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Robust Inferential Control: A Methodology for Control Structure 

Selection and Inferential Control System Design in the Presence 

of Model/Plant Mismatch 

Jay H. Lee 

Abstract 

Two major tasks that are required to obtain a control system utilizing secondary 

measurements are measurement selection and inferential control system design. The 

first involves choosing an appropriate subset of the available measurements and the 

second involves designing a feedback controller based on the chosen measurements. 

The important issues to be addressed are not only the theoretical performance of the 

closed-loop system, but also the effects arising from the factors prevalent in practical 

environments such as model/plant mismatch, constraints, and failures of actuators 

and sensors. 

General measurement selection methodology is developed accounting for all the 

factors that can affect the measurement selection in signifcant ways. These factors 

include model uncertainty, signal-to-noise ratios, and measurement dynamics. The 

underlying philosophy is to reduce the number of candidates to a sufficiently low level 

before going onto detailed analysis by eliminating those candidates for which there 

does not exist a linear time-invariant controller meeting the required level of robust 

performance. Based on this philosophy and using the Structured Singular Value 

theory as a vehicle, a number of numerically efficient screening tools are developed. 

Conditions are derived under which some of the new criteria reduce to previously 

published measurement selection criteria. The proposed tools are applied to the 



measurement selection problems in a multi-component distillation column and a high- 

purity distillation column. 

Two different approaches are considered for inferential control system design: an 

output estimation based design approach and a state estimation based design ap- 

proach. The former approach involves independent design of an output estimator 

and a feedback controller while the latter involves direct one step design although the 

design can be actually separated into those of a state estimator and of a feedback 

regulator using the separation principle argument. 

For the former approach, design of the output estimator was examined for two 

different cases: the case where a full dynamic model is available and the case where 

only the time records of the primary and secondary measurements are available ei- 

ther from simulations or from process measurements. For the former case, multi-rate 

Kaiman fiiter design and p-Synthesis design are discussed. For the latter case, the 

estimator design problem is formulated as a regression problem and various regression 

techniques are evaluated in terms of their suitability to the output estimator design 

problem. For design of the feedback controller, traditional techniques such as LQ G, 

IMC, and MPC were combined into a control technique that has nice algorithmic 

properties as well as many operational merits such as straightforward constraint han- 

dling and simple, intuitive on-line tuning. A heavy-oil fractionator was used as an 

example application. 

For the latter approach, general state estimation techniques ( e.g., multi-rate 

Kalman filtering) used in LQG and finite receding horizon control used in tradi- 

tional MPC were integrated into a control technique that can incorporate general 

disturbances and multi-rate sampled measurements and has desirable operational 

characteristics. The concept of classical IMC was extended to equip the control sys- 

tem with on-line tuning parameters that have direct connections with the speed of 

the closed-loop responses. Application to a high purity distillation column demon- 



strates the effectiveness of the control technique in terms of closed-loop performance 

and operational flexibility. 
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Chapter 1 

Introduction 

The objective of this thesis is to develop a rigorous, yet practical methodology for sec- 

ondary measurement selection and control system design for processes the controlled 

variable measurements of which are either unavailable or unsuitable for feedback con- 

trol because of technical and/or economic reasons. By "rigorous, yet practical," we 

mean that the methodology must have a soiid theoretical foundation and at the same 

time must be useful in solving "real world" control problems. In order for the theory 

to be practical, it must not rest on assumptions that are unrealistic for real world 

processes and should also address all issues that can affect the final control system 

performance in significant ways. The key practical issues we address in this thesis are 

model/plant mismatch, process constraints, and actuatorjsensor failure tolerance. 

1.1 Motivation 

Real world control problem are often complicated by "difficult" controlled variable 

measurements. Control difficulties may stem from one or more of the following mea- 

surement characteristics: 

0 Slow Sampling Rate 

The "primary measurements" (that is, the measurements of the controlled vari- 

ables) may not be available at  a sufficiently fast sampling rate required for the 

desired closed-loop bandwidth. 



a Large Sampling Delay 

The primary measurements may necessarily accompany delays that are too long 

for the desired closed-loop bandwidth. 

a Poor Signal- To- Noise Ratio 

The signal-to-noise ratios for the primary measurements may be too low for 

effective feedback control. 

a Operational Unreliability 

The measurement devices may be operationally unreliable (that is, they may 

experience frequent failures or need frequent services and readjustments) leading 

to frequent shut-down of the control system. 

These factors are represented schematically in Figure 1.1. When one or more of the 

above factors make the design of an effective feedback control system based on the 

primary measurements alone infeasible, "secondary measurements" (that is, measure- 

ments of other process variables) must be utilized. In this thesis, we define "inferential 

control" in its broadest possible sense: 

Inferential control refers to control techniques that use measurements 

other than those of controlled variables. 

The above definition of inferential control naturally includes feedforward control. 

A successful feedback control using secondary measurements depends on two im- 

portant tasks: the selection of secondary measurements and inferential control system 

design. In practice, it is often the case that the number of secondary process variables 

that are available for measurements far exceeds the number of secondary measure- 

ments that are ultimately used by the control system. It could be argued that using 

more measurements should not degrade the final closed-loop performance in any way 

and hence using all the available measurements effectively removes the problem of 

measurement selection. While this is true in principle, it is often impractical from 
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Figure 1.1. Motivations for Using Secondary Measurements 

both technical and economic standpoints to build a control system that uses all the 

available measurements. Not only would such a control system be highly complex 

and therefore difficult to design and maintain, but it would also be prohibitively ex- 

pensive. These considerations necessitate the selection of an appropriate subset of 

available measurements. There are strong practical and theoretical evidences pointing 

toward the importance of measurement selection for the success of feedback control. 

A wrong choice of measurements can put a fundamental limitation on the system's 

closed-loop performance that cannot be overcome by "smart" controller design. 

A correct measurement selection must be followed by inferential control 

system design. The control system design for systems with secondary measurements is 

more difficult and complex than that for systems for which the controlled variables co- 

incide with the measured variables since good control of the secondary variables do not 

necessarily imply good control of the primary variables. In many cases, the primary 

measurements are available, though at a slow sampling rate and with low reliability, 

for improved feedback control. This naturally gives rise to a multi-rate sampled-data 

system, to which most control design methods are not applicable straightforwardly. 



Issues of Practical Importance 

As will be elucidated in the next section, there are a number of industrial processes 

that can benefit significantly from improved inferential control. However, even af- 

ter several decades of numerous theoretical advances, the impact of modern control 

theory to these processes has been negligible. This unfortunate trend can probably 

be attributed to most modern control theories' difficiency in addressing practically 

relevant issues in a realistic, unified manner. Hence, it is important right from the 

start to examine carefully all the issues that can affect the measurement selection 

decision and final control system performance in signifcant ways. 

For measurement selection, the essential question may be stated as "what makes 

one measurement set superior to another?" The factors that should be accounted for 

in measurement selection are as follows: 

Model/Plant Mismatch 

A mathematical model never represents the true physical system exactly. This 

is true even for very detailed first principles models or experimentally identified 

models. For low-order, linear models that are often used for the control system 

design, this "model/plant mismatch," or "model uncertainty," can be quite sig- 

nificant. In addition, various process parameters may change over the course of 

time giving rise to additional mismatch. A control system showing an excellent 

closed-loop performance for the model may suffer significant performance dete- 

rioration when implemented to the real system because of the mismatch. This 

deterioration may be arbitrarily large meaning the closed-loop system can even 

be unstable. 

For analysis, it is essential to express the model/plant mismatch in well-defined 

mat hematical terms. The model/plant mismatch is often described mathemat- 

ically as a set of norm-bounded perturations to the model. These perturbations 



supposedly capture either partially or entirely the possible discrepancies be- 

tween the model and the real process. It is conceivable that a measurement 

set is intrinsically more sensitive to these perturbations than another measure- 

ment set. Since a control system, when implemented to the real system, will 

be potentially subjected to these perturbations, a measurement set with low 

sensitivity to the perturbations is preferred over a set with high sensitivity. 

Delays, Inverse Responses 

Measurements which show significant delayed or inverse responses to various 

process disturbances may be undesirable because they may not be able to pro- 

vide "efficient" enough estimates of the controlled variables. For example, if 

a secondary variable does not respond to a process disturbance for 10 minutes 

while the disturbance affects the controlled variables immediately, the secoridary 

variable cannot predict the excursion of the controlled variables from their set- 

points caused by the disturbance for at least 10 minutes. A similar argument 

can be made for measurements showing inverse reponses. A measurement set 

with delays and/or inverse responses that are insiginficant with respect to the 

desired closed-loop bandwidth must be chosen. 

0 Signal- To-Noise Ratios 

Measurements that are insensitive to process disturbances may be adversely 

affected by measurement noise. For example, if a secondary variable changes by 

an order of 1 to typical disturbances while the measurment noise associated with 

the variable is of an order of 10, the disturbance effects on the measurements 

will be masked entirely by the measurement noise. A measurement set with 

adequate signal- to-noise ratios must be chosen. 

For control system design, most research efforts have been directed toward devel- 

opment of pure algorithms. However, various operational aspects of a control system 



is as important to its success in a practical environment as its algorithmic merits. The 

following issues must be addressed in designing and analyzing an inferential control 

system: 

Model/Plant Mismatch 

The degree of performance deterioration of a control system caused by 

model/plant mismatch depends largely on the characteristics of the control 

system. A control system is said to be "robustn if its performance deterio- 

rates insignificantly when implemented to processes the behavior of which is 

significantly different from what the model predicts. A control system must be 

designed to meet the required performance specifications for all systems that 

the perturbations used to describe potential model/plant mismatches render. 

Constraints 

Constraints are often of great relevance to process control since the economically 

optimal operating regions for most processes lie at  the intersection of constraints 

[2]. On the other hand, most advanced control algorithms are developed un- 

der the assumption of infinite input/output domain. Controllers designed using 

such algorithms must be fixed subsequently to incorporate various constraint- 

handling capabilities. Some of popular ad hoc fixes are anti-reset windup mecha- 

nisms, selectors, overrides, etc. Such ad hoc fixes not only can cause undesirable 

performance degradation, but also require significant engineering efforts because 

their designs tend to be case-specific. In view of ever increasing complexity and 

sophistication of today's control algorithms, it is extremely important from both 

economic and safety standpoints that these constraints are taken into account 

at  the design stage and do not have to be dealt with afterwards in some ad hoc 

fashion. 

m Actuator/Sensor Failure 



It is common in industrial processes that some of the actuators and sensors fail. 

One of the main motivations for inferential control was potential operational 

unreliability of the primary measurements. The primary measurement devices 

may need to be shut down frequently because they require servicing or the 

readings from these devices become unacceptably inaccurate for various reasons. 

In addition, some of the actuators may simply "get stuck" and become not 

manipulable. It is desirable that the required changes in the control system in 

the event of actuator/sensor failures can be made by the operating personnel in 

a straightforward manner without expert's intervention. 

Ease and Flexibility of Design and Implementation 

Given sufficient time and money, engineers can usually come up with adequate 

solutions to most eontrol problems assuming such solutions exist. However, 

the investment of significant engineering efforts in the control system design 

can only be justified when its cost is outweighed by the promise of increased 

profitability of the control system. In practice, it is possible that the real process 

may behave entirely differently from what the engineer expected initially. This 

may necessitate several painstaking trial and error designs before obtaining an 

adequate control system. In addition, a control system that is applicable to a 

wide range of processes with minor modifications (for example, PID controllers) 

can save significant engineering efforts and expenses. From these considerations, 

the control systems equipped with flexible on-line tuning parameters are more 

desirable than those without. In addition, it is better if the control algorithm 

is intuitive and simple enough to be understood and accepted readily by plant 

operators. 



1.3 Industrial Applications 

The research is well motivated by the abundance of industrial processes for which the 

product quality measurements are hampered by long sampling delays and frequent 

shutdowns of the measurement devices. In order to further motivate the topic of 

this thesis, some of the potential applications are discussed in this section, paying 

particular attention to the process characteristics in concern with the issues outlined 

in the previous section. 

1.3.1 Distillation Columns 

One important application of the methodology developed in this thesis is distillation 

column control. Tight control of product compositions enables distillation columns to 

be operated at  a point cioser to the economically optimal operating point ieading to 

significant energy savings and higher product yields. However, the product composi- 

tion measurements through various composition analyzers such as gas chromatographs 

often require large sampling time and are prone to failures as the analyzers need fre- 

quent servicing and recalibration. In practice, the secondary process variables such 

as tray temperatures and the column pressure are often measured and used instead 

for feedback control of the product compositions. A large number of trays in most 

industrial distillation columns leads to a large number of potential secondary mea- 

surements and necessitates measurement selection. Industrial experience reports t hat 

the choice of temperature sensor location is of paramount importance to successful 

product composition control. 

Despite a long history of intense efforts devoted to developing an accurate first 

principles model for distillation columns, the complexity of the process proved to 

be too high to render an accurate quantitative model for the process. Simple linear 

models that are often used for the control system design invariably lead to substan- 

tial model/plant mismatches for these processes. In addition, further mismatches 



betweahhe model and the real process are introduced by the inaccuracy of actuator 

valve positionings and sensor readings. Most columns are also subject to a number 

of constraints arising from plant-wide optimizations, actuator hardware limits, and 

various safety considerations (e.g., column pressure). Control systems for distilla- 

tion columns are subject to frequent actuator/sensor failures as columns are often 

switched to manual operation. These nontrivial model uncertainty and operational 

complexity probably explain why most industrial columns today are still controlled 

through single-loop PID controllers and measurement selection decisions are made 

on the basis of intuition and heuristics rather than through systematic methods. Po- 

tential benefits of a new measument selection and inferential control system design 

methodolgy for distillation columns are high if they correctly address all the issues 

outlined in the previous section. 

1.3.2 Packed-Bed Reactors and Other Chemical Processes 

Most chemical processes that require control of product or substrate concentrations 

share the same measurement difficulties. A packed-bed reactor for which the outlet 

concentration must be controlled as well as the maximum bed temperature serves as 

another good example. Essentially any number of temperature sensors can be placed 

along the packed-bed for the purpose of inferring the outlet product composition and 

the maximum bed temperature. Industrial experience reports that the location of 

temperature sensors has a strong influence on the final control system performance. 

Because the process is a distributed parameter system described through a set of 

highly nonlinear partial differential equations, linear time-invariant (LTI) models used 

for control system design are only a coarse approximation of the real process. Again, 

model/plant mismatch is a key factor for the sensor placement and control system 

design. Hot spot temperature must be maintained below a certain critical level giving 

rise to an output constraint in addition to the input saturation constraints. The new 



methodology may be able to solve control problems arising in these processes that 

traditional methods failed to. 

1.3.3 Pulp Digesters 

In paper manufacturing, it is important that the quality of the pulp is maintained at a 

constant, desired level. The quality of the pulp is measured through what is known as 

the "Kappa Number," which expresses the degree of delignification. Heterogeneous 

nature of feed woodchips introduce unmeasurable disturbances to the process and 

proper control of the Kappa Number is imperative to an efficient, economic produc- 

tion of superior, constant quality paper. The devices used for the Kappa Number 

measurements share many similar characteristics as those used for the composition 

measurements. The Kappa Number measurements require large sampling time (s~me- 

times of an order of hours) and the measurements may disappear without warning 

for a sustained period of time. For reliable, efficient Kappa Number control, sec- 

ondary process variables such as the PH number, conductivity and temperatures of 

the digester liquor can be utilized for the real- time estimation of the Kappa Number. 

The control problems for pulp digesters share many characteristics of those for the 

process industry. First, the process is poorly understood. Despite intense activities 

in the field, quantitatively accurate models for the delignification process are yet 

to be available. It is unclear what measurements must be used for the best on- 

line estimation of the Kappa Number. There are a number of potential constraints 

arising from the optimization layer since various units of pulp and paper mills are 

often interactive with extensive recycling. Improved inferential control methodology 

can bring potentially significant savings to the industry. 

The potential benefits of the new methodology that we are intent on developing 

as the end goal of this thesis are well exemplified by the above-discussed applications. 

Other potential application areas include fermentation reactors, coating processes, 



and navigation. 

1.4 Previous Work 

In this section, we examine some of the major research results on the topics of mea- 

surement selection and inferential control system design that were available prior to 

the time when this thesis work began. It will be made apparent that there has been 

a lack of systematic methodology that addresses all of the practically relevant issues 

outlined in the previous section. The intent of this section is not to provide a com- 

plete, extensive literature survey on the topics; this survey inevitably left out some 

of the relevant work on the topics. Instead, the purpose of this section is to elucidate 

the need for more systematic measurement selection and inferential control system 

design methods. 

1.4.1 Previous Work on Measurement Selection 

During the 60s and 70s, a popular approach in the control research community was 

to model the system in a stochastic framework. When this modelling approach was 

combined with a time-domain quadratic performance index, the "optimal" (in proba- 

blistic sense) controller known as the "Linear Quadratic Gaussian (LQG)" controller 

could be found analytically. The celebrated "separation principle" showed that the 

LQG controller could be decomposed into the optimal state observer (Kalman filter) 

and the optimal LQ state feedback regulator that can be designed independently of 

each other [62]. An implication of the separation principle for measurement selection 

is that the choice of measurement set can be optimized by minimizing an appropriate 

scalar measure of the state estimation error covariance matrix, that can be calculated 

straightforwardly. Based on this idea, a number of researchers proposed measurement 

selection criteria in the context of sensor location problem for packed-bed reactors 

[35,34] as well as in more general contexts [29]. 



A serious deficiency of the LQG framework as a ground for developing practial 

measurement selection criteria is its inability to address the model/plant mismatch 

explicitly. The idea of model/plant mismatch has to be incorporated in an ad hoc 

fashion, such as through arbitrarily chosen state excitation noise. Not only is the 

choice of this noise that gives rise to a physically plausible model unclear, but the 

effects of state excitation noise on the closed-loop systems is also qualitatively dif- 

ferent from those of model/plant mismatch. For example, the latter can introduce 

instability to an otherwise stable system while the former can't. Hence, the practical 

applicability of the criteria developed using the LQG control theory must be seriously 

questioned. 

In the late 70s, Brosilow and coworkers attempted to address the issue of 

modeljplant mismatch more rigorously to the problem of measurement selection 

[61,32,7,31]. They studied the effect of a perturbation (an error on the gain ma- 

trix relating disturbances to measured variables) on the accuracy of the steady-state 

disturbance estimates when a "least-square" type estimator is used. They proposed 

what is known as the "Condition Number Criterion" by showing that an upperbound 

of its effect can be minimized by choosing the measurement set with the lowest con- 

dition number of the gain matrix. They also indicated that the Condition Number 

Criterion often conflicts with minization of the nominal (that is, in the absence of the 

perturbation) estimation error and left the compromise to engineering judgments. 

The work by Brosilow and coworkers can be regarded as the first attempt toward 

the right direction for developing practically useful measurement selection criteria. 

However, these studies were conducted at a time when robust control theory was 

not developed to its full maturity, and naturally, there are serious problems associ- 

ated with the proposed criteria. First, model/plant mismatch for practical systems 

is neither adequately nor parsimoniously captured by the unstructured perturbation 

that led to the Condition Number Criterion. In practice, model/plant mismatches 



are often best described as a highly structured set of perturbations. Consequently, 

the perturbation that the Condition Number Criterion subsumes can not only ex- 

clude some of realistic model/plant mismatches, but also include many gain matrices 

that are physically inplausible. It is conceivable that measurement selection criteria 

which are based on an overly conservative model uncertainty description may lead 

to a wrong choice of measurements. In addition, the "least-square" type estimator 

that is inherent in their criteria is generally not the best choice in the presence of 

model/plant mismatch. Finally, the steady-state analysis alone may not provide a 

sufficient amount of information needed for measurement selection since dynamic mer- 

its of measurement candidate sets cannot be neglected (as explained in the previous 

section). 

The decade of 80s was a brand-new era for control research. The research corn- 

munity recognized model/plant mismatch as a key issue for most practical control 

problems and such an awareness led to the development of a number of new mea- 

surement selection criteria. Moore and coworkers suggested a set of empirical rules 

for measurement selection based on the singular value decomposition (SVD) of the 

steady-state gain matrix relating manipuated variables to measured variables [47]. 

In one of the proposed criteria, they defined what is called "intersivity index7' and 

suggested that the index be minimized in selecting the measurements. Two factors 

determine the intersivity index: the sensitivity of measurements to manipulated vari- 

ables and the condition number of the gain matrix. Intuitively, it is clear that neither 

factors should have significant effects on the closed-loop performance since the ul- 

timate role of the secondary measurements is to provide estimates for the effect of 

disturbances on various system states and controlled outputs. Even though the crite- 

ria may have provided correct results to the particular application that they studied, 

they should be dismissed as general measurement selection criteria. 

Bequette and Edgar suggested a slightly different approach to measurement selec- 



tion [5] .  -They proposed to minimize the maximum singular value of the "inferential 

error" matrix, which is a measure of the "worst-possible" steady-state errors in the 

controlled variables when the secondary variables are controlled perfectly through a 

controller with integral action. They also suggest that minimization of the inferential 

error should be balanced against the sensitivity of measurements to manipulated vari- 

ables and leave the final trade-off to engineering judgments. Their criteria have two 

major problems. First, the sensitivity of measurements to the manipulated variables 

is not a relevant issue for measurement selection as pointed out previously. Second, 

it is generally not the best (although often done in practice) to use controllers with 

integral action for inferential control as the perfect control of the secondary variables 

can lead to arbitrarily large errors in the primary variables. 

To summarize, there is a clear need for better measurement selection criteria that 

address the "real- world-relevant" issues in a general, correct manner. Fortunately, the 

time is ripe for directing efforts to such a need as there has been a major development 

in robust control. Doyle introduced a powerful new theory called the LLStructured 

Singular Value (SSV)" that enables analysis of frequency-domain performance of a 

closed-loop system in the presence of general "structured9' perturbations describing 

model uncertainty (221. As demonstrated in this thesis, the SSV theory provides a 

convenient framework to develop measurement selection criteria addressing the issue 

of model/plant mismatch generally and explicitly. 

1.4.2 Previous Work in Inferential Control System Design 

Inferential control system design methods can be classified into two major categories: 

a state estimation based approach and an output estimation based approach. In 

the state estimation based approach, a mathematical model relating various system 

inputs to the outputs is used to build implicitly or explicitly an estimator for the 

system states and/or controlled outputs. Then this state estimator is combined with 



a control law which calculates the control inputs on the basis of these estimates. 

In the output estimation based approach, an explicit relationship (either static or 

dynamic) between the secondary measurements and the primary variables is derived 

using a mathematical model or plant data and is combined with a control system 

that is designed under the assumption that the primary measurements are reliably 

available at the sampling rate of secondary measurements. 

Before the era of optimal control (and even today to a wide extent), inferential 

control was mostly accomplished through PID controllers with ad hoc fixes. This 

approach was based on the premise that secondary measurements with similar be- 

havior in responding to disturbances and manipulated inputs as the primary variables 

could be chosen. When this premise was not satisfied, the resulting steady-state off- 

sets in the primary variables were quite substantial. To resolve this serious problem, 

auxiliary PID controllers using the 66slow" primary measurements were cascaded to 

the main inferential controllers to provide setpoints for them [44]. These so called 

"parallel cascade controllers" were heuristically designed for most cases and dynamic 

performance was at times quite poor [53]. 

In the 60s and 70s, many control research efforts were directed toward the time- 

domain stochastic optimal control. The Linear Quadratic Gaussian optimal control 

theory, or the Hz-optimal control theory, provided a unified design method for gen- 

eral multivariable linear systems, based on the objective of minimizing the variance of 

the chosen (possibly frequency weighted) controlled variables under certain stochas- 

tic assumptions on the system disturbances and measurement noise [36,3]. A nice 

property of the LQG controller is that its design can be decomposed into those of the 

optimal state estimator (Kalman filter) and of the optimal state feedback regulator. 

This separation naturally fit to the interpretation of an inferential control system as 

a composite of an estimator and a regulator. 

Various modified forms of the standard Kalman filter design appeared. One no- 



table version is that proposed by Morari and Stephanopoulos who showed how the 

problem of indetectability caused by the presence of nonstationary noise could be 

overcome in an optimal way [49]. Brosilow and coworkers suggested a slightly dif- 

ferent approach in which a "least-squaren type static estimator is combined with ad 

hoc chosen lead-lag dynamic elements [32,31,7]. The approach is clearly related to 

the Kalman filter design as the "least-squaren type static estimator correponds to the 

steady-state Kalman filter gain when all the disturbances are modelled as nonstation- 

ary noises. 

After decades of much excitement and intense research efforts, it became apparent 

that the LQG design method suffered some serious drawbacks as a general methodol- 

ogy to solve practical control system design problems, especially those for the process 

industry. The failure of the EQG design in terms of general practical applicability 

can be attributed to its two major deficiencies: its inability to incorportate the model 

uncertainty explicitly and its inability to deal with constraints. As Doyle [21] showed, 

there is no inherent robustness margin for LQG controllers. However, there are clearly 

enough degrees of freedom in LQG controllers to achieve desirable robustness charac- 

teristics for most problems. The main problem is that robustness has to be achieved 

through various indirect design parameters such as input penalty weights and noise 

covariance matrices. At the time when a rigorous robustness analysis method such 

as the SSV theory was not available, it must have been very frustrating, if not im- 

possible, for engineers to determine these indirect parameters such that a closed-loop 

system with desirable performance and robustness characteristics is obtained. In ad- 

dition, a lack of general theory for designing anti-windup, bumpless transfer schemes 

that are commonly employed in industry to deal with various problems arising from 

process constraints was another major impediment to successful application of the 

LQG design method. 

Two notable developments during the 80s have partially alleviated these deficien- 



cies of the LQG design method. First, with the SSV analysis method [22], engineers 

can at  least readily check the robustness of the designed controller (although sig- 

nificant trial and error may be necessary before obtaining a satisfactory design). In 

addition, a general theory on the topic of anti-windup and bumpless transfer has been 

developed for multivariable controllers [lo]. 

In the 80s, the failure of the LQG design in practical environments spurred two 

distinct approaches to control system design, opening a new era of feedback control: 

H,-optimal control and Model Predictive Control (MPC) . The H,-optimal control 

was initiated by the work of Zames in which he suggested that performance spec- 

ifications for most practical control problems may be better posed in terms of the 

Ha-norm rather than the Hz-norm ( i . e . ,  the standard integral square norm used in 

the EQG theory) [65]. Since then, the H,-optimal control has grown to become the 

topic of the 80s receiving much attention and substantial research efforts. Today a 

complete state-space solution to the general Ha-optimal design problem is available 

[18]. Much of the enthusiasm and attention devoted to the H,-optimal control comes 

from the fact that the H,-optimal synthesis can be combined with Doyle's SSV anal- 

ysis into an iterative design algorithm called "p-Synthesis [17]." A distinct merit of 

this algorithm is that it directly exploits the given description of model uncertainty. 

Today the p-Synthesis stands alone in the list of design methods that can incorporate 

the available information on model/plant mismatch directly. 

Although the H,-optimal design method can be regarded as a theoretically com- 

plete design method and p-Synthesis holds high promises as a design method for 

the future, it will probably take some time before they can have a strong impact on 

practical applications. In order for them to be useful for the inferential control prob- 

lem posed in this thesis, the issue of multi-rate sampling and sensor failure tolerance 

must be addressed. In addition, the theory does not extend to systems described 

through nonlinear operators, and consequently, the constraint issues cannot be ad- 



dressed directly in the designs, even though the aforementioned developments in the 

anti-windup, bumpless transfer significantly widened the scope of application for these 

design methods. 

In parallel to the developments in the H,-optimal control which came mostly from 

researchers in applied mathematics and electrical engineering, process industry devel- 

oped a technique called Model Predictive Control that can address various operational 

issues in a general, systematic way. This development was motivated by increasing 

cost and engineering efforts required to design and debug various constraint handling 

schemes for increasingly sophisticated control configurations used by the industry. 

Today's enthusiasm for MPC probably originated from the work of Cutler, in which 

he suggested a technique called "Dynamic Matrix Control (DMC) [15]." Even though 

the intial version of MPC was rather intuitively baed  and heuristic in derivation, a 

number of researchers, notably Garcia and Morari [24], have since discovered that 

there is a connetion between the MPC and various modern design methods. Much 

of the attraction for MPC comes from the fact that various constraints are handled 

directly in the formulation through the use of on-line optimization. In addition, the 

technique was originally developed for nonparametric (finite impulse response or step 

response) models and therefore were more accessible to process engineers who lack 

traditional control backgrounds. 

Since the introduction of DMC, a number of different versions of MPC have ap- 

peared in both academic community and industry, some of them using parametric 

models [42,57,12,13]. However, there has been a lack of a unifying framework which 

connects all the MPC techniques and also various LTI design techniques such as the 

LQG method. A consequence of this lack of a unifying framework is that MPC can- 

not stand as a truly general design methodology. The scope of application for various 

MPC techniques are limited to the probIems where the primary measurements are 

available (or their estimates are provided through an independently designed output 



estimator). Their extensions to inferential control problems have not been available. 

An MPC controller in its unconstrained form amounts to nothing more than a 

linear time invariant controller. In the presence of active constraints, however, the 

controller is inherently nonlinear and its stability and robustness analysis becomes 

very difficult, if not impossible. Various strange behaviors of MPC controllers in the 

presence of active constraints have been observed and documented [64]. Another de- 

ficiency is a lack of intuitive robustness tuning parameters. There are clearly enough 

on-line tuning parameters to make MPC controllers robust. However, none of them 

have a very direct interpretation to system robustness such as an explicit relation- 

ship with closed-loop bandwidth. The overabundance of tuning parameters simply 

confuses engineers and makes tuning more difficult. In order for MPC to continue 

its success in a practical environment, it is important that a new version of MPC 

equipped with tuning parameters having specific, well-understood effects on the sys- 

tem robustness become available in the near future. 

An additional issue for the output estimation based approach is how to design an 

estimator based on the available plant data. Standard regression techniques such as 

the Least Square (LS) regression would be directly applicable if the regressor inputs 

(the secondary measurement data) could be freely chosen by engineers as in open-loop 

identification experiments. However, such is not the case and the regression matrix 

often tends to be ill-conditioned, leading to an estimator with high sensitivity to 

measurement noise. More sophisticated techniques such as the Partial Least Square 

(PLS) regression has been suggested as an alternative to overcome this difficulty [45]. 

The above-discussed developments and unresolved issues are outlined schemati- 

cally in Figure 1.2. In summary, there is a number of research issues that must be 

resolved before these advanced control techniques can be applied successfully (in a 

general sense of the word) to "real world" inferential control problems. Some of more 

pressing issues include 
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1. Establishment of a unifying framework for MPC in which a clear connection 

is drawn between various MPC controllers and LTI controllers and subsequent 

extension of traditional MPC techniques to general inferential control problems. 

2. Providing MPC and LQG controllers with tuningldesign parameters that have 

specific, well-understood effects on the system robustness. 

3. Devising constraint handling strategies and failure tolerance schemes for LQG, 

MPC, and p-Synt hesis controllers. 

This thesis will provide answers (some complete and others only partial) to these 

issues. 

1.5 Thesis Overview 

Chapter 2 provides a necessary mathematical background for the further develop- 

ments in the thesis. Some definitions and terminologies used in robust control are 

given and the inferential control problem studied in this thesis is formally introduced. 

The section also provides a brief summary of major results for the Structured Singular 

Value theory, which is the main theoretical basis for the work in this thesis. 

The rest of the thesis is roughly divided into two parts: Chapter 3 which is devoted 

to the topic of measurement selection and Chapters 4-5 that are devoted to inferential 

control system design. 

In Chapter 3, an approach to the problem of measurement selection is outlined. 

The approach taken is to eliminate systematically undesirable candidates for which 

a controller satisfying a given performance specification cannot be designed. Within 

this framework, the SSV theory is used as a main vehicle to develop a number of 

measurement screening tools that address the issue of model/plant mismatch as well 

as other aforementioned issues in a rigorous and general way. Some proposed tools are 

independent of the design methods while others are tied to specific design methods. 



Various previously proposed criteria are discussed in perspective of the new method. 

