside in favor of the

general problem. It was soon found, however, that none of the methods that had
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been applied to the three-legged column were applicable to the reticulated shell.
First, reticulated shells with discontinuous-pinned members were, in general,
statically-underdeterminate, and no magic shear webs could be introduced to
save them. Introduction of member continuity meant that local and global dis-
placements could no longer be sharply distinguished as they had been in the
three-legged column. Most importantly, the three-legged column had a
statically-determinate cross-section, meaning that it was possible to determine
the internal forces using equilibrium only, whereas this was not the case in the
reticulated shell. There, the internal forces could only be calculated from the
displacements, using an inwverted local load-displacement relation, which was

unavailable in closed-form.

In view of this an altogether new approach was tried. This was based on the
works of Forman and Hutchinson [27] and M.S. Anderson [28,32] who treated
the bifurcation problem of ‘perfect’! reticulated shells in a closed-form, exact-
finite-difference manner. The idea was to use the same finite-difference frame-
work as they did to write the equations, or potential energy, of the imperfect
system and to obtain approximate solutions using either Galerkin's or Rayleigh-
Ritz's method. The major obstacle was found again to be the necessity of invert-
ing the local load-displacement relation for each member. Though an approxi-
mate closed-form inversion was obtained, its complexity rendered it useless as a

basis for successive closed-form steps.

Could the generality of the problem be sacrificed in order to avoid this inver-
sion business? Certainly, if enough of the members in a cross-section had an
already-inverted or easy-to-invert load-displacement relations, the remaining
ones ‘é)emg as numerous as the equilibrium equations, that could have been pos-

sible. It turned out that the three-legged column - this time with a realistic

1. In [32] a special kind of local imperfections is also treated.
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shear-web, constructed of six string diagonals in each bay - is just such a struc-
ture. Being probably of the most-immediate interest to large space structures
applications, and moreover, promising to exhibit triplex modal interaction
(diagonal-slackening considered as a third instability mode) this problem was

tackled.

Although undertaken mainly as an exercise that lends insight into general
multiplex interaction phenomena, the problem of the string-diagonaled three-
legged column proved formidable enough to occupy the rest of the research
period. Refraining from presentation of inconclusive phases of the work, this

thesis thus covers only that problem and special cases derived from it.

The first year of the research was supported in part by the California Insti-
tute of Technology President's Fund, Grant No. PF 218. This support is grate-
fully acknowledged. The author wishes to express his sincere gratitude to his
advisor, Professor Charles D. Babcock, for the very fruitful conversations he had
with him and for his concern and attention in general. An hour of discussion
with him usually turned out a problem-defogger far more efficient than two
weeks of banging one's head against one's office wall. His helpfulness is very
much appreciated. The author also wishes to thank Ms. Marta Nyiri for typing
the horrible manuscript and for her extraordinary patience with that stubborn
perfectionist. Thanks also go to Mrs. Betty Wood who helped in preparing the
graphical material. Last but not least, the author is grateful to the person who
sacrificed most in order to make this whole adventure possible, his wife Nora
Elyada, to whom he dedicates this work with love.

D.E,
"And thus was the work of the columns completed.” Pasadena,

First Kings, 7:22 November 1984



ABSTRACT

Three-legged truss columns are basic structural components of many
enﬁsioned large outer-space structures. They constitute three longerons ('legs")
forming, in the column cross-section, the vertices of an equiliateral triangle.
Their longerons are held together by uniformly spaced battens while a shear

web, usually made of diagonals, restrains shear deformation.

This work deals with configurations characterized by having relatively stiff
battens, longerons which are pinned to the battens and prestressed string diag-
onals. Considered are only simply-supported slender columns having slender
longeron segments and relatively thin and lightly preloaded diagonals. The
columns are allowed to have global (overall) as well as local (longeron segment)

geometrical imperfections - not necessarily small ones.

Investigated is the static structural behavior of such columns when loaded by
purely axial compressive concentrated forces acting at the supports. Addressed
are the topics of global and local buckling, post-buckling, imperfection sensi-
tivity, global-local mode interaction, complete non-linear response, limit loads

and diagonals slackening and post-slackening.

The approach is a theoretical one; a system of non-linear, ordinary
differential equations is set up which represents the column, and results, mostly
in closed form, are obtained by solving that system for a variety of cases of vary-

ing generality.

First, a highly idealized case is studied in detail, in which the diagonals are
removed and infinite shear rigidity is postulated instead. The results exhibit
most of the essential features of the more complicated cases. Next, the case of

the undeflected or only-slightly-deflected column is considered. Results include



the prebuckling behavior, slackening and local buckling loads, global buckling
load, initial post-buckling behavior and imperfection sensitivities. Diagonals
‘slacbkening in a deflecting column is studied next. This is done by means of
slackening loci constructed in the load-deflection plane. Solutions are obtained
for some special cases of a deflecting column. These include a complete analysis
of the locally-perfect case and the cases of small load and high deflection. Also
obtained is an engineering-oriented load-deflection working relation valid for the
most general case but based on generalization rather than on rigorous solution.
A torsion-compression mode, dominant in post-slackening, is also analyzed. Th=2
work is concluded by investigating the error committed in treating continucus

longerons as if they were discontinuous-pinned.
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NOMENCLATURE

FHemark:

Nomenclature entries marked by < P> correspond to symbols which are used
exclusively for physical/dimensional quantities. Nomenclature entries marked
by <P/N eqn. #>, where eqn. # is an equation number, correspond to symbols
which denote physical/dimensional quantities in part of the text, then change
their meaning to normalized/nondimensional in another part. Eqn. # points to
the equation according to which the normalization is done. No confusion should
arise since nearly all the work deals with only normalized/non-dimensional
quantities. The exceptions are few, short and well-defined: Sections 2.1-2.8, Sec-
tion"?,l to eqn. (7.7) and Section 8.1.1 to eqns. (B.4). Normalized quantities that
must appear in these places side by side with their physical counterparts are
distinguished by "hats" (7), which are later dropped. See also text in the following
locations: (1) beginning of Section 2.5.1; (2) beginning of Section 2.7; (3) begin-
ning of Section 7.1, (4) following Eqn. (7.7); (5) beginning of Section 8.1.1; and
(6) following eqns. (B.4). Entries having neither <P> nor <P/N eqn. #>

correspond to symbols denoting exclusively normalized /non-dimensional quan-

tities.

a Amplitude of column deflection, the spanwise
maximum of w(x), <P/N2.21d>.

Bmax Maximum of a such that the theory is still valid.

a{max) Value of a for which P = P,

A Longeron cross-sectional area, < P> . Also,

in Section 4.7 only, a coefficient defined
before eqns. (4.28).

B A coefficient defined before eqns. (4.28).



C.Co

e#

El.Eg

f2(c)

fep(c)

g(a)
g1{x)

ga{x)

hy(x)
ha(x)

XV

Constants of integration, eqns. (8.12).

A coefficient defined before eqns. {4.28).
Slackening parameter defined by eqn. (4.8a).
The e-independent part of Cq, eqn. (4.6b).
Defined by eqn. (6.11g).

Global imperfection parameter, the amplitude of
Wo(x), <P/N 2.30>.

Equivalent e for third bifurcation, eqn {6.15).
Young's modulus of longeron material, <P> .
Segment " tangent modulus’, d{p/A)/d(6),
eqn. (2.10), <P>.

Eqns. {6.11e,f).

Diagonal extensional stiffness, <P>.

A certain function of a, eqn. (3.31b)

and Figure 3-7.

A certain function of a, eqn. (3.25)

and Figure 3-7.

A certain function of «, eqn. (3.28).

Crawford and Benton-implied f(a),

eqn. (3.38), Figure 3-7.

A function of « to be identified (=1).
Function of x, eqn. (8.7a).

Function of y, eqn. (B.7b).

Standard of smallness {2nd paragraph of
Section 2.5).

Function of x, eqn. (8.9a).

Function of x, eqn. (8.9b).



bi

Po

XVi

In Chapter 2: Heaviside's step function; in
Chapter 3: Pg/P.

Unit vector in the x direction,

Figures 2-5, 7-1.

Longeron bending-related cross sectional
second moment of area, <P>.

Unit vector in the y direction, Figure 7-1.
Unit vector in the z direction, Figures 2-5, 7-1.
In Chapter 3: &2/(1 —P)3; in Chapter 4:
A*B/4AC.

Bay length, longeron éegment length,

Figure 1-6, <P> .

Vector associated with bay member mn
(Section 2.2), < P>.

Length of I, < P>

Cverall column length, Figure 1-8, < P> .

End bending moment of longeron segment at
batten i, Figure 8-1, <P/N 8.4f> .

Number of bays in complete column.

Order symbols, eqns. (2.12).

Local (longeron) compressive force in general.
Simply-supported longeron segment Euler
buckling load, 7*EI /I?, < P> .

Compressive force in longeron segment i,

'Figure 8-1, < P/N 8.4a> .

Longeron segment compressive preload,

<P/NR2.14d>.
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:?l

Py

Pg

Xvii

Internal force vector associated with

bay member mn, < P>.

Magnitude of pmn. eqn (2.7), <P/N2.14a> or
<P/N2.i7a>.

Mean longeron compressive force, eqn. (4.1).

p at global buckling.

Auxiliary longeron force for calculating

paths using eqns. (6.27).

Column external compressive force,

Figure 8-1, <P/N2.24>.

P of global buckling (first bifurcation).

P of local buckling {second bifurcation).
Perfect-ideal column global Euler-buckling load,
eqn. (R.22).

Column maximum load-carrying capacity, limit load.
Nominal {perfect column) maximum load-carrying capacity.
P of diagonal slackening in an undeflected column.
Eqgn. (4.36).

Critical (third bifurcation) load of the undeflected
column, eqn. (4.4a).

Critical (third bifurcation) load of the

deflected column.

Perfect-non-ideal column global Euler

buckling load, eqn. (4.20a).

General quantity.

General quantity corresponding to longeron

segment i.
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qP General quantity corresponding to batten i.

To.Fm.Frn lever-arm vectors, < P> .

R Radius of circle circumscribed about column
cross-section, Figure 1-8, <P>.

t Integration dummy variable.

u(x).u; Axial displacement, ith bay node axial
displacement, Figure 2-3, < P/N 2.21c>.

uP Axial (x) displacement of ith batten centroid,
<P/N2.2lc>.

v{¢) Longeron segment deflection, Figure 8-1, <P/N 8.4d> .

vo(£) Longeron segment imperfection deflection, Figure 8-1.

vi? Longeron segment end slope {dv/d¢) at batten i.

w(x),w; Column deflection, ith bay nede transverse
displacement, Figure 2-3, <P/N2.21d>.

WP Transverse (z) displacement of ith batten
centroid, <P/N2.21d>.

w;® Column curvature referred to a batten point,
Figure B-2, eqn. (8.13).

X Global spanwise coordinate axis, Figure 2-2,
<P/NR2Rla>.

Xj x-coordinate of ith bay node in ref. state,
Figure 2-3, <P/N 221la>.

xP x-coordinate of ith batten in ref.
state <P/N22la>.

Xe x-coordinate of transition point between critical

and sub-critical column stretches.

XIb , x-coordinate of locally-buckled spanwise point.



XX

Xg x-coordinate of slackening onset point.
XgP P-dependent x,.
v Global transverse coordinate axis,

Figure 2-4, < P>.
zZ Global transverse coordinate axis,

Figure 2-2, < P> .

Greek Symbaols:

o Load-deflection variable, amplitude of ¢(x),
eqn. (3.3b).
O Auxiliary a for calculating equilibrium

paths using eqns. (6.27).

B Bay aspect ratio parameter, eqn. (2.5).

¥{x), 7 Shear deformation, ith bay shear angle,
Figure 2-3, <P/N 2.21f>.

8(x),6; Longeron relative shortening, relative
shortening of ith longeron segment,
Figure 8-1, < P/N 8.4b> .

Sran “Strain” of bay member mn, eqns. (2.3),
<P/N2.14bor2.17b>.

£ Local imperfection parameter, amplitude of
vo{£), <P/N R.14c, 8.4c>, (Figure 2-1).

T Local transverse coordinate axis, transverse
coordinate axis for longeron segment i,
Figures B-1, B-2, <P>.

7. M2 Eqgns. (6.11c,d).

B(x), % Bending deformation, ith bay bisector

rotation, Figure 2-3, <P/N 2.R1le>.
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£.4i

XX

Rotation of the ith batten around the

y axis, < P/N2.2le>.

In Chapter S:I;a'(o), elsewhere:
imperfection theta, <P/N221e>.
Normalized diagonal rigidity, eqn. (2.28).
Normalized bay length, eqn. (2.25).
Amplitude of alternating part of end-moment
function, solution of eqn. (8.19b).
Slowly-varying part of end-moment functicn,
solution of eqn. (8.19¢).

Componénts of mP according to

(B.18) decomposition.

Shear compliance parameter, eqn. (2.41c).
Local axial coordinate axis, axial
coordinate axis for longeron segment i,
Figures 8-1, B-2, <P/N 8.4e> .

Longeron bending-related cross sectional
radius of gyration, VI/&, <P>.
Load-normalized deflection, eqn. (3.3a).
Egn. (8.2).

Rotation of a batten around the

X axis <P>.

Bay twist, Figure 7-1, eqn. (7.1b),

C<P/NTY>.
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Operations and Special Symbals:

()

Differentiation with respect to the argument,
also, finite differentiations as in eqns. (2.2),
(8.18), <P/N2.21b>.

Differentiation with respect to £ Becomes

() whenever "hats" are dropped, eqn. (2.21b).
Temporary indication of normalized quantities.
Imperfection displacement measures, eqn. {2.29a);
exceptions: ¥ in Chapter 3 and po.

()-( )o, deformation-constituent of a
displacement measure, eqns (2.36);
exceptions: p and its related quantities.
Perturbation of order j (except in w{I®).

Of global buckling.

Of batten i.

Local Buckling line.
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1. INTRODUCTION

1.1 Large Space Structures and Truss Columns

In recent years a considerable amount of work has been put into the design
and analysis of a novel class of structures; structures of very large dimensions
to be erected, assembled, deployed or even wholly manufactured in outer space.
Among the applications envisioned are space-stationed communications plat-
forms, radio-astronomy dishes and VLBI systems, solar sail propulsion systems,
solar power stations and large space stations and colonies (Figures 1-1). Dimen-
sions are to range from a few tens of meters to a few kilometers. Some are to be
built in low earth orbits and then be transferred to the gecsynchronous orbit.
For more details, including many graphical artist conceptions, the reader is

referred to references such as [1-5].

The problems associated with materializing such systems are manifold. An
appreciation of the variety of subjects involved can be gained from the above
references as well as from the proceedings of the NASA-sponsored meetings [8-
10] dedicated to the subject. We will only mention those problems related to
structural integrity and performance. The large dimensions together with the
typical low-load environment and the imperative necessity of weight optimiza-
tion lead to extremely flexible structures. Thus attitude or orbit control of such
structures involve also shape control. Thermoelastic problems arise from
uneven sun-radiation abscrption and poor heat conductivity and result in
geometrical distortions detrimental to the performance of systems like antena
dishes. For structural elements the design criterion of which is their load-
carrying capacity (such as members directly connected to engines, thrusters,
actuators or large concentrated masses) the typical large-space-system require-

ments will lead to stiffness-critical rather than strength-critical elements. In
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other words, such elements will have to be designed for sufficient structural sta-
bility and buckling strength. A detailed presentation of large space structures
design requirements is given by Hedgepeth [11]. In this work we will be con-

cerned with the static structural stability aspect only.

A widely-used way of optimizing stiffness/weight ratios in structural designs
is that of 'hierarchical structuring’, i.e., the primary structure is constructed of
a lattice of secondary members, say truss beams, each of which is itself built up
of tertiary members - longerons, diagonals, battens - and, depending on the size
of the primary structure, even lower-than-third-ranking members may be used.
Examples of this are shown in Figures 1-2 and 1-3. No wonder, then, that apart
from structural elements intended to maintain some required environment,
most load-carrying elements in large space structures are designed in the above
manner. It is therefore of interest to understand the behavior of such struc-
tures, and in particular that of their basic building blocks; the truss beams,
truss rods and truss columns. The latter are distinguished by their being incor-
porated into the primary structure in such a way as to make the load acting on

them a pure axial compression.

A variety of truss columns appear in large space structure concepts. They
may be classified according to their number of longerons (or 'legs'), the method
used to keep the longerons apart (battens), the method used to resist bending-
and torsion-related shears (shear web) and the degree of fixity of their joints.
Some are rigidly assembled in space whereas others (Figures 1-4, 1-5) are
deployable/collapsible. The most common truss columns are the three- and
four-legged ones. An extreme case is when the column has 'many’ longerons, (of
the order of a few tens, say). It then becomes a cylindrical geodetic column or,
as it is sometimes called, a cylindrical isogrid column. An example of this kind

is the column developed for in-space manufacturing by McDonnel-Douglas



Figure 1-2. Hierarchical structuring in large space structures. (From ref. 1,
courtesy of Aerospace America.)
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Corporation [12], which is shown in Figure 1-3.

Of most immediate interest to designers is, perhaps, the three-legged column,
which is the simplest and therefore the likeliest to find use in the first genera-
tion of large space structures. Two examples are shown in Figures 1-4 and 1-5.
The first is a rather large design (3.66 m. transverse dimension and 203.8 m.
extended length) developed by Lockheed [13] for a version of the Land-Mobile
Satellite. The second is an Astromast™ (Series A15000) column produced by
Astro Research Corporation. Both are deployable structures, stabilized against
shear by simple string diagonals and appear to have fairly low (if at all) joinis
fixity. The commonality of such designs and the likelihood of their being put to
actual use are among the reasons three-legged columns having string diagonals

were chosen to constitute the subject of this work.

1.2 Modal Interaction and Imperfection Sensitivity in Truss Columns

It-has been known for a long time that certain classes of structures, when
subjected to buckling lcads in a load-controlled environment, sometimes also in
a displacement-controlled environment, exhibit a particularly abrupt, violent,
even destructive buckling behavior. For the same structures, experimentally-
obtained critical loads show an extreme degree of scatter, and values which are
often only a small percentage of the calculated bifurcation—buckling loads. It
was Koiter, in his classical work [14], who established that the reasons for this
behavior lie in the instability of equilibrium of the post-buckled state and made
the connection between this property and the consequential imperfection-
sensitivity of such structures. By 'imperfection sensitivity' it is meant that even
slight.geome'trical, material or loading variations introduced into an otherwise
'perfect’ system, i.e., a system that posesses a bifurcation-type buckling, suffice

to sharply reduce the load-carrying capacity of the structure below the load
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associated with the bifurcation condition. Koiter's discoveries stimulated an

extensive research effort reviewed many times, e.g. Tvergaard [15].

As was pointed out by Koiter himself (see [15]), structures which have two or
more independent buckling modes with coinciding or nearly-coinciding critical
loads are particularly prone to post-buckling instability and imperfection sensi-
tivity. Indeed, the classical example of a highly imperfection-sensitive structure
- the axially-compressed cylindrical shell, with its multitude of coinciding modes
(Timoshenko and Gere [16]) - is just such a structure. This phenomenon is
known as modal interaction. The reason behind it, at least in some cases, is
that the structure, buckled in one of the modes, presents a much-lower resis-
tance to buckling in the other mode than does the nominal structure. Even
though each of the interacting modes considered separately may in itself be
insensitive to imperfections, their interaction produces a highly imperfection-

sensitive circumstance.

A very common situation of modal interaction occurs in structures having so-
called local and global buckling modes. The term 'local’ usually refers to a mode
of wavelength short compared with the largest structural dimension, and in
which some structural detail buckles. On the other hand, the global mode
wavelength is of the order of the largest structural dimension and in it some
overall feature of the structure is deformed. If designed so as to have close
local and global critical loads these structures may exhibit modal interaction.
Indeed, starting in 1969 with van der Neut's column! [17,18], local-global
interactions were studied by several authors (see [15]; a few recent additions
may be found .in [19]). Some highly idealized cases, including van der Neut's,

were investigated because of their demonstrative power. Of special interest are

1. van der Neut's column is a column built-up of two spaced flanges, each of which is a simply-
supported plate. ‘Local’ there refers to plate buckling whereas 'global' is the overall column
buckling.
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the examples given in the monograph by Thompson and Hunt.[20]. Besides
preéenting van der Neut's results, they also show that similar interaction
phenomena can occur not only between two buckling modes but also between a
single buckling mode and a material-yield failure mode. Most importantly from
our standpoint, Thompson and Hunt show that in a truss column not altogether
unlike ours, modal interaction and high imperfection sensitivity do occur.
There, as in our case, the global mode is an overall Euler mode of the complete
column while the local mode refers to buckling between battens of longeron seg-

ments.

Thus, another dimension is added to the interest in investigating three-legged
columns for large space structures applications. If weight-minimization, so
important in these applications, is done using the simplistic '"one-horse-shay"
approach, i.e., by sizing the structure in such a way as to make it fail in the local
and global modes simultaneously, then modal interaction results. As pointed out
by Thompson and Hunt [20] and Thompson and Lewis [21], the extreme imper-
fection sensitivity thus created erodes away the column strength to such an
extent as to shift the optimal design-peoint significantly. There is no way that
either realistic load-carrying capacity estimates or valid structural optimization
may be done without allowing in the analysis for modal interaction and without
knowledge of the imperfection involved. Hence the interest that this work might

bear towards a well-based design of large space structures.

Before leaving this subject it should be noted that interactions more compli-
cated than simple local-global may occur in large space structures columns, e.g.,
in cylindrical geodetic columns, besides the Euler overall mode and the local,
between-joints longeron mode, there may exist modes typical of cylindrical-shell
buckling (see Anderson [28]). If they all interact we have a case of 'triplex

‘modal interaction’. Since in three-legged columns with string diagonals
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slackening of all the preloaded diagonals constitutes a third mode of failure,
with a definite critical load, we can expect triplex modal interaction to occur in

our subject-problem too.

1.3 Statement of the Problem, Scope

In this work we deal with structural behavior of three-legged columns having
preloaded string diagonals, Figure 1-6. These are taken as being secondary
members of a primary large space structure, and incorporated into it through
pinned joints. Thus the column under consideration will be simply-supported at
both ends and subject to a single axial compressive load acting through the sup-
ports. As is mostly the case in large space structures (resulting from the large
dimensions and low-load environment) our column will be slender, consisting of
a large number of identical bays, each of which having an aspect ratio of the
order of 1. The column cross section is equilateral-triangular. Only columns in

which the longeron-segments are pinned to the battens are considered.

We are interested in the complete non-linear structural behavior of the
column. In particular we will treat buckling, post buckling, modal interaction,
imperfection sensitivity, non-linear response, load-carrying capacity and diago-
nal slackening behavior. We will not, however, be interested in global modes

higher than the fundamental cne.

The column is allowed two modes of geometrical imperfection, each associ-
ated with one of the buckling modes. The global imperfection is a deviation
from straightness of the (unloaded) column axis, having a half-wavelength equal
to the column length, whereas the local imperfection is an initial waviness of the
longeron segments of a half-wavelength equal to the segment length. No imper-
fection is allowed in either the external loading, the diagonal preloads or the

materials/dimensions of the longeron segments and diagonals. Though in
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practical situations actual imperfections are complicated the imperfections

dealt with here are highly idealized: they are sinusoidal in shape, each mode
describable in terms of a single imperfection parameter. Since in design situa-
tions the imperfections are known in advance to an extent not better than that,
this poses no limitation from an engineering standpoint. The problem of how
conservative the results of our analysis are with respect to 'worst-case' imper-
fections is not addressed. This work departs from studies using asymptotic
imperfection-sensitivity approaches in its being a 'large imperfections theory’;
the imperfections are allowed to assume magnitudes of the same order as the

associated displacements.

1.4 Review of the State-of-the-Art

The problem of buckling of truss columns is by no means a new one. It was
approached as early as 1891 by Engesser. His and subsequent works are refer-
enced in Bleich's monograph [22]. The applications of interest were heavy ter-
restrial structures, and it proved sufficient to analyze them as columns of solid
cross sections with finite shear rigidity, the latter determined from the particu-
lar shear web (lacing) design. See also Timoshenko and Gere [16]. Approximate
methods were used to predict Zocal buckling of truss members, e.g., Bleich [22].
The family of modern methods, referenced by Noor in [B], in which the lattice
structure is replaced by an equivalent continuum structure, can be viewed as

being, in some sense, an extension of that method.

With today's availability of finite element codes capable of handling large sta-
bility problems, a rigorous treatment as frameworks of truss columns having
man); degrees of freedom can in principle be done. However, when the number
of degrees of freedom becomes large - as is mostly the case in large space struc-

tures applications - these essentially non-linear analyses become prohibitively
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expensive, Reduction methods, in which a relatively small set of assumed modes
is uéed to reduce the number of degrees of freedom of the finite element model,

were introduced by Noor (e.g., [8,23]) in order to overcome this problem.

A third approach is one employing the calculus of finite differences. In repeti-
tive structures, exact finite difference equations having constant coefficients
can be written and sometimes solved for unknowns defined at discrete
equispaced points. This approach, which can be traced to Bleich and Melan [24],
was used in stability problems by von Karman and Biot [25] for a truss shear
column, by Wah [26] for a planar beam gridwork and by Forman and Hutchinson
[27] for repetitive reticulated shells. More recently M.S. Anderson [28] modified
the method of Forman and Hutchinson and applied it to, among other cases, a

cylindrical geodetic column and a certain kind of three-legged column.

The works and methods mentioned above do not treat modal interaction or
imperfection-sensitivity, at least not explicitely. The first to do that with regard
to truss columns were Thompson and Hunt [20]. Theirs is an idealized two-
legged column that serves to demonstrate the global-local interaction
phenomenon. Only local imperfections are considered and only the bifurcation
point is sought. (For discussion of their results see Section 3.3.) Later, Crawford
and Hedgepeth [29] treated the optimal design problem associated with Thomp-
son and Hunt's column. Byskov [30] studies the same column, but with continu-
ous longerons, using the method of Koiter and Kuiken [18] and also an asymp-
totic method deviced by himself and Hutchinson. A case of a column having glo-
bal but not local imperfections was treated by Mikulas [31]. A restricted type of
local imperfections (which do not result in prebuckling joint rotations) was
introduced by M.S. Anderson [32] into his analysis of cylindrical geodetic

columns.
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Because of the high degree of idealization in Thompson and Hunt's column
the results of the studies related to it could not have readily been applied to
‘actual situations. The first step in this direction was taken by Crawford and
Benton [33]. They generalized the Thompson and Hunt approach to a three-

legged case having global as well as local imperfections.

And here we arrive at another motivation for the present work. It was felt
that the power of Thompson and Hunt method cannot be rigorously extended to
post-buckling and non-linear response problems. In doing that extension Craw-
ford and Benton had to introduce certain hypotheses, the validity of which could
not be verified without further analysis. (See later, Section 3.9.) Since in the
present work the approach is fundamental, resort to uncertain assumptions is

kept to a minirmum.

Two more obstacles stood between Crawford and Benton's analysis and appli-
cation to actual situations. These were the assumptions, borrowed from Thomp-
son and Hunt's model, of discontinuous-pinned longerons and of infinite-rigidity
neon-coupling shear web. The present work goes some steps further towards
applicability in that {1) although retaining the first assumption, it proves its

appropriateness and (2) it replaces the idealized shear web by a practical one.

