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ABSTRACT

1. The Spanwise Perturbation of Two-Dimensional Boundary Layers

Large spanwise variations of boundary-layer thickness have
recently been found in wind tunnels designed to maintain two-dimen-
sional flow., Bradshaw argues that these variations are caused by
minute deflections of the free-stream flow rather than an intrinsic
boundary-layer instability. The effect of a small, periodic trans-
verse flow on a flat-plate boundary layer is studied in this chapter.
The transverse flow is found to produce spanwise thickness variations

whose amplitude increases linearly with distance downstream.

2. The Turbulent Rayleigh Problem

Rayleigh flow is the non-steady motion of fluid above a flat
plate accelerated suddenly into motion, Laminar Rayleigh flow is
closely analoéous to laminar boundary-layer flow but does not involve
the analytical difficulty of non-linear convection. in this chapter,
turbulent Rayleigh flow is studied to illuminate physical ideas used
recently in boundary-layer theory. Boundary layers have nearly
similar profiles for certain rates of pressure change. The Rayleigh
problem is shown to have a class of exactly similar solutions.
Townsend's energy balance argument for the wall layer and Clauser's
constant eddy viscosity assumption for the outer layer are adapted
to the Rayleigh problem to fix the relation between shear and stress,
The resulting non-linear, ordinary differential equation of motion is
solved exactly for constant wall stress, analogous toc zero pressure
gradient in the boundary-layer problem, and for zero wall stress,

analogous to continuously separating flow. Finally, the boundary-
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layer equations are expanded in powers of the skin friction parameter
v = 1/72_ , and the zeroth order problem is shown to be identical to
the Rayleigh problem. The turbulent Rayleigh problem is not merely‘

an analogy, but is a rational approximation to the turbulent boundary-

layer problem,

3. The Propagation of Free Turbulence in a Mean Shear Flow

This chapter begins with the assumption that the propagation
of turbulence through a rapidly shearing flow depends primarily on
random stretching of mean vorticity. The Reynoldsf stress o(y,t)
acting on a méan flow U(y) = Qv in the x direction is computed from
the linearized équations of motion. Turbulence hoﬁogeneous in x,z
and concentrated near y = 0 was expected to catalyze the growth of
turbulence further out by stretching mean vorticity; but o{y,t) is
found to become steady as 2t —> . As far as Reyqolds stress is a
measure of turbulent intensity, random stretching 6f mean vorticity
alone cannot yield steadily propagating turbulence.

The problem is simplified by assuming that all flow proper—
ties are independent of x. Eddy motion in the y,z plane is then
independent of the x momentum it transports, and the mean speed
U(y,t) is diffused passively. The equations of motion are partially
linearized by neglecting convection of eddies in the y,z plane, and
wave equations for o(y,t) and U(y,t) are derived. The solutions are
worthless, however, for large times. Turbulence artificially steady
in the y,z plane forces the mean speed gradient steadily to zero. In

a real flow the eddies disperse as fast as U diffuses,
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Numerical experiments are designed to find how quickly con-
centrated vortex columns parallel to x disperse over the y,z plane
and how effectively they diffuse U, It is shown that unless a lower
limit on the distance between any two vortices is imposed, computa-
tional errors can dominate the solution no matter how small a time
increment is used., Vortices which approach closely must be united.
Uniting vortices during the computations is justified by finding a
capture cross section for two vortices interacting ina strain field.
The experiments confirm the result that columnar eddies disperse

as fast as they transport momentum.
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I. THE SPANWISE PERTURBATION OF TWO-DIMENSIONAL
BOUNDARY LAYERS

1. Introduction

In a series of wind-tunnel tests under nominally two-dimen-
sional conditions, Klebanoff and Tidstrom [1] found quasi-periodic
spanwise variations of boundary-layer thickness of order +8%,
Recently the phenomenon recurred in a National Physical Laboratory
tunnel specifically designed for the study of two-dimensional boundary
layers. Bradshaw [2] sought a remedy as well as an explanation and
found that these variations could result from lateral convergence or
divergence of the flow downstream of slightly non-uniform settling-
chamber damping screens. A rough analysis suggested that a bound-
ary layer is surprisingly sensitive to spanwise velocity variations.
The thickness variations found by Klebanoff could have been produced
by variations in the free-stream flow direction of around 0. 04 de-
gree, much too small to be measured directly. This chapter is a
rigorous analysis of the effect of a small, periodic spanwise com-
ponent of velocity on the boundary layer of a flat plate. The flow is
assumed to be incompressible, steady and laminar.

Three-dimensional effects in the boundary layer will depend
on the transverse flow field chosen for the incident flow. Suppose
UO characterizes the chordwise component of free-stream flow,
yUO the amplitude of the transverse perturbation. Suppose the fre-
quency of the spanwise flow is specified by a wave-number k. The
Reynolds number of the perturbation is then

R =yUg/kv .
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If Bradshaw's explanation is correct, the value of R corresponding to
Klebanoff's data can be computed, and it is found to be around 3. It
is not surprising that R is of order 1, since the transverse velocity
variations are supposed to arise from the non-uniform drag of damp-
ing screens—a viscous phenomenon to begin with. R will be regarded

as a parameter of order 1 throughout the analysis.

2. Statement of the Problem

The momentum and continuity equations are

y.-VUu-= -Y§-+ szg,
V-.-Uy=0,

for a steady, incompressible flow field U = (U,V,W). The coordi-
nates and physical situation are shown in figure 1. For a character-
istic speed UO and perturbation wave-number k, the following

non-dimensional variables are appropriate:

(g:n’ Q) = (kX,ky,kZ),

i = (L L )
0 0 0
b= P
P,
PU

The equations of motion in non-dimensional form are:

(£ -momentum) uu&g + vu,q + Wué = —pg + ez(uéé + uTm + ugg),
(n-momentum) uve + vV + Wy, = -pp + 62(vgg + - + Vgg) ’

({-momentum) uwg + *vwn + WWC: -p€+ 62(W§§+Wnn+wgé) .

{continuity) ug + 2 tw, =0,

4
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where 62 = vk/UO. If vy is the amplitude of the angular variation of

free-stream flow direction, the perturbation Reynolds number is
2
R = yUO/kv = y/e“~ O(1).

In Klebanoff's experiments y was typically 0. 40°~ 0,001 rad., so €
was about 0.02. In this chapter € is used as an expansion parameter
in a perturbation scheme.

The boundary condition at the plate is
(u,v,w) = (0, 0,0).

The upstream flow can be specified in any convenient way as long as
the field chosen carries the desired transverse perturbation and is
an adequate approximation to a solution of the equations of motion.

Let the expansions for u and w in the outer flow begin

u=1+ ...,

€
0

9
ycos {+ ... =Re“ cos L+ ....

3. Solution Far Upstream

The velocity components above cannot be worked into a uni-
formly convergent solution to the equations of motion. Since the
Reynolds number of the perturbation is of order 1, the transverse
field of the incident stream must decay under the action of viscosity.

Suppose we try a solution of the form

u=1,

i

v R(C‘,)ezn sin C,

W = R(g)e2 cos {,
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where v has been chosen to satisfy the continuity equation. The

approximate momentum equation

2
= € +
443 B * Sy
is satisfied for

2
R(E) = Roe"6 £

In fact, a uniformly convergent approximate solution to the equations

of motion is

4

1 +0O(7),

Rez’q sin{ + 0(64),

w = Res2 cos { + 0(64),

1l

u

i

v

2 6

p=py+ iR%*(sin’t-n?) + O(e®),

for that R(§).
An expansion of the outer solution in powers of € cannot be
uniformly convergent. But such an expansion converges over an

arbitrarily large interval Af, where
2
AE < 1/e?

As long as attention is confined to such an interval Af, a straightfor-
ward expansion in powers of ¢ can be carried out, and the upstream

boundary conditions may be taken as

a=1+o0(%h,
v = Rezn sin{ + 0(64),
W= Rezcos L+ 0(64)9
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where change in R is now contained in the 0(64) corrections.

4. Outer Expansion

Let £, n, { remain fixed, and allow € to tend to zero. The

dependent variables are expanded in powers of € as follows:

]

W=l e (E,m,0) + €2, (E,m, L)+ Len,

egl(g’n’ é) + Ezgz(gyn: (7) + s e w3

v
2
w=Re cosl{ + ...,

p=pytep(E,m L)+ ezpz(é,n,z‘,) ...

When the coefficients of consecutive powers of € in the equations of

motion are set equal to zero, the following system of equations

results:
£ momentum
O(E) flg = 'plgs (1)
2
{ \ - -
Of(e”) flflg + fzg + glfln Pog- (2}
N momentum
O = - s 3
(E; g]_g pln (3)
O(e”™) flglg + gzg + glgln = "p2n° (4)
{ momentum
Ofe) Py = 0, (5)
o(e?) Py = 0. ~ (6)
Continuity

o(e?) fh¢ + gy, - Rsint = 0. (8)
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No boundary conditions are available at the plate. The outer
expansion must be matched to an inner (boundary-layer) expansion
there. In accordance with the discussion of the previous section, the
conditions far upstream are fl ,fz,f3,g1 —+ 0. 'Far upstrveam' means
-£> 1; we cannot really permit -§ = o, since the expansion form

assumed is valid only in an interval Af <« e 2.

5. Inner Expansion

An expanded boundary-layer variable '1:; = n/€e must be used to
bring out the behaviour of the fluid near the plate. Then let §, ﬁ, ¢
remain fixed, and allow € to approach zero. The dependent variables

are again expanded in powers of €:

u = Fo(é,ﬁ,é) + eFl(é,ﬁ,C) + eze(é,ﬁ,C) UEERY
v = eGl(é,%,é) + esz(gpﬁaé) tooees

w= €2H (£, 7,0 ...,

p=pg+ €P(E,7,L) + €2Py(£, 7, L) + ...

The equations of motion split up into the following system:

£ momentum

O(1) FOFO§ + GIFOR = FOE% ) (9)
Ofe) FiFoe t FOFl& + GZFOﬁ + GlFﬁ = ‘P1g+F1?1'?1' s (10)

2 o~ ~ ad
O(e”) FFoptF F  tFF o +GF o2t GoF o GoF o

+ = - P AF et . 11

HaFor 2t Foge T Fannt Fogy (11)
1 momentum

o(l) Plﬁ =0, (12)

O(e) TF.G +GG~=-P._~+ G~ 13)

071E "1 1m 2n inm



{ momentum

o) P, =0, (14)

o(e?) FoHyg + GHyy = Py, + Hyxe (15)
Continuity |

O1) Fy, + Gz =0, (16)

O(e)  Fpp+ Gyy =0, | (17)

0(e?) Fyg + Gyy + Hyy = 0, | (18)

At the plate all terms in the expansions of u, v, w are zero.
Further conditions are provided by matching the inner and outer so-

lutions in an intermediate region where they are simultaneously valid.

6. Matching’

The forms assumed for the inner and outer expansions are
valid only if the solutions based on them can be matched. Since
matching must be done step-by-step in the analysis which follows,
general equations for the procedure are derived here.

Consider the inner and outer expansions of any dependent

variable a:

(inner) a Ené)+eA(§né)+eA(§n§)+”.,

ao(gvnsé) + ea—l(§9n9§ + € 32 ﬁ,‘q, f_,) S S

{outer) a

The matching is done on an intermediate variable n* = n/Xx (€) such

that, for n* fixed and ¢ — 0,

E

A
=

n:k(e)n*—»O’ n: T]"—bOO‘.

The outer solution may be expanded around n = 0 in the form
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= ES % i . 2 2
—ao+?\n a0n+Eal+€7Ln a, +;(7\,n ) a +e“a,t ...,

n Onn 2

where the arguments of each function on the right are (£,0,0). The

inner solution has the form

a= Ao(é, %n*,é)%Al (f;, %n*,é) + ezAz (ﬁ, %n*,§)+ cees

In order for the two expansions to match for n* fixed and € — 0, the

following conditions must hold:

A0(§’Q09 g) = ao(g, 0, L)’

it

Jlim A (£,1,8) = Mag (6,0,0) + a,(£,0,0),
mn— o

lim Ay(£,7,0) = 37
n o

1

2 g6 0> L) TIay (€, 0, L)+ay (8,0, ).

7. Initial Steps in Solving the Problem

The solution must be carried to second order in € to show the
most interesting effects produced by the transverse field of the inci-
dent flow. The program can be carried out by finding solutions to a

sequence of groups of the equations (1)-(18). The functions FO’ Fis

G, G,, H

1, 2! z,f

17 f2, 81+ 89 aTe found that way in the five steps of this
section. That is preliminary. The effect of the transverse field on
the chordwise flow is uncovered only when F, is found, and that is

2
deferred to §8.

At the beginning of each of the steps below the ingredients
needed are listed—the equations from the system (1)-(18), the bound-

ary conditions, and the matching conditions.
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First step—determining FO and G1
equations: (9), (16)
_ boundary conditions: Fo(g, 0,¢) =0, (a)
GI(E:O:C) =0, (b)
matching condition: FO(S,,oo,?;): 1. (¢)

Let FO = ‘I’ﬁ Then equation (16) becomes

g~

+ G~ = 0.
nt  ln

Hence Gl = —\Ilg + fn(ga g)’

where fn(£, () is zero if (b) is satisfied by putting ‘Pg(g,o, L) = 0.

Equation (9) becomes

U~ O, - b, G = Yo
nomg TETMM T mmm

Set w=vaa]mn s = 1 /V(2¢).

Then }(s) satisfies
}IH + }_}711 = 0,
FO and G1 become

FO=]WQ,

G, = (t/V(26)[s F (s) - F(s)]
so conditions (a), (b}, {c) are
F1(0) = F(0)= 0, F'(co) = 1.

~;(s) is thus the Blasius function. Suppose (8 is defined as follows:
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lim }(s) =s-8.

s > 00

Then

lim Gy(&,m) = (1/V(28) lim (s F'-F) = g/ V(28).

n - oo s =»00

Notice FO and Gl do not depend on &.

Second step—determining H,
equations: (5), (6), (13), (15)
; boundary condition: Hz(g, 0,¢) =0, (a)
‘matching conditions: Hz(g,oo,é)=Réos§,, (b)

Jim P,(£,7,0) =Tpy (6,0, p,(£,0,0). (@)
n —~oo

The matching conditions here, as elsewhere, are applications of the
general matching equations derived earlier. (c), for example, is
the second-order matching condition for p with p(him = 0., Equation

(13) may be written

P~=G~~"FG§"G

2n” T1am T 071 G5

171

Since FO and Gr1 do not depend on ¢, PZ%Z_, = 0, so PZQ = fn(§, ). Dif-
ferentiating (c) on { and using equations (5) and (6) yield lim P2§= 0.

n >0
Thus

pZt_’,:O

everywhere, Equation (15) then becomes

FOHZE + G1H2a= Hzﬁ'ﬁ s

which is the same as equation (9) if HZ = fn(L)FO(é,'ﬁ). The solution
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satisfying conditions (a) and (b) is

H2 = RFOcosg = RJ'(s)cosl’, .

Thus the spanwise flow follows the Blasius profile to the order con-

sidered,

Third step—determining fl’ g; and Py

equations: (L), (3), (5), (7)
boundary conditions: f1.8,~ 0 far upstream, (a)
matching condition: G, (£, 00) = g;(£,0,8). (b)

Equations (1) and (3), f1§ = -p1§ and glf__‘, = —P?lﬂ’ combine to

give the equation for conservation of spanwise vorticity,
-f = 0.
(Bre1n)e
By the upstream conditions (a),
-f. =0,
€167
Equations (1), (3) and (5) then imply
P = —fl .

Since the spanwise vorticity is zero, there is a potential function ¢

such that
fl = (bg; gl = ¢n s
and equation {7) becomes

bge + by = 0.
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Condition (b) and the expression for Gl(g,oo) found in the first step

give
¢n(§, 0) = B/V(28)

over the plate. ¢ is thus the linearized potential for flow around a

thin parabolic cylinder (van Dyke [3]). The solution satisfies
fl(gs 0) = "Pl(g, 0)=0

next to the plate, and fl and g; do not depend on §.

Fourth step—determining F1 and C_r2
equations: (10), (12), (14), (17)
boundary conditions: Fl(é, 0,¢) =0, (a)
Gz(g,o:é) =0, (b)
matching conditions: Fl(g, 0, )= fl(f_},, 0) =0, (c)

Pl(g’ 0, ;): pl(g’ 0)=0. (d)

Since equations (12) and (14) imply P1 = Pl(«f,)9 condition (d) requires
P1 = 0. Equations (10) and (17) are thus homogenebus and linear in
Fl and Gz, and the only solution compatible with conditions (a), (b)

and {c) is

Fifth step—determining fz, g9 and Py
equations: (2), (4), (6), (7), (8)

boundary condition: f2 —0 far upstream, (a)

2

matching condition: ?]gln(g,Ong(g,O, L) =~1im G, =0. (b)
 —*o
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By equation (7) = -f ., and from the third step f,(§,0)=0,
€1n 1£ P

Hence

gln(g’ 0) = os'

and (b) becomes

g9(£,0,%) = 0.

In the third step it was shown that f. = gl&’ so equations (2), (4),

In
(6) and (8) can be written

fzg = {%(fl + gl) + pz}ga
gzg = - {%(ff + g1 ) + p9}7§ s
ng-_: 09

f2§ + 89 = Rsinl,

and the solution satisfying conditions {a} and (b) is

£, = 0,
- R ,
Py = ~3lf] + gp)

8. Final Steps to Determine ¥y

In the last section it was shown that the first-order correction
to the chordwise boundary-layer profile is zero. If the theory is going
to account for the large boundary-layer thickness and shear variations
observed by Klebanoff and Bradshaw, those effects will have to show

up in the function Fy yet to be calculated. The trouble is that even in
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the strictly two-dimensional case there is a second-order correction
to the Blasius profile. Since the perturbation equations are linear
in the functions still uncomputed, solutions can be superposed, and
the contribution of the transverse field can be separated from the
two-dimensional part of the solution. The two-dimensional part de -
creases toward zero downstream, but the part driven by the trans-

verse field increases rapidly.

{The pressure function PZ}
By means of the expressions for FO and Gl derived in the last section,

equation (13) can be written
it 1] 7
PZNZ’-—J———?[] +S}2-]]]0
2v(2) &

Pzg was found to be zero., If PZ takes the form

P, = R(s)/t,
then A must satisfy
R=31F+sF2-371.

]
As s > o0, R ~% B, and the form assumed for P_ is valid only if that

2

limit is compatible with the matching condition

Nlim PZ =np1n(§s 0) + pz(gs 0)°
n—" o

But from equation (3) and the work of §7

Pln(gs 0) = 'glg(gs 0) = z‘Glg(gsOO) ";,B/ Zg'\/(Zg:)s
pz(g,o) = ’%gl(gs 0) = - B /4-'&9
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Hence

Jlim P, = Bs/2£ - p%/4t,

‘”l o
which is compatible with the form assumed earlier if the constant of

integration for R is chosen such that
Ris) —1 12
(S) ZBS - 4 B aS S - C().

{Transformation of the equation for FZ}

Since Fl = C‘:2 = FOQ = 0 and HZ = RFocos {, equations (11) and (18) are
FoF g ¥ FpFge + GIF p7 + GuFg = ~Pp + Fop + Fyr

F +G~=Rsin§F0

2§ 31

Let F \I'~ as before, and let FZ X;- Then the continuity equation

becomes

Xg""" G ~=Rs;n &‘I“’
Hence

G, = Rsin{ ¥- Xg fn(g, L)

and fn(§,0) = 0 if the boundary condition G3(§, 0,%) = 0 is satisfied by

rquiring xg(g, 0,¢) = 0., Now transform

(€. n.L) = (E.s,L), s =7/ W28),
in the momentum equation. Thus

x(E,m, L) = X(E,s,0) ,
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and FO’ G1 and P2 are already known in terms of the new variables.

The equation becomes

X_ o+ ]XSS- 26 F Xt 2¢ F X, + I X_

S8

rojw

Roint 77 - B[ Re1aR41(s2F 437"

= 2v(2)¢ Ve

The boundary conditions at the plate are
X (£,0,8) = 0, X,(£,0,8) =0,

and, say,

X(gnos g) = 0.

The matching condition for FZ is

~11m FZ = T]fln(g’ O) + f2<§9 O) ®
n o

From the last section fz = 0 and fln(g,O) = glg(g,O) = - B/2§\/(2§).,

Hence

and
lim X _(£,s,8) = - Bs/V(28).
s ™ oo
It is easy to show by direct substitution that that limit is compatible

with the transformed momentum equation.

{Separation of X into two- and three-dimensional parts}

In the transformed momentum equation there is one term which is
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modulated by R sin {; there are no such terms in the boundary condi-
tions. That term reflects the R sin {¥ part of G3 and is a forcing
function imposed by the transverse field through the continuity con-
dition. X can be written as a sum of two parts, one proportional to
R sin{ and the other not involving { at all. The first term responds
to the forcing function proportional to R sin { and obeys zero boundary
conditions all around. The second term respons to the two-dimen-

sional forcing function and satisfies the Xs limit for s ~>oo. Thus

write

X = -;7-(1—2?)— [Rgzsin(_,/\/(s) +/}7(s)] .

N(s) and M (s) are defined by separate differential equations and

boundary conditions:
N s FIN" -2 FN 3 FN =aFF,
Noy=N"(0y=0, N'(ew)=o0,
M s I 2 F M F Me caR2s R - 2 F M 3T,

Moy =M (0) = 0, 1im M(s) = - Bs.

5700

If the spanwise vorticity is to decay exponentially far from
the plate, /\/(s) must contain an O(log €) term (Van Dyke [3] ). There
is no need to find out more about /V(s)., The important point is that
the two-dimensional contribution X approaches zero as § becomes

large, and the three-dimensional term grows as §3/2» |
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{F2 and the boundary-layer profile }

The NV equation with its boundary conditions has a simple solution —
1
N= j" SJ °
That can be verified by direct substitution using the Blasius equation

J!ll N }}ll _ 0

and its derivative, Then

FZ - X.ﬁ, = Xs/\/(zg) = -—%Rgsin lZ\s]”*‘/}/}l /22_‘, .

The boundary-layer profile is
w=F(s) - 1ReZtsints T (s) + e2(M (s)/26) + O(e>).

Notice the expansion is not uniformly convergent.  The second term
is much smalleér than the first only if £ < 1/(—:2, but that is assured
by the restriction Af K l/e2 already imposed to make the outer flow
tractable. The third term is small if £ > 62, the usual requirement
for convergence of the boundary-layer expansion.

The first two terms of the profile expansion can be combined

into a single function

I3, )
1+§RE §51n§

with third-order accuracy. Then

w= 7 (s%) + (€2/26)M (%) + O(e?)
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where
s* = s/(1 + %y&,sin@),

and y =R 62. Thus the shape of the profile is unaffected by the trans-
verse field. Even in the second-order approximation, the only three-
dimensional effect is a spanwise variation in boundary-layer

thickness.

9, Conclusion

For the profile expansion to be valid, § must satisfy

€2« £ < 1/62. In physical variables the inequality can be written

vk/UO < kx < R/y,

and in that interval, expressions good to O(y) for U and W are
1 Y}
U= UO[J (y/6) + v/UOx/ﬂ (y/8)] ,

W = yU_ coskz J'(y/S),

0
where

b=y 2
0

(1 + 1ykx sinkaz).

Thus the boundary layer takes on the wavy character illustrated in
figure 1. The practical significance of these results is discussed by

Bradshaw [2].
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II. THE TURBULENT RAYLEIGH PROBLEM

1. Introduction

The essential physical problem of turbulent shear flow — to
find the relationship between mean flow distribution and turbulent
structure — is still unsolved. For the time being, ad hoc physical
hypotheses must be injected into any theory of turbulent shear flow,
and the best a theoretician can do is inject at the least sensitive point
in the structuré of a problem. For example, suppose we describe
properties of a boundary layer above a wall in a coordinate system
(x,vy,2z) where x points downstream and y is perpendicular to the
wall. Let (U,V, 0) be the corresponding mean veloq‘ity components
and (u,v,w) be turbulent fluctuations from the mean. The boundary-

layer momentum equation is

ydU , 8U_ 1dP, 2

5% 5y - " p ax | 3y’ (1)
where dP/dx is the mean pressure gradient and ¢ is the kinematic

shear stress {Townsend [1] ). The full expression for the stress is

o=-uv+ v %}1,
y

but in the fully turbulent region the viscous term is negligible. In

terms of o and the mean velocity gradient

Q

i
21

a quantity with the dimensions of viscosity can be defined as
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Then the calculated mean velocity profile U(y) is fairly insensitive to
assumptions made about the ''eddy viscosity."'’

The Prandtl mixing length theory, which gave
_ .22
v, T Ky Q1

in the region of a boundary layer near the wall, amounted to little
more than a plausible assumption on the eddy viscosity. But the rela-
tion above can be derived without the mixing length hypothesis by
making certain assumptions about the turbulent energy equation. At
the same time it becomes evident where the originai Prandtl relation
will break dow’n. By balancing turbulent energy generation, turbulent
diffusion and dissipation, and by making certain similarity assump-

tions for the wall layer, Townsend [2] shows that

_Vo y |99
a-3 (1-p2 1), 2

where the term with the coefficient B represents the effect of turbu-
lent diffusion. The derivation of that equation and the assumptions
involved will be discussed later in connection with the turbulent
Rayleigh problem. The important thing for now is the form of the
relation: § is a functional of the stress distribution. That will be
true of any velocity gradient-stress relation derived from energy
considerations. If equation 3 is combined as it stands with the
equation of motion, an integro-differential equation is the result.
Equation 3 may be regarded as an ordinary first-order differential

equation for Yo and solved:
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1 1
- *98 "B
Vo=f(x)Fy ‘g y Q(y) dy + g(x)

When that is inserted in equation 1, an integral term remains. Al-
ternately the momentum equation can be differentiated with respect

to y, and with the aid of the continuity relation

it may be rewritten in terms of  and o:

: 2
U.Q_g.z_-i-vg_sé:——-—ag

ox oy ¢ (4)

9y
But U and V must still be expressed as integrals of f2.

