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ABSTRACT

We discuss the implications of a theory in which scale and
chiral invariance are spéntaneously broken, and the dilaton o appears
as a mixture of the two isoscalar members of the scalar nonet. From
standard assumptions for the conformal properties of the axial-vector
current, we predict the ratio of the omw and oNN qoupling constants,
and test the hypothesis of f-dominance. At first, we neglect the ef-
fects of scale violation. Thén, the calculated width of the dilaton,

1“0_, appears to exceed the limit given by the Adler-Weisberger sum
rule for 7w scattering, while f-dominance seems to work. Using
the method of collinear dispersion relations, we estimate scale-~
breéking effects, which are found. to be large. In the real world, our
result for 1"0_ agrees with other expectations, both experimental and
theoretical. However, the spin-2 gravitational radius of the pion is
found to be double the prediction of f-dominance. This is consistent
with experimental indications that f-dominance fails. We discuss
meson-baryon scattering and its relation to parameters measuring the
breaking of chiral symmetry in the energy density. Our interpretation
of a recent result of Cheng and Dashen is that scalé invariance is
spontaneously broken, and chiral SU(2) x SU(2) is a much better
summetry than SU(3). By requiring cbnsistency‘*;with a sum rule of
von Hippel and Kim, we find that data for 7N scattering are not

consistent with the dimension of the chiral-violating scalar being -1.
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1. HISTORY AND PHILOSOPHY OF BROKEN SCALE INVARIANCE

The investigation of scale and conformal transformatior;s
and the associated quantum number, dimension, began in 1910.
However, only in the last two or three years has this subject
received widespread attention. After noting the main historical
developments, we discuss the modern theory of broken scale
invariance, which forms an important extension of current algebra.
The chapter concludes with some introductory remarks about our
investigation and its relation to other aspects of the theory.
Elementary technical remarks which complement the main text can

be found in Appendix A.

I.1. Rdle of the Stress-Energy Tensor

There is an elementary rule, known to all students of Physics,
which states that all equations should balance dimensionally. Adopting
the natural units A= 1, ¢ = 1, the only independent dimensional unit
is that of length, L; it has the same dimensions as time and mass.
The Schrédinger wave function Y¥(x) has the dimensional character
L-3/2, since !'Efd3x‘y* ¥ is a probability. In the Schrddinger equation

for a hydrogen atom,

2

v ez wt"’) - . 9 g 1.1
o= 4 l_ﬂ v(t, x = igp ¥(tx) (1. 1)

5/2.

both sides of the equation have the dimensional quality L~
One must not confuse these elementary remarks with the more

sophisticated meaning that we shall attach to the term, "dimension'.
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We shall investigate the hypothesis that the world of strongly inter-

acting particles* is approximately invariant under scale transfor-

mations

= , >0), 1.2
X, E P, (p>0) (1.2)

and the associated special conformal transformations

xH—»x;L = (XH - CHXZ)/(I - 2¢c.x + czxz) . (1.3)

These transformations correspond to unitary transformations U(p, c)
on the vector space formed by solutions of the equations of motion
under consideration. Dimension is a property of linear operators on
this space. |

Taking Eq. (1.1} as an example, linear operators on the
vector space formed by the functions ¥(t, X) are constructed from
‘;c’, t, 8/852, 8/81:, and constants. The symbol for mass, m, actually
represents the linear operator ml, where I is the unit operator.
So, although m is a quantity of the type L"1 in length units, it is
assigned dimension zero, according to our use of the term. The
dimension of an operator is measured by its dependence on
%, t, 0/8%, 8/8t, Thus, Eq. (1.1) is not invariant under the
transformations U(p, c), because VZ/Zm has dimension -2,

while ez/ 1 X l has dimension -1l.

*Electromagnetic, weak and gravitational interactions are treated in -
the lowest order of perturbation theory.
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The group of conformal transformations on Minkowslki space
consists of Poincaré transformations, (i.e., 3-rotations, boosts,
and translations), and the transformations given by Egs. (1. 2) an&
(1.3). Conformal transformations were first considered shortly
after Einstein formulated the Special Theory of Relativity in 1905.
Ignoring gravit;}, relativity requires the equations for closed physical
systems to retain their form under Poincaré transformations. It was |
gradually realized that the formulation of a relativistic theory of
gravity would involve the consideration of all coordinze transfor-

(1)

mations. This prompted the discovery of Bateman and
Cunningham(l) that the largest group of space-time transfor-
mations which leaves Maxwell's equations invariant is the conformal
group. This property results from the absence of dimensional
constants in the tﬁeory—-photons have zero mass and couple to the
dimensionless quantity, charge.

The observation of Bateman and Cunningham means that

Maxwell's equations have the same form in uniformly accelerated

frames as in inertial frames . By substituting X, = (t,0,0,0)
and ¢ = (0,0,0,-%a) in.Eq. (1.3), we obtain x'3= 1 a'r'2 in terms
of the proper time 7' = %' in the primed frame. This corresponds

to uniform acceleration a in the x?; - direction, i.e., hyperbolic

motion (x'3 + aml)Z - xéz = a—z in x'~space.

The theory of broken conformal symmetry must not be

confused with other extensions of these considerations, such as

"Conformal Relativity"{3). In conformal relativity, one imagines
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that masses transform like 8/8x, so the equations of motion for
free massive particles, such as the Dirac equation (i@( -m)¥=0,
are invariant. Such transformations may be worth consideration in
classical physics. However, in quantum mechanics, each value of
the mass corresponds to.a different vector space, so Conformal
Relativity cannot be used as a symmetry theory for the vector space
- which describes the states of systems of elerﬁentary particles.

It should also be noted that the conformal transformations
to be discussed here are not general-relativistic transformations.
From the point of view required by "General Relativity', the effect.
of gravity would have to be included in all equations such that

covariance under all coordinate transformations on general-

relativistic space is achieved. The proper time dr= %H\)(X) dxMPdxV
is invariant under such transformations. These properties are not
shared by the theory of broken conformal symmetry. The group of
conformal transformations on Minkowski space is not a symmetry
of the world, although it is a symmetry of theories of massless free
particles such as the photon. In Egs. (1.2) and (I.3), x}'L is a
4-vector in Minkowski space, so an element of proper time dT is

[ -2
given by dxi - dx . In terms of small increments dlx, dZX at x

which become dlx‘, d,x' at x', Egs. (1.2) and (l.3) imply

d,x'-d,x' = pzdx-d

1 ZX y (1. 43.)

(1 - 2¢'x + czxz)"2 dlx-dzx , (1. 4b)

o
x—
o
N—
n
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respectively. Thus drt is not invariant under scale or special
conformal transformations. On the other hand, angles are locally
preserved, since dlx;.-dzx/(dlxz dzxz)% is an invariant. This
property accounts for the name 'conformal'’.

For our purposes, gravitational effects are regarded as
external, which means that gravitational fields are not operators on’
the vector space of particle states. The influence of gravity is
measured by the local stress-energy tensor operator BH\)(X)’ in
first-order perturbation theory for the gravitational coupling. The

coupling of an external field 6gpv(x) to a system of elementary

 particles is given by the action

7

1 f 4 pv (1.5)
A, o o= 2 [ a%oe ,
b2tz ), 0 By

wnere 0‘1,0'2 are space~like surfaces. This assumes that the
linearized approximation of the relativistic theory of gravity remains
valid at microscopic distances. Poincaré invariance is ensured by

the conservation laws
et =0 , (1. 6)

oML =9 -8 =0 , (1.7)

where

(1.8)
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is an angular momentum density, and the generators of Poincaré

transformations are

X .
Pp = j‘d xeop : (1-9_)‘

3
M = . 1.10
ay= J (1.10)

Elementary properties of matrix elements of ep\)’ and the
corresponding canonical Lagrangian formalism are discussed in
Appendix A. Many textbooks on introductory field theory mention a
non-fundamental quantity called the canonical energy-momentum
tensor, T # T . When written in terms of T _, an angular

oY) Vi BV
momentum density contains a model-dependent term which is
interpreted as a spin angular momentum density. Details of the

relation (4)

S

Appendix A.

between T and 6 may also be found in
Y BV .

In 1921, not long after Noether(5) observed that a
conservation law is implied by each invariance of the action integral,
‘Bessel-Hagen(é) obtained the conservation laws which are required
by conformal invariance of Maxwell's equations, (apart from Egs.
(1.6) and (1.7), of course). In‘}ariance under conformal transfor-

mations involves ''dilation’ and ''special conformal'' currents:

AQH(X) = xV elJ-\) s (1.11)
NI C R S EN

o i . (1.12)

Bessel-Hagen's laws for Maxwell's theory are



a“su = 0 ) (1.13)
AY)
e X,y = o , (1. 14)

i.e., the trace eu“ of the stress-energy tensor for photons vanishes.
Until a few years ago, work on the conformal group was con-

fined to extensions of the discoveries of Bateman, Cunningham, and

{7)

Bessel-Hagen to other theories for free particles. The only sur-

prise was the observation of McLennan and I—Iavas(7) that the usual
canonical theory for massless spin-0 mesons cannot be formulated

in exactly the same fashion. According to the textbooks, (8) the

Lagrangian density %(896)2 leads to the expression 8H¢ 8v¢—%g o )2

#V(
for the stress-energy tensor, which is not traceless. Following the
"dictates' of canonical variational theory for the lLagrangian density,
they included extra terms in AQu and ng, so the direct connection

between the vanishing of 9$ and scale invariance was lost. This

(9)

approach was being followed as late as 1969.
In 1962, I—Iuggins(lo) pointed out that the standard formula for

9 N derived from a Lagrangian density arbitrarily disallows terms

2, ,2

like (8“8\) -g . 987)". The addition of such a term does not affect

uv
the expressions (1.9) and (1. 10) for the Poincaré generators or the

conservation equations (l.6) and (1.7). With a suitable choice of
coefficient for the new term, an expression for GI-W which satisfies

Bessel-Hagen's conservation laws is obtained:

2, .2

2 1
ew = a‘u¢ 5,9 - % guv(aqﬂ) - g(a“av-gw 0%)¢"” . | (1.15)
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Then we have 9““ = 0 for the zero-mass spin-0 field d. This "new,

(11)

improved'' stress-energy tensor was first proposed by Gursey

in a different context. It was resurrected by Callan, Coleman and

(12) (

Jackiw (CCJ) and Brown and Gell-Mann 13) because of the con-

nection with conformal transformations. CCJ showed that, for re-

normalizable field théories, the new improved eIJV has finite matrix

' : *
elements when renormalized, unlike the old eu\)'
The construction of the generators of dilations and special
(14)

conformal transformations was initially tackled by Wess, using -

the old 9“\). Given the new, improved GUV we can now write down the

dilation operator
1.3 _ 3
D(x)) = Ja xx“ao# = jd x 8 , (1.16)

and the special conformal operators

_ 3 A 2 .3 -
K (x,) = fd x (235 00y = % 0,,) = Id xj{uo (1.17)

Eqgs. (1.16)and (1.17) can be.understood from another point
of view.(ls’ 16) Instead of applying the infinitesimal transformations

represented by 6p and 6c“, we can impose the potentials

’

5gw = -28p AN (for x, 7 %, = (1+6p) Xu) , - (1.18)
68“\) = -48c.x AN (for x“"x;‘=xu— 6CI-1X2+2 dc.x Xu) ,  (1.19)

Strictly, the extra term should be written (8“8\)- guv 82)(¢ + 6)2 s
‘where € is an infinite constant cancelling (¢ o» Which is alsoinfinite.
The finite constant ¢’ = ¢ - <¢>o is not determined by the proof of
renormalizability.
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with a corresponding change 6A1’ 2 in the action of the elementary
particle system given by Eq. (I.5). We identify (SAI, o with the
change in action caused by the non-conservation of the generators G
for transformations represented by the parameters 6« according to

(17)

the action principle

8A; , = (G(1) - G(2)) ba (1.20)

’

Therefore, taking &a = &p, 60#' we have

o)
2
D(2)-D(l) = f a*x e““ (1.21)
9
O2 4 v
K @)K = L d*x 2x 8 (1.22)
1

(For example, the change in coordinates represented by 6c“:(0,0, 0,36a)
corre5ponds. to uniform acceleration 6a in the z-direction. Equiva-
lently, one could suppose that a constant force is acting. The corre-
sponding potential, %6g00= - daz, follows directly from Eq. (1.19)).

The integrands of Egs. (1.21)and (1.22) may be written

ok = gH 3" =2x 0
o H ’ Koy =22, 8 ’

(1.23)
so, apart from additional conserved operators, Egs. (1.21) and
(1.22) imply Egs. (1. 16)yand (1.17). The conserved operators are
eliminated by requiring a consistent iree field theory at t = £ .

In the limit of scale invariance, D= jd3x @uu= 0, we can actu-
ally infer 9:’ = 0 because of the theorem (Apbendix A) which states
that jd?’x s(x) =0 imp.lies s{x) = 0 if s(x) is a local, spin-0 opef-

13 . . . . . .
ator.( ) Therefore, scale invariance implies conformal invariance,
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The scale transformation (l.2) corresponds to a transformation
U(p) = exp [i D(x ) log p] (1.24)

on the vector space of particle states. The dimension { ofa (suit=

ably chosen) field 9{ (x) is specified by
-1 -
d(x)- ¢ (=) = Ulp) 4(x) U(p) ™" = p L d(pxm) . (1. 25)
The infinitesimal form of Eq. (1.25) is

i[D(x ), #(x)] = (-4 +xdFx) . (1. 26)
Because of the canonical commutation relations

[4(0,%), 6 4(0,0)] = ieF) (1.27a)
v0.E), T0.01, = v 8@ (1. 27b)

free fermion fields ¥ have dimension - 3/2, while free boson
fields ng have dimension -1. To obtain the latter result, it is
necessary to explicitly check that ao¢ has dimension =2, since
the time dependence of D(xo) does not always permit the orders 6f
operation of D(xo) and 80 to be interchanged. Further details
are given in Appendix A.

. In general, special conformal transformations with finite cp
do not preserve the sign-of (x-y)z, where x and y are any two

points in Minkowski space. (14) Therefore, care is needed when
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attempting to interpret the corresponding unitary transformations

because of trouble with the causality condition
- 2 .
[A(x), B(y)._ = 0 , (for (x-y)  spacelike), (1.28)

where A(x) and B(y) are dynamical observables such as currents.
However, infinitesimal transformations 6Cp do not display this
unfortunate behavior, so causality places no restrictions on the use

(9)

of equal-time commutation relations of the form

. . N N2
iR (x ), #x) 1= n, ¢ - Zxa(&lgap+ ip, ) F F (@xpx -k LN

(1.29)
where the nilpotent matrices KH characterize the conformal

representation to which" g4 belongs, and EH\J is the spin matrix

of &:

ilM,, > g(x) ] = (2,8, = % 3) g(x) - izw;zf(X)- (1.30)

v

I.2. Early Applications

The first attempt to connect the conformal group with experi-
ments in particle physics was made by Kastrup. In a long series of

papers, (18) he tried to apply the idea(14)

that masses should be un~
important at high energies. In field-theoretic terms, the conformal-
invariant kinetic energy terms are supposed to dominate the non-
invariant mass terms in the Lagrangian. Then, treating the conformal

group as an approximate degeneracy symmetry of the world, he

deduced that high-energy amplitudes should be roughly ""conformal
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invariant' in momentum space. Let us summarize the evolution of
this point of view. .

Evidently, belief in this reasoning leads to the expectation
that high-energy amplitudes depend only on d;lmensionless functions
of the momenta‘. " For example, if A(s,t) is the amplitude for the

scattering of two spinless par’cicles,*
A(s,t) = £(s/t) , (s, t large, ) (1.31)

is obtained, implying that A is energy-independent at large scatter-
ing angles. |

In order to derive Eq. (l.31), it is essential to assume that
the limit in which all masses vanish is smoothly connected to the real
world. The validity of this assumption will be questioned later. The
zero-mass limit is the limit of scale invariance, (6;‘} = 0, if no

HeK
scalar mesons are coupled to the vacuum via 6 . The amplitude

Y

ANV = (p3,p416u, \)lpl’P2> can be expanded in powers of k = P3 + Py

-py - Py according to Low's method ‘for brems strahlung.(lg) The

-1

0k} terms, A DOFP

wo are represented by Feynman graphs in which
6“\) hooks on to external lines. The non-singular term, A;\O)ntaCt s
given by
_ " , Born contact 2
A#V = AH\’ + A’N +  0k™) |, (1.32)

is determined by the conservation laws (l.6) and (1.7), which may

be written

. 2 2
For p; +p, ~p3 tpy, we define s = (pl +p2) , t = (p3 -pl) .

*ok
Discussion of this alternative begins in Section I. 3.
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p '_ ; |
k A#V = 0 , A“V AVIJ' , (1.33)
in momentum space. 'The condition of scale invariance, A““ = 0,
requires
0 9 > _
(Sé—s— + tgg Als, t) = 0 (1.34)

which is equivalent to Eq. (l.31).
Kastrup fu'rthe'r speculated that the large s behavior given
by Regge pole theory at small t results from approximate conformal
invariance. The t-depehdence of amplitudes ’wa.s assumed to be com-
pletely changed by the effects of finite masses, since Regge behavior
is obviously not compatible with the t-channel dependence of Eq.
(1.31).
The problem with this idea is summarized by the fact that
(20)

Regge behavior was originally observed in solutions of the
Schrodinger equation, which severely breaks scale invariance. The
situation is less clear in relativistic field theory. Because of re-~
normalization, amplitudes contain. logarithms as well as powers of
the momenta and masses, so it is a question of whether the leading
term at large s contains log s or not.

(21)

Now, it has been known for a long time that there is a

connection between renormalizability and the dimension of an inter -
L

action. The Lagrangian density of a renormalizable field theory

contains interaction terms with dimension £ ) -4. Examples are

%*
The situation for nonpolynomial Lagrangians is reviewed in Ref.

22. Study of the corresponding amplitudes at high energy is just
beginning.



-14=
)\Cp3 and e A“ J“, which have dimensions -3 and -4 res1:>ec‘cive1y.>:<
For superrenormalizable theories, (i.e., both the bare and physical
coupling constants are finite), the dimension is greater than -4.

In early investig;.a,tions of large-~s behavior, classes of diagrams
were summed by specifying the kernel of a Bethe-Salpeter equation. |
Superrenormalizable )@3 theory was found to give Regge behavior,
whereas similar examination of theories in which only mass terms

Y (23)

break scale invariance gave s¢ log’s at large s, so it seemed
that the controlling factor is the manner in which scale invariance
is broken. However, the presént status of the subject is that some
of the diagrams previously thrown away become unexpectedly im-
portant at large s when summed. In a rigorous study of perturbation
theory for quantum electrodynamics, Cheng and Wu(24) have obtained
logarithmic behaﬁor at large s, (contra Kastrup's suggestion). In
KCP?’ theory, a power law in s is obtained only if A is less than a
critical value.(zs) Since this power law is merely due to the Born
term dominating at large s, we doubt that these attempts to connect
Reggeism with broken scale invariance will prove profitable. Alter-
native schemes have been proposed, but the status of these sugges-
1.:ions is shrouded in controversy.(26)

Renormalization involves the introduction of a cutoff mass M
which breaks scale invariance., Since the limit M- o is taken at
some stage in the calculation, it is not surprising that scale invariance,

(27)

unlike gauge invariance, camnnot be preserved by this procedure.

We refer to the unrenormalized dimension in this paragraph.
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Barring the presence of arbitrary cutoffs, the logarithmic terms
blow up in the limit of zero mass. Part of the infinity corresponds
to the emission of an infinite number of massless particles
accompanying each external particle which was well-defined in the
massive theory. This phenomenon is called the "infrared problem'.
It causes single-particle states and the S-matirx to be ill-defined in
this limit,*® and destroys the belief that all high~energy amplitudes
should be approximately conformal invariant in momentum space. (28)
Broken conformal invariance cannot be treated as an approximate
degeneracy symmetry for on-mass-shell amplitudes.

In particular, Eq. (l.31) must be abandoned. For example,
infrared contributions' dominate the radiative corrections to
electromagnetic écattering processes at high energies and large

(29) It might be supposed that Eq. (l.31) could

momentum transfers.
be saved by ''"going off-mass-shell'’. By avoiding particle states and
considering vacuum-expectation values of T-products, the zero-mass
limit can be discussed' because there are no emitted particles which
can initiate the infinite bremsstrahlung. However, when the zero-
mass limit is applied to ‘the vacuum-expectation value representing an
off-mass~shell extension of <p3, Py 1 eH\)l P> Py >massive’ the

analytic behavior p,lz about the on-mass~shell point pz‘i =0 is

destroyed. (30) Once again, logarithmic terms appear, this time in

o,

“There is one uninteresting exception, which is obtained by supposing
that all interactions can be turned off before the masses vanish. Even
then, the zero-mass limit need not be smooth--e. g., vector fields
have mass singularities.
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the form log (pzi/pi). They invalidate the derivation of Eq. (1. 31),
because they do not scale.

In 1966, Kasti'up(?)l) recognized that his earlier work could
not provide a good description of high-energy processes because of
the infrared problem. Therefore, he considered amplitudes in
which soft mesons are emitted in addition to the two prima.ry
particles being scattered. Inthe CM frame, the differential cross

section for the emission of N mesons was written

asN/aq = P(E, 8) 40 T/ an (1.35)

Nt
at large energies and scattering angles E, § of the primary particles.
The probability distribution PN of the soft mesons was assumed to

be of the Poisson type:

P

qE, o) o NE: 8)/ (1.36)

N(E.8) = NE,e)

where N(E, 8) is the mean multiplicity of the secondary mesons at.

(E, 8). By interpreting the total ("'inclusive') cross section,

dTOT

d /dQ , as the "non-infrared" contribution to do‘N/dQ in

Eq. (1.35), with all long-distance infrared effects incorporated in

P Kastrup speculated that it would mainly depend on short-distance

N’

interactions, which were supposed to be conformal invariant:

46T qq = 1ge)|%/EE . (E, s large) . (1.37)
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This intuition was guided by examples from electro-
magnetism, (29) with one important difference. Vacuum polarization
causes the short-distance behavior of quantum electrodynamics to be

(32)

modified by logarithmic terms. Thus Coulomb's L'aw becomes

V(r) = _49:.1:_%_ [1 - -_g-%'(log mr + 5/6 + log\)ﬂ + O(QZ) ’

(v=1.781...) , (1.38)

at distances r much .smaller than the Compton wavelength of the
electron. Therefore, logarithmic dependence is not necessarily due
to il}frared effects. For the purposes of Kastrup's argument, it must
be supposed that strong interactions do not contaminate the leading
r-singularity with logarithms.

Eq. (1.36) is a separate proposal which corresponds to
independent emission of soft mesons., However, most of these soft
mesons are pions, which c.arry isospin, so their emission is
constrained by the requirement that the production of exotic states
be damped. Therefore, it is not clear that PN should be givenby a

(33) (34) are not

Poisson distribution, although experiments
“inconsistent with this possibility provided that PO is treated as
the probability for non-diffractive elastic scattering.
Scaling laws like Eq. (1.37) have become the subject of
intensive investigation recently, The processes involved are

typically of the form



-] 8=

A + B - C + oanything , (1. 39)

where B is a hadron and all energy variables are large. The
observation(35) Qf scaling laws for deep inelastic electroproduction
(A = C = electron, B = proton in Eq. (1.39), ) together with Bjorken's
explanation(36) of the phenomenon, were foll‘owed by a large number
of papers in which the scaling laws are '"proved" in various models

or from various assumptions and approximations. We refer to

review articles(37) for comparisons of these methods, and restrict

our attention to the connection with broken scale invariance.*

I.3. Modern Formulation of Broken Scale Invariance

{39) (40)

A few years ago, Mack and Wilson replaced these

qualitative observations with concrete proposals which provide a
natural extension of current algebra, broken symmetry, and the
corresponding set of low-energy theorems. These proposals,

(13)

together with the .WOI‘k of Brown and Gell-Mann on the manner
in which conformal symmetry is violated, form the basis of our
present-day understanding of the subject.

(41)

The central quantities in current algebra are the octets
of vector and axial-vector current densities IFE and 315: (a=1...8),

which arise in electromagnetic and weak interactions of hadrons. In

s :

In view of the previous discussion, analyses in which the conformal
group is treated as an approximate degeneracy symmetry in
momentum space cannot be taken seriously. These papers are listed
and criticized in the review articles by Carruthers (Ref. 38) and
Wilson (Ref., 28).
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first-order perturbation theory for the electromagnetic and weak
coupling constants, hadronic amplitudes are proportional to matrix

elements of the electromagnetic current density

X (1.40)

and the weak current density

J:iv(x) - (351,%'12 4 351H+ 12.) cos & + (g‘i+ i5 + 35i+ 15) sin
: (1.41)
respectively, where 8~15° is the Cabibbo angle. (42)
The time-components of the currerﬁ: densities may be
integrated to form the sixteen charges
Fa(x y = r d3-x 7 (%)
o . “o ’
(1.42)
a _ 3 a
F5(xo) = er x Eso(x)

The lack of conservation of most of these charges is indicated by

dependence on the time X . Only isospin '1': = (Fl ) FZ, F3) and

2
hypercharge Y = I3 FS are conserved by strong interactions. The
A
group SU(3), which is used to classify particle states according to
the "Eightfold Way", (43) is generated by the octet of charges, F&.
(41)

The basic postulate of current algebra requires that the

SU(3) generators obey the SU(3) algebra even when they are not
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conserved, and further, that this property extend to an SU(3) x SU(3)

algebra involving all sixteen charges:

[F""(xo), Fb<x0)]' = 1 7%

it

[Fa(xo), F};(xo):\' i P FSx) | (1.43)

i PP rCx ) .
O

[F§<x0>, F‘;(xo)}

The coefficients fabc are the structure constants.of SU(3).

Applications of Eq. (l.43) have been reviewed by Adler and Dashen(44)
and Renner. (45) .
No such postulate is possible for the conformal group.l(l3)
Equal-time commutation relations such as(46)
i [Po’ D(Xo)] Co= D(xo) - PO ) (1. 44)
i [M D(x )] S (1 45)
o’ o . i ? :

are required by the known properties of eH\) under Poincaré
transformations, so the exact conformal algebra can be satisfied
only in the limit of exact conformal symmetry, 9: - 0. A complete
account of the broken conformal algebra is given in Appendix B.

- Equations such as (1.45) show that D(Xd) and Kp(xo) do nbt

have the Lorentz behavior indicated by indices such as p because
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they are not conserved. The definitions (1.16) and (1.17) of these
generators involve the plane of integration, X = constant. Taking
X, = 0 for simplicity, boosting corresponds to rotation of this plane
about x=0 towards the light cone, so the generator changes by an
amount which can be determiﬁed by Gauss's theorem. In general, if
d(x) is a local operator with known behavior under Lorentz

transformations, the operators

dy® =1 [Dix) - =P, =] . (1. 46)

i [KH(X ) - 2x™D(x ) +2x MG'H+ZXHX-P-XZP“, q/(x)] s
° P e a (1.47)

k;(x)
are also local, but may have obscure properties under boost

transformations. Similar considerations were involved in the

formulation of the local generalizations

[Fa(xo), gﬁ(x)] = i £2PC :g;(x) , etc., (1.48)

of Eq. (1.43). Corresponding to the fact that the non-conserved
charges defined in Eq. (l.42) are not scalar or pseudoscalar

operators, the assumption that the equal-time commutator in Eq.

