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ABSTRACT 

Improved versions of therapeutic glycoproteins may be produced by manipulation of their 

glycosylation patterns. Engineering of glycoform biosynthesis in CHO cells is studied 

here as a route to produce new variants of a recombinant, therapeutic protein and to 

maximize the proportion of beneficial glycoforms within the glycoform population. An 

anti-neuroblastoma monoclonal antibody (chCE7) was used as a model therapeutic 

glycoprotein, and the target glycoforms were those carrying bi-antennary complex N- 

linked oligosaccharides modified with a bisecting N-acetylglucosamine (GlcNAc). 

A mathematical model of N-Linked glycoform biosynthesis was constructed and used 

to simulate the qualitative effects of overexpression of GlcNAc-transferase 111 (GnTIII), 

the enzyme catalyzing the transfer of a bisecting GlcNAc to various oligosaccharide 

substrates. These simulations indicated a maximum level for bisected complex 

oligosaccharides, and accumulation of hybrid bisected oligosaccharides. 

To investigate the effects of GnTIII overexpression experimentally, a CHO cell line 

with tetracycline-regulated overexpression of a rat GnTIII cDNA was established. 

Expressed GnTIIP was localized in the Golgi complex of CHO cells by means of 

immunoelectron microscopy using an antibody against a peptide epitope tag added to the 

carboxy-terminus of the enzyme. The enzyme concentrated on one side of the Golgi, 

mainly in cisternal compartments. 

Using the experimental system, it was found that overexpression of GnTIII to high 

levels led to growth inhibition and was toxic to the cells. Another CHO cell line with 

tetracycline-regulated overexpression of GnTV, a distinct glycosyltransferase, showed the 

same inhibitory effect, indicating that this may be a general feature of glycosyltransferase 

overexpression. The growth effect set an upper limit to glycosyltransferase overexpression 

and may therefore also limit the extent to which poorly accessible glycosylation sites can 

be modified by engineering of glycosylation pathways. 
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A set of chCE7 mAb samples differing in their glycoform distributions was produced 

by controlling GnTIII expression in a range between basal and toxic levels. Measurement 

of the ADCC activity of these samples showed an optimal range of GnTIII expression for 

maximal chCE7 in vitro biological activity. The activity correlated with the level of Fc- 

associated bisected, complex oligosaccharides. Expression of GnTIII within the 

biotechnologically practical range, i.e., where no significant growth inhibition and toxicity 

are observed, led to a consumption of more than 90% of non-bisected, non-galactosylated 

bi-antennary complex oligosaccharides, but, at most, 50% was converted to the target 

bisected, complex structures for this set of chCE7 samples. The pattern of oligosaccharide 

peaks in MALDIfTOF-mass spectrometric analysis of samples produced at high levels of 

GnTIII, indicate that a significant proportion of potential GnTIII substrates is diverted to 

bisected hybrid oligosaccharide by-products. Minimization of these by-products by further 

engineering of the pathway could therefore be valuable. 

The new optimized variants of chCE7 are promising candidate reagents for the 

treatment of neuroblastoma. The strategy presented here may also be applicable to other 

therapeutic IgGs. 
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CHAPTER I 

Introduction 



1.1 Production of Therapeutic Glycoproteins in Animal Cells 

Glycoproteins c a y  oligosaccharides covalently attached at specific sites of the polypeptide 

chain. They make up the majority of non-cytosolic proteins in eucaryotic organisms and 

mediate essential catalytic, stsuctural, and molecular recognition functions (Lis and Sharon, 

1993; Rademacher et al., 1988; Varki, 1993; Wyss and Wagner, 1996). Many 

glycoproteins can be exploited for therapeutic purposes, and during the last two decades, 

recombinant versions of naturally-occurring, secreted glycoproteins have been the major 

product of the biotechnology industry. Examples of these are erythropoietin (EPO), 

therapeutic monoclonal antibodies (therapeutic mAbs), tissue plasminogen activator (tPA), 

interferon-P (IFN-P), granulocyte-macrophage colony stimulating factor (GM-CSF), and 

human chorionic gonadotrophin (hCG) (Bailey et al., 1998; Cumming, 1991; Lis and 

Sharon, 1993). 

The oligosaccharide component can significantly affect properties relevant to the 

efficacy of a therapeutic glycoprotein, including physical stability, resistance to protease 

attack, interactions with the immune system, pharmacokinetics, and specific biological 

activity. Such properties may depend not only on the presence or absence, but also on the 

specific structures, of oligosaccharides. Some generalizations between oligosaccharide 

structure and glycoprotein function can be made. For example, certain oligosaccharide 

structures mediate rapid clearance of the glycoprotein from the bloodstream through 

interactions with specific carbohydrate binding proteins, while others can be bound by 

antibodies and trigger undesirable immune reactions. However, the relationship between 

oligosacchaside structure and glycoprotein biological activity is unique to each glycoprotein 

(Bailey et al., 1998; Jenkins et al., 1996). 

Glycoproteins ase produced by expression of their corresponding genes in a cellular 

host. Oligosaccharides are attached post-translationally to aspargine residues, within 

specific glycosylation sites of the polypeptide, during translocation of the protein into the 
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first secretory compartment of the cell, the endoplasmic reticulum (ER). These 

oligosaccharides are said to be N-linked to the protein. Subsequently, as glycoprotein 

molecules travel through the ER and then through the next series of compartments, called 

the Golgi complex (Golgi), on their way out of the cell, the oligosaccharides are modified 

by a complex network of reactions catalyzed by many glycosyltransferase and glycosidase 

enzymes residing in those compartments. In the Golgi, a different type of oligosaccharide 

may also be linked to particular serine or threonine residues of the protein and 

subsequently modified. The resultant oligosaccharides are referred to as 0-linked. The 

end product of the process is a heterogeneous population of glycoforms of the secreted 

protein, i.e., molecules sharing the same polypeptide backbone but having different 

occupancy of their glycosylation sites and different oligosaccharide structures attached to 

each site (Kornfeld and Kornfeld, 1985; Rademacher et al., 1988). 

The types of glycoforms produced and their relative proportions depend on the specific 

glycoprotein, the type of host cell used for production, and the external cellular 

environment. The polypeptide backbone of each glycoprotein controls to some extent the 

outcome of the process by modulating the rates of glycosyltransferase- and glycosidase- 

catalyzed reactions. This implies that individual glycoproteins, or distinct glycosylation 

sites located in separate regions of a single glycoprotein, can have different glycoform 

distributions when produced in the same type of cell under identical external conditions. 

The type of cell used for production of the glycoprotein can also have a profound influence 

on the glycoform distribution, since the composition of the glycosylation machinery, e.g., 

which enzymes are present and their levels, can vary with organism, tissue and 

developmental stage. Finally, the external cellular environment can affect the process by 

modulating the expression glycosylation-related enzymes, or by directly altering specific 

catalytic and molecular transport events, e.g., by affecting the concentration of enzyme co- 

substrates or inhibitors, or the pH inside the secretory compartments. In addition, 

glycoproteins secreted out of the cell may be modified further by extracellular glycosidases 
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(Bailey et al., 1998; Cumming, 1991; Kornfeld and Kornfeld, 1985; Rademacher et al., 

1988). 

Mammalian cells are the preferred hosts for production of therapeutic glycoproteins, 

due to their capability to glycosylate proteins in the most compatible form for human 

application (Bailey et al., 1998; Cumming, 1991; Jenkins et al., 1996). Bacteria do not 

glycosylate proteins, and other types of common hosts, such as yeasts, filamentous fungi, 

insect and plant cells, yield glycosylation patterns associated with rapid clearance from the 

bloodstream, undesirable immune interactions, and in some specific cases, reduced 

biological activity. Among mammalian cells, Chinese hamster ovary (CHO) cells have 

been most commonly used during the last two decades. In addition to giving suitable 

glycosylation patterns, these cells allow consistent generation of genetically-stable, highly 

productive clonal cell lines. They can be cultured to high densities in simple bioreactors 

using serum-free media, and permit the development of safe and reproducible 

bioprocesses. Other commonly used animal cells include baby hamster kidney (BHK) 

cells, NSO-, and SP2/0-mouse myeloma cells. More recently, production from transgenic 

animals has also been tested (Bailey et al., 1998; Jenkins et al., 1996). 



1.2 Thesis Motivation 

Although CHO and other mammalian cells glycosylate proteins in a manner adequate for 

therapeutic applications, there may be some glycoforms with superior properties, which 

are either not produced by these hosts or are produced at relatively low levels within the 

glycoform population. In such cases, improved versions of a glycoprotein could be 

produced by manipulation of the glycosylation pattern (Bailey, 1991; Bailey et al., 1998; 

Stanley, 1992). For example, "second generation" EPO and tPA glycoproteins, obtained 

through changes in the glycosylation pattern of earlier versions, are now advancing through 

clinical trials. The new versions of these two drugs were produced, respectively, by 

enrichment of superior glycoforms during the purification of the final product (Fiirst, 

1997), and by introduction of mutations in the polypeptide chain, which shifted the 

position of the oligosaccharide within the protein and led to a different glycosylation pattern 

(Keyt et al., 1994). In both cases, biosynthesis of the superior glycoforms was achieved 

with the standard glycosylation apparatus of normal CHO cells. 

An alternative, complementary route for production of improved glycoproteins, is 

through genetic manipulation of the host glycosylation pathway (Bailey, 1991). New 

glycoforms or glycoform distributions can be generated by introduction of 

glycosyltransferase and glycosidase genes into the host cells. This is an attractive route for 

synthesis of new glycoforms since it does not add major costs to the process, and the 

required stable genetic changes can be introduced into the host cells using reliable and 

efficient technology already tested for production of glycoprotein drugs. 

Previous work has shown that incorporation of new glycosyltransferase activities into 

animal cells can yield novel oligosaccharide structures on recombinant glycoproteins 

(Bailey et al., 1998). The application of this technology to generate potentially improved 

therapeutic products has only recently begun to be reported. Only those oligosaccharide 

modifications which influence the pharmacokinetic behaviour of the glycoprotein have thus 



6 

far been studied. It would be valuable to extend this technology to more glycoproteins, and 

to target other types of properties. This must be done case by case due to the specificity of 

oligosaccharide-structure/glycoprotein-function relationships. 

Another important question yet to be addressed, is how the proportion of superior 

glycoforms within the glycoform population of a therapeutic glycoprotein can be 

maximized. Achieving this goal could require manipulation of a number of heterologous 

and/or endogenous enzymes that participate in the glycosylation reaction network. Due to 

the complexitiy of glycosylation pathways, a comprehensive description of the system and 

its characteristics would be useful. At several points, a single intermediate can be modified 

by multiple enzymes, sometimes blocking subsequent reactions by other enzymes. 

Moreover, some single enzymes can modify several substrates again yielding some 

products which cannot be subsequently modified by other enzymes. In addition, some 

enzymes have different, but overlapping, spatial distributions within the various 

compartments where the reactions take place. 

An important group of glycoproteins to which glycosylation engineering may be 

applied are therapeutic, unconjugated monoclonal antibodies (rnAbs). MAbs target viruses 

and undesirable cells for destruction by the immune system. They consist of a variable 

region that varies in sequence between antibodies, and a constant region whose sequence is 

common among many antibodies. The variable region mediates specific, high-affinity 

binding to the target, e.g., to a certain type of cancer cell; while the constant region is 

recognized by special proteins of the immune system which trigger a lytic attack on the 

target cell. Unconjugated mAbs are not linked to toxic molecules or radioactive 

compounds, and therefore depend to a large extent on recognition by the immune system 

to yield a therapeutic effect (Dillman, 1997; Wright and Morrison, 1997). Glycosylation 

of the constant region is essential for this molecular recognition event (Lund et al., 1996; 

Wright and Morrison, 1997). 
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Although the glycosylation pattern of mAbs produced by CHO cells is suitable for their 

therapeutic application (Reff et al., 1994), these cells do not add certain types of 

monosaccharide residues that are present in naturally-occursing antibodies of humans and 

animals (Lifely et al., 1995; Wormald et al., 1997). Some evidence suggests that one of 

these residues could play a significant role in the recognition of the constant region by the 

immune system receptors (Lifely et al., 1995). Therefore, it could prove valuable to 

engineer glycoform biosynthesis in CHO cells to produce therapeutic antibodies carrying 

this special monosaccharide residue, and if new the glycoforms do have superior activity, 

to try to maximize their proportion. 



1.3 Thesis Scope 

The aim of this thesis is to engineer glycoform biosynthesis in CHO cells to produce new 

variants of a cloned, therapeutic protein, and to study the extent to which the glycosylation 

reaction network can be manipulated in an attempt to maximize the proportion of certain 

glycoforms within the population. An anti-cancer mAb is used as a model therapeutic 

glycoprotein, and the target glycoforms are those carrying a special class of carbohydrate; 

namely, bi-antennary complex N-linked oligosaccharides modified with a bisecting N- 

acetylglucosarnine (GlcNAc). The glycosyltransferase that adds a bisecting GlcNAc to 

various types of N-linked oligosaccharides, GlcNAc-transferase 111 (GnTIII), is not 

normally produced by CHO cells (Stanley and Campbell, 1984). 

Chapter I1 describes the development of a mathematical model of N-linked glycoform 

biosynthesis to enable calculation of the expected qualitative trends in the oligosaccharide 

distribution that would result from changes in the levels of one or more enzymes involved 

in the glycosylation reaction network. The effect of overexpression of GnTIII in CHO 

cells is simulated under different conditions, including during co-overexpression of other 

enzymes in the network. The spatial distribution of GnTlII within the different Goigi sub- 

compartments is unknown, and the impact of this variable is also evaluated. 

The simulations in Chapter I1 indicate that there could be an optimal range of GnTIII 

overexpression for the maximization of complex N-linked oligosaccharides carrying a 

bisecting GlcNAc, and that this range can be affected by the spatial distribution of the 

enzyme. To investigate the effects of GnTIII overexpression experimentally, a CHO cell 

line with tetracycline-regulated overexpression of GnTIII was established (Chapter 111). 

The experimental system permits control of GnTIII expression level in CHO cells by 

simply changing the concentration of tetracycline added to the extracellular environment. 

Parallel cultures of the cell line, grown at different tetracycline concentrations, allow 

rigorous correlations to be made between expression of the GnTIII gene and different 
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response variables. One relevant issue for metabolic engineering of the system is how 

overproduction of the catalysts affects the cellular hosts. This was studied for GnTIII and 

another glycosyltransferase, GnTV. The results are described in Chapter I11 together with 

an investigation of the spatial distribution of GnTIII within the Golgi of CHO cells. 

The experimental system was used to produce a set of anti-cancer mAb samples 

differing in their glycoform distributions. The biological activity of these samples 

correlates with the expression level of the GnTIII gene in CHO cells. These results are 

presented in Chapter IV. The extent to which the network can be manipulated to maximize 

bisected, complex glycoforms of the mAb was determined and is also presented in this 

chapter. 



10 

1.4 References 

Bailey, J. E. 1991. Toward a science of metabolic engineering. Science 252: 1668- 1675. 

Bailey, J. E., Prati, E., Jean-Mairet, J., et al. 1998. Engineering Glycosylation in Animal 

Cells. p. In: Merten, 0. (ed.), Animal Cell Technology. Kluwer, Amsterdam. (In press). 

Cumming, D. A. 1991. Glycosylation of recombinant protein therapeutics: control and 

functional implications. Glycobiology 1: 1 15- 130. 

Dillman, R. 0. 1997. Magic bullets at last! Finally-approval of a monoclonal antibody for 

the treatment of cancer! ! ! Cancer Biother. & Radiopharm. 12: 223-225. 

Furst, I. 1997. Amgen's NESP heats up competiton in lucrative erythropoietin market. 

Nature Biotech. 15: 940. 

Jenkins, N., Parekh, R. El. and James, D. C. 1996. Getting the glycosylation right: 

implications for the biotechnology industry. Nature Biotechnol. 14: 975-98 1. 

Keyt, B. A., Paoni, N. F., Refino, C. J., et al. 1994. A faster-acting and more potent form 

of tissue plasminogen activator. Biochemistry 91: 3670-3674. 

Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine- linked oligosaccharides. 

Ann. Rev. Biochem. 54: 631- 664. 



11 

Lifely, R. M., Hale, C., Boyce, S., et al. 1995. Glycosylation and biological activity of 

CAMPATH-1H expressed in different cell lines and grown under different culture 

conditions. Glycobiology 318: 8 13- 822. 

Lis, H. and Sharon, N. 1993. Protein glycosylation: Structural and functional aspects. Eur. 

J. Biochem. 218: 1-27. 

Lund, J., Takahashi, N., Pound, J. D., et al. 1996. Multiple interactions of IgG with its core 

oligosaccharide can modulate recognition by complement and human Fcy receptor I and 

influence the synthesis of its oligosaccharide chains. J. Immunol. 157: 4963-4969. 

Rademacher, T. W., Parekh, R. B. and Dwek, R. A. 1988. Glycobiology. Annu. Rev. 

Biochem. 57: 785-838. 

Reff, M. E., Carner, K., Chambers, K. S., et al. 1994. Depletion of B cells in vivo by a 

chimeric mouse human monoclonal antibody to CD20. Blood 83: 435-445. 

Stanley, P. 1992. Glycosylation engineering. Glycobiology 2: 99-107 

Stanley, P. and Campbell, C. A. 1984. A dominant mutation to ricin resistance in Chinese 

hamster ovary cells induces UDP- GlcNac: Glycopeptide P-4-N- Acetylglucosaminyl- 

transferase 111 activity. J. Biol. Chem. 261: 13370- 13378. 

Varki, A. 1993. Biological roles of oligosaccharides: all theories are correct. Glycobiology 

3: 97- 130. 



12 

Wormald, M. R., Rudd, P. M., Harvey, D. J., et al. 1997. Variations in oligosaccharide- 

protein interactions in immunoglobulin G determine the site-specific glycosylation profiles 

and modulate the dynamic motion of the oligosaccharides. Biochemistry 36: 1370-1380. 

Wright, A. and Morrison, S. L. 1997. Effect of glycosylation on antibody function: 

implications for genetic engineering. Tibtech 15: 26-3 1. 

Wyss, D. F. and Wagner, G. 1996. The structural role of sugars in glycoproteins. Current 

Opinion Biotechnol. 7: 409-4 16. 



CHAPTER I1 

A Mathematical Model of N-linked Glycoform Biosynthesis 

Source: Umaiia, P., Bailey, J. E. 1997. Biotechnology and Bioengineering 55: 890-908 



2.1 Summary 

Metabolic engineering of N-linked oligosaccharide biosynthesis to produce novel 

glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead 

to an improved therapeutic performance of the glycoprotein product. Effective engineering 

of this pathway to maximize the fractions of beneficial glycoforms within the glycoform 

population of a target glycoprotein can be aided by a mathematical model of the N-linked 

glycosylation process. A mathematical model is presented here, whose main function is to 

calculate the expected qualitative trends in the N-linked oligosaccharide distribution 

resulting from changes in the levels of one or more enzymes involved in the network of 

enzyme-catalyzed reactions which accomplish N-linked oligosaccharide biosynthesis. It 

consists of mass balances for 33 different oligosaccharide species N-linked to a specified 

protein that is being transported through the different compartments of the Golgi complex. 

Values of the model parameters describing Chinese hamster ovary (CHO) cells were 

estimated from literature information. A basal set of kinetic parameters for the enzyme- 

catalyzed reactions acting on free oligosaccharide substrates was also obtained from the 

literature. The solution of the system for this basal set of parameters gave a glycoform 

distribution consisting mainly of complex-galactosylated oligosaccharides, distributed in 

structures with different numbers of antennae in a fashion similar to that observed for 

various recombinant proteins produced in CHO cells. Other simulations indicate that 

changes in the oligosaccharide distribution could easily result from alteration in 

glycoprotein productivity within the range currently attainable in industry. The 

overexpression of N-acetylglucosaminyltransferase I11 (GnTIII) in CHO cells was 

simulated under different conditions to test the main function of the model. These 

simulations allow a comparison of different strategies, such as simultaneous 

overexpression of several enzymes or spatial relocation of enzymes, when trying to 

optimize a particular glycoform distribution. 



2.2 Introduction 

Glycosylation is an important post-translational modification for many recombinant 

therapeutic proteins. Several properties of glycoproteins can be affected by their 

carbohydrates, including physical stability, resistance to protease attack, antigenicity, 

pharmacokinetics, tissue distribution, and specific biological activity (Cumming, 1991; 

Jenkins et al., 1996). These properties depend not only on the presence or absence, but also 

on the specific stmctures, of the carbohydrates. 

Glycoproteins occur as heterogeneous populations of molecules, called glycoforms, that 

share the same polypeptide backbone but have different oligosaccharides at, or different 

occupancy of, the glycosylation sites (Cumming, 1991). Diverse oligosaccharide 

stmctures are synthesized by a network of enzyme-catalyzed reactions taking place as the 

protein is transported through a series of compartments of the secretory apparatus of the 

cell. Novel glycoforms or glycoform distributions, accessible through metabolic 

engineering of the reaction network, could potentially lead to an improved therapeutic 

performance of the glycoprotein (Stanley, 1992; Bailey, 1991). 