The Rayleigh problem of shear flow involves none of the
purely kinemabtic difficulties of the boundary-layer problem, yet
the same physical ideas apply. In this problem the non-steady flow
above an infinite plate moving in the x-direction in the x-z plane is
examined; the independent variables are y and t. The situation is
sketched in fiéure 1. The mean flow continuity equation is automat-
ically satisfied, since V = 0 and the problem is statistically homo-

geneous in x. The momentum equation is

oU _ 8o
Bt - By (5)
or
o _ _____820 (6)
ot 52 ’
Yy

a form closely analogous to equation 4. The turbulent Rayleigh

problem is discussed in detail in this chapter.
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In 1956, Clauser [3] suggested that approximately similar
solutions could be obtained for ''equilibrium'' turbulent boundary

layers, those for which the parameter

ala-
%l

6:::
B =
Pcw

remains constant, 0% is a measure of the boundary-layer thickness,
Oy is the wall stress, so 3 is the ratio of pressure force across the

boundary layer to shear force. But a skin friction parameter

Vo WS
Y5 g TV
(v o)

also enters the boundary-layer momentum equation and prevents
exact similarity (or ''self-preservation,'' cf. Townsend [1,2]).
Since y has only a small effect on the results, useful quasi-similar
solutions can be obtained, and that program was recently carried
out by Mellor a;id Gibson [4A,B]. One of the simplifications of the
Rayleigh problem is that exactly self-preserving solutions are pos-
sible. It is that family of exactly similar solutions which is treated
here.

Rayleigh proposed his non-steady shear flow situation as an
analog to the laminar boundary layer. The convective terms on the
left hand side of equation 1 can be written

BUT

UT Js

where UT is the mean flow speed and s is a streamline coordinate,

If this term is approximated by



-27-

ouU

00 Ox
then t and x/UOO play analogous parts in the non-steady and steady
problems. Since a turbulent boundary layer is much fuller than a
laminar boundary layer, the velocities at corresponding points being
more nearly equal to the free-stream velocity in the turbulent case,
it might be conjectured that a Rayleigh type analogy would be more
significant for the turbulent layers. In fact it is found that if the
equation of motion for the equilibrium boundary layer is written in

similarity form and expanded in powers of y, the zeroth-order term

is the similarity equation for the Rayleigh problem. Thus the Ray-

leigh problem contains all the essential features of the boundary-
layer problem except for non-similarity.

The élan of this chapter is then as follows: in order to find
the self-preserving solutions, the Rayleigh problem is put in simi-
larity form, and some general consequences of that form are dis-
cussed; the physical ideas used by Clauser, Townsend and lately by
Mellor and Gibson are cast into a form suitable for the Rayleigh
problem; exact solutions for the constant wall stress and zero wall
stress cases are derived under the physical assumptions, and
properties of other solutions are discussed; the analogy between
the turbulent boundary layer and the Rayleigh situation is developed.
The o0-§2 forms of the equations of motion, equations 4 and 6, will
be used so Townsend's velocity gradient-stress relation can be used
when the time comes. That means that shear stress will be specified

at the moving wall rather than the wall speed. Then the stress
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distribution for the Rayleigh flow can be found without explicitly
including any assumptions about the laminar sublayer — that is not

strictly possible for the boundary layer.

2. Similarity Form of the Rayleigh Problem for Self-Preserving

Solutions
The problem first will be restated. The equation of motion
is

o2 %o
ot N 27 (6)

i

and in order to solve a practical problem a relation Q{o} will have

to be found. The boundary and initial conditions are

G(Ys 0) =0,
5(0,) = o_(t) , (7)

oloo,t) = 0.
If exactly similar solutions exist, o and {2 must have the forms

o =04s(n) A

where

:L
=7

) , 4

andﬂo and oy are functions of time only. The boundary condition at

the wall must be compatible with the similarity solutions,

cw(t) = const. O'O(t)
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and the equation of motion 6 becomes

V“ofot

0'0 ag
| —— ng' + t _ 5 t g :[__g] s'' . (9)
10 ZVGOIO ﬂo ﬂo

Similarity is obtained when the coefficients in brackets are mutually
proportional. For a Rayleigh type flow, where the fluid is stationary
until t = 0 and then is driven by the motion of a plate, it must be |
assumed that !0(0) = 0. Then it is easy to show that similarity solu-

tions are obtained only when

Q
1]

C
0 const. t s

1+c/2

B
I

0~ const. t

with ¢ >< for a growing turbulent layer. It has been found convenient
to write o_, o, and £, as follows:
w 0 0

o = (1+c)Pt¢
W B

0

£, = \ip t1+c/2

.= Pt° , (10)

k is a dimensionless constant defined in section 4B. The reason for
including it here will become clear later. The self-preserving solu-

tions 8 take the form

Vit P (11)

where
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Equation 9 becomes

s +Vk (1+3)ng' +Vkg=0, (12)
and conditions 7 reduce to

s(0)=1+c, s{oo) = 0 . (13)

The condition ¢ > -2 insures that the turbulent layer grows, as
it must for Rayleigh flow. The condition is more restrictive than is
necessary in the analogous boundary-layer case, since boundary lay-
ers may actuélly contract under highly favorable pressure gradients.
The case ¢ = -1 corresponds to continuously separating flow with
zero wall stress. The cases -1 > ¢ > -2 involve various degrees of
separation and negative stresses, and they are not discussed further.
It is assumed throughout that all stresses are positi‘;’e to avoid cum-

bersome absolute value signs.

3. Some Properties of the Seli-Preserving Solutions

A, Momentum Conservation

The equation for conservation of total momentum is

00 t
L= g U(y,t) dy = - Sow(t’) at' = -pette | (14)
0 6
The last equality follows from equation 10 except in the case ¢c = -1,

for then o, = 0. But in that case we assume that an amount of mo-
mentum L = -P has been injected into the field prior tot = 0. The
velocity at any point in the field can be found from the momentum

equation. From equations 5 and 11,
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or
C r-1 L
Pt - ' 1
U0 = YR D () gy (15)
where
1+c
r = =
1+E

and the last of equations 11 has been used to find t'(y,n').
Since U has been expressed in terms of s through the equation
’ 00
+
of motion, it is obvious that é Udy must equal —PtIl ¢ automatically

except perhdps in the case ¢ = -1. It is interesting to demonstrate

that explicitly though. By equations 11 and 15,

[0 ¢]
L = VKB t1t¢/2 S U(n,t) dn

0
o0 OO
1At _
5.5‘3(7]) ﬂrldﬂ'd'ﬂo
n

| T
0

1

Ptl+c
C

The order of integration can be reversed and the integral evaluated

explicitly:
§
e 2 A
Pt s'(n r-1
L= - § 5‘ (r) n dndn’
I*2 50 ™
o)
a PtHC s'(n') _r an' —Pt‘HC
1+ R
2’ o0 M

The first of equations 13 was used. The proof holds as c approaches
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-1 but fails for ¢ = -1. Going back to equation 15 for that case,
_ | P 2s
U= - th n (16)
oo
L= -2P —dn,
0
and in order that L, = -P, s must satisfy
0o
S 1 -
Sﬁdﬂ-‘z, (C—--l). (17)
0

It may seem strange that in this special case an extra condition like'
equation 17 1s imposed on the stress distribution s. But equation 12
for the ¢ = -1 case with the boundary conditions s(0) = s(o0) = 0 gives
a non-unique result, and equation 17 removes the non-uniqueness.
The physical reason why an integral momentum condition is needed
for the continuously separating case is clear: in every other case
the momentum in the field is determined by the histpry of the stress
at the wall, but in that case the wall stress is zero and the momentum
is injected into the field by unspecified means.

B. Laminar Sublayer

An important tacit assumption has been made up to this point
which will now be justified. Immediately adjacent to the wall the flow
must be laminar, and the self-preserving solutions cannot be ex-
pected to hold in the laminar sublayer. The sublayer will extend to
some height 6v and the stress will undergo some change Ac through
it. Corresponding to 6,, there will be some non-dimensional thick-
ness n, on the similarity scale, and the similarity solutions of equa-

tion 12 will be valid only when
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(1) 'Ylv <1,
..y AC
(11) 6"_ < 1.
W
These two requirements are discussed below.

(i) The laminar sublayer becomes unstable at a critical Rey-

nolds number given by

61}"(in "

12,
v

(Clauser [3]). The corresponding similarity thickness n, is

o)
- 1z__ | (18)

_ v
v JED 1t/ Vvk(c+1) R

where R is the Reynolds number based on momentum in the field,

N

L]

R =

(ii) Suppose o = o, tay to an adequate approximation in the

laminar sublayer. Then

do 9

— O, =

y

c

2]

t H

and since a is constant and 8U/ 8t = ﬁw at the wall, where ﬁw is the
acceleration of the wall,
5 U

vV w

C
w

Ac
0]
W

UW can be related to O through a friction coefficient:

g =
W

2
Cwa .

Nj

By using that expression to find ﬁw’ equations 10 for O’ and the
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expression for L, it is easily shown that

Lo . 12 (19)

Ow v2C, (c+1)R

Except in the separating flow case, where the laminar sub-
layer does not have to transmit a mean stress boundary condition
anyway and is generally supposed to be irrelevant, both n . and
Ao/ow go to zero as R - . The constant k, discussed in the next
section, is known to be about ,015, and Cf could be about . 003 for
a smooth plate under a wide range of Reynolds numbers, Then

conditions (i) and (ii) become

g~ 100
Y V&+L R
(20)

lacl _ 1501c!
o {ct1}R
W

<<1 .

4, Assumptions for the Q{c} Relation

The reason for doing the Rayleigh problem is that it illumi-
nates the ideas used in boundary-layer theory more clearly than the
boundary-layer problem does, The purpose here is not to introduce
new physical assumptions, but to adapt the ones ordinarily used to
the Rayleigh problem. The two-layer model of Clauser and Town-
send will be used, with a wall layer in energy equilibrium and an
outer layer of constant eddy viscosity. The object is to find an ex-
pression for §) as a functional of 0 reasonably well founded on physi-
cal arguments. It must be emphasized that the work up to now holds
independently of any assumptions about the relation Q{o} except that

it be compatible with the similarity form of the equations of motion.
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The wall layer and outer layer will be treated separately.
A. Wall Layer
Townsend's energy equilibrium argument [2] can be taken
over with little alteration. The turbulent energy equation for the

Rayleigh problem is

9 1 2, —dU, 3 2
)t watg vietza)+ €= 0,

where q2 = u2 + v2 + w2 and p is the pressure fluctuation. The first

term represents the rate of change of turbulent energy at a point,

the second —&the rate of generation of turbulent enexﬁ;gy by interaction
with the mean field, the third — the rate of lateral diffusion of energy,
the fourth — the rate of energy dissipation. KEnergy equilibrium means
that generation and dissipation are closely balanced, and the first
term is small compared with the second or fourth. ‘Townsend's argu-

ments from dimensionality and structural similarity then imply the

following relations:

|avl=aq?,

3/2 2
vip+ 2q¥)= -2, (@%) sgn ()
- (q2)3/2

LE

and since deep in the turbulent layer near the wall the only possible

length scale is vy,
Le =a,y .

Now suppose the rate of change of turbulent energy in the wall layer



“36=

is indeed small compared with the rate of energy generation,

lor Gah)| << [wg |,
or
é_i_l.|g_g.l<<c|sz|. (21)

Then it follows from the energy balance equation that

_ o 90
2=y 0BG eyl ?

From equatiohs 3 and 11, g(m) for the wall layer méy be found:

s
g-—z313:
where (22)
b=1-Bd |s'].

It is known from experiments on boundary layers that K= 0.41 (the
K4rmdn constant) and B~ 0.2 [1,2], and there is no reason to doubt
that the same values hold for the Rayleigh problem. B = 0 gives the
old Prandtl expression again,

The meaning of inequality 21 becomes clearer when it is put
in similarity form. Suppose the lateral diffusion term in equation 3

is neglected for simplicity. Equations 3 and 6 are then

Q:ﬁ,
Ky
2
00 _ 970
-at-E—ZKY‘\/E——-ﬁ'.

9y

Inequality 21 then becomes
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2 2 2

Ky 189 |<<g,
ay 8y2
or
2
0.4n° [s"]<<s, (23)

since 2, is known to be about 0.4 [Bradshaw, P., unpublished].
Inequality 23 is simply a condition that the stress distribution curve
be roughly linear over most of the equilibrium region. It is very
strongly satisfied for calculated shear stress profiles in the wall
region, so it is surely the breakdown of the length scale hypothesis

LE =a,y which ends the validity of equation 3.

B. Outer Layer

The argument for the outer layer is less involved and less
convincing. Consider the boundary-layer problem first, and define

a displacement thickness

GO

'
s« = _ U(x, 2)
) (X)-—) [1 §] (X)] dy ,
0 (o9}
where Uoo(x) = U(x,o0). The eddy viscosity Ve 50/9 can be used to
define a turbulent Reynolds number k_l,
U_ &%
co

v
(<]

k—l

n

3

as a function of x and y. Clauser [3] found that the existing boundary-
layer profile data were surprisingly compatible with a k—1 constant
with respect to x and y some distance from the wall. In boundary-

layer theory, the eddy viscosity in the outer layer is thus taken to be
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o)

v, = Kk ‘g (UOO—U)dy
0
with k a universal constant about equal to 0.015 [3,4A]. The eddy

viscosity for the Rayleigh problem should thus be

o
ve=}g !XUdyl=k'L
0

Thus

Q=-"—, (24)
k|L|

and by equations 11 and 14,

g - (25)

S

vk

in the outer layer.
The complete gradient function g(n) is now found simply by

joining expressions 22 and 25 at their point of equality. For conven-

ience, let us define the square root of the stress

Then expressions 22 and 25 give equal results for g where
MNeTle = Ebe, (26)
with

= 0.30, (27)

That defines the junction between wall and outer layers. In practice

the wall layer spans about 20% of the total turbulent layer thickness.
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5. Equations of Motion under the Q{o} Assumptions — Some General

Consequences

When equations 22 and 25 are combined with equation 12, the

equation of motion assumes the following forms in the wall and outer

layers:
(Wall) s'' = —62- [—9%3-1:—)- - (2+c) (br)'] R (28)
(Outer) s'' + (1 + 52:-) ns'+s=0. (29)

The equation of motion 12, involving the stress s and velocity gradient
g with an unspecified relationship between them, has been supple-
mented by the physical assumptions of the last section and superseded
by equations 26 to 29. None of these equations involves K or k sepa-
rately — only combined into €. Under the present Q{o} assumptions,

the stress distribution for any c is governed by the single empirical

constant €. This is the reason k was introduced in equations 10; k

fixes the relationship between turbulent layer momentum and length
scale, but does not separately influence the non-dimensional shear
stress distribution s(n).

In practice equations 28 and 29 must be solved separately and
the solutions matched at a point e determined by condition 26. The
single boundary condition s(0) = 1 + ¢ is applied to the wall solution,
and s(oo) = 0 is required of the outer solution. Since both equations
28 and 29 are second order, two matching conditions are required.
One of these is continuity of s; it is easy to show the other is then

continuity of slope s'. Equations 28 and 29, taken together, have
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S“

~?(ﬂ,SaS';€),
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where changes its functional form at Mg Since s is continuous,

the most s' can do is jump. Consequently _# and hence s'' can have

at most a jump discontinuity at Mo Hence s' is continuous.

The outer equation 29 is well known [1,5] and can be written

in the standard form

g~~ + fws~ -ns = 0,
nn n

with

31
1]

and

=]
!

n

y1+5 n,

-1
(1 +-‘-2:-) .

N

/

The general solution is written

s = Ath {n) .

Some special th functions [5] are

Hh

0

L 2
=§e_x/2dx, N

~

n

~2,
e 72,

=2
nen/z.

]

S

(30)

(31)

For very small 1, equation 28 can be treated generally too.
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Substitute
X =

1
n

The resulting equation for s(x) is

2s
et 2 = 5 [+ 2re)
X X

(br)x ]

5 (32)

The function s(x) must have the general form shown below, and it will

be found that b = 1 as x = o except in the cas€ ¢ = -1:

For large x equation 32 thus approaches

2s €s
X ___>€cV1+c +O( X > 9

+
Sxx X 2x3

x21/1+c)
where the last term becomes negligible compared with the second

term on the left. The asymptotically valid solution of equation 32

is then
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or

Lim s = l+ctan +§£T_ V1tc n logn , (33)
n—0

for some constant a which can be determined only by a complete solu-
tion of the problem. s' has a log singularity at 11 = 0 unless ¢ = 0 or
c = -1, but it is easy to see that b — 1 at the origin anyway from its
definition in equation 22. Though the analysis leading to equation 33
breaks down in the case ¢ = -1, the equation is in fact valid in that
case too. Thegsame singularity in the stress gradient was noted by
Mellor [4B] fo;' boundary layers, but it apparently was passed up in

the computer solutions of {4A].

6. Solution for the Constant Stress Case, ¢ = 0

In the last section it was pointed out that the stress gradient
is well behaved at the origin only in the special cases ¢ = 0 and c=-1.

In those cases it is possible to find complete, exact solutions for

arbitrary B — that is the real justification for posing the problern

in stress form in the first place. ¥ or the case ¢ = 0 the first inte-
gration of equation 28 is trivial, and the outer solution is the second
of equations 31. The integrated wall equation, the matching point

location, and the outer stress distribution are written below:

(i) s' +ebr =A4,
{i1) NeTe = ebe , (34)

2
(iii) s = Ae™ " /2 .

A can be found immediately by matching slopes at Mg
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s' = -n_s by (iii) ,

]
]
o

o

R
o
<
™
=

1"
o
I
m
o
o
2
o
[on
o]
C

Hence
A=0.

Equation 34(1} may now be written
2r' + €b = 0,

and from equation 22 {(anticipating the fact that s' will be negative),

i
2r'+E+EBn—2—§—-=0. (35)

The equation rf;ay be inverted so n becomes the dependent variable:

dn , 2B 2 _
Tt ntes 0.

The solution satisfying the boundary condition n{l) = 0 is

Y =g@§§$f)(r_2B-r)- ‘ (36)

In the case B = 0 equation 36 can be written
r=1 - 5 7 (37)

The quantities A (the coefficient in the outer solution), Mg
and s, can now be computed by solving equations 34(ii), (iii) and 36

at the matching point. The results for two values of B are as follows:
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B A e Se
0 .954 .315 .908
.2 . 954 .309 .908

In this case then, Townsend's B correction makes essentially no
difference, The stress distribution curve good for either B = 0 or

B = 0.2 is shown in figure 2.

7. Solution for the Continuously Separating Case — ¢ = -1

Again the outer solution is known — the second of equations

31 — and the equation of motion for the wall layer can be integrated

once as follows. Equation 28 for ¢ = -1 can be written
ns'' = - % [(br) + n(bx)'] ,

or
(ns'-s)' = - 5 (nbr)' .

Integrating and using the boundary condition s{0) = 0,
) € _
ns'-s +’>—2— nbr = 0.

The integrated wall layer equation, the matching point location, and

the outer solution are then

(i} 2nr'-r +f2-bn =0,
{ii) NeTe = ¢b , (38)

e
2/8
(iii) r = VvAnq e M

But now the matching on slopes is identically satisfied. That can be

seen as follows:
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. _€e  ee
ro = zﬂe 7 by (iii),
Ty Ebe
= 21’16 - T by (11) 9

and the last equality holds identically for any r satisfying 38(i) in the
wall layer. Thus one of the matching conditions is superfluous, and
the apparent non-uniqueness mentioned earlier arises. The non-

uniqueness is removed by the momentum condition 17:
o

s _1
(ECRES o
0

Equation 38(i) written out in full (under the correct assumption

s'> 0) is
L ;e_:‘l. - 2 .E: -
2nr r + 5 €Bn - 0.
With the substitutions
X =+7, Y=L,
v

the equation becomes

dy €BX , , € _
ax -3 )tz 0-B)=0,
or
dX B 2
¥y " mEy Xt erm T 0

The solution satisfying Y(0) = a or X{a) = 0 is
B/1-B
_ 2a Y Y
X “e(l-sz[(a> ‘(‘g{)} . (39)
If B = 0 this becomes
r=an - 5L, (40)

Equations 17, 38(ii), (iii) and 39 determine a, A, uR and S, —
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for non-zero B a good deal of numerical work is required. The steps
of a strongly convergent iteration procedure are described in the

Appendix. The stress curve is nearly linear in the wall layer, that is
2
s~an.

If the stress curve were exactly linear, then b would be 1-B. In the
actual case that must be nearly correct. The group €b appearing in
equations 38 must be nearly constant and equal to €(1-B), and an

equation analogous to 40,

r = avn __G_(_l_-éé)_n (41)

must be very accurate for all reasonable B, For B = 0.2, the value
proposed by Townsend [2], the difference between 39 and 41 is en-
tirely inconsequential. Values for a, A, Ne* Se for the three cases

B=0, b=0.8 (the approximation to B=0.2), and B=0.2 aregiven

below:
a A Mo s,
B=20 .618 273 . 7121 173
b=0.8 .596 . 276 . 611 -
B=0.2 .5981 L2766 . 6331 .1585

The shear stress distributions for B = 0 and B = 0.2 are shown in
figure 3.

The speed distribution for ¢ = -1 has already been given in
equation 16. The only function of the wall in the zero stress case is
to sustain fluctuating pressure forces. There is no mean flow in the
laminar sublayer, and its thickness is of order VvT where 7T is the

time scale of the turbulence. Thus the mean speed equation
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—————— B=0

0.4r B=0.2
i
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FIG.4 SPEED PROFILE C=-1
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U= -24+

T (16)

=1

3w

should hold right up to the wall, where
- 0.2 " P
Uw = -2a e (42)

The function s/ is graphed in figure 4,

8. Analogy with the Equilibrium Boundary Layer

The ig}leas and notation of Mellor and Gibson [4A,B] will be
followed as clpsely as possible here. The main differences are that
equation 4, instead of equation 1, will be used as the equation of mo-
tion from the outset, and the eddy viscosity notation, cumbersome
and deceptive in this context, will not be used at all. The boundary-

layer momentum and continuity equations are

2 , ‘
Ug-%+v§%=——-a‘2’, (4)
9y
U BV _
tay = 0 (43)

Define a ''skin friction velocity'' u,_ and length scale A as follows:

u(x) = o (x),

(44)
~ U (x)-Ulx,y)
g Ty Ay = Al

where ow(x) is the wall stress, and Uoo(x) = U{x,00). Mellor and

Gibson use the following boundary conditions:
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(i) o(x,0) = u’f
(ii) A(x) exists (45)
(iii) V(x,0) =0

Condition (i) seems true by definition of u But the full expression

T
for the shear stress o,

0 = 'G‘; + v Q 3
is truncated to 0 = -uv in the turbulent region. The laminar sublayer

intervening between the turbulence and the wall, where the viscous
contribution to 0 becomes important, is patched on later. Condition
(i) thus asserts that the wall stress is transmitted intact through the
laminar sublayer (cf. section 3B for the equivalent situation in the
Rayleigh problem). Condition (ii) guarantees that U(x,y) —’Uoo(x) as
y —> oo and that the difference between U and Uoo is integrable. Con-
dition (iii) sets the mean velocity normal to the wall equal zero at
the wall.

Clauser found that approximately similar solutions for U
could be obtained in the ''velocity defect'' form

U x) - Ulx,y)

u,. (x)

= (A, A
where
H=X.
A
Thus let us write ¢ and § in the forms

:ui S(]L/)
Q=u./a G )
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so that

m=-G. (47)

£(0) can be set equal to zero. Then boundary conditions 45(i} and

(ii) become

S(0) =1

QO Qo

f(oo) = S‘f'(,t/,d// {Soog(f‘/') atf'atl =1 (48)
0 0 /./

and condition 45(iii) is used in the integration of the continuity equa-
tion 43 to get V in terms of U.

When forms 46 and the expression for V are used in the equa-
tion of motion 4, u. and U00 must appear together in the ratio

u,. (x)

Y(x) = W

Now there is no reason why u_ and Uoo should be proportional. u

is governed by the stress-bearing capacity of turbulent flow, but

Uoo(x) is measured with respect to the wall, and the laminar sublayer

intervenes. Thus we cannot expect to reduce the boundary layer mo-
mentum equation to a fully similar form. The equation of motion for
the Rayleigh problem, on the other hand, does not contain the con-
vective terms which make non-similarity inevitable. If similarity
solutions to the Rayleigh problem are sought with velocities non-

dimensionalized on u., they can be found. The reader should recall

that at no point in the discussion of the Rayleigh problem was the
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actual wall speed Uw(t) required to generate the similarity solutions
discussed — except in the continuously separating case ¢ = -1 where

the laminar sublayer is irrelevant to the mean dynamics. In order to

specify the wall speed programs Uw(t) for an experiment in which the
similarity flows would be generated, assumptions about the connection
between the laminar sublayer and the turbulent region would have to
be made. The reader can find such assumptions in [4A] and make
his own judgement on their reliability.

The transformed equation of motion 4 is

Sy ﬁp]L/g"f' B(2+p) G
| (49)
= yBE (p-yo) G+ yp(2Hp-yoryZet) G ,

where

o

Quasi-similar solutions are sought for § fixed — the equilibrium tur-
bulent boundary layers of Clauser [3]. Notice equation 49 is an
integro-differential equation on S and 9 as promised in the Intro-
duction.

Suppose there is a region very close to the wall in which the

following conditions are satisfied:
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(i) the flow is fully turbulent, so the speed profile can be
written in defect form (first of equations 46);

(ii) the length characterizing the rate of stress variation
is large compared with the distance from the wall
(region of constant stress), so that the only physical
length available is v/u,T.

