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ABSTRACT 

1. The Spanwise Perturbat ion of Two-Dimensional Boundary Layers 

Large  spanwise variations of boundary-layer thickness have 

recently been found in wind tunnels designed to maintain two-dimen- 

sional flow. Bradshaw argues that these variations a r e  caused by 

minute deflections of the f ree - s t ream flow ra ther  than an  intrinsic 

boundary-layer instability. The effect of a small ,  periodic t rans  - 
ve r se  flow on a flat-plate boundary layer  i s  studied in this  chapter. 

The t ransverse  flow i s  found to produce spanwise thickness variations 

whose amplitude increases  l inearly with distance downstream. 

2. The Turbulent Rayleigh Problem 

Rayleigh flow i s  the non- steady motion of fluid above a flat 

plate accelerated suddenly into motion. Laminar RayPeigh flow i s  

closely analogous to laminar boundary-layer flow but does not involve 

the analytical difficulty of non-linear convection. In this chapter ,  

turbulent Rayleigh flow i s  studied to illuminate physical ideas used 

recently in boundary-layer theory. Boundary Payers have nearly 

s imilar  profiles for certain r a t e s  of p ressure  change. The Wayleigh 

problem i s  shown to have a c lass  of exactly s imi lar  solutions. 

Townsend's energy balance argument for  the wall layer  and Cliauser's 

constant eddy viscosity assumption for the outer layer  a r e  adapted 

to the Rayleigh problem to fix the relation between shear  and s t r e s s ,  

The resulting non-linear, ordinary differential equation of motion is  

solved exactly for constant wall s t r e s s p  analogous to ze ro  p ressure  

gradient in the boundary-layer problem, and for zero  wall s t r e s s ,  

anaIogous to continuously separating flow. Finally, the boundary - 
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l a y e r  equations a r e  expanded in powers of the skin friction parameter  

y = d v ,  and the zeroth order  problem i s  shown to be identical to 

t h e  Rayleigh problem. The turbulent Rayleigh problem i s  not merely  

a n  analogy, but i s  a rational approximation to the turbulent boundary- 

l aye r  problem. 

3. The Propagation of F r e e  Turbulence in a Mean Shear Flow 

This chapter begins with the assumption that the propagation 

of turbulence through a rapidly shearing flow depends pr imar i ly  on 

random stretching of mean vorticity. The Reynolds s t r e s s  o (y , t )  

acting on a mean flow U(y) = %2y in the x direction is computed from 

the  linearized equations of motion, Turbulence homogeneous in x ,  z 

and concentrated near  y = 0 was expected to catalyze the growth of 

turbulence further  out by stretching mean vorticity , but ~ ( y ,  t )  i s  

found to become steady a s  a t  -" m. As f a r  a s  Reynolds s t r e s s  i s  a 

measu re  of turbulent intensity, random stretching of mean vorticity 

alone cannot yield steadily propagating turbulence. 

The problem i s  simplified by assuming that a11 flow proper-  

t i e s  a r e  independent of x, Eddy motion in the y,  z plane i s  then 

independent of the x momentum i t  t ranspor ts ,  and the mean speed 

U(y, t )  i s  diffused passively, The equations of motion a r e  partially 

linearized by neglecting convection of eddies in the y,  z plane, and 

wave equations for ~ ( y ,  t )  and U(y, t )  a r e  derived, The solutions a r e  

worthless ,  however, for  l a rge  times. Turbulence artificially steady 

in  the y, z plane forces  the mean speed gradient steadily to zero ,  In 

a rea l  flow the eddies d isperse  a s  fas t  a s  U diffuses. 
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Numerical experiments a r e  designed to find how quickly con- 

centrated vortex columns parallel to x disperse over the y, z plane 

and how effectively they diffuse U.  It is shown that unless a lower 

limit on the distance between any two vortices i s  imposed, computa- 

tional e r r o r s  can dominate the solution no matter  how small  a time 

increment i s  used. Vortices which approach closely must  be united. 

Uniting vortices during the computations i s  justified by finding a 

capture c ros s  section for  two vortices interacting in a s t ra in  field, 

The experiments confirm the result  that columnar eddies disperse 

a s  fast  a s  they transport momentum. 
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I .  THE SPANWISE PERTURBATION OF TWO -DIMENSIONAL 

BOUNDARY LAYERS 

1. Introduction 

In a s e r i e s  of wind-tunnel t e s t s  under nominally two-dimen- 

sional conditions, Klebanoff and Tids t rom [ 1 I/ found quasi-periodic  

spanwise variat ions of boundary-layer thickness of o r d e r  * 8%. 

Recently the phenomenon r e c u r r e d  in a National Physical  Laboratory 

tunnel specifically designed for  the study of two -dimensional boundary 

l aye r s .  Bradshaw [ Z ]  sought a remedy a s  well a s  a n  explanation and 

found that these variat ions could resu l t  f rom la t e ra l  convergence o r  

divergence of the flow downstream of slightly non-uniform sett l ing- 

chamber damping sc reens .  A rough analysis  suggested that a bound- 

a r y  layer  i s  surpris ingly sensit ive to spanwise velocity var iat ions.  

The thickness var iat ions found by Klebanoff could have been produced 

by variat ions in the f r e e  - s t r e a m  flow direction of around 0.04 de- 

g r e e ,  much too sma l l  t~ be measured  direct ly .  This  chapter  i s  a 

r igorous analysis  of the effect of a sma l l ,  periodic spanwise com-  

ponent of velocity on the boundary layer  of a flat  plate. The flow i s  

assumed to be incompressible ,  steady and l amina r .  

Three-dimensional effects in the boundary layer  will depend 

on the t r ansve r se  flow field chosen fo r  the incident flow. Suppose 

U charac ter izes  the chordwise component of f r e e - s t r e a m  flow, 0 

yU the amplitude of the t r ansve r se  perturbation. Suppose the f r e -  0 

quency of the spanwise flow is specified by a wave-number k. The 

Reynolds number of the perturbation is then 

R = =yu0/kv 
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If Bradshaw's explanation i s  co r rec t ,  the value of R corresponding to 

Klebanoff's data can be computed, and it i s  found to be around 3 .  It 

i s  not surprising that R i s  of o rder  1, since the t r ansverse  velocity 

variations a r e  supposed to a r i s e  from the non-uniform drag of damp- 

ing screens-a viscous phenomenon to begin with. R will be regarded 

a s  a parameter  of order  1 throughout the analysis .  

2.  Statement of the Problem 

The momentum and continuity equations a r e  

for  a steady, incompressible flow field = ( U , V ,  W ) .  The coordi- 

nates and physical situation a r e  shown in figure 1. F o r  a character  - 

istic speed Ug and perturbation wave-number k, the following 

non-dimensional variables a r e  appropriate: 

The equations of motion in non-dimensional form a re :  

2 
(6-momentum) uu + vu + wui = -p6 + E (uE5 4- uqq + U 5  5 ) $  5 

2 
5 'pl 5 

- -pq t r (V (q-momentum) uv + vv + wv - 
2 

55 ' v7a7a ' "55) 
(<-momentum) uw 8- vw -I- WW - 5 "'1 

5- -pgf  E (w ~ 5 * ~ r l r l + ~ 5 5 )  # 

(continuity) u + v  t w  = 0 9  
5 7  5 
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where e 2  = vk/u0. If y i s  the amplitude of the angular variation of 

f ree -s t ream flow direction, the perturbation Reynolds number i s  

R = y ~ o / k v  = y / r 2 -  o(I.). 

In Klebanoff' s experiments y was typically 0. 40° - 0.001 rad.  , so E 

was  about 0.02. In this chapter E i s  used a s  an expansion parameter 

i n  a perturbation scheme. 

The boundary condition a t  the plate i s  

The upstream flow can be specified in any convenient way a s  long a s  

the field chosen ca r r i e s  the desired t ransverse  perturbation and is  

a n  adequate approximation to a solution of the equations of motion. 

Le t  the expansions for u and w in the outer flow begin 

u = l  + ..., 
2 

W =  y cos < +  ... = R E  c s s  5 +  ..., 

3 .  Solution F a r  Upstream 

The velocity components above cannot be worked into a uni- 

formly convergent solution to the equations of motion. Since the 

Reynolds number of the perturbation i s  of order I ,  the transverse 

field of the incident s tream mustdecay under the action of viscosity. 

Suppose we t ry  a soPutisn of the form 

2 
w = R ( ~ ) E  cos 5, 
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where v has  been chosen to satisfy the continuity equation. The 

approximate momentum equation 

i s  satisfied for  

In fact, a uniformly convergent approximate solution to the equations 

of motion i s  

4 
u = a. + O(E ), 

2 4 
v = RE q s i n g  + O(E 1, 

2 4 w = R E  cos 5 f O(E ), 

2 4  2 2 4 p =  p + $R E (s in 5-q ) + O(E ) 9  
0 

for that R ( 5 ) .  

An expansion of the outer solution in powers of E cannot be 

uniformly convergent. But such an expansion converges over an  

arbi t rar i ly  large  interval A $ ,  where 

As long a s  attention i s  confined to such a n  interval  8 5 ,  a straightfor- 

ward expansion in powers of E can be ca r r i ed  out, and the upstream 

boundary conditions may be taken a s  
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4 
where change in R i s  now contained in the O(E ) corrections. 

4. Outer Expansion 

Let c y  y, 5 remain fixed, and allow E to tend to zero. The 

dependent variables a r e  expanded in powers of E a s  follows: 

When the coefficients of consecutive powers of E in the equations of 

motion a r e  se t  equal to zero,  the following system of equations 

results: 

5 momentum 

q momentum 

Q ( 4  gI5 = -pIq2 

2 - 
O(E ) f1815 + 82% + gigll - -P2?. 

t: momentum 

Q ( t )  PIC = 0 ,  

2 
O(E 1 PZG = 0 .  

Continuity 

o(t) f i e + g l q =  09 

2 
O(c f2e +- gzq - R s i n g =  0. 



No boundary conditions a r e  available a t  the plate. The outer 

expansion must  be matched to an inner (boundary-layer) expansion 

there.  In accordance with the discussion of the previous section, the 

conditions far  upstream a r e  f l  , f2,fg9gl  + 0. ' F a r  upstream' means 

-$>> I ;  we cannot really permit  -5 " oo, since the expansion form 

- 2 
assumed i s  valid only in an  interval AS CC E . 

5. Inner Expansion 
C 

An expanded boundary-layer variable q = q / ~  must  be used to 

bring out the behaviour of the fluid near the plate. Then let  5 ,  ;, 5 

remain fixed, and allow 6 to approach zero. The dependent variables 

a r e  again expanded in powers of E: 

The equations of motion split up into the following system: 

5 momentum 

O(1) FOFOg f GIFO; = -- 
or17 

( 9 )  

O ( E )  F F  +IFF - ! - G I ? - + G I ? - = - P  t F - - ,  (10) 1 sg o 16 2 0q 1 Br( 15 1T-l 

+ HzFog = - P25fF055+F2:;f FOG5* (11) 

q momentum 



5. momentum 

Continuity 

At the plate al l  t e rms  in the expansions of up V ,  w a r e  zero. 

Fur ther  conditions a r e  provided by matching the inner and outer so- 

lutions in an intermediate region where they a r e  simultaneously valid. 

6 ,  Matching 

The forms  assumed for the inner and outer expansions a r e  

valid only i f  the solutions based on them can be matched. Since 

matching must be done step-by- step in the analysis which folPows, 

general equations for the procedure a r e  derived here.  

Consider the inner and outer expansions of any dependent 

variable a: 

The matching is  done on an  intermediate variable q* = ~ / x ( E )  such 

that, for q:: fixed and E + 0, 

The outer solution may be expanded around q = 0 in the form 



where the arguments of each function on the right a r e  ( 5 ,  0,g). The 

inner solution has  the form 

In order for  the two expansions to match for q *  fixed and E - 0, the 

following conditions must  hold: 

7. Initial Steps in Solving the Problem 

The solution must be carr ied  to second order in E to show the 

most interesting effects produced by the t ransverse  field of the inci- 

dent flow. The program can be carr ied  out by finding solutions to a 

sequence of groups of the equations (1 )-(I 8).  The functions Fo, F1, 

G1 G2, H2' f1 f Z 9  g1 g2 a r e  found that way in the five steps of this 

section. That i s  preliminary. The effect s f  the t ransverse  field on 

the chordwise flow i s  uncovered only when F is  found, and that i s  2 

deferred to $8. 

At the beginning of each of the steps below the ingredients 

needed a r e  listed-the equations from the system (6)-(3181, the bomnd- 

a ry  conditions, and the matching conditions . 



F i r s t  step-determining F and GI 0 

equations: (9 )s  (16) 

boundary conditions: FO($, 0 ,5)  = 0, (a)  

G1 ( $ t o ,  5 )  = 0, (b) 

matching condition: F0(5, m, 5) = 1 . (c )  

Let  Fo = *-+. Then equation (16) becomes 
'1 

Hence GI = -Y5 f fn(5 ,5) ,  

where fn(Cs 5 )  i s  zero  i d  (b) i s  satisfied by putting 9 (5, 0, 5 )  = 0. 5 
Equation (9) becomes 

Then Q(s )  satisfies 

Fo and Gl become 

so conditions (a) ,  (bIp ( c )  a r e  

J ( s )  i s  thus the Blasius function. Suppose P i s  defined a s  follows: 



Then 

Notice Fg and C$ do not depend on 5. 

Second step-determining H2 

equations : (5).  ( 6 ) s  (1319 (15) 

boundary condition: H2(S9 0.5) = 0, (a)  

matching conditions: H2(ey m y  5) = Rcosc, (b) 

The matching conditions here ,  a s  elsewhere, a r e  applications of the 

general matching equations derived ear l ier .  (c)  , fpr  example, i s  

the second-order matching condition for p with p ' = 0. Equation 
0rl'l 

(13) may be written 

Since F and GI do not depend on 5, P - - 
0 - 4 5  - 0, so P 

25 
= fn(g95).  Dif- 

ferentiating ( c )  on 5 and using equations (5) and (6) yield lim PZ5= 0. 
?- 

Thus 

everywhere. Equation (15) then becomes 

which is  the same a s  equation (9) i f  Hz = f n ( ~ ) ~ ~ ( 6 ~ < ) .  The solution 
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satisfying conditions (a)  and (b) i s  

Thus the spanwise flow follows the Blasius profile to the o rder  con- 

sidered. 

Third step-determining fl ,  gl and pl 

equations: (11, (31, (5)s (7) 

boundary conditions: f19 gl-' 0 f a r  ups t ream,  (a)  

matching condition: Gl(L = g l (L  O , G ) .  (b) 

Equations (1 ) and ( 3 ) ,  flS = -pie and gle = -plq9 combine to 

give t h e  equation for conservation of spanwise vorticity , 

By the upstream conditions (a), 

Equations (1 ), (3)  and (5) then imply 

Since the spanwise vorticity i s  zero ,  there  i s  a potential function 4 

such that 

f 1 = 4 5 s  g 1 = O q 9  

and equation ('9) becomes 



Condition (b) and the expression for  G1(c,m) found in the f i r s t  s tep 

give 

over the plate. is thus the linearized. potential for flow around a 

thin parabolic cylinder (van Dyke [ 3 ]  ). The solution sat isf ies  

next to the plate, and f and g do not depend on 5. 
1 1 

Fourth step-determining F and G2 l 

equations: (101, ( 1 2 ) ~  ( l4 ) t  (17) 

boundary conditions: FIE$ 0 . 5 )  = 0, (a )  

c2(6, 0, 5 )  = 0, (b) 

matching conditions: F l ( $ d % f ) = f l ( 5 d a =  0,  (c)  

p , ( 6 , o o , 5 ) = ~ ~ ( 5 . 0 ) = ~ .  (dl 

Since equations (12) and (14) imply PI = Pl(5) , condition (d) requires 

P = 0. Equations (10) and (17) a r e  thus homogeneous and l inear  in 
1 

F and G2, and the only solution compatible with conditions (a) ,  (b) 
1 

and ( c )  i s  

Fp = G2 = 0. 

Fifth step-determining f 2 ,  g2 and p2 

equations: (2Ip (4), (6 )9  ( a ) 9  68) 

boundary condition: f2  -0 f a r  upstream, (a )  
IV 

matching condition: qglq (c, O)+g2(e, 0 , G )  = l im G2 = 0. (b) : +m 
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By equation (7) g = -f15, and f rom the third s tep  f ( 5 , O )  = 0. 

1 rl 1 

Hence 

and (b) becomes 

In the third step it was shown that f - 
17 - g1.$9 so equations (2),  (4), 

(6) and (8) can be written 

and the solution satisfying conditions (a) and (b) i s  

8. Final Steps to Determine Fz 

In the l a s t  section it was shown that the f i r s t -o rder  correction 

to the chordwise boundary-layer profile i s  zero.  If the theory i s  going 

to account for  the large boundary-layer Fhickness and shear  variations 

observed by Klebansff and Bradshaw, those effects will have to show 

up in the function F2 yet to be calculated. The trouble i s  that even in 



the strictly two-dimensional case there i s  a second-order correction 

to the Blasius profile. Since the perturbation equations a r e  linear 

in the functions still uncomputed, solutions can be superposed, and 

the contribution of the t ransverse  field can be separated from the 

two-dimensional part  of the solution. The two-dimensional part de - 
creases  toward zero downstream, but the part driven by the t rans -  

ve r se  field increases rapidly. 

 he pressure  function P } 2 

By means of the expressions for lFg and % derived in the l as t  section, 

equation (13) can be written 

P was found to be zero. Pf P2 takes the form 
2 5  

P2 = fi(s)/E, 

then 8 must satisfy 

As s +mx,, f l t - ~  /3$ and the form assumed fox P i s  valid only if that 
2 

limit i s  compatible with the matching condition 

But from equation ( 3 )  and the work of $7 



Hence 

-1im p2 = /3s/25 - p2/45, 
rl -a 

which i s  compatible with the form assumed ea r l i e r  if the constant of 

integration for  8 i s  chosen such that 

 ransf sf or mat ion of the equation for  F } 
2 

Since F1 = G2 = F = 0 and H2 = RFOcos  5, equations (11) and (18) a r e  
05 

Le t  Fo = %fN a s  before, and le t  F = x;. Then the continuity equation 
'1 2 

becomes 

- 4 -  G - = R s i n G 9 ; .  . 
'&-I 31 

Hence 

and fn(5.5) = O i f  the boundary condition G3(5. 0.5) = O is satisfied by 

requiring x ($,O, 5) = 0. Now transform 5 

in the momentum equation. Thus 

'-d 

>((5$q95) = X(Ess95) P 
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and Fo, G and P a r e  already known in t e r m s  of the new variables.  1 2 

The equation becomes 

x S s S  + 3x Ss - 2 5 . 3 ' ~ ~ ~  t re3"xg + 3 'x  s 

The boundary conditions a t  the plate a r e  

The matching condition for  F i s  2 

From the l a s t  section f 2  = 0 and fll(g, 0) = g15(5. 0) = - @/264(2g). 

Hence 

IU 
l im F2 = - @ s / 2 t 9  

1-00 

and 

Iim XscE. s .  i) = - / 3 ~ / d ( 2 5 ) ~  
S -a 

It i s  easy to show by direct  substitution that that l imit  i s  compatible 

with the t ransformed momentum equation, 

(separation of X into two- and three-dimensional parts) 

In the t ransformed momentum equation there i s  one t e rm which i s  
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modulated by R sin 5 ;  there a r e  no such t e r m s  in the boundary condi- 

tions. That t e rm  reflects  the R sin &$ par t  of G3 and i s  a forcing 

function imposed by the t r ansverse  field through the continuity con- 

dition, X can be written a s  a sum of two par t s ,  one proportional to 

R sin 5 and the other not involving & a t  all. The f i r s t  t e r m  responds 

to the forcing function proportional to R s in 5 and obeys ze ro  boundary 

conditions al l  around. The second t e r m  respons to the two-dimen- 

sional forcing function and satisfies the Xs l imit  for  s + m .  Thus 

wri te  

N ( s )  and /n ( s l  a r e  defined by separate differential equations and 

boundary conditions: 

If the spanwise vorticity i s  to decay exponentially f a r  from 

the plate, N ( s )  must  contain an  O(log a )  t e rm (Van Dyke [ 3 ]  ) . There 

i s  no need to find out more  about N ( s ) .  The important point i s  that 

the two-dimensional contribution % approaches zero  a s  5 becomes 

3/2 la rge ,  and the three-dimensional t e rm  grows a s  
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{F2 and the boundary-layer profile } 

The N equation with i t s  boundary conditions has  a s imple solution - 

That  can be verified by direct  substitution using the Blasius equation 

and i ts  derivative. Then 

The boundary-layer profile i s  

1 1  

u = -.?'(s) - f ~ E ' 5 s i n  S s J  ( s f  t E2(/h'(s)/2$) t 0 ( c 3 ) .  

Notice the expgnsion i s  not uniformly convergent. The second t e rm 

2 
i s  much smal ler  than the f i r s t  only i f  6 P/E , but that i s  assured 

L 
by the restr ict ion AE << I/E alrgady imposed to make the outer flow 

2 
tractable. The third t e rm  i s  small  if f >> E , the usual requirement 

f o r  convergence of the boundary-layer expansion. 

The f i r s t  two t e r m s  of the profile expansion can be combined 

into a single function 

with third-order accuracy. Then 



where  

2 
and y = R a . Thus the shape of the profile i s  unaffected by the t rans  - 
v e r s e  field. Even in the second-order approximation, the only three-  

dimensional effect i s  a spanwise variation in boundaey-layer 

thic kne s s . 

9. Conclusion 

F o r  the profile expansion to be valid, 5 must  satisfy 

2 a << 5 << l / a  . In physical variables the inequality can be written 

and in that interval,  expressions good to O(y) fo r  U and W a r e  

where 

(1 + *ykx sin kz). 

Thus the boundary layer  takes on the wavy character  i l lustrated in 

figure l. The practical significance of these resul ts  i s  discussed by 

Bradshaw [2]  . 
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11. THE TURBULENT RAYLEIGH PROBLEM 

1. Introduction 

The essent ia l  physical problem of turbulent shea r  flow - to 

find the relationship between mean flow distribution and turbulent 

s t ruc ture  - i s  s t i l l  unsolved. F o r  the t ime being, a d  hoc physical 

hypotheses m u s t  be injected into any theory of turbulent shea r  flow, 

and the best  a theoret ic ian can do is inject a t  the l eas t  sensi t ive point 

in the s t ruc tu re  of a problem. F o r  example,  suppose we descr ibe  

proper t ies  of a boundary layer  above a wall in  a coordinate system 

( x , y p z )  where  x points downstream and y is perpendicular to  the 

wall. Le t  ( U ,  V ,  0 )  be the corresponding mean  velocity components 

and (u, v ,  w)  be turbulent fluctuations f rom the mean.  The boundary- 

layer  momentum equation is 

where d ~ / d x  is the mean p r e s s u r e  gradient  and o i s  the kinematic 

shea r  s t r e s s  (Townsend El] ). The full express ion  f o r  the s t r e s s  is 

but in the fully turbulent region the viscous t e r m  is negligible. In 

t e r m s  of o and the mean velocity gradient 

a quantity with the dimensions of viscosi ty  can be  defined a s  
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Then the calculated mean velocity profile U(y) i s  fair ly insensitive to 

assumptions made about the "eddy viscosity. " 

The Prandt l  mixing length theory, which gave 

in the region of a boundary layer near  the wall, amounted to li t t le 

more  than a plausible assumption on the eddy viscosity. But the re la -  

tion above can be derived without the mixing length hypothesis by 

making certain assumptions about the turbulent energy equation. At 

the same time i t  becomes evident where the original Prandt l  relation 

will break down. By balancing turbulent energy generation, turbulent 

diffusion and dissipation, and by making certain s imilari ty a s  sump- 

tions for  the wall l ayer ,  Townsend [ 2  ] shows that 

where the t e rm with the coefficient B represents  the effect of tarbu- 

lent diffusion. The derivation of that equation and the assumptions 

involved will be discussed l a te r  in connection with the turbulent 

RayPeigh problem. The important thing for  now i s  the form of the 

relation: %2 i s  a functional of the s t r e s s  distribution. That will be 

t rue  of any velocity gradient -s t ress  relation derived from energy 

considerations. If equation 3 i s  combined a s  i t  stands with the 

equation of motion, an integro-differential equation i s  the result .  