(1.48) is a vector or pseudovector implies the conditions(44’ 47)
3 M S b
fd7xx 8 3.(0.%) . 3, (0] = 0, ete (1. 49)

Similarly, if the gradient terms in
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d?{(x) = -14(x) + grad. terms (1.50)

are supposed to be absent, the condition

]
o

[ax 0¥ (0,3) . 4(0) (1.51)

(48)

is obtained. The example ¢ = 3\) has appeared in the literature.
The nature of the breakdown of a symmetry can be specified

by giving the symmetry properties of the appropriate current

divergehces. In Gell-Mann's theory of broken chiral symme'try, (41)
the energy density is written
A T L (1.52)

where goo is invariant with respect to chiral SU(3) x SU(3), and
u and ug belong to a set of scalar densities U, and pseudoscalar
densities vy (b=0... 8), which form a (3,3) + (3,3) represen-

tation of SU(3) x SU(3):

Py O] =1t
P ), Vb(X)] I
:Fg(xo), ub(x)l _ ; gabe ) (1.53)
Fie), ] = 160 0w
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bc C
are symmetric in

where the Clebsch-Gordan coefficients a2
a=1...8, b,e=0... 8, with dObC = ,J2/3 ébc' The assumption
that the equal-time commutators in Eq. (1.53) are spin-0 operators

implies the same property for [eoo(x), F(%)(xo) 7, which can there-

fore be specified by integrating over d3x and using the theorem of

Appendix A for spin-0 Operators;(l3’41)
. ’ a . _ M.
t {GOO(X)’ F (Xo) } - 9 gp(X) ’
[ : (1.54)
. a _ M. a '
' Leoo(x)’ FS(XO)] = 9 35}.1,(}{)

The SU(3) x SU(3) properties of the current divergences follow by
writing 0% as a linear combination of the u's or v's, using Egs.

(1.51), (1.52), and (1.53); e.g.
oPg @ = a2t c a o (o1,2,3). (1.55)

Thus, the deviation of ¢ from -,/2 measures SU(2) x SU(2)

(49, 50) Gell-Mann, Oakes, and Renner(49) obtained the

violation.
value ¢~ = 1.25.

The feature of this theory which influences our work is the

absence of a term

s = (808 -

N KNEI-IN %) s(x) | (1.56)
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in GH\), where s(x) is not invariant under SU(3) x SU(3) or gauge
transformations. The existence of S]M) would imply that Eq. (1l.54)

is invalid, and even our basic assumption

[F5(0),D(O):| = 0 (1.57)

" would no longer be true; (i.e., :3«’5>\ would have mixed dimension),
This point is discussed at length in Chapter IL

The breakdown of scale invariance has been similarly
treated. (13,40) The energy density is decomposed into the scale-

invariant term, eoo’ and scale-violating terms wn:

9 = 6 + W ’ - (1.58)

with dim § = -4, and dim w_= /z,n# -4, Eqgs. (1.44) and (1.58)

imply

. L : 3 ’
D(x) = jd3x ei’; = 3 J'dx (2, +4) w_ . (1.59)

" Therefore, the assumption that 12"1 (}?,n + 4) w is a scalar density is

a necessary and sufficient condition for the theorem(13’ 16)

e: = T 4w, | (1. 60)

to hold.
Eq. (1.60) is often called the "Virial Theorem' because it
resembles the well~-known theorem of classical mechanics. (51) The

virial, \ = q-p, where (g,p) are canonical momenta, is the classical

©



-25=

—_ -

analogue of the dilation operator D(0) = [' d3x x eoi(o’ X) ~ =ix-V .
Denoting time-averaging by ( ), (XY usually vanishes, which
implies that the Hamiltonian H = H(q,p) satisfies {p- %%—H)= (q'ai-qH e

For H= pz/Zm + V(¥), with V = %V} , (V = homogeneous

£

function of degree 4 in T), the classical virial theorem is
(B+T) = 2(T) = (F-IV) = %t V,> (1.61)

where T is the kinetic energy.

The majority of the many successful applications of current
algebra depend on the hypothesis fhat the axial-vector current is
partially conserved (PCAC). (52) According to this hypothesis,
(8“35}4‘} satisfies an unsubtracted dispersion relation in the square of
the momentum transfer, t ; near t= 0, the dispersion integral is
dominated by the pole of the appropriate 0" meson, {7, K, or n).

For example the relevant matrix elements for nucleons are

(N(P + 3k) |3 | N(P - 2K))

- . 2, . 2 '
= @ (P + iKk) %Ta[_ by vy Fy (%) - ik, vgF (K9 | (P -3k,
(1. 62)
and
1 A @ 1 = u 1) 1.2 2 2
(N(P +3K) [8735 IN(P - 3k)) = G (P+3k) §7 vy w(P - 3k) Do(k™)

(1. 63)

with a=1,2,3 and
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DN(t) = ZI\/LN FA(t) + t FP(t)
m_ 8
= "N ;NN + ;lr- e , ——————dt'(f,rrl_%t') (1.64)
fn_(mTr ~t) ' (3rn1T)
The pion decay constant,. fn" is defined by
o 3 _ . -
(q) I3, [0y = -iqy/2¢ (1.65)

. + . —
“/—Z-ngN is the pamw coupllng. constant, and FA(t), F P(t) are the
axial and induced pseudoscalar form factors of the nucleon. When
the continuum integral is neglected at t= 0, Eq. (1. 64) implies

(53)

the Goldberger-Treiman relation'

f

r = Ernn/ (M

N 8a) o (1. 66)

where g < FA(O):’_ 1.24 is the ratio of the axial-vector to vector
coupling constants in neutron 8-decay. Similar relations may be
deduced from K and n PCAC. Adopting the no-subtraction
hypothesis, the distance of the pole from t= 0, (i.e., mZ(O" »8)),
is a rough measure of the accuracy of these relations.

It is possible to regard the success of formulae like Eq.
(1. 66) as an indication of approximate chiral invariance of the
Hamiltonian; but not of the vacuum, so that parity-doubled
multiplets do not appear; i. e., chiral invariance is said to be

(54)

"spontaneously broken''. For example, in the limit of chiral
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a

SU(2) x SU(2) symmetry, BHESH vanishes for a=1,2,3, and Eq.

(1.64) becomes

Fplt) = -ZMNFA(t)/t . (1.67)

Either MN vanishes, or there is a pole gt t =0 due to the presence of
a massless pion. The latter alternative is much more attractive,
since m% -0 closely é.pproximates the real world, while parity-
doubling would be expected in the other case. Then, by evaluating the
residue of the pion pole in FP(t), we recover Eq. (1.66) as an exact
relation. Since matrix elements of 8“’:_T«SP‘ contain the factor

m-rzr /(m;?r' - t), the limit 8“35}17 0 is non-uniform in t; e.g.,

lim Iim

P’3 — - =
o¥ B, =0 t=0 Dylt) 2M (1.68)

N 8A

The non-invariance of the vacuum arises through Eq. (1.65).
When the vacuum is chirally transformed, soft mesons are added to
form a new state which, in the limit éf chiral symmetry, could Ialso
be called a vacuum. Thus there is an infinitely degenerate set of
vacua in this limit. Only one of them corresponds to the unique
vacuum state of the réal world. It is distinguished by the require-

(55)

ment

Fa|0> = 0 , (®0 in the real world). (1.69)

Eq. (1.69) summarizes the observation that particle multiplets may

be classified according to the SU(3) group generated by F% a=1...8,
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and not the group SU(3) generated by* ;5 = exp(iBFg) Fe exp(—iBFg),
for example. The violation of phys.ical SU(3) is not spontaneous.
An infinitesimal chiral transformation is accompanied by the
emission or absvorption.of a finite number of soft mesons. Thus, if
d(x) is a local operator, and the limits qm—»O are taken correctly, *%

the soft-meson formula (e.g., for pions)(44,45)

lim
Q0 (Bomlay)s may), et () [(p/(O)lw(qj+1), L CI I
m=l...n

(1.70)

= (-Zifn)n (BI[Fg, [Fgs vvnene [Fer (0 ]eennns 71]A)

" corresponds to the an term in a power-series expansion of
ela’F5 4 e-lo{'F5. In the real world, Eq. (1.70) becomes an approxi-
mate relation which can be obtained by pole-dominance methods. Sum
rules may be obtained by supposing that the n-pion amplitude 6beys. an
unsubtracted dispersion relation in a suitable variable.
From the previous discussion, it would appear that mi and

m 2

K

violation, respectively. However, this conclusion is not

indicate the magnitude of SU(2) x SU(2) and SU(3) x SU(3)

(56)

In the special case 8= w,/3 , we have Kuo's transformation.

See Ref. 55 for comments on Kuo's work.

For example, in wN scattering, the limit of zero pion energy should

be applied to the forward amplitude.
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automatic-~it might be an accident that m is small. The test of

this idea is the relative accuracy of the predictio'ns of pion and

(57, 58)

kaon PCAC. This is a controversial point at present. The

(59)

main issue is whether the data for K13 decay
(

60) This involves contradictory

imply a large
violation of the soft-pion prediction.
experimental data and a theoretical extrapolation of order My m,
not O(m_rzr). .In our view, the experimental data are not good enough
to indicate the correct theoretical extrapolation to the soft-pion
point. | Since the other soft-pion theorems are in'excellent agree-
ment with experiment®, we assume that m'rzr measures
SU(2) x SU(2) violation.

Since SU(3) is a degeneracy symmetry, the variational

(6 1 ):}:*

principle

2 M 8, T H00Y) = (Cy (N [ae, (/x4 (0)Y)  (1.71)

may be applied to eoo (\) = 00 = Y ~ c>\u8 to obtain

('rrlcugl'n') = —g(mf’] - m'rzr) (L +0(e)) s : (1.'72)

where ¢~ 0.2 is a parameter indicated the inaccuracy (~ 209) of
SU(3)-symmetric results. Applying Eq. (1.70) with n =1, the left-

hand side of Eq. (1.72) may be evaluated, implying the result of

Y We disagree with the claim of Brandt and Preparata(57) that the
failure of naive soft-pion theorems for electromagnetic reactions such
as ™0 2y, n- 37 is connected with a large violation of SU(2) x SU(2)
invariance. The contents of this paragraph are more fully discussed
in Chapter IIL '

"* The states [ U(N\))) are normalized to one particle per unit volume.
States | { ) are normalized invariantly. See Appendix A.



-30-

(49)*

Gell-Mann, Oakes and Renner:

: 2, 2 4, 4 2 , 2
c==-,J2 +2,/2 m‘n'/mn + O(m“/mn R mﬂe/mn) ~ -1.25 .
(1.73)

The manner in which conformal invariance is realized méy
involve similar considerations.- Mack(39) observed that the failure of
the argument leading to Eq. (1. 31) can be traced to the failurc of
A:’(k =0) = (p3,p4[ ett ] Pl’p2> to vanish in the limit of conformal
invariance. Therefore, the limit 6% - 0 is non-uniform in momelntum
transfer squared, the vaéuum is not invariant under conformal
transformations, and Aﬁ has to be responsible for the soft-particle
emission which forced K’astrup to adopt Eq. (1.37) instead of Eq.
(1.31). In the zero-mas.s limit, this corresponds to infinite pair
creation by the conformal generators when the vacuum is conformally
transformed. In that case, it is difficult to construct a rule
governing the soft-particle emis sion.

Mack proposed a completely different and much simpler
mechanism for the soft—particle emission. He supposed that matrix
elements of BHQH = 65 at low frequencies are, to a good approxi-
mation, given by a nearby pole in the 9: channel which is due to a

low-lying isoscalar S-wave 7w resonance which we call the dilaton, o.

“Equation (1. 73) does not depend on the value of £, defined by

(w|u [ Yy = §m.;.2r. PCAC gives £ = 0(1), but does not determine the
actual value of £. We thank Professor K. Wilson for pointing this
out, :
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This assumption requires (B I et’ l A) to be universally proportional
to the amplitude for A-B + o(soft), i.e., dilatons couple to mass.
The dilation current is said to be partially conserved (PCDC
hypothesis). |

The relation between PCDC and conformal symmetry is
analogous to that between PCAC and chiral symmetry. (13) In the
limit of conformal invariance, the dilaton becomes massless and,
in general, matrix eleménts of G}W have a dilaton pole at zero

momentum transfer. The presence of this pole allows heavy

. particles such as the baryons to remain massive in this limit. The

action integral becomes conformal-invariant, but the presence .of the
massless Nambu-Goldstone boson s is responsible for the non-

invariance of the vacuum:

1

_ 2
ek 6,100 =" - grU (k- g, k) - (1.74)

M

Imposition of the condition e:‘ -0 results in exact relations for soft‘-
dilaton amplitudes. The uniyersal constant of proportionality, F.a_,
which is given in the units of a mass, is analogous to the PCAC
proportionality cbnstant, (an_)-l. In order that the scale-invariant
relations for soft-dilation amplitudes remain approximately true as
scale invariance is broken, the low-mass dilaton state is assumed
to dominate an unsubtracted dispersion relation for ( e:’i) at small
values of the momentlJ;m transfer. That is the PCDC hypothesis.

Conformal invariance is said to be spontaneously broken.
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Some aspects of Mack's proposal (1967) were anticipated
several yea'rs earlier. In 1960, Gell-Mann and Levy(sz) noticed
that, in the o~-model, !'the o‘.—coup.ling is responsible for the
nucleon mass.'" With the benefit of hindsight, we can now say that
this occurs because the o-model obeys the PCDC hypothesis in the
special case (wa)"1 = -F . In 1962, Gell-Mann(éz) suggested that
matrix elements of eﬁ obey unsubtracted dispersion relations which
can be dominated by scalar mesons. However, the connection with
scale and conformal transformations was not mentioned.

The simplest scale-invariant calculation is the derivation of

the ¢ MM coupling constant, Go‘ MM’ where M is a spin-0 meson.

The form~factor expansion

2
(M(P + 3k) |6 | M(P - 3Kk)[) = ZPHP\)Hl(k ) + (kuk\) - gwkz) Hz(kz)

"y 2

(1. 75)

is required by the conservation laws of Poincaré invariance, Egs. (1.6)
and (1.7). Eq. (1.9) implies Hl(O) = 0. In the limit of scale

invariance, 6: - 0, Eq. (1.75) becomes

2

2 2 2 |
M " k™) H, (k )/ 3k . (1.76)

Hz(kz) = (2m
: . 2 . 2 '
Since a o-pole is permitted to appear at k™ = 0 in I—Iz(k }s myr need

not vanish. Use of Eq. (l.74) to evaluate the residue of this pole
(39,62, 63, 64)

implies the scale-invariant result

_ 2 . e
F G oy = 20y - (1.77)



.33
Because the normalization of fermion states differs from that of boson
states by a factor (2 - mass)-l, the corresponding result for the
dilaton-baryon coupling u'u g: BB ig*

F_ g pg = Mp (1.78)

We expect moz_ to give a rough indication of inaccuracies in these
scale-invariant results, just as mZ(O-,é) measures the effects of
the violation of chiral invariance. The estimation of corrections due .
to the lack of scale invariance of the real world is a major aim of
this investigation.

There remains one aspect of the discussion in Section I. 2 |
which needs a quantitati.ve formulation--Kastrup's idea that strongly
interacting systems are. approximately scale-invariant at short
distances. The appropriate formalism was constructed by Wilson(40)

two years ago. IHe considered operator-product expansions of

the form

Alx+y/2) Blx-y/2) = T C (y) 0 (x) , (1.79)

where A(x) and B(x) are local operators with dimensions Lps Ly
The sum ;;1 is countably infinite, {On(x)} is a set of local operators
(including the identity.), and Gn(y) are c-number functions of the
4-vector Ve Wilson considered short-distance expansions only;

i.e., he required all components of y to be small. Examples of

“1f needed, some elementary details which supplement this discussion
can be found in Appendix A.
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(65

Eq. (1.79) arose ) in studies of renormalization in perturbation
theory, and in the problem of constructing a field theory for
composite particles. Wilson postulated that Eq. (1.79) is a general
property of local relativistic quantum mechanics. It is obviously
true for free field theoriés, and is also valid for renormalized inter-
acting fields A(x), B(x) to all orders in perturbation theory. (66)
Therefore, in its most general form, Eq. (1.79) constitutes a very
weak assumption. *

The strong assumption is that, to zeroth order in scale
violation, only a limited number of operators On(x) of dimensions ’?’n.
appear, where the leading singularities of the corresponding C_(y)'s

_ Latdg =, n
are homogeneous functions of the form vy ; i.e., the
leading.singularities are determined by a scale-invariance argument.
The exponent of y is simply obtained by inspection, or by commutiﬁg
both sides of Eq. (1.79) with the dilation operator D(xo), with
X =Y, o X4y | Logarithmic functions of y, which are due to
scale-breaking effects, are assumed to be less singular, so the scale-
invariant terms dominate at short distances y. This means that
D(xo) is a slowly varying function of time.

This point-of v.iew is difficult for a field theorist to accept.

In renormalizable field theories, {i.e., dim ée.mt = -4 to first order

in perturbation theory), the leading singularity of Cn is

logarithmically more singular than the corresponding (scale-invariant)



‘theories (dim £int> ~4) are scale-invariant at short distances.

354

singularity for free fields, due to the effects of vacuum polarization.
In particular, renormalized quantum electrodynamics is not scale~
invariant at short distance‘s; (see Eq. (1.38)). an)n-renormalizable
theories (dim £int< -4), necessarily treated in lowest order, increase
the singularity by a factor y-l. Only superrenormalizable field
' ' (67)
In conventional field theory,* the only known example is the un-
realistic )\d?’ interaction.

However, the. success of current algebra favors Wilson's ideas.
In practice, Eq. (1.79) is applicable only when the fields A(x) and
B(x) are the local operators from which cui‘rent algebra is constructed:
the vector and axial-ve?tor currents Ei(x) and IE?}L(X), the stress-
energy tensor eH\)’ and derivatives such as 8“3513(}{) and
E)H'JV -0 T;’-“. According to Wilsoh's hypotheses, the term containing
currents in the operator-product expansioﬁ of the unequal-~time

commutator of two currents is given by

2 b b b -2), 2 A
g [sim), 3\)(0)] = (8% + y52P6%%) BBy ¢ M 3 (0)

(— 3)( }'{2

abc MN_ My - &N (-2)
+1 la.(gwlx 6\) XH GHX\))E (X Y+ (1+4a)x X\)X

i

This discussion is restricted to polynomial interactions in 4-
dimensional ‘Minkowski space. Further examples of superre-
normalizable polynomial interactions exist if one takes the liberty of
reducing the number of spatial dimensions. Of much greater interest
is the existence of many 4-dimensional nonpolynomial Lagrangians
which are superrenormalizable, and do not appear to have the diseases
of the )\35 interaction. To our knowledge, no work has been done
on the short-distance behavior of such theories. See Ref. 22.
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with similar expressions for products involving an axial-vector cur-

)

rent. (68) The c-number functions E(-n contain powers of XZ, and

vanish for spacelike xZ:

rl-n) (XZ) (_Xz N iéxo)'n ) (_xz ) iexo)-n

-2 é(xo) é(n-l)(xz)/(n - 1)! , (n= integer) 0).
(1.81)

1

The constants ¢, B, Y are not determined by current algebra; the

limit x_— 0 of Eq. (1.80) yields

%2(0,%) , #2(0,0)] = i £2PC 5 533, ete., (1.82)
o) o] 1 o

which is the completely local version of Egs. (1.43) and (1.48). Thus
operator-product expansions at short distances ax;e generalizations of
current algebra.

If logarithms were p.resent in Eq. (1. 80), they would destroy
the equal-time commutators (1.82)--for small times X s the co-
efficient of 53 (X) would contain the Quantity log mx_, which diverges
when the equal-time limit is taken. In order to obtain the singularity
structure of Eq. (l.80), the scale-violating terms in the energy
density must have dimension {,n>-4. Also, according to the basic
hypothesis of current algebra, Eq. (1.82) does not depend on the.
magnitude of the violation of SU(3) x SU(3) symmetry. Therefore,
the term u in eoo which breaks SU(3) x SU(3) invariace must also
break scale invariance, and have a dimension ,{;;1‘) -4, (40) Thus

the decompositions (1.52) and (1.58) of eoo may be combined to give
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00

where =e:oo is both scale- and chiral- invariant, and § breaks scale
invariance but not chiral invariance. Also, we note that if there are

any scale-violating pieces in the currents, they have dimension )-3.

{69)

Some understanding of the nature of Schwinger terms (S.T.
can be gained if the hypothesis of scale invariance at short distances

is accepted. For currents, we have the example

ab

[, 52] = 00 g, 0% B P e,

VREVIRRR TRV
(1.84)

Assuming that the constant § does not vanish, there is a finite third-

2

order S.T. uiwzﬁvi$ 53(}?) in [30(0,52), :}Fi(O,G)j. The term

originally discovered by Schwinger is infinite:

lim

5% -order 5.T. in[3(0,), 5(0,0)]= - x_~0 ity 82 ()/x % (1.85)

1
Contrary to the usual lore, there is a second-order S.T. in

['Ta (0,%), = (O 0) 1, but practical calculations are not affected because
it is a c~number. Commutators involving the stress-energy tensor

may be similarly analyzed:

2. .2
8,10, 0 B(0)] 4aaaa v 2(g, 90 8%)0

+ 8 8 -
B B gaB MV gwgocB

zazl
) ]

B8 By cre ..., . (1.86)

-3 o 8
(g V5+g

2
+ 90 - -
Mot w2 o’ 8y B+gv6 o®u " Bug®ug® TEyBugd

B =8+t 8+ u (1.83)
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If the constant { is not zero, a fifth-order S.T. 4:Tr21gv (\72)Z 63(—')

appears in [e O %), Goi(0,0)].

A consequence of scale invariance at short distances is
'scaling' of the total cross section o-TOT(qz) for e+e- - anything'
at large, time~like values of qz (with g = sum of e+, e momenta):

- (q%) = - 202 /3% a*x 9% (0 P 3 L ()] 0)
TOT

2 - -
32nt ol £/ ~-l2n Eo(ete o i ). (1.87)

The qz-dependence of Eq. (1.87) was first obtained by Bjorken(70)

from different considerations. The connection with scale invariance
. 2 .

was noted by W1lson.( 8) In the event that § wvanishes, the

-5 -4

dominating term has the qz-dependence (qz) at high energies,

where / is the minimum dimension of the scale-violating terms in

28)%

the stress-energy tensor.( )
On the other hand, many extra assumptions are needed in

order to obtain the scaling laws for deep inelastic electroproduction.

The relevant matrix element is**

%
This analysis neglects two-photon exchange, which may involve

sufficient dynamical enhancement to dominate the one-photon contri-
bution, even though it is formally suppressed by a factor QZ For
example, suppose that the two-photon term scales, as if dominated
by the c-number part of JOL(X) J(v) Jv(z) 6(0) for xaym~ za0; (in

general, other values of X,V,2 are as important). For £ =0, £= -2,
the two photon term begins to dominate at energies greater than

~, I37 GeV, because the cross section is then given by

2 2 4
. o‘TOT(q ) = Cl o (1 GeV) /(q ) + Cza/q s (Cl,C =constants).
Momentum transfer q = initial minus final electron momenta.
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W f@p) = 7 J‘df*x T (o] [ (2, T 0] p)

' 2 2
(qan/q = gaB) Wl(q s V)

-2 2 2 2
+ M - . - . , ,
(P, = 4P 9/aNpg-agpra/q7) Wyla s V)
(1.88)
with My =q+p, and nucleon spins averaged. In terms of the ingoing
and outgoing energies E, E' and scattering angle 0 of the electron

in the laboratory frame, the total inelastic scattering cross section

from an unpélarized nucleon is(71)
2 2
d’o Q 2 . 2 2 2
= 2W,(q", v)sin“(8/2) + W,(g",\) cos(6/2)].
[
dE'dQ 4Ezsin4(e/2) 1 2

(1.89)

Brandt(72) and Ioffe(72) have shown that, in the deep inelastic
{

limit considered by Bjorken 36) (-q_z, v- 00 with g= -qz/q -p fixed),
points near the light cone are emphasized. This follows from the

IAB frame parametrization

p=(M:O:0:O) »y g = \)(l,O,O,All'iTMUJ/\) ) . (1.90)

The factor eiLq X in Eq. (L. 88) oscillates rapidly except for the
region ]xo - Xy I i \)-1, i. e., near the light cone XZ = 0. Therefore,
it is nécessary to extend Wilson's hypotheses t§ the light cone(73) if
a connection between the scaling laws and broken scale invariance '

is sought. In order to obtain Bjorken's result that Wl’ \;Wz are
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functions of  alone in the deep inelastic region, the operators
in the light-cone expansion of [J“(x) , Jv(0> ] must

(68)

XjOp e= O

have dimension

LIy = ~(F+2) , (J=2,4,6, ....) . (1.91) -

Then the p~dependence of va(q,p) , obtained from the spin-J part

of*
{plo_ lp)= cp_ P + traces , (1.92)
0j0p +ee O Jocl ogz.....pOCJ
: Oy Upeee O
correctly matches the g-dependence given by _J'd4x R e 172 J(X).

QY
At present, it is not understood how these methods may be

applied to inclusive processes (Eq. (1.39)) in which no leptons
participate. In field theory, it is formally possible to write the total
cross section as the matrix element of an operator product. - However,
in order to emphasize the region near the light cone y2 = 0, this
expression must be replaced by one in which the fields A(x), B(x)

forming the operator product in Eq. (1.79) represent systems of |

B3

"Traces' stands for terms such as g .. P

s 8 g
G‘J a,].(fz (13@4
J-4

P .
@ 0 93
. . 2 J-2 2,2
Py =o- pa s soeses ; Which contribute q (p-q) » (7)) (p-q)
5 J
ceee.o relative to the contribution (q-p)J of the term which scales,
and are therefore negligible in the deep inelastic limit.
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infinite mass.* In an approach which involves on-mass-shell
amplitudes, A(x) has to be the source of at least two strongly inter-
acting particles. For A(x) to be local, these particles X, Y must

be strongly correlated so that their amplitudes ﬂ factorize,

| AX+iov+n = aX,¥) (£]A0)] 1), ((X - ¥)%-c0), (1.93)

as in the leptonic case. In strong interaction physics, the idea of
factorization occurs mainly in Regge theory. Assuming that Reggeism
works at large momentum transfers, A(x) would be the source of a
reggeon. The conceptual difficulties involved here should be compared

)

with the derivations of scaling laws from the multiperipheral(75 or

(76)

parton models, where it makes little difference whether leptons

are present or not.

I. 4. Comments on our Research and Related Work

We have investiéated Mack's proposél that conformal
invariance is spontaneously broken. Qur method involves the
simultaneous use of PCDC, PCAC and well-known techniques of
current algebra. These notions are combined in a completely
general fashion. Of course, our results are approximate in the real

world, because we have to saturate dispersion integrals with

"In Eqs. (1.87).and (1.88), JH(X) = A(x) = B(x) is the source of an
infinite-mass virtual photon. In the ambitious scheme of Brandt and -
Orzalesi (Ref. 74) for strong interactions, the infinite~mass condition
is satisfied by taking thé formal field-theoretic expression an infinite
distance off mass shell, (thereby ensuring that their assumption can-
not be checked experimentally).
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low-lying meson states. In this section, we ‘give a superficial
treatment of our assumptions and some of our results, postponing
controversy and detailed discussion to other chapters. Most of our

(15) or préprin’c(77’ 78) form.

work has already appeared in published

From the formulae (1.23) for the divergences of the dilation
and special conformal currents, we see that the corresponding
Nambu-Goldston¢ bosons (dilat.ons) must be spin-0 isoscalar mesons,
even though the special conformal generators carry a vector index.
In order that SU(3) is realized as a degeneracy symmetry with no
accompanying Nambu-Goldstone bosons, the dilaton states must
become SU(3) singlets in thé limit of scale invariance. We assame
that there is just one dilaton, ¢, but our formulae are easy to
generalize if this turns 'but to be invalid. This assumption is
motivated by the nonet structure of the meson spectrum. It cor-
responds to the existence of only two (JP, IG) = (0+, O+) mesons in
the real world. They are mixtures of the SU(3) singlet state with
dilation quality and the eighth member of an octet. We identify
these mesons as the currenf:ly fashionable ¢(700) and ¢'(1060)
resonances.®* When the mix{ng of these particles is properly

2

. 2 L .
taken intc account, m = me measures the violation of scale and

conformal invariance.