Even though we develop the chapter in the context of measurement selection, the 

presented method is applicable to the general problem of control structure selection 

(which involves selection of actuators as well as measurements) without modification. 

Two example applications of the new tools are discussed: applications to a binary 

high-purity distillation column and multi-component distillation column. 

Chapter 4 is devoted to the output estimation based approach to inferential control 

systems design. This approach involves two independent design steps: design of an 

output estimator which calculates the estimates for the primary variables from the 

available measurements and that of a controller which computes the manipulated 

input moves on the basis of the estimates. The strategic positioning of the output 

estimation based approach before the state estimation based approach (which is the 

major contribution of this thesis) in this thesis is br;e to the fact that the control 

system design for the former approach is a special case of the state estimation based 

design presented in Chapter 5 and is therefore much simpler. By presenting the 

simper methods first, we hope that readers will acquire background knowledge and 

familiarity with our notation before moving onto more complex and general cases. 

The output estimator design is discussed in two different contexts: the case where 

a full dynamic model relating manipulated inputs and disturbances to primary and 

secondary variables is available and the case where only pIant data for primary and 

secondary variables are available. For the former case, two major design approaches, 

Kalman filter design and p-Synthesis design, are outlined and their relative merits 

are compared. For the latter case, various regression techniques in the literature and 

their suitability for the estimator design are discussed. 

For control system design, traditional techniques such as LQG and IMC are dis- 

cussed and extended. We also present a novel MPC technique which combines the 

general state estimation of LQG and operational merits of the trandjtional MPC 



techniques. It is also shown that LQG and MPC controllers can be equipped with 

a set of intuitive, simple on-line tuning parameters without introducing additional 

complexity to the controllers. Their connections to the traditional techniques such 

as IMC and DMC are clearly drawn and some of the limitations of these traditional 

techniques are pointed out. 

In order to make the discussion complete, we also discuss p-Synthesis, which can 

directly exploit the given uncertainty model. It is presented as more of a forward- 

looking research topic and a number of open theoretical/practical issues are pointed 

out. The chapter concludes with an application of the techniques to a heavy oil 

fractionator ("Shell Control Problem") [54]. 

Chapter 5 is devoted to the development of a general inferential control system 

design method via state estimation. In contrast to the output estimation based 

approach of Chapter 4, the approach taken in this chapter is to design directly a full 

inferential controller that computes the input moves from available measurements. 

We address the stability/performance issues in the presence of model/plant mismatch 

as well as various operational issues such as constraint handling and actuator/sensor 

failure tolerance. First, the traditional LQG design method is presented for a modified 

state space model to which most process control problems fit in more a natural way. 

Constraint-handling strategies and actuator/sensor failure handling schemes for the 

LQG controllers are discussed. Finally, an augmented form of the LQG controller 

which eliminates nonintuitive, redundant design parameters and provides for intuitive 

on-line tuning is introduced. The main purpose of the discussion on the LQG design 

is not in itself, but to lead into the subsequent development of a Model Predictive 

Control technique. 

One of the main contributions of this thesis is a novel Model Predicitve Control 

technique that is applicable to the general inferential control problem. State estima- 

tion techniques for the LQG design method is combined with finite receding horizon 



control used by the tranditional MPC techniques and the end result is an inferential 

control system design method that is capable of dealing with the issue of model uncer- 

tainty as well as various operational issues. A drawback of the method is that it does 

not exploit the given information on model uncertainty in a direct way as p-Synthesis 

does for example. Designltuning parameters are rather to be selected on the basis of 

qualitative understandings, and the quantitative performance of the designed control 

system in the presence of possible mismatches have to be tested through the SSV 

analysis. Chapter 5 concludes with an application of discussed design methods to a 

binary high-purity distillation column. 

In Chapter 6, the contributions of the thesis are summarized and put in perspec- 

tive. In addition, suggestions for future research work on the topic of measurement 

seletion and inferential control system design are given. 

Appendix A presents an MPC technique that is analogous to the state-space MPC 

technique presented in Chapter 4 and uses step response models. Main contributions 

of this work is that it extends the applicability of the step response model based MPC 

techniques to integrating systems and to systems with "slow" disturbances and that it 

provides for intuitive tuning parameters that has direct relationships with closed-loop 

response time. 

Appendix B presents a case study of a high-purity distillation column in which 

some of the techniques developed in the thesis are brought together and applied to a 

practical control problem. 



Chapter 2 

Preliminaries 

2.1 Definitions, Nomenclature 

In this section, we present a few mathematical definitions that are necessary for 

further development of the paper. 

2.1.1 Function Norms 

L,-Norm of Continuous-Time Signals 

A continuous-time-domain signal x ( t )  (R 4 Rn) belongs to the function space 

L2 [O, m) if 

where the L2-norm of x ( t )  is defined as follows: 

From Parseval's relation, 



where ii represents the Laplace-transform of signal x(t) and (.)* denotes the complex 

conjugate. 

H2-Norm of Continuous-Time, Causal Convolution Operators 

Let M be a convolution operator mapping L2[0, m) to L2[0, w). Then, Hz-norm of 

M is defined as follows: 

l o o  
IMI12 = (- 27~. / -00 trace (&*&la=jw) dU)'l2 

where k is the Laplace transform of the impulse response matrix of M. 

&,-Norm (Induced L2-Norm) of Continuous-Time, Causal Convolution Op- 

erators 

Let M be a convolution operator mapping L2[0, w) to L2[0, w). H,-norm of M is 

defined as the induced-norm of M in the space of L2[0, m) that can be expressed as 

follows: 

where & is again the Laplace transform of the impulse response matrix of M and 

li(-) denotes the maximum singular value. 

An analogous set of definitions are available for discrete-time signals and covolu- 

tion operators as well. 

e2-Nom of Discrete-Tie Signals 

A discrete-time-domain signal x(k) (Z -+ Rn) belongs to the function space 12[0, m) 

if 



where the k'z-norm of x(k)  is defined as follows: 

Again, from Parseval's relation, 

where $ ( z )  = Z ( x ( k ) ) .  Z { x ( k ) }  is defined as 

T is the time interval that each discrete time unit represents. The reason for specifying 

T in the formula instead of letting T = 1 as many text books do is because we want 

to give the frequency w the same meaning as in the continuous-time case. 

Hz-Norm of Discrete-Time, Causal Convolution Operators 

Let M be a convolution operator mapping 12[0, CQ) to 12[0, w). Then, H2-norm of M 

is defined as follows: 

112 
l~M~12  = (& /' trace (&f*&f~~=~.~~) dw) -+ 

where k ( z )  is defined as 

1 for k  = 0 
&(z)  = Z { M S ( k ) } ;  S(k) = 

0 for k  # 0 



H,-Now (Induced 12-Norm) of Discrete-Time, Causal Convolution Opera- 

tors 

Let M be a convolution operator mapping 12[0, co) to 12[0, co). The induced-norm of 

M in the space of l2 [ O ,  w) (" H,-norm" ) is expressed as 

llMx l l t 2  
* 

ll"llm = SUP = SUP 5(MIZ=e3W~) (2.10) 
z E e z [ O , ~ )  11211e2 O < U S +  

2.1.2 Linear Fractional Transformation 

We will use the following notations for linear fractional transformations (LFT): 

where X is partitioned in such a way that XI1 has the same dimension as YT for 

the upper LFT (3;) and Xz2 has the same dimension as YT for the lower LFT (8). 

These definitions are illustrated in terms of block diagram in Figure 2.1. X and Y 

can be either transfer functions or complex matrices. 

2.1.3 Strucutured Singular Value 

The Structured Singular Value ( p  : CnXn x A -+ &+) is defined as follows: 

Definition 2.1 Structured Singular Value ( p )  

Let M f CnXn and define the set A as follows: 



(a j Upper Linear Fractional Transformation 

(b) Lower Linear Fractional Transformation 

Figure 2.1. Upper and Lower Linear Fractional Transformations 



Then p d ( M )  (p of M with respect to the uncertainty structure A )  is defined as 

[mina (o(A) : det(I  + MA) = 0 ,  A E A ) ] - 1  

(2.14) 

0 if 3 no A E A such that det(I + MA) = 0 

The structured singular value has the following lower and upper bounds: 

max p(QM) = pA(M) 5 (a) &$ b(DMD-*) 
QE Q 

where 

Q = {& E A : Q*Q = I,) (2.16) 

2) = {diag [dlIP,,  . . . , del,,, Dl, . ,Dm] : d j  E R+, D; E cTiXTi, D~ = D; > 0 )  

(2.1 7 )  

and p ( . )  denotes the spectral radius. The maximum of the lower bound is always 

equal to p,  but the maximization is a nonconvex optimization [52]. The minimization 

of the upper bound in general does not achieve /I except for a few special cases (e.g., 

cases where A has the block structure of three or less blocks). However, the infimum is 

very close (essentially equaI within the accuracy of engineering significance) to p even 

for general cases. The minimization can be formulated into a convex optimization 

and, for that reason, the infimum has been used extensively in various tests involving 

the numerical calculation of p. 

2.2 Modelling of Systems 

Most real systems are modelled more naturally in continuous time. However, discrete 

time models are often used in digital control system design and analysis for mathe- 



matical convenience. In this section, we present general system descriptions, both for 

the continuous- and discrete-time domains, that are used for the inferential control 

problem treated in this thesis. 

Because our problem involves multiple sampling rates, it is convenient to introduce 

the following time units and express the time in terms of these units: 

Definition 2.2 Shortest Time Unit (STU) 

Let the sampling times of measurements be nlr,n2r,.  .. , nmr.  Then 7s (denoting 

STU) is defined as follows: 

where g.c.d.{.) represents the greatest common divisor. 

Definition 2.3 Basic Time Unit (BTU) 

Let the sampling times of measurements be nlr,  nzr, . . . , n,r. Then, TB (denoting 

BTU) is defined as follows: 

where l.c.m.{.) represents the least common multiple. 

The time t will be sometimes represented by the pair (k, j) denoting t = (kN + j)rs 

where k  E 2?+, j = 1, . , N - 1 and N = rB/rS. For convenience of exposition, we 

will occasionally write t = ( k , m N  + j )  to mean t = ( k  + m, j). 

2.2.1 Continuous Time 

Nominal Model 

The nominal process model we use is the following statespace differential equation: 



Process: 

Measurements: 

x : state vector 

d : disturbance vector 

r : primary variable reference input vector 

v,: primary measurement noise vector 

v, : secondary measurement noise vector 

u : manipulated input vector 

y,: primary variable vector 

ye: primary variable error (y, - r )  vector 

y, : secondary variable vector 

dc:  noise-corrupt primary measurement vector 

G,: noise-corrupt secondary measurement vector 

T T T T  w : external input vector (w = [8 r v, v, ] ) 

e : controlled variable vector (e = [y: uTIT) 

The superscript (.)' is used to distinguish the model parameters from those of the 

discrete-time model that is introduced subsequently. C,"(j) and C,C(j) are C," and C5 



with the elements of all rows corresponding to the measurements unavailable at jth 

sampling instant set to zeros. It is assumed that (Ac, Bt) is a stabilizable pair and 

,Ac is a detectabIe pair. 0, and 0, are the measurement delays (in terms ([:I ) 
of STU) of the primary and secondary measurements respectively. 

Figure 2.2 is a block diagram representation of the inferential control problem 

for the system described through (2.20)-(2.24). The relationships between the input- 

output representation and the state space model are as follows: 

The above model assumes that the effect of the disturbances (d) and manipulated 

inputs (u) on the system outputs (y, and y,) are described by strictly proper transfer 

functions and the measurement noise (v, and v,) and the system disturbances (d) 

are uncorrelated. These assumptions are satisfied for almost all practical problems. 

Otherwise, the formulation is general enough to treat any conceivable control problem. 

Uncertain Model 

An inexactly known continuous-time system can be represented as an LFT of G(s)  

and A, (see Figure 2.3). G(s) is the transfer function model relating the input vector ,- -, 

L J 

nominal model of the sytem. A, is a set of complex perturbations to the frequency 

[v: wT uTIT to the output vector [v' eT $: $7 rTIT. 

response matrix of the nominal model. More specifically, the "true" system can be 

any system PA (s) satisfying the following two conditions: 

G22 G23 

G32 G33 
(g  P,,) is the 



Continuous (Discrete-Time) Signal 
f l  MR Sampled Signal 

Figure 2.2. General Block Diagram Representation of a Multi-Rate Sampled-Data 
System 

1. The frequency response matrix of the system PA I,, jW for each frequency belongs 

to the set Pu(w) where 

pu(w) = {(z(G, A.) I . , ~ ~  : E BA,) 

BAu = {A E A,: $(A) 5 1) (2.30) 

A, = {d iag (~ l , .  . . , At, Sl I,, , . , SmIrm) : Ai E C p i  Xpi, Sj E C, 

2. PA(s) has the same number of unstable poles (poles in the closed RHP) as the 

nominal model P,, (s) . 

We will refer to the set of systems satisfying the above conditions as Pn. The above 

uncertainty type is called structured since A, carries a specific block-structure as 



Figure 2.3. General Block Diagram Representation of a System with Norm-Bounded 
Perturbations Describing Model/Plant Mismatch 

opposed to being a single full block. We assumed that each A; is square. This is 

without loss of generality since we can always express a m x n or n x m (rn > n)  

nonsquare A; as the product of a m x m square A; and a weighting matrix: 

A;"" =. [ I .  o]AmXm 



2.2.2 -Discrete Time 

Nominal Model 

The process may be sometimes described as a discrete-time system where each discrete 

time unit represents the time interval of TS, the STU. The discrete-time model that 

corresponds to the continuous-time model described through (2.20)-(2.24) is given by 

the following state-space difference equation: 

Process: 

Measurements: 

Again, it is assumed that (A, B,) is a stabilizable pair and ([:I,.) is ade-  

tectable pair. 

The input/output representation for the system is given by the pulse transfer 

function 



where z represents a forward-shift operator. Again, the above model assumes that the 

effect of the disturbances (d) and manipulated inputs (u) on the system outputs (y, 

and y,) are described by strictly proper pulse transfer functions (implying delay of at 

least one STU) and the measurement noise (v, and v,) and the system disturbances 

(d) are uncorrelated. 

Uncertain Model 

In an analogous manner to the continuous-time case, an inexactly known discrete- 

time systenl can be represented as an LFT of G ( z )  and A,. G ( z )  is again the pulse 

transfer function model relating the input vector [vf wT uTIT to the output vec- 

tor [ T T *T *T T' lT  vi e yc y, r . The only minor difference is in the characterization of the 

perturbation A,. For a discrete-time system, the set of potential "true" systems is 

characterized by P A ( z )  satisfying the following two conditions: 

1. The frequency response matrix of the system P A l , , , j w ~  for 0 < w belongs to 

the set P u ( w )  where 

+ rj = dim {v.) = dim {vi} , 1 5 i _< e l l  5 j < m 
i j 

T represents the time interval that each discrete time unit represents (rs in this 

case). 



Figure 2.4. Closed-Loop Performance Specifications for a General System with 
Norm-Bounded Perturbations 

2. PA(z) has the same number of unstable poles (poles outside the open unit disk) 

as the nominal model P,,,(z). 

Again, we will refer to the set of systems satisfying the above conditions as Pn. 

2.3 Performance Measures 

Two popular performance measures are the Hz- and H,-norm (as defined in Sec- 

tion 2.1.1) of the closed-loop operator MA shown in Figure 2.4. MA is the closed- 

loop operator relating the normalized inputs w' to the weighted outputs e' (through 



frequency-dependent weights Ww and W, respectively). Hence, 

In the robust control terminology, a control system is said to achieve nominal 

performance when it satisfies the performance specification in the absence of any 

model/plant mismatch (A, = 0 Vw). In addition, it is said to achieve robust perfor- 

mance when it satisfies the performance specification in the face of all prespecified 

model/plant mismatches (in other words, for every system belonging to Pn). 

2.3.1 Continuous Time 

A difficulty associated with assessing the closed-loop performance in the continuous 

time domain is that the presence of samplers cause the closed-loop system to be 

time-varying (although it is periodically time varying). Dailey [16] showed how the 

periodicity of time variance of samplers can be exploited to derive "conic sector" 

bounds which enable rigorous, though conservative, performance analysis. However, 

the conservativeness of the analysis method can be quite significant for some cases, 

limiting the method's universal applicability. When the sampling time is chosen 

to be small relative to the closed-loop bandwidth, a sampled-data system can be 

well approximated as an LTI system. In this section, we summarize first typical 

performance specifications and performance analysis methods for LTI systems. Then, 

we briefly discuss how sampled-data systems can be modified so that the introduced 

analysis methods can be applied to them. 

Hz Performance Measure for LTI Systems 

Consider a hypothetical experiment where a unit impulse is injected to each input 

channel one by one. The Hz-norm of MA measures the sum of the squared &-norm 
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of the output vectors e l ( t ) .  In other words, 

where 6; is the unit impulse in the ith channel. By appropriate choices of normalizing 

weights Wd and Wp, we can define the following two performance objectives: 

1. The nominal performance is achieved if 

Mnom is MA for A, = 0  and can be expressed as 

2. The robust performance is achieved if 

Unfortunately, there is no method to test the condition (2 .47)  at current time. 

H, Performance Measure for LTI Systems 

Consider all input signals w' such that IIwlIILz < 1. AS a performance objective, we 

may want to minimize the "worst-possible" &-norm of the output e f ( k ) .  This "worst- 

possible" L2 norm of e t ( k )  is the H,-norm of MA. Again, by appropriately choosing 

the weighting functions W,, and Wp, we can define the following two objectives: 

1. The nominal performance is achieved if 
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2. The robust performance is achieved if 

The condition (2.49) can be tested through a function called the Structured Singular 

Value (often denoted as "p") 1171: 

if and only if 

1. Nominal Stability: 

Mn, is stable 

2. Structured Singular Value Condition: 

C1 

[*u A*] (2.51) 

Frequency -Domain Performance Analysis for S ingle-Rate S ampled-D ata 

Systems 

A block diagram representing a typical sampled-data system is shown in Figure 2.5. 

The problem in performing frequency-domain analysis for sampled-data systems is 

that the samplers cannot be represented as transfer functions since they are time- 

varying. However, we may approximate them as LTI operators under certain as- 



Approximation / \ it% 

Figure 2.5. Block Diagram Representation of Typical Sampled-Data Systems Modi- 
fications for Frequency-Domain Analysis 



sumptions. 

The Fourier-transform of the sampled singal (ym); (expressed as impulse trains) 

is 

The notation L{.) represents the Laplace transform. Now assume that frequency 

content of signal ym is limited to within the Nyquist band. That is, assume 

Then, 
1 R 

LI (~m) ; ) I s= jw+kF  = -f T {ym)18=jw for o < w < - vk - T '  

Hence, within the Nyquist band (0 < w < $), the sampler is well approximated 

as $ assuming (2.54) is true. When the signals are properly anti-aliased, (2.54) is 

a good approximation. Note that he approximation of the samplers as $ does not 

hold outside the Nyquist band. However, the performance outside the Nyquist band 

is often of little interest since signals above the Nyquist frequency are attenuated 

through "holds" and "anti-aliasing filters." The Bode plot of a zero-order-hold is 

shown in Figure 2.6. 

Another method that allows for a rigorous, conservative analysis is the "conic 

sectorn met hod. In the conic sector met hod, the samplers are expressed conservatively 

as an LTI operator (called "cone center") plus an LTV block the norm-bound of which 

(called "cone radius") is expressed through another LTI operator - see Figure 2.5. It 

turns out that the optimal cone center for the sampler is exactly $. Most of the p- 

analysis results can be extended to treat the norm-bounded LTV blocks (together with 

the usual LTI blocks). Further details will not be discussed in this thesis; interested 

readers are referred to Dailey [16]. 



Normalized Frequency (w*T) 

Figure 2.6. Bode Plot of Zero-Order-Hold 

Frequency-Domain Performance Analysis for Multi-Rate Sampled-Data Sys- 

tern 

The approximation method and the conic sector method that were discussed for 

single-rate sampled-data systems extend straightforwardly to multi-rate sampled-data 

systems. Namely, each sampler can be approximated (or its cone center can be chosen) 

as 1 where T; is its respective sampling time. For multi-rate systems, however, the T, 

assumption of band-limitedness of signals may not hold for "slow-sampled" signals 

and a conservative approach such as the conic sector method may be necessary. In 

addition, another difficulty may arise from the fact that some of the sampled signals 

may go through parts of the controller that are shift-varying with respect to their 

sampling times. To elucidate this point, a typical control system for a double-rate 

sampled-data system is shown in Figure 2.7. The samplers within the controller 



IIIIIIIIIIIIIIIIIIIRI "Fast1' Single-Rate Sampled Signal 
I I "Slow" Single-Rate Sampled Signal 

Figure 2.7. Block Diagram for Typical Double-Rate Sampled-Data Systems 

(referred to as "digial sampler" in this thesis) must also be approximated or bounded 

with conic sectors (with shift-invariant cone center, radius and shift-varying A block). 

This will be discussed in the context of discrete-time systems in Section 2.3.2. 

2.3.2 Discrete Time 

In an analgous manner to the continuous-time case, one can specify performance re- 

quirements based on the H2- and H,-norm of the discrete-time closed-loop operator. 

Discrete-time performance analysis should be adequate for continuous-time systems 

if sampling time is chosen to be insignificant relative to the closed-loop bandwidth 



and appropriate &anti-aliasingn of the measurements are performed [3,50]. 

H2 Performance Measure for SR Discrete-Tie Systems 

Suppose that M A  is a discrete-time closed-loop operator for a single-rate (SR) 

discrete-time system where all measurements are available at  every time unit. Con- 

sider a hypothetical experiment where a unit impulse is injected to each input channel 

one by one. The H2-norm of MA measures the sum of the squared .t2-norm of the 

output vectors el(k). In other words, 

where 6; is the discrete-time unit pulse in the ith channel. Again, by appropriate 

normalization of el,  we can define the following two performance objectives: 

1. The nominal performance is achieved if 

where 

Mmm = Wp(G22 + G23K(I - G33K)-lG32)% 

2. The robust performance is achieved if 

As for the continuous-time case, there is no method to test the condition (2.59) at 

present. 



Hz Performance Measure for MR Discrete-Time Systems 

When the measurements are sampled at  multiple rates, the resulting MA is a periodi- 

cally shift-varying (PSV) system with the period of 78. Hence, 6; entering the system 

at t = (k, j )  and t = (m,n) lead to different outputs MA&; if j # n. However, the 

periodicity of the system ensures that the outputs are the same for k # rn as long as 

j = n. The natural way of extending the definition of Hz-norm to MR systems is as 

follows: 
1 N-1 dim{wl) w 

(M~[6 i l e ( t ) )~~A[6&( t )  (2.60) 
e=o i=1 t=(O,O) 

where [Silt denotes unit impulse entering at ith channel at t = (0, l). Note that the 

above definition reduces to the standard Hz-norm definition if the system is shift- 

invariant. In addition, the resulting H2-norm for a PTV system is independent of 

the choice of time zero. The nominal performance and robust performance can be 

defined in exactly the same way as for SR systems. 

H, Performance Measure for SR Discrete-Time Systems 

Consider all input signals d' such that llBllLz < 1. AS a performance objective, we 

may want to minimize the "worst-possible" 12-norm of the output e'(k). This "worst 

possible" e2 norm of e'(k) is the H,-norm of MA. As before, we can define the 

following two objectives: 

1. The nominal performance is achieved if 

2. The robust performance is achieved if 



The condition (2.62) can be tested through the following condition on the Structured 

Singular Value: 

max I I M A ~ ~ ~  < 1 (2.63) 
P A E P ~ .  

if and only if 

1. Nominal Stability: 

M,, is stable. 

2. Structured Singular Value Condition: 

hl, Performance Measure for MW Discrete-The Systems 

For systems where one or more measurements are available only at every integer- 

multiple rs, the resulting MA is a shift-varying operator. Let us define the H,-norm 

for a PSV operator as its induced &-norm. Clearly, the induced norm does not depend 

on the choice of time zero even for PSV operators. The main difficulty with the H, 

performance analysis of a MR system, however, lies in that the system is shift-varying 

and the pulse transfer function representation of the closed-loop system does not exist 

(in terms of time unit T ~ ) .  Hence, the frequency-domain techniques just described 

cannot be applied to MR systems straightforwardly. As for the sampled-data systems 

in the continuous-time domain, the samplers can either be approximated as shift- 

invariant operators or be bounded using conic sectors. 



Frequency-Domain Performance Analysis for MR Discrete-Tie Systems 

Suppose the system is represented as a discrete-time system of TS, which is a common 

divider of all sampling times. Consider a continuous-time signal y&. The fourier 

transform of the signal sampled at every 7s is 

If the sampling time of y& is N1rS, then the fourier transform of the sampled-signal 

Now let ym(k) be a general discrete-time signal where each time unit represents 

the time interval of 7s and denote its sampled signal sampled at  every N time unit 

as (ym(k))bl. From the above discussion, it is apparent that the fourier transform of 

(ym(k))kl (expressed as impulse trains) can be expressed as 

where 2{ym (k) } represents Cr=o Ym (k)$. Assuming that the inputs to the samplers 

f l  7r are band-limited ( i . e . ,  2{ym(k)} l,=&,., 0 for fi < w < ;), 

1 7r 

'{(~m)b }lz=eju, = - Z{ym(k)) lz=,pTs for o 5 w 5 - NI Ni 7s (2.69) 

Typical discrete-time multi-rate sampled-data systems are represented schemat- 

cally in Figure 2.8. Under the assumption of band-limitedness of the signals, the 

above discussion implies that each sampler may be replaced with l / N i  where N; is 

its respective sampling time expressed in terms of the discrete time unit, 7s. Similar 

arguments can be made to the samplers within the controller as well. The samplers 



within the controller may be replaced by N I / N o  where NI and No are the sampling 

intervals (in terms of T ~ )  for the input and output signals of the sampler respectively 

(see Figure 2.8). A more conservative approach is to represent these samplers as LSI 

operator plus the norm-bounded LSV block as in the conic sector approach for the 

continuous time system. Details of this method will not be discussed in this thesis. 

2.4 Description of Constraints 

Typical linear constraints in process control can be described as follows: 

ulow and uhigh are the upper and lower bounds on the control inputs, Au,,, is the 

maximum allowed changes in the control inputs, and and (yc)high are the upper 

and lower bounds on the control outputs. Note that we allow the constraints to vary 

with time. 



Approximation / \ 2% 

Figure 2.8. Block Diagram for Typical Multi-Rate Sampled-Data Systems and Mod- 
ifications for Frequency Domain Analysis 



Chapter 3 

Robust Control Structure Selection - 
Secondary Measurement Selection in the 
Presence of Modellplant Mismatch 

The purpose of this chapter is to present a unified methodology for measurement 

selection in the presence of model/plant mismatch. First, we outline an underlying 

philosophy on which we base our efforts to develop measurement selection tools. 

The rest of the chapter presents various measurement selection tools that have been 

developed thus far within this philosophy. Some tools require only the system-intrinsic 

information ( i . e . ,  information that is independent of the controller) while other tools 

are developed assuming certain properties of the controller and are therefore tied 

to specific controller design methods. Even though we develop this chapter in the 

context of measurement selection only, all the proposed methods are applicable to 

the more general problem of control structure selection (which involves selection of 

actuators as well as measurements) without modification. 

3.1 General Approach/Philosophy 

The conventional approach to the problem of measurement selection has been to 

develop a criterion or a set of criteria based on which the comparative merits of 

measurement candidates are evaluated and the best candidate is chosen [5,31,35,29]. 

However, we believe there must be another layer to the measurement selection pro- 



cedure. For most practical problems, the number of measurement candidates (that 

consist of all the possible combinations of the available sensors) is extremely large. 

The criteria that accout for all the relevant characteristics of measurements with suf- 

ficient generality and precision are not only very difficult to develop, but also tend to 

be numerically complex. Reducing the number of candidates through simple criteria 

before applying detailed analysis should lessen the required efforts for measurement 

selection dramatically. 

Hence, the approach we take to the problem of measurement selection is to elim- 

inate first systematically those candidates for which a controller meeting a given 

performance specification cannot be designed (as illustrated in Figure 3.1). This 

added layer resolves one difficult problem for the conventional approach: In practical 

applications, a nonconservative, rigorous uncertainty model is often unavailable. It 

is generally not desirable to make the ultimate measurement selection based on the 

uncertainty information that is either incomplete or conservative. When the objective 

is to eliminate undesirable candidates, however, "parsimonious" uncertainty models 

(that is, models that encompass only those mismatches that are highly probable to 

arise in practice and have strong influences on the closed-loop stability and perfor- 

mance) can be used. In other words, the elimination process can be carried out even 

with incomplete knowledge of system uncertainty. Once the number of candidates 

has been reduced to a sufficiently low level, detailed analysis (such as actual control 

system design and simulations) can be carried out to make the final decision. 

The screening of the candidates can be accomplished in two steps as illustrated 

in Figure 3.1. The first proposed step is to eliminate the candidates for which a 

controller achieving a desired level of robust performance does not exist regardless of 

what controller design method is used. The criteria that can be used to accomplish 

this design-independent screening will be referred to as "general screening tools." This 

screening process leaves candidates for which a control system leading to satisfactory 



performance may potentially exist. However, this alone may not reduce the number 

of candidates down to a sufficiently low level. In some cases, the control design 

methods available to the engineer may invariably lead to controllers with certain 

intrinsic properties. We may exploit these properties and carry out an additional 

screening in the context of a particular design method. That is, one may choose 

to further eliminate those candidates for which the particular design approach under 

consideration cannot yield a controller achieving a desired level of robust performance. 

The criteria that can be used under a particular design approach will be referred to 

as "design-specific screening tools." If the second screening under a particular design 

approach does not leave any viable candidate, it is implied that a more complex, 

involved design approach is necessary. The screening process may be repeated in the 

context of another design approach. 

In the subsequent parts of this chapter, we introduce a fiumber of numerically e 6 -  

cient screening tools, both general and design-specific, that can be used to reduce the 

number of measurement candidates. The whole approach will be based on the Struc- 

tured Singular Value theory, therefore, allowing a general norm-bounded uncertainty 

description. 

Measurement Selection Problem Formulation 

The general measurement selection problem we treat in this thesis is depicted in Fig- 

ure 3.2. yk  represents the jth set of measurements (including the primary, secondary 

measured variables) excluding those variables that cannot be measured reliably. The 

reason for excluding the operationally unreliable measurements is because it is desir- 

able to choose a measurement set such that a required level of performance can be 

maintained even when some of the failure-prone measurements become unavailable. 

In many practical applications, the primary variables that are sampled at a slow 

rate are also operationally unreliable. In this case, y, consists only of the secondary 
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Figure 3.1. Schematic Representation of Proposed Measurement Selection Procedure 



Figure 3.2. Formulation of Measurement Selection Problem 



variables that are often sampled at  a uniform sampling rate. 

The ultimate objective of measurement selection in this thesis is to select a rnea- 

surement set such that K can be designed satisfying the H, robust performance 

requirement: 

Our main theoretical basis for developing measurement selection tools will be the 

Structured Singular Value theory. Because the theory does not extend straightfor- 

wardly to sampled-data systems and multi-rate sampled-data systems for continuous- 

and discrete-time systems respectively, one of the following two approach must be 

taken: 

1. Bound the time varying parts (for a continous-time system) or the shift-varying 

parts (for a discrete-time system) of the system with conic sectors. 

2. Assume that the signals sampled are band-limited and approximate the samplers 

as time-invariant or shift-invariant operators (as explained in Chapter 2). 

The first apporach, though rigorous, introduces significant conservativeness and is 

not suitable for developing measurement screening tools. The second approach re- 

lies on the assumption that the signals going into the samplers are band-limited. 

When signals are anti-aliased properly, the assumption is well justified. In addition, 

the operator obtained with the approximation is exactly the "cone center" for the 

conic sector used in the first approach. Hence, robust performance under the second 

approach is a necessary condition for robust performance under the first approach. 

From these considerations, we conclude that the second approach is more suitable for 

measurement selection. 