1.5 Approach and Structure of the Present Work.

The approach to the problem under consideration is a fundamental cne: A
system of algebraic equations, the unknowns of which are a set of displacement
measures, and which incorporates geometry, material properties and static
equilibrium conditions, is written for a single bay. Since this system involves
changes in displacement measures that occur across a bay, then, viewed from a
global standpoint, it constitutes a system of differential-like equations, in fact a

somewhat unconventional finite-difference system, for the complete column.
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Investigation of the column behavior is then done by studying this system and
its solutions. An aim is to obtain as much of the behavior as possible in closed

form.

The column equations are derived for a particular (likeliest) plane of
deflection. Also assumed in the derivation is that longeron continuity is of no
important consequence. The theory to be developed is a 'first-order theory’ in
the sense that only first-order terms in the displacement measures and in other
small quantities are included. In this respect the level of approximation is the
same as that of an Euler-Timoshenko column. In contrast to asymptotic posti-
buckling and imperfection-sensitivity approaches we will be able to obtain
results valid for a relatively wide range of displacements and their associated
imperfections (e.g. global deflections of the order of the column transverse

dimensions); a range limited only by the 'first-orderness’ of the theory.

The column equations are derived in Chapter 2. Then, in Chapter 3, they are
reduced to the special case of an infinite-rigidity non-coupling shear web (the
'ideal column') to reveal the major features of the column behavior. We then
return to the general case and in Chapter 4 we analyze phenomena related to its
undeflected or slightly deflected state - slackening, local buckling, global buck-
ling and initial post-buckling. Chapter 5 is devoted to the analysis of diagonal
slackening while in Chapter 6 we deal with solutions and equilibrium paths in
the deflected state. A special buckling mode, which involves pure torsion-
compression, and which is associated with diagonal slackening in the absence of
bending and global imperfection is discussed in Chapter 7. lastly, in Chapter 8
the error caused by neglecting longeron continuity (in cases where the
10ngefons are indeed continuous) is estimated and shown to be reasonably

small.
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2. COLUMN EQUATIONS

‘We approach the column problem by establishing a system of differential-like
equations governing its behavior. First the assumptions employed are stated.
Counterparts of the ordinary three groups of relations - strain-displacement,
constitutive and equilibrium - are then derived. Using order-of-magnitude esti-
mation techniques these relations are normalized and simplified. The concept
of spanwise diagonal-slackening regions is introduced to set up regional dis-
placement equations. The finite difference nature of these equations, and the

implications of treating them as differential are discussed.

2.1 Assumptions

We place the following restrictions on the configuration of the column con-
sidered. In many envisioned large space structures applications these restric-

tions are reasonably met.

1. The column is simply-supported at both ends and is loaded by only a

compressive force P acting at the supports (Figure 1-8).

2. The column is slender: its characteristic transverse dimension R (Figure 1-8)

is much smaller than its length L.

3. The column is constructed of a sufficiently large number of identical bays so
that the length of each, I {Figure 1-8), is much smaller than L. However, the

bay aspect ratio I /R is considered to be still of order 1.

4. The longeron segment of length { is itself slender: its effective bending-

related cross sectional radius of gyration, p, is small compared to {.

5. The longerons are pinned to the battens; no moments are transferred across

the column from one longercn to its neighbors.
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6. The diagonals cannot take compression and are therefore preloaded. The

10.

11.

cbmpressive prelead thereby induced in the longerons, p,, is small compared
with the longeron segment Euler buckling load, p, = m*EI /% It is the same
in all three longerons and does not change from bay to bay. During column

loading diagonal slackening is allowed.

. The diagonal extensional stiffness, (EA)q, is much smaller than that of the

longeron, EA; small enough so as to render the shear deformations impor-

tant, still large enough so as to leave bending deformations dominant.

. Both the longerons and diagonals are made of linearly-elastic materials.

. The global imperfection is taken formally to have components associated

with each displacement degree of freedom, components which are spanwise-
smooth and slowly-varying. In specific treatments, however, those will
invariably be specialized to exact replicas, in shape as well as in direction, of
the components of the fundamental initial global buckling meode; the

deflection having a sine shape of amplitude e and half-wavelength 1.

The local imperfection has also a sine shape, with an amplitude £ and a half-
wavelength ¢ (Figure 2-1). e is the same in all three longerons and does not
change from bay to bay. (The increase in segment deflection due to the

preload is not included in &).

The imperfection parameters e and ¢ are allowed to be of the same orders of

magnitude as p and R respectively.

We also make the following prejudgements concerning the actual behavior of the

system, with the intention of simplifying the mathematical treatment.:

12. We assume that batten deformations are so small as to not to affect the sys-

tem behavior. Thus we will treat the battens as if they were rigid frames.
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Figure 2-1. The local imperfection.

13. We will treat the longerons as if they were discontinuous, their segments

14.

being pinned to each other as well as to the battens. The reason is that the
segment end-moments obviously vanish when no global deflection is present,
and are expected to have a negligibly small effect in the case of slowly-
varying global deflection. A quantitative justification of this assumption is

the subject of Chapter 8, where the approximation involved is analyzed.

We assume that the column deflects in a plane which is one of the planes of
symmetry of the column cross section, and in a direction away from the
longeron contained in that plane (i.e. the positive z direction, see Figure 2-
2). Crawford and Benton [33] have calculated that deflection in this direc-
tion has the most deleterious effect on the global bending rigidity. Hence it
is plausible (though not proven in this work) that the post-buckling load is
lower for this direction than it is for any other one (in a + 80° sector) and
that in the absence of global imperfection and cross sectional asymmetries a
column will actually buckle in this direction. It is also assumed that the bat-
tens undergo no rotation around the column axis. This assumption, how-
ever, is relaxed in Chapter 7 where we investigate a pure, torsion-

compression mode that under certain conditions becomes possible.
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15. We will deal with global deflection amplitudes, a, of the order of R at most. It
turns out that this is quite enough because all the interesting phenomena

occur at amplitudes smaller than R.

16. Notwithstanding assumption (15) we will further restrict the range of a as
necessary for the local longeron deflection to be of the order of p at most.
Thus we will treat the individual segment as a simply-supported Euler
column and also neglect terms of the order of the segment shortening com-

pared to its length.

The system of coordinates in use is shown in Figure 2-2.

0

P ni— —

T~ w—x +wox z
=t A

Figure 2-2. Global coordinate system, plane and direction of global deflection
and global imperfection.

2.2 'Strain-Displacement’ Relations

In this section kinematic relations are established between global displace-
ment measures which we term 'displacements' and bay-members
shortening/elongation we refer to as 'strains’. It is stressed that these quanti-
ties are only analogous to their continuum mechanics counterparts, an analogy
that stems from treating the bay as the basic element instead of the

infinitesimal cube of continuum mechanics.
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Figure 2-3 depicts a bay in its deformed and reference states. The reference
state is that occupied by the externally unloaded, internally preloaded globally-
perfect column. We choose a reference point - the bay node - as the point
bisecting the straight line segment passing through the adjoining batten cen-
troids. Let x; be the x-coordinate of the reference-state node. Let uib , wib and ﬂib
be respectively the x-displacement, z-displacement and angular rotation (posi-

tive as in the figure) of the batten centroid immediately to the right of x;.

Batten i-| Batteni

ey
I

Figure 2-3. Bay displacement measures.

We define the four bay displacement measures, u;, w;, % and v; as follows:

1]

U é—(uib + uibll); x—displacement of node (2.1a)

%—(wib + W?Ll); z—displacement of node (2.1b)

2
i
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4 = —1—(191" + 19,"_1); rotation of bay bisector A 2.1c
2

¥y = wWi—% bay shear deformation (2.1d)

where w'; and other primed quantities are 'derivatives' in a finite-difference

sense:
wy= (o - ufy) (2.2a)
W= %‘(Wib —wiy) (2.2b)
o= T - ) (2.20)

In the following the bay subscript i will usually be omitted.

The 'strain-displacement’ relations are derived in the following manner. Each
bay member (longeron segment or diagonal) is designated as in Figure 2-4.
Members 11, 22, and 33 are longeron segments, 11 being on the convex side (see
Figure 2-2). Members having two distinct subscripts are diagonals: 12 and 21 are
the left hand diagonals, 13 and 31 are the right hand diagonals and 23 and 32
are called the back diagonals. The coordinates of the bay vertices 1, 2, 3, 1, 2',
3' are calculated, using the bay geometry and eqns. (2.1)-(2.2), for the reference
as well as for the deformed states. With each member mn a vector lp, is associ-
ated, which represents its length and direction and which is formed from those
coordinates. A member elongation is then found from the difference in length of
the associated vector in the deformed and reference states. In doing this 2nd
order terms in u', w', ¥ RY' and 7y are neglected compared to 1. Defining the

'strain’ of member mn as

6mn = (member elongation or shortening) /(member length in ref. state) (2.3a)

and introducing the sigh convention
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Figure 2-4. Bay members designation.

Longerons 'strains’ §;;,022,0s3 positive in shortening
Diagonal 'strains' d;3,d;;.ete.: positive in elongation

0, = -u' - R¢¥

b1z = 613 = (U + 8+
bo1 = 63 = FF(u’ + —1:—19' -
b2z = 033 = —u' + -g—-g'

25 = b5z = (W' — 2-5)

1
b= T3 3(R/1)?

we obtain the desired 'strain-displacement’ relations in the form

3R
o1 7)

3R
51 7)

where 8 is a bay aspect ratio parameter

= cosine < longeron,diagonal>

behavior will have {o stem from scmewhere else.

(2.3b)

(2.4a)

(2.4b)

(R.4c)

(2.4d)

(R.4e)

(2.5)

Note that the 'strain-displacement’ relations are linear. Any non-linear column
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2.3 Column Equilibrium Relations

Tﬁe equilibrium relations to be derived here are the analogues of the twice-
integrated Bernoulli-Euler beam-column equation EIw"’ + Pw = 0. They are
obtained by considering the static equilibrium of a complete column section -
from an end-support to some station x - rather than that of an isolated bay.
This allows the introduction of the destabilizing terms missing from the strain-
displacement relations by means of regarding the equilibrium of the deformed
state. The price paid is that we are no longer able to prescribe any desired
boundary conditions at one of the column supports; the bending moments and

shears {perpendicular to the x-axis) must vanish there.

With every bay member mn an internal force vector pyy is associated,

Prn = (Prn 7 Emn) lmn (2.6)

where ly, is the deformed-state member geometrical vector of Section 2.2 and
lmn is its length. The quantities pmn - the magnitudes of pmy, - are the internal
member compressive or tensile loads, and are acting in the present work as
stress measures. We will refer to them as 'stresses’ in analogy to their contin-

uum mechanics counterparts. The following sign convention is maintained:

Longeron ‘Stresses’ p,;,Pz2.Pas : positive in compression.

Diagonal 'Stresses’' pjg,pzi.etce. : positive in tension. (®.7)

The components of each 1, relative to an orthogonal basis associated with the
global coordinate system, and its length I, are borrowed from Section 2.2. The
components of each pm, are then written according to (2.6). Next, the equili-
brium of the column section of Figure 2-5, loaded by the external load P and cut

through the bay i is considered:

P+Y Pon i=0, % Pun K=0, =W Pj+ Y (fun —To) X Prn =0 .
mn mn

mn
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Figure 2-5. Global equilibrium.

L), and k are the base vectors associated with the coordinate axes x, y, and z
respectively and ry, and r, are the position vectors of the points of application
of pmn and of the point 0 (Figure 2-5) respectively. In this way the following

equilibrium relations are obtained:

Pss = Pae (2.8a)
Pis = P12 (2.8b)
Ps1 = Pai (2.8¢)
Psz = Pes (2.8d)

=281 + (17 (e 59) - T Ipie = 51+ ZEEOP (28)

- Bl1+(1-6% (u+—13)+ (19*'32‘7)]921

e (2.8f)
+ 1+ (169 <u'—2~a'>]pzs = (1 - 2
Bli-gu+ Do s By jp, -1 -+ Zo -y =L0P (s

In deriving these w,-"Ll was replaced by w; — (I /2)w; according to (2.1)-(2.2).
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2.4 The "Constitutive Relations’

By the term ’'constitutive relations’ we mean relations between the 'strains’
8mn of equations (2.4) and the 'stresses’ ppn of equations (2.8). These relations
are again only analogues of their continuum mechanics counterparts, and con-

fusion between the two must not arise.

Corresponding to the two types of bay members - longerons and diagonals -
we have twe types of constitutive relations, both highly non-linear. For a
longeron of length, {, bending rigidity EI, longitudinal rigidity EA and imperfec-
tion parameter ¢, and under assumptions (4), {10), and (16) of Section 2.1 and
definitions (2.3) and (2.7), the 'strain’' &y, referred to the unstressed stale, is

readily obtained as

5. = mo(e/L)? 1 — 1|4 Bom
e 4 (1 —Pmm/Po)? EA

where, we recall, p, = m*EI/I? The first term is the shortening due to bending
whereas the second term is due to axial compression. Our reference state is,
however, not the unstressed one but the one in which the longeron is preloaded

by an amount p,. The longeron constitutive relation then becomes

5 = me(e/1)? [ 1 _ 1 + Pmm —Po
e 4 (1 —Pmm/Pe)® (1 —Po/Pe)? EA

(2.9)

It is important to note that this is the only place where the local deflections
(implicitely) and the local imperfection parameter £ enter the theory. The
assumption of pinned segments allows the local behavior to be completely
absorbed in the 'constitutive relations’, and turns ¢ into just another structural
parameter. Mathematical treatment of the problem is in this way facilitated
inasmuch as approaches applicable to single-mode problems may be used. Glo-

bal displacements alone will suffice to characterize the column motion com-
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pletely and the modal interaction behavior will emerge without being addressed

explicitely.

Another interesting quantity is the segment ’tangent medulus’,
d(Pmm 7 A) /7 d(6mm). We obtain from (2.9), in agreement with Thompson and Hunt
(0]

{ (f;iijie)s ' (2.10)

E =

The diagonal constitutive law is complicated by the fact that it cannot carry
compression. Also, the diagonal in the reference state is preloaded by an
amount determined from internal equilibrium to be p,/28. The following

expression represents all these features:

Do = [g—;+(EA)ddm] -H(ﬁmmm), m# n, (2.11)

where (EA)q is the diagonal tensile stiffness and H(') is Heaviside's step function.

The two constitutive laws (2.9) and (.11) are shown graphically in Figure 2-6.

Diagonal

(EA)4

Figure 2-6. The constitutive relations.
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2.5 Normalization, Order Estimation, and Simplification

In this section we employ the assumptions of Sec. 2.1 in order to estimate the
orders of magnitude of the various terms in the strain-displacement, equili-
brium and constitutive relations. The results indicate what terms can be safely
neglected, and how best can the quantities involved be normalized. We then
proceed to write the simplified relations involving only normalized non-

dimensional quantities.

Let h be a typically-small positive constant, satisfying to some desired extent
the relation h< <1. h plays in this work the role of a standard of smaliness by
comparison to which we decide whether, say, a structural parameter is small or
not. The choice of h depends on the level of accuracy we require from our
results. In general, terms of order h? will be neglected with respect to terms of
order 1 and in this sense our theory will be a uniform first-order-in-h theory.
The order symbols o) and O(-) will be used in the following (perhaps uncom-
mon) meaning. For some quantity q we will write

_L
q=o(h®) if 0< |q/<h 2, (2.122)

n+

q=0(h" if h

l\')ln-

_1
=2

< |q/=h (R.12b)

We are now equipped to give precise mathematical meanings to the assump-

tions of Section 2.1

Assumption(2): R/L=o(h), (2.13a)
Assumption(3): I /L=o(h), {/R=0(1), (2.13b,c)
Assumption(4): p/l =o(h), (2.13d)

Assumption(8): p,/pe =0(h), (2.13e)
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Assumption(7): g%% = O(h) . : (2.13f)

'Note that (2.5) and (2.13c¢) imply also

g=0(1), 1-g=0(1). (2.13g)

The assumptions regarding the orders of magnitude of the deflections and

imperfections translate to:

Assumption(11): e/R=0(1), e/p=0(1), (2.13h,i)
Assumption(13): w/R=0(1), (2.18j)
Assumption(16): 6mm = o(h®) . (2.13k)

The last of these can be verified by noting that the bending term in a segment

shortening arises from integration of a square of a 1st order quantity.

2.6.1 Normalization of the Constitulive FRelations: Define the following non-
dimensional quantities, the orders of magnitude of which are in accordance with
eqns. (2.13). (We will use, temporarily, 'hats' over letters to denote normalized

counterparts of non-normalized quantities. Those hats will later be dropped.)

Pmm = Pmm/Pe = Pmml® /(M2 EI) =0 (1), (2.14a)
Bram = 8mm(l? /12 = 0 (1), (2.14b)
£=¢e/(VBp)=0(1) ! (2.14c)
Po = Po/Pe = 0o(h) . (2.14d)

The longeron-segment constitutive relations (2.9) and (2.10) can now be written

as

1. The reason behind this normalization is the simplicity it induces in (2.15b). Also, for thin-walled
tubular cross-sections, VEp equals the mean wall radius.
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2 B S | 5 «

dmm - 2 (1 _p-. )2 (1 _p\o)z + (Pmm 50) v (2156)
E - g2

(g ST (2.15b)

It is important to note that the restriction of small local deflections, Assump-
tion (18), can now be expressed as a constraint on the relation between £ and

Pmm in any longeron segment; eqns. (2.15a), (2.14b), and (2.13k) give

FE Rl (219)

It will be seen later (Section 3.2.1) that equilibrium translates this further into a

restriction on the global deflection amplitude.
For normalizing the diagonal constitutive relation we choose

fPmn/Pe M #n; (2.17a)

Brm

)

3

il

-ﬂ-l-z—csmn(la/nzpz) =0(1), m#n. (2.17b)

(These choices are suggested by the fact that only combinations fpmm and
6mn 7 8% appear in the equilibrium and strain-displacement relations (2.8) and

(2.4).) Also define normalized diagonal rigidity

o= T o) (2.18)

to get the normalized form of the diagonal constitutive relation {(2.11)
pmn=(-z—p°+x6mn)-H(2—po+/c6m), m#n. (2.19)

2.5.2 Displacements Order Estimation: From (2.13k) and (2.4a,d) we conclude
immediately
w =o(h?), RS =o(h?). (2.20a,b)

Provided w; is a slowly-varying sequence - which excludes high wave-number
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modes - we are justified in claiming that w' =o(w/L), ¥ =0o(d3/L) and

u' = o(u/L). Hence, by (2.13a,j) and (2.20a,b)
u _ Wo_ .
= o(h), 7= oh), w=o0(h), d=o(h). (2.20c,def)

There remains to find out the order of . Physically, ¥ is determined by
transverse equilibrium, represented by eqn. (2.8g). Let us therefore begin by
writing down a simplified form of (2.Bg), one in which u' and R%¥' are already
neglected according to (2.20a,b) and pz; vanishes (diagonal 21 slackened, worst

case for )

_ g B8R P _ lw
1= % =3rg

By (2.13c,g) and (2.20e) the right hand side of this is clearly o(h). Hence we find

that the diagonal loads are generally small:
Pmn/P = o(h) . (2.20g)

To find what this has in store for ¥ form 6,3 — 6z, using eqns. (2.4) and then

replace 'strains’' by 'stresses’ using (2.11)

3R__ Pz _ Pz, P\ 3mEARR/I?
B o= (EA)q =% )(Bpe) (EA)q

(P /3pe) is certainly of a(1). Then, by (2.20g), (2.13d), and (2.13f) the extreme

right hand side of the above is of 0(h®). Hence,
v =o(h?). (2.20h)

It is seen that the shear deformation slope 7 is in this theory one order of mag-
nitude smaller than the bending-related slope ¥ This is due mainly to assump-
tion (7): had (EA)4 been allowed to be comparable to EA, v would have been of
o(h®) and completely negligible. The opposite case, (EA)q/(EA) = o(h?), would

have caused excessive shear deformation - a situation undesirable from design
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standpoint and hence of questionable practicality.

2.6.3 Simplification and Normalization of S-D and Eguilibrium: The results just
obtained, eqns. (2.20), will now be used to normalize the displacements and their
'derivatives’ in such a way as to make them all of o(1). First normalize x so that

the column normalized length is

il

L‘“|=1

g£= Dy, () = %( ) =o(1), (2.21a,b)

where the 'dot’ operator means differentiation - in the sense of eqns. (2.2) - with
respect to . By it being of 0{1) we mean that the order of the 'derivative’ is the
same as that of the original 'function’. This is true inasmuch as that function is
spanwise slowly-varying, thus treatment of high wave-number modes is

excluded. Displacements normalization is done as follows:

d@= (L/nRPu=o0(1), (2.21c)
W= (w/R) =a(1), (2.21d)
8= (L/mR)¥=o0(1), (2.21e)
¥ = (312 /2n%Rl)y = a(1) . (2.211)

Define also the quantity Pg as the square of the ratio of the local and global

slenderness ratios. (The reason for this notation will soon become clear):

(U7 T (2.22)

Using eqns. (2.14b), (R.17b), (.21), and (2.22) the 'strain-displacement' relations

(R.4) take on the following normalized forms



8y, = 2Pg (-0° -3°), ( (2.23a)
See = B33 = 2Py (-0 + ‘é"’@') ; (2.23b)
612 =613 =RPg ( Q" + i—'ﬁ' +9). (2.23c)
o1 =83 =2Pg ( Q" + ji-ﬁ' -7, (2.23d)
Ses = 832 = 2Pg ( G° - é—ﬁ') : (2.23¢)

Two more nondimensional quantities are defined: the normalized external load P

and the normalized bay length A
P=P/(3p.) =0(1), (2.24)

A

(m/L)L =a(h). (2.25)

Note that the number of bays in the column, N, satisfies

N=

mlr‘

-
= (2.26)

The significance of the normalization (2.24) lies in the fact that, disregarding
the diagonal forces, local buckling in the unbent column occurs for P=1
exactly. On the other hand, Pg of equation (2.22) is nothing but the global
(Euler) buckling load of the perfect column (again diagonals ignored) normal-

ized by the same 3p,.

Neglecting terms of o(h®) compared to terms of 0(1) the equilibrium rela-
tions (2.8) simplify considerably. The only remnants of the deformed state
derivation are the wP and w'P terms on the right hand sides. (From this stand-
point our column is equivalent to a Timoshenko beam column.) The normaliza-
tion is done using eqns. (2.14a), (2.17a), (2.21b,d), (2.24), and (2.25). The result-

ing normalized equilibrium relations (omitting the symmetry relations) are



P —2Pi2 = (1 +2W —A#" )P, ‘ (2.272)
o~ o~ o - -~ h o~ >3

Pze —Pa1 —Pea = (1 —W+ W )P, (2.27b)
Biz P =AW P (2.27c)

There remains the compatibility relation (2.1d), the normalized form of which

is (using eqns. (2.21))

W =8+ =T (2.28)

Cﬁll\)

Since A = o(h) this shows clearly that in our theory the contribution of shear

deformation to the deflection slope is small compared to that of bending.

2.6 Introduction of Global Imperfections

The effect of global imperfections, disregarded in the preceding derivations,
will now be introduced. Formally, we assign to every displacement component a
corresponding imperfection component. Thus we have an imperfection quadru-

plet

Uolxi) . Wolxi) . B{x), 7o(x). ? (R.R9a)

defined kinematically similar to the total displacements, eqns. (2.1). Normaliza-

tion of these quantities is done in the same manner as in eqns. {2.21) to obtain

-~

Go(%) . W(&), w(&), Fo(&). (2.29b)

The global imperfection parameter e, the maximum of w,, is normalized similar

tow

&§=e/R. (2.30)

2. In specific applications U, will be taken as zero and Wo, U, and 7y, as a replica of their
spanwise distribution in the fundamental initial buckling mode. For the time being we will
maintain the more general situation. (U, can be interpreted as an initial unevenness in the bay-
length distribution.)
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Recall that our reference state is the one occupied by the externally
unloaded, internally preloaded globally perfect column. Therefore, the displace-
ments quadruple u, w, ¥ and 7 already incorporates kinematically the imperfec-
tions u,, w,, %, and 7,. The latter are distinguished from the former by the sole
trait that they do not produce ’'strains’. Hence, the only gate through which the
global imperfections enter the picture is the 'strain-displacement' relations. All
that has to be done is to replace in them @, %, 3 and ¥ by the strain-producing

-~

constituents G4 -G, W—-W,, 8—%, ¥—%..

2.7 The Column Equations

We are now in a position to summarize the column equations. For simplicity
of notation let us from now on omit 'hats’ over letters, agreeing that all quanti-
ties to be dealt with, except when otherwise explicitely stated, are the normal-
ized ones. We also return to the ( )' notation for 'differentiation’ with respect to
X The equations to be summarized are (2.23), (2.27), (2.28), (2.15), and (2.19)
and we introduce the following changes: (1) global imperfections according to
the discussion in Section 2.8; (2) other than (2.27) linear combinations for the
equilibrium relations; (3) matrix form for the S-D relations; (4) symmetry rela-

tions, e.g., 8,2 = 0,3, are henceforth omitted.

STRAIN-DISPLACEMENT:
611 -1 -1 0
22 -1 1/2 0 u' —u
012 } = 2Pg 1 174 1 g -, (2.31)
b 1178 =1| |y -7
b2 1 =172 0O
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EQUILIBRIUM:
P11 — (P12 + Pa1) = (1 +2wW)P (2.32a)
Pzz — %‘(sz +Pa1) —Pas = (1 —wW)P (.32b)
Piz — P21 =AW P (2.32¢)

BENDING-SHEAR- DEFLECTION COMPATIBILITY:

W =9+ %—7\7 (2.33)
CONSTITUTIVE RELATIONS:
b = 5 | g = i | + (P = Po) (2.34)
(1 =Pmm)® (1-Po)
Prmn = (%—po + K 8mn) - H( é—po +66pm), M#n. (2.34b)

Notably, we have eleven unknowns and a non-linear system of eleven equations.

2.7.1 Diagonal Slackening Regions: The step-function non-linearity of (2.34b) is
inconvenient to carry around, let alone do analysis with. To avoid this we intro-
duce the concept of spanwise diagonal-slackening regions. It is easy to conceive
of whole spanwise stretches along which the state of the diagonals is unchanging
- either diagonal 12 or 21 or none are slack.? These stretches, designated 'Region
I', 'Region II', and 'Region III', are defined in Figure 2-7. A batten that separates

between adjacent regions will be called a 'region transition point'.

The partition of the span into regions allows writing a separate system of
equations for each region, a system in which the diagonals constitutive relations

are linear. The appeal of this stems from the expectation that region-

3. Other slackening combinations, except 12-23-31, turn out unstable or otherwise impractical,
hence undeserving designation. The 12-23-31 unloading leads to a torsional mode which is
analyzed in Chapter 7.
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'--— Region I Region I Regionm—ﬁ

High positive shear
=Q, p =tensile
p2! pI2 l

High negative sheg

no slackenin =0 = tensile
9 PR

Figure 2-7. Diagonal slackening regions.

transitions are few. Their spanwise locations, however, become additional unk-

nowns which have to be determined from the following region condilions, deriv-

able from (2.34b):

Regionl : p1g= 0; d12= —po/Rk

p21> 0; a1 = —po/2k (2.30a.b)
RegionIl: p1p= 0; 6= —p,/Rk

Pa1= 0; 821= —po/Rk (2.85¢.d)
Region IIl: p1z = 0, d12= —po/Rk

Pa1= 0, 03> —p,/2K (2350

2.7.2 The Column HKegional Displacements Fguations: With the help of the
regions concept and of eqns. (2.35) we now proceed to eliminate all the 'stress’
and ’strain’ unknowns from the regional systems of equations. (We will still
retain p,;; and p;z as convenient notations for certain displacement combina-
tions.) The algebraic process involving eqns. {2.31)-(.35), results in four dis-

placement equations for the unknowns u, w, ¥ and y. For notational brevity

define

i=u-u, W=w-Ww,, J=0-1, F=vy-7. (236abecd)

The column regional displacement equations are:
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REGION I DISPLACEMENT EQUATIONS

P(1+ D) +wP + 56—2 (1_;11)2 - _;22)2 ] =0, (2.37a)
2Pp(142x)T + P+ L2l - L + 2 - 3 ] =0, (2.37b)
8 | (1-p1)®  (1-pee)® (L-po)?
4KkPg¥ —APW =0, (R.37¢)
W =8 — g—)\'y =0 (2.37d)

where: p;; = (1 +2w)P + 4k Pg(T' + -i—{i') + Po .