5 »
These mesons are also called n0+(700) and Mot (1060) or S¥(1060);

see Ref. 79. We shall use the symbols ¢, ¢ interchangeably. At
no stage do we refer to ¢(410), which was observed in a few early
experiments, but now appears to be extinct.
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Originally, it was thought that this set of assumptions is
. . . ; (63, 80)
inconsistent with the facts.: Taken at face value, Eq. (1.77)
implies Go‘mr = O(mTZr), so that, comparing it with Eq. (1.78) for
nucleons, the dilaton width would be only a few MeV. This contradicts
all expectations concerning the resonance structure of the (O+, O+)

channel. Experiments(79’ 81) vaguely indicate I‘efaﬁ‘écOO MeV for the

width, a value which theory strongly supports via the Adler~-Weisberger

sum rule for ww scattering, (82)
o)
st 2 =L AWwW (e, (W-o (WH/(W -m) ,
™ LY e g 'n'+'rr+ ™
T : (1.94)

where W is the center-of-mass energy. Adler(sz) pointed oui: that
the‘ p and f contributions to the integral are not large enough to
satisfy the sum rule: ‘there must be a large contribution from the
(O+, 0+) channel. It is known that €'(1060) couples weakly to pions, -
so satisfaction of Eq. (1.° 94) depends on I‘o_ being of the order of
several hundred MeV.

However, when the magnitudel of scale violation is taken into
account, one realizes tl;iat Eqgs. (1.77) and (1.78) can be approxi-
mately true only if the square of the mass involved, (i.e., ml\i or
M:é' ,) is large enough to swamp scale-violating effects, represented
by m?_ . By assuming Eq. (1. 57), we were able to prove that the

(15)

next order in scale violation is given by

F G __~ m> . (1. 95)

4

g ouTw o
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The calculation assumes that SU(2) x SU(2) is a very good sym-

metry. (49,50)

This conclusion was independently arrived at by J. Ellis(83) '
from similar physical assumptions. A superficial comparison of
his work with ours does nqt give the impression that any connection
exists, because the formalisms are so different. In fact, the ef-
fective Liagrangian forrnalisrﬁ of Ellis is designed to reproduce tl;e
results of the traditional methods of current algebra, which we used.
Kleinert and Weisz, (84) who were unaware of our work, translated
Ellis's work into a 1anguége which resembles ours.

It is instructive to look back at earliei‘ attempts to calculate
the width of the ¢(700), and to understand why initial attempts to
combine chiral and conformal invariance gave either no result or
the wrong result. It turns out that the o-model is very misleading;
over-reliance on it for gaining insight caused much confusion.

Before broken scale invariance became fashionable, the

standard practice, (especially in hard-pion calculations,) was to

aésume that the matrix elements of the so-called "o-terms''

Zab = (,\/'27'3_u0+ A/l/3u8) éab= i [Fga Vb]’ (a:b=1:2: 3):
" (1.96)

are dominated by a o-meson pole. Then one obtains (2f )_lG =-m2 s
™ oTT . o

E3 - . .
Note that {,/Z/3 ug + JI/3 Ugs v} form a (4,3 ) representation of

SU(2) x SU(2). The unfortunate name ''o-terms'' is a legacy of the
o-model, in which the "¢' field is given by b = éab Mg't,
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because the o-term can be evaluated by applying a soft-pion theorem
(Eq. 1.70) with n=1). However, this is a Mfake!' derivation, beéause
there is no way of telling which combination of U and ug should be
dominated by the o‘-me.so'n', while the soft-pion theorem can be
arbitrarily changed by varying the angle ¥ in the operator 7“(\?)

whose matrix elements are to be dominated:

w(¥) = (J2]3 a + J1/3 u8) siny + (J/1/3 a - J2/3 u8) cos ¥. (1.97)

If v =w/2 is assumed, (as indicated by the o-model), the Adler-

Weisberger rule (1.94) is completely saturated by the o-pole alone,
leaving no room for the p and f contributions. (This is hardly |
surprising since the .p and f mesons do not appear in the o~model).
The correct way to approach the problem is to write the
‘Goldberger-Treiman relation for the B-d‘ecay of a dilaton into a

pion(85:15)

-1 | ’
(Zf'rr) Gowr = mf Fom © (1.98)

where Fo_ﬂ(O) is the appropriate axial colupling constant, (i.e., the
quantity analogous to ga in'Eq. (1.66)). The failure of PCDC for
{w ] eﬁ] w), (which gives Eq. (1.77) for pions,) indicates that in the
real world, one cannot dominate (Tr] (V) l'rr) successfully by the o.
However, for the purposes of comparison with linear models, (63)
for which the e};:trapolation from the o-pole toc zero momentum

transfer involves no error, we give the result of the naive o=

dominance-plus=-soft-pion-theorem calculation:



T
Fo_ﬂ_(O) = =-sinV . (1.99)
‘Thus, if we had appealed to an SU(3) x SU(3) o-model, where the Hgtt
field transforms like uo; we would have obtained FWW(O) = - ,/2/3,
instead of Fc-'n'(o) = -1 given by the ordinary SU(2) x SU(2) model.

We note that, within the accuracy of their saturation

(86)

assumptions, the work of Gilman and Harari is correct: they do not
fix V¥ arbitrarily.* They require satisfaction of the sum rule (1. 94),
together with all other current-algebraic and superconvergent sum
rules implied by Regge asymptotics for pion-baryon scattering.

They find ¥~ w/4 is needed in order to fit the data for the width of
the p. Then the o~-pole contributes sin2 v~k of the right-hand

side of Eq. (1.94).

(83) (15)

The essential point of the work of Ellis and this author

was that Eq. (1.57) fixes FO_TF(O) within the accuracy of the saturation.

)

assumptions involved: (15

~ L
FO'FO‘TI‘(O) f-rr < _ (1.100)
Eqg. (1.100) implies Eq. (1.95) when combined with the Goldberger-
Treiman relation (1.98). The derivation is considered in Chapter IL
Eq. (1.100) becomes exact in the limit of scale invariance; in that
case, it can be derived from the conservation equations 8“35;0, 9ﬁ=0,

shesk
without additional assumptions. (15)

s

Our V¥ is the same as the ¥ of Gilman and Harari.

bt
See Appendix C and the discussion in Chapter I1.



-47-

Ellis's analysis was preceded by a paper by Isham, Salam, and
Strathdee (ISS)(87) in which the method of effective Liagrangians for
both chiral and conformal symmetry is introduce‘di. Although ISS
made use of Eq. (1.57), they were misled by the o-model into put-
ting ¥= 1T/2 Hence, they obtained F(r = - (Zf“)-l and the connection
.with the oww coupling was lost., Ellis provided the necessary
generalization of their work.

(88)

Prior to our work, there were some attempts to make use
of equal-time commutators involving the dilation and special conformal
generators. However, due to some invalid steps in the course of very
complicated manipulations, the results obtaﬁned were not correct an’d
looked unpromising. * Our point of view was very different', and the.
analysis much simpler.

In phenomenological tests of dispersion relations for backward
wN scattering, it is necessary to include a large contribution due to

the exchange of a scalar meson. Assuming that the ¢{700) is

responsible, and taking its width to be about 400 MeV, the oNN

coupling is found to be roughly the same as the TNN coupling:(89’ 90)
) :
8s NN /4r ~ 12 (1.101)

Making use of PCDC for (N| eﬁl NY, (Eq. (1. 78) with B = nucleon,)

and Eq. (1.95), all the unknown constants drop out, and we
find(l 5,83)

%
Kleinert and Weisz (Ref. 84) took the trouble to explicitly point out
the errors. ’
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where g__ = (Zmﬂ_)-l SR 'is a dimensionaless éonstant'(like
go‘NN)' The left-hand side of Eq. (1.102) is about 1, compared with

2 ~
mO_/ZmTrMN ~ 2.

We regarded this result as satisfactory, but Kleinert and
Weisz, (84) holding to a more optimistic view of the accuracy of the
saturation assumptions, decided that the dispersion relation for
(N| e{f | N needs a subtraction.* That would mean that PCDC is
an invalid hypothesis and the whole endeavour has come to nought.
To show that this is not necessarily the case, we extended the

(91)

method of collinear dispersion relations to the calculation of

scale~violating effects. We were able to give an equally good argument

for the result(7-7’ 78) sk

2 -1 2 2
gmw/ngN ~ m(2m M) (1L - mg_/mAl) , (1.103)
which is in good agreement with experiment. The difference between -
Eqgs. (1.103) and (1.102) is a measure of the uncertainty involved in
making a prediction for Go__n_-Tr from the theory of broken scale
invariance. Therefore, PCDC is consistent with our picture of the

meson spectrum and estimates of the oNN coupling.

i
" In particular, the Adler-Weisberger sum rule (1.94) is over-
saturated when Eq. (1.102) is treated as an accurate formula for
Gg . Note that de Alwis (Ref. 92) also has an over-optimisitc
view of its accuracy. '

=

e
See Chapter II1.
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We have also investigated some consequences of the equal-

time commutator

[K“(O),XSK(O)] = 0 , (1.104)

which is a slightly stronger condition than Eq. (1.57). From the
matrix element of Eq. (1.104) between a one-pion state and the
vacuufn, we cén estimate the slope of the spin—Z form factor of

('rr[ eH\)l ™Y, (77,78) This estimate may be compared with .’che result
of assuming f-dominance. While f-dominance appears to work quite
well in the limit of scale invariance, there is a large scale-violating
effect which indicates that f-dominance may be a poor approximation
in the real world.* Again, we use the method of collinear dispersion
relations. Our conclusion is supported by a recent estimate(gc) vof :
the fNN coupling constants.

Because of its large coupling to mesons as well as baryons,
the dilaton greatly influences the application of broken chiral sym-
metry to low-energy meson-baryon scattering. In particular, the
recent discovery of Cheng and Dashen(los) that -(ﬁ + c)Z(n’/Z)/'\/—Z—S- ,
the SU(2) x SU(2) violating part of eoo’ contributes 110 MeV to
the nucleonic matrix element does not necessarily mean that
SU(2) x SU(2) cannot be a much better symmetry fhan SU(3). (77)

If scale invariance is broken to the same extent as SU(3) x SU(3)

*Using the hard-meson method, Raman (Ref. 93) has independently
arrived at a similar conclusion. He starts from an assumption
equivalent to Eq. (1.104), but his methods of calculation and approxi-
mation are different from ours. The connection with scale-violation
is not noted.
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symmetry, {(i.e., " vanishes in the limit of chiral SU(3) x SU(3)
invariance'), the dilaton pole enhances (N I U ]N) relative to
(N [u8 INY, with the result thaf: we are able to retain most of the
attractive scheme of Gell-Mann, Oakes, and Renner,(49) including
Eq. (1.73).

Our most important result concerns Lu’ the dimension of u
or of a current divergence BHFBH. Using collinear dispersion

(113) have

relations, Fubini and‘Furlan(gl) and von Hippel and Kim
related the threshold amplitude for meson-baryon scattering to the
equal-time commutator (NI[F + m F5, 8“‘35HJ IN} . Only the
connected part of this matrix element is involved. Contrary to the -
general belief, we show that, unless {’u is =1, the [.142‘5,8H35H]

part of this equal-time commutator should have the same order of
magnitude as the other part, which is the quantity estimated by
Cheng and Dashen, Making :;use of the experimental fact that the
isospin-symmetric 7N scattéring length is very small we observe
that (N I [f‘s, 8H35H:ll N (connected) does not vanish, and therefore,
'f’u. cannot be =1.% We also point out that a recent criticism of the

von Hippel-Kim paper by Ellis(103)

does not affect our analysis.
We are unaware of any conflict between experiment and our
scheme for broken conformal and chiral invariance. Some other

possibilities, both respectable and doubtful, are briefly discussed in

Sections III.3 and IIL 4.

Fr1tzsch and Gell-Mann (Ref. 143) and Mandula, Schwimmer,
Weyers, and Zweig (Ref. 144) note the possibility of directly
measuring {, in deep inelastic neutrino scattering.
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In private discussions, we have found many people reluétant
to consider the spontaneously broken variety of scale invariance. We
can distinguish three different attitudes:

(1) Dilaton theories do not coincide with the theoretical
interests of many workers;

(i) Some say that m is too 1arge to allow the successful
application of PCDC;

(iii) | There is a feeling that the existence of scaling laws
for high-energy inclusive processes such as deep inelastic electro~-

production is harder to explain when a dilaton is present.

We do not entirely disagree with attitude (ii); at any rate, neither (i)
nor (ii) constitutes an argument against spontaneous breakdown. Let
us conclude this chapter by explaining why we do not share the
sentiments of (ﬁi). (78)

As we have oiten emphasized, conforrnal symmetry must not
be treated as a degeneracy symmetry in momentur. space because of
the infrared problem. Exclusive processes are not expacted to obey
equations like (1.31) at high energies. The observatlion of a scaling
law fcr an inclusive process means that bremsstrahlung eifecis are
not dorninant--i. e., oaly short-distance behavior matters. The
PCDC hypothesis of Mack constrains low-energy behavior: at
large cistances, certain potentials are supposed t have the formn
e:»;p(ﬂ‘ns_r) r. This does not obviously conﬂiqt with Wilson's

L pothesis of scale invariance at short distances. In terms of tae



-52-
intuitive discussion accompanying Eq. (l.35), Mack is concerned
with the factor Py(E, 8), Wilson with a7t /40,

However, this discusfsion does not completely answer the
doubts represented by (iii). If we are given the set of operato?s |
ON(x) with dimension ,{Ln in the operator-product expansion in |
Eq (1.79), the assumption that the leading singularities of the

. Lat i " 4n

Cn(y) are given by y is easily understood (if one
forgets renormalized field theory)--it corresponds to requiring that
D(xo) be a slowly varying function of the time X . PCDC would

seem to be an excellent way to arrange this. The problem is
understanding why the set o.f operators 0n is constrained to obey
rules like Eq. (1. 91). In the language of effective Lagrangians, (83)

one can construct factors exp(4 o-/FO_) from a dilaton field o(x)

with the anofnalous transformation law
i [D(xo) , a(x)] = —Fo_ + x-00(x) . (1.105)
It is easy to derive the formula

i [D(x) > exp({,O'(x)/Fo_)] = (-4 + x-9) exp (f,o*(x)/Fo_) .
(1.106)

The exponentials are used to fix up the dilation behavior of various

terms in the Lagrangian to make it scale-symmetric; e. g.,

-M ¥ ¥- -M¥ Yexp(-o/F ) = (-M+ MO_/FO_ - %MO‘Z/F?_ + ... )V Y
' (1.107)

(immediately, one gets 8 NN © M.N/Fo_). Dilaton theory appears to
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be too flexible to allow the development of a rule for determining

dim On, because multiplication by exp({,o‘/Fo_) permits us to

arbitrarily change the dimension 2. of a given ;).perator to (4 + J(,n).
W e think that this problem exists with or without dilatons.

In the above example, it is caused by the availability of a c-number

'Fo_ which has the same units as a mass. In a non-dilaton theory,

the limit of scale invariance (zero-mass limit) is unstable because

it is impossible to banish all mass-like c-numbers in the process of

renormalization. One finds that the dimension of a field can be

(40,27, 94)--instead of taking the free field value, the

‘"anomalous"

dimension becomes a function of the strengfh of a coupling‘ constant
‘in the theory. Therefore, we are faced with just as much flexibility
as in a dilaton theory.

Now, it might be argued that, since renormalized field
theory predicts that the Cn(y)'s are contaminated with logarithms
(except for unrealistic superrenormalizable theories), it should be
disregarded and free field theory should serve as a guide. In that
case, rules like (1.91) are easy to explain, but it makes no dif-
ference whether dilatons are present or not. If the dimension of
0n is changed th.rough multiplication by exp({,o‘/Fo_), the same
factor must appear on the other side of the equationv; (otherwise,
the expansion is not valid for matrix elements involving o
particles).

Therefore, we do not believe that the tréatment of scaling

laws via operator-product expansions is connected with the manner
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in which scale invariance is broken, unless the non- leading
singularities are considered. Perhaps the magnitude of the non-
leading singularities is controlled by the magnitude of scale violation,
and is therefore a means of distinguishing these possibilities; * To
understand the leading singularities, we have to appeal to rules. which
look artificial at present; e.g., if the 0 (including e}x\))

| LR AR
are supposed to belong to an infinite representation of the conformal

group, ¥*¥, Eq. (1.91) follows immediately. (68)
Our investigation forms part of a program to discover the

nature of the terms which break scale and chiral invariance in

the energy density. Finding .experiments which distinguish the

various possibilities presents a considerable challenge for theorists.

These experiments need' not be difficult to perform. For example,

our discussion of {’u depends on measuring low-energy wN phase

shifts with reasonable accuracy. At present, our knowledge of

these amplitudes is almost adequate.

*  This works only for e+e_ annihilation, and then only if the two-
photon term is small enough. In deep inelastic electroproduction,
the traces discussed in the footnote to Eq. (1.92) are likely to

dominate the non-leading singularities.

*l
* That is, they satisfy an algebra.
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II. LIMITS OF CONFORMAL AND CHIRAL INVARIANCE

We proceed to develop a consistent, general theory to
describe the consequenc:‘es of combining broken conformal and chiral
symmetry. Here we concentrate on understanding the constraints
implied by symmetry arguments; the use of dispersion-theoretic
methods is postponed to the next chapter. Remarks about some

controversial contributions to this field are included.

II. 1. Realization of Scale Ihvariance with One Dilaton

One of the characteristics of the meson spectrum whic.h the
quark model explains is the appearance of nonets. Each SU(3) octet
is accompanied by a singlet, which can mix with the eight member
of the octet via SU(3) violation. Experimental data are not good
enough to demonstrate nonet structure for the scalar mesons. In
particular, experiments do not even vaguely suggest the number of
(JP, IG) = (O+, 0+) resonances in the region of interest (below 1,5
or 2 GeV). Our interpretation of dilatons is that they are 3PO
states of the quark model, so we expect that the nonet property
holds for scalar mesons.*

There is fairly strong evidence for the presence of some

members, 6{(960) and ¢'(1060) with quantum numbers (0+,1-) and

B3
The opposite viewpoint would involve treating dilatons as scalar
gluons. The Lagrangian density would contain both quark and dilaton

fields, following the idea that the r8le of dilatons as Nambu-Goldstone

particles differentiates them from other mesons. However, to be

consistent, the whole pseudoscalar octet would have to be treated in
the same fashion. ‘



-56-

+ (79)

(0, 0+), of a' possible scalar nonet. Evidence for the cor-

responding strange particles u(~1‘GeV) is obscure. (81) The ninth
member could be the ¢(700) meson, but its parameters depend on
indirect and controversial analyses of data. (79, 81) Assuming that

an excited nonet of scalaft mesons is too massive to concern us (if

it exists), we are left with two (O+, O+) resonances, €=¢ and ¢!,

" which can give important contributions to unsubtracted dispersion

relations for (6:}-
In the limit of scale invariance, SU(3) becomes an exact
degeneracy symmetry, so the singlet and octet states are no longer

mixed. The vacuum is SU(3) invariant, so from

1 2
ol loy = -3 F ok -g K)o, (2.1)

we see that only the SU(3) singlet state has dilaton quality. For these
reasons, we assume that there is only one dilaton. Since SU(3)x SU(3)
also becomes an .exact symmetry in the limit of scale invariance,
there are nine massless Nambu~-Goldstone bosons: the scalar singlet
¢ and the pseudoscalar octet -w, K, n. All other hadrons, including

n' and the scalar octet, are supposed to remain massive and
degenerate in hyperchérge within SU(3) multiplets.

(95)

that theories in which conformal

e

It has been claimed
invariance is realized vi‘a a Nambu-Goldstone boson are self~-
contradictory. These analyses involve taking the limit of scale
invariance. None of the '"proofs't apply when scale invariance is

broken, so the contradictions obtained merely reflect an incorrect



57~

(96)

limiting procedure. As pointed out by Callan and Carruthers,
the standard mistake is to assume that the Poincaré generators are
given by Egs. (1.9) and (1. 10) in the scale-invariant limit. This
procedure ignores the presence of the dilaton pole at zero momentum
transfer in <el~b\)> ; i. e., the integrals in Egs. (1.9) and (1.10) are

" ill-defined in this limit. When scale invariance is broken, there is a
potential exp(-mo‘r)/r due to o-exchange. It contributes a term

proportional to

J(im )= lim f ax —62 (exp(-mo_r)/r) = lim de’-? (exp(-mo_r)/r)
v

0‘)—V—»oo rad. oo
(2.2)

to the integral defining P_ in Eq. (1.9), with J(m )= 0 for mOj/O,
and J(0) = =-4w. Hence, this definition of energy has a discontinuity
at m_ = 0. To understand the limit of scale invariance, the ambigqity
associated with the dilaton pole must be removed.

It is convenient to write the PCDC hypothesis in the form¥*

2 0 ~-g 82'
o =t 4 kv Fpy e (2.3)
MYV (LAY 3(1’1’10_ +  8%) a.

where <tl¢\) ) has no ¢-pole. The trace of Eq. (2.3) is

M i o
6, = —5—— ¢ . (2.4)
B o
mcr+ ]

=

Eq. (2.3) was suggested by M. Gell-Mann (private communication),
who has also obtained the corresponding expressions for PCAC and
PCTC. See footnote 29 of Ref. 77.
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The operator tg' does not vanish, irrespective of the magnitude of

scale violation. Consider Eqgs. (1.9) and (1.10) with m 74 0;

substituting Eq. (2.3) and integrating by parts, we obtain(77)

U
1

@’ I (2. 5)

M
LAY

, _
J'd x (xpto\) -xvtop) . (2.6)

Now there is no problem classifying states according to their masses '
and spins in the scale-invariant limit--the offending o-pole is no
longer present, so Egs. (2. 5)v and (2.6) provide convergent definitions
of the Poincaré generators for m_ = 0.

The expressions (1. 16) and (1.17) cannot be altered in this
manner, so the integrations over d3x diverge in the limit m - 0.
This formal difficulty also occurs when defining the axial charges Fg
in the limit of chiral symmetry. In practice, difficulties in carrying
out the integration over infinite 3-space are harmless, since we
always consider commutators [D,Q7] and sums of commutators
exp iaD Q exp -igD for some. operator Q. These expressions
contribute the well-behaved terms 63(}?), ] 63 (X), ... tothe

integrand. Unlike the SU(3) and Poincaré generators, FZ’, D and 'KP-

are not used to classify states.

"The chiral classification of states by Gilman and Harari (Ref. 86) is
performed at infinite momentum, where the pole term may be removed.
Another harmless difficulty associated with the d3x integration is
involved in the definition of non-conserved charges. See Renner's book
(Ref. 45) for a brief discussion and references.
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Another way of discussing the éffect of the o ~pole in defining
| D and KH is to state thét, in the limit of conformal invariance, the
pole term causes exp(iaD) and exp(inKH) to generate a
continuum of degenerate vacua. As ei vanishes, the unique physical
vacuum becomes a member of this continuum. However, it can still
be distinguished because Poincaré invariance is a degeneracy sym-

metry; i. e. , the vacuum is invariant under Poincaré transformations:

PH|0)=O . Mwlo>: o , (2.7)

with PH and MH\) given by Egs. (2.5) and (2.6). Thus, the rdle of
the Poincaré group as a subgroup of the conformal group is analogous
to that of SU(3) as a sﬁbgroup of chiral SU(3) x SU(3). The Poincaré
and SU(3) groups provide classifications of particle states because
their generators annihilate the vacuum. However, the other chiral
and conformal generators produce degenerate vacua, so the cor-
responding classification schemes for particle states need not appear.
The most interesting paradox connected with the limit m_- 0

was found by Renner.* In the limit of scale invariance, Eq. (1.44)

1

gives
i[PO,D] = -PO s (2. 8)
implying
igD -igD _ _«a
e P0 e = e Po o (2.9)

" Renner's observation was recorded by Ellis (Ref. 83).
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If lN} is a nucleon state at rest, then defining }‘1’ Y= exp(-iq D) [ NY,-

P_|y) = e® My | ¥) | (2.10)

is apparently the result. Since l ¥Y) has the same quantum numbers
as the nucleon, it should have an energy greater than or equal to M_N,
so transformations with ¢ (0 seem to be forbidden. This anomaly

(77)

arises from an illegal interchange of limits in the equation

lim 2lim
o - 0 k“ o 0(N(pp+ R[NP = M s (2.11)
M B N

i.e., the limit 6:::‘—» 0 is non-uniform in the momentum transfer.
The derivation of Eq. (2.10) assumes that the scale-invariant limit of
Eq. (1.44) is uniform., (77790

In order to see whether the requirement

(N| &P P e 10PNy Y My (N[N (2.12)

leads to any useful theorems, the effects of the breakdown of scale

invariance must be included:

eionD(O') 8 (0,}?) e'iGD(O) = 'e(4+ XeV) 02900(0’}‘{")

[o o)

(""'ffn +xv)a (
- e

+ g le Ve 0,%) . (2.13a)

with ¢ =0 for w = c-number; the integrated form of this identity
is(77)

(1at3)a

1aDO) p o~taD0) _ oup 4 5 (e - %) [ dPx w (0,5). (2.130)



-61-

If the dimension 1 of the scale-violating part w of 6o 18
unique, (apart from a c-number term), combination of B£qs. (2.12)
and (2. 13b) appears to yield -

e'(’fx + 3)@ >/

(2 +3) e + LA,

which would imply 4, } -3 or % <-4. Making use of the constraints
on { found by Wilson, (40) we would deduce -3( £ (-1, a result
which is reasonable, * but not guaranteed by the above argument.
The flaw in the above reasoning arises from neglec1; of the
contribution of the disconnected part, (N [N) (0 IeiaDPoe-iaD [ 0),
to Eq. (2.12). This term dominates the inequality because of the
infinity associated with the integration in PO‘= J‘d?’x 60 o’ The most

striking demonstration of the effect of this term occurs when chiral .

transformations are investigated in the same manner:

.3 . 3 3, 2.33 3
exp(iaFy) 6_ (0) exp(-iaF3) = § - QBH35H - 305277+ 0(a”), (2.14a)

with )jab = [Fg, [F};, 17, or, if zab belongs to a (£, )

eOO

representation of SU(2) x SU(2), (asin Eq. (1. 96)),

exp(iogFg) eooexp(-dio{,Fg) = 900- - sin o M 353 + (cosq - 1)2}33 . (2.14Db)

%=
Wilson (Ref. 97) notes that many vertex functions commonly
encountered in current algebra diverge unless this condition holds.
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Using a principle analogous to Eq.(2.12), we find

Wl oL (2.15)

At first sight, this result looks outrageous; in the free quark model

£ = :giga: - :im d0gtor)a i (2. 16)

{q]: 233: |q) is the mass of an isodoublet quark. Closer inspection
reveals that the mass term is normal-ordered, whereas the quantity
iwhich transforms as part of a (3, 3) + (3,3) representation is

c-l )\aq. Eq. (2.15) is correct because the left-hand side contains the
infinite disconnected part (N | NY (0 I 233 | 0), which is negative.