In this thesis, we develop all our measurement selection tools in the continuous 

time domain, with the added assumption that all measurements are available contin- 

uously. Extensions to discrete-time systems follows trivially from the discussion in 



Section 2.3 since most tools are based on frequency-domain conditions. The proposed 

tools can be applied to continuous-time systems with sampled measurements as well 

by using the above-discussed approximation. 

3.3 General Screening Tools 

In this section, we develop screening tools that can be used to eliminate measurement 

candidates for which a controller meeting the robust performance requirement does 

not exist. First, we derive a necessary and sufficient (but not testable) condition for 

the existence of a controller achieving robust performance. Based on the condition, 

we derive several necessary conditions that can be checked efficiently. For example, 

by relaxing the causality requirement of the controller, we can derive necessary con- 

ditions that can be formulated into convex optimization. The necessary conditions 

are proposed as screening tools. 

We base further development of this section on the assumption that the infimum 

of the upper bound of p is always equal to p for all cases (not just for cases with 

block structures of three or less blocks). This assumption is well justified since there 

has been no example where the upperbound of p differs from p significantly enough 

for engineering interest). 

Approximation 3.1 The infimum of the upper bound of p is same as p .  

pa(M) = inf a(DMD-l) 
DED 

From Approximation 3.1, the structured singular value condition (2.5 1) is equivalent 



where 

3.3.1 Test Condition for Existence of a Causal Controller Achiev- 

ing Robust Performance 

Our goal is to test whether or not a controller meeting the robust performance re- 

quirement exists for a given set of measurements. Mathematically, we test if the 

following condition is satisfied: 

where Gj  and Wd denote the plant model G and the disturbance weight W, for the 

jth set of measurements respectively. For simplicity of notation, we will drop the 

superscript { a } '  from this point on. 

IC, represents the set of all stabilizing, "causal" controllers. The causality of 

the controller implies that the controller's current /future inputs cannot affect its past 

outputs. Hence, the causality is necessary for the controller to be physically realizable. 

Mathmatically, K, is expressed as 

where R, represents the set of all proper rational transfer functions (of size dim{u) x 

(dim{ym} + dim{r))) and R3.t- represents the set of all proper rational transfer 

functions (of appropriate size) that are analytic in the closed RHP. Note that K 

has nonlinear constraints and enters Ff(Gj, K) in a nonlinear fashion as well. The 



following parametrization of IC, [63] yields an affine parametrization of the closed-loop 

operator without any nonlinear constraints: 

where (S, T)  and (3, f') are right and left coprime factors of G S  respectively ( i . e . ,  

G33 = ST-I = F-lS), and (X, Y, X, P )  is a solution to the following Bezout identity: 

Note that, for open-loop stable systems, we can choose T = f' = -I, S = S = 

G33, X = a = -I and Y = P = 0; the parametrization (3.7) simply becomes 

Ic, = {I< : K = &(I  + GSQ)-',Q E Rl-tw). In this case, the parametrization can 

be also expressed in terms of a block diagram as shown in Figure 3.3. Using the 

parametrization (3.7)-(3.8)) (3.5) becomes 

where 

Hence, the Youla parametrization gives us a test condition, which is a&e with re- 



Figure 3.3. Block-Diagram Representation of Youla Parametrization of Nominally 
Stabilizing Controller for Open-Loop Stable Systems 

spect to the parameter Q. The only restriction on Q is that it should be analytic in 

the closed RHP. However, the coupling of the parameters Q and D makes the left- 

hand side of (3.10) a nonconvex optimization problem. There is currently no general 

method of checking it. p-Synthesis that combines the H,-optimal design with the 

optimal D-scaling used in p-analysis in an iterative manner, is the only ad hoc solu- 

tion. However, the procedure does not guarantee convergence to the true optimum 

and involves many numerically intensive steps and fragile approximations. Hence, 

(3.10) cannot be considered as a viable screening tool. 

3.3.2 Test Condition for Existence of a Causal Controller Achiev- 

ing Nominal Performance 

One of necessary conditions for robust performance is nominal performance (i.e., 

meeting the performance requirements when the real system matches the nominal 

model exactly). Hence, in order for (3.10) to be satisfied, the following condition 



must be satisfied: 

inf sup 5 l(Nll + N I ~ Q N ~ I ) ~  . ] < 1 
QER'Floo w s=3w 

where 

During the past decade, various methods have been developed that enables us to test 

the condition (3.14). According to the latest method by Doyle et al. [18], checking 

(3.14) essentiallji amounts to checking if positive semidefinite solations to two Riccati 

equations exist and the spectral radius of the product of the two solutions is less than 

a certain constant (see [18] for detail). 

General Screening Tool #1 Eliminate the measurement candidates for which 

3.3.3 Test Condition for Existence of an Acausal Controller 
Achieving Robust Performance 

Let us consider dropping the causality requirement on Q. Hence, we allow the con- 

troller parameter Q to be "acausal" meaning the currentlfuture inputs to the operator 

Q may affect its past outputs. Mathematically, this is equivalent to replacing the re- 

quirement of Q E RN, with Q E R,. The condition (3.10) with Q E R, is equivalent 



t o  the following frequency-by-frequency condition: 

inf inf a ( D ( N l l  + ~ 1 2 & ~ 2 l ) l s = j w ~ - l )  < 1 VW 
QECK DEVyp 

T h e  superscript {-IK in CK implies that it is the set of complex matrices of size 

dim{u) x (dim{y,) + dim{r)). The following lemma gives a necessary and sufficient 

condition for the existence of an acausal Q  satisfying (3.10) that does not require 

finding the double coprime factor or solving the Bezout identity. 

Lemma 3.1 Let N l l ,  N12 and Nzl be defined as in (3.1 1)-(3.13). Then 

inf inf o ( D ( N l l  + N ~ ~ Q N ~ ~ ) ~ , , ~ , D - ' )  < 1 Vw 
Q E R s  DEVrp 

if and only if 

inf inf C ( D ( N ~ ~  + ~ ~ ~ ~ f i ~ ~ ) l ~ = ~ ~ ~ - ~ )  < 1 V u  
Q E C K  DE%p 

Proof Note that 

Define Q = T Q ~  + T P .  From the equivalence 

we arrive at (3.21). 



Comments on Lemma 3.1: 

1. There is no need for finding the double coprime factor of G22 and solving the 

Bezout identity since the expression for N involves only G. 

2. For open-loop stable systems, (3.21) is a necessary and sufficient condition for 

existence of an acausal controller I( satisfying the robust performance require- 

ment. In other words, dropping the causality requirement on Q is equivalent to 

dropping the same requirement on K. When the causality requirement on I( is 

relaxed, the requirement of (3.6) on K disappears leading to the condition 

Replacing K E CK with K E {Q(I - G ~ ~ Q ) - ~  : Q E C K }  leads to the exact 

inf inf 5 ( ~ ( w )  ( [ I  wp] A ( G ~ ,  K) [ I  ww 1) 
K E C K  D(w)€Vrp 

same result. However, it is more intuitive to think in terms of acausal Q than 

~ - l ( w ) )  < 1 YU 

acausal K. Since Q is required to be stable for internal stability, we can write 

Q = Q1 + Qz where Q1 mapping L2[0, m)  to L2[0, m )  (Toeplitz operator) rep- 

resents the causal part of the controller and Q2 mapping L2[0, m )  to L2[0, -m) 

(Hankel operator) represents the acausal part of the controller. Such a direct 

interpretation doesn't exist for I( since a stabilizing acausal K is not necessar- 

ily a map from L2[0, m )  -+ L2(-m, m )  (it does not have to be stable for the 

closed-loop to be internally stable). 

3. For open-loop unstable systems, (3.21) is only a necessary condition for the 

existence of an "acausal" controller K achieving robust performance. This is 

because, when Q is allowed to be acausal, the Youla parametrization (3.7) 

does not necessarily lead to a stabilizing controller K. For example, choosing 

Q(jw) = T-'Y ( jw)  Vw leads to K = 0, which is not a stabilizing controller. 



However, (3.21) is nevertheless a necessary condition for (3.10) since 

sup inf inf a ( D ( N l l  + NnQN21) ls=jwD-l) 
w QEC" D E v r p  

< inf sup inf ii(D(N11 + N12QN21)1s=jwD-1) - 
Q E R ' H w  w D E v r p  

Hence, it can be used as a screening tool to eliminate candidates for open-loop 

unstable systems as well. 

Thus far, we have shown that 

inf inf ~ ( ~ ( f i ~ ,  + N ~ ~ Q & ~ ) ~ ~ = ~ , D - ' )  < 1 Vw 
QECK D € v r p  

is a necessary condition for the existence of a controller achieving robust performance. 

It was interpreted as a necessary and sufficient condition for the existence of an acausal 

controller achieving robust performance for open-loop stable systems and a necessary 

condition for open-loop unstable systems. Next, we show that the condition (3.27) 

can be transformed into two separate conditions that can be formulated into convex 

optimization [39]. 

We first reparametrize Q as follows: 

The notation {.I* represents the adjoint operator for transfer functions (i. e., 

N*(s )  = N T ( - s )  and the complex conjugate for constant matrices). Using the new 

parametrization, the condition (3.27) can now be transformed into 



where 

A A 

Note that N : ~ N ~ ~ ~ ~ = ~ ~  = I and N21 N& = I for all w. The following theorem 

shows that the condition (3.29) can be checked through two conditions each of which 

is a convex optimization problem. 

Theorem 3.1 Let R E CnXn, U E CnXT and V E Ctxn. Suppose U*U = I,, V V *  = I, 

and UL E en'("-') and VL E c ( ~ - ~ ) ~ ~  a re chosen such that 

[ ] E cnXn are unitary. m e n  

inf inf C ( D ( R  + UQV)D- ' )  < a 
QECrXt D € V r p  

if and only if 3X E VT, such that 

and 

Proof 

inf a [D(R  + UQV)D- '1  = inf a [DRD-' + (DU)Q(VD-')] (3.35) 
QECr X t  QECrXt 

We first replace Q E CTXt with 

Q E {[(DU)*(DU)]-~I~Q[(VD-~)(VD-~)*]-~~~ : Q E cTXt} 



Then, 

inf 5 [D(R  + U Q V ) D - ' 1  = inf a (DRD-' + ~ Q P )  
Q € c r x t  

(3.36) 
Q € C r x t  

where 

[ A A ] and ( " are both unitary. Simple We want to find and such that u U,  
v, 

L J 
calculation shows that 

Now 

where 



From Doyle (1984), 

Hence, the condition (3.32) is satisfied if and only if there exists D E D,., such that 

Similarly, one can show that 

Now 



Likewise, 

Defining X = D*D completes the proof. 

Comments on Theorem 3.1: 

1. (3.33) and (3.34) are convex with respect to X and X-' respectively. Each of 

the two conditions is a necessary condition for the existence of a causal controller 

achieving robust performance and can be checked through standard algorithms 

such as "cut ting-plane" method [6]. 

2. Checking the conditions (3.33)-(3.34) together is more difficult and is not re- 

solved at the moment except for the following special cases: 

Full Control Case: 

If U has a full column rank, the condition (3.34) drops out and (3.33) is 

necessary and sufficient for (3.32). 

o Full Information Case: 

If V has a full row rank, the condition (3.33) drops out and (3.34) is 

necessary and sufficient for (3.32). 



2 Full-Block Case: 

For the cases of 2 full-block A, (3.32) is 

By multiplying and then dividing the expression by d2, (3.61) becomes 

where d = 2. Hence, for 2 full-block cases, the condition (3.33)-(3.34) can 

be expressed as follows: 

Tic = {s E R+ : g(s) < 0) and TFI = {t E R+ : h(t) < 0) are open inter- 

vals (since g(s) and h(t) are convex with respect to s and t )  and can be 

easily checked if they intersect. 

Using the results from Theorem 3.1, we now propose the following screening tools: 

General Screening Tool #2 Eliminate the measurement candidates for which 

inf A, [ (&l)L(8: l~f i l  - ~)(&21); t 0 for some w (3.65) 
XED,, 



General Screening Tool #3 Eliminate the measurement candidates for which 

General Screening Tool #4 Eliminate the measurement candidates for which 

T$;(~) n ? ; . I ( ~ )  = 0 for some w and 

for some (i ,  j )  E { ( T , j " )  : f 3; 1 5 I,; 5 l +  1) 

(3.67) 

where 



The last screening tool exploits the fact that the robust performance condition must 

be satisfied for any combination of two blocks among the present A blocks. 

3.4 Design-Specific Screening Tools 

In this section, we develop screening tools that are tied to specific design methods. We 

first introduce a parametrization of the controller gain matrix that leads to an affine 

closed-loop gain expression with respect to the parameter. Then, we show that certain 

controller design approaches (LQG, MPC designs for example) invariably lead to a 

specific form of the gain matrix. Based on this property, we propose some screening 

tools and put them in perspective with other criteria that have been suggested by 

various authors. 

3.4.1 Steady-State Screening Tools 

Affine Parametrization of the Closed-Loop Gain Operator 

The steady-state gain Kdc for the controller K can be parametrized as 

Figure 3.4 shows a block-diagram representation of the parametrization. Using the 

parametrization, the nominal closed-loop expression from w to ye can be shown to be 

as follows: 

For convenience, we will adopt the following notation: 



Figure 3.4. Affine Parametrization of the Closed-Loop Gain Operator 



where H, is a diagonal matrix which expresses relative magnitudes of external inputs 

at steady state. For example, the elements corresponding to "nonpersistent" (or 

stationary in stochastic sense) inputs are set to zero. 

Controllers Minimizing Projection Error (LQG/MPC) 

The LQG ("Hz-optimal") design method and the MPC design method that are in- 

troduced in Chapter 5 minimize the variance of ye at steady state. More specifically, 

these design methods invariably lead to Qdc that minimizes the quantity 

11 . [ I F  denotes the Frobenious norm which is the square root of the sum of the squares 

of all elements (which is equivalent to the right-hand-side expression). The following 

theorem gives an explicit expression for Qdc minimizing the quantity (3.77). 

Theorem 3.2 Suppose Gz2, G32 and G23 are real matrices and G3z and c23 have 

full row and column rank respectively. Then, 

is achieved b y  

Qdc = Q;:' I 

Proof Define 



It follows straightforwardly that 

Denote the matrices G23(G&&)-1'2 and ( G 2 q 2 ) - ' 1 2 G 3 2  as U and V respectively. 
r 1  

matrices. Now 
L J 

Then, we can always find UA and VL such that 

The choice for ~ d e  that minimizes the quantity (3.85) is - u ~ G ~ ~ v ~  which, in terms 

of original notation, can be written as 

Hence, 

v 
VL 

are unitary 



From Theorem 3.2, a necessary condition for robust performance for the LQG or 

MPC controllers regardless of their tuning is 

where &fprOj = fi  (G, Q:;~(I + G ~ ~ Q ~ ) - ' )  and can be written as 

The following screening tools is proposed. 

Design-Specific Screening Tool for L$@/MPC #1 Eliminate the candidates 

for which 

Controllers with Integral Action 

It is common in practice to use controllers with integral action so that all measured 

variables have zero steady-state offsets in the face of asymptotically constant distur- 

bances. For example, most industrial distillation columns are controlled by putting 

PID loops on the chosen tray temperatures. For controllers with integral action, the 

expression for Qdc can be written as 

We naturally assumed that there are at least as many manipulated variables as the 

measured variables by assuming that (GYmu);l, a right inverse of Gym, exists (other- 



wise, integral action on all measured variables is not possible). In addition, because 

the primary variables are not estimated directly in this approach, setpoint changes 

must be done by providing appropriate new setpoints for the measured variables. In 

the above formula for &Eg, we assumed that no reference inputs are to be given 

in order to keep the discussion simple. Given the expression for Qd,, the following 

screening tool can be easily derived. 

Design-Specific Screening Tool for Controllers with Integral Action #1 

Eliminate the candidates for which 

~ i n t g  is defined as 

3.4.2 Relationships with Previous Criteria 

The steady-state screening tools presented in Section 3.4.1 test whether the given 

performance specification is satisfied in the presence of the "worst-case" uncertainty. 

We can extend these ideas a bit further to obtain a method for calculating the actual 

"worst-case" closed-loop error at steady state. In this section, we present a method to 

compute the "worst-case" closed-loop error in the presence of general norm-bounded 

perturbations. Using this method, it is shown that some of the previously proposed 

criteria arise naturally under specific uncertainty structures and some restrictive as- 

sumptions on the performance/disturbance weights. 



Methodology for Calculating the "Worst-Case" Closed-Loop Error 

The following lemma enables the explicit calculation of the "worst-case" closed-loop 

error at steady state [40]. 

Lemma 3.2 Let Mi1 E CPXP ) M12 E C P X n  ) M21 E CnXp and MZ2 E c n x n  

Define the set BAU as follows: 

Also define 

where 

A, = {A : A E CnXn) 

Assume that pAu(Mll) < 1. Then, 

1 
max a[M22 + M21Au(I - MllAu)-lM12] = 

Au€BAu "; 

where $ solves the equation f (zP) = 1. 

Proof We must prove that 

-+ ~ [ E ~ M Z Z  + E;M2iAU(I - MllA.)-'Ml,] = 1 VA, E A, (3.97) 



The proof is done by contradiction. 

First, suppose that 

Then 

This implies that 

which contradicts the assumption. 

Next, suppose that 

5[c;M22 + $M21AU(I - M1lAu)-l MIZ]  > 1 for certain A ,  E BA, (3.103) 

Let 

C;Mz2 + E;M21Au(I - MllAu)-'MI2 = U C V ~  (3.104) 

where U and V are unitary matrices and C is a real, positive semidefinite diagonal 

matrix. Then 
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This means that 3Ap E CnXn such that 

This implies that 

which again contradicts the assumption. 

Since f (cp) is a nondecreasing function of cp, $ can be easily computed through 

simple search procedures such as the bisection method. In the statement of the 

theorem, we assumed that the performance block A, is square. This is without loss 

of generality since a nonsquare block can always be represented as product between 

a square block and a constant matrix (see Chapter 2). 

It is often convenient to use the "tightn upper-bound of p (Approximation 3.1); 

hence, we will restate Lemma 3.2 in terms of the upperbound. 

Coroilary 3.1 Let Mll E C P x P  , E p X n  , n i f ~ ~  E ~ X P  and M~~ C n x n .  

Define the set BAu as follows: 

Also define 



where 

v r p  = {diag[dlIp1,*..,dtIpt,D1,"', Dm,In] : d j  E R+, Di E Crixri  7 Di = Df > 0) 

(3.111) 

Assume that 

inf ( D M ~ ~ D - ~ )  < 1 
DEVrs 

(3.112) 

where 

D r s =  {diag[dlIpl,.--,deIpl,,,D1,.-.,Dm] : d j  E R+, D~ , = c r i x T i , ~ ,  = D;* > 0) 

(3.113) 

Then, 

{ = + f o r l < 2 , m = 0  
max ij[M22 + M21Au(I - MllAu)-1M~2]  

A,EBAu 
(3.114) 

R otherwise 5 ( 

where c; solves f (c;) = 1 .  

For convenience of notation, let us define the operator Ew,,,t as follows: 

When the matrix M holds a special structure, a simpler formula can be derived 

as the following lemma shows. 

Lemma 3.3 Let M12, M21 and Vrp, DTs be defined as in Corollary 9.1. Then, 

( [ O :2 ] D - l )  = inf ~ / @ ( C ~ M ~ ~ B - ~ ) C ( B M I ~ )  (3.116) inf i j  D 
DEDrp 

cpM21 BED,, 



Proof 

= inf inf 5 
BED,, ~ E R +  0 

= inf inf max d c P ~ 2 1  D-') ,* (f D ~ ~ 2 ) )  
B E ' D ~ ~  ~ E R +  

= inf \la (q,Mzl D - l )  a ( ~ ~ 1 2 )  
BED,, 

The lemma irnplies that 

Mll M12 ( [ ] . .Au) = inf \la (M,,  D - l )  a ( D  MI,)  (3.122) 
M21 M22 BEDrs 

Finally, the following lemma will prove to be useful in the further development. 

Lemma 3.4 Let M12, M21, M22 and QP, Dr, be defined as in Corollary 3.1. Then, 

( [ o : z ]  D - l )  5 inf 5 ( D  [ O M12 ] (3.123) inf a D 
D€vrp  

5M2l 
DEDrp 

cpM21 cpM22 

Proof Let D* be the D-scale achieving 



In addition, let v be the input vector corresponding to the maximum singular value 

of the matrix 

[D* [ c p ; 2 1  : 2 ]  (D*) - l )  

For convenience of notation, partition v and D* as follows: 

Then 

Now, note that 

Hence, by choosing the sign of vp appropriately, one can show that there exists a 

unitary vector v such that 



Hence, 

= 5 (D* [cp:l T2] (D*) - l ]  

These lemmas will be used to derive simple measurement selection rules for specific 

uncertainty structures. The derived rules are analogous to some of the previously 

available criteria. 

Multiplicative Uncertainty on the Disturbance Gain Matrix 

Consider the following multiplicative perturbation on the gain matrix relating the 

disturbances and the measured variables: 

The uncertainty is represented schematically in Figure 3.5. Let us make the following 

assumptions to simplify the discussion: 



1. G,,, has full row rank. This means that there are at least as many manipulated 

variables as the controlled variables. 

0 L. There is no noise corrupting the measurements at steady state. 

3. No input weighting is used at steady state. 

These assumptions amount to restricting the structures of the external input and 

performance weights to be 



and 

With these assumptions, 
r 1 

where 

Since the rows and columns do not affect p,  we can define MprOj to be the following 

matrix instead: 

From Lemma 3.4, 

where 

kpmj = 0 Gym d M'i 

- W ~ G y c d ~ d ( G y , d ~ m d ) - l ~ o  0 I 
Hence ~ ~ , , , ~ ( ~ p r ~ j ~  Ao) provides a lower bound for the "worst-case" closed-loop 

steady-state error. Note that M,?' is the nominal ( i .  e., in the absence of the pertur- 



bation) closed-error matrix. When Gymd is a nonsingular, square matrix, = 0 

and EWor8~ ( M P ~ O ~ ,  P o )  = Ewor8t (MprOj, Ao). 

Special Case I: Unstructured A, - Condition Number Criterion 

Suppose A, has no particular structure within itself. Hence, 

Then, from Lemma 3.3 

Suppose Wo = w,I, W,Y.Gycd = wpI, and Wd = wdI. The last two assumptions 

i~lnpay that the disturbances enter directly into the controlled variables (with same 

weights). Then (3.149) becomes 

where K denotes the condition number, the ratio between the maximum and minumum 

singular values. Hence, steady-state measurement selection criteria can be stated as 

1. Minimize the quantity ~(W~G,~~G~~~(G,,,,~G~,~)-~W,)~(G~,~W~). 

2. If W, = w,I, W,Y.Gycd = wpI, and Wd = wdI, minimize the condition number 

of Gy,d- 

Thus we have shown that Brosilow's Condition Number Criterion [31] holds 

only under some very specific assumptions on model uncertainty and distur- 

bance/performance weights. 



Special Case 11: Diagonal A, - Minimized Condition Number/ RGA Cri- 

terion 

Describing the gain uncertainty using the unstructured A, is very conservative for 

most practical cases; usually model uncertainty occurs physically in a more structured 

manner (22,601. For instance, a more physically meaningful A, can be 

With diagonal weighting matrix W,, it represents the multiplicative uncertainty on 

each output of Gymd. 

From Lemma 3.3, 

where 

If we assume again Wo = w,I, WpGycd = wpI, and Wf = wd I, 

* < Iwpw0wdl -min K(DG,,~) (= if Gymd is a square matrix) (3.157) 
DE'Ddiag 

Here we used the inequality (equality if Gymd is a square matrix) 



Hence, for diagonal A,, the measurement selection criterion corresponding to 

Brosilow's Condition Number Criterion is to minimize the condition number of GYmd 

minimized with respect to output scaling matrices. 

The following inequality (Nett and Manousiouthakis, [51]) shows that, for cases 

where Gymd is square, the RGA of Gymd can be used as a screening tool for measure- 

ment selection: 

IIAllrn - 1 5 inf n(D1GSdD2) 
Dl v D 2 E D d i a g  

< inf K(DG,~) 
B € v d i a g  

- - 1 
&woT.t(likprOj 7 hSt 0 )  

(wpwawd 1 
1 

5 E ~ ~ ~ ~ ~ ( M P ~ ~ ~  , hSt 0 )  
Iwpwswd I 

where 

and @, 11 ]Ii1 and / I  - I(;, denote the Schur product, induced 1-norm and m-norm 

respectively. (3.159) says that a large RGA of Gymd necessarily implies a large 

Ewo,,t(M~mj, A$). Hence, the RGA of Gymd can be a useful screening tool to eliminate 

undesirable measurement sets for these cases. The measurement selection criteria can 

be summarized as 

1. Minimize the quantity 

inf ~ ( w , Y . G ~ ~ ~ G ~ ~ ~ ( G ~ , ~ G ~ ~ ~ ) - ~ w ~ D - ~ ) ~ ( D G ~ ~ ~ w ~ )  
B ~ v d i a g  

2. If W, = woI, W,Y'GYcd = wPI, and W; = wdI, 



Multiplicative 
Input Uncertainty 

Multiplicative 
Output Uncertainty 

Figure 3.6. Multiplicative Uncertainty on Manipulated and Measured Signals 

a Eliminate the measurements with large RGA of the gain matrix GYmd. 

a Minimize the condition number of Gym* minimized with respect to output 

scaling matrices. 

Uncertainty Present Within the Feedback Loop 

When a controller with full integral action is used, the effect of all uncertainty present 

within the feedback loop disappears at steady state. For example, let us consider the 

following uncertainty descriptions: 

The uncertainty is represented schematically in Figure 3.6. To keep the discussion 

as general as possible, we let AI and A. have specific structures within themselves. 

The perturbations A1 and A0 can be interpreted as multiplicative errors in the 

actuator and sensor signals respectively. Assuming no setpoint change is to be made 



(w = [dT V;] ), the resulting Mintg is as follows: 

It is very easy to show that 

assuming 

P < 1 

which is equivalent to 

The condition (3.169) is the condition for robust stability at w = 0. The expression 

for (Mintg, 1) is equivalent to the maximum singular value of the 

"inferential error" matrix that Bequette and Edgar [5] proposed to minimize in their 

measurement selection criteria. 

3.5 Numerical Example 1 : Multicomponent Distillation 

We apply the screening tools to a multi-component distillation column that was stud- 

ied by Weber & Brosilow [61]. We first apply a generalized version of Brosilow's cri- 

teria and show that they lead to a counter-intuitive result. Then, we apply the new 



(Overhead Butane 
Composition) 

T 
s . 

Figure 3.7. Schematic Diagram of a Multi-Component Distillation Column and its 
Control Structure 

screening tools under various uncertainty assumptions. The example will demonstrate 

that the new screening tools provide an effective way of analyzing the sensitivity of 

candidate measurement sets to various uncertainty structures. 

3.5.1 Problem Description 

The schematic diagram of the column and proposed control configuration is shown in 

Figure 3.7. It is a 16 stage, 5 component distillation column with a total condenser 

and a total reboiler. The detailed information on the operating conditions and mod- 

elling assumptions of the column can be found in Tong & Brosilow [7]. The control 

objective is to maintain constant overhead and bottom product compositions (yo 

and xe respectively) in the presence of feed disturbances. The mainpulated variables 



are the reflux ratio (L) and vapor boilup rate (V). The temperature measurements 

are available for the lst,  3rd, 8th, 14th, and 16th trays (Tl,T3,T8,T14 and T16 re- 

spectively) of the column. The model for the input-output relationships between 

disturbances/manipuated variables and controlled/measured variables are as follows: 

To facilitate the exposition, we limit ourselves to the following combinations of tem- 

perat ure measurement s: 

One Temperature Measurement: 

Two Temperature Measurements: 



Three Temperature Measurements: 

Four Temperature Measurements: 

Five Temperature Measurements: 

3.5.2 Application of Brosilow 's Criteria 

Brosilow's Criteria 

Brosilow and coworkers [61,31] suggested the following two steady-state criteria for 

measurement selection: 

i. Minimization of Projection Error (Nominal Estimation Error) 

Minimize the projection error E where 

2. Minimization of Condition Number (Sensitivity to Modelling Error) 

Minimize the condition number ri of Gymd where 

They indicate that the above two quantities conflict as the number of the measure- 

ments are varied, and leave the final trade-off to engineering judgement. We note 



that the projection error E as was originally defined by Brosilow and coworkers is not 

that of (3.171), but 

where 

The original definition of the projection error is appropriate when the disturbance 

vector is a random variable with zero mean and an identity covariance matrix (i.e., 

E { d )  = 0, E { d d T }  = I). In the "worst-casen error setting such as H, control, 

(3.171) is the appropriate generalization of (3.173), since it is the measure of the 

worst-possible 2-norm of y, for all d  such that I /dl l 2  < 1. 

Theoretical Justification of Brosilow 's Criteria 

Suppose that the model error on Gymd can be described as follows: 

Uncertainty A: Unstructured Multiplicative Ouput Uncertainty 

w is a real positive scalar indicating the size of the ball describing uncertainty. Fur- 

thermore, assume that the least-square type controller will be used. More precisely, 

I< is to be designed such that 

Here, we assumed that (Gycu);l, a right inverse of Gycu, exists. When Gyc, does not 

have a full column rank, (G,,.);' should be replaced by ( G ~ u G y c , ) - ' ~ ~ , .  However, 

we do not consider this case in order to simplify the derivation. The closed-loop 



expression from d to y, with the above choice of K is as follows: 

FyCd(O) = [GyCd - ~ y ~ d ~ F ~ d ( ~ y , d ~ : ~ d ) - ~ ~ y , d ]  + W [ G ~ , ~ G ~ ~ ~ ( G ~ , ~ G ~ ~ ~ ) - ~ A G ~ , ~ ]  

(3.178) 

Hence, the worst-possible 2-norm of the output y, for lldllz < 1 is expressed as 

a [GY.~ - G~cd~:md(Gymd~:md)-l~~md] + w max AEA a [ ~ y ~ d ~ ~ ~ d ( ~ ~ ~ d ~ ~ ~ d ) - ~ ~ ~ ~ ~ d ]  

= ' ['ycd - G y c d ~ ~ m d ( ~ ~ m d ~ ~ m d ) - l G y m d ]  + W' [~ycd'~~d('ymd~:,d)-~] ' [Gymdl 

= E+w1~(Gymd) (with the assumption that Gycd = kI) (3.179) 

Note that, in order to obtain the last step, we needed the assumption that Gycd is a 

scalar-times-identity matrix (w' = w * k). Hence, the disturbances must be rescaled 

such that the assumption is satisfied before the criterion can be applied. 

Application to the Multi-Component Column 

We just showed that minimizing E + w'tC(Gymd) minimizes only the upper-bound of 

the "worst-case" closed-loop output error. Actually, one can easily calculate the exact 

value of maxaeA a(Fycd(0)) by using Lemma 3.2. Figure 3.8 shows the worst-possible 

closed-loop error calculated through Lemma 3.2 (as well as the projection error and 

the condition number) for each measurement candidate when w is set at 0.1. One 

notable result is that the closed-loop errors become worse as more measurements are 

added. This is counter-intuitive: Adding more measurements should not degrade 

the achievable performance since one can always set any measurement's effect to be 

zero through a control system. This counter-intuitive result can be attributed to the 

following two facts about Brosilow's criteria: 



1. The uncertainty description (3.175) is "physically inconsistent." Note that, for 

example, 

From a physical standpoint, the two sets must be the same, since adding or 

taking out a measurement should not affect the uncertainty associated with the 

subsystem that does not involve the added/subtracted measurement. 

2. The particular choice of I< ( i . e . ,  K ( 0 )  = Qls(I  + G y m U ( 0 ) Q b ) - l )  is in general 

not the best choice, since it does not consider the effect of uncertainty. The 

criterion depends explicitly on the assumption that such a controller is to be 

used. 