Incorporation of new glycosyltransferase activities in cell lines has been reported to yield 

novel oligosaccharide structures on endogenous (Lee et al., 1989) or recombinant (Minch 

et al., 1995) glycoproteins. In the majority of the studies carried out to date, the new 

enzymes either modify the final products of the endogenous reaction network or compete 

with the last reaction step. In general, less attention has been paid to genetic manipulation 

of enzymes already present in a cell line. One of the few attempts to overexpress an 

endogenous enzyme did not produce any detectable change in the oligosaccharide 

distribution (Youakim and Shur, 1993). 
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Besides producing novel glycoforms, another important goal for metabolic engineering of 

glycosylation is to maximize the mole fractions of beneficial glycoforms within the 

glycoform population of a desired glycoprotein. This could be crucial for some 

glycoproteins, for example therapeutic antibodies, which must be produced in large 

amounts by the biotechnology industry (Bibila and Robinson, 1995). To achieve this, 

various novel or endogenous enzymes acting at different points in the pathway might need 

to be manipulated. The efficacy of such manipulations can be enhanced by a careful 

consideration of the complexity of the system. This complexity arises from the number of 

enzymes involved, their distribution at different levels in various cellular compartments, 

and the multiple competing reactions catalyzed by some of them. Since other complex 

biochemical systems have been better understood in the past through their mathematical 

modelling (Domach et al., 1984; Lee and Bailey, 1984; Starbuck and Lauffenburger, 

1992), such a mathematical modelling approach may also guide metabolic engineering 

efforts to achieve a desired glycoform distribution. For this purpose, a mathematical 

model of the N-linked glycosylation process has been developed and is presented here. 

The main function of the model is to calculate the expected qualitative trends in the N- 

linked oligosaccharide distribution resulting from changes in the levels or' one or more 

enzymes involved in the network of enzyme-catalyzed reactions which accomplish N- 

linked oligosaccharide biosynthesis. 

The present mathematical model consists of mass balances for 33 different oligosaccharide 

species N-linked to a specified protein that is being transported through the different 

compartments of the Golgi complex. These equations relate the oligosaccharide mole 

fractions to the amounts of the different enzymes, the kinetic constants of the reactions, the 

distribution of enzymes in the different compartments, the half-life of the protein in the 

Golgi, the volume of the compartments, and the specific glycoprotein productivity. Values 

for the parameters in the model and their normal ranges can either be found in the literature 



or estimated from literature information. Some of the parameters are specific for each cell 

line. Those describing Chinese hamster ovary (CHO) cells were used here, since CHO 

cells are currently the most common host for the industrial production of therapeutic 

glycoproteins. Numerical simulations of the model with these values of the parameters 

gave glycoform distributions similar to those observed for some proteins produced in 

CHO cells. 

One characteristic of the glycosylation pathway makes its modelling different from that of 

other biochemical pathways. Oligosaccharides have some degree of conformational 

flexibility and, through interactions with the polypeptide chain, certain conformations can 

be preferentially stabilized (Wyss and Gerhard, 1996). In addition, the polypeptide 

backbone around the glycosylation site may limit the access of the catalytic sites of the 

enzymes to the oligosaccharide (Shao and Wold, 1995). As a result, a particular 

glycosylation site can have its own set of values for the kinetic constants of the enzyme- 

catalyzed reactions. These values can be different from those of other glycosylation sites in 

the same or other proteins. The occurrence of this phenomenom can be inferred from 

numerous examples where very different oligosaccharide distributions have been observed 

for different glycosylation sites of the same protein, even though all other system variables 

were identical for all sites during biosynthesis. Nevertheless, the range of values of the 

kinetic constants for oligosaccharides on some glycoproteins lies close to the 

corresponding range for soluble oligosaccharides (Do et al., 1994; Rao and Mendicino, 

1978; Gross et al., 1990). Motivated by this observation, the constants for the latter were 

used as an initial approach to test the model and to study some aspects of its general 

behaviour. 



2.3 Physical Model 

The N-linked glycosylation pathway consists of enzyme-catalyzed reactions which first 

attach a common oligosaccharide precursor to appropiate glycosylation sites in a 

polypeptide and then modify the linked oligosaccharides to produce a heterogenous set of 

glycoforms (Kornfeld and Kornfeld, 1985). Potential glycosylation sites are asparagine 

residues in the sequence Asn-X-SerIThr. The reactions take place in the endoplasmic 

reticulum (ER) and in the Golgi complex (Golgi) as proteins are transported through these 

cellular compartments en route to their final destinations. These destinations may be, for 

example, the ER or Golgi themselves, the plasma membrane, or the extracellular space. 

The initial covalent attachment of the oligosaccharide precursor to the protein takes place 

during translocation of the latter into the lumen of the ER. Not all the translocated 

molecules acquire oligosaccharides in their potential glycosylation sites, and the fraction 

that does may vary between sites. The type of glycoform heterogeneity which thus results 

is called glycoform macro-heterogeneity (Shelikoff et al., 1996). Once in the ER the N- 

linked oligosaccharides are trimmed down by glycosidases which can sequentially remove 

three molecules of glucose and, sometimes, one of mannose. The glycoproteins are then 

transported to the Golgi where a different set of glycosidases and glycosyltransferases act 

on the N-linked oligosaccharides and lead to a diversity of structures. Such type of 

heterogeneity in the identity of the attached oligosaccharides is referred to as glycoform 

micro-heterogeneity . 

A mathematical model of glycoform macro-heterogeneity has been published recently 

(Shelikoff et al., 1996). It incorporates different factors that determine the extent of the first 

transfer reaction of the pathway. In contrast, the model presented below is concerned with 

glycoform micro-heterogeneity. More specifically, it deals with a set of eight Golgi- 
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localized enzymes which together determine the distribution of oligosaccharides into the 

following major structural classes: high mannose, hybrid, bi-, tri-, tri'-, and tetra-antennary 

complex, bisected hybrid, and bisected bi-, tri-, tri'-, and tetra-antennary complex 

oligosaccharides (Figs. 1 and 2). Thirty-three different oligosaccharide species are involved 

in 33 reactions catalyzed by these enzymes; including 5 high-mannose, 3 hybrid, 3 hybrid- 

galactosylated, 4 complex (bi-, tri-, tri', and tetra-antennary complex), 4 complex- 

galactosylated, and the 14 bisected counterparts of the hybrid and complex 

oligosaccharides. The products of this set of reactions can be processed further in the 

Golgi through more transferase-catalyzed reactions that increase glycoform micro- 

heterogeneity. 

The major elements of the physical model are: (a) the different Golgi compartments where 

the reactions take place and the transport of proteins between them, (b) the central network 

of enzyme-catalyzed reactions, and (c) the spatial distribution of these enzymes in the 

different Golgi compartments. 



a) Golgi compartments 

The Golgi complex consists of a series of distinct, membrane-bounded compartments. 

Proteins destined to the extracellular space, plasma membrane, lysosomes, endosomes, or 

secretory storage vesicles are transported from the ER to the first Golgi compartment, the 

cis-Golgi network (CGN). From there they travel in sequential order through the remaining 

compartments of the series; the cis-, medial-, and trans-Golgi cisternae, which together 

comprise the Golgi stack; and then to the trans-Golgi network (TGN), the final sorting 

place (Rothman and Orci, 1992). There is some controversy about the number of cisternae 

in the Golgi stack, but in the present model only three are considered. 

Proteins are transported between compartments by vesicles which bud off from the 

membrane of one compartment and fuse to the next in the series (Rothman and Wieland, 

1996). Secreted and plasma membrane proteins appear to go through the Golgi by a "bulk 

flow" mechanism. These proteins enter vesicles by default, i.e., in the absence of specific 

transport or retention signals, and therefore at their bulk concentration in the donor 

compartment. Proteins which reside in the EK or Golgi require retention signals that allow 

them to be concentrated in the appropiate compartments. Such residency is not permanent 

and their relative concentration in a particular region is also aided by retrieval-vesicles that 

recognize transport signals in escaped proteins and return them to previous compartments. 

For the physical model, four of the five Golgi compartments mentioned above are 

considered as a system of four reactors in series. The modelled compartments are the cis-, 

medial-, and trans-Golgi cisternae, and the TGN. This selection is based on immuno- 

electron microscopy studies that localize the enzymes included in the present model to 

these compartments (Nilsson et al., 1993; Rabouille et al., 1995). The chemical reactions 

catalyzed by these enzymes are described next. 



b) Central reaction-network 

The N-linked glycosylation pathway of mammalian cells has been deduced by a 

combination of in vitro and irz vivo biosynthetic studies (Kornfeld and Kornfeld, 1985; 

Schachter, 1986). Although many enzymes participate in the pathway, a subset of them 

determines the distribution of oligosaccharides into 33 different species which together 

define the high mannose, hybrid, hybrid-bisected, complex, and complex-bisected types. 

The network of reactions catalyzed by this subset is called here "central reaction network" 

(CRN). The CRN considered in the present model is depicted in Figure 2. 

The first enzyme of the CRN is Golgi a1,2-mannosidase I (ManI), which can cleave a1,2- 

linked mannose residues from Mg - Mg to finally produce M5 (see nomenclature in Figure 

l),  corresponding to reactions 1 to 4 in Figure 2. All eukaryotic cells have an a1 ,2-  

mannosidase in the ER that can also catalyze reaction 1. Therefore, the initial substrate for 

the Golgi CRN is a mixture of M9 and Mg oligosaccharides. Compounds Mg to Mg 

constitute the high-mannose class of N-linked oligosaccharides. The synthesis of hybrid 

and complex oligosaccharides then follows as described below. 

An N-acetylglucosarnine (GlcNAc) can be transferred to the a1,3-mannose branch of M5 

by pl,2-N-acetylglucosaminyltransferase I (GnTI) to yield M5Gn, the first hybrid 

oligosaccharide. M5Gn is a substrate for a-mannosidase I1 (ManII), which catalyzes the 

removal of two mannose residues resulting in hybrids M4Gn (reaction 6) and M3Gn 

(reaction 7). The free a1,6-mannose branch of M3Gn is then available for extension by 

GnTII to produce M3Gn2, a complex bi-antennary oligosaccharide. M3Gn2 may be 

branched further by GnTIV or GnTV. GnTIV adds a GlcNAc in a pl,4-linkage to the 

a1,6-mannose branch, leading to the tri-antennary complex oligosaccharide M3Gn3. 

GnTV catalyzes a GlcNAc transfer in a pl,6-linkage to the a1,3-mannose branch and 
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produces the trit-antennary complex oligosaccharide M3Gn3'. The tetra-antennary complex 

compound M3Gn4 can be synthesized both by GnTIV from M3Gn3' (reaction 11) and by 

GnTV from M3Gn3 (reaction 12). 

All hybrid and complex oligosaccharides contain non-reducing-end GlcNAcs which may 

be extended by P 1,4-galactosyltransferase (GalT, reactions 13 to 19). Once a galactose 

residue is transferred, the modified oligosaccharide is no longer a biosynthetic substrate for 

any of the remaining GnTs or for Man11 (Schachter, 1986). All of the branches in any 

complex oligosaccharide serve as substrates for GalT, but do so with different affinities 

(Paquet et al., 1984). In the present model these reactions are lumped together in single 

steps which remove the compound from the flux through reactions 1 to 12. 

The reactions mentioned to this point take place in common industrial cell lines, such as 

CHO cells and baby hamster kidney (BHK) cells, used for the production of recombinant 

glycoproteins (Jenkins et al., 1996). An additional set of reactions (20 to 33) is also 

important for determining the major classes of N-linked oligosaccharides in cell lines 

expressing GnTIII. Examples of these cell lines are a glycosylation mutant of CHO cells 

named Lec 10 (Stanley and Campbell 1984) and rat myeloma (YO) cells (Lifely et al., 

1995). As indicated in reactions 20 to 26, GnTIII can modify any non-galactosylated 

hybrid or complex oligosaccharide by transferring a GlcNAc residue in a P l,4-linkage to 

the core mannose. The transferred residue is called a bisecting GlcNAc (Gnb), and the 

products of these reactions are referred to as bisected oligosaccharides. GalT cannot extend 

the ~ n b  residue, but it may modify all the other non-reducing-end GlcNAcs of any 

bisected oligosaccharide (reactions 27 to 33). 

The final products of the CRN are usually modified further in the Golgi by the addition of 

sialic acids, poly-N-acetyllactosamine, fucose, N-acetylgalactosarnine~ sulphate, and a1,3- 
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linked galactose. Wild type CHO cells only add sialic acids (in a2,3-linkages to galactose), 

fucose (al,6-linked to the oligosacharide core, see R in Fig. l ) ,  and po1y-N- 

acetyllactosamine (to various antennae but preferentially to that synthesized by GnTV). The 

addition of fucose to the core of oligosaccharides can take place at any point after reaction 5 

of the CRN, but it is also blocked by the modifications that GalT or GnTIII introduce. 

Core-fucosylated oligosaccharides can go through the rest of the CRN in the same way as 

their non-fucosylated counterparts, although minor alterations in some of the kinetic 

parameters may occur (Gu et al., 1992). 

Other reactions which could participate in the CRN have been identified. For example, 

GnTIV-modified hybrid compounds and a GnTVI activity towards tri'- and tetra-antennary 

oligosaccharides have both been identified in hen oviduct microsomes (Brockhausen et al., 

1992). Also, some types of mammalian cells have a-mannosidases which can act on Mg 

to M4 or on glucose-containing Mg substrates and produce M3 oligosaccharides (Moremen 

et al., 1994). None of these activities are included in the present model, which considers 

only a standard network of well-characterized reactions explaining the common types of N- 

linked oligosaccharides. 

All the transferase-catalyzed reactions of the CRN use sugar-nucleotide co-substrates; 

UDP-GlcNAc for the GnTs and UDP-galactose (UDP-Gal) for GalT. The co-substrates 

are synthesized in the cytoplasm and access the lumen of the Golgi compartments by 

means of specific membrane transporters (Hirschberg and Snider, 1987). The by-product 

of all these transfer reactions is UDP, which is degraded into UMP and inorganic 

phosphate by a Golgi-nucleoside diphosphatase. The membrane transporters function as 

antiporters that accumulate co-substrates to high concentrations inside the compartments 

and at the same time export UMP. 
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c) Spatial distribution of the enzymes 

The glycosidases and glycosyltransferases mentioned above are type I1 integral membrane 

proteins and reside permanently in the Golgi complex. They consist of a short N-terminal 

cytoplasmic tail followed a hydrophobic transmembrane domain, a lumenal stalk region, 

and a large lumenal catalytic domain (Paulson and Colley, 1989). The retention signal is 

transplantable and is found in the transmembrane domain and its two flanking regions 

(Nilsson et al., 1996). However, the mechanism by which residence is achieved in the 

presence of a continuous flow of other membrane proteins and lipids is not yet understood 

(Cole et al., 1996; Rothman and Wieland, 1996). It seems that oligomerization of the 

enzymes through their transmembrane domains and stalk regions (Nilsson et al., 1994), 

stabilizing interactions between the transmembrane domain and lipids of Golgi membranes 

(Bretscher and Munro, 1993), and interactions between the cytoplasmic tail and 

cytoskeletal proteins (Yamaguchi and Fukuda, 1995), are all involved in the retention 

mechanism. Retrieval signals have not been identified yet for these enzymes, but there is 

some evidence for their retrograde vesicular transport (Rothman and Wieland, 1996). 

Additionally, a recent study suggests that the enzymes can diffuse very rapidly within 

Golgi membranes (Cole et al., 1996). 

The steady-state distribution of the enzymes has been determined by immuno-electron 

microscopy (Dunphy et al., 1985; Nilsson et al., 1993). Typically, the enzymes are 

distributed as peaks which occupy mainly two cisternae. GalT is mainly localized in the 

trans-Golgi cisterna and TGN, while the other enzymes are mainly found in the medial- 

and trans-Golgi cisternae. This spatial distribution has an important effect on N-linked 

oligosaccharide biosynthesis; it reduces the competition of GalT with the rest of the 

enzymes and thus favors flux through reactions 1 to 12 of the CRN. The interplay between 
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the different elements of the physical model is described quantitatively by the mathematical 

model. 

2.4 Mathematical Model 

The mathematical model consists of mass balance equations for a soluble glycoprotein that 

is being secreted to the extracellular space, and for the oligosaccharide species N-linked to 

it. Mass balance equations are derived for each of four Golgi compartments. Glycoprotein 

transport through the Golgi is modelled in the same fashion as in previous successful 

models of protein traffic through the secretory apparatus of a cell (Bibila and Flickinger, 

1991; Sambanis et al., 1991). Three basic assumptions are thus made: 

(A. 1) intercompastmental protein transfer follows first order kinetics 

(A.2) the contents of a compartment are spatially homogeneous 

(A.3) there is no loss of protein during transport through the Golgi. 

The mass balance equation for a glycoprotein in the first compartment is: 

where p, is the amount of protein in compartment 1 (moles per compartment), t is the 

time (h), qp is the specific rate of protein transport into the first compartment (moles cell-1 

h-l), and k, is the kinetic constant for protein transport in the Golgi (h-1). The last term on 

the right-hand side of equation (1) corresponds to the rate of protein transport out of 

compartment 1 and into compartment 2. 
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An additionaI assumption has been made in equation (I), and it is also used for all mass 

balance equations of this model: 

(A.4) the dilution of compartamental components due to cell growth is negligible. 

Glycoproteins require approximately 20 minutes to go through all of the Golgi 

compartments (Bibila and Flickinger, 1991), while typical doubling times of mammalian 

cells in culture are around 1000 minutes (Arathoon and Birch, 1986). This implies that 

glycoproteins experience a practically constant volume of the compartments during their 

processing in the Golgi. Moreover, introduction of a dilution term due to cell growth does 

not change the form of any mass balance equation of this model; it only contributes a 

perturbation to the k,  coefficient of less than 0.5% (see model parameters section below). 

The mass balances for the remaining compartments are: 

where index j denotes the compartment number. As mentioned in the previous section, 

four compartments are considered; the cis-, medial-, and trans-Golgi cisternae, denoted 

with values of j equal to 1, 2, and 3, respectively, and the TGN, with j equal to 4. The 

steady-state solution for equations (1) and (2) is: 

and q, is equal to the specific productivity of a secreted glycoprotein observed for steady- 

state conditions. 



For the oligosaccharide mass balance equations described below, the amount of an N- 

linked oligosaccharide in a compartment is expressed as the product of its mole fraction 

and the amount of glycoprotein in that compartment. These equations include the transport 

rates in and out of the compartments, and the rates of oligosaccharide consumption and 

generation by the reactions of the CRN. In addition to the simplifying assumptions 

mentioned above, the following are made: 

(AS) in vivo enzyme-catalyzed reaction rates can be described by Michaelis- 

Menten type kinetics 

(A.6) the catalytic sites of the GnT and GalT enzymes are saturated with sugar- 

nucleotide co-substrates UDP-GlcNAc and UDP-Gal, respectively 

(A.7) product inhibition of the reactions is insignificant. 

Various experimental observations support assumption (AS). Glycosyltransferase 

reaction kinetics have been shown to be well modelled by a random equilibrium 

mechanism (Rearick et a]., 1979), which reduces to common Michaelis-Menten kinetics 

under co-substrate saturation. Most of the kinetic data reported in the literature have been 

obtained under this condition, fitted to the Michaelis-Menten rate expression, and reported 

as apparent maximal velocities and dissociation constants (Schachter et al., 1989). The use 

of these rate expressions to describe the in vivo reactions is further justified (Albe et al., 

1990) by concentrations of enzymes in the compartments which are much lower than those 

of their substrates (see model parameters section). 

Assumption (A.6) is supported by data which indicates that sugar-nucleotides are 

accumulated in the compartments to concentrations in the millimolar range (Briles et al., 

1979), while the values of apparent dissociation constants for many glycosyltransferases 
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are in the micromolar range (Schachter et al., 1989). It should be noted, however, that 

changes in the N-linked glycosylation of rat hepatocytes have been recently reported to 

occur when the intracellular concentration of UDP-GlcNAc is artificially increased by 

incubating the cells with high extracellular levels of uridine (Pels Rijcken et al., 1995). 

Finally, the presence of a nucleoside diphosphatase activity that hydrolyses UDP in the 

Golgi, and of a UMP export mechanism, favour the use of assumption (A.7). 

A mass balance for the M9 N-linked oligosaccharide in compartment 1 is presented below 

in order to illustrate the type of equations which result and to introduce the nomenclature. 

ManI, the enzyme which catalyzes the consumption of M9, participates in multiple 

reactions on different substrates (Fig. 2). All of these substrates may be present in one 

compartment at the same time, and therefore the reaction rate expression must be modified 

for the case of multiple substrates competing for a common binding site. The same is true 

for ManII, GnT 111, GnTIV, GnTV, and GalT. However, this competition is momentarily 

ignored to simplify the following exposition. The mass balance for M9 is: 

where x,,, is the mole fraction of oligosaccharide 1 (corresponding to Mg) in compartment 

1, x,,, is the mole fraction of oligosaccharide 1 on the glycoprotein before it enters 

compartment 1 but after it has exited the ER, v,,,,,, is the apparent maximal velocity for 

reaction 1 (numbered as in Fig. 2) in compartment 1, K,,, , is the apparent dissociation 

constant for reaction 1, and V,,, is the volume of compartment 1. In general, 

represents the mole fraction of oligosaccharide i in compartment j  ; v,,,,, j ,  the apparent 

maximal velocity for reaction k in compartment j ;  and Kt,, ,, the apparent dissociation 

constant for reaction k .  Although the compartments are numbered 1 through 4, index j  

takes a value of zero to represent the oligosaccharide composition of the glycoprotein feed 
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to compartment I.  There are 33 different oligosaccharide species in this model (Fig. 2) and 

the values of index i assigned to each species are shown in Table I. 

From equations ( I )  and (4), and after the introduction of dimensionless variables and 

parameters, the mass balance of oligosaccharide 1 can be written as: 

with dimensionless terms defined as: 

t = tk, ( 6 )  

Kn, k,  j = K/iz, kkGVG, / qp  (9) 

In equations (5) to (9) the time has been scaled by the inverse of the kinetic constant for 

protein transport through the Golgi; the amount of protein in a compartment by its steady- 

state value; the apparent maximal velocity by the specific glycoprotein productivity under 

steady-state conditions; and the apparent dissociation constant by the steady-state 

volumetric concentration of glycoprotein in compartment j . 