Equation 3 may be regarded a s  an ordinary f i r s t -o rder  differential 

equation for  and solved: 



When that i s  inserted in equation 1 ,  an integral  t e rm remains.  Al- 

ternately the momentum equation can  be differentiated with respect  

to y ,  and with the aid of the continuity relation 

it may be rewritten in t e r m s  of S1 and o: 

But U and V must  s t i l l  be expressed a s  integrals of 62. 

The Rayleigh problem of shear  flow involves none of the 

purely kinematic difficulties of the boundary -layer problem, yet 

the same physical ideas apply. In this problem the non-steady flow 

above an infinite plate moving in the x-direction in the x-z plane i s  

examined; the independent variables a r e  y and t. The situation is 

sketched in figure 1. The mean flow continuity equation i s  automat- 

ically satisfied, since V = 0 and the problem i s  statistically homo- 

geneous in x. The momentum equation i s  

a form closely analogous to equation 4. The turbulent Rayleigh 

problem i s  discussed in detail in this  chapter.  
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In 1956, Clauser  [ 3 ]  suggested that approximately s imi lar  

solutions could be obtained for  ' equilibrium" turbulent boundary 

l aye r s ,  those for  which the parameter  

remains constant. 6'k i s  a measure  of the boundary-layer thickness, 

o i s  the wall s t r e s s ,  so /3 i s  the rat io of p ressure  force ac ro s s  the 
W 

boundary layer  to shear  force. But a skin friction parameter  

a lso  enters  the boundary -layer momentum equation and prevents 

exact s imilari ty (or  "self-preservation, " cf. Townsend [ I ,  21 ). 

Since y has  only a small  effect on the resu l t s ,  useful quasi-similar  

solutions can be obtained, and that program was recently ca r r i ed  

out by Mellor and Gibson [4A, B ]  . One of the simplifications of the 

Rayleigh problem i s  that exactly self-preserving solutions a r e  pos- 

sible. It i s  that family of exactly s imi lar  solutions which i s  t reated 

he re .  

Rayleigh proposed his  non-steady shear  flow situation a s  an  

analog to the laminar boundary Payer, The convective t e r m s  on the 

left hand side of equation 1 can be written 

where UT i s  the mean flow speed and s is a streamline coordinate. 

If this t e rm i s  approximated by 



then t and X/U, play analogous par ts  in the non-steady and steady 

problems. Since a turbulent boundary layer  i s  much fuller than a 

laminar boundary l ayer ,  the velocities a t  corresponding points being 

more  nearly equal to the f ree - s t ream velocity in the turbulent case ,  

it might be conjectured that a Rayleigh type analogy would be more  

significant for the turbulent layers .  In fact i t  i s  found that i f  the 

equation of motion for  the equilibrium boundary layer  i s  written in 

similarity form and expanded in powers of y, the zeroth-order  t e rm  

i s  the s imilari ty equation for the Rayleigh problem. Thus the Ray- 

leigh problem contains al l  the essential  features of the boundary- 

layer  problem except for non- s imilari ty.  

The plan of this chapter i s  then a s  follows: in order  to find 

the self-preserving sollutians, the RayBeigh problem i s  put in s imi-  

lar i ty fo rm,  and some general. consequences of that form a r e  d is -  

cussed; the physical ideas used by Clauser ,  Townsend and lately by 

Mellor and Gibson a r e  cas t  into a form suitable for  the Rayleigh 

problem; exact solutions for  the constant wall s t r e s s  and zero  wall 

s t r e s s  cases  a r e  derived under the physical assumptions, and 

propert ies  of other solutions a r e  discussed; the analogy between 

the turbulent boundary layer  and the Rayleigh situation i s  developed. 

The o- %2 forms s f  the equations of motion, equations 4 and 6 ,  will 

be used so Townsend's velocity gradient- s t r e s s  relation can be used 

when the time comes. That means that shear  s t r e s s  will be specified 

a t  the moving wall ra ther  than the wall speed. Then the s t r e s s  



distribution for  the Rayleigh flow can be found without explicitly 

including any assumptions about the laminar sublayer - that i s  not 

s tr ict ly possible for  the boundary layer.  

2 .  Similarity Form of the Rayleigh Problem for  Self - Pr eserving 

Solutions 

The problem f i r s t  will be restated. The equation of motion 

i s  

and in order  to solve a practical problem a relation ~ { a )  will have 

to be found. The boundary and initial conditions a r e  

If exactly similar  solutions exist,  o and $2 must  have the forms 

where I 
q =JL 9 

I 

l o  i 
and 1 and o a r e  functions of time only. The boundary condition a t  

0 

the wall must  be compatible with the similari ty solutions, 

ow(t) = const. oo(t) 



and the equation of motion 6 becomes 

Similarity i s  obtained when the coefficients in brackets a r e  mutually 

proportional. F o r  a Rayleigh type flow, where the fluid i s  stationary 

until t = 0 and then i s  driven by the motion of a plate, i t  must  be 

assumed that 1 0(0) = 0. Then it i s  easy to show that s imilari ty solu- 

tions a r e  obtaj;ned only when 

C 
o0 = const. t s 

with c >-2 for  a growing turbulent layer.  It has  been found convenient 

to write a o0 and l a s  follows: w9  

k i s  a dirniensionless constant defined in section 4B. The reason for 

including it he r e  will become clear  la ter .  The self-preserving solu- 

tions 8 take the form 

B - g(rl)9 

where 



Equation 9 becomes 

and conditions 7 reduce to 

The condition c > - 2  insures  that the turbulent layer  grows, a s  

it must for Rayleigh flow. The condition i s  more  res t r ic t ive  than i s  

necessary  in the analogous boundary -layer c a se ,  since boundary lay- 

e r s  may actually contract under highly favorable p ressure  gradients. 

The case  c = -1 corresponds to continuously separating flow with 

zero  wall s t r e s s .  The cases  -1 > c > - 2  involve various degrees of 

separation and negative s t r e s s e s ,  and they a r e  not discussed further .  

I t  i s  assumed throughout that a l l  s t r e s s e s  a r e  posit2ve to avoid cum- 

bersome absoJute value signs. 

3.  Some Proper t ies  of the Self -Preserving Solutions 

A. Momentum Conservation 

The equation for  conservation of total momentum i s  

a3 

S w 
l t c  U(y, t )  dy = - o ( t ' )  dt '  = -P t  (14) 

0 8 

The Past equality follows from equation 18 except in the case  c = - 1, 

f o r  then aw = 0. But in that case  we assume that an amount of mo-  

mentum L = -P has  been injected into the field pr ior  to t = 0. The 

velocity a t  any point in the field can be found f rom the momentum 

equation. F r o m  equations 5 and 11, 



dt' , 

where 

l t c  r = -  
c '  

lit- 
2 

and the l a s t  of equations 11 h a s  been used to find t s  (y,  q '  ) .  

Since U has  been expressed  in t e r m s  of s through the equation 
co I+@ 

of motion, i t  i s  obvious that S Udy m u s t  equal - P t  automatically 
0 

except perhaps in the c a s e  c = - 1. Ee is interest ing to demonstrate  

that explicitly though. By equations li 1 and 15, 

The o r d e r  of integration can be r e v e r s e d  and the in tegra l  evaluated 

explicitly: 

The f i r s t  of equations 13 was used. The proof holds a s  c approaches 



- 1 but fa i l s  f o r  c = - 1. Going back to equation 15 for  that c a s e ,  

and in o r d e r  that L = -P, s mus t  sat isfy 

It may  seem strange that in this  special  c a s e  an  ex t r a  condition like 

equation 17  is imposed on the s t r e s s  distribution s .  But equation 12 

f o r  the c = - 1 c a s e  with the boundary conditions s(O) = s ( m )  = 0 gives 

a non-unique r e su l t ,  and equation 17 r emoves  the non-uniqueness. 

The physical reason  why a n  integral momentum condition is needed 

f o r  the continuously separating c a s e  is c lear :  in eve ry  other  c a s e  

the momentum in  the field i s  determined by the  h is tory  of the s t r e s s  

a t  the wall ,  but in that c a s e  the wall s t r e s s  is ze ro  and the momentum 

i s  injected into the field by unspecified means .  

I3. Laminar  Sublayer 

An important taci t  assumption h a s  been made up to  this  point 

which will now be justified. Immediately adjacent to the wall the flow 

mus t  be l a m i n a r ,  and the self -preserving solutions cannot be ex-  

pected to hold in  the laminar  sublayer.  The sublayer will extend to 

some height hi and the s t r e s s  will undergo some change Ao through 
v 

it.  Corresponding to b V ,  t he re  will be some  non-dimensional thick- 

ness  qv on the s imi lar i ty  sca le ,  and the s imi lar i ty  solutions of equa- 

tion 12 will be valid only when 



These two requirements  a r e  discussed below. 

(i) The laminar sublayer becomes unstable a t  a cr i t ica l  Rey- 

nolds number given by 

(Clauser [ 3 ]  ). The corresponding similari ty thickness q i s  

where R i s  the Reynolds number based on momentum in the field, 

(ii) Suppose o = o + ay to a n  adequate approximation in the 
W 

laminas sublayer = Then 

ao - ars - - a = - -  
ay at 

and since a i s  constant and atJ/at = eW a t  the wall, where Cw i s  the 

acceleration of the wall, 

Uw can be related to  aw through a friction coefficient: 

By using that expression to find 6 equations 10 for  ow, and the 
ws  
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expression for  L,  it i s  easily shown that 

Except in the separating flow case ,  where the laminar sub- 

layer  does not have to t ransmit  a mean s t r e s s  boundary condition 

anyway and i s  generally supposed to be irrelevant ,  both q and 

~ o / o  go to ze ro  a s  R + co. The constant k ,  discussed in the next 
W 

section, i s  known to be about .015. and Cf could be about .003 for  

a smooth plate under a wide range of Reynolds numbers. Then 

conditions (i) and (ii) become 

4. Assumptions for  the Q(o) Relation 

The reason for  doing the Rayleigh problem i s  that i t  illumi- 

nates the ideas used in  boundary-layer theory more  clearly than the 

boundary-layer problem does. The purpose he r e  i s  not to introduce 

new physical assumptions, but to adapt the ones ordinarily used to 

the Rayleigh problem. The two-layer model of Clauses and Town- 

send will be used, with a wall layer in energy equilibrium and an 

outer layer  of constant eddy viscosity, The object i s  to find an  ex-  

pression for Q a s  a functional of o reasonably well founded on physi- 

ca l  arguments.  It muse be emphasized that the work up to now holds 

independently of any assumptions about the relation Q(o) except that 

i t  be compatible with the s imilari ty form of the equations of motion. 



The wall layer and outer layer will be treated separately. 

A. Wall Layer 

Townsend' s energy equilibrium argument [ 2  1 can be taken 

over with little alteration. The turbulent energy equation for  the 

Rayleigh problem i s  

2 2 where q2 = u2 t v + w and p i s  the p ressure  fluctuation. The f i r s t  

te rm represents  the ra te  of change of turbulent energy a t  a point, 
i 

the second - the ra te  of generation of turbulent energy by interaction 

with the mean field, the third - the ra te  of l a te ra l  diffusion of energy, 

the fourth - the ra te  of energy dissipation. Energy equilibrium means 

that generation and dissipation a r e  closely balanced, and the f i r s t  

t e rm i s  small  compared with the second or  fourth. Townsend's argu-  

ments from dimensionality and structural  s imilari ty then imply the 

following relations: 

and since deep in the turbulent layer near  the wall the only possible 

length scale i s  y, 

Now suppose the ra te  of change of turbulent energy in the wall layer 
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is indeed small compared with the ra te  of energy generation, 

Then it  follows from the energy balance equation that 

From equations 3 and 11, g(q) for the wall layer may be found: 

where 

b = 1 - ~ 3  I s 1 /  . 
S 

It i s  known from experiments on boundary Payers that K Z  0.41 (the 

Kdrmdn constant) and B-  0 .2  [1 ,2] ,  and there is no reason to doubt 

that the same values hold for the RayPeigh problem. I3 = 0 gives the 

old PrandtP expression again. 

The meaning of inequality 2 1  becomes c learer  when it  i s  put 

in similarity form. Suppose the la tera l  diffusion t e rm  in equation 3 

i s  neglected for  simplicity. Equations 3 and 6 a r e  then 

Inequality 2% then becomes 



since a i s  known to be about 0 .4  [Bradshaw, P. ,  unpublished]. 1 

Inequality 2 3  i s  simply a condition that the s t r e s s  distribution curve 

be roughly l inear  over most  of the equilibrium region. It is ve ry  

strongly satisfied for  calculated shear  s t r e s s  profiles in the wall 

region, so i t  i s  surely the breakdown of the length scale hypothesis 

4 = a y which ends the validity of equation 3.  3 

B. Outer Layer 

The argument for the outer layer  i s  l e s s  involved and l e s s  

convincing. Consider the boundary-layer problem fir s t ,  and define 

a displacement thickness 

where U,(x) = U ( x ,  a). The eddy viscosity v z o / ~  can be used to 

-1 
define a turbulent Reynolds number k , 

a s  a function of x and y, CPauser [ 3 ]  found that t h e  existing boundary- 

- 1 
layer  profile data were  surprisingly compatible with a k constant 

with respect  to x and y some distance from the wall. Hn boundary- 

layer  theory $ the eddy viscosity in the outer layer  i s  thus taken to be 



with k a universal constant about equal to 0.0 1 5  [ 3 , 4 ~ ] .  The eddy 

viscosity for  the Rayleigh problem should thus be 

Thus 

and by equations 11 and 14, 

in the outer layer .  

The complete gradient function g(q 1 i s  now found simply by 

joining expressions 2 2  and 25 a t  their  point of equality. F o r  conven- 

ience, le t  us define the square root of the s t r e s s  

Then expressions 22 and 2 5  give equal resul ts  fo r  g where 

with 

That defines the junction between wall and outer Payers. In practice 

the wall Payer spans about 2070 s f  the total turbulent layer  thickness. 



5. Equations of Motion under the ~ ( 0 )  Assumptions - Some General 

Consequences 

When equations 22  and 2 5  a r e  combined with equation 1 2 ,  the 

equation of motion a s s u m e s  the following f o r m s  in the wall  and outer 

layers :  

(Wall) 

(Outer)  s f '  t (1  t $) 7 s '  + s = 0 .  

The equation of motion 1 2 ,  involving the s t r e s s  s and velocity gradient 

g with a n  unspecified relationship between them,  has  been supple- 

mented by the physical assumptions of the l a s t  section and superseded 

by equations 26 to 29. None of these equations involves K o r  k sepa-  

ra te ly  - only combined into E . Under the p resen t  ~ ( 0 )  assumptions,  

the s t r e s s  distribution fo r  any c i s  governed by the single empir ica l  

constant E . This  is the r eason  k was introduced in equations 10; k 

f ixes  the relationship between turbulent l aye r  momentum and length 

sca le ,  but does not separately influence the non-dimensional shea r  

s t r e s s  distribution s(?l). 

In prac t ice  equations 28 and 29 mus t  be solved separately and 

the solutions matched a t  a point ye determined by condition 26. The 

single boundary condition s (0 )  = B + c i s  applied to  the wall  solution, 

and s ( m )  = 0 is requi red  of the outer solution. Since both equations 

28 and 29 a r e  second o r d e r ,  two matching conditions a r e  required.  

One of these is continuity of s ;  it i s  easy  to show the other  is then 

continuity of slope s' . Equations 28 and 29, taken together ,  have 



the form 

where 3 changes i t s  functional form a t  qe. Since s i s  continuous, 

the most s '  can do is jump. Consequently 3 and hence s" can have 

a t  most  a jump discontinuity a t  qe. Hence s '  i s  continuous. 

The outer  equation 29 i s  well known [ 1 , 5  ] and can be written 

in the standard form 

with 
I 

and 1 

The general solution i s  written 

Some special Hhn functions [5] a r e  

F o r  ve ry  smal l  q,  equation 28 can be treated generally too, 



Substitute 

The resultiAg equation for s(x)  i s  

The function s(x) must have the general form shown below, and i t  will 

be found that b - P a s  x + co except in the c a s e  c = -1: 

F o r  large x equation 32 thus approaches 

where the las t  term becomes negligible compared with the second 

term on the left. The asymptotically valid solution of equation 32 

i s  then 



fo r  some constant a which can be de termined only by a complete solu- 

tion of the problem, s '  h a s  a log singularity a t  q = 0 unless  c = 0 o r  

c = -1, but i t  is easy  to see  that b -+ 1 a t  the origin anyway f rom i ts  

definition in equation 2 2 .  Though the analysis  leading to equation 33 

breaks  down in the c a s e  c = -1, the equation is in fact  valid in that 

c a s e  too. TheSsarne singularity in the s t r e s s  gradient was  noted by 

Mellor [ 4 8 ]  i o r  boundary l a y e r s ,  but i t  apparently was  passed  up in 

the computer solutions of [4A 1 . 

6. Solution fo r  the ConstantStress C a s e ,  c = 0 

In the l a s t  section i t  was  pointed out that t h e  s t r e s s  gradient 

i s  well behaved a t  the or igin only in the special  c a s e s  c = 0 and c = -1. 

In those c a s e s  i t  is possible to find comple te ,  exact solutions fo r  

a r b i t r a r y  B - that i s  the r e a l  justification for  posing the problem 

in s t r e s s  form in the f i r s t  place.  F o r  the c a s e  c = 0 the f i r s t  inte- 

grat ion of equation 2 8  is t r iv ia l ,  and the outer  solution is t h e  second 

of equations 31. The integrated wall  equation, the matching point 

location, and the outer  s t r e s s  distribution are writ ten below: 

(i) S '  t Ebr = A ,  
(ii) qere  = E be 

(iii) s = Ae -q2/2 a 

A can  be found immediately by matching slopes a t  q * 
e' 



by (iii) , 

Hence 

A = o .  

Equation 34(i) may now be written 

and from equation 2 2  (anticipating the fact that s '  will be negative), 

The equation may be inverted so q becomes the dependent variable: 

The solution satisfying the boundary condition q ( l )  = 0 i s  

In the case B = 8 equation 36 can be written 

The quantities A (the coefficient in the outer solution), q 
e 

and se can now be computed by solving equations 34(ii), (iii) and 36 

at the matching point, The results  for two values of B are a s  follows: 



In this c a s e  then, Townsend's B correc t ion  makes  essent ial ly  no 

difference. The s t r e s s  distribution curve  good f o r  e i ther  B = 0 o r  

B = 0.2 i s  shown in  f igure 2 .  

7 .  Solution for  the Continuously Separating Case  - c = -1 

Again the outer  solution is known - the second of equations 

31 - and the equation of motion f o r  the wall l aye r  can be integrated 

once ens folllows. Equation 28 f o r  c = -1 can be wr i t ten  

Integrating and using the boundary condition s ( O )  = 0,  

The integrated wall l aye r  equation, the  matching point location, and 

the outer solution a r e  then 

( i i )  qere  = cbe  a 

2/8 
(iii) r = fi e -q  

But now the matching on slopes i s  identically satisfied. That  can  be 

seen a s  follows: 





r 
e "ere r '  = -  - - 

4 by (iii), e 2qe 

and the last  equality holds identically for  any r satisfying 38(i) in the 

wall layer.  Thus one of the matching conditions i s  superfluous, and 

the apparent non-uniquenes s mentioned ea r l i e r  a r i s e s .  The non- 

uniqueness i s  removed by the momentum condition 17: 

Equation 38(i) written out in full (under the cor rec t  assumption 

With the substitutions 

the equation becomes 

The solution satisfying Y(O) = a o r  X(a) = O is 

If B = 0 this becomes 

Equations 17, 38(ii), (iii) and 39 determine a ,  A,  qe and se  - 



f o r  non-zero B a good deal of numerical work i s  required. The steps 

of a strongly convergent i teration procedure a r e  described in the 

Appendix. The s t r e s s  curve i s  nearly l inear  in the wall l ayer ,  that i s  

2 
s - a  q .  

If the s t r e s s  curve were  exactly l inear ,  then b would be 1-B. In the 

actual case  that must  be nearly correc t .  The group ~b appearing in 

equations 38 must  be nearly constant and equal to ~ ( 1 - B ) ,  and an  

equation analogous to 40, 

must  be very accurate for  a l l  reasonable B. F o r  B = 0.2, the value 

proposed by Townsend [2]1, the difference between 39 and 41 i s  en- 

t i rely inconsequential. Values for  a ,  A ,  re, s for  the three  cases  e 

B = 0, b = 0.8 (the approximation to B = 0.2), and B = 0.2 a r e  given 

below: 

The shear  s t r e s s  distributions for  B = 0 and B = 0.2 a r e  shown in 

figure 3.  

The speed distribution for  c = -1 has  already been given in 

equation 14.  The only function of the wall in the zero  s t r e s s  case  i s  

to sustain fluctuating p ressure  forces ,  There  i s  no mean flow in the 

laminar sublayer,  and i t s  thickness i s  of o rder  4n/a where T i s  the 

time scale of the turbulence. Thus the mean speed equation 
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should hold right up to the wall, where 

The function slrl i s  graphed in figure 4. 

8. Analogy jvith the Equilibrium Boundary Layer 

The ideas and notation of Mellor and Gibson [a, B ]  will be 

followed a s  closely a s  possible here .  The main differences a r e  that 

equation 4, instead of equation 1, will be used a s  the equation. of mo- 

tion from the outset,  and the eddy viscosity notation, cumbersome 

and deceptive in this context, will not be used a t  all. The boundary- 

layer  momentum and continuity equations a r e  

Define a ' ' skin friction velocitys ' u7 and length scale A a s  follows: 

where o ( x )  i s  the wall s t r e s s ,  and U (x) = U(x, a). Mellor and 
W c)o 

Gibson use the following boundary conditions: 



2 
(i) o(x,  0) = u,(x) 

(ii) ~ ( x )  exists  

(iii) V(x,O) = 0 

Condition (i) seems t rue  by definition of u7. But the full expression 

for the shear  s t r e s s  a ,  

- 
o =  -UVfV52, 

i s  truncated to o = -= in the turbulent region. The laminar sublayer 

intervening between the turbulence and the wall, where the viscous 

contribution to o becomes important,  i s  patched on l a te r .  Condition 

(i) thus a s s e r t s  that the wall s t r e s s  i s  t ransmit ted intact through the 

laminar sublayer (cf. section 3B for  the equivalent situation in the 

Rayleigh problem). Condition (ii) guarantees that U(x, y) -Um(x) a s  

y "a, and that the difference between U and U i s  integrable. Con- 
00 

dition (iii) se t s  the mean velocity normal to the wall equal zero  a t  

the wall. 

Clauser  found that approximately s imi lar  solutions for  U 

could be obtained in the "velocity defect" form 

where 

Thus le t  us  wri te  a and iQ in the fo rms  



so that 

f (0 )  can be set  equal to zero. Then boundary conditions 45(i) and 

(ii) become 

and condition 45(iii) i s  used in  the integration of the continuity equa- 

tion 43 to get V in t e rms  of U. 

When forms  46 and the expression for  V a r e  used in the equa- 

tion of motion 4,  uT and Urn must appear together in the ratio 

Now there i s  no reason why u7 and Urn should be proportional. uT 

i s  governed by the s t r e s s  -bearing capacity of turbulent flow, but 

U (x) is measured with respect to the wall, and the laminar sublayer 
00 

intervenes. Thus we cannot expect to reduce the boundary layer mo- 

mentum equation to a fully similar form. The equation of motion for 

the Rayleigh problem, on the other hand, does not contain the con- 

vective term s which make nom- similarity inevitable. If similarity 

solutions to the Wayleigh problem a r e  sought with velocities non- 

dimensionalized on uT, they can be found. The reader  should recall 

that a t  no point in the discussion of the Rayleigh problem was the 



actual wall speed Uw(t) required to generate the s imilari ty solutions 

discussed - except in the continuously separating case  c = -1 where 

the laminar sublayer i s  i rrelevant  to the mean dynamics. In o rder  to 

specify the wall speed programs Uw(t) for an experiment in which the 

similari ty flows would be generated, assumptions about the connection 

between the laminar  sublayer and the turbulent region would have to 

be made. The reader  can find such assumptions in [a] and make 

h i s  own judgement on their reliability. 