3.5.3 Application of General Screening Tools 

Physically Consistent Unstructured Ouput Uncertainty 

First, we make the uncertainty description (3.1 75) physically consistent by modifying 

i t  as follows: 

Uncertainty B: Unstructured Additive Output Uncertainty 

cond 

A5x5Gy2d 

where the 6; = 1 if ith tray temperature measurement is included in y, and 0 oth- 

erwise. The notation [.Imnd implies that the matrix is "condensated" meaning all 
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Figure 3.8. The 2-Norm of "Worst-Case" Steady-State Output Error, Projection 
Error and Condition Number of Gym* for Various Measurement Sets Under Uncer- 
tainty A and "Least-Square" Controller 



rows containg only zero elements are deleted. It is not our claim that the uncertainty 

description (3.181) is a physically meaningful one; we simply started from the un- 

certainty description that Brosilow & coworkers used in developing their criteria and 

modified it such that it became physically consistent. 

Because the SSV test for robust performance involves 2-block A (Asx5 and A,), 

General Screening Tool #3 proposed in Section 3.3 is a necessary and sufficient con- 

dition for the existence of a constant matrix K satisfying a given "worst-case" closed- 

loop error bound on the output. Instead of simply checking if a specific "worst-case" 

error bound can be satisfied for each measurement set, we calculated its achievable 

"worst-case" error, that is the "worst-casen error under the "p-optimal" controller 

expressed by 

min max 5(FY,d(O)) 
K AEA 

(3.182) 

This can be easily done by multiplying a real positive scalar c, to GyCd and Gyad and 

increasing it just enough such that the condition corresponding to General Screening 

Tool #3 is no longer satisfied. The achievable "worst-case" error is the inverse of 

this particular value of c,. The results are shown in Figure 3.9. Note that, although 

the achievable "worst-case" error decreases as more measurements are added (which 

is consistent with our physical intuition), the "worst-casen error for y: involving 

only two measurements is almost as low as that of involving five measurements. 

Hence, if the uncertainty description were indeed a physcially meaningful one, the 

use of more than two measurements is hardly justified in this case. Figure 3.10 

shows the achievable "worst-casen closed-loop error for each measurement set when 

the "physically inconsistent" uncertainty description (3.175) is used. Figure 3.11 

shows the "worst-case" closed-loop errors when the least-square controller (3.176) is 

used along with the uncertainty description (3.181). Note that, in both cases, the 

"worst-case" closed-loop errors increase as more measurements are added. 
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Figure 3.9. The 2-Norm of "Worst-Case" Steady-State Output Error for Various 
Measurement Sets Under Uncertainty B and "p-Optimal" Controller 

3.6 Numerical Example 2: High-Purity Distillation Col- 
umn 

As an example application of proposed design-dependent screening tools, we study 

the high-purity distillation column shown in Figure 3.12. The column and the model 

are described in detail in Appendix A of Morari & Zafiriou [50]. The control problem 

of the column is presented in Figure 3.13. 

Problem Description 

Disturbances/Noise 

The most common disturbances are those in the feed; it often changes according to 

the conditions in another plant unit such as a reactor. Measurement error (noise) 

is often another important factor. We will study the effect of one physically moti- 



as. 

Measurement Set 

Figure 3.10. The 2-Norm of "Worst-Case" Steady-State Output Error for Various 
Measurement Sets Under Uncertainty A and "p-Optimal" Controller 

vated measurement error: uncompensated pressure variation. The following set of 

disturbances/noise is considered: 

Feed flowrate (F) 

Feed composition ( z F )  

Uncompensated pressure variation (P) 

Measured Variables 

Measurements are usually not limited to a specific number although it is common to 

use two tray temperatures for two-point composition control. In this example, for 

the sake of simplicity, we restrict ourselves to two tray temperatures (T, and Tb). In 

addition, for brevity of presentation, we consider only the placements symmetric with 

respect to the feedtray (such as tray #l/tray #41, tray #%/tray #40, and so on). 
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Figure 3.11. The 2-Norm of "Worst-Case" Steady-State Output Error for Various 
Measurement Sets Under Uncertainty B and "Least-Square" Controller 

This is logical since the column is symmetric with respect to the feedtray. 

Uncertainty 

We limit ourselves to uncertainty in the manipulated variables. They have been shown 

to be the dominant uncertainty for high-purtity distillation columns [60]. We choose 

the same uncertainty weight Wz that Skogestad & Morari [60] used in their study: 

Performance and Disturbance Weight 



The performance weight Wp and the disturbance weight Wd are chosen as follows: 

where 

As usual, much tighter specifications are imposed in the low frequency region in order 

to ensure good steady-state response. 

Steady-State Performance 

We apply the Design-Dependent Screening Tool #1 for LQG/MPC of (3.89) to re- 

duce the number of measurements to consider. The plot of the left-hand side of the 

inequality (3.89) vs. measurement sets is shown in Figure 3.14(a). It represents the 

measure of the "worst-possible" performance when the controller is designed yielding 

no steady-state offsets in compositions nominally (in the absence of uncertainty and 

measurement error). The measurement set of T7 and T35 shows the best steady-state 

performance. In fact, it is the only measurement set that satisfies the condition [3.89). 

This result can be interpreted physically. The temperatures measured close to the 

reboiler and the condenser have poor signal-to-noise ratio because the gains from dis- 

turbances to these measurements are "small." On the other hand, the measurements 

far away from the reboiler and the condenser are sensitive to model uncertainty since 

the relationships between the end-point compositions and the measurements become 

less direct. Hence, placement of the temperature sensors involves a compromise be- 

tween these two factors. This is apparent from the plots shown in Figure 3.14(a) that 

represent the values for the left-hand side of the inequality (3.89) when measurement 

error (uncompensated pressure variation) / model uncertainty are neglected. The 

measurement set T7/T35 is apparently the best compromise between the signal-to- 



noise ratio and the sensitivity to model uncertainty. Note that neglecting either the 

model uncertainty or the measurement error would have resulted in a wrong choice of 

measurements. Figure 3.14(b) represents the condition numbers of the s teady-state 

gain matrices from the disturbances to the measurements (Gsd(0)). Note that the con- 

dition number (Brosilow's criterion) does not reflect the measurements' sensitivity to 

the uncertainty correctly in this particular problem. 

Ou tpu t  Estimation Based I M C  Controller Design for Robust  Performance 

To verify the result, we design controllers for the following three candidates: Tl/T41, 

T7/T35 and Tl7/TZ5. For controllers, dynamic output estimators designed via Kalman 

filter design was combined with an IMC controller. IMC filters were designed 

separately for each candidate using the robust performance bounds derived for 

tf(FzMc(jw)) and @(I  - FzMc(jw)). The design method is explained in detail in 

Chapter 4. The robust performance bounds on a ( F z ~ ~ ( j w ) )  and *(I - F z ~ c ( j w ) )  

for the measurement set T7/T35 are shown in Figure 3.15(a). The bounds are "feasi- 

ble" since the following transfer function meets at least one of the bounds at every 

frequency as we can see from Figure 3.15(a): 

The bounds for the other two candidates were not "feasible" and the IMC filter was 

designed so that the bounds are satisfied for as wide a frequency range as possible. 

The p-plot for robust performance (Figure 3.15(b)) shows that robust performance is 

achieved for the measurement set T7/T3.5. Although not shown, the SSVs for the other 

two candidates exceeded 1 in some frequency regions, implying robust performance 

is not achieved. Figure 3.15 shows the simulated responses of z~ and yr, to unit step 

disturbances in z~ and F and a measurement noise in the form of a pseudo-random 

binary signal of unit magnitude filtered through W,. The specific multiplicative 



Figure 3.12. High-Purity Distillation Column 
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Figure 3.13. Control Problem In High-Purity Distillation Column 
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Figure 3.14. Robust Performance Measure at Steady St ate 
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Chapter 4 

Output Estimation Based Inferential Control 
System Design 

4.1 Overview 

The topic of this chapter is inferential control system design based on output esti- 

mation. The output estimation based inferential control system design involves two 

independent design steps: design of an output estimator which constructs estimates 

Ym 

Output Estimation Based Inferential Control System 

Figure 4.1. Output Estimation Based Inferential Control System 



for the controlled outputs from the available measurements and that of a feedback 

controller that uses these estimates as feedback signals. The resulting inferential 

control system is represented schematically in Figure 4.1. 

The advantages of this approach are that the design is divided into two simpler 

tasks and that it does not require a full dynamic model relating disturbances and 

primary/secondary variables. Plant data for primary and secondary variables may be 

used instead to construct an output estimator via regression techniques. A disadvan- 

tage is that, because secondary measurements are reduced to output estimates, some 

useful information on the future effects of disturbances may be lost. Hence, for sys- 

tems with significant nonminimum-phase characteristics, the achievable performance 

can be lower when compared to the state estimation based approach discussed in 

Chapter 5. 

The first topic of the chapter is output estimator design. Output estimator de- 

sign is discussed in two different contexts: the case where a full dynamic model is 

to be used for the design and the case where only the plant data for primary and 

secondary variables are available. For the former case, design techniques such as 

Kalman filtering and p-Synthesis are discussed. For the latter case, standard linear 

regression techniques and their suitability for the estimator design are examined. In 

this case, the estimator design problem is formulated as a parametric identification 

problem. The standard Least Square (LS) regression method is discussed and poten- 

tial problems that can arise from collinearity of the regression data are elucidated. 

Various modifications to the standard Least Square method available in the literature 

(in order to overcome the collinearity problem) are discussed and their merits for the 

estimator design are evaluated. 

Since the estimator is designed to provide the control system with the estimates 

for the controlled variables at a desired rate with no delay, we next discuss feedback 

controller design for a limited class of systems for which the measurements of con- 



trolled variables are provided in such a manner. We present four distinct, yet related 

design methods: LQG design in a form that is slightly different from the tranditional 

version in order to provide for integral action in the presence of nonstationary distur- 

bances, IMC design which is a tailored version of LQG design with the advantage of 

simplified tuning, MPC design which is also an extension of LQG to handle various 

process constraints directly through on-line optimization, and finally p-Synthesis that 

exploits the given uncertainty model for robust design. 

At a cursory glance, this chapter may seem like nothing more than a collection 

of well-known advanced design techniques. However, several important new ideas 

and interpretations for these modern techniques are given here. For example, for 

the first time, various Hz-optimal design methods such as LQG, IMC and MPC are 

interpreted in a unifying framework. This unification has some important practical 

implications: 

1. MPC techniques based on state-space models have been around, but none of 

them had as transparent a connection with the tranditional techniques (DMC 

for example) as our version. Based on the new interpretation of MPC controllers 

as a state-observer- based compensator, the traditional techniques are shown 

to be special cases of the new technique under some restrictive assumptions 

about the system disturbances and measurement noise. The new version not 

only provides for wider applicability, but is also more readily extendable to 

other classes of control problems. One immediate extension of the new MPC 

technique is the inferential MPC technique discussed in Chapter 5. 

2. Application of traditional MPC techniques was hampered by a lack of intuitive, 

simple on-line tuning parameters. The new version provides a set of simple, 

intuitive tuning parameters each of which has specific, well-understood effects 

on the closed-loop stability and performance. 



3. The new state-space interpretation of IMC gives new insights and provides a 

basis for further extensions of the technique. For example, the interpretation 

of IMC as an observer-based-compensator renders naturally an anti-windup 

mechanism that is superior to the traditional IMC anti-windup scheme. In 

addition, the interpretation gives a basis upon which we can combine IMC with 

MPC to provide for simpler on/off-line tuning. 

With the above-mentioned modifications, the potential for success of these modern 

methods in a practical environment is far enhanced. 

All control techniques presented in this paper use the standard state-space model. 

For cases where use of step-response models is desired, Appendix A presents a MPC 

technique for step response models that is completely analogous to the technique 

presented in this chapter, An alternative is to convert the step-response model to a 

iscusses "low-order" state-space model by performing model reduction. Gu et al. [27] d' 

a hankel model reduction technique that removes the difficulty of having to solve the 

Lyapunouv equation numerically. 

The chapter concludes with an application of the IMC design method to a heavy oil 

fractionator. Example applications of the MPC method can be found in Appendix A 

and B. 

Estimator Design 

The topic of this section is design of the output estimator. The objective is to design 

either a static or a dynamic estimator that computes the estimates for the controlled 

outputs, y,, based on the available measurements, $,, and the past input moves 

u. For convenience of notation, we will denote the input vector to the estimator, 
T 

[ UT ] , as 
(see Figure 4.1). The output estimator design can be done in 

two ways: the first way is to use a first principles or identified model and the other 

way is through regression of the input/output records available from simulation or 



actual process measurements. The use of the latter method is inevitable when it is 

impractical to develop a full dynamic model of the system and only the plant data of 

measurements and controlled outputs are available. 

4.2.1 Model Based Design 

We first discuss the design of the output estimator based on a dynamic (or static) 

model. There are many techniques available for output estimator design, but we limit 

our discussion to two most important and general methods: Kalman filter design and 

p-Synthesis. 

Kalrnan Filter Design 

The general multi-rate Kalman filter discussed in Chapter 5 provides the optimal 

estimates for the current controlled outputs (along with other state estimates) under 

certain stochastic assumptions on the external input signals. The estimator can 

accommodate measurements that are available at  multiple sampling rates. Detailed 

design procedure can be found in Section 5.2 of Chapter 5 .  

In the case where some of the primary measurements are prone to failure, one can 

use the cascaded Kalman filter discussed in Section 5.2 of Chapter 5 .  The cascaded 

Kalman filter has the advantage that the estimator is guaranteed to maintain certain 

integrity in the events of failures of one or more primary measurements. 

psynthesis Design 

The objective of p-Synthesis is to find the estimator E that minimizes the following 

quantity (see Figure 4.2): 

p-Synthesis iterates between the follwing two steps (see Section 4.6 for detail): 



Step  A: H,-Optimal Est imator  Synthesis 

Find E that minimizes 

S t ep  B: Optimal  D-Scaling (p-Analysis) 

For each w, find D(w) E DT, that minimizes 

Because the minimization is nonconvex, the procedure does not guarantee convergence 

to the true optimum. 

The main attraction for the design method is that it can incorporate the model 

uncertainty information explicitly. In order to put the use of p-Synthesis for estimator 

design in proper perspective, the following practical issues must be considered: 

H,-optimal design problems for sampled-data systems and MR discrete-time 

systems have not been solved completely although progress is being made in 

the area [11,33]. Hence, at  this point, we must approximate these systems 

as continuous- time systems and SR discrete-time systems respectively. Often 

in practice, secondary measurements can be sampled at  a uniform rate. In 

this case, one can design the estimator based on the secondary measurements 

only and incorporate the primary measurements (that cannot be sampled at 

the same rate as the secondary measurements) through an auxiliary estimator. 

This is discussed in Section 4.2.3. Figure 4.2 depicts the estimator design for 

continuous systems with measurements available at a uniform sampling rate. 

p-analysis for sampled-data systems and MR discrete-time systems requires 

introducing either an approximation or conservativeness (see Section 2.3). 



Figure 4.2. p-Synthesis for Output Estimator Design 



e In order to ensure tolerance to failures of unreliable primary measurements, 

failure-prone primary measurements must be excluded from the estimator design 

even though they can be sampled at the same rate as the secondary measure- 

ments. These measurements can be used in improving the estimates through 

an auxiliary estimator (see Section 4.2.3 for details). 

In addition to the lack of truly general theory, p-Synthesis requires an accurate, 

nonconservative uncertainty model which is often unavailble to engineers in practice. 

The method is to be looked at as more of a forward-looking research topic rather than 

as a practical estimator design method at this point. 

4.2.2 Regression Based Design 

In this section, we discuss the output estimator design based on the records of inputs 

and outputs for the estimator. These data may be obtained from simulation or from 

the actual process measurements. It is important that these data are obtained under 

a closed-loop environment similar to the one which the estimator will be subjected to. 

We first show that the estimator design problem can be formulated as a parameter 

identification problem and discuss various regression techniques. 

Throughout this section, we assume that all the measured variables, the inputs 

to the estimator, can be made available to the estimator at a uniform rate. This is 

not very restrictive since, for most practical cases, the secondary measurements can 

be sampled at a uniform rate and the primary measurements that are often sampled 

at a much slower rate can be incorporated through an auxiliary estimator discussed 

in Section 4.2.3. The regression based estimator design for truly multi-rate systems 

has not been studied and is left as a future research topic. 



Formuation of Estimator Design Into A Parameter Identification Problem 

For simplicity, let us first discuss design of a static estimator. Hence, we would like 

to find a constant matrix E such that 

where &(k, j) represents the estimate for y,(k, j )  at  time (k, j). Suppose that we have 

N data points available for the measured variable 6; and the controlled variable y,. 

We assume that N is greater than both the dimension of y, and that of 6%. Ignoring 

measurement errors, we can write the estimator design problem as 

where 

For dynamic estimator design, the same principle can be applied when an Auto Re- 

gressive Moving Average (ARMA) model is used to represent the relationship between 

each element of 6; and that of y, [43]. When the data for 6, and y, are available 

at different intervals, one must reformulate the model in terms of the basic time unit 

(BTU) beore regression techniques can be applied [28]. Design of a dynamic estimator 

will not be discussed in detail. 



Regression Techniques 

The focus of discussion for the regression based estimator design is the choice of E 

for the following problem: 

Y = X E ~  (4.8) 

If the matrix X has full column rank, the choice that minimizes the least square error 

(llY - X E T  1 I F  where 1 1  . 1 1  represents the Frobenious norm) is 

In this case, one can show that the parameters converge to the true values exponen- 

tially as N -t co in spite of white measurement noise in Y (i.e., &(k) = yc(k)+vc(k)) 

[4]. When the dimension of y z  is large, however, collinearitj in the zeasurements 

often exists and X tend to be singular or close to being singular (i.e., singularity may 

be masked by measurement noise in the data X). This can be understood through a 

simple argument for a linear system. If there are n inputs that affect y z ,  X can at 

most have the rank of n. When the number of measurements exceed n, the matrix 

X will be singular. 

Various modifications to the standard least square regression method have been 

suggested to overcome the collinearity problem. In this thesis, we look at the two 

most popular such techniques: Principle Component Analysis (PCA) and Partial 

Least Square (PLS). The basic idea for both methods is to use only those directions 

in the matrix X that are excited by the inputs in finding the pseudo-inverse of X. 

Two methods differ in how these directions are chosen. 

To understand the PCA method, let the singular value decomposition (SVD) of 

the matrix X be as follows: 



We partition U, C, V such that C2 represents singular values that are zero or close to 

zero. Hence, U2 and V2 correspond to input and output directions of the matrix X 

that are not excited by manipulated inputs and disturbances. The idea of PCA is to 

discard these directions in calculating the psedo-inverse of X.  In other words, PCA 

finds E according to the following formula: 

A drawback of PCA is that, when the effect of manipulated inputs and distur- 

bances on y h  is small in certain directions, these directions can be discarded, while 

they (the manipulated inputs and disturbances in these particular directions) may 

affect the estimated variables y, in significant ways. PLS takes into account the di- 

rections in Y as well as those in X when finding the approximate pseudo-inverse of 

X .  More specifically, PLS uses the dominant eigenvectors ( i . e . ,  eigenvectors corre- 

sponding to nonnegligible eigenvalues) for the matrix XTYYTX instead of those for 

the matrix XTX (i. e., h). Let us express the matrix X as follows: 

where the columns of PT correspond to the dominant eigenvectors of the matrix 

XTYYTX. Then, the formula for E is as follows: 

Note that, if we choose PI = &, then TI = UIC1 and the formulas (4.12) and (4.14) 



Figure 4.3. Use of "Slow" and "Unreliable" Primary Measurements for Output 
Estimation 
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become equivalent. An application of the PLS method to the static estimator design 

problem for a high-purity distillation column can be found in Mejdell [45]. 

4.2.3 Use of On-Line Primary Measurements 
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We mentioned that the primary measurements that are either available at a slow 

sampling rate or prone to failures should not be included as inputs to the output 

estimator (with the exception of the MR Kalman filter design that can incorporate 

general multi-rate sampled measurements). However, these primary measurements 

can be useful in improving the estimates when available. They can be incorporated 

as a part of the output estimator through an auxiliary estimator shown in Figure 4.3. 

The auxiliary estimator calculates the correction term for the estimates, y,"", on the 

basis of the difference between these estimates and the actual primary measurements. 

Details for the design of the auxiliary estimator can be found in Section 5.2 of Chap- 

ter 5.  Because the auxiliary estimator is often designed to be diagonal, measurement 

failures can be dealt with through a simple switch box that sets the inputs to the 

estimator corresponding to the failed measurement to zero. 

Auxiliary 
Estimator 



4.3 Linear Quadratic Gaussian (LQG) 

4.3.1 Model 

In the output-based approach, a general discrete-time model for control system design 

is given by the following statespace difference equation: 

Process: 

Controlled Variables: 

Measurements: 

$ , (k )  = C c x ( k )  + vc(k)  

ij ,(k) represents the estimates of y, available from the output estimator. By perform- 

ing some simple algebraic manipulation, we can put (4.15)- (4.18) into the following 

standard state-space form: 

where 



For LQG design method (or MPC design method introduced subsequently), it is 

convenient to express the model in terms of the changes in the inputs rather than 

the inputs themselves. For this purpose, we subtract the equation (4.19) at t = k - 1 

from that at t = k to arrive at the following state-space representation of the system: 

where 

A variable represents the change in the variable from the previous sampling time 

(e.g., Ax(k) = x ( k )  - x ( k  - 1) ) .  

Theorem 4.1 The system described through (4.24)-(4.25) is 

1. detectable if and only if (C,, A) is detectable. 

2. stabilizable if and only if (A, B,) is stabilizable and Ker{(Cc(I - A)-'B,)~} = 0 

where Ker{-) denotes the kernel space. 

Proof We first prove the detectability condition. From Hautus [30], (Z, a) is a 



detectable pair if and only if 

Clearly, 

From Hautus [30], 

rank { [ AT (c,A)T ] - x I )  = dim{@) VA E C, I 2 1 (4.30) 

if and only if (C,A, A) is a detectable pair. In addition, (C,A, A) is a detectable pair 

if and only if (C,, A) is a detectable pair. 

Next, we prove the stabilizability condition. Again, from Hautus [30], (@, I?,) is a 

detectable pair if and only if 

For all X f 1, it is clear that the rank condition is satisfied if and only if 

The above condition is equivalent to the stabilizablity of (A, B,). For X = 1, the rank 

condition becomes 

rank { [ A  - ' Bu ] 1 = dim/@] 
CCA CCB, 



Simple algebraic manipulation shows that 

rank {['-I B~ 11 = : ]] CCA CCBU 

T h e  condition 

rank{[';' :]]=dim{@] 

is equivalent to 

1. Stabilizablity of (A, B,) 

2. Input/Output Controllability at Steady State 

Condition 2 implies that there must be at least as many manipulated variables as 

controlled variables. 

The modified state-space model has the following advantages: 

1. In the LQG design, the optimal state estimator design assumes that the in- 

puts to model states and measurements are described as white noise of chosen 

covariances. On the other hand, most disturbances in process industry are non- 

stationary in nature. This necessitates augmenting system states to include 

integrators for the disturbances, which can cause indetectablity when the num- 

ber of disturbances exceeds the number of measurements [49]. In the modified 

state-space model on the other hand, modelling Ad as white noise implies that 



the disturbances are integrated white noise (that is, sum of random steps ampli- 

tudes of which follow normal distribution and time of occurrence follows Poisson 

distribution), which are often very reasonable. If desired, these nonstationary 

inputs can be made to include more complex dynamics by further augmenting 

the system states. 

2. The objective function for the LQG design has a term involving control inputs. 

When the function includes a finite weight on u, integral action on the controlled 

variables is not automatically provided. For the modified model, the objective 

function weights the changes in the control inputs (Au) rather than the control 

inputs themselves (u). This automatically leads to a control system with inte- 

gral action necessary to reject nonstationary disturbances or follow persistent 

reference inputs without offsets. 

4.3.2 Minimization Objective 

Let us consider the following inputs to the system: 

where 6; is a unit impulse entering the ith channel at t = 0. The objective is to 

minimize the following function: 

where q = (dim{d) + dim{r) + dim{v,)). The subscript (.); represents that ye(k) and 

Au(k) are those resulting from the input 6;. This problem can be formulated into the 

standard H2-optimal control problem when the weights W, and W, in Chapter 2 are 



chosen as follows: 

In the stochastic framework, the minimization objective is interpreted as minimiz- 

ing the variance of ye and Au (weighted through and A?: respectively) when 

Ad, Ar  and v, are independent white noises of covariance matrices Qd, Q,, and R, 

respectively. Often, the reason for including the 2-norm of Au in the minimization 

objective is to limit the controller moves in order to achieve better robustness, Hence, 

A*,, for most cases can be viewed as a robustness design parameter. 

The above formulation assumes that reference vector is modelled as integrated 

white noise. In some cases, future reference trajectory may be known. In other cases, 

reference vector may be described better as other types of stochastic signals (such as 

double-integrated white noise). Extension of the subsequently developed technique 

to such cases is straightforward and will be discussed in detail. 

4.3.3 Optimal Control Design 

According to the separation principle, the H2-optimal controller can be obtained by 

combining the optimal estimator with the optimal state feedback regulator. 

Optimal Estimator: Kalman Filter 

The optimal estimator for the given process and disturbances is the following Kalman 

filter: 



where 

Kc = c , ~ ~ { ~ c , z ~  + R,)-' 

C, represents the unique stabilizing solution ( i . e . ,  the solution that leads to a stable 

cP - KG=@) to the following Algebraic Riccati Equation (ARE): 

The optimal estimator is probably expressed more intuitively and conveniently as the 

following two-step estimator: 

The notation {;}(kll) implies that it is the estimate at  time k using measurements 

up to time l .  For simplicity of notation, we will denote AX(k1 k) as AX(k) from this 

point on. 

The unique stabilizing solution to ARE (4.44) (C,) may be obtained by iterating 

on the following Riccati difference equation until a steady-state solution is reached: 

To guarantee the exponential convergence of equation (4.47) to the unique, positive 

semidefinite solution, we need the following assumptions (besides the detectabilty of 

(Cc7 4): 

1. C(0) 2 0 and R, > 0. 



2. (a, I'd&'/2) is a stabilizable pair. 

The former condition states that the initial error covariance matrix has to be positive 

semi-definite and the measurement noise covariance matrix has to be positive definite. 

The latter condition states that all unstable dynamics of the system should be excited 

through the state excitation noise Ad. 

Optimal Compensator: LQ State Feedback 

The optimal state feedback compensator for the given objective (4.39) is as follows: 

where 

L~~ = [ (r:@sru + AAu)-'r:@s@ I ocIim{y.) ] 
Qs is the solution to the following algebraic Riccati equation (ARE): 

@ = aT@@ - Q~@I'.(F:QI'. + AAu)-lr:~@ + diag odirntx) hyC ] (4.51) [ 
For the existence of a stablizing solution to the above equation, we need the stabiliz- 

ability of the pair (Q,I',). Note that, in order for the rank condition on the matrix 

C,(I - A)-'B, of Theorem 4.1 to be satisfied, there must be at least as many lin- 

early independent manipulated variables as the number of controlled variables (i .e. ,  

dim{u} 2 dim{yc}). Appendix 4.A discusses how the number of controlled variables 

can be reduced in an optimal way when the condition is not satisfied. In order for 

the Riccati difference equation correponding to (4.51) to converge exponentially to a 

stabilizing solution, we need the stabilizabili ty of (aT, diag {Odim(,), A:i2}) in addition 



to the stabilizability of (a, I?,). 
One notable point is that, in the above formulation, the reference input vector 

r(k) is assumed to be a step (or integrated white noise in the stochastic framework). 

For more general types of reference inputs, the LQ controller must be calcualated 

for an augemented system. For example, suppose Ar(k) = r(k) - r(k - 1) is to be 

generated by the following equation: 

where ST(k) is a random, but known impulse. In some cases, future information 

on reference trajectory may be available. For example, we may know the reference 

changes p time steps ahead and describe the change in the reference at  time k + p to 

be the output of the above dynamical system driven by a known pulse: 

xT(k) = A+xT(k - 1) + BrST (k) 

Ar(k + p )  = CTxr (k) 

The augmented system equation is 



The corresponding LQ controller is 

where Lr$' is the LQ optimal state feedback gain for the augmented system (4.56). 

The LQ controller is represented schematically in Figure 4.4. To simplify the discus- 

sion, we will assume that r ( k )  is described as integrated white noise from this point 
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Figure 4.4. LQG Controllers with General Reference Inputs 

on. 

Hz-Optimal Controller: Kalman Filter + LQ State Feedback 

The H2-optimal controller for the given problem is a combination of the MR Kalman 

filter and the LQ state feedback compensator written as follows: 

4.3.4 Constraint Handling: Extended Kalman Filter 

In the events of input saturation or mode switching, the controller (4.59)-(4.60) can 

exhibit significant "wind-up" as Au(k) # -LLQ   AX(^) + I',r(k)). The phenomenon 

of wind-up can render detrimental consequences including severe performance dete- 

rioration and instability. The simplest anti-windup scheme for the LQG controllers 



is the Extended Kalman filter in which (4.59) is replaced by 

 AX(^) = (Q, - I < ~ s Q , ) A x ( ~  - 1 )  + ( I  - I < ~ S ) r ~ A u t ~ ~ ~ ( k  - 1 )  + I < ~ c , ( k )  (4.61) 

and nutrue represents the "true" input to the system. In the presence of input con- 

straints, Autrue(k) can be chosen as usat - utrue(k - I), which is the projection of 

utme(k - 1 )  - LLQAXe ( AX' 4  AX(^) + r r r ( k )  ) onto the constrained input space 

of u(k) .  

For multivariable systems, however, Autrue(k) calculated by projecting utrUe(k - 

1 )  - L L Q ~ x e ( k )  onto the constrained input space of u(k)  is not optimal in general and 

can cause significant performance deterioration. This is because input constraints can 

change the direction of the input and make the loop gains significantly different from 

those in the absence of constraints, especially for ill-conditioned systems combined 

with a directionally sensitive controller. A simple fix to circumvent this problem 

A is to make the true input utru, be in the same direction as u (k ) (=  utrue(k - 1 )  - 

LLQAXe(k) )  (see Figure 4 .5 ) .  The following directionality correction scheme can be 

used to accomplish this ([19]): 

utrue(k - 1 )  - L L g A X e ( k )  when Il(utrUe(k - 1 )  - L ~ ~ A x ~ ( ~ ) ) / u , , ~ ~ ~ ~  5 1 
~true(k)  = 

( u t r U e ( k - l ) - L ~ ~ A x ' ( k ) )  
Il(~true(k-l)-L~~Ax'(k))/usat1Im when Il(utrue(k - 1 )  - L ~ ~ A X ~ ( k ) ) / u s a t  llco > 1 

(4.62) 

where u,,t is utrue(k - 1) + Ausat(k) and [.I/[.] is the element-by-element divsion 

operator. The extended Kalman filter with the directionality correction scheme is 

shown in Figure 4.6. 

Various output constraints (constraints on y,) must be handled in ad hoc ways 

( e.g., mode switching). The output constraints can be addressed more directly in the 

subsequently discussed MPC. 
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4.3.5 Robust Design/Tuning 

As mentioned before, a serious drawback of LQG design from industrial perspective 

has been the overabundance of indirect, nonintuitive design paramaters and a lack of 

simple, intuitive on-line tuning parameters. The purpose of this section is to equip the 

LQG controllers with a parsimonious set of tuning parameters and develop simple, 

intuitive tuing rules for this set of parameters. 

Closed-Loop Relationships 

It is easy to derive the following closed-loop relationships between various external 

inputs / system states and their estimates: 

Subtracting the second equation from the first one, we obtain 



T 
The closed-loop transfer function from [ (C;d)T(Z) cCT(z) +T(Z)  ] to qC(z) can be 

expressed as follows (the notation (:)(z) represents the z-transform of the signal): 

where 

(4.66) 

The following insights on the closed-loop stability, performance and robustness 

can be drawn from the above equation: 

1. Closed-Loop Stability 

The eigenvalues of the closed-loop matrix are those of Q - I',LLQ and @ -I<=@. 

Hence, the closed-loop system is stable if and only if all eigenvalues of @ -r,LLQ 

(i.e., regulator poles) and those of - KG=@ (i.e., observer poles) lie strictly 

inside the unit disk, The observer/regulator poles are guaranteed t,o Lie inside 

the unit disk since KG and LLQ are obtained from stabilizing solutions of their 

respective Riccati equations. 