1 (R.37e.f)
pee = (1 — W)P 4+ 4xPg(Tq - E«S') + Po -
. . R A T Po
Region I conditions: @' + —% - %= — —— (not 1),
4 4xPg
(2.37g.h)
T+ L3 452 - 22 (not 1)
4 4ICPE '

REGION II/IIl DISPLACEMENT EQUATIONS (upper sign for region II)

Pepl(1+ L O &/07] +(w .T.Lw‘)P+ i. L TR L =|=0, (2.38a)
2 3 6 6 | (1-p1)*  (1-pee)
4 _ 2A £* 1 2 3
RPe[(1 +20)0' + —«F] + (1 F=—w)P+ — + - =0, (2.38b)
3 3P | T bl (1boF
26 PR(T' + i-?s' £ F) FAPW + é—p°= 0, (2.38c)
. Ry—n.
W 3= =Ay=0; (2.38d)
where: p;; = (1 +2wW)P + 2«Pg[T + %:T? +¥] + %—po,
L 3 (2.38e,1)
pze = (1 — Ww)P + 3«xPg[T - Z‘lﬂ' + 5-'7] + 7Pe
Region IV/Ill Conditions: + w'> 0, T+ ~¥Fy=< - Po (2.38g.h)
4 4-ICPE
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Upon inspection of these equations the following are noted before any
analysis:
1. The systems are first-order 'differential’ in w and ¥ and algebraic in u' and 7.

Thus only two boundary conditions need and can be specified.

2. The first region I equation is essentially a bending equation, the second is a
compression one whereas the third governs mainly the shear deformation.
The fourth equation is the bending-shear-deflection compatibility condition.
(This is seen clearly if one overlooks o(h) coupling terms). The situation is
less clear in regions II/11I because (2.38b) and (2.38c) are strongly coupled

through @'.

3. The bending and compression equations are non-linear, the non-linearity
arising exclusively from the longeron constitutive behavior. The non-linear

terms are not necessarily small (for any p;; and pgz) because € = o(1).

4. For certain load-displacement combinations, those that give p;; =1 or
pze = 1, the bending and compression equations become singular. These
situations clearly correspond to longeron-segment buckling - 'local buck-
ling’.

5. Region 1 bending and compression equations are coupled through the o(h)
quantity « in eqns. (2.37e,f). This o(h) coupling is not always weak since
(1—p11) or (1—pgz) may themselves become small. Besides the strong U’ cou-
pling mentioned in (2), regions II/1II equations are coupled in the same way
as those of region I and also by weak ¥ terms. The more extensive coupling in
these regions arises from the asymmetry in internal loading due to asym-

metric diagonal slackening.

8. As expected, Regions II and IIl are mutually antisymmetric with respect to

¥, 6 and w'.
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7. Letting ¥ =0 (infinite shear rigidity) and £ =0, p;; # 1, pss # 1 (locally-
perfect column) eqn. {2.37a) reduces to the familiar, twice-integrated Euler
column equation. The factor (1 + x/R2) represents the increase in the
effective global bending rigidity due to the presence of diagonals in the
cross-section; similarly (1 + 2«) in (2.37b) represents the effect of the same

on the longitudinal rigidity.

8. Using eqns. {2.38c), (2.1b), and (2.2b) it is found that (2.38e) may be written

(for region II) as
pu = [1+2(w+ ;‘—w‘)]P=(l+2wib)P (2.39)

(for region III i has to be replaced by i-1). This means that in a bay where a
diagonal is slack, the only displacement component on which p,; depends is

the deflection of an adjoining batten.

2.7.3 Boundary Conditions: As said in (1) above, only two boundary conditions
are to be specified. Because of the particular way the equilibrium equations
were derived no shear and moments are allowed at the end x=0. This leaves us

with only the following practically-significant conditions:
wP(0) =0, wi(m) =0 ; (2.40a,b)
wb(m) =0, (M) =0 ; (2.40c.d)

The first line of these represents the simply-supported case whereas the second
describes a clamped-free column. According to assumption (1) of Section 2.1

only the simply-supported case will be treated in this work.

R.7.4 Partially-Decoupled Region [ Eguations: The linearity and simplicity of
eqns. (2.37c,d), together with the fact that they are algebraic in w', 4§ and 7,

allow for expressing y and ¥ in terms of w' and thus eliminating them from the
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system. Noting that w,', % and ¥, and therefore also W', dand ¥ satisfy kinematic

relations such as {2.37d) we obtain first

0 P ' ==t P P = P ' {
- — — f o= — S ] J . -— '2.
8= (1 vP—E)w Wo' = Wy W (1 VEIW VE e (.41a)
A, P _ A, P ,
7 4 ( PE) - Aic ( PE ) (W + wo) ' (241b)
where v is another o(h) column parameter:
AZ

V= B " o(h) . (2.41c)

We now have to 'differentiate’ (2.41a) in order to substitute for ¥' in eqns. (2.37).
The meaning for the left hand side of this differentiation is fixed by eqn. (2.2¢)

and by writing formally

o - P_ - =t _. P o — L " _ P—
¥ = (1 VPE)W’ W, =W PEw (1 VP )W VPEW., (2.41d)

a specific meaning in terms of the w's (which is not simple) is lended to w'"'. We
will not concern ourselves with determining the proper w'" definition* since it is
of no consequence in this work, but proceed to eliminate ¥' from eqns. (2.37)
using (2.41d). In this way the partially-decoupled region I displacement equa-

tions take the form

kyoe P, £ 1 1 _ £y o
PE(].'FZ—)(.L—V?);‘)W + Pw + 6 l (1—p11)2 (1—p22)2 ] = PE(1+ z)Wo . (2423)
_ 2 1 2 3
2Pp(1+26) T + P + £ - =0, 2.42b
B2 T P4 | oo (oo <1-p°>2] (2.42b)
d= (1—V—P—) w =W, , (2.42¢c)

Pg

4. I, for example, we define W'j = (W'j4; — W'i—1) / 2A the left hand side will not be ' of (2.2¢)
but (W4y — Q1) /4 which, in turn, is equal to (1 /4)¥ + (3/4)[ (alll —‘ab_z) /3n]
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¥ = L—Q—c-{%) w = %{{—)(PP;E)W’ ; ‘ (2.42d)

‘ 2
where: 1-p;; =[(1 -P)—2wP]—-4«Pg(u'+ %—W”) + %—-Pw" —Po.

1 A2 5 (2.4%e,f)
1=pas = [(1 =P)+ wP]-ewPe(w - 1) - Lpw —p,.

The first two equations can be solved for U' and w. Then Band ¥ can be deter-

mined from the second two.

2.8 The De-Discretization Error

The column equations derived in this chapter establish relations between
bay-quantities - the displacements and their 'derivatives' - defined by eqns. (2.1)
and (2.2) at only discrete x-values. They are sequences rather than functions
and the equations are therefore, by nature, finite difference equations. No error
is committed if they are integrated as such, and good use can be made of this
fact in numerical treatments. For closed-form treatment, however, it is quite
advantageous to regard these equations as if they were differential and to
integrate them accordingly. It is then that an error is committed; the one known
as truncation or discretization error but in the opposite sense.® A general esti-
mate of this error will not be attempted in this work, although consistency of
the finite difference and differential approaches can readily be proven. It will be
seen later (Section 4.7) that at least for the global buckling case the error is
0(A®) = o(h?). Hence treating the column equations as if they were differential is

consistent with the other approximations of the present theory.

Let us therefore redefine the 'prime’ operators acting on u, w, ¥ and v as fol-

5. We are not at liberty to neglect the 0 (h®) A® -terms since the square-brackets may themselves
get small,

8. The situation here is exactly the opposite of that commonly encountered in finite difference
analyses. There we usually have a differential equation that, for the sake of ease of numerical
treatment, is traded for a less exact finite-difference one. Here it is the finite-difference equation
which is the more exact.
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lows:

(Y=d()sdx, ()'=d¥)/de. (2.43a,b)
Henceforth, unless explicitly stated, we will use them in this meaning.

The continuum counterparts of the boundary conditions (2.40a,b) are clearly

w(0)=0, w(m)=0. (2.44a,b)
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3. THE IDEAL COLUMN

Consider a three-legged truss column having all the features introduced sc far
except for those related to the diagonals. Instead, let the diagonals be replaced
by an unspecified shear-resisting web distinguished by the following properties;
(a) infinite shear rigidity, (b) shear web loading does not induce longeron load-
ing. (In the following this property will be referred to as 'non-coupling web'.) We
will call this column the 'associated ideal column’. It turns out that the ideal
column bending and compression equations miss all the o(h) terms and only

them, and thus it is also a 'zeroth order-in-h column'.

Though a rough and maybe inadequate approximation, there are good rea-
sons to analyze the ideal column. First, as mentioned in Chapter 1, this case
(and its two-legged counterpart) has been treated by several authors and there
is an interest in comparison of results. Second, designers should be made aware
of the magnitude of the error involved in treating a real column as if it were an
ideal one and of the unconservative nature of this error. Also, the simplicity of
the case affords an approximate closed-form solution which has, at least quali-
tatively, most of the features of the more complex ones. Besides being quite
instructive the ideal column facilitates the establishment of certain concepts

that carry over to the general problem.

After reducing the column equations to the ideal case we analyze the singu-
larity that corresponds to local buckling. Then we investigate the bifurcations
and behavior of the globally-perfect and locally-perfect special cases. An exact
closed-form solution is found for the globally-perfect column. Using asymptot-
ics, this solution and the load-deflection relation associated with it are investi-
gated. The results are then applied towards constructing an approximate, yet

more useful, load-deflection relation which imitates the exact asymptotic
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behavior. The general, globally-imperfect case is treated in an approximate way
using a Ritz-Galerkin procedure, the results of which are then slightly modified
so a to make them reducible to the globally-perfect case. The load-deflection
relation is then investigated to reveal the behavior in the a-P plane and to com-

pare it with results in the literature.

3.1 The Ideal Column Equations

Removal of the diagonals and introduction of a non-coupling web of infinite
shear rigidity translate mathemaically into the following:
Po =0, k=0, ¥y=0. (3.1a,b,c)

v being determined, eqns (2.37c) and (2.3Bc) should be crossed out [the latter
only after substituting from it for APw' in (2.3Ba) and (2.38b)]. Eqns. (2.37d)

and {2.38d) will then yield ¥ = W" and both systems will reduce to

_ 2 1 1
PpW' + Pw + =— - =0, 3.2
EW *EWT 8 | (1-P-2wP)?  (L-P+wP) ] (3.2a)

3

&£ 1 . 2
6 | (1-P-2wP)? (1-P+wP)?

2Pgd' +P + -3{=0. (3.2b)

Comparing the systems (3.2) and (2.42) we see that the reduction could have
been achieved simply by letting in the latter p,=&=v=0. Moreover, from (2.42d)
it is seen that taking v=0 (keeping A finite} amounts to taking ¥=0. We therefore
conclude that of the two effects inhibited by the column idealization the
coupling-web effect is represented by the parameters « and p, whereas the finite
shear rigidity effect is represented exclusively by v. Accordingly, we will refer to v

as the 'shear compliance parameter’.

Taking simultaneously v=«=0 while keeping A finite may seem a contradic-

tory operation, because v=A%/8k. This is, however, precisely the mathematical
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parallel of the verbal operations that led to the ideal column: on one hand we
removed the diagonals, which were the sole source of shear resistance, while on
the other hand we postulated the latter to be infinite. The contradiction is
resolved if we consider v as a general shear compliance parameter, regardless of
the shear-web design and of the way v should be calculated; for then the v which
is made to vanish is that of the unspecified replacement web, which necessarily

dees not have ¢ in its denominator.

Examining eqns. {3.2) we see that the first one, the bending equation, is com-
pletely decoupled from the second. We can solve it independently for w(x) and
then find u'(x) by direct substitution. The w{(x) solution is thus enough to
characterize the column behavior completely and we will confine ourselves in

this chapter to dealing with it only.

It will prove advantageous to introduce into (3.2a) the following substitution:

p(x) = lZ_PP w(x) . (3.3a)

It is immportant to note that ¢ combines load and deflection. Although it has the
same shape as w, its amplitude depends on P in an entirely different manner. If

we denote by a the amplitude of w and by o the amplitude of ¢ then

2P

p 2 (3.3b)

o=

The mathematical formulation of the ideal column problem may now be written
as follows:

p=¢(X)<a 0<x=< 7T, (3.4a)

S P [ 1 1 ]
PP PO PR (P (2P

=0, O0<x<m; {3.4b)
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@(0) =0; \ (3.4c)
p(m) =0, (3.4d)

Note that of all six structural and imperfection parameters of the general

problem (P, o, & A, £, and p,) only the first three survive.

3.2 The Local Buckling Line and Related Phenomena

By setting the diagonal loads to zero, equilibrium relations {2.32a,b) are

reduced to the ideal column case:

1-py = 1-P-2wP, 1—pge = 1 -P+wP, (3.5a,b)
and expressed in terms of ¢ they become

1-pn=(1-P) (1 —¢) 1-pee=(1-P) (L +¢/2). (3.6a,b)

Eqn. (3.4b) is evidently singular for p=1 and ¢=—2. By (3.6) these singularities
are seen to correspond to the conditions p;;=1 and pge=1 respectively, i.e. to
the condition of buckling of the longeron segments at spanwise points where
¢=1 or p=—2. Intending to deal with only positive deflections (assumption 14 of
Section 2.1) the singularity at ¢=—-2 is of no consequence. That at ¢=1, how-
ever, will first come into play when the spanwise maximum of ¢, namely «,
becomes equal to 1. We will call the locus in the a-P plane along which a=1 the

local buckling line (LBL). By (3.3b)

IBL: a=1, P= : (3.7a,b)

The LBL will play a major role in the present theory. Its most striking feature is
its independence of any structural or imperfection parameter and of the shape
of w(;c). We shall seé that the essence of this feature is carried over to the gen-
eral column. Clearly, all actual (equilibrium) a-P combinations must fall below

or on the LBL, thus, the LBL together with assumption (14) of Section 2.1
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restrict the a-P region in which such combinations may occur to
0 < a < 1. (3.8)

This region and the LBL itself are depicted in Figure 3-1.

\ - L
0.4 \\ Smali local "*-\BL
N eflections boundary =
~ o
024 @, T~ %nst,0<qx
1\| ¥ 1 ¥ = a
0 0.2 0.4 0.6 0.8 .0

Figure 3-1. The local buckling line and a-range.

3.2.1 The Restriction on Local Deflections: We are now in a position to transiate
that restriction, imposed by assumption {18) of Section 2.1 and expressed
mathematically by (2.18), into a restriction on the global deflection amplitude a,
at least for the ideal case. When substituting (3.5) into (2.16) the maximum of
the latter (for w = Q) is seen to occur for m=1 and for w=a. Using the 'o’ sym-
bol definition (2.12a) to replace the order expression by an inequality we obtain

the global deflection restriction in the form
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1-P __¢h  a=1- th .
_P 2V2P 2V2(1-P)

a<

(3.9a,b)

The first term in (3.9a) is clearly the value of a on the LBL. The second term,
theri, expresses the distance from the LBL that has to be maintained if the o{h)
theory is to be valid. As long as &/P=0(1) this distance is seen to be itself of
o(h). A typical e=const. boundary obtained from the equality in (3.9a) is also
depicted in Figure 3-1. Considering that the equilibrium paths in the a-P plane
will turn out asymptotic to the LBL as a» «» and also that any possible violations
of (3.9) will turn out to be of very small spanwise extent we see that assumption

(16) is not much of a restriction.

3.2.2 The LBL as a Limil Fquilibrium FPath; The Local Mode: Next we investigate
the consequences of ¢ attaining the value 1 at a single spanwise point xy,;
¢(xp)=1=a. Consider an interval x,< X< x;, such that in it 0< ¢(x)< 1. Then by
(3.4b) ¢"—p," is negative, single valued and bounded everywhere in the interval,
and hence ¢'—p, must be differentiable and monotonously decreasing there .
These facts lead to the conclusion that ¢'(x),) must be bounded.! A similar argu-

ment applies to the other side of xy, using an interval xp< x< Xs.
Let us now multiply (3.4b) through by 2¢'/Pg and integrate. We obtain

[
D e 2 P/Pp 1 2

Pg 3 (1-p)? 1-¢ @ 1+g/2 = [ po(thg'(t)dt . (3.10)

g+

It is seen that as x-xp, the only possibility for ¢' to remain bounded is when
£2P=0. But if this is so, the third term of {3.10) becomes indeterminate and that

equation can be satisfied at x for any P and ¢' * It is therefore possible to

1. @4 (X) is assumed bounded.
2. In other words, one can always take £?P and 1—a to zero in such a way that
lim {2y = 2R (1 PR [ [ g g () at - () — ]
#P+0ar1 1~ 2 ° 7 Pg
and thereby satisfy (3.10) in the limit.
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choose on both sides of Xy, ¢'-values such that the boundary conditions (8.4c¢,d)
are satisfied too. This means that if £2P=0, any a-P point that lies on the line
a = 1 is consistent with the system (3.4) or, in the usual terminology, belongs to

an equilibrium path. Since o=1, P-»0 imply a-» = we arrive at the conclusion

For any w,(x) having a bounded first derivative the 1BL is an
equilibrium path in the limit £ 0 for any a> 0 and in the limit

a-> = for any &.

The second part of this means that all equilibrium paths tend to the LBL as

a—» oo,

From the above discussion we can further conclude that the point xy, is
undetermined and alseo that ¢' is in general discontinuous and changes sign

across Xp. The function ¢ will satisfy the piecewise equations

¢ =¢1(x), 0= X< Xp; ¢ =pe(x), Xp< X< 7, (3.11a,b)
Pel¢'1 —¢"0) +Pp; =0, 0< x< Xp; (3.11¢)
Pe(g's —9"c) +Pya =0, xp< x< 7] (3.114d)
gi1{0) =0, @a(m) =0,  ¢1{xp) =pelxp) =1; (3.11efgh)

the solution of which, for the case ¢, = 0, is given by

. P . P
Sln\IEX/Sm\lﬁ Xib » 0< x< xp;

o(x) = | S . 5 (3.111)
sin E— (m—x) /sin Pz (=) . xp< x< 7,

and is shown qualitatively in Figure 3-2. We will refer to it as the “Zocal mode"
Also shown in that ﬁgure is a special case of later interest; the case a-»= (P-0),
xp=r/2. From (3.11c,d) we see that for P=0 the sine segments reduce to
straight line segments, thus the local mode shape becomes triangular at this

limit.
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g
S

Figure 3-2. The local mode.

3.3 Global Buckling

In this section we will be concerned with the bifurcation of eqns. (3.4) -
®o(X) set to zero -- from the trivial solution ¢=0. To distinguish this bifurcation
from others to come we will refer to it as the “Ist bifurcation’ When it happens,

the (globally-perfect) column is said to undergo ‘glabal buckling '
We proceed as usual by taking the first perturbation ¢{!)(x) around the pre-
buckling (trivial) solution ¢®©=0. The system for »{! is just the linearized {3.4)

g2

PEQO{H" + P{ 1+ '(]-_—P)a

Je) =0; (3.12a)

o) =0, oM (,{) =0. (3.12b,c)

The non-trivial solution is immediate (fundamental mode only)
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@ = asinx, B (3.13a)
(PE—Pp) (1 —Pp)° — P, =0, (3.13b)

where Py is the value of P required for the bifurcation te occur. We will call it
the global buckling load’ and the mode (3.13a) the fundamental initial global

buckling mode or, in short, the global made’.

The root Py, of (3.13b) is shown graphically as function of Pg and ¢ in Figures
3-3a,b. Note the huge drop in the buckling load that is caused by even slight ¢'s,
especially for Pg values near 1. (E.g., for Pg=1 and for rectangular cross-section
longerons, imperfection the size of the cross-section width causes a drop of

almost 90%.)

Of special interest are the local imperfection sensitivity power laws, deriv-

able from (3.13b). For e»0

Py ~ Pg[1—-£%/(1-Pg)?], 0< (1-Pg) =0(1); (3.14a)
Py ~ 1—gl? |1 —Pg|=0(e); (3.14b)
Pp ~ 1—(Pg—1)"1/33, 0< (Pg—1) =0(1). (3.14c)

Note the increased sensitivity as Pg~» 1 from either side.

Results to the same effect were obtained by other authers and it is of
interest to compare them with ours. In their book [20] Thompson and Hunt
treat a two-legged ideal column. later, Crawford and Hedgepeth [29] employed
the same method to draw conclusions about optimal design. The approach is to
use the tangent modulus given by (2.15b) in a Shanley buckling formula,
Pp = mE 1. /12 (I, being the global 2nd moment of area). In our notation this

results in
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Figure 3-3a. Normalized buckling load in the first bifurcation.
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Figure 3-3b. Normalized buckling load in the first bifurcation.
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£

E,
Py =PE'—=PE/(1+m'3—)

E

which is identical to (3.18b). In this context it is worth noting that (3.12a) can

be written, using (2.15b), as
(E/E)Pee" + Pl =0

which points at the appropriateness in this case of the Shanley formula

approach.

Byskov [3C] derives a formula for global buckling of a two-legged ideal
column having continuous longerons. Using the Koiter and Kuiken [18] asymp-
totic approach, which appeals to the idea of slowly-varying local amplitudes, he

obtains
(Pe = Py) (1 = Pp)® = (ePp)?Pp =0

in sharp contrast to (3.13b). This discordance can be settled, however, if we note
that Byskov's result, being of asymptotic origin, is strictly valid only in the limit
e~ 0. From Figure 3-3a we see that in this limit either Py,»1 or 0P,/8e~0, in
which cases the disagreement vanishes. (The imperfection sensitivity power laws
associated with Byskov's result are identical with eqns. (3.14) except for the
0(z®) term in (3.14a), which is multiplied by Pg). The fact that result was
obtained for continuous longerons supports assumption (13) of Section 2.1 and
seems to contest the assertion in [30] that by neglecting longeron continuity "an

essential feature'is lost.

3.4 The Locally-Perfect Ideal Column

The equation for the locally-perfect ideal column is obtained from (3.4b)} by
setting £=0. Note that in this case the boundary {3.9) coincides with the LBL and

the restriction associated with it disappears. In contrast with Section 3.2.2 we
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now investigate the case a# 1. As is the rule in this work (Assumption 9 of Sec-
tion 2.1) we restrict the choice of the global imperfection to a replica of the

associated buckling mode, given in this case by (3.13a)
Wo(X) = esinx. (3.15)

Taking £=0, a # 1, the nonlinear term in (3.4b) vanishes leaving behind the

classical Euler column equation and its well-known solution

w(x) = asinx, a= I—_—%TD—E—. 3 (3.16a,b)

The mode (3.18a) is recognized as the global mode. We will refer to the line in
the a-P plane given by (3.16b) as the ‘global line’. Two global line cases are

shown in Figure 3-4,

There is nothing, however, in eqns. {3.16) that excludes them from the point
a=1. Indeed, the absence of local imperfections or any other stimulus makes it
possible for the longeron segments not to buckle at the LBL. At the point of
intérsection of the global line and the LBL both modes, the global (eqn 3.18a)
and the local (egn. 3.11i) coexist, thereby characterizing it as a bifurcation
point. To distinguish it from the 1st bifurcation point discussed in Section 3.3,
we will call it the “@nd bifurcation point’, (Figure 3-4). Since the global mode has
a midspan maximum, it is plausible that upon bifurcation from global to local

xyp Will be determined as /2.

The value of P in the second bifurcation, denoted by P, is obtained from

intersecting (3.16b) with (3.7b)

P.= %—[ 1+Pgp(1+2e)—|1-Pg| V1+4ePg[1+(1+e)Pg]/(1-Pg)?*]. (3.16¢c)

This was obtained by Mikulas [31] for the case Pg=1. Figures 3-5a,b depict the

3. The ground for the notation Pg in (2.22) is now obvious.
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Figure 3-4. Global lines and 2nd bifurcation.

behavior of P, with changing e and Pg. The global imperfection sensitivity power

laws, for e» 0 are

P, ~ Pg[1-2ePg/(1-Pg)], 0< (1-Pg)/Pg=0(1); {3.184)
Pe ~ 1—V2e, |1=Pg| =o(e); (3.16€)
P.~ 1—RePg/(Pg—1). 0< (Pg—1)/Pg=0(1). (3.18f)

It is seen that except for the case Pg=1 the imperfection-sensitivity of the

second bifurcation load is milder than that of the first bifurcation.

3.5 Exact Postbuckling Solution for the Globally-Perfect Case

In this section we will follow the globally-perfect solution that bifurcates from
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Figure 3-5a. Normalized buckling load in the second bifurcation.



~57-

Normalized Buckling Load, Pg

1.2 -
ru.:.......||..||||!||.....i:|..||..||||1...\\1\ llllllllllllllll -
\\\Q\“O.OO/ _..W e
a.8] O.O.No ........
8.6} o.fo llllllll
65 s
8.4)
o0
a2 1.0
2.5
8.8 . e=00 )
= n © n ™
of o - - o

Normalized Perfect- Column Euler Load, _um

F'ighre 3-8b. Normalized buckling load in the second bifurcation.
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the trivial one at the 1st bifurcation point as it changes with increasing a. In the
process we will obtain the post-buckling equilibrium path’ relation, which
describes a line in the a-P plane - the ‘post-buckling line’. The results of Section
3.3 allow us to assume that the solution has a single relative extremum in [0, ]
and that that extremum is a maximum. We will also assume that the solution is

twice differentiable in [0, 7].

We start from the once-integrated equation (3.10) replacing the right-hand
side by a constant of integration. In accordance with the above assumptions,
»'=0 implies g=a and vice versa. We can use this to express the constant of

integration in terms of a

g = iV_P— (oB—¢?) + & { o - 2° 1. (3.17)

Pe (1-P)® " (1-o)(1+a/R)  (1-¢)(1+9/R)
This can now be integrated a second time to give x as a function of ¢. However,
since ¢ has a maximum, x(¢) is double valued and only one branch of it can in
this way be obtained. By choosing the lower limit of integration as ¢=0 we make
this branch satisfy the boundary condition (3.4c). Accordingly, and in order to
be consistent with a > 0, the positive sign must be chosen for ¢' in (3.17) on this

branch. Thus

(¢) = \/—f @)+ sl ey - Tt

D<g¢g<a. (3.18a)
Also
x(g) = J_‘ J _p)s (1—a)(ll:a(/oét)/(gl)fo(té)??+at/2)] d 7T
0<¢=a. (3.18b)

For the other branch we choose the negative sign for ¢' and make it satisfy the



~59-

far end boundary condition. In this way we find that ¢(x) is even with respect to
the midspan. We can now confine our discussion to the first branch only, replac-

ing the boundary condition (3.4d) by
(D) =a (3.19)

which, when applied to (3.18b), comes to
1

Pe £2 1—(at/2)/(1+t) L@
{P:ﬁl * (1-P)® (1—a)(1+a/2)(l—at)(1+at/2)] ¢ Via? 2 (3.20)
0

and as is usual in this kind of problems, {3.20) constitutes the exact post-

buckling equilibrium path relation for the globally-perfect column. (3.18b) pro-

vides its post-buckling deflection shape.