Then U must simultaneously have the forms

U - y
U—UOo qu‘(A)
u,y
_ T
and  U=u_J ()

That is possible only if

. U=u (llog&—}—,JrD) {50)

T \ K v

where D and K€rmdn's constant K are universal constants. This argu-
ment fails if no such ""overlap'' region satisfying (i) and (ii) exists,
and no such region exists if the pressure gradient U__U is severe
enough, since é large stress gradient in the y-direction i}s( required
to balance a large pressure gradient in the x-direction for steady

flow. Where such a region does exist, equation 50 permits the eval-

vation of w and p in terms of y, B and a shape factor
ao
§=§P2dﬁo
0

Mellor and Gibson [4B] find that

=4 - B _XP
00 K+'Y K K2+5069 (51)
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and that the integrated boundary-layer momentum equation takes the
form

we (1Y) 1/p+2-2yG
1-yGHy“G/k

2+%+Y[M+G(1+1/p)]+... . (52)

K

i

Y is a small quantity (y = \/Cf72 ~ .04 for a flat plate in a
typical experimental situation) and can be used as an expansion param-
eter in an asymptotic series solution to equation 49. Thus write S,

9 and f as follows:

AY =Zvi S,

QY
"
OB
<.
NG\
=

it
18

&gw

3;

so that
" o
- g S'gi(%/")dﬁ”dﬂ'
0 ]L/'

The expansions for w and p have already been indicated in equations 51

and 52, and the expansion for G begins

(o8]

z §f‘ dﬁ+y2§f'0f'1d7l/+e..

i=0 0

The boundary conditions 48 are met as follows:
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S =1, S‘nggo(ﬁ')d%/'dﬁzl;
O H

S.(m=0, S‘Sgi(//')d/v"d//=o,i¢o.
O #H

Thus the zeroth order solution contains the entire momentum defect.

When the quantities in equation 49 are expanded in powers of y as

described, the coefficients of the various powers must satisfy the

following sequence of equations:

S + (1+2p) VA G+ (1+4p) G_ =0,
51” + (1+z;3)7‘/§’1 + (1+4p) gl = (1+4;3)90
+{_1J"€_2-§ + G (1+p)] (§O - //9;) + (1+2p) fogc‘)

-7 4G,

S e2p G+ (144G = F G, 1 Gy eed

¢

@

(54(0))

(54(i))

The ]i‘s are complicated functionals involving derivatives and multi-

ple integrals of lower order g'se But if B is held fixed for the equi-

librium solutions and some relationship between g and § is assumed,

equations 54 with their boundary conditions 53 can be solved one by
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one and the asymptotic series for S constructed. Each function Si’
9.1 and fi will depend’on H only, and the non-similarity will be taken
care of by the y(x)i.

The nature of the analogy between the boundary layer and Ray-
leigh problems can now be seen by comparing equations 54 (0) and 12 —
they have exactly the same form. The first of boundary conditions
53 and 13 also have the same form; the second of conditions 53 insures
that go( 7l/)—> 0 as 7L/—>oo, and for a reasonable assumption on the

g— S relation for large IL/(e.g° , Clauser's), it should insure 5(7[/)"0

as well. Thus the similarity solution for self-preserving Rayleigh

flow is formally identical to the zeroth-order approximation for the

equilibrium boundary layer.

Suppose we have the solution s(n), g(n} to the Rayleigh problem
for some c, and we want the zeroth order solution SO(H), go(/'/) to
the equivalent boundary-layer problem (''equivalent'' will become

precise when B(c) is found). We expect to have

S\ = As(BH) |
(55)
G (#) = CelBH
for some A, B, C . Since the physical stress, velocity gradient

and y-coordinate must be the same in the two problems, equations 8

and 46 imply
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() o=o stm) = wiAs(BH)
Vo~ u
(i) Q=—72gm = (B8
(o}
(@) y=t4n = Agﬁ//

We shall require n = BH . Squaring (ii), dividing by (i) and multiply-

ing by the square of (iii) gives

N (56)
A B?

a constraint on /4 , 6, C arising because the physical solutions con-
tain one velocity and one length scale only. When forms 55 are used
in the first boundary condition 53 and the zeroth-order equation of

motion 54, the following equations result:

As©) =1,

s'"(BHy+ ;4% (+2p) BH g (BH) +}-4C£—2 (1+4p)g(BH) = 0 .

These are exactly the same as the Rayleigh problem equations 12 and

13ifn= B84, and

1
A=me
;17%7‘- (1+28) = vk (1+%> , (57)

;,%-2 (1+4p) = vk .
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Equations 56 and 57 can be solved simultaneously to give

.1 N
A=
ﬁ:-.L__
ey (58)
- 1
¢ vk (1+c)
-c/4
R

Thus, given the solution s(n), g(n) to a Rayleigh problem for some c,
the zeroth-order solution to the equilibrium boundal;y—layer problem
with B = -c/4(l+c) is known through the prescriptioh 55 and the quan-
tities Iq,g,C given in equations 58. pB(c) is graphed in figure 5;
interesting limiting cases for the boundary-layer and Rayleigh prob-
lems are marked on the graph.

In the limit § = oo when the flow becomes cqntinuously separ-
ating, the boundary-layer equations become intractéble as they stand,

and the following transformation [4A] is useful:

, N

&
%
i

7y, > (59)
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so that

in=-G. (60)

The essential reason transformation 59 becomes necessary as f oo
is that the wall shear Gw becomes dynamically irrelevant in that
case, — the ''skin friction velocity'' u_ = Vaw is no longer an approp-

riate scale. From the definition of B below equation 49,

U 1d
AU (—-— A) U U ok — SB 2
o] §) o o lls o} p dx u
- |4 = o0 X = = _E
P=-3T" 2 2 z
QO u u u
; T T T

where 6% is the boundary-layer displacement thickness

[e:0)

0

and up is a ""pressure velocity'' defined as V6%/p dP/dx . Transfor-

mation 59 rescales the physical variables on up so that

X

Y, N
A
o =u’ 5(’L/) )
P
0 o~ o~
Q=-LGH ,
A (61)
U (x)-Ulx,v) - >
= (x};y = Evh
P
with
- U (x)-Ulx,y)
A(X)zg = u_(x) dy
0 p /

from equations 44 and 46.
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The last case one would expect a close analogy between the
boundary-layer and Rayleigh problems is the case of separating flow,
yet the analogy is very close indeed. The equation of motion 49 can
be rewritten in terms of the new variables 59 and the various quanti-
ties expanded in powers of A. The zeroth-order equation of motion
and the conditions on its solution become

G N 1, ¢ _
A% +(z+-6)ﬁgo+(4+-p-) go_o

obwz

_1
(0) = 5 (62)

" G
.

For [5_1 = 0 the equation of motion may be written
77 Y .
HS +af"G) =0,

and since

~ ~

ﬁ?=W§5if

O C

a first integration can be performed. The constant of integration is

fixed by the condition SO(O) = 0, and the result is

-~ 1 So'
G4 (3

§0 can be written in terms of ’fo through equation 60 and the equation

~

integrated once more —
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lobaz

f1ol o
O ~
H
where f'(00) = 0 has been used. This result is analogous to equation
16 for the ¢ = -1 Rayleigh problem, where the non-dimensional mean

speed appears as s/m. Suppose now we have the zeroth-order bound-
ary-layer solution 50, f:} for the case {3'1 = 0, and we want to find

the solution s, s/m to the c = -1 Rayleigh problem. That is, we ex-

pect

(63)

~

and want a, b, c. Then by the same kind of argument that produced

equations 58 it'is easy to show

51

=3

~ A~k

b—~-—-2 s (64)
~ _ ¥k

C"4 3

If Mellor and Gibson had given their numerical results for the zeroth-
order boundary-layer solution, equations 64 would have permitted a
direct check on their calculations against the exact results of section
7 (with B = 0 — Mellor and Gibson use the Prandtl eddy viscosity equa-
tion for their wall layer). In fact they show plots of the combined
zeroth and first-order solutions only, but their results are rescaled

and plotted in figures 3 and 4 anyway.
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For ﬁ_l = 0, the only parameter left in the boundary-layer
similarity solution S(/L/), 9(2‘7’) is A. The quantities K and k
associated with the stress-velocity gradient assumptions remain,
of course, but their values are supposed to be universal and known.
The quantity £1(0), in particular, depends on A only. The wall stress
is zero, and under any of the stress-gradient assumptions U{x,0) = 0

(thus the flow is ''continuously séparating''). By the definition of y

and the first of equations 59,

e
oo

By the fourth of equations 61,
) (65)
A- H

and since the right-hand side is a function of A known once the simi-
larity problem is solved, equation 65 determines A uniquely. The
profile for continuously separating flow is thus unique, and it is the
first-order approximation to that solution which is rescaled and
plotted in figures 3 and 4. Mellor and Gibson find )L—l = 10.27 to
first order. The zeroth-order approximation can be found through
equations 63, 64 and the work of section 7:
-1 _~f _ 4 s{n) _ 4a2 -

)LO = fO(O) = E ( - )T}'—‘Ou T/—E—- = 12.4
for Townsend's B = 0, the computed a = . 618, and k = .015.

Since Mellor and Gibson carry their analysis to first order in
A and use the B = 0 stress-gradient relation, the differences between

the curves labeled (MG} and the Rayleigh problem curves for B = 0
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must be the first-order corrections. The corrections are fairly
large, especially in the stress profile, but the qualitative features
of the analogous curves are the same. It can be seen from Mellor
and Gibson's papers ([4A] figure 5 or [4B] figure 10) that the ex-
perimental data deviate from the computed velocity profile in just
the same way as the B = 0.2 curve deviates from the B = 0 curve
for the Rayleigh problem solution of figure 4. The Townsend rela-
tion, equatiép 3, should thus fit the data much better than the

Prandtl eddy viscosity relation in the extreme case of continuously

separating flow.
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APPENDIX

A Numerical Technique for Finding a, A, Ne’Se for the Case ¢ = -1

The analytical expressions for the stress distribution derived
in section 7 contain the constants a and A. Two conditions must be
satisfied by the wall and outer layer stress distributions: they must
match at a point Mo fixed by equation 26, and the integral f:/n dn
must be 1/2. The stress slopes match automatically as explained in
section 7. |

The steps of a strongly convergent iteration procedure for
finding 2, A and the matching point (ne, se) between wall and outer
layers are outlined below. The essential point is that the area under
the s/'r] curve is very nearly proportional to A; the proportionality
would be exact if the outer solution spanned the whole field. The

0o
integral .Ls/n dn =1 is computed on the basis of a guess for A, say

A(o), then a new estimate A(l) is found:

(1)
A 1/2
= (A1)
A(0) I

The cycle can then be started again with A(l). The reason this oper-
ation is interesting enough to be discussed in an appendix is that it
may be carried out by hand despite the fact s is not given as an ex-

plicit function of n by the wall solution for non-zero B.
@O guess A = A<0)

The superscript (0) will be dropped until step 6 .
© compute n

The outer solution and the matching condition are required:
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2
-n"/4
s = Ane (A2)
sl
= = - _&
Mg e—ebe—e(l Bne Se) (A.3)
By A2,
1
fe . 1 e
S Ne 2

Then A2 and A3 both yield expressions for Tt

2 2
-n./8 Bn
r =VAn_ e € =—T-$—(1-B+ Ze)

e

e e

An equation for Ne is the result:

2 2
Bn, m./8
W2 £ B %) e © (A4)

VA 2

Since an/z and nz/S are small compared to 1, that equation may be
solved by iteration very quickly.
©) compute Se’Xe’Yn

The outer solution and the definitions of X and Y are used:

2
s = A e~ne/4 (A5)
e 1"]e
X, =V, (A6)
se
Yy =¢-= A7
e V7o (A7)

compute a
Equation 39 is now used: B

1-B
X = aieny %(-’é) - é)g (48)
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That can be rewritten as an expression for a and evaluated at the
matching point using the computed values of Xe’ Y :

p 1-B
.- {z(l—ZB)Xe+Ye }I—ZB

_B_
1-B
e

(A9)

(89]

@ evaluate I = S‘
0
00

dn

s /4
I =§ — dn +S‘ Ae dn
n
n e
e ul
= g v%dn + AV7 erfe ()
0 -

- Performing an integration by parts,

k=)
g
I=s_+ 5 nd(YZ) + AV erfc (*z?‘)
ve
Le

Substituting y = ;YZ and using equation A8, I may be written as an
explicit function of Sor Mgs @ A
e
I= se+A\/7—Terfc (T)+

{A10)
1-2B B

a2 1)2
4 i1-B _2-2B 2
22 2 v "y o dy
€ (1-2B) S
_£
T‘e

compute A(” and renew cycle

By Al,
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(1)
A 1
520; =20 (A1)

At can be used as a second guess for A in step () . The iteration

cycle is thus closed.
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I1II. THE PROPAGATION OF FREE TURBULENCE IN
A MEAN SHEAR FLOW

1. Introduction

Since the work of Corrsin and Kistler [1], it has become clear
that one of the most distinctive features of turbulence is its spotty or
intermittent character. A hot wire record of a real flow shows per-
iods of great agitation erupting sporadically between quiescent inter-
vals. It now appears that any theory of turbulence, even turbulence
homogeneous in the sense that ensemble averages of flow properties
are invariant under translation, must take into account the severe
inhomogeneity present in each realization of the flow.

Corrsin ;and Kistler discussed the sharp fronts that bound the
turbulent portions of wakes and boundary layers embedded in regions
of potential flow. The turbulent side of a front is supposed to be
characterized by random vorticity, while the flow on the other side
is vorticity free. The rate of propagation of such a front, at high
Reynolds numbers, is governed by the intensity of the turbulence
itself and is independent of viscosity. Yet there is no way to trans-
mit vorticity to the irrotational flow beyond the front except by
viscous diffusion. Corrsin and Kistler resolved the apparent contra-
diction by pointing out that the interface between rotational and irro-
tational flow wrinkles up until its area is adequate to transmit the
right amount of vorticity.

The phenomenon of intermittency also occurs in situations
where the flow beyond intensely turbulent regions is not irrotational.

Turbulent slugs in pipe flow, spiral turbulent bands in circular
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Couette flow, wedge-shaped spots of turbulence in boundary layers
on the verge of transition, turbulent wakes behind the bow shocks of
hypersonic projectiles are examples of intermittent turbulence in a
mean shear flow. Saffman [ 2] noticed the similarity between turbu-
lent slugs and slugs of diffusing dye in pipe flow, and conjectured
that turbulence might behave like a diffusable scalar quantity in such

situations. He proposed a model equation for the 'turbulence density'

T,

%%+g'-VT=(1T+V-(V'T),

where U is the mean velocity, and the convected time derivative of T
is set equal to a production term proportional to T plus a diffusion
term depending on a tensor diffusivity v. Turbulence propagating
into an irrotatipnal flow cannot diffuse at all, if 'turbulence’ means
random vorticity fluctuations. Vorticity must stay ‘Ebehind the surging
interface. But if the flow beyond the turbulent region is already
rotational, velocity fluctuations induced by the turbulence will stretch
the vorticity in the laminar region and produce random vorticity
fluctuations, that is, turbulence. Thus an initially sharp turbulent
front will propagate into a mean shear flow, and Saffman proposed
that this propagation might be described by a diffusion equation.

One of the problems with this proposal is that the quantity T
which is supposed to diffuse is hard to define in terms of mechanical
properties of the flow. An outright identification of T with some
moment of the fluctuation vorticity w cannot be defended by the vor-
ticity equation. Since the diffusion should depend on random stretch-

ing of mean vorticity, an interaction between the turbulence already
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present and the mean field, the physics of the propagation should
remain after linearization of the vorticity fluctuation equation.

Suppose the mean vorticity Qis constant in space, The the lin-

earized equation for w is

9w

8t+g-V9=w-VLj+Q~Vg

~

The last term represents propagation of turbulence by random
stretching of mean field vorticity. It must be written in terms of
the turbulent velocity u, and y is a non-local functional of w found
by uncurling the equation w = Vx u. The equations for statistical
moments of w similarly involve the velocity field y. It is hard to
see how T could be defined as a local functional of the vorticity and
still satisfy Saffman's diffusion equation (unless, of course, Vv is
itself a non-local functional of the turbulent field, but then the point
would be losti%. In the situations where turbulent regions embedded
in shear ﬁowsk"nave been observed, spiral bands in touet‘te flow for
example, the turbulence is more of a visual than a mechanical
phenomenon anyway. Regions are called turbulent which display so
much commotion that the eye cannot pick up the details. These
turbulent regions appear to be bounded by sharp fronts just like
turbulent regions embedded in irrotational flow {see Coles' review
article [3] for examples).

Whether turbulence diffuses or not, it is certain that a tur-
bulent region embedded in a mean shear flow excites random
vorticity around it, and it would be interesting to know how the

effect propagates. A straightforward way to assess the intensity
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of the turbulence is to find the average rate at which it transports
momentum through the mean flow — the Reynolds stress, Suppose,
for example, that the mean flow is in the x direction and the mean
speed U is a function of y and t only. The (x,y,z) components of
turbulent velocity and vorticity are {u,v,w) and (£, 1, {) respectively.
The turbulence satisfies the continuity equation V , u = 0 and is
statistically homogeneous in x and z. Then the meaﬁ field momen-

B

tum equation is

83U . 2 ()
ot = By "W o

where -uv is the Reynolds stress. By continuity and homogeneity,

ﬁ_(“")- v _Bu _ [Bu, dwiy, {B8v _ 38u
oy VW E U Ey Vay T M\8x ' 9z/) V\ex " 9y

= vw - wWn

so the gradient of the Reynolds stress is zero if no random vorticity
is present. If the Reynolds stress is zero at oo and has a finite value
at some height y, then random vorticity fluctuations must have propa-
gated beyond y. The object of this chapter is to find how the Reynolds
stress evolves and the mean flow reacts as the turbulence propagates,
The first approach to this problem was patterned after Phil-
lips' model for the random potential flow above a turbulent boundary
layer [4]. The original turbulence was supposed to lie below the x,z

plane in the region y < 0 and excite random vorticity fluctuations in
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the region y > 0. The x,z plane was idealized as a wall of pistons
continually forcing the flow above. The trouble with this model is
that it assumes a qualitative distinction between the flow above the
plane and the flow below. Such a distinction may be appropriate when
the flow above is irrotational, but it is surely unjustified when both
parts of the flow contain random vorticity. The work of Moffatt [5]
on homogeneous turbulence under mean shear suggested a more
sensible formqlation of the problem. In this chapter the propagation
of turbulence is treated as an initial value problem. At time zero,
random impulses, homogeneous in x and z and closely confined to
the region y = 0, generate an infinite slab of random vorticity. This
vorticity then propagates into an unbounded, parallel mean shear
flow, and the feaction of that mean flow to the propagating turbulence
is the object of study. The physical setup is sketched in figure 1.
Throughout the rest of this chapter the coordinate labels (x,vy, z)

and (x1 ,xz,x3) will be used interchangeably, and the turbulent veloc-

ity components will be written either (u,v,w) or (u1 ,uz,u3). Unit

vectors in the x,y,z directions are written i, i, 15
The chapter can be divided into three main parts, sections

3, 4 and 5, corresponding to three tacks taken in an effort to under-

stand the problem just outlined. In section 3, the evolution of the

Reynolds stress under the linearization mentioned earlier is studied.

The result is surprising and disappointing: the stress stops propa-

gating once the turbulence is highly sheared. In the next section,

the problem is greatly simplified by permitting initial turbulent

fields uniform in the direction of mean flow only, and some aspects
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of non-linearity are reintroduced. No general estimate of the power
of such turbulence to distort the mean flow can be found analytically,
however. The convection of momentum depends critically on the
convection of random vorticity by the fluctuating velocity field, and
that problem cannot be solved. When it became clear that analytical
models would be unreliable, numerical flow visualization and momen-
tum transfer experiments were programmed and carried out. The

background for these and the results obtained are described in section

5.

2. Basic Equations of the Problem

The problem to be studied can be posed as follows. At time

zero an ensemble of initial velocity fields v _(x) is given, and the flow

~

for each initial condition evolves under the Navier-Stokes equations

of motion:

where v is the kinematic viscosity and m is the kinematic pressure.

Each initial condition can be written as the sum of two parts:

v (x) = AU _(y) +u () . (2)

~ ~

Uo(y) is the same from experiment to experiment, and uo(g;) satisfies

~

the following properties: the ensemble average of uo(g) is zero;

-~

statistical quantities based on the ensemble of y (?..‘) are homogeneous

(o]
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in x and z, and symmetrical under reflection through a plane perpen-
dicular to z; go(x,y,z) -0 as y =+t co. Solutions y,T based on these

initial conditions can be written

(?S) = LU(Y:t) + Q(L{’ t) s

<

(3)
m(x) = P(x,t) + p(x,t) ,

where 4 and p are zero. The overbars denote averages taken over
the ensemble of initial value experiments. P(x,t) is required to
approach a constant pressure PO as y o0, SO no mean pressure
gradient is impbsed in the far field. When the equations of motion
are written in terms of the quantities defined in 3 and averaged,

the result is

The averages may be subtracted from the original equations to give

8
——?é +U-Vy+u-VU+uVuy+ Vp=y:-Vy+ vvzg R
(5)
Veu=0.
But
du
- i 8 =8 o=
le,g—uj ij —_S;c—(uluj)”aymi)

i}
;
gl
g
.JI,-
z(.—a.
gl
<
VN
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where the continuity equation and the assumption of homogeneity in
x and z have been used. Since the mean velocity has the form U =
iUly,t), the second of equations 4 is automatically satisfied, and the

y component of the first is

8 2, , 0P _
‘8—5(V)+-é—§'-—0o

Integrating from y —oo, and using the condition P(x,0,z,t) = PO ,

P(g,t) = P - v2 (yst) = Ply,t) .
Thus a mean pressure depending on y and t only is consistent with
the assumption U = iU, Egquations 5 and the x component of the mean

momentum equation are now

9y 9y 18] R 9 , 2 2
ﬂ+U5§+LVW+VP~[ké§(uV)+J'§)—§(V )]—Uﬁv +VV2,
(6)

V-u=0,

83U |, & — 8%u

a7 T = (uv) = v . (7)

Jt ] 2 )
y dy

Suppose the viscous term in equation 7 is negligible, and

define the mean field momentum change
oo
M = § [Uty.t) - Uo(y)] dy
-0

and angular momentum change
co
L= § y [Uly,t) - Uo(y)] dy .

-00
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From equation 7 and the assumption that turbulent fluctuations ap-

proach zero as y —> 0,

fo's) o w
. 18] d(u —
-0 -0 -0
but
0 o0 . o)
. 14 _ 3(uv) _ e
L—S‘ y—azdy——j‘ dey—S uv dy # 0.
-00 -0 -00

It may seem surprising that angular momentum (or rather, angular
momentum per unit length in the x direction, and that is the catch)
is not necessarily conserved. The same thing happens in the laminar

flow case, where equation 7 becomes

19 0"U

VT2

and the kind of: situation shown in figure 2 might be considered. Then

(0 8] QO 2 QO
: v oy o"U ouU
L'-:‘S’Y"a"fdyzvgy———z-dy:-v‘g? -g—};'dY:—VAUo
-00 o OV -0o

Here again, 'angular momentum' is being lost, and at a rate -v AU.
Why is no pressure gradient needed to create a torque consistent
with this loss? The answer can be seen by considering the thought
experiment shown in figure 3. Two long, thin boards pass by each
other and suddenly connect. Their angular momentum is propor-
tional to their length £. If their tendency to rotate after connection
is resisted by a graded impulse per unit length I = -px, then the

total angular impulse delivered is proportional to pﬂ3, and this must
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sy

FIG.2 LAMINAR FLOW LOSING "ANGULAR MOMENTUM"

FIG.3 SUDDEN CONNECTION OF TWO BOARDS
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be proportional to £. Thus p ~ 1’_2, and the impulse gradient required
drops as the length of the boards increases. As £ —-oo, p >0, just as
the pressure gradient in the fluid flow problem goes to zero as the
flow is made homogeneous over larger and larger intervals in the x
direction.

In this chapter various restrictions on the allowable initial
conditions and various truncations of equations of motion 6 and 7 will
be considered.\‘ The viscous terms in the equations, for example,
will always be dropped. In section 4 a truncation called the mean
field equations will be used, in which the non-linear action of the
turbulence on itself is dropped, but the turbulent interaction with the

mean field is retained. The inviscid mean field equations are

du du 89U
=+ = 4 =+ Vp=0,
51 U 5= £vay Vp=20
vcE::O, (8)
8U , 8 ,—, _
ety w1 =0

where U = U(y,t). The mean field equations are not a rational ap-
proximation to the full equations in the sense of being a valid per-
turbation limit for small times, but they do preserve some of the
qualitative features of the flow which are lost in a full linearization.
In the language of the theory of homogeneous turbulence, the mean
field equations retain the interaction between the large eddies (the
mean flow) and the small eddies, but neglect the interaction of the

small eddies with each other.
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If the non-linear terms are dropped altogether, the linearized

equations of motion result:

9y 9y .
5_{+U—8—§+LVQ+VP—O’
Veu=20, (9)

where

The case §(y) = const is discussed in detail in the next section. Sup-
pose the initial turbulent disturbance Qo(g) is characterized by a még—
nitude {/ and a length scale [ . The convective terms dropped to get
equation 9 become important after a time L /é/, and the time scale

associated W]'.til the mean field interaction terms is Q-l. Hence equa-

tions 9 are valid and interesting for times satisfying
Ql~t<< L /U,

and QL /l/>> 1 is required for the linearized equations to be valid

at all.

3. The Linearized Problem with Constant §

A. Fourier Transformation and Solution of the Linearized Equa-

tions of Motion

The turbulent velocity field can be expressed as a Fourier

integral



where (10)

a is a generalized function and can be considered the limit of the
integral over physical space as the domain of integration becomes
arbitrarily large. Lighthill [6] gives formal definitions of quantities
like a and techniques for manipulating them. Fourier transformations

will be abbreviated to expressions like FT(u) = a. Then
du Oa
FTG9 = 31
FT(V: u)=ik-a
follow at once, and if FT(p) = b(k,t),
FT(Vp)=ikb .
For § constant and (1, 0,0} a unit vector in the k1 direction,
FT (1vQ) = Qa,(1,0,0) .

Finally, for constant § and U= sz, FT(UBy/0x) is found as follows:

83 1 83 -1
¥FT (U—8;)=—*§§QX2§;—8 d’z{
(27) 1

_iléa?\'{
= ik Xx u e dx
1 (271‘)3 2
9 %2
= 1Qk1 [1 'éflgg FT( )} = - le —1‘{—5 .
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The Fourier transforms of the linearized momentum and continuity

equations are thus

da da
'5"{:‘— le—a—E—g'}‘ Qa2(1,0,0)+ 11~{b= 0 N
k-a3a=0.