2. Asymptotic Disturbance Rejection Property 

The closed-loop system rejects Kpersistent" disturbances (when d is integrated 

white noise) and follows step setpoint changes with no offset as long as the 

observer/regulator poles are placed in the unit disk. This can be seen from the 

closed-loop relationships between Ad(k) and y,(k): yc(k) is simply expressed as 

a white-noise passed through stable (closed-loop) dynamics. 

3. Sensitivitu and Robustness 

The closed-loop expressions provide insights and guidelines for closed-loop per- 



formance and robustness as well. 

Note that the observer dynamics affect the closed-loop transfer function 

from disturbance (Ad(k)) and measurement noise (v), but not the closed- 

loop transfer function from the output reference vector (Ar(k)). On the 

other hand, the regulator dynamics affect all the closed-loop tranfer func- 

tions. 

The closed-loop transfer function from -2i,(z) to g (z )  can be expressed as 

The function H is called "complementary sensitivity function" and has 

a direct relevance to the closed-loop system's sensitivity and robustness. 

For example, the complement of H ( i . e . ,  I - H) is called "sensitivity func- 

tion" and expresses the relationship between open-loop and closed-loop 

responses of the controlled variables to disturbances. Note that the state- 

feedback gain (LLQ) and the filter gain ( K c )  both affect the complementary 

sensitivity function. 

One major difficulty for LQG design from robustness perspective is that there is no 

transparent rule on how the traditional LQG design parameters (A,,, Aa,, Qd,  Q, and 

R,) must be chosen in order to obtain a desired complementary sensitivity function 

(which has a more transparent connection with closed-loop performance and robust- 

ness [20]). Consequently, design must be based on intuition, experience, and painstak- 

ing trial and errors. In addition, on-line tuning of these traditional parameters require 

solving Riccati equations every time some of the parameters are changed. Motivated 

by these considerations, we next look for a way of combining all the traditional design 

parameters into a simple set of intuitive, on-line tuneable parameters. It turns out 

that, under reasonable assumptions on system disturbances and measurement noise, 



we can find such a set of parameters for LQG controllers. 

Integrated White Noise Output Disturbances with White Measurement Noise 

In many chemical systems, disturbances and measurement noise are well described as 

integrated white noise ( i. e.,  random step functions whose magnitudes are normally 

distributed and time-occurrence follows Poisson distribution) and white-noise entering 

each output indepedently respectively. The model for such a system is 

where Ad' and vc are white noise with following covariance matrices: 

n is the number of controlled outputs. The system is represented in terms of block 

diagram in Figure 4.7. 

The system described through (4.68)-(4.70) can be shown to be equivalent to the 
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Figure 4.7. System with Integrated White Noise Disturbances and White Measure- 
ment Noise Entering Each Ouput Independently 

following reduced-order system: 

The following expression for I& shows that the optimal filter gain for the above 

system is parametrized in terms of an n-dimensional real vector, each element of 

which lies in (0, 11. 



where 

We immediately see that 0 < f; < 1 and 

The complementary sensitivity functon matrix H is expressed as 

Simple calculation shows that, for the system (4.73)-(4.75) 

For convenience, denote ( z  - cf, + I',LLQ)-lI', LLQ as 



Then, straightforward algebra leads to 

(GLQ)22 is interpreted as the complementary sensitivity function when measurements 

are perfect (just replace F with an identity matrix). For minimum-phase systems 

with zero input weight ( Aa, = 0), it can be shown that 

Hence, the resulting complementary sensitivity function for this case is 

and the closed-loop response of the ith output to a disturbance is described as a first- 

order system with time constant of where T is the sampling time. Even for - q E i  
nonminimum-phase systems, we see that (z - I + F)-I F(zI)  acts as a first-order low- 

pass filter that detunes the "ideal (perfect measurementj" complementary sensitivity 

function. 

Double-Integrated White Noise Output Disturbances with White Measure- 

ment Noise 

For systems with integrators or other stable "slow" dynamics (relative to the desired 

closed-loop bandwidth), disturbances and measurement noise are often described as 

double-integrated white-noise and white-noise entering each output indepedently re- 



spectively. The model for such a system is 

where Ad' and v, are white noise with following covariance matrices: 

E { A V ~ A V ~ )  = diag(rl, -, r,) (4.91) 

Again, n is the number of controiied outputs. The system is represented in terms of 

block diagram in Figure 4.8. 

The optimal filter gain KG for the system is also parametrized in terms of an 

n-dimension real vector, each element of which lies in (0, 11. 
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Figure 4.8. System with Double-Integrated White Noise Disturbances and White 
Measurement Noise Entering Each Ouput Independently 

where 

(fb); = 
(fa)? 

2 - (fa); 



Again, we immediately see that 0 < fi _< 1 and 

We next relate the complementary sensitivity functon matrix H with (fi),. Recall 

that H is expressed as 

Simple calculation shows that, for the system (4.88)-(4.89) 

For convenience, denote ( z  - @ + I',LLg)-lI', LLQ as 



Then, straightforward algebra leads to 

For minimum-phase systems with zero input weight ( A*, = 0), it can be shown 

that 

Hence, the resulting complementary sensitivity function for this case is 

diag ((fa11 + ( f b ) ~ ) ~  - (fa), ((fa), + (fb)n)~ - (fa), 
2' - (2 - (fa), - ( f b ) l ) ~  + (1 - (fa),)"'" z2 - (2 - (fa), - (fb),)~ + (1 - ( fa )n)  

and the closed-loop response of the ith output is described as a second-order system 

poles of which are directly affected by the choice of (f,);. Note that 

With the above complementary sensitivity function, the closed-loop system rejects 

"ramp" disturbances perfectly after one sampling unit. One may desire the closed- 

loop response to be of second order with real poles; in this case, the following rela- 

tionship between ( fa)i and ( fb); can be used instead of (4.95): 

When the above relationship is used, the closed-loop system is a second order system 

with both time constants -T/ ln( Jm). 
For nonminimum-phase systems and/or nonzero input weights, the tuning param- 

eters ( fa);s can still be used to detune (1 - $ ) ( G L Q ) ~ ~  + (GLQ)33, the ideal comple- 



mentary sensitivity function, in an intuitive manner. 

Discussion on More General Disturbances 

The two types of disturbances that we were able to parametrize the optimal filter 

gain for are quite general from a practical standpoint. In addition, for most chemical 

processes, exact modelling of disturbances is impossible; only its asymptotic nature 

may be known. For instance, integrated white noise disturbances that enter the 

outputs through overdamped, but "fast" dynamics (relative to the desired closed- 

loop bandwidth) can be well approximated as integrated white noise. On the other 

hand, step disturbances that enter the outputs through overdamped, "slow" dynamics 

(relative to the desired closed-loop bandwidth) are well approximated as double- 

integrated white noise. For most chemical systems, disturbances are one of these 

types and the proposed tuning rules can be used. 

For nondecoupled disturbances and disturbances of more general dynamics, we 

have not been able to find a parametrization for the optimal filter gain that is suitable 

for on-line tuning. However, one may sacrifice the "optimality" (which is valid only 

when the stochastic assumptions on the signals are perfectly satisfiedj and combine 

the LQ controller with an estimator equipped with tuning parameters that determine 

the complementary sensitivity function in a transparent manner. This motivation will 

be explored in the subsequent section in the context of a technique called Internal 

Model Control. 

Robust D e s i g m i n g  Rules 

In summary, the proposed LQG tuning rule involves two sets of tuning parameters: 

1. f; or (fa); affects the closed-loop response of the ith output and lies in (O,l]. 

These parameters are most suitable for on-line tuning. One can start with 

(fa); = 0 which implies open-loop, and move toward (fa); = 1 until performance 



starts deteriorating. 

2. AAu can be set to essentially zero for SISO systems or well-conditioned ( i .e . ,  

directionally insensitive) MIMO systems. For ill-conditioned systems, however, 

setting AAu yields a directionally sensitive controller (e.g., inverse-based con- 

troller), and detuning the closed-loop response of each output independently 

through f; may not lead to a desirable closed-loop reponse, especially in the 

presence of input uncertainty [60]. For these cases, a nonzero AA, makes the 

resulting control system less sensitive to direct ionality. Since changing A A, 

requires resolving a Riccati equation, it is more practical to determine AA, off- 

line. A procedure to determine AA, analytically is given in Section 4.4 where a 

tuning procedure for IMC controllers is presented. 

4.4 Internal Model Control (IMC) 

In an effort to provide general LQG controllers with designltuning parameters that 

have a transparent connection with system robustness, we tailor the LQG design 

method and propose a techique similar to Internal Model Control proposed by Garcia 

and Morari [24]. At this point, the proposed technique is applicable only to open- 

loop stable systems, although extensions to open-loop unstable systems should be 

possible. The model we use for control system design is the modified state-space 

difference model of (4.24)-(4.25) that we used for the LQG design. 

4.4.1 Minimization Objective 

In the proposed IMC design method, we first design the LQG controller with the 

following minimization objective: 



where represents that y,(k) and Au(k) are those resulting from the input 

6; is a unit impulse entering the ith channel at t = 0. As before, q = (dim{d) + 
dim{r) + dim{v,)). The correponding choices of Ww and W, for the standard H2- 

optimal control discussed in Chapter 2 problem are as follows: 

4.4.2 Detuning for Robustness 

Once the LQG controller based on the above objective is designed, the next step is to 

detune the closed-loop in order to obtain a complementary sensitivity function that 

is desirable from the robustness viewpoint. The main question that arises then is how 

to best accompish this "detuning." 

Consider the block diagram of Figure 4.9(a) that represents the closed-loop system 

with the LQG optimal controller. One can add and subtract the transfer function 

block Gycu and obtain the diagram of Figure 4.9(b). Note that the closed-loop transfer 

function from v, to y, is -GycUQzMC. Hence, GycuQzMC represents the "ideal" com- 

plementary sensitivity function ( i. e., the optimal complementary sensitivity function 

in the absence of measurement noise and modelling errors) which must be detuned 

for robustness. A natural way of detuning is to add a filter block FzMC as shown in 
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Figure 4.9. IMC Detuning for Robustness and Noise-Sensitivity Reduction 



Figure 4.9(c). The resulting complementary sensitivity function is GgC,QIMC FIMC. 

Hence, FzMC detunes the ideal complementary sensitivity function in a user chosen 

manner. Note that the only requirement on FzMC for internal stability is that it is 

stable itself. For the case where Gycu has a stable, causal right inverse and XAu = 0. 

QzMC = (GyCu);l and FzMC is indeed the complementary sensitivity function. 

4.4.3 State Space Formula for IMC Controller 

The optimal estimator for the given process and disturbances is the following Kalman 

filter: 

where 

ZT - KzMC = CzMCl { = c ~ ~ c ~ ~ ) - ~  (4.114) 

CIMC represents the unique stabilizing solution ( i . e . ,  the solution that leads to a 

stable @ - ICzMCz@) to the following Algebraic Riccati Equation (ARE): 

The optimal state feedback is same as before. The If2-optimal controller for the given 

problem is a combination of the Kalman filter and the LQ state feedback compensator 

written as follows: 



Next we must augment this controller with the robustness filter FIMC. The real- 

ization of the transfer function G,,, can be written as follows: 

In addition, let the realization of fiMC be written as 

z f  ( k )  = A ~ Z ~  ( k  - 1) t g f  ( ~ ( k )  - y,"(k))  (4.120) 

6 i M C ( k )  = c f z f ( k )  (4 .121)  

f Now, we can express y, as 

The "undetuned" LQG estimator has the realization 



Combining (4.125) and (4.126), 

A general state-space formula for the IMC controller can now be written as follows: 

A x e ( k )  = [ O  0 0 0 0 1  o o I o]'"]-[",I.(~) 

where 

- - 
A$" (k) 

Y,"(k) 

zf (k) 

Az(k) 

PC(k.1 - 



It may be computationally advantageous to implement the above estimator in series 

since the matrix @ I M C  has a block-triangular structure. 

4.4.4 Constraint Handling 

For input constraints, the idea of extended Kalman filtering can be applied to the 

IMC estimator transparently. Hence, in the presence of input constraints or mode 

switching, the IMC estimator of (4.128) can be replaced by the following estimator: 

ZMC - x Z M C ( k )  = @ z M C ~ I M C ( k  - 1)  + r t M C ~ u t r U e ( k  - 1) + ryC yc(k)  (4.135) 

where Atitrue is the "true" input to the process. Note that this anti-windup mech- 

anism is different from the traditional IMC anti-windup method, which is known to 

cause sluggish recovery from saturation when the process contains dynamics that are 



slow relative to the closed-loop bandwidth [lo]. The proposed anti-windup scheme 

will not have this problem since, unlike in the traditional scheme, all the controller 

states are correctly updated. This can be seen transparently from Figure 4.10. 

When an ill-conditioned MIMO system is subjected to input constraints, the di- 

rectional correction scheme proposed in Section 4.3.4 can be used. All the output 

constraints must be handled through ad hoc ways such as mode-switching. 

4.4.5 Robust Desigmuning of IMC Filter 

In this section, we present a method to design the IMC filter directly such that the 

robust performance requirement is satisfied. The method is based on the frequency- 

domain robust performance normbounds that can be easily derived using the SSV 

analysis. 

Derivation of Robust Performance Norm-Bounds 

In this section, we present briefly a method for deriving robust performance norm- 

bounds on desired transfer function matrices. The following theorem enables the 

calmlation of the "tightest" frequency-domain bounds on the maximum singluar value 

of a chosen closed-loop transfer function, guaranteeing robust performance 1591. 

Theorem 4.2 Let M E Cnxm be written as 

where 
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Figure 4.10. Traditional IMC Anti-Windup vs. New IMC Anti-Windup 



Define 

where 

pa (RII) < 1 and det (I - L) # 0 

Assume 

then 

if 

where cE solves f (cE) = 1. 

Proof see Skogestad & Morari [59]. W 

Theorem 4.2 suggests that the norm bound on L guaranteeing robust performance 

can be obtained by parametrizing the closed-loop system in terms of L and choosing 

the frequency-dependent scaling factor ct (w) such that f (cz(w)) = 1 Vw. cL(w) is the 

tightest norm bound of L in the sense that, for each cL(w) > cZ(w) for some w ,  there 

exists at least one L such that a(L(jw)) = cL(w) and SUP, f (cL(u)) > 1. 
Comments on Theorem 4.2: 



1. f (cL) is a non-decreasing function of c ~ .  Thus the scaling factor cL can be easily 

found through a simple search-procedure ( e.g., bisect ion met hod). 

2. Because f,, is monotonically increasing function of CL, the requirement for 

cL > 0 is that p < 1 for L = 0. 

3. There may exist many sets of J ,  L parametrizing K. The norm bounds on 

different L's can be combined over different frequency ranges. For example, 

suppose that both L1 and L2 parametrize K. Then, robust performance is met 

if, for each w, a(Ll(jw)) < cLl(w) or 5(L2(jw)) < cz,(w). 

4. Condition (4.142) is only sufficient for robust performance as robust perfor- 

mance must be guaranteed for every L (as opposed to a particular L), which 

satisfies 0 < @(L)(w) < cL(w). ph (Rll) < 1 requires that f (cL) < 1 for CL = 0. 

5. Tightest bounds can be obtained if we restrict L to be a scalar-times-identity 

matrix. Then, the p can be calculated with respect to AL = { C ~ I P X ~  : 6 E c } .  

Using Robust Performance Norrnbounds for Design of IMC Filter 

We can use the above method in designing the IMC filter for robust performance. 

Figure 4.11(a) shows a block diagram for general robust performance problems. We 

can parametrize the closed-loop system in terms of FIMC as shown in Figure 4.11(b) 

and derive the robust performance norm-bound on FIMC. One problem is that the 

bound on 5(FIMC(jw) will not be feasible ( i . e . ,  drop to zero) in the low frequency 

region since FzMC = 0 implies open-loop (see the second comment on Theorem 4.2). 

An immediate way to overcome this problem is to reparametrize the closed-loop in 

terms of I - FaMc as shown in Figure 4.11 (c) and to derive the robust performance 

norm-bound on I - FzMC. The bound on 5 ( I  - FIMc(jw)) should be feasible in 

the low frequency region, but will often be infeasible in the high frequency region 

where detuning is required for robust stability (I - FIMC = 0 implies no detuning). 



Figure 4.11. General Method for Deriving Norm-Bounds on FIMC and I - FIMC 



Hence, the bound on 5(FIMc(jw)) must be combined with that on *(I - FIMc(jw)) 

in designing FIMC. More specifically, if FIMC is designed such that either of the 

bounds is satisfied at each frequency, then we may conclude that robust performance 

is achieved. 

Robust DesignJTuning Rules 

In summary of the foregoing discussion, we propose the following design/ tuning rules 

for IMC controllers: 

1. As mentioned before, a nonzero input weight can reduce the directional sen- 

sitivity of the LQ controller for an ill-conditioned system. Hence, the input 

weight A*, (chosen as a constant-times-identity matrix for simplicity) is grad- 

ually increased until the resulting robust performance norm-bounds on FIMC 

and I - FIMC start deteriorating. 

2. The robust performance norm-bounds on FIMC and I - FIMC are used to design 

FIMC satisfying robust performance, if possible. Otherwise, a more elaborate 

design such as p-Synthesis may be necessary. 

3. Equipping the FIMC with on-line tuning parameters that directly affect the 

speed of the closed-loop response (e.g., pole locations) can add further flexibility 

of the control system. 

4.4.6 Relationship with LQG and Traditional IMC 

To clarify the relationship between LQG and IMC, we reconsider the two special types 

of disturbance/noise for which we were able to parametrize the optimal estimator with 

a real parameter vector and establish a connection between the two techniques. 



Integrated White Noise Disturbance in Each Output with M i t e  Measurement 

Noise 

Recall that, for LQG controllers, the complementary sensitivity function was ex- 

pressed as 

HLQC = ( G L Q ) ~ ~ ( z  - I  + F)- lF(ZI)  (4.143) 

On the other hand, for IMC controllers, the complementary sensitivity function is 

It can be easily seen by letting F  = I  that the "undetuned" complementary sensi- 

tivity function G y C u Q z ~ c  is ( G L Q ) ~ ~ .  Hence, FzMC that leads to an IMC controller 

equivalent to the LQG controller is simply the following diagonal first-order filter. 

Double-Integrated White Noise Disturbance on Each Output with White 

Measurement Noise 

The complementary sensitivity function for LQG controllers is 

On the other hand, for IMC controllers, the complementary sensitivity function is 



FIMc that leads to an IMC controller equivalent to the LQG controller is 

In general, such a filter would be extremely complex and is a function of LLQ as well 

as Fa and Fb. The only exception is the case of a minimum-phase system with zero 

input weight. For this case, 

and the expression (4.1 17) reduces to 

Using similar arguments, one can show that, for general disturbances, FIMC lead- 

ing to an IMC controller equivalent to its correponding LQG controller is very complex 

and is a function of LLQ as well as KG. 

The proposed IMC technique differs from the standard IMC technique [50] in that 

the IMC controllers are interpreted as state-observer based compensators and that 

its formulation allows for the flexibility of including a nonzero input weight in the 

objective function. Standard IMC is developed in an input/output setting and QIMc 

is calculated directly assuming a zero input weight. The flexibility of including a 

nonzero input weight can be important for ill-conditioned systems for which inverse- 

based controllers are not desirable from a robust viewpoint. 



4.5 Model Predictive Control (MPC) 

For the LQG and IMC controllers, input constraints are handled through an extended 

estimator combined with a directionality correction scheme. These constraint han- 

dling schemes are simple and intuitive, but are ad hoe and suboptimal. In addition, 

various output constraints must be handled in heuristic ways ( e.g., mode switching). 

Motivated by these considerations, we develop in this section a Model Predictive Con- 

trol technique that can incorporate various constraints in a direct manner. Before we 

begin our discussion on MPC, we would like to remark that the proposed technique 

represents a significant step forward for MPC. The new interpretation of MPC con- 

trollers as a combination of a state observer and a compensator (constant linear state 

feedback for unconstrained cases and nonlinear state feedback for cases) enables more 

transparent analysis of the control system and flexible, intuitive design and tuning as 

well. 

4.5.1 Minimization Objective 

Consider the same disturbances as in (4.38). The minimization objective of MPC is 

based on a finite moving time horizon: Minimize at each t = k the function 

p is called "prediction horizon," and often used as a tuning parameter in traditional 

MPC techniques. The main motivation for adopting the finite-moving-horizon- based 

objective function is that on-line constrained optimization can be performed to cal- 

culate the best controller moves in the presence of input/output constraints. This is 

discussed in Section 4.5.3. 



4.5.2 Optimal Control Design 

The separation principle still applies for the MPC in the absence of constraints. 

Hence, we can design the state estimator and the compensator separately and combine 

them to obtain the optimal control system. 

Optimal Estimator: Kalman Filter 

Since disturbances to the system have not changed, the optimal estimaior remains 

the same as before: the Kalman filter of (4.42). 

Optimal Compensator: MPC State Feedback 

To obtain the optimal state feedback for the objective (4.152), we develop the follow- 

ing prediction equation (note that it is optimal to set Ad(q) = 0 for q 2 k since it is 

zero-mean white noise): 

where 



pe(k + ql k, j) represents the prediction of y,(k + q) based on the measurements at 

t = k. We also allowed the flexibility of specifying the number of input moves, m, 

differently from the output prediction horizon p (i. e., 1 5 m 5 p). In the LQG design, 

we assumed that r is described as integrated white noise. An analogous treatment 

would be to set RP(k + Ilk) = r(k)ZP. By incorporating information on the future 

reference changes into the prediction equation, MPC can handle more general types 

of reference inputs without increasing the system order. 

Simple least-square solution calculation shows that the optimal state feedback law 

for the objective (4.152) is as follows: 

where 



P - 
where A ye = diag(Aye, - - , A,) and AA. is defined in the same way. The compensator 

is stable if and only if all eigenvalues of (@ - rAuLMpc) lie inside the unit disk. 

Assuming the reference vector is a step function, 

which is same control law as the LQ regulator with LLg replaced by LMPC. By 

definition, LMpC --+ LLg as p , q  + CQ for minimum-phase systems since LMPC is 

guaranteed to be a stabilizing control law in this case (one would need weighting on 

Au at t = CQ to guarantee stability for nonminimum-phase systems). 

Optimal "Unconstrained" MPC: Kalman Filter + MPC State Feedback 

The optimal unconstrained controller is the combination of the Kalman iiiter and 

MPC state feedback: 

4.5.3 Constraint Handling: On-Line Quadratic Programming 

The main advantage of MPC is that constraints can be incorporated directly into the 

controller formulation. In the presence of the constraints described through (2.70)- 

(2.72), the MPC state feedback is replaced by an on-line optimizer that calculates at 

every t = k the optimal control moves (not violating the given constraints) for the 

specified number of steps ahead and implements the first move. The optimization 

can be written as follows: 



such that 

Of course, if rn < p - 1, then we constrain Au(k + q )  to be zero for m < q  5 p - 1. 

The above optirnzation problem can be formulated into the following standard 

Quadratic Programing problem: 



where yIigh/yiw represent upper/lower bounds on x: 
T 

Yf%?h(k + l k )  = [ ( ( ~ c ) h i g h ( ~  + ((yc)high(k + 2 ) ) T  ((yC)high(k + P ) ) ~  ] 
(4 .170)  

T 

+ I l k )  = [ ( ( Y C ) , W ( ~  + l ) )T ((yc)rOw(k + 2) lT  - .  ( (yc) loW(k + P ) ) ~  ] 
(4 .171)  

The optimization can be solved by the standard Quadratic Programming (QP). For 



details on the solution procedures, the readers are referred to Garcia & Morshedi [25] 

and Ricker [56]. 

4.5.4 Robust Desigmuning 

MPC controllers are equipped with many potential designltuning parameters. The 

traditional tuning parameters include: 

1. Prediction Horizon (p) 

2. Number of Calculated Control Moves ( m )  

3. Output/Input Weights (A,, and AAu) 

4. Constraints on Au. 

With the introduction of a general state observer to MPC, we have added more of 

these indirect parameters such as noise covariance matrices. In spite of the abundance 

of tuning parameters, tuning MPC controllers is not known to be an easy task. The 

main reason is that none of the tuning parameters have transparent connection with 

ciosed-loop performance and robustness. 

In the new framework, we recommend the following set of tuning rules: 

1. Decide on the prediction horizon and number of control moves such that the 

resulting @ - LMPCIIU@ has all its eigenvalues strictly inside the unit disk. In 

general, we recommend that the prediction horizon, p, be chosen longer than 

the desired settling time and the number of input moves, m, be chosen as close 

to p as possible (within computational limits). 

2. Assuming the inputs and outputs are scaled correctly, choose A,, to be an 

identity matrix and AAu to be a scalar-times-identity matrix. For SISO systems 

or well-conditioned MIMO systems, choose the scalar for the input weight just 

large enough to satisfy the stability criterion. For ill-condtioned MIMO systems, 



choose the scalar somewhat larger; a good method to decide on the scalar is to 

derive robust performance norm-bounds on fiMC and I - FIMC for each tested 

value of the scalar and choose the value at  which the bounds start deteriorating. 

Further on-line adjustments may be made later. 

3. For case where disturbances and measurement noise are described as integrated 

(or double-integrated) white noise and white noise respectively, use the param- 

eter F (or Fa) for the state estimator to adjust the speed of the closed-loop 

response. For cases of more general disturbances, use the IMC estimator de- 

scribed in Section 4.4.3 instead of the Kalman filter to obtain the state estimates, 

A% and A& for the prediction equation. The IMC filter may be designed off-line 

using the robust performance norm-bounds and further adjusted on-line. 

We do not recommend using constraints on Au as tuning parameters because this 

makes the controller necessarily nonlinear and analysis of such a controller is very 

difficult. The tuning procedure outlined above should simplify the tuning for MPC 

controllers immensely as all the parameters are intuitive and their effects are well 

understood, 

4.5.5 Relationship with Dynamic Matrix Control 

The proposed MPC technique is completely equivalent to the standard Dynamic 

Matrix Control (DMC) technique [15] when the state estimator is designed for the 

following systems: 



Hence, DMC assumes that system disturbances are described through integrated 

white noise entering each output independently. In addition, it assumes that the 

measurements are noise-free. These assumptions, especially the first assumption, can 

lead to poor performance regardless of the choice of tuning parameters. 

In Chapter 3, we mentioned that there exists no general method of solving the opti- 

mization problem 

inf sup inf 3 [ ~ ( w )  E ( G ,  K) I s = j w  D-' (w )] 
K E G  w D(w)€Vrp 

As a partial solution to the problem, Doyle [17] suggested a method called "p- 

Synthesis." For the sake of completeness, we review this design method and point 

out some of the practical barriers for the method. 

4.6.1 Algorithm 

p-Synthesis is an iterative procedure to obtain a suboptimal solution to the optimiza- 

tion problem (4.175). The algorithm can be summarized as follows: 



Step 1 Initialize the D-scaling by choosing a unimodular Do E qp where 

V:p = {D E RH, : D-' E RH,, D(jw) E h P v w }  (4.176) 

Often, the identity matrix is a good choice when no information is available on 

how best to choose Do. 

Step 2 Using the standard H,-optimal design method (Doyle e t  al. [IS]), find IC E 

Ks that minimizes 

Step 3 For a selected set of frequencies W, find D(w) E Vrp that minimizes 

Step 4 Let ~ ( w )  = D(w) * Do(jw) for each w E W. Then, find a new Do E D:p such 

that Do(jw) = U ( ~ ) D ( ~ )  Vw E W where U(w) is any unitary matrix. 

Step 5 Go back to Step 2 and repeat the procedure until D(w)  does not change 

significantly from the last iteration for all w E W. 

4.6.2 Practical Barriers 

It is important to note that (4.175) is nonconvex with respect to (Q, D(w)), and hence, 

the procedure does not guarantee convergence to the global minimum. However, it is 

the only design method available, the objective of which is to explicitly minimize the 

upperbound of the Structured Singular Value for robust performance. The following 

numerical problems can make application of this powerful design method difficult. 

1. Step 2 is a very involved, iterative optimization. Our experience with the avail- 

able software shows that the algorithm is unreliable for a certain class of systems. 



2. Step 4 introduces error since D-scale is approximated only at a finite number 

of frequencies. This error can cause the algorithm to diverge. 

In addition, p-Synthesis design yields a controller with no on-line tuning parameters. 

This implies that the design engineer must have access to an uncertainty model that 

is accurate quantitatively as well as qualitatively. Unfortunately, this is seldom the 

case for most chemical processes. 

4.6.3 Constraint-Handling 

In the presence of input constraints and mode-switching, a controller designed via p- 

Synthesis can show significant performance deterioration if implemented as is. For p- 

Synthesis controllers, there does not exist a simple anti-windup compensation scheme 

like the extended Kalman filtering. However, recent work by Campo [I01 provided 

a theoretical basis for synthesizing anti-windup, bumpless transfer schemes for gen- 

eral multivariable controllers. The technique guarantees the recovery of the original 

linear performance when the input matches the controller output exactly, and aims 

at "quick" recovery from saturation or mode switching by minimizing the "memory" 

(expressed through the hankel norm) of the control system. For details, readers are 

referred to Campo [lo]. 

4.7 Numerical Example: Heavy Oil Fractionator 

In this section, we apply the proposed IMC design method to a heavy oil fractionating 

column. The schematic diagram of the fractionating column is shown in Figure 4.12. 

The control system design problem (shown in Figure 4.13) is a simplified version 

of that presented in The Shell Process Control Workshop (so called 5he l l  Control 

Problem") [54]. 



4.7.1 Problem Statement 

The control problem we consider is shown in Figure 4.13. The transfer function 

models are given as follows: 

0 represents measurement delays and it is identity in this case. We can factor out the 

time delays in G,,, and Gycd as measurement delays, 0, and consider the equivalent 

control problem where 



TT (Top Temperature) 

TEP (TOP Endpoint) 

SEP (Side Endpoint) 

Figure 4.12. Schematic Diagram of a Heavy Oil Fractionator 

Figure 4.13. Control Problem in the Heavy Oil Fractionator 



Since no specific sampling limitation was provided in the Shell Control Problem, we 

assume that both $, and $, can be measured continuously. 

We consider a simple measurement noise, that affects all temperature measure- 

ments in the same manner. Furthermore, it is assumed that the measurement noise 

associated with the primary measurements is negligible. Hence, we choose 

One physical source of such measurement error is the pressure variation in the column 

that often has a much stronger influence on the temperatures than the compositions. 

The following performance specification and noise model is used: 

Hence, we are not including any reference change and input penalty term. (4.188) 

requires almost no offset (attenuation of all signals by a factor of 3500) at  steady- 

state and attenuation of all signals of frequency smaller than 0.1 rad/min. In addition, 

it requires that the measurement noise at frequency higher than 10 rad/min is not 

amplified (see Figure 4.14). 

The uncertainty we consider is described in Figure 4.13. Ai,AQ, and A, are 

best viewed as the uncertainty associated with actuators, primary measurements, 

and secondary measurements respectively. We use the following uncertainty weights: 



solid line: 1 - 1  dgrh-d line: I M I  

Figure 4.14. Magnitudes of Disturbance/Noise, Performance Weights 

The magnitudes of W;, WO, and We are plotted in Figure 4.15. (4.189) allows 10% 

error in all the actuators and measurements in the low frequency region. (4.189) also 

allows time delay errors of approximately 1 minute in the primary measurements ( c o )  

and approximately 112 minute in the secondary measurements and actuators. 

Our objective is to design a control system achieving robust performance. 