3.5.1 Asymptotics of the Ezact Solution: Closed form evaluation of (3.18b) and
(3.20) is likely to be possible (in terms of elliptic integrals) but not very useful.
On the other hand, asymptotics can characterize the solution quite satisfac-
torily, and point at the behavior approximate solutions should imitate.

First, the asymptotic behavior of (3.18b) and (3.20) as a-»0 (ie. small

deflection) is sought. We obtain to the first order in o *

- P, P2 P PN\ [l=p/ .
x{p) arcsma+?(1 PE)[(;T—arcsma 1)+(1+2a) 1+¢/rx]' (3.22a)

(Pg — P)(1-P)? — azp(1+§-a) ~0. (3.21b)

It is seen that initially the deflection is sinusoidal. For small ¢/ the bracket in
(3.21a) can be shown to approach 0.1366 ¢/o. Hence, as a increases from zero,
the deflection shape tends slightly towards the triangular. The load-deflection

relation (3.21b), together with others, will be investigated in Section 3.8.

4. In obtaining (3.21a) use is made of (3.21b). Note also that p/a< 1 as a~ 0.
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We now let a approach 1 close enough so that £/(1-a)>> 1. ® We see from

(3.17) that either ¢~ and ¢'~ 0 or, neglecting quantities of order 1 and smaller:

1

" ~/ 2 &2 P
3P (1-P)3 1-a

which is independent of ¢. It appears, therefore, that the limiting deflection

shape as a- 1 is triangular. When applying the boundary condition (3.19) we get

x(p) ~ (n/R)p/a, (3.22a)
2
Pg(1-P)® — szPﬂ-T_/Te~ 0. (3.22b)

Note, however, that if ¢' is to be finite P must tend to zero and therefore a-» «.
We have thus arrived again at the a- e local mode of Figure 3-2, this time
through the limit a» « for any ¢ in agreement with the conclusion in Section

3.2.2. Here it is (3.19) that determines x, to be /2.

If quantities of order 1 are retained, a quite laborious expansion gives, first,
uniformly valid but too lengthy expressions for x{¢) and the load-deflection rela-
tion. By breaking the g-region into subregions, further simplifications can be

made. The results are:

x(¢) ~ g—y%—?f—(l—a)\/a_—cp. ox—p<< 1= ; (3.23a)
3Pg(1-P)3(1-a) 1-a, —py8
o)~ ZETTOD 1), 1o PRy,

- 1=P) s (L+eR)® 3 - — b
+(1 a)[i—‘L?Lr; +1n Vies ggo]} 1—p>>1—a; (3.23b)

2 2
(PE—%P)(l-—P)S - &P{%—[l—fg +In(1-a) + (%—anl— ]} ~ 0. (3.23¢c)

Note that (3.23a) may be inverted to give

5. Eqn. (3.9b) may thereby be violated. However, what we are looking for now is the nature of the
solution of (3.4) regardless of its strict physical validity.
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P 1
6P(1-P)® (1-a)?

p(x) ~ a - (g——x)"‘; a—g<<i—p - (3.23d)

which shows how the midspan curvature behaves as a- 1, and which could have
beeﬁ deduced directly from (3.4b). In (3.23b), the first term carries all the
linearity and the second term is positive and has a positive 2nd derivative,
whence we learn the behavior for low to moderate ¢. In order to get purely

geometrical expressions P has to be eliminated in favor of a using (3.23c).

To conclude, for &> 0 the deflection shape changes gradually with a from the
global mode at a=0 to the triangular local mode at a=1. Figure 3-6 depicts this

behavior.

Figure 3-6. Post-buckling deflection shape as function of a (qualitative).

3.6 Approximate Load-Deflection Relation for the Globally-Perfect Column

Though one may feel content with the asymptotics of the exact solution as
regards the deflection shape, one wishes to know the load-deflection relation for

all 0= a=<1. Numerical evaluation of eqn.(3.20) is not very convenient, and
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moreover, we might not have an equivalent of (3.20) for the general, globally-
imperfect case. Therefore a simplified, approximate load-deflection relation is

desired, tested against the known exact asymptotic behavior.

In order to achieve this goal the following steps will be taken: (1) The general
form of the sought load-deflecion relation is determined by using the Ritz-
Galerkin procedure. It is found to conform with (3.21b) and (3.22b) except for
having a more general a-dependence. (2) The asymptotic behavior as a-0 and
as a~ 1 of the result is then compared with {3.21b) and (3.22b) respectively and
is found not altogether satisfactory. {3) A method is devised in which two exact
representations of the load-deflection relation - one which is known completely
(eqn. 3.20) but does not posses the required form and another, which has that
form but contains unknown functions - are compared, thereby identifying the
required approximate a-dependence. This, in turn, is found to satisfy exactly the

asymptotic a-wise behavior.

Following [34] the Ritz-Galerkin procedure is applied to either (3.4b) or (3.17).
In both cases an assumed solution g=asinx is substituted, the equation is then
multiplied through by the same sinx as a weight function and integrated over

[0,77]. The approximate load-deflection relation thus obtained is of the form

(P = P)(1 —P)2 + £%Pf(a) = O (3.24)
where, if (3.4b) is used
2 sint sint
flo) = dt 3.25
(a) 3 Jo —otsmt)z +(a/2)sint)2] ( )

or, if {(3.17) is used 8

- _ —(at/2)/(1+t)
f(e) = fe(a) = (1—a)(1+a/2)f —:t) (1+at/z) ‘& (3.26)

8. In deriving (3.28) care must be teken to average the error of ' rather than that of 50'2.
Neglecting the square of the error with respect to & cos?x is also needed.
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(both of which are easily evaluated in closed form). Unfortunately, when com-
pared with (3.21b) and (3.22b), none of these has a completely satisfactory

asymptotic behavior,

o~ 0 a-1

fi(a) ~ 1 + (2/ma f1(0) ~ (4/3)(1~a) 37
f(a) ~ 1+ (473 —In2a  fala) ~ -(2/3)@111_—;“1
desired: 1 + (2/m)a desired: (n?/8)/(1-a),

and therefore both of them are abandoned. Instead, we look for an appropriate
f(a) along the following lines. First we ask what is the most general exact load-
deflection relation that conforms with (3.24). To answer this we again integrate
(3.4b) multiplied by 2¢'/Pg, but this time we take a definite integral over
[0, m/2], invoking the boundary conditions (3.4c) and ¢'(r/2)=0. Defining

%= ¢'(0) we can write

o az/i%a(a,s,PE) _
(Pg - %————sz‘&PE) Y1 —P)3 —szP(l —a(irez) - ° (3.27)

which is the form sought. The end-slope 4, which is anticipated to be a function
of o, &, and Pg, is an unknown function. If %% could be somehow determined this
would have provided us with an exact f(a). We shall see, however, that this can-
not be done. Nevertheless, we can reduce the number of arguments of %, as fol-

lows. Define

£? Pg
= ——F, H= —,
K (1-p)3 P
and rewrite (3.27) in the form
of K

%(a, ¢ Pg) (L+ (1—a)(1 + a/z)) =H. (3.28)

Now take (3.20), which is also an exact expression of the same load-deflection
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relation, and write it in terms of Kand H

! 1
2 1 —(at/R)/(1+t) “z dt -2 _
{;‘2‘[ L+ K(1—a)(1+a/2)(1—at)(1+at/2)] : Viizd H. (3.29)

Since the right-hand sides of (3.28) and (3.29) are identical so must be the left-
hand sides, and we see immediately that %, cannot be a function of Py or H; it

must be a function of o and K only

% =%{a, K) .

It is now clear that identifying 1 from (3.28) and (3.29) will yield a dependence
on P (through K) which is not desirable in (3.27) and which only prior knowledge
of a(P) (i.e. the load-deﬁection relation itself) can eliminate. Instead we use the
following trick. Based upon the Ritz-Galerkin form (3.24) and also the asymp-
totic results (3.21b), (3.22b), and (3.23c) we postulate a desired approzimate

load-deflection relation of the form
[Pe - g(e)P](1 — P)? — £#Pf(a) = 0. (3.30)

In other words, since those asymptotic results indicate that in their respective
limits the functions f and g in (3.30) are independent of P, Pg, or &, we are
suppressing any possible dependence on these variables throughout the a-range.
We do not even require that f and g be related in the manner implied by (3.27).
Instead, we identify (3.30) with (3.27) and this forces a certain K-wise behavior

on ¥, namely

2 (1-a)(1t+a/?)
‘;:2 - (1—(x)a(1+a/2)+K [g(a) + Ki(a)] .

Assuming that this holds approximately for 0<a<1 we can now substitute it

into (3.28) and equate (3.28) with (3.29):
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(o) + Kf(a f_ S+ K 1 —(at/2)/(1+t) ]

o —a)(1+a/2)(1—at)(1+at/2) \f_—t—

The crucial point consists of requiring now that this equation be an identity, i.e.,
be satisfied for any K. Taking first K=0 and then K- = we can identify g(a) and

f(a) as follows

() =1 (3.31a)

_ /4 (1—at)(1+at/2 -2 1
Ha) = (1—&7;(1+a/2) (J —-t)((x1+ 1 aa/z])t) dt) (3.31b)

Indeed, it is not difficult to show that {3.31b) satisfies the required asymptotic
behavior for a~0 as well as for a» 1. Therefore, in accordance with (3.30) and
(3.31a) we determine the working equilibrium path relation of the globally-

perfect ideal column to be
(Pe—P)(1-P)3 — &#Pt(a) = O (3.32)

where f(c) is given by (3.31b). Note that {3.32) differs from (3.23¢) in the first
term. However, we know already that as a»1 P is of order 1—a, therefore so

must be order of the difference.

The functions f{«) and f,(a) are shown in Figure 3-7.

3.7 Load-Deflection Relation - The Doubly-imperfect Case

In the general, globally- and locally-imperfect case, ,#0 and we cannot solve
(3.4b) exactly. Thus, as outlined in the previous section, we assume a fixed-
shape deflection, g=asinx, and empbloy the Ritz-Galerkin averaging method [34].

By eqns. (3.15) and (3.3a) we have

2eP
1-P

W, = esinx, Yo = sinx,

and carrying out the averaging procedure on (3.4b) the following load-deflection
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Figure 3-7. The functions f(a), f;() and fcp(a).
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relation is obtained:
(Pg—P)(1-P)® — 2ePgP(1-P)*(1/a) — £2Pf1(a) = 0 .

However, noting that this must reduce to (3.32) when e- 0, we replace f;(a) by

f(a) " and adopt the following equation:
(Pe—P)(1-P)3 — 2ePgP(1-P)?*(1/a) — &*Pf(a) = 0 (3.33)

where f(a) is given by (3.31b).

3.8 Behavior in the a-P Plane of the Ideal Column

In this section we will discuss those aspects of the column behavior which are

represented by its equilibrium path (3.33)-

3.8.1 The Perfect Column: Letting in (3.33) e=0, e» 0 we can solve it immedi-

ately to get two equilibrium paths

P=Pp 0< a< ag.y;
P=1, 0< a< apa-

But since ¢ is zero and f(1)- « a third possibility exists: 8
a=1; 0< a< amex

where amax=0(1) is the limit of validity of the present theory according to
(2.13j). The first of these is recognized as the a> 0 branch of the global line for
e=0, (Figure 3-4) whereas the last is the LBL, shown in Section 3.2.2 to be indeed
an equilibrium path for £é=0. These equilibrium paths are shown in Figure 3-8
for 3 Pg cases. Also shown in this figure are the first and the second bifurcation

points corresponding to the three Py cases. In the first the column bifurcates

7. It can be shown that this operation is equivalent to letting the imperfection shape W, resemble
the deflection shape w for all o< a< 1, ie., Wo{X)={e/a)w(x).

8. To show this replace f(a) in (3.33) by its asymptotic value (7\'2/ 8)/(1—a), solve for & and then
let £ =0.
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from the " trivial mode" te the global mode, and in the second, from the global
mode to the local mode. The actual behavior is supposed to follow the lowest-
possible path, which can be shown to correspond to the least total potential

energy.

3.8.2 Local Imperfection Only: Upon letting e=0, the load-deflection relation
(3.33) reduces back to the form (3.32). Numerical solutions are shown graphi-
cally in Figures 3-9 for three Py cases. ° The situation is now that discussed in
Section 3.5 and the equilibrium paths obtained are post-buckling lines. They
depart from the fundamental path a=0 in the first bifurcation point, the value

of which is the global buckling load, eqn. {3.13b).

3.8.3 Global Imperfection Only: For this case g0 and (3.33), using (3.3b),
reduces to the Fuler column relation (3.18b). The equilibrium paths are now the
global lines of Section 3.4 and Figure 3-4. A family of them is shown in Figure 3-
10. Upon their crossing of the LBL at the second bifurcation point bifurcation

from global mode to local mode is triggered.

3.84 The General Case: Typical equilibrium paths of the general, doubly-
imperfect column, are shown in Figures 3-11 for three Pg cases. Also shown in
these figures are the LBL, global lines (£=0), post-buckling lines (e=0) and the
corresponding bifurcation points. It is seen that the general paths are bounded
by both the global lines and the post-buckling lines, the later are, in turn,
bounded by the LBL. Thus, the general paths have maxima and the column

failure is by snap-buckling (also called ‘limit point instability )
The value of P at the maximum is the ultimate load-carrying capacity of the

9. The graphs in Figures 3-0 and 3-11 through 3-13 were produced using f; (rx) rather than the
more exact f (o).
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column and is denoted by Pp,. P, is found by intersecting the locus of maxima

dP=0 with the path itself. Implicitly

oz (1—P§112}(31;i—13m) [cfff(’éo)t%' . (3.34a)

8 = (Pg/Po~1)(1-P_)? / [od(c)]' . (3.34b)

On the other hand we have the nominal (perfect-column) load-carrying capacity

P,

_ P, Pgp<1l; (3.35)
P 1, Pp=1; \

so one can plot on an &-e plane, for different values of the design parameter Pg,
the amount of £ and e required to knock the column performance down to a cer-
tain fraction of the nominal load, say one half. A plot like this is given in Figure
3-12. It provides information on the column imperfection sensitivity in the
finite, as opposed to the asymptotic, sense. It is seen that the nearer Pris to 1
the less is the imperfection required to cause a prescribed performance degra-

dation.

3.9 Comparison with Crawford and Benton

Recall from Section 3.3 the use that was made by Thompson and Hunt [20] of
the tangent mecdulus in conjunction with Shanley's buckling formula to derive
the global buckling load. In their paper [33] Crawford and Benton extended the
use of this method to solve the complete problem. In doing so they had to
assume that the tangent modulus remains spanwise uniform also in the bent
state, in spite.of the then non-uniform distribution of internal forces. Another
questionable feature of their approach is the adoption of an imperfect Euler
column load-deflection relation of the type (3.16b) -- Pg serving as a variable

dependent on the tangent moduli -- as a basis for their general load-deflection
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relation. We are now in a position to ascertain the extent of the error resulting

from these assumptions.
It can be shown that egs. (1) and (22) of [33] reduce, in our notation, to the
form {3.33), but that instead of f( a ) there appears

_ 23 1/3
feo(e) = (728 ¥ (Trov2P

(3.36)

which has a significantly different behavior from ours. fcp(a) is shown, for com-
parison, in Figure 3-7 (Section 3.6). A comparison of resulting paths is given in
Figure 3-13, where the path e=0.2 corresponds to Figure 4 of [33]. It is seen that
the method of Crawford and Benton significantly underestimates the column

performance.?

10. Recall that Figure 3-13 was plotted using f l(r.‘() rather than the more exact f(O(). Judging from
Figure 3-7 this underestimation is even higher than seems from Figure 3-13.
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(a) Pg <I
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08 2 nd Bifurcation
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0] 0.2 0.4 0.6 0.8 .0

Figure 3-8. Equilibrium paths of the perfect column (e = 0, & -» 0).
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Figure 3-9a. Post-buckling behavior of the globally-perfect column. (I) Pg < 1.
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Figure 3-9b. Post-buckling behavior of the globally-perfect column. (II) Pg= 1.
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Figure 3-9¢. Post-buckling behavior of the globally-perfect column. (1) P> 1.
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Figure 3-10. Equilibrium paths of the locally-perfect column; ¢ » 0, Pg =1, vary-
ing e.
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T ha
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Figure 3-11a.Typical equilibrium paths of the doubly-imperfect ideal column for
Pg < 1.

£, =0.10; &2 = 0.25; e; = 0.025, eg = 0.25.
O First Bifurcation, @ Second Bifurcation.
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Figure 3-11b.Typical equilibrium paths of the doubly-imperfect ideal column for
PE =1.
g1 =0.10, &5 = 0.25; gy = 0.025, e = 0.25,
O First Bifurcation, @ Second Bifurcation.
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Global Lines
1.2g e=0,€=0

Normalized Load, P

8.8
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Normalized Deflection Amplitude,a

8.0
1.8

Figure 3-11c.Typical equilibrium paths of the doubly-imperfect ideal column for
P> 1.

£, =0.10, &5 = 0.25; e; = 0.025, ex = 0.25.
O First Bifurcation, @ Second Bifurcation.
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Figure 3-12. Overall imperfection-sensitivity chart. Combinations of local and
global imperfections that reduce the normalized ultimate load-
carrying capacity Pn to half the normalized nominal load Pp.
(P, =Pgfor Pg< 1and 1 forPg= 1)
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Figure 3-13. Comparison of results with Crawford and Benton [33]. Typical
post-buckling (e = 0) and equilibrium (e = 0.2) paths. £ = 0.3/V%,
PE =1.
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4. THE UNDEFLECTED AND SLIGHTLY DEFLECTED GENERAL COLUMN

We now leave the ideal column and return to the general problem. In this
chapter we focus on the behavior of the column when it is deflected -- imperfec-
tion deflections included -- only slightly or not at all. Higher deflection domains
will be dealt with in subsequent chapters. The problems we address here are the
prebuckling behavior, diagonal slackening and local buckling in the absence of
deflection, global buckling and initial post buckling and small global imperiec-
tion sensitivity. The approach to the slightly-defiected cases will be one of per-

turbations applied directly to the displacement differential equations.

Whenever use of displacement differential equations is required, region I sys-
tem will be used. Consequently, results such as the global buckling load will lack
validity if the slackening load turns out to be lower than that result. This is no
handicap because in that case slackening and not buckling is the failure mode.
Practically, one has to calculate the buckling load as if there were no slackening,
and the slackening load as if there were no buckling, and then decide as o what
actually happens by comparing the loads and choosing the lower one. Except
for local buckling we do not intend to study post-silackening phencmena in this

chapter; these are left to Chapter 7.

4.1 The Globally-Perfect Prebuckling Solution
1t is easily verified that in the absence of global imperfections
u'=u'® =const, W=y=w=0,

is a valid solution of eqns. (2.37) satisfying the boundary conditions {2.44). For
obvious reasons this solution will be referred to as the prebuckling solution. The
value of u'® can be obtained from (2.37b,e.f). For this purpose, as well as for

others, it is convenient to define the mean longeron force, p. as follows
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P = (P11 +2p22) /3. . (£.1)
When calculated from (2.37¢,f) p is found to be
P=P+pe+4«Pr(u' —u,'). (4.2)

It is interesting that p is independent of any displacement but uw’. Thus it can
serve, and wherever convenient will serve, as a u’ replacement-unknown. In the
prebuckled configuration p;, =psz=p(prebuckling) = ® and with the help of

(4.2) we can summarize the prebuckling solution as follows:

3(®) =5() = ylo) =, (4.3a)
- 1 1

(1 +2i) (P© —po) —P + 1 £2 POy 1 " =0, (4.3b)

W =——(P-p® +p). (£.3c)

4k Pp

Equation {4.3b) has to be solved (usually numerically) for 5° and then u‘® can
be determined from (4.3¢). Whenever deflection vanishes p=p ). In such cases
we will omit, for notational convenience, the order index (o) from §(°) trusting

that no confusion will arise.

The p—P plane turns out to be a highly useful instrument for the descriptien
of occurrences in the undeflected column. The prebuckling solution can be
represented as a line in this plane, corresponding to eqn. (4.3b). This line is
shown in Figure 4-1 and is referred to as the 'equilibrium line'. In Figure 4-1 we

note the following features:

1. The equilibrium relation, eqn.(4.3b), is represented by the indicated partially
heavy, partially dashed-heavy line. This line originates at (p,, 0) and goes to
infinity as p~ 1. As £+ 0 it approaches dashed-line segments "1’ and 2'. These

segments intersect at the 'P* point’, (1,P*), where
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Eqn.(4.3b) post siackening \\;0 :.@

Equilibrium post slackening wl
\ :
P.=|

Diagonal slackening

Eqn.{4.3b)
(Equilibrium)

7 ){ Local
bucktin
p* A0 ¥ :

Figure 4-1. The undeflected column in the p—P plane (qualitative).

P*= (1+2k) (1 —po).

2. The locus P = p -- where the external load and the internal longeron force
become equal -- clearly corresponds to the vanishing of the diagonal forces,
i.e., to diagonal slackening. It is referred to in Figure 4-1 as the ‘slackening

line'. Any point in the p—P plane located above this line implies the diago-

-_

— -
P

nals are in compression, and therefore is a physically invalid point.

3. The line representing eqn. (4.3b) crosses the slackening line at the ‘diagonal
slackening point’, the value of P at which is Ps. Clearly, diagonal slackening
constitutes, under the present circumstances, a mode of failure of the

column. P;is analyzed in detail in Section 4.2, yet an immediate result evi-

dent from Figure 4-1 is that Pg< 1.
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4, Eqn. {4.3b), derived for taut diagonals, breaks down upon slackening of these
diagonals. Clearly, the post-slackening relation between p and P is simply
P=p. Thus the dashed-heavy portion of the corresponding line in Figure 4-1
no longer represents equilibrium and must be replaced by the heavy seg-

ment lying on the slackening line.

5. Local buckling must lie on the intersection of equilibrium and p=1. One
sees immediately, on the basis of the foregoing discussion, that regardless of
£ the value of P at local buckling (denoted formerly by P.) is 1, same as in
the ideal column. From (3) and (5) it follows immediately that slackening

precedes local buckling:
Pg=< P.la=0)=1. (4.4b)

8. For £¢=0 the intersection representing slackening is between the slackening
line and either of dashed-line segments '1' or '2', depending on whether

P*> 1 or not. Thus, for the perfect column

1—-pP*
).

Py =min(l, 1+ S

(4.4¢)

7.If £=0 the intersection between segment '2' and p=1, representing local
buckling, becomes indeterminate. It follows from (5), however, that by tak-

ing £ to zero through a limit process we must find
P.=1 (4.4d)

for the perfect column as well. Indeed, a point on segment '2' between P*
and P =1 represents a stable equilibrium because any increase in P can be

absorbed by unloading the diagonals; no increase in p beyond 1 is required.

The post-slackening situation described in Figure 4-1, namely P =P, is strictly
correct only inasmuch as the column, now lacking any shear resistance, is

somehow prevented from undergoing shear or out-of-plane deformations. As
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shown later (Chapter 7) the actual post-slackening deformation includes twist. It
turns out, however, that to o(h) accuracy the relation P =7 still holds. There-
fore, Figure 4-1 and all the results derived from it describe the actual post-

slackening situation accurately-enough.

4.2 Slackening of the Undeflected Column

In the last section we already derived some qualitative (eqn. (4.4b)) and
perfect-column (eqn. 4.4c) slackening results. We now turn to the complete title
problem. The slackening point is obtained, according to Figure 4-1, from inter-

secting eqn. (4.3b) with the slackening condition P=p:

£2/2

TP~ (1-Pg) = Cq (4.5)

where C;, the slackening parameter is given by

3
Co=C° + (—1%%2? (4.8a)
[+
el = (1+2x)§i——1= 1;:* (2.6b)

and P* is given by {4.4a).

By multiplying (4.5) through by (1 —Pg)® and then letting £=0 the solution
(4.4c) is obtained. If £> 0 yet very small it is still possible to obtain an easy
closed-form solution of (4.5), using a perturbation procedure around (4.4c). In

this way we get

Po~ 1=\ sre, 0< (1-P*) /26= O(1); (4.7a)

Pg~ 1 —2718 %48, - |1 —P*| /Rk=0/(¢); (4.7b)

P*—'l _( 2IC )E.Si

Pe~ 1- 2k P*-1' 2"

0< (P*—1)/2k=0(1) | (4.7¢)
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Figure 4-2. The slackening load as function of £ and Cs.
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- These are the slackening imperfection-sensitivity power-laws. They are seen to
be less severe than those of the ideal-column global buckling, eqns (3.14). Note
the increased sensitivity as P*-» 1. This is of special interest since P*=1 will
turn out (Section 4.4) to be an optimal choice. Here too, optimization is accom-

panied by increased imperfection sensitivity.

Nurnerical results of P for a range of £ and Cs =(1 —P*) /2k are shown graphi-
cally in Figure 4-2. In this graph p, is held constant =0.04 and only ¢ and «
change, the latter from o to «. The general similarity to Figure 3-3a is striking

indeed.

4.3 Perturbation Equations for the Globally-Perfect Case

We now use a perturbation scheme to find a solution different from (4.3), yet
in its immediate vicinity, which satisfies equations (2.37) and boundary condi-
tions (2.44). The condition for its existence will provide us with the first bifurca-
tion point. We are interested also in the initial post-buckling behavior and this
dictates that second order terms be retained in the perturbation series. Since
the solution (4.3) is characterized by a zero transverse deflection we will choose
a, the deflection amplitude, as the measure of deviation of the perturbed solu-
tion frém the prebuckling one. We thus write the sought solution as perturba-

tion series, asymptoticasa -» 0
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u' ~ uw(a) + u'(a) + w@(a), )
§ ~ 80)a) + 3(a) +3®@(a),

¥~ y©a) +yW(a) +y@)(a), (4.Ba-e)

w~ w(a) + wila) + w®(a),

p~ pa) +M(a) +3®(a), |
where the bracketed superscripts indicate the order of a term in the sense (e.g)
wi?) (qa) = @ wi) (a) .
The zeroth order terms in (4.8 a-€) are those given by equations (4.3). We now

proceed to derive the higher order equations. First we note

pu~ B +piP +pff.
(4.8f,g)
pee~ D@ +pid +pip.
Substituting equations (4.8) into (2.37a-d), expanding the non-linear terms in

the latter in Taylor series around their zeroth-order values and retaining terms

up to second order we obtain

t 3 1 ] Sz 3
Pe(1+ )8 +8@) + Pw +w®) + —ELE (ol -pff) + (b ~pi)]

g af—gé))T<p§i>2 —pip?) =0, (4.9a)

2Pg(1+26) (0 +u®) + (ng—p(%))—s[(pw +2pib) + (pP+2p8)]
+ e vepY = o, (4.90)
46Pg (Y + 9B — P (wD+w®) =0, (4.9¢)

(91 + 5@ + %)\(7(1) +y@) — (W) +w®@) = 0, (4.9d)
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In deriving equations (4.9) we have used the fact that the zeroth. order terms

satisfy equations (4.3) in order to eliminate them from the system.

Upon departing from the prebuckling solution at the first bifurcation point
P=Py, P is expected to vary. At the same time §(°), dependent on P through
(4.3b), will vary too. We thus express them both! by perturbation series around

their bifurcation-point values.