The transformed equation of motion 4 i s  

where 

from 47, and 

Quasi-similar  solutions a r e  sought for p fixed - the equilibrium tu r -  

bulent boundary l ayers  of Clauser  [ 3  I/ . Notice equation 49 i s  an  

integro-differential equation on 5 and $ a s  promised in the Intro- 

duction. 

Suppose there i s  a region very  close to the wall in which the 

following conditions a r e  satisfied: 



(i) the flow i s  fully turbulent, so the speed profile can be 

written in defect form (first  of equations 46); 

(ii) the length characterizing the ra te  of s t r e s s  variation 

i s  large compared with the distance from the wall 

(region of constant s t r e s s ) ,  so that the only physical 

length available i s  v/u,.. 

Then U must simultaneously have the forms 

UaY 
and U = ~~3 

That i s  possible only if 

where D and M$rmbns s constant K a r e  universal constants. This argu- 

ment fails if  np such ' sover lapss  region satisfying (i) and (ii) exists ,  

and no such region exists if the pressure  gradient U i s  severe 
(30 OC9 

X 

enough, since a large s t r e s s  gradient in the y-direction i s  required 

to balance a large pressure  gradient in the x-direction for steady 

flow. Where such a region does existo equation 50 permits  the eval- 

uation of o and y in t e rms  s f  y ,  (3 and a shape factor 

Mellor and Gibson [ 4 3  ] find that 



and that the integrated boundary-layer momentum equation takes the 

form 

y i s  a small  quantity (y = d v  - .04  for  a flat plate in a 

typical experimental situation) and can be used a s  an  expansion param - 
e te r  in a n  asymptotic s e r i e s  solution to equation 49. Thus wri te  5 ,  
$ and f a s  follows: 

so that 

f l ,  
f . ( f / )  = 
P 

S 1 4 (A"', d f l t f d f 1 8  . 
1 

VrY' 
The expansions for o and p have already been indicated in equations 5 1 

and 52, and the expansion for G begins 

The boundary conditions 48 a r e  met  a s  follows: 



Thus the zeroth o rder  solution contains the ent ire  momentum defect. 

When the quantities in equation 49 a r e  expanded in powers of y a s  

described, the coefficients of the various powers must  satisfy the 

following sequence of equations : 

The 3. .'s a r e  complicated functionals involving derivatives and multi-  
1 

ple integrals of lower o rder  G ' s .  But if p i s  held fixed fo r  the equi- 

librium solutions and some relationship between 5 and 5 i s  assumed,  

equations 54 with their boundary conditions 53 can be solved one by 



one and the asymptotic s e r i e s  f o r  5 constructed.  Each function Si, 

g i  and f.  will depend on fl only, and the non-similar i ty  will  be taken 
1 

c a r e  of by the y(x)i. 

The nature of the analogy between the boundary layer  and Ray- 

leigh problems can now be seen  by comparing equations 54 (0)  and 12 - 

they have exactly the s a m e  f o r m .  The f i r s t  of boundary conditions 

53 and 13 a l s o  have the s a m e  form;  the second of conditions 53 insu res  

that $ ( f f ) +  0 a s  H+co, and fo r  a reasonable assumption on the 
0 

5- relation f o r  l a rge  fJ (e .  g .  , C l a u s e r ' s ) ,  i t  should insu re  + 0 

a s  well. Thus the s imi lar i ty  solution fo r  se l f -preserv ing  Rayleigh 

flow i s  formally identical to the zero th-order  approximation f o r  the 

equilibrium boundary l a y e r .  

Suppose we have the solution s ( Q ) ,  g ( ~ )  to the Rayleigh problem 

for some c ,  and we want the zeroth o r d e r  solution Jo(f/), GO(fl) to 

the equivalent boundary-layer problem ( '  ' equivalent" will  become 

prec ise  when P(c) is found). W e  expect to  have 

for  some A , ,8 , C . Since the physical s t r e s s ,  velocity gradient 

and y-coordinate must  be the s a m e  in the two p rob lemsp  equations 8 

and 46 imply 



''OO 
u 

(ii) 52 = - I 0 g ( n ) =  $Cg(Bff) , 

(ii i)  y = l oq - ABH - -  
f3 

We shall require q = Bff. Squaring (ii), dividing by (i) and multiply- 

ing by the square of (iii) gives 

a constraint onff  , B ,  C arising because the physical solutions con- 

tain one velocity and one length scale only. When fo rms  55 a r e  used 

in the f i rs t  boundary condition 53 and the zeroth-order equation of 

motion 54, the fpllowing equations result: 

These a r e  exactly the same a s  the Ray1eigh problem equations 12 and 

13 if q = B H ,  and 



Equations 56 and 57 can be solved simultaneously to give 

T h u s ,  given the solution s (q ) ,  g(q) to a Rayleigh problem for some c ,  

the zeroth -order  solution to the equilibrium boundary - layer  problem 

with p = -c/4(lf c )  i s  known through the prescription 55 and the quan- 

t i t i e s  A,& C given in equations 58. P(c) i s  graphed in figure 5; 

interesting limiting cases  for  the boundary -layer and Rayleigh prob- 

lem s a r e  marked on the graph. 

In the l imit  f3 * co when the flow becomes continuously separ -  

at ing,  the boundary -layer equations become intractable a s  they stand, 

and the following transformation [$A] i s  useful: 



: 0 
ii" 



so that 

The essential reason transformation 59 becomes necessary a s  P +oo 

i s  that the wall shear ow becomes dynamically irrelevant in that 

case ,  - the "skin friction velocity" u = < i s  no longer an  approp- 
7 

riate scale.  F rom the definition of P below equation 49, 

where 6* i s  the boundary-layer displacement thickness 

and u i s  a * 'p ressure  velocityss defined a s  dlP/dx . Transfor-  
P 

mation 59 rescales the physical variables on u so that 
P 

with I 

from equations 44 and 44.  



The las t  case one would expect a close analogy between the 

boundary-layer and Rayleigh problems is  the case of separating flow, 

yet the analogy i s  very close indeed. The equation of motion 49 can 

be rewritten in t e rms  of the new variables 59 and the various quanti- 

t ies expanded in powers of A .  The zeroth-order equation of motion 

and the conditions on its solution become 

- 1 
Fo r  p = 69 the equation of motion m a y  be written 

and since 

a f i r s t  integration can be performed. The constant of integration i s  
CU 

fixed by the condition JO(0) = 0, and the result  is 
IU 

N 

rU Go can be written in t e rms  of fo  through equation 60 and the equation 

integrated once more  - 



where ?I ( * )  = 0 has  been used. This resul t  i s  analogous to equation 

1 6  f o r  the c = -1 Rayleigh problem, where the non-dimensional mean 

speed appears  a s  s/q. Suppose now we have the zeroth-order  bound- 
* 

ary- layer  solution 5 , ?' fo r  the case  (3-I = 0, and we want to find 
0 0 

the solution s ,  s/q to the c = -1 Rayleigh problem. That is, we ex- 

pect 

N N N  

and want a ,  b, c. Then by the same kind of argument that produced 

equations 58 it '  i s  easy to show 

If Mellor and Gibson had given their numerical resul ts  for  the zeroth- 

order  boundary -layer solution, equations 64 would have permitted a 

direct  check on their  calculations against the exact resul ts  of section 

7 (with It3 = 0 - Mellor and Gibson use the Prandtl  eddy viscosity equa- 

tion for  their  wall layer) .  In Pact they show plots of the combined 

zeroth and f i r s t -o rder  solutions only, but their  resul ts  a r e  rescaled 

and plotted in figures 3 and 4 anyway. 



- 1 
F o r  p = 0,  the only pa ramete r  left  i n  the boundary-layer 

N N  N N  

s imi lar i ty  solution s(ff ), $(ff ) i s  h . The quantit ies K and k 

assoc ia ted  with the s t r e s s  -velocity gradient assumptions r ema in ,  

of cour se ,  but the i r  values a r e  supposed to be universal  and known. 

The quantity I '  (0) ,  in  par t icu lar ,  depends on X only. The wall  s t r e s s  

i s  z e r o ,  and under any of the s t r e s s -g rad ien t  assumptions U ( x ,  0) = 0 

(thus the flow i s  "continuousPy separating").  By the definition of y 

and the f i r s t  of equations 59, 

By the fourth of equations $1, 

B *U 

X = f g ( 0 )  , (65) 

and since the right-hand side is a function of known once the s imi -  

la r i ty  problem i s  solved, equation 65 de termines  X uniquely. The 

profile for  continuously sepzrat ing flow i s  thus unique, a ~ d  it i s  the 

f i r s t -o rde r  approximation to that solution which is resca led  and 

plotted in f igures  3 and 4. Mellor and Gibson find X-  = 10.27 to 

f i r s t  o rde r .  The zero th-order  a p p r o x i m t i o n  can  be found through 

equations 63, 64 and the work of section 7: 

for  Townsend's B = 0, the computed a = . 4 1 8 ,  and k = . 0  15. 

Since Idelllor and Gibson c a r r y  the i r  analysis  to f i r s t  o r d e r  in 

X and use  the B = 0 s t r e s s -g rad ien t  relat ion,  the differences between 

the curves  labeled (MG) and the Waylleigh problem curves  f o r  E3 = 0 
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m u s t  be the f i r s t - o r d e r  cor rec t ions .  The cor rec t ions  a r e  f a i r ly  

l a r g e ,  especial ly  in the s t r e s s  profile,  but the qualitative f ea tu res  

of the analogous curves  a r e  the same.  It can  be seen f r o m  Mellor 

and Gibson's pape r s  ([4A] f igure 5 o r  [ 4 ~ ]  f igure 10) that the ex-  

per imental  data  deviate f rom the computed velocity profile in  just  

the s a m e  way a s  the B = 0 .2  curve  deviates f r o m  the B = 0 curve  

f o r  the Rayleigh problem solution of f igure 4. The Townsend r e l a -  

t ion, equation 3 ,  should thus f i t  the data much be t te r  than the  

Prandt l  eddy viscosi ty  re la t ion  in the ex t r eme  c a s e  of continuously 

separating flow. 
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APPENDIX 

A Numerical Technique for  Finding a ,  A, q s for the Case  c = -1 e - e  

The analytical expressions for  the s t ress  distribution derived 

in section 7 contain the constants a and A. Two conditions must  be 

satisfied by the wall and outer layer s tress  distributions: they must  
00 

match a t  a point q fixed by equation 26, and the integral l s / q  dq 

must be 1/2. The stress slopes match automatically a s  explained in  

section 7. 

The s teps  of a strongly convergent i teration procedure for 

finding a ,  A and the matching point (q se)  between wall and outer 

layers  a r e  outlined below. The essential  point i s  that the a r e a  under 

the curve i s  ve ry  nearly proportional to A; the proportionality 

would be exact iif the outer solution spanned the whole field, The 
00 

integral ./ s/q dq = I i s  computed on the basis  of a guess for  A ,  say  
o 

A"), then a new est imate A"' i s  found: 

The cycle can then be s tar ted  again with A ' ~ ' ~  The reason this oper-  

ation i s  interesting enough to be discussed in an  appendix is that i t  

may be ca r r i ed  out by hand despite the fact s i s  not given a s  an ex- 

plicit function of -q by the wall solution for  non-zero ]Be 

guess A = A (0) 

The superscript  (0) will be dropped until s tep 6 . 
@ compute q e 

The outer solution and the matching condition a r e  required: 



Then A2 and A3 both yield expressions for  re: 

An equation for  q i s  the result: e 

2 2 
Since Bq,/2 and r e / 8  a r e  smal l  compared to  1, that equation may be 

solved by iteration very quickly. 

@ compute se ,  Xe, Ye 

The outer solution and the definitions of X ond Y a r e  used: 

@ compute a 

Equation 39 i s  now used: 
a b 



That  can  be rewr i t ten  as an  expression for  a and evaluated a t  the 

matching point using the computed values of Xe, Ye: 

- 

@ evaluate I = dq 
'1 

0 

Performing an integration by p a r t s ,  
-2 

L 
Substituting y = Y and using equation A$,  1 m a y  be wri t ten as a n  

explicit function of se , Q a, A: 

ye I = s e  t A 6 e r fc  (T) t 

'% 

@ compute A"' and renew cycle 



A"' can be used a s  a second guess f o r  A in  s tep @ . The iteration 

cycle is thus closed. 
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111. THE PROPAGATION O F  F R E E  TURBULENCE IN 

A MEAN SHEAR FLOW 

1. Introduction 

Since the work of C o r r s i n  and Kis t le r  [ I  1 ,  i t  h a s  become c l ea r  

that one of the m o s t  distinctive fea tures  of turbulence is its spotty o r  

intermittent cha rac te r .  A hot wi re  r eco rd  of a r ea l  flow shows p e r -  

iods of g rea t  agitation erupting sporadically between quiescent  in t e r -  

va ls .  It now appea r s  that  any theory of turbulence,  even turbulence 

homogeneous in the sense  that ensemble ave rages  of flow proper t ies  

a r e  invariant under t ranslat ion,  m u s t  take into account the seve re  

inhomogeneity present  in each real izat ion of the flow. 

C o r r  s in  and Kis t le r  d iscussed  the s h a r p  f ronts  that bound the 

turbulent portions of wakes and boundary l a y e r s  embedded in regions 

of potential flow. The  turbulent side of a f ront  i s  sppposed to be 

charac ter ized  by random vort ic i ty ,  while the flow on the o ther  s ide 

i s  vort ic i ty  f r e e .  The  r a t e  of propagation s f  such a f ront ,  a t  high 

Reynolds numbers ,  i s  governed by the intensity of the turbulence 

itself and i s  independent of viscosity.  Yet the re  i s  no way to  t r a n s -  

m i t  vort ic i ty  to the i r rotat ional  flow beyond the front  except by 

viscous diffusion. Gor r s in  and Kis t le r  resolved the apparent  contra-  

diction by pointing out that the interface between rotational and i r r o -  

tational flow wrinkles up until i t s  a r e a  i s  adequate to t r ansmi t  the 

right amount of vorticity.  

The phenomenon of intermittency a l s o  occur s  in situations 

where  the flow beyond intensely turbulent regions i s  not i r rotat ional .  

Turbulent slugs in pipe flow, sp i r a l  turbulent bands in c i r cu la r  



Couette flow, wedge - shaped spots  of turbulence in boundary l a y e r s  

on the verge  of t ransi t ion,  turbulent wakes behind the bow shocks of 

hypersonic  project i les  a r e  examples  of intermit tent  turbulence in  a 

mean shea r  flow. Saffman [ 2 1  noticed the s imi lar i ty  between turbu-  

lent slugs and s lugs of diffusing dye in  pipe flow, and conjectured 

that turbulence might behave l ike a diffusable s c a l a r  quantity in  such 

situations.  He proposed a model  equation f o r  the ' turbulence density '  

where U_ i s  the mean velocity,  and the convected t ime derivative of T 

is s e t  equal to a production t e r m  proportional t o  T plus a diffusion 

t e r m  depending on a tensor  diffusivity v . Turbulence propagating 

into an  i r rotat ional  flow cannot diffuse a t  a l l ,  if ' turbulencea means  

random vort ic i ty  fluctuations.  Vorticity m u s t  s tay behind the  surging 

interface.  But if  the Plow beyond the turbulent region is a l ready 

rotational,  velocity fluctuations induced by the turbulence will s t r e t ch  

the vorticity in the l amina r  region and produce random vort ic i ty  

fluctuations, that i s ,  turbulence.  Thus an  initially s h a r p  turbulent 

front will propagate into a mean shea r  flow, and Saffman proposed 

that this  propagation might be descr ibed by a diffusion equation. 

One of the problems with this  proposal  is that the quantity T 

which i s  supposed to diffuse is ha rd  to define in t e r m s  of mechanical 

proper t ies  of the flow. An outright identification of T with some 

moment of the fluctuation vort ic i ty  2 cannot be defended by the v o r -  

t icity equation. Since the diffusion should depend on random s t r e t ch -  

ing of mean vort ic i ty ,  an  interaction between the turbulence a l ready 
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present  and the mean field, the physics of the propagation should 

remain after  linearization of the vorticity fluctuation equation. 

Suppose the mean vorticity i s  constant in space. The the lin- 

earized equation for  2 i s  

The l a s t  t e rm represents  propagation of turbulence by random 

stretching of mean field vorticity. It must  be written in t e r m s  of 

the turbulent velocity y, and y i s  a non-local functional of _o found 

by uncurling the equation _w = V x  y. The equations for  s tat is t ical  

moments of _w similarly involve the velocity field 3. It i s  hard  to 

see how T could be defined a s  a local functional of the vorticity and 

still satisfy Saffmans s diffusion equation (unless,  of course ,  v i s  

itself a non-local functional of the turbulent field, but then the point 

would be lost).. In the situations where turbulent regions embedded 

in shear  flows have been observed, sp i ra l  bands in kouette flow for 

example, the turbulence i s  more  of a visual than a mechanical 

phenomenon anyway. Regions a r e  called turbulent which display so  

much commotion that the eye cannot pick up the details.  These 

turbulent regions appear to be bounded by sharp  fronts  just like 

turbulent regions embedded in irrotational flow (see Coles' review 

art icle  [ 3 ]  for examples) 

Whether turbulence diffuses o r  not, it i s  certain that a t u r -  

bulent region embedded in a mean shear  flow excites random 

vorticity around i t ,  and i t  would be interesting to know how the 

effect propagates. A straightforward way to a s s e s s  the intensity 



of the turbulence i s  to find the average ra te  a t  which it  t ransports  

momentum through the mean flow - the Reynolds s t ress .  Suppose, 

for example, that the mean flow i s  in the x direction and the mean 

speed U i s  a function of y and t only. The (x, y, z)  components of 

turbulent velocity and vorticity a r e  (u, v ,  w) and (g, q, 5) respectively. 

The turbulence satisfies the continuity equation V , = 0 and i s  

statistically homogeneous in x and z.  Then the mean field momen- 

tum equation i s  

where -= i s  the Reynolds s t ress .  By continuity and homogeneity, 

so the gradient of the Reynolds s t r e s s  i s  zero i f  no random vorticity 

i s  present,  If the Reynolds s t r e s s  i s  zero a t  m and has  a finite value 

a t  some height yo  then random vorticity fluctuations must  have propa- 

gated beyond y. The object of this chapter i s  to find how the Reynolds 

s t r e s s  evolves and the mean flow reacts  a s  the turbulence propagates, 

The f i r s t  approach to this problem was patterned after Phil- 

l ipss model for  the random potential flow above a turbulent boundary 

layer [4] . The original turbulence was supposed t o  hie below the x, z 

plane in the region y < 43 and excite random vorticity fluctuations in 
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the region y > 0. The x ,  z plane was idealized a s  a wall of pistons 

continually forcing the flow above. The trouble with this model i s  

that i t  a s sumes  a qualitative distinction between the flow above the 

plane and the flow below. Such a distinction may be appropriate when 

the flow above i s  irrotational,  but it i s  surely unjustified when both 

par ts  of the flow contain random vorticity. The work of Moffatt [ 5 ]  

on homogeneous turbulence under mean shear  suggested a more  

sensible formulation of the problem. In this chapter the propagation 

of turbulence i s  t rea ted  a s  a n  initial value problem. At t ime ze ro ,  

random impulses,  homogeneous in x and z and closely confined to 

the region y = 0, generate an  infinite s lab of random vorticity,  This 

vorticity then propagates into an unbounded, paral lel  mean shear  

flow, and the reaction of that mean flow to the propagating turbulence 

i s  the object of study. The physical setup i s  sketched in figure I .  

Throughout the r e s t  of this chapter the coordinate labels ( x , y ,  z )  

and (xl , x2 ,xg)  will be used interchangeably, and the turbulent veloc- 

ity components will be written either (u,  v ,  w) or  (ul , u 2 ,  uj) .  Unit 

vectors  in the x ,  y ,  z directions a r e  written i, j ,  k. 
( V N N  

The chapter can be divided into th ree  main par ts ,  sections 

3 ,  4 and 5 ,  corresponding to three tacks taken in an  effort to under- 

stand the problem just outlined. In section 3 ,  the evolution of the 

Reynolds s t r e s s  under the linearization mentioned ear l ier  i s  studied. 

The resul t  i s  surpris ing and disappointing: the s t r e s s  stops propa- 

gating once the turbulence i s  highly sheared.  In the next section, 

the problem i s  greatly simplified by permitting initial turbulent 

fields uniform in  the direction of mean flow only, and some aspects  
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of non-linearity a r e  reintroduced. No general estimate of the power 

of such turbulence to distort the mean flow can be found analytically, 

however. The convection of momentum depends critically on the 

convection of random vorticity by the fluctuating velocity field, and 

that problem cannot be solved. When it became clear  that analytical 

models would be unreliable, numerical flow visualization and momen- 

tum transfer  experiments were programmed and carr ied  out. The 

background for these and the results  obtained a r e  described in section 

5. 

2. Basic Equations of the Problem 

The problem to be studied can be posed a s  fallows. At time 

zero an ensemble of initial velocity fields v (2) i s  given, and the flow 
0 

N 

for  each initial condition evolves under the Navier-Stokes equations 

of motion: 

ax 
z + x  2 V x  t WIT = vv x  9 

where v i s  the kinematic viscosity and IT is the kinematic pressure  

Each initial condition can be written a s  the sum of two parts: 

Uo(y) i s  the same from experiment to experiment, and u (g) satisfies 
0 

w 

the following properties: the ensemble average of u (5) i s  zero;  
-0 

statistical quantities based on the ensemble od go (5) a r e  homogeneous 
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in x and z , and symmetrical under reflection through a plane perpen- 

dicular to z; u (x, y,  z )  + O  a s  y +f, w. Solutions ;uv,n based on these 
"0 

initial conditions can be written 

where and 5 a r e  zero. The overbars denote averages taken over 

the ensemble k>f initial value experiments, P(g9 t )  i s  required to 

approach a constant pressure  P a s  y -.a, so no mean pressure  
0 

gradient i s  imposed in the f a r  field. When the equations of motion 

a r e  written in t e rms  of the quantities defined in 3 and averaged, 

the result  i s  

The averages may be subtracted from the original equations to give 

But 



where the continuity equation and the assumption of homogeneity in 

x and z have been used. Since the mean velocity has  the form U = 

iU(y , t ) ,  the second of equations 4 i s  automatically satisfied, and the 

y component of the f i r s t  i s  

Integrating from y +a, and using the condition P ( x , m ,  z ,  t )  = P 
0 ' 

Thus a mean pressure  depending on y and t only i s  consistent with 

the assumption = LU. Equations 5 and the x component of the mean 

momentum equation a r e  now 

Suppose the viscous t e rm in equation 7 i s  negligible, and 

define the mean field momentum change 

and angular momentum change 



From equation 7 and the assumption that turbulent fluctuations ap- 

proach zero  a s  y -00, 

but 

It may seem surprising that angular momentum (or ra ther ,  angular 

momentum per unit length in the x direction, and that i s  the catch) 

is not necessari ly conserved. The same thing happens in the laminar 

flow case ,  where equation 7 becomes 

and the kind of situation shown in figure 2 might be considered, Then 

Here again, 'angular momentum' i s  being lost ,  and a t  a ra te  - v A U .  