4.7.2 Preliminary Analysis 

Let us first check if it is possible to achieve nominal performance with a control system 

using the composition measurements alone. When the time delays are approximated 

by second order Pad6 elements, the achievable H,-norm for nominal closed-loop per- 

formance is greater than 1, which implies that it is impossible to design a controller 

meeting the performance specification with composition measurements alone, even in 

the absence of model uncertainty. This is due to the significant delays in the mea- 

surement s; we must utilize the temperature measurements, which have no deadtime 
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Figure 4.15. Magnitudes of Actuator/Measurement Uncertainty Weights 

associated with them. There are four temperature measurements available. Since 

the number of the disturbances we are concerned with is only two (IRD and URD), 

two measurements are sufficient for the design of an inferential controller yielding a 

perfect nominal performance ( i . e . ,  in the absence of uncertainty and measurement 

noise). Hence, our objective becomes to select two temperatures among the four 

available ones and design a control system achieving robust performance. We have 

the following six possible choices for temperature-pair measurements: 

1 - 
Ym - Ym - Ym = 

URT SDT IRT 

URT URT SDT 

" = ( SDT ) " = ( IRT ) " = ( IRT ) 
Let us next look at the possibility of designing an output estimation based IMC 

controller achieving robust performance using the temperature measurements alone. 



The Worst-Case Steady-State Performance with Inferential Controllers for All Mea- 
surement Sets 

Measurement Set 
s 1 

s2 
33 

S4 

35  

s6 

Since Gycu is minimum-phase and square, we choose QIMC = GyC;. In addition, 

because Gysd is minimum-phase and square, the following output estimator gives 

perfect estimation of y, in the absence of modelling error and measurement noise: 

max~,~A, ,  3(Fc~d~(Au, Q, E))w=o 
3.688 x lo3 
1.951 x lo3 
1.993 x lo3 
2.233 x lo3 
7.511 x lo3 

Z O O  

Nonproper transfer functions are approximated with proper transfer functions by 

adding poles ai  rt high frequency (i .e. ,  w = 1000). Table 4.1. shows ihe worst possible 

steady-state performance (maxAuEAu i?(Fy,,(0))). We observe that, for all measur- 

ment candidates, this is far greater than 1 due to the model uncertainty and the 

stringent performance specification at steady-state ( i . e . ,  attenuation of all signals by 

a factor of 3500). Actually, the measurement set yielding the best steady-state per- 

formance (s2) is only slightly better than the open-loop ( 1.951 x lo3 vs. 1.060 x lo4). 

This analysis lets us conclude that we must utilize both the composition and tem- 

perature measurements in output estimation. In the next section, we examine the 

viability of designing an IMC controller based on the output estimator which utilizes 

both the temperature and composition measurements. 



4.7.3 Measurement Selection and Design of an Output Estimation 
Based IMC Controller 

In this section, we examine the possibility of designing an IMC controller achieving 

robust performance based on an output estimator that uses the composition measure- 

ments as well as the temperature measurements. For the output estimator design, we 

follow the method introduced in Section 4.2.3. For the main estimator, we use the 

nominally "perfect" estimator of (4.190). In addition, we augment the main estimator 

with an auxiliary estimator, which is designed to yield the following decoupled first 

order response from the estimation error, $, - jj,Sm, to the correction term, ijFm: 

Note that time constants are chosen as %. 
Next the norm bounds on [I - FzMc(jw)] and FZMc(jw) are derived. The bounds 

for all six measurements are shown in Figure 4.16. We observe that the bounds for 

y: are superior to those for all other measurements. Indeed, y; and y; are the only 

measurement sets which yield "feasible" sets of bounds. The following simple filter 

satisfies one of the bounds on @(I - FZMc(jw)) and i?(FIMc(jw)) for y; at every 

frequency (see Figure 4.1 7): 

A diagonal first order filter FzMC is designed for each measurement set so that it 

fits the bounds (shown in Figure 4.16) as much as possible. Figure 4.18 shows the 

plots of the Structured Singular Values for robust performance for all measurement 

sets with the designed filters. The p-plot for yL confirms that robust performance is 

indeed achieved for y;. Although y$ also satisfies the robust performance condition, 

the p-plots clearly show that the performance of y; is superior to that for y$ at all 



frequencies. 
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Figure 4.16. Robust Performance Bounds on * ( I  - F ~ M c ( ~ w ) )  and * ( F I M c ( ~ w ) )  
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Figure 4.17. Meeting the Robust Performance Bounds for y: with FIMC = &I 

Appendix 4.A: Minimizing the Error Due to Uncontrollable 
Subspace 

In Section 4.3.3, we state that the matrix Cc(I - A)-'B, must have full row rank in 

order to design the LQ state feedback controller achieving the integral action. When 

this condition is not met, we must reduce the number of controlled variables. The 

optimal way (in the sense of the Frobenious norm of the matrix relating disturbances 

to the steady state errors) of doing this is to replace ye with y,*, that is the projection 

of ye into the controllable subspace X. The projection of y, into the space X can be 

easily calculated by the following formula: 

1 T 
Y: = P i y e  = G y e u ( ~ ~ , ~ y e . ) -  G ye" ye (4.194) 

One can simply replace Age with A,: = (P;)TAyePXf in calculating the optimal feed- 

back gain. This is equivalent to reducing the dimension of ye optimally in order to 

make the LQ design feasible. 
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Figure 4.18. Structured Singular Values for Robust Performance 



Chapter 5 

State Estimation B ased Inferential Control 
System Design 

5.1 Overview 

The topic of this chapter is state estimation based inferential control system design. 

In contrast to the approach taken in Chapter 4 where an independently designed 

output estimator and a conventional feedback controller are combined into an in- 

ferential control system, a control system that calculates the input moves directly 

from secondary measurements is to be designed using a first principles or empirically 

identified model in this chapter. Hence, for the control techniques developed in this 

chapter, we relax the assumption of the primary measurements' availability at a uni- 

form, desirable sampling rate. The introduced techniques can incorporate multi-rate 

sampled secondary measurements as well as potentially unreliable primary measure- 

ments. When compared to the two step design approach of Chapter 4, the direct 

approach has the potential advantage of higher achievable performance. However, it 

has the disadvantage that it requires a full dynamic model relating the manipulated 

variables/disturbances and primary/secondary variables. 

As in Chapter 4, our main objective is to devise an inferential control technique 

that can offer true "multi-variable" performance and has desirable operational char- 

acteristics like PID controllers. The operational characteristics of our main concern 

are flexible, intuitive on/off-line tuning and straightforward handling of constraints 



and actuator/sensor failures. For sensor failures, we are particularly concerned with 

those of unreliable primary measurements. A desirable failure tolerance property for 

primary measurements may be stated as follows: 

A failure of a primary measurement does not affect the closed-loop re- 

sponses of the other primary variables and the primary variables corre- 

sponding to the failed measurement maintains an "acceptable" behavior. 

We will refer to this measurement failure property as "Decentralized Failure Tolerance 

(DFT)." 

Given the formulation for measurement selection in Chapter 3, the most straight- 

forward approach is to design the controller that minimizes the "worst-case" H,-norm 

of the closed-loop system from weighted external inputs to weighted controlled out- 

puts. As we mentioned in Chapter 4, the problem of synthesizing the controller min- 

imizing the "worst-case" error has not been solved even for SR (or continuous-time) 

systems. As an alternative, we described a synthesis procedure called p-Synthesis that 

combines the Ha-optimal design with p-analysis in an iterative manner. However, 

there are several theoretical drawbacks that prevent the extension of the technique 

to multi-rate sampled-data systems. Some of the theoretical barriers include 

1. Lack of Ha-optimal solution for general multi-rate sampled-data systems. 

2. Nonapplicability of frequency-domain p-analysis to time-varying continuous- 

time or shift-varying discrete- time systems without resorting to approximations 

or conservativeness. 

3. Lack of general framework to address the issue of failure tolerance to the syn- 

thesis procedure. 

Although progress is made in this area [33,23], it will be awhile before these theoretical 

issues are resolved completely. 



In addition to the theoretical barriers, there are often overlooked practical barriers 

for the practical application of p-Synthesis. ,+Synthesis is basically an off-line design 

method with no on-line tuning parameters. The method requires a mathematical 

model of system uncertainty and choosing frequency-domain weighting functions for 

external inputs and outputs. When the uncertainty model and chosen weighting func- 

tions do not reflect the model/plant mismatches and performance objectives for real 

systems correctly, the control system can lead to less-than-acceptable performance. 

Since there is no way of adjusting the controller on-line, the design must be aban- 

doned and a new design must be carried out based on a different uncertainty model 

and/or weighting functions. For chemical processes, most engineers have access nei- 

ther to an accurate, nonconservative, uncertainty model nor to expertise required for 

proper selection of weighting functions without extensive trial and errors. Upon these 

considerations, we seek alternatives in this chapter. 

We develop this chapter in a parallel fashion to Chapter 4. We first introduce 

a modified state space model that is suitable for designing controllers with integral 

action. Then, design of the optimal state estimator for a multi-rate sampled-data 

system under general stochastic assumptions about the external input signals is dis- 

cussed. When combined with the LQ feedback regulator, this gives the Hz-optimal 

controller (as defined in Chapter 2). For systems with failure-prone primary measure- 

ments, we also discuss design of a suboptimal, cascaded state estimator that can lead 

to a control system with the DFT property. In order to provide a basis for simple, 

intuitive design and tuning for robustness, we extend the state space IMC technique 

presented in Chapter 4 to our inferential control problem. 

Extension of the output based MPC technique introduced in Chapter 4 to multi- 

rate sampled-data system is straightforward. We simply use the state estimates 

from either the optimal state estimator or the IMC estimator to develop prediction 

for future outputs. The proposed MPC technique accomplishes the goal we set out. 



It incorporates the full model information and has enough degrees of freedom to give 

true "multi-variable" performance and robustness. Yet, the controllers have many de- 

sirable operational properties such as flexible, intuitive on-line tuning, straightforward 

input/output constraint handling, and tolerance to actuator/sensor failures. 

The chapter concludes with an application to a high-purity distillation column. 

The merits of the proposed techniques during various nonideal operating modes are 

demonstrated as well as their performance during an ideal operating mode. 

5.2 Linear Quadratic Gaussian (LQG) 

5.2.1 Process Model 

The following state-space difference equation can be used to describe a general linear 

mult i-rate saf-npled-data system: 

Process: 

Controlled Variables: 

Measurements: 



Cc(j) and C,(j) are C, and C. with the elements of all rows corresponding to the 

measurements unavailable at jth sampling instant set to zeros. It is assumed that 

(A, B,) is a stabilizable pair and ( [ 2 1 , A) is a detectable pair. 0. and OS are the 

measurement delays (in terms of STU) of the primary and secondary measurements 

respectively. 

By performing some simple algebraic manipulation, we can put (5.1)-(5.5) into 

the following standard state-space form: 

where 





1 if ith primary measurement is available a t  jth sampling instant 
(5.14) 

0 otherwise 1 < i < dim{yc} 

1 if ith secondary measurement is available at jth sampling instant 
(5.15) 

0 otherwise 1 < i < dim{ys} 

It is assumed, for convenience of notation, that all measurements are synchronized at 

j = 0 implying that Z ( 0 )  has full row rank. For simplicity of exposition, we assume 

from this point on that the measurement delays 0, and 0, are zero. However, all 

results obtained in this chapter are applicable without modification to cases where 

these delays are not zero. 

For the reasons explained in Chapter 4, it is convenient to express the model in 

terms of the changes in the inputs. For this purpose, we subtract the equation (5.6) 

at t = (k, j - 1) from that at t = (k, j )  to obtain the following modified state-space 

represent ation of the system: 



where 

A variable represents the change in the variable from the previous sampling time 

(e.g., Ax(k, j )  = x(k7 j) - x(k, j - 1)). 

Theorem 5.1 : Detectability of Multi-Rate Sampled-Data System 

The system (5.16)-(5.17) is detectable if and only if 

( [ 2 ] , A) is a detectable pair. 

Proof See Appendix 5.B. 

In addition, from Section 4.3.1, ( [ ctA : ] , [ c:iu 1) is a stabilizable pair if 

and only if (B,, A) is a stabilizable pair and Ker {(C,(I - A)-' B , ) ~ )  = 0. We are 

not concerned with the stabilizability of the whole system (i.e., the stabilizability of 

(@, I?,)) since our performance objective does not include the errors in the secondary 

variables. In other words, we do not require that the integrators on the states y, to 

be stabilized since offsets in y, do not cause any problem. 



5.2.2 Minimization Objective 

Let us consider the following inputs to the system: 

where [bile is a unit impulse entering the ith channel at  t = (0, l ) .  The objective 

function is as follows: 

- 

R 
A 

where q = (dim{d)+dim{r) +dim{v,)+dim{v,)). The subscript (.)ie represents that 

y,(t) and Au(t) are those resulting from the input [-Ije. In the stochastic framework, 

the objective is interpreted as minimization of the steady-state variances of ye and Au 

(weighted through AtLz and Ah/Z respectively) when Ad and V are white noise with 

covariance matrices of Qd and R respectively. The above objective also assumes that 

A r  is a white noise; however, all techniques in this chapter can be trivially extended 

to more general types of reference inputs and this will be discussed in detail. 

[bile 

5.2.3 Optimal Control Design 

Invoking the separation principle, the Hz-optimal controller is the combination of the 

optimal state estimator and the LQ regulator. 

Optimal Estimator: MR Kalman Filter 

The optimal estimator for the given process and disturbances is the following Kalman 



filter: 

where 

KG(j) = Cs(j)ZT(j){Z(j)Cs(j)ET(j) + R}-I (5.23) 

C, ( j  ) represents the steady-state solution to the following periodically time varying 

(PTV) Riccati equation: 

Because the above Riccati difference equation is PTV, its steady-state solution C, is 

also PTV. 

Definition 5.1 A Stabilizing Solution to PTV Riccati Equation 

A steady-state solution to the PTV Riccati equation (5.24) is called 

1. a "stabilizing solution" if the matrix n,"=ol(@ - KG(j ) t ( j )@)  has all its eigen- 

values (called "observer eigenvalues") strictly inside the unit disk. 

2. a "strong solution" if  all the eigenvalues lie within the closed unit disk. 

There are two ways to obtain the stabilizing C,(j). One way is to convert the 

PTV system to a shift invariant (SI) system by changing the time scale from 7s to 

TB. This method allows us to obtain the stabilizing solution by solving an algebraic 

Riccati equation and is discussed in detail in Appendix 5.A. 

The other way is to iterate on the PTV Riccati difference equation until C ( k  + 
1 j )  ( k  j Vj.  The following conditions (in addition to the detectablity of 



(Z(j), Q) guarantee the convergence of the Riccati difference equation (5.24) to a 

stabilizing solution: 

1. E(0,O) 2 0  and R >  0. 

2. (@, r d ~ : / 2 )  is a stabilizable pair. 

The former condition requires a positive semidefinite initial error covariance matrix 

and nonsingular measurement noise. The latter condition states that all unstable 

dynamics of the system should be excited through the state excitation noise Ad. If 

this condition is not satisfied, the obtained filter gain may lead to bias in the estimates 

when there are disturbances other than those modelled and/or mismatches between 

the model and the real system. A simple way to get around this problem is to add 

more disturbances that can account for modelling errors, e tc .  

The assumption of nonsingular R is necessary to prevent the matrix 

(Z(j)C(k, j)ZT(j) + R) from becoming singular. The matrix can become singular 

because Z(j) can contain rows of zeros. If the solution to the singular problem is 

desired, the following step has to be taken: 

"Condensate" the measurement matrix t ( j )  meaning Z(j)  is made to have 

full row rank by deleting all rows that contain only zero elements or, more 

generally, that are linearly dependent. 

If we denote the "condensated" E(j)  as zc( j ) ,  the stabilizability of (Q, rd9:l2) guar- 

antees that the matrix (tc(j)z(k,  j ) ( E ~ ( j ) ) ~ )  is nonsingular. 

Optimal Compensator: LQ State Feedback 

The optimal state feedback compensator for the given objective (5.21) is as follows: 



where 

8, is the solution to the following algebraic Riccati equation (ARE): 

8 = BT8d - dT@f ,(f r@f ,, + ~ ~ . ) - ' f  r8d + diag [CJdim{,}, A,] (5.28) 

where d is the (dim{x} + dim{y,}) x (dim{z} + dim{y,}) subblock of @ starting from 

the top-left corner. f, are the first dim{$} + dim{y,} rows of I?,. The ARE (5.28) 

does not have a stabilizing solution unless (6, r",) is a stabilizable pair. The condition 

Ker{(C,(I - A)-' B,)~} = 0 (which is required for the stabilizability) is not satisfied 

if C,(I - A)-'B, does not have full row rank (for example, dim{y,} > dim{u)). As 

explained in Section 4.3.3, the number of primary variables must be reduced first in 

this case by projecting y, onto the controllable subspace in order for the LQ design 

to be feasible. 

The reason why we exclude the states y, from our calculation is that we are not 

interested in the performance of y,. The computation of the optimal state feedback 

with these states left in will require an unnecessarily large number of manipulated 

variables since the stabilizability of (@, 1',) requires that ( [ 2 ] ( I  - A)-lBu) has 

full row rank because of the additional integrators on the states y,. 

The above control law is valid for step reference inputs. For more general types 

of reference inputs, we need to use augmented states in calculating the control moves 

as discussed in Section 4.3.3. 

Hz-Optimal Controller: MR Kalman Filter + LQ State Feedback 



Figure 5.1. LQG Controller for MR Sampled-Data Systems 

The H2-optimal controller for the given problem is a combination of the MR Kalman 

filter and the LQ state feedback compensator written as follows: 

where 

The control system is described pictorially in Figure 5.1. 



Directionality Input 
Correction Scheme Saturation 

Figure 5.2. Extended MR Kalman Filter with Directionality Correction Scheme 

5.2.4 Constraint Handling: Extended Kalrnan Filter 

In the presence of input constraints (constraints on u and Au), the controller (5.29)- 

(5.31) can show significant "wind-up" as Au(k, j) # -LLgAxe(k, j). The simplest 

anti-windup scheme is the Extended Kalman filter where (5.29) is replaced by 

and Au,,,, represents the "true" input to the system, which is the projection of 

utrue(k, j - 1) - LLgAxe(k, j )  onto the constrained input space of u(k, j). For ill- 

conditioned MIMO systems, the directionality correction scheme discussed in Sec- 

tion 4.3.4 can be used in conjunction with the Extended Kalman filter. The anti- 

windup scheme is described pictorially in Figure 5.2. 

A drawback of LQG controllers is that the output constraints (constraints on y,) 

are handled in ad hoe ways ( e . ~ . ,  mode switching). The MPC technique, discussed 

subsequently, addresses various types of constraints explicitly through on-line opti- 



mization. 

5.2.5 Failure Tolerance: Cascaded Kalman Filter 

The MR Kalman filter is "optimal" when all the measurements are available. How- 

ever, when any of the primary measurements fails, the performance can deteriorate 

severely and can even lead to instability. In order to incorporate the failure tolerance 

property (ideally, the DFT property discussed earlier), we suggest to replace the MR 

Kalman filter with the cascaded Kalman filter shown in Figure 5.3(b). For the design 

of the cascaded filter, we partition the R matrix as follows: 

Hence, we assume that v, and v, are uncorrelated. Not only are most measurement 

noises independent, but it is also impractical to model measurement noises account- 

ing for their correlation. Therefore, almost all control problems would satisfy the 

assumption. The cascaded estimator is composed of two parts: the main estimator 

using the "reliable" secondary measurements and the auxiliary estimator using the 

"unreliable" primary measurements. The notation {.)Sm and { . ) p m  will be used to 

imply that the variables or matrices under consideration are relevant to the main and 

auxiliary estimators respectively. 

Design of Main Estimator 

The main estimator is to be designed to depend only on the "reliable" secondary 

measurements. Hence, we construct the optimal state estimator for system (5.1 6) 

with the measurements 
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Figure 5.3. MR Kalman Filter vs. Failure-Tolerant Cascaded Kalman Filter 



where Z.(j) = [ 0 0 H3(j) 1. The optimal estimator for system (5.16), (5.35) is of 

the form: 

and the optimal filter gain is given by: 

Czm(j) represents the steady-state solution to the following PTV Riccati equation: 

Note that (5.38) can be written as an algebraic Riccati equation (ARE) if all secondary 

variables are sampled at  a uniform rate. 

One difficulty is that (E3(j), @) is not a detectable pair. The integrators on the 

states y, cannot be observed through the measurements $,. However, we can still find 

the optimal filter gain under the following assumptions: 

Assumption I (C,, A) is a detectable pair. 

Assumption 2 Ker(C,(I - /a)-' E d )  c Ker(C,(I - A)-' Bd} .  

Assumption 3 CSm(07 0) 2 0 and R > 0. 

The PTV Riccati equation (5.38) under the above assumptions has the following 



property: 

A Property 1 limk,, Csm(k, j )  = C:m(j) = 2zrn(j) + 

Property 2 2im (j) does not depend on the initial condition CSm (0,O). 

The above results call for some clarification. 

1. The first assumption is reasonable, since it is required to maintain closed-loop 

stability even when all the primary measurements fail. 

2. The second assumption says that all disturbances (d) affecting the primary 

variables y, should be observable from the secondary measurements. Assuming 

all disturbances are linearly independent ( i . e . ,  Qd has a full rank), this is clearly 

required for the convergence of the Riccati equation (5.38), since we cannot 

estimate y, perfectly at steady state otherwise. If dimid) > dim{y,), the 

assumption is violated. In this case, the number of disturbances must be reduced 

by projecting d onto the observable space; this is discussed in Appendix 5.C. 

3. The second property implies that the optimal gain KGm(j) does not depend 

on the initial condition since this part of Cim(j) does not show up in the 

expression for I{hm. 

In addition to the three assumptions, if ([ " ' I , [  B". IQ:") i s a s t a -  
CsA 0 cs B, 

bilizable pair ( i . e . ,  all unstable modes are excited by disturbance), Kkm(j) calcu- 

lated from z:"(j) leads to n observer eigenvalues at (1,O) and the rest strictly 

inside the unit disk where n is the dimension of y,. The n eigenvalues corre- 

spond to the integrators on y, that are in the unobservable subspace and cannot 

be moved regardless of the choice of the filter gain. Hence, C:rn(j) is a strong so- 

lution, but not a stabilizing solution. A consequence is that, when the assumption 



of Ker{Cs(I - A)-'Bd) c Ker{C,(I - A)-lBd) is not satisfied, the estimate of y, 

will exhibit bias. In practice, the assumption is almost always not satisfied because 

of unknown disturbances and insufficient number of measurements. Another factor 

that can cause bias in the estimates is model uncertainty. An implication is that the 

main estimator alone will lead to steady-state offsets in practice. We overcome this 

problem by cascading the main estimator with an auxiliary estimator that uses the 

primary measurements. 

Design of Auxiliary Estimator 

The auxiliary estimator is designed for the following system: 

where wl(k,  j )  is a white noise with covariance matrix Q,I. Physically, yzm represents 

the error between y, and the estimate of y, in the main estimator (g:,Sm). Th' 1s error 

may arise from various factors such as unmodelled disturbances, modelling errors, and 

insufficient number of measurements. Note that, in the above formulation, Ayzm, the 

change in y r  from the previous sampling time, is modelled as a white noise passed 

through dynamics Be(zI - Ae)-'Ce + De. The optimal estimator for the above system 

is 



where 

Czm(j)  is the steady-state periodic solution to the PTV Riccati equation 

and 

Partition Kkm and KLm as follows: 

The main and auxiliary filter may be combined into a single estimator as follows: 



where 

The LQ feedback must be calculated for the extended system (including the states 

w) as well. 

In practice, it is almost impossible to model accurately the error between the 

estimate of yc and the actual y,. Often, the following two simple models lead to ade- 

quate results and have the advantages of not having to solve a PTV Riccati equation 

and yielding an auxiliary estimator equipped with a set of intuitive on-line tuning 

parameters: 

e Case I: Integrated White Noise Errors: 

If we model the error between y,"" and the actual y, as random steps, the system 



(5.39)-(5.41) simplifies to 

In order to achieve a desirable failure tolerance property, we restrict our design 

such that the failure of one primary measurement (a component of $zm) does not 

affect the estimates of the other components of y,. Then, if the compensator is 

designed to be noninteracting, we achieve the DFT property. For this purpose, 

we constrain the choice of Q,: and R, to be diagonal so that the resulting I{zm 

will be diagonal as well. For diagonal Q,, and R,, it can be shown that 

where 

f; if ith measurement is available at jth sampling instant. 
fi(j) = 

0 if ith measurement is unavailable at jth sampling instant. 

Since the ith element of the vector multiplying Kgm(j) in (5.42) is zero whenever 

fi(j) = 0, one can simply implement K r  = diag[f;, - -  , f,]. f; is a constant 

between 0 and 1 (see Section 4.3 of Chapter 4 for the exact relationship between 

f; and the signal-to-noise ratio) and can be used as on-line tuning parameters. 

1 O 1 
estimator can be put into the same structure as the MR Kalman filter (5.22) 



with KG(j) replaced by I(gs(j) where 

Case 11: Double-Integrated White Noise Errors: 

If we model the error between the estimate of y, (y,Sm) and the actual y, as ran- 

dom ramps (double-integrated white noise), t he system (5.39)-(5.41) becomes 

Again, to achieve the DFT property, we restrict the choice of &,I and Rc to be 

diagonal so that the resulting I c r  be diagonal as well. For diagonal &,I and 

R,, it can be shown that 

where 

I f i  if ith measurement is available at  jth sampling instant. 
[fali(j> =: 

0 if ith measurement is unavailable at j th sampling instant. 

and 



[fa]; is a constant between 0 and 1 (see Section 4.3 of Chapter 4 for the exact 

relationship between f; and the signal-to-noise ratio). As before, for implemen- 

tation, 

(fa); can be used as on-line tuning parameters. 

In the event of a failure of a primary measurement, the parameter auxiliary filter 

gain f; (or [fa];) corresponding to the failed measurement is simply set to zero (see 

Figure 5.3(b)). 

It can be shown easily that Kzs ( j )  calculated from the strong solution C;" ( j )  

and the stabilizing solution Czm(j) places all the observer poles strictly inside the unit 

disk. The cascaded estimator constructed under the above two models is generally 

suboptimal since 6, is used to update only the states y, (and w for Case II) and not 

Ax and y,. However, this performance degradation is insignificant especially when 

the primary measurements are accompanied by large sampling delays since, for these 

cases, the primary measurements can be used only to correct for the "low frequency" 

errors in the estimates. Our numerical experience reveals that the cascaded estimator 

indeed performs almost as well as the optimal MR filter for most practical problems. 

On the other hand, it is preferred to the MR Kalman filter for its superior failure- 

tolerance property. 

Internal Model Control (IMC) 

LQG controllers for multi-rate sampled-data systems have many design/tuning pa- 

rameters that must be chosen properly for good performance and robustness. These 

parameters are not related to the system performance and robustness in a direct, in- 

tuitive manner. This presents a great difficulty for engineers since not only are most 

of the parameters (such as noise covariance matrices and input weights) not readily 



on-line adjustable, but it is also unclear how they should be changed in order to im- 

prove the robustness characteristics. Motivated by these considerations, we extend 

the state-space Internal Model Control technique (discussed in Chapter 4) to multi- 

rate sampled-dat a systems with secondary measurements. The technique aims at 

replacing the nonintuitive designltuning parameters for LQG controllers with those 

that have a transparent connection with frequency response of the closed-loop system. 

5.3.1 Minimization Objective 

Let us consider the same disturbances as in (5.20), but assume that there is no 

measurement noise (Q,, = Q,, = 0). The objective is to minimize the following 

quadratic index: 

where q = (dim{d} + dim{r}). The corresponding weights W, and W, in Chapter 2 

are as follows: 

5.3.2 Detuning for Robustness 

Since the controller is designed assuming no measurement noise, the resulting con- 

troller can be quite sensitive measurement noise and model uncertainty. Hence, we 

must detune the closed-loop in order to obtain a complementary sensitivity function 

that is desirable from the robustness viewpoint. Again, it is desirable from viewpoint 



Low-Pao Robwtneso Filter 

(c) 

Figure 5.4. IMC Detuning for MR Systems with MR Kalman Filter 



Figure 5.5. IMC Detuning for Multi-Rate Sampled-Data Systems with Cascaded 
Kalman Filter 

of robustness to detune the complementary sensitivity function directly. 

Consider the block diagram of Figure 5.4(a). It represents the closed-loop sys- 

tem with the LQG optimal controller. One can add and subtract the block G5,, 

and GGeu and obtain the diagram of Figure 5.4(b). GpSu and Gs,, are operators 

relating the input move u to the secondary and primary measurements, 6, and f, 

respectively. They may not be shift-invariant operators due to the presence of the 

multi-rate samplers and hence transfer function representations for these operators 

may not exist. Note that the closed-loop operator from [v:, vTIT to ys is -Gyru~QIMC. 

Hence, GYeu o QIMC represents the "idealn complementary sensitivity opeator ( i. e ., 



the optimal complementary sensitivity operator in the absence of measurement noise 

and modelling errors) which must be detuned for robustness. A natural way of de- 

tuning is to add diagonal low-pass filter blocks FfEc(j) and FFzC(j) as shown in 

Figure 5.4(c). Each diagonal element of FfEC(j) and FfcC(j)  is a low-pass filter 

that runs at the rate corresponding to the sampling time of its respective measure- 

ment. The resulting complementary sensitivity operator is Gycu o QIMC o FIMC where 

FIMC = diag [FfEc(j), FIGC(j)]. Hence, FIMC detunes the ideal complementary sen- 

sitivity operator in a user chosen manner. The only requirement on FIGC and FFGc 
for internal stability is that they should be stable themselves. 

When the cascaded Kalman filter is used instead of the MR Kalman filter, the 

auxiliary filter is already equipped with intuitive tuning parameters (f; or (fa);). 

Hence, the IMC filter block is needed only for the secondary measurements as shown 

in Figure 5.5, simplifying the controller structure. Since, for most practical cases, 

the cascaded Kalman filter is preferred to the MR Kalman filter, we will limit our 

discussion to control systems with the cascaded Kalman filters from this point on. 

Let us concentrate for a moment on the closed-loop characteristics of a single-rate 

(SR) system with secondary measurements only. Then the transfer function from d 

to y, can be written as 

Unlike the output estimation based inferential control systems studied in Chapter 4, 

the transfer function I - FfEc does not represent the transfer function between 

the open-loop and closed-loop effects of the disturbances on the controlled variables 

( i . e . ,  the usual sense of "sensitivity function") even for the ideal case where QIMc is 

designed to give perfect control ( i . e . ,  QIMc = G~c~Gycd(Gv,d)-l).  In other words, 



even when QIMC is designed for perfect control. A consequence is that we cannot 

adjust the speed of the closed-loop response for each controlled variable separately. 

5.3.3 State Space Formula for IMC Controller 

The cascasded Kalman filter with an auxiliary estimator designed for integrated white 

noise errors (Case I) can be written as: 

where 

S:(j) represents "condensated" Zs(j) meaning the rows of E,(j) that correspond to 

the measurements unavailable at jth sampling instant (and therefore contain only zero 

elements) are deleted. The operator (.)*' implies that the matrix is "uncondensed" 

meaning columns of zeros are added for the measurements unavailable at jth sam- 

pling time. CfvC(j) represents the strong solution ( i . e . ,  the solution that leads to 

n,"=<*(@ - Kjzc(j)Es(j)O) with all eigenvalues inside the unit disk except for the n 



eigenvalues at (1,O) corresponding to unobservable subspace) to the following PTV 

Riccati equation: 

The optimal state feedback is the same as before. The Hz-optimal controller for 

the given problem is a combination of the Kalman filter and the LQ state feedback 

compensator written as follows: 

Next we must augment this controller with the robustness filter FIMC. The real- 

ization of the transfer function G,,, can be written as follows: 

In addition, let the realization of FIGc be written as 

zf (k, j) = ~ j , ~ ( k ,  j - 1) + B~ ($,(k, j )  - y,"(k,j)) (5.79) 



We assumed here that all the secondary measurements are available at  a uniform 

sampling rate of STU ( i . e . ,  every j ) .  With this assumption, FiEc is a shift-invariant 

operator and h a t y i ( k ,  j )  = ij:(k, j ) .  For general multi-rate sample-data systems, 

A f ,  B f ,  C f  and D f  are PTV matrices. 