Differentiating the continuity equation with respect to time and k

2
gives
Oda
5 ag = O
and
da
k A "—?“'+ a = O @
8k2 2

An expression for b is obtained by using these relations and dotting
the momentum equation with k.,
Zlﬂklaz

kZ

b =

where k2 = k-k. The momentum equation in terms of g alone is

da da Zﬂklkaz
Y —legﬁ-ngQaZ(l,O,O)-——;‘f—-’—: 0. (11)

The initial condition is

Q(B: 0) = FT(EO) = %O(}'S) o (12)

For given k19k3, equation 11 is a linear wave equation on k2

and t. Thus substitute

%(k19k23k3,t) = é(k19k29k39k2 + thl) )
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and write

k =k2+th1 .

0l
Then
da da 0A
== - Qk, =— = -Qk, =— ,
ot 1 8k2 1 8k2

and equation 11 becomes

A 2k KA,
k, s— =A_(1,0,0) - —5-%,
1 Bk, 2 2

with the initial condition
£ (kyukypokankyo) =8, (kysky,.ka)

In subscript form,

8k2

02.)

= Ti(k )AZ, Ai(koz,koz) = a .(koz) 9

2 oi

where the functional dependence on k1 ,k3 is understood, and

e (6 ] Zkikl)
i k1 il k2

The solutions Ai can be written in the form

Ayligok o) = Liyslkyo ko) a o (k)
where
Lyl pok ) = 64 - (13)
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Then the equation of motion is
N
S Ti(kZ)LZj (14)

with the initial condition 13, Equation 14 is integrated in Appendix A,

The result is

i '(kgki o1 + Sk [531) 0
e TR
L =< 0 _k‘zi 0 & (15)
i 2
2
K kz? (1o —uf;—ﬁ-]) Y

where the index j designates columns, and

kzzkf 2 2

+k2+k3,
2 _ .2 2
£ -k1+k3
k2=k2+k2 +k29
o 1 o 3
kZ kZ koZ
H=3-%
k k ko

_ -1 ,4 -1 ,4

[6] =tan (E—-)—‘é:an (k ) .

2 o2

[fn(kz)] means { (k,) - f (k_,). © is the polar angle of k measured
from the kZ axis and has values between 0 and w. The solution for g

is thus

ai(l},?t) = Llj(ngoz) (kl 9k029k3) s (16)

a .
9
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where

koZ = kz + thl ;

B3
and Lij is given in equation 15.
If the initial turbulent field consists of eddies whose dimen-

sions are roughly L in an directions, then go(kl 'k k,) should tend

02’ 3)

to zero as any one of its arguments becomes large compared with L‘l.

But for Qt>>1, ko2 is indeed very large unless kj is very small com-

pared with L_l . Thus equation 16 implies that, as time passes, only

Fourier modes with k1<< L—I can become excited. If it is legitimate
to translate that statement into eddy language, the implication is that
after a long time the turbulent motion will consist of eddies greatly
elongated in the x direction. Furthermore, equation 15 shows that

the le component of Lij is large for kl small, so the a, components

1

of the Fourier modes which remain excited for t>>1 should be ex-
cited very strongly. The qualitative picture that erﬁérges, based,

to be sure, on the analogy between Fourier modes and physical ed-
dies, is that of elongated columns of fluid surging in the direction of

mean flow,

" I have followed the notation but not the approach of Moffatt [5], who
derives equations 15 and 16 by watching the evolution of a single Four-
ier mode whose wave vector k is a function of time. His approach is
physically illuminating for the specific problem of the evolution of a
shear wave, but the connection between his Fourier modes with time
varying wave vectors and the modes g(k,t) ordinarily discussed in
turbulence theory is not quite clear and leads me to some confusion
when he sums his modes for the turbulence problem.
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B, Correlation and Spectrum Functions of the Solutions to the

Linear Problem

The correlation function for the turbulent velocity field ui(g)

is defined as

R, (x,r) = u.(x)u. (xtr) ,

and since the field is statistically homogeneous in the 3 and X3 direc-

tions,

Rij(§"¥") = Rij(Y:,:E,) °

The time argument in all quantities is understood. Homogeneity

further requires

Rij(y"z) = le(Y"‘rZs‘}E,) o (17)

The flow shoulid be statistically invariant under reflection through a
plane perpendicular to the X4 axis. Since the only velocity component
which changes its sign under such a reflection is Uss

Rij(y9rl!r2!r3) = Rij(y9r19r29—r3)9 193# 3 .

For i or j = 3, the relation holds with a minus sign on the right, and
for both i and j = 3, the relation is true as it stands. A final condition

is imposed on Rij by the continuity equation:

If ui(g) and uj(g,d;;) are Fourier analyzed according to equation

10, then Rij can be written
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— ilktk')x ik-x
Rij(y,s) = 55 ai(1~<' )aj(l~<) e e dk' dk .
Since the left side does not depend on X OF Xg,

a5 (s")2;(s) = A (h, k) 6 (i) +k) ) 6 (iKy+ky)

k

1’73
and both kz and k'z, since the velocity field is inhomogeneous in the y

The spectrum function Aij defined by this relation depends on k

direction. The integrations over k’l and k'?’ in the expression for Ri'

can be performed immediately to give

ik, tkb)y ikex |
- 1 1
Rij(y"l:') —Sv Aij(k k) e e dk, dk . (18)

Since R, is real,
1}

* r g el -
A% (K, K) = Ay Eky, k)

The symmetry condition 17 imposes a further restriction on Aij’ since

r ilk,tkl)y -i(k r,+k,r, )+ik!r
. 9 272 171737372 2
Ryjyte,,-x) = j Ayl ke e dk}, dk,

ik, tkL)y ikex
- [ |
- §Aji(k2, -k kb, -k) e e di!, dfs .

Comparing that with equation 18,

1 i -— -
Aij(kz, kyskh, k3) = Aji(kz, kl,kz,-k3) .

The condition on the reflectional symmetry of Rij implies

_ N R . .
AlJ(k‘Z’k]_’kz,k:B) = Alj(kzykl:kzs k3)s i,] 3. (19)
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The incompressibility condition imposes a final restriction —
! =
kj Aij(kz,}s) 0.

The linearized solution of the last subsection can be used to

find Aij as an explicit function of time. From equation 16,

Ak, k5, 1) 6 (k) 6 (k) = a(k7,6) a0k, © ,

l

L. s k) ij(ls,koz) op Ky o Koo k3)a (k) k _5,ks)

— i 1 1 i
= Lil(l's ,koz) ij(g,koz)Azm(koz,gd0)6(kl+k1)6(k3+k3) s
where
koz = kz + thl 9
— 1 1
k:)z = k2 + thl s

and 50 denotes the vector (kl’k 2,k3)e The expression for Aij as a

function of time is now obtained by integrating the etluation above over

i L
kl and k3.
i
( k t) = 1 ( kl’k29 k33k02) L (kl’kz’k3,k02) (20)
o 1
Aﬂm (k029k15k02!k3) b4

where now

H _ [

and

O —-—
Ay m (kgoeksg) = Ay (ko0 Kk, 0)
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Equations 18 and 20 give Rij(y,g,t) when the initial spectrum function
A;.)m is known and the linearized equation of motion is valid. Only
Rij(y,O,t) will be considered from now on, and in that case the inte-
grétion in equation 18 is more easily carried out over k'oz,k1 ’koz’k3

than over k! ,kl ,kz,k3. The Jacobian of the transformation is 1, since

2

ko = ko‘f2 - Qtk, ™\
kp =k + Qtk;
Thus
R..(y,0,t) = > (21)

j
(o8]
- ' -
55§§Lu< kyokys kgy ko) Ly (kg s kg s kgh ko)

ik otk' o)y
A; (k' o,k ,k o,k 02 02" g1 _dk _dk, dk
m' o2 o

i
10 Koo ksl e 02909 8% 9Ks -

/

In the next subsection, the Reynolds stress o(y,t) = -R21(y,0,‘t) is
found for a special case where equation 21 simplifies for arbitrary t.

After that, some general consequences of equation 21 in the limit

Qt>>1 are derived,

C. Reynolds Stress above a Sheet of Random Vorticity

Suppose prior to time t = 0 there are no turbulent fluctuations
in the velocity field, and at t = 0 a random impulse per unit area
f(x,y) is applied at y = 0 over the %,z plane, A collection of lifting
surfaces might be shot over the x,z plane at t = 0, for example.

The inviscid equation of motion for the total velocity y is
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@
<

I

+y o Vy+ Vi =j f(x,2z)8(y)6(t) .

(a7
L d

By integrating the equation across t = 0, a new initial field X, is found,

X&) - U (x) + Vo = flx,2)8(y)

where ¢ is the impulse of the pressure. The initial turbulent field

g, (x) then satisfies

B, (x) + Vo = j fx, z)8(y) (22)
and the continuity condition
v ° Eo(z) = O ®

Thus g, is a potential flow, g, = -V¢, for y# 0. Phillips [4] treated
a similar situation in his paper on the potential flow above a wall of
random pistons, an idealization of the flow above a turbulent bound-
ary layer or wake, The difference here is that there is no wall of
random pistons, but a sheet of random vorticity; there must be a
legitimate veipcity field over all physical space, Suppose the poten-
tial just above the x,z plane is ¢1 and just below is ¢,. Since the y
component of 4, must be continuous at y = 0, equation 22 can be

integrated across y = 0 to give

¢, - ¢,=ix.2) .

There is thus a velocity slip g through the x,z plane given by

My = ~Vy(@y-9,) = -V (23)

where Vl means a gradient in the x,z directions only. After the
impact at t = 0, the x,z plane is covered by a sheet of random con-

centrated vorticity, and the initial turbulent flow is potential out of
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the plane, Since there is no random vorticity beyond y = 0, there is

no initial Reynolds stress. That is a consequence of integrating the

equation

down from y >~o. The problem of the initial random vortex sheet is
thus ideal for the examination of random vorticity generation by tur-
bulent interaction with the mean field.

The object now is to find A.(Zm corresponding to the 1~10(;5) given
by equation 22 and to use equation 21 to find the Reynolds stress as a
function of y and t. The Fourier transformations of L3 ¢ and f are

needed, say

FT (g,) =3,k

FT (¢) = (k)

Y

FTl(f) = L) s

where ]:"T1 means Fourier transformation over the x,z plane only,

and £ = <k1’k3)° Then
FT (Vo) = ikd ,

FT (£6,2)8(y)) = 5= F

and the Fourier transformed momentum and continuity equations are
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a, Us) + ik@ls) = j 5= T(L)

~

2

k-ao(g):o.

Dotting the momentum equation with k and using continuity gives

k

NIN

~ f
(‘b_Zvi Kk

SO
~ kk
_F . 8
2.tk = oo (1 ‘_"kz)

In particular,

N S
ol 7 2w kZ !
o (24)
a4 = L 1°
o2 an

Suppose the spectrum function of f is Y(L) —

~

(L) T(L") = Yig) s(g+e) .

A relationship between Y/(£) and the spectrum function ® () of the
upwash distribution used by Phillips can be found. The upwash at

y = 0is uoz(x,O,z); suppose

FT1 (uoz(x,O,z)) =a

L) .
But
ik, x,tk,x_)
1%17°3%3
qu(x"o’z) = ‘g‘aoze dk
Py 2 if-x
£ 2%
= g_i:'.)_ L~ e Tax,ag,



Thus

@) =4 y(0) . (25)

The large scale contribution to the upwash is thus isotropic with re-
spect to rotations in the x,z plane regardless of the character of ¥,
an interesting e?cample of pressure forces leading to isotropy. Fur-
thermore, ® is 0(12) when Y has a finite value at ¢ ‘= 0. This leads

to a surprising physical conclusion as follows. Y is the Fourier

transform of the impulse correlation function f{x,z)f{x',z'),

ig- (x-%')
flx,z)(x',2") = S‘ Y(L) e df .

By inverse Fourier transformation,

Y(0) = Sﬁ f(x,z){(x',2') dlxg-g') .

If f satisfies an ergodic property, so ensemble averages can be re-

placed with averages over large portions of the %,z plane,
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le[ gg et ) o |
,;j:)[‘/‘g xz)dx] .

If the f(x, z) over separate patches of the plane behave like uncorrelated

Y(0)

1]

1]

random impulses, the integral diverges like YA , and Y(0) # 0. Simi-

larly,

®(0) = L1m [—1—— S. (x,0,2z) d ]2 .

A

[:

But equation 25 requires ®(0) = 0 even if Y(0) # 0. Thus a spatially
random impulse generates an upwash with negative correlation be-
tween neighboring patches; in other words, if fluid is slammed down

in one place, it is likely to squirt up nearby. Since

from equation 23, the spectral distribution of the slip velocity is also
0(122) as £ ~ 0 for Y(0) # 0. Phillips used ®(0) = 0 and got results in
good agreement with experiment, but his demonstration for ®(0) = 0
was in error. It is now apparent that if the turbulence is generated
by impulses in the fluid itself rather than by pistons in a wall, ®(0) =
is a natural result.

The Reynolds stress o(y,t) equals -Rlz(y,(),t) or "R21<Y909t)o
The way equation 21 is set up, fewer primes have to be written if R21

is computed. Since L13, L21 and L23 are zero, the integrand for
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R,, in equation 21 has the form

21

Q . (@] O
Log LimAom = Tagly1891 + Lgglygfog - (26)

From equations 24,

@) kk
AO ( ! ’k) = —5 “"]';"2" ’
212°8) = 3~ 33
ou) .2
O 4 _ ~ £
Agglky, k) = 7 2.7

where k' = (k; ,ké,k?’). Equations 15 and 21 give the Reynolds stress

as a sum of complicated integrals:

G(Y’t) : “'R21(Y’ O’t) = Il + 12 + 13 N
12 : '
_ k o ®(£) k1]&02 1(k02+k02)y .
L = 5 T3 T30 kg dkggdd
k! il kk!
5.2 5 (27)
2 Kok @) ,2  ilk_tk'.)y
— k 3 O [‘ ~> 'e 2 2 5.1 3
12 - 3 Le] 5 5.9 e Gkozakozdﬂ 3
k' kll w k7K’
o o
12 2 '
— ko klko k2 ®(£) 1!2 1(koz_}pkoZ)Y .
L=} —5 —5 5! 57 ° dkpdkygd -
k' ] k ™ kk' 04 O Y,
o o

The geometrical quantities appearing in the integrals have been de-
fined under equation 15 and in equations 21. The great advantage of
the vortex sheet problem is that the integrals ]'.1 and 1’3 cancel identi-
cally. That is shown in Appendix B, and the integrations over koZ
and kéz in 12 are also carried out to give the final result

sin(thly} -24 ly |

k

3

oly,t) = f@(g)—-— — 1. ag . (28)
2 Ky
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The implications of equation 28 become clear when several
limiting cases are studied.
(i) Qt—0. Then

k

W N

-24 ‘yf
e df = Qtfn(y) )

8]

oly,t)= Qt S@(L)
|

so the Reynolds stress is zero att = 0, a result antici-
pated earlier, and begins to grow linearly with time.
(ii) Qt — oo. Substitute g = £ lyi in equation 28 —

1 K\ K sin(ﬂticl) 21kl
G(Y’ t) = ——2' §®('~ l) '—2' K e dﬂ ° (29)
vy YU g 1 '

W N

As 2t — oo, sin(Q‘ti{l)/K1 behaves like a &§-function of

weight m in the integration over Kqs and except at y = 0,

- L Ky\ -2 IK3€
oly,t) >— 5 @(9 T{rT) e dK3 = fn(Y) ; (30)
y -0

provided ®(0, k3) exists. The case where @(0,k3) does
not exist, where all the initial turbulent vorticity is
aligned in the %y direction, is discussed in section 4.
For a roughly isotropic initial turbulent flow, the
stress relaxes into a steady distribution except at
y = 0,

(iii) y — 0, Hold t fixed and take the limit y — 0 in equation 28:

2

o(0,t) = Qt§® (L) —;2— daf .

The Reynolds stress at y = 0 grows linearly with time

for all time.



-100-
(iv) y = oo. Take the limit y = oo in equation 29. For £ small,
,(?2

®(L) = 2 ¥(0)

from equation 25, That relation can be substituted in
the integrand of equation 29 except where K is large,
and the exponential factor eliminates contributions to

the integral from regions of large K anyway. Thus

sin(Qtk,) -2 Ikl
4 3 K 4 n
4y 1 4y
Hence the stress decreases as y—4, for y large com-
pared with the length scale of the original fluctuations,
for all time. Phillips [4] found a 7_4 decrease for
the fluctuation mean energy density in his potential flow
pgoblem.

(v) @t — o0, y =™ 0. As Qt — o0 in the last equation, sin(S'Zticl )/Kl

again behaves like a 6-function, and

(0) e . AN { 3/2 )(0)
G(Y,t)ﬁ—%(- Sv K3 e dK3 = -8- (—2") y4 o
-0

The evolving étress profile is sketched in figure 4., The details, of
course, depend on a detailed specification of Y(L), the spectral dis-
tribution of the impulse. The important point is that the stress
relaxes into a steady profile as {}t becomes large, except at the
sheet of concentrated vorticity itself. This behavior is not peculiar
to the vortex sheet problem, but occurs for any (roughly isotropic)

initial conditions. That is shown in the next subsection.
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D. Reynolds Stress in the Limit 2t —> oo of the General Problem

In the general case, the integrand for RZl in equation 21 still
has the form given in equation 26. Since k'2 = k;z + thl from equa-
tions 21, the factor L, = (122 + k:)zz)/(ﬂ2 + k'zz) in front of both terms
in equation 26 forces the integrand to zero as §2t - o, except in
regions of small kl‘ But equation 15 shows that the first term of
le has a kl in the denominator, and the portion of the integrand
containing that factor should give the dominant contribution to the

Reynolds stress for large times. Thus the Reynolds stress should

be approximately

o @) K L[k, Rk, K,
o(y,t) '—") 373 > [cot N -cot"‘(—z—)]
k87 [0 % (k!4 Qtk )]

(31)
ik ,+k' )y
o . o2 02 .
Aaalkgprkyrkgpeks) @ ey kg pdicy dks
This corresponds to the quantity I2 defined in equations 27 for the
vortex sheet problem. In that problem the other terms, 12 and 13,
cancelled identically. Generally they do not cancel, but the fact
that they are negligible in the limit t - oo is established in Appen-

dix C.

Transform the variables of integration in equation 31 as

follows:

ko2 = LB

H 1
k02 S

Lcos¢ ,

tl

(32)

Ky

k3

£sing .
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The Jacobian of the transformation is 123. Thus

o0 o 2T
oly,t) = g‘ S' S‘ S‘ (180145 )t sin’e 5 [cot” L(p-Qtcosdp)-cot™1p]
-0 -0 0

coso[1+(p'+Qtcos) ]

o i(p+p' )y
Azz(p'ﬂ,ﬂcosqb,ﬁﬂ,ﬁ sing) e dpdidpdp'.

It can be shown easily that
2m

T
Sf(singb,cosgb) d¢ = 2 S‘f(sin(,b,cosqb)d(b
0 0

for a function f symmetric on its first argument. Agz is symmetric
on its last argument by equation 19, so ¢ may be integrated from 0

to m only, and the result multiplied by 2, Now substitute
€ = -Qtcos ¢, (33)

Then
2
si _ £.,2 di
ML ap= 1ot E

for 0 <¢< w, and the stress integral is

Cr (1+ 21+ '2}13 1 1
o(y,t) = -2 S‘ B B [ cot™ " (Bt+E)-cot™ "l
~00 -0 0 th[“_(ﬁ' £) ]

i(ptp' My
- (e? aS, (e, T, pr, g1 &% e ddedpdp’ .

So far no approximations have been made in transforming the par-

ticular term of o(y,t) retained in equation 31. The next step is to
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find the limit of o(y,t) as Qt —oo. The limit can be taken in the ex-
pression above before an explicit integration is carried out if the
resulting integral converges for large £. But the integrand is of

order 5-3 for large &, the integral thus converges, and in the limit

Qt 7o

Q0
0(Y: = -2 ‘g‘
=Q0 -

g —8

O 00
SS‘ (1+p )1.+p' ),e [Cot-l(mgl_cot-lﬁ]
b ElIHE-8]

(34)
o i(B+B' )Ly
Azz(ﬁ‘l,o,ﬁﬂ,l} e dgdedpdp' .

Equation 34 is the general analog of equation 30 for the vortex sheet
problem and shows that in the general case the stress relaxes into
a steady profile as 2t — oo, Again, the as sumption that the initial
flow is 'roughly isotropic,' i.e., that A m(Kys 05k, ko) exists,
has been made. The same chain of transformations that led to equa-
tion 34 is used in Appendix C to show that the largest term left out
of equation 31: is O(Qt)=1 in the limit &t — .

The physical situation behind the asymptotically steady stress
o(y,t) = - uv can be seen more clearly by considering the mean

square values of u and v separately. v2 is easy to find, since the

integrand of equation 21 for R22 contains only one non-zero term,

LZZLZZAZZ The integrand for -\:2— contains several terms, the domi-
nant one being LIZLIZAZZ as {2t = oo, There is no point in repeating
the kind of argument which led from equation 31 to 34. Provided

the transformed integral of a term in equation 21 converges as § —o

. -1
{and it does for v2 or the dominant term of uz), the term is O(Q’c)n
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as Qt — oo, where n is the power of k1 in the denominator of the

integrand. A glance at equation 15 shows that
2
u® = 0(Qt)

¢ = o),

as §2t = co. Thus mean field interaction with the turbulence imposes

a heavy veto on vertical fluctuations but promotes high-speed surges

in the direction of mean flow. This observation was made by Moffatt

for the case of homogeneous turbulence, and was already apparent
from equatio'hs 15 and 16. A rough physical description of the pro-
cess goes as follows. A blob of fluid may be moviﬁg upward at t = 0,
As it moves it tends to retain its original speed in the x direction,
but it is sheared out flat perpendicular to the y axis and loses upward
momentum to the fluid around it. It is left as an elongated and flat-
tened slab of fluid lagging behind the mean flow of its surroundings.
The Reynolds stress -uv becomes steady as the u fluctuations become
large because of vertical convection, and the v fluctuations them-
selves drop to zero.

Equations 30 or 34 are embarrassing results in a study aimed
at the propagation of turbulence through mean shear flows, As
2 = o, the turbulence stops propagating. Apparently, any proper-
ties of the equations of motion that would have led to a diffusion of
Reynolds stress have been lost in the linearization. In the next sec-
tion a more restricted class of initial conditions is considered, and

non-linear effects, in some measure, are restored.
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4, Flow Uniform in the x Direction

A. The 9F /0x = 0 Assumption

If a roughly symmetrical blob of fluid begins to rise, it is
elongated and flattened against its line of ascent by the mean shear
flow, its apparent mass (associated with displacement of the fluid
around it) increases, its rate of ascent decreases, and the blob be-
comes a shaft of fluid lagging behind the mean flow of its surround-
ings. This picture is appropriate if the initial turbulent flow can be
blocked off into roughly symmetrical and independent blobs. The
picture is meaningless when the original turbulence consists of
eddies uniform and infinitely elongated in the x direction, when
distinguishable fluid blobs are columns to begin with, If the original
eddies are independent of x, all flow properties are independent of
x for all timeg; The inviscid equations of motion | for the total

velocity x and pressure w are then

DVl :
“ﬁ—t:_=99 (35)
DV2+§_"_-0 \
Dt ay ?
Dv
3 ow _
Bt T 0 ; (36)
8v2+8v3‘0
oy oz y.
where
D _d 3 3
Dt "ot T V2dy T V3dz -
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The first equation states that the x component of momentum of a fluid
column is conserved as the column is transported in the y, z plane,
The next three equations, the y and z momentum equations and the

continuity equation, are completely independent of v; and describe

the dynamics of two-dimensional, incompressible flow, Given an

initial flow v, (y,z), vz(y, z,t) and V3(y, z,t) are found by solving the
two-dimensional problem governed by equations 36, then vl(y, Z,t)
is found by integrating equation 35 using the known histories of \&
and Ve Averages are taken over an ensemble of vo(y,z). If the

ot

initial fields have the form
ZO(Y’Z) = LU (y) + iVO(YsZ) + kwo(y,Z) )

for example, where _\7; = LUO and the initial perturbation velocity
component uo(y,z) is zero, then the initial Reynolds stress -uv is
zero, and the mean flow profile is Uly,t) = W‘ for all t. The
fluctuating pai't of the vorticity field which evolves from such an
initial condition is not two-dimensional in the sense that the turbulent
vorticity is aligned in the x direction. The initial turbulent vorticity
is aligned in the x direction (for uo(y, z) = 0), but the field it induces
stretches the mean field vorticity and produces a three-dimensional
random vorticity field @ = (£,m,%). The assumption that 8F /8x = 0
for any flow property F implies only that @ = w(y,z).

The simplest‘ example of the type of situation studied in this
section is a line vortex on the x axis in a shear flow with an initial

linear profile vl s Qy. The geometry of the problem is shown in

figure 5. Equations 36 are satisfied by a steady, tangential velocity
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FIG. 5 A SHEAR FLOW WRAPPING AROUND A VORTEX
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£ = k/ZTrr, where k is the circulation around the vortex and r is the
distance from the origin in the y,z plane, A fluid column at r,0 at

time t originated at r,GO at time 0, where

kt
O =0 - .
° 21rr2

The height Yo corresponding to its original location is r sin 90, and
the original and, by equation 35, the final speed of the column in the

x direction is Qyo. Hence

kt

v (r’e,t) = Qrsin (e - ) ®
1 2 2
mr
Set
_ {kt
vy = QY77 B
1
“Nzw P
Then

@r—psiﬁ(e—"'}z‘) @

A contour map of B(p,0) is shown in figure 5. The portion of the plane
where g8 > 0 is shaded. In physical space,; the picture would expand
with vVt , and the speed at geometrically similar points would grow
with Vvt as well.