Why i s  no pressure  gradient needed to create a torque consistent 

with this Boss? The answer can be seen by considering the thought 

experiment shown in figure 3.  Two long, thin boards pass by each 

other and suddenly connect. Their angular momentum is  propor- 

tional to their length 8 .  If their tendency to rotate after connection 

is  resisted by a graded impulse per unit length 1 = -px, then the 

3 total angular impulse delivered is proportional to pB and this must 



FIG. 2 LAMINAR FLOW LOSING "ANGULAR MOMENTUM" 

FIG. 3 SUDDEN CONNEC"$ON OF TWO BOARDS 
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- 2  
be proportional to I .  Thus p - I , and the impulse gradient required 

drops a s  the length of the boards increases.  As I -+m, p +O, just a s  

the pressure  gradient in the fluid flow problem goes to zero  as the 

flow is  made homogeneous over larger  and la rger  intervals in the x 

direction. 

In this chapter various restrictions on the allowable initial 

conditions and various truncations of equations of motion 6 and 7 will 

be considered. The viscous t e rms  in the equations, for example, 

will always be dropped. In section 4 a truncation called the mean 

field equations will be used, in which the non-linear action of the 

turbulence on itself i s  dropped, but the turbulent interaction with the 

mean field is retained. The inviscid mean field equations a r e  

where U = U ( y ,  t) . The mean field equations a r e  not a rational ap- 

proximation to the full equations in the sense of being a valid per-  

turbation limit for  small t imes ,  but they do preserve some of the 

qualitative features of the flow which a r e  lost  in a full linearization. 

In the language of the theory of homogeneous turbulence, the mean 

field equations retain the interaction between the Barge eddies (the 

mean flow) and the small eddies, but neglect the interaction of the 

small eddies with each other. 
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If the non-linear t e rms  a r e  dropped altogether, the linearized 

equations of motion result: 

where 

The case = const i s  discussed in detail in the next section. Sup- 

pose the initial'turbulent disturbance s , (~)  i s  characterized by a mag- 

nitude 1! and a length scale 6. . The convective t e rms  dropped to get 

equation 9 become important after a time L /u,  and the t ime scale 

- 1 
associated with the mean field interaction t e r m s  i s  0 Hence equa- 

tions 9 a r e  valid and interesting for  times satisfyiqg 

and aL /u>> 1 i s  required for the linearized equations to be valid 

at  a l l .  

3 .  The Linearized Problem with Constant fi 

A. Fourier  Transformation and Solution of the Linearized Equa- 

tions of Motion 

The turbulent velocity field can be expressed a s  a Four ier  

integral 



S ik. 5 
,u(,x, t )  = ~ ( k r t )  e a5 9 

where 

a i s  a generalized function and can be considered the limit of the 
N 

integral over physical space a s  the domain of integration becomes 

arbitrari ly large.  Lighthill [63 gives formal definitions of quantities 

like 2 and techniques for manipulating them. Fourier  transformations 

will be abbreviated to expressions like FT(gUu) = 2 .  Then 

follow at  once, and i f  F T ( p )  = b(k, t )  

Fo r  constant and (1,0,0) a unit vector in the k direction, 1 

Finally, for  constant and U = fix2. F T ( U ~ ~ / ~ X )  i s  found as follows: 
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The Four ier  t ransforms of the linearized momentum and continuity 

equations a r e  thus 

Differentiating the continuity equation with respect  to time and k 
2 

gives 

and 

An expression for b is obtained by using these relations and dotting 

the momentum equation with k p  

L where k = kek. The momentum equation in t e rms  of 2 alone i s  

The initial condition is 

FOP given k kg. equation 1 1  i s  a linear wave equation on k 2 

and t. Thus substitute 



and wri te  

koz = kZ + Qtkl . 

Then 

and equation 1 1 becomes 

with the initial condition 

In subscript fo rm,  

where the functional dependence on k k i s  understood, and 
9' 3 

The solutions A. can be written in the fo rm 
P 

A i ( k Z 9  k02) = L i j ( k 2 9  k02) aoj (k02) 

where 



Then the equation of rnotion i s  

with the initial condition 1 3 .  Equation 1 4  i s  integrated in Appendix A. 

The resul t  i s  

where the index j designates columns, and 

[fn(kZ)] means fn(k2) - fn(ko2)- B i s  the polar angle of 5 measured 

from the k axis  and has  values between O and n e  The soPution fo r  g 2 

i s  thus 



where 

::c 

and L.. i s  given in equation 1 5. 
1J 

If the initial turbulent field consists of eddies whose dimen- 

sions a r e  roughly L in al l  directions, then ao (k l ,  koZ, kj)  should tend 

to zero a s  any one of i ts  arguments becomes large compared with L- I .  

But for  S2t > > l  , ko2 i s  indeed very large unless k l  i s  very small  com- 

pared with L-' . Thus equation 16  implies that, a s  t ime passes ,  only 

Fourier  modes with kl<< L-I  can become excited. If it i s  legitimate 

to translate that statement into eddy language, the implication i s  that 

after a long time the turbulent motion will consist of eddies greatly 

elongated in the x direction. Fur thermore ,  equation 15 shows that 

the .LIZ component of L.. i s  large for  k smal l ,  so the a components 
1J l 1 

of the Fourier  modes which remain excited fo r  a t > >  1 should be ex- 

cited very strongly. The qualitative picture that enrierges, based, 

to be sure ,  on the analogy between Four ier  modes and physical ed- 

dies, i s  that of elongated columns of fluid surging in the direction of 

mean flow, 

.lr -I- 

I have followed the notation but not the approach of MofPatt [5], who 
derives equations 15 and 14 by watching the evolution of a single Four-  
ier  mode whose wave vector i s  a function of time. His approach i s  
physically illuminating for the specific problem of the evolution of a 
shear wave, but the connection between his  Four ier  modes with time 
varying wave vectors and the modes g(k, t )  ordinarily discussed in 
turbulence theory i s  not quite clear  and leads me to some confusion 
when he sums his modes for  the turbulence problem. 



B. Correlation and Spectrum Functions of the Solutions to the 

Linear Problem 

The correlation function for  the turbulent velocity field u.(z) 
1 

i s  defined a s  

and since the field i s  statistically homogeneous in the x and x direc- 1 3 

tions , 

The t ime argument in a l l  quantities i s  understood. Homogeneity 

further requires  

The flow should be statistically invariant under reflect ion through a 

plane perpendicular to the x axis ,  Since the only velocity component 3 

which changes i t s  sign under such a reflection i s  u 3 ' 

F o r  i o r  j = 3 ,  the relation ho9ds with a minus sign on tihe right,  and 

fo r  both i and j = 3, the relation i s  t rue a s  i t  stands. A final condition 

i s  imposed on W .. by the continuity equation: 
13 

Hf u .(z)  and u.(g+r) a r e  Four ier  analyzed according to equation 
1 J 

10 ,  then W . . can be written 
1J 



Since the left side does not depend on xl  o r  x3, 

The spectrum function A.. defined by this relation depends on kl , kg 
1J 

and both k2 and k i ,  since the velocity field i s  inhomogeneous in the y 

direction. The integrations over k' and k; in the expression for  R . .  1 1J 

can be performed immediately to give 

Since W . .  is rea l ,  
1.l 

The symmetry condition l 7  imposes a further r e s t r i c t i ~ n  on A.. , since 
13 

Comparing that with equation l 8, 

Aij(kL9 kl k;, kg) = Aji(kZ -kl 9 kZ, -kg) e 

The condition on the reflectional symmetry of Rij implies 

A..(k;,k19k2,kg)=A..(k;,kl,kZ9-k3). i , j + 3 .  
U U 

61 9 )  
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The incompressibility condition imposes a final restr ict ion - 

The linearized solution of the l a s t  subsection can be used to 

find A..  a s  an  explicit function of time. F r o ~ n  equation 16, 
1J 

where 

and ko denotes the vector (kl.koZ9k3). The expression for  A.. a s  a 
1.l 

function of t ime i s  now obtained by integrating the equation above over 

ki and k; : 

A. . (k i ,k9  t )  = Li1 (-kl , k i ,  -k33kb2) Ljm(kl 9k29k3.ko2) (20) 
1J 

"k (kbZ9kl.koz.k3) s 

where now 

kb2 = ki - Ptkl  

and 

A O  Im (kbZ9bo) = Al,(k;z'$. 0) . 
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Equations 18  and 20 give R . .  (y, 2 ,  t )  when the initial spectrum function 
1J 

AO i s  known and the linearized equation of motion i s  valid. Only I m  

R .  . (y ,  0, t )  will be considered from now on, and in that case  the inte- 
1J 

gration in equation 18 i s  more  easily ca r r ied  out over k' 0 2 ~ ~ 1  'ko2'k3 

than over k6. kl , k2 . kg. The Jacobian of the transformation i s  1, since 

Thus 

In the next subsection, the Reynolds s t r e s s  a (y , t j  = -R (y, O , t )  i s  2 1 

found for a special case where equation 21 simplifies for  a rb i t ra ry  t .  

After that, some general consequences of equation 21 in the limit 

a t >  > 1 a r e  derived. 

C .  Reynolds S t ress  above a Sheet of Random Vorticity 

Suppose prior  to time t = 8 there a r e  no turbulent fluctuations 

in the velocity field, and a t  t = 8 a random impulse per unit a r ea  

f(x, y) i s  applied a t  y = 8 over the x ,  z plane. A collection of lifting 

surfaces might be shot over the x, z plane a t  t = 8, for  example. 

The inviscid equation of motion for the total velocity x i s  



By integrating the equation ac ross  t = 0, a new initial field v i s  found, 
-0 

where @ i s  the impulse of the pressure.  The initial turbulent field 

u (3) then satisfies 
'-0 

g0(x) + V@ = j f(x,  z)6(y) 
(V 

and the continuity condition 

Thus go i s  a potential flow, u = -V@, for y+  0. Phillips [4]  treated 
"0 

a similar situation in his  paper on the potential flow above a waii of 

random pistons, an  idealization of the flow above a turbulent bound- 

a ry  layer o r  wake. The difference here  i s  that there i s  no wall of 

random pistons, but a sheet of random vorticity; there must  be a 

legitimate veipcity field over al l  physical space, Suppose the poten- 

tial just above the x, z plane i s  @ and just below i s  @ Since the y 
l 2" 

component of go must  be continuous a t  y = 0, equation 22 can be 

integrated ac ross  y = 0 to give 

- @,= f(x9 2) 

There i s  thus a velocity slip & through the x ,  z plane given by 
0 

bo = ‘vl(@1-$92) = 'yf s ( 2 3 )  

where V means a gradient in the x, z directions only. After the l 

impact a t  t = 8, the x, z plane i s  covered by a sheet of random con- 

centrated vorticity, and the initial tu rbdent  flow is potential out of 
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the plane. Since there i s  no random vorticity beyond y = 0, there i s  

no ini t ial  Reynolds s t ress .  That i s  a consequence of integrating the 

equation 

down from y +a. The problem of the initial random vortex sheet i s  

thus ideal for the examination of random vorticity generation by tur-  

bulent interaction with the mean field, 

The object now i s  to find corresponding to the u (5) given 
"0 

by equation 22 and to use equation 21 to find the Reynolds s t r e s s  a s  a 

function of y and t. The Four ier  transformations of go, $9 and f a r e  

needed, say 

where FT1 means Four ier  transformation over the x , z  plane only, 

and 1_ = (kl .kg) Then 

and the Four ier  transformed momentum and continuity equations a r e  



Dotting the momentum equation with S and using continuity gives 

In part icular ,  

Suppose the spectrum function of f i s  I&(&) - 

A relationship between I&@) and the spectrum function@ (g) of the 

upwash distribution used by Phillips can be found. The upwash a t  

y = 0 i s  u (x, 0 , ~ ) ;  suppose 
0 2 

But 



Thus 

where P i s  the magnitude of k ,  and 

The large scale contribution to the upwash i s  thus isotropic with r e -  

spect to rotations in the x, z plane regardless of the character  of GC/, 

an interesting example of pressure  forces leading to isotropy. F u r -  

2 
thermore,  63 i s  8(1 ) when $-' has  a finite value at ,& = 0 .  This leads 

to a surprising physical conclusion a s  follows, 31/ i s  the Four ier  

transform of the impulse correlation function f (x, z)f(xt , z' ) , 

By inverse Fourier  transformation, 

f (x ,  z)f (x' , z' ) d ( ~ - ~ '  ) . 

If f satisfies an ergodic property, so ensemble averages can be r e -  

placed with averages over large portions of the x,  z plane, 



q ( 0 )  = Lim 

24-00 

If the f(x, z )  over separate patches of the plane behave like uncorrelated 
7 

random impulses, the integral diverges like VA, and $40) # 0. Sirni- 

lar ly , 
9 

But equation 25 requires 0 ( 0 )  = 0 even if q ( O )  $0, Thus a spatially 

random impulse generates an upwash with negative correlation be- 

tween neighboring patches; in other words, if fluid is  slammed down 

in one place, i t  i s  likely to squirt  up nearby, Since 

from equation 2 3 ,  the spectral distribution of the slip velocity i s  also 

2 
0(1 ) a s  $ + 0 for q ( 0 )  it. O. Phillips used 0 ( 0 )  = O and got results  in 

good agreement with experiment, but his  demonstration for  0 ( 0 )  = 0 

was in e r r o r ,  It i s  now apparent that i f  the turbulence i s  generated 

by impulses in the fluid itself rather than by pistons in a wall, 0 ( 0 )  = (9 

i s  a natural result,  

The Reynolds s t r e s s  o(y. t) equals -R12(y, 0 ,  t) o r  -RZl(y9 0, t). 

The way equation 21  i s  se t  upp fewer primes have to be written i f  R 2 1 

i s  computed. Since LI3,  LZ1 and L23 a r e  zero ,  the integrand for 



R21 in equation 21 has the form 

L A0 = L L A0 t L 2 2 L 1 2 ~ ; 2 .  
L 2 ~  lrn I m  22 11 2 1  

From equations 24, 

where j5' = (kl , kh , k g )  Equations 15 and 21 give the Reynolds s t r e s s  

a s  a sum of complicated integrals: 

o(y, t)  = -RZI(y. 0 , t )  = I1 + I2 + I3 , 

klko2 i(ko2+kb2 )Y -- 
2 2 , 2  e dkb2dko2q 9 

* kok 0 

k",: @(I) w I2  i(ko2+kb2)y 
- [Q] - --- e dkb2dko2dm_ 9 

%f3 Ti' 

2 k2k'2 
0 0 

The geometrical quantities appearing in the integrals have been de- 

fined under equation 1 5  and in equations 21. The great  advantage of 

the vortex skeet problem is that the integrals Il and I cancel identi- 3 

cally. That is shown in Appendix B,  and the integrations over ko2 

and kb2 in I2 a r e  also carried out to give the final result 



The implications of equation 28 become clear  when several  

limiting cases  a r e  studied. 

(i) Slt 0. Then 

so the Reynolds s t r e s s  i s  zero  a t  t = 0, a result  antici- 

pated ea r l i e r ,  and begins to grow linearly with time. 

(ii) Slt -. co. Substitute = 4 I y  1 in equation 28 - 

As Qt -+ m, s i n ( ~ t K ~ ) / K ~  behaves like a 6-function of 

weight IT in the integration over fcls and except a t  y = 0,  

provided 0 ( 0 ,  k3) exists. The case  where O(0,k ) does 3 

not exist,  where al l  the initial turbulent vorticity is - 
aligned in the xl direction, i s  discussed in section 4. 

F o r  a roughly isotropic initial turbulent flow, the 

s t r e s s  relaxes into a steady distribution except at  

y = 0, 

(iii) y 0. Hold t fixed and take the l imit  y " 0 in equation 28: 
9 

The Reynolds s t r e s s  a t  y = 0 grows linearly with time 

for a l l  time. 
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(iv) y + m. Take the limit y " oo in equation 29. Fo r  Q small ,  

from equation 25. That relation can be substituted in 

the integrand of equation 29 except where K i s  large ,  

and the exponential factor eliminates contributions to 

the integral from regions of large  K anyway. Thus 

- 4  
Hence the s t r e s s  decreases a s  y , for y large  com- 

pared with the length scale s f  the original fluctuations 

- 4  
for  all time. Phillips [4 ]  found a y decrease for 

the fluctuation mean energy density in his potential flow 

pqoblem. 

(v) Slt m. y " m. As Qt + oo in the l as t  equation, sin(SltK1 ) / K ~  

again behaves like a 6 -function, and 

The evolving s t r e s s  profile i s  sketched in figure 4. The details,  of 

course , depend on a detailed specification s f  $E/(J), the spectral  dis - 

tribution of the impulse, The important point i s  that the s t r e s s  

relaxes into a steady profile a s  Qt becomes large ,  except a t  the 

sheet of concentrated vorticity itself, This behavior i s  not peculiar 

to the vortex sheet problem, but occurs for  any (roughly isotropic) 

initial conditions, That i s  shown in the next subsection, 





D. Revnolds Stress  in the Limit Q t + m  of the General Problem 

In the general case ,  the integrand for R21 in equation 21 still  

has the form given in equation 26. Since kt = k' 2 02 + Qtkl from equa- 

2 2 
tions 21, the factor L = (1 t k 5 ) / ( 1  t kt:) in front of both t e rms  22 

in equation 26 forces the integrand to zero  a s  52t +a, except in 

regions of small  kl . But equation 15 shows that the f i r s t  t e rm  of 

L12 has a k  in the denominator, and the portion of the integrand 1 

containing tha,t factor should give the dominant contribution to the 

Reynolds s t r e s s  for large  times. Thus the Reynolds s t r e s s  should 

be appr oxima tely 

This corresponds to the quantity I2 defined in equations 27 for  the 

vortex sheet problem. In that problem the other t e rms ,  I2 and 13, 

cancelled identically. Generally they do not cancel, but the fact 

that they a r e  negligible in the limit a t  +m i s  established in Appen- 

dix C.  

Transform the variables of integration in equation 31 a s  

Pollows : 

ko, = Q ( S  9 

k b 2 = l ( S '  9 

kl = l cos@ , 

kj = *sin@ 
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3 The Jacobian of the transformation i s  B . Thus 

It can be shown easily that 

f(sin@, cos@) dqb = 2 f(sin@,cosqb)d@ 

Q 0 

0 for a function f symmetric on its f i r s t  argument. AZ2 i s  symmetric 

on i ts  Past argument by equation 19, so $ may be integrated from 0 

to ?r onby, and the resal t  multiplied by 2. Now substitute 

Then 

L 
sin @ 5 2 
cos -V 

for 0 G @< n, and the s t ress  integral i s  

t 

o(y , t )  = -2  ( l + p Z ) ( l + p 1 2 ) ~  [ cot - .I (ptg)-cot-lpl  

-m -a 0 - a t  5D+(p t  -a2] 

So far no approximations have been made in transforming the par-  

ticular term sf a (y , t )  retained in equation 31. The next step i s  to 



find the limit of o(y , t )  a s  a t  "00. The l imit  can be taken in the ex- 

pression above before an explicit integration is  carr ied  out if the 

resulting integral converges fo r  large  5. But the integrand i s  of 

order c- '  for  large 5 ,  the integral thus converges, and in the limit 

00oOoOw 2 3 - 1 o(y,ti  =+ -2  J' J' J' J' ( 1 t p 2 ) ( 1 t ~ '  )' cot jp+c)-cot-lP1 

-a3 -00 0-00 5[ 1 +@I- el2] 

Equation 34 i s  the general analog of equation 30 for the vortex sheet 

problem and shows that in the general case  the s t r e s s  relaxes into 

a steady profile a s  S2t -. oo. Again, the assumption that the initial 

0 
flow i s  'roughly isotropic, '  i .e. ,  that A l m ( k ~ , ~ . k Z , k 3 )  exists.  

has been made. The same chain of transformations that led to equa- 

tion 34 i s  used in Appendix C to show that the larges t  t e rm  left out 

of equation 31 i s  0(0t)- '  in the l imit  a t  .+ m. 

The physical situation behind the asymptotically steady s t r e s s  
- 

o(y,t)  = - uv can be seen more  clearly by considering the mean - 
2 

square values of pa and v separately, v i s  easy to find, since the 

integrand of equation 21 for  Pi contains only one non-zero t e r m ,  
22 - 

2 
~ 2 2 ~ 2 2 ~ O Z 2 '  The integrand for u contains several  t e rms ,  the domi- 

nant one being L L A0 a s  Ot .+ m. There i s  no point in repeating 12 12  22 

the kind of argument which led from equation 31 to 34, Provided 

the transformed integral of a t e rm  in equation 21 converges a s  5 - - 
2 2 n-1 

(and it  does fo r  v o r  the dominant term of u ), the t e rm i s  0(Ot)  



a s  Slt co, where n i s  the power of in the denominator of the kl 

integrand. A glance a t  equation 15 shows that 

a s  Slt + co. Thus mean field interaction with the turbulence imposes 

a heavy veto on vert ical  fluctuations but promotes high-speed surges 

in the direction of mean flow. This observation was made by Moffatt 

for the case of homogeneous turbulence, and was already apparent 

from equations 15 and 16. A rough physical description of the pro- 

cess  goes a s  follows. A blob of fluid may be moving upward a t  t = 8. 

As it  moves it  tends to retain i t s  original speed in the x direction, 

but it  i s  sheared out flat perpendicular to the y axis and loses  upward 

momentum to the fluid around it, It i s  left a s  an  elongated and flat- 

tened slab of fluid lagging behind the mean flow of i ts  surroundings. 
- 

The Reynolds s t r e s s  -uv becomes steady a s  the u fluctuations become 

large because of vertical convection, and the v fluctuations them- 

selves drop to zero. 

Equations 38 o r  34 a r e  embarrassing results  in a study aimed 

a t  the propagation of turbulence through mean shear flows, As 

Sl + as the turbulence stops propagating, Apparently, any proper- 

ties of the equations of motion that would have led to a diffusion of 

Reynolds s t r e s s  have been lost  in the linearization. In the next sec-  

tion a more  restr icted c lass  of initial conditions is  considered, and 

non-linear effects, in some measure ,  a r e  restored,  



4. Flow Uniform in the x Direction 

A. The a ~ / a x  = 0 Assumption 

I£ a roughly symmetrical blob of fluid begins to r i s e ,  i t  i s  

elongated and flattened against i ts  line of ascent by the mean shear 

flow, its apparent mass  (associated with displacement of the fluid 

around i t )  increases ,  i t s  ra te  of ascent decreases ,  and the blob be- 

comes a shaft of fluid lagging behind the mean flow of i t s  surround- 

ings. This picture i s  appropriate if the initial turbulent flow can be 

blocked off into roughly symmetrical and independent blobs. The 

picture i s  meaningless when the original turbulence consists of 

eddies uniform and infinitely elongated in the x direction, when 

distinguishable fluid blobs a r e  columns to begin with. If the original 

eddies a r e  independent of xs al l  flow properties a r e  independent of 

x for  al l  t ime, The inviscid equations of motion 1 for the total 

velocity x and pressure  .rr a r e  them 

where 
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The f i r s t  equation states that the x component of momentum of a fluid 

column i s  conserved a s  the column i s  transported in the y, z plane. 