For steady-state conditions equation (5) reduces to: 



Equation (10) can be extended to any compartment as: 

The dimensionless apparent maximal velocity for a reaction in a particular compartment 

can be expressed as: 

where T,,,,, is the dimensionless apparent maximal velocity for reaction k based on the 

total amount (in the Golgi ) of the enzyme catalyzing reaction k, and e,, is the fraction of 

this enzyme in compartment j . 

As mentioned above, the reaction rate expressions for ManI, ManII, GnTIII, GnTIV, 

GnTV, and GalT must be modified since these enzymes act on multiple substrates which 

compete for one binding site. The general form of these rate expressions is: 

where subindex I sums over all the reactions catalyzed by the enzyme involved in reaction 

k ,  including reaction k ; x ik , ,  is the mole fraction, in compartment j, of an oligosaccharide 

i which is the substrate for reaction k ; and xi,, is the mole fraction, in compartment j, of 

an oligosaccharide i which is the substrate for reaction I .  For the steady-state case, pj 

takes a value of one. For example, in a steady-state, the rate expression for reaction 10 is: 



In total, the mole fractions of 33 oligosaccharide species in 4 compartments are described 

by a set of 132 oligosaccharide mass balance equations. In a steady-state, it is a system of 

non-linear algebraic equations of the type: 

where I?,,, is the stoichiometric coefficient of oligosaccharide i in reaction k .  For 

example, the mass balance equations for M3Gn2 are: 

Glycoproteins entering the cis-Golgi carry only Mg and Ms oligosaccharides (see 

preceeding section). Therefore, the system of equations is subject to the following 

conditions: 

where a is the extent of the mannosidase-catalyzed reaction in the ER. 



2.5 Model Parameters 

The parameters needed to solve the model equations for the oligosaccharide mole fractions 

include the inlet composition into the Golgi, which depends only on parameter a in 

equation (15), and the dimensionless apparent maximal velocities and dissociation 

constants for each reaction in every compartment. Estimation of these parameters in turn 

involves knowledge of the values of: (1) the kinetic constant for protein transport in the 

Golgi, (2) the specific glycoprotein productivity under steady-state conditions, (3) the 

volume of the Golgi compartments, (4) the spatial distribution of enzymes in the Golgi, (5) 

the apparent dissociation constant for each reaction, (6) the apparent maximal velocity for 

each reaction. The normal ranges of values for all of the parameters were sought in the 

literature. 

1. Kinetic constant for protein transport in the Golgi (k , )  

The half-life for protein transport in the Golgi, obtained from pulse-chase experiments, can 

be used to calculate the kinetic constant li, (Bibila and Flickinger, 1991). The transport of 

a pulse of protein through the system of four well-mixed compartments in series is 

described by equations (1) and (2). The transport half-life is defined as the time required 

for half of the protein in the pulse to be transported out the Golgi complex. The solution to 

equations (1) and (2) for a pulsed input of protein can be combined with the definition of 

transport half-life to yield: 



where j is the compartment number and t is the half-life for protein transport in the M 
Golgi. Equation (16) can then be solved for the kc that corresponds to an experimentally 

observed t The latter is usually between 15 and 20 minutes for the majority of M' 
constitutively secreted proteins (Bibila and Flickinger, 1991). A t ,  of 20 minutes, which A 
gives a kc of 0.18 min-1, is used for the simulations presented here. 

2. Specific glycoprotein productivity (q , )  

The purpose of the model is to describe the glycosylation of recombinant proteins. 

However, endogenous glycoproteins are also being processed in the same compartments 

and at the same time as the recombinants. Depending on the relative levels of expression 

and dissociation constants, these will compete for the active sites of the CRN enzymes. A 

single glycoprotein is considered below, neglecting these host cell glycoprotein interactions. 

Further discussion on the modification of the model to take into account the glycosylation 

of endogeneous proteins is present at the end. 

The specific productivity of a recombinant, secreted glycoprotein varies for different types 

of protein and is also dependant on the cell line and vector used for expression. For CHO 

cells, the highest productivities reported in the literature are between 80 and 110 pg(106 

~e l l s ) -~ (24h) - l ,  in all cases for recombinant IgG molecules expressed from stably 

integrated cassettes with constitutive promoters (Page and Sydenham, 1991; Fouser et al., 

1992; Reff et al., 1994). An example of low productivities in this system is that of 

interferons, which normally give around 1 pg(106 cells)-l(24h)-1 (Rossmann et al., 1996). 

The oligosaccharide mass balance equations presented above can be used to describe a 

glycoprotein with a single N-linked glycosylation site or the average oligosaccharide 

composition of a glycoprotein with multiple sites. In the second case, the equivalent q,, for 
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the simulations would be the real one multiplied by the number of sites. Since IgG 

antibodies contain at least two glycosylation sites and their molecular mass is around 150 

kDa, the highest equivalent value of q, reported for CHO cells is approximately 1500 

pmol(106 cells)-l(24h)-l. The q, for interferons would be around 100 pmol(106 cells)- 

l(24h)-1. For the present simulations, values of q,, between 1 and 2000 pmol(1O6 cells)- 

l(24h)-1 are used. 

3. Volume of the compartments (V,) 

The volume of the Golgi, estimated from electron microscopy studies, has been reported in 

the literature for BHK cells (Griffiths et al., 1989) and for a murine B cell line (Wiest et al., 

1990). The volume of the Golgi stack, including the cisternal part of the TGN, was 20 k 5 

pm3 for BHK cells. B cells had a volume of 5 k 1.5 pm3 for a "Golgi exclusion zone" 

containing both the stack and the TGN. This volume increased to 17 f 5 pm3 upon B cell 

differentiation. No data has been published on the volume of individual cisternae. A total 

volume of 10 pm3, divided equally into four compartments, is used for the simulations. 

4. Spatial distribution of the enzymes ( e , , j )  

Quantitative data on the spatial distribution of the enzymes participating in the CRN has 

been obtained from immunoelectron microscopy studies in HeLa cells (Nilsson et al., 

1993; Rabouille et al., 1995). Man11 and GnTI co-distributed along the Golgi as peaks 

which localized mainly to the medial- and trans-Golgi cisternae and tailed-off to the 

adjacent cisternae, while most of GalT was found in the trans-Golgi cisterna and in the 

TGN. These studies agree with quantitative data on the distribution of enzyme activities in 
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Golgi membrane fractions derived from CHO cells and separated by density gradient 

centrifugation (Dunphy and Rothman, 1983). In the latter study it was found that ManI, 

ManII, GnTI, and GnTII activities co-distributed along the Golgi. Their peak activities 

could be resolved in this type of gradient from the corresponding GalT activity, but a 

significant portion of the activities still overlapped. 

Besides the density gradient centrifugation results mentioned above, other data also support 

a similar distribution of enzymes between CHO and HeLa cells. Qualitative 

imrnunoelectron microscopy studies in CHO cells have localized the endogenous ManII in 

two or three Golgi cisternae immediatly after the CGN (Velasco et al., 1993), and a stably 

expressed bovine GalT in two or three cisternae on the trans-side of the Golgi (Russo et al., 

1992). 

GnTIV has been found to co-distribute with GnTI and ManII in Golgi fractions of mouse 

lymphoma cells separated by density gradient centrifugation (Goldberg and Kornfeld, 

1983). No data has been published yet on the localization of GnTIII and GnTV. For the 

simulations presented here, it is assumed that GnTIII, GnTIV, and GnTV co-distribute 

with GnTI. 

The quantitative enzyme distribution data from the immuno-electron microscopy study of 

HeLa cells (Rabouille et al., 1995) is used for the present simulations. The rounded-off 

average values between ManII and GnTI are used for all enzymes except GalT. These 

values are: 

e,,, = 0.15, e,,, = 0.45, e,,, = 0.30, e,,, = 0.10 

The corresponding values for GalT are: 
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e,,, = 0, e,,, = 0.05, e,,, = 0.20, e,,, = 0.75 

5. Apparent dissociation constants ( K,,t,,) 

As mentioned in the introduction, the variability in the values of the kinetic parameters 

between different glycosylation sites in the same or different glycoproteins is a special 

characteristic of protein glycosylation. The phenomenom can result from multiple 

influences of the polypeptide backbone around the glycosylation site. These include 

relative stabilization of a few of all the potential oligosaccharide conformations, limited 

accessibility of the catalytic site of the enzyme to the oligosaccharide substrate, and protein- 

protein interactions between the surfaces around the catalytic and glycosylation sites (Shao 

and Wold, 1995; Wyss and Gerhard, 1996). Clearly, for a given glycosylation site, 

different reactions can be affected to a different extent (Shao and Wold, 1988). 

Some kinetic constants for a small number of the CW\I reactions have been determined for 

a few glycoprotein acceptors that have minimal or well characterized heterogeneity. For 

example, apparent dissociation constants of GnTV (Do et al., 1994), GalT (Rao and 

Mendicino, 1978), and a sialyltransferase (Gross et al., 1990) for glycoprotein acceptors 

are in the range of 10 to 350 pM (in terms of moles of the appropiate N-linked 

oligosaccharide substrates). The corresponding values for glycopeptides derived from these 

proteins are in the range of 250 to 10,000 pM. The values for the glycoprotein acceptors 

are close to those observed for the preferred, soluble oligosaccharide acceptors of the 

glycosyltransferases and glycosidases of the CRN, which are typically around 150 pM. 

Motivated by this observation, the data available for soluble oligosaccharides is used here 

to conduct tests of the model. 



Soluble oligosaccharide acceptors offer easier determination of the kinetic constants, and 

there is more data available for them. Apparent dissociation constants for soluble 

oligosaccharides are presented in Table I1 along with the source of the enzymes and the 

respective references. Although there is data for most of the enzymes, the kinetics on 

alternative substrates of a single enzyme have usually not been fully characterized. For 

example, ManI catalyzes reactions 1 to 4 of the CRN, but only K,,,,, for the M8 

oligosaccharide substrate is available. For the simulations, the same K,,, value is used for 

reactions 1 to 4. The estimation of the remaining dissociation constants is described next. 

In general, many of these estimates require the use of pseudo-first-order kinetic constants 

reported in the literature, and also the assumption that, for a particular enzyme, reactions on 

different substrates behave in the same way once the substrate is bound; i.e., the 

dissociation constants vary much more between different oligosaccharide substrates than 

the corresponding catalytic constants do. Therefore: 

(A.8) variations in the maximal velocities between different reactions catalyzed by 

the same enzyme are neglected. 

K,,,, for GnTI has been determined experimentally for different sources of enzyme. The 

value shown in Table I1 is for CHO cell microsomes in the presence of a non-ionic 

detergent, but very similar values have been obtained for other sources and conditions. For 

example, the highly purified enzyme from rabbit liver has a K,,, of 250 pM (Schachter et 

al., 1989). In the case of ManII, the information available for oligosaccharides substrates 

shows that the pseudo-first-order kinetic constant for reaction 7 in microsomes has twice 

the value of the corresponding constant for reaction 6 (Harpaz and Schachter, 1980). For 

the simulations presented here, the K,,, of 100 pM for ManI (Tabas and Kornfeld, 1979) is 
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also used for reaction 7 catalyzed by ManII. By assuming identical catalytic constants for 

the ManII reactions, a value of 200 pM is estimated for reaction 6. 

For GnTIII, K,,,,,, for the bi-antennary substrate has been determined (Taniguchi et al., 

1989). There is a report comparing the activity on this substrate and that on the hybrid 

substrate M3Gn, at defined initial concentrations of substrate (Narasimhan, 1982). By 

assuming identical catalytic constants, a value of 4000 pM is obtained for K,,, ,, . The same 

value is used here for reactions 20 and 21. For the tri-, tri'-, and tetra-antennary substrates 

the value of K,,, ,, is used. In the case of GnTV, the activities for reactions 9 and 12 have 

been measured and K,, , has been determined (Gu et al., 1992). By assuming identical 

catalytic constants, K,,, ,, can be estimated to be 90 pM. For GnTIV only K,,,,,, has been 

measured. The same value is used for reaction 11. 

GalT is a special case: not only does it modify different substrates of the CRN, but it can 

also catalyze multiple reactions on any oligosaccharide having more than one non- 

reducing-end GlcNAc; i.e., on all substrates but the hybrids. However, the model is used 

to determine the distribution of ~Iigosaccharides of the CRN and not the details of which or 

how many branches have been galactosylated. In this model, any GalT reaction on a 

complex, non-galactosylated oligosaccharide substrate represents the consumption of that 

substrate independent of the position and number of transferred galactose residues. Such 

"total" GalT reaction lumps all possible galactose transfer reactions on the non- 

galactosylated oligosaccharide substrate. It proceeds at a rate equal to the sum of the rates 

of all possible reactions. The "total" GalT reaction is characterized by a lumped dissociation 

constant in terms of moles of non-galactosylated oligosaccharide substrate. In fact, the data 

on GalT shown in Table I1 was experimentally determined for this type of lumped reaction 

scheme. 
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The kinetic constants for GalT acting on the disaccharide and trisaccharide soluble 

fragments, normally present at the non-reducing end of the hi, tri-, tril-, and tetra-antennary 

substrates, have been determined for a purified form of the enzyme (Elices and Goldstein, 

1988). Values of 160, 340, and 940 pM were reported for the apparent dissociation 

constants of the Gnp 1,6-(Gnp 1,2-)Man trisaccharide, the Gnp 1,4-(Gnp 1,2-)Man 

trisaccharide, and the Gnpl,2-Man disaccharide, respectively. The corresponding values of 

the catalytic constants were 26, 29, and 19 pmol of galactose transferred per minute per 

mg of purified GalT. The experimental data on the trisaccharides were determined for 

lumped reaction schemes. To estimate how these values are modified once the fragments 

are covalently attached in a1,3- and a1,6-linkages to the oligosaccharide core (R in Figure 

I), experimental data on the branch specificity of GalT (acting on the hi-antennary 

substrate) are employed (Paquet et al., 1984). The pseudo-first-order kinetic constant for 

the a1,3-branch was reported to be 5.4 times larger than the corresponding constant for the 

a1,6-branch. For pseudo-first-order kinetics and identical catalytic constants, the inverse 

of the apparent lumped dissociation constant for the non-galactosylated substrate is equal to 

the sum of the inverses of the apparent dissociation constants for each branch: 

where K,,,,, is the lumped dissociation constant for the "total" reaction, while K,,,,, and 

K,,,,, are the dissociation constants for the individual a1,3- and a1,6-branch, respectively. 

Using equation (17), a value of 130 pM (K,,,,,, in Table 11) for the K,,, ,, a ratio of pseudo- 

first-order constants of 5.4, and assuming identical catalytic constants, values of 150 and 

830 pM can be estimated for K,,, ,, and K,,,,,,, respectively. These can then be compared 

with the experimental value of 940 p M  for the corresponding, free Gnp1,2-Man 

disaccharide. By extrapolating these effects upon core attachment to the soluble 

trisaccharides and using equation (17), values of 50, 70, and 40 pM can be estimated for 
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the lumped dissociation constants of the "total" reactions on the tri-, trip-, and tetra- 

antennary acceptors, respectively. 

Estimates for the equivalent, bisected substrates of GalT can be obtained with the 

procedure described above, together with experimental information on the pseudo-first- 

order constants for each branch of the bisected and the non-bisected bi-antennary substrates 

(Narasimhan et al., 1985). These data show that, when the core is bisected, the a1,3-  

branch has a 4.6 times lower kinetic constant, while the al,6-branch shows only a two- 

fold reduction. The estimated lumped dissociation constants are: 500, 200, 220, and 140 

pM for the bisected bi-, tri-, tril-, and tetra-antennary substrates. 

No kinetic data is available for GalT acting on soluble, hybrid oligosaccharides. GnTIII 

acts on the same substrates, and the absence of a GlcNAc residue on the al,6-branch 

seems to have a very disruptive effect on its activity towards the soluble bi-antennary 

acceptor (Narasimhan, 1982). Both bisected and non-bisected hybrid oligosaccharides are 

relatively uncommon in glycoproteins (Sheares and Robbins, 1986). One potential reason 

for this is the reiatively high dissociation constants for hybrids. The dissociation constant 

of 4000 pM estimated above for GnTIII acting on hybrid oligosaccharides is also used 

here for GalT. 

A summary of all the dissociation constants used for the simulations is presented in Table 

IV. Specific glycoprotein productivities in the order of lo2 pmol(l06 cells)-l(24h)-l, the 

normal range used in the model, lead to compartmental concentrations of glycoprotein in 

the order of lo2 pM, and therefore to dimensionless apparent dissociation constants of 

order 1. 
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6. Apparent maximal velocities ( y,,,,) 

The values of experimentally determined apparent maximal velocities for CHO cells are 

presented in Table 111. These values represent the total activity found in assays of nucleus- 

clarified cell lysates, carried in the presence of a non-ionic detergent and under optimal pH 

and co-factor (divalent metal ion) concentration. Data for similar assays performed on 

many different types of cells are widespread in the literature, and in general, the values are 

in the range shown in Table 111 (Dennis et al., 1987; Palcic et al., 1990; Easton et al., 1991). 

In most cases the data is based on the total protein content of the cell lysate. However, the 

references (Dunphy et al., 1981; Dunphy and Rothman, 1983) for GnTI and GnTII 

provide information on the number of cells used for the lysates and thereby allow 

estimation of the average maximal velocities per cell. These are the values required for the 

present model. The estimates, assuming lysis of all cells, are also shown in Table 111. The 

conversion applied for GnTI and GnTII has been extrapolated to the other enzymes, since 

all the velocities were determined for lysates prepared by essentially the same procedure. 

Another study which also reports the number of cells used for the lysates, gives a similar 

value of maximal velocity, 200 pmol(106 cells)-l(h)-l, for a sialyltransferase acting on N- 

linked oligosaccharides (Gross et al., 1990). 

The GnTIV maximal velocity has not been reported for CHO cells. However, in many cell 

types, the maximal velocities for GnTIV and GnTV are in the same range, usually between 

one and two orders of magnitude lower than those of the other CRN enzymes (Dennis et 

al., 1987; Ohno et al., 1992). Therefore, the GnTV value is also used for GnTIV in the 

simulations. The maximal velocities for Man1 and Man11 are always reported in terms of 

special activity units (Dunphy and Rothman, 1983), but there is no information available in 

the literature to convert these units to absolute values in terms of moles of hydrolysed 

oligosaccharide. Data in purification tables indicates that the amounts of the Golgi 
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mannosidases are similar to those of GnTI (Nilsson et al., 1994), but this comparison is in 

terms of weight percent of protein in the Golgi. The average of the maximal velocity 

values between GnTI and GnTII is used for both Man1 and Man11 in the present 

simulations. 

The compartmental concentrations of enzyme can be estimated in order to verify if they are 

much lower than those of their substrates (see assumption AS). For example, a value of 1 

pM can be estimated for GnTI, based on a specific activity for the purified enzyme of 20 

pmol of G l c ~ ~ c ( m i n ) - l ( m g  of enzyme)-l and a molecular mass of 45 kDa (Schachter et 

al., 1989). This value is two orders of magnitude lower than the typical compartmental 

substrate concentrations used here. 

The total set of apparent maximal velocities used in the simulations is shown in Table IV. 

Assumptions (A.6) and (A.8) have been applied in the assignment of these values. 

7. Inlet oligosaccharide composition 

Glycoproteins entering the Golgi will carry a mixture of M9 and M8 oligosaccharides 

depending on the extent of the mannosidase-catalyzed reaction in the ER. Since the extent 

will vary between proteins, a value of 50% (a=0.5) is used for the test simulations. 



2.6 Solution Strategy 

The N-linked oligosaccharide distribution of a secreted glycoprotein, produced under 

steady-state conditions, is determined by solving the system of 132 non-linear algebraic 

equations (14) with the parameters presented above. A FORTRAN 77 program was 

implemented for the following solution strategy: 

1. The reaction rates are calculated with linear expressions corresponding to pseudo-first- 

order kinetics, and the resulting system of linear equations is solved (IMSL subroutine 

DLINRG is used to calculate the inverse of the matrix). 

2. The system of non-linear equations with the full reaction rate expressions, evaluated at a 

small value of q,, is solved iteratively. The outlet oligosaccharide distribution from step 1 

is used as the initial guess. The problem is simplified by solving "backwards1' the mass 

balance equations for the inlet oligosaccharide distribution. In each iteration, IMSL 

subroutine DNEQNF uses the differences between the 33 calculated and "real" mole 

fractions in the inlet to the first compartment, in order to calculate the next guess for the 33 

mole fractions in the outlet of the last compartment. 

3. Parameter q ,  is increased by a small amount and step 2 is repeated using the previous 

solution as the initial guess. Step 3 is repeated until the desired value of q, is reached. 

If a continuous variation in a parameter other than q, is being studied, the system is first 

solved for the initial value of the parameter using steps 1 to 3. Step 3 is then repeated, but 

at qp constant and instead slowly increasing the value of the parameter of interest. 



2.7 Results and Discussion 

The parameter values described above are estimates of the typical range of values found in 

the biosynthesis of N-linked glycoforms in CHO cells. Since the kinetic constants for the 

reactions were estimated for free oligosaccharide substrates, they are not expected to fit a 

particular glycoprotein substrate. However, the range of their values also corresponds to 

that observed for some real glycoproteins. Therefore, solving the system of equations with 

this set of parameters and comparing the resulting oligosaccharide distribution to those of 

glycoproteins expressed by this host should give a general idea of how reasonable the 

model is. 