Apart from the irrelevant case of the 1irni;1'; of scale invariance,

the disconnected part does not vanish. Therefore, the only way of
making use of a principle like Eq. (2.12) involves taking the vacuum
. expectation value of Eq. (2. 13a). Note that we do not attempt to
apply Eq. (2.13b), because the integrand loses its dependence on X
when the vacuum expectation value is taken; thus the integration by
parts which converts Eq. (2. 135) into Eq. (2. 13b’ gives an infinite
answer, and produces surface terms which must not be neglected.

From Eq. (2.13a), we have¥

0

A similar equation involving chiral transformations has been analyzed
by Dashen (Ref. 55).
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- /{/

. . o
fo) = (0]e'%Pp P[0y = n(e P - *% (olw_| 0

' L O 44 =
>;,1e n (Olwn|0>+e a(0|60010>

y 0 (2.17)

The condition dzf(O)/daz Y0 ensures a local minimum at o= 0:

2 2
a“K0)/da” = T 2, (2,+4) (0fw_| 0)

= -i(0|[D, 6y] |0 = R(0) YoO. (2.18a)
with

R(K?) = i fd*x ™ Fo(x ) (0 Tok e, 6Y(0)1]0). (2. 18b)

Eq. (2.18a) is consistent with the assumption that R(kz) satisfies
an unsubtracted Lehmann-K#11én representation:

2 1 [ dt Im R(t)
v

R(k7) = ) s (Im R(t) )

} 0). (2. 18¢)

This assumption is characteristic of a PCDC theory, in which matrix
elements of et emphasize low frequencies.

For large positive a5 Eq. (2.17) implies
0] g, 10y 3 o (2.19)

Min. IO)

for 2, increasing must be positive. Similarly, looking at the case in

If (0] 60 o |0y vanishes, the first non-vanishing term (0 |w

which ¢ becomes a large, negative number, either there is a
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positive c-number wo, or the first non-vanishing term (0 'WMax.‘0>

as {,_ decreases is positive. We have no general method for
n

However, all donsequences of this condition may be obtained if the
decomposition of 600 into scale-preserving and scale-violating
pieces is not too complicated.

| imposing the constraint that f(q) have a global minimum ¢ = 0.
In particular, we consider Eq. (l.83) with the dimension ){’u
|
|

e
of u assumed to be unique. Then § cannot va,nish(ls)'< because
of the equations
. i i :
<o|epl0>— E(&n+4)(0|wn|0)— 0 | (2. 20)

and (0] u|0) # 0. Theories in which 6 = 0 is claimed actually

assume that § is a c~number & given by

- 2 | 2 '
8 = 3m11 (4, * 4)/(64 £ ‘ (2.21)

where we have substituted the result {0 I ul 0) = -3m§/(16 fTZ‘_)
obtained by Gell ~-Mann, Oakes, and Renner. (49) For this model,
Eq. (2.17) implies =4({ &u( 0.

In another simple model, u and & have unique dimensions

L tse Then Eq. (2.17) is equivalent to

8

> 2 (2.22)

{'6 u

Eq, (2.22) does not contradict the SU(3) x SU(3) 0‘-m0de1<63)

This point was also noticed by M. Gell-Mann (private communication).
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£ = yreotnte m o+ £ (Trm'm® g, Tem wnty

(2.23a)

N o
+gl (detm + detm ) + focro+f80'8+c ,

8
where ?7z=a_20 )\a(o-o + 1y§a) is a 3x3 matrix of fields (cra, yfa) which

form a (3,3) + (3,3) representation of SU(3) x SU(3), because there

is an extra c-number term

3/2

c= -bf_ - 2(2/3)

4 4 4
b -4f1b -3

zEb , (b= <01¢0[o>),
(2. 23D)

g1

which is usually ignored.

According to de Alwis and O'Donnell, if the operator
term w breaking scale invariance in eoo has unique dimension 4%,
then { is necessarily -1. The assumption of de Alwis and
O'Donnell, which they write in the ambiguous form

11n_1a 0 (N' le ]N) = (N']mhr—l:lo e IN)"', is easy to analyze

it

when the correct relation

11m lim . Jlim  lim = .

(2.24)

- (4 + 1) MN/(,&+ 4)

o .

“Our analysis of this work was given in private correspondence with
Drs de Alwis and O'Donnell. See Ref. 98 for an alternative
discussion with the same conclusion (for the case § = c-number).
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is considered. For degenera'cy symmetries, it is permiséible to
interchange momentum transfer and symmetry limits of matrix
elements. However, Eq. (2.11) demonstrates that spontaneously
realized symmei':ries do not generally obey this rule. When it is
remembered that a '"smooth'" definition of energy is obtained when
the dilaton pole is first removed from ep\)’ as in Eq. (2. 5); we
see that there is no reason preventing (Eo O) from developing a
dilaton pole, in which case the limits in Eq. (2.24) cannot be inter-
changed. In the language of de Alwis and O'Donnell, there is .ﬁo

way of distinguishing their assumption from the alternative

2

L 1li
”m:-TO<Nlleoo -66:|N> = (N !m(lr

m

_’O(GOO-E.GPJH)IN)” ’ (2.25)

where & is, a priori, arbitrary. Their prescription gives
£= (4 +1)/(4+4), which does not help to determine .

| Although a large percentage of papers on broken scale
invariance rely on formal arguments, the considerations of this
section indicate that such reasoning has very limited application. In
particular, "arguments' which can be formulated only in the limit
of scale invariance should be ignored. However, if soft-dilaton
theorems are being considered, there is no problem associated
with the limit of scale invariance, By yielding exact theorems,
this procedure often indicates the correct way to carry out the cor-

responding pole-dominance calculations.
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1I. 2. Width of a Single Dilaton

For the moment, we ignore the fact that the dilaton mixes
with the eighth member of the scalar octet, and imagine that it is’
isolated. The effects of mixing will be considered in Section IIL 1.

The only hadronic couioling constants of the dilaton which are
presently measurable ar@ u'u 85 NN and Go-'rr'n' 6ab for protons
and pions, (with a,b = isospin indices of the pions), where states are
normalized invariantly, Applying PCDC to (N| eHH INY and
{mw I GHH | ™), and taking care to indicate the effects of scale violation,
we have

Fr8enN= My

M., + OQmE_/ZMN) , (2. 26)

_ 2 2
F_G___ = 2m_ + 0(m?) . (2. 27)

We investigate the pos.sibilit'y that, in Eq. (2.27), the scale-violating

term is more important than the term Zmi. |
Since pions are involved, it is natural to consider the appli-

cation of approximate chiral SU(2) x SU(2) symmetry. Let us define

the axial form factors for the p-decay of a dilaton into a pion:
3 o . .
(o(k) |F3(0) [m (@) = -1 (k+q)y F_(t) +1(k=~q)G (), (2. 28)

there t= (q = k)z is the momentum transfer squared. The

ivergence of Eq. (2.28) is
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@)

)

Tt
S
]

(i) 8752 (0) | 7°(a) )

() . (2.29)

2 2
(mo-m) Fo () -tG

According to the PCAC hypothesis, Do-'r(t) satisfies an unsubtracted

dispersion relation,*

2
mTYGO‘Tl'TI‘ +1_roo
T o t! - t ?

2
9mTr

D__(t) =

o (2.30)

)
z -
ZL_n_(mﬂ_ t)

which is dominated by the pion pole in thé region [t] imi’_ Attt =0,

we obtain the Goldberger~Treiman relation(SD’ 15)

)M G = m F__{0)+ om?) . | (2.31)
As noted in our introductory remarks in Section L. 4, the axial coupling.
constant, Fo"n‘(o)’ is an SU(3) x SU(3) Clebsch-Gordan coefficient in
linear models for chiral symmetry breaking.

Current algebra allows further progresé. Placing the equal~
tirne. commutétion relaﬁon

[FSIHZ(O), F'Sl'iz(m = 2 F(0) | (2.32)

7 .
" The pion decay constant f_n_ is defined in Eq. (1. 65).
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between 1r+ states, the resulting formula

1+1i2

“1200) [«tip) ) [P~ 1<t ] ot o) (93]

| = (4po)-l%"(2'rr)363(§1‘5) (T lgéo 50

(2.33)

becomes the Adler-Weisberger sum rule for ww scattering, Eq. (1.94),
when PCAC is applied to (I laxgs)\l'n(p)) in the limit pz—»oo‘ . For
our purposes, it is more convenient to consider just the P, ® step;

we display the o-contribution explicitly:

1= |1rr”(0)|2 + (€%, p, £, ... contributions) © (2.34)
pz—) CO,

The ¢'-contribution is negligible, (I‘e'—vrr'n' A~ 30 MeV), and the

ps £, ... resonances contribute about %:i.e., (82’86)

[Pl [~ 102, (2. 35)

which corresponds to a o~-width of several hundred MeV. Obviously,
the PCDC relation (2. 27) is useless if we have correctly identified
the dilaton as the resonance responsible for the satisfaction of
Eq.(2.34). Note that we are not claiming that Eq. (2.27) is w1:ong.
Now we consider the constraints placed on Fa“rr(o) by the
theory of broken scale invariance. At this point, we ignore the
effects of symmetry violation, because the derivation of symmetric

results is easier and more eiegant. The calculation is performed
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with m_ = m(07,8)= 0 and 8l =0= oM

:}5)\; the corresponding
analysis using pole dominance will be fully considered in Sections
III. 1 and IIL 2.

. . ' ‘ . . (40)
According to Wilson's theory of broken scale invariance,
the breakdown of chiral invariance is also a scale-violating effect.

Therefore, in the limit of scale invariance, we have

[Fgo Gwl = 0 |, | (2. 36)
implying
i[D, 35 (0] = (B+xd)z,(x . (2.37)

It might be thought that Eq. (2.37) should contain 3~gradient terms of
0, .

the form 9 3500\ in order to be generally correct, where j5a)\
is an antisymmetric pseudotensor with dimension -2, (possibly the
axial counterpart of the tensor current obeying PCTC. Howeirer,
examination of the operator product [ep\)(x,) 35)\(0)] reveals that
the presence of such a term is inconsistent with the known expression
for [MH\) s 3‘5>\(O) 7; (see the next section).

An important matrix element for our work is

Moy = ((P + 1K) | 8., () | w(P -3k)) . (2.38)

(15)

We choose the form factor expansion

_ ) ) 2 2 - 2 2 |
mw_(ZPHPV (kpkv gwk )/ 6) Fl(k ) + (kpk\) gwk JF,(kT) ,  (2.39)
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(where Eq. (1.9) requires Fl(O) = 1), because the dispersion

theory of Fl(t) and Fz(t) is simplified when the mass of the

pion is neglected; intermediate states with (JP, IG) equal to

(2%, 0") and (0%,0") contribute to Im F (t) and Im F,(t)
respectively. Applying the condition of scale invariance to the

trace of Eq. (2.39),

m: = imiFl(kz) -3 FLY) (2. 40)
we find (19
2 - |
F,o(k") =0 . (2. 41)

Thus, the effects of scale violation are responsible for the presence
of the induced scalar form factor, Fz(t), in Eq. (2.39).
From Eqgs. (Z.. 29) and (2.31), the forljnulae(l5)

G =0 | (2. 42)
gmm

G, )= 0 , (2. 43)

are also valid in the limit of scale invariance.

(15)

The spirit of the following analysis resembles that of the

originalr derivations of chiral-symmetric results by Nambu and his

(

collaborators., 54) We begin by defining the time-ordered product

Atk = i [atx ¥ (0] T(a (3 (7@, (2.44)
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which contains the dilation current ;9“(2), defined in Eq. (1.11).
Since we are working in the limit of scale invariance, (i.e.,

8“19“ = 0), the divergence of;Eq. (2. 44) takes the very simple form

| 3
-x*A ,\(kq) = (O] [D,5,(0)] [77(@) + 0(K) . (2. 45)
Substituting Eqs. (1. 6.5) and (2.37), the right-hand side may be written
(0] [D,5:>(0) 1[v%@) ) = 3 q, (2£)7" (2. 46)
, Igy 01T A Iy ¥ y

In order to evaluate the left-hand side of Eq. (2. 45), we need
consider only those contributions to Ap‘)\(k, q) which are singular
in kon' The appropriate diagrams, which are displayed in Fig. 1,

represent the amplitude

(koq)= -+ (et @) F P (k=P (s k=g KA/

Pavx oo ow
iFl(kZ) ‘
T (k - q)x[z(q - §K) (a - 2Ky (2. 47)

2 2
-({k k - k-
(ky k- g Kk )/6]/<2qk k%) .
In writing Eq. (2.47), we have made use of Eqgs. (2.28) and (2. 39)
for the vertices shown in Fig. 1, subject tothe constraints (2.4l),
(2.42) and (2.43). The formula (1. 11) for the dilation curtent

implies
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e _ s M O
-k AM‘(k’q) = ik —--—-akv Pp\)k(k’q) + 0(k)
(2. 48)
_ . 0 e i
= 1——-—akv (k PI-L\))\) IPH)‘- + 0(k),

where the last step was included because it saves much labor when

Eqgs. (2.47) and (2. 48) are combined:

1

-1kMA L (q) = (FF () + £0) q + 00 . (2. 49)

Gombining Eqs. (2.45), (2.46) and (2.49), we find(1>)

F_F_(0) £ = } . (2. 50)

In Appendix C, we give methods of deriving this result where only
the conservation equations eﬁ'= 0, 8\):}5\) = 0 are used, so the
validity of Eq. (2.37) in the limit of scale invariance is confirmed.
We shall fully treat the question of the effects of scale
breaking in Chapter I1II. However, at this point, we have some
reasons for supposing that Eq. (2.50) is roughly correct in the real
world. Theories of spontaneous violation of a symmetry assume that
the fundamental decay constiant, (Fo- for scale invariance, f'n' for
chiral SU(2) x SU(2) invariance), is practically unaffected by the
magnitude of that symmetry violation. The main cause of
ﬁncertainty is the dependence of ‘Fo"rr(o) on the breakdown of scale

invariance. Essentially, Fo‘ 11_(0) is an SU(3) x SU(3) Clebsch-Gordan
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coefficient, so it may be slightly changed by mixing of the dilaton
with ¢'(1060) meson. Also, there'is considerable ambiguity about °
the point t_ at which Fo‘w(to) should be evaluated, because t,
can be O(mf_). ‘Here, a typical uncertainty involves the factor
A 2). Therefore, Eq. (2.50) should be applicable to

1

the real world if one is prepared to tolerate a discrepancy involving

(1 -mi/m

factors of 1.5 or 2. (1) This is not worse than the inaccuracies
observed for many chiral SU(3) x SU(3)~symmetric results. (49, 100)
In fact, SU(3) x SU(3) and scale breaking may be of the same
magnitude: mf_ is supposed to be not much larger than m

We can further in.vestigate the accuracy of Eq. (2.50) by
considering Eq. (2.39) in the limit of chiral SU(2) x SU(2) invariance,
but with scale invariance broken. In order to proceed, we must
assume the validity of Eq. (1.57), or Eq. (2.37) for A = 0. As we
have remarked in Section L. 3, Eq. (l.57) is valid in the usual theory
of broken chiral symmetry. Note that if it existed, the scalar
operator s(x) defined in Eq. (l.56) would necessarily vanish in the
limit of scale invariance, have a dimension greater than -2, and,
to affecf our argument, belong to the (3,3) + (3,3) representation of
SU(3) x SU(3), (for example), rather than (1,8) + (8,1). To phrase
our assumption anothér way, the energy density, not just the

Hamiltonian and other Poincaré generators, is supposed to be chiral

invariant in the limit of chiral invariance; then If:‘5=0 gives

[Fg, © 1= 0 ' - : (2.51)

VA
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As we shall demonstrate imrﬁediately, Eq. (2.51) implies the

(15)

constraint
F,(0) = - 1/3 . (2.52)
A brief derivation of Eq. (2. 52) follows from the formula

A, | *

Ny (R =0 (2.53)

where

&

_ 2. 54)
Ry, W = B 6, 0] (. >

.is a retarded commutator made covariant by careful treatment of the
singularity at x= 0.% Eq. (2.51) has been assumed in writing

Eq. (2.53). Then

g" [ate U ¢nlan) | Ry, M| 0) = 0 (2.59
implies

lim _

q-0 (m(q")] ew(O)lw(qn = 0 ; (2. 56)

which may be combined with Eq. (2.39) to yield Eq. (2.52).

\

"We presented this derivation in Ref. 77. Previously (Ref. 15), we
dealt with the less singular quantity R{LH(X), and the corresponding

derivation may be found in Appendix C., The covariantization of
quantities like R)\H\) is considered in Ref. 10l. As long as the cur-

rent is conserved, the question of covariance turns out to be
irrelevant in the derivation of the soft- meson theorem, (here

Eq. (2.56)). Following tradition, we add stars to symbols to denote
that they have been made covariant.
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In the limit of SU(Z} x SU(2) invariance, the induced scalar
form factor Fz(t) satisfies an unsubtracted diqursion relation,
because Eq. {2.40) shows that it is damped even more strongly than

mi at large t, and matrix elements of ( epp“ Y satisfy unsubtracted

dispersion.relations (PCDC hypothesis). While o-dominance of

P ot small t does not appear to be a good approximation, the cor-
M, g P

responding assumption for Fz(t) has a good chance of working,

since FZ(O) is proportional to the gradient of W?: at t=0 :(15’ )

P T - Emi/md -0, (2. 57)

with |t] { m?
[

. Note the consistency of Eqgs. (2.41), (2.52) and
(2.57). The property tl.lat the limits mf_ -+ 0, t 0 cannot be inter-~
changed is characteristic of theories involving a Nambu-Goldstone
boson. We can identify the residue of the ‘o--pole in Eq. (2.57)

with coupling constants of the dilaton:(15’ 83)

8

(2. 58)

2
B

-~

G
¢ oOCTT o

When Egs. (2. 3;) and (2.58) are combined, we obtain Eq. (2.50) as
an approximate relation.

1f we had neglected the O(mi) term in Eq. (2.27), Eq. (2.50)
would have allowed us to write

2

-1 .
(wa) Go‘n’n’ =-2m_n_ Go"n‘(o) ) - (naive) ;
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unless the dilation appears as an extremely narrow resonance, i.e.,
IFO_'“_(O) |< <l, tlﬁs relation violently contradicts the Goldberger-
Treiman relation (2. 31).' \
However, we may substitute the original Goldberger-Treiman

relation (1.66) and Eq. (2.26) in Eq. (2.50) to obtain(lS)

B NN Ex NN~ ForlOV/8 p - (2.59)

Thus ]FU“(O) | <« < 1 would require the dilaton to couple weakly to
nucleons, This is not possible if the dilaton is assumed to be the
scalar particle exchanged in NN and N scattering. Therefore, we.
conclude that Eq. (2.27) is correct but useless--in practice, Eq.

(2.58), (which is consistent with Eq. (2.27)), should be used.

Combining Eqs. (2.26) and (2.58), we derive the relationt ! 83)

2 .

Bonn/ 8oy~ T,/ (2m ML), (2. 60)

with go“n'n- = Go-'rrn/zmn-'. Thus o-exchange in wN and NN scattering

can be compared with or predicted from the mass and width of the
dilaton. The order of rﬁagnitude of these exchange forces indicates
that the dilaton has a Wi.dth of several hundred MeV; This agrees with
the discussion based on the Adler-Weisberger sum rule for nw
scattering; (see Eq. (2.35)). The positive sign of go"rr-rr/go- NN

as given by Eq., (2. 60) agrees ‘with the éign obtained from the scalar-

exchange contribution to w N scattering.
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Following the prejudices established early in this chapter,
we try fitting dé.ta for the ¢(700) meson to our formula., If the-width
of the ¢ is taken to be 400 MeV, i.e., |

2/,
Eomp /47 = 11, - (2.61)

Eq. (1.101) for 8 NN implies

geTrTr/geNN = 1, (‘2-62)

whereas the right-hand side of Eq. (2.60) is

N = . (2. 63)

2
me /(Zm_n_ M
In view of the uncertainty in the PCDC predictions which lead to
Eq. (2.60), the discrepancy between Eqs. (2.62) and (2. 63) is not
significant. (15) . ‘ \ |

Eq. (2.58) may be related to the work of Chang and

Freund.(loz) If the dilaton is treated as a 3P0 state in the quark
model, generalized W-spin symmetry predicts(loz)
i ‘
G = G s (2. 64)

where opp coupling is "8, 8 G‘T + kak -vap for a dilaton with

PP B
momentum k“. PCDC applied to (p | ett [ p) yields

F G = 2m® + 0(m. %) . (2. 65)
¢ “opp p e
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Chang and Freund showed that the disastrous conclusion mi = m_i

follows from Eqgs. (2.27), (2.64) and (2. 65), if one ignores all

O(mf'_) terms; (that motivated their use of a 'tenth' piece in e: ).

Using Eqgs. (2.58) and (2. 65), we find(ls)

2 2
GU‘PPN (Zrnp /mo_) Go‘mr . ' (2. 66)

1

The xné.ss of the dilaton is not suppésed to be much less than mp,
so the effects of scale violation in Eq. (2. 65) are probably serious.
Therefore, the deviation of Eq. (2. 66) from the W-spin result (2. 64)
is not significant.

The success of our calculation depends on the assumption
that SU(2) x SU(2) is a much better symmetry than scale invariance.
The same cannot be said for SU(3) x SU(3). The Goldberger—‘Trei’man‘

relation for the o KK coupling is
2£.)"t G = mZ F__(0) + 0(m.%) (2. 67)
K "ocKK o oK e :

Evidently, we cannot claim that the O(mKZ)’ term is unimportant,
especially if we are considering a theory in which scale invariance is
automatically realized in the limit of SU(3) x SU(3) symmetry,
(i.e.y § » 0 when u- 0 ). Also, mixing becqmes important.

It is amusing to compare our method of deriving Go‘ -

with that of Ellis, (83) which is phrased entirely in the language of

effective non-linear Lagrangians. Ellis begins with the observation

* that an octet of pseudoscalar meson fields M obeying the non-linear
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ab (M) necessarily has

chiral transformationlaw [Fg, Mb] = i f
dimension zero if Eq. (1.57) is valid. By constructing chirally co-
variant derivatives DHMa = 8“Ma + O(MzaM), (‘where the exact form
of O(MZ 9M) does not concern us here), one can form chiral-

invariant kinetic energy terms T =%DMMa D*M?. The dimension

of T is -2, so an extra chiral-invariant factor¥ exp(-Zo‘/FO_) must

be included to give a scale-invariant result. | Proceeding in this man-

ner, Ellis obtains the mesonic Lagrangian(103’ 104, 98)

L =1D

a Mo 2 _ 1 Ve -
P»M D"M"™ exp( ZO‘/FO_) + zauw 9 o exp( ZO‘/FO_)

N

-%Lu (0]uloy exp(‘-4g-/F¢) + %(&u+ 4) (o|u|o0) (2.68)

- U exp(&uo‘/Fo_) o

The first three temms aré scale-invariant, where the third term
depends on the details of the symmetry violation given by the last
two terms. Interms of the decomposition (1.83) of eoo’ the
fourth and fifth terms a,.re -5 and =-u respectively. By assuming
that § is a c-number, Ellis fixes the coefficients of the third and
fourth terms, since 4 must not contain an overall constant or

a term linear in o. Note that, a priori, any value of Ly is

b
See Eqgs. (1.105-7).
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is allowable. The factor U has the series expansion

U=-U, -cUg=(0|UJ0)+ 1m? v 4+ pmlK® + gmly

+ oMY

(i. e. s dim U = 0).
To calculate the oww - coupling constant, one finds the co~’
efficient of ¢ w2 in £ , replacing ia}‘L by the appropriate

momentum (as in the rules for Fey‘nman diagrams):

ol wote(a L1 2 2
L 28H1r8 ™( Zo‘/Fo_) 5 moT ({,uo‘/FO_)

N (2.70)
2 -1 ,, 2
1 2
which implies
2 2
- Go"rrn- = m_ - (&u+ 2) m_ . (2.71)

The term depending on mi is .obviously negligible.* To emphasize

the lack of dependence of our calculation on X4 We have always

(15, 77)

omitted it. Otherwise, Eqs. (2.71) and (2.58) are identical.

B3

Some workers (Refs. 84 and 92) have taken the trouble to calculate
this term using formalism which resembles ours. Note that the
extra term is important if the oKK coupling is being considered; but
then mixing is also important.
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Whereas we were led to diécover the mf_ term by consideriﬁg the
relative magnitudes of symmetry violation, Ellis gets it from the
""momentum dependence of the eww vertex; " (in the jargon of usérs
of effective Lagrangians).

To conclude this section, we comment further on Eqs. (2. 41)
and (2. 52), which, at first sight, contradict each ot'her. As Eq.
(2.57) demonstrates, this behavior of Fz(t) at t=0 is required
in a consistent theory of spontaneous breakdown of scale and chiral
invariance. However, we regard the difference between Eqs. (2. 41)
and (2. 52) as significant only for dilaton theories. In the scale-
_invariant limit of a theor'y with no dilatons, all masses vanish, so
chiral invariance is no longer realized in the Nambu-Goldstone man-
ner and has no‘connection with soft-meson amplitudes. Therefore,
this difference is significant only if the zero-mass limit of Eq. (2. 52)
is supposed to be smooth, in spite of the infrared problem. This
lirﬁit might be smooth for amplitudes which are vacuum-expectation
values of an operator product expansion near the light cone, (i.e.,

a long way off-mass-shell). However, Eq. (2.52) is a low-energy
result é.rising from the behavior of the operator product R)\H\)*(X)

at large xz, so we expect that the difference between Eqs. (2. 41)
and (2. 52) is generated by infrared effects if no dilatons are present.

A contrafy point of view has been expressed by Jackiw. (105)
He introduces the term Sp.\) of Eq. (1.56) in order to make the chiral-'
invariant prediction for FZ(O) agree with the result of allowing GHP'

to vanish, (even though he admits that the zero-mass limit might be
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singular). In addition, this attitude requires ,{’,u=' -1. It is possible
that these results are right. We can only prove that SI-L\) vanishes
in the limit of scale invariance. Provided that SH\) has dimension
greater than -4, it does not affect the leading singularities of
operator product éxpansions. It contributes a scale-violating effect
to deep inelastic neutrino scattering, but this would be swamped by
the trace terms mentioned in the footnote to Eq. (1.92). To have a
hope of directly measuring its effects, one would have to perform thé'
experiment \)(l) - anything hadronic. The current commutation
relations impose constraints on SH v’ but these are not strong enough
to allow any definite conclusions. Jackiw presents an example, the
o-model with a modified e}-k\)’ in which his conclusions are valid. *
While these conclusions are plausible, the reasons given for accepting
them are not. (77)*
It is also possible that SH\) exists in a theory with dilatons.
However, it would be smaller fhan the term proposed by Jackiw,
because the magnitude of scale violation is much smaller; (e.g.,
Eq. (2.52) would become FZ(O) = - —13—(1 + m?_/so), where ‘SOIZ lGeVIZ

remains finite for m0_—>0). If it can be shown that the dimension of

A

This model does not work in a dilaton theary because it must be
supposed that 1/2f; vanishes in the scale-invariant limit; other-
wise SH\) does not vanish in that limit.

sk ’

Jackiw's work has also been criticized in Ref. 98, but only within
the context of dilaton theory. Jackiw prefers not to entertain the
idea that scale invariance could be spontaneously broken.
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scalar operafors (like s(x) in Eq. (1.56)) 1is not greater than -2,
then the presence of Sl-k\) is not allowed in a theory of broken scale

invariance. For the moment, we can only assume this.