The next three equations, the y and z momentum equations and the 

continuity equation, a r e  completely independent of vl and de scribe 

the dynamics of two-dimensional, incompressible flow, Given an 

initial flow v (y, z ) ,  v2(y, z ,  t )  and v3(y, a ,  t )  a r e  found by solving the 
0 w 

two -dimensional problem governed by equations 3 6 ,  then v (y, z ,  t )  
1 

i s  found by integrating equation 35 using the known histories of v 2 

and v Averages a r e  taken over a n  ensemble of v (y , 2). If the 
3' w 0 

initial fields have the form 

for example, where = iU and the initial perturbation velocity 
0 

IY 
0 

- 
component u (y, Z )  i s  zeroI  then the initial Reynolds s t r e s s  -uv i s  

0 

zero,  and the mean flow profile i s  U(y, t )  = v (y, z ,  t )  for a l l  t. The 1 

fluctuating par t  of the vorticity field which evolves from such an 

initial condition i s  - not two-dimensional in the sense that the turbulent 

vorticity i s  aligned in the x direction. The initial turbulent vorticity 

i s  aligned in the x direction (for uo(y. z)  = 0). but the field i t  induces - 
stretches the mean field vorticity and produces a three-dimensional 

random vorticity field 2 = ( c , ~ ,  5 ) .  The assumption that aF/ax = 0 

for any flow property F implies only that g = %(yP z ) =  

The simplest example of the type of situation studied in this 

section i s  a line vortex on the x axis in a shear flow with an initial 

linear profile v = Qy, The geometry of the problem i s  shown in 
ol 

figure 5. Equations 36 a r e  satisfied by a steady* tangential velocity 



FIG. 5 A SHEAR FLOW WRAPPBNG AROUND A VORTEX 



ve = k/2nr, where k i s  the circulation around the vortex and r i s  the 

distance from the origin in the y ,  z plane. A fluid column a t  r ,  8 a t  

time t originated a t  r ,  8 a t  time 0, where 
0 

The height y corresponding to i ts  original location is r sin 8 , and 
0 0 

the original and, by equation 35, the final speed of the column in the 

x direction i s  Oyo. Hence 

Set 

Then 

A contour map of P(p, 0)  i s  shown in figure 5. The portion of the plane 

where p > 0 i s  shaded. Pn physical space9 the picture would expand 

with fro and the speed a t  geometrically similar  points would grow 

with 6 a s  well. 

A single vortex thus wraps the initial shear field into an ex- 

panding and tightening spiral  of speeds of alternating sign, a surpr is-  

ingly complicated flow for such a simple initial condition, Suppose 

v i s  measured over a circular  patch in the y, z plane centered a t  1 



r ,  8 with a radius 6 << r .  Initially the speed i s  about S2rsine every- 

whe re  on the patch. As the field induced by the vortex redistributes 

f lu id  columns, the speed trace over the patch distorts ,  forms loops, 

and  eventually goes through high-pitched sinusoidal oscillations in 

the radial direction. The amplitude of the oscillations i s  f2r over 

2 3 the patch, and the wave length A i s  2n r /kt. F o r  t so large  that 

A<( 6 ,  the average of the t race  over the patch tends to zero. As 

t -' m, the speed v averaged in the vicinity of any point y,  z ap- 1 

proaches zero; a single vortex eventually stops the area-averaged 

flow anywhere. The radius W inside of which the flow i s  'stopped' 

2 in th is  sense must satisfy 2nR /kt <<<< 1 SO a B such that A<< 6 << R 

can  be found. Thus R << 'dx, and r < d- kt /40, say,  in the 

region of "topped' (but highly striated) flow. The ' stopping power' 

of a single vortex thus depends on steady induction over a long in- 

t e rva l  of time. If the vortex itself moves in a turbulent field, no 

such interval i s  available, and the picture must  change entirely. 

What bearing does the a ~ / a x  = 0 problem have on the more 

general  problem, where flow properties depend on x a s  well a s  y and 

z?  An obvious answer i s  that the 8F/ax = 0 problem can be used 

a s  a testing ground for approximate theories. The fact that v2 and 

a r e  independent of v i s  an enormous simplification, FOP example, B 

consider the linearized problem, the problem solved by Fourier  

transformation in section 3,  The linearized, inviscid equations of 

motion 9 for the fluctuation quantities become 



2 2 2 2  when a ~ / a x  = 0. The las t  three  equations imply (a  / a y  I- 8 / a z  )p=O. 

Thus p = const. = 0, since p = 0, and the second and third equations 

show v and w remain equal to their initial values, 

If the initial value of u i s  zero ,  then 

from the f i r s t  equation. The Reynolds s t r e s s  i s  

Three steps were  required to produce the analog of the resul t  that 

took al l  the algebra of section 3 to derive in general! Notice the 

Reynolds s t r e s s  grows linearly with t for  a l l  t ime instead of tending 

asymptotically to a steady state a s  i t  did in  the roughly isotropic 

case.  Equations 15 and 16 show that. the Fourier modes which a r e  

strongly excited when P2t >> 1 depend on initial modes occupying the 

kl L ( ~ t ) - l / L  sector  of wave-number space (L i s  the length scale of 



the turbulence). If a l l  the turbulent energy i s  loaded into the k2,k3 

plane, a s  it  i s  in the aF/ax = 0 problem, then al l  the initial modes 

remain effective for al l  time. In the roughly isotropic case ,  where 

modes a r e  distributed over kl , k2, k3 with no singular concentration 

in the k2, k3 plane, fewer and fewer of the initial modes remain ef- 
- - 

fective for large t imes ,  and u2,  v2 and grow l e s s  rapidly (Moffatt 

[ 5  ] presents this argument more  quantitatively). 

The general problem i s  complicated enough even when lin- 

earized, It would be extremely hard  to use a better approxima- 

tion, the mean field equations 8, in a practical problem, But the 

mean field equations reduce to a simple form when ~ F / B X  = 0. The 

las t  three of equations 37 a r e  the same in the mean field approxima- 

tion, so v(y, z ,  t )  = v (y, z)  and i s  independent of time. The momen- 
0 

turn equation for  u i s  

The result  of multiplying the equation through by v and averaging i s  

for the Reynolds s t r e s s  o(y , t )  = -uv. 

The equation of mean motion i s  

so the mean field equations lead to a one-dimensional wave propaga- 

tion problem with a variable phase velocity Consider the 

rather artificial problem sketched in figure 6 ,  
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The initial speed profile i s  l inear,  

- 
2 and the turbulence i s  confined to a band between y = + h. v equals a 
0 

constant c2  where l y  1 > h. If the initial s t r e s s  is zero everywhere 

(that i s ,  the turbulence i s  initially two dimensional, uo(y, z) = 0). 

from 39(ii). Equation 39(i) implies ~ ( y ,  t )  = 0 for  1 1 > he Integrating 

39(ii) ac ross  y = fi gives the jump condition on o, [o] = 0, so 

o w ,  t) = 0 just inside l y  1 = h. Then from 39(i), 

Equations 39(i) and (ii) combine to give 

in the region l y  I < h ,  and a general solution i s  U = F(y-ct)  + G(ytct). 

The initial and boundary conditions determine the final result ,  

where i i s  the periodic function shown in figure 7 .  U(y, t )  i s  itself 

periodic with period &/c .  The history of U over one period i s  shown 

in figure 8, 

The rockingp periodic speed profile s f  figure 8 cannot be a 

good approximation to a real  flow, but it i s  fa r  more  plausible than 

the equivalent result  from the fully linearized equations. From 



FIG. 6 TURBULENT BAND BN INITIALLY UNIFORM SHEAR 

FIG. 7 THE BER10D861 FUNCTION 4 



FIG. 8 SPEED PROFILE ONE PERIOD 
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2 equation 38,  o = c fit fo r  l y l  < h ,  and o = 0 for  l y l  > h ,  based on the 

full linearization. If this s t r e s s  i s  used in the mean momentum equa- 

tion 39(ii) to find a f i r s t  approximation for U (the zeroth approxima- 

tion being U = Sly), the result  i s  

Sheets of concentrated momentum and infinite speed form at  y = + h. 

This particular problem is  physically unrealistic,  of course,  but it 

does show that the mean field equations can give qualitatively reason- 

able results  when the linearized equations give nonsense. It i s  only 

in the case a ~ / a x  = 0 that the mean field equations can be used with- 

out overwhelming aigebraic complexity. 

The consequences of any theory of Reynolds s t r e s s  generation 

can be drawn out much more  quickly when the flow is  independent of x 

than otherwise. The aF/ax = 0 problem i s  a t  leas t  a useful heuristic 

analogy to the general problem. Possibly i t  may be more  than an 

analogy. According to the linear analysis of section 3 ,  Fourier  modes 

whose wave vectors l ie  close to the k ,k plane (that i s ,  Fourier  2 3 

modes which represent  eddies nearly aligned in the x direction) a r e  

preferred in the sense that they contain most  of the turbulent energy 

when Qt >> 1. The non-linear t e rms  dropped to produce that result  

may re tard  this tendency to anisotropy, On the other hand, they may 

accelerate the transfer  of excitation into the preferred modes. Lf 

a ~ / a x  = 0 for any flow property F,  then the velocity correlation func - 
tion R. .  (y,,g) i s  independent of r l  ; correlation contours a r e  infinite 

=J 
cylinders aligned in the x direction. Experiments on turbulent wall 



layers ,  where the turbulence also interacts strongly with a mean shear 

flow, show that the correlation functions a r e  very  much elongated in 

the x direction [8 ,9 ]  . Even if R . .  were completely independent of r l  , 
13 

i t  would be impossible to conclude that the flow i s  independent of x ,  

since higher moments could still  depend on spatial separation in the x 

direction. But insofar a s  the propagation of turbulence in a mean 

shear flow depends on low-order statistical moments like Pi.., i t  i s  
1J 

possible that highly sheared turbulence spreads as if the eddies were 

independent of x. 

Be The Random Vortex Sheet Problem with a~/ax = 0 

If the turbulence i s  initiated by an impulse concentrated in the 

x ,  z plane and independent of x,  the flow i s  independent of x for al l  

time. In that case the linear and mean field equations for the evolu- 

tion of Reynolds s t r e s s ,  equations 38 and 39, can be compared easily. 

The only property of the initial flow required in equations 38 and 39 i s  - 
2 the mean square upwash vo(y). and that can be obtained directly from 

the work of section 3 6  on the generation of an initial field by an a r ea  - 
impulse f(x,z).  However, the argument leading to vz is simpler and 

more  illuminating when f i s  assumed independent of x from the begin- 

ning, so the argument i s  reviewed quickly here. 

The equations of motion for  the total velocity x and pressure  IT 

a r e  
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Equations for  the p ressure  impulse Q> and the turbulent par t  of the 

initial velocity field go a r e  obtained by integrating the momentum 

equation ac ross  t = 0: 

Since the forcing function f(z)d(y) i s  independent of x,  @ i s  indepen- 

dent of x,  and the x component of go i s  zero. F o r  y # 0, so = -V$ , 

a two-dimensional potential flow. Suppose the potential i s  just 

above the x, z plane and $ just below. Since the y component of 2 

velocity must  be continuous ac ross  y = 0, the f i r s t  of equations 40 

can be integrated to give 

Thus there  i s  a speed slip y ac ros s  y = 0, where 

In section 3C i t  was suggested that a random area-impulse 

could be simulated by shooting lifting surfaces over the x, z plane. 

When the impulse i s  independent of x, a muck Bes s fanciful setup i s  

required. Suppose a steady shear  flow 

passes over a high aspect ratio wing with random lift per  unit length 

L(z)  fixed in a wind tunnel a t  x p y  = 8, The situation i s  shown in  





figure 9 . The speed profile might be linear f a r  upstream, S + So+ S2y 

a s  x + -a, but downstream the flow i s  distorted by the random vor-  

ticity shed from the wing. The wing delivers a concentrated impulse 

-L(z)/so to the fluid passing over i t ,  and the velocity jump through 

the wake is  

analogous to equation 41. F o r  So much la rger  than a typical down- 

wash speed, the flow varies only slowly with x ,  and the time t in the 

non-steady problem i s  analogous to the ratio X/S . Any results  found 
0 

in the non-steady problem can be turned into predictions about the 

wind-tunnel experiment through the prescription 

Equation 41 gives the slip speed y as a function of the impulse 

f ,  but it can also be integrated to give the f required to generate a 

given y: 

f i s  forced through a random walk to generate a random slip speed y,  

and by the transformation of variables usual in random walk prob- 

lem s , 



for y homogeneous in z with a correlation function y(z)y(z+5) = r(5). 

f should also be homogeneous, and for z large  enough, f(z)  and f(0)  

should be independent. Then a s  z + m 

The equation cannot be satisfied for an  impulse with finite variance 

unless 

Equation 42 imposes a severe csnstraint  on the kind of vortex sheet 

that can be generated by finite and homogeneous random impukses, 

or  the kind of wake that can be generated by a random wing. Regard- 

l e s s  of the correlation between neighboring random impulses, even 

if neighboring impulses a r e  completely independent, the vorticity 

over neighboring par ts  of the wake must be negatively correlated so  

the integral of the correlation function i s  zero,  The equivalent result  

was obtained for the general problem in section 3C, but not so 

directly. 

Equations 40 can be solved by Four ier  transformation just a s  

before. Thus if  ? (kg) i s  the Four ier  t ransform of f over z and 

a (k k ) i s  the Four ier  transform of go over y and z,  
-0 2' a 

where 5 = (k2, kg). In particular 



and the upwash a t  y ,  z i s  

Suppose f has  a spectral  distribution *(kg), so that 

Then the initial upwash correlation a t  a height y i s  

The spectral distribution of the upwash a t  the vortex sheet @(kg) i s  

the Fourier  transform of Q(8, &), Thus 

k: 
@(kg) = - 4 *(k3) 9 

analogous to the general result  discussed in detail in section 3C. In 

order to get a specific result ,  suppose 

Then 
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Finally, 

- 
Now that v2 is  known, the s t r e s s  can be computed according to the 

0 

linear approximation , equation 38,  o r  the mean field approxima tion, 

equations 39, - 
In subsection A i t  was shown that a discontinuity in v: leads 

to the formation of a sheet of concentrated momentum under the linear 

approximation. According to equation 38, 

for the vortex sheet problem. a i s  continuous but has a discontinuous 

f i r s t  derivative with respect to y a t  y = 0. This time, the f i r s t  ap- 

proximation to the mean speed, 

jumps across  y = 0. This more  modest singularity i s  stil l  unaceept- 

able. Any such jump must  be preceded by a steepening of the speed 

profile near y = 0, but the integration of the momentum equation for  

u to give u = -Qtv in the derivation of equation 3 8 ,  requires to 
0 

be constant in time, 

The mean field equations 39 give a more  realistic resul t ,  

since they do take into account the change of mean speed that invali- 

dates the Binear approach, Suppose non-dimensional variables a r e  

defined a s  follows: 



Then equations 39 transform to 

The Reynolds s t r e s s  i s  non-dimensionalized on the typical mean 

speed S times the fluctuation speed c.  Lf the flow i s  'highly sheared, '  

2 
S > > c ,  then a > > c . Random stretching of the mean field vorticity 

produces a s t r e s s  much la rger  than the original turbulent energy 

density. The t ime characterizing changes is properly non-dimen- 

sionalized on l / c ;  in a time of order l /c the mean flow reacts  to the 

s t r e s s ,  But I/@ i s  also the time scale for  non-linear convection of 

turbulent vorticity, the phenomenon neglected in the mean field 

approximation, Thus the mean field equations a r e  not a consistent 

approximation and can give only a qualitative description of the real  

flow. 

If 1 ,  c and % a r e  related to p A and %% by the equations 



then the non-dimensional form of equation 44 i s  

and the initial and boundary conditions a r e  

k im r ( q , ~ ) = ? 9  
ITJ -+GO 

for a mean speed profile linear a t  t = 0. Equations 45, 46 and 47 

determine the history of the flow according to the mean field approx- 

imation lCor al l  time. 

The mean field equations a r e  only a qualitative approximation 

for any time t ,  and for t large compared with the turbulent convection 

time 8 /c ,  they must be a bad qualitative approximation. The cylin- 
- 

2 
drical eddies inducing the mean square upwash v themselves disperse 

- 0 

after a time of order  PIC. Assuming v2 i s  unchanging for a l l  t ime led o 

to the peculiar periodic solution of figure 9, Thus the solution to 

equations 45, 46, 47 i s  relevant only in the l imit T < < 1, h that case 

it i s  reasonable to rewrite the problem in t e rms  of an expanded 

coordinate 
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N N 

and t ry  to find asymptotic se r ies  expansions of r (q ,  T;E) and s(q ,  T; E )  

in powers of E .  In Appendix D,  i t  i s  shown that the expansions begin 

the same a s  the linear solution. However, the ordering of the t e rms  

breaks down where q ~ E ,  and in that region i t  i s  necessary to use a 

second expanded variable 

A function g which is  symmetric and peaked like the function in equa- 

tion 46 can be expanded around q = O in the form 

If g = (1 + 1 q1 )-  3 ,  a = 3. It i s  shown in Appendix D that equations 48 
N 01 

a r e  correct  even for  small a s  long a s  lq 1 > T, and that the expan- 
N w rV IV 

sions for  s(q,  T;E) and r (q ,  T; E ) begin 

where I';i 1 < T. To second order in E, the singularity at the vortex 

sheet affects only the portion of the q, T plane between the particular 

zeroth-order characterist ics,  q = $ T, which originate at q = 0 when 

+ = 8, Expansions 48 and 49 become 



when rewritten in t e r m s  of the original non-dimensional variables 

q ,  T. The non-dimensional s t r e s s  s (q ,  r) and speed change r (q ,  T) - 
r (q ,  0) = r (q ,  7)-q a r e  sketched in figure PO. In the region q I < T 

where the l inear and mean field results differ, the linear resul ts  

a r e  shown a s  dotted lines. 

The speed slip of the linear approximation i s  patched up in 

the region Iq 1 < a$ and the mean field profiles a r e  plausible. How- 

ever ,  the sheet or" concentrated vorticity that generated the peaked 
- 

2 vo (y) at  the s ta r t  must wrinkle and occupy the band 117 1 < T itself. - 
2 

vo(y) should be blunted about a s  fast  a s  G so the mean field approx- 

imation i s  suspect in the only region it makes any difference, That 

i s  inevitable, The mean field approximation i s  not consistentp and 

the only advantage it has over the full linearization i s  that i t  gives 
w 

2 
more reasonable results  near singularities in v (y), 

0 

The l imits  of s and r for  a >> l can be found by Eaplace t rans-  

formation of equations 45, 44 and 47, One result  i s  that r (q s  7)-0 

for q fixed and -r4m; the flow i s  eventually stopped anywhere. If 

the result were  t rue  i t  would mean random eddies exert  a sustained 

grip on the mean flow. In fact the result  i s  worthless, The grip 





loosens rapidly a s  the eddies disperse in their own turbulent field. 

An entirely different kind of problem involving sustained induction 

i s  treated in the next subsection. 

C. Steady Induction by Line Vortices of Alternating Sign 

Any physical app rox im tion which neglects non-linear inter - 
action between turbulent eddies leads to the conclusion that the mean 

flow stops anywhere after enough time. In the = 0 problem, 

the x component of momentum i s  conserved in fluid columns (equation 

35) and i s  diffused by turbulent motions passively, like heat o r  chem- 

ical concentration. Without dispersion of the eddies, the intensity of 

turbulent mixing i s  constant in t ime,  and regardless of how slow the 

mixing i s  a t  any particular height, given enough time i t  i s  sufficient 

to diffuse away any mean momentum gradient. The important ques- 

tion i s ,  how much time i s  required to stop the flow? If the time 

needed were small  compared with the turbulent convection t ime,  the 

flow would indeed be stopped, but that i s  impossible since the mo- 

mentum redistribution is  i ts  elf a convection phenomenon. The tur  - 

bulent eddies should disperse a t  about the same rate the x momentum 

diffuses, and the mean flow should be more  o r  l e s s  distorted, but not 

stopped, 

One situation where there - i s  no convection of initial vorticity 

was described in subsection A - the case of a single vortex aligned 

on a streamline of an initial l inear shear flow, There the flow is 

9stopped,v not in a statistical sense, but stopped in the sense that 

the x speed averaged over a patch of finite a r ea  tends to zero a s  
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t - a>. Suppose that instead of one vortex there  i s  an infinite s t ree t  

of vortices of alternating sign aligned paral lel  to x and distributed 

along z a distance h apart.  The setup is shown in figure 11. The 

vortices a r e  in equilibrium, since the velocity a t  any particular vor-  

tex induced by al l  the others i s  zero, The equilibrium is unstable, 

but in principle the vortices can remain in their original locations 

and steadily redistribute the x momentum of an initial l inear shear 

profile. Fluid columns move in roughly elliptical orbits a s  shown. 

Since the orbit t ime differs from streamline to streamline, fluid 

columns crossing line A-A a t  a large time t may have originated a t  

greatly different heights even if  their current  separation i s  small. 

A speed t raverse  along A-A in figure 11 eventually shows high-pitched 

oscillations, and the x velocity component averaged over an interval 

X at  a constant height y becomes small a s  t +- ao, This flow i s  

nothing like non-steady turbulence, but i t  i s  homogeneous in the z 

direction, and the t ime i t  takes to stop the line-averaged flow here  

may give some indication of the time required by turbulence to stop 

a flow in the statistical sense, 

Loops in the speed t raverse  along A-A a r i s e  after a t ime 

comparable to the orbit time in the trajectory tangent to A-A, T(y)$ 

the orbit t ime in the trajectory whose apogee i s  y ,  i s  thus a lower 

bound on the time needed to stop the line-averaged flow a t  y, The 

object here  i s  to find T(y). 

Since the flow in the y, z plane i s  dynamically independent of 

the x momentum i t  t ransports  (equations 361, i t  can be treated a s  an 

incompressible, two-dimensional flow. It i s  irrotational a s  well, 
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except a t  the vortex singularities. Thus a potential @ (y, z )  and 

s t ream function +(y, z )  can be found such that 

and each location in the y, z plane can be assigned potential and 

streamline coordinates @, +. Suppose the speed 

v = v 7 -  

i s  known in t e rms  of @, +. If s measures  the a r c  Eength along a t r a -  

jectory (streamline) specified by +, then 

V also satisfies 

Thus 

The time i t  takes a fluid column to move from potential q5 to poten- 
0 

t ial @ along the trajectory specified by + i s  B 



Notice t i s  positive, since @ must always decrease in the direction 

the fluid column moves. Each orbit encloses a single vortex of 

strength + k. As a column orbits once, the potential decreases  an 

amount k ,  so the orbit t ime around the trajectory specified by + i s  

The value of + on the trajectory with apogee y i s  +(y, 0), Thus 

and the problem of finding T(y) i s  solved in  principle. 

Complex variable notation makes an explicit solution sus-  

prisingly easy, The details a r e  given in Appendix E. The result  i s  

with 

k s i d  
+(y, 01 = -i;; log 

l + cosh 9 
(1 

x 

Two limits a r e  especially interesting: 

2 2  
P 

2kz  e ~ ~ / x  
@ a s y  X'ao, T(y)*F (i 



The orbit time a t  a radius y around an isolated vortex of strength k 

2 2  i s  4n y /k, the same a s  limit a. A fluid column very close to a 

particular vortex i s  hardly affected by the other vortices in  the street .  

Limit b i s  the surprising result.  The orbit t ime around a trajectory 

with apogee y i s  exponentially large for large  enough y. The two 

limiting cases  of equations 51, derived for  y << X and y >> A, give 

practically the same results  for  intermediate values of y. F o r  

y = X / 2 ,  l imit a i s  

and limit b i s  

The limiting expressions agree very well around y = k / 2 ,  the apogee 

of the orbit with major axis )I. Beyond that orbit,  l imit  b must  be 

an excellent approxirnatiois. Thus T(y) ,  a lower bawd on the time 

required by the vortex s t reet  to decelerate the Pine-averaged flow 

a t  a height y, grows exponentially beyond y- X .  The ra te  sf mixing 

x momentum i s  zero, for  al l  practical purposes, outside the imme- 

diate neighborhood of the vortex street ,  

The apogee of the orbit that has  been completed just once by 

time T is  

X kT Y = - log - 
IT 2XZ 

for  Y 2 X ,  Y ( T )  i s  the height of the @frontg where the line-averaged 
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flow i s  being significantly decelerated a t  t ime T. The front propa- 

gates a t  a speed 'i = X/TT. But the slightest disturbance destroys 

the equilibrium of the vortex s t reet  and allows the vortices to d is-  

2 perse  a t  an initial ra te  k/X. By a time of order  X /k, the vortices 

have dispersed past the front they a r e  supposed to be forcing steadily 

through the flow. Thus no such front can develop in the f i r s t  place, 

and the result  for steady induction by a vortex s t reet  can give no 

indication of what happens in a real  flow. The propagation of turbu- 

lence in a mean shear flow cannot be understood without considering 

the non-linear action of turbulence on itself. Any analogy, like the 

steady vortex s t reet ,  o r  any approximate theory, like the mean field 

equations, which omits turbulent convection of random vorticity must  

lead to fundamentally unrealistic results.  The mechanics of turbu- 

lence propagation through a mean shear flows i s  inseparable from 

the mechanics of the mean flow itself,  and any approach which ne - 
glects mon-linear interaction between random fluctqations will give 

a qualitatively wrong description of the mean flow, 



5. The Numerical Experiments 

A. Basis  of the Numerical Approach 

According to the l inear  approximation of section 3,  Reynolds 

s t r e s s  stops propagating through a mean shear  flow once the original 

turbulence i s  highly sheared. In section 4, the problem was simpli- 

fied by assuming al l  flow propert ies  a r e  independent of x ,  and the 

non-linear interaction between turbulence and the mean field was 

restored. It was found that no such part ial  account of non-linear 

convection can give even qualitatively cor rec t  resul ts  for  l a rge  times. 