The steady-state oligosaccharide distribution for a secreted glycoprotein in the absence of 

GnTIII activity, i.e., for wild-type CHO cells, was calculated using the values of the 

parameters and solution strategy described above. The distribution obtained for pseudo- 

first order kinetics consisted mainly of complex bi- and tril-antennary oligosaccharides: 72 

and 24%, respectively. A small amount, 3%, of hybrid oligosaccharides was also 

obtained, while the remaining types were present below 1%. AII the ~Iigosaccharides were 

galactosylated. This is a reasonable distribution considering that many glycoproteins 

produced in CHO cells, for example P-interferon (Kagawa et a]., 1988), EPO (Watson et 

al., 1994), and humanized IgGs (Lifely et al., 1995), contain mainly complex 

oligosaccharides. Most complex oligosaccharides produced by these cells are fully 

galactosylated, those of IgGs being an exception. 

The system was then solved at increasing values of glycoprotein productivity (Fig. 3). At 

low values of glycoprotein productivity, the distribution of most of the oligosaccharides 

into bi- and tril-antennary did not change significantly. This distribution is similar to that of 

P-interferon produced in CHO cells: 68% bi- and 3 1% trif-antennary, all galactosylated 
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(Kagawa et al., 1988). Since the same maximal velocities were used for GnTV and 

GnTIV, this result reflects the relatively high dissociation constant of GnTIV for its soluble 

oligosaccharide substrate. This constant is one order of magnitude higher than the rest. 

Although this is consistent with the oligosaccharide distribution of 0-interferon, many 

other glycoproteins produced in CHO cells contain significant amounts of tri- and tetra- 

antennary oligosaccharides. Use of a dissociation constant value of 150 pM for both 

GnTIV reactions, a typical value for the rest of CRN, yields a 10.6 : 1.9 : 2.4 : 1 ratio of bi- 

: tri- : trit- : tetra-antennary oligosaccharides. This ratio is comparable to those found in the 

two glycosylation sites which carry complex oligosaccharides in recombinant tPA 

produced by CHO cells: 9.0 : 4.5 : 1.4 : 1 and 7.5 : 1.6 : 2.1 : 1, respectively (Spellman et 

al., 1989). 

When the glycoprotein productivity is increased towards the middle of the range used in 

the simulations, a decline in the flux from bi- to trit-antennary oligosaccharides is observed 

(Fig. 3), while the small hybrid fraction remains practically constant. However, at the 

highest glycoprotein productivities, the flux into bi-antennary stmctures starts to decrease 

and compounds occurring earlier in the pathway, the high-mannose and hybrid 

oligosaccharides, begin to accumulate slowly. Non-bisected hybrid oligosaccharides are 

relatively uncommon (Kornfeld and Kornfeld, 1985). One potential reason for this is that 

hybrid oligosaccharides in most glycoproteins, and perhaps also in solution, have more 

unfavourable kinetic constants for CalT than those assumed here. Nevertheless, some 

proteins do carry non-bisected hybrid oligosaccharides; for example, CHO cell-produced 

tPA carries 3% (Spellman et al., 1989), and recombinant ovalbumin, produced in a cell line 

lacking GnTIII activity, carries predominantly hybrid oligosaccharides (Sheares and 

Robbins, 1986). 
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The accumulation of high-n~annose and hybrid ~Iigosaccharides may depend to some 

extent on the maximal velocities for ManI and ManII, levels of which were estimated 

between those for GnTI and GnTII for these simulations. Figure 4 shows that at the 

estimated value of maximal activity for ManI, the accumulation of high-mannose 

structures is insignificant in the middle range of glycoprotein productivities (using a 

dissociation constant for soluble oligosaccharides). However, at one third of this velocity 

these structures start to accumulate significantly. Therefore, the model suggests that 

glycosylation patterns of some recombinant glycoproteins, expressed at different levels 

from a series of CHO clones, may easily show significant differences around the highest 

range of specific productivities currently attainable in the biotechnology industry. 

The main function of the model, to simulate qualitative trends in the oligosaccharide 

distribution resulting from the overexpression of one or more enzymes, is illustrated here 

for the overexpression of GnTIII. This is a case of recent biotechnological relevance. IgG 

antibodies expressed in CHO cell lines lack the bisecting GlcNAc found in low amounts in 

human and animal serum IgG antibodies (Lifely et al., 1995). In contrast, a humanized 

IgGl (CAMPATH-193) produced in rat myeloma cell line, carried a bisecting GlcNAc in 

some of its glycoforms. The rat cell-derived antibody reached a similar in vitro ADCC 

activity as CAMPATH-IH antibodies produced in CHO cell lines, but at significantly 

lower antibody concentrations (Lifely et al., 1995). Therefore, overexpression of GnTIII in 

CHO cell lines already producing this target glycoprotein is an attractive alternative for 

synthesis of glycoforms which may have a superior specific biological activity. 

However, overexpression of GnTIII can have a major effect on the entire oligosaccharide 

distribution. It acts at several points in the pathway (see Figure 2), and its bisected products 

can no longer be processed by the remaining CRN enzymes, with the exception of GalT. 
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Therefore, it is difficult to anticipate the consequences of GnTIII overexpression without 

the guidance of this type of mathematical representation for the complete network. 

The effects of GnTIII overexpression on the bisected oligosaccharide distribution, as 

simulated with the model for basal parameter set, are presented in Figure 5. A maximum 

of about 60% in the fraction of bisected-complex oligosaccharides is observed around 300 

pmol(106 cells)-l(h)-1 This value of activity is in the typical range of apparent maximal 

activities for different enzymes in CHO cell lysates. Moreover, it is evident that, in this 

range of GnTIII activities, the amount of product can be significantly controlled with small 

changes in the enzyme activity. At high GnTIII activity levels, bisected hybrid 

oligosaccharides start to accumulate. These are considered here as undesirable products 

due to the rapid clearance from circulation which they can cause (Cumming, 1991; Jenkins 

et al., 1996) and also due to the negative side-effects they could potentially induce through 

the formation of antibody aggregates with a mannose-binding protein (Malhorta et al., 

1995). The highest activity used in these simulations corresponds to the estimate of the 

highest value reported in the literature, found in mouse melanoma cells stably transfected 

with a CnTiiI expression vector (Yoshimura et al., 1995). For reference, the GnTliII 

activity, estimated for the CHO cell mutant Lec10, is between 80 and 130 pmol(l06 cells)- 

1 (h)-1 (Table 111). 

Important questions pertaining to this example can be addressed by exploring some aspects 

of the behaviour of the model when various parameters are changed around their typical 

values, as illustrated below. 

In the synthesis of hybrid oligosaccharides, GnTIII competes (reactions 20 to 22) with 

Man11 and GnTII (reactions 6 to 8). In all these simulations it has been assumed that 

GnTIII co-distributes with these other enzymes along the Golgi, as has been observed for 
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ManI, and GnTI (see model parameters section). However, the quantitative spatial 

distribution of this enzyme could be different, and the model can help to evaluate the 

impact this can have in the oligosaccharide distribution. In addition, it is technically 

possible to engineer the spatial distribution of this enzyme by exchanging its 

transmembrane and flanking domains with those of GalT. This should relocate the 

enzyme, leading to a spatial distribution similar to that of GalT (Russo et al., 1992), and 

could potentially reduce the competition with ManII and GnTII and consequently the 

amount of resulting bisected-hybrids. On the other hand this relocation would increase the 

competition between GnTIII and GalT for complex oligosaccharide acceptors. A 

simulation of GnTIII engineered in such a way is presented in Figure 6. Once again, the 

maximum value of the bisected-complex fraction is hardly altered, but a much higher 

amount of enzyme is required to achieve it. 

However, the objective may be not only to maximize complex-bisected oligosaccharides, 

but at the same time to minimize potentially harmful hybrid structures. In this case it is 

interesting to make a plot of the selectivity, defined as the ratio of desired products to the 

sum of desired plus undesired products. This is shown in Figure 7. At the activities which 

lead to maximum amount of the desired product, the "wild-type" and re-located GnTIIIs 

give a similar selectivity. Nonetheless, the selectivity of the reaction network containing the 

re-located enzyme is much less sensitive to changes in activity. 

Another alternative to be explored in a strategy to maximize complex-bisected 

oligosaccharides is the overexpression of GnTII and ManII. The model predicts that, for 

the basal set of parameter values, the maximum fraction of bisected complex 

oligosaccharides can be increased from about 60% to 70% with a five-fold overexpression 

of GnTII (Fig. 8). An additional five-fold overexpression of GnTII does not increase this 

value any further, while an equivalent increase in ManII takes the maximum fraction to 



49 

approximately 85%. In this last case, the sensitivity in the complex fraction to variations in 

GnTIII activity, at high activity levels, is also significantly reduced. 

Different gIycoprotein substrates can modulate in different ways the values of the kinetic 

constants for the reactions. For example, the accessibility of the oligosaccharides in an IgG 

molecule to the active sites of the enzymes could be significantly restricted (Malhorta et al., 

1995), increasing the values of the Michaelis constants. This can be different for different 

oligosaccharides. Figure 9 shows that a ten-fold increase in the Michaelis constants of all 

GnTIII-catalyzed reactions increases about seven- to eight-fold the amount of GnTIII 

activity required to achieve the maximum fraction. However, the maximum value of the 

bisected-complex oligosaccharide fraction remains practically constant. 

To tailor the simulations to a specific target glycoprotein, Michaelis constants for its 

glycosylation sites and estimates of all the relevant apparent maximal velocities are 

required. However, direct (in vitro) experimental determination of the kinetic constants of 

each reaction of the CRN for a particular glycosylation site is a difficult task. Protein- 

iinked oligosaccharide substrates for many of the reactions would have to be generated 

either by the production of the glycoprotein in glycosylation mutants, the in vitro use of 

glycosyltransferases and glycosidases, or a combination of both. These experiments are 

further complicated by the partial denaturation of the glycoprotein substrate under the 

conditions required for in vitro remodelling with glycosidases (Do et al., 1994). As long 

as enough protein-linked oligosaccharide substrate is available, mixtures of glycoforms can 

be used, but a structural analysis of the oligosaccharides is required to correctly process the 

kinetic data. Site-specific information for a glycoprotein with multiple glycosylation sites 

would require post-assay proteolysis and separation of the glycopeptide products. 
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A different approach is proposed here for this problem. It consists of collecting a set of 

oligosaccharide distributions associated with different expression levels of a 

glycosyltransferase of interest. Together with measurements of apparent maximal 

velocities for the different enzymes, this set of data would enable calculation of protein- 

specific parameters. The new parameters would help to design other metabolic engineering 

experiments where additional glycosyltransferases, or the localization of these enzymes, are 

manipulated. 

The present model can also be easily extended to include more Golgi-localized transfer 

reactions that increase oligosaccharide micro-heterogeneity. However, other extensions 

should be studied first. Competition between different glycosylation sites in the same 

recombinant glycoprotein and in endogenous glycoproteins can be incorporated by writing 

parallel mass balances for a lumped recombinant glycosylation site and a lumped 

endogenous glycosylation site. Clearly, the three types of mole fractions must be included 

in all of the reaction rates. This triples the size of the problem, but the solution strategy 

developed here can still easily handle this. Finally, once there is data available for the 

kinetics of sugar-nucleotide import into the Golgi, nucleoside diphosphate degradation, and 

nucleoside monophosphate export out of the Golgi, mass balances for these compounds 

can be included and the concentrations of sugar-nucleotides used in calculating the reaction 

velocities. For the guidance of metabolic engineering efforts, it would be important to 

know how significantly the steady-state levels of these compounds are changed by 

overexpression of glycosyltransferases. 
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2.10 Tables 

Table I. Values of index i assigned to each oligosaccharide species. 

Oligosaccharide z 

M9 1 

Oligosaccharide i 
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Table 11. Apparent dissociation constants. 

Enzyme K, (pM) Source Acceptor Reference 

Man1 100 rat liver M8 * Tabas and Kornfeld, 1979 

GnTI 260 CHO cells M.5 Chaney and Stanley, 1986 

GnTII 190 rat liver M3Gn Schachter et al., 1989 

GnTIII 190 rat M3Gn2':* Taniguchi et al., 1989 

GnTIV 3,400 rat M3Gn2** Taniguchi et al., 1989 

GnTV 130 human lung M3Gn2** Gu et al., 1993 

GalT 130 rat liver M3Gn2 Paquet et al., 1984 

* The core consisted of only one Gn. 

** Reducing end-Gn was pyridylaminated. 



Table 111. Apparent maximal velocities for CHO cells. 

Enzyme v m  v m  Reference 

(pmol(mg protein)-1 (h)-1) (pmol(l06 cells)- l (h)-l) 

GnTI 12,400 450 Dunphy and Rothman, 

1983 

Dunphy et al., 1981 

GnTII 4,000 140 Dunphy and Rothman, 

1983 

Dunphy et al., 1981 

GnTIII 2,300 - 3,700 80 - 130 *,** Stanley and 

Campbell, 1984 

GnTV 250 10 * Heffernan et al., 1993 

GalT 16,000 580 * Stanley and 

* The conversion of V, from a value based on protein mass to a value based on cell 

number, calculated from data for GnTI and GnTII, has been extrapolated to the other 

enzymes. 

** For LeclO mutant CHO cells 



66 

Table IV. Summary of kinetic parameters for enzyme-catalyzed reactions 

used in the simulations. 

Reaction * K m  V m  

(PM) (pmol(l06 

cells)-l(h)-1) 

1 100 300 

2 100 300 

3 100 300 

4 100 300 

5 260 450 

6 200 300 

7 100 300 

8 190 140 

9 130 10 

10 3,400 10 

11 3,400 10 

12 90 10 

13 4,000 580 

14 4,000 580 

15 4,000 580 

16 130 580 

17 70 580 

Reaction * Km V m  

(PM) (pmol(l06 

cells)-l(h)-1) 

18 50 580 

19 40 580 

20 4,000 0 - 4,000 

2 1 4,000 0 - 4,000 

22 4,000 0 - 4,000 

23 190 0 - 4,000 

24 190 0 - 4,000 

25 190 0 - 4,000 

26 190 0 - 4,000 

27 4,000 580 

28 4,000 580 

29 4,000 580 

30 500 580 

3 1 220 5 80 

3 2 200 5 80 

3 3 140 580 

* The reactions are numbered as in Figure 2. 



2.11 Figures 

Fig. 1. Structures of common types of N-linked oligosaccharides and nomenclature. M 

stands for mannose; Gn, N-acetylglucosamine (GlcNAc); G, galactose; Gnb, bisecting 

GlcNAc; R, Asn-Gn-P 1,4-Gn or Asn-Gn-P 1,4-(a l,6-fucose)-Gn. R-M is called the 

oligosaccharide "core." The square brackets indicate that at least one Gn is linked to a G. 

The oligosaccharide nomenclature used in this work consists of enumerating the M and Gn 

residues attached to the R group, indicating the presence of a bisecting GlcNAc by 

including a Gnb, and indicating if the oligosaccharide is galactosylated by including a G. 

The two types of tri-antennary oligosaccharides are differentiated by adding an apostrophe 

to the Gn3 term. 

Fig. 2. Central reaction network on the N-linked glycosylation pathway. This set of 

Golgi-localized reactions determines the major types of structures into which N-linked 

oligosaccharides are normally classified. The enzyme catalyzing each reaction is shown 

and all reactions have been numbered. The reaction numbers are used to denote the kinetic 

parameters associated with each reaction (see Table IV for example). 

Fig. 3. Predicted dependence of the mole fractions of bi- and tri'-antennary N-linked 

oligosaccharides on the glycoprotein productivity. The base values of the paramaters 

described in the model parameters section were used. 

Fig. 4. Dependence of the mole fraction of high mannose oligosaccharides on the 

glycoprotein productivity for two different values of the Golgi mannosidase I (ManI) 

maximum velocity v,, 1. 
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Fig. 5. Mole fractions of different types of bisected oligosaccharides resulting from the 

expression of GnTIII at different activity levels in CHO cells. A glycoprotein productivity 

of 500 pmolil06 cellsiday was used for the simulations. 

Fig. 6. Effect of overexpressing a relocated GnTIII, with a Golgi distribution identical to 

that of GalT, on the bisected-complex oligosaccharide mole fraction. The solid line 

corresponds to the simulated trend for a wild-type GnTIII, with a spatial distribution 

identical to those of other GnT enzymes included in this model. A glycoprotein 

productivity of 500 pmol/106 cells/day was used for the simulations. 

Fig. 7. Effect of overexpressing a relocated GnTIII, with a Golgi distribution identical to 

that of GalT, on the selectivity of bisected-complex oligosaccharides. The selectivity is 

defined as the ratio of the mole fraction of desired bisected-complex oligosaccharides to the 

sum of mole fractions of bisected-complex oligosaccharides plus undesired bisected- 

hybrid oligosaccharides. The solid line corresponds to the simulated trend for a wild-type 

GnTIII, with a spatial distribution identical to those of other GnT enzymes included in this 

model. A giycoprotein productivity of 500 pmoi/iO~ cells/day was used for the 

simulations. 

Fig. 8. Effect of co-expressing GnTIII with GnTII alone, or with GnTII and Man 11, on 

the mole fraction of bisected-complex oligosaccharides. 

Fig. 9. Effect of a ten-fold increase in the Michaelis constants for all GnTIII-catalyzed 

reactions on the bisected-complex oligosaccharide mole fraction. The solid line 

corresponds to the simulated trend for a glycoprotein substrate with Michaelis constants 

identical to those estimated for free oligosaccharide substrates. A glycoprotein productivity 

of 500 pmol/106 cells/day was used for the simulations. 
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CHAPTER I11 

Tetracycline-Regulated Overexpression of 

Glycosyltransferases in Chinese Hamster Ovary Cells 



3.1 Summary 

TO investigate the effects of GnTIII overexpression experimentally, a CHO cell line with 

tetracycline-regulated expression of this glycosyltransferase was established. The amount 

of GnTIII in these cells could be controlled simply by manipulating the concentration of 

tetracycline in the culture medium. Using this system, it was found that overexpression of 

GnTIII to high levels led to growth inhibition and was toxic to the cells. Another CHO cell 

line with tetracycline-regulated overexpression of GnTV, a distinct glycosyltransferase, 

showed the same inhibitory effect, indicating that this may be a general feature of 

glycosyltransferase overexpression. This phenomenon has not been reported previously, 

probably due to the widespread use of constitutive promoters. The growth effect sets an 

upper limit to the level of glycosyltransferase overexpression, and may thereby also limit 

the maximum extent of modification of poorly accessible glycosylation sites. The 

heterologous GnTIII was localized in the Golgi complex of CHO cells by means of 

immunoelectron microscopy using an antibody against a peptide epitope tag added to the 

carboxy-terminus of the enzyme. The enzyme concentrated on one side of the Golgi, 

apparently the trans-side, mainly in cisternai eiements. There may be significant 

competition for complex oligosaccharide acceptors between GalT and GnTIII distributed in 

this way. A statistical immunogold analysis of many cell sections, relative to an 

established Golgi-marker, would be valuable to establish the quantitative GnTIII 

distribution. 
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3.2 Introduction 

The glycosylation of recombinant therapeutic proteins produced in animal cells can be 

engineered by overexpression of glycosyltransferase genes in the host cells (Bailey, 1991). 

Previous work in this field has only used constitutive expression of the glycosyltransferase 

genes, and little attention has been paid to the expression level. However, this variable 

could play an important role when trying to maximize the proportions of beneficial 

glycoforms within the glycoform population of a recombinant protein. A case where 

control of glycosyltransferase gene expression level could be useful is the maximization of 

therapeutic antibody glycoforms carrying bisected oligosaccharides (see Chapter 11). 

Simulations of the expected qualitative trends in the fraction of these glycoforms upon 

overexpression of N-acetylglucosaminyltransferase 111 (GnTIII) in CHO cells suggest that 

there could be an optimal range of expression level. Here the establishment and 

characterization of a CHO cell line with regulated GnTIII gene expression is described. 

To establish a system with fine control of glycosyltransferase gene expression, various 

inducible eukaryotic promoters can be used. The systems used to date are responsive to 

heavy metal ions, hormones, or conditions such as a heat shock. However, these inducers 

are either toxic to the host ceil and/or yield pleiotropic effects. The tetracycline-regulated 

expression system (Gossen and Bujard, 1992) avoids these unwanted side-effects and 

allows control of expression level over a wide range. It incorporates regulatory elements 

of a bacterial tetracycline resistance operon (Fig. 1). Cells are engineered initially to give 

stable, constitutive production of a tetracycline-controlled transactivator (tTA). tTA 

consists of the tetracycline repressor fused to the C-terminal domain of VP16, a herpes 

virus transactivator protein. Then the gene whose expression is to be regulated is 

subcloned in a vector under the control of a minimal human cytomegalovirus promoter. 

The promoter is preceeded upstream by multiple copies of the tetracycline operator. The 

minimal promoter together with the tetracycline operator sequences is referred to as tet- 

promoter. 
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Transfection of tTA-producing cells with the vector leads to expresssion of the target 

gene. The expression level is very low in the absence of transactivation. The C-terminal 

domain of VP16 provides this activation when the tTA fusion protein binds, through the 

tetracycline repressor protein portion, to the tetracycline operator DNA upstream of the 

minimal promoter. Tetracycline binds to the repressor protein, producing a conformational 

change which disables binding to the operator DNA, and thereby eliminating activation of 

the minimal promoter by the VP16 C-terminal domain. Different tetracycline 

concentrations in the medium lead to different equilibrium concentrations of uncomplexed 

repressor and, therefore, to different frequencies of the transcription activation event. An 

advantage of this system is that non-toxic concentrations of tetracycline are sufficient to 

reduce expression of the target gene to the basal level associated with the minimal 

promoter. 