II. 3. Conformal Invariance and Tensor Meson Dominance

We examine the short-distance behavior of the commutator

~ of B and %.2. The main uncertainty in this procedure involves

1Y 5N

identifying the '"licensed operators' On which appear in the expansion
(1.79). We restrict our attention to operators with dimension greater
than or equal to -4, since the corresponding Cn(x) are then suf-

ficiently singular to be of interest. Applying the principles laid

(40)

down by Wilson, we obtain®

9611'2 [Gp‘v(x), 35;2\' (O)] = - 68}’-\))\& log x% 353’°L (0)

+ (0 39 - 35 28“:};8(0)+....

+ ' 1
wvla *8 purB Pa BV o BXK) o8 *

(2.72)

ces M2 *3)(0 8 - gwaz) %, -1 (3 80('352 ()

- 2 (-2), 2, .0 .2 .
+ r(apa\) gwa) x}\E {(x) o 325a(x) T oeee s

where 0 v is a differential operator which is conserved and

o B

F

The symbol + ... ... - denotes separation of the scale-invariant
and scale-violating contributions to the expansion.
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traceless in the indices [, v ;

2
=60 9 0 8 _-3(0 9 + 00 +3 9 +9 9 )
%waB B va B (M ang vagHB P Bgva v Bgua)

(2. 73)

4 2

+3 - 2(6 0 -g..0 0_ 0
(g 8, Bug? - 2002 -, 8 (8,

. 2
Mag\)B * ‘\)ochB B gocsa ).

B

Of the constant coefficients appearing in Eq. (2.72), only r is
‘not determined by the hypotheses*--zero trace and divergence for the
leading singularities, together with the equal~-time commutation
relations (ETCR) fequired by Pbihca,ré invariance, Further, these

ETCR forbid scale-invariant contributions of the form

CovaY =1 L2 0B g 2, 0B
Cl(EMByaer ev}\syaﬂ)a EVV (x%) 3 r(0)+c28|¢\))\alogx aBJS (0)

x )log x° 63" P (0)

+c,8 x %) 7%5(0)_ + °4(26w>\ocxs - awas .

37uvka B
(2. 74)

which would otherwise be allowed; (e;‘“v (x) is the axial part of a ’

a a
(1,8) + (8,1) temsor (8 , eSp\))a= 1 ...

(LAY
tensor octet whose presence is indicated by the electroproduction

(106),

a .
g’ where el-t\) is the

data The singular functions E(-n)(xz) were defined by Eq;

(1.81), while ''log xz” obeys Bplog x2 = -xHE(-l)(XZ) ; (we might have

%
However, r must vanish for Lu\( -2,
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: _ >
written iwe(xz) instead of 'log x '').
From this operator product expansion, we wish to determine

whether the standard assumption(g’ 68,107) .

[K,(0) > 35(00] = 0 (2. 75)

should be believed. Since the KH are second moments of ep. the

\) b
only terms in the expansion which can contribute involve a singularity

(x) ">

Jackiw's term SH\) appearing in SMV--see Eq. (1.56). However, we

, i.e., the last term of Eq. (2.72), which corresponds to

assume the usual theory of broken chiral symmetry (r = 0), so Eq. -
(2. 75) is valid, and there are no Sc};winger terms in [ep\)(O,SE), 35H(0)]
more singular than 563(}?) .

Starting with Eq. (2. 75), we may perform a calculation(77)
which is analogous to our derivation of Eq. (2.50). Again, we work
in the limit of scale invariance, and defer to the next chapter
discussion of a more reaiistic but less elegant approach involving

dispersion relations.

The appropriate time-ordered product is

M,k d) = i fate eF (O] T, ) 35000 [70@) ), (2.76)

which obeys the identity
v _ :
k Mp«v)\(k’ q) = O(k) (2.77)

because of Eq. (2.75). Agaiﬁ, we must calculate the contributions to

M}L\))\ which are singular in k'. From the definition (1. 12) of the
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conformal current .}(Cp\)(x), it is easy to see that this involves second

derivatives of the pole terms given by Eq. (2.47):

. o
KM,k q)= ~kY |2 -8
rvh ekt %y M ek

(k,q) + O(k) .

(2.78)

As in our previous calculation, the simplest way of evaluating

an expression such as Eq. (2.78) is to take the kY factor inside the

derivatives:
o 3 5 9 v
k¥ M (k,q) = - |2 — - 8% — —— ] k' P (k, q)
wyh okt oKy bogkB Ok, avh
(2.79)
+ 22 PV (kq + 0k
sxP VM

(The symmetry of Pa\))\ in (a, v ) considerably reduces the length
of this expression). Combining Eqgs. (2. 47), (2.77) and (2.79), we

have

2i g )\ (F F . (0) - (wa)'l) = 4l qq (F F  10) - (.Zfﬂ)'1 F,'(0)), (2.80)

which implies Eq. (2. 50) together with a new rela’cion(77)

FN'(O)/FW(O) = F,;"(0) . | (2.81)

The primes denote differentiation with respect to the momentum

transfer squared.
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If poles due to the ‘A1(1070) meson and the spin~2 SU(3)
singlet, which corresponds to a mixture of the £(1260) and £'(1515)
states, are supposed to dominate Fmr(t) and Fll(t) respectively,

Eq. (2.81) implies
m? (2% ~ mZ(Al) , (2. 82)

‘When the magnitude of SU(3) mass splitting is considered, the agree~
ment of this result with the observed meson' spectrum is reasonable.
However, it turns out that Eq. (2.81) ié strongly affected by scale-
violating effects, and the results of A1 and { dominance are not
consistent. These considerations form the subject of the next

chapter.
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I1I. DISPERSION THEORY AND ESTIMATES OF SYMMETRY
VIOLATION

Soft-meson theorems are exact in the limit in which the cur-
rent which couples the meson .to the vacuum is conserved. However,
in the real world, these results become approximate; one has to
saturate unsubtracted dispez;"sion relations for the channel
characterized by the Ciuantum numbers of the meson involved.
Typically, ohly the meson pole itself is taken into account, because
fhe evaluation of contributions of many-~body intermediate states
seems to be hopeless in the absence of a complete theory of sti'ong
interactions. In a few fortunate instances, one can directly substitute
exﬁerimen’cal cross-sections or phase shifts to obtain a relatively
accurate estimate of the effects of symmetry violation. When
trying to understand the nature of symmetry-violating terms in 65 o°
the accurate saturation of such dispersion integrals in very important.

It is evident that the application of conformal-invariant results
to amplitudés in the real world requires a great deal of care:

(i) Conformal symmetry is badly broken, with no candidate
for the dilaton below 0.5 GeV. We assume that the mass of the
dilaton is significantly less than 1 GeV, (500 & m_{ 800 MeV).

(ii)- This symmetry violation may be accompanied by mixing
of the dilaton with other (JP, IG) = (O+, 0+) mesons.,

Unfortunately, in attempting to obtain corrections for Eqgs. (2.50)

and (2.81), we cannot improve on the approximation of keeping only

the meson pole, We try to make up for this deficiency by saturating
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two different dispersion integrals for the same quantity. By
proceeding in this manner, we can give rough estimates of the
uncertainties in our results.

To conclude this ‘chapter, predictions of the theory of broken
chiral symmetry are re-examined. This is necessary, because the
presence of a dilaton can affect low-energy theorems for pseudo-
scalar meson amplitudes if more than one such meson is present.

In particular, we show that, in the recent calculation of Cheng and

(108) the soft-pion theorem which they assume is still valid

Dashen,
in a dilaton theory. This leads to an‘alternative interpretation of

their result.

I1I1.1. Effects of Mixing

A phenomenological analysis of mixing in the nonet picture
has been carried out by Carruthers. (89) From his results, we

fing( 77

FU_N 102 MeV ' > F ,~ 68 MeV . (3.1)

These values correspond to a small value of the coupling of the octet
state to the vacuum via eP«\) when |o = ¢) and le'y are (roughly)
ideally mixed. This feature of Carruthers' analysis is ensured by

his use of SU(3) symmetrf to relate céupling constants; i.e., it is
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(correctly) supposed that SU(3) is rleali‘zed as a degeneracy sym-
metry.* Eq. (3.1) is very approximate beéause PCDC for baryons
has been used.
A good illustration of the effect of mixing is provided by '
PCDC for the matrix element (¢ le: [ &) .:(77)

2 2 .
F0‘G0‘9(¢ + FG,G€,¢/9{ = ng{ + O(mo_) . ‘(3,'2)

If the scalar nonet is takento be a set of SPO states in the quark

model, the apparent suppresswn of the ¢' - wm mode relative to
e~ KK suggests that e' contains only strange quarks. Ellls(83)

has pointed out that this standard picture implies

Gogg = O , (3.°3)

because the correspondi.ng quark diagram is disconnected. Thus
Eq. (3.2) shows that the ¢' pole provides an essential contribution
to the unsubtracted dispeﬂrsion relation for (¢ |ep’|‘L | #Y. As the
limit of conformal invariance is approachéd, the ¢! state loses

its dilaton quality to the ¢ state, and Eq. (3.2) becomes

. _ 2 ‘
GU‘¢¢ = 2m9{ 3 . (3, 4:)

A recent claim (Ref. 109) that Carruthers' assumptions combined with
Ward identities for the meson system give a large value for the octet

coupling (8] e}k\)l 0y relative to the singlet coupling is incorrect;

(add their Eqs. (63) and (64) to obtain a contradiction). Also, their
claim ¢, = -2 is a direct result of assuming Eq. (30) -- no Ward
1dent1t1es are needed. Unfortunately, Eq. (30) is not general valid,
and is certainly not implied by SU(3) symmetry.
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in agreement with Eq. (1.77).

(77) (83,110)

Another obvious example is the sum rule

-1 (0| [D,8M1]0) = i [atx ax )| T8, (), (07 | 0)

' (3.5)
A rn2 FZ + m ,2 F Z, .
[

Numerically, we observe

(3. 6)

so the contribution of the ¢' pole to the sum rule is significant.
Eq. (3.5) tests the idea that § is a c-number. In that case,

we have

2 2 2 2 . ' |
m_ F_ + m F_, r (e, + 4 (0fufo)y . (3.7)

(49)

According to Gell-Mann, Oakes and Renner, this vacuum

expectation value is given by the approximate formula
©lu]oy ¥ - 3m%/(16£%) , (3. 8)
T] T t4 L)

which gives the numerical result(77)

- &u(&u + 4) =~ 5 . (3.9)

. We think that the uncertainty in Eq. (3.9) is sufficiently large to allow

3%, £ -
3~)(,u~ 1,
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We observe one more example in which the ¢ ! contribution is

important: the standard soft-dilaton theorems
F_ (olu |0Y + F_i(e'|u_|0)m £ (Olu_[0)  (3.10)
F, (olug|o) + Fe'(e’|u8lo>”£u (o|u810> ~ 0 . (3.11)

In some cases, it is eipected that the ¢’ contribution is negli-
gible compared with that of the dilaton. Consider the wusual
method(15’ 84) of e.stimating Gonr’ (i.e., the derivation of Eq. (2.58)
by first obtaining Eq. (2.52)). Neglecting the mass of the pion, we

combine an unsubtracted dispersion relation for Fz(t), Eq. (2.52) and-

the decomposition

_ow 2 1r 2
Im Fz(t) = -3 ('5(1:-mcI )FOGO“_“_ -3 6(t-m€1 )Fe ’ G€ e + £(t) , (3.12)
to obta,in(??)
1 =F. G /mZ2+F G+ _/m ,2--3-j'dtf(t)/t' (3. 13)
g “oww' O € e ' e T ! :

The contribution of the ¢’ term is small; applying Eq. (2.31), we

record this observation in the form

F,+ Fyr(0) << F Fy (0) , (3.14)

where the numerical difference involves a factor of about 10. If the
continuum integral in Eq. (3.13) is also insignificant, Eq. (2.58) is
obtained, and the prediction for the width of the dilaton is ro—*mr ~

1200 MeV. An optimistic view of the accuracy of this result might

lead to the conclusion that it violates the Adler-Weisberger sum rule



-95-
for mw scattering (Eq. (1.94)). HoWever, the next section is devoted
to estimating GO‘ITTT according to the method of collinear dispersion

{(91)

relations, and there we conclude that our theory of broken scale’
invariance is not in conflict with the wm sum rule. In the forthcoming
calculation, it requires considerable effort, (recorded in Appendix D),

to show that the ¢’ term may be neglected.

III. 2. Collinear Dispersion Relations and Violation of Conformal

Invariance

In this section, we apply collinear dispersion relations to
obtain symmetry-breaking corrections to Eqgs. (2.50) and (2.81).
In current algebra, this is one of a number of available procedures
for obtaining the consequences of a given equal-time commutator. We
pause briefly to examine the status of the method of collinear disPer-
sion relations relative to the P, " and low-energy approaches.

The standard example from current algebra is(lll)

(NP, l[:Fa(?-Iz), Fb(a’l)]erxlﬁp = i 2PN, LB FO(q,+a,) [N X P ),
(3. 15)

where !NXf’) denotes a hadronic state with momentum 1—5, helicity A,

and spin, mass and internal quantum numbers N, and F* (a) is 4given

by fd3x exp(iq. x) F2(0, X). To evaluate the left-hand side of Eq. (3. 15),

a complete set of states |I) is introduced via the identity & |I)(I] = 1, |

the result being a class of sum rules for each value of P = %(l-slﬂ?’z)

(112)

Following the suggestion of Fubini and Furlan, take the

limit P~ and interchange it with . This procedure is valid for
I
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"good! operators such as Fa(a). One advantage of considering such
*
a limit is that only connected matrix elements (Il % INX}conn with

2 . . . .
-P)” remain, so saturation of the sum rule is slmpler
2

fixed q2 = (PI

and, for qul < m (07, 8), PCAC may be applied. In terms of dis-

persion theory for the amplitude

(lelpl) + 3;; (ql) - (NZ)\ZPZ) + jva’(qz) , (3. 16)

(with P = %(Pl-i-Pz), Q= %(ql+q2) ), the latter case corresponds to
dispersing in two paths:

(i) Associated with the sum over states %, there is the path v = P.Q
varying, with t = (PZ--Pl)2 = (ql-qz)z, ql2 < 0, and qz2 <0 all
constant.

(ii) Associated with PCAC, there is a path qi2 varying‘ (fori=1or2
or both), wifh v and t held fixed.

| Disadvantages of the P =w method are: "

(1) For good-bad commutators, Z diagrams may not vanish for

PZ - 00, **,ﬂ and the method fails for bad-bad commutators.
. (2) The method obviously does not apply if one of the states is the

va cuuix.

A much smaller set of sum rules results from combining low-
energy theorems with the appropriate unsubtracted dispersion rela-
tions. All of 1;he q2 = 0, Pz = o0 rules r’na.ir be expressed in this form.
In addition, (1) and (2) do not apply. So far, we have been restricted

to this type of calculation.
*

That is, meson-creation and Z diagrams vanish.

%% ‘
Details are given in Ref. 44. .
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In 1968, Fubini and Furlan‘?!) introduced collinear dispersion
relations, which involve a single dispersion path combining some of
'the features of paths (i) and (ii). In terms of Eq. (3.15), the complete
set of intermediate states is introduced at P = 0 instead of at infinite
momentum, so meson-creation and Z diagrams must be evaluated as
well as direct-channel diagrams. This additional complication was
accepted in order that the following‘disl.)ersion path could be used:
(iii) The variable is x, defined by q, = xP +'ki, G=1,2), with
k. P=0=k, z
P= 0, this prescription becomes g, = (%P

.P, t, k; and kz2 kept constant. In the Breit frame,

o al), so we obtain variable-~
qiz, fixed--ai sum rules. Meson afnplitudes appear as the residues of‘
poles in meson-creation diagrams. |

The advantages of this method are:
(3) The lack of subtractions in each dispersion relation* is guaranteed
by the existence of a Bjorken limit. We are now able to check this by
looking at the short-distance behavior of the corresponding operator-
product expansién; (i. e., the theory of broken scale invariance pro-
vides an extension of the PCAC hypothesis to the Fourier transforms :
of retarded commutators containing 8“%5“'). |
(4) There are no anomalous thresholds on the first Riemann sheet.
(5) The set of contributihg states lI) is very restricted because of

antular momentum and parity selection rules, ‘particularly for the

case Ri = 0.

Alternatively, the need for a subtraction may be indicated by scale
invariance at short distances.
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(6) The method does not depend on whether an operator is ''good"

(113) used collinear

or '"bad'. For this reason, von Hippel and Kim

dispersion relations to relate meson-baryon scattering at threshold

to (8| [F2(0), 8" 52 (01 | B).

(7) The method works if one of the states is the vacuum.
Disadvantages of coliinear dispersion relations are:

(8) The distance of the meson pole from the "soft-meson poiht” is

often considerably larger than mZ(O_,§_), which is the corresponding

distance for the Pz—+ oo and low-energy approaches.

(9) Apart from simpie poles, the meson-creation and Z diagrams

are potentially important but difficult to estimate; in practice, they .

are '"thrown away''. However, if one of the states is the vacuum,

all diagrams are meson~creation diagrams. Because of (5), the

error involved in neglecting the cut diagrams is about the same as

in derivations of Goldberger-Treiman relations for the currents

involved., The calculations in this section are of the latter type.

(10) There is a difficulty in evaluating the direct-channel cut contri-

butions, because qi2 be.comes large. The prescriptiongiven by

Fubini and Furlan, and followed by von Hippel and Kim, is to replace

them with on-shell S-wave phase shifts, (i.e., qiz-—» miz). This has

 no hope of working unless the cut contribution is small, and is

dominated by terms in the region qiz = O(miz), (Then the approxi-

mation is very good because it can be regarded as the application of

PCAC to PCAC corrections). Unfortunately, there is no prescription

which indicates when this is the case--a émall value for the on-shell
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‘estimate does not guarantee success, (although a large value would
ensure failure). This problem does not arise if one state is the
vacuum.

We conclude that the Pz—* co method éhould be applied when
both the initial and final states contain a single particle, while,
collinear dispersion relations are more reliable if one state is the
vacuum. Low-energy theorems are more limited in scope, but may .
be a.piolied in both cases.

We wish to evaluate

(0][D(0), B30 ][y = 3q/2e 3

3
<0|[KH(9),35>\(0)]|1r°(q)> = 0 , - (3.18)

in a dispersion-theoretic manner. Since D and KH are moments
of the bad operator eth v’ and one of the states is the vacuum, (1)
and (2) forbid the Pz-a oo method. As an alternative to the low-
energy approach alreé.dy considered, we proceed to use collinear
dispersion relations. All of the advantages (3-7) hold; of the dis-

" advantages, (10) does not apply, (8) is not sérious, and (9) involves
errors similar to those encountered in PCDC and ¢-dominance of
Fz(t).

The plan of the calculation is basically simple, but the
computational details are fairly complicated. Here, we describe
how to arrive at the results; the full derivatioﬁ is given in Appendix E.

We consider the amplitude for 35)» to interact with ep“’ and

form a pion:
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(e = i fdt STl )(0]08, (0, 3507 %))

(3.19)
= i qul + ik>\X2 .
Since T)\ is a retarded commutator, it may be written as a dispersion

relation along some path of integration in the s-t plane, where s

and t are defined by
2
s = k° , t= (q-k) . ' (3.20)

The prescription for a collinear dispersion relation is
k = (zm_n_,O) ’ q9 = (m,n.: 0) ? (3.21)

where z is the variable of integration in the dispersion relation.

This condition specifies the path of integration to be the parabola

4m” s = (t-s-mH% , ()0, (3. 22)

in the s-t plane. The behavior of Tx at large z is determined by
the leading singularity of the operator product [epp'(x); 335’)\(0)] at
short distances XH’ . {i. e., the scale-violating part of Eq. (2.72)).
This singularity goes like* (x)-3, so, by dimensional analysis; it

contributes a term

sk
This turns out to be.the case even if r does not vanish.



im_zx
_J'd4x e " O(x)-3 ~ oz (3.23)

(70)

to T)\-' This agrees with a formula proposed by Bjorken in a paper
which implicitly contains many features of the theory of broken scale |

invariance:

N = - C}\/mﬂ_z + 0z %) , (3. 24)

where C)\ is the equal-time commutator

im zx

cy = Jatc e T ° s(x) (0], ), Fsx(0)] [7°(9)) - (3.25)

Eq. (3.24) implies an unsubtracted dispersion relation for Xl(z),
X,(2) = .= [dz' ImX,(z")/(a' - z) (3. 26)
1 B [ 1 ’ ‘ °
and a superconvergence~like relation for Xz(z), » \

0 = j‘dz Im X, (z) . ‘ | (3. 27)

Using methods analogous to those developed in Chapter 11,

‘the retarded commutator T)\ may be related to the equal-time

(77)

commutators (3.17) and (3.18), implying the low=-energy theorems

26 X (x) = 27 - 3+ z) | (3. 28)

2

2 - 2F,00 + 3m F'(0) +3 + 0(z) , (3. 29)

wadxl(z)/dz = -z -~ >
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respectively. When combined with Eq. (3. 26), Eqgs. (3.28) and (3.29)
become sum rules. The derivatién appears in Appendix E.

The situation is illustrated in Fig. 3. The solid, curved
line répresent's the dispersion path given by Eq. (3.22). Poles in the
amplitude Tx are indicated by dotted lines. The Bjorken limit is
approached when s and t both become large and positive‘ along

the parabola. The collinear dispersion path crosses the pion-pole

2

T mTZr), where =z takes the

line t= mz at (O,mz) and (4m
T T

values 0,2 respectively. These points are denoted by (a) and (b)

in Fig. 3, and correspond to'the dispersion diagrams (a) and (b)

of Fig. 2.% The low-energy theorems (3.28 Jand (3. 29) constrain the

behavior of TX(Z) in the vicinity of point (a). The singular terms -

z and --z"2 of Eqs. (3.28) and (3.29) are present because the

pion-pole line passes through point (a). The dilaton-pole line

s = rnoz_ intersects the dispersion path at the points (c) = (m‘f' .
2 2 2 .
(mo. - mﬂ) ) and (d) = (mo_, (rno_ + mﬂ) ) » which correspond to

diagrams (c) and (d) of Fig. 2; =z takes the values rno_/m_n_,
nmo_/mw at these points..

The amplitude for GHH to interact With two pions is projected |
anywhere along the pion-npole line t= rn_n_z_ except in the region
0(s ( 4m1rz, which lies outside the physical regions for the process.
. Since the dispersion path (3.22) passes through the edges of these

physical regions, the residues of the pole diagrams (a) and (b) are

Here we need only the trace ga\) 6 o ; in the limit of scale

invariance, Fig.2 becomes Fig. 1.
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Fig. 3
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proportional to <1r(6) leﬁ ] w(0)) and (0 l %H' w(0), n(5)> respectively.

Similarly, contributions to our dispersion integrals from the dilaton .
+ : :

pole at z = — mo_/m_‘T contain the form factors Fo-w(t)’ Gmr(t) of

Eq. (2.28) evaluated at the edges of the physical regions for the

processes o-T + f + v and ¢ + w24 + Gf’ i, e., at

£
t= (ma_ imﬂ)z. These observations are a direct consequence of
the condition (3.21) defining the collinear dispersion path.

The amplitudes (0| GHP““’A1> and <A1 'eu“l ™) appear
at points on the Al-pole line above the z ) 0 and below the z (0
branches of the dispersion path, However, since the spin of the A1
is not zero, the pion cannot be emitted in an S-wave. Therefore,
these amplitudes vanish at threshold, i.e., on the curve given by
Eq. (3.22). Reflecting advanté.ge (5) of using a collinear dispersion
relation, only spin-0 states contribute to our sum rules.

It is convenient to separate out the contributions of the pion

and dilaton poles in the sum rules:
xi(z) = xi(s,t) = ImXi - Im(w=-pole + fr-pole)i , (i=1,2) 3 (3.30)

then, after performing the analysis described in Appendix E, we can

rewrite Egs. (3.27), (3.28) and (3. 29) as the exact sum rules(77)

-1 4 2 6 4 2.\ _ mO‘FO‘
(2£) 7 () (am]) - 1= 67 (4m, ) = gt [P () = G (4)

| (3.31)
. 1 A
- FO'TP(-) + GO‘TI‘(-)] + -;r- Idz XZ(Z) 9
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(Zf“)-l (.32=+%-F1(4m12r') -3 F2(4mfr)) = %FO‘ [F0'1T(+) + FO'TT»(-)

(3. 32)
+Go‘1r(+) + Go__n_'(-)] - —:‘r- Idz xl(z)/z . '
@) (-3 F (4m P + 3m ® F N0) + 3 F,(4mD) - 3 F,0)
ik G () -F G L gy (/a2 s
- Zmo_ l_0‘1r(+)+ O‘TT()- o (=) - o"rr(-) + F-J‘ le(z) z o
‘ (3.33)

where we have established the notation

P (s) = F_((m £m)D) . P (5)=F  (m2m)%)

(3.34)

.and so on. At first sight':, these sum rules look complicated, but
further inspection allows the derivation of simple, approximate
results.

The reader may have noticed that the contributions from the
¢! pole have been absorbed in the definition of the Xi(z), yet it is
not obvious that this term is small. Isolating the ¢'-pole terms,
we find that the axial form factors for the p-decay of ¢' into a
pion are evaluated at points t = (me, + mn_)z close to the A1 pole

at t=m, 2. . For this reason, the demonstration in Appendices D
1

and E that the e' term may be neglected is essential. Itis an
unusual feature of our calculation that the inclusion of mixing is

non-trivial.
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The first simplification of Egqs. (3.31), (3.32) and (3. 33)
involves the good approximation of keeping only the terms of lowest
order in mﬁz. In order to understand the magnitude of the
continuum integrals and their dependence on mﬂz,' an integration
variable such as s or t should be used instead of z. For

example, the continuum integral of Eq. (3. 31) may be written

2 2 2 2
J‘dzxz(z) = ( er>0 + Iz<0) dz xz(m“_ z, m_ (1 -2)7)
QO d :
= r 2 xz(s, s+mz -2m_,/8)-x (s,s+:cn2 +2m_,/s)
. T ™ 2 ™ T
o Zmn_./s
P .. 2
= .2 Io ds EEX_Z(S" s) + O(rn'lT ) . (3. 35)

A similar analysis of the other continuum integrals yields

00 .