P ~ P, + PO,
(4.10a,b)
P~ B + 5.
By perturbing (4.3b) we obtain
1 1
1 +2k) (Pp — Do) — Pp + £ €° - =0, 4.11
(1+2€)(Pb—Po) ~Pr+Ke opf ~ (L=pof (4.11a)
(1
poY = P - (4.11b)
1 +21€(1 + —_3)
(1 —Pw)

The first is an implicit expression for the longeron force at buckling whereas the

second allows us to write (retaining only needed orders)

1 1 3p1)

= ~ ———+ — —, (4.12a)
(1-p©N®  (1-Pp)®  (1+26) (L —Pp)* +2x£%(1 —Dv)

L L (4.12b)

(1-p©@)* (1-p*
We need also expressions for pmm(j). These we obtain from (2.37¢,f) after sub-

stituting in them from (4.8a) and (4.10) and forming expressions of homogene-

ous order

1. The necessity of perturbing 13(0) along with P can be understood if one imagines replacing it in
equations (4.9a,b) by a P-dependent expression obtainable, in principle, from (4.3b).
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pfl) = 2P, W) + 4xPgu'®) + kP,

péé) = —Pb W(l) - 4ICPEU'(1) - ;—PE’G'(I).

(4.13a-d)
p® = 2PWw(l) + 2P, w® + 4cPru'® + kPge®),

pég) = —-P(l)w(l) —_ wa(Z) + 4ICPEu'(2) - %PEQ;'(E) .

7’

Substituting equations (4.12) and (4.13) into (4.9) and requiring that the latter
be satisfied regardless of a we obtain two systems of linear differential equa-
tions, one for each perturbation order, the unknowns of which are the perturba-

tion displacements:
FIRST-ORDER EQUATIONS:

£

(1) =
A w 0

PE[]. + —( )]19'(1) + Pb(l + (1_—§_b)_s

ui =0,

4ICPE’7(1) _ }\wa,(l) -0 (4:.148.—(1)

8+ g—M“’ —wi =0

SECOND-ORDER EQUATIONS:?

2 2
o) PPl s

A (—1—%;)“'(1) p(1) + (4.15a)
— |

()
-l £ (Pyw) + ZPg'®) + ——(wa(1)+ £ Py )2,

- (1-pw) 1 +2:c(1+(—1-_§;§)

2. Here UM is omitted according to (4.14b).
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RPp[1+2«(1 + )5 ——)]u (R) = (——W{wa(l) + —PE’@'(I) )2, ‘ (4.15b)
41 Py y® — ) Pyw'® = \Py(1), (4.15¢)
8@ & g_;q(z) —w® =g, (4.15d)

As usual in perturbation methods one first solves (4.14) for the first-order per-
turbations and then uses the results in (4.15) to solve for the second-order
ones. The boundary conditions (2.44) should be satisfied by all orders. Note the
frequent occurrence of the combination 1+& /(1-pp)® which, by (2.15b), is

nothing but (E/E,) evaluated at the bifurcation point.

4 4 First Bifurcation, Global Buckling

The behavior at the first bifurcation point is obtained from solving the first
order equations (4.14) subject to the boundary conditions (2.44). The system

(4.14) can easily be decoupled, resulting in

Pe 1+ ’2‘—(1 T )3)](1 gt )w"(l) + Py(1+ (——T)W(”"O, (4.16a)
Py '
BN = (1 -y 2w D), (4.16b)
Pg
m=XA P . Po wiv)
yp-n > (;\) Be —w (4.18c)

where v is the shear compliance parameter defined by (2.41c).

Only if the coefficients of (4.18a) are equal is a half-wave non-trivial solution

possible. This condition gives us the global buckling load Py:

2 &
L Peleate ] Rla o]
b= N2 £\ _ & ‘ 10
Pl agy e
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Eqn. (4.17) satisfied, the fundamental initial global buckling mode is seen

immediately to be

uM=p, (4.1Ba)
wt) =asinx, (4.18b)
Py
¥V=a(1-v=")cosx, (4.18c)
Pg
'y(”"aL(&’—) cos X (LE g-1). (4.18d)
41 * Pg "4 2 A

Before we proceed any further the following should be noted:

1. By (4.18a) no change occurs upon buckling in the axial compression u'.

2. The deflection constituent of the global mode, eqn. (4.18b), is seen to be

identical with that of the ideal column, eqn. (3.13a).

3. In contrast to the ideal case the present gi:bal mode is seen to contain some
shear deformation, eqn. (4.18d). Its magnitude rciative to ¥ and w' is
(2/3)Ay=(vP,/Pp)w', an o(h) quantity.® Taking v=0 removes this shear
deformation. Recall the role of v, discussed in Section 3.1, as a shear compli-

ance parameter.

4. Eqn. (4.17) is the counterpart of the ideal case eqn. (3.13b). It reduces to the

latter upon setting v=0, =0, Ppp =F5.

5. At global buckling the quantity 1+&% /(1—Pp)° is of o(1). This can be seen by

isolating it from (4.17):

3. Recall that ¥ was normalized so as to be of 0(1). Hence, for purposes of comparison with ¥and
w', the quantity (2 /3)A\ 7y, rather than 7y itself, should be used. See, .g., eqn. (2.37d).
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£ Pg—vPy

1+ = .
(1-pp)® Pp—(x/R)Pg

(4.19)

It follows that (82 /2) /(1 —Pp)? must also be of o{1), thus satisfying (2.16).

For obtaining Py, values eqn. (4.17) must be solved in conjunction with (4.11a).
E.g., the right hand sides of (4.17) and (4.11a) are compared to obtain an equa-
tion for Py, the root is then substituted into either. Because of the algebraic

complexity involved in this a numerical approach is, in general, a necessity.

The p—P plane is highly useful also for the description of global buckling. Eqn.
(4.17) -- subscript b omitted -- is represented by a line in this plane along which
the bifurcation condition is met. We will call it the bifurcation line. Its intersec-
tion with the equilibrium line (4.3b) satisfies (4.17) as well as (4.11a) and thus
represents global buckling. Figure 4-3 contains the features that appeared

already in Figure 4-1 plus those added for global buckling representation.

From examining eqn. (4.17), the correspondihg bifurcation line and its

interaction with the equilibrium line we learn the fellowing:

1. The bifurcation condition is represented by the indicated heavy line.
Regardless of £ this line has a minimum at (1, («/R)Pg). As £-0 it
approaches the dashed-line segments numbered '3’ and '4'. Dashed-line '3’

intercepts the P axis at P =Pg, where

. 1+x/R _ 1+K:/2P

T l+v+A/12 BT T 1+v (4.20a)
2. For £¢=0 and Pg < P* the intersection representing global buckling is between
dashed-line segments '1’ and '3'. Clearly then P, =Pg. On the other hand, if

) P§> P* we have an intersection between segments '3’ and '2', (an overlap

between '2' and '4’) and another intersection between '4’ and '1'. A closer

look (see Section 4.4.1) reveals the correct intersection is the latter, ie.
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P ‘ Eqn.{4.3b) post slackening | L®
: . 1
Equilbrium post slackening—f ol /
u |
Po=lb Local
/ buckling
P‘ - - 4 * .
Diagonal slackening Ppoint
P =
S Global buckling
P.’—__'———'—— ——
; :
o~@
w
«°
K
‘g. ’

Eqn.(4.3b)
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|3
m'U
)

P, Pp | I
Figure 4-3. Global buckling added to the p—P plane (qualitative).

P,=P* This can also be inferred from the corresponding ideal column

results. The actual buckling load must be taken as the lowest:
P, = min(Pg, P*). (4.20b)

Eqn. (4.20b) unfolds a situation which is perfectly analogous to that of the ideal
case (see Section 3.8.1) provided Pg and P* are regarded as replacements for Pg
and P=1 respectively. Py is seen to be the global (Euler) buckling load of the
perfect (non—ideal) column. The analogy of P* to '1' is somewhat more compli-
cated: in the ideal case P=1is Pc(perfect). a degeneracy which is resolved in the

non-ideal case. It is only in its capacity as a potential Py that '1’ is replaced by
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P* We have seen {eqn. (4.4b)) that P, is unchanged in going from the ideal case

to the general one.

From eqns (4.20a) and (4.4a) it is seen that Pg and P* differ from their ideal
values by two o (h) influences of opposing nature each. Both are increased due to
the increase in column cross section stiffeness brought about by the diagonals.
Pg is decreased by the shear compliance, represented by v, whereas P* is

decreased because of p,.

Another conclusion we can draw from (4.20b) and (4.4c) is that as long as P*

is chosen less than 1 the perfect column buckles globally before it slackens.

If slackening is considered, from an engineering standpoint, as a mode of
failure (we shall see in Chapter 7 that post slackening loads are higher than Pg)
we can summarize the maximum strength of the perfect, non-ideal column as

follows (see {4.4c) and (4.20b)):

P_ =min(P§, P*, 1+

1—;3*—, 1. (4.20¢)

It is important to realize that the choice of P*, as well as that of Pg, may directly
translate to column strength. From (4.20c¢) it is seen that -- imperfection-
sensitivity considerations aside -- the optimal value of P* is 1. Recall (eqgns. (4.7))

that this optimization produces a maximal slackening imperfection-sensitivity.

4.4.1 (Hobal Buckling Load -- Local Inperfection Sensitivity: So far we have dis-
cussed only cases of £¢=0. For £# 0 equating (4.17) and (4.11a) results in a 6th-
order polynomial equation for (1 —Pp), requiring a numerical treatment. This is
done in Section 4.4.2. If, however, ¢ is vanishingly small, a perturbation solution
of this polynomial equation is possible. The root (1 —py) can then be substituted
in either (4.17) or (4.11a) to give the following asymptotic local-imperfection-

sensitivity power laws:
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L ] » P *
Py~ Pg—[ 1—31,.‘—’:%3’1.—]3PE—(;c/z) 1fu &, 0< (P*-Pp)=0(1); (4.21a)
P*—(k/2)Pp L L .
Py ~ P*—L 0 +BE:):(1)+S) 14 (1 +26) £?, |P*—Pg|=0(g); (4.21b)
* L b o 17} g
Py Pr—[ 2P 15 o WIHNPEPY) 5 pe-pe)=o(1). (4.210)

(Pg—P*)(1+v) P*—(ic/2)Pg

These are the non-ideal counterparts of eqns. (3.14) and reduce to the latter
upon letting v=k=0, P*=1, Pg=Pg. The powers of £ are seen to be the same as in
the ideal case. The answer to the question whether the imperfection sensitivity
in the general case is stronger or weaker is not clear-cut; it depends on the rela-

tive magnitudes of v, k, and p,,.

4.4.2 Global Buckling Load -- Numerical Results: Since it fturns out that the glo-
bal buckling load results do not differ radically from those of the ideal case the
quantity of interest here is the relative change, [Py(ideal) —P,] /Pp(ideal). Some
numerical solutions expressed in this quantity of the system (4.17), (4;1 1a) are
presented graphically in Figure 4-4.* The central design point (around which
parameter variations are taken) in this figure is a 40-bay column (A=m/40) with

Pg=1, £=0.125, v=0.05, £=0.02 and p,=0.04 (P* =1). The following are to be noted:

1. For reasonable values of £ and v the deviation from the ideal case is of the
order of a few percent. Hence the general behavior of the global buckling
load with respect to changes in Py and ¢ is still qualitatively that depicted in

Figures 3-3.

2. At moderate £ values (¢ £0.1) and for low values of P the shear effect is
seen to be dominant in the deviation from the ideal case. As the number of

bays decreases (it takes 20 bays to make v =0.2 while keeping « the same)

4. [t is in principle possible to obtain closed-form expression for this quantity treating «, v, and p,
as 0 (h) perturbations around the ideal column. The expression thus obtained is, however, too
complicated to be useful.



v-ng]n.

0.08

. 0.06

v=0 A
v =0.05 ?
Pe=0.7 S
Pe=1.0 ',/ @
,/'/‘/ @'

P =12

0.04

e —
O - - - - - - -
S 0 0. 04 e 06 0.8 1.0
°  0.10
e €=0.125
Q
~
— 0.08
Q
A
g 0.06 //
V.Q
% P=10
0.04 — E
o 0.04 0.08 0.12 0.16 0.20

14

Figure 4-4. Effect of finite shear rigidity and coupling web on the global buckling
load (£=0.02, p,=0.04.)
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the deviation due to shear becomes by far the more important, -- about 10%

fOI‘ Pg=0.7.

3. The coupling-web effect is the deviation from the ideal case when the shear
effect is inhibited, i.e., for ¥=0. For moderate ¢'s it is in the vicinity of and
not larger than 1%, It is striking that this effect can be negative. The reason
is that for Pg < P* and small & the only influence comes from the change in

Pg and if =0 this change is always an increase.

4. By reducing xandp, in such a way that P* remains constant it is possible to
reduce further the coupling-web effect. This, however, will be accompanied
by an increase in v=A?/8x and thereby, as expected, by a more shear-

affected buckling lead.

It should be noted that by taking here P* =1 an important source of devia-
tion has been eliminated, thereby making the above picture too optimistic. For

the P* effect see the paragraph following eqn. (4.20c).

4.5 Initial Post-Buckling

The initial pest-buckling behavior is obtained from solution of the second-
order perturbation equations (4.15) subject to boundary conditions (2.44). The
1st order perturbations appearing in (4.15) are taken from the solution (4.18)
and use is made of the fact that at P=Py the two coefficients of (4.18a) are
equal. Again the system can easily be decoupled and neglecting M /12 compared

to 1 we obtain for bending
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(14 TPy )=
2 -
—aPW[yh (1 ey p — ST Eptgings
(=D | fp(1e —5 &
(1-pb)°
~a?[ BRI (b _ £ pyeiginex. (422)
(1 —Pw)* 2

Together with the boundary conditions this constitutes an eigenvalue problem

for P{, the solution of which is

4 &
p=_—a " (1-Pp)* (Po- %PE)a 5 (4.232)
v+ (1_8;)3 )+ H;::l/il‘f’:): : (Py — £Pp)
(1-Pw)®
_ & p _Epye
w® = —a% (1-pv)* (Pbaz 2 * [ f_—xcosx+ —;—{1 —ecosx)?]. (4.23b)
P

These are the counterparts of the ideal column eqns. (3.21) and, with some

work, can be shown to agree with the latter upon setting P,=py,. ©£=v=0.

The shapes of the first two terms in the asymptotic expansion of w(x) as a-0,
namely, w{l)/max(w1) and w®/max(w®) are depicted in Figure 4-5. Since w(l)
and w® differ in sign it is seen that w{V+wf?) is a more 'pointed’ function than

w(!) alone, in agreement with the general picture of Figure 3-8.
4.6 Global-Imperfection Sensitivity Near First Bifurcation

Having obtained the second order perturbation equation (4.22) it is now an
easy matter to find how the behavior near the first bifurcation point is affected

by introducing a slight amount of global imperfection resembling in all except

5. The limit £ » O of this result is not valid. See remark (1) in Section 6.1.4.
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Second term

Figure 4-5. Shape of the first two terms in the expansion of w(x).

the amplitude the initial global buckling mode (4.18):

u,'=0, (4.24a)
We=esinx, (4.24b)
P
Yo=e(l—v 2 cosx, (4.24c)
Pg
e A Bp
Yo=e€ ( Py Yeosx . (4.244)

The imperfection parameter e is taken to be small -- small as necessary to make
the derivation valid. (See, e.g., Budiansky [35].) It turns out that we must take e

to be comparable to |ja|[?, where ||a]| is some norm of the a-range-of-interest, |a|

= a(P=maximum), say.

Upon introducing the above imperfection, terms Pg(l+«/2)9,' and 4kPg7y,
will appear on the right hand sides of (4.9a) and (4.9¢c) respectively. Also, terms
—k P, and —«Ppd,' /2 will have to be added to the internal forces p;; and pg,

respectively. [See equations (2.37)]. Now because the new terms are by
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assumption of o{/|al[?), the operation of grouping terms into expressions of
homogeneous order will place them in the second-order expressions, with the
result that the first-order equations (4.14) will remain unchanged. The second-
order equations, on the other hand, will be modified and the right hand side of

{4.22) will include an additional imperfection term

£* 2 K £? .
Pe[ 1+ 214+ —E—0) (%' +SNy,) = —ePg[ 1 + =(1 + ———) ]sinx.
2 (1 -Pw)’° 3m7e 2 (1-pw)°
Instead of (4.23a) the eigenvalue problem will now result in
4 g2 K e K 2
at & _(p-EpR+ EPg[1+ (14 ———
" - (l‘f’b)4( b= 5 PE)*+ —Pr[1+ 5 (l—f’b)s)]
ptt=-~ 5 — (4.25)
g* 3&% /(1 — D) K
v+{1+ o 3)+ 2 (Pb——Z—PE)
( _Pb) 1+ 2!6( 1+ —_—_—é_)
(1-Pv)

This is the imperfect, asymptotic as e~»0 and a=o(Ve), load-deflection rela-
tion, Evidently it is of homogeneous order and it has a maximum. Using substi-
tutions from (4.19) and (4.20a) the location of this maximum can be written in

the form

() /e Po(Pi - =Pe) (1 =v) /(PE—Py) (4.28)
max) = . 4.
e 2(Py— 2Pg)

From this it is seen that if either (1 —Pp) =a(e) or (Pg~Pp) =o(e) the location of
the maximum is outside the region of validity. In the first case it is too small
and e/a belongs in the first-order system; in the second case it is too large and a
higher order post-buckling expansion is required. Both cases occur when ¢ is
small and are distinguished by whether Pg=> P* (first) or Pz < P* (second). Since
proper e'xpans'ions for these cases are not attempted here the validity of the

results is accordingly restricted.
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The value of the total load at the maximum is the strength Pp, of the imper-

fect column. Again using substitutions from (4.19) and (4.20a) we obtain

/e Py(Pi— £-Pg) (PE~Py) /(1 ~y)

P,=P, - 4 . (4.27)
TV PPy ——+ ]
Pb“g—PE (1-Pp)[1+Re(1+ a_—_pb')?)]

It is important to note that this result by no means corresponds to eqns. (3.18)
of the ideal column.? Besides ¢ being zero there, the bifurcation point itself is a

different one.

4.7 Finite-Difference Derivation of the Buckling Load

In Section 2.8 it was mentioned that the magnitude of the de-discretization
error is expected to be of o{A\?). Here we show that this is true for the linearized
first order column equations (4.14). The approach is to solve the boundary-
eigen-value problem using exact finite difference calculus and to compare the

results with those of Section 4.4.

For notational simplicity we omit the order superscripts and define constants

A,B,C such that eqns. (4.14a) and (4.16b) take the form
A%,'+Bw;=0; (4.-28&)
$;i—-Cwi=0; i=12,  'N; (4.28b)

where the subscript i indicates that the corresponding variables are to be
treated as sequences of i -- the bay number -- rather than functions of x, and N
is the number of bays in the column. We also restore the finite-difference

definitions of variable values and derivatives from normalized versions of (2.1)

and (2.2)

8. An ideal counterpart of (4.27) wes not presented. It is easy to obtain that by subjecting (3.33)
with & = O to a perturbation treatment. The result then agrees with (4.24) for Pp =Py, PE=PE
and £ =0, and the restriction on & stands out clearly.
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1 1
19i=2—(13}’+13i";1), »ai=r(1s}’—ﬂib_l), . (4.29a,b)

. 1 .
W= E(Wib"'wib—l)- w = —(wP-wk,). (4.29¢.d)

>*|H

By algebraic manipulation of (4.28) and (4.29) which involves also shifting of the

subscript i it is possible to obtain a decoupled finite-difference equation for wp
(L+Kwh, 201 -K)wP+(1 +K)wP,=0; i=1.2 - - N-1; 4.30)
where K= A*B/4AC. Statement of the problem is completed by specifying the
boundary conditions (2.40a,b)
wb=0, w§=0, (4.31a,b)
Guided by the differential solution we try and find that

wP =asinAi (4.32)

satisfies (4.31) (see (2.26)). It satisfies (4.30) too provided that

B - 1 —cosA
AC  1l+4cosh’

=2
I'()\4

This is the characteristic equation. Substituting for AB, and C their implied

value from (4.14a) and (4.18b) we obtain the exact finite-difference buckling

load
2
ST Wittt
V+(l + -i—z—)(l + ?{—LI—);)?)

Comparing this with {4.17) and noting that the coefficient in front is ~ 1 +A*/6
we see that the de-discretization error is indeed of second order. From (4.32)
and (4.18b) we see also that no de-discretization deflection error exists at the

batten points. At bay nodes, however, comparison has to be made between w;,

(eqn. 4.29¢) and the deflection obtained from (4.18b), asinA(i - —é—)
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sinA(i - —é—) —w;/a=[sin ;‘—— %—sin)\] cosAi—[cos ;‘—- %—(1 +cosA)]sinAi.

This is again an o (A\*) quantity.

4.8 The Prevalent Failure Mode

Another point of interest connected with the behavior of the undeflected
column is the answer to the question which is the prevalent (i.e., occurring at a
lower P) failure mode -- global buckling or slackening -- and what are the condi-
tions that determine the answer. From (4.4b) we know already that local buck-

ling is out of the race.

A comparison of {4.4c) and (4.20b) shows that for £=0 a sufficient condition

that Pg> Py is
(C2>0) U (Pg < 1+C2) = P, > Py (4.34)

where C¢ is defined in (4.8b). We now proceed to find how does £> 0 influence

this condition and whether or not it is also a necessary one.

For our purposes here it suffices to use a crude approximation of (4.17) for
the buckling load. This will be an o{h®) 7 approximation in which, for the sake

of later comparison with (4.34), Pg is written instead of Pg:

P.
pp=— B (4.35)

&
14— —
(1-Pw)°

Considering the particularly simple position of Pg in (4.35) and the fact that it
does not appear at all in (4.5) it is advantageous to pose the question of buck-
ling vs. slackening as follows: Given £ and C¢, what is the value of Pg that brings
about simultaneous buckling and slackening? Noting that this simultaneity

implies Py =Py =P, the answer is obtained directly from (4.35)

7. That (4.35) is an 0 (h®) approximation for any Pp < 1 can be verified by using (4.19).
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2

Pps = Pg(which makes Pp=pp=Pg) = Py[ 1 + (1 —EPs)s I

(4.36)

where P, is the solution of (4.5). Since Py, invariably increases with Py it is clear

that
(PE’> Pgs) <> (Pb> Ps)' (4.37)

Numerical Pgg results generated from (4.36) and (4.5) are shown graphically in
Figure 4—8 2 for three slightly different C¢ values around zero. Each line consti-
tutes a boundary between an (¢,Pg) region where buckling prevails and another,

in which slackening prevails.

It is seen from Figure 4-6 that if C? is chosen = 0 (i.e. P*< 1) and Pg is not
much larger than 1 than, except for impractically high £'s, failure would occur
by buckling. Slackening failure for reasonable Pg and & can only occur if CQ is

chosen < 0.

Note the distinguished behavior as £+ 0 of the case Cg =0,% a behavior which
is not approached as C - 0 from either side! Whereas the two solid lines are
included in (4.34) the C2=0 line is not. To make (4.34) a necessary and sufficient

condition we have to modify it as follows
(Ce> 0) U (Pp< 1+C8) U [(CE=0)n (Pg< ~ 3) | <> P> Py (4.38)

where ~ 3 means that 3 is an 0{h®) approximation of the correct value.

B. In construction of Figure 4-8 the quantity (82 /72) /(1 —p°)2 was approximated by 2 /2, in
accordance with the 0 (h°) accuracy required here.

8. This behavior can also be seen from the fact that as P*=1 and PE=Pg~ 3 the P}, and P,
asymptotic series (3.14¢) and (4.7b) become identical in their first two terms.
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Figure 4-6. Buckling vs. slackening regions, o (h®) approximation.
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5. ANALYSIS OF DIAGONAL SLACKENING

Diagonal slackening in the undeflected column was treated already in Section
4.2. In this chapter we follow slackening phenomena into the a-P plane. The
conditions which determine diagonal slackening and region transitions are given
by equations (2.37g,h) and (2.38g,h). The displacement unknowns appearing in
these equations are related to one another and to the load P through equili-
brium. To find a definite a or a definite P for which a certain slackening
phenomenon occurs one must usually possess a complete a-P-dependent solu-
tion, and its associated equlibrium path, which are algebraically docile. Since
this is practically never the case we undertake a more modest task: to construct
lines in the a-P plane - slackening loci - as universal as possible, which, when
crossed by the appropriate equilibrium paths, signify the occurrence of their
specific slackening phenomena. This direction will be pursued even though it is
clear that the a-P plane is not always the most natural one for that purpose.
Attention will be focused on the following problems: (1) Midspan bay slackening,
(2) slackening at an end bay, (3) onset of slackening in post-buckling and (4)

slackening of the back diagonals.

5.1 Midspan Bay Slackening

In this section we are looking for a locus in the a-P plane along which the
diagonals of the bay located at the midspan (or the bays next to the midspan
batten) becomes slack. Since we expect the parity of the number of bays to be
of little consequence we choose for simplicity the case in which the midspan

coincides with a bay node. At this bay we clearly have
w=a, W=¥%=zy=9=%=0. (5.1)

It is the fact that a appears here explicitly which makes the a-P plane particu-
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larly suitable for the description of this locus. The slackening condition is now

obtained from either (2.37g,h) or (2.38g,h)

1 - - _ Po
4 4:ICPE.

(5.2)

The task is now to express u' and ¥ in (5.2) in terms of a and P using equili-
brium, i.e., eqns (2.37a,b). This, however, is not easy to do exactly because these
equations are coupled in a non-linear way through p;; and pge. Fortunately,
(5.2) itself removes the p;,-coupling {see eqn. (2.37¢)) and an o(h) approxima-

tion can be used to linearize the pgy-coupling. We obtain from (2.37e.f) using

(5.8)
L — 1
(1-p1)?  (1—-P-2aP)® "’ (5.3)
1 ~ 1 8¢ Ppd' (5.4

(1—pze)® (1—P+aP)® (1-P+aP)®

The approximation (5.4) is valid only inasmuch as 3kxPgd'/(1-P+aP)<< 1. By
(5.2) ¥'is of o(1) so this condition is satisfied for all large-enough a and for all
P under the LBL. If, on the other hand, a is small and P is close to 1 the condi-
tion is still satisfied on account of ¥'->0 as a-0. This can be tested later by
verifying that the derived locus includes the case of slackening without

deflection, eqn. (4.5).

Using eqns. (5.1), (56.3), and (5.4) in (2.37a,b) we can isolate W and ¥' and then

substitute in (5.2). In this way we obtain the midspan slackening locus

£? 1 2
gl (1P -2aPy *@prapp | TR (5.50)
g2
. }_( . i 1 B 1 ])1+2’C[1+_—(1_P+'ap)s] —c
2 8 " (1-P-2aP)? (1-P+aP)? i £ y
L+l Tprapy)
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which indeed specializes to (4.5) upon setting a=0. C, is the slackening parame-

ter defined by eqns. (4.6). The o (h°) approximation of {5.5a) is

8_2_[ 1/2 + 1/2
2 " (1-P-2aP)® (1-P+aP)?

1-(1-P)+ %—aP =C, (5.5b)
provided that £2/(1-P+aP)3=0(1). From (5.5b) we can make the following
observations:

1. Except through Cg; the midspan slackening locus hardly depends on any of

the parameters'A, p,, and «.

2. If Cg=—1+&2/2 (which implies p,=0), the midspan slackening locus drops to
P=0.

3. At the ideal LBL 1-P-RaP=0 and if £#0 then C; must be infinite. Hence for

every £# 0 and finite Cg the midspan slackening locus is below the ideal LBL.