The establishment of CHO cells with tetracycline-regulated GnTIII expression and their 

use to study the effects of glycosyltransferase overexpression in the host cells is described 

here. An additional cell line with tetracycline-regulated GnTV expression was established 

in parallel and used to compare the effects that these two different glycosyltransferases 

have on the host cells. 



3.3 Materials and Methods 

Bacterial strains and media 

E. coli strains XL-1 Blue and DH5a were grown either on LB agar plates or in LB broth. 

Mammalian cell lines and media 

CHO-DUKX (M-159) cells (obtained from Dr. Martin Page, Wellcome, UK) were 

cultured in FMX-8 medium (Cell Culture Technologies, Switzerland) supplemented with 

10% (v/v) fetal calf serum (Boehringer Mannheim), 3g/l HEPES and 1% (v/v) 

antibiotic/antimycotic solution (Gibco). Cells were grown as monolayers in stationary T- 

flasks, using 0.2 ml of medium/cm2 of culture surface. The cultures were maintained in an 

incubator at 37 O C  under a 5% CO2 atmosphere. For sub-culturing, cells were detached 

from T-flasks by addition of Cell Dissociation Solution (Sigma). 

Plasmids 

Plasmid vectors pUHD 15- 1, for constitutive expression of the tetracycline-transactivator 

(tTA); pUHD10-3, for tetracyline-regulated expression of any inserted gene; and 

pUGH16-3, for tetracycline regulated expression of P-galactosidase (lacZ) (Gossen and 

Bujard, 1992) were obtained from Dr. Hermann Bujard (University of Heidelberg). 

Plasrnid vectors pBluescriptIIKS(+)-GnTIII, carrying the rat GnTIII cDNA (Nishikawa et 

al., 1992), and pSKV3-GnTV, carrying the human GnTVcDNA (Saito et al., 1995), were 

obtained from Dr. Naoyuki Taniguchi (University of Osaka, Japan). Plasmid vectors 

pSV2Neo and pPur, for constitutive expression of genes conferring resistance to neomycin 

and puromycin respectively, were purshased from Clontech. Plasmid pBluescriptIIKS(+) 

was purchased from Stratagene. 
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DNA manipulations 

General DNA manipulations were carried out according to standard methods (Sambrook 

et al., 1989). DNA fragments were extracted from agarose gels using a DNA Extraction 

kit (Quiagen). DNA cycle sequencing was carried out by Heidi Ernst (Institute of 

Biotechnology, ETH-Ziirich) using Thermo Sequenase (Amersham), fluorescent T7(-40) 

forward and reverse primers (MGW Biotech, Germany), and an automated DNA 

sequencer (Li Cor). DNA for transfection into mammalian cells was purified using a Midi 

DNA Purification kit (Qiagen). 

Polymerase chain reactions (PCRs) 

PCRs were carried out using HiFi Taq DNA polymerase from an ExpandTM High Fidelity 

PCR kit (Boehringer Mannheim). The composition of the PCR mixes was defined 

according to instructions from the polymerase supplier. Oligonucleotide primers were 

synthesized by Microsynth (Switzerland). 

Construction of glycosyltransferase expression vectors 

C-myc epitope-encoding DNA (Niisson et ai., 1993) was added to the 3' end of the GnTIII 

cDNA by PCR amplification. The product was subcloned into pBluescriptIIKS(+) for 

sequencing, and finally subcloned into pUHD 10-3 to generate plasmid vector pUHD 10-3- 

GnTIIIm. The GnTV cDNA was directly subcloned into pUHD10-3 to generate plasmid 

vector pUHD 10-3-GnTV. 

The c-myc epitope-encoding sequence was added by a two-step sequential PCR 

approach. The same forward primer was used in both PCR steps. It hybridizes with the 

unique NdeI restriction site towards the downstream end of the GnTIII cDNA, and 

included a BamHI site for subcloning. Its sequence was 5' ctcgaaggat cccttcgccttccatatgc 

3', with the restriction sites highlighted in bold characters. The first reverse primer 

hybridized with the GnTIII carboxy-terminus-encoding sequence and included the first 22 
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bases coding for the c-myc epitope tag. Its sequence was 5' cagagatcagcttttgttcc 

gggccctccgttgtatccaactt 3', with the part that hybridizes to rat GnTIII cDNA given in 

bold. The second reverse primer contained the entire human c-myc epitope- 

(EQKLISEEDL) encoding sequence separated from the GnTIII carboxy-terminus- 

encoding sequence by an additional proline codon, and included the stop codon plus an 

XbaI site for subcloning. Its sequence was 5' gtgtgttctagamcaggtcttcttcagag- 

atcagcttttgttccgg 3', with the XbaI site shown in bold characters and the stop codon 

underlined. 

PCRs were carried out as previously described, using 10 temperature cycles with an 

annealing temperature of 50 OC to obtain the first product, and 15 temperature cycles with 

an annealing temperature of 55 OC for the second product. The product of the first PCR 

was purified by agarose gel electrophoresis and gel extraction (Qiagen) and used as the 

template for the second PCR. The final PCR product was subcloned into 

pBluescriptIIKS+ and sequenced by cycle sequencing to check if any mutations had been 

introduced. The remaining upstream portion of the GnTIII cDNA was subcloned into this 

plasmid, then the reassembled, modified cDNA was subcloned into plasmid vector 

pUHD10-3 between the EcoRI and XbaI sites. To construct the other giycosyitransferase 

expression vector, GnTV cDNA was recovered from vector pSKV3-GnTV using XbaI 

and partial EcoRI digestions and subcloned directly into pUHD10-3. 

SDS-PAGE and electroblotting to PVDF membranes 

Cells dissociated from culture plates were harvested by centrifugation at 400 x g for 5 

minutes and washed with 0.5 ml cold PBS. The cell pellet was resuspended in 30 pl of 

lysis buffer containing 50 mM MOPS-NaOH, 2% (v/v) Triton X-100, 1 rnM MgC12, 1 

mM dithiotreitol, 10% (w/v) sucrose and 150 rnM NaCl and subjected to two 1-minute 

cycles of sonification in a Branson Sonifier (at 80-90% output). Between cycles, the cells 

were incubated on ice for 1 minute. The resulting lysate was incubated on ice for 15 
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minutes. Insoluble material was removed by centrifugation at 1000 x g for 10 minutes at 4 

"C. Total protein content of the clarified lysate was determined with the BCA reagent 

(Pierce) following the microtiter plate protocol suggested by the supplier. 

Between 5 and 20 pg of lysate was diluted two-fold with sample buffer containing 

0.125 M Tris HC1, 4% (wlv) SDS, 20% (vlv) glycerol and 10% (vlv) 2-mercaptoethanol, 

pH 6.8 and boiled for 10 minutes. After cooling down, bromophenol blue was added to 

0.01% (v/v), and the sample was subjected to electrophoresis through a 8.75% 

polyacrylamide gel under reducing conditions. At the end of the electrophoresis, the gel 

was equilibrated for 20 minutes in electroblotting buffer (25 mM Tris-HC1, 190 mM 

glycine, 20% (vlv) methanol, pH 8.8). The resolved proteins in the gel were electroblotted 

to a PVDF membrane (~mmobilonPSQ, Millipore) for 3.5 h at 200mA, using the above 

buffer. The membranes were then probed with either antibody or lectins as described 

below. 

Western and lectin blots 

Non-specific binding sites on the PVDF membrane were blocked by overnight incubation 

at 4 OC with 0.5% (wlv) blocking reagent (Boehringer Mannheim) in Tris-buffered saline 

(TBS). Membranes were washed 2 to 3 times for 10 minutes with TBS containing 0.1% 

(v/v) Tween 20 (TBS-T). 

For analysis with lectins, the TBS containing 1 mM MgC12, 1 rnM MnCl2 and 1 mM 

CaCI2 (lectin buffer) was used for the third wash. Membranes were then incubated for 1 h 

at room temperature with a solution of biotinylated E-PHA (Oxford Glycosciences) at a 

concentration of 25 pgfrnl in lectin buffer or L-PHA-digoxigenin (Boehringer Mannheim) 

at 50 pglml in the same buffer. 

For western analysis, membranes were incubated for 1 h at room temperature with the 

anti-c-myc monoclonal antibody 9E10 (a gift from Prof. Dr. J. A. Robinson, University of 

Ziirich) at a concentration of 2 pglml in TBS-T (GnTIII western blots) or with an anti- 
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GnTV rabbit polyclonal antibody (a gift from Dr. M. Pierce, University of Georgia, USA) 

diluted 1000-fold in TBS-T (GnTV western blots). 

Membranes were washed three times with TBS-T and incubated for 1 h with either 

anti-biotin-alkaline phosphatase (Boehringer Mannheim) diluted 1000-fold in TBS-T 

(detection via E-PHA), anti-digoxigenin-alkaline phosphatase (Boehringer Mannheim) 

diluted 1000-fold in TBS-T (detection via L-PHA), anti-mouse IgG-horse radish 

peroxidase (Amersham) diluted 10000-fold in TBS-T (detection of GnTIII), or anti-rabbit 

IgG-horse radish peroxidase (Amersham) diluted 10000-fold in TBS-T (detection of 

GnTV). Membranes were subsequently washed three times with TBS-T. For analysis 

with lectins, the membrane was washed one more time with 0.1 M Tris, 0.05 M MgC12 

and 0.1 M NaCI, pH 9.5 then incubated with the same buffer plus 0.375% (vlv) X- 

phosphate (Boehringer Mannheim) and 0.5% (vlv) NBT (Boehringer Mannheim). When 

color developed, the membranes were washed with water and air dried. For western 

analysis, bound antibody was detected using an enhanced chemiluminescence kit (ECL kit, 

Amersham) following the manufacturer's instructions. 

Transfection of JDNA into CBO cells 

DNA, either complexed with cationic liposomes (LipofectamineTM, Gibco), or co- 

precipitated with hydroxyapatite (calcium phosphate DNA transfection method) was 

transfected into CHO cells. Transfections using LipofectamineTM were carried out 

according to the manufacturer's instructions. Calcium phosphate DNA transfections were 

carried out using an efficient version of this method (Jordan and Wurm, 1996) with some 

additional modifications. Briefly, 24 h before transfection cells were seeded to 

approximately 40% confluency in a 1125 flask and incubated at 37 OC overnight. The next 

day the medium was replaced with fresh culture medium 1 h before transfection. For each 

flask with cells to be transfected, a solution of DNA, CaC12 and water was prepared by 

mixing 15 pg of total plasmid vector DNA, 75 p1 of a 1 M solution of CaC12, and adding 
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water to a final volume of 150 p1. To this solution, 150 p1 of a 50 mM HEPES, 280 mM 

NaC1, 1.5 mM Na2HP04 solution at pH 7.05 was added, mixed by vortexing for 5 s, and 

left to stand at room temperature for 25 s. This brief incubation led to the formation of 

very fine DNAIhydroxyapatite co-precipitates, which were then diluted with 5 ml of 

culture medium containing 2% (vlv) fetal calf serum (FCS). The resulting suspension was 

added to the cells in the T25 flask in place of the existing culture medium, and the cells 

were incubated for 5 h at 37 OC. The medium was then replaced with 5 ml of a 15% (vlv) 

glycerol solution in culture medium containing 2% (vlv) FCS and the cells were left for 30 

s at room temperature, before a final medium exchange to 5 ml of culture medium 

containing 10% (vlv) FCS. The final medium was used to wash the cells prior to the last 

medium exchange. The cells were then incubated at 37 OC until assayed or transferred to 

other culture flasks or dishes. 

Harvesting CHO cell clones by an agarose overlay method 

Low density cultures of drug resistant clones were grown, yielding widely distanced clones 

attached to the surface of the culture dish. The positions of the clones were marked on the 

outside surface of the dish. The culture medium was then replaced with a sterile solution 

of 1% (w/v) AgarplaqueTM (Pharmingen) in phosphate buffered saline (PBS) at 37 OC, 

which was then left to harden at room temperature for approximately 20 minutes. A small 

hole was made in the hardened gel at the position of each clone to be picked, by using a cut 

pipette tip placed on a 0-200 pl pippete (Gilson), applying suction slowly and 

simultaneously removing the resulting agar plug. 5 pl of Cell Dissocation solution 

(Sigma) at 37 OC was added to each hole and after 5 minutes the clones were resuspended 

using a 0-20 p1 pipette (Gilson). The resuspended cells were transferred to wells of a 96- 

well culture plate (Falcon) containing 200 p1 of cell culture medium supplemented with 

10% (v/v) FCS plus the drug used for selection of stable transfectants and then incubated 

overnight at 37 OC. The next day the medium was replaced with fresh culture medium 
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containing the drug for selection and incubation was continued at 37 OC until the clones had 

grown enough to be transferred to larger culture plates. 

Generation of CHO cells expressing the tetracycline-transactivator (tTA) 

CHO cells were co-transfected with pUHD15-1, a vector for constitutive expression of the 

tTA gene, and pSV2Neo, a vector for constitutive expression of a neomycin resistance 

gene. Stable, dsug-resistant clones were selected and screened for adequate levels of tTA 

expression. Tetracycline-regulated expression of a P-galactosidase gene was used as a 

marker for tTA expression. 

One well of a 6-well culture plate (Falcon) was seeded with CHO cells to 

approximately 30-40% confluency, incubated for 24 h at 37 OC, then the cells were co- 

transfected with vectors pUHDl5-1 and pSV2Neo using a lipofection method. The DNA 

used for transfection was purified over anion exchange columns of a Midi DNA 

Purification kit (Qiagen) and co-transfected in a molar ratio of 15:l of pUHD15- 

l:pSV2Neo. The total amount of DNA used per transfection was 6 pg. Two days after 

transfection, the cells were transferred to a T75 flask, and Gentamycin (G418, Boehringer 

Mannheim) was added to the culture medium at a concentration of 400 pglrnl. The 

medium was replaced every three days for two weeks until G418 resistant clones had 

grown. The cells were resuspended and individual cells were transferred to wells of a 96- 

well cell culture plate (Falcon) using a cell sorter (FACS Star Plus, Beckton Dickenson, 

operated by Eva Niederer, Zentrallabor fur Zellsortierung, ETH-Zurich). 

Clones were grown until three wells of a six-well plate could be seeded to 

approximately 30% confluency. A lipofection method was used to transfect the cells in 

two wells per clone with the P-galactosidase expression vector, pUHG16-3. The cells in 

the third well was kept as a stock. After transfection, 1 pglml tetracycline (final 

concentration) was added to one of each pair of transfectants, and the cells were incubated 

for 72 h at 37 OC. The intracellular level of P-galactosidase activity in each transfectant was 
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then measured using ONPG (Sigma) as a substrate (Sambrook et al., 1989). The clone 

with the highest level of P-galactosidase acitivity in the absence of tetracycline, named 

CHO-tTA, was chosen for futher work. 

Generation of CHO cells with stable, tetracycline-regulated expression of GnTIII 

and GnTV 

Two T-25 flasks were seeded with CHO-tTA cells to approximately 40% confluency and 

incubated at 37 OC overnight. The next day, the cells in one flask were co-transfected with 

vectors pUHDlO-3-GnTIIIm and pPur, and in the other with vectors plJHDlO-3-GnTV 

and pPur, using the calcium phosphate transfection method. The DNA used for 

transfections was linearized, pUHD10-3-based expression vectors with PvuI and pPur 

with PvuII, then purified over anion exchange columns of a Midi DNA Purification kit 

(Qiagen). The linearized vectors were co-transfected in a molar ratio of 15: 1 of pUDHlO- 

3-GnT1IIm:pPur or pUDH10-3-GnTV:pPur, and the total amount of DNA used per 

transfection was 15 pg. 

Immediately after transfection, tetracycline was added to the culture medium to a 

concentration of 2 pglml. One day after transfection the cells from each flask were 

transferred to two culture dishes with a diameter of 15 cm each (Falcon), keeping 

tetracycline at 2 pglrnl, and one day after transfer, puromycin (Clontech) was added to the 

culture medium to a concentration of 7.5 pg/rnl. The medium was replaced every three 

days until puromycin resistant clones of adequate size for picking had grown. Thirty 

individual clones were picked from each pair of culture dishes, using the agar-overlay 

method, and transferred to a 96-well culture plate. The clones were grown in the presence 

of tetracycline, until one well of a 24-well plate, and two wells of a six-well plate could be 

seeded to approximately 10% confluency for several clones. The cells in the 24-well plate 

were kept as stocks of each clone. 
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Cells in one of each pair of wells from the 6-well plates were cultured in the absence of 

tetracycline for 4 days, while the other cells were cultured in the presence of 2pglml of 

tetracycline. After this incubation period, the approximate level of confluency was 

estimated and the cells harvested, lysed, and analysed for tetracycline-regulated expression 

of the respective glycosyltransferase using the SDS-PAGE and western blot procedures 

described above. Lectin binding to cellular glycoproteins was used to visualize the extent 

of modification by the heterologous glycosyltransferase. Clones with high levels of 

expression in the absence of tetracycline and low levels of expression in the presence of 

tetracycline were selected, expanded, and stocks were frozen. Clonal purity was ensured 

by subcloning from a single clone for each glycosyltransferase by limited dilution, giving 

clones CHO-tet-GnTIIIm and CHO-tet-GnTV respectively, which were used for further 

work. 

Indirect immunofluorescence and confocal light microscopy 

CHO-tet-GnTIIIm and CHO-tet-GnTV cells were seeded in 60 mm-diameter culture 

dishes (Falcon) to approximately 5-10% confluency, and grown for 48 h at 37 OC with 

different concentrations of tetracyciine per dish in the range of 0 - 2000 nglml. The culture 

medium was completely removed by aspiration and the dishes were then washed three 

times with PBS. The cells were then fixed by incubation with fresh 2% (wlv) 

paraformaldehyde in PBS for 15 minutes at room temperature. Afterwards, the cells were 

washed with PBS, incubated for 5 minutes with 0.1 M glycine in PBS for quenching, and 

washed again with PBS. The cells were then permeabilized by incubating for 15 minutes 

in PBS containing 0.1% (vlv) Triton X-100 and, as a blocking agent, 2% (wlv) bovine 

serum albumin (PTB buffer). This solution was replaced with the primary antibody 

dissolved in PTB buffer (9E10 antibody at 20 pglml for GnTIII detection via the c-myc 

epitope tag, and anti-GnTV polyclonal antibody diluted 100-fold for GnTV detection), and 

the cells were incubated for 1 h. 
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The cells were washed three times with PTB buffer and incubated for 45 minutes with 

the secondary antibody solution containing either anti mouse IgG-Texas Red (Vector 

Laboratories, USA) for detection of GnTIII or anti rabbit IgG-Texas Red (Vector 

Laboratories, USA) for detection of GnTV. Both antibodies were diluted 150-fold in PTB 

buffer. The cells were washed three times with PTB buffer and embedded in 90% 

glycerol, pH 9.0. Cells were visualized using a MRC-600 Laser scanning confocal 

imaging system (Bio-Rad) operated by Peter David (ETH-Ziirich). Images were 

processed on a Silicon Graphics Workstation using IMARIS software (Bitplane AG, 

Switzerland). 

Immunoelectron microscopy 

CHO cell fixation, sample preparation, ultrathin sectioning, immunolabelling, and 

visualization were performed as follows (Nilsson et al., 1993). CHO cells were fixed for 3 

h at room temperature using 2% (wlv) paraformaldehyde and 0.2% (vlv) gluteraldehyde in 

0.2 M sodium phosphate buffer, pH 7.4, washed three times with PBS, incubated for 10 

minutes with 50 rnM NH4Cl in PBS, and washed once again in PBS. The fixed cells were 

scraped with a rubber scraper, pelieted by centrifugation, resuspended in 10% gelatin in 

PBS, and pelleted again by centrifugation. Excess gelatin was removed and the embedded 

pellet was infiltrated overnight at 4 OC with a 2.1 M sucrose solution in PBS. Small 

fragments of the infiltrated pellet were mounted on aluminum studs and flash frozen in 

liquid nitrogen. 100-nm thick sections were cut at -90 OC in a microtome with a cryo- 

attachment and transferred onto formvar- and carbon-coated 100-mesh grids. Grids were 

then transferred to a 35-mm dish with PBS. 

The following steps were performed at room temperature and involved carefully 

transferring grids onto the surface of drops of different solutions placed over a sheet of 

parafilm. Sections were blocked on a 300 p1 drop of 0.8% (wlv) bovine serum albumin, 

1 % (wlv) fish skin gelatin in PBS (blocking buffer) for 30 minutes and then each grid was 
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placed for 30 minutes on a 8 1-11 drop of anti-myc rabbit polyclonal antibody (a gift from 

Dr. Tommy Nilsson, EMBL-Heidelberg) diluted 1:3 in blocking buffer. After incubating 

with the primary antibody, the sections were washed four times by placing the grids on 

300 p1 drops of PBS for 5 minutes each time. Washed sections were incubated for 15 

minutes on a 100 pl drop of anti-rabbit IgG conjugated to 10 nm-gold particles (British 

Biocell, Cardiff, UK) diluted 100-fold in blocking buffer. After incubation with the 

secondary antibody, the sections were washed four times with PBS and five times with 

triple distilled water. 

Sections were embedded and positively stained by incubation on 2% methyl cellulose 

containing 0.3% uranyl acetate drops on ice and air dried. The contrasted, dried sections 

were then examined at 80 kV in a Zeiss EM10 electron microscope. Images magnified 

3 1,500-fold were photographed. 