J‘dz'xl(z)/z= L[) ds xl(s,s)/s + O(mwz) . | (3. 36)
oo -

&[‘dle(z)/zz = '-mez J;ds ait xl(s,s)/s + O(m_n_4) . (3.37)

Nothing ur_lexpected happens in Egs. (3.35) and (3.36),but Eq. (3. 37)

shows that there is a hidden factor m,n_2 in Eq. (3.33), (corresponding

to the factor quqx in Eq. {2.80)), which should be removed before

symmetry limits are considered or continuum. integrals are neglected.
At this point, we pause to compare our sum rules with the

results obtairned in Chapter I11. According to Eqs. (2.41) and (2. 43),



~108~
Fz(vt)‘ and Gmr(t) vanish in the limit of scale invariance. Since the ’
Xi(z) are proportional to eﬁ and contain no ¢-poles, théy also
vanish. Thus, the superconvergence sum rule (3. 31) reduces to the
trivial équation 0 = 0; we expected this because it was not derived
from an equal-time commutation relation. Eq. (3.32) reduces to
Eq. (2.50)--both of these eqﬁations come from Eq. (2.37). Fipally,

when the artificial factor mw2 is removed, Eq. (3.33) becomes

-1 1 - 1
'(Zfﬂ) F,'(0) = erm(m 3 (3.38)

which, when combined with Eq. (2.50), yields Eq. (2.81) as expected.
We proceed with the approximation of neglecting terms of ‘

higher order in mn_z. From Eq. (2.29) for (| 8,“35p‘ lw) ,

mcr2 F () -t G (t) = O(mw?/mwz) (3. 39)

is valid in the neighborhood of t = mo_z. In particular, Eq. (3. 39)
(77) '

implies

F_(m %) = Go_ﬂ(m:) + O(mﬂ_z/mo_z) . (3.40)

2

IR O(m_n_z/m:) . (3.4

mO'Z(FO‘TT'(mO’Z) - Go-n"(mcrz) )

"
Q
8

2
mO_Z(FO_Wn(mO_ ) 'Go-rr“(mo-z)): ZGO_“_'(m:') + O(mn_z/m0_4) s (3. 42)

and so on. Egs. (3.35), (3.36), (3.37), (3.40) and (3. 41) allow the
(77)

sum rules to be rewritten as follows:
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2f

-3F,(0) = ZfﬂFo_Fo_ﬁ(mf) - -1;’1 f ds "a?E X,(s,8) + O(mwz/m:“) ,
(3. 43)
l(l -3F,(0)) = 2£F F 2 f“ood /
> (1 - o(0)) = 2f F F__{m_) - — j'o s x;(s,s)/s
+ om Y/m % (3, 44)
Fi(0) + 3FJ(0) = 2fF [ZF "m %) -F _(m 2)/m2:|-
1 2 T o ow o o T o
2 P 9 2, 4
B ™ J‘ ds 5T xl(s,s)/s + O(mﬂ/mo_). (3. 45)
m o]

For the purposes, of comparison, we offer similar expressions

which are equivalent to Eqgs. (2.52) and (3.13):

F,(0) = - 1/3 + O(mj)/ma_z) . , (3. 46)
1=2f F F (0) - 3 of? ds' f{s")/s* + 0 (m 2/m 2) (3. 47)
T " e o o s)s ™ o ' :

where (t) is given by the last two terms of Eq. (3.12). Eq. (3.47)
corresponds to the dispersion path t=0, s) 0 in Fig. 3.

When Eq. (3. 46) is substituted in Eq. (3.44), we find(77)

Z T A - 2, 2
= S . . 48
1=2fF F_ (m") - j‘o dx xl(s,s)/s + 0(m "/ml) (3. 48)
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(Apart from the continuum term, Eg. (3.43) happens to give the same
answer).* Comparing the continuum terms of Egs. (3.47) and (3. 48),
we observe that both involve semi-infinite paths of integration with
apparently similar rates of convergence and similar sets of contri=-
buting diagrams. So at this level, we are unable to determine that
one continuum integral is siénificantly smaller than the other.

However, numerical agreement of the results of igno.ring
the continuum integrals of both Egs. (3. 47) and (3. 48) would be

surprising. According to the usual estimates(86’ 114)

of the Alchr
coupling, the A; pole should cause considerable variation in F'O_Tr(t)
between t= 0 and t= mf, In fact, Carruthers(sg) has shown

that these estimates agree with the result of assuming Al-pole

dominance of Fo-rr(t)’ in which case we have

FW(O)/FW(mUZ) ¥l - mvz/mAlz . (3. 49)

The corresponding dispersion relations appear in Appendix D. In
Fig. 3, the relevant dispersion path is s = mo_z, t Y 0. The

variation of Fo“n‘(t) is mainly controlled by the magnitude of the

2, m 2). The quantity of interest,

double pole in T)\ at Q= (m
d 1

E3

If the term S"™V of Eq. (1.56) were present, the left-hand sides of
Eqs. (3.47) and (3. 48) would be modified by the same scale-violating
factor. Then the accidental agreement of the pole-dominance approxi-
mation for Egs. (3.43) and (3. 44) would be lost. The continuum
integral of Eq. (3.44) is likely to converge more rapidly than that of
Eq. (3.43). That is why our conclusions are drawn from Eq. (3. 44),
while Eq. (3.43) is treated as a check on the consistency of our
approximations.
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. . . 2 2
Go"rrTr’ is proportional to the residue of the double pole at P = (rno_, rnn_).
Whe continuum integrals are neglected, Eq., (3.47) yields the usual

formula

F_ G ~ m’ ) (3.50)
o oTT o )

whereas Eqs. (3.48) and (3.49) require

LG~ 1n0_2 (1- mo'_?'/mAlz) ) ' (3.51)
From the poi'nt of view of broken scale and chiral invariance, Egs.
(3.50) and (3. 51) cannot be distinguished, because only terms O(mo_z)
are determined by symmetry arguments. Numerically, the
discrepancy between Eqgs. (3.50) and (3. 51) amounts to a factor of
almost 2,

Of course, this numerical difference could be removed by
" suitably weakening the assumptions~-for example, a tenth scalar
meson could be introduced. We do not believe that such a procedure
is called for at present. By saturating two different dispersion
integrals, two estimates of Go‘mr have resulted; the difference
betweén these estimates is a measure of the uncertainty involved in
predicting Go‘rr-rr by arguments based on broken scale invariance.
We observe that, when the restriction (2.35) from the Adler-
Weisberger sum rule for ww scattering is combined with

phenomenological estimates® of dilaton-baryon couplings, Eq. {3.51)

E3
See Eq. (1.101) and Refs. 89 and 90.
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is strongly favored. Having observed the numerical failure of PCDC
for (] 8:‘ | 7Y, it is less surprising that s-pole dominance of Fz(t)
is such a crude approximation. However, we have no solid argu-
ments which allow us to éxplain why Eq. (3.51) works much better
than Eq. (3.50).

Since our analysis works so well for Eq. (3.44), we try the
same approximations for Eq. (3.45), which involves the same path of

)

integration. Ignoring the continuum integral, we find(77

2 2 2 -z]
1 ~ - 1 l -
F'(0)x - 3F, (0) + Zf"FO_FU_W(mo_) [ZFW (mo_ )/Fo_“_(mo_ ) m_"| .
(3.52)
To estimate terms on the right-hand side of Eq. (3.52), we follow the

prescription which led to Eq. (3.51):

2 ~)
F F_.(m®) f i, .(3. 53)
2 2 2 2, -1
] -~
Fo-'n‘ (mo_ )/Fo"rr(mcr y = (mA1 - m ) , (3.54)
o Y~ 4 o =2 _ =2
3F,'(0). Fo_(?o_wﬁ/mo_ ~om' mA1 (3. 55)

Eq. (3.54) is implied by A1 dominance of Fom'(t)' In Eq. (3.55), we
first estimate the slope of Fz_(t) using o-pole dominance, and then

apply Eq. (3.51). Eq. (3.52) becomes”n



F,"0) = > © (3.56)

Notice the strong dependence of Fl' (0) on the magnitude of
the violation of scale invariance. Scale-breaking effects are

responsible for changing the scale-imvariant estimate, #* Fl'(O) _"::mA- s
L] . 1
by a factor of almost 3. This factor accounts for most of the

discrepancy between Eq. (3.56) and the prediction Fl’(O)’-‘-' mF_z '

(90) have estimated the f{NN

of f-dominance, Engels and Hohler
coupling constants from backward dispersion relations for TN’
scattering, obtaining an answer which is three times the value
predicted using f-dominance. (115) The quoted error (~10 ¢) seems '
a bit optimistic, but their work does encourage the suspicion that
f{ mesons do not couple universally. Then Eq. (3.56) is a reasonable
result.

In the preceding analysis, our strongest assumption is that

pole in the region ]tl(mA 2. To

(89) 1

we note that it implies

Fo'-rr(t) is domlnéted by the A,

obtain an indirect test of this hypothesis,

2

Fo"rr(o) = gA1 gAlchr/Z'mAl o (3.57)

where Fmr(o) is given by the Goldberger-Treiman relation (2.31),

*
See Eq. (2.81)
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R | . A ine.* o is th
5 € (Pcr +P) gAl(l‘Tl‘ is the 1o coupling g, s the

polarization of the A1 meson, and

= ¢ . 58
Ap135,10) = ey (3. 58)
would determine the rate for A1 - v + 4 if it were measurable.

The standard method for estimating ga makes use of
Weinberg's first and second sum rules(llé) for SU(2) x SU(2)
symmetry. From the theory of broken scale invariance, Wilson(.40)

has shown that these relations converge in the limit of SU(2) x SU(2)

symmetry. Therefore, we accept the usual saturation approximation,

which implies the formula_e(l.l6)
2 2 2 2 -2
g, /my" = ea, /mAl +(2£) , (3. 59)
Z 2
8o = gAl ’ (3. 60)
where
(°153] 0y = e g 6.6
b N op .

is proportional to the amplitude for p° - ,{J+ + 4 . Within the

theoretical and experimental uncertainties, data(79’ 117) for this

oy
The signs given for the momenta correspond to n'Al" o.
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process agree with the result of eliminating g4 from Eqgs. (3.59)
1

and (3. 60):

-1 -2 -2 -2 ‘
~ {2f - = . 3, 62
g, (26)7 (m, my ) (3. 62)

In addition, Eq. (3.62) is consistent with the KSFR relation, (118)

p dominance of the electromagnetic form factor for pions, and

(79)*

measurements of the width of the p meson. Therefore, we
are confident that the right-hand side of Eq. (3.62) provides a good

estimate for gy » SO Eq. (3.57) becomes
1

2
ZmA
~ - - i
gAlo‘n'/GO'mr—- Zl (m 2 . m 2')2 ; (3.63)
) - 0 1
o
(86)

which agrees with a set of formulae given by Gilman and Harari.
Unfortunately, Eq. (3.63) is rather difficult to test experi-

mentally., In order to avoid Al_' pw decay, it is necessary to find a

neutral peak for Alo—»w'l'n--n-o, determine what proportion of it is due

to threshold enhancement, (120) and isolate the ¢(700) peak in the

+ = s s p _ - -
w 7w pair. The prediction rAl—»o"n'— 30 - 60 MeV for T =

300 - 600 MeV 1is consistent with present data.

Our assumption of Al dominance is not invalidated by a

(104)

remark of Ellis. In effective Lagrangian models for the Alo‘Ti'

¥

"Theoretical reviews appear in Refs. 45 and 119,
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coupling constant, the pion must couple via a derivative so that an
Adler consistency condition is satisfied; (i.e., the amplitude for

Al-» g+ 3“’35H must vanish when the momentum of 6H35H vanishes).

Ellis notes that the coupling

7 _ s IJ.. -
"gAlo"n' = Balom AT (3. 64)

is forbidden in conformally invariant models: the dilaton field &
always appears in the combination exp(-o‘/Fo_), so Eq. (3.64) would
imply the existence of g Ao F_ A‘l“._apﬁ‘ , which is not allowed. On
the other hand, it is obvious from Eq. (3. 57) that, according to our

assumptions, does not vanish, even in the limit of scale

g
Alo-'rr

invariance.
Let us rephrase the argument in terms of low-energy

theorems. Defining

(A |a“35H|a> = ie-P_ DAlo_(t) (3. 65)

with t= (P - P )Z, PCAC gives
Al o

D (3. 66)

~ -1

The soft-dilaton theorems which could possibly be relevant are*

These expressions are derived using techniques similar to those
developed in Chapter II; e. g., see the derivation of Eq. (2.50). Since
A;-ow is a P-wave decay, collinear dispersion relations may be
written only for Eq. (3.68);i.e., 0PF;. and 6 @ cannot couple to the
spin-1 state [Al) when all 3-momen%§ vanish? The resulting change
in Eq. (3.72) is insignificant.
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Ay 10Mag, 1) 0 ~ - iF A | [D(0), 8" 5 ,(0) 7] 0)

| (3. 67)
Z
= p =
= f.‘i. <A1|a 35p[o>_ 0,
.M . .
(A 135, |70 L lf;_ a elkl"e(xouA1 I8, (2), 55, (0) 1] 0
=i F T A | TDo), 5, (0011 0) ey

All the soft-dilaton amplitudes vanish, in agreement with the argu-'
ment given by Ellis,

In order to continue the discussion, we need the form-factor
expansion |

A, 135y o) = e BIP_+ P, )\F, (t)+(P - NCINHLE

)
AN A

(3.69)

Alo'(t)

-€’\H

The definitions (3, 65) and (3. 69) may be combined to yield

D, (8 = (m, omiF

. . ty -~ tGA 0_(1:).+ H

(t) (3. 70)
1 .

Alo- Alcr

Soft-dilaton amplitudes are obtained by setting the momentum

associated with ei equal to zero, so Egs. (3.67) and (3. 68) should
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be interpreted as follows:

2 ~4
DAlo_(mAl) . o, (3.71)

2
HAlo,(mAl) ~ 0 . (3.72)

Comparing Egs. (3.66), (3.71), and (3.72), we see that Eq. (3.72) is
not useful, and the other theorems cannot be combined unless some

way is found to extrapolate fromt=0 to t= m 2. Therefore, our
: 1
analysis from the point of view of low-energy theorems indicates that

there is no theorem for = p— unless extraneous assumptions are
1
introduced.
Evidentally, ‘the trouble with the Lagrangian (3. 64) is that it

does not allow for any t-dependence in DA o‘(t) besides that due to
1
the pion pole. If that were true, then Eqgs. (3.66) and (3. 71) wauld

imply that vanishes. In general, we have o right to expect

gAlo"lT

pion pole dominance of DA (t) to work at t= m 2, so it must be
1 1
possible to write an acceptable Lagrangian for the Alo‘Tr coupling

using Ellis's model. To obtain dependence of D - (no pion pole)

A

on t, the correct expression must involve two mc;lre derivatives than
are present in Eq. (3.64). In order to circumvent Ellis's argu—.
ment, at least one of these extra derivatives mu;t act on the dilaton
field. In addition, the extrapolation is O(mAlz'), not O(rno_z), sSC

the momentum of the Al must be involved, With the help of these

clues, we arrive at the allowed coupling
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1

:£A 1

_ N Mo =
Tono (Fo‘ gAlo'“'/mAl ) (878" -0 Al ) BHTT aOteXP(O-/F‘T) ’

1
(3.73)

which vanishes for n =0, and is consistent with Eq. (3.57) for n= 1.
The application of the method of collinear dispersion

relations to related equal-time commutators is straightforward.

Examples appear in Appendix F; these involve the dimension of the

scale-violating terms in eoo' Unfortunately, the resulting sum rules are

*
are hard to saturate, or involve a coupling constant like(77)

. 2
FG . =(-2)m" (3. 74)

for a unique scale-breaking dimension 4.

So far, we have no indication that our scheme combining
PCDC and PCAC is at variance with the facts. Now we examine the
effect of our assumptions on the treatment of theorems for broken

chiral symmetry.

III. 3. Magnitude of Breakdown of Chiral Symmetry

Basic to our appr‘oach to the calculation of soft-meson
amplitudes has been the idea that the violation of c;hiral SU(2) xSU(2)
symmetry is much smaller than the breakdown of conformal
invariance. For example, we have assumed that, in the real world,
the induced scalar form factor Fz(t) is better approximated by

Eq. (2.52) than Eq. (2.41). This implies that G___ is O(mo_z)

oy . .
Of course, PCDC for (o']e ﬁ] v) does not fix 4 in Eq. (3.74).
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" rather than O(m0_4) or O(m_nz).

However, the position of chiral SU(3) x SU(3) in the
hierarchy of symmetries is less clear. The standard SU(3) x SU(3)
calculation includes only poles due to the octet of pseudoscalar
mesons. On the other hand, 0++ poles are important in the event
that § is a c-number,* or, more generally, that the magnitude of
scale violation is. of the same order as the magnitude of SU(3) x SU(3)
breaking, (i.e., 50 as u- 0"). Our analysis is based on the latter
model. Compared with theories in which there are no dilatons, our
scheme has the following fea:tu.res:

(i) Theorems connected with chiral SU(2) x SU(2) or physical SU(3)
are not altered if the relevant extrapolations in momentum squared
are O(mn_z).

(ii) The interpretation of results obtained by comparing such
theorems with experimental information may be radically different.
(iii) Any soft-meson theorem which does not belong to class (i), and ‘
which involves two pseudoscalar mesons which can form a (JP, I7) =
(0+, O+) state at some stagef qf the extrapolation procedure, may be
drastically aitered. | |

To illustrate the effect of the dilaton pole, let us consider
the limits of chiral and scale invariance. In gbeneral, chiral
calculations performéd in the limit of scale invariance differ from
the usual analyses with er' #0. Ina scaleﬁnyariant theory, extra

insertions arise from diagrams in which the axial-vector current

E3 .
For example, see Eq. (3.7).
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(]

can hook on to an external pion and turn it into a dilaton (and vice
versa).* A good example is the threshold amplitude T(0) for
forward 1r+p slcattering, where we show only the dependence on t,
the square of the momentum transfer. According to the Adler

(121)

consistency condition, T(0) wvanishes in the limit m_- 0

_ep‘p # 0. Inthe limit of scale invariance, the extra insertion changes

this result; instead, one obtains the formula (not to be applied to the

real world)

_ 2
T(0) = -2£ F_(0) g nxn = - 8enn /My ¢ (3. 75)

where the last equality follows from Eqs. (1.78) and (2. 50), That there
is no contradiction can be seen by explicitly displaying the o-pole in ‘
the non-scale-invariant 1r+p scattering amplitude:

2 p/

T(t) = r__ BN, () (3. 76)

o . N

with T(0) = ?/My for both 9" # 0 and g M= 0. The

" EeNN
limits mo_z-. 0, t- 0 are notinterchangeable in Eq, (3.76). Since
the Adler comnsistency condition is in excellent agreement with experi-

ment, chiral SU(2) x SU(2) symmetry provides a much better

description of the real world than does conformal symmetry. .

*® '
- Consideration of such insertions was essential in the derivation of
Egs. (2.50) and (2. 81); also, see Appendix C.
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Beéaus_e of the larger extrapolation associated with PCAC
for kaons, it is difficult to check the Adler consistency condition for
Kp scattering. Examination of the tables given by von Hippel and
Kim(1.13) shows the importance of the extrapolation procedure in
attempting to compare low-energy theorems with experiment. The
poor agreement of the soft-kaon theorems with data for the scattering
lengths vencoura'.ges the idea that poles due to scalar mesons strongly
affect the extrapolation. Thekories of broken scale invariance apply
here because we have shown that the relevant coupling constants
are large; i €.y fhe presence of a dilaton pole can change the appli-
cation of chiral SU(3) x SU(3) to such amplitudes.

. Evidently, this viewpoint requires that SU(2) x SU(2) be
regarded as a much better symmetry than SU(3) x SU(3), i.e.,
Eq. (1.52) holds with 'c = ~1,25, as proposed by Gell-Mann, Oakes,
and Renner. (49) This has been challenged by Gaillard(lzz) and
Brandt and Preparata,(l.Z?’) who prefer - ¢ q((ﬂ—, a result based

mainly on their analyses of K decay. The relevant quantities are*

23

(o] 4-i5 + - 1
(@ |5, 77| KTK) = 75 [kray, £(8+(k-q) £.(0)7],
(3. 77)
(mKZ - m:) £ (t) = i(w°|a“gp4‘i5|1<+>

=(my” - m ) (0 + 1 (8), (3.78)

>"See the exhaustive review of Gaillard and Chounet (Ref. 124).
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where f,(t), fo(t) are spin 17, 0" form factors réspectively. Often,

experimental results are obtained with the help of the parameters

A, = m? £, (0)/£,(0), \_=m? £ (0)/£ (0), £(0) = £(0)/£,(0) ,

(3.79)

in terms of which the form factors may be parametrized linearly.
The situation is illustfated in Fig. 4, where the scalar
form factor fo(t) is plotted in the region 0 ( t ( mKZ, At t =0

(point A), Eq. (3.78) implies

| , |
CE(0) = £(0) = 1+ 0(e) (3. 80)

where ¢ denotes SU(3) breaking (as in Eq. (1.72)), and the last
equality follows from the Ademollo-Gatto theorem. (125) The soft~-
oy, (60)

pion result, (''Callan-Treiman relatio
2 2, 2
£ (my) = fﬁ/fK + O(m_ /mK) , (3.81)

involves the point t= mKZ, which lies well outside the physical decay

region

m&2\<vt ( (my -m)% . (3. 82)

Eq. (3.81) is given by the point CT, where the error bar stands for

O(mn_z/mKZ) in a theory with c¢~7%/2. Gaillard and Brandt and
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Preparata claim O(mﬂz/mKZ) ~ 1, corresponding to c~0; then their
sum rule for fo(mKZ) gives the point GBP. Usingcollinear

dispersion relations, Banei'j'ee(126) has obtained the sum rule

flr_ anﬁ+C

(L4 m /my) £ ((my - m)% = F R )

w2 - %C

+ #-meson pole contribution , (3. 83)

which is extremely sensitive to changes in c. All estimates for the
# ~-meson pole contribution lie within the limits specified by the error
bars which we have attached to the points (c~0) and (c~-l.25) in
Fig. 4. |

In practice, these theorems have to be extrapolated back to
the point A; because the results of experiments are customarily
quoted as values for g(q) and )\+. (This circumstance is forced by
the limited amount of available data per experiment). The formula

£0) = —S—m T (A - N (3. 84)

connects these results with theoretical predictions for )\O given by
the slope of the extrapolation curve at t= 0. Four of these curves
are displayed in Fig. 4.

If the confused experimental situation is supposed to favor
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EO)~ -1 , N T A (K¥) = ,'024 , (.3.85)

@

(where the latter value* is implied by K*(89NO) dominance of f+(t) )

only the curves (ii) (Gaillard-Brandt-Preparata) and (iii) (Banerjee)
are allowed. However, from the point of view of dispersion theory '
for fo(t), the dip in (iii) is very mysterious, and, according to

Eq. (3.83), the point GBP should be extrapolated back to A along
curve (iv), not (ii). Therefore, we do not favor these alternatives;

curve (iv) definitely contradicts the experiment.

| Two recent experiments, (127) with more data than in
previous measurements, indicate
£(0) = -1 , A, = .06 —.08 . (3. 86)

+

Curve (i) fits these values. .In addition, it is slowly varying, as
required by dispersion theory, and passes through the CT point, as
expected in a theory v;/ith c® - ,/2 . Of course, vector dominance
fails.

We doubt that data from K&?’ deca;rs can be reliably
interpreted until all parameterizations are avoided, and the form

factors f+(t), 'fo(t) are plotted as functions of t. However, we

conclude that the Gaillard~-Brandt-Preparata scheme does not work.

ey
Practically all theories for )\+, (e.g., Weinberg's sum rules), predict

this result, but these arguments are not compelling. Weinberg's sum
rules for SU(3) x SU(3) are not necessarily valid--see Ref. 40.
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If the term u breaking SU(3) x SU(3) in the energy density
transforms as* (3,3) + (3,3), SU(2) x SU(2) is a much better
symmetry than SU(3), (and vice versa). Otherwise, representations

such as (8,8) must be considered.

Recently,' Cheng and Dashen(log) obtained the result

oy = (NI - L2 e (JZu + wg) |NY* 110 MeV(3 -

by using mN phase shifts, a fixed-t dispersion relation, and the low-
energy theorem
2 2 2 4
(0,0, m_, m“_) = 4f“_ onN T "O(mﬂ)“ (3. 88)
for the amplitude

2 2 2 2 2 2 2.2, 0.4 iq"
T(vsvg @+ @9 = (m =% (m” - @) @2 /m )i fax T

Blx,) (N | 103 ) (1), 8V5 (0TI N(p)) ,  (3.89)

with gq=p'+q" -p, v=(p+p') «(q+ q')/4MN, and vy = -q-q'/ZMN.
Since 110 MeV is not much smaller than energies associated with
SU(3) breaking, they conclude that SU(2) x SU(2) and SU(3) violations

are comparable in magnitude, which is contrary to expectations that

*

A term transforming as (1,8) + (8,1) could also be present, (Ref.
49). It has a negligible effect on soft-pion results, but could affect
soft-kaon calculations; see Ref. 128. -
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¢ is near =-,/2 . In a theory which does not contain dilatons, their
conclusion appears to be unavoidable.

However, a different interpretation is available in a dilaton
i theory. (77) As a subgroup of SU(3) x SU(3), the physical SU(3) group
is distinguished from other SU(3) groups in that its elements leave
the vacuum invariant. Then physical SU(3) is not spontaneously broken

and perturbation theory in the SU(3) violating parameter makes sense:
z 1 1 -
<N|cu8[n> T My + M, - My = 215 MeV . (3.90)

This means tha‘t the dilaton state lcr) must be invariant under
physical SU(3) transformations in the limit of scale invaria’.nce. As
scale invariance is broken, the dilaton qualtiy is distributed befween
the |0y and |e¢') states. Poles in (ug) due to the existence

of |c) and |e¢') arise from the non-dilaton, or octet, quality

of these states. On the other ‘hand, matrix elements of uo“ have

o and ¢! poles due to the dilaton quality in |e) and | e'y. There-
fore the magnitudé of (N| uol N is O(mn2 MN/mo-Z): much lafger

than (n] ui[N). In general, we expect .
(vlu |v) >> (Y|ug| ¥) (3.91)

for all one-particle rest states |y) except, |¢) and [07,8).
Because of these observatiofxs, there is no reason to abandon
either the (3,3) + (3,3) form of the chiral SU(3) x SU(3) violating

term in the energy density or the value -1.25 for c, if there is a
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dilaton. In order to apply Eq. (3.87) in a dilaton theory, we should
first check the validity of neglecting the terms "O(m:)“ in Eq. (3. 88),
where the next order in rnﬂ_2 is given by

2

4, 4 9
Ho(mw)n_ M. T 2.2

T(0,0,0,0) + "0(m )" . (3.92)
9q~ 0q' i v '

The pion poles at q2 = q'Z = mﬂ_Z do not contribute to Eq. (3.92).
Parametrizing the failure of PCAC in terms of a '"heavy pion", w¥,

the contribution of the dilaton pole is

(26,/m ) gy 1[4 1 (o T s (), 8V 35 (0)) ] 0)
(no w poles)

=0 [MN(ZfTr)LL( 0] 3”359 | >2/(mo_mw>:<)2] , (3.93)

. . 2
with (0| 8“’35“ [w*y = O(mw/Zf'n‘)’ so the correction terms have
. 2 4 2
magnitude 0(4:f_ﬂ_ M’N m,_ /(ma_m“’ﬁ) ). Neglect of such terms appears
to be a satisfactory approximation; a corollary is that the cor- |
responding terms for KN scattering should not be thrown.away:
4, 2 2 |
mK/mo, = O(m,K ). Therefore we use Eqs. (3.87) and (3.90) to
obtain (Nluo Ny = -1280 MeV and

(N|u| Ny = <r1\m+(cl2 -1)(N]eug | N)

3
JZ W2 + <)

x 1060 MeV . (3. 94)
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Within the 204 accuracy of Eq. (3.94), we have

Nlul Ny = Mg (N [NYe (N[ 8] M) , (3. 95)

so the formula

- M - :
(N|{rg + 4) 8% (2, +4) u| Ny = (N]\e“ | Ny = My (3.96)

suggests &= c-number and &u =-3; however, we are unable to
exclude the possibility =( N| 6| N) = 0(My).
More recently, Hohler, et. gl_.,(lzg) have given another

estimate of o obtaining

..~ 60 MeV . | (3. 97)

NN
In a theory" with ¢ = - 1.25, we find
(N|u| Ny = 430 MeV , (3.98)

S0 '[’u would be -2 in a model with § = c-number. Hohler, et.al.,
note that there are large uncertainties in the real parts of the wN
scattering amplitudes which they need in their calculation. However,
they are unable to make their evaluation consistent with the Cheng-~
Dashen result. We have no explanation for this.