4.1 £=0 eqn. (55b) becomes (1—P—2aP)2(1—P—%-aP+C:)=O. The

midspan slackening locus is the lowest root of this, namely

co < --Z— P=(1+C)/(1+2). 0sace; (5.62)
P=(1+C)/(1+2), 0=ac —c:/(g—+2c:);

—-2—< Cs < 0: . .3 . (5.8b)
P=1/(1+2a), a= —Cs/(é-+2cs):

Co=0: P=1/(1+2a), 0< a< o=. {5.6c)

A non-zero value of ¢ lowers the locus further below the line (5.6). Note that
since C:ED is a preferable desigh choice the locus will be dominated, in

most practical cases, by the LBL.
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5. Along the midspan slackening locus P is a monotonously decreasing function
of a. The highest point'in [0, ] is at a=0 where P=P;. The initial midspan
slackening locus is independent of any parameter except through P, and is

given by
a
P~ Ps(l—'z—)- a->0. (5.7)

Equation (5.5b) and its graphical representation take a particularly agreeable
form if we introduce the combined load-deflection variable a defined by (3.3b)

and used extensively in the ideal column theory; for then (5.5b) becomes

£2/2 [ /2 1/2
(1-P® - (1-a)® (1+a/R)?

1-(1-P)(1-) =¢C, (5.8)
and the a—P region under consideration maps into the square 0<as1,0=P=<1.
Figures 5-1 depict qualitatively midspan slackening loci in the a-P as well as the

o—P plane. Cs was chosen there in the impractical range {5.6b) so that an

interaction between the two roots may ensue.
5.2 Slackening at an End Bay

Another significant slackening locus is that which, when crossed by the equili-
brium line pertaining to the same set of parameters, indicates the occcurrence of
slackening (or the arrival of a slackening front) at the bay closest to the column
support. The transition is from region I to either region II or III depending on
the sign of w' at the particular end under consideration (see eqn. (2.38g)).
Because of the antisymmetry it suffices to look inte only one case, w'> 0 say.

The locus will therefore be based upon the limiting case of (2.37g)

— l.__—,__=_ Po
a+ —9 -7 ——4ICPE'

- (5.9)

At the end-bay we have, of course
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Figure 5-1a. Midspan slackening loci in the a-P plane.
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Figure 5-1b. Midspan slackening loci in the a—P plane.
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W= ;—w’ ‘ (5.10)
and using this as well as (5.9) and (2.37c,e,f) we obtain the following o(h)
approximations

1 ¥ _1 ., 4pw
(1-pn)? (1-PR  (1-P)?*°

(5.11a)

1 1 + APw'
(1 —pae)? (1-P®  (1-P)®

118

(5.11b)

The approximations (5.11) are valid provided APw/{1—P)<< 1. This can be
justified for all a> 0 using arguments similar to those which led to eqn. (5.4).
Another assumption made in deriving (5.11b), verifyable from (2.37a), is that at

an end bay 3«Pgd' = o(h?®) and thus negligible.

We can now use (5.10), (5.11) and (2.37a,b,c) to express @', ¥ and ¥ in terms
of w'. By substituting them into (5.9) and again neglecting «¥' terms compared

to o(1) we obtain the end-bay slackening condition in the form

£/2

(Tfl:»')?'(l‘P)"'[l’“?;'(“%;)];—xPW‘(O)=Cs. (5.12)

This also reduces to the Pg equation (4.5) upon setting w'(0) = 0.

It is seen that here, unlike in the midspan slackening case, the 'natural’ plane
to plot the locus is not that of a-P but the w'{0)—P plane. To map the locus into
the a-P plane we have to have a relation between the deflection amplitude a and
the end-slope w'(0) for all a=0. Since such a relation is not available in closed
form we resort to rougher approxiniations and adopt for this purpose the ideal

column relation {3.17) which, using (3.3a,b) and taking w £0, gives

' ~ P £/(1-P) '
w(0) ‘a\/FE'[l * T°P—2aP) (1-PraP) " (5.13)

When doing this there is no point in retaining the o(h) term in (5.12) so we
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finally have
/2 [P &£/(1-P) "A oL
- P+ \/PE [+ Tz aoprap L2 T = G (5.14a)

or, in terms of a, eqn. (3.3b)

2/2
(1-P)?

A /P

—-P) (1 - 2By EOZPE
Pg

(1-a)(1+a/R))

P a]=Cs. (5.14Db)

Note that different loci can be obtained by using the ideal load-deflection rela-
tion (3.33) to replace P/Pg or £2/(1-P)3 by some other expressions. It is impor-
tant to understand in this context that only the inifersection between the locus
and the equilibrium path has a physical meaning, hence all loci which intersect
a particular equilibrium path at the same point are equally valid. The most suit-
able one is, of course, the one dependent on the least structural and imperfec-

tion parameters, i.e., the one which is most universal.

To investigate the locus {5.14b) it is best to start with the case £ =0. The

locus equation then becomes

A /P Cs0
V1 - -Pp)3 - = \/= ——=
1T —a(l ¥l Py o+ 1 P] 0 (5.15)

and a graphical description of its behavior in the a—P plane is given in Figure
5-2a. The fixed branches a=1 and P=1 constitute the extreme limits to which
the locus may be pushed. If Cg< 0, long stretches of the locus must occur below
the LBL. On the other hand, if Cg=> 0, there is always a possibility to push the
locus out to the LBL itself. This is done by either increasing 4<+/Pg/X beyond 1
or by increasing Cg so that the point of minimum o belonging to the branch
moves beyond a =1. (It is seen from the figure and from eqn. (4.6b) that for
4x~Pg/A=1/3 it is enough to choose P* slightly less than 1—k in order to
achieve this.) In the a-P plane, the minimum-a feature occurring in Cs> 0 loci

means only that a line aP/(1-~P)=const. intersects the locus twice.
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Figure 5-2a. End-slackening loci in the a—P plane for £ =.0.

Figure 5-2b shows what happens to the end-slackening loci upon increase of ¢.

The value of 4«~/Pg/A there is 1/3, the same as in Figure 5-2a. We note the fol-

lowing:

1. The 'imperfection-sensitivity' of the loci is small for small Cs and becomes

very large as that parameter increases; especially so when o is small to

moderate.

2. £>0 'rounds the corners' off the intersections between the different ¢ =0
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Figure 5-2b. Effect of £ on the end-slackening loci.

branches, thereby turning the locus into a continuous smooth curve. Note

especially the effect as o~ 1.

. If 4x~/Pg/A and C, are not too large, and if £ is small enough, the locus may
have a peoint of local maximum-o as well as a local minimum-a. Since for
small & the equilibrium path follows closely the P=1 (or P=Pg) and a=1
branches it appears that there exists a possibility of the path crossing the
locus twice. This means that, as the load drops, the slackened end-bay diag-

onals may become taut again.
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Noting eqns (5.8) and comparing Figures 5-1b and 5-2a we find that in the e=0
case énd—slackening occurs before - at most simultaneously with - midspan
slackening. Whether or not this is a rule applying also to £> 0 cases depends on
the relative 'imperfection sensitivity' of the midspan- and end-slackening loci.

We will not attempt to answer this question here.

We conclude this study by remarking that the relation between a and w', eqn.
(5.13), was originally derived for a globally-perfect column. It is believed, how-
ever, that within the accuracy required here this fact does not invalidate the
results as far as application to not-too-globally-imperfect cases of P*<1 goes.
The reason is that for such cases end-slackening occurs deep inside the a-P
plane, long past the limit-load point, where the existence of an initial small

deflection cannot influence the mode shape to an appreciable degree.
5.3 Onset of Slackening in Post-Buckling

A third slackening locus of interest - the onset-of-slackening locus - is that
which, upon being crossed by the equilibrium path, signifies that in an otherwise

all-region-1 column, somewhere along the span, a bay slackens.

Unlike in the midspan and end cases, the spanwise location of this
occurrence is itself an unknown, determined on the w'> 0 half-span by the condi-

tion (see eqns. (2.37g), (2.38g,h))

l—_.

o+ . ¥ —% = minimum . (5.18)

The onset locus is then determined by that minimum being equal to —p,/4«PE.

It is clear that to conduct this study rigorously and in closed-form one must
have closed-form solutions to @', ¥, and ¥ along the complete equilibrium path.
Since in our work these are available only for the initial and final phases of post-

buckling we must confine ourselves to deriving only the initial and final



-117-

stretches of the locus, and drawing whatever conclusions this situation affords.

We start with the case e=0 and small a - not necessarily infinitesimal. we still
maintain those components of the buckling mode (4.1B) which are Pyp-
independent, namely u'(V=0 and w(1)=asinx; For %! and ¥(! we consult the
more general relations (2.42¢,d) and find that in (4.18¢,d) Py, should be replaced
by P. Adding the prebuckling solution (4.3) the quantities entering the slacken-

ing analysis are

o= 1 _={0)
a P (P-7© +p,). (5.17a)
¥ =a cosx, (5.17b)
5= AP :
¥ = 4K(PE)acosx, (5.17¢)

where, consistent with the limited accuracy pursued so far in slackening ana-

lyses, the o (h) term was omitted from (5.17b).

The spanwise location of the slackening onset is now found by substituting

(5.17) into (5.18) and locating the minimum. This gives

P

Xp = tan (- —15—) : (5.18)

>|a

It is interesting to note that if onset of slackening occurs at small enough a it

occurs neither at the midspan nor at the supports, but somewhere between.

Substituting (5.18) back into (5.16) and requiring that that minimum be
equal to —p,/4kPg (eqn. (2.37g)) we obtain an equation for the initial slackening-

onset locus for the globally-perfect column:
(P —p©) + akPg)* + (\P)? = 0. (5.19)

The internal prebuckling force p(® is a function of P through the relation (4.3b).
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Since for a=0 p©-+P and P-P; it is clear that the locus (5.19) starts at
(a=0, P=P,). To find the initial slope we expand both P and 5 in perturbation
series around P, and substitute into (4.3). The zeroth order solution is then the

Ps equation (4.5) and for the 1st order we obtain

£

(Ps —P) ~ (Ps —§(°))[l +2!C(l + m

1. (5.20)

We can now express P-5 (9 in terms of P,—P and substitute into (5.19). Taking

only o0(a) and o(h°) quantities the latter becomes

PRl - —228 \(ZEp s (M), (5:21)
14—
(1—'Ps)s

Now again one has to bear in mind that (5.21) is meaningful only inasmuch as
the locus represented by it happens to be crossed, within its range of validity
(namely a- 0), by the equilibrium path corresponding to the same set of param-

eters. This implies that P, of such a case must be very close to Pg. Within o (h°)

accuracy we can thus use (4.35) to write

£° Pg

1+ ——=~ .
(1_Ps)s Pg

(5.22)

If we now substitute this into (5.21) and also replace in (5.18) P by P; we can

summarize the initial slackening-onset locus and spanwise location as follows:

P~ Ps[l—-g—\/1+<%>2<§—;)a']. (5.23)
xs = tan™ [ (£)( %) ]. (5.23b)

It is interesting to compare (5.23a) with the initial midspan slackening and end-
bay slackening loci. If the onset happens to occur at small a and at the midspan

then (5.23b) tells us that (k/A)(Pg/Ps)»>=. Substituting this into (5.23a) eqn.
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(5.7) is immediately recovered. Similarly, an end-bay onset is characterized by

(k/A)(Pg/Pg)~ 0, which makes (5.23a) reduce to

PrR[1-2(2) (g0, (52

It can be shown that upon expanding (5.14a) around (a=0, P=P; and using

(6.22) this should indeed be the result.

We conclude by observing from (5.23), (5.7), and (5.24) that as a column hav-
ing positive but small P;—P, proceeds along its post-buckling path the first
locus to be encountered is indeed that of the onset. Whether the next one is the
midspan locus or the end bay locus depends on whether (A/k)(Ps/Pg) is less or
more than 1 respectively. The situation is depicted qualitatively in Figure 5-3.

(For explanation of the back-diagonals line see Section 5.4.)

V" i
AV R Ak
o (K)(PE)>' P (")(Pe)< !
s Back - diagonals S Back-diagonals
Py - ~—Equilibrium PO\ S e Equilibrium
Q &%, 3 Yo
2 2% % g %, qé
o, s %% > %
% 6 N
%
—t g —™3a
2 2

Figure 5-3. Sequence of slackening occurrences, 0 < (Pg—Pp) << 1.

Consider now the case e#0, small a. If slackening occurs on the ascending
leg of the equilibrium path it must be that P;< P,. This is a case of no practical

interest. If it occurs past the limit point and a is still small it means that e is
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much smaller than a. In the latter case, just as the equilibrium path differ little
from the post-buckling path so, we expect, does the e#0 locus differ from the
e=0 locus. In summary, it is expected that the results (5.23) are approximately

correct also for the case e# 0 provided e<<a(onset) and 0< (Py—Pp)<< 1.

We now examine the behavior of the slackening-onset locus as a » «=. We
shall see (Chapter 8) that at this limit, regardless of any structural or imperfec-
tion parameters, the triangular local mode of the ideal column is valid and the

triangle sides consist of region 1 bays:

x=g—: U= -s—-o, ¥=0, w=a ;
T, g=9%-= v = 2a
x<2. a=9=0, =0, w ﬂ_x

It is clear, therefore, that the spanwise location where eqn. (5.16) is satisfied is
the midspan. It is clear also that unless po/4xPg~>>= the midspan bay is long
past slackening. Hence we can choose the far portion of the onset locus to
approach the locus of midspan slackening. Then only equilibrium paths belong-

ing to very large values of p./4kPg~> will cross this portion.

5.4 Slackening of the Back Diagonals

Slackening of diagonals 23 and 32 - the back diagonals - causes the column to
loose its shear rigidity with respect to deflections perpendicular to the x-z plane.
As a result such deflections must ensue. Since in our theory only in-plane
deflections are considered, its validity might break down upon intersection of
the equilibrium path with the locus signifying slackening of back diagonals.

Herein lies the importance of finding this locus.

The condition under which the back diagonals are taut is derived from the

fifth of (2.31) in conjunction with (2.34b)



15 __Po
2 4ICPE

(5.25)

The first question to be asked is the following: what is the state of diagonals 21
of a bay (located on the w'=0 halfspan) upon slackening of the back diagonals
of the same bay? The answer to this is obtained by substituting into (R.37g) the

equality limit of (5.25). We obtain for taut diagonal 21
3 1% =
_ -5 >
L%l -7=0

where we have introduced the fact - obvious from (2.37a) -- that %<0 every-
where {assuming w= 0 everywhere). Now in w'=0 stretches of region I the last
inequality is obviously violated. Moreover, at the midspan, where ¥=0, it is
violated strongly because | ¥ | is maximum and at the end-bay, where |¥' | =0,

because J is maximum. We therefore conclude

slackening of the back diagonals may only occur

in bays which are deep inside regions II/IIL (5.26)

The next question is where along the span do back diagonals slacken first. For-
tunately, unlike in some previous cases, we do not have to have complete solu-
tions in order to obtain an answer; it sufﬁceé to express the left hand side of
(5.25) in terms of w and w' using region 1I/1Il displacement equations (2.38).

With the help of (2.38c) the following combination of (2.38a,b) can be written

= _]-_—A — - 1 =t 8 =~ - }\ '
u 219 ————————ZPE(I_’C/B)ilcPE(Bu+-3—7)+[1 (w+ 2—w)]P+
£/2 £/2
+ - 5.27a
(1-p22)®  (1-po)® ; ( )
where, again using (2.38¢)
_.l 3 ¢ 3 Tt = 3

pae = [1 —(w+ ?)\w)]P + kPg (6T +4%) + 5Po - (5.27b)

Now @ and ¥ are always maximum at the end bay whereas w there is minimum.
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w+{A/2)w and w+(3/2)w' are nothing but W,-b and Willl respectively. With this
knowledge we can easily show from (5.27), on a term-by-term basis, that

W' —{1/2)% is minimum at the end bay. It follows that

if back diagonals slacken in a deflected column, (5.28)

the first do so are the end-bay back diagonals.

Statements (5.26) and (5.28) together imply that back diagonals slackening can
only occur substantially later than the arrival of the I/1I transition point at the

end bay.

To arrive at the back diagonals slackening locus we now take the following
steps: (1) Eliminate 7 from both of (5.27) using (2.38c); (R) substitute for w the
end-bay deflection (A/2)w'; (3) substitute for u'—(1/2)¢' its slackening value
—po/4kPg. Miraculously, these steps bring about the exact disappearance of all
displacement unknowns from (5.27) and we are left with

/2

] 82/2
—l +
(1-P)?

+P = (1+2«) P (—1—_;32—

which, as an equation for P, is exactly identical to the P; equation (4.5)! We

therefore conclude that

The exact back—diagonals slackening locus in the

a—P plane is the straight and horizontal line P=Pg, (5.29)

The back diagonals slackening locus is added in Figure 5-3.

Since being above the line P=Py means the existence of slack back diagonals,
which in turn implies out-of-plane instability, any pure-a-P equilibrium path seg-
ment that has that property is physically invalid. hence only equilibrium paths
which bélong fo columns having Py,<P; are covered by the theory so far
developed. These, however, by satisfying P< Py, for all a, never encounter back

diagonal slackening and continue to deflect in the x-z plane indefinitely.
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5.5 Summary of Slackening Phenomena

Consider  a globally-perfect column having Pp<P; as it deflects in post-
buckling. First, as its equilibrium path crosses the slackening-onset locus, a
region 1l bay will appear on the w>0 halfspan somewhere between x=0 and
x=m/2. If P, and Py are fairly close the spanwise location of slackening-onset
and its a-P locus are given by (5.18) and (5.19) respectively; if they are even
closer, then (5.23a,b) become valid. As deflection continues region 1l spreads
out gradually towards the end-bay on one side and towards the midspan bay on
the other side. Depending on f,he value of (Ak)(Pg/Pg), at least in the
(Py—P,)<< 1 case, one side or the other is reached first (see Figure 5-3). The
arrival of the I/1I transition point at the midspan bay is signified by the equili-
brium path crossing the midspan slackening locus (5.5); its arrival at the end
bay by the end-bay slackening locus (5.14). Further deflection leads, due to the
drop in load, to reappearance of region I stretches, which eventually reclaim all
but the locally-buckled midspan bay (see Chapter 8). If the initial diagonal
preload is so high as to make slackening-onset occur far down the post-buckling
path it will then occur at (or very close to) the midspan and remain confined to
that area. Throughout the process described never and nowhere do back diago-

nals slacken.
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6. SOLUTIONS AND EQUILIBRIUM PATHS OF THE DEFLECTED COLUMN

In Chapter 4 we investigated solutions and equilibrium paths in a narrow strip
adjacent to the P axis in the a-P plane. The present chapter, on the other hand,
is a collection of closed-form solutions and equilibrium paths elsewhere in the a-
P plane. We can treat in closed-form only special cases. These will be the locally-
perfect columnn and the three remaining boundaries of the a-P plane: the local
mode and the LBL at the upper boundary and the two limits a + « and P » 0.
These results form a skeleton of the complete a-P behavior, with the help of
which one can sketch a qualitative picture of general equilibrium paths. Since
rigorous treatment of the latter can only be done using numerics, we attempt
herebto generate an engineering-oriented working formula for general columns
equilibrium paths, which is based not on rigorous solutions but on interpolation

between the known behavior on the boundaries.

6.1 The All-Region-1 Locally-Perfect Column

In this section we discuss equations, solutions and equilibrium paths
corresponding to locally-perfect columns. Recall that in the ideal case we had
the following situation: The post-buckling path of a globally- and locally-perfect
column was the LBL; the path of the only-locally-perfect column was the 'global
line'; upon intersection of the two paths the 'second bifurcation’ would occur, in
which the solution bifurcated from the global to the local mode. Here we
attempt to establish the modifications in this picture that follow from the fact
that the column is no longer ideal. In doing so we ignore the possibility of slack-
ening. This means that the results to be obtained are actual ones only inasmuch
as they are predicted to occur below any slackening locus. We shall see in the

following that this is not much of a restriction.
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6.1.1 Locally-Perfect Equations; Subcritical, COritical, and  Buckled
Bays: Consider region 1 bending and compression displacement equations
(2.37a,b). As £-+0 we have to consider two possibilities: either p;;#21 and the
potentially-singular terms (£2/6)/(1—p;;)® vanish, or p;;~ 1 and they remain at
least bounded. Mathematically we take account of this situation by multiplying
the equations through by (1—p11)? and then letting £=0. In this way, however, as
p11~ 1 the two equations degenerate into a single one. A second, independent
equation can nevertheless be produced by eliminating the singular terms
between the two original equations. Thus we obtain the region I, locally-perfect-

column bending and compression equations in the form:

[(1 - P —2wP) — 4xPx(T’ + i—@') ~paJR[P(1 + D% +wP] =0, (6.1a)

Pp[2(1 +26)T' — (1 + —g—)ﬁ']+(1—w)P=o, (6.1b)

where the first factor in {8.1a) is just {1 —p;)? taken from (2.37¢). Now as long
as py1 < 1 it is the second factor in (6.1a) which determines the behavior. If, on
the other hand, p;; = 1, we still have a viable, linear, regular, complete system of
equations in which the first factor in (6.1a) is the active one, and which leads to

different behavior. Thus

fl_" - ___L
PE(1+IC/2)
_ P 1 pll < 1 X (62a,b)
T T 2Pl +20)
= _ _ 1 D
= SeP(iFR) §[1+(1+3c)2w]P —P*} ( )
P;;=1. {6_2cd
L 1 3 _l+k/2)00 1 -
YT T BkPr(1+1) (L(1+ 5o +2w]P - S22

We see that as long as slackening does not occur the 'strains’ U' and 9 are well-
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defined and bounded for any bay-deflection w. They might be large, though, of
o(1/h) if p;,=1. thereby violating the basis of the theory given in (2.21). For-
tunately, it is only in an a-P domain where the numerators of (6.2c,d) are also

small that interest in these equations arise.

The reason for the boundedness of the bay strains when p;; = 1 can be traced
to the statical indeterminacy of the bay structure. As long as the diagonals are
taut they lend some small bending stiffness to the bay. They become the sole
source of bending stiffness (note the k in the denominators of (6.2c,d)) when the
11 longeron-segment is no longer able to contribute anything, due to it having
p11 = 1. Even then the bay is still capable of taking on load increases since the
latter are lost to diagonal unloading; yet the diagonals cannot buckle the 11
longeron, because every shortening of that longeron is accompanied by diagonal
unloading which in turn reduces the longeron load below 1, thereby restoring all
of its stiffness (recall that £ = 0). To distinguish the bay state described above
from that of a buckled bay, in which 'strains’' are infinite, we will refer to it as a
critical bay. In constrast, a bay governed by eqns. (6.2a,b) will be called a sub-

crifical bay.

6.1.2 The Subscritical Locally-Perfect Column: A column of which all the bays
are subcritical is called here a subcritical column. It is governed entirely by

eqns. (6.2a,b) supplemented by (2.42c,d):

(Pg —P)(1 + -g—)w” +Pw=Pg(l + -g—)wo" (6.3a)
o P

%7 T 2Pg(1 + 20) (8.30)
9=(1 - yP—)W’ - W' (6.3c)

Pg
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|m

| 7:4_7;_(PE)W'.  (8.3d)

Taking the global imperfection according to (4.24) the solution that satisfies the

boundary conditions (2.44) is

w = asinx, (6.4a)
P P
YT 3Pl + 20) (8.4b)
ISP RV -
9=[(1 VPE)a UPEe]cosX. (6.4¢)
v = A (aP + ePp)cosx (6.4d)
4xPg ' '
provibded that
e
= —, 6.4
&= 1-p/P; (8.4¢)

where Pj is given by (4.20a). Eqn (6.4e) gives the equilibrium path of the locally-
perfect general column - its global line. It is seen to differ from that of the ideal

column (3.16b) in Pg being replaced by its general-column equivalent Pg.

An analysis similar to that done in Section 5.3 and use of (6.4e) reveals that

the subcritical locally-perfect column starts to slacken at the spanwise location

K/A

— -1
Xg = tan T4e/2 (6.5a)
and at a value of P which satisfies
A 1 2(Ce+1—P) P
ar¢ e L o vetper_ g BMAvs Tt N2 = 1

Above this P the validity of eqns. (8.4) breaks down. This is, however, of no

1. Because of the assumption P;; # 1 made at the outset, eqn. (8.5b) does not reduce upon
letting e = O to the complete Pg equation (1 —=Pg)?*(Cg + 1 —Pg) = Q. For the same reason it
also misses the root present at local buckling, P = P, which is the dominant one if the other
root is higher than Pe.
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consequence if Cq is large enough, that isif

Co= (1 -P[ -1 + 2EEE /2y (2], (6.6)

for then the slackening load is above the second bifurcation load P, given later
in eqns. (6.19). It can be appreciated from (6.4) that even in most adverse cases
C, need not be excessively large in order to accomplish this; if (1+1/2)(A/k)=V15

then Cg=0 more than suffices.

6.1.3 Onset of Criticality in a Locally-Perfect Column: We ask the following
questions: {1) where along the span of an all-region-], locally-perfect column is
the bay located which is first to turn critical? (2) Where in the a-P plane is the
locus which, when crossed by the corresponding equilibrium path, signifies that

event?

The answer to the first question lies clearly in locating the spanwise max-

imum of p;;. Using (R.37e) this is formulated as

e

2wP + 4«Pgr(T + Y = maximum (6.7)

which, using substitutions from (8.4), readily yields

x(onset of criticality) = g— (6.8a)

Using this result in (6.4) and (4.24), substituting into (2.37e) and requiring that
the resultant p;; equals 1 we obtain an expression for the desired onsel-of-
criticalitly locus

P#

142
1+/2

P= (6.8b)

1+2a

This locus always originates at P=P*. If P*<1 (ie, Cd= 0) it stays below the LBL

for all positive a. If C§< —3/4 its entire length is obstructed by the LBL Else, if
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—~3/4< Cg< 0, its initial stretch is above the LBL but later on they cross. It is
striking that the intersection is precisely the same as that of the locally-perfect
midspan slackening locus (5.5a). Consequently, the a-P domain of criticality
never interferes with that of midspan slackening. This situation is shown quali-

tatively in Figure 6-1.

We conclude by remarking that the forgoing discussion lends a new
significance to the quantity P* Besides being a potential global buckling load of
the perfect column it appears here also in the role of a critical load of the same
column. The vertical dashed-line segment in Figure 4-1 between the P* point and
the local buckling point, which is a segment of the equilibrium line for £ = 0, per-
tains to an undeflected column state wherein all bays are critical. It is not
accidental that the two roles of P* coincide: upon becoming all-critical the
column looses almost all its bending rigidity and finds itself loaded far beyond

its then-actual Euler load, {¢/2) Pg.

LBL
Midspan
P‘ TT 77 slackening
* Criticality
P —_——
N onset

~

— —
— e —

Midspan slack

Figure 8-1. a-P domains of slack midspan and critical midspan for a locally-
perfect column having —3/4< C9 < 0.
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6.1.4 The Critical Locally- Perfect Column: We now ask the following Questions:
(1) It an all-perfect column buckles globally at P = P* what is the nature of the
post-buckling solution and equilibrium path? (2) What happens to a globally-
imperfect column when its global line intersects the criticality-onset locus
(6.8b)? An assertion that P* < 1 is already implicit in the first question, since
otherwise local buckling will precede global buckling. Similarly, in order that the
phenomena discussed in the following be relevant the locus {6.8b) must occur

below local buckling, wherever this may be.