Eliminating turbulent convection of random vorticity in the aI?/ax = 0 

problem leads to a turbulent field steady in the y , z  plane with a 

steady gr ip  on the mean flow. Under such an approximation, the 

mean flow eventually stops anywhere, but in fact the turbulent eddies 

d isperse  about a s  fas t  a s  the mean flow decelera tes ,  and the mean 

speed profile i s  distorted, but not driven to zero. If the propagation 

of turbulence through a mean shear  flow i s  to be understood a t  a l l ,  

non-linear action of turbulence on itself must  be considered, But 

the fully non-linear problem i s  intractable. Without analytical sup- 

port  or the support of experiments on the propagation of f r e e  turbu- 

lence in shear  flows, a guess about the effect of non-linearity would 

be a rb i t r a ry ,  Some kind of experiment i s  needed, 

The outstanding simplification of the a ~ / B x  = 0 problem i s  

that eddy motion in the y ,  z plane i s  dynamically independent of the 

momentum i t  convects, The motion i n  the: y, z plane can be treated 

like two-dimensional turbulence, and the speed in  the x direction 

like a sca lar  quantity convected in a two -dimensional turbulent field, 



That does not mean that the only random vorticity in the flow i s  the 

initial vorticity. All three components of the random vorticity 

g = ( S , ~ , W )  a r e  generated by mean field stretching. It means only 

that the velocity field in the y ,  z plane i s  unaffected by random 

stretching of the mean field vorticity. If the vorticity c(y, z , t )  i s  

given, then the two-dimensional velocity field = (v,w) can be found 

from 

where = j (y-y') + &(z-2') .  F r o m  equations 3 6 ,  
N 

a 5 (ii) - t x %.5 = 0 a t  

and the integral and differential equations can be solved step-by-step. 

If the vorticity i s  not distributed smoothly in the y ,  z plane 

but i s  packed into discrete vortex columns 9 the problem looks even 

th 
simpler.  Suppose the clockwise circulation around the j- vortex 

viewed toward negative x i s  k Equation 52(i) becomes 
j 

th where the j- vortex i s  located a t  [y.(t) ,  z j ( t ) ] ,  and r = j(y-y.) f 
3 J 

S ( Z - z . ) .  Each vortex i s  convected in  the  field induced a t  i ts location 
J 

by all the others,  Thus 



The path of each vortex can be found by integrating equations 54, and 

the statistics of the x momentum convection can be found from equa- 

tion 53. Equations 54 a r e  just a s  hard  to deal with analytically a s  

equations 52, but now the problem i s  se t  up for  a simple step-by-step 

integration by computer, If a great  many numerical experiments a r e  

performed over an  ensemble of initial conditions {ki, yi(0), zi(0)}, 

information about the turbulent grip on the mean flow can be obtained. 

The value of such computer experiments r e s t s  on the physical 

relevance of the initial conditions chosen. Suppose the vortex sheet 

problem of section 4B i s  modeled. The discrete vortices must s ta r t  

in the x, z plane, so yn(0) = 0. The continuous area-impulse f ( z )  

must be replaced by a step-function model. Suppose the model im- 

pulse i s  constant over intervals A ,  and the total impulse delivered 

between z = (n-9. )A and nX i s  

The situation i s  shown in figure 12. The strength s f  the vortex whose 

initial position i s  y.(O) = 0, zi(0) = nh i s  then 
1 

from equation 41. This row of vortices could be generated in the 

wind tunnel experiment of figure 9 i f  the random wing were made of 

panels of span A bearing uniformly distributed total lifts L = -S F 
n o ne  

The initial conditions { mn/h, 0, nh) a r e  perfectly realizable and 

need not be regarded a s  models of random vortex sheets. 



If the vortices kn a r e  to be generated by random, homogeneous 

impulses Fn of finite variance, then neighboring vortices cannot be 

uncorrelated. The proof i s  about the same a s  i t  was in the contin- 

uous case. From equation 55, 

Thus 

Fo r  N large,  IFNtl and F a r e  independent, and the left hand side i s  
- 4. 

2 2 2 F  . If the variance of k is k and the csrrelatisn function R is de- n 

fined by 

then 

a s  N -. a, The original sum over m and n has been transformed 

a s  shown in figure 13, Thus 

and the relation cannot be satisiied for large Pd unless 



FIG. 12 STEP- FUNGUION IMPULSE 

FIG. 13 METHOD FOR SUMMING R ( n - m )  OVER n,m 



The ensemble of vortex strengths must  satisfy equation 56 i f  the 

computer experiments a r e  to represent  physically realizable situ- 

ations. 

If the impulses Fn a r e  independent, then nearest  neighbor 

vortices only a r e  correlated, Thus 

The correlation function R satisfies 

consistent with equation 56. Nearest neighbor correlation was gen- 

erally used in the computer experiments. A finite row of vortices 

must be used in any experiment, and correlation of nearest  neighbors 

alone gives the maximum number sf correlation lengths possible 

for a given number of vortices. If the correlation does not extend 

over a large number of vort ices,  the vortices can be taken to repre -  

sent large scale eddies in the continuous problem9 rather than ele- 

ments of a vortex sheet. 
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F rom equation 53, the initial upwash above a row of such 

vortices i s  

Thus 

The upwash correlation above the discrete vortices i s  not independent 

of z .  The flow i s  not homogeneous in z because the vortices have 

special determinate locations z = nh. However, the upwash corre la-  

tion i s  periodic on z with period X, so an average correlation 

can be used. ,Then 

By contour integration in the complex plane, 



If nearest  neighbor vortices only a r e  correlated,  

In section 4B, an expression fo r  the upwash correlation Q(y9 5) for 

the continuous sheet was derived assuming the impulse spectrum 

= A exp ( -  p, /kg 1 )  In the limit p/y ' 0, equation 43 for  Q(y9 5 )  

becomes identical to equation 57 if 

Furthermore,  a s  X/y ' 0. v (y,z)vo(y,z+&) should become insensi- 
0 

tive to z and approach Q*(y, 51, A11 the colrrelations R . .  between 
13 

points in the potential flow region above y can be found from 8 (y, 5). 

Thus discrete vortices with neares t  neighbor correlations only give 

a fa r  field which is  identical to the Par field of a continuous sheet. 

Hn subsection B a way of generating random vortex strengths 

2 
satisfying k k = k R(n-m) for any R i s  described. Once a particu- m n 

l a r  initial condition i s  chosen from the ensemble {k (0)9 zn(0)] n9  'n 

the finite difference forms of equations 54 have to be solved step-by- 

step for a s  many time increments a s  a solution is desired, The 

computation i s  inherently unstable, and the computed vortex Poca- 

tions drift  away from the locations that would be assigned by an 

exact solution, In computer work on deterministic problems, for 
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example the work of Abernathy and Kronauer [I11 on the formation 

of vortex s t ree t s ,  this mechanical e r r o r  drift i s  a serious matter  

and has to be kept small by using extremely small  time increments. 

Here the object i s  not to follow detailed vortex paths, but to find 

averages over a large number of runs. Each numerical experiment 

can be much sloppier than the experiments of [ 11 ] ; each one must 

be sloppier i f  a large number of experiments i s  carr ied  out on a 

limited budget. Subsections C ,  D and E a r e  devoted to an  analysis 

of mechanical e r r o r  drift ,  a discussion of how rapid a drift  i s  per-  

missible, and a description of a mechanism for  counteracting the 

dispersive effect of e r r o r  drift  of general physical interest  - vortex 

capture, In subsection F results  for some numerical flow visuali- 

zation experiments on the motion of random vortices a r e  presented, 

The flow visualization experiments show how vortices dis-  

perse: vortices pair up into dipoles and 'boil' out of the turbulent 

region. But no idormat ion i s  obtained about the ra te  x momentum 

is  redistributed by the field induced by the vortices. Suppose the 

initial shear flow is  l inear,  t J  = Qy, and turbulent velocity fluctu- 
0 

ations in the x direction a r e  initially zero. If the experiment were 

conducted in a wind tunnel, a hot-wire measurement could be made 

a t  y ,  z a t  time t ,  If the hot wire intercepts a fluid column which 

originated at  y then the speed i t  measures i s  Qy (y,  z ,  t ) ,  since 
0 0 

the momentum and speed of fluid columns i s  conserved, The mean 

speed i s  then U(y,t) = ~ l c ( ~ .  t )  where the average i s  taken over a 

t raverse  along z o r  over an ensemble of independent experiments. 

But the computer cannot tel l  the original height of the fluid column 



at  y, z a t  time t unless a tes t  particle ca r r ied  along with the flow 

from time zero happens to have landed there, In order  to simulate 

a hot-wire t raverse  by computer,  tes t  particles labeled by their 

initial heights y must be scattered over the y, z plane, and their 
0 

paths computed along with the paths of the vortices. At time t the 

particles lying near y a r e  surveyed to find their original heights y , 
0 

If the flow is  incompressible and the test  particles were originally 
- 

scattered uniformly over y, z ,  then the mean speed i s  U(y, t )  = Q,<(y,t) 

where the double-bar average i s  taken over the particles surveyed 

a t  y, t in each realization of the flow and over an ensemble of initial 

conditions. This idea i s  described in detail in subsection G, and 

the results  of a se r ies  of numerical momentum transfer  experiments 

a r e  presented in subsection HI. 

B. Generation of Random Vortex Strengths with a Specified 

Correlation 

The object i s  to generate a large number N of vortex strengths 

2 
kn which satisfy kmkn = k R(n-m) for any R desired. The average i s  

taken over an ensemble of se ts  (k n = 1,. , , , N) generated by the 
no  

technique described here.  The numbers k a r e  taken to be periodic 
n 

with period N, so kN+l = kp for example. Vortices near the ends of 

the sequence n = 1 ,  , , . , N a r e  then correlated,  but that should make 

no difference in the turbulence experiments if N i s  much greater  

than the maximum I for which W ( 1 )  i s  non-zero. F o r  nearest  neigh- 

bor correlation, only the end vortices 1 and N a r e  unnaturally corre-  

lated, N i s  assumed odd throughout the derivation to keep the work 

tidy. 



Suppose n i s  regarded a s  a continuous variable. Then any 

well-behaved rea l  function k(n) of period N can be written a s  a Four-  

i e r  se r ies  

where c* = c Where n i s  an integer, 
m -m 

Set M = (N-1 ) / 2 .  Then 

since, for example, cMtl = c N-MP etc- Define 

Then 

and a periodic function defined on an integer argument can be written 

a s  a finite Fourier  se r ies  (cf. Brillouin [ 12 ]j ). The correlation 

function can now be expressed as a Four ier  transform - 
Zni 

2 -i;j- (pm+sn) 
k R(n-m) = k k = a a  e m n P q 

Since the left hand side depends on (n-rn) only, 



2 * where 01 = a a The relation between R ( Q )  and a! can be inverted 
P P P* P 

by using the identity 

Thus 

and M m l  -2ni - 
u2 m =Gc R ( Q ) e  N ,4 

.I. -P 

Jf R(B ) i s  given, = a a can be computed from equation 59. I£ m m 

random Fourier  coefficients a can be generated satisfying a a = rn m n 
2 .'. 

a! 6(mtn) and a '  = a , then sets  of properly correlated random 
m m -m 

vortex strengths can be found from equation 58. 

From equation 59, 

If the row of 2MtB vortices i s  to represent turbulence homogeneous 

in z ,  R(B) must drop to zero long before ( Q  1 -  Me Then equation 54 

L requires La! = 0, Write 
0 
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where @m i s  a real  amplitude satisfying $ = 01 and Om i s  a random 

m m 

phase between 0 and 1. Since em = -8 and a. = 0, equation 58 be- -m 

comes 

nm k = ), qlm C O S  2'(- + 8 ) . n N m 

and each Om i s  independently assigned one of the values i "" 

at  random, then the Fourier  coefficients do satisfy aman 
2 

=a! 6(m+n): rn 

It i s  interesting to note that the famous random phase, which plays 

so large  a par t  in qualitative discussions about turbulence and no 

par t  at al l  in quantitative theories, i s  introduced here  to se t  the 

initial conditions for the computer runs, 

The way of selecting @m and Om in equations 60 may seem 

inflexible, and it  might be thought that the probability distribution 
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for  k would be a rickety step function. However, there a r e  four 0's n 

to choose f rom,  and M choices must be made to sum the f i r s t  of 

equations 60. If the number of vortices N = 51, say, then M = 25 

and the ensemble of possible initial conditions has 

members! The variety seems adequate. Since each k i s  the sum 
n 

of 20 o r  30 independent random variables of s imilar  variance, the 

probability distribution fo r  k should be very  nearly Gaussian. In 
n 

practice, the values of 8 for m = 1 , .  . . , M in each computer run 
m 

were  chosen by flipping a coin (twice per  8 ) o r  rolling dice. The rn 

random phases were then fed into a subroutine which computed k n 

according to equations 40. The subroutine was named VEGAS, of 

course. 

C. E r r o r  Drift 

Suppose a passive particle has  a position = by, z )  at  time t. 

Given the current  vortex locations, the computer can calculate the 

velocity ~ ( 8 ,  t )  of the convected particle exactly (within round-off 

e r r o r s )  from equation 53. If the time increment i s  T, then the com- 

puter assigns a new location 6 -+ 63 to the particle at time t + 7, where 

But an exact solution would give 
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where the integrand i s  evaluated at the changing location of the par-  

ticle, Thus the computed trajectory and the ' rea l '  trajectory diverge. 

If the particle i s  convected in the field of a single vortex, the 

computer trajectory can be predicted analytically. Geometrical 

quantities a r e  shown in figure 14. If the current  radius from the 

vortex of strength k to the particle i s  r ,  the particle will be advanced 

a distance 

after a time increment T along a straight Pine tangent to the circle 

of radius r. Thus the radius increases a distance b r ,  where 

Then 

since 68 = 6s / r .  For  T small enough, the difference equations can 

be written a s  differential equations for the computed trajectory r ( t ) ,  

8(t): 
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If the particle s ta r t s  a t  r (0 )  = r 8(0) = 0, then the equations give a 
0 '  

trajectory 

(ii) 8(t) = - 
2n r 

0 

2 
F o r  r+ 0 and t fixed, r ( t ) +  r and 0(t) +kt/2nro, the expressions for 

0 

the actual trajectory. But a s  t +a, r grows a s  t1/4 and €3 slows 

down to a t l l2  growth a s  the particle slides out into a weaker ve- 

locity field. A numerical flow visualization experiment was per-  

formed to check the trajectory predicted by equations 42. A time 

2 2 increment z one-twentieth of the actual orbit  time T = (2n) ro/k was 

used, T = .05T, and the program was run up to t = 2T. The curve 

r ( t) /ro from equation 42(i) is plotted against t / ~  in figure 14  along 

with the experimental points. The agreement i s  excellent (the 

oscillation in the experimental data a r i s e s  because the points a r e  

taken from an on-line computer plot, and a finer spacing is available 

across  the print-out sheet than down it). There can be no doubt that 

the approximation ,tjx = ~ ~ ( 3 , t )  causes the dominant e r r o r  in the 

numerical experiments, 

h the general case,  suppose the ' r ea lg  position of a particle 

a t  time t i s  _x and the computed erroneous position i s  ze. The com- 

puted position a t  t ime t f T i s  then 

and the actual position i s  



a s  shown in the sketch. 

But 

Bv 
N 

x[l(o). IS] = s(?/, t )  + 2. C1x (5, t )  + (IS-t) W (59 t) + 9 . .  9 

where 2 i s  the displacement of the particle from ~4 a t  t ime IS. Then 

and 

The expansion can be used in the equation for ys to give 

where 3 = Dx/Dt i s  the acceleration of the particle at time t, The 

computer result  can also be expanded in the form 

Define the e r r o r  vector g = z -315. The expansions for  zk and 3' can e 

be subtracted to give 



for  the new e r r o r  vector E ' .  Thus 

Provided T i s  small  compared with the time scale of the flow and 1% 1 

i s  small  compared with the typical length, that can be written a s  a 

linear differential equation for  g , 

with 

~ ( 0 )  = 0. 
N 

Equation 4 3  i s  the fundamental equation for  the machine e r r o r  drift 

E ,  good before g extends clear  ac ross  eddies and whenever the time 
N 

increment T i s  reasonably small* The acceleration term catalyzes 

the build-up of e r r o r ;  computations based on 63 = cannot keep up 

with an accelerating particle, and the computed position slips back 

along the line of acceleration. As s increases,  the, velocity a t  the 

computed location becom es significantly different from the velocity 

a t  the actual location, and the two locations shear apart.  Equations 

61 for the computer trajectory around a single vortex show the same 

behavior, The computed location slips outward a t  a ra te  7-12 t imes 

the current centrifugal acceleration, The angular speed a t  any 

radius i s  the same a s  i t  would be for an  actual particle, but a s  the 

computed radius grows, the computed angular displacement lags 

far  behind the actual displacement, 

Equation 63  holds for  any velocity and acceleration fields X; 

and g specified continuously a t  the actual particle location. The 



steady velocity and acceleration around a single vortex drive the 

e r r o r  up continuously and rapidly. But in a turbulence problem 

V X  and 3 a r e  random functions of t ime,  and i t  might be conjectured 

that the e r r o r  drift i s  l e s s  drast ic in that case,  more like a random 

walk than an exponential divergence. Equation 63 cannot be solved 

analytically in closed form,  but the conjecture can be tested on a 

simple one -dimensional model, 

where ~ ( t )  i s  a stochastic function analogous to a strain ra te  and 

P(t) is  - r / 2  time,s an acceleration, Equation 64 describes the e r r o r  

in computing particle location in a non- steady one -dimensional 

channel flow, for example. The object now i s  to find the variance - 
of s , e2( t )$  where the average i s  taken over an ensemble of his-  

tories ~ ( o ) ,  P(o), OSoSt, 

The exact solution of equation 64 is 

Thus 

Then 



2 Assume /3 i s  statistically homogeneous, so that . m j  = P B(o-T) . 
The variance can then be written 

- t T 2$crdt1 $crdtl  

E 2  = P2 ('dT ('do e 
T o 

e B((s-T) 

Assume a ( t )  i s  s tr ict ly stationary, and ~ ( t )  and a ( t t T )  a r e  indepen- 

dent for T > 8. Then for  t >> 8, 

By substituting x = t--r, y = T-o in integral @ and x = t-o, y = o - r  in 

integral (6J i t  i s  easy to show that 

X 
F o r  t >> 8, the integrals 1 lYdtv and adt '  a r e  ca r r i ed  out over  many 

o 
P 
0 

correlation t imes s f  a almost  everywhere in  the domain spanned by 

x and ye  Thus 



for  example, i s  a random variable of mean zero (assuming has 

zero mean) and has  a Gaussian distribution (by the Central Limit 

Theorem) for  - almost al l  x in the integrand of equation 65. But 
n 

2 
fo r  Gaussian X. If (Y(t)a(tl) = (Y A(t-t ') ,  then 

03 

fo r  almost al l  xp where j A(t)dt = 63, Equation 65 becomes 

Define the weighted correlation time for P, 
00 2 

-3a OY 
3 = e NY) dy 

0 
Then for t >> 8 (the dependence time of a ) ,  O (the correlation time 

for (2, presumably " 8), and 3 (the weighted correlation time for P), 



F o r  stochastic @(t) and P(t),  equation 64 represents a generalized 

random walk for ~ ( t ) .  Under the very  stringent conditions assumed - 
2 

to solve the problem, the variance E i s  given by equation 66. The 

variance diverges exponentially. It diverges even faster  than the 

solution of equation 64 for  constant a ( t )  = a! if 2 a O >  1. Notice if 

the strain t e r q  in equation 64 i s  either very  weak, @ + O ,  o r  varies 

extremely fast ,  0+ 0, equation 66 reduces to the standard random 

walk result 

until very  large  times. 

The conjecture that the computer e r r o r  given by equation 63 

diverges slowly for  stochastic x and 2 must be wrang. A numerical 

experiment cannot reproduce the detailed trajectories of vortices 

and tes t  particles for very long times. But in a turbulence experi- 

ment the detailed r e r c rd  i s  not important. A s  Bong a s  the cor,puted 

motion of a particle i s  governed primari ly by the flow velocity x a t  

i ts  current  location, the accumulated e r r o r  should be unimportant 

in a turbulence experiment. The computed location should be just 

a s  good a s  the actual location. Jus t  beyond their point of intersec- 

tion, a computed path diverges from a physical path with an e r r o r  

velocity v given by 
" E 

- T 

x, - - -  
2 2 

from equation 63. A numerical turbulence experiment is valid ii 



regardless of detail differences between the computed flow and the 

physical flow with the same initial conditions. 6 i s  estimated for a 

random distribution of independent vortices in subsection D, 

D. Flow Velocity and E r r o r  Velocity 

The model studied in this subsection i s  artificial,  just a s  

equation 64 with statistically stationary a! and (3 i s  an artificial model 

of equation 6 3  with inhomogeneous vector fields I: and 2. The object 

is to show quqlitatively that wi+&out special precautions condition 57 

may not be satisfied no matter  how small  a time i9crement T i s  used. 

th Suppose the i- vortex has strength k. and location y z .  and 
3. i i 

a passive particle subject to a physical velocity and e r r o r  velocity 

V-E i s  located a t  y ,  z. Define 

Gi = z - z  i 

From equation 53, 

ki Gi ki vi 
V = - -  

ZIT r Z 9  W = -  
-- 
ZIT r Z  a 

i i i i 

Thus 



Now assume ki and k. a r e  independent for i #  j. That cannot be t rue  

for  the problem solved by computer in this chapter,  since the vortex 

strengths must be correlated to satisfy equation 56, Assume that 

the location of each vortex i s  independent of i t s  strength, and that 

. Neither of 

those assumptions can hold for  vortices located initially a t  y = 0, 

z = nX. By the f i r s t  two assumptions, an average over an ensemble 

{ki, yi, zi 1 gives 

- 2 
where k.k = k 6... The e r r o r  velocity v equals - ~ $ / 2 ~  and 

1 j u -E 

The las t  t e rm on the right i s  zero,  since 5, the component of vor-  

ticity in the x direction, i s  zero outside of the vortex singularities. 

The variance of aX/at would be hard  to find, but the acceleration 2 

L 
should be the same order a s  i ts  convective par t  B(x 12). The var i -  

ance of the e r r o r  velocity 

can be found about the same way equation 49 was found, but the alge- 

bra i s  complicated, and the derivation i s  deferred to Appendix F, 

Under the three assumptions stated above equation 6 8 ,  the result  i s  

P 

2 T2 k 
Z,, = 



The averages in equations 69 and 70  a r e  to be taken over an ensemble 

of vortex locations IYi, zi} with the particle position fixed. 

Equations 69 and 70 both give infinity if the vort ices a r e  d is -  

tributed with uniform density over the y , z  plane, But suppose - N 

vort ices a r e  distributed uniformly over an annulus around y , z  of 

inner radius s and outer radius S. The density of vort ices pe r  unit 

a r e a  is  

and the probability distribution function fo r  rl, . . . , r i s  N 

since the vort ices a r e  distributed uniformly, where 

O otherwise. 