Now, we can express y j  as 

~ { ( k ,  j )  = c f z f ( k ,  j )  + j r ( k ,  j )  (5.81) 

= cf ( ~ ~ 5 ~  ( k ,  j  - 1 )  + ~ ~ ( $ , ( k ,  j )  - jj:(k, j ) ) )  + gr (k ,  j )  (5.82) 

= cf ~f ~f ( k ,  j  - 1 )  + ( I  - cf B f ) j j t ( k ,  j )  + cf B f  C3(k, j )  (5.83) 

= C ~ A ~ Z ~  ( k ,  j  - 1 )  + ( I  - c f B f ) & ( j )  ( C , A n f ( k ,  j  - 1 )  

+ j t ( k ,  j  - 1 )  + C s B u A u ( k , j  - 1)) + c f B f $ . ( k , j )  (5.84) 

The "undetuned" LQG estimator has the realization 
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Partition Kydc as follows: 

Combining (5 .84)  and (5.85),  

+ C 8 B u A u ( k ,  j  - 1 ) )  + c f B f  $.(k,  j ) )  (5.87) 

A general state-space formula for the IMC controller can be now written as follows: 

A x ~ ~ c ( k , j )  = QIMCAXZMC ( k ,  j  - 1 )  + I ' i M c ~ u ( k ,  j  - 1 )  + ry IMC Y * IMC ( k ,  j )  



where 



Even though the above formula is useful for analysis purpose, it is computationally 

advantageous to implement the above estimator sequentially because of the block- 

triangular structure of the matrix @IMC. 

5.3.4 Constraint Handling 

For input constraints, the idea of extended Kalman filtering can be applied to the 

IMC estimator straightforwardly. Hence, in the presence of input constraints or mode 

switching, the IMC estimator of (5.88) can be replaced by the following estimator: 

aXIMC(k,  j )  = Q I M C a X I M C  (k, j - 1) + r t M C ~ u t r u e ( k ,  j - 1) + ry IMC Y A ZMC (k , j )  

(5.95) 

where Au,,,, is the "true" input to the process. This anti-windup mechanism is differ- 

ent from the traditional IMC anti-windup method, which is known to cause sluggish 

recovery from saturation when the process contains dynamics that are slow relative 

to the closed-loop bandwidth [lo]. The proposed anti-windup scheme removes this 

problem since, unlike in the traditional scheme, all the controller states are correctly 

updated (see Section 4.4 of Chapter 4 for detail). 

When an ill-conditioned MIMO system is subjected to input constraints, the di- 

rectional correction scheme proposed in Section 4.3.4 can be used. All the output 

constraints must be handled through ad hoc ways such as mode-switching. 



5.3.5 Robust Design/Tuning Rules 

In summary of the foregoing discussion, we propose the following design/tuning rules 

for IMC controllers: 

1. As mentioned before, a nonzero input weight can reduce the directional sen- 

sitivity of the LQ controller for an ill-conditioned system. Hence, the input 

weight A*, (chosen as a constant-times-identity matrix for simplicity) is grad- 

ually increased until the resulting robust performance norm-bounds on FfG, 

and I - Ffgc (that can be derived using the method discussed in Chapter 4) 

start deteriorating. 

2. The robust performance normbounds on FIGc and I - FfEc are used to design 

Ffgc satisfying robust performance, if possible, Qtherwise, a more elaborate 

design such as p-Synthesis may be necessary. 

3. Equipping the FIMC with on-line tuning parameters that directly affect the 

speed of the closed-loop response (e.g., pole locations) can add further flexibil- 

ity of the control system. Furthermore, the parameters f;(j) of the auxiliary 

estimator can be adjusted on-line to influence the effect of primary measure- 

ments on the closed-loop response. 

5.4 Model Predictive Control (MPC) 

In this section, we develop an inferential MPC technique for multi-rate sampled-data 

systems. 



5.4.1 Minimization Objective 

Consider the same disturbances as in (5.20). The minimization objective of MPC is 

based on the finite moving time horizon: Minimize at each t = (k, j) the function 

p is called "prediction horizon," and often used as a tuning parameter. The main 

motivation for adopting the finite-moving-horizon-based objective function is that 

the on-line constrained optimization can be performed to calculate the best controller 

moves in the presence of input/output constraints. This is discussed in Section 5.4.3. 

5.4.2 Optimal Control Design 

The separation principle still applies for the MPC in the absence of constraints. 

Hence, we can design the state estimator and the compensator separately and combine 

them to obtain the optimal control system. 

Optimal Estimator: MR Kalman Filter 

Since disturbances to the system have not changed, the optimal estimator remains 

the same as before: the MR Kalman filter of (5.22). 

Optimal Compensator: MPC State Feedback 

To obtain the optimal state feedback for the objective (5.96), we develop the following 

prediction equation (note that it is optimal to set Ad(lc, q) = 0 for q > j): 



where 

ye(k, j + Ilk, j )  represents the prediction of ye(k, j +q)  based on the measurements at 

t = (k, j).  We incorporated the flexibility of specifying the number of input moves, 

m, differently from the output prediction horizon p (i. e., 1 < m < p). If the reference 

vector r(k, j )  is either a step function or is best assumed as a step function (because no 

information on the future reference changes is available), RP(k, j +pjk, j) = r(k, j ) P .  

However, through RP(k, j + Ilk, j),  MPC cannot only handle more general types of 

reference inputs but can also incorporate information on future reference changes 



without increasing the system order. 

The problem of minimizing the objective function (5.96) with the constraint posed 

by the prediction equation (5.97) can be formulated as a least-square problem and 

the optimal state feedback law turns out to be as follows: 

where 

P - 
where A,, = diag(Aye, . . . , Aye) and is defined in the same way. The compensator 

is stable if and only if all eigenvalues of (!I? - rAuLMpc) lie inside the unit disk. 

Assuming the reference vector is a step function ( i . e . ,  RP(k, j + plk, j )  = r ( k ,  j)ZP), 

This is the same control law as the LQ regulator except that LLQ replaced by LMPC. 

By definition, LMPC + LLO as p, q + oo for nonsingular rAu. For singular ra,, 
LMpC can give an unstable control law for nonminimum-phase system even when 

p, q + oo. The control system is pictorially described in Figure 5.6. 

5.4.3 Constraint Handling: On-Line Quadratic Programming 

The main advantage of MPC is that constraints can be incorporated directly into the 

controller formulation. In the presence of the constraints described through (2.70)- 

(2.72)) the MPC state feedback is replaced by an on-line optimizer that calculates 



R (k) State Feed back 

Figure 5.6. State Estimation Based Model Predictive Control for Multi-Rate Sam- 
pled-Data Systems 

at every t = (k, j )  the optimal control moves (not violating the given constraints) 

within the prediction horizon and implements the first move. The optimization can 

be written as follows: 

N - 1  d' (k,.i+p) 

min { C C C (YT(~)A,.YC(~) + ~ u * ( t ) ~ a ~ ~ u ( t ) ) .  re  (5.104) 
au(k') i=1 t = ( k , j )  

such that 



Of course, if m 5 p - 1, then we constrain Au(k, j + q) to be zero for m 5 j < p - 1. 

The optimization can be solved by the standard Quadratic Programming (QP). For 

details, see Section 4.5.3 of Chapter 4. 

5.4.4 Failure Tolerance: Cascaded Kalrnan Filter 

To account for unreliable primary measurements, we recommend replacing the op- 

timal MR Kalman filter with the cascaded Kalman filter discussed in section 5.2.5. 

DFT property is achieved if the MPC state feedback is designed to be completely 

noninteracting (i.e., the estimate of one primary variable does not affect the other 

primary variables through control action). In practice, complete DFT property will 

not be achieved since the presence of the constraints, weights on Au, and model/plant 

mismatch will prevent the MPC compensator from being a completely decoupling 

compensator. Nevertheless, the cascaded estimator should provide an acceptable fail- 

ure tolerance property for most practical cases. 

5.4.5 Robust Desigmuning 

Traditionally, the MPC controllers are tuned with nonintuitive parameters including 

1. Prediction Horizon (p) 

2. Number of Calculated Control Moves (m) 

3. Output/Input Weights (A,, and AAu) 

4. Constraints on Au 

Introduction of a general state observer (e.g., MR Kalman filter) to MPC gives rise 

to additional indirect robustness tuning parameters including 

1. Disturbance Covariance Matrix ( Q d )  

2. Measurement Noise Covariance Matrix (R) 



Tuning MPC controllers with the above parameters is a difficult task since none of 

them have a transparent connection with closed-loop performance and robustness. 

Hence, we recommend the following set of tuning rules: 

1. Decide on the prediction horizon and number of control moves such that the 

resulting <f, - LMPCrU@ has all its eigenvaules strictly inside the unit disk. In 

general, we recommend that the prediction horizon be chosen longer than the 

desired setting time and the number of input moves be chosen as close to the 

prediction horizon as possible (within computational limit). 

2. Choose A,, to be an identity matrix and AA, to be a scalar-times-identity 

matrix, assuming that the inputs and outputs are scaled correctly. For SISO 

systems or well-conditioned MIMO systems, choose the input weight to be as 

small as possible without violating the stability criterion. For ill-condtioned 

MIMO systems, use a nontrivial scalar for the input weight. A good method to 

decide on the scalar is to derive the robust performance norm-bounds on FIMC 

and I - FzMC for each tested value of the scalar and choose the value at which 

the bounds start deteriorating. Further on-line adjustments may be made later. 

3. Use the IMC estimator described in Section 5.3.3 instead of the Kalman filter to 

obtain the state estimates, A$ and Ay,, for the prediction equation. The IMC 

filter FjEc may be designed off-line using the robust performance norm-bounds 

and further adjusted on-line. For the auxiliary estimator, use the parameters 

(f;, or (fa);) of the filter gain for on-line adjustments. 

We do not recommend using constraints on Au as tuning parameters because this 

makes the controller nonlinear and analysis of such a controller is very difficult. The 

tuning procedure outlined above should simplify the tuning for MPC controllers im- 

mensely as the IMC filter has a direct connection with the frequency-domain charac- 

teristics of the complementary sensitivity function. 



5.5 Numerical Example: High-Purity Distillation Column 

We consider the high-purity distillation column shown in Figure 5.7(a). The column 

is similar to the one described in Appendix A of Morari & Zafiriou [50]. 

5.5.1 Description of Control Problems 

The control problem we consider is shown in Figure 5.7(b). 

Controlled Variables 

The controlled variables are the bottom and the distillate compositions (denoted 

by xg and yo respectively). 

Disturbances 

The main disturbances we consider are the variations in the flowrate ( F j  and 

the composition ( z F ) .  

Manipulated Variables 

The manipulated variables are the reflux flowrate (L) and the boil-up (V). It 

is assumed that the responses of the level loops for condensers and reboilers are 

immediate. 

Measurements 

Although the measurement selection is an issue of great importance, we do 

not treat this problem in this example. Instead, it is assumed that the tem- 

peratures of Tray # 10 and Tray # 32 are measured. These locations were 

selected, based on a compromise between signal-to-noise ratio and sensitivity 

to uncertainty [41]. Both temperatures are assumed to be measured at one 

minute intervals. To demonstrate the effect of the sampling rates and delays 

of the primary measurements on the relative performance and failure tolerance 

properties of the proposed estimators, we consider the following two cases: 



- Case A: "Fast," Unreliable Primary Measurements 

The composition measurements (xB and yo) are available at every one 

minute with delays of one minute. 

- Case 13: "Slow," Unreliable Primary Measurements 

The composition measurements (xB and yD) are available at every ten 

minutes with delays of ten minutes. 

Model 

We use a 10 state model obtained by performing a model reduction (via balanced 

realization) on a 41 state full material balance model. 

Desiqn Parameters 

The following state disturbance covariance matrices and measurement noise 

covariaaee matrices were used for the filter designs: 

For the auxiliary estimator of the cascaded Kalman filter, the signal-to-noise 

ratio of identity was assumed. The output horizon p and the input horizon q 

were chosen to be 30 and 10 respectively. The only constraints we imposed were 

that ILI 5 1.0 and IVI < 1.0 at all times. 



(a) LV High-Purity Column 

(b) Composition Control Problem 

Figure 5.7. LV High-Purity Distillation Column and its Control Problem 



Results 

We simulate the closed-loop response of XB and yo to step disturbances in F and 

z ~ .  F and 21;. rise to 0.2 and to 0.1 respectively (corresponding to 20% change of the 

steady-state values) at  t = 0, and then, fall to -0.2 and -0.1 at t = 100. All simulations 

were carried out with 20% uncertainty in the flows of L and V. Random noises of 

covariance R, and R, were put into the temperature and composition measurements 

respectively to simulate the measurement noise. The results for Case A and Case B 

are shown in Figure 5.8 and Figure 5.9 respectively. 

Case A Comparing the responses shown in Figure 5.8(a), we note that the per- 

formance advantage of the MR-Kalman-filter-based MPC over the cascaded- 

estimator-based MPC is almost negligible. Both controllers drive the composi- 

tions to  the steady-state operating points without offsets in spite of model/plant 

mismatch and also give acceptable transient responses. On the other hand, the 

failure tolerance property of the MR-optimal-estimator-based MPC is far worse 

than that of the cascade-estimator-based MPC as illustrated in Figure 5.8(b)- 

(6). In the case of a composition measurement failure, simple adjustments such 

as setting the innovation term for the failed primary measurement zero is inad- 

equate for the MR optimal estimator. 

Case B The performance of the MR-optimal-estimator-based MPC and that of the 

DR-cascade-estimator-based MPC are almost indistinguishable, as shown in 

Figure 5.9(a). On the contrary to Case A, however, the MR-optimal-estimator- 

based MPC maintains acceptable performance in the case of a composition 

measurement failure, as illustrated in Figure 5.9(b)-(c). As the sampling rate 

and delays of the primary measurements become significant, the dependence of 

the estimator on these measurements become less, and the distinct performance 

degradation that we saw for the MR-optimal-estimator-based MPC in Case A 



disappears. 



(a) Both Composition Measurements Available 

(b) Failure of Bottom Composition (xB) Measurement 

(c) Failure of Top Composition (yo) Measurement 

Figure 5.8. Closed-Loop Responses of XB, yd,  L and V to Step Disturbances in F 
and ZF for Case A 



(a) Both Composition Measurements Available 

(b) Failure of Bottom Composition (xB ) Measurement 

( c )  Failure of Top Composition (yo) Measurement 

Figure 5.9. Closed-Loop Responses of XB, yd, L and V to Step Disturbances in F 
and ZF for Case B 



Appendix 5.A: Constructing a SR System for a MR 
Sampled-Data System 

The system expressed through (5.16)-(5.17) is a multi-rate sampled-data system and 

therefore is shift varying with respect to TS, the STU. We can express (5.16)-(5.17) 

as a SR system with respect to the time unit of 78, the BTU. The following is the 

SR system equivalent to the MR system of (5.16)-(5.17): 

where 



The superscript {-ISR is used to distinguish the vectors and the matrices used for 

the SR system. Note from the equations (5.111)-(5.112) that the state excitation 

noise (rgRADSR) and the measurement noise ( T F A D ~ ~  + vsR) are now correlated. 

Denoting rgRADSR as W i R  and T g R A ~ S R  + VSR as WySR and performing some 

algebra, one can show that 



where 

The Fticcati equation for the optimal filtering problem of the system (5.1 11)-(5.112) 

is as follows: 

CSR - q p ~ y ~  + ~ C S R ( ~ S R ) T  { ~ S R C S R ( ~ S R ) T  + RsR)-' Y = S R z S R q T  - QSR = 0 

(5.125) 

where 

q = G S R  - TSR(RSR -l=SR > - (5.126) 

The unique stabilizing solution to the Riccati equation (5.125) can be obtained 

through various standard techniques [3,26]. The following Theorem due to Arnit 

[ I ]  relates the solution of (5.125) to the steady-state solution of (5.24): 

Theorem 5.2 Suppose C f R  solves the algebraic Riccati equation (5.125). Let C ( j )  

be the periodic steady state solution of the Riccati equation (5.24). Then, 

Proof See Arnit [ I ] .  



Once C(0) is found, C(j), j = 1, . . . , N - 1 can be easily found by the equation (5.24) 

Appendix 5.B: Proof of Theorem 5.1 

The MR system (5.16)-(5.17) is detectable if and only if the SR equivalent system ex- 

pressed through (5.111)-(5.112) is detectable. The following Lemma is due to Hautus 

[30] : 

Lemma 5.1 The system (5.111)-(5.112) is detectable if and only z'f 

rank [ (@SR)T - X I  I (2SR)T  ] = dim{@sR} VX E C, [ X I  2 1 (5.128) 

Hence, the MR system (5.16)-(5.17) is detectable if and only if 

The condition (5.129) is trivially satisfied if X is not an eigenvalue of QN. If X is an 

eigenvalue of QN, (@)N maps Ker { ( Q ~ ) ~  - XI) = Eig(,p)T(X) into itself where 

Eig{.)(X) = {v : v = cG, c E R and i? is an eigenvector of {.} corresp. to the eigenvalue A }  

(5.130) 

Lemma 5.2 

if and only if 

Im ( ( ~ ' ( 0 ) ) ~ )  > E ~ ~ ( * N ) T  ( A )  (5.132) 



Proof "If" part of the condition is obvious. To prove "only if" part, we 

note that the synchronous sampling assumption implies that Im((E(0))') > 

I {(E(n))T} , n = 1, . . , N - 1. In addition, an eigenvector of (@ N)T is an eigen- 

vector of n = 1, .  , N  - 1. Hence, ~rn{(Z(n)@~)'} 3 E ~ ~ ( @ N ) T  if and only if 

Im { ( ~ ( o ) ) ~ }  3 E ~ ~ ( @ N ) T  for n = 1,. . , N - 1. This implies that 

only if 

1m { ( ~ ( o ) ) ~ }  > E~~(@N)T(X)  

Using the above lemma, we can write 

rank [ (mN)T - X I  I (E(0))' (t(l)@)T . . ( t ( N  - l)mN-I)' ] = dim{@) 

VX E C , I X I ~ ~  (5.135) 

N T  * rank [ (@ ) - X I  ( (3(0))T ] = dim{@) VX E C, t 1 (5.136) 

* rank [ (@N)T - PI I (Z(0))T ] = dim{@) VX E C, / X I  2 1 (5.137) 

(@)T - XI (:(o))T = dim{@) VX E C, IXI > 1 I I (5.138) 

The last equivalence is from the fact that Im{(QN)' - X N I )  Im{QT - X I ) .  This is 

easy to see since 

Ker {(@N)T - X N I }  

I Ker - AI) 

(0) if X is not an eigenvalue of @. 

Eig@(X) if X is an eigenvalue of Qi. 



From Lemma 5.1, 

= rank 

if and  only if 

( [ :: ] , A) is a detectable pair, 

- 
AT -XI  (CcA)T ( c ~ A ) ~  

0 I  - XI 0 

0 0 I - X I  - 

In addition, one can easily show that ( [ , is a detectable pair if and only 

if ( [ 2 ] , A) is a detectable pair. Hence, 

- 
o o 

I 0  

0 I  - 



Appendix 5.C: Minimizing the Error Due to Unobservable 
Disturbances 

In Section 5.2.5, we state that the Ricatti Equation (5.38) converges to a positive 

semidefinite symmetric solution only if Ker{C,(I - A)-' Bd) c Ker{C,(I - A)-'Bd}, 

assuming Qad has a full rank. When this condition is not satisfied, the optimal way 

(in the sense of the Frobenious norm of the matrix relating disturbances to steady- 

state estimation error) to guarantee the convergence is to replace d with d*,  that is 

the projection of d into the observable subspace Y. The projection of d into the space 

Y can be easily calculated by the following formula: 

where Gy5d = Cs(I - A)-'Bd. Hence, replacing QAd with QAd. = P ~ + Q ~ ~ ( P V + ) ~  

minimizes the error caused by unobservable disturbances and ensures the convergence 

of the Riccatti Equation (5.38). 



Chapter 6 

Conclusion and Recommendations 

6.1 Summary of Contributions 

This thesis was motivated by the fact that, in many chemical processes, the measure- 

ments of the controlled variables alone do not provide an adequate basis for effective 

feedback control. Some of the reasons included sarnpling delays, n~naninirnurn-phase 

characteristics of the process, poor signal-to-noise ratios of the measurements, and 

operational unreliability of measurement devices. In the thesis, we have examined 

two major tasks that are required to obtain a control system utilizing secondary mea- 

surements for such processes: measurement selection and inferential control system 

design. 

In Chapter 3, we presented a general measurement selection methodology that can 

incorporate in a unified manner all the factors that can influence the measurement 

selection in significant ways. These factors included model uncertainty, signal-to- 

noise ratios, measurement dynamics, etc. The underlying philosophy was to reduce 

the number of candidates by eliminating those candidates for which no linear time 

invariant controller exists meeting the required level of robust performance. Based on 

this philosophy and using the Structured Singular Value theory, a number of numer- 

ically efficient screening tools were developed. Some screening tools (called "general 

screening tools") can be used independently of the controller design methods to be 

employed subsequently while others (called "design-dependent screening tools") are 



tied to specific design approaches. Connections to the previously published measure- 

ment selection criteria were clearly drawn and it was shown that the new measurement 

selection tools has widened scope of applicability and generality. Applications of the 

proposed tools to a multi-component distillation column and a high-purity distillation 

column led to intuitive, phyically consistent results. 

For inferential control system design, two different approaches were considered: 

an output estimation based design approach and a state estimation based design 

approach. The output estimation based design approach involved two independent 

design tasks: design of an output estimator and that of a feedback controller. While 

it had the advantage of simpler design tasks and not requiring a full dynamic model 

relating all external inputs to process variables, it had the disadvantage of lower 

achievable performance. The state estimation based design approach, on the other 

hand, had the advantage of yielding an optimal controller guaranteed by the separa- 

tion principle, but had the disadvantage of always requiring a full dynamic model of 

the process. 

In Chapter 4, the focus was on the output estimation based design. Design of the 

output estimator was discussed in two different contexts: first, when one has access 

to a full dynamic (or static) model, and then, when one has access only to records 

of inputs and outputs of the estimator that are available from simulations or process 

measurements. For the former case, multi-rate Kalman filter design and p-Synthesis 

design were discussed. For the latter case, the estimator design problem was for- 

mulated as a regression problem and suitability of various regression techniques was 

examined. For design of the feedback controller, traditional techniques such as LQG, 

IMC, and MPC were combined into a control technique that had nice algorithmic 

properties as well as many operational merits such as straightforward constraint han- 

dling and simple, intuitive on-line tuning. The new technique is clearly more general 

and flexible than any of the traditional techniques since the new technique reduces 



to one of the traditional techniques under special assumptions on the external input 

signals and/or under particular choices of design parameters. A heavy-oil fractionator 

was used as an example application. 

In Chapter 5, the main emphasis was on the state estimation based design. Gen- 

eral state estimation techniques (e.g., multi-rate Kalman filtering) used by LQG and 

finite receding horizon control used by traditional MPC were combined into a control 

technique that can incorporate general disturbances and multi-rate sampled measure- 

ments and has desirable operational characteristics. As in Chapter 4, the concept of 

classical IMC was extended to equip the control system with on-line tuning param- 

eters that have a direction connection with the speed of the closed-loop responses. 

Application to a high purity distillation showed very promising results in terms of the 

control system's closed-loop performance and operational flexibility. 

Suggestions for Future Work 

For measurement selection, more work can be done under the new philosophy. They 

include 

Developement of Tighter Screening Tools 

Tighter necessary conditions for the existence of a controller achieving robust 

performance imply screening tools that can eliminate more measurement candi- 

dates before going to detailed analyses. In particular, development of a neces- 

sary and sufficient condition for the existence of a robustly performing acausal 

controller for general uncertainty block structures (not just two block cases) 

would give a nice screening tool. In addition, extension of the methods to 

include real parameter uncertainty would be beneficial. 

Number of Measurements 

Clearly, more measurements imply higher achievable performance. However, in 



many cases, it may not be necessary to use all the available measurements. In 

addition, most design methods will lead to performance degradation when too 

many measurements are employed. It would be beneficial to identify such cases 

and devise a general rule in choosing the number of measurements. 

Experimental Verification 

Although the proposed measurement selection tools were tested on realistic 

examples, experimental verification would greatly increase their fidelity. Distil- 

lation columns seem to be good grounds to test these measurement selection 

tools. 

For inferential control system design, the following topics remain as challenges: 

e Extension of p-Synthesis to Multi-Rate Sampled Data Systems 

A major deficiency of the current method is that it cannot incorporate the 

given uncertainty information explicitly. To extend p-Synthesis to multi-rate 

sampled-data systems, Ha-optimal synthesis problem and nonconservative p- 

analysis problem for these systems must be resolved. 

Regression Based Design of Dynamic Estimators for General Multi- 

Rate Sampled-Data Systems 

The regression based estimator design techniques discussed in Chapter 4 is 

applicable only when all the inputs to the estimator are available at a uniform 

sampling rate. Extensions of the techniques to general multi-rate sampled data 

systems would be beneficial. 

Stability and Robustness Analysis for Constrained MPC Controllers 

With the new interpretation of MPC controllers as a combination of a linear 

state observer and a nonlinear state feedback regulator, it may be possible to 

derive stability or robustness conditions that are simpler than those currently 

available [64]. 



Experimental Verification 

Even though simulation study showed that the closed-loop performance of the 

proposed MPC controller was excellent both for ideal and nonideal operating 

modes, evaluation of the technique for experimental systems would be beneficial. 

This study can be done in conjuction with the experimental project suggested 

for measurement selection. 



Appendix A 

Model Predictive Control Using Step 
Response Models 

Abstract 

We show that unconstrained Model Predictive Control (MPC) based on step response 

models is identical to linear quadratic optimal output feedback under a particular dis- 

turbance and measurement noise assumption. More specifically, MPC in its uncon- 

strained form is equivalent to the optimal state observer (Kalman filter) designed for 

step disturbances at the output and in the absence of measurement noise, plus linear 

quadratic state feedback. Analytical results on the state estimation based on step 

response models allow us to generalize the conventional MPC (which is widely ap- 

plied in industry) to processes with integrators and to cases with white measurement 

noise without introducing any additional complexity. For the case of an integrated 

white noise disturbance at the output and white measurement noise, the optimal state 

estimator is conveniently parametrized in terms of a real parameter vector whose di- 

mension is equal to the number of outputs. A similar parametrization exists for the 

case of a double-integrated white noise output disturbance. These parametrizations 

are independent of model complexity and eliminate the need for solving a Riccati 

equation of potentially very large order and provide natural on-line tuning param- 

eters that can lead to the optimal estimator by proper adjustments. Our analysis 

shows that the new state-estimation-based MPC is a direct extension of conventional 



MPC techniques such as Dynamic Matrix Control (DMC) and Internal Model Con- 

trol (IMC). The new state-space interpretation also points out clearly cases where 

the conventional MPC will not perform well regardless of tuning, in particular, the 

cases where disturbances enter the output through slow dynamics. 

A. 1 Introduction 

Model Predictive Control (MPC) has emerged as a powerful practical control tech- 

nique during the last decade. Its strength lies in that it uses step response data which 

are physically intuitive, and that it can handle hard constraints explicitly through on- 

line optimization. Various MPC techniques such as Dynamic Matrix Control (DMC) 

1151, Model Algorithmic Control (MAC) [58], and Internal Model Control (IMC) [24) 

have demonstrated their effectiveness in industrial applications during the past ten 

years [55,15,14]. One drawback has been that, because most MPC techniques are 

developed in an unconventional manner using step response models, their generaliza- 

tion to more complex cases has been slow. For example, MPC in its current form is 

not applicable to integrating systems, which are common in chemical processes. 

Lately, there have been efforts to interpret Model Predictive Control in a state- 

space framework. This not only permits the use of "well-known" state-space t heorerns, 

but also allows straightforward generalization to more complex cases such as systems 

with noisy measurements. Clarke et al. developed what is known as "Generalized 

Predictive Control (GPC)," based on parametric input-output models, and showed 

its connection to LQ optimal control [12,13]. No discussion was given, however, on 

how to extend the results to the cases of noisy measurements. Recently, Li et al. 

presented a state-space interpretation of MPC based on step response models [42]. 

However, their generalization to systems with noisy measurements has introduced 

significant numerical complexity such as the requirement to solve a Riccati equation 

of potentially very large order (prediction horizon times the number of outputs). 



As will be shown in this paper, such additional complexity is unnecessary for most 

industrial problems. 

In this article, we establish a connection between standard MPC and linear 

quadratic optimal output feedback. Specifically, they are shown to be equivalent 

under the assumption of random-step ( i . e . ,  integrated white noise) disturbances at 

the output and no measurement noise. Based on the interpretation of the MPC 

controller as a state observer plus a state feedback regulator, we generalize the con- 

ventional MPC to the case where white measurement noise occurs. Contrary to Li's 

work, however, our approach does not require solving a Riccati equation. Instead, 

it is shown that the optimal state observer is conveniently parameterized through a 

real parameter vector whose dimension is the same as the number of outputs. Each 

element of the parameter vector lies in the interval ( O , l ]  and therefore can be ad- 

justed on-line. We further extend the results to processes with integrators. Finally, 

it is shown that the adjustable parameters of the state observer directly affect the 

speed of the closed-loop response. For stable systems with integrated white noise 

disturbance at the output, the parameters play the same role as the time constants 

of the IMC robust filter. We also identify the cases where an IMC controller can- 

not be made equivalent to a linear quadratic optimal output feedback controller by 

augmenting it with a simple low-pass filter. Several examples demonstrate that the 

new state-estimation-based MPC is applicable to a wider range of control problems 

without introducing further complexity. 

Modelling the System 

In this section, we demonstrate how the step response data can be put in a standard 

state-space form for stable, integrating, or unstable systems. The representation for 

stable systems is equivalent to that presented by Li et al. (1989). However, the 

representations for integrating and unstable sytems seem to be new. Throughout this 



section, we assume that the stable modes of the system can be described through a 

finite impulse response (FIR) model, or equivalently the step response coefficients of 

the "stable part" of the system become constant after a finite number of time steps. 

Such an assumption may not be perfectly satisfied in practice and an approximation 

must be made by truncating the step response at a time step from which the outputs 

change negligibly. 

A.2.1 Stable SISO Systems 

Let us suppose that the step response of a stable system is represented as 

where the k" element represents the response of the output at time k to a unit 

step input starting at time 0. Then, the step response model of the system can be 

represented in the following standard state-space form. 

where 



Au(k) = u(k) - u(k - 1) represents the change in the manipulated variable at time 

k. $(k) is the current process output. y(k)  is a vector containing the dynamic 

states of the system. Each dynamic state ij(ll k) has a special interpretation: it is the 

future process output at time l assuming the manipulated variable does not change at 

present or future ( i . e . ,  Au(k + j) = 0 for j > 0). The notation (T) is used throughout 

to emphasize the fact that it is the output from the model, not from the true system. 

The state-space equation is interpreted as follows: the new projection y(k)  is the old 

projection y ( k  - 1) shifted uplforward by one element plus the contribution made 

by the latest input change Au(k - 1). 

A.2.2 SISO Systems with Integrators 

Let us suppose that the step response of an integrating system is represented as 

Hence, the output increases with a constant slope starting at time n - 1. Then, the 

model (A.2)-(A.3) holds for the integrating system when MS is replaced by MI where 

Again, the new projection y(k) is the old projection y(k - 1) shifted up by one 

element (the last element is computed asssuming the output maintains a constant 



slope) plus the contribution made by the latest input change Au(k - 1). 

A.2.3 Extension to Unstable SISO Systems 

We note that the matrix M (MS or MI) is in companion form [3]. Thus, if the last 

row of M is [ mo ml . . . mn-1 1,  then the characteristic polynomial of MS is 

For stable systems (MS) , the characteristic polynomial and the eigenvalues are 

For systems with integrator (MI), 

Unstable systems can be modelled in the same framework: the last row of M contains 

the coefficients of the characteristic polynomial (whose roots include the unstable 

poles). S contains the step response coefficients until the time when the stable modes 

of the systems have settled plus m additional coefficients where m is the number of 

unstable poles (excluding the integrator inherent in every step response model). For 

example, recall that, for an integrating system, we used the step response coefficients 

of one step beyond the time when the stable modes of the system have settled (i.e., 

t = n - 1). 
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A.2.4 MIMO Systems 

For MIMO systems, we obtain the same form of model as before: 

The only difference is that g(k), #(k + 1 lk), etc., are vectors and 

for integrating systems 



where is the ith step response coefficient relating the mth input to the lth output. 

n, and n, are the number of inputs and outputs, respectively. Note that, with respect 

to each output, the M matrix dynamics are completely decoupled. Mixing stable, 

integrating, and unstable outputs requires only the appropriate selection of the last 

n, rows of M. 