Above the criticality-onset locus a locally-perfect column certainly comprises
some critical bays, i.e., is critical. The problem therefore involves two different
systems of differential equations, each valid in specific criticality regions. Once
solutions are obtained they have to be matched at transifion points separating
these regions. Let X, be the spanwise location of such a transition point. It is
characterized as a point at which a subcritical region breaks down because of
p1: reaching the value 1. Using (2.37e) for p;; and substituting in it T' and iy

from (6.2 a,b)? one obtains an equation for %,

1. 1te/2 P*_ .y - p*
2 1+2:c(P 1 P 1,TZW(X)lﬂc/Z' (6.92.0)
1 +2¢

w(xe) =

Transition is seen to occur at a certain deflection, which makes it clear that
there exists at most one transition point per halfspan. Since w is symmetric
about the midspan so must be the extent of the critical region. Moreover, com-
paring (6.9b) with {6.8b) one confirms that at criticality onset only the midspan

is critical.

We can now pose the problem at hand using that symmetry and eqns (6.2).

Only deflections are considered and ¥ is replaced with the help of (2.42¢):

2. Note that (8.2¢,d) cannot be used for this purpose, because they satisfy p = 1 identically.
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1

(Pp—vP)w" + Y Pw = Pgw,", 0< X< X¢; (6.10a)
2(1+3K) p*—p m
— P 1" + - e + _— 6.
(Pg—vP)w 3e(1+K) Pw = Pgw, TR X< X< K (6.10b)
boundary conditions: w(o)=0, w'(n/2)=0; (6.10c)
matching conditions: w(xg) =w{xJ)), w(xs)=w(xJ). (6.10d)

The differential equations (6.10a,b) are readily solved:

W = ¢;sinmx + By sinx, 0< X< X¢; (6.11a)
W = Cg cosnz(%—x) + Fpsinx + D, X <x=< g—; (68.11b)
where
_ P _ ST+ 34) P
= = ; 1lcd
™ -\/(l +x/2) (Pg—vP) ' & 3k(1 +x)(Pg—vP) ' (8.11c.d)
E, = ——o, E, = < . (B.11lef)
_ P 1 -] 2gl+3n) 12
PE S’C(l +’C) PE
_ (P*/P)-1
D= 501+ 90 (6.11g)

These solutions already satisfy the boundary conditions (6.10c¢,d). There remains
to determine the unknown coefficients ¢, and c¢p so as to satisfy the matching

conditions (6.10e,f). This operation leads to

w(x.) =B, sin X, w(X.) —D —Egsin x,
sinm Xe 2 cosne(m /2 —X,) ( a.b)

1

where X, is determined from the transcendental equation
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71 (w(xe) — Bysinx.) ctgmiXe +
— e (w(x;) ~ D ~ Egsinx;) tan7g( 5 —xo) +

+ (By —Eg)cosx, =0 (6.13)
and w(x.) is given by the right hand side of (8.9a).

Typical equilibrium paths for e=0 and e > 0, resulting from (6.11)-(6.13), are
shown in Figure 8-2. Also shown in this figure are the ideal LBL and the onset of
criticality locus. The upper section of the figure depicts two deflection shapes
(over a halfspan) corresponding to the two marked points on the e = 0.3 path.
The leftmost of these is just prior to onset of criticality whereas the remaining
one has already a substantial critical region. Transition point motion due to

change in a is given by the w(x.) dashed line. The following points are of interest:

1. The post-buckling equilibrium path originates from P* fangent to the
criticality-onset locus. its initial slope is lower than that obtained from
(4.23a) in the limit £ » 0. Eqn. (4.23a) does not take criticality into account

and therefore must be restricted to e # C.

2. The post-buckling equilibrium path approaches the ideal LBL. The rate of
approach is very small compared to that of a locally-imperfect, but ideal

column having the same global buckling load.

3. If e > 0 a 'bifurcation’ is seen to occur at the point of intersection of the glo-
bal line and the criticality onset locus. It indicates that upon onset of criti-
cality the drop in overall bending resistance is large enough so as to prevent
any further load increase. We will call this point the critical or third bifurca-

tion point.

4. The critical bifurcation is similar to the ideal case second bifurcation,

except that its bifurcated equilibrium path is e-dependent and no local
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Critica!l
column, e=0.3

0.5
Precritical Transition
column, point
Lo e=0.3
) Subcritical wixc)
P _|.5 - ) _ R ;
2
R ]
Pl
1.OOH
P*- \\\ - - - - -
E PN\

\\
~
0.50- Crifica!M )
¥ onset
Pc - .
e
0.25- P*= 0.9 =03 TTeeC
' Kk =0.02
v = 0l
T T Y T T
0] 0.2 0.4 0.6 0.8 .0 @

Figure 6-2. Typical equilibrium paths an.d deflection shapes of locally-perfect
columns having P*< 1, P*<Pg.
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buckling is involved. A critical region rather than a sharp break appears in

the neighborhood of the midspan.

We. will call the value of the load at critical bifurcation the critical load, Pg.
Clearly, Ps » P, upon reduction to the ideal column and Ps » P* when e~ 0

(provided Pg > P*). It is given by

':-—l * hy *y . .ps * 'P*+(l+e*)PE.
P; 2[13 +Pp{1+2e*) — |P*~Pg| 1+4e PE—__———(P*—PE.)Z ] (6.14)
where
1+2«
=
€= Trenz © (8.15)

and the analogy with (3.16¢) is clear. The global imperfection sensitivities of P;

are readily obtained as

. 2e*Pp ]
P~ PRl — By 0 < (P*—Pp)/Pa=0(e°); (6.16a)
P*—-Pp
Pl ~ P* —VRe*, |P*—Pg| = a(e); (8.16b)
Pl ~ P* —2e*Py/(Pp—P%), 0< (Pg—P*)/Pg=0(e°). (6.16¢)

The critical load P, is clearly an additional upper bound on the column strength,

Pnh< Po.

6.2 Local Buckling of the Deflected Column

In the ideal case local buckling was defined as the condition that somewhere
along the span there exists a single bay for which p;; = 1. The 'strains’' @' and 8
at this bay were than clearly indeterminate. In the general column the above
definition is already taken by criticality, moreover, the infinite strains property
does not coincide with that definition. To remedy this situation we redefine local

buckling as the occurrence, somewhere along the span, of a single boy having
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indeterminate strains. We now set forth to determine the conditions and conse-

quences of that occurrence.

From either (2.37a,b) or (2.38a,b) it follows that a necessary condition for T’
and ¥ to be indeterminate is that P11 = 1. In a manner similar to that of Section
3.2.2 we can show that ¥' in any slackening region adjacent to the buckled point
must be bounded; it follows, using a formally once-integrated version of the
applicable bending equation, that that boundedness is possible only if either
£ 0 or a » =. The indeterminacy of ¥ at the buckled point guarantees that
the boundary conditions can be met regardless of the details of the solution
elsewhere. Hence, as in the ideal case, the local mode is one which is character-
ized by a finite discontinuity in ¥ across the point of maximum deflection. Its
existence in equilibrium requires, besides satisfying p;; = 1 at that point, also

that ¢ = 0.

We have seen, however, in the last section, that these two conditions are not
sufﬁciént; they may lead to criticality rather than to local buckling. Moreover,
eqns. (6.2¢c,d) imply that ' and ¥ in a region I critical bay are never indeter-
minate. Therefore, if local buckling is to occur at all, the bay which buckles

must first be slack.

From the argument following eqns. (6.2¢,d) it is clear that upon slackening a
critical bay must collapse. Mathematically this is brought about by the replace-
ment of the first factor in (6.1a) by its region II counterpart, (1—P—2wPP)?, (see
eqn. (2.39)). Now there are no longer two equations for ' and ¥ but just one,
(6.16), resulting in an indeterminate solution. Local buckling is thus clearly a
post-slackening phenomenon. In the ideal column it becomes indistinguishable

from criticality.

The a-P locus of local buckling is this given by the condition that somewhere
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along the span a slack bay attains p;; =1 and is the first® bay to do so. The
‘governing equation for a region II slack bay is (2.39). We also write a similar
equation, derived from (2.32a), for a somehow stabilized midspan bay having

both side-diagonals - 12 as well as 21 - slack;*
Region Il bay: 1 -P —2wPP =0, (6.17a)
Midspan bay: 1 —P-2wP=0. (6.17b)

These equations show clearly that the bay to buckle first is the bay deflected
most. If the peint of maximum deflection happens to be occupied by a bay-node
having the deflection w = a then this bay must be a midspan bay to which eqn.
(6.17b) applies. Else, if it is a batten which holds the maximum deflection a’,®
then an adjacent bay - the one on the w' > 0 side, say - is the one that buckles
first; it is a region II bay for which wP = a and to which eqn. (6.17a) applies.
Whichever is the case the local buckling locus obtained from (6.17) is one and

the same:

P= (6.18)

namely, the ideal LBL. From now on we will therefore drop the restrictive

adjunct 'ideal’ and refer to the locus (6.18) as the LBL

We now recall from eqns. (5.6) that midspan slackening occurs below, at most
in coincidence with, the locus (6.18). It is not difficult to show, using (8.2¢,d) in
(2.37g,h), that slackening of a critical bay occurs also precisely at the LBL. It is
thus verified that a column satisfying (6.1B) has indeed a slack midspan, and

this, together with the fact discussed previously that the LBL is an £ = 0 equili-

3. 'First”in the sense of "first among all other slack bays upon approaching that locus from below".

4. Unless 'somehow stabilized’ such a bay will choose either region II or III, thereby shifting the
point of maximurm defleéction to a nearby batten.

5. In our differential approximation the inconsistency in defining ‘&' once as a batten deflection and
once as a bay-node deflection is ignored.
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brium path, render (6.18) a sufficient as well as a necessary local buckling con-

dition.

It P* > 1 at least part of the criticality-onset locus is above the LBL, thereby
exposing it to intersections with active global lines. If this happens, then, just as
in the ideal case, the second bifurcation is triggered. To obtain the correspond-
ing local buckling load, P, and its associated imperfection sensitivities, all that

we have to do is replace in (3.16¢-f) Pg by Pg ( compare (6.4e) with (3.16b)). We

get
_1 4ePE 1+ 1+e)PE]
Pe = > [1 +PE(1+28) 1 PEI '\/ (1- PE)'?' 1 (6.19a)
* 2 P. *
P, ~ PE<1—1—e—I-3E7). 0< (1-Pg)/Pa= 0(e°); (6.19b)
—IE
P.~ 1-Re, |1-Pg| =o(e); (6.19¢)
P.~ 1-2ePgp/(Pr—1), 0< (Pg—1)/Pg=0(e°); (6.194d)

The mazimum strength of the locally-perfect column can now be stated as fol-

lows:
Pp = min(P,, Pg) . (6.20)

This replaces (4.20c¢), which deals with an all-perfect column. Note that slacken-

ing is not considered a failure if the column is deflected.

6.3 Equilibrium Paths for Very Large Deflections

In this section we look into the nature of solutions and equilibrium paths as
the deflection becomes large. Though formally the theory is not applicable for
deflections larger than o(l) it is nevertheless important to understand the
behavior of the displacement equations at this limit. The case & =0 has been

treated in Sections 6.1 and 8.2, so here we focus on the case £> 0. This
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excludes the possibility of critical solutions.

We start with the assumption, subject to later verification, that the column is
all-region-1 except, maybe, at the midspan itself. Since we take a -» « all dis-
placement unknowns should be normalized by a so as to keep them bounded.

Region I bending equation (2.37a) then becomes

9y, £* 1 1 _
PE(“-—S—)(;) ¥ (%:_)P v -é;[ (1-p1)? - (1"P22)2] =0 (6:21)

Everywhere except at the midspan p,, is certainly less than 1 and therefore, as
a > =, the last term of (6.21) drops. Also, because the midspan is at most buck-
led, P<1/{1+2a)~0 as a- . We are left with only the first term and conse-

quently

( g) ~ const., X#ET/R. (6.22a)
Upon applying a similar procedure to the compression equation (2.37b) and also
deriving the consequences of (6.22a) for ¥ and w' using the rest of (R.37) we

obtain (taking e/a~ 0)

(’L_;;)'“ 0, (;l)"“ const., (%)N const.; x#n/2. (6.22bc.d)

It is seen that if the solution is to satisfy the boundary conditions and at the
same time differ from trivial the midspan must be buckied and slack. This

implies

1

P 1+2a

(6.23a)

Eqns. (6.22) can now be satisfied if the mode is the trieangular local mode, its
'legs’ consisting of straight-line segments (Figure 3-2). Upon determining the

constants in {6.22) we obtain
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Ty (B 2 (o (Dao; i ‘ -
(I~ (D~ (P~ (D~00 x<g (8.23b-¢)
and it is easily verified using (2.37g) that (6.23b-e) must belong to region L

We thus conclude the following: regardless of any structural or imperfection
parameter all equilibrium paths tend as a » = to the LBL. The column deflection
shapes tend then to the triangular local mode with zero shear deformation.
Except at the midspan, where the bay is slack and buckled, all columﬁ diagonals

are taut.

This conclusion is in agreement with remark (3) following Figure 5-2b, which
concerns the possibility of retightening of the end-bay diagonals. Based on it is
the analysis in Section 5.3 of the behavior as a » = of the slackening-onset

locus.

6.4 Initial Loading

If the column is locally as well as globally imperfect we can still treat in

closed-form its behavior under a very low external load. This we call 'initial load-

ing'.
The approach is one of perturbing the displacement unknowns and the load P
around their P = 0 state. The governing equations are region 1 displacement

equations (2.37). (It is assumed that the diagonals are taut at P = 0) and the

P = 0 solution is just the global imperfection. Thus we write
g=u®, =9, 3=90, w=w,+wll), P=pPD), (6.24a-¢)

Applying a standard perturbation scheme to eqns. (2.372,b) one obtains the fol-

1owihg first-order perturbation equations
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£ , .
PE[ 1+ ;—(1+(—1_—p:)—3—)]13(1) + W°(1+-(——pS§-)P(1) = (6.25&)
2Pg[ 1 +2/c(l+(1—_-_%;)?)]u'“) + (1+a%°)3-)13(1) =0. (8.25b)

The complete solution satisfying boundary conditions (2.44) and the (linear)
rest of (2.37) and which corresponds to the global imperfection (4.24) is

P

1#—
1— 3
w = — (1=Po) = P, (6.26a)
2Pp[ 1 +2k(1 + ——)]
(l_po)a
2
1+———(1_‘E 3
w=(1+uPP—+ Po - P)esinx , (6.26b)
E K
Pe[ 1+ {1+ =——3)]
el (1-po)®
2
P 1+————(1_s %
19=(1—u§—+ Po = P)ecosx, (6.26c¢)
E K
Ppl1+ =1+ ——)]
2 (1—po)3
P, +P
7=£‘—K- "P eCOSX . (6.26d)
E

Letting in (6.26b) x=m/2 and neglecting A?/12 compared to 1 we find the initial

loading segment of the equilibrium path to be

vt s pm)

PE[1+§(1+m)]

a=e(l+

P). (6.26¢)

For e = 0 eqns. (8.28) can be shown to reduce to the initial prebuckling solution
(4.3). They reduce to the initial loading version of (6.4) for ¢ = 0 and to the ini-

tial lbading version of (3.33) for the ideal column.
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6.5 A Working Formula for the General Equilibrium Path

The results obtained so far, in this chapter as well as in Chapter 4, are prob-
ably inost of what can be obtained in useful-closed-form. The greater complexity
of the non-ideal column prevents us from deriving equilibrium paths expres-
sions comparable to (3.33) that will hold throughout the a-P plane. Though
there is a possibility to produce an o(h)-accuracy, totally-decoupled w-equation
valid in most of the a-P plane prior to onset of slackening and criticality, an
attermnpt to use it in deriving a universal equilibrium path is futile. Even a brute-
force method like that of Ritz-Galerkin yields then an equivalent of the ideal
column f(«)-function which depends not only on « but also on P and most struc-
tural and imperfection parameters. It seems, therefore, that the heart of the a-

P plane must be relinquished to the reign of computers.

There is, however, a third possibility that, though being devoid of any physics,
may prove extremely useful in engineering calculations. This is the possibility of
making a learned interpolation across the desolate plane between its results-
inhabited boundaries. Whether or not products of such an operation are valu-

able can only be decided by comparison to their rigorous numerical conterparts.

The idea is to generate a nucleus of a load-deflection relation starting from
the global buckling equations (4.17), (4.11a) and then generalizing it to include
non-zero deflections. The ideal column equation (3.33) is used as a model for
this generalization. Some o(h) modifications are then introduced into that
nucleus so as to make it satisfy certain special cases for which we have rigorous

results. In this way we obtain the following system:
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. — . PE A = 1
(PE~P) (1 =Pr)® — 2ePEP (1 - 5~ 55 (1 =B o

g2 (P-£pp) t(a,) =0 (6.272)
14+v o E T '

(P+=P) - (1 +20) [L ~Br+ S(ZE-1)(1-P)ou] +
b

1 1
+ et —— — ]1=0 (6.27b)
(1-8.2  (1-po)®?
where
2aP « PE
= l=c—— 6.27c
o= = —1-5 5, (8.:27)

and the function f is the ideal one, (3.31b).

Before we discuss the reasons behind this choice a few notes regarding appli-

cation are in order:

1. Eqns. (6.27) do not distinguish between criticality and local buckling,
predicting failure to occur at the former only. Hence application should be
limited to cases where P*=< 1. This restriction is also important from the
point of view of slackening, which is ignored by (6.27). One has to be
confident that slackening phenomena do not interfere within the region of
interest, and the condition P* < 1 - the practically more prevalent - usually

guarantees this.

2. Eqns. (6.27) are expected to yield better results for not-too-large values of ¢
and e. This is because they are tailored to be almost accurate at the limits

g-» 0ande~» 0.

3. Prior to application of (6.27) one must calculate P, by solving (4.17)
together with (4.11a). The equilibrium path is then constructed as follows: o

is chosen in the range 0<o;<1; (o) is calculated from (3.31b); (6.27a,b)
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are solved simultaneously for P and Pr; a is calculated from (6.27¢c).

4, The value of P, obtained in the above procedure, though reducing to p when

a = 0, is just an auxiliary quantity and should not be interpreted physically.

Equations (8.27) were constructed to satisfy the following conditions and

therein lies their usefulness:

1. Eqns. (6.27a,c) differ from their ideal counterparts (3.31b) and (3.3b) by
terms of o(h) only and reduce to the latter as h » 0. Hence the general qual-

itative behavior depicted in Figures 3-11 is preserved,

2. For e = 0 the global buckling load and initial post buckling path generated
by (6.27) are precisely those obtained from (4.17) x (4.11a) and (4.23a)

respectively.

3, For £=0 and o,# 1 eqn. (8.27a) reduces precisely to the correct global line

(6.4e).

4, For £=0 and a,=1 the equilibrium path becomes the onset of criticality locus
(6.8b). Though we have seen (Figure 6-2) that this locus is not an equilibrium
path, nevertheless, the maximum loads P; are predicted correctly. If, how-
ever, part of that locus lies above the LBL an error may ensue since (6.27) do

not recognize the fixed LBL.

5. For P- 0 and a- e the following initial loading path is obtained:

P
teve -2 55
a=e(1+ Po ° p). (6.28)
PE(1+§-)

Strictly, this differs by o(h) from the correct result (6.26e). However, in
practical engineering applications & and e are small enough to render the

error comparable to what we call o (h?).
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On grounds of the foregoing properties it is believed that equilibrium paths
generated by (6.27) will in general lie, everywhere in the interesting regions of
the a-P plane, close to their exact numerical counterparts. In particular, (8.27)
may be useful in predicting ultimate load-carrying capacities to a better accu-
racy than is possible using the ideal column model, a prediction that would oth-
erwise involve very elaborate numerical schemes. The power of eqns. (8.27) is
illustrated in Figure 6-3, in which comparison is made with exact numerical
results. Shown is an expanded view of a near-peak equilibrium path segment
belonging to a technologically feasible typical column: Pg=1, £=0.02,
Po=0.04 (P*x= 1), v=0.02 (64 bays), £=e=0.125 (/1000 and L/1000 respectively).
The discrepancy between the exact results and those of eqns. (8.27) is seen to be
minute indeed, having at the limit point the value of 0.15%! On the downward leg,
since the two methods tend to slightly different asymptotes, the discrepancy is
more pronounced. Note that from performance point of view the imperfections
in this example are by no means small, knocking down the load-carrying capa-

city to less than 50% of the nominal value {1.00).
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A
Q
0.47 /
0.46
0.45 \
Exact numerical
0.447 integration
O Egns(6.27) (o)
0.43 t J -
0.2 03 0.4 0.5 a

Figure 6-3. Comparison of equilibrium paths obtained using exact numerical
integration of the displacement equations and using eqns. (6.27).
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7. THE TORSIONAL POST-SLACKENING MODE

In Section 4.8 (Figure 4-8) we found conditions under which either global buck-
ling or slackening is first to occur in a globally-perfect, undeflected column. All
the results derived in Chapters 4, 5, and 8 were applicable only inasmuch as glo-
bal buckling prevailed. It is therefore of interest to find out what happens if it is
slackening which takes precedence, and what is the nature of the post-

slackening behavior. This is the subject of the present chapter.

Consider a globally-perfect column and suppose for a moment that upon
slackening the column deflects in a way still satisfying assumption (14) of Sec-
tion 2.1, namely, all physical joint displacements occur in the x-z plane only.

Then a careful analysis, not presented here, shows the following:

1. At P = P, there exist multitudes of deflection modes, each one of them con-
sisting of a different number of waves of irregular length. These waves are
formed by alternating region II and region III stretches. The boundary and
inter-regional matching conditions do not suffice to determine either the
number of waves or their individual length, resulting in the mentioned high

multiplicity. Region I stretches are not possible.

2. Each one of these post-slackening modes is stable, in the sense that it can
take higher loads than P = Pg; their a-P equilibrium paths are ascending in
the positiire as well as in the negative a direction. The greater the modal
wave number, the more stable is the mode. The least stable is, of course, the
one-halfwave mode comprising two equal-length region II and region Il
stretches matched at the midspan batten. Even this mode has an ascending

equilibrium path.

3. Recall from Section 5.4: an equilibrium point anywhere in the a-P plane

_ above P = Py corresponds to a situation in which back-diagonals, at least
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those of the end-bays, are slack. This has also been verified directly from the
above-mentioned .modal solution and it implies that in reality out-of-plane
displacements must occur and that the assumption denying them no longer

represents the correct situation.

Once the necessity in post-slackening behavior of out-of-plane displacements
is recognized then symmetry considerations lead to a conviction that in a
globally-perfect column these displacerments must be purely torsional, i.e., rigid-
body rotations of the battens around the column centroidal axis. Indeed, such
differential batten rotations tighten 3 of the bay diagonals, say 12, 23 and 31,
and slacken the others, 13, 32, and 21 (see Figure 7-1). We shall see that under
these circumstances equilibrium is possible and moreover, that this equilibrium
is stable. Thus, upon total slackening, a slight twist restores stability while

maintaining equilibrium.

To analyze this situation eqns. (2.37) and (2.38) must be abandoned in favor
of on.es allowing rotation rather than deflection. Such equations are derived in
this chapter and are applied to analyzing the post-slackening behavior. A study
of the interaction between slackening and global buckling is not attempted since
it involves a much more complicated system of equations allowing the battens

all six degrees of freedom.
7.1 Analysis of the Twisted-Compressed Bay in Post Slackening

Consider a single bay constructed of 2 rigid battens, 3 longeron segments
pinned to these battens, and 6 diagonals as shown in Figure 7-1. Joints and bay
members are designated in the same way as in Section 2.2, Figure 2-4. Without
1oss- of‘generality‘we choose the frarﬁe i, j, k, such that k coincides with an axis
of symmetry of batten i-1 and i points from batten i-1 to batten i. The battens

are allowed an axial rigid-body translation u = uPi and a rigid-body rotation
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¢’ = Pi, where uP and ¥’ are again physical-dimensional quantities measured

with respect to some fixed global coordinate system.

batten i-| batteni
bay i
® = ®
//
\\3l ///
Y e
32N -
-

232"”/’ N
22
Z(1+u")

Figure 7-1. The twisted-compressed bay.

In a way similar to that of Section 2.2 we define the extensional and torsional

'bay-strains’ of bay 1 as
| -1
w'= P -ul) W= R -k (7.1a.b)

Let now the 'member-strains’ be defined as in eqns. (2.3). To establish relations
between member-strains and bay-strains we apply again the vectorial technique
described in Section 2.2 while neglecting second order terms in u' and Ry’ com-

pared to 1. We obtain

611 = Ogg = 033 = —u', (7.2a)
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812 = Ogg = Og1 = (U’ + \—E—LB'R'V) . | (7.2b)
821 = 032 = 813 = B(u' —~ ﬁzl‘R‘R’W') ' (7.2c)

where R and I are the column radius and bay length respectively (Figure 1-6)

and 8, the bay aspect ratio parameter, is defined by (2.5).

Suppose now that the column is on the verge of slackening: P=Ps ¢¥' =0,
Pmn = 0 (m # n). We see from eqns. (7.2b,c) that if %' > Ois introduced diagonals
12, 23 and 31 will tighten whereas diagonals 21, 32, and 13 will slacken. If v' <0
the opposite will happen. Therefore, in each bay, only three diagonals will
remain active and we can ignore the other three. As far as an isolated bay is
concerned we can assume without loss of generality that ¥' is always positive
and accordingly that diagonals 13, 32, and 21 have been snipped away. That is

why they appear in Figure 7-1 as dashed lines.

Next, we derive the bay equilibrium relations. This is done in a manner simi-
lar to that of Section 2.3, where with each deformed member we associate a
force vector Pmn =Pmn(lmn/lmn). (Imn/?mn) being a unit vector aligned with the
deformed member. Pp, are member 'stresses’ as in eqn. (2.7). Considering sym-

metry it suffices to require
__P.
+ P = -1, (7.3a)

m X (Pmm + Pmn) =0 (7.3b)

in order to satisfy equilibrium. Here rp, is the radius vector of the undisplaced
joint m of batten i-1 (Figure 7-1). It is interesting to note that since no external
torque exists the transverse components of the longeron force and its associ-
ated diagonal force must cancel each other exactly. The equilibrium relations

finally obtained are
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‘m ==, \ (7.4a)

Prm = B[1 + (1 =AU’ -

OJ"U

PmmR Y — B 7 Bl YR - pu) - 21+ 2 R ) RY T = 0. (7.4b)

212

The system is completed by joining in the members 'constitutive laws’, eqns (2.9)

and (2.11), omitting the step function in the latter.

In order to simplify eqns. (7.4) we need order estimations of u' and R¥"
Accepting the restriction dmm = 0 (h?), eqn. (2.13k), we find with the help of (7.2a)
that u' = o(h?). Similarly, we adopt for Ry’ the restriction Ry’ = o(h?). We shall
see later that within the P-range of interest it is indeed always satisfied This
done we see from (7.4b) that the quantity pmn/Pmm (m # n) must also be of

o (h?). Summing up the simplifying assumptions to be introduced we write
w=o0(h®), Ry =0(b*), DPmn/Pmm =0(b?). (7.5a,b,c)

As done throughout this work o(h®) quantitites are neglected compared to o(h°)

quantities. Accordingly the equilibrium relations (7.4) become

P , V3R
Pmm = 3% PmmR¥' ~ 57 Pmm =0 (7.8a,b)

Let us now introduce all the non-dimensional quantities and normalization rules
of Section 2.5 and, in addition, chcose to normalize Ry’ such that the

corresponding normalized quantity is of a(1):

A. — ﬁ l ]
v=z =) (R¥) . (7.7)

The notation used so far for the physical-dimensional quantities émn, Prmn, 0 ¥'
and P will from now on be used to denote their non-dimensional normalized
couhtefparts Sm; Pmn: G* {5' and 13 No confusion should arise because the
former are now discarded. The simplified bay equations for the normalized

quantities in their new notation are summarized below:
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"‘STRAIN-DISPLACEMENT" :

8mm = 2 Pp(—-1") , (7.8a)

6. = 2Pglu’ + é—;o') . m#n; (7.8b)
EQUILIBRIUM:

Pmm =P, (7.8c)

2 2 ' — .