A single vortex thus wraps the initial shear field into an ex-
panding and tightening spiral of speeds of alternating sign, a surpris-
ingly complicated flow for such a simple initial condition. Suppose

vy is measured over a circular patch in the y,z plane centered at
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r,® with a radius 6 << r. Initially the speed is about Qrsinf every-
where on the patch. As the field induced by the vortex redistributes
fluid columns, the speed trace over the patch distorts, forms loops,
and eventually goes through high-pitched sinusoidal oscillations in
the radial direction. The amplitude of the oscillations is Qr over
the patch, and the wave length A is 21r2r3/kt. For t so large that
A<< &, the average of the trace over the patch tends to zero. As
t = o, the speed v averaged in the vicinity of any point y,z ap-

proaches zero; a single vortex eventually stops the area-averaged

flow anywhere, The radius R inside of which the flow is 'stopped’
in this sense must satisfy Zsz/kt <« 1 so a & such that A<< §<< R
can be found. Thus R << th/sz y and r <V€<—t_/40, say, in the
region of 'stopped' (but highly striated) flow. The 'stopping power'
of a single vortex thus depends on steady induction over a long in-
terval of time:‘_ If the vortex itself moves in a turbulent field, no
such interval i; available, and the picture must change entirely.
What bearing does the 8F /8x = 0 problem have on the more
general problem, where flow properties depend on x as well as y and
z? An obvious answer is that the 8F /8x = 0 problem can be used
as a testing ground for approximate theories. The fact that vy and
v, are independent of vy is an enormous simplification. For example,
consider the linearized problem, the problem solved by Fourier
transformation in section 3. The linearized, inviscid equations of

motion 9 for the fluctuation quantities become
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ov , 9p _

eyt s (37)
37

9w , Op _

~5f+az~0’

v , 0w _

Sy tes =0 )

when OF /0x = 0. The last three equations imply (i)z/ay2 + 82/8z2)p=0.
Thus p = const. = 0, since p = 0, and the second and third equations

show v and w remain equal to their initial values,
viy,z,t) = vo(y,z) s
wly,z,t) = wo(y, z) .

If the initial value of u is zero, then
uly,z,t) = -Q(ykt vo(y,z)

from the first equation. The Reynolds stress is

T = Q) vily) (38)
Three steps were required to produce the analog of the result that
took all the algebra of section 3 to derive in general! Notice the
Reynolds stress grows linearly with t for all time instead of tending
asymptotically to a steady state as it did in the roughly isotropic
case. Equations 15 and 16 show that the Fourier modes which are

strongly excited when 2t >> 1 depend on initial modes occupying the

kl < (Qt)_l/L sector of wave-number space (L is the length scale of
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the turbulence). If all the turbulent energy is loaded into the kz,k3
plane, as it is in the 8F /3x = 0 problem, then all the initial modes
remain effective for all time. In the roughly isotropic case, where
modes are distributed over k1 ,kz,k3 with no singular concentration
in the kz,k3 plane, fewer and fewer of the initial modes remain ef-
fective for large times, and :1—2, :;2— and uv grow less rapidly (Moffatt
[5] presents this argument more quantitatively).

The general problem is complicated enough even when lin-
earized, It would be extremely hard to use a better approxima-
tion, the mean field equations 8, in a practical problem. But the
mean field equations reduce to a simple form when 8F /8x = 0, The
last three of equations 37 are the same in the mean field approxima-
tion, so v(y,z,t) = vo(y,z) and is independent of time, The momen-

tum equation for u is

du 9 3
-ér-t-:-”’ Vfé‘};U(y,t) = 0 P

The result of multiplying the equation through by v and averaging is

(1) $7-viiy) go=0 h

for the Reynolds stress o{y,t) = -uv.

> (39)

The equation of mean motion is

.., 09U 0o _
W) 5 ~wy =0 Y

so the mean field equations lead to a one-dimensional wave propaga-

tion problem with a variable phase velocity vz(y) . Consider the

rather artificial problem sketched in figure 6,



-113-

The initial speed profile is linear,

U(Ys 0) = QY s

and the turbulence is confined to a band between y = + h. vg equals a
constant c2 where lyl>h, If the initial stress is zero everywhere

(that is, the turbulence is initially two dimensional, uo(y,z) = 0),
oU _
"‘é‘E (Y: 0) =0 ’

from 39(ii). Equation 39(i) implies o(y,t) = 0 for ly! > h. Integrating
39(ii) across y = th gives the jump condition on o, [0] = 0, so

o(th,t) = 0 just inside lyl =h, Then from 39(i),
U _
F&(ih ,t) - 0 °

Equations 39(i) and (ii) combine to give

o%u 2 o%Uu

—s - C

81:2 - 9y

in the region lyl< h, and a general solution is U = F(y-ct)+ G(y+ct).

The initial and boundary conditions determine the final result,
Uly,e) = 2 [est) 4 tat) I

where f is the periodic function shown in figure 7. U(y,t) is itself
periodic with period 4h/c. The history of U over one period is shown
in figure 8.

The rocking, periodic speed profile of figure 8 cannot be a
good approximation to a real flow, but it is far more plausible than

the equivalent result from the fully linearized equations. From
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FIG.6 TURBULENT BAND IN INITIALLY UNIFORM SHEAR

FIG.7 THE PERIODIC FUNCTION f



~115-

9

:'l‘_z,
%
O

FIG.8 SPEED PROFILE

o~
£

ONE PERIOD



-116-
equation 38, o = czﬂt for lyl <h, and 0 = 0 for lyl > h, based on the
full linearization. If this stress is used in the mean momentum equa-

tion 39(ii) to find a first approximation for U (the zeroth approxima-

tion being U = Ry), the result is

2
Uy, = @y - 2 [6(111’- -1 -5+ 1)] :

Sheets of concentrated momentum and infinite speed form at y = + h.
This particular problem is physically unrealistic, of course, but it
does show that the mean field equations can give qualitatively reason-
able results when the linearized equations give nonsense. It is only
in the case 9F/8x = 0 that the mean field equations can be used with-
out overwhelming algebraic complexity,

The consequences of any theory of Reynolds stress generation
can be drawn out much more quickly when the flow is independent of x
than otherwise. The 9F /8x = 0 problem is at least éL useful heuristic
analogy to the general problem. Possibly it may be more than an
analogy. According to the linear analysis of section 3, Fourier modes
whose wave vectors lie close to the k2,k3 plane (that is, Fourier
modes which represent eddies nearly aligned in the x direction) are
preferred in the sense that they contain most of the turbulent energy
when 2t >> 1, The non-linear terms dropped to produce that result
may retard this tendency to anisotropy. On the other hand, they may
accelerate the transfer of excitation into the preferred modes., If
9F /0x = 0 for any flow property F, then the velocity correlation func-
tion Rij(y,,r,) is independent of Ty correlation contours are infinite

cylinders aligned in the x direction. Experiments on turbulent wall
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layers, where the turbulence also interacts strongly with a mean shear
flow, show that the correlation functions are very much elongated in
the x direction [8,9]. Even if Rij were completely independent of Ty
it would be impossible to conclude that the flow is independent of x,
since higher moments could still depend on spatial separation in the x
direction. But insofar as the propagation of turbulence in a mean
shear flow depends on low-order statistical moments like Rij’ it is

possible that highly sheared turbulence spreads as if the eddies were

independent of x.

B. The Random Vortex Sheet Problem with 8F /0x = 0

If the turbulence is initiated by an impulse concentrated in the
x,z plane and independent of x, the flow is independent of x for all
time. In that case the linear and mean field equations for the evolu-
tion of Reynolds stress, equations 38 and 39, can be compared easily.
The only property of the initial flow required in equations 38 and 39 is
the mean square upwash ;g(y), and that can be obtained directly from
the work of section 3C on the generation of an initial field by an area
impulse f(x,z). However, the argument leading to ;(2: is simpler and
more illuminating when f is assumed independent of x from the begin-
ning, so the argument is reviewed quickly here,

The equations of motion for the total velocity y and pressure w
are

av

m:t +y e eVy+ V= lf(z)ﬁ(y)ﬁ(t)g

v°z=09
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Equations for the pressure impulse ¢ and the turbulent part of the
initial velocity field g, are obtained by integrating the momentum

equation across t = O:

g, + Vo = jf(z)8(y)
| (40)

Since the forcing function £(z)6(y) is independent of x, ¢ is indepen-
dent of x, and the x component of g, is zero. Fory+#0, 4, = -Vo,
a two-dimensional potential flow. Suppose the potential is ¢1 just
above the x, z-plane and qbz just below., Since the y component of
velocity must be continuous across y = 0, the first; of equations 40

can be integrated to give

¢, -9, = (=) .

Thus there is a speed slip y across y = 0, where

Y= (9= - & . (41)

In section 3C it was suggested that a random area-impulse
could be simulated by shooting lifting surfaces over the x,z plane.
When the impulse is independent of x, a much less fanciful setup is

required. Suppose a steady shear flow
S(ng) = SO + U(X,Y)

passes over a high aspect ratio wing with random lift per unit length

L(z) fixed in a wind tunnel at x,y = 0, The situation is shown in
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figure 9. The speed profile might be linear far upstream, S-*SO+ Qy
as x = -0, but downstream the flow is distorted by the random vor-
ticity shed from the wing. The wing delivers a concentrated impulse
—L(z)/SO to the fluid passing over it, and the velocity jump through

the wake is

= ..L dL
Y5 az
e}
analogous to equation 4l. For So much larger than a typical down-
wash speed, the flow varies only slowly with x, and the time t in the
non-steady problem is analogous to the ratio x/So. Any results found

in the non-steady problem can be turned into predictions about the

wind-tunnel experiment through the prescription
t~ x/SO ’
f(z) = --L.(z)/S0 .

Equation 41 gives the slip speed y as a function of the impulse
f, but it can also be integrated to give the f required to generate a

given vy:
Z
f(z) - £(0) = - gy(z’)dz'
0

f is forced through a random walk to generate a random slip speed v,
and by the transformation of variables usual in random walk prob-

lems,

Z Z
[£(z) - £(0)] % =S g viz')y(z'")dz'dz'" = zg (z-0) (L)AL
00
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for y homogeneous in z with a correlation function y(z)y(zt+{) = T'(¢).
f should also be homogeneous, and for z large enough, f(z) and £(0)

should be independent. Then as z -

— Qo Qo
2 ZS I(t)dg - Sz;r(r,)dt., .
0 0

The equation cannot be satisfied for an impulse with finite variance

unless
o)
X (g)at = 0, (42)
0

Equation 42 imposes a severe constraint on the kind of vortex sheet
that can be generated by finite and homogeneous raﬁdom impulses,
or the kind of wake that can be generated by a random wing. Regard-
less of the correlation between neighboring random impulses, even
if neighborir;g impulses are completely independent, the vorticity
over neighboring parts of the wake must be negatively correlated so
the integral o£ the correlation function is zero. Th;e equivalent result
was obtained for the general problem in section 3C, but not so
directly.

Equations 40 can be solved by Fourier transformation just as
before. Thus if { (k3) is the Fourier transform of f over z and

go(kz,k3) is the Fourier transform of u, overy and z,
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-
Nl wWN

aoZ =

~

and the upwash at y, z is

£ (k) kg ikex
vO(Y,Z)=S T 2 e dk .

Suppose f has a spectral distribution \//(k3), so that

'f“(k3)'£'(k'3) = PYlk,) 6k, thky) .

Then the initial upwash correlation at a height y is

Q(y, L) = vo(y, z)v_(y,ztt)

4

. . i &
_ I,U(k3) k3 1(k2+k2)y 1k3§ '
") T Bl i) e e 7 dkjdk,dk,
m 2 R3I\Rp TR3
o0 o
_ S‘gl/(k:s) kz e-—Z ‘k3y| elk3§ e
= 4 3 3°
_(I) .

The spectral distribution of the upwash at the vortex sheet @(k3) is
the Fourier transform of Q(0, ). Thus

kZ

_ 3
analogous to the general result discussed in detail in section 3C. In
order to get a specific result, suppose
- lk3 3
l[/(k3) =Ae .

Then

QU 1) = A (uraly ) L2y D*-3L
[wrzlyh® + ¢%]°
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Finally,

i) =Qly,0 s —2 (44)

(w+2lyl)’

Now that vi is known, the stress can be computed according to the
linear approximation, equation 38, or the mean field approximation,
equations 39,

In subsection A it was shown that a discontinuity in ::2)- leads
to the formation of a sheet of concentrated momentum under the linear
approximation. According to equation 38,

Q At
(w2 ly )

for the vortex sheet problem. ¢ is continuous but has a discontinuous
first derivative with respect to y at y = 0. This time, the first ap-

proximation to the mean speed,

Z
U =Qy ———m————t——-—;}— sgn(y)
(p.+’2')

jumps across y = 0. This more modest singularity is still unaccept-
able. Any such jump must be preceded by a steepening of the speed
profile near v = 0, but the integration of the momentum equation for
u to give u = —Qtvo, in the derivation of equation 38, requires {2 to
be constant in time.

The mean field equations 39 give a more realistic result,
since they do take into account the change of mean speed that invali-
dates the linear approach. Suppose non-dimensional variables are

defined as follows:
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:f_if-czg(n) ,
U =S r(n,7),
¢ = cSs(n,T),
y =4n,
t =4+,

c

Then equations 39 transform to

ds or

(1) m‘g’gﬁzos
(45)
or Os
(11) —8'—1':--5-1']--—0 ®

The Reynolds stress is non-dimensionalized on the typical mean
speed S times the fluctuation speed c¢c. If the flow is 'highly sheared,'
S>>c, theno > >c2. Random stretching of the mean field vorticity
produces a stress much larger than the original turbulent energy
density. The time characterizing changes is properly non-dimen-
sionalized on l/c; in a time of order E/c the mean flow reacts to the
stress, But £/c is also the time scale for non-linear convection of
turbulent vorticity, the phenomenon neglected in the mean field
approximation. Thus the mean field equations are not a consistent
approximation and can give only a qualitative description of the real

flow.,

If £, c and S are related to p, A and {2 by the equations
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=B

=5,

-y 2

c = 3
.

= &p

S 5

then the non-dimensional form of equation 44 is

1
N W 46)
TPNTE (

and the initial and boundary conditions are

s{(n,0) =0, r{n,0) =7,

(47)
Lim s(n, ) =0, Lim r(n,T) =7,
Inl-co Inl >0

for a mean speed profile linear att = 0. Equations 45, 46 and 47
determine the history of the flow according to the mean field approx-
imation for all time,

The mean field equations are only a qualitative approximation
for any time t, and for t large compared with the turbulent convection
time £/c, they must be a bad qualitative approximation. The cylin-

drical eddies inducing the mean square upwash vg themselves disperse
after a time of order £/c. Assuming v—f is unchanging for all time led
to the peculiar periodic solution of figure 9. Thus the solution to
equations 45, 46, 47 is relevant only in the limit Tt << 1. In that case

it is reasonable to rewrite the problem in terms of an expanded

coordinate

T =t/
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and try to find asymptotic series expansions of r(n,;;e) and s(n, 1; €)

in powers of €. In Appendix D, it is shown that the expansions begin

L]
i

eTg(n) + Oe) ,

2 72 4 (48
nte” = g'(n)+Ole”),

H
1l

the same as the linear solution. However, the ordering of the terms
breaks down where n ~ €, and in that region it is necessary to use a

second expancied variable
n=mn/e .

A function g which is symmetric and peaked like the function in equa-

tion 46 can be expanded around n = 0 in the form
gzl—alnl'*'oao:l'eal;{f'*'ooe °

Ifg=(1L+4 lnl)_S, a=3, Itis shown in Appendix D that equations 48
are correct even for small n as long as i:ﬂ > T, and that the expan-

sions for s(%,?;e) and r(%,;; € ) begin

p/ ~Z

S=Z €T - € %—(n +7r2)+0(e3),

(49)

[x
1

~ 2 M~ RP ~ 3
en - e“a (Inl T—%Psgn(n)+0(é )

where Iml< T, To second order in €, the singularity at the vortex
sheet affects only the portion of the n, T plane between the particular
zeroth-order characteristics, m = + 7, which originate at n = 0 when

T = 0. Expansions 48 and 49 become
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s=T1gM)+ .00
> |n'>~r,
I‘=’r]+12——g'(1‘])+..-,
s=T-%(ﬂ2+TZ)+~’° s
; 5 Inl <+,
r=n1- oz(lan-I‘Z—)e‘:gn(n)+ cos s

when rewritten in terms of the original non-dimensional variables
7N, T. The non-dimensional stress s{n, ) and speed change r(n, T) -
r(n,0) = r(n, T)-n are sketched in figure 10. In the region Inl<+
where the linear and mean field results differ, the linear results
are shown as dotted lines,

The speed slip of the linear approximation is patched up in
the region Inl <7, and the mean field profiles are plausible. How-
ever, the sheet of concentrated vorticity that generated the peaked

vi (y) at the start must wrinkle and occupy the band Inl < 7 itself.
;E(y) should bé blunted about as fast as o, so the mean field approx-
imation is suspect in the only region it makes any difference. That
is inevitable. The mean field approximation is not consistent, and
the only advantage it has over the full linearization is that it gives
more reasonable results near singularities in ;g(y).

The limits of s and r for T >> 1 can be found by Liaplace trans-
formation of equations 45, 46 and 47. One result is that r{n, 1)—0
for m fixed and T—+o00; the flow is eventually stopped anywhere. If

the result were true it would mean random eddies exert a sustained

grip on the mean flow. In fact the result is worthless. The grip
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loosens rapidly as the eddies disperse in their own turbulent field.
An entirely different kind of problem involving sustained induction

is treated in the next subsection,.

C. Steady Induction by Line Vortices of Alternating Sign

Any physical approximation which neglects non-linear inter-
action between turbulent eddies leads to the conclusion that the mean
flow stops anywhere after enough time. In the 8F/8x = 0 problem,
the x component of momentum is conserved in fluid columns (equation
35) and is diffused by turbulent motions passively, like heat or chem-
ical concentration., Without dispersion of the eddies, the intensity of
turbulent mixing is constant in time, and regardless of how slow the
mixing is at any particular height, given enough time it is sufficient
to diffuse away any mean momentum gradient. The important ques-
tion is, how much time is required to stop the flow? If the time
needed were small compared with the turbulent convection time, the
flow would indeed be stopped, but that is impossible since the mo-
mentum redistribution is itself a convection phenomenon, The tur-
bulent eddies’ should disperse at about the same rate the x momentum
diffuses, and the mean flow should be more or less distorted, but not
stopped.

One situation where there is no convection of initial vorticity
was described in subsection A — the case of a single vortex aligned
on a streamline of an initial linear shear flow. There the flow is
'stopped,' not in a statistical sense, but stopped in the sense that

the x speed averaged over a patch of finite area tends to zero as
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t = . Suppose that instead of one vortex there is an infinite street
of vortices of alternating sign aligned parallel to x and distributed
along z a distance N apart. The setup is shown in figure 11. The
vortices are in equilibrium, since the velocity at any particular vor-
tex induced by all the others is zero. The equilibrium is unstable,
but in principle the vortices can remain in their original locations
and steadily redistribute the x momentum of an initial linear shear
profile, Fluid columns move in roughly elliptical orbits as shown.
Since the orbit time differs from streamline to streamline, fluid
columns crossing line A-A at a large time t may have originated at
greatly different heights even if their current separation is small,

A speed traverse along A-A in figure 11 eventually shows high-pitched
oscillations, and the x velocity component averaged over an interval
N at a constant height y becomes small as t = oo, This flow is
nothing like non-steady turbulence, but it is homogeneous in the z
direction, and the time it takes to stop the 1ine—ave:;aged flow here
‘may give some indication of the time required by t\irbulence to stop
a flow in the statistical sense.

Loops in the speed traverse along A-A arise after a time
comparable to the orbit time in the trajectory tangent to A-A. T(y),
the orbit time in the trajectory whose apogee is y, is thus a lower
bound on the time needed to stop the line-averaged flow at y. The
object here is to find T(y).

Since the flow in the y,z plane is dynamically independent of
the x momentum it transports {equations 36), it can be treated as an

incompressible, two-dimensional flow. It is irrotational as well,
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except at the vortex singularities, Thus a potential ¢(y,z) and

stream function Y(y,z) can be found such that

oo 00 _ By
oy 0z
wo 0B By

oz oy

and each location in the y, z plane can be assigned potential and

streamline coordinates ¢, y, Suppose the speed

V = vz-i-wz

is known in terms of ¢, Yo If s measures the arc length along a tra-

jectory (streamline) specified by Y, then

ds
V=g‘f(¢) .

V also satisfies

v = 99,4

f~-3§(w; °
Thus

v w2 -3Pw
or

d 2
2 W) = Vi) .

The time it takes a fluid column to move from potential qbo to poten-

tial qbl along the trajectory specified by ¢ is
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> .
é Vg, y)

Notice t is positive, since ¢ must always decrease in the direction
the fluid column moves, Each orbit encloses a single vortex of
strength £ k. As a column orbits once, the potential decreases an
amount k, so the orbit time around the trajectory specified by { is

k
T =\ —2 . (50)
) Vi)

The value of Y on the trajectory with apogee y is y(y,0). Thus
k

T(y) = .T [LP(Y’ 0)] = S‘ 2 do s

and the problem of finding T{y) is solved in principle.
Complex variable notation makes an explicit solution sur-

prisingly easy. The details are given in Appendix E, The result is

4%
T(Y) = 2m 2T *
k isinh 2my I cosh amy
k k
with (51)

Kk sinh EAX
Yly, 0) = 5~ log .

em 1+ cosh X

Two limits are especially interesting:

N 4
as yA—0 |, T(Y)=’>—ERX— ;
ZXZ my/A

asy?t—’oo, T(y):g»-—E—e o
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The orbit time at a radius y around an isolated vértex of strength k
is 4Tr2y2/k, the same as limit a. A fluid column very close to a
particular vortex is hardly affected by the other vortices in the street.
Limit b is the surprising result, The orbit time around a trajectory
-with apogee y is exponentially large for large enough y. The two
limiting cases of equations 51, derived for y << A and y >> A, give
practically the same results for intermediate values of y. For

y = A/2, limit a is

2 2
_ 2 AT A
Ta - 'ﬂ' k - 9.87 "k— il
and limit b is
2 2
w2 2" A
Tb = Ze —I(— = 9° 62 —‘-——k ?

The limiting expressions agree very well around y = 2/2, the apogee
of the orbit with major axis A. Beyond that orbit, limit b must be
an excellent approximation. Thus T(y), a lower bgund on the time
required by the vortex street to decelerate the line-averaged flow
at a height y, grows exponentially beyond y~ A. The rate of mixing
X momentum is zero, for all practical purposes, outside the imme-
diate neighborhood of the vortex street.

The apogee of the orbit that has been completed just once by
time T is

Y = 210g X5
2X

for YZ A. Y(T) is the height of the 'front' where the line-averaged



-135-
flow is being significantly decelerated at time T. The front propa-
gates at a speed Y = A/mT. But the slightest disturbance destroys
the equilibrium of the vortex street and allows the vortices to dis-
perse at an initial rate ~ k/A. By a time of order Az/k, the vortices
have dispersed past the front they are supposed to be forcing steadily
through the flow. Thus no such front can develop in the first place,
and the result for steady induction by a vortex street can give no
indication of what happens in a real flow. The propagation of turbu-
lence in a mean shear flow cannot be uﬁderstood without considering
the non-linear action of turbulence on itself, Any analogy, like the
steady vortex street, or any approximate theory, like the mean field
equations, which omits turbulent convection of random vorticity must
lead to fundamentally unrealistic results. The mechanics of turbu-
lence propagation through a mean shear flow is inseparable from
the mechanics of the mean flow itself, and any approach which ne-
glects non-linear interaction between random fluctuations will give

a qualitatively wrong description of the mean ﬂow,‘
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5. The Numerical Experiments

A, Basis of the Numerical Approach

According to the linear approximation of section 3, Reynolds
stress stops propagating through a mean shear flow once the original
turbulence is highly sheared. In section 4, the problem was simpli-
fied by assuming all flow properties are independent of x, and the
non-linear interaction between turbulence and the mean field was
restored. It was found that no such partial account of non-linear
convection can give even qualitatively correct results for large times,
Eliminating turbulent convection of random vorticity in the 8F /9x =0
problem leads to a turbulent field steady in the y,z plane with a
steady grip on the mean flow. Under such an approximation, the
mean flow eventually stops anywhere, but in fact the turbulent eddies
disperse about as fast as the mean flow decelerates, and the mean
speed profile is distorted, but not driven to zero. If the propagation
of turbulence through a mean shear flow is to be understood at all,
non-linear action of turbulence on itself must be considered., But
the fully non-linear problem is intractable. Without analytical sup-
port or the support of experiments on the propagation of free turbu-
lence in shear flows, a guess about the effect of non-linearity would
be arbitrary. Some kind of experiment is needed.

The outstanding simplification of the 9F /3x = 0 problem is
that eddy motion in the y, z plane is dynamically independent of the
momentum it convects. The motion in the y,z plane can be treated
like two~dimensional turbulence, and the speed in the x direction

like a scalar quantity convected in a two-dimensional turbulent field.
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That does not mean that the only random vorticity in the flow is the
initial vorticity. All three components of the random vorticity
w = (£,n,w) are generated by mean field stretching. It means only
that the velocity field in the y,z plane is unaffected by random
stretching of the mean field vorticity., If the vorticity £(y,z,t) is

given, then the two-dimensional velocity field y = (v,w) can be found

from
1 ixx
(1) X(Y’Z:t) = Z‘T}' ‘g S‘—rT g(y'sZ'yt) dY'dZ’
where r = j(y-y') + k(z-z'). From equations 36!, (52)

i) Sevy . vE=0,

and the integral and differential equations can be solved step-by-step.
If the vorticity is not distributed smoothly in the y,z plane

but is packed into discrete vortex columns, the probliem looks even

simpler. Suppose the clockwise circulation around the jﬂl# vortex

viewed toward negative x is k.. Equation 52(i) becomes

J
‘ k., ixg.
yly,z,t) = -Z -ZJT? -"2—'1' s (53)
- T,
J J

where the jéﬂg- vortex is located at [yj(t), zj(t)], and K = j(y-yj) +
g(z-zj). Each vortex is convected in the field induced at its location

by all the others. Thus

k. {(z.-z.)
N ] i3
7i z N L |
j#FL i7] i 73 (54)
k. Y.
S QU
i 21

2 2
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The path of each vortex can be found by integrating equations 54, and
the statistics of the x momentum convection can be found from equa-
tion 53, Equations 54 are just as hard to deal with analytically as
equations 52, but now the problem is set up for a simple step-by-step
integration by computer, If a great many numerical experiments are
performed over an ensemble of initial conditions {ki’ Yi(O)’ Zi(o)} ,
information about the turbulent grip on the mean flow can be obtained,

The value of such computer experiments rests on the physical
relevance of the initial conditions chosen. Suppose the vortex sheet
problem of section 4B is modeled., The discrete vortices must start
in the x, z plane, so yn(O) = 0, The continuous area;impulse f(z)
must be replaced by a step-function model. Suppose the model im-
pulse is constant over intervals A, and the total impulse delivered

between z = (n-1)A and nA is
ni
Fn = S f(z) dz .