Thus 

Similarly , 



F o r  fixed p and large S and N, the result  of integrating and summing 

- 
2 7 k 4  

2 S + 2Ti2 5 log; 
& C  =-T (z) 

s 

Non-dimensionalize p with the a r ea  excluded around each vortex, 

Then the ratio of equations 72 and 7l i s  

- 
2 2 

4 S 
& c  3 Tk 

1 + p:: log-  
- 6' = - - -  S 

* - k"---$ S c 2 l 6  2as log - 
X s 

Since 6c - 6 ,  equation 67 implies that the condition 6 << 1 must be c 

met  for a numerical turbulence experiment to be valid. 

What counterparts do S,  s ,  p:g have in a numerical experi- 

ment? The computer can handle only a finite number of vortices 

distributed over a finite a r ea  off the y, z plane, and S can be taken 

a s  a linear dimension of that a rea ,  r; i s  a distance of closest ap- 

proach to a vortex, but it  i s  not obvious that such a distance has 

any physical meaning. One thing i s  certain: if s could not be estab- 

lished physically, i t  wouPd have to be incorporated in  the computer 

2 
program anyway. 6 i s  proportional to ~ k / 2 n s  , and that combination 

C 
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must  be small  in a valid numerical experiment. 

It may be that a passively convected particle has a hard time 

getting close to a vortex if  it i s  not close a t  the s tar t .  As a particle 

approaches a line vortex, i t s  motion i s  dominated 'by that vortex, 

and it tends to orbit a t  a constant radius. In the case  of two ap- 

proaching vortices, the argument i s  more  solid. Equations 54 can 

be written in Hamiltonian form (Lamb [10 1 ) , 

where 

w = 1 k.k. log r..  , 
1 J 1.l 

and 

r . .  = 
U 

and the Hamiltonian W is conserved. No single r.. can become very 
19 

small. unless an unusually large par t  of the energy W is concentrated 

in the interaction between i and j. Since such a concentration i s  im- 

probable in a turbulent flow, close approaches a r e  r a r e ,  

However, Abernathy and Kronauer, in their numerical ex- 

periments on vortex- s t reet  formation [l  1 ] # found that vortices of 

the same sign tended to cluster into loosely packed clouds, The 



important aspect of the flow i s  the motion of the clouds in the general 

field they induce, rather than the detailed motion of the vortices in- 

side, If the computations were  done by hand, clouds could be treated 

a s  single vortices once they form,  and the detailed motions of the 

constituent vortices could be dropped from the calculations. The 

influence of one cloud on a vortex inside another cloud i s  small  com- 

pared with the influenceof adjacent vortices. If the computer does 

not notice the formation of clouds and concentrate them during the 

calculations, each cloud will tend to diffuse and wander a t  random 

under the e r r o r s  accumulated in computing the trajectories of i t s  

constituent vort ices,  rather than move a s  a unit in the field induced 

by the other clouds, 

A systematic way to concentrate clouds i s  to unite vortices 

which come close to each other. The clouds a r e  cleaned up a s  they 

form. Furthermore,  s has a precise meaning in a computer pro- 

gram which permits  one vortex to capture another. s i s  an average 

capture radius. Once vortices of strengths kl and k2 approach 

closer than s(kl,k2), the computer assumes that they will orbit 

each other from then on and unites them into one vortex of strength 

$ + k2' This i s  not just a computational expedient. The physical 

basis of vortex capture i s  explained in subsection E. 

E, Vortex Capture 

Suppose vortices 1 and 2 approach each other and interact 

strongly. If kl and k2 have the same sign, the two Bock into a mutual 

orbit until the strain field of the other vortices shears  them apart  



(the flow outside vortex singularities i s  i rrstat ional ,  so the deforma- 

tion i s  pure strain).  Idealize the field of the other vort ices in the 

vicinity of the pair singled for  special attention a s  a uniform steady 

translation (V,  W )  and s t ra in  a. If the y, z axes a r e  oriented parallel 

to the principal axes of s train with the flow diverging along the y 

axis ,  then the equations of motion 54 for  vortices 1 and 2 a r e  

where Q! i s  positive, and the relative coordinates q ,  5 a r e  

Define the center of vorticity coordinates 

Z = ka zl+k2z2 
k l f k 2  

0 

Equations 74 can be combined in an obvious way to give separated 

center of vorticity and relative equations of motion: 



(ii) 
kltk2 l i = r - -  2?r 

Equations 75(i) show that the center of vorticity of the vortex pair  i s  

convected like a passive particle in the idealized flow of the other 

vortices. Equations 75(ii) describe the motion of a particle around 

a vortex of strength kgfk2 in a s t ra in  fieEd a ,  The phase plane t r a -  

jectories of equations ?5(ii) a r e  the same a s  the streamlines of Lkie 

combined vortex and strain fields, If q and 6 Pie on a closed trajec-  

tory,  then vortices 1 and 2 remain bound in spite of the s t ra in  tending 

to shear them apart.  

Equations 75(ii) can be written 

where 

tk2 + = Q l q & t -  2 n  log -2- 4- K . r 
0 

2 2 2 K and r a r e  constants, and sc = q t . + i s  conserved along 
0 

trajectories,  since 

+ i s  the stream-function for  the combined vortex and s t ra in  fields. 
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From equations 75(ii),  4 and 5 a r e  both zero  a t  

where polar coordinates defined by r) = r s i n e ,  5 = r cos 0 a r e  used. 

Set + = 0 a t  these singular points, so that 

Since +, a+/aq and a$/ag a r e  zero a t  a singular point r),, 5,. the 

expansion of + around the point begins 

C N 

where q = q - q o  and 5 = 5-5, But 

Thus 

near q 6 , .  and the singularity i s  a saddle point (stagnation point) 
o 

with principal axes aligned with the principal axes of the original 

s train field. The rate of s train a t  the singular points i s  2 @ ,  A 

phase plane (streamline) diagram of the trajectories given by equa- 

tions 75(ii) i s  sketched in figure 15 for kltk2 negative. The t ra jec-  

tories a r e  closed in an eye-shaped region around the origin bounded 



FIG. 15 RELATIVE TRAJECTORIES OF f WO 
VORTICES ON A STRAIN FIELO 
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by the stagnation trajectories + = 0.  The closest approach to the 

origin of a + = 0 trajectory occurs a t  8 = 135" in the figure, and the 

corresponding radius r i s  the solution of the equation 
C 

( ~ r  IkltkZI r I kltk2 I 
- 

2 '+  2n 
t log - 4n 

= 0 .  
r 

0 

The solution rc = -527 r can be found easily by iteration. Thus 
0 

If the distance between vortices of strengths kl and k in a steady 
2 

strain a! i s  ever smaller  than r the vortices a r e  permanently bound 
c 

and never shear apart .  If the distance l ies  between r and r the 
C 0 

vortices may o r  may not be bound, and if  the distance i s  greater  than 

r the vortex pair i s  not stable and will certainly shear apart.  This o 

i s  a simple mechanical explanation of the vortex clustering phe- 

nomenon discussed by Batchelor [13] and Onsager [14]. Lf kl and 

k have the same sign, the capture c ross  section r 2  (or more accu- 2 C 

rately, the a r ea  of the 'eyes in figure 15) tends to be Barge. Lf they 

have opposite signs, the c ross  section i s  small.  Once two vortices 

of the same sign a r e  bound tightly, the pair ac ts  like a single strong 

vortex, and the capture c ross  section lo r  interactions with third 

vortices i s  Barge. 

Equation 76 provides a rational cri terion,  in a numerical 

experiment, for concentrating nearby vortices of strengths kp and 

k into a single vortex of strength kl + k2. But where should the 2 

new vortex be located? The answer depends on the physical process 

that 'capture' i s  supposed to represent.  Equation 76 and the phase 
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plane eye were  derived for a steady s t ra in  field. The actual s t ra in  

encountered by a vortex pair var ies  in magnitude and orientation; 

the eye blinks. Line vort ices a r e  eventually knocked apar t  by strong 

interactions with other vort ices no mat ter  how strongly they a r e  

bound. If they a r e  strongly bound, they stay bound for a long time. 

But rea l  vort ices have finite core  diameters;  if r e a l  vort ices orbit  

together for  severa l  revolutions, they a r e  smeared into concentric 

shells of vorticity by each other ' s  s t ra in  field. Once that happens, 

they really a r e  united and can never be knocked apar t .  Capture of 

line vortices should be a model of the physical smearing process.  

Suppose that a t  t ime to, before the smearing,  a continuous vorticity 

distribution 6 i s  peaked near yl, zl and y2,  z2 ,  with total amounts 

2k around point 1 and 2k around point 2. The y coordinate of the 
1 2 

center of vorticity i s  

a t  time t with a s imi lar  equation for Z . As the vorticity i s  
0' 0 

smeared under i t s  own induction and convected by uniform t rans -  

lation (V,  W )  and s t ra in  a, the center s f  vsr t ici ty moves according 

to the equation 

just a s  a single d iscre te  vortexwouPd move. That i s  shown in Ap- 

pendix C. After the vorticity i s  smeared into shel ls ,  the shells 

a r e  centered on the current  center of vorticity. A single vortex 



which started a t  (Yo ,  Zo) a t  time to would also be located there.  

Thus, if  instantaneous concentration is  supposed to simulate the 

eventual result  of smearing, the new vortex must  be located a t  the 

center of vorticity of the original pair. Two vortices of strengths 

and locations kl,yl,zl and k2,y2,  z2 must be united into a single 

vortex of strength 

located a t  

Equation 7 4  cannot be used a s  a practical capture criterion 

for a non-steady and non-uniform flow until an effective a, say a,, 

i s  estimated. a i s  not the average strain (which i s  infinite for e 

discrete vort ices) ,  but i s  an average intensity of that part of the 

strain field which is  uniform over distances comparable to r c 

Suppose the ensemble of initial conditions on the vortices i s  
- 

2 
{kn,Yn(0) = 0, z (0) = n h ) ,  with k2 = k and nearest  neighbor co r -  n n 

2 relation only. Then a i s  proportional to k / ~  on dimensional 
e 

grounds, but the constant of proportionality cannot be predicted 

exactly. In practice, the computer program unites vortices ! Y k 2  

if their separation r satisfies 
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where o i s  a n  input pa ramete r .  Average r e su l t s  of the numer ica l  

experiments  should not depend cr i t ical ly  on o. o is selected to  make  

the numerical  e r r o r  dr i f t  sma l l  r a the r  than to sat isfy a physical 

theory.  

An es t imate  of 6 can  be made  f rom equation 73 based on c 
:;< effective values Se,  s e ,  p, and typical p a r a m e t e r s  used in the ex- 

per iments .  A v e r y  crude  es t imate  of S is sufficient, s ince i t  en te r s  
e 

equation 73 only a s  the a rgument  of a log. About 50 vor t ices  w e r e  

2 usually run,  and they d i spe r sed  over  an  a r e a  about 50X x 4X = 200X . 
Thus Se -10 - 2OX. The effective distance of c loses t  approach se  

can be taken a s  the average  of the square  root  of the r ight  hand side 

of inequality 78, s e  = KG A, with K -  1. o was usually .25,  so  

s -. 5X. Thus log s e / s e  - log 30 - 3 .  The vor tex  density pe was  e 
2 about 50/200h so  p z  = 2 r s e p e  " - 2 .  By equation 73, 

Most experiments  were  run  with o = .25  and TK/2rkZ = . I .  Thus the 

e r r o r  velocity v was  typically one-tenth the physical flow velocity X, 
E 

F . Flow Visualization Experiments  

Equations 4 0 ,  54, 78 and 77 a r e  the  bas is  of numer ica l  flow 

visualization experiments  on the motion of line vor t ices .  Random, 

cor re la ted  vor tex  s t rengths a r e  generated by equations 40, the vor tex  

paths a r e  descr ibed  by equations 54, vor t ices  a r e  united according 

to  c r i te r ion  78, and the s t rength and location of the new vor tex  a r e  

given by equations 77. Variables  in  the computer program a r e  



L 
non-dimensionalized on the variance of the vortex strength, k , and 

the original vortex spacing, A : 

The input data a r e  T'% , the non-dimensional t ime increment, 

o , the constant in the capture cri terion 78,  

N , the number of vort ices,  

(N- 1 )/2 correlations R 9 

( N - l ) / 2  random phases 8 , and data for  the output including 

T* , the time between f rames ,  and 

F , the number of f rames  desired. 

Each frame shows the locations of the vortices a t  the time the frame 

i s  printed. The vortex strengths a r e  symbolized by the le t ters  used 

to show the locations according to the following table: 

VORTEX STRENGTH SYMBOL 
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The graphing is  done on-line, that i s ,  the appropriate symbol for a 

vortex i s  typed in the line and column corresponding to i t s  current  

location by the same machine that types ordinary ari thmetical  r e -  

sults. F igures  16 (i)-(vi) a r e  s ix f rames  photographed directly from 

the computer output for  a numerical  experiment with the following 

input data: 

- - * 1  

o = . 2 5  

N = 45 

R(1) = -0.5,  R(2) = . . . = R(22)  = 0 

:k = 1 * 0  

IF = 6  

The 22  random phases (each one having one of the values 0, 0,25, 

0.5, 0.75) were chosen by rolling dice. The pluses around the bor- 

de r  of each f rome a r e  spaced a unit distance apar t ,  The f i r s t  f rame 

shows the conditions a t  t* = 0, the second shows the vortex locations 

a t  t* = l n, and so on up to t'k = 5. Each f r ame  i s  centered on the 

original row of vort ices and i s  36 units Bong. Since the vortex row 

i s  44 units long a t  the beginning, three o r  four vort ices a t  either 

end fall outside of the picture, The particular resul ts  shown a r e  

typical for neares t  neighbor correPation in every respect .  

Two things a r e  striking about f igures 16: by t'k = 5 ,  no 

clouds of vort ices of the same sign have formed; instead, vortex 

dipoles consisting of vort ices of opposite sign boil away f rom the 

original line. U p  to t4 = l 6 a t  Peast, the clouds obtained by Aber - 

nathy and Kronauer never form.  The vort ices d isperse  too fas t  by 
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vigorous boiling of vortex dipoles. Equation 76 shows that a vortex 

dipole i s  not a very stable structure. If two vortices have strengths 

of equal magnitude but opposite sign, the vortices a r e  sheared apart  

by any strain. But the strong dipoles escape the region of maximum 

turbulent agitation so fast  that they a r e  not split. They move in 

large orbits  about their distant centers of vorticity almost unaffected 

by the other vortices. The vortex dipoles have been circumscribed 

by ellipses in figures 16(iv) and (vi). The size of an  ellipse indicates 

how much fluid the dipole ca r r i e s  with it (cf. Lamb [P 0 ]  , p, 221). 

The dipoles can be visualized a s  columns of fluid which preserve 

their momentum and leave the region of agitation too fast  to be 

stretched apart by non-linear convection, They correspond to the 

surges of turbulence found above wakes and boundary layers .  

The dipoles a r i s e  because of the negative eeares t  neighbor 

correlation along the original line of vortices, Clouds would form 

i f  there were lofig sequences of positively correlated vortices a s  

there were in Abernathy and Kronauer's experiments. Because 

clouds do not form,  the analysis of e r r o r  drift has little bearing on 

the numerical experiments of this chapter, Vortex captures rare ly  

occur. On the average, about three vortices out 09 fifty a r e  captured 

in a run up to tak = 16, The analysis of e r r o r  drift was ca r r ied  out 

in great  detail because of the intrinsic interest of the generalized 

random walk of subsection 6, and because the mechanism of vortex 

capture would be essential in numerical experiments on more  homo- 

geneous initial distributions of line vortices. 















G. Background for  the Momentum Transfer  Experiments 

Pr io r  to time zero,  fluid flows in the x direction at  a speed 

Uo(y). At time zero a random area-impulse independent of x i s  ap- 

plied in the x ,  z plane to generate a row of line vortices. The initial 

random velocity component in the x direction is  zero. The motion of 

the line vortices in the y, z plane is  independent of the x momentum 

they transport.  The flow visualization experiments of subsection F 

show how the vortices disperse,  but give no indication of how rapidly 

the flow they induce distorts the mean speed profile U(y,t). If the 

flow were studied in a physical experiment, U(y,t)  would be found by 

taking a hot-wire t raverse  along z a t  height y and t ime t. UQy, t )  

would be the average x speed measured, A t raverse  over many eddy 

correlation lengths can be regarded a s  a sequence of measurements 

over an ensemble of independent experiments. This suggests the 

model experiment used here  to define U(y, t) formally, Call i t  

Experiment 1 .  
N 

The experiment i s  performed at  t ime t ,  Let  p(u Iy)du be the proba- 

bility that the speed a t  height y and random z l ies  between u and 

u f du (u i s  taken to be total velocity in the x direction here) ,  Then 

the mean speed profile U(y) i s  defined by 

Since x speed i s  conserved (equation 35) and the velocity fluctuations 

in the x direction a r e  initially zero,  the measured speed u i s  uniquely 

related to the original height y of the fluid column the measuring o 



instrument intercepts: 

If Uo(yo) i s  monotonic (like U = S2yo), then the inverse relation 
0 

i s  unique. Let  p(yo ly)dyo be the probability that the fluid column 

intercepted at y originated between y and y + dye. Then 
0 0 

Differentiate with respect  to u: 

N dY 0 
p(u ly) = p(Y0(u) ly) 0 

Then 

Substitute u = U (y ) : 
0 0 

Equation 79 i s  the definition of U(y) in t e r m s  of the transition prob- 

ability p( y 1 y). 
0 

The trouble with Experiment l i s  that i t  cannot be performed 

on a computer. The only way to find yo for a fluid column selected 

a t  specs ied  y, t and random z i s  to r eve r s e  the calculation and 

c a r r y  the designated column back to  i t s  original location, That i s  
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impossible in practice, because the computer solution i s  inherently 

unstable. E r r o r  drift (not to mention vortex capture) makes the flow 

irreversible and sustained, detailed backtracking impossible. An 

experiment that can be performed i s  

Experiment 2. 

At time zero place a tes t  particle a t  random inside a large a r ea  A o 

straddling the vortex row: 

If P(yo9 zo)dyodzo is  the probability that the particle originates be - 
tween y and y +dyo9 zo and z +dr  , then 

0 0 o 0 

(HLI-' (yo. 2,) &Ao 

P(y09 zo) = 

0 otherwise,  

By time t ,  the converted boundary of the a r ea  i s  distorted: 
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The probability density for  the cur ren t  part icle  location i s  

P(y ,  z )  = P(y,  1 (y9 z)E A) P((YY z)EA) 

where 

P(y ,  z I (y,  z)EA) = the probability density a t  (y,  z )  given that 

(y,  z )  l i e s  inside the convected boundary 

of A ,  

P((Y, z)&A) = the probability that (y, z )  l i e s  inside A. 

By incompressibility 

If the h0rizonta.l boundaries distort  a distance l e s s  than h and the 

vert ical  boundaries distort  a distance l e s s  than 8 ,  

E - L + 1 < z < - - 1 9  
P( (y ,  z)cA) = I for 2 2 

H - H + h < y < -  - h .  
2 2 

and P((y ,  z)EA) drops rapidly to ze ro  outside that a r ea ,  If h<< H 

and I << k, 

almost  everywhere inside the original a r e a  spanned by A . Thus y 
o 

and z a r e  independent, and sampling only those part icles  which hap- 

pen to a r r i ve  at y at t ime t does not bias the distribution over z ,  
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Let P(yo l y )  dy be the conditional probability that the test particle 
0 

was originally located between y and y t dyo given that it has 
0 0 

arr ived at  y. Then 

and sampling only those particles which a r r ive  at y in Experiment 

2 is equivalent to sampling at height y and random z in Experiment 

1, From the definition of U(y), 

U(Y)  = 'J Uo(yo) P (y  0 Id dye 0 

Equation 81 i s  not usable a s  i t  stands, because a digital 

computer cannot handle continuous functions, Suppose the region 

- ~ / 2  G y d ~ / 2  is  broken into horizontal bands k with center 

height yk and band height %: 

Define the average speed in band ko 

where the integration i s  ca r r ied  from y -6 / 2  to y k t 6 k / ~ .  From k k  

equation 8 1, 



This equation could be written 

exactly for  any k i f  the stack of bands extended to y -ti- m. But the 

computer can deal  with a finite stack only. When k is summed over 
0 

a finite sequence of ba.nds, the equation st i l l  holds if band k i s  not 

too close to the top o r  bottom of the stack, F o r  yocko and ysk, 

P (yo ly)  i s  then zero  for the bands that fall  outside the sum. If 

U (y ) does not change too rapidly in band k , 
0 0 0 

where 

The double integral in brackets can be identified a s  follows. 

The probability that the part icle  occupies band k at t ime t i s  

f rom equation $8. Let P(k , k) be the probability that the test  part i -  
0 

cle originated in band ko - and occupies band k a t  t ime t ,  that i s ,  
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where P(y ,y)dy dy i s  the probability that the particle started be- 
0 0 

tween y and y t dyo and currently l ies  between y and y + dy. But 
0 0 

From equation 83, 

Thus the bracketed factor in equation $ 2  is the band-transition prob- 

ability P(ko Ik), the probability that the particle originated in band 

k given that it  occupies band k a t  t ime t. Equation 82 becomes 
0 

when band k is  deep enough in the stack of bands that fluid originating 

outside of the bands summed in equation 85 rare ly  enters  k, Equa- 

tion 85 i s  the discrete analog of equation 81. 

The transition probabilities P(ko lk) could be found by car ry-  

ing one test  particle per run (Experiment 21, but that would be 

absurdly wasteful, The numerical Monte Carlo experiments were 

run according to 

Experiment 3. 

Each horizontal band i s  separated into cel ls  a s  shown in figure 17. 

At time zero a tes t  particle i s  placed a t  random in each cell  (a con- 

ventional random number subroutine i s  used). Pf the cell. a rea  in 

band ko i s  a(ko), then the number density of tes t  particles convected 



f rom band ko i s  p(k ) = a- ' (k ) At t ime t a survey i s  made of the 
0 0 

tes t  particles currently in each band k. If n(ko,k) of them originated 

in k (transitions like c + d  in figure 17 a r e  summed with transitions 
0 

like a +b ) ,  then an unbiased estimator of P(ko Ik) i s  

Notice B pe(ko 1 k) = 1 regardless of how untypical the particular 
ko 

experimental results  happen to be. The Monte Carlo estimate for 

the mean speed U(y ) at  yk. t i s  k 

for k not too close to the top o r  bottom bands. In practice that r e -  

striction meant that U(k) could not be estimated in the top or  bottom 

bands of figure 17, but could be estimated in the second to the top 

o r  bottom bands. Since transitions c +- d a r e  summed with transi-  

e e 
tions a + b 9  U (yk) = -f U (-yk) if Uo(yko) = + Uo(-yko) Thus five 

independent speeds a r e  obtained from the twelve band setup of figure 

e 
The estimate 'U (k) i s  refined by running the experiment many 

t imes and averaging the results ,  Placing tes t  particles in cel ls ,  

grading p fo r  maximum particle density near the vort ices,  and sum- 

ming a + b  and c +-d transitions help to minimize the variance of the 

estimate for small  times. If the particles were scattered a t  random 

in each band, the clustering characteristic of random distributions 

would occur. When the particles a r e  placed a t  random in band cells 



instead, the density over a band i s  stil l  uniform and the clustering 

i s  eliminated. The particles remain spaced apar t  until the turbulent 

motion itself scrambles them into a random distribution. Grading p 

puts the most particles where the most action is - near the vortices. 

Summing transitions like a + b  and c -F d exploits continuity to cancel 

untypical results.  If a particular se t  of vortices causes unusually 

many a + b transitions, then c + d  transitions a r e  unusually inhibited. 

La te r ,  when the a r r a y  of figure 17 i s  thoroughly mixed, none of 

these devices works. 