3.4 Results and Discussion 

Establishment of CHO cell lines with tetracycline-regulated overexpression of 

glycosyltransferases 

The strategy used for establishment of glycosyltransferase overexpressing cell lines 

consisted of first generating an intermediate CHO cell line constitutively expressing the 

tetracycline-controlled transactivator (tTA) at an adequate level for the system to work (Yin 

et al., 1996). This level had to be high enough to activate high levels of transcription, in the 

absence of tetracycline, from the minimal promoter upstream of the glycosyltransferase 

genes. CHO cells were co-transfected with a vector for constitutive expression for tTA, 

driven by the human cytomegalovirus (hCMV) promoterlenhancer, and a vector for 

expression of a neomycin-resistance (NeoR) gene. An excess of the tTA-expression vector 

was used and neomycin-resistant clones were isolated. 

In mammalian cells, co-transfected DNA integrates adjacently at random locations 

within the chromosomes, and expression depends to a large extent on the site of integration 

and also on the number of copies of intact expression cassettes. A mixed population of 

clones with different expression levels of the transfected genes is generated (Yin et al., 

1996). Selection for neomycin resistance merely selects for integration of an intact NeoR 

expression cassette, while the use of an excess of the tTA-expression vector increases the 

probability of finding clones with good expression of tTA. The mixed population of 

clones has to be screened using a functional assay for tTA expression (Gossen and Bujard, 

1992; Yin et al., 1996). This was done by transfection of each clone with a second vector 

harboring a reporter gene, ZacZ, under the control of the tet-promoter and screening for 

tetracycline-regulated (tet-regulated), transient expression (i.e., one to three days after 

transfection) of P-galactosidase activity. CHOt 17, which showed the highest level of tet- 

regulated P-galactosidase activity among 20 screened clones, was selected for further 

work. 
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CHOtl7 cells were tested for tet-regulated expression of GnTIII by transfecting the 

cells with vector pUHDl0-3-GnTIIIm and comparing the relative levels of GnTIII after 

incubation of the cells in the presence and absence of tetracycline for 36 h. GnTIII levels 

were compared by western blot analysis, using a monoclonal antibody (9ElO) which 

recognizes the c-myc peptide epitope tag at the carboxy-terminus of GnTIII. The tag had 

been introduced through a modification of the glycosyltransferase gene using PCR 

amplification. Various reports have demonstrated addition of peptide epitope tags to the 

carboxy-termini of glycosyltransferases, a group of enzymes sharing the same topology, 

without disruption of localization or activity (Nilsson et al., 1993; Rabouille et al., 1995). 

Figure 2 shows that in clone CHOtl7 GnTIII accumulation is significantly higher in the 

absence than in the presence of tetracycline. An additional clone, CHOt2, which gave 

weaker activation of transcription in the P-galactosidase activity assay, was tested in 

parallel (Fig. 2). GnTIII and P-galactosidase expression levels follow the same pattern of 

tetracycline-regulation for both of these clones. The range of tetracycline concentrations 

where GnTIII expression can be quantitatively controlled was found to be from 0 to 100 

nglml (Fig. 3). This result agrees with previous research using different cell lines and 

genes (Pin et ai., i996). 

To generate a stable cell line with tet-regulated expression of GnTIII, CHOtl7 cells 

were co-transfected with vector pUHD10-3-GnTIIIm and vector, pPUR, for expression of 

a puromycin resistance gene. In parallel, CHOtl7 cells were co-transfected with 

pUHD1O-3-GnTV and pPUR vectors to generate an analogous cell line for this other 

glycosyltransferase. A highly efficient calcium phosphate transfection method was used 

and the DNA was linearized at unique restriction sites outside the eucaryotic expression 

cassettes, to decrease the probability of disrupting these upon integration. By using a host 

in which the levels of tTA expressed had first been proven to be adequate, the probability 

of finding clones with high expression of the glycosyltransferases in the absence of 

tetracycline is increased. 
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Stable integrants were selected by puromycin resistance, keeping tetracycline in the 

medium throughout clone selection to mantain glycosyltransferase expression at basal 

levels. For each glycosyltransferase, 16 puromycin resistant clones were grown in the 

presence and absence of tetracycline, and 8 of each were analyzed by western blot analysis 

(Fig. 4). The majority of the clones showed good regulation of glycosyltransferase 

expression. One of the GnTIII-expressing clones showed a relatively high basal level in 

the presence of tetracycline (Fig. 4 B, clone 3), which suggests integration of the 

expression cassete close to an endogenous CHO-cell enhancer; while two puromycin- 

resistant clones showed no expression of GnTIII in the absence of tetracycline (Fig. 4 B, 

clones 6 and 8). Among the clones showing good regulation of expression, different 

maximal levels of glycosyltransferase were observed. This may be due to variations in the 

site of integration or number of copies integrated. Activity of the glycosyltransferases was 

verified by E-PHA and L-PHA lectin binding to endogenous cellular glycoproteins derived 

from various clones grown in the presence and absence of tetracycline (Fig. 5). Lectins are 

proteins which bind to specific oligosaccharide structures. E-PHA lectin binds to bisected 

oligosaccharides, the products of GnTIII-catalyzed reactions, and L-PHA binds to tri-and 

tetra-antennary oligosaccharides produced by GnTV-cataiyzed reactions (Merkle and 

Cummings, 1987). For each glycosyltransferase, a clone with high expression in the 

absence, but with undetectable expression in the presence, of tetracycline (clone 6, Fig. 4 

A, CHO-tet-GnTV, and clone 4, Fig. 4 B, CHO-tet-GnTIIIm) was selected for further 

work. 
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Inhibition of growth due to glycosyltransferase overexpression 

During screening of GnTIII- and GnTV-expressing clones in the absence of tetracycline, 

approximately half of each set of clones showed a strong inhibition of growth. The extent 

of growth-inhibition varied among clones, and comparison with expression levels 

estimated from western blot analysis (Fig. 4) suggested a correlation between the degree of 

growth-inhibition and glycosyltransferase overexpression. This correlation was firmly 

established by growing the final clones, CHO-tet-GnTIIIm and CHO-tet-GnTV, in 

different concentrations of tetracycline. A strong inhibition of growth was evident after 

two days of culture at low levels of tetracycline (Fig. 6). Growth-inhibited cells displayed 

a small, rounded morphology instead of the typical extended shape of adherent CHO cells. 

After a few days, significant cell death was apparent from the morphology of the growth- 

inhibited cells. 

Growth-inhibition due to glycosyltransferase overexpression has not hitherto been 

reported in the literature, probably due to the widespread use of constitutive promoters. 

Those clones giving constitutive expression of a glycosyltransferase at growth-inhibiting 

levels would be lost during the selection procedure. This was avoided here by keeping 

tetracycline in the medium, i.e., basal expression levels, throughout selection. Prior to 

selection, the frequency of clones capable of expressing glycosyltransferases to growth- 

inhibiting levels using traditional mammalian vectors based on the constitutive hCMV 

promoterlenhancer would be expected to be lower. This is due to the fact that, for any 

given gene, the pUHDlO-3 vector in CHO cell lines selected for high constitutive levels of 

tTA gives significantly higher expression levels than constitutive hCMV 

promoterlenhancer-based vectors, as observed by others (Yin et al., 1996) and us (data not 

shown). 

Inhibition of cell growth could be due to a direct effect of overexpression of membrane- 

anchored, Golgi-resident glycosyltransferases independent of their in vivo catalytic activity, 

e.g., via misfolding in the endoplasmic reticulum (ER) causing saturation of elements 
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which assist protein folding in the ER. This could possibly affect the folding and secretion 

of other essential cellular proteins. Alternatively, inhibition of growth could be related to 

increased in vivo activity of the glycosyltransferase leading to a change of the glycosylation 

pattern, in a function-disrupting fashion, of a set of endogenous glycoproteins necessary 

for growth under standard in vitro culture conditions. 

Independent of the underlying mechanism, the growth-inhibition effect has two 

consequences for engineering the glycosylation of animal cells. First, it implies that co- 

transfection of constitutive glycosyltransferase expression vectors together with vectors for 

the target glycoprotein product is a poor strategy. Other ways of linking expression of 

these two classes of proteins, e.g., through the use of multiple constitutive promoters of 

similar strength or use of multicistronic, constitutive expression vectors, should also be 

avoided. In these cases, clones with very high, constitutive expression of the target 

glycoprotein, a prerequisite for an economical bioprocess, would also have high expression 

of the glycosyltransferase and would be eliminated during the selection process. Linked, 

inducible expression could also be problematic for industrial bioprocesses, since the 

viability of the growth-arrested cells would be compromised by the overexpression of the 

glycosyltransferase. 

The second consequence is that it imposes an upper limit on glycosyltransferase 

overexpression for glycosylation engineering approaches. Clearly, the conversions of 

many glycosyltransferase-catalyzed reactions in the cell, at the endogenous levels of 

glycosyltransferases, are very high for several glycosylation sites. However, 

glycosylation sites where the oligosaccharides are somewhat inaccesible or are stabilized in 

unfavorable conformations for specific glycosyltranferases also exist. For example, it has 

been observed that addition of bisecting GlcNAc is more restricted to the oligosaccharides 

attached to the Fc region than to those located on the variable regions of human IgG 

antibodies (Savvidou et al., 1984). Glycosylation engineering of these restricted sites could 

be affected by such a limit on glycosyltransferase expression. Although this would imply 
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aiming for an "unnatural" distribution of glycoforms, these could be of benefit for special 

therapeutic applications of glycoproteins. 

It would be useful to determine if the growth-inhibiting effect is additive. If so, the limit 

could become more important for glycosylation engineering approaches involving several 

glycosyltransferases. 

Localization of GnTIII in CHO cells 

Indirect immunofluorescence of CHO-tet-GnTIII cells with anti-myc (9E10) antibody and 

a Texas-Red conjugated secondary antibody, visualized using confocal microscopy, 

showed an asymmetrical, perinuclear staining pattern typical of Golgi-resident proteins 

(Fig. 7). At high levels of expression, the pattern was very intense, but still perinuclear and 

asymmetrical, though the cell morphology was round and small. CHO-tet-GnTV cells 

labelled with an anti-GnTV polyclonal antibody showed a similar pattern (data not shown). 

The spatial distribution of GnTIII within the Golgi complex has not yet been reported in 

the literature. Here it was examined in CHO-tet-GnTIIIm cells grown at 40 nglml of 

tetracycline for 4 to 5 days, where no growth inhibition was observed. This was done by 

immunoelectron microscopy using an anti-myc polyclonal antibody and a gold particle- 

conjugated anti-rabbit secondary antibody (Fig. 8). The Golgi distribution of myc-tagged 

rat GnTIII in CHO-tet-GnTIIIm cells grown under these conditions was quite polarized, 

the protein being found mainly in cisternal compartments. 

The Golgi stack in CHO cells consists of flattened cisternal elements increasing in 

length from the cis to the trans side. After the trans-cisterna, the next Golgi region is the 

trans-Golgi network, characterized by the presence of numerous vesicles and tubules 

(Russo et al., 1992). In some cell sections, the Golgi may appear horseshoe shaped, and in 

these cases the trans-region is normally in the middle with the cis regions at the top and 

bottom (Russo et al., 1992). From morphological appearance it seems that GnTIII in these 

cells has a spatial distribution polarized towards the trans-side (Fig. 8). 
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The qualitative result obtained here for GnTIII distribution suggests a peak of GnTIII 

with a maximum more to the trans-side than those reported for GnTI or ManII. GnTIII 

localized in this way would show a more significant overlap with GalT than GnTI and 

ManII show (see Physical Model section in Chapter 11). Overlap with GalT could have an 

impact on attempts to maximize bisected oligosaccharides through glycosylation 

engineering, since GalT can compete with GnTIII for bi-antennary oligosaccharide 

substrates (see Fig. 6 in Chapter 11). In fact, it has been reported recently that a 50% 

reduction of GalT activity in a human B cell line, achieved through disruption of one copy 

of the GalT gene, increased the level of bisected oligosaccharides on a secreted 

glycoprotein from approximately 50 to 90% (Omae et al., 1997). 

Since GnTI and ManII overlap to some extent with GalT in the trans-Golgi cisterna 

(Rabouille et al., 1995), they would overlap to a similar or even higher extent with GnTIII 

if distributed as observed here. High level overexpression of GnTIII with such a 

distribution could still lead to the synthesis of bisected hybrid oligosaccharides (see 

Chapter 11). The qualitative spatial distribution is a preliminary result which requires 

corroboration by a statistical analysis of many more cell sections. Ideally, statistical 

immunogold quantitation relative to an established marker (such as GalTj should be done 

(Rabouille et al., 1995). 
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3.7 Figures 

Fig. 1. Schematic representation of the tetracycline-regulated expression of a 

glycosyltransferase. The glycosyltransferase gene is placed under the control of a minimal 

human cytomegalovirus (hCMVmin) promoter and transfected into cells which 

constitutively express a chimeric, tetracycline-controlled transactivator (tTA). In the 

absence of tetracycline, tTA can bind, via its tetracycline repressor domain, to tetracycline 

operator DNA (tetO) placed upstream of the hCMVmin promoter. The other domain of 

tTA, the C-terminal portion of a herpes simplex virus transactivator protein (VP16), can 

activate transcription of the glycosyltransferase gene from the hCMVmin promoter when 

tTA is bound to tetO DNA. Tetracycline added to the medium binds to the repressor 

domain of tTA and prevents binding of the repressor to tetO DNA, thereby eliminating 

transactivation. 

Fig. 2. Western blot analysis of tetracycline-regulated expression of GnTIII in two 

different tTA-producing CHO clones. CHOt2 (lanes A and B) and CHOtl7 (lanes C and 

D) ceiis were transfected with the pUDH10-3-GnTPIIm expression vector and cultured for 

36 h in the absence (lanes A and C) or presence of tetracycline, at a concentration of 400 

ng/ml (lanes B and D). Cell lysates were then preprared for western blot analysis probing 

with an antibody (9ElO), which recognizes specifically the c-myc tag added to GnTIII at 

its carboxy-terminus. 

Fig. 3. Determination of the range of tetracycline concentrations where myc-tagged GnTIII 

expression can be controlled. CHOtl7 cells were transfected with the pUDH10-3- 

GnTIIIm expression vector and then cultured for 48 h in the presence of the indicated 

concentrations of tetracycline. GnTIII levels in cell lysates from these cultures were 
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compared using western blot analysis. GnTIII was detected via the c-myc tag using 9E10 

antibody. 

Fig. 4. Screening of CHO clones for stable, tetracycline-regulated expression of GnTV 

(A) or myc-tagged GnTIII (B) glycosyltransferases by western blot analysis. CHOtl7 

cells were co-transfected with a vector for expression of puromycin resistance (pPUR) 

and either pUHD10-3-GnTV (A) or pUDHlO-3-GnTIIIm (B) and stable CHO clones 

were selected for resistance to puromycin (7.5 pglml), in the presence of tetracycline (2 

pglml). Eight clones (1-8) for each glycosyltransferase were cultured for 48 h in the 

absence or presence (+) of tetracycline (2  pglml) and analysed by western blot using either 

an anti-GnTV antibody (A) or an anti-myc (9E10) antibody (B). 

Fig. 5. Verification of activity of heterologous GnTV (A) and GnTIII (B) 

glycosyltransferaseas in vivo by lectin blot analysis. Cellular glycoproteins from various 

stable clones (numbered as in Fig. 4), cultured in the absence or presence (+) of 

tetracycline (2 pglml), were resolved by SDS-PAGE, blotted to a membrane, and probed 

with either L-PHA (A) or E-PHA (B) lectins. These lectins bind with higher affinity to the 

oligosaccharide products of reactions catalyzed by GnTV and GnTIII, respectively, than to 

the oligosaccharide substrates of these reactions. A molecular weight marker (MWM) was 

run in parallel. A comparison of lectin blots in A and B indicates a broader range of 

substrates, among the endogenous CHO cell glycoproteins, for GnTIII (B) than for GnTV 

(A) - 

Fig. 6. Inhibition of cell growth upon glycosyltransferase overexpression. CHO-tet- 

GnTIIIm cells were seeded to 5 - 10% confluency and cultured in the absence (A and B) or 

presence (C and D) of tetracycline. Cultures were photographed 45 (A and C) and 85 (B 

and D) hours after seeding. 



Fig. 7. Immunolocalization of myc-tagged GnTIII visualized by confocal microscopy. 

CHO-tet-GnTIIIm cells, cultured in the presence of 3 (A) or 50 (B) nglml of tetracycline, 

were fixed, permeabilized, and labeled with anti-myc 9E10 antibody. Labelled cells were 

subsequently incubated with Texas-Red-secondary antibody conjugates and inspected by 

confocal microscopy. The observed perinuclear, assymetrical staining pattern is typical for 

Golgi-localized proteins. 

Fig. 8. Golgi distribution of rnyc-tagged GnTIII by immuno-electron microscopy. Thin 

frozen sections of CHO-tet-GnTIIIm cells, which had been cultured in the presence of 40 

nglrnl of tetracycline, were labelled with an anti-myc polyclonal antibody followed with a 

secondary antibody coupled to 10 nm-diameter gold particles. Labelled sections were 

embeded and positively stained with methylcellulose containing uranyl acetate, and 

examined in an electron microscope. Under these conditions, biological membranes 

enclosing cellular compartments appear as light lines against a darker background, while 

the localized gold particles show as very dark small circles. A rather polarized GnTIII- 

distribution was observed in both extended- (A) and horse shoe-shaped (B) Golgi sections. 
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CHAPTER IV 

Engineering the Glycosylation of a Therapeutic Antibody 

in Chinese Hamster Ovary Cells 



The glycosylation pattern of chCE7, an anti-neuroblastoma therapeutic monoclonal 

antibody (mAb), was engineered in CHO cells with tetracyline-regulated expression of 

GnTIII. A set of mAb samples differing in their glycoform distribution was produced by 

controlling GnTIII expression in a range between basal and toxic levels, and their 

glycosylation profiles were analyzed by MALDIITOF-MS of neutral oligosaccharides. 

Measurement of the ADCC activity of these samples showed an optimal range of GnTIII 

expression for maximal chCE7 in vitro biological activity, and this activity correlated with 

the level of Fc-associated bisected, complex oligosaccharides. Expression of GnTIII 

within the biotechnologically practical range, i.e., where no significant growth inhibition 

and toxicity are observed, led to a consunlption of more than 90% of non-bisected, non- 

galactosylated bi-antennary complex oligosaccharides, but, at most, 50% was converted to 

the target bisected, complex structures for this set of chCE7 samples. The rest could have 

been diverted to bisected hybrid by-products andlor consumed by competing GalT to 

produce non-bisected, galactosylated oligosaccharides. Direct profiling by MALDIITOF- 

MS cannot distinguish between the latter two classes of oligosaccharides, but the growth of 

the associated MALDIITOF-MS peaks upon GnTIII overexpression, with concomitant 

reduction of bisected complex-peaks, suggests the formation of bisected hybrid products. 

The new optimized variants of chCE7 are promising candidate reagents for the treatment 

of neuroblastoma and should be tested and developed further. The strategy presented here 

may also be applicable to other therapeutic IgGs. 
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4.2 Introduction 

Clinical trials of unconjugated monoclonal antibodies (mAbs) for the treatment of some 

types of cancer have recently yielded encouraging results (Deo et al., 1997; Dillman, 

1997). A chimeric, unconjugated IgGl has been approved for low-grade or follicular B- 

cell non-Hodgkin's lymphoma (Dillman, 1997), while another unconjugated mAb, a 

humanized IgGl that targets solid breast tumors, has also shown promising results in 

phase 111 clinical trials. The antigens of these two mAbs are highly expressed in their 

respective tumor cells and the antibodies mediate potent tumor destruction by effector 

cells in vitro and in vivo. In contrast, many other unconjugated mAbs with fine tumor 

specificities cannot trigger effector functions of sufficient potency to be clinically useful 

(Frost et al., 1997; Surfus et al., 1996). For some of these weaker mAbs, adjunct 

cytokine therapy is currently being tested. Addition of cytokines can stimulate antibody- 

dependent cellular cytotoxicity (ADCC) by increasing the activity and number of 

circulating lymphocytes (Frost et al., 1997; Surfus et al., 1996). ADCC, a lytic attack on 

antibody-targeted cells, is triggered upon binding of lymphocyte receptors to the constant 

region (Fc) of antibodies (Deo et al., 1997). 

A different, complementary approach to increase ADCC activity of unconjugated 

IgGls would be to engineer the Fc region of the antibody to increase its affinity for the 

lymphocyte receptors (FcyRs). Protein engineering studies have shown that FcyRs 

interact with the polypeptide chain in the lower hinge region of the IgG CH2 domain 

(Lund et al., 1996). FcyR binding also requires the presence of oligosaccharides 

covalently attached at the conserved Asn 297 in the CH2 region (Lund et al., 1996; Wright 

and Morrison, 1997), suggesting that either both oligosaccharide and polypeptide 

contribute directly to the interaction site or that the oligosaccharide is required to maintain 

an active CH2 polypetide conformation (Lund et al., 1996). Modification of the 

oligosaccharide structure can therefore be explored as a means to increase the affinity of 

the interaction. 
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An IgG molecule contains two N-linked oligosaccharide sites in its Fc region, one on 

each heavy chain. As for any glycoprotein, an antibody is produced as a population of 

glycoforms which share the same polypeptide backbone but have different 

oligosaccharides attached to the glycosylation sites. The oligosaccharides normally found 

in the Fc region of serum IgG are of complex bi-antennary type (Wormald et al., 1997), 

with low levels of terminal sialic acid and bisecting N-acetylglucosarnine (GlcNAc), and a 

variable degree of terminal galactosylation and core fucosylation (Fig. 1). The minimal 

carbohydrate structure required for FcyR binding lies within the oligosaccharide core 

(Lund et al., 1996). Removal of terminal galactoses results in approximately a two-fold 

reduction in ADCC activity, indicating some role for these residues in FcyR receptor 

binding (Lund et al., 1996). 