(n-1)A

The situation is shown in figure 12, The strength of the vortex whose
initial position is yi(O) =0, zi(O) = nX is then

Fn+1 _Fn AFn

from equation 41. This row of vortices could be generated in the
wind tunnel experiment of figure 9 if the random wing were made of
panels of span A bearing uniformly distributed total lifts Ln= _San°
The initial conditions {AFn/?t, 0, n\} are perfectly realizable and

need not be regarded as models of random vortex sheets.
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If the vortices kn are to be generated by random, homogeneous
impulses Fn of finite variance, then neighboring vortices cannot be
uncorrelated. The proof is about the same as it was in the contin-~

uous case. From equation 55,

N N
Fn+1-F1=Z AFnzhz kn o
n=1 n=1

Thus

N

z .2
[FN+1'F1] =X Z
m=

For N large, FN+1 and Fl are independent, and the left hand side is

2 . . 2 . . .
2F 7, If the variance of kn is k™ and the correlation function R is de-

fined by

K & = k“R{n-m) ,

m n -
then
- (N-1)
2F% o Azkzz (N- 14 YR (1)
=-(N-1)

as N - oo, The original sum over m and n has been transformed

as shown in figure 13, Thus

J— 0 o0
2F2 o 2%k [Nz R(1) - ZZ R
i==c0 £=1

and the relation cannot be satisfied for large N unless

z R(£)=0 . (56)
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FIG.12 STEP—FUNCTION IMPULSE

FIG.13 METHOD FOR SUMMING

R{n-m) OVER n,m
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The ensemble of vortex strengths must satisfy equation 56 if the
computer experiments are to represent physically realizable situ-~
ations.
If the impulses Fn are independent, then nearest neighbor

vortices only are correlated. Thus

) e
k2= K2 = Fpi Fp) - 2F?
n 7L2 7L2
" (Fn+1_Fn)(Fn+2—Fn+1) _ -FZ
n ntl 2 -2 !
A A
" (Fn+1-Fn)(Fn+3 F +2) 0
n nt2 AZ - ’

R(f):o ) -e:#osil 3

consistent with equation 56, Nearest neighbor correlation was gen-
erally used in Kthe computer experiments. A finite row of vortices
must be used in any experiment, and correlation of nearest neighbors
alone gives the maximum number of correlation lengths possible

for a given number of vortices. If the correlation does not extend
over a large number of vortices, the vortices can be taken to repre-
sent large scale eddies in the continuous problem, rather than ele-

ments of a vortex sheet.
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From equation 53, the initial upwash above a row of such

vortices is

m” y +(z-nl)
Thus
' AN [2-mA][ 2-(n-0 +]
k z-nA][ z-(n-£)A+
v {y,z)v (y,z+8) = — R(£) .
© © 41T2n=—oo£=}—:oo {(z-n)\.)2+y2}{[z-(n-l)?t+{,]2+y2}

The upwash correlation above the discrete vortices is not independent
of z. The flow is not homogeneous in z because the vortices have
special determinate locations z = nA. However, the upwash correla-

tion is periodic on z with period A, so an average correlation

)
axty, 0 =+ (V5 5D e,
0
can be used. .Then
2 X o0 -nAt+A ‘
ary, =Ly Y R | D g
4T = o oo oy xTry M (xHA+E) “+y ]
2 Qo (0. 0)
_ kz z RM)S’ . ;;(xumrg) ., ax
arn G YT + v
2 Qo
= 5 ZR<1)G<§J;“> :
4m Ay 1= o

By contour integration in the complex plane,

A

G{n) = .
4+'r;2
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If nearest neighbor vortices only are correlated,

2
o 1) - K [ 4y L gl _lG_é.-_ZL.]
Q*(y,c) 41r2)ty G(y) > Gl v ) -5 (Y "o
As Ny — 0,
2 2 2 .2
) k 1 A2 <0 by ] - kK7Ay  4y™-30
Q*(y, L) [———(—) G (—)] = . (57)
Y5l = 41727\3’ 2y y 4 (4yz+§2)3

In section 4B, an expression for the upwash correlation Q(y, {) for
the continuous sheet was derived assuming the impulse spectrum

Y= A exp (-p lk3|). In the limit u/y — 0, equation 43 for Q(y, ()
becomes identical to equation 57 if

Ak
8m °

Furthermore, as \/y — 0, Vo(y,z)vo(y,z+§) should become insensi-
tive to z and z?.pproach Q*(y, ). All the correlations Rij between
~points in the potential flow region above y can be found from Qfy, L),
Thus discrete ’:yortices with nearest neighbor correlations only give
a far field which is identical to the far field of a continuous sheet.

In subsection B a way of generating random vortex strengths
satisfying K;E; = sz(n—rn) for any R is described. Once a particu-
lar initial condition is chosen from the ensemble {kn,yn(O), zn(O)},
the finite difference forms of equations 54 have to be solved step-by-
step for as many time increments as a solution is desired. The
computation is inherently unstable, and the computed vortex loca-
tions drift away from the locations that would be assigned by an

exact solution. In computer work on deterministic problems, for
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example the work of Abernathy and Kronauer [11] on the formation
of vortex streets, this mechanical error drift is a serious matter
and has to be kept small by using extremely small time increment;s.
Here the object is not to follow detailed vortex paths, but to find
averages over a large number of runs. Each numerical experiment
can be much sloppier than the experiments of [11]; each one must
be sloppier if a large number of experiments is carried out on a
limited budget, Subsections C, D and E are devoted to an analysis
of mechanical error drift, a discussion of how rapid a drift is per-
missible, and a description of a mechanism for counteracting the
dispersive effect of error drift of general physical interest — vortex
capture, In subsection F results for some numerical flow visuali~
zation experiments on the motion of random vortices are presented.

The flow visualization experiments show hovw vortices dis-
perse: vortices pair up into dipoles and 'boil' out of the turbulent
region. DBut no information is obtained about the rate x momentum
is redistributed by the field induced by the vortices. Suppose the
initial shear flow is linear, UO = Qy, and turbulenﬁ velocity fluctu-
ations in the x direction are initially zero. If the experiment were
conducted in a wind tunnel, a hot-wire measurement could be made
at y,z at time t. If the hot wire intercepts a fluid column which
originated at Yoo then the speed it measures is Qyo(y,z,t), since
the momentum and speed of fluid columuns is conserved. The mean
speed is then U(y,t) = Q_f(;(y,t) where the average is taken over a
traverse along z or over an ensemble of independent experiments.

But the computer cannot tell the original height of the fluid column
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at y,z at time t unless a test particle carried along with the flow

from time zero happens to have landed there, In order to simulate

a hot-wire traverse by computer, test particles labeled by their
initial heights Yo must be scattered over the y,z plane, and their
paths computed along with the paths of the vortices, At time t the
particles lying near y are surveyed to find their original heights Yoo

If the flow is incompressible and the test particles were originally
scattered uniformly over y,z, then the mean speed is U(y,t) = Qyzg(y,t)
where the double-bar average is taken over the particles surveyed

at y,t in each realization of the flow and over an ensemble of initial
conditions. This idea is described in detail in subsection G, and

the results of Ya series of numerical momentum transfer experiments

are presented in subsection H,

B. Generation of Random Vortex Strengths with a Specified

Correlation

The ohject is to generate a large number N of vortex strengths
kn which satisfy E;I{—; = kZR(n-m) for any R desired. The average is
taken over an ensemble of sets {kn, n=1,..., N} generated by the
technique described here, The numbers kn are taken to be periodic
with period N, so kN+1 = k1 for example., Vortices near the ends of
the sequence n =1,.,.,N are then correlated, but that should make
no difference in the turbulence experiments if N is much greater
than the maximum £ for which R({) is non-zero. For nearest neigh-
bor correlation, only the end vortices 1 and N are unnaturally corre-
lated. N is assumed odd throughout the derivation to keep the work

tidy.
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Suppose n is regarded as a continuous variable, Then any
well-behaved real function k(n) of period N can be written as a Four-

ier series

where cfn =c_ . Where n is an integer,

. n . hm
eZ‘ITl —N(m’qu) ) eZTrl ~

Set M = (N-1)/2, Then

M fo0) . nm

2mi e

k = c e N
n ' m+gN !

m=-M‘q=-o

since, for example, M+l S SNome SfCee Define

(0]
g=-00
Then
M ZTri—-nliIn
k =Z a e . {(58)
n m
m=-M

and a periodic function defined on an integer argument can be written
as a finite Fourier series {cf. Brillouin [12]). The correlation
function can now be expressed as a Fourier transform —

2ti
kZR(n-m)=k k =z z a a
m n P q

P q

N (pm+qgn)

Since the left hand side depends on (n-m) only,
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B3 2
aa =aa 6(ptg)=0a &(pt+
p¥q = 2p%p (ptq) p(pq),
2 N , 2mile
kR(I) = z o e s
p=-M

ata
k4

where ag = apap. The relation between R(£) and Olp can be inverted

by using the identity

i’[ -Zl‘le(p-q) {ZMH:N, p=q.,
e =
1M 0, p#4q .
Thus
-27ri M M i
= af - L(p-q)
kzz R(£) e =z agz e N ,
1=-M p=-M f=-M
and
;2% -2mi
amz_l\Tz R(£) e R (59)
4=-M

If R(2) is given, aZ = a_a _ can be computed from equation 59. If
~ m m m

random Fourier coefficients a  can be generated satisfying a @, =

arzn&(m+n) and a:;] =a_ then sets of properly correlated random

vortex strengths can be found from equation 58.

From equation 59,
M

2
2 _k
Oio-——l-\-r z R{2) .

I=-M

If the row of 2M+1 vortices is to represent turbulence homogeneous

in z, R(£) must drop to zero long before g l~ M. Then equation 56

requires Dti = 0. Write
Zwiem
a .= ¢m e
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where ([)m is a real amplitude satisfying (])ri = ari and Om is a random

phase between 0 and 1, Since Om = -B_m and a = 0, equation 58 be-

\

comes
M
= nm
kn— Z(f)mcos ZTr(N +9m) .
m=1

If 1/2

M
= =X m{
¢m-am— = [1+22R(£)COS ZW—N—] s
v £=1

> (60)

and each Gm is independently assigned one of the values

0
025
8 =

m o5

,;.75 /

at random, thén the Fourier coefficients do satisfy amdn = Otin&(m+n):
2wi{(6 -6 )
i s =a e moemo_ g
m -m m m

+1
2mi(6_ +6 )
a_a =a2e mm=a2§§=0,
m m m m -1

ZTriE)m Zwien
a @ =0 O e e = 0, m¥*Fn .

It is interesting to note that the famous random phase, which plays
so large a part in qualitative discussions about turbulence and no
part at all in quantitative theories, is introduced here to set the
initial conditions for the computer runs,

The way of selecting qu and Gm in equations 60 may seem

inflexible, and it might be thought that the probability distribution
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for kn would be a rickety step function. However, there are four 0's
to choose from, and M choices must be made to sum the first of
equations 60. If the number of vortices N = 51, say, then M = 25

and the ensemble of possible initial conditions has

425~ 10!5

members! The variety seems adequate, Since each kn is the sum
of 20 or 30 independent random variables of similar variance, the
probability distribution for kn should be very nearly Gaussian., In
practice, the values of Gm form=1,..., M in each computer run
were chosen by flipping a coin (twice per Om) or rolling dice. The
random phases were then fed into a subroutine which computed kn

according to equations 60, The subroutine was named VEGAS, of

course,

C. Error Drift

Suppose a passive particle has a position x = (y,z) at time t.
Given the current vortex locations, the computer éan calculate the
velocity v(x,t) of the convected particle exactly (within round-off
errors) from equation 53, If the time increment is 7, then the com-

puter assigns a new location g + 0x to the particle at time t + v, where
6% = T x(x.t) .
But an exact solution would give

t+T
ox = 5 vix({o),0] do ,
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where the integrand is evaluated at the changing location of the par-
ticle. Thus the computed trajectory and the 'real' trajectory diverge,
If the particle is convected in the field of a single vortex, the
computer trajectory can be predicted analytically, Geometrical
quantities are shown in figure 14. If the current radius from the
vortex of strength k to the particle is r, the particle will be advanced

a distance

after a time increment T along a straight line tangent to the circle

of radius r« Thus the radius increases a distance 6r, where

2
r+6r:~r2+6sz zr-i-jlz—@——s?-e

T
Then
5T oy i
~ E]
T 8m r3
50 , _k
T Zwrz

since 60 = §s /r, For T small enough, the difference equations can

be written as differential equations for the computed trajectory r(t),

o(t):
dr _ kz'r
dt 8w r
(61)
40 _ _k
dt 2 °
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If the particle starts at r(0) = o 0(0) = 0, then the equations give a

trajectory
2 1/4
(i) 1+ 24 s
2 i > (62)
TT
(ii) o(t) = —=2 ( 1+---‘S.J-’5Z - 1) .
2T o

For v+— 0 and t fixed, r(t)-*ro and 6(t) —>kt/21rr§, the expressions for
the actual trajectory. But ast —*co, r grows as 1&1/4 and 6 slows
down to a 1:1/2 growth as the particle slides out into a weaker ve-
locity field., A numerical flow visualization experiment was per-
formed to check the trajectory predicted by equations 62. A time

)zrg/k was

increment T one-twentieth of the actual orbit time _I‘ = (2w
used, T = ,05T, and the program was run up to t = 2T. The curve
r(t:)/ro from equation 62(i) is plotted against t/T in figure 14 along
with the experimental points. The agreement is excellent (the
oscillation in the experimental data arises because the points are
taken from an on-line computer plot, and a finer spacing is available
across the print-out sheet than down it), There can be no doubt that
the approximation §x = Ty(x,t) causes the dominant error in the
numerical experiments,

In the general case, suppose the 'real' position of a particle

at time t is x and the computed erroneous position is > The com-

puted position at time t + T is then

and the actual position is
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ttT

%' =>~i+§ x[x(0),0] do
t -

as shown in the sketch.

But
wlx(0),0]= glg.t) + 50 Vg (g:t) + (0-t) o (g.t) + v s
where g is the displacement of the particle from g at time 0. Then
s = (c-ﬁ)x(g,t) toeee s
and
v[x0),0] = ylx.t) + (o-t) g (Bt T e0o
The expansion can be used in the equation for x' to give
2

x=xt Tz(z,t)Jr—TZ- alx,t)+ coo

where g = Dy/Dt is the acceleration of the particle at time t. The

computer result can also be expanded in the form

$u = %, T TX(E ) T T(g -8) - Vg t)t o .

Y

Define the error vector g = x_-x. The expansions for g'e and %' can

be subtracted to give



emetTe. Vylnt) - Talst b,

)

1]

4,

:S'VX" %-’-o-. .

Provided T is small compared with the time scale of the flow and lgl
is small compared with the typical length, that can be written as a

linear differential equation for €,

dg T

T}Y:Q'VE'EQ R (63)
with

€(0) =0,

Equation 63 is the fundamental equation for the machine error drift
€, good before ¢ extends clear across eddies and whenever the time
increment T is reasonably small, The acceleratiqn term catalyzes
the build-up of error; computations based on 6x = Ty cannot keep up
with an accelerating particle, and the computed position slips back
along the line of acceleration. As ¢ increases, the velocity at the
computed location becomes significantly different from the velocity
at the actual location, and the two locations shear apart. KEquations
61 for the computer trajectory around a single vortex show the same
behavior. The computed location slips outward at a rate t/2 times
the current centrifugal acceleration. The angular speed at any
radius is the same as it would be for an actual particle, but as the
computed radius grows, the computed angular displacement lags
far behind the actual displacement.

Equation 63 holds for any velocity and acceleration fields g

and g specified continuously at the actual particle location. The



-155-
steady velocity and acceleration around a single vortex drive the
error up continuously and rapidly., But in a turbulence problem
Vy and g are random functions of time, and it might be conjectured
that the error drift is less drastic in that case, more like a random
walk than an exponential divergence, Equation 63 cannot be solved
analytically in closed form, but the conjecture can be tested on a

simple one-dimensional model,

de _
i o(t)e + p(t) , (64)
€(0)=0 ,

where a(t) is a stochastic function analogous to a strain rate and
B(t) is 1'/2 times an acceleration, Equation 64 describes the error
in computing particle location in a non-steady one-dimensional

channel flow, for example., The object now is to find the variance

of €, Ez(t), where the average is taken over an ensemble of his-
tories a(o), B(o), 0<o<t,

The exact solution of equation 64 is

t
oL et

e(t)=§e ° B(o) do .

o
Thus
~ F [ aar + I aae

62 = 5“ § eG T @(O‘)ﬁ(T) dodTt .

0 ¢

Assume ¢ and P are independent. Then
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{ fadt' + [ ozdt'}
T B(o)p(~) dod~r .

=]

Assume B is statistically homogeneous, so that B{o)B(7) = ﬁZB(G-T) .

The variance can then be written

t T
L t 7T 2 adat' [ adt
2 2 T g
€E =8 S‘dngc e e B(o-7)
0 0
t t zfadt' fadt'
+ ﬁzngS‘do e Bl(o-7) .
0 T

Assume aft) is strictly stationary, and &(t) and a(t+T) are indepen-

dent for T > 0. Then for t >> 0,

——r—— T
t T 2[5 T aat 777 qa
""2' 2 (o) o]
€E op SdTS‘dG e e B(o-T) ®
0 0
T-0 o-T
t ot 2] adtt [ qdt
2 [0] (o]
+ B ng S‘dc e e B(o-T) . ®
0 T

By substituting x = t-7T, y = 7-0 in integral and x = t-0, y = 0-T in

integral it is easy to show that

X
. t  t-x  2f adt ]yadt'
2 2 o °
€= 28 S‘de dy e e B(y) . (65) ,

0 0
I It
For t >> 0, the integrals [ @dt' and | adt' are carried out over many
o o
correlation times of @ almost everywhere in the domain spanned by

x and y. Thus
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X
X = Sa(t)dt s
0

for example, is a random variable of mean zero (assuming @ has
zero mean) and has a Gaussian distribution (by the Central Limit

Theorem) for almost all x in the integrand of equation 65, But
< X

5] = e

for Gaussian X. If @E)A{E) = @>A(t-t'), then

X X X
X2 = § S‘a(tiait'i dtdt' = 2a2 5 {(x-t)A(t)dt
0 0 0

% 2&2®X9

o
for almost all x;, where J A(t)dt = ®., Equation 65 becomes
o
—2— 9 £ t-x 40[2®x Ol2®'y
€ = 2p S‘dxg dy e e B(y)
0 0

5 (¢ o2@y Y 4l
= 2B S‘dy e B(y)S dx e
0

0 |

2 wler b -30ey -40°@(t-y)

= t5— e S‘ e B(y) |l - e dy .
20°® )

Define the weighted correlation time for B,
P —3a2®y
> o= S‘e B(y) dy

0
Then for t >> 0 (the dependence time of &), ® (the correlation time

for o, presumably ~ 08}, and > (the weighted correlation time for B),

2
—5 2 40" Gt '
s L2 (e -1) . (66)
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For stochastic a(t) and B(t), equation 64 represents a generalized

random walk for €(t). Under the very stringent conditions assumed

to solve the problem, the variance 62 is given by equation 66, The
variance diverges exponentially. It diverges even faster than the
solution of equation 64 for constant a(t) = a if 2a®> 1. Notice if
the strain term in equation 64 is either very weak, a—>0, or varies
extremely fast, ®> 0, equation 66 reduces to the standard random

walk result
ez => 2{32,& t

until very large times.

The conjecture that the computer error given by equation 63
diverges slowly for stochastic v and g must be wrong. A numerical
experiment caj,nnot reproduce the detailed trajectories of vortices
and test particles for very long times. But in a turbulence experi-
ment the detai}fed record is not important. As long as the computed
motion of a particle is governed primarily by the flow velocity y at
its current location, the accumulated error should be unimportant
in a turbulence experiment. The computed location should be just
as good as the actual location. Just beyond their point of intersec-
tion, a computed path diverges from a physical path with an error

velocity Xe given by

ool =

¥e 2

from equation 63, A numerical turbulence experiment is valid if
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6 =YY= <<1, (67)

regardless of detail differences between the computed flow and the
physical flow with the same initial conditions. 6 is estimated for a

random distribution of independent vortices in subsection D,

D. Flow Velocity and Error Velocity

The model studied in this subsection is artificial, just as
equation 64 with statistically stationary & and f is an artificial model
of equation 63 with inhomogeneous vector fields y and g. The object
is to show qualitatively that without special precautions condition 67
may not be satisfied no matter how small a time ix}crement T is used.

Supposé the iE}-l- vortex has strength ki and location V0250 and
a passive particle subject to a physical velocity v and error velocity

Y is located at y, z. Define

ys
1

N
]

N

ni:Y'Y' 9
2 2. 2
LR P

From equation 53,

r,
Thus
.8, +n.m.
yevirwists naek L2 (68)
4= 13 rér
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Now assume k; and ki are independent for i# j. That cannot be true

for the problem solved by computer in this chapter, since the vortex
strengths must be correlated to satisfy equation 56. Assume that

the location of each vortex is independent of its strength, and that

the vortices are distributed isotropically around y,z. Neither of

those assumptions can hold for vortices located initially at y = 0,
z = n\, By the first two assumptions, an average over an ensemble

{ki’ Yir%; } gives

k 1T
i 5y
where kikj = k26ij° The error velocity Xe equals -Ta/2, and
v ov V2+W
g=—8—t-+v-Vx~r— 5+ V! y+tEixy .-

The last termf on the right is zero, since §, the component of vor-
ticity in the x direction, is zero outside of the vortex singularities.
The variance of 8y/9dt would be hard to find, but the acceleration g
should be the same order as its convective part V(gZ/Z). The vari-

ance of the error velocity
2
X
ViZ)

o4

v
~EC

can be found about the same way equation 69 was found, but the alge-
bra is complicated, and the derivation is deferred to Appendix F.

Under the three assumptions stated above equation 68, the result is

2 1
'Y'EC 22-4';— - [Z Z 4 Z‘;G‘} ® (70)
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The averages in equations 69 and 70 are to be taken over an ensemble
of vortex locations {Yi’ zi} with the particle position fixed,
Equations 69 and 70 both give infinity if the vortices are dis-
tributed with uniform density over the y,z plane. But suppose N

vortices are distributed uniformly over an annulus around y,z of

inner radius s and outer radius S. The density of vortices per unit

area is

N
Tr(SZ~sZ)

s

p:

and the probability distribution function for Tisese ,er is
P(ryseeestyg) = Plr)e. o Plryd »

since the vortices are distributed uniformly, where

2r

, s<r<S,
SZ_SZ
P(r) =
0 , otherwise,
Thus
S
——2-_(_1-(—)2 _1— zridri
X =%y 2 2 2
" r, S -8
i s i
or
— 2
2 _ S
v 2w (5-) plog< . (71)

Similarly,



5§ 2
+ dr.dr, .
rzrj4 (SZ-SZ)Z i)

i,j s s i

i#j
For fixed p and large S and N, the result of integrating and summing
is

—— 2 4 2
2 _ 7T k 3m p 2 p S
ec =7 20 ["‘z gt gy leeg] (72)

Non-dimensionalize p with the area excluded around each vortex,

_ p¥
p= 2=

-

Then the ratio of equations 72 and 71 is

2 4
2 Y 3,k 2 [1ltzeflogg
57 = === { ) . {(73)
c — 16 ) S
2 2mws log =
¥ s

Since 6C ~ &, equation 67 implies that the condition 6C<< 1 must be
met for a numerical turbulence experiment to be valid,

What counterparts do S, s, p* have in a numerical experi-
ment? The computer can handle only a finite number of vortices
distributed over a finite area of the y,z plane, and S can be taken
as a linear dimension of that area. s is a distance of closest ap-
proach to a vortex, but it is not obvious that such a distance has
any physical meaning. One thing is certain: if s could not be estab-
lished physically, it would have to be incorporated in the computer

program anyway. 6C is proportional to Tk/ZTTSZ, and that combination
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must be small in a valid numerical experiment,

It may be that a passively convected particle has a hard time
getting closé to a vortex if it is not close at the start. As a particle
approaches a line vortex, its motion is dominated by that vortex,
and it tends to orbit at a constant radius. In the case of two ap-
proaching vortices, the argument is more solid. Equations 54 can

be written in Hamiltonian form (Lamb [10]),

y =¥ AL
i azi i Byi
where
W = z ‘kikj log rij s
i<j
and
_ 2 2
rij - J(Yi_y‘i) + (Zi_zj) ®
Then

aw oW . LW . Y
dat - oy, Vi 9z, % V¢
3 1 i

and the Hamiltonian W is conserved. No single rij can become very
small unless an unusually large part of the energy W is concentrated
in the interaction between i and j. Since such a concentration is im-
probable in a turbulent flow, close approaches are rare.