The estimates of O‘NN given by Cheng and Dashen and
H¥hler, et. al., supersede thé work of von Hippel and Kim, (113)

‘who were first to make a serious attempt to find (N | u| NY.
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They attempted to saturate collinear dispersion relations for SU(3)
generalizations of the amplitude T defined in Eq. (3.89).* In terms

of the function

2

T(v) = T(v, = VZ/ZMB: Vo, vz) ’ (3. 99

the forward amplitude for meson-baryon scattering at threshold is

T(m while the o=-commutator is given by the exact relation

wr

T(0) = -4f“_2 (B | [F5, [Fg 900]] | BY . (3.100)

These two quantities are connected by a collinear dispersion

integral: (91,113)

T(mM) = T(0) - (ZfM/mM)zuBl[f‘S(O), 8“35“(0)] | BY

Conn.
2m 2 fo'e} —_
g 7 dyim T(v) (3.101)
™ . 2 2 : :
=-QO \)(V = mM)

In order to make the continuum integral converge, it is necessary to
make a subtraction at y= co; this accounts for the appearance of the
equal-time commutator

C = (B|[F 0 . o3, (0] B -, (3.102)
onne

® ' .
The SU(3) indices of the current divergences are symmetrized,
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where '""Conn," indicates that only the connected part should be
considered. Von Hippel and Kim obtained (N l ul NYZ 0 and

o ~ 22 MeV, in disagreement with the more recent results

NN )
(3.97) and especially (3.87).
The von Hippel-Kim result has always been regarded as

doubtful because of the difficulty involved in accurately saturating the

continuum integral. Their analysis involves the assumption

Im T(v) = Im A(f)(.|\,|) , - (3.103)

where Ao(\)). is the S-wave meson-baryon scattering amplitude
in the s-channel. As noted in Section III.2, this procedure neglects
meson-creation and Z diagrams (apart from obvious poles), and

replaces the S-wave direct-channel cut contribution to

8"5;,(a) + B(p) - "5 (@) + Blp) (3. 104)

by the S-wave s-channel cut contribution for MB- MB. The
rationale for the latter step is that the only important cut terms are
those with lqzl = \)2 = O(me). However, this method is clearly
inferior to those of Cheng and Dashen and Hohler, et. al., which
depenci only on the accuracy of the data, (apart from terms like
"0(m_*)" in Eq. (3.88)).

There is another aspect of the von Hippel-Kim analysis

" which we question. The standard practice in this type of analysis is
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to ignore the equal-time commutator C. Thus, Fubini and Furlan(gl)
argue that C vanishes because the pion field BHESH should obey
canonical commutation relations. In a theory of broken scale in
invariance, this happens only if 8H35H has dimension 2e © -1,
This assumption is completely arbitrary. The fact that 8H35l~’« has a
pion pole has nothing to do with its dimension, since 8“35Hexp({,o'/]?0_)
couples pions to the vacuum wifh exactly the same strength; in fact,
unless dilaton arn.plitudes are being investigated, these two pion

fields are equally good candidates for smoothly extrapolating a pion
amplitude of '"off~mass=-shell’,

At various stages in their analysis, von Hippel and Kim(ll3)' .
mention the fact that C does not vanish in the quark model. How-
ever their argument that C is negligible is circular. In the quark
model, C involves an overall constant of proportionality which

contains the quark mass mq " so their estimate of C depends on one's

interpretation of the symbbl mq. Von Hippel and Kim assume
3m, = (Nlu |NY. (3.105)

as indicated by a non-relativistic quark model for the SU(3) x.SU(3) -
violating term in 860" Unfortunately, they also make use of their
main result (NluolN} ~ = 215 MeV, which was computed
assuming C = 0. |

When Eq. (3.101) was first formulatéd,_(gl) it was
acéompanied by a statement that the usual soft-pion formula does not

work if C is not small, This remark is not valid if the soft-pion
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formula is written correctly, as in Eq. (3.88). Ignoring the clfccts

of o-poles for the moment, we can analyze Eq. (3.101) in the fol-

lowing manner: the continuum integral is "O(mM4)", while T(mM)

and T(0) are "O(mMZ)”.' Now, it is essential to distinguish the

threshold amplitude

2 2

A, my) (3.106)

= ' 2
T(mM) = T(mM, -mM/ZMB, m

2 2)
MM
estimate. In fact, Eqs. (3.88) and (3.101) imply

from the amplitude T(0,0,m which Cheng and Dashen

2 2

. 2 _ | 2
-i (ZfM/mM) C = T(mM,z, - mM/ZMB, my s my )

+ T(O,.O, mMz, mMZ) + "O(mM4)”

= no(mMZ)u . ‘(3_ 107)
This is the same order of magnitude as the o-commutator contri-
bution T(0) to Eg. {3.101).
These dbservations may be formulated in a more general
fashion by applying Wilson's theory of approximate scale invariance at

(40)

short distances. Let us examine [v(x), v(0)] as Ly varies.
We wish to examine connected matrix elements of the equal-time com-~

mutator [Vv,v], so only g-numbers involving a singularity x°

(s )/ 2), are relevant, For ,f,u= -1, no g~-numbers are available.
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For the other integer values of /(,u, we obtain the following short-

distance expansions:

vix, w03 = m e EEV A wo) + .0 L (e =2, (3.108)
[v(x), v{0)] = (ml\f/Mj)[czapE(-l)(xz) xH0) + c38H8Vlogx26”V(0)

Feve et c4E(‘” (%) u(0) +... 7,

(4, = -3) (3.109)

wher.e the dependence on internal quantum numbers has been sup-
pressed., The dimensionlesé pumbers ¢ do not depend on the
magnitude of the violé,tion of scale invariance, and have valueé O(l)‘
in models. In (3.109), masses are normalized relative to Mo= 1 BeV,
and the term with coefficient Cy is a scale-violating contribution.
The diagonal matrix element C defined by Eq. (3.102) receives
contributions from all terms in Eqgs. (3.108) or (3.109) except
the term proportional to Cye

For )(u = -2, we have no reason to suppose that c1 vanishes,
and so we obtain

2

[8_v(x) ,V(O)]XO=O = - 4rlim. 2 83(R) u(0) < (3.110)

M 17

which cannot be ignored relative to the contribution from the o~term.
For example, in a model containing canonical 'O-l?, 0" fields, o, 9{,

(i. €., dim o = dim yf = «l), formulae such as
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4n® [B(x), 4(0)] = g(-1) (x'z) I, (3.111)

or the corresponding canonical commutation relations, imply

e, = (8¢9} , (3.112)

where the scalar and pseudoscalar densities are defined by

2,2 2
u=%mM(o‘+¢) ,

<
]

%ml\fvsf . : (3.113)

Apart from a difference in normalization factors, the model of Ellis(S;)

gives the same result.

The situation for Qf,u = -3 is more complicated, because there

are two terms which may contribute to C:
2. 4, 2 i 3, 3,
[8ov(x), v(0) ]XO=O = (47" i my /Mo) [0231(0) 316 (x) + 2c3 eo o(0)5 (x)
3
- ¢y u(0) §7(x)] ; (3.114)
(the first term vanishes when integrated over 3-space). For example,

cy = 3¢, oL (3.115)

. is obtained inthe free quark model.  Part of the "O(mM4)” term

to be proportional to eﬁ’ which does not contribute to C because
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of the self-stress theorem.* In the free quark model, the operator ° '

product of Eq. (3. 109) has the form

1

_ i ] (-1)
(v a0, G0y 5a(0] = &) GF + mIE (<) a0

+ §(0) {(~if + m) BN (D)} al).
. (3.116)

Applying the Taylor series expansion q(x) = q(0) + x-9q(0) + ...,
we observe that i and m give rise to eoo and u , respectively,
in Eq. (3.114). Actually, von Hippel and Kim incorrectly replace
iv by [v, J‘d3x (u_+ cuy) so they obtain O(m 6) terms, which
Vo 8"’ M _
turn out to be very small because of the use of Eq. (3.105),
Entirely different structure is observed in a boson model

in which the pseudoscalar density is given by
= 1 2 2 \ '
v o= gy, é exp( D‘/Fo_) ’ (3.117)

for example. Then the right-hand side of Eq. (3. 114) contains the
quartic terms yf-zexp(zo'/Fo_), exp(4o‘/F°_); in Ellis' model, the
latter term gives the same situation as for the case J{,u = =2, With

or without dilatons, C ‘cannot be neglected for {u = =3, either.

2
See Appendix A. To be consistent, Eq. (3.105) should read
3mq = MN' ‘ '
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We conclude that the sum rules investigated by von Hippel and
Kim do not specify the value of (N Lu | N), unless a separate investi-
gation demonstrates that )Lu has the canonical value ~1; i.e., the

equal-time commutator being evaluated is

E = (B|[Fg0) + m> F(0), a¥5,(0)1[BY .

Conn., .
(3.118)
This observation does not greatly affect their comparison of theory
with experiment for the meson-baryon scattering lengths.
In dilaton theory, "O(mMZ)", "O(ml\/?)", ... become
2 2 4 2 .
"O(mM /mo_ 3, "O(mM /rno_ M ..., because of the presence of dilaton

" :
(103) has suggested that the approximation of von Hippel

_ poles. Ellis
and Kim, Eq. (3.103), is not valid because of rapid variation due to
the o-pole. IHe presents a Lagrangian model which displays th:is'
variation, and he is able to fix an unknown constant such that the
agreement between theory apd experiment for scattering lengths
obtained by von Hippel and Kim is not upset. However, the analysis
mixes contributions from o¢-poles with phenomenological estimates
of cut contributions. Since one cannot tell how much the o-pole

contributes to the latter, some further comment seems necessary.

Egs. (3.100), (3.101) and (3. 118) imply the exact relation

(ZfM)'2 T(m,,) = “iE/my + 1 (3.119)

Cont..

%

Ellis does not alter the von Hippel-Kim assumption that C is
negligible.
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for the threshold amplitude T(mM), with¥*

0.0]

2 .
2Zm -
M dy Im T 4, 2
= f Vo lm (\)) = O(mM/mo‘MO) . (3.120)

I
2 2 2
cont. Tr(sz) V(\) - mM )

-0

In general, the other two terms in Eq. (3.119) are O(Moml\f/mo_z);
Taking Ellis point of view, the von Hippel-Kim method fails if
O(M0 mMz/mo_z) terms are introduced by the approximation (3. '103).

In theory, this is quite easy to arrange: the term

2 2
- 2m + 4M_ v
2 2 m M BVB
P(vs vgs 4 »9') = : z Q (3.121)
B m2-§ m2
o g

(with § = F,(\)B, qz, q'z) = (q' - q)z, and Q an analytic function),

vanishes on the collinear dispersion path:

2, 2 2
P(v, -v/2Mg, v, V) = 0 - (3.122)

Thus theoretical manipulation generates an arbitrary amount of re~
scattering integral with magnitude O(M0 mMZ/mO_Z), depending

on which function IrnQ(\), Vg me, mr\,?) one cares to choose. For

example, we could have Q proportional to T(v, Vg? mN‘[?', ml\fi), in
which case, the rescattering integral would be a linear combination of

S- and P-wave MB amplitudes. Experimentally, the size of the

3%
Compare Eq. (3.93).
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rescattering corrections found by von Hippel and Kim roughly
indicates the contamination from O(M0 mMZ/mO_Z) terms. A good
‘example isothe rescattering integral for the s-channel isoscalar
KN amplitude, which contributes about 3 GeV to Eq. (3.119).

Evidently, the indicated procedure is to make an estimatve of
the magnitude of ICo‘nt. , treat it as an ungertainty, and then attempt
to isolate the O(MO mMZ/mO_Z) terms, ‘which should dominate. We
restrict our attention to wN scattering amplitudes, because we are

confident that I may be safely ignored. The justification is the

Cont.
same as that for the neglect of "0(mﬂ4)“ terms in Eq. (3. 88), (the

(t)
0

theorem used by Cheng and Dashen). If a is the t-channel

isospin-0 scattering length, Eq. (3.119) becomes

) 4

-3 E/mwz = (Zfﬂ)'z (1+m /M) 4 ao(t + mo(m_*n.

(3.123)

All estimates of ao(t) indicate that it is very small, although
not everyone* agrees with the limits of uncertainty in the standard

value

G R C

o - 3°%172

2
gaéjz,_ = - (0.012 % 0.004)/m_

(3.124)

quoted in the review by Moorhouse. (130) Eq. (3. 124) implies

)

i E/mf = 11 MeV , | (3.125)

%
See the discussion by Hohler, et. al., (ref. 129).
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which is an order of mag'nitude smaller than the value for O NN
obtained by Cheng and Dashen; {see Eq. (3.87)). From the
definiti;)n of E, Eg. (3.118), we see that [aov(o,;c’), v(0,0)]
does not vanish; in fact, its contribution to Eq. (3.101) is as
large as that of the o-term. Therefore, assuming that the

dimension Ly of u is unique, our previous analysis implies

1, { -2 . (3.126)

Eq. (3.126) assumes that there are no extra scalars of dimension -1
in the operator product éxpa.nsion [v(x), v(0)] ; otherwise, we would
have /f,u\( -3/2. The important conclusion is that, if .{u is unique; it

cannot equal ~1.

I11I.4. Concluding Remarks

Qur final result, Eq. _r(3, 126), provides a partial justification

for assuming that the dilation operator D(0) commutes with the
axial charge FS(O); (equivalently, SHV , defined by Eq. (l.56), is
not present in eH\) , or, the constant r wvanishes in Eq. (2.72)).
At various stages in the anal.ysis, we have indicated that Eq. (3.126)
is the condition needed. In turn, this statement assumes that (ua, va)
are the only spin~0 terms which break chiral invariance in an
operator product expansion. This follows the suggestion of Wilson
that only a limited set of '""licensed' operators On(x) is present in
Eq. {1.79).

It is unfortunate that experiments on scalar mesons are not

more definitive., Combined with the theoretical uncertainties of our
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calculation, there is a lot of room for error. However, we have been
able to show that the dilaton has a large width, but not necessarily
so large that the Adler-Weisberger sum rule for ww scattering is. '
oversaturated. Our result for the spin-2 gravitational radius of
the pion is less positive, since we can argue that it is reasonable
as long as f-dominance does not work. The most striking feature
of these results, (Egs. (3.50), (3.51), and especially (3.56)), is
the strong dependence 'on the magnitude of scale violation. One must
be very careful to look for these deviations from the standard soit-
meson result when the s;lrmmetry is so badly iaroken.

Having observed that a dilaton couples strongly to both mesons
and baryons, it is natural to consider the effect of t-channel dilaton
poles on theorems for meson-baryon scattering at low energies, Of
particular interest are possible interpretations of the recent result of
Cheng and Dashen(108); (see Eq. (3.87)):

(i) The breaking of SU(2) x SU(2) is almost as large as SU(3)
violation, and the SU(3) x SU(3) breaking term u in eoo contains
representations other than (3, 3) + (3,3) and (1,8) + (8,1) ; e. g
Cheng and Dashen adopt this proposal with u transforming like (8, 8).
This is a respectable possibility which is hard to discount.

(ii) SU(3) is a much better symmetry than SU(2) x SU(2), and u
belongs to (3,3) + (3,3) ; (i.e., |c| (¢ A/Z—).(lzz’ 123) This scheme

has trouble explaining K decay; (see Fig. 4). We do not regard

23

it as a viable theory.
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(iii)' The SU{(2) x SU(2) and SU(3) x SU(3) breaking terms in 800 :
transform under different representations of SU(3) x SU(3). This
model is usually dismissed as an ugly theory; purely experimental
tests are very difficult to find.
(iv) SU(2) x SU(2) is a much better symmetry than SU(3),u= -uO-CIiS
belongs to (3, 3) + (5, 3) with ca =-1.25, and there is a dilaton
associated with approximate scale invariance. The magnitudes of
scale and chiral SU(3) x SU(3) breaking are comparable. Thus, one
imagines that § vanishes in the limit of _chiral invariance; (5 = c~
number is a special case favored by Ellis(83’ 104)). This is the theory
which we discuss in Section I1L 3.
Except for scheme {ii), consistency of the sum rule (3. 101) for the
threshold amplitude, the experimental value of the isospin~symmetric
scattering length, and the Cheng-Dashen result requires 2. £ -1.

Let us conclude by briefly mentioning some questions which
have been raised about having c¢c< -1.25 and u belonging to
(3,3) + (3,3).

Recently, Dashen(SS) showed that the amplitude for Kos—» 2w
is O(ez) in a conventional (3,5) + (5,3) model, where ¢ is a
parameter indicating the magnitude of SU(3) x SU(3) violation. This
is not necessarily a difficulty because there is an overall |
normalization factor which must be estimated by other means. The
dilaton scheme (iv) provides another way out. Essentially, the
result is that the amplitude is dominated by the o-pole. This

(131)

justifies one of the assumptions of Dutta-Roy and Lapidus,

o] (o]

who also assume that the K1 -KZ mass difference may be
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calculated in this fashion. Experimentally, these assumptions work
quite well.

The most awkward problem in current algebra is the treatment
of second-order electromagnetic processes in which the photons are
not emitted. Whenever the effective electrodynamic Hamiltonian
is supposed to cummute with F53, the wrong answer is obtained.

" Brandt and Preparata(123) take this as evidénce that SU(2) x SU(2)

is a very bad ssrmmetry. However, there are at least two other ways
of proceeding:

(a) There may be a term u, in eoo which is not electromagneitc.

in origin, This scheme is attractive in that it provides a means of
calculating the Cabibbo angle. (132)
(b) The formal expression is divergent, and therefore needs a
subtraction, the I= 1 tadpole. This solution is advocated by
Wilson. (40)
(Dilaton theory does not affect this type of calculation). With the
theoretical freedom provided by (a) and (b), there is no problem
in taking SU(2) x SU(2) to be a very good symmetry.

.Although the non~-vanishing rate for 'rro—>2y was once a
problem, it is now reasonably well understood. (Again, Brandt

and Preparata claim that their point of view is supported). Adler(133)

(134) observed that the isual manipulations break

and Bell and Jackiw
down in spinor electrodynamics, and other models involving fermions.

Because of the model-dependence of these investigations, there was

some confusion as to their validity. The problem was put into



-145-
. . (40) o
perspective by Wilson, . who demonstrated that the soft-m -2y
amplitude is proportional to the function Cn(x, z) given by

a b v abc M
B = C ’ e ’ . 2
'}H(X) 3«\)(0) Ty (2) d € uin (x,2) I + (3.127)

so there is no reason for c¢= =~ 1.25 to be invalid in a theory of
broken scale invariance.,l

We can carry out a similar calculation for o-2v,
("anomalous PCDC"). The usual argument gives a vanishing rate,
because

"£ = My |
257 F (3.128)

is already scale-invariant, so the factor exp(o‘/Fo‘) cannot be added.
In fact, repeating the argument of Wilson for the dilation current,

the soft-oc—2y amplitude is proportional to

abc

a b _
Fo(x) 3.)(0) 6, (2) = 6°°C,

V}\n(x,z) I + ...
' . (3.129)

Thus, the symmetry-<breaking scheme outlined in this thesis
appears to be a viable theory. However, some alternatives are dif-

ficult to discount.
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APPENDIX A

ELEMENTARY TECHNICAL REMARKS

One-particle states are normalized invariantly,

CEY = (Z'ﬂ)3 2p 53(p'-p) , (bosons) ,
. (A. 1)
(p'lpy = (Zn)3 Po/ M 63(15'-5), (fermions) ,
or occasionally to one particle per unit volume:
((p' ]p)) = (Z'rr)3 63 (;'.-E) , (bosons or fermions) . (A. 2)

We have suppressed labels denoting spin or internal quantum numbers.

We follow Sections 1 and 2 of;”Conventions and Notation'' in the book by

44) 5 0123
except for our Ye =Y SYY YV

(13)

Adler and Dashen,(
A useful theorem states that fd?’x s(x) = 0 implies s(x) =0

if s(x) is a local, spin-0 operator. To prove it, comsider

s (K) Jd4x eiK'X s (x) ; | (A. 3)

I

the hypothesis becomes

s(K_, 0) = 0 , (A. 4)

so Lorentz invariance implies s(K) = 0 for K2 > 0, If K2 is spacelike,
l\l() = s(K)iO) must vanish -- otherwise KIJ' would be the momentum of
the state |y). Since WZI s (K) H/l) is an analytic continuation of
(WZ'WIIS(K)IOL s(K)|oy =0 implies(l35) s(K) =0, i.e., s(x)=0.

Let us briefly summarize canonical field ti'leory for the stress-

energy tensor and scale and conformal transformations. One starts
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from a Lagrangian density £ which is a function of fields Y and a

finite number of field derivatives:

r

£ L ov 0%y, , 2T (A. 5)

Usually, only dependence on ¥ and 8V is considered, but, as empha-

sized by Huggins, (10) this restriction is entirely artificial. What

matters is the form of the equations of motion, which are given by,

e.g.,
3 S8 oY L < " (A.6)
¥ 5 My 5 akavy

for r = 2.

The construction of the generators Ga. of a transformation

with parameters « proceeds via the Action Principle, Eq. (l.20),

with
A, = | ade (A7)
? o}
An expression of the form
= H
G, (o) = fcdo % (x) (A. 8)

results, where (e.g., for r = 2)

ox” [8L 5 _84 &y
sa® g oHy vaa“av\p

oV
5 ( a -9 2 (A. 9)
5 a“a oV [ Y "Saa]

is a corresponding current, and

a

wgua () = Tyv
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T (x) N BT S P L ¢ av\p+ax[_5_—f__avw] -gw.,ﬁ (A.10)

e soty  Meetey soFa, ¥

is called the canonical energy-momentum tensor.

This prescription uniquely fixes G (within a unitary trans-
formation induced by K L 8uV“), but Eq. (A.9)1is not the
only possible expression for the current ‘F{ua. This is important if
the current has a physical interpretation as the source of electro-~
magnetic, weak, or gravitational interactions. For example, the

charge operator Q is obtained from the gauge transformation

§_\£ = iqv _6_}_2._. = 0

= (A.11)

where q is the charge annihilated by y. However, the most general

expression for the electromagnetic current is

= b+ 8Y | 12
Ju(x) 9, . “/uv , (A. 12)

where jp\) is an arbitrary, antisymmetric tensor.
. . 4 .
Now consider the group of Poincaré transformations. Trans-

lations are characterized by

A

)

- g S (A.13)

Sa ba v
so the canonical current is Tuv and the 4-momentum is

P = [a®

"y = Jd7= To\) . (A.14)
Lorentz transformations are given by (oz“v = -aw'l')

5}/ .,: +LZ ¥ 6x)” _ }-(5)\}{ 5>\'X) (A.15)

sV 2 Tpv T ooy 2V Ty T Tu v ’
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. . . i .
where EN\’ is the spin matrix of V; (e.g., £ = vy ['yu, 'y\)] for spin-

Iy
%_- fields). From Eq. (A.9), the canonical angular momentum density

takes the form

me* o =
PTAY ‘Z)\uv * ‘f)\uv (A. 16)
where

éé_luv = %, Txv - %, Ty, (A. 17).

is interpreted as the orbital angular momentum density, and the

remainder yX{J\) is taken to be spin angular momentum density.

Since gravity couples to energy, the gravitational current 6

pv

must also be a suitable energy-momentum density from which P“ may

be formed; (see Eq. (1.9)). Therefore, it should be possible to con-

struct a candidate for the'symmetric tensor S] from T!JV (?{ T\)“»).

(4)

Qv

According to the prescription given by Belinfante, the appropriate

" construction is

_ - _ aBel. '
O = Ty =@ gy * o , (A.18)
with
= L -
qu\) - a(f)\\)p, * ‘/uk\) * ‘/v)\p.) - 'fukv ’ (A 19)
Then ,
Bel. _ Bel. Bel._ ’ M \
Moy =% Oy = ® O =Ty = 0 {xufmw-xvfm\u) (A.20)

differs from mx;\) by a term which vanishes upon integration over do

and therefore is an acceptable total angular momentum density, (even
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though the expression for 7???:\}' resembles the classical formula
X X I_; for orbital angular momentum):

_ A ¢+ _ [, A, Bel
M, = fdo Moy = |90 Moo . (A.21)

Eq. (A.18) becomes a candidate for the gravitational current, but, as

(10)

this choice is not unique. In fact, the Belinfante

prescription gives an extra term pfoportional to (auav - gNV az)dz if
2

c 0 (qSZ) is added to the Lagrangian, but the equations of motion are

Huggins noted,

independent of the constant c. Similarly, different prescriptions can
produce different Gu\)'s from the same i . Note that Eq. (A.9) can be

replaced by

v V
gB:l. x) = 913(:,)1. Gxa SE hox 8L 5, 54 5y
H KV 8a ¥ o sofy 6 ooy = 8a®
Sx »
04 Eav( Loty - 3\)‘6‘%] . (A.22)
8 8”’8\)\]/ Sa Sa

To treat scale and conformal transformations, it is necessary
to decide how the fields V transform. In the standard approach, the
fields transform as irreducible representations of the conformal
group; (see Mack and Salam(g) for the details), For scale transforma-
tions, the answer, Eq. (l.25), is obvious. In the notation of this

appendix, we have

oxt " &y -,
=S o o=y (A.23)

If the time-dependence of D, the generator of scale transformations,

" is ignored, then the values 4 = - 3/2, -1 for fermions and bosons
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are obviously required by the canonical commutation relations (1.27).

When the time-dependence is included, we have

i [D(x)), 8, é(x)] i8 [D(x ), d(x)] -ilDx ), (x)]

(-4+1+x0)8 ¢ -i[Dx ), d(x)]. (A.24)
Evidently, the condition for a consistent théory is
ilDex ), dx)] = 0 : (A.25)

i.e., the divergence of the dilation current should contain no deriva-
tives. For this reason, Eq. (l1.23)is valid only for the new, im-

proved tensor defined in Egq. (1.15). For conformal transformations,

we have

\Y 6 m -

6x” v w2z, Mos2x g, +i5,) -6V, (A.26)
;-C—X._ZX)\.X 6>\X BC)\ ‘T’])\. 1’])\. A

where K“ is a nilpotent matrix, (which vanishes for the low-spin .

" fields considered here). Eq. (A.22) may be used to construct the

generators D and K‘u and verify equations such as (A.25). The
resulting expressions look complicated, but, for all interesting
theories, they reduce to Eqs. (1.16)and (1.17); (for r = 1, the most
generlal treatment has been given by CCJ(IZ)).

The various Suv‘s give matrix elements which have certain
features in common. Typically, they differ only in terms like
k“k\) - g‘uv kz, where kli is the momentum tragsfer. However, the
simplest and most general treatment of <6#V> ignores canonical field

theory, and involves the direct use of Egs. (1.9) and (1.10). Thus,

Egs. (1.9) and (A.2) imply
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2p (o, 5" | [a®x8_ (0,%)[p, )= @p )2m)’p 8B -B)s,
o\ (P oM ’ ! Po pu s, 8 ’
(A.27)
where s denotes the spin component of a single-particle state, so the

diagonal matrix element
2p,{p, 518, @]p, 8 = 2pp, (a.28)

is completely specified. Eq. (A.28) implies the self-stress theorem:
the diagonal matrix element of eii for a single particle at rest vanishes.