The mouse- and hamster-derived cell lines used in industry and academia for 

production of unconjugated therapeutic mAbs normally attach oligosaccharide 

determinants to Fc sites. However, IgGs expressed in these cell lines lack the bisecting 

GlcNAc found in low amounts in serum IgGs (Bergweff et al., 1995; Lifely et al., 1995). 

In contrast, a humanized IgGl (CAMPATH-1H), produced in a rat myeloma cell line, 

carried a bisecting GlcNAc in some of its glycoforms (Lifely et al., 1995). The rat ceii- 

derived antibody reached a similar in vitro ADCC activity as CAMPATH-1H antibodies 

produced in standard cell lines, but at significantly lower antibody concentrations. 

The CAMPATH antigen is normally present at high levels on lymphoma cells, and the 

chimeric mAb has high ADCC activity in the abscence of a bisecting GlcNAc (Lifely et 

al., 1995). Our goal was to study the impact of a bisecting GlcNAC on the ADCC 

mediated by IgGls with low basal activity levels. For this purpose we chose a chimeric 

anti-neuroblastoma IgGl (chCE7) which has low ADCC activity when produced by 

SP2/0 recombinant mouse myeloma cells. ChCE7 recognizes a tumor-associated, 190- 

kDa, membrane-glycoprotein and reacts strongly with all neuroblastoma tumors tested to 

date. It has a high affinity for its antigen (KA of 1010 M-l) and, due to its high tumor- 
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specificity, it has been used routinely as a diagnostic tool in clinical pathology (Amstutz et 

al., 1993). As for other antibodies with low ADCC activity, only a radiolabelled version 

has been investigated as a therapeutic agent in human patients. This trial showed good 

tumor localization of chCE7 and a lack of negative side-effects (Dorr et al., 1993). 

In the N-linked glycosylation pathway, bisecting GlcNAc is added by the enzyme 

p(l,4)-N-acetylglucosaminyltransferase I11 (GnTIII) (Schachter, 1986). In order to 

synthesize bisected oligosaccharides in CHO cells, which normally lack GnTIII (Stanley 

and Campbell, 1984), a CHO cell line expressing a heterologous cDNA (Nishikawa et al., 

1992) for this enzyme was first established. For this purpose a tetracycline-regulated 

mammalian expression system was used (Chapter 111). Cultures of this cell line expressing 

different levels of GnTIII can be obtained simply by controlling the level of tetracycline in 

the culture medium. ChCE7 samples produced in these cultures should differ in the 

proportion of glycoforms carrying bisected oligosaccharide products, at least within a 

certain range of GnTIII expression. Comparison of the ADCC activities of these samples 

should allow a correlation between expression of the GnTIII gene in CHO cells and the 

ADCC activity of the modified antibody. 
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4.3 Materials and Methods 

Bacterial strains and media 

E. coli strain XL-1 Blue was grown either on LB agar plates or in LB broth. 

Mammalian cell lines and media 

CHO-tet-GnTIIIm cells (see Chapter 111) were cultured in FMX-8 medium (Cell Culture 

Technologies, Switzerland) supplemented with 10% (v/v) fetal calf serum (Boehringer 

Mannheim), 3 g/l HEPES, 1% (v/v) antibiotic/antimycotic solution (Gibco), 400 pg/ml 

G418, and 7.5 pg/rnl puromycin. Tetracycline-hydrochloride was added to the medium at 

a concentration of 2 pg/ml unless noted otherwise. Cells were grown as monolayers in 

stationary T-flasks, using 0.2 ml of mediudcm2 of flask surface. The cultures were 

maintained in an incubator at 37 OC under a 5% CO2 atmosphere. For sub-culturing, cells 

were detached from T-flasks by addition of Cell Dissociation Solution (Sigma). 

Plasmids 

Plasmid vectors 10CE7VH and 98CEIVL, for expression of heavy (IgGl) and light 

(kappa) chains respectively of anti-human neuroblastoma chimeric antibody chCE7 

(Amstutz et al., 1993), were obtained from Dr. Hanspeter Amstutz (Central Laboratory, 

Swiss Red Cross, Bern). These vectors contain chimeric genomic DNA including the 

mouse immunoglobulin promoter/enhancer, mouse antibody variable regions, and human 

antibody constant regions. Mammalian expression vectors pcDNA3. I(+) and pZeoSV2 

were purshased from Invitrogen. Plasmid pBluescriptIIKS(+) was purshased from 

Stratagene. 



121 

DNA manipulations 

General DNA manipulations were carried out according to standard methods (Sambrook 

et al., 1989). DNA fragments were extracted from agarose gels using a DNA Extraction 

kit (Quiagen). DNA cycle sequencing was carried out by Heidi Ernst (Institute of 

Biotechnology, ETH-Ziirich) using Thermo Sequenase (Amersham), fluorescent T7(-40) 

forward and reverse primers (MGW Biotech, Germany), and an automated DNA 

sequencer (Li Cor). DNA for transfection into mammalian cells was purified using a Midi 

DNA Purification kit (Qiagen). 

Polymerase chain reactions (PCRs) 

PCRs were carried out using Pwo DNA polymerase (Boehringer Mannheim). The 

composition of the PCR mixes was defined according to instructions from the polymerase 

supplier. Twelve cycles of denaturation-annealing-polymerization were performed. 

Oligonucleotide primers were synthesized by Microsynth (Switzerland). 

Construction of vectors for expression of chimeric antibodies in CHO cells 

Chimeric heavy and light chain chCE7 genes were reassambled, sequenced and subcloned 

into the pcDNA3.1(+) vector. In reassembly all introns were removed, the leader 

sequences were replaced with synthetic ones, and unique restriction sites joining the 

variable and constant region sequences were introduced. Details of PCR primers used in 

these constructions are given in Figures 2 and 3. 

Introns from the heavy constant region were removed by splicing with overlap- 

extension-PCR (Clackson et al., 1991). Briefly, in a first PCR step, using vector 

10CE7VH as a template, three individual DNA fragments were generated from separate 

reaction mixtures. These fragments encoded respectively CHI plus half of the hinge 

domain, the rest of the hinge plus all of the CH2 domain, and the CH3 domain; and 

included overlapping sequences added as 5' tags to PCR primers. The three fragments 
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were gel purified, mixed together and used as a template for a second PCR; generating a 

product encoding the whole constant heavy region. Unique restriction sites, HindIII and 

NheI upstream, and BamHI downstream, were introduced via the PCR primers. The final 

DNA fragment was digested with HindIII and B a m H I  and subcloned into 

pBluescriptIIKS(+) to give plasmid pBlue-CH. 

The variable heavy region was amplified by a first PCR step using vector 10CE7VH as 

a template. This step added a portion of a synthetic leader sequence (Reff et al., 1994) and 

removed the intron between the leader and variable heavy sequences. The gel purified 

product was used as a template for a second PCR step which added the rest of the leader 

sequence and introduced a HindIII site upstream and NheI and EcoRI sites downstream. 

The product was digested with HindIII and EcoRI and subcloned into plasmid 

pBluescriptIIKS(+) to give plasmid pBlue-VH. 

The heavy variable and constant regions in plasmids pBlueVH and pBlueCH were 

sequenced by DNA cycle sequencing to check if any mutations had been introduced. 

pBlueVH was then digested with Hind11 and NheI, pBlueCH with NheI and BarnHI, and 

the products encoding the variable and constant heavy regions, respectively, were 

subcloned together into vector pDNA3.1(+) to generate the final cnCE7 heavy chain 

expression vector pchCE7H. 

The light variable and constant sequences were likewise amplified by PCR, this time 

using vector 98CE7VL as a template. The constant light sequence was amplified in a 

single PCR step which introduced HindIII and B s i m  sites upstream and a BamHI site 

downstream. The product was digested with HindIII and BamHI and subcloned into 

pBluescriptIIKS(+) to give plasmid pBlue-CL. The variable light sequence was amplified 

by a sequential two-step PCR procedure analogous to that applied to the variable heavy 

sequence, which replaced the natural leader sequence by a murine Ig kappa leader sequence 

from vector pSecTag (Invitrogen), removed the intron, and introduced a Hind111 site 
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upstream and BsiWI and EcoRI sites downstream. The final product was digested with 

Hind11 and EcoRI then subcloned into pBluescriptIIKS(+) to give plasmid pBlue-VL. 

The light variable and constant regions in plasmids pBlueVL and pBlueCL were 

sequenced by DNA cycle sequencing to check if any mutations had been introduced. 

pBlueVL was then digested with HindIII and BsiWI, pBlueCL with BsiWI and BamH, 

and the products encoding the variable and constant light regions, respectively, were 

subcloned together into vector pDNA3.1(+) to generate the final chCE7 light chain 

expression vector, pchCE7L. 

Generation of CHO-tet-GnTIIIrn cells expressing chCE7 antibody 

A T-25 flask was seeded with CHO-tet-GnTIIIm cells to approximately 40% confluency, 

incubated for 24 h at 37 OC, then the cells were co-transfected with vectors pchCE7H, 

pchCE7L, and pZeoSV2 using the calcium phosphate transfection method (see Chapter 

111). The DNA used for transfection had been linearized, CE7 expression vectors with SfuI 

and pZeoSV2 with HindIII, then purified over anion exchange columns of a Midi DNA 

Purification kit (Qiagen). The linearized vectors were co-transfected in a molar ratio of 

7:7:1 of pchCE7H:pchCE7L:pZeoSV2, and the total amount of DNA used per 

transfection was 15 yg. One day after transfection, the cells were transferred to two 

culture dishes with a diameter of 15 cm each, and one day after transfer Zeocin 

(Invitrogen) was added to the culture medium at a concentration of 400 pg/ml. The 

medium was replaced every three days until Zeocin resistant clones of adequate size for 

picking had grown. Eighty individual clones were picked using the agar-overlay cloning 

method (see Chapter 111) and transferred to a 96-well cell culture plate. Six days after 

seeding the 96-well plate, the culture medium of each clone was assayed for chimeric 

antibody expression using an ELISA assay specific for human IgG constant region (Lifely 

et al., 1995). The five most productive clones were grown further from T-25 cultures and 
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the secreted antibody levels were measured again to judge the stability of the clones. One 

clone, CHO-tet-GnTIIIm-chCE7, was chosen for further work. 

Production of chCE7 antibody samples 

Four chCE7 antibody samples were derived from parallel CHO-tet-GnTIIIm-chCE7 

cultures, each culture containing a different level of tetracycline and therefore expressing 

GnTIII at different levels. CHO-tet-GnTIIIm-chCE7 cells were seeded to 10% confluency 

in four different T-75 flasks, each at a different concentration of tetracycline. The levels of 

tetracycline were 2000,60, 30, and 15 nglrnl. Three days later each culture was transferred 

to a T-150 flask, again seeding to 10% confluency and using the same levels of 

tetracycline. After four days, the cultures at 2000, 60 and 30 nglml of tetracycline, which 

were near to confluency, were diluted two-fold with the appropiate media and divided in 

two T-150 flasks while the culture at 15 nglml was kept in the original T-150 flask. One 

day later, four Triple-flasks (Nunc) of each cufture at 2000,60 or 30 n g / d  of tetracycline 

were seeded using all of the cells from each set of two T-150 flasks. The levels of 

tetracycline were maintained in the Triple-flasks, and each flask contained 100 ml of 

culture medium. Triple-flask cultures were grown until confiuency, then the culture 

medium was pooled for each level of tetracycline and stored at 4 OC. The culture at 15 

nglml of tetracycline was maintained in the T-150 flask and the medium was replaced at 

the time when the Triple-flasks were seeded. Two days later this medium was collected 

and fresh medium was added again for another two days, each time maintaining the level 

of tetracycline at 15 nglml. The two batches of medium at 15 nglml of tetracycline were 

pooled together and stored at 4 OC. Each time culture medium was collected, cell debris 

was removed by centrifugation prior to storage. 
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Purification of chCE7 antibody samples 

Antibody was purified from culture medium by Protein A affinity chromatography 

followed by buffer exchange on a cation exchange column. All purification steps were 

conducted at room temperature. Culture medium was passed at a flow rate of 1 mllmin 

through a 1 ml HiTrap Protein A column (Pharrnacia Biotech) which had been equilibrated 

with 10 ml of 20 mM sodium phosphate, 20 mM sodium citrate, pH 7.5 (buffer A). The 

column was then washed at a flow rate of 1 mllmin with 10 ml of 20 mM sodium 

phosphate, 20 mM sodium citrate, 500 mM sodium chloride, 0.01% Tween 20, pH 7.5 

(buffer B). A further wash was carried out at a flow rate of 0.2 mllmin using 2 ml of 

buffer B supplemented with 1 M urea (buffer C). A linear pH gradient was then applied at 

a flow rate of 0.2 mllmin, from 100% buffer C to 100% buffer D (20 mM sodium citrate, 

500 mM sodium chloride, 0.01 % (vlv) Tween 20, 1 M urea, pH 2.5). The absorbance at 

280 nm was monitored and 0.5 ml fractions were collected into tubes containing 25 p1 of 

1 M phosphate, pH 8.0. Fractions were stored at 4 OC. The chCE7 peak was identified by 

the ELISA assay described previously and the corresponding fractions were pooled. 

Under these conditions, chCE7 eluted from the column at approximately pH 4. In this 

region of the chromatogram, the absorbance dropped to baseline level in a control 

chromatographic run using culture medium from the parental CHO-tet-GnTIIIm cells 

lacking the chCE7 genes, grown under identical conditions. 

Affinity purified chCE7 samples were diluted ten-fold with 50mM MES pH 5.0, and 

passed at a flow rate of 1 mllmin through a 1 ml Resources cation exchange column 

(Pharmacia Biotech) equilibrated with the above buffer. Antibodies were eluted by a step 

change to phosphate buffered saline (PBS). The concentration of each sample was 

estimated by measuring the absorbance at 280 nm in a quartz cuvette against PBS as a 

blank, and using a conversion factor of 1.35 A.U.ml/mg IgG. The samples were stored at 

-20 OC. Proteins were resolved by SDS-PAGE under reducing conditions and purity was 

judged from Coomassie Blue staining of the gel. 
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Binding of antibodies to neuroblastoma cells 

Binding assays were performed by Dr. Ilse Novak-Hofer of the Paul Scherrer Institute 

(Villingen, Switzerland). Binding affinity to human neuroblastoma cells was estimated 

from displacement of 1251-labelled chCE7 derived from SP210 mouse myeloma cells, by 

the CHO-produced samples (Amstutz et al., 1993). 

ADCC activity assay 

ADCC activity assays were performed by Dr. Radmila Moudry (Central Laboratory, 

Swiss Red Cross, Bern). Briefly, lysis of IMR-32 human neuroblastoma cells (target) by 

human lymphocytes (effector), at a target:effector ratio of 1: 19, during a 16 h incubation at 

37 OC in the presence of different concentrations of chCE7 samples, was measured via 

retention of a fluorescent dye (Kolber et al., 1988). The percentage of cytotoxicity was 

calculated relative to a total lysis control, resulting from exposure of the target to a 

detergent, after subtraction of the signal in the absence of antibody. 

Oligosaccharide analysis by MALDUTOF-MS 

The four CHO-derived antibody samples, denoted CE7-2000t, -60t, -30t, and -15t 

(corresponding to the levels of tetracycline in nglrnl used in the cell cultures for production 

of the samples), and one SP210 mouse myeloma-derived chCE7 sample, CE7-SP210 

(donated by Dr. Hanspeter Amstutz and produced as described in Amstutz et al., 1993), 

were analyzed. Samples were treated with A. urefaciens sialidase (Oxford Glycosciences) 

to remove any sialic acid monosaccharide residues. Antibody samples were first 

equilibrated to 100 mM sodium acetate buffer, pH 5.0 by two sequential steps of 

ultrafiltration using Ultrafree-0.5-5 kDa MWCO cartridges (Millipore). In each step the 

volume was reduced from 500 to 10 p1. The amounts of antibody digested were 100 pg 

of CE7-SP210, 75 pg of CE7-2000t and CE7-60t, 50 pg of CE7-30t, and 20 pg of CE7- 
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15t. Each reaction used 0.2 U of sialidase in a final volume of 40 p1, and an incubation 

time of 20 h at 37 OC. 

The samples were then digested with peptide N-glycosidase F (PNGaseF, Oxford 

Glycosciences). Sialidase digests were diluted with 460 p1 of PNGaseF buffer (20 mM 

sodium phosphate, 50 mM EDTA, 0.02% sodium azide (wlv), pH 7.5) and concentrated 

to 10 p1 by ultrafiltration as described above. The retentate was diluted to 500 p1 and 

concentrated again by ultrafiltration to 4 pl. One microliter of 2.5% (wlv) SDSl125 rnM 

DTT in PNGaseF buffer was added to each sample and they were boiled for 2 min. After 

cooling, 2.5 p1 of 5% (vlv) Triton X-100 in PNGaseF buffer and 12.5 p1 of PNGaseF 

buffer were added to each sample. Finally 2.5 U (5 p1) of PNGaseF was added and the 

samples were incubated for 20 h at 37 OC. 

Protein, detergents, and salts were removed by passing the digests through 

microcolumns containing, from top to bottom, 20 pl of SepPak C18 reverse phase matrix 

(Waters), 20 p1 of Dowex AG 50W X8 cation exchange matrix (BioRad), and 20 p1 of 

AG 4x4  anion exchange matrix (BioRad). The microcolurnns were made by packing the 

matrices in a Gel Loader tip (Eppendorf) filled with ethanol (Kiister et al., 1997). Ethanol 

was flushed out under air pressure, and the columns were washed with 300 pi  of 

deionized water. After loading the samples, and collecting oligosaccharides in the flow 

through liquid, the columns were washed with 100 p1 of deionized water to improve the 

oligosaccharide recovery. This wash was mixed with the previous flow through liquid, 

filtered using a Kwikspin (Pierce) cartridge fitted with a 0.2 pm polysulfone membrane, 

and evaporated to dryness at room temperature using a SpeedVac (Savant). The dried 

oligosaccharides were resuspended in 2 p1 of deionized water. One microliter was applied 

to a MALDI-MS sample plate (Perseptive Biosystems) and 1 p1 of a 10 mglrnl 

dehydrobenzoic acid (DHB, Aldrich) solution in acetonitrile was added and mixed by 

pippeting. The samples were air dried and the resulting crystals were dissolved in 0.2 pl 

of ethanol (Harvey, 1993) and allowed to recrystallize by air drying. 
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The oligosaccharide samples were then analyzed by matrix-assisted laser desorption 

ionizationltime-of-flight-mass spectrometry (MALDIITOF-MS) using an Elite Voyager 

400 spectrometer (Perseptive Biosystems), equipped with a delayed ion extraction 

MALDI-ion source, in positive ion and reflector modes, with an accelaration voltage of 20 

kV. One hundred and twenty eight scans were averaged, moving the laser beam around 

the whole surface of the sample while shooting. 



4.4 Results and Discussion 

Production of chCE7 in CHO cells expressing different levels of GnTIII 

ChCE7 heavy and light chain expression vectors were constructed incorporating the 

human cytomegalovirus (hCMV) promoter, the bovine growth hormone termination and 

polyadenylation sequences, and eliminating all heavy and light chain introns. This vector 

design was based on reports of reproducible high-level expression of recombinant IgG 

genes in CHO cells (Reff et al., 1994; Trill et al., 1995). In addition, a unique restriction 

site was introduced in each chain, at the junction between the variable and constant regions. 

These sites conserve the reading frame and do not change the amino acid sequence. They 

should enable simple exchange of the mouse variable regions, for the production of other 

mouse-human chimeric antibodies (Reff et al., 1994). DNA sequencing confirmed that 

the desired genes were appropriately assembled, and production of the chimeric antibody 

in transfected CHO cells was verified with a human Fc-ELISA assay. 

CHO-tet-GnTIIIm-chCE7 cells, with stable, tetracycline-regulated expression of 

GnTIII and stable, constitutive expression of chCE7, were established and scaled-up for 

production of a set of chCE7 samples. During scale-up, four parallel cultures derived 

from the same CHO clone were grown, each at a different level of tetracycline and 

therefore only differing in the level of expression of the GnTIII gene. This procedure 

eliminates any clonal effects from other variables affecting N-linked glycoform 

biosynthesis, permitting a rigorous correlation to be established between GnTIII gene 

expression and biological activity of the glycosylated antibody. The tetracycline 

concentration ranged from 2000 nglml, i.e., the basal level of GnTIII expression, to 15 

ng/ml, at which significant growth inhibition and toxicity due to glycosyltransferase 

overexpression was observed (see Chapter 111). Indeed, only a small amount of antibody 

could be recovered from the latter culture. The second highest level of GnTIII expression, 

using tetracycline at a concentration of 30 nglml, produced only a mild inhibition of 
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growth. The purified antibody yield from this culture was approximately 70% that from 

the remaining two lower levels of GnTIII gene overexpression. 

The four antibody samples, CE7-2000t, -60t, -30t, and -15t, numbers denoting the 

associated concentration of tetracycline, were purified by affinity chromatography on 

Protein A and buffer exchanged to PBS using a cation exchange column. Purity was 

higher than 95% as judged from SDS-PAGE with Coomassie Blue staining (data not 

shown). Binding assays to human neuroblastoma cells revealed high affinity to the cells 

and no significant differences in antigen binding among the different samples (estimated 

equilibrium dissociation constants varied between 2.0 and 2.7 x 10-I0 M). This was as 

expected, since there are no potential N-linked glycosylation sites in the CE7 variable 

regions. 