However, Abernathy and Kronauer, in their numerical ex-
periments on vortex-street formation [11], found that vortices of

the same sign tended to cluster into loosely packed clouds. The
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important aspect of the flow is the motion of the clouds in the general
field they induce, rather than the detailed motion of the vortices in-
side. If the computations were done by hand, clouds could be treated
as single vortices once they form, and the detailed motions of the
constituent vortices could be dropped from the calculations. The
influence of one cloud on a vortex inside another cloud is small com-
pared with the influenceof adjacent vortices., If the computer does
not notice the formation of clouds and concentrate them during the
calculations, 3¢ach cloud will tend to diffuse and WQnder at random
under the errors accumulated in computing the trajectories of its
constituent vortices, rather than move as a unit in the field induced
by the other clouds,

A systematic way to concentrate clouds is to unite vortices
which come close to each other., The clouds are cvleaned up as they
form. Furthermore, s has a precise meaning in a computer pro-
gram which permits one vortex to capture another. s is an average
capture radius. Once vortices of strengths k1 and kz approach
closer than s(k ’kZ)’ the computer assumes that they will orbit
each other from then on and unites them into one vortex of strength
k1 + kz° This is not just a computational expedient. The physical

basis of vortex capture is explained in subsection E,

E. Vortex Capture

Suppose vortices 1 and 2 approach each other and interact
strongly. If k1 and kZ have the same sign, the two lock into a mutual

orbit until the strain field of the other vortices shears them apart
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(the flow outside vortex singularities is irrotational, so the deforma-
tion is pure strain). Idealize the field of the other vortices in the

vicinity of the pair singled for special attention as a uniform steady

translation (V, W) and strain @, If the y,z axes are oriented parallel

to the principal axes of strain with the flow diverging along the y
axis, then the equations of motion 54 for vortices 1 and 2 are

k

. 2
Vi =Vtoy tor ——s h
n +¢
k
. 1 4
vV, =V +aoy, - 5— s
2 2" 2w T]?_Jréz
(74)
kz_ﬂ__.
2y =W -0z -5 —5—5
n t¢
5 =W - az il____n__,
2 2 2w n24_(-,2 J

where (I is positive, and the relative coordinates n,{ are
M =Y17Yg s
g = Zl -Zz @

Define the center of vorticity coordinates

vy tkoy
Y=k1k1+k22 9
1752
ky z, tk,z
g - 1717 %3%2

ky kg
Equations 74 can be combined in an obvious way to give separated

center of vorticity and relative equations of motion:
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o
il
<
+
)
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(i)

Ne
i
=
I

Q
N

(75)
L i S
i 1 o 2+§2 :
(1) b,
p kl 2 n
t=-a¢g - .
2 1124_122

Equations 75(i) show that the center of vorticity of the vortex pair is
convected like a passive particle in the idealized flow of the other
vortices. Equations 75(ii) describe the motion of a particle around

a vortex of strength k1+k2 in a strain field @. The phase plane tra-
jectories of equations 75(ii) are the same as the streamlines of the
combined vortex and strain fields, If n and { lie on a closed trajec-
tory, then vortices 1 and 2 remain bound in spite of the strain tending
to shear them apart.

Equations 75(ii) can be written

where

k1+k2 .
¢:an§+ 5 10g?;'+Ke

2

K and r are constants, and r2 =n + g2, Y is conserved along

trajectories, since

e Oy ., O
b=grtitgpt=0.

Y is the stream-function for the combined vortex and strain fields.
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From equations 75(ii), n and L are both zero at

. !kl+k21
o 2mQ :
° ° +k, >
e={135,315,k1k2 0,
O o [+] <
45° , 225°, k;+tk, <0,

where polar coordinates defined by 1 = rsin®, { = rcos 0 are used.

Set ¢ = 0 at these singular points, so that

k1+k
4w

2

K =

Since Y, 8y/0n and 8y/d¢ are zero at a singular point n_, ¢, the

expansion of Y around the point begins

~2 f,2 2 2 2
"y ~~ [ 87y L 87y
o o ot” /o

where ;]‘ =m-n, andz = g-go. But

<§ﬂ)=(§i&>=0, (—a-%fp—)= 2a .
37120 3420 om oL o

g = 2an{

Thus

near n s QO, and the singularity is a saddle point {stagnation point)
with principal axes aligned with the principal axes of the original
strain field. The rate of strain at the singular points is 20. A
phase plane (streamline) diagram of the trajectories given by equa-
tions 75(ii) is sketched in figure 15 for k,tk, negative. The trajec-

tories are closed in an eye-shaped region around the origin bounded



-----
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by the stagnation trajectories ¢ = 0. The closest approach to the
origin of a ¢ = 0 trajectory occurs at 6 = 135° in the figure, and the

corresponding radius r. is the solution of the equation

2
ary . Ik1+k21 y r . lk1+kzl o
2 27 €T 4w - *
o
The solution o= 527 ry can be found easily by iteration. Thus
Ik, +k. |
_ 1 72
ro= . 527 5 . (76)

If the distance between vortices of strengths kl and kz in a steady
strain @ is ever smaller than r s the vortices are permanently bound
and never shear apart. If the distance lies between T, and T the
vortices may or may not be bound, and if the distance is greater than
r o the vortex pair is not stable and will certainly shear apart. This
is a simple mephanical explanation of the vortex clu,pstering phe-
nomenon discussed by Batchelor [13] and Onsager :[14] . If k; and

. . 2
k2 have the same sign, the capture cross section T (or more accu-

rately, the area of the 'eye' in figure 15) tends to be large. If they
have opposite signs, the cross section is small. Once two vortices
of the same sign are bound tightly, the pair acts like a single strong
vortex, and the capture cross section for interactions with third
vortices is large.

Equation 76 provides a rational criterion, in a numerical
experiment, for concentrating nearby vortices of strengths k1 and
kz into a single vortex of strength k1 + k2° But where should the

new vortex be located? The answer depends on the physical process

that 'capture' is supposed to represent. Equation 76 and the phase
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plane eye were derived for a steady strain field. The actual strain
encountered by a vortex pair varies in magnitude and orientation;
the eye blinks. Line vortices are eventually knocked apart by strong
interactions with other vortices no matter how strongly they are
bound. If they are strongly bound, they stay bound for a long time.

But real vortices have finite core diameters; if real vortices orbit

together for several revolutions, they are smeared into concentric
shells of vorticity by each other's strain field. Once that happens,
they really are united and can never be knocked apart. Capture of
line vortices should be a model of the physical smearing process.
Suppose that at time tos before the smearing, a continuous vorticity
distribution § is peaked near V12 % and Vg1 2g: with total amounts
2k1 around point 1 and 2k2 around point 2, The y coordinate of the

center of vorticity is

_Iytaa . KNTReYe
o [edA k; Tk,

at time to, with a similar equation for Zo‘ As the vorticity is
smeared under its own induction and convected by uniform trans-
lation (V, W) and strain «, the center of vorticity moves according

to the equation
Y=V+ay

just as a single discrete vortex would move. That is shown in Ap-
pendix G. After the vorticity is smeared into shells, the shells

are centered on the current center of vorticity. A single vortex
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which started at (Yo’ ZO) at time to would also be located there.
Thus, if instantaneous concentration is supposed to simulate the
eventual result of smearing, the new vortex must be located at the
center of vorticity of the original pair. Two vortices of strengths

and locations kl’yl’ z, and kz,yz, zg must be united into a single

vortex of strength

2 )

k=k +k

1
located at

(77)
kiytkyyy >

k

klzl+k222

257K : J

<
T

Equation 76 cannot be used as a practical capture criterion
for a non-steady and non-uniform flow until an effective &, say a,,
is estimated. @ is not the average strain (which is infinite for
discrete vortices), but is an average intensity of that part of the
strain field which is uniform over distances comparable to e
Suppose the ensemble of initial conditions on the vortices is
{kn,yn(O) = 0, zn(O) = nA}, with ;—g = kz and nearest neighbor cor-
relation only. Then a_ is proportional to k/)tz on dimensional
grounds, but the constant of proportionality cannot be predicted
exactly. In practice, the computer program unites vortices kl’kZ

if their separation r satisfies

Ik, +k., |
Zeop? L2 (78)
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where o is an input parameter. Average results of the numerical
experiments should not depend critically on . o is selected to make
the numerical error drift small rather than to satisfy a physical
theory.

An estimate of 6C can be made from equation 73 based on
effective values Se’ e p: and typical parameters used in the ex-
periments. A very crude estimate of Se is sufficient, since it enters
equation 73 only as the argument of a log. About 50 vortices were
usually run, and they dispersed over an area about 50\ x 4 = ZOOXZ.
Thus Se ~10 - 20A. The effective distance of closest approach S
can be taken as the average of the square root of the right hand side
of inequality 7§, S, = kYo X, with k~ 1. 0 was usually .25, so
S, ™ 51. Thus log Se/se ~log 30 ~3. The vorfex density p_ was

about SO/ZOOAZ, To) pé‘ = nsipe ~.2. By equation 73,

Most experiments were run with 0= .25 and TK/ZWAZ = ,1. Thus the

error velocity v, was typically one-tenth the physical flow velocity y.

F. Flow Visualization Experiments

Equations 60, 54, 78 and 77 are the basis of numerical flow
visualization experiments on the motion of line vortices. Random,
correlated vortex strengths are generated by equations 60, the vortex
paths are described by equations 54, vortices are united according
to criterion 78, and the strength and location of the new vortex are

given by equations 77. Variables in the computer program are
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non-dimensionalized on the variance of the vortex strength, kz, and

the original vortex spacing, A:

N Vi %
(Yi’zi‘) = ("X""X')
ki
kK=
™ = Tk
4 Zwkz
o=
- 27
The input data are T
o)
N
(N-1)/2 correlations R

(N-1)/2 random phases ©

Al

3K

F

2

the non-dimensional time increment,
the constant in the capture criterion 78,

the number of vortices,

and data for the output including
the time between frames, and

the number of frames desired.

Each frame shows the locations of the vortices at the time the frame

is printed. The vortex strengths are symbolized by the letters used

to show the locations according to the following table:

VORTEX STRENGTH SYMBOL
k¥< -2.0 K
-2,0 S k*< -1.0 L
-1.0 s k*< -0,5 M
-0.5 =sk*< 0 N
0 <k*< 0,5 P
0.5 <k*< 1.0 Q
1.0 sk*x< 2,0 R
2,0 < k* s .
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The graphing is done on-line, that is, the appropriate symbol for a
vortex is typed in the line and column corresponding to its current
location by the same machine that types ordinary arithmetical re-
sults, Figures 16 (i)-(vi) are six frames photographed directly from

the computer output for a numerical experiment with the following

input data:
™ =,1
o = .25
N = 45’
R() = -0.5, R{2)= ... =R{22) = 0
* =1.0
F =6

The 22 random phases (each one having one of the values 0, 0,25,
0.5, 0.75) were chosen by rolling dice, The pluses around the bor-
der of each frame are spaced a unit distance apart. The first frame
shows the ccné,itions at t* = 0, the second shows the vortex locations
at t* = 1, and so on up to t¥ = 5. Kach frame is centered on the
original row of vortices and is 36 units long. Since the vortex row
is 44 units long at the beginning, three or four vortices at either
end fall outside of the picture. The particular results shown are
typical for nearest neighbor correlation in every respect.

Two things are striking about figures 16: by t* = 5, no
clouds of vortices of the same sign have formed; instead, vortex
dipoles consisting of vortices of opposite sign boil away from the
original line., Up to t* = 16 at least, the clouds obtained by Aber-

nathy and Kronauer never form. The vortices disperse too fast by
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vigorous boiling of vortex dipoles, Equation 76 shows that a vortex
dipole is not a very stable structure. If two vortices have strengths
of equal magnitude but opposite sign, the vortices are sheared apart
by any strain. But the strong dipoles escape the region of maximum
turbulent agitation so fast that they are not split. They move in
large orbits about their distant centers of vorticity almost unaffected
by the other vortices. The vortex dipoles have been circumscribed
by ellipses in figures 16(iv) and (vi). The size of an ellipse indicates
how much fluid the dipole carries with it {cf. Lamb [10], p. 221).
The dipoles can be visualized as columns of fluid which preserve
their momentum and leave the region of agitation too fast to be
stretched apart by non-linear convection. They correspond to the
surges of turbulence found above wakes and boundary layers.

The dipoles arise because of the negative xiearest neighbor
correlation along the original line of vortices. Clouds would form
if there were long sequences of positively correlated vortices as
there were in Abernathy and Kronauer's experiments. DBecause
clouds do not form, the analysis of error drift has little bearing on
the numerical experiments of this chapter. Vortex captures rarely
occur. On the average, about three vortices out of fifty are captured
in a run up to t¥ = 16. The analysis of error drift was carried out
in great detail because of the intrinsic interest of the generalized
random walk of subsection C, and because the mechanism of vortex
capture would be essential in numerical experiments on more homo-

geneous initial distributions of line vortices,
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G. Background for the Momentum Transfer Experiments

Prior to time zero, fluid flows in the x direction at a speed
Uo(y). At time zero a random area-impulse independent of x is ap-
plied in the x,z plane to generate a row of line vortices. The initial
random velocity component in the x direction is zero., The motion of
the line vortices in the y, z plane is independent of the x momentum
they transport. The flow visualization experiments of subsection F
show how the vortices disperse, but give no indication of how rapidly
the flow they induce distorts the mean speed profile U(y,t). If the
flow were studied in a physical experiment, U(y,t) would be found by
taking a hot-wire traverse along z at height y and time t. Uf{y,t)
would be the average x speed measured. A traverse over many eddy
correlation lengths can be regarded as a sequence of measurements
over an ensemble of independent experiments. This suggests the

model experiment used here to define U(y,t) formally. Call it

Experiment 1.

The experiment is performed at time t. Let S(u ly)du be the proba-
bility that the speed at height y and random z lies between u and
u + du (u is taken to be total velocity in the x direction here). Then

the mean speed profile U(y) is defined by

QO
Uly) = S‘ u pluly) du .

-0
Since x speed is conserved {equation 35) and the velocity fluctuations
in the x direction are initially zero, the measured speed u is uniquely

related to the original height Yo of the fluid column the measuring
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instrument intercepts:

If Uo(yo) is monotonic (like Uo = Qyo), then the inverse relation
Yo © Yo(u)

is unique, Let p(yO ly)dyo be the probability that the fluid column

intercepted at y originated between Yo and Yo + dyo. Then
v Yo(u) ,

i | - i i

S‘ pu' ly)du —S p(yO y)dy0 .

-0 -00
Differentiate with respect to u:
- dYO
p(uly) = P(Yo(u) IY) a5 °
Then

e dy
Ul(y) = S‘ uP(YO(u)lY) =5 du.
-0

Substitute u = U(;(yo) :
o'}
Uly) =§ Uty ety ly)ay_ . (79)
-co

Equation 79 is the definition of U(y) in terms of the transition prob-
ability p( Yo ly).

The trouble with Experiment 1 is that it cannot be performed
on a computer. The only way to find Yo for a fluid column selected
at specified y,t and random z is to reverse the calculation and

carry the designated column back to its original location. That is
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impossible in practice, because the computer solution is inherently
unstable. Error drift (not to mention vortex capture) makes the flow

irreversible and sustained, detailed backtracking impossible. An

experiment that can be performed is

Experiment 2.

At time zero place a test particle at random inside a large area Ao

straddling the vortex row:

-
b

If P(yo, Zo)dyodzo is the probability that the particle originates be-

< L

tween Vo and yo+dy0, z and zo+dzo9 then

q -1
HL) 7, (yo,zo) eAO,
P(yoszo) =

0 , otherwise.

By time t, the converted boundary of the area is distorted:
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The probability density for the current particle location is

P(y,z) = P(y,zl(y,z)e A) P((y,z)eA) ,

where

P(y,z l{y,z)eA) = the probability density at (y,z) given that
(y,2z) lies inside the convected boundary

of A,

P((y,z)eA) = the probability that (y,z) lies inside A,
By incompressibility,
Ply.z lly,z)eA) = (HL)™' # faly,z,t) .

If the horizontal boundaries distort a distance less than h and the

vertical boundaries distort a distance less than £,

_£+£<z<12"-—1

P(ly,z)eA) = 1 for 2
-H H

and P((y,z)eA) drops rapidly to zero outside that area. If h<< H

and f << L,

i, -1

P(y,z) =H "L~ = P(y)P(z) ,

P(y) = H '# fn(z,t) , (80)

P(z) = L—l # In(y,t)

almost everywhere inside the original area spanned by Ao° Thus y
and z are independent, and sampling only those particles which hap-

pen to arrive at y at time t does not bias the distribution over z.
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Let Py_ fy) dy _ be the conditional probability that the test particle
was originally located between Yo and Vot dy  given that it has

arrived at y. Then
Ply_ly) =ply ly) ,

and sampling only those particles which arrive at y in Experiment
2 is equivalent to sampling at height y and random z in Experiment

1. From the definition of Uly),

oo
Uly) =§ U ly,) Ply ly) dy, . (81)
T
Equatién 81 is not usable as it stands, because a digital
computer cannot handle continuous functions. Suppose the region
-H/2 <y <H/2 is broken into horizontal bands k with center

height and band height :
gt ¥ g

Define the average speed in band k,

U(k) = '6'1; S‘U(y) dy
k

where the integration is carried from yk-ﬁk/z to Yk+6k/2° From

equation 81,
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oo
U(k) = S‘ dyo Uo(yo) 51—1; S dy P(yoly) .

-0 k

This equation could be written

k)-;gdy U_ly, 61k S.dyP(yoly)

k

exactly for any k if the stack of bands extended to y -+ co. But the
computer can deal with a finite stack only. When ko is summed over
a finite sequence of bands, the equation still holds 1f band k is not
too close to the top or bottom of the stack. For Yo;c’ko and yek,
P(yoly) is then zero for the bands that fall outside "the sum. If
Uo(yo) does not change too rapidly in band k_,

i v
U(k) = > U (k) [——6k § dy, g dy P(yoly)] , (82)
k k
O

k
O

where

_ 1
Uo(ko) ) S‘Uo(yo)dyo ¢
ko
k
o]

The double integral in brackets can be identified as follows.
The probability that the particle occupies band k at time t is

P(o) = | Plylay = 5,170,

k

from equation 80. Let P(ko,k) be the probability that the test parti-

cle originated in band ko and occupies band k at time t, that is,

P(k_,k) = g dy, § dy Ply_,y) » (83)
k| k
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where P(yo,y)dyody is the probability that the particle started be-

tween Y, and Yo + dyo and currently lies between y and y+dy. But

Plk_,k) = Plk_P() = Plk_ k) akH'l ,

Ply,,y) = Ply_ly)P(y) = Ply_ly) H™! .

From equation 83,
_ 1
P(kolk) = ‘6‘1; S dy, X dy P(yoly) . (84)
ko k

Thus the bracketed factor in equation 82 is the band-transition prob-
ability P(ko lk), the probability that the particle originated in band

ko given that it occupies band k at time t. Equation 82 becomes

Uk) = Z Uo(kO)P(kolk) (85)

k
o}

when band k is deep enough in the stack of bands that fluid originating
outside of the bands summed in equation 85 rarely enters k. Equa-
tion 85 is the discrete analog of equation 81.

The transition probabilities P(ko lk) could be found by carry-
ing one test particle per run (Experiment 2), but that would be
absurdly wasteful. The numerical Monte Carlo experiments were

run according to

Experiment 3.

Each horizontal band is separated into cells as shown in figure 17.
At time zero a test particle is placed at random in each cell {(a con-
ventional random number subroutine is used). If the cell area in

band ko is a(ko), then the number density of test particles convected
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from band ko is p(ko) = a_l(ko). At time t a survey is made of the
test particles currently in each band k. If n(ko,k) of them originated
in ko (transitions like ¢ > d in figure 17 are summed with transitions
like a - b), then an unbiased estimator of P(ko Ik) is

n(ko:k)/P(ko)

=00, 0/p0,) (86)
(o]

e —
P (kolk) =

Notice E. Pe(kO k) = 1 regardless of how untypical the particular
0
experimental results happen to be, The Monte Carlo estimate for

the mean speed U(yk) at yk,'t is

US(y,) = US(K) = z U (k) POk 1K) (87)
k

o

for k not too close to the top or bottom bands. In practice that re-
striction meanfz that U(k) could not be estimated in the top or bottom
bands of figure 17, but could be estimated in the second to the top
or bottom bands. Since transitions ¢ ~d are summed with transi-
tions a — b, I.;é(yk) =+ Ue(-'yk) if Uo(yko) =4+ Uo(_yi;o)' Thus five
independent spéeds are obtained from the twelve band setup of figure
17.

The estimate Ue(k) is refined by running the experiment many
times and averaging the results. Placing test particles in cells,
grading p for maximum particle density near the vortices, and sum-
ming a b and ¢ - d transitions help to minimize the variance of the
estimate for small times. If the particles were scattered at random

in each band, the clustering characteristic of random distributions

would occur. When the particles are placed at random in band cells
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instead, the density over a band is still uniform and the clustering
is eliminated. The particles remain spaced apart until the turbulent
motion itself scrambles them into a random distribution. Grading p
puts the most particles where the most action is — near the vortices,
Summing transitions like a - b and ¢ - d exploits continuity to cancel
untypical results. If a particular set of vortices causes unusually
many a — b transitions, then ¢ —d transitions are unusually inhibited.
Later, when the array of figure 17 is thoroughly mixed, none of

these devices works,

Suppose the initial speed difference between bands k and ko is
A(ko,k) = U(ko) - Uk) .
From equation 85,

O() = ) (U0 + alieg 1] Pli, 1K) = U 09 + 5UGK)
k
&)

where the speed change between times 0 and t is

8U (k) "‘Z Ak k)P k),

k
o

and the fact thatg) P(kO ]k) = 1 has been used., The estimated speed
e}

change is

e e
sU (k) = A(ko,k) P (kO!k) .

RANd

A good estimate of the speed change is required. The square error

of the estimate is
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[6U°%(k)-5U(Kk)] ¢ =

' €t - ! e _
ZEA(ko,k)A(ko,k)[P (kolk) P(kolk)[P (kolk) P(kolk)] .

k k!

o o
Once the mixing is thorough, the estimates P°(k! |k) and P(k_ k)
should be nearly independent for k'o # ko (they cannot be strictly
independent, since X Pe(ko Ik) = 1; however A(ko,ko) = 0, so some
o

of the slack is taken up by the terms with k(') or ko ‘= k which have

zero coefficients anyway). Then the mean square error for one

experiment is

2 2 e 2
é‘?l(k) =>: A%k k) [P (koik)-P(kO!k)] .

k
o

Suppose p(ky) = constant (the analysis for non-constant p is very

complicated). Then

n(ko,k)

e
P (kolk)z“"’.fnz)‘— s

where T (k) is the total number of test particles in band k at time t,

T (k) =z n(ko,k) .

k
(o)
For the time being, the arguments (ko,k), (k0 Ik), (k) are dropped.

Define a random variable a such that for every point a in band k,

1-P, if a came from ko;
-P , if not .

Then
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z a = (1-P)n-P(T-n) = n-TP .

a
Since P® = n/T,

Za
o a

P—PzT .

a, is independent of T, since the origin of a particular particle can-
not be biased by the total number of particles in the band if p(ko) =

constant. Thus

a
2 g a’p

TZ

(PS-P)* =

H

where ( ) is an average over T. But

Z;: (1-P)P-P(1-P) =0,

= (1-P)% P+P% (1-P) = P-P%

and if the mixing has been sufficiently thorough that the particle his-

tories are almost independent,

aa,=aa, =0,

ap ap

Thus

2
e .2 z (P-P7) 2, , 1 (P-P%)
(Pe-p)? = <_____._CJL >= (P-P7) R —
T? Cr) (T)

for large T. The mean square error in 6Ue(k) is
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62 (k) = 1 Az(k Pk Tk) - Pk Ik)2
1 (T(k)) kz o )E) o o ]
O
1 Z 2 A% (k)
~ A%k, k) Pk k) = ===~
(T (k) (T (k)
O

for thorough mixing., Az(k) is the mean square deviation of the speed
in band k from the original speed Uo(k). If Q experiments are run,

the root mean square error divided by the speed change to be meas- |

ured is

€qlk) A(k) 1
50TR) ~ SU(K) . (87)

Vo(Tw)

That ratio must be small for the results to be meaningful. The ex-
periments of subsection H show that A is much larger than 68U, th;t
is, the vortices transport x momentum rapidly, but the net transport
is rather small. The number of experiments Q and the number of
points per band T in each experiment must be large, and the Monte
Carlo technique is barely feasible after the test particles are thor-

oughly mixed.

H. Momentum Transfer Experiments

The momentum transfer program begins an experiment by
computing vortex strengths from random phase input data, and by
locating test particles in cells of a specified matrix using pseudo-
random numbers generated internally. Once the initial conditions

are set, the momentum transfer program solves about the same
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me;hanical problem as the flow visualization program. Lengths,
‘t’:i.m‘es and vortex strengths are non-dimensionalized the same way.
A vortex is convected in the field induced by the other vortices; a
test particle is convected in the field of all the vortices. The cap-
ture criterion treats test particles like vortices of zéro strength.
A test particle is not annihilated when it is captured — it rides its
captor vortex. If that vortex is captured in turn, the test particle
passes to the new captor. The number of vortices drops every
time a vortex is captured, but test particles are conserved. The
test particles are surveyed periodically to find the *;:urrent band-
transfer data n(ko,k). After the experiment has been run with fresh
random phases and pseudo-random numbers as many times as de-
sired, the accumulated data are passed through two data reduction
programs.

The filgst program sums the n(ko,k) for each survey over
all the experiments and computes estimates of the band-transition
probabilities P(k0 k) by equation 86. The P(ko k) are related to a
step-function approximation of the continuous transition probability
Py, ly). Define

P(k_lk)

g(Yo»Y) = —gfk—(;———-— for Yofko® yek .

The expression 'yek' means y lies in band k, i.e., (yk-Bk/Z)s y

< (yk + 6k/2). From equation 84,

i
gly »y) = 5 5, S‘ dy, gdy Ply_ly), y_ek s yek,

k k
o
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so g(yo,y) is constant over the rectangle Vo€ ko’ yek and equals the
average value of P(yo ly) there. Plots of g(yo,y) show the probability
distribution for original heights Yo spreading away from the current
height yek. Using data from all the experiments, the first data
reduction program gives estimates Pe(ko lk) from which plots of
ge(y:‘;,y*) can be made.