Suppose the initial speed difference between bands k and ko i s  

F rom equation 85, 

U (k) = [U (k) + ~ ( k  , k)] P(k I k) = uo(k) + 6U (k) , 
0 0 0 

where the speed change between times 0 and t i s  

and the fact that 22 P(ko lk) = 1 has been used. The estimated speed 
ko 

change i s  

A good estimate of the speed change is required. The square e r r o r  

of the estimate i s  



Once the mixing i s  thorough, the estimates pe(kbJk) and P(koIk) 

should be nearly independent for kb ko (they cannot be strictly 

e 
independent, since X P (k ik) = 1; however A(ko, ko) = 0, so some 

ko 
0 

of the slack is taken bp by the t e rms  with kb or ko = k which have 

zero  coefficients anyway). Then the mean square e r r o r  for one 

experiment i s  

Suppose p ( b )  = constant (the analysis for non-constant p is very  

complicated). Then 

where T(k) i s  the total number of tes t  particles in band k at  time t ,  

T ( k ) = x n ( k o , k )  

k 
0 

F o r  the t ime being, the arguments (k k), (ko lk), (k) a r e  dropped. 
o 

Define a random variable a a  such that for every point a in band k ,  

1-P, if  a came from k * o9 
a = a 

-P , if not . 



Since Pe = n / ~ ,  

a i s  independent of T ,  since the origin of a particular particle can- a 

not be biased by the total number of particles in the band if p(k ) = 
0 

constant. Thus 

where ( ) i s  an average over 7". But 

and if the mixing has been sufficiently thorough that the particle his-  

tories a r e  almost independent. 

Thus 

e for  large T. The mean square e r r o r  in 6U (k) i s  



2 
for thorough mixing. A (k) i s  the mean square deviation of the speed 

in band k from the original speed U (k). If Q experiments a r e  run, 
0 

the root mean square e r r o r  divided by the speed change to be meas-  

ured is  

That ratio must be small  for the results  to be meaningful. The ex- 

periments of subsection H show that h i s  much la rger  than bU, that 

i s ,  the vortices transport  x momentum rapidly, but the net transport 

i s  rather small.  The number of experiments Q and the number of 

points per band T in each experiment must be Barge, and the Monte 

Carlo technique is  barely feasible after the tes t  particles a r e  thor-  

oughly mixed. 

H.  Momentum Transfer  Experiments 

The momentum transfer  program begins an experiment by 

computing vortex strengths from random phase input data, and by 

locating test  particles in cells of a specified matrix using pseudo- 

random numbers generated internally, Once the initial conditions 

a r e  se t ,  the momentum transfer  program solves about the same 



mechanical problem a s  the flow visualization program.  Lengths, 

t imes and vortex strengths a r e  non-dimensionalized the same way. 

A vortex i s  convected in the field induced by the other vort ices;  a 

tes t  particle i s  convected in the field of a l l  the vort ices.  The cap- 

ture  cr i te r ion  t r ea t s  tes t  part icles  like vort ices of z e ro  strength. 

A tes t  particle i s  not annihilated when i t  i s  captured - it r ides  i t s  

captor vortex. If that vortex is  captured in turn,  the t e s t  particle 

passes  to the new captor.  The number of vort ices drops every 

t ime a vortex i s  captured, but tes t  part icles  a r e  conserved. The 

t es t  part icles  a r e  surveyed periodically to find the icurrent  band- 

t ransfer  data n(ko,k).  After the experiment has  been run with f resh  

random phases and pseudo-random numbers a s  many t imes a s  de- 

s i r ed ,  the accumuPated data a r e  passed through two data reduction 

programs.  

The f i r s t  program sums the n(ko,k) for  each survey over 

al l  the experiments and computes est imates of %'he band-transition 

probabilities P(ko Ik) by equation 86.  The P(ko Ik) a r e  related to a 

step-function approximation of the continuous transition probability 

P(yo 1 y). Define 

P(k  lk) 
0 

g(yo9y) = for  y E YE;BC 
6ko 

o ko9 

The expression 'yck' means y l i e s  in band k, i. e. , ( y k - 6 k / ~ )  _< y 

< (yk 4- bk/2). F r o m  equation 84, 



so g(yo,y) i s  constant over the rectangle y r k  yrk and equals the 
0 0'  

average value of P(yo l y )  there.  Plots of g(yo, y)  show the probability 

distribution for  original heights yo spreading away from the current  

height y&. Using data from al l  the experiments, the f i r s t  data 

reduction program gives estimates pe(k  lk) f rom which plots of 
0 

e 
g (yz, y*) can be made. 

The second data reduction program computes transition prob- 

abilities, speeds and speed changes for  each experiment using equa- 

tions 86 and 87. If the initial speed profile i s  l inear ,  U = Qy, then 
0 

the original vortex spacing X i s  still the only length in the problem, 

and U i s  non-dimensionalized on &?A: 

U u;': = - a%. ' 

The program averages the speed change estimates 6 ~ " ~ ( k )  over al l  

the experiments and computes empirical standard e r r o r s  

where Q i s  the number of experiments, 

Figures 18 and l 9  show the results  of the f i r s t  and second data 

reduction programs for nine experiments run with the same values of 

T * ,  o9 N ,  R ( 1 ) ,  T:k and F used to produce figures 16. T':% i s  the time 

between tes t  particle surveys, and F i s  the number of surveys. The 

cell  matrix,  with 12 bands and 180 cells,  i s  shown in figure 17. The 

band center locations y:R band heights 6* and tes t  particle densities 
k ' k 

p*(k) for the upper half of the matrix a r e  a s  follows: 



BAND Y :k 6 96 P :k 

1 7.1 1.8 .2778 

2 5.4 1 .6  .3750 

3 3.9 1 .4  .5000 

4 2.6 1 .2  .6667 

5 1.5 1.0 .9000 

6 . 5  1.0 1.0000 . 

The upper and lower halves of the matr ix  a r e  symqe t r i c a l  a s  shown. 

The non-dimensional length and height of the mat r ix  a r e  

Both a r e  large  compared with the distance the boundary is distorted 

up to t:k = 5. The original row of 45 vort ices extends 1 2  units beyond 

the vert ical  boundaries of the matr ix.  The transition probability 

est imates should be nearly the same a s  they would be if the tes t  par-  

t icles moved in a field t ruly homogeneous in z. 

e 
Figure 18 (i) shows g (y::, JT*) for  y::~ 2 plotted against y:k a t  

0 0 

t imes  t::: = 0 , 1 , .  . , ,5. Figures  18 (ii) and 18 (iii) show the same 

sequence for  yS%4 and y S ~ 4 .  At t::: = S p  the probability distribution 

over y':: given y ~ 2  i s  s t i l l  sharply peaked in band 2. The distribution 
0 

i s  much more  diffuse f o r  y ~ 4 ~  and fo r  y ~ 6 ,  the probability has  spread 

almost  uniformly over the band occupied by the vort ices (cf . figures 

16). F igures  19 show the speed change est imates for  an 

initially l inear  shear  profile a t  t imes  t* = 0, , . . ,5 .  Es t imates  in 

the top band a r e  impossible,  because fluid without tes t  part icles  
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intrudes there;  no points a t  y:: = 7.1 a r e  shown. The heavy dots 

represent  estimates averaged over the nine experiments, the ve r -  

tical lines represent  standard e r r o r s  of the mean computed from 

equation 88, and the shaded bands represent  speed change profiles 

a s  nearly a s  they can be specified. The oblique line d U *  = -y* 

corresponds to fully stopped flow. The nine experiments took 20 

minutes on a n  IBM 7094 computer. 

No analytical theory can predict the curves of figures 19. 

A comparison of figures 16 and 19 shows that the speed change max- 

imum and strong vortex dipoles propagate into the shear flow to- 

gether. The time scales for  Reynolds s t r e s s  generation and mean 

flow change and for convection of turbulence in its own random 

field a r e  the same. The maximum speed change a t  t*: = 5 is  

- d U +  - .4+. 5 in band 4. The original speed there i s  U* = 2 4  3.2, 
0 

so the mean speed changes about 2070. The las t  graph of figure l 8 (ii) 

shows that the dispersion of the speed about its original value in band 

4 is A*(4) - 2 a t  t*< = 5. By t:: = 5, the speed range in band 4 is a s  

large a s  the mean speed there ,  yet the mean speed change i s  small. 

It  i s  surprising that flows a s  inhomogenesus on y a s  the flow in 

figure 16 could mix fluid columns a s  well a s  figures 11 8 show with 

such a small  net transport of momentum. 

Before the vortices have mixed the tes t  particles thoroughly, 

the use of cel ls ,  grading of p ,  and summing of transitions like a + b 

and c + d  in figure 17 keep down the standard e r r o r s  in speed es t i -  

mates. After thorough random mixsing s f  the tes t  particles, the 

e r r o r s  cannot be reduced below the prediction of equation 87.  About 
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20 test particles occupied band 4, and 20 more  occupied its comple- 

ment,  band 9. Since transitions a b and c -+d a r e  summed, the 

speed estimates in band 4 a r e  based on ( T(4) )  - 40 particles per 

experiment and Q = 9 experiments. The theoretical prediction of 

the standard e r r o r  after thorough mixing i s  

from equation 87 (equation 87 was derived for p(k) = constant, but 

it i s  accurate enough for a crude estimate like this).  The second 

data reduction program computed the following empirical standard 

e r rors :  

By t::: = 4, the fluid in band 4 i s  mixed well enough for equation 87 

to be valid. As A+: grows with t ime,  the accuracy of a mean speed 

e stimate drops, Since the vortices mix fluid columns thoroughly 

without having much effect on the mean flow, the expected e r r o r  of 

a speed change estimate grows more  rapidly than the speed change 

itself. The Monte Carlo method is time limited for practical pur-  

poses. There i s  no point in carrying the experiments much beyond 

t* = 5- 











FIG. 89 (i) SPEED CHANGE PROFILE 



FIG. 19 (ii) SPEED CHANGE PROFILE 



FIG, 19 ( i  i i 1 SPEED CHANGE PROF1 kE 



6. Summary 

This  chapter began with the assumption that the propagation 

of turbulence through a rapidly shearing flow depends pr imar i ly  on 

random stretching of mean field vorticity. Reynolds s t r e s s  was taken 

a s  the mechanical signature of random vorticity in a shear  flow. 

Rapid shearing means ff << d., where I! i s  a fluctuation speed, L i s  

an  eddy s ize ,  and 52 i s  a typical mean vorticity. The equations of 

turbulent motion were  linearized under the assumption I!/<< 52L, and 

the history of the Reynolds s t r e s s  a (y ,  t )  acting on a mean flow 

U(y) = 52y in the x direction was studied. The original random vor - 

ticity was assumed to be generated a t  t h e  ze ro  by impulses homo- 

geneous in x ,  z and concentrated near  y = 0.  Turbulence near  y = 0 

was expected to catalyze the growth of random vorticity further  out 

by stretching mean vorticity so that the turbulence would grow stead- 

ily more  intense and propagate further  and further  through the mean 

flow. But the Reynolds s t r e s s  was found to re lax  into a steady dis - 

tribution a s  Qt 300. AS f a r  a s  the Reynolds s t r e s s  i s  a measure  of 

turbulent intensity, random stretching of mean vorticity alone cannot 

yield steadily propagating turbulence. 

The problem was simplified next by assuming that a l l  flow 

propert ies  a r e  independent s f  x. In that case ,  the eddy motion in 

the y , z  plane i s  independent of the x momentum i t  t ranspor ts ,  and 

the mean speed U(y, t )  i s  diffused like a passive scalar .  The equa- 

tions of motion were  partially linearized by neglecting convection of 

eddies in the y , z  plane, and wave equations for  o (y , t )  and U(y, t)  were  

derived. The solutions a r e  worthless ,  however, fo r  t imes t'>L/I/. 
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Turbulence artificially steady in the y , z  plane exer ts  a steady grip 

on the mean flow and forces U to become independent of y over a 

l a rger  and larger  interval -Y(t)< y < Y (t).  In a real  flow the eddies 

disperse a s  fast  a s  U diffuses. The core of the problem was found 

to be convection of eddies in their own random field. 

The chapter ended with numerical turbulence experiments 

designed to find how quickly concentrated vortex columns parallel 

to x disperse over the y, z plane under their own induction, and how 

effectively they diffuse U(y,t).  The ra te  of e r r o r  accumulation was 

analyzed carefully. The mean square e r r o r  of the computed location 

of a vortex was found to diverge exponentially with time according 

to a generalized random walk equation. Detailed vortex Potations 

a r e  unimportant in a turbulence experiment; compqted trajectories 

must not diverge too rapidly from current  physical t rajectories,  but 

the accumulated displacements of computed locations from actual 

locations can be large. It was shown, however, that unless a lower 

limit on the distance between any two vortices i s  imposed, the 

velocity of e r r o r  drift  can dominate the flow velocity no matter  

how small a time increment is used in the computations. Vortices 

which approach each other closely must be united. Uniting vortices 

during the computations was justified by finding a capture c ross  

section for  the interaction of two vortices in a strain field. Numeri- 

cal flow visualization and momentum transfer  experiments confirmed 

the result that columnar eddies disperse a s  fast  a s  they transport 

momentum. In case the flow properties a r e  independent of x ,  the 

t ime scales for non-linear convection and turbulence propagation 



a r e  the same,  and no analytical solution for the propagation is  pos - 

sible. That does not mean that the time scales for propagation and 

non-linear convection a r e  the same in more  real ist ic  situations 

where turbulent quantities depend on x. The t ime scale for  the 

propagation of random vorticity of strength b/L through a field 

- 1 
of mean vorticity 52 i s  not a s  short  a s  52 , a s  originally expected, 

but it  may not be a s  long a s  L 10. Weak interaction among turbu- 

lent eddies may f ree  the Reynolds s t r e s s ,  steady for  t>> $2-I under 

the linear approxirn ation, and allow i ts  gradual diffusion, 
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APPENDIX A 

Evaluation of L..  (k, k ) 
1J 02 

The equation to be integrated i s  

where 

2 2 2 2  and k , k a r e  fixed. k is kl t k2 + k3, and kl ,kg  will often appear 
1 3  

2 2 2 
in the combination kl + k3 = 1 . Thus 

and by the initial condition, L21 = 0. Then 

so L1 = 1 .  It  can likewise be shown that L31. L1 3, Lz3  = 0 and Lg3 = 

1. L22  satisfies 

Integration and use of the initial condition L (k k ) = % gives 22 02' 02 
2 2 2 

L22  = k:/kZ9 where ko = I + koZ. Then L I Z  satisfies 

and since L12(ko2, koz) = 0, 



where 

f 0 - 1  x tan $ - ) - -  2 2- 
l 2  (1 tx ) 

- 1  1 - 1  1 [ e l  = tan (-) - tan - 0 St3 ST , 
k2 k02 

k2 

02 

and 

In the same way it can be shown that 
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APPENDIX B 

Evaluation of the S t ress  Integrals in the Vortex Sheet Problem 

From equations 27, 

where 

But 

O(kl.k3) i(ko2fkb2)y 

2 
e dkb2kdo2dkldk3 . (Bl) 

n 

From equations 21, 

and since 8 i s  the Fourier  transform of a rea l  function symmetric 

with respect  to changes in sign of i ts  arguments, 



Reversing the signs of kl and k and switching the ro les  of ko2 and 3 

kb2 a l t e r s  the right hand side of B1 by a change of sign only, s o  

The integral  over kb2 in I2 may be ca r r i ed  out a s  follows: 

- e 
dkb2 - dk' 

02 
-a -00 

f rom Dwight [ 7 ]  , p. 224. The integral over ko2 i s  

where 

f rom the definitions below equation B 5. Substitute 



K can be regarded a s  a function of 5 satisfying 

since the integration i s  the same as that which led to 432. Thus 

From equations B2 and B 3 ,  

The symmetry property of O was used twice. Since o = I  +( +I )= IZ. 2 5 3  

equation 28 in the text has been verified. 
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APPENDIX C 

Proof that Eauation 31 i s  Valid in the Limit a t  +oo 

The t e r m s  dropped from equation 31, analogous to I1 and I3 

in the vortex sheet problem, a r e  

Under transformations 32 and 33, these become 

Both integrals converge for large 8 even when the limit %1$ +GO i s  



taken before the integrations a r e  performed explicitly. Thus a s  

Stt +co, 

Thus J1 is  0($2t)-' and J g  i s  O(&?tleL a s  &?t - roo .  It may seem incon- 

sistent that these integrals cancel in the vortex skeet problem when 

they appear to be of different o rders  of magnitude in the limit Stt+a3. 

The answer i s  that in that special ease AO ( P ' l , 0 9 p 2 ,  1 )  is ze ro ,  and 
2 1 

Ai l  i s  itself ~ ( S t t ) - '  under transformations 32 and 33.  



APPENDIX D 

Singular Perturbation Solution for s (q  , T ) ,  r ( q  , T )  

The object i s  to solve equations 45, 46, 47 for  a l l  q and r 
N 

It i s  reasonable to use an  expanded time coordinate T = T/€ and to t ry  
N N 

to find asymptotic ser ies  expansions of s (q  , T;€ ) and r ( r l ,  r; E ). The 

wave equations 45 a r e  

in t e rms  of the expanded coordinate, and equations 46 and 47 a r e  un- 

changed. Expand s and r a s  follows: 

The initial conditions of equations 47 a r e  

When coefficients of separate powers of C a r e  se t  equal to zero in 

the expansions of equations DB, the following system results: 



The equations have been solved step-by-step using the expanded 

initial conditions. Thus the power se r ies  for s and r begin 

equations 48 in the text. The ordering breaks down near  n - E ,  and 
CV 

i t  i s  necessary to use an  expanded space coordinate 7 = q / ~ .  The 

wave equations become 

sketch, and i t s  expansion around / 
r, = 0 begins 'l 

CY C* N m, 

The ' inner'  expansions of s (q ,  T;€) and r (q ,  T;E) begin 

w N lu '-4 2 - -  
s = S o ( ? . ~ )  + ~ S ~ ( r l . r )  + B S2(q.-r) + e v e  . 

N N N m 2 " "  
r = Ro(q , r )  + tR1(q9r)  + E R2(qI T) + . .. . 

The expanded initial conditions rare 

W (V (Zs 

R (;,o) = 0s R1(;yO) = '1, RZ(q90)  = R3(q90) = s e e  = 0 y 
0 

IU N 

S0(q90) = S1(q.O) = . * .  = 0. 



The dependent variables r and s have been expanded in two fo rms  

suitable for  ' inner '  and 'outer '  intervals of q ,  

N N N N 

( inner)  a = Ao(q , r )  f eA1(q,r) f ... , 
w N 

(outer)  a = a ( q , ~ ) +  e a l ( q , r ) +  - 0 -  , 
0 

where a represents  ei ther  r o r  s .  The matching conditions between 

such expansions a r e  

N N N 

Lim Ao(q, r)  = ao(O. r) , 
l{l+m 

Thus, f rom the outer solutions 48 and the expansion fo r  g ,  

k i m  S = 0 9 
0 

1; l+m 

k The coefficients of E" and E in the expansions of 132 a r e  



The solutions a r e  

2 
from the expanded initial and matching conditions. The O(E ) set  

of equations i s  finally 

These equations contain the rn ean field approximation correction to 

the linear results ,  The equations can be solved by the method of 

characterist ics,  Some geometrica,B quantities are shown in the 

sketch: 

Substitute 



By adding and subtracting the transformed wave equations, the equa- 

t ions  for  the evolution of R2 t S 2  and R 2  - S2 along the characteris-  

t ic  s specified by u and v a r e  obtained: 

Thus 

N '-4 

u and v switch signs in the four regions A ,  B, C , D of the q -  T diagram, 

so the integrations must  be carr ied out separately in each region. 

In region A,  for example, u > 0, v > 0 ,  and the absolute value signs 

i n  the integrals can be ignored, The result is 

In region @, u > 8, v < O 9  but utv > 0. Thus the quantity vf x switches 

sign as x i s  integrated from v to uc The result i s  

The results  in regions C and D can be found immediately from the 

sylinmetry of s 'and antisymmetry of r on q ,  Thus the inner expan- 

sions begin 



H ff 

in regions A and D outside of the characterist ics leaving (q, T) = ( 0 , 0 ) ,  

and 

in regions B and C between those characterist ics,  Equations D3 a r e  
m 

the limit of equations 48 for  q = r q  - E. Thus equations 48 a r e  the 
(V N 

correct  expansions wherever r) > -re F o r  q < T, o r  r] < T, equations 

49 a r e  valid and represent the effect of mean flow distortion lost in 

the linear approximation. 
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APPENDIX E 

Derivation of T(4) and +(y, 0) for the Steady Vortex Street  

Complex variables with the sign conventions of Lamb [ lo]  a r e  

used. Thus the location y , z  i s  assigned a complex number Z = zt iy ,  

and and \CI a r e  written a s  a complex potential W = Q, t i+. The com- 

plex potential for an infinite row of vortices of strength k located at  

z = 0, - t B ,  2 2B,... i s  

ik nZ W = - log sin , 2n 

from Lamb. The potential for the vortices of alternating sign spaced 

X apar t  i s  then 

w=- nZ i k  log sin - - - nZ log sin '(Z-h) = ik log (-tan 
211- ZX 271- 2h 2n 

Thus 

In particular 

k 
si." 

C(y9 0) = log 
1 t cash 

9 

which is the second of equations 51 in the text. The complex velocity 

is  

d W  - w-iv = - - - ik/4X 
dZ nZ nZ 

sin z c o s  

The expression for  W(Z) can be inverted to give 



and the complex velocity can be written a s  a function of W: 

- ik w-iv = - 2aW 
2 h  

cos - 
k 

The square of the speed i s  

Thus 

k2 aW ::: 
v 2 = -  2aW cos - 

4X 2 COS - k k 

k 2 
- - - cos - 27T ( w ~ w * )  + cos -i; E a  (W-W* 

k 9 

8h2 

from Dwight [ 7 ] ,  p. 79.  h t e r m s  of QP and +, 
2 kZ v (QP,+) = - cos 

8h2 

The orbi t  t ime T($) is then 

f rom equation 50 of the text, where 

a = cosh * >  l e  
k 

F r o m  Dwight, p,  105, 



Again from Dwight, p. 152, Z lsinh x cosh x l  = fx , and 

which i s  the f i r s t  of equations 51 in the text. 



APPENDIX F 
n 

Derivation of the Mean Square E r r o r  Velocity $ 
"E , 

- 

Write the convective part  of the acceleration 

Then v = - Ta / 2 ,  Equation 68 is  
c -'C 

F rom the definitions of q G i 9  r i' 

where 

Similarly 

where (i, j ; q )  i s  the same a s  ( i ,  j;5) except that t he  roles of q and 5 

a r e  reversed. Thus 

If the vortices a r e  distributed symmetrically around y, z ,  then a = 0. 
-'C 

If the location of each vortex i s  independent of i ts  strength, 



- 
k.k.k k 

-' c i j m n  
64s i j m n r .  r .  r r 

i j  m n  

If k. and k. a r e  independent for i # j , 
1 J 

Thus 

From the definition of the brackets,  

Thus 

If the vortices a r e  distributed isotropically around y, z ,  then quan- 

4 4 
t i t ies like ~ . 5 . / r .  r a r e  zero unless i = j, and 

1~ n j  



- 
2 2  = r a /4, equation 70 in the text follows immediately. 
"C 



APPENDIX G 

Motion of the Center of a Continuous Vorticity 

Distribution in a Uniform Translation and Strain Field 

The speed of the center of vorticity in the y direction i s  

since vorticity i s  conserved. But 

where the varticity convection equation and continuity equation were 

used. If the vorticity 5 goes to zero  sufficiently fast  toward infinity, 

a 
Y py (v5) dydz = - v6 dydz 

Thus 

Since the velocity field consists of a uniform translation plus a 

s train plus the velocity induced by the vorticity distribution 6, 



where r 2  = ( Y - ~ ' ) ~  + ( z - z ' ) ~ .  Then 

The las t  integral i s  zero since it switches sign when the dummy var- 

iables y and y' a r e  exchanged. Division by . f $ d ~  gives 

? = v + ~ Y .  

e 

The equation Z = W - cuZ follows from a similar  argument. 