When the momentum transfer k# does not vanish, only terms
0(1) or 0(k) are specified. Egq. (l.75) is the general expression for
spin-0 mesons, obtained.by expanding in the available momenta P,u.’.kp.
to form a symmetric se.cond-rank tensor cbeying KM (8“\)) = 0, No

extra constraints are implied by Eq. (1.10). For spin-% mesons, the

same principles yield

NP + 3 5916, (0[N (P-3ks) ) = TP+ 3 8 )37 P 7P, )G (<)

JTRlY
+ (PP IM)G, () + (k Kk -g  k2)G, (k) Ju(P-3k, s)
gV 2 TRAVARTAY 3 e
(A.29)
Eq. (A.28) implies
G,(0). + G,(0) = 1 : (a. 30}

Until very recently, (136) it was not realized(l?’?)_that Eq. (1.10) pro-

vides a further constraint:

G,(0) = 0 (A.31)
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To demonstrate the truth of Eq. (A.31), it is neces sary to

consider the boost operator

M, = fd3x x. 6 (0, %) (AL 32)
10 1 [e]0]

From Eq. (A.29), we obtain

—?;-< +k,s']6_(0)]p,s) = u E’ °G 0) ly. ulp, s)

akl p ] 00 p: k= p ps 2 71 P, >
- {A. 33)

and Eq. (A.32) implies

3

ok*

3, 1
. [d'k

O)IP,S>’£___O = - 1_]"——-—(2 3 (p + k', slMiolp, s).(A. 34)
T

Since the right-hand side of Eq. (A.34) is the same for all theories,
the value of GZ(O) must be universal. Therefore, we may use free
field theory to evaluate it; Eq. (A.31) is the result.

| Equations such as (1.75) and (A.29) are needed when expanding
(\pfi 6#\) ] \]/i Y in powers of the momentum transfer for multiparticle
states H/f), H;i Y. Examples of this type of calculation appear in

.Section I. 2 and Appendix C.
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APPENDIX B: ALGEBRA OF THE CONFORMAL GENERATORS

The properties of GHV under Poincaré transformations are

given by
[Py, 8, 6] = 0,8,,6) (B. 1)
i[Mggs 8,001 = Go06-%380 )8, #8085 "8 P By P Epu ey’
(B.2)
The Poincaré algebra
[Pa,Pu] =0,
Py Muv] - gowpu'gompv ’
1[bdap,hd 1= augdﬁv-gﬂjwav+gﬁvhdau_gavhdﬁu , (B.3) -
and part of its extension .to the conformal algebra .
ilP, Dix )] = _Pa+goaj"d3xe{‘ ,
i[M‘.C@’ D(Xo)] - Jﬁdsx(xcx,goﬁ 880 Gi‘ ’
ﬂPwKJgQ]=am%ug%Pm jdxxe 1,
DM g0 K 0r )] = g, Ky )= K 5, )+J"d x 2 (5 8 0 %aBo0 8

(B. 4)

are merely special cases of Egs. (B. 1) and (B.2).

In order to obtain the rest of the conformal algebra, it is neces-

sary to consider local versions of Egs. (B.1) and (B. 2):(13-8' 139)

1[6°°(x), 8°°y)]6(x -y, ) = (6% (x J+9°1<Y>>8 AL

116°°Ge), 8% () 160, ) = (690x)-8°%(y)g™)0T 6(x-5)

k& ij 1 kb 1‘]-]

-9 ay[ L3 +ay) ,

k £
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i16%°6x), 89(y)160x -y ) = (08" (x)-0% ()0 -6% ()01 ) elx-y)

ki,ij 1 k& 1J]

807 [ k&’”+(a X0 )my 0 N30 +8Y)

H

i16% ), 8%3y)160x -, ) = -(e°j<x)aj{+e°i<y>a}i> bc-y )00 Y o I

i16%4 ), 0°4(y) T8 0x -y, ) = (-8 GagH e (y)g 467 g W0 o ey

1_], k& 1 ki

_a e Lo +aV)]J’ 1, (B. 5)

with the latin indices i,j,... denoting spatial cc;mponents 1,2,3. The

conservation laws (1. 6) and (1. 7) have been taken into account. The
'rl‘]’ k{’(x, y) are local in time and bilocal in %X and

(139)

"Schwinger terms'

; . Boulware and Deser obtained the result (0| T2, 4lO) £ 0,

which is analogous to Schwinger's result (0| [JO 0,%),J i 0)]]0) £0. (69)
There the resemblance ends, because the TP are g-numbers in simple

models. For example, in the free quark model, we have

3 .3 ij, kA 3 kL, 4 ik ik_id
[J&xdyrd ¥x, y) = 1[a°x o (g8 0™ g & gJLcl ol )qﬁ( o Vo)

3
(B. 6)
The symmetry properties
ij, k4 p ki,1ij
T , = (-1)r7 »yX)
S y) = 1P Ny, )
P ik ,
'r;f]’ &(X, y) = ’Ti]; {'(x,y) ; . (B.7)

are generally valid.
The remaining equal-time commutators of the conformal alge-

bra depend on the model-dependent terms T

i[D(x_), K°(x_)] = -K°(x_J#[d>xx"8 +zﬁd xd’y [y Mot (a%+0))r kk iy,
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. . i -
[Dix ) K (x )] = -K'(x 2] xa’ye i

3
i[Ki(x ) Kj(x )} = -4‘]’]'d3xd3 (Bix- +g <" 6 x )
o” o’ Y %™ m Skm’
j NP mk, nd
(5&3’ +g&nY -6 Y&)'r
i[K® (x ), K x )] _zl’d % le;t
kk, mJ kk m_] 1 Yy kk mJ
_4IJd xd y(ﬁjym+gjmy -6myj)(xo'1'3 > (8 19 ) ) .
(B. 8)

"Note the e);plicit dependence on Gi\ in Egs. (B.7) and (B. 8).

The T-dependent terms of Eq. (B.8) usually vanish in simple
modeis, (e. g. the quark model). For example, the virial theorem, |
Eq. (1.60), and the assumption dim eoi = -4,imply

iTD(x, ) K ()] = -Ku(xo)qugoufd?’xxzei‘ . (B.9)
The presence of q-number T-dependent tkerms in [KH’ K\)] would indi-
cate the presence of an-operator of dimension -1 in the short-distance
expansion of euv(x)ecﬁ(O). We know of no model with this property,

so the relation

[KH(XO)’ K\)(xo)] = 2J‘d3xx2(xfov—x\gou)e{\ + c-number (B.10)

is probably correct.

The apparent absence of T-dependence in the broken conformal
algebra is not characteristic of algebras of coordinate generators.
For example, consider thé group of SL(3, R) transformations,

x,.~+x' = a..X, , a,, real , det(a..,)=1 . (B.11)
i i ij 1] ij

The corresponding set of eight generators is formed by the total angu-

lar momentum ‘Tk =3 eijkMij and the generators of skew transforma-
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tions,
Q.(x )= [Cx(x6 +x8 L6 .x08 ). (B. 12)
ij"o i'oj Tjoi 37ij k ok )
Inspection of the formula
. 3 1 '
Qlx,) = 2fa x (85 - 3 88, (B. 13)

leads to the conclusion that consideration of the limit of SL(3, R) sym-
metry is meaningless. Therefore, it is not surprising if the equal-
time commutation relations for the SL(3, R) generators do nbt possess
such a symmetry limit. Poincaré invariance determines

-5,. M. +6. , M. -5, Mi

MM My 1= 0y My =8,y Mo pt8 Mo =85 My
1[Mij, Qk{,] = 6iji&-6iij£~ 6iLij+6jLQik R (B. 14)
o o ij, k4 .
but [ Q, Q] depends on 1) , and is therefore.model-dependent. Re-

ferring to Eq. (B.6), we see that the quark model possesses a special

property: T, may be written in terms of the quark spin

' 1 3.+
S, = _Zeijkj‘d xq' 0,4 (B. 15)

Equation (B. 15) leads to the observation of Dothan, Gell-Mann and
(140)

- —

Ne'eman that [6, 5] is an orbital angular momentum L=7-8
in the quark model (instead of a total angular momentum as implied by
naive SL(3, R) invariance):

1[Qij, Qk&] = 6jkLi&+61ij&+6Mij+aj&Lik s - (B. 16)
with Lij = eijkLk .

Equation (B. 16) may serve as an abstract definition of orbital
angular momentum. Assuming that the 3-momentum density eoi has

dimension -4, the SL(3, R) generators, and hence I__:, commute with

the dilation operator D. The transformation exp(-iaD)also conserves
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parity, isospin, G—parity, baryon number and hypercharge, but does
not commute with an operator which alters the radial wave function of
 a state; e. g. such an of;erator may have eigenvalues N, the ''total
quantum number'' in the. quark model of Feynman, Kislinger, and

(141)

Ravndal Thus, exp(-iaD) would generate a tower of resonances

with the same (JP, IG, B, Y, I_;, ... ) and different (N,...). An example
of one of these towers may be: nucleon P11(940),' Roper resonance

P11(1470), Roper recurrence P11(1780), v
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APPENDIX C

SOME LOW-ENERGY THEOREMS

This appendix contains alternative derivations of Egs. (2.50)
and (2.52). We mentioned these derivations in Ref. 15, but gave no
details.

We begin with another derivation of F,(0) = - 1/3, i.e., Eq.
(2. 52). Scale invariance is broken (mo # 0), but we ignore the viola-

tion of chiral SU(2) X SU(2) symmetry. Using the method developed
(19) |

by Low for bremsstrahlung, we expand the amplitude
Py = (pey)]8, (0Ony) ma) (C. 1)
in powers of k = pl +q - Py The O(k—l) terms, Pﬁ)orn , are repre-

sented by Feynman graphs in which GNV hooks on to external lines:

Born _ L 2

-1 | 2y 2 2
+ M (pz-i-%k)“(pz-r-%k)v Gy (k) + (e ke - g k") Gk )] :
B, tk+M
— V2 gne Vs U
-2p,k - K NNw 75

+ u-channel nucleon Born term

+ Ty Y5 W By (24 Ko et ) a-3), ok, -8, K/

' Fl(kz) F(k k

8 KT )]

(C.2)

‘The first term in Eq. (C. 2) is the s-channel nucleon Born term. The
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u -channel term may be obtained from the s-channel term by wfiting
the y-matrices in reverse order and substituting p, ?P;, k = -k. The
third term is generated by e#\) hooking on to the pion to produce a
pion pole.

The non-~singular 0((k)0) and 0(k) terms are represented by

Contact

P ,
uv

with

- Born Contact 2,
P = Py F P oY) . (C.3)

Using the conservation laws (l.6)and (1.7), we find

Contact _ — 1
Py = V2 gnNw Y2 75 Y [2 Euv

+ (g k, +a k- g a0 K) S5 (G(E)4G,(t) —Fl(t))t=0] . (C.4)

To investigate the soft-pion limit, we discard all 0{(q) terms:

P = s - and u-channel nucleon Born terms

“\)

1. - .
- (§-+F2(O))u2 Vs ulA/Z gNN'n‘(k k

SRy g K/ £ 065, q). (S 5)

If we suppose that E?S, eﬁ‘] = 0 is valid in the limit of chiral SU(2)

L

X SU(2) invariance, the standard soft-pion argument for terms 0(q
and O((q)o) in Pp\) produces only the nucleon Born terms; hence, we
obtain FZ(O) =-1/3, i.e., Eq. (2.52).

Now suppose that both scale and chiral transformations are

symmetries of the world. If we define

By = (plp)]8,,0ne)) m@) (C.6)

in this limit, the dilaton f)ole produces an extra term in the low-k
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expansion:

= _ Born Contact 2 2 2

By =Phy  H P E MK g K (BKT00T) (C.7)
where

M= - T, Ok 0Py a) * 4 Dlpya by ) | uy) (C. 8)

is the amplitude for the process 1r+(q) +np;) ~ o(k) + p(pz) . Since

we are working in the limit of scale invariance, P““ vanishes, im-

plying
C(0,0) = O . (C.9)

Eg. (C.9) is analogous to Adler's consistency condition(lm) for =N
scattering.
We may obtain another consistency condition for C(0, 0) using

conservation of the axial current. Thus, the amplitude

Q

" (pp,) 0()| Fg ), Inipy)) (C. 10)

obeys

q“Q“ = 0 . (C. 11)

In the soft-pion limit, q = 0, the only contributions to the left-hand
side of Eq. (C.11) corhe from O(q-l) terms in Qu:

_ B, T4+ M _
Qy. = u, [gGNN——Z——-—-—————-——Z- (-1 'y“'ys gA) uy + u-channel Born term
=¢p;e94-4q
— < 2 -1 iq, M
-WZ gyng Ty Y5y Rak-a) (ktq), Fo (0) + EEEJ’- +0((a)
w

0)'

(C.12)
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The first two terms arise from nucleon poles. The third term repre-
sents the contribution of a pion pole caused by 35# hooking on to.the
external dilaton line and turning it into a pion line. This term is
singular in q because the pion and dilaton are degenerate in the limit
of scale invariance. The fourth term is constructed by allowing 3‘5“
to turn into a pion, thereby producing another pion pole. We have made
use of Eqs. (2.28) and (2. 34).

Combining Egs. (C.11) and (C.12), we find!}>)

C(0,0) = 2 2NN (gONN/M - ZE“ FG“(O)) . (C.13)
Consistency of the consistency conditions (C.9) and (C. 13) requires
Zf'rr FC'n'(o) = gGNN/M (C. 14)

which yields F_F_(0) f = 3 when Eq. (1. 78) is applied.
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APPENDIX D: COLLINEAR DISPERS‘ION RELATIONS

AND THE PROBLEM OF MIXING

The calculation in Section III. 2 is not complete without a de-
monstration that the ¢' pole may be neglected. We have also treéted
this problem in ref. 77.

We apply the method of collinear dispersion relations to evalu-
ate the equal-time commutator

|ty 55 21100 = 0, | (D. 1)

where 0 here refers to any (0+, 0+) meson. The details will be sup-
pressed because our analysis is analogous to the treatment of K&3
decay given by Ademollo, Denardo, and Furlan(142').

"According to Eq. (D. 1) and a standard Ward identity, the re-

tarded commutator

R (c,q) = (26 /m 2)i [ e o N ot)| (8455 ), 3 5 *(0)]]0)

2 H

1 +iq\)V~ (D.2)

ik V
v
satisfies the constraint

R (k0) = 0 . (D. 3)

The usual analysis of the large q0 behavior of R\) leads to the un-

subtracted dispersion relation

0 = [ayImV,(v)y , (D. 4)

together with the superconvergence relation

0 = [dymmV,(y) . . (D. 5)

in the collinear frame k = (mo,, 6) s 9= (Ymo.s 6) .

Separation of the pion poles at y = % mn/mc , 1 £ mn_/mc
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from the imaginary part of R, yields

Im v, (y) = ely-1)8(ty-17-m _*/m 21D (sPm ? ) m, mg)®

sely)oly” <m 2 /m )-F, ((1-y)m ?)

+G, ((1-y’m )/m Fav ) (D. 6)

Im V() = -mely-1)6((y-1)% -m? /m 2)D_ (y*m 2} en )

cwe(y)8ly” - m 2 2IF (1-y) m D)

2

+G ((1-y)2m02)]/m0

o + Vz(Y) ’ (D-7)

so Egs. (D.4) and (D.5) become

MGy (+)-Gy (=) = (m -2m JF__(+)-(m_+2m JF ()

om
Z.m_n_3
+—= [dyv,(y)y , (D. 8)
.
(D (+)-Dg (- )/, = = Fo(t)+G  (+)- Fow('.).'c’mr(')
Zm m,
+——2 [dy v,(y) (D.9)

- where Eq. (D. 8) has been simplified by using Eq. (2.29), the defini-
tion of Don'(t) . In Eq. (D.8), examination of the leading power in m_
gives a result consistent with Egs. {(3.40) and (3.41).

In the collinear frame, only 0 intermediate states cc')ntribute

to Im R.\) . The coupling of the A, (1070) meson to the axial current,

1
(A |F_.(0)|0)=c¢,g , is implicitly contained in the form factors
1'95) L TATA,

tgAlgAlcrr ¢ (Gt ImF ()
Fon(t)= Fg (0) - S A ) Ly ’
: ZmA (mA «t)
1

(D.10)



{m 2 2)
G_(t)= -G (2f ) "(m_ -t -
ow onw T 2m Y(m &-t)
A A
1 1
Im G __(t')
1 ' o
+FIdt ""_—_"_'-‘—tl-t [} (D'll)
where - %— (O.-HT)XgAlO'Tr is the Alorr coupling. The inequality needed
in Section III. 2 is
2 2
. .
F_, (£, Ge,w(—) << F . lm ), Gy (m ") ; (D. 12)

e'm
to make it plausible, we must show that the effect of the A1€'Tr
coupling is negligible.

When €' is the (O+, 0+) meson involved in Eqs. (D. 8) and (D.9),

the points at which Fe"rr(t) , G, (t), and De'w(t) are evaluated

e'm

straddle the point t = m The near degeneracy of ¢'(1060) and

Ay

Al(1070) gives

(Fe'w(+) + Fe'rr,(--))Alpole =0, ' (D.13)
(G . () + Ge,ﬂ_(-))Alpole =0, (D.14)
whereas De‘“_(t) does not have a pole near t = mAl2 , so Eq. (D.9)
becomes
2(F 1)+ G- g pote™ (D, (+)-Dg (- )/m,
+ continuum integrals . (D.15)

From PCAC, D€ (t) and Dcw(t) satisfy unsubtracted dispersion rela-

1
™
tions; while we do not expect that the pion pole at t = rnw2 dominates
. . . 2
dispersicn integrals for D , and D at t=m l2 or m_ , the re-
e'm ow € o

spective T=pole terms should indicate the correct orders of magni-

tude, i.e.,
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D, () <D, (0) , D (m7) . (D. 16)

Therefore, gp ot 18 very small and the Al-pole terms in Fc'v(t)

1 ,
and Ge‘w(t) do not affect the validity of Eq. (D.12).
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APPENDIX E: DERIVATION OF COLLINEAR SUM RULES
This appendix contains some technical details associated with
the collinear dispersion relations discussed in Section III.2. The

analysis begins with the retarded commutators

T, (5 @) = ifdtee™ Fax 0116 M), 35 (0] [mla)) (B.1)

D . (k, q) = if d*x e Xa(x )(0|[ 8 (x),3,, (0)1|m(a) (E.2)
uA e o - ’ :

K, 00 a) = if atxe™ Tl 0| 1, (0), B () [m(@) (E. 3)

which are related to the equal-time commutators in Eqs. (3. 17) and
(3. 18) by the identities

s M
=ik DH)\

(k,q) = iC0|[D(0),%,(0)I|m(q)? + T, (k,q) + O(k) , (E. 4)
_ikauv}\(k, a) = (0| [K (0), %, (0)1|w(q)? -2 8T, /8k™ + 0(k) .  (E.5)

The singularities in k of DW\ and Ku\))\ are given by deriva-

tives of the pion-pole term

= o -1 1 1 2 2
B0 @) = -ilkeq), 21)7 120G - §k) (@ - 3k), - s e -8, KON/ 6)F (K7
2 2 2
+(kak\)-gm)k )Fz(k )1/ (2q- k-k ™) (E. 6)
with respect to k, so we obtain
.t 49 =
-, () = -k by By 00 (E. 7)
GKVK (kg =ikdz -2 2% 8 2 )T o) (E. 8)
VA g kg W akB ok avA : :

The substitution of Eq. (E.6) in Eqs. (E.7) and (E. 8) is simplified if
the identities |

KM ...a_\.). - .j_\;ku_lﬁ\‘;li , | (E. 9)
ok ak



v 9 0 o, 8 9 8 98 'ua & 9 .V
k(2 57— 57— -8 )= (25— -¢ =)k
aku kd. akB [} B 3ku k(}, 8k6 0 8
av 0 po 0 CAVIR} |
2g™ a2 (g e g ) (E. 10)
vl v <3

are first applied (compare this procedure with the scale-invariant

version, given in Eqs. (2.48) and (2.79)). The results are

'ikHDw» - i(q—k))\Zm:(Zfﬁ)-l/(Zq'k—k2)+iq)\/f1r FO(K) , (E. 11)
(2m F (k )- 3k F, (k MNg-k)
. 3 X
'lkVKu\))\ =2 5 }
ok 2q-k - k° 25
2 )7 2g 5 t4q 4, F1(0)) . o (E. 12)

Then Egs. (3.17), (3.18), E.4), (E.5), (E.11), and (E. 12) imply the
low-energy theorems (‘3. 28) and (3.29).

Now we turn to the problem of constructing sum rules cor-
fesponding to these low-energy theorems, ‘together with the evalua-
tion of the dispersion intégrands. ‘

The imaginary part of T>\ is given by the formula

Im T, = i, ImX, + ik ImX, = %(21T)4;21 [(O\SS\IMI\&%lw(q)>64(k-PI)
-<0|55>\\_I>(I\eilw(q))éll(q-k-PI)] , (E. 13)

Let us isolate the contribution of the pion pole at z = 0 in Eq. (E.13):

1

Im X, (z) = -78(z)@f )" +Im X, (2) , (E. 14)

Im Xz(z)

H

'rrii(z)(ZJEn_)“l + Im fz(z) . ‘ (E. 15)

Then Eqgs. (3.26) and (3.27) may be written
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Xl(z) = (Zfﬂ_z)-1 +?11:de' Im }—C-l(z')/ (z'-2z) , (E. 16')

-1 1 -
0 = (2f )" += [daIm X, (2) (E. 17)
Then, it is easy to combine Egs. (E. 16), (3.28), and (3.29), and ob-

tain the sum rules

21 |
T = B 1 :
— J‘dz Im Xl(z)/z = - , (E. 18)
2f
= 2 3 2 1
—TT—TLJ'dzIrnXI(z)/z = —EFZ(O)+3mn’F'1(O)+Z . (E. 19)

. +
‘In the collinear frame, only 0 states contribute to-the sum
over a complete set of states 1) in Eq. (E.13). We expect that the
pion poles at z = 0,2 and O-poles at z = % mo/m_rr will dominate, so

these contributions are explicitly displayed:
Im%. (z) = w&(z-2) |F,(4m_%) - 6 F(4m_2)| /2t
1_ 1 T 2 T ™
2 2, 2. [ 2 2
-me(z) 6(z - m /m'n') FO‘[FO'TT((l-Z) rn_n_)

+ Ga_‘n_((l-z)2 mvz)] mO'Z/m'rrz + xl(z) s (E.20)

Im'}—%(z) = -w§(z-2) [Fl(ﬁlmﬂz) - 6Fz(4m“2):| /wa

' 2 2 N 2 2
+ 7w eg(z) 6(z -mo_/mi)ﬁo_[- l*o_“_( (1= z) m, }

+ G ((1-2)° m.,;"):l mZ/m ¢ xy(2) (E. 21)
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(the z = 0 contribution appeé.rs in Egqs. (E. 14) and {E. 15). Sum-
mation over ¢ is understood if more than one scalar meson contri-
butes. Diagrams which correspond to the pole terms are displayed
in Fig. 2. |

The sum rules given in the main text, Eqgs. (3.31), (3.32),
and (3.33), may be obtained from Eqgs. (E.17), (E. 18), and (E. 19),
respectively; by substituting Eqs. (E. 20) and (E. 21). Notice the
similarity between the o-pole terms of Eqs. (3.33) and (D.9)--in
that case, the ¢' problem is easily handled.  (Note that there is no
summation over ¢ in Appendix D; that is why we can isolate the

¢! contribution and justify its neglect).
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APPENDIX F: SUM RULES FOR DIMENSION

In order to obtain soft-meson theorems which explicitly in-
volve dimension, commutators such as [D, 6:] or [FS, 85] must be
considered. The cleanest example is Eq. (3.5), but, even in that
case, the conclusions are not strong. Therefore, we give just a bare
outline of the techniques.

Equation (3. 74) for Glccro may be derived as follows. Assum-
ing that the dimension of 95, 4, is unique (apart from a c-number
~term), we have

(0| [D, e§]|c> = 4iLmGZFG . (F. 1)

The corresponding retarded commutator is
a4 . M v
S(z) = ifd x exp(ik x)8(x )(0|[8 7x), 87(0)]]o(p) (F.2)

restricted tc the collinear frame k = (zmc, 6), P = (mo, 6). Isolating
the dilaton poles, we find
ImS(z) = (wFG/Z)[<G l 65[0) (6(z-1)-6(z))+<0 l 9&\0,0)(6(2—2)-6(2'%1 )]+s(z),
' (F.3)

where the 0-particles are understood to be at rest.

With the usual justification for an unsubtracted dispersion re-
lation (valid for 4 > -7/2), together with the low-energy theorem

2 3 2
S(z)=mg Fo/z + (4 +5)m/] F +0(z) , (F. 4)

obtained from Eq. (F. 1), we find
1, 2 _ 3 0 1 pdzs(z)
(£+2)m0FO-ZFO(0\6u[OO) +"T'r'jI——E~—-—— . (F.5)

Mixing effects may be small if 0 and ¢' are ideally mixed (or nearly

so), because then the o0e'! and oe' graphs are disconnected. To ob-
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tain the result implied by symmetry considerations alone, the continu-
um integral is ignored, and (0| 6::’\ 0,0) is extrapolated back to

(0\9:"!0> via the o-pole:

2 ; 2
<0|6:]0,0)m(0l6510> - 4m F G /3m[ . (F.6)
Combining Eqs. (F.5) and (F.6), we obtain(77)
2
Fchoc ~ (1-)(/)mG . (F‘. 7).

It is amusing to derive this result using Ellis' Lagrangian
model, Eq. (2.68). The appropriate term from the Lagrangian is
3 :

2 3
S = ~0(80)7/F - ©lulo) -162)(0/F )", (F.8)

which simplifies to

F L

o coo

- -0(80)2+(4-L)m(;2 36 - G oo a3, (F. 8)

because of the mass formula

mZ = 140 |Ul0)/F S (F. 10)
Equation (F.7) follows immediately.

The equal time commutator

K o 4
[F.(0), GH(O)] = it 4)9 5€5u | (F.11)

looks promising until it is realized that the right-hand side is propor-
tional to the PCAC corrections. One can see this explicitly by apply-
ing collinear dispersion relations to the vacuum-to-pion matrix ele-
ment of Eq. (F.11). The result is essentially Eq. (2.71).

A more indirect method involves attempts to evaluate

Qx) = [vi{x),v(0)] (F. 12)
at equal times (i. e., x = 0). The discussion .following Eq. (3.102)

indicates that *’u is the most important factor determining Q(O0, X).
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A sum rule for Q(0, ;) is obtained by considering the Bjorken limit of

the retarded commu’gator

R = ifd*xe’® ®o(x )(B|Qex)| A (F. 13)

in the collinear frame. The simplest example appears to be |AY =
lK) , |B) = !0) , l.e., K&S decay. However, practical difficulties
are immediately evident, e.g. the K-pole contribution is obtained in

the combination

-m_) ) (F. 14)

2
tm )" ) - fo((mK - ;

fo((InK

where fo(t) ig the scalar form factor given by Eq. (3.78).
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