The second data reduction program computes transition prob-
abilities, speeds and speed changes for each experiment using equa-
tions 86 and 87 If the initial speed profile is linear, UO = Qy, then
the original vortex spacing A is still the only length in the problem,

and U is non-dimensionalized on £A\:

":—_.H_
U* = ax

The program averages the speed change estimatesﬁU*e(k) over all

the experiments and computes empirical standard errors

> [6U*C(k) - 6U*S(k)]

&% ) = 2 : (88)
: Q(Q-1)

where Q is the number of experiments.

Figures 18 and 19 show the results of the first and second data
reduction programs for nine experiments run with the same values of
7%, 0, N, R(£), T* and F used to produce figures 16. % is the time
between test particle surveys, and F is the number of surveys. The
cell matrix, with 12 bands and 180 cells, is shown in figure 17. The
band center locations yi’ég band heights 6% and test particle densities

k

p*(k) for the upper half of the matrix are as follows:
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BAND v &% p*
1 7.1 1.8 . 2778
2 5.4 1.6 . 3750
3 3.9 1.4  .5000
4 2.6 1.2 . 6667
5 1.5 1.0 .9000
6 .5 1.0 1.0000

The upper and lower halves of the matrix are symmetrical as shown.

The non-dimensional length and height of the matrix are
L* = 20, H* = 16.

Both are large compared with the distance the boundary is distorted
up to t* = 5. The original row of 45 vortices extends 12 units beyond
the vertical boundaries of the matrix. The transition probability
estimates should be nearly the same as they would be if the test par-
ticles moved in a field truly homogeneous in z.

Figure 18 (i) shows ge(y:?;,y*) for y*e 2 plotted against y:‘)‘ at
times t* = 0,1,...,5. Figures 18 (ii) and 18 (iii) show the same
sequence for y¥e4 and y*e6. At t* = 5, the probability distribution
over y;’; given ye 2 is still sharply peaked in band 2. The distribution
is much more diffuse for ye4, and for ye6, the probability has spread
almost uniformly over the band occupied by the vortices (cf . figures
16). Figures 19 show the speed change estimates 6U*e(y*k) for an
initially linear shear profile at times t¥ = 0,...,5. Estimates in

the top band are impossible, because fluid without test particles
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intrudes there; no points at y* = 7.1 are shown. The heavy dots
represent:estimates averaged over the nine experiments, the ver-
tical lines'represent standard errors of the mean computed from |
equation 88, and the shaded bands represent speed change profiles
as nearly as they can be specified. The oblique line 6U* = -y*
corresponds to fully stopped flow. The nine experiments took 20
minutes on an IBM 7094 computer.

No analytical theory can predict the curves of figures 19.
A comparison of figures 16 and 19 shows that the speed change max-
imum and strong vortex dipoles propagate into the shear flow to-
gether. The time scales for Reynolds stress generation and mean
flow change and for convection of turbulence in its own random
field are the same. The maximum speed change at t* = 5 is
-6U* ~ ,4—> .5 in band 4. The original speed there is Ué‘ =2->3.2,
so the mean speed changes about 20% . The last graph of figure 18 (ii)
shows that the dispersion of the speed about its original value in band
4 is A%(4) ~ 2 at t* = 5, By t¥* = 5, the speed range’ in band 4 is as
large as the mean speed there, yet the mean speed change is small.
It is surprising that flows as inhomogeneous on y as the flow in
figure 16 could mix fluid columns as well as figures 18 show with
such a small net transport of momentum.

Before the vortices have mixed the test particles thoroughly,
the use of cells, grading of p, and summing of transitions like a - b
and ¢ ~>d in figure 17 keep down the standard errors in speed esti-
mates. After thorough random mixing of the test particles, the

errors cannot be reduced below the prediction of equation 87. About
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20 test particles occupied band 4, and 20 more occupied its comple-
ment, band 9. Since transitions a -b and ¢ -d are summed, the
speed estimates in band 4 are based on { T(4)) ~ 40 particles per
experiment and Q = 9 experiments. The theoretical prediction of

the standard error after thorough mixing is

€*~' A% 2

~ ~ .1

iVQ<T> 'V@‘40

from equation 87 (equation 87 was derived for p(k) = constant, but

it is accurate enough for a crude estimate like this). The second

data reduction program computed the following empirical standard

errors.

0 0

1 022

2 . 060

3 . 037

4 .103

5 . 127 .

By t* = 4, the fluid in band 4 is mixed well enough for equation 87
to be valid. As A¥ grows with time, the accuracy of a mean speed
estimate drops. Since the vortices mix fluid columns thoroughly
without having much effect on the mean flow, the expected error of
a speed change estimate grows more rapidly than the speed change
itself. The Monte Carlo method is time limited for practical pur-

poses. There is no point in carrying the experiments much beyond
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FIG. 19 (i) SPEED CHANGE PROFILE
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SPEED CHANGE PROFILE

FIG. 19 (ii)
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FIG. 19 (
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6. Summary

This chapter began with the assumption that the propagation
of turbulence through a rapidly shearing flow depends primarily on
random stretching of mean field vorticity. Reynolds stress was taken
as the mechanical signature of random vorticity in a shear flow.
Rapid shearing means U << oL » where {{ is a fluctuation speed, L is
an eddy size, and §2 is a typical mean vorticity. The equations of
turbulent motion were linearized under the assumption U << Q[. , and
the history of the Reynolds stress c)'(y‘,t) acting on a mean flow
U(y) = Qy in the x direction was studied. The original random vor-
ticity was assumed to be generated at time zero by impulses homo-
geneous in x,z and concentrated near y = 0. Turbulence near y = 0
was expected to catalyze the growth of random vorticity further out
by stretching mean vorticity so that the turbulence would grow stead-
ily more intense and propagate further and further through the mean
flow. But the Reynolds stress was found to relax into a steady dis-
tribution as 2t ->o. As far as the Reynolds stress is a measure of
turbulent intensity, random stretching of mean vorticity alone cannot
yield steadily propagating turbulence.

The problem was simplified next by assuming that all flow
properties are independent of x. In that case, the eddy motion in
the y,z plane is independent of the x momentum it transports, and
the mean speed U(y,t) is diffused like a passive scalar. The equa-
tions of motion were partially linearized by neglecting convection of
eddies in the y,z plane, and wave equations for o(y,t) and U{y,t) were

derived. The solutions are worthless, however, for times tZ,[./L/.
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Turbulence artificially steady in the y,z plane exerts a steady grip
on the mean flow and forces U to become independent of y over a
larger and larger interval -Y(t)< y < Y(t). In a real flow the eddies
disperse as fast as U diffuses. The core of the problem was found
to be convection of eddies in their own random field,

The chapter ended with numerical turbulence experiments
designed to find how quickly concentrated vortex colﬁmns parallel
to x disperse over the y,z plane under their own induction, and how
effectively they diffuse U(y,t). The rate of error accumulation was
analyzed carefully. The mean square error of the computed location
of a vortex was found to diverge exponentially with time according
to a generalized random walk equation. Detailed vortex locations
are unimportant in a turbulence experiment; computed trajectories
must not diverge too rapidly from current physicalr trajectories, but
the accumulated? displacements of computed locations from actual
locations can be large. It was shown, however, that unless a lower
limit on the di‘stance between any two vortices is imposed, the
velocity of errar drift can dominate the flow velociﬁy no matter
how small a time increment is used in the computa;tionsa Vortices
which approach each other closely must be united. Uniting vortices
during the computations was justified by finding a capture cross
section for the interaction of two vortices in a strain field. Numeri-
cal flow visualization and momentum transfer experiments confirmed
the result that columnar eddies disperse as fast as they transport
momentum. In case the flow properties are independent of x, the

time scales for non-linear convection and turbulence propagation
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are the same, and no analytical solution for the propagation is pos-
sible. That does not mean that the time scales for propagation and
non-linear convection are the same in more realistic situations
where turbulent quantities depend on x. The time scale for the
propagation of random vorticity of strength L//[. through a field

of mean vorticity 2 is not as short as 9-1, as originally expected,
but it may not be as long as L /L/. Weak interaction among turbu-
lent eddies may free the Reynolds stress, steady for t>> S'Z"l under

the linear approximation, and allow its gradual diffusion.
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APPENDIX A

Evaluation of Li..(k,k .)
ij'=’ ol

The equation to be integrated is

L.,
SR =
3K, T (kp) s Listkg ko) = 8450

where

i kl il 2 ’

and kl ,k3 are fixed. kz is kf z z

+ kz + k3, and k1 ,k3 will often appear

in the combination kf + kg = lz. Thus
31;21 ST L
8k2 Tor22721

and by the initial condition, LZl = 0, Then

8Lll T o
9k, 1721 7
2

50 Lll = 1. It can likewise be shown that L31,L13,L23 = 0 and L33=
1. L22 satisfies

SLZZ ) -.Zk‘2 .

Bkz £2+k2 22

2

Integration and use of the initial condition LZZ(koz’koz) = 1 gives

2 s 2 2 2 2 . e
L.22 = ko/k , where ko =47+ koZ‘ Then le satisfies

oL K2\ K?

12 _ T.L :.1..(1_2_1_)_2

8k2 1722 k1 k?. kZ

and since le(koz’koz) =0,



ke Ko 2>
L == L - L dx
12 klf( 1202 (12122
o2
k
K2 /12 2 2
....__9.. 3 tan-l (_}_C_) - ___:L X —
SR VE L5 42 (1%4x%) y
o2
gkz k k% k
= - 29 [o] -2 [-£]
3 7) 24
k. £ k
1
where
[6] = t;’stn_1 (I(L) - ta.n—l (k ) 0<6=<w,
: 2 02
and
k, ky kg,
(=] == -—
k k¢ k
o]

In the same way it can be shown that
2

k7k k
L,, = 133 ([e] _z[;%]) ,
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APPENDIX B

Evaluation of the Stress Integrals in the Vortex Sheet Problem

From equations 27,

oly,t) = Il + IZ + 13 R

where

1
_ klkoZ ® 1(k02+k02)y .
I, = ; = dk' ,dk _dg ,
1 2.2 2 02%%02%
k "k ™
(o]
I, = — [6] e dk' _dk .df ,
2 2 2 02"%02%
iklk T
k, k itk +k')y
1, = (-—le[—z—]—@?:e °2 027 ak! Ldk_,df .
- Yk k T
But
{lf_%] B Y
K2 KE K4
[0]
SO
kk, @k, k, ik ,+k',)y ’
_ 172 1°°3 02 “o02 ,
I, +1, _g 22 ; e dkp ykd ,dkdk, . (Bl)

From equations 21,

kZ = koZ - thl s

T e i
kZ = koZ + thl s

and since ® is the Fourier transform of a real function symmetric

with respect to changes in sign of its arguments,
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@(-—k1 ) —k3) = @(k1 ,k3) .

Reversing the signs of kl and k3 and switching the roles of ko?. and

k;z alters the right hand side of Bl by a change of sign only, so

The integral over k;)z in I2 may be carried out as follows:

- .
o elkozy Joc] elkozy
——— dk' , = dk!
2 02 S‘ 2 v 4 2 02
v, k U LTk S tQtk)) ;
. o . . oo
) e-lﬂtkly RLSY g = 2 e—lﬂtkly cos(ﬂ )x
- 2,.2 £ %
A 27+k 0 +
-iQtk,y -4yl
= %- e 1 e s (B2)

is

from Dwight [7], p. 224. The integral over k_,

ik Ly
o2
5 [6] e dko2 s

where

k o Qtk K
[6] = cot™! (—%’3 - ——1;——1~> - cot™ (-22)

from the definitions below equation 15. Substitute
- ﬁgg : thl
1 g T 5

SO
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S -1 Ly
K= 15 [cot "(A-§) - cot "(A)] e da .

- Q0

K can be regarded as a function of § satisfying

K(0) = 0 ,

o  ilyx itey P
dK _ 1 e ar=20 e YS cos{fy)x dx
&) pee? T

ity -2yl
i e e s

1

since the integration is the same as that which led to B2. Thus

iQtkyy ) -2yl
K=" (e - 1) e (B3)
1y

From equations B2 and B3,

-2 1yl
- (1-e )
L, = ‘g ®(k1’k3) - — e dkidk3 ’

R kg sin(Qtkyy) 24yl
=2§S®(k,k)——-————————-———-—-e dk dk., ,
R U Ky kydkg
-c0 0
© @ kS sin(Qtky) -2t lyl
=§ S ®(k1’k3)}2 —-EF—"—-* e dkldk3 °
-00 =00

The symmetry property of ® was used twice. Since 0=IZ+(11+I3)= IZ,

equation 28 in the text has been verified.
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APPENDIX C

Proof that Equation 31 is Valid in the Limit 2t > oo

The terms dropped from equation 31, analogous to I1 and 13

in the vortex sheet problem, are

s -Sv (£ +k;2)
17 0%k +0tk, )]
o2 1

1
K' K Kk (k02+k02)y
02’ 1’ 2’

3) e

H
AZ dk ,dk 5 dk,dk,,

2,..2 2,,,2
s _5» (£ +k02)(1 +k02)k

! [ Qtk koo ]
2r 2. 2 3 Z 2., 2
2[4 +(koz+ﬂtkl) ] 254 (k , -Qtk,;) 254k 5

f
i(k otk )y

,k 02,k:,)) e dkozdkozdkldk3 .

0K

22(

Under transformations 32 and 33, these become

Qo

2 gpf‘g‘g (1+p' 22> 1
Lo -0 ~o0 0 -0t [1+ ‘3‘ Z] '1- (m)z

i(p+p' )Ly
' L8 \ Y ,
A21 B'L, -7 PL LVL-(5)7) e dfdidpdp’ ,

] S@ffg (1+p?)arpr e [ Bit 5 ]
3 smzw o0 b 9% Liere® 168

ip+p' )My
__LZ_ A ('L, € 82,1V1- (Qét)z) dEdLdBdp’ .

1*(‘(&)

Both integrals converge for large § even when the limit Qt - oo is
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taken before the integrations are performed explicitly. Thus as

Qt > oo,
FRERR 1
o 1T e o
ei(ﬁw'”y déd4dpdp’ ,
'_“‘“?f?f (1+8°) (1+B‘2)ﬂ3§ pr€ _ _B ]
73 )20o S0 S [1+(B z] [Hgmg)z 1+;32
Agz(ﬁ'z,o,pz,z) ei(pw')zy dédLdpdp!

Thus Jl is O(ﬂt)‘1 and 3'3 is O(Qt)-2 as It -oo. It may seem incon-
sistent that these integrals cancel in the vortex sheet problem when
they appear td:be of different orders of magnitude in the limit {Qt—+>co.

The answer is that in that special case A (ﬁ £,0, pf,%) is zero, and

ACZ)1 is itself O(Qt)- under transformations 32 and 33.
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APPENDIX D

Singular Perturbation Solution for s(n, ), r(n, )

The object is to solve equations 45, 46, 47 for all 1 and T —+ 0.
It is reasonable to use an expanded time coordinate T = T/€ and to try
to find asymptotic series expansions of s(n ,T:€) and r(n ,T;€). The

wave equations 45 are

E;IL 'eg—% - 0’

oT (D1)
it Seg 2 = 0

oT n

in terms of the expanded coordinate, and equations 46 and 47 are un-

changed. Expand s and r as follows:

n
1

~ -~ Z od
so(n,'r)+€sl(n,"r)+€ sz(n,'r)+ coe 3

H
]

~ ~ 2 ~
ro(;n,‘r) + Erl("q,'r) + € r, (1) + oo .
The initial conditions of equations 47 are

r(m,0)=mn, rn,0)=r1,(n,0=...

i
[«]

1]
o]

so(n,O) = sl(n,O) = ol

When coefficients of separate powers of € are set equal to zero in

the expansions of equations D1, the following system results:

or Os

O’y —2= 0, 2= 0, w T =m,s =0 ;
3t RS © °
1 Brl Bso 851 81‘0
o) ——=——, — =g . . r.=0, s, =1g ;
oT on oT an 1 1
or 8s Os or 2
2 1 2 T
O(E) =" T T’ s - - 8 » ® r =—-—g',s =0 .
5% o 9% on 2 2 2z
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The equations have been solved step-by-step using the expanded

initial conditions. Thus the power series for s and r begin

eTg + O@€3) ,

r=m +€Z-TZ— g'+O(€4) s

1]
i

equations 48 in the text, The ordering breaks down near n ~ €, and
it is necessary to use an expanded space coordinate 1?1' = n/k. The

wave equations become

oT o

~ g A
% gemZ-=o.
oT dn

g(n) has the form shown in the

sketch, and its expansion around

n = 0 begins n
g=1—alnl+.,.=1-eal%i+.”0
The 'inner' expansions of s(:'],fr;e) and r('ﬁ,:—;e) begin

~ o~ ~ 2 ~ e
SO(nBT) + esl<n9T) + E Sz(nﬁ—r) + © w9 s

0]
i

~

~ ~ e~ 2 ~
r = Ro(n,T) + eRl(mT) TER (M Tht Lel
The expanded initial conditions are
R n = n = n n = = - -
oM, 0) =0, Rl(mo) M5 R,(n, 0) R,M,0)=...=0,

SO(nS O) = sl(nso) = ecee = 00
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The dependent variables r and s have been expanded in two forms

suitable for 'inner' and 'outer' intervals of n,

(inner) a Ao(ﬁ,?w eAl(ﬁ,—“rH cee s

ao(n,'r) + eal(n,-r) + vee s

1

{(outer) a

where a represents either r or s. The matching conditions between

such expansions are

%1m A-O(Tl: T) = aO(O’ T) ’
Inl—oo
. - - - Bao "
Elm .Al(n,'r) = al(O,'r) + n—a—:q— (0,1},
Inl—ca
, 2
da ~2 87a

. ~ o~ _ o~ ~ 1 o~ 11;_ o ~
Lim AZ(T],T) - 32(09 T) + L] an (09 T) + > anz (09 T) )

In]—o

Thus, from the outer solutions 48 and the expansion for g,

ILim R =0, Lim S =20,
o o

In!l— '?ﬂ"’oo
n
i1 _ - 1y -
Rl—n s Sl—'r ’
~2
" R_ = -2 asgn(m) nooos = -ql Ta
2 2 g ’ 2 .

The coefficients of €° and 61 in the expansions of D2 are

a5 9R
oT on oT on
9R as aS 9R oR
oy L -—L-o, Lialmi=2-—l=o.
o 9 o
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The solutions are

from the expanded initial and matching conditions. The Ofe Z) set

of equations is finally

oR 95 29S oR
~z - rvz = 0 4 ~2 = ~2 = _a'nl ’
oT on oT an

R,(n,0) = 8,(M,00=0,

~2
%im RZ = - IZ— asgn(n), z_’;im S‘2 = -InlT a.
Inl—w In|—co

These equations contain the mean field approximation correction to
the linear results. The equations can be solved by the method of
characteristics. Some geometrical quantities are shown in the

sketch:

Substitute
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By adding and subtracting the transformed wave equations, the equa-

tions for the evolution of R2 + S‘2 and R2 - SZ along the characteris-

tic s specified by u and v are obtained:

9 o
o (RZ+SZ)_-2i lutvi

_ o
(RZ~SZ)~—ZIH+V, .

gl

Thus

v
o
R, +8,= Z§Iu+xl dx ,
u

o}
I
w
Il

u
a
2 > ZSiV+Xl dXe
v

u and v switch ';signs in the four regions A,B,C,D of the %—; diagram,
so the integrations must be carried out separately in each region,
In region A, for example, u> 0, v > 0, and the absolute value signs

in the integrals can be ignored. The result is

@ Rzz'j—ap SZ=—T]TQ.

In region C, u> 0, v < 0, but utv > 0, Thus the quantity vtx switches

sign as x is integrated from v to u. The result is

~Z
® RrR,=-%G7-3), s,= - FGE+TH .

The results in regions C and D can be found immediately from the

symmetry of s and antisymmetry of r on . Thus the inner expan-

sions begin
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~

s=er-€2 I3l Ta+ O

)

~ 2T ~ 3
€N -€ — o sgn(n) + O(e™)

Le ]
1

in regions A and D outside of the characteristics leaving (:],Tr') = (0,0),

and

~ ~2
szeT—ezg(n

2 (1% + 7% + 0(e?) (49)

e'q;z—e a(fan—-g—-)sgn (M) + O(e™)

H
1

in regions B and C between those characteristics. Equations D3 are
the limit of equations 48 for n = eﬁ ~ €., Thus equations 48 are the
correct expansions wherever 1 >71, For n<T, or ?} <;, equations
49 are valid and represent the effect of mean flow distortion lost in

the linear approximation.
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APPENDIX E

Derivation of T(y) and y(y, 0) for the Steady Vortex Street

Complex variables with the sign conventions of Lamb [10] are
used. Thus the location y,z is assigned a complex number Z = z+tiy,
and ¢ and { are written as a complex potential W = ¢ +i. The com-

plex potential for an infinite row of vortices of strength k located at

z=0, +4, + 24,... is
~ ik . 7wl
W——Z-;log sin -~

from Lamb. The potential for the vortices of alternating sign spaced

A apart is then

W = -iz—%-log sin 7—:2% - -;—17-?— log sin ________77(22{7&) = 1—’;Elog (-tan EZ—ZX) o
Thus
Y = Im(W) = 5 log s o .
cos 5= + cosh —XX

In particular

k
Py, 0) = 5~ log (
- 2 1+ cosh =L

sinh%z )
A

which is the second of equations 51 in the text. The complex velocity

is

o

W ik/4x

W=-iv = -qz -

[o N

si Zr—Z?cos E-Z;-
in 2

2A

The expression for W(Z) can be inverted to give
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27W /ik
Z(W) = - —2% tan"! e ,

and the complex velocity can be written as a function of W:

~-ik 27W
cos

WSV = Y Kk

The square of the speed is

V2 = VZ + W2 = (w-iv)(w-iv)¥
Thus
2 Kk° 27W 20W*
V™ = 5 cos T cos K
4
2
K

= = [cos—zEE (W+W*)+cos-2RE(W-W*)] .
81

from Dwight [7], p. 79. In terms of ¢ and |,

2
VZ((jJ,Lp,) = %—? (cos %—@ + cosh %7:—511- ) .
8

The orbit time T(y) is then

k AZ T
_ d¢ _ 8 de
() = g V2(¢,\p) T o7k § atcos® ’

from equation 50 of the text, where
a = cosh —%—E—LP- > 1.

From Dwight, p. 105,

2
T(y) = -2,

¥aZo1
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Again from Dwight, p. 152, 2lsinh x cosh x| = VCOShZZX-l » and

k lsinh ——E—mk lcosh —%EP-

which is the first of equations 51 in the text.
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APPENDIX F

Derivation of the Mean Square Error Velocity 22
c

Write the convective part of the acceleration

a =V ..Y_.Z.i.\.)zi
~c 2 *

Then Xe - TQC/Z. Equation 68 is

L.6.+n.m.
R GET S ) S I A (68)

From the definitions of nys z;i, T

B Licj+ninj‘] _ {Lgstd
ox 2 2 - 2 2
r. T, -~
1)

Ti 5

where

L. L.
{158} = iciﬂ;j -2 (—12 + —J-z—) (L,8, + n.nj)§ :
1 J

T, r. tJ t
Similarly
tn.n. .
B | S5 {agin)
oy - rZ rer ?
j i)

where {i,j;n} is the same as {i,j;{} except that the roles of n and {

are reversed. Thus
zz ; 5 (;;{i,j;n} tk {i,j;§}> .
ij T J

If the vortices are distributed symmetrically around y,z, then :%: = 0,

;lz

If the location of each vortex is independent of its strength,
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22 - Zzz e | iedstHm, n 83 +{i, jin }{m, nin }
~C ¢4 ijmn 2.2 2 2
7T r

r.r.r
i jmn i"j mn

If ki and kj are independent for i#j,

Kkk K =k¥5.6 +6. 6. +6.6. ) .
ijmn ij mn im jn in jm

Thus

—_— 4 : — —

i,i; jsJs i,i; ,ism}

%(2: = 6;4{2 § [{ t3{j,jst} +4{4 nt{i.iin ]
N

r. T,
1

+2Tz[{1 RILENTRRS! B o

1’ 1’
i)
From the definition of the brackets,
{1,158} = -2¢, ,
{191,n} = 'an »
3
(LLAnn,)
{19_]92:-7} + {1’337]} = I’ + r] + 6(§ z; +n T]J) 8 6 6
ri 1“:.a
Thus
. 2 3
~C 32 4 4 4 4 4 6 6 ®
T . " r.r. r.r. r.r.
LN 1] 1] 1)

If the vortices are distributed isotropically around y,z, then quan-~

tities like Liéj/rfr? are zero unless i = j, and .
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—_ 4 e —_—
2 = 25 [}:Z g 22‘%‘]
i j i o

C
T r.r. .
1 1

Since X? = 1% gi/tl, equation 70 in the text follows immediately,
C
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APPENDIX G

Motion of the Center of a Continuous Vorticity

Distribution in a Uniform Translation and Strain Field

The speed of the center of vorticity in the y direction is

- (] - i & oo

since vorticity is conserved. But

SyagdA—-Sy(v%}%+w%§>dydz

Ay[& wer+ 2 we)| ayds,
y [33' 0z

where the vorticity convection equation and continuity equation were

i

d
I | véda

i

If the vorticity § goes to zero sufficiently fast toward infinity,

used.,

o fos) o
5]

gS‘YgE(WE)deZ‘SY(WE )dy=0»
-C0 ~C0 -0 N - Q0
o oo oo OO
5S‘y—§;(v§)dydz=—5‘§v§dydz .
-00 -00 -~00 =00

Thus
d yE dA = S‘vgdA
dt ‘

Since the velocity field consists of a uniform translation plus a

strain plus the velocity induced by the vorticity distribution £,

viy,z) =V + ay+;§,—§ £y, z) 222) aar

r
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where 2 = (y--y')2 + (z-z')z. Then

%‘S‘YgdA =V ggdA+ o gygdA+Z¥;5§ Ely,z)E(y',2') —(-Yf%’—'—)-dAdA' .

The last integral is zero since it switches sign when the dummy var-
jables y and y' are exchanged. Division by JtdA gives

Y=V+ay .

The equation Z =W - aZ follows from a similar argument.