Oligosaccharide distributions and levels of bisected complex oligosaccharides of 

different chCE7 samples 

Oligosaccharide profiles were obtained by matrix-assisted laser desorptiodionization mass 

spectrometry on a time-of-flight instrument (MALDUTOF-MS). Mixtures of neutral N- 

linked oligosaccharides derived from each of the four CHO-produced antibody samples 

and from a SP210 mouse myeloma-derived chCE7 (CE7-SP210) sample were analyzed 

using 2,5-dehydrobenzoic acid (2,5-DHB) as the matrix (Fig. 4). Under these conditions, 

neutral oligosaccharides appear essentially as single [M + Na+] ions, which are sometimes 

accompanied by smaller [M + K+] ions, depending on the potassium content of the matrix 

(Field et al., 1996; Harvey, 1993; Kuster et al., 1997). 

This type of analysis yields both the relative proportions of neutral oligosaccharides of 

different mass, reflected by relative peak height, and the isobaric monosaccharide 

composition of each peak (Kuster et al., 1997; Naven and Harvey, 1996). Tentative 

structures are assigned to peaks based on the monosaccharide composition, knowledge of 

the biosynthetic pathway, and on previous structural data for oligosaccharides derived from 
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the same glycoprotein produced by the same host, since the protein backbone and the cell 

type can have a strong influence on the oligosaccharide distribution (Field et al., 1996). In 

the case of Fc-associated oligosaccharides, only bi-antennary complex oligosaccharides 

have been detected in IgGs present in human serum or produced by mammalian cell 

cultures under normal conditions (Wormald et al., 1997; Wright and Morrison, 1997). 

The pathway leading to these compounds is illustrated in Figure 5, including the mass of 

the [M + Naf] ion corresponding to each oligosaccharide. High mannose oligosaccharides 

have also been detected on antibodies produced in the stationary and death phases of batch 

cell cultures (Yu Ip et al., 1994). 

The two major peaks in the CE7-SP210 sample (Fig. 4A) correspond to masses of 

fucosylated oligosaccharides with four N-acetylhexosarnines (HexNAcs) containing either 

three (rnlz 1486) or four (mlz 1648) hexoses (see Fig. 5, but note that the summarized 

notation for oligosaccharides in this figure does not count the two GlcNAcs of the core). 

This composition is consistent with core fucosylated, bi-antennary complex 

oligosaccharide structures carrying zero or one galactose residues, respectively, typical of 

Fc-associated oligosaccharides, and as previously observed in NMR analysis of Fc 

oligosaccharides derived from a chimeric IgG1 expressed in SP2iO cells (Bergweff et al., 

1995). 

GnTIII-catalyzed transfer of a bisecting GlcNAc to these bi-antennary compounds, 

which are the preferred GnTIII acceptors, would lead to oligosaccharides with five 

HexNAcs (miz 1689 and 185 1, non- and mono-galactosylated, respectively, Fig. 5), 

which are clearly absent in the CE7-SP2i0 sample. The latter peaks appear when chCE7 is 

expressed in CHO-tet-GnTIIIm cells. In the CHO-expressed antibodies the four 

HexNAc-containing peaks are also mainly fucosylated, although a small amount of non- 

fucosylated structures is evident from the peak at m/z 1339 (see Fig. 5). The level of 

galactosylation is also not very different between the CHO- and SP2i0-derived material. At 

the basal level of GnTIII expression (CE7-2000t sample, Fig. 4B), the molecules with five 
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HexNAcs are present in a lower proportion than those with four HexNAcs. A higher level 

of GnTIII expression (CE7-60t sample, Fig. 4C) led to a reversal of the proportions in 

favor of oligosaccharides with five HexNAcs. Based on this trend, bisected, bi-antennary 

complex oligosaccharide structures can be assigned to compounds with five HexNAcs in 

these samples. Tri-antennary N-linked oligosaccharides, the alternative five HexNAc- 

containing isomers, have never been found in the Fc region of IgGs and their syntheses are 

catalyzed by GlcNAc-transferases discrete from GnTIII. 

A further increase in GnTIII expression (CE7-30t sample, Fig. 4D) did not lead to any 

significant change in the levels of bisected complex oligosaccharides. Another peak ( d z  

1543) containing five HexNAcs appears at low, but relatively constant levels in the CHO- 

GnTIII samples and corresponds in mass to a non-fucosylated, bisected-complex 

oligosaccharide mass (Fig. 5). The smaller peaks at rn/z 1705 and 1867 also correspond to 

five HexNAc-containing bi-antennary complex oligosaccharides. They can be assigned 

either to potassium adducts of the peaks at m/z 1689 and 1851 (mass difference of 16 Da 

with respect to sodium adducts) (Kiister et al., 1997) or to mono- and bi-galactosylated, 

bisected complex oligosaccharides without fucose (Fig. 5). Together, the bisected complex 

oligosaccharides amount to approximately 25% of the totai in sample CE7-2000t and reach 

approximately 45 to 50% in samples CE7-60t and CE7-30t. 

Additional information from the oligosaccharide profiles of chCE7 samples 

Although the levels of bisected complex oligosaccharides were not higher in sample CE7- 

30t, increased overexpression of GnTIII did continue to reduce, albeit to a small extent, the 

proportions of substrate bi-antennary complex oligosaccharide substrates. This was 

accompanied by moderate increases in two different, four HexNAc-containing peaks ( d z  

1664 and 1810). The latter two peaks can correspond either to galactosylated bi-antennary 

complex oligosaccharides or to bisected hybrid compounds (see Fig. 6). A combination of 

both classes of structures is also possible. The relative increase in these peaks is consistent 
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with the accumulation of bisected hybrid by-products of GnTIII overexpression, as 

predicted from the mathematical model of N-linked glycoform biosynthesis presented in 

this thesis (Chapter 11). Indeed, the sample produced at the highest level of GnTIII 

overexpression, CE7-15t, showed a large increase in the peak at m/z 1664, a reduction in 

the peak at m/z 18 10 and a concomitant reduction of complex bisected oligosaccharides to 

a level of approximately 25% (see peaks with rn/z 1689 and 1851 in Fig. 4E and the 

corresponding structures in Fig. 6). Higher accumulation of non-fucosylated (m/z 1664) 

bisected hybrid by-products, instead of fucosylated ones ( d z  18 lo), would agree with the 

fact that oligosaccharides which are first modified by GnTIII can no longer be biosynthetic 

substrates for core al,6-fucosyltransferase (Schachter, 1986). 

The peak at m/z 1257 is present at a level of 10 -15% of the total in the CHO-derived 

samples and at a lower level in CE7-SP210 (Fig. 4). It corresponds to five hexoses plus 

two HexNAcs. The only known N-linked oligosaccharide structure with this composition 

is a five mannose-containing compound of the high-mannose type. Another high 

mannose oligosaccharide, a six mannose one ( d z  1420), is also present at much lower 

levels. As mentioned above, such oligosaccharides have been detected in the Fc of IgGs 

expressed in the late phase of batch cell cultures (Yu Ip et ai., 1994). 

Antibody dependent cellular cytotoxicity of chCE7 samples 

ChCE7 shows some ADCC activity, measured as in vitro lysis of neuroblastoma cells by 

human lymphocytes, when expressed in CHO-tet-GnTIIIm cells with the minimum level 

of GnTIII overexpression (Fig. 7, sample CE7-2000t). Raising the level of GnTIII 

produced a large increase in ADCC activity (Fig. 7, sample CE7-60t). Further 

overexpression of GnTIII was not accompanied by an additional increase in activity (Fig. 

7, sample CE7-30t), and the highest level of expression actually led to reduced ADCC 

(Fig. 7, sample CE7-1%). Besides exhibiting the highest ADCC activities, both CE7-60t 

and CE7-30t samples show significant levels of cytotoxicity at very low antibody 
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concentrations. These results show that there is an optimal range of GnTIII 

overexpression in CHO cells for ADCC activity, and comparison with oligosaccharide 

profiles shows that activity correlates with the level of Fc-associated, bisected complex 

oligosaccharides. 

Given the importance of bisected complex oligosaccharides for ADCC activity, it 

would be useful to engineer the pathway to further increase the proportion of these 

compounds. Overexpression of GnTIII to levels approaching that used for sample CE7- 

30t is within the biotechnologically practical range where no significant toxicity and growth 

inhibiton are observed. At this level of expression, the non-galactosylated, non bisected, 

bi-antennary complex oligosaccharides, i.e., the preferred, potential GnTIII substrates, are 

reduced to less than 10% of the total (see m/z 1486 peak, Fig. 4D). However, only 50% 

are converted to the desired bisected biantennary complex structures. The rest are either 

diverted to bisected, hybrid oligosaccharide byproducts or consumed by the competing 

enzyme p 1,4-galactosyltransferase, GalT (Fig. 6). 

Resolution of the bisected hybrid and the non-bisected, galactosylated complex 

oligosaccharide peaks by complementary stsuctural analyses would determine how much 

each potential, undesired route is consuming. The growth of the d z  I664 and 1810 peaks 

at high GnTIII overexpression levels suggests that at least a fraction of these peaks 

corresponds to bisected hybrid oligosaccharides (Fig. 6). In theory, a flux going to 

bisected hybrid compounds can be reduced by co-overexpression of enzymes earlier in the 

pathway such as mannosidase I1 together with GnTIII (see Fig. 8 in Chapter 11). On the 

other hand, competition between GnTIII and GalT for bisected complex oligosaccharide 

substrates could potentially be biased towards GnTIII-catalyzed reactions, by increasing the 

intra-Golgi concentration of UDP-GIcNAc while overexpressing GnTIII. GnTIII transfers 

a GlcNAc from the co-substrate UDP-GlcNAc to the different oligosaccharides. Should 

the intra-Golgi concentration of UDP-GlcNAc co-substrate be sub-saturating for GnTIII, 

then increasing it, either by manipulation of the culture medium composition or by genetic 
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manipulation of sugar-nucleotide transport into the Golgi, could favor GnTIII in a 

competition for oligosaccharides with GalT. In light of the results showing a polarized 

Golgi distribution of GnTIII (see Chapter 111), this potential competition should not be 

overlooked (see Fig. 6 in Chapter 11). 

It remains to be determined whether the increase in ADCC activity results from the 

increase in both the galactosylated and non-galactosylated, bisected complex 

oligosaccharides, or only from one of these forms (see peaks at m/z 1689 and 1851 in 

Fig. 4). If it is found that galactosylated, bisected complex bi-antennary oligosaccharides 

are the optimal structures for increased ADCC activity, then maximizing the fraction of 

these compounds on the Fc region would require overexpression of both GnTIII and GalT. 

Given the competitive scenario discussed previously, the expression levels of both genes 

would have to be carefully regulated. In addition, it would be valuable to try to re-distribute 

overexpressed GalT as much as possible towards the TGN instead of the trans-Golgi 

cisterna. The latter strategy may be realized by exchanging the transmembrane region- 

encoding sequences of GalT with those of a2,6-sialyltransferase (Chege and Pfeffer, 

1990). 

The boosted ADCC activity of the bisected chCE7 glycoforms, together with other 

attributes (Amstutz et al., 1993; Dorr et al., 1993), make this unconjugated mAb an 

interesting candidate reagent in the treatment of neuroblastoma, the most common solid 

tumor in children. The strategy presented here may also be applicable to other IgGs, 

including those which already have high ADCC activity in the absence of a bisecting 

GlcNAc. In the latter case, the dose required to achieve a therapeutically useful effect could 

be significantly diminished, having a large impact on the economy of cost-intensive mAb 

production processes (Bibila and Robinson, 1995; Trill et al., 1995). 
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4.7 Figures 

Fig. 1. Representation of typical, human Fc-associated oligosaccharide structures. A 

conserved oligosaccharide core, linked to the Asn, is composed of three mannose (Man) 

and two N-acetylglucosamine (GlcNAc) monosaccharide residues. Additional GlcNAcs 

are normally pl,2-linked to the a 6  Man and a 3  Man ( a6  and a 3  arms, respectively), 

while the monosaccharide residues in bold, N-acetylneuraminic acid (NeuAc), galactose 

(Gal), fucose (Fuc), and the bisecting GlcNAc (boxed), can be present or absent. 

Fig. 2. Sequences of oligonucleotide primers used in PCRs for the construction of the 

chCE7 heavy chain gene. Forward and reverse primers are identified by the suffixes .fwd 

and .rev, respectively. Overlaps between different primers, necessary to carry out 

secondary PCR steps using as a template the product of a primary PCR step, are indicated. 

Restriction sites introduced, sequences annealing to the CE7 chimeric genomic DNA, and 

the synthetic leader sequence introduced, are also indicated. The construction procedure is 

described in Materials and Methods (section 4.3). 

Fig. 3. Sequences of oligonucleotide primers used in PCRs for the construction of the 

chCE7 light chain gene. Forward and reverse primers are identified by the suffixes .fwd 

and .rev, respectively. Overlaps between different primers, necessary to carry out 

secondary PCR steps using as a template the product of a primary PCR step, are indicated. 

Restriction sites introduced, sequences annealing to the CE7 chimeric genomic DNA, and 

the leader sequence introduced, are also indicated. The construction procedure is described 

in Materials and Methods (section 4.3). 

Fig. 4. MALDIITOF-MS spectra of neutral oligosaccharide mixtures from chCE7 

samples produced either by SP2/0 mouse myeloma cells (A, oligosaccharides from 50 pg 
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of CE7-SP2/0), or by CHO-tet-GnTIII-chCE7 cell cultures differing in the concentration 

of tetracycline added to the media, and therefore expressing the GnTIII gene at different 

levels. In decreasing order of tetracycline concentration, i.e., increasing levels of GnTIII 

gene expression, the latter samples are: CE7-2000t (B, oligosaccharides from 37.5 pg of 

antibody), CE7-60t (C, oligosaccharides from 37.5 pg of antibody), CE7-30t (D, 

oligosaccharides from 25 pg of antibody) and CE7-15t (E, oligosaccharides from 10 pg of 

antibody). 

Fig. 5. N-linked oligosaccharide biosynthetic pathway leading to bisected complex 

oligosaccharides via a GnTIII-catalyzed reaction. M stands for mannose; Gn, N- 

acetylglucosamine (GlcNAc); G, galactose; ~ n b ,  bisecting GlcNAc; f, fucose. The 

oligosaccharide nomenclature consists of enumerating the M, Gn, and G residues attached 

to the core oligosaccharide and indicating the presence of a bisecting GlcNAc by including 

a Gnb. The oligosaccharide core is itself composed of 2 Gn residues and may or may not 

include a fucose. The major classes of oligosaccharides are shown inside dotted frames. 

Man1 stands for Golgi mannosidase; GnT, GlcNAc transferase; and GalT, for 

galactosyltransferase. The mass associated with the major, sodium-associated 

oligosaccharide ion that is observed in MALDIITOF-MS analysis is shown beside each 

oligosaccharide. For oligosaccharides which can potentially be core-fucosylated, the 

masses associated with both fucosylated (+f) and non-fucosylated (-0 forms are shown. 

Fig. 6. N-linked oligosaccharide biosynthetic pathway leading to bisected complex and 

bisected hybrid oligosaccharides via GnTIII-catalyzed reactions. M stands for mannose; 

Gn, N-acetylglucosarnine (GlcNAc); G, galactose; Gnb, bisecting GlcNAc; f, fucose. The 

oligosaccharide nomenclature consists of enumerating the M, Gn, and G residues attached 

to the common oligosaccharide and indicating the presence of a bisecting GlcNAc by 

including a Gnb . The oligosaccharide core is itself composed of 2 Gn residues and may 
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or may not include a fucose. The major classes of oligosaccharides are shown inside 

dotted frames. Man1 stands for Golgi mannosidase; GnT, GlcNAc transferase; and GalT, 

for galactosyltransferase. The mass associated with the major, sodium-associated 

oligosaccharide ion that is observed in MALDIJTOF-MS analysis is shown beside each 

oligosaccharide. For oligosaccharides which can potentially be core-fucosylated, the 

masses associated with both fucosylated (+f) and non-fucosylated (-0 forms are shown. 

Fig. 7. ADCC activity of different chCE7 samples. Lysis of IMR-32 neuroblastoma cells 

by human lymphocytes (target:effector ratio of 1: 19, 16 h incubation at 37 OC), mediated 

by different concentrations of chCE7 samples, was measured via retention of a fluorescent 

dye. The percentage of cytotoxicity is calculated relative to a total lysis control (by means 

of a detergent), after subtraction of the signal in the absence of antibody. 
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CHAPTER V 

Conclusions 
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5.1 Summary of Findings and Recommendations for Future Work 

The goals of this thesis were to engineer glycoform biosynthesis in CHO cells in order to 

produce new variants of a therapeutic protein, and to study the extent to which the 

glycosylation reaction network could be manipulated in an attempt to maximize the 

proportion of certain glycoforms within the population. An anti-neuroblastoma chimeric 

IgG1-type mAb (chCE7) was used as a model therapeutic protein and the target 

glycoforms were those carrying bisected, complex oligosaccharides. Natural IgG 

antibodies in humans and animals carry these types of oligosaccharides, albeit in a small 

proportion within the glycoform population, and a recent study suggested that these 

oligosaccharides could lead to enhanced killing of target cells via ADCC. Therapeutic 

antibodies produced in CHO cells do not carry bisected oligosaccharides as the cells do not 

express the gene encoding GnTIII, the glycosyltransferase that catalyzes the biosynthesis 

of bisected oligosaccharides. We therefore decided to overexpress GnTIII in CHO cells 

and use the modified cells to produce new variants of chCE7. 

A mathematical model of N-linked glycoform biosynthesis was constructed and used 

to simulate the quaiitative effects of GnTiII overexpression. The simulations indicated a 

maximum level for bisected complex oligosaccharides, and accumulation of hybrid 

bisected oligosaccharides. CHO cells with stable, tetracycline-regulated overexpression of 

the GnTIII gene were established. The amount of GnTIII in these cells could be controlled 

simply by manipulating the concentration of tetracycline in the culture medium. Using this 

system, it was found that overexpression of GnTIII to high levels led to growth inhibition 

and was toxic to the cells. Another CHO cell line with tetracycline-regulated 

overexpression of GnTV, a distinct glycosyltransferase, showed the same inhibitory effect, 

indicating that this may be a general feature of glycosyltransferase overexpression. This 

phenomenon has not been reported previously, probably due to the widespread use of 

constitutive promoters. The growth effect sets an upper limit to the level of 
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glycosyltransferase overexpression, and may thereby also limit the maximum extent of 

modification of poorly accessible glycosylation sites. 

The heterologous GnTIII was localized in the Golgi complex of CHO cells by means of 

immunoelectron microscopy using an antibody against a peptide epitope tag added to the 

carboxy-terminus of the enzyme. The enzyme concentrated on one side of the Golgi, 

mainly in cisternal compartments, suggesting that GnTIII may spatially distribute as a peak 

with a maximum between those of GnTI/ManII/GnTII and that of GalT, but still 

overlapping significantly with all of these enzymes. A statistical irnrnunogold analysis of 

many cell sections (Nilsson et al., 1993; Rabouille et al., 1995) would be valuable to 

establish the quantitative GnTIII distribution. 

CHO cells with GnTIII expression levels ranging from basal to toxic were used to 

produce ChCE7 antibody variants differing in their glycoform distributions. Experimental 

results showed an optimal range of GnTIII expression for maximal chCE7 in vitro 

biological activity, and this activity correlated with the level of Fc-associated bisected, 

complex oligosaccharides. Expression of GnTIII within the biotechnologically practical 

range, i.e., where no significant growth inhibition and toxicity are observed, led to a 

consumption of more than 90% of non-bisected, non-galactosyiated bi-antennaq- complex 

oligosaccharides, but, at most, 50% was converted to the target bisected, complex 

structures for this set of chCE7 samples. The rest could have been diverted to bisected 

hybrid by-products and/or consumed by competing GalT to produce non-bisected, 

galactosylated oligosaccharides. Direct profiling by MALDVTOF-MS cannot distinguish 

between the latter two classes of oligosaccharides, but the growth of the associated 

MALDIITOF-MS peaks upon GnTIII overexpression, with concomitant reduction of 

bisected complex-peaks, suggests the formation of bisected hybrid products. 

The new optimized variants of chCE7 are promising candidate reagents for the 

treatment of neuroblastoma. In future work, production should be scaled-up and clinical 

trials eventually undertaken. The strategy presented here may also be applicable to other 
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IgGs, including those with high ADCC activity in the absence of a bisecting GlcNAc (Reff 

et al., 1994). 

It would be desirable to try to further maximize the fraction of bisected complex 

oligosaccharides. This may possibly be achieved by simultaneous overexpression of 

Man11 mannosidase and GnTIII, perhaps concurrent with an increase in the intra-Golgi 

level of UDP-GlcNAc cosubstrate. 

It remains to be determined whether the increase in ADCC activity results from the 

increase in both the galactosylated and non-galactosylated, bisected complex 

oligosaccharides, or only from one of these forms. If glycoforms with galactosylated, 

bisected complex oligosaccharides are found to be the most active, maximizing these 

would require simultaneous overexpression of both GnTIII and GalT. Given the 

competitive scenario discussed previously, the expression levels of both genes would have 

to be carefully regulated. 

Finally, it would be valuable to try to re-distribute overexpressed GalT as much as 

possible towards the TGN instead of the trans-Golgi cisterna. The latter strategy may be 

realized by exchanging the transmembrane region-encoding sequences of GalT with those 

of a2,6-sialyltransferase (C'nege and Pfeffer, i990). 
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