5_)\ pmmw ~Pmn & 0, (7'8d)
‘CONSTITUTIVE' ;

£ 1 1
S = — - + — Do), 7.8

1 1
O = E(pm——z-po) , m#n. (7.8f)

The last two are copied from (2.34a,b) omitting the step function H.

To obtain the bay 'strains' equations we eliminate all the ppy's and 0p,,'s from
equations (7.8). In doing so one must bear in mind that though neglecting pmn
with respect to P or pmm is justified this may not be the case with respect to 1-P
or 1-pmm Hence, when replacing pmm in the first term of (7.8e) we use the better
approximation pmm — Pmn = P rather than (7.8c). In application, however, the
o(h?) term thus retained should be neglected in situations where 1-P is not too

small. Upon introducing C; from eqns. (4.8) the bay 'strains’ become

o Po 1 £/2 oy
u 4xPp  2Pg (1- P \ (1 -P) -Cg]. (7.9a)
1—(2/3)N%y"
= 1 £/2 iy Dy
Y= (Pg —41P) (1- P )2 (1 -P)-Cq]. (7.9b)
1—(2/3)A%y"

We now see that as long as P is not too close to 1, i.e. that the column is not too
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close to local buckling, the dimensional ¢' is indeed of o(h?). We also make the

following observations:

1. Comparing the square brackets in (7.9a,b) with the slackening load equation
(4.5) we note that ¢' vanishes, as it should, when P = Pg, and u' assumes then

its slackening value —p, /4«Pg.

2. ¥' is an increasing function of P, which means that the post-slackening tor-

sional mode is stable.

3. Eqns. (7.8) and (7.9) were derived for a bay having only three active diagoe-
nals and therefore should not be used below slackening. This, together with

the requirements u' = o(1), %' = o (1), establish their P-range of validity.
Pg< P< 1-hs/V2. (7.10)

The initial post-slackening behavior can also be easily derived. To within first

orders in h and (P ~P;) we obtain

] - po - l ¢ 82 _
=~ Gry et e Py) | (7.11a)

1 ( £

2
Y = Pr—diP 1 Y(P —P,) . (7.11b)

¥ (1 —Ps)s

A typical P—%' equilibrium path is shown qualitatively in Figure 7-2. Its

interaction with the global buckling line is not as yet known.
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- '

Figure 7-2. Pre- and post-slackening bay twisting {qualitative).
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B. ON THE EFFECT OF LONGERONS CONTINUITY

This chapter is intended to provide support to assumption (13) of Section 2.1,
namely, that treating the longerons as if they were discontinuous, their seg-
ments being pinned to each other, does not under usual circumstances affect
the resulting column behavior significantly; also, to establish the limitations of

this assumption and the changes that arise in the behavior when it is violated.

To keep matters within reasonable bounds we do the analysis under the ideal
column assumptions. There is no loss of generality in this since longeron con-
tinuity modifies only the longeron 'constitutive relation’ which is essentially the
same in the ideal and non-ideal cases. In the first section we establish the
continuous-longerons ideal-column equations. The results are then used to esti-
mate the relative importance of the continuity terms and to calculate an

approximate LBL as modified by longerons continuity.

8.1 The Continuous-Longerons Ideal-Column Equations

The sole cause for differences in behavior between columns having continu-
ous and discontinuous-pinned longerons lies in the fact that in the former the
longeron segments do sustain end bending moments necessary to maintain con-
tinuity. In the absence of such moments end-slope mismatch between two adja-
cent segments will arise due to the difference between their axial loads as well as
due to the global curvature. If the longeron segments are slender and the
causes of the mismatch are slight the moments required to correct it are small,
certainly small enough so as not interfere with global column equilibrium. This
is true also in the string-diagonaled column inasmuch as the diagonals leave
almost no shear to be carried by longeron bending. Thus, the only way through

which these moments can influence the global behavior is by modifying the
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longeron segment constitutive law. This law will now involve not only the axial
load p but also the unknown end moments. An additional set of equations, aris-
ing from inter—segnient matching, will take care of the additional unknowns. An
assumption implied in the following derivation is that local imperfection and
local deflection of all longerons and all segments occur in planes parallel to the

x-z plane.

8.1.1 The Modified Constitutive Helation: Figure B-1 depicts an imperfect seg-
ment of longeron number m, located in bay i between battens i-1 and i. Isolating
the segment and placing it on simple suppoerts as in the figure requires intro-

duction of an axial load pf™™ and the end bending moments m>{™™ and m>™™).

.

V4 S

Figure 8-1. The longeron segment.

For simplicity of notation we omit the longeron index m wherever safe. Figure
B—1 also defines the local coordinate system (£, 7), the shortening 1d;, the
deflection v, and other geometrical and structural quantities - all physical-

dimensional.

The differential equation governing the segment deflection v(§) is
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To guarantee the cohtinuity of local imperfection across battens we express it
with respect to the local coordinates as vo(¢) = (=1)lesinmé/l. Upon introduc-

ing pe=m2El/l?® and also
Xi = Vbi/Pe (8.2)

the solution satisfying boundary conditions v{o)=v(l) =0 becomes

v(¢) = g—_—l-%a—sinilf—+

1___
Pe
b sin(m-ZE) +mpoin o 2 -
+ = -mP (1-2) —mP3-]. :
pii P myy(1-77) —m ) (8.3)

Let us now introduce the following normalizations, the first three of which were

already used in previous chapters:

Bi = pi/pe =xF =0(1), (8.42)
8, = 812 /m%p%) = 0(1), (B.4b)
£=e/(VBp) =0(1), (8.4c)
7= v/(NBp) =a(l). (8.4d)
£=mg/l=0(1), (8.4¢)
i = mP/(V2ppe) - (B.4f)

The order of magnitude of ¥is according to assumption (16) of Section 2.1.

As done in previous cases we will henceforth deal with only the normalized
quantities, therefore we can omit the 'hats’ and use the old notation for the new

quantities. Eqn. (8.3) will now read
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i b sinvi(m— bsin y;
) = it sing + Ly BRSBMEERERERE — L r-) +mbe]). (6)

Twp features of this solution are of interest in this work. The first are the end-
slopes v;2; and v;® defined as the derivatives of v(£) with respect to £ at £ =0 and
¢ = 7 respectively:!
b b
Vi) 1 2g:00)  g=0n) | {mi%
|- (=1)'e + L (8.8)

, 1 —p; 6
b Pi 14 ga(x) 2ai(xy) | {mP

where the functions g,(x) and gz(x) are given by

- 3,1 _ -8, 1 1,
gi{x) = ﬂx(ﬂx ctgmx),  gx) ﬂ'x(sinﬂ'x ﬂx)' (B.7a,b)

The second is the relative shortening & (Figure B-1), calculated using dimen-
¢

sional quantities as py/(EA) +(1/1) f (v*/2)d¢, then normalized according to
]

(8.4b) and expressed in normalized quantities:

N all S SRS P
61'— 2[(1_p1)2 1]+P1+

2/

P (1) e P+ m)

+ b, 06)(mP +mP)? + ha(x:)(mP —~mP,)?, (8.8)

where the functions h;(x) and hg(x) are defined as

( _4.‘ ﬂx + Sin Tl’x ) i (89a,b)

1 Y —sing
hi(x) X X he(x) = 22 | WY —TXCOS TiX

B 4y® mx+mxcosmy '’

1
4y?
Equation (B.B) is the modified longeron-segment constitutive relation sought.
The first two terms are independent of the end moments and are identical to
those of the ideal column {eqn. (2.34a) with p,=0). The rest are modifications

due to longeron continuity.

1. The result {8.8), apart from having an imperfection term, is the same as Timoshenko's [18],
Section 1.8.
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8.1.2 The Case p;=1: First we note that as p-1 (x» 1) the functions g, g2,

h;, }md hs show the following behavior:

12, 1 1 121 1

2~ iy vyl e~ Flip -zl (8.10a,b)
2 _1 Ll 1

hl ﬂ-z (l_p)z ' h‘z (B 1]'2) . (Bloc.d)

These and other singularities appearing in (8.6) and (B.B) suggest that the seg-
ment must collapse upon p=1. Whereas this is certainly true if the end moments
are prescribed and arbitrary it cannot be the case in a continuous longeron if
p=1 occurs at only isolated segments; for then neighboring segments for which
p# 1 lend stiﬂnesé to the singular one through the end moments, in an amount
just necessary to preserve continuity. In other words, the end moments are
determined so as to exactly counteract the effect of & Using (8.10) in either line

of (8.6) or (8.8) we find the condition on the moments to be

mP+mP, = —%—(—1)%. pi=1. (8.11)

This satisfied, all singular terms in (8.8) and (B.B) intercancel and we obtain

vP =w? = —(mP-mP)/m pi=1; (8.12a)
g2 1 1
6 = 1+ (E_ F) (mP-mPy)?, pi=1: (8.12b)

Strikingly, the deflection resembles that of the second (full-wave) buckling

mode.

8.1.3 The Fnd-Moments Equations: If eqn (8.8) is included in the column system
it brings with it three additional unknowns. These are the sequences of i, mP,
belonging to the three longerons. By imposing matching conditions between
each two adjacent segments we obtain, for each longeron, the required addi-

tional equation. This one will hold for p# 1; the case p=1 is covered by (8.11).
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(i-DA iA G+DA

Figure B-2. Matching of two adjacent longeron segments (even i).

Figure 8-2 depicts two adjacent longeron segments to be matched. Each has
its own local coordinate system (&, ). As a result of global curvature the axes £;
and £, are inclined relative to each other by an angle Aw;?, where (see Wy

definition (2.2b))

w; P

>

Wi —Wi1") (8.13)

is a deflection 'second derivative’ measure pertaining to a batten point. The
slopes of segment i at batten i and of segment i+1 at batten i, both relative to

the £ axis, can now be written from (8.6), taking account of this angle,

. : -1)
Segmenti: vt = EHE - L0 mP, + 28 () mP].

1-p
S b (Ve om b b “b
egment i+1: v° = — ulr [2g:1(Xir) mP + g2(xiv1) Mt ] + AW 7
v "

Matching the two slopes we obtain®

2. Apart from the imperfection term, eqn. (8.14) is equivalent to Timoshenko's [18], eqn. (1-48).
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g—igz(xi) mp, + 2[ g, (x) + 210611 mP + gz{Xie) mBa 3 =

Pi+1—Di
1=py) (1 =Pis1)

= —(~1)e ( —Aw; . (8.14)
This is a linear, second order, variable coefficients difference equation for the

segment-end bending moments mpP. The two boundary conditions required for it

arise from the vanishing of these moments at the column end battens
mdb=0, m§=0. (8.15a,b)

For a continuous longeron, local buckling is a condition on the y;'s under
which the boundary conditions (8.15), though being homogeneous, cannot
suppress the homogeneous solution of (B.14). The form of (8.14) (i.e, g g2>0:
g20x)~ ga(Xs+1) as A-0) suggest that mp is then an alternating sequence. Else,
if the case is other than local buckling, the homogeneous solution is suppressed
and we expect mP to comprise two sequences; an alternating one driven by the
first term on the right hand side of (8.14), and a slowly-varying one responding
to Aw;P. It is advantageous to have to deal with only slowly-varying sequences.

To this end we decompose mP, for local buckling as well as for the general case,

as follows:
mP = (1) (P + uf@ (B.18)

where the u{® sequences, now slowly varying,? satisfy the following system:

T fga) P~ 21 )+ I g i) = B (B17a)
P t2206) 2 + 211 0 +e1 (i) I + gl w3 = 2w, (8.17b)

3. Except, maybe, within narrow 'boundary layers'.
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pi =0, pt=0; uPP=o0, uPP=0. . (B.17cH)

In consistence with the general approach of this work, namely, treating
sequences as if they were continuous functions, we now would like to find a sys-
tem of differential equations, with appropriate boundary conditions, the solu-
tions of which will approximate the u-sequences satisfying (8.17) at a set of
discrete points. It is convenient here to depart from the former practice of
choosing these points ét the bay modes and to choose them at the battens
instead. Accordingly, if g is a general segment-inherent quantity (e.g., P Xi» Gi)
and gf is a general batten-inherent quantity (e.g., u{'°, wP) their conversion

scheme will be the following:

q(x) «->qf = é—(qj+1+qj). (8.18a)
, : 1 1
q'(x) «» q® = Hqu—aq) or el —al), (8.18b)
[X] i 1 ¢ 1
q'(x) «» q® = %‘(Cﬁu —q) or F(q%—%”q}’.ﬁ. (8.18c)

where q; is defined as in eqns. (2.2). Using these the system (B.17) becomes

p=p(x). x=x(x), w=w(x), m=pmlx), He=ua(x); (8.19a)
X lab0mT - Ratd-w00ln = B By (8.190)
X et el + (2800 + 2001 = - Lo (8.19¢)
i (0)=0, m(m)=0; pp(0)=0, pp(m)=0. (8.19d)

These are the sought end-moment equations. The end moments themselves are

calculated from (B.16) letting " = ().

With a few exceptions eqns. (B.19) can be simplified further by neglecting the

O(N?) terms cofnpared to the O(A°) ones. It cannot be done in (B.19b) for narrow
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O{\) ’'boundary layers' near the end battens, since there u' must be large
enough to settle the dispute existing between the boundary conditions and the
behavior of the driving sequence. Another exception is the local buckling case, in
which the O(A\®) term is responsible for the non-trivial solution. None of these
reservations, however, apply to (B.ch). Thus, provided due awareness is given to

the above exceptions, we can write

—3A/T &p’
= : , B.20a
# Rg1(x) —galx) (1-p)? ( )
Us = s, V| Y ' (B.20b)

2g1(X) + 2200

(Note that 2g,—g; and 2g,+g; are positive in 0<x< 7r.) We see that under most
circumnstances u; and u, are point-functions of p, p’, and w', moreover, that

they are of o(\).

8.1.4 The Continuous-Longerons Ideal-Column FEgquations: Before we can sum-
marize the equations applicable to an ideal column having continuous longerons
we have to give the constitutive relation (B.B) a form compatible with the
developments of Section B.1.3. We take the following steps: (1) Expressing the
moments mpP in terms of the slowly-varying u{J® using (8.18); (2) eliminating up
and uPP in favor of u{® using combinations of (8.18); (3) deriving
6P=(6;,,+6,)/2; (4) using the assumptions (A/R)p'<<1-p and #"=0(A\°) to
allow neglection of high-order-in-A terms; (5) treating the batten-related
sequences of i as if they were functions of x. As a result of these operations the

following constitutive relation is obtained:

o e 3 ¥

e 1 eA  m
=gl Hre ety

+ 4hy (x) uf + 4ha(x) uf (8.21)
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 where u; and yp are solutions of (B.19) or (8.20) and the alternating factor (-1)
is replaced by the cosine function. The most remarkable finding in (8.21) is that
due to mutual cancellation between & and 6;,; the alternating term in (8.21) is

one order higher than its originator, the third term of (8.8).

The assumptions made in deriving (8.21) - unavoidable ones if progress were
to be made - are essentially thé same as those involved in (8.20). Hence there is
no point in using the more general (8.19) in conjunction with (8.21), and we can
look upon (8.20) and (B.21) as constituting part of the continuous-longerons
ideal column equations. From a global point of view, the inexactitude of (8.20),
(8‘.21) at the boundary layers and at isolated points of pj~ 1 is purely local and
cannot influence the global behavior to a significant extent. Thus, somewhat
below the LBL, eqns. (8.20) and (8.21) can be applied throughout the span. Close
to or above the LBL their validity breaks down because long stretches of p~ 1 are

expected.

Once (B.20) and (B.21) are written for each longeron, the continuous-
longerons ideal-column system is completed by adding the ideal column rela-

tions
1 (X} 1 —
p1 =P(1+2W), Pgp =Py =P(1-w), Pg(w'—w,")+ 5(511"522) =0.
and boundary conditions w{o)=w(n)=0. No attempt is made in this work to

obtain solutions of this system.

8.2 Effects of Longercns Continuity

Let us now use the results of the previous section in order to draw some con-

clusions as to importance of longerons continuity. If the longerons are truly
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discontinuous then g;=uz=0 and {B8.21) reduces to the ideal constitutive rela-
tion. The whole column system then reduces to the ideal case. We can thus esti-
mate the importance of the effect by just looking at the relative magnitudes in

(8.21) - whenever it is applicable - of the terms representing continuity.

In the region of applicability of (8.21), where 1/(1-p)®=0(1) throughout the
span except at isolated points, eqns. (8.20) give w4 and ug of o(h). Substituting
them into (B.21) we see immediately that whatever ¢ is the longeron continuity
effect on the segment shortening is of o(h®) compared to o(l) of the leading
effect. Within the framework of the present theory this effect is negligible. We
have thus justified assumption (13) of Section 2.1 for equilibrium points not too

close to the IBL.

Is that assumption also applicable close or above the LBL? We are not as well-
equipped to answer this question as we were to the previous one. Let us there-
fore obtain some idea of the answer by means of calculating an approximation

to the actual a-P locus of local buckling - the continuous-longerons LBL.

The continuous-longerons LBL is expected to have higher P-values than those
of the usual one. This is due to the aforementioned fact that segments having
p< 1, through their end-moments, can check the p=1 segment deflections from
growing indefinitely. (The two LBLs should intersect at a=0 since there all seg-
ments attain p=1 simultaneously.) The longeron has therefore to be analyzed
for buckling as an indivisible unit, the governing equation being the homogene-

ous one associated with (8.14), (8.15),
220 m2; + 2l + &1 0ae) 1 mP + ga(Xinr) mfty = 0; (B.22a)
mP=0, mi=0. (8.22b,c)

This choice is motivated by the fact that the solution must in any case be

numerical and finite-difference equations are more suitable for that.
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To obtain an exact LBL, one must solve the complete column system in order
to find the exact x(x). This is beyond our intentions. Instead we assume a
deflection shape w(x) and derive x(x) using ideal column relations. A reasonable

assumption for an £=0 column is the usual w(x)=asinx, which for longeron 11

leads to

xi = /Pl 1 +2asin (i~ ] (8.23)

There remains to solve the eigenvalue problem (8.22), (8.7), (8.23) for the eigen-

value P(a; A). The following crude shooting technique has been found effective:

1. Use symmetry with respect to the midspan to consider only one halfspan.

Integration of (8.22a) proceeds from the midspan towards an end.

2. Choose a and guess P. calculate x; from (8.23) and g;(x;) and ge(x;) from (8.7)

for all bays in the halfspan.

3. To start integrating one must have two mP's, their i's differing by at most 2.
These are chosen at two battens located symmetrically about the midspan
and symmetry then implies that they are either equal (if N is odd) or oppo-

site (if N is even). Their absolute value is chosen, for convenience, as 1.

4. Once 2 mP's are known, a third can be found using (8.22a). In this way an
alternating sequence my? is produced which satisfies (8.22b,c) only if P=Prg;,
(or higher critical loads). If P# Ppg, but fairly close to it, and if the number
of bays is large enough, the sequence seems first to converge to zero but

later starts to diverge very fast.

5. The bay number at which divergence starts is extremely sensitive to the
choice of P. So much so that if the number of bays is large enough a
sufficient accuracy of Pip. can be obtained without ever caring about satisfy-

ing (B.22b,c) but only about keeping the point of divergence far from the
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midspan. The point of divergence as a function of P serves to control the

improvement of P.

The scheme described above has been used to calculate an approximate
continuous-longerons LBL for a 19-bays column (A =0.165). This is about the
least slender column which can still be considered slender. The results are
shown in Figure B-3. It is seen that the continuous-longerons LBL is indeed
higher than the discontinuous one and intersecting with the latter at a=0.
Clearly, the P-difference (~ 7% at a=1) must be considered of o(N\) rather than
of 0(A%), (\*=2.7%). It is thus concluded that close to the LBL the error commit-
ted by treating continuous longerons as if they were discontinuous, though
small and conservative, is nevertheless not negligible according to the standards
set in this work. Luckily, equilibrium paths of real columns approach the 1BL

only past the limit-load point, which is their most practically-important feature.

Also shown (qualitatively) in Figure 8-3 is the expected behavior of the con-
tinuity error along an equilibrium path. As long as the path is well below the 1LBL
the error is small, of o(h?®). As the path approaches the LBL the error increases
gradually. Finally, as a-»>e, the error becomes that existing between the two

different LBL's, i.e., of a{h).
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Figure B-3. Effects of longeron continuity, 19-bays column.
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9. CONCLUDING REMARKS

Let us here summarize the main results obtained in the present work:

l.lEquations (2.37), (2.38) together with the boundary conditions (2.40) consti-
tute a well posed problem, the solution of which yields the displacement
unknowns u', ¥ v, and w. Once these are obtained, their substitution into
(2.31) gives the local 'strains’, 6,y The internal ’stresses’, pmn, are found
partly from (2.37e,f) or (2.38e,f) and the rest from (2.32). These solutions
are physically valid inasmuch as the assumptions of Section 8.1 are satisfied.
They are then of o(h) accuracy. A partially decoupled system, valid for
region I only, is given in egns. (2.42). For closed-form treatment the displace-
ment unknowns may be viewed as continuous functions of x and the primes,
accordingly, as ordinary derivatives. With few exceptions, only such results
were presented here. Numerical solutions, not included in this work, were
also obtained by treating the displacement unknowns and their primed asso-
ciates according to their exact finite difference definitions, normalized ver-
sions of (2.1) and (2.2). The method used was finite difference integration

combined with shooting technique.

2. If o(h) quantities are removed from (2.37), (2.38) and infinite shear rigidity
is postulated, the result is a greatly simplified system we called the 'ideal
column'. Its behavior is determined by the solution of a single ordinary non-
linear differential equation (3.2a). The ideal column turned out to be a
powerful tool for revealing the rﬁost important behavieral features of more
complicated systems and for obtaining quick o(h®)-accuracy results. It
allowed us to proceed te great depths using a closed form approach. Among
the results were: (i) The local buckling line and the nature of local buckling

in the deflected state (Section 3.2); (ii) the phenomena around the first and
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second bifurcation points (Sections 3.3, 3.4); (iii) exact solution and equili-
brium path of the globally-perfect case (Eqns. (3.18b), (3.20)): (iv) asymp-
_totic study of that solution which led to understanding of the post-buckling
behavior and to the construction of a simple and accurate equilibrium path
working formula (Eqns. (3.33), (3.31b)); (v) the latter afforded a quick access
to the column practically most important property, its maximum load-

carrying capacity Pr, (Eqns. (3.34)).

. The main subject of the work was, however, the more complicated non-ideal
column. In Chapter 4 we dealt with its behavior in the undeflected or only
slightly deflected situations. The complete qualitative picture was given in
Figures 4-1 and 4-3. Whereas in the perfect ideal column we had two bifurca-
tion points, P = Pg (global buckling) and P =1 (local buckling), two more
were found to exist in the perfect general column: P = P, (slackening, where
the column goes into a torsion mode, Chapter 7) and P = P* where the
column bifurcates globally, its bays becoming what we called critical. Pg
itself was modified to become Pg. Fach one of these loads is an upper bound
on the column load-carrying capacity. This was stated in eqn. (4.20c) which
forms a basis for optimal design of columns. The various bifucration loads in
the presence of local imperfections and their imperfection sensitivities were
analyzed in detail: Py (eqn. (4.5)) in Section 4.2 and Py, (eqns. (4.17), (4.11a))
in Section 4.4. Initial post buckling and global imperfection sensitivity were
also studied. The question of what happens first, buckling or slackening, was

answered in Section 4.8.

. In Chapter 5 we followed slackening phenomena into the a-P plane. This was
done by means of slackening loci in that plane which signified the
occurrence of their specific phenomena when intersected by proper equili-

brium paths. In particular, we dealt with midspan slackening, end-bay
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slackening, slackening onset and slackening of the back diagonals. We usu-
aliy treated these problems to a lesser accuracy, o (h°), than we did in other
topics. The picture that emerged was summarized in Section 5.5. Slackening
phenomena in the a-P plane are of little practical interest since, if Pg> Py the
validity of equations (2.37), (2.38) was never compromised by a type of slack-
ening (i.e. back diagonals) which contradicted the assumptions done in their

derivation.

5. Unlike in the ideal case, the closed-form approach succeeded to construct
only a partial picture of the behavior of the general deflected column. The
most remarkable item achieved is the complete solution for the all-region-I,
locally-perfect case. The behavior discovered, though quantitatively close to
that of the ideal column, was qualitatively very different. The onset of criti-
cality locus, eqn. (8.8b), was found to constitute an upper bound on the
column strength in addition to the one imposed by the LBL. The load associ-
ated with it, P - a deflected generalization of P* - was given by eqns. (6.14)-
(6.18). Those details of behavior we did obtain, together with the ideal-
column results, allowed us to construct, by way of interpolation and general-
ization, a somewhat artificial but very useful equilibrium path formula
(egns. 6.27). Comparison with exact numerical solutions showed it to per-

form quite well.

6. The behavior in post-slackening in cases where slackening precedes global
buckling was analyzed in Chapter 7. It was found that the column goes into a
torsional mode in which each bay is independent of the others, three of its
diagonals are slack while the other three are taut. This mode was found to

be stable and to require only negligible diagonal forces.

7. In deriving equations (2.37), (2.38) the longerons were treated as if they were
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discontinuous, their segments being pinned to each other, i.e., the segments
énd bending moments were assumed to be of negligible consequence.
Chapter 8 attempted to verify the validity and establish the limitations of
this assumption. It was found to be valid (i.e., to cause an o(h®) error) as
long as the equilibrium path did not approach the LBL too closely. If it did
the error became of o(h). From an engineering standpoint, however, the
important (limit point) part of the equilibrium path is usually well below the
LBL. By calculating the buckling load of a continuous longeron bent globally
in a prescribed sine shape we also obtained an indication as to the way the

LBL is modified by longeron continuity.

In concluding we would like to mention that results obtained by pure numeri-
cal solutions of eqns. (2.37), (2.38), (i.e., finite-difference integration combined
with shooting technique), and which could not be incorporated in this work,
brought up neither new facts nor contradictions to the body of results obtained
in closed form. The ideal-column theory represented by eqns (3.33), (3.31b) was
found to be extremely accurate compared to numerical results employing the
same assumptions. Also, the qualitative picture of diagonal slackening in the a-P
plane was fully confirmed. On these grounds it is believed that although the
analysis has been in a sense incomplete (e.g., no solutions consisting of multiple
regions were attempted) the picture obtained is by no means lacking in essen-

tials.

The greatest limitation of the theory is its inapplicability {or its uncertain
applicability) to the important cases of columns having longeron segments
which are rigidly of flexibly clamped to the battens. It seems that the methods
used here (see preface to this work) are in principle unsuited to tackle this

problem and heavier numerical involvernent must be allowed.
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What probably can be done but has not been attempted in this work is the
invéstigation of the triplex interaction between global buckling, local buckling
and slackening, especially when P* ~ Pg ~ 1. This requires a system of equations
broader than (2.37), (2.38), which accounts for all possible displacements, out-
of-plane ones as well as those included in (2.37), (2.38). The future may see this

work done,
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