A.2.5 Summary 

Modelling via step response model is feasible only when the sytem has finitely many 

nonzero impulse response coefficients or, equivalently, when the step response of the 

system becomes constant after a finite number of sampling units. If the system 

includes unstable modes (such as integrators), they can be expressed by augmenting 

the step response model as demonstrated in this section. A step response model is 

an intuitive, but non-parsimonious description of the system. If a state-space model 

is desired for various reasons (e.g., more efficient on-line computation, etc.) ,  one can 

start with a step response model and then apply model reduction (e.g., balanced 

realization) to obtain a lower-order model. This will be discussed in detail in a future 

paper. 

Modelling Disturbances and Noise 

Disturbances and measurement noise are inherent in every physical system. In this 

section, we discuss the type of disturbances and measurement noise that we treat in 

this article. Admittedly, the disturbance/measurement noise descriptions introduced 

here do not cover every physical system. The reason for restricting our discussion to 

these particular disturbance/noise structures is that, under these dis turbance/noise 

descriptions, we can generalize MPC without introducing further complexity to the 

technique. In addition, they are the simplest, yet practically meaningful dis t ur- 

bancelnoise descriptions for feedback control purposes. As we shall demonstrate 



through several examples in Section A.9), many interesting, practically relevant con- 

trol problems can be treated in the framework. 

In this work, disturbances and measurement noise are described by adding white 

noise to the step response model as follows: 

T is a matrix containing the step response coefficients of outputs to changes in dis- 

turbances. Naturally, n should be chosen such that after n time steps, the output 

responses to step changes in disturbances become constant when M = MS or change 

with constant slopes when M = M I .  w ( k )  and v ( k )  are white noise with the foIlowing 

covariance matrices: 

Y ( k )  = [ ~ ( k ) ~  y ( k  + 1  lk)T . y ( k  + n - 11k)T I T  represents the dynamic states 

of the system. Physically, y ( l l  k )  represents the future process output at time C as- 

suming A u ( k  + j )  = 0; w ( k  + j )  = 0 V j  2 0. $ ( k )  represents the noise-corrupt 

measurement of y  ( k )  . 

In this article, we will concentrate on a particular choice of T, namely T = 



[ 0 0 . . . 0 In, I T .  For stable systems (i.e., M = MS), the particular choice of T 

makes the disturbance integrated white noise (i.e,, random walk) added to the process 

outputs ("type 1" disturbance). Note that, with the assumption of Au(k) = 0 Vk 2 0 

and y(0) = 0, 
k 

For integrating systems (i.e., M = MI), the disturbance is interpreted as double- 

integrated white noise added to each output ("type 2n disturbance). In this case, 

with the assumption of Au(k) = 0 Vk 2 0 and y(0) = 0, 

In some cases, disturbances for stable systems are better described by double- 

integrated white-noise (i.e., random ramps) added to each output ("type 2" dis- 

turbance). This is true when the disturbances enter the outputs through "slow" 

dynamics (relative to the sampling time). For such systems, M can be chosen as 

Mz of dimension n + 1 instead of MS. Naturally, the matrix S should contain one 

additional step response coefficient matrix such that Sn = Note that, with this 

change, the augmented model is equivalent to (A.18)-(A.20) with M = MS except 

that the disturbances are now interpreted as double-integrated white-noise at the out- 

put as described by (A.24). In all cases, the disturbances at each output are assumed 

uncorrelated (by requiring that W be a diagonal matrix). The measurement noise at 

each output is white noise and is also assumed to be uncorrelated. 

A.4 State Estimation 

In this section, we develop the optimal state estimation technique for the step response 

model (A.18)-(A.20); in other words, we will show how to estimate in an optimal 



fashion the dynamic states of the system Y(k)  on the basis of the measurements. 

A.4.1 Optimal Estimator Form 

For the system (A.18)-(A.20), the two-step optimal estimator ( i . e . ,  Kalman filter) 

based on the measurements at  time k is most conveniently expressed in the following 

two-step form: 

Model Prediction: 

Correction Based on Measurements: 

~ ( k l k )  = J'(klb - 1 )  + di'($(k) - ~ ( k l k  - 1)) (A.26) 

where 

jj(&lm) represents the estimate of Y(&) based on the measurements up to time m. The 

notation (;) is used to emphasize the fact that it is the estimated variable. I< is the 

optimal filter gain that can be calculated from 

where the n . n, x n . n, matrix C is the positive-definite solution of the following 

Riccati equation: 



One noteworthy point is that, because of the specific model and disturbancelnoise 

assumptions we adopted, the Riccati equation decouples completely with respect to 

each output. Hence, the optimal filter gain can be computed separately for each 

output by solving n, reduced-order Riccati equations. 

A.4.2 Stable Systems with "Step" Output Disturbances 

It can be shown that, for a stable SISO system described through (A.18)-(A.20) 

(where disturbances are integrated white noise at each output), the optimal filter gain 

(A.28) computed from the Riccati equation (A.29) can be parametrized as follows: 

Hence, the optimal filter gain is parametrized by a single real scalar f whose value lies 

in (O,1] and is determined by the disturbance-to-noise ratio (WIV). Indeed, for the 

limiting cases 

f + o  for W/V -+ O 

f + 1  for W / V + c a  

This parametrization is independent of model complexity ( e.g., system order). Hence, 

in practice, there is no need to solve the Riccati equation; instead, f can be used as 

an on-line tuning parameter. Such simple parametrization of the optimal filter gain 

is made possible by the fact that each state of the step response model has a specific 

physical meaning: it is the future output assuming that all current and future inputs 

to the process remain constant. 



The observer error dynamics (see Section A.7) is determined by the matrix 

The eigenvalues of M  - K N M  follow from the characteristic equation 

Note that, in the case of no measurement noise (W/V -+ co), a dead-beat observer 

results (f = 1). 

Extension to MIMO systems is trivial since the Riccati equation for the optimal 

estimation problem is completely decoupled with respect to each output. Hence, 

where I = [ . . . IT  and f i  depends on the disturbance-to-noise ratio of 

the ith output measurement. 

A.4.3 Integrating Systems with "Ramp" Output Disturbances 

It can be shown that for an integrating SISO system described through (A.18)-(A.20), 

the optimal filter gain (A.28) computed from the Riccati equation (A.29) can be 



parametrized by two real scalars whose values lie in (0, 11: 

Again, for the limiting cases 

f a ,  fb -) 0 for W/V -+ 0 

f a , f b - + l  for W / V + m  

We emphasize that the above parametrization is again independent of model complex- 

ity. Hence, regardless of the step response model, fa  and fb  are completely determined 

by the disturbance-to-noise ratio (W/V)  alone. This implies that f a  and f b  can be 

computed o$-line by solving an appropriate 2 x 2 Riccati equation. In principle, fa  

and fb  can also be tuned on-line together for best performance, but this may present 

some difficulty since it requires a two-dimensional search. Hence, we will look for a 

way to combine two parameters into one. Note that the observer error dynamics is 

determined by the matrix 

M - K N M  = 

- - 
0 1 - f a  0 0 0 0 

0 ( - f a - f b )  1 0 ... 0 0 

0 ( - f a - 2 f b )  0 1 - . -  0 0 
. . . . . . . . 

0 ( - f a - ( n - 2 ) f b )  0 0 " '  0 1 

0 ( - f a - (n -1 ) fb )  0 0 " '  -1 2 - - 



The eigenvalues of M - KNM are calculated from the characteristic equation 

x ~ - ~ ( x ~  - A(2 - fa - fb) + (1 - fa)) = 0 j 

Note that, in the case of no measurement noise (i.e., JV/V -+ m), a dead-beat 

observer results (Xn-l,Xn + 0). In general, 0 < fa, f a  < 1 yields a complex pair 

eigenvalues. We postulate to parametrize the observer gain through one adjustable 

parameter by requiring that the observer poles and A n  be real and equal. This 

rule leads to the following relationship between fa and f b :  

Rule for SinqEe Parameter Tunina of the Estimator 

Hence, fa is the only adjustable parameter taking a value between 0 and 1. Our 

numerical experience suggests that this f b /  fa relation and the resulting observer per- 

formance are very similar to those of the optimal observer. An alternative to this 

approach is to correlate fa and f b  empirically by solving 2 x 2 Riccati equations for 

various disturbance-to-noise ratios. Such calculation has to be carried out only once 

since the parameters are completely determined by the disturbance-to-noise ratio 

alone and are independent of model. 

Again, owing to the decoupling property of the Riccati equation, extension to 



MIMO systems is trivial. Hence, 

f;b can be determined from fja using the rule (A.41), eliminating the need for a 

two-dimensional search or for solving a 2 x 2 Riccati equation. 

K = K * G Z  

A.4.4 General Output Disturbance 

,- 

fla 

f2a 

- 

T 
For cases where T f [ 0 0 . . . 0 I,.,, ] , it seems that a simple parametrization . 
of the optimal filter gain does not exist. Hence, it is necessary to find explicitly the 

positive-definite solution to the Riccati equation (A.29). One exception is the singular 

noise case ( i . e . ,  V = 0). In this case, the optimal filter gain may be written as 

assuming that all eigenvalues of M  - K N M  lie inside the unit disk. Violation of 

this assumption means that the filter gain computed by (A.43) leads to an unstable 

state estimator. In order to calculate K  through (A.43), it is also required that the 

first step response coefficient matrix has a left inverse (TI);'. This is always satisfied 

for cases where T; is a diagonal matrix (for 1 < i < n), since in these cases one can 

always redefine the disturbances such that TI is nonsingular. 



A.5 Prediction 

The dynamic states of the optimal estimators developed in the previous section rep- 

resent the current and future outputs assuming all current and future inputs are zero 

( i . e . ,  Au(k + j) = 0 for j > 0). The predictive controller computes the best current 

and future control moves based on the prediction of future outputs. Then future 

outputs can be expressed in terms of current and (m - 1) future inputs through the 

following equation: 

where 

The notation @(k + 1 lk) denotes the predicted future outputs up to time k + p for 

constant inputs starting at time k + m, based on the measurements up to time L. 

Hence, we allow the flexibility of setting the number of future input moves m (1 5 

m 5 p) differently from the output prediction horizon p. The equation (A.44) provides 

the "optimal" prediction of the future outputs based on the current measurements 

since ~ ( k l k )  is the optimal estimate of the states representing the current and future 

process outputs assuming Au(k + j) = v(k + j + 1) = w(k, j) = 0 V j  2 0 [3]. Note 



that it is optimal to develop the prediction with w(k + j )  = v(k  + j  + 1 )  = 0 V j  >_ 0 

since they are white noises. 

A.6 Feedback Control 

We adopt the following quadratic optimzation objective (used in QDMC [25]): 

R ( k  + 1 )  = [ r (k+  l ) ,  , r ( k + p ) ] T  is the future output reference vector. I? and A are 

weighting matrices that are chosen to be diagonal for most cases. This optimization 

problem can be cast into the following least-squares problem: 

The least-squares solution is 

The curent control move is implemented: 

The controller can be interpreted as a state-observer-based compensator (see Fig- 

ure A . l )  since 

a u ( k )  = K ~ ~ c ( n ( k  + 1 )  - % ~ ( k l k ) )  (A.52) 



State Feedback Regulator 

State Observer 

Figure A.1. Interpretation of the MPC Controller as a State-Observer-Based Corn- 
pensator 

where 

A.7 Closed-Loop Relationships 

We can derive the closed-loop relationships between the actual process output y(k) 

and the system inputs w(k) ,  v (k )  and R ( k )  using the following relationships: 



Simple algebraic manipulations lead to 

- - 
~ ( k  - 1 )  

T 0 SI(MPC 
(A.58) 

KNT K 0 

Subtracting the second equation from the first one, we obtain 

T 
The closed-loop transfer function from [ ~ T ( z )  i jT (z )  * T ( ~ )  ] to 1 ( 2 )  can be 

expressed as follows (the notation ( : ) ( z )  represents the z-transform of the signal): 

where 

(A.61) 



Remarks: 

1. Closed-Loop StabiIit y 

The eigenvalues of the closed-loop matrix are those of M - K N M  and M - 

SKMPC Mp. Hence, the closed-loop system is stable if and only if all eigenvalues 

of M - K N M  (i.e., observer poles) and M - SKMPCMp (i.e., regulator poles) 

lie strictly inside the unit disk. 

The observer poles are guaranteed to lie inside the unit disk from the 

property of the Riccati equation. 

The regulator poles are functions of the tuning parameters (e.g., p, m, I?, 

A) and can be made to be stable by proper tuning. Under infinite in- 

put/output prediction horizon (rn = p = ss), the MPC regulator is equiv- 

alent to the LQ optimal regulator (computed from the Riccati equation) 

and is therefore stable. 

The system cannot be stabilized by adjusting the filter parameters, when 

the MPC tuning parameters are selected such that M - SKMPCMp is 

unstable. 

2. Tuning for Sensitivity and Robustness 

The closed-loop expressions provide insights and guidelines for selecting various 

tuning parameters so that a desirable closed-loop response may be achieved. 

Note that the observer dynamics affect the closed-loop transfer function 

from disturbance (w) and measurement noise (v), but not from the output 

reference vector (R). On the other hand, the regulator dynamics affect all 

closed-loop tranfer functions. 

The closed-loop transfer function from i i ( z )  to g(z )  is the complementary 

sensitivity function which has a direct relevance to the closed-loop system's 



sensitivity and robustness. Observer poles, which are adjusted through the 

filter parameters, directly affect the complementary sensitivity function. 

Hence, the adjustable parameters we introduced for the estimator can be 

used to adjust the speed of disturbance response and system robustness. 

3. Asymptotic Disturbance Rejection Property 

The closed-loop system rejects "persistent" disturbances (steps for stable sys- 

tems and ramps for integrating systems) with no offset as long as the ob- 

server/regulator poles are placed in the unit disk. This can be seen from the 

closed-loop relationship from ~ ( k )  to y(k): y(k) is simply expressed as a white- 

noise passed through stable (closed-loop) dynamics. 

A.$ Connection with Coventional MPC 

In this section, we make a connection between the new state-estimation-based MPC 

and the conventional MPC techniques such as Dynamic Matrix Control [15] and 

Internal Model Control [24]. It is shown that the state-estimation-based MPC is a 

direct extension. 

A.8.1 Connection with DMC 

In DMC, the prediction of the future process outputs is carried out through the fol- 

lowing equations: 

Model  Update:  

y (k )  = ~ y ( k  - 1) + SAu(k) 

Prediction with Correction Based on  Measurements: 



where 

P 
c 

= rlP [ Iny InI . . . Iny IT for type 1 disturbances (A.64) 

P 

- [ I 21n, . . . pin, IT . A for type 2 disturbances 
Z 

For stable systems, the prediction from (A.62)-(A.63) is entirely equivalent to the 

prediction from the state-estimation-based prediction equation (A.44) in the absence 

of measurement noise (f = 1 for type 1 disturbances and fa = 1 and f b  = 1 for 

type 2 disturbances). Hence, DMC does not perform noise filtering. For integrating 

systems, the conventional MPC Ieads to an "internally unstable" closed-loop sys tern 

(the signal G(k) - ij(k) can grow unbounded). This internal instability arises from 

the fact that y"(k) is not an estimate of the true output since it does not account for 

the effect of disturbances. The new approach discussed in this paper does not suffer 

from the same deficiency. 

A.8.2 Connection with IMC 

In the Internal Model Control (IMC) framework shown in Figure A.2, the feedback 

signal $(k) - j j (k)  is passed through a low-pass filter F for noise reduction and robust- 

ness; the filtered signal is then used as the input to the prediction equation (A.63) [50]. 

For st able systems with type 1 disturbances, the adjustable estimator parameter f 

can be shown to play the same role as the IMC filter. More specifically, the prediction 

from the optimal state estimation is equivalent to that from equations (A.62)-(A.63) 



when the feedback signal $(k) - @(k) is passed through the following IMC filter: 

For stable systems with type 2 disturbances, in order to obtain the prediction equiv- 

alent to that from the optimal state estimation, 7 p  in the prediction equation (A.63) 

has to be chosen as follows: 

where 

In general, there is no F such that 



The exceptions are when p = 1 and when f;, = fib Vi (this relation does not hold 

for the optimal estimator in general). When p = 1, the following IMC filter gives the 

equivalence (i.e., i 5 f  = . F) :  

This result implies that, for systems with type 2 disturbances, the IMC filter that 

will give the same performance as the linear quadratic optimal output feedback or 

new st ate-es timation- based MPC will be generally quite complex. Indeed, in order 

to establish the equivalence, F must be chosen as 

F = (Q);'Qzz, (A. 74) 

where (Q)yl denotes a right inverse of the IMC controller Q (with R = 0) and QIzf is a 

dynamic operator relating the input wi to the output wo through following equations: 

Such an F will be extremely complex in general. Exceptions are minimum-phase 

systems (i. e., systems that have no zero outside the unit disk and are of relative 

degree 1) for which choosing p = m = 1 yields the MPC regulator that is equivalent 

to the linear quadratic optimal state feedback regulator (assuming zero input weight 

has been used). 

The IMC design philosophy is to make the IMC controller (Q in Figure A.2) to be 



close to the inverse of the plant model (p-I). This assures that the complementary 

sensitivity function is approximately F. In our framework, we can take a similar 

approach: Namely, we may abandon the input weighting completely (i .e. ,  A = 0) 

and use the filter parameters (having a direct connection to F )  as the only adjustable 

parameters for robustness. For minimum-phase systems with type 1 disturbances, it 

can be shown that the closed-loop transfer function from the output disturbance d(r) 

to the output #(z) for A = 0 is as follows: 

Hence, for minimum-phase systems, the state-estimation-based MPC with zero input 

weighting gives a first-order closed-loop response of time constant -T/ In (1 - f;). For 

minimum-phase systems with type 2 disturbances, the closed-loop transfer function 

from the output disturbance d(z )  to the output #( t )  for A = 0 is as follows: 

With the tuning rule (A.41), the state-estimation-based MPC with zero input weight- 

ing gives a second-order closed-loop response of time constants -T/ In d m .  This 

IMC-based tuning approach simplifies controller tuning considerably; however, for 

"ill-conditioned" MIMO systems such as a high-purity distillation column, the input 

weighting may serve as a useful tuning parameter since it can prevent the control 

system from being "directionally sensitive" [37]. 



Figure A.2. Block Diagram of Internal Model Control 

A.9 Numerical Example 

A.9.1 Example A: Distillation Column Base Level Control 

Problem Description 

The behavior of the liquid level in the column base of a distillation column can be 

described as follows: 

y (s) = Pu(s) + d(s) (A.80) 

where u(s) represents the steam input (manipulated variable) and d(s) represents the 

effect of various disturbances on the liquid level. The following model form was found 

to describe the behavior of many industrial columns adequately [8,50]: 



Hence, it is an integrating system and exhibits inverse response behavior. The ob- 

jective of the closed-loop control is to maintain a constant liquid level in the face of 

disturbances d .  In this example, we treat the following two types of disturbances: 

1 
d(s)  = dl f -P(s)  Step Disturbance at the Input 

S 
(A.82) 

1 
d(s)  = do - Ramp Disturbance at the Output 

s2 
(A.83) 

In practice, the dead-time 8 is often not known exactly. To investigate the robustness 

of MPC controllers to dead-time uncertainty, we choose the following transfer func- 

tions as the model and the real plant: 

Model 
1 

P = - ( I  - 2e-9  
S 

Plant 

When the plant is described by Po, the model matches the plant exactly. When the 

plant is described either by P- or by P+, the model has a dead-time error of 1 / 2  

minute. 

Results from State-Estimation-Based MPC 

Since the system is an integrating system with type 2 disturbances, we used the state- 

estimation technique described in Section A.4.3. The following MPC parameters were 



used: 

Sampling Time: 0.1 minute 

Number of Step-Response Coefficients (n): 50 

e Prediction Horizon (p): 50 sampling units 

e Number of Calculated Input Moves (m): 10 sampling units 

Input Weighting: 0 

Output Weighting: 1 

The filter parameter fa was varied to examine its effect on the robustness of the 

resulting closed-loop system and Jrb was set according to the single parameter tuning 

rule (A.41). The closed-loop responses to the disturbances dr and do (starting at 

t= l )  for P = Po, P-, and P+ are shown in Figures A.3 - A.5 respectively. In order to 

stabilize the closed-loop system with 112 minute delay errors ( P  = P- or P = P+), the 

parameter fa had to be chosen as low as 0.1 (choosing fa = 0.2 resulted in instability 

for P = P+). The simulations show that the filter parameter fa indeed determines 

the speed of the closed-loop response and can be used to affect the robustness of the 

closed-loop system. 

A.9.2 Example B: SISO System with "Slow" Disturbances 

Problem Description 

Let us consider a single-input /single-output system described by 
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Figure A.3. Responses of the Output to Input/Output Disturbances for P = Po 
Under St ate-Estimation-Based MPC 
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Figure A.4. Responses of the Output to Input/Output Disturbances for P = P- 
Under State-Estimation-Based MPC 
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Figure A.5. Responses of the Output to Input/Output Disturbances for P = P+ 
Under State-Estimation-Based MPC 



and subjected to the following disturbances: 

100 1 
d(s) = da(s) e ( ) - Disturbance A 

l O O s +  1 s 

Disturbance B 

Hence, Disturbance A is a step disturbance added to the output through "slow" 

dynamics and Disturbance B is simply a step disturbance added to the output directly. 

Results 

We use the state-estimation-based MPC to minimize the effect of the disturbances 

on the output. The sampling time, prediction horizon, number of input moves, and 

input/output weights are chosen as in Example A. We compare the results obtained 

from using two different types of state estimators: a Type 1 estimator for which 

the disturbance is assumed to be integrated white noise ( M  = M') and a Type 2 

estimator for which the disturbance is assumed to be double-integrated white noise 

( M  = M'). Figure A.6 shows the closed-loop simulations of the output to Distur- 

bances A and B (starting at t= l )  under the MPC controller with a Type 1 estimator. 

Figure A.7 shows the same closed-loop simulations when the Type 1 estimator is 

replaced by a Type 2 estimator. Although the MPC controller with the Type 1 

estimator rejects Disturbance B (a step disturbance at  the output) adequately, the 

responses of the output to Disturbance A (a "slow" disturbance) with the same con- 

troller are poor. The settling times for all values of f are unacceptably long. This is 

because an MPC controller with a Type 1 estimator projects the future outputs as- 

suming the disturbance remains constant in the future; this is clearly not justified for 

Disturbance A. On the other hand, for the MPC controller with a Type 2 estimator, 

the responses of the output to Disturbance A are completely adequate. This improve- 

ment is due to the fact that an MPC controller with a Type 2 estimator projects the 



future outputs assuming that the slope of the disturbance remains constant in the 

future. For disturbance A, this assumption is well justified for the chosen prediction 

horizon. While the responses of the output to Disturbance B are not as good as those 

obtained for the Type 1 estimator, they are also quite acceptable. 

A. 10 Conclusions 

In this article, we presented a state-space formulation of Model Predictive Control. 

Based on state-estimation techniques, we showed that MPC can be generalized to 

integrating systems and systems with white measurement noise without introducing 

additional complexity to MPC. We showed that under simple, but meaningful distur- 

bance/noise assumptions, the special structure of the step response model allows us 

to parametrize the optimal estimator in terms of a real parameter vector that can be 

used for on-line tuning. The state-space perspective also led to very simple tuning 

rules for stability and robustness: namely, the MPC controller can be interpreted as 

a state-observer-based compensator and its stability, sensitivity and robustness are 

determined by the observer poles (which can be determined directly by the introduced 

adjustable parameter) and regulator poles (which are determined by prediction hori- 

zon, input weighting, etc.) .  We also made a connection between the new technique 

and the traditional MPC techniques such as Internal Model Control and Dynamic 

Matrix Control. Several examples demonstrated that the new state-estimation- based 

MPC can treat a wider range of problems for which the conventional techniques either 

would not have been applicable or would have led to poor results regardless of tuning. 
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Type 1 Estimator 



Resp. of Output to Disturbance A for Vanous f l  of Type 2 Estimator 
0.8 1 1 

Resp. of Output to Disnubance B for Variau f of Type2 E s t m o r  

------------ 

Figure A.7. Responses of the Output to Disturbances A and B Under MPC with a 
Type 2 Estimator 



Appendix B 

Case Study: A High-Purity Distillation 
Column 

Abstract 

The typical literature problems studied in robust control involve the design of a con- 

troller for a system with specific actuators and sensors. However, the success of most 

process control applications depends 9n more than just controller design. For exam- 

ple, a correct control structure selection is as important to the successful closed-loop 

control as the controller design. In addition, various operational aspects, such as 

constraint handling and sensor/actuator failure tolerance, that are often neglected in 

the literature, can be critical. In this article, we bring together a number of robust 

control theories to develop systematic methods for control structure selection and 

controller design. As case study, we use a high purity distillation column separating 

an ideal binary mixture. Distillation can benefit immensely from tight, reliable con- 

trol; however, the control is complicated by many practical issues such as large model 

uncertainty, distinct high and low gain directions, and long sampling delays and op- 

erational unreliability of the composition measurements. Even though the potential 

benefits of robust control for distillation control are high, its application to indus- 

trial distillation columns has been virtually nonexistent. It is demonstrated in this 

work that the Structured Singular Value Theory provides a convenient framework to 

develop a pratical, systematic control structure selection met hod. The control struc- 



ture selection method is applied to the sensor selection problem for the high-purity 

distillation column. In addition, robust control and optimization techniques are com- 

bined into a control technique that incorporates practical aspects such as constraint 

handling and actuator/sensor failure tolerance as well as robustness. Through the 

application to the high-purity distillation column, the technique is shown to be an 

effective practical solution to complex process control problems. 

B. 1 Introduction 

The typical robust control problems studied in the literature are stated as follows: 

Design a controller for a given system with specific sensors and actuators such that 

performance specifications are met despite model uncertainty. However, this alone 

does not fully address the problem of designing a successful robust control system in 

practice. One of the reasons is that the success of most process control applications 

depends on more than just controller design. For example, control structure selection 

which refers to the choice of actuators/sensors and their pairing is as important as 

control system design. A wrong choice of actuators/sensors may put fundamental lim- 

itations on the system's closed-loop performance that cannot be overcome by "smart" 

controller design. Even the problem of designing a control system for a chosen set of 

actuators and sensors is not as simple in practice as most control literature states. 

"Robust performance" (i.e., guaranteeing a certain performance level for all plants 

within the prescribed uncertainty set) is rather an ill-defined concept in practice, since 

rigorous, yet nonconservative modelling of system uncertainty is virtually impossible 

for most complex practical systems. In addition, performance of a control system 

in practical applications is judged upon many other aspects than mere robustness. 

The control system's ability to handle hard process constraints and actuator/sensor 

failures is as important as its robustness to model uncertainty. 

Distillation column control serves as a good industrial example to elucidate this 



point. Distillation is a unit operation in chemical engineering that can benefit signif- 

icantly from improved control. Improved product composition control enables distil- 

lation columns to be operated at a point closer to the economically optimal operating 

point leading to significant energy savings and higher product yields. Application 

of robust control theories can potentially bring significant advances in the state-of- 

t he-art of distillation control. However, even after a decade of numerous theoretical 

advancements in robust control, control structure selection decisions for industrial 

distillation control are still carried out in an intuitive, ad hoc fashion rather than sys- 

tematically. In addition, most industrial columns are currently controlled by single- 

loop PID controllers. The main reason for the lack of application of elegant robust 

control theories is that the control problem for distillation columns is far too complex 

for most theories to be applied directly. Firstly, there are at least five actuators and 

as many temperature measurements as the number of trays available for the prod- 

uct composition control. From these actuators and sensors, an appropriate subset 

must be selected since three of the actuators must be used for inventory and pressure 

control and using all temperature measurements results in an unnecessarily complex 

and expensive control system. Secondly, modelling the uncertainty rigorously and 

parsimoniously including all nonlinear effects is practically impossible for distillation 

columns. Without a rigorous uncertainty model, application of complex robust design 

methods is not justified. Thirdly, the actuators naturally have constraints on their 

magnitudes and rates of change. In addition, there may be some hard constraints 

imposed on the outputs for safety reasons. Lastly, measurements of the key controlled 

variables, the product compositions, have significant delays associated with them and 

are operationally unreliable. The control system must be able to incorporate multi- 

rate (MR) sampled measurements, that is "fast-sampled9' secondary measurements, 

the tray temperatures, and "slow-sampledn primary measurement, the composition 

measurements. In addition, it should maintain performance integrity in the face of 



frequent actuator/composition-measurement failures. 

In this work, we bring together a number of robust control theories developed 

during the past decade and tailor them into a unified control structure selection and 

control system design methodology that is applicable to practical problems. As a 

secondary objective, we wish to identify some of the shortcomings of available robust 

control theories in terms of their practical applicability and tools that would help 

bring these theories closer to practical problems. As case study, we use a high-purity 

distillation column that has been previously studied by many investigators in the 

context of robust control [60,57,41]. First, we apply a general, systematic control 

structure selection methodology based on the Structured Singular Value (SSV) The- 

ory [48,41,39] to the sensor placement problem for the distillation column. We show 

that, even when the complete knowledge of the system uncertainty is not available, 

the SSV Theory can be useful in reducing the number of control structure candidates 

and obtaining insights that are helpful in eventually identifying a proper candidate. 

Next, we show how robust control and on-line optimization techniques can be com- 

bined and tailored into a design method that addresses relevant issues such as model 

uncertainty, constraints, measurement /actuator failure tolerance, and multi-rate sam- 

pling. The control system design method proposed is by no means "the answer" to 

all practical robust control problems. It should be viewed rather as a current, prac- 

tical answer to complex practical control problems such as the composition control 

problem in distillation columns. By presenting what we believe is the best current 

solution to these control problems, we hope to encourage theoreticians to conduct 

more research on aspects of robust control that would help narrow the extant gap 

between theory and practice. 



General Framework 

B.2.1 Description of Distillation Column and its Control Problem 

The distillation column we study in this paper is depicted in Figure B.l(a). The 

column has 41 stages including the reboiler and the condenser, and separates an ideal 

binary mixture into two high-purity (99% molar composition) products. For details 

about the column's operating conditions and modelling assumptions used, readers are 

referred to Appendix A of Morari & Zafiriou [50]. The main disturbances entering 

the column are those in the feed since its flowrate (F) and composition ( z F )  can 

change significantly according to the conditions of other plant units. The objective of 

distillation control is to maintain the product compositions at a specified operating 

point despite these disturbances. The available manipulated variables are reflux ( L ) ,  

boilup (V), distillate flow (D), bottom flow (B), and overhead vapor flow (VT). Three 

of these variables must be used for the condensor/reboiler inventory control and 

column pressure control. In order to simplify the presentation somewhat, we assume 

in this paper that the variables D, B, and VT are used for the condenser/reboiler 

inventory and pressure control respectively, and the variables L and V are to be used 

for the composition control. This so called "LV configuration" is the configuration 

that is most commonly used in industry. For the purpose of feedback control, six 

temperature measurements are available: the temperatures of the reboiler (TI), of 

Tray # 7 (T7), of Tray # 17 (TI7), of Tray # 25 (T25), of Tray # 5 (T35), and 

of the condenser (T41). These measurements are sampled every minute (which is 

adquate for the desired closed-loop bandwidth) and are subjected to measurement 

noise (v,) arising from the column pressure variation and other sources. Among 

the six temperatures, an appropriate subset is to be selected. In addition to the 

temperature measurements, measurements of the product compositions are available 

through composition analyzers. However, the sampling rates and delays for these 
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Figure B.1. Schematic Representation of High-Purity Distillation Column and its 
Control Prolblem 

measurements are too long (both 10 minutes) and their operational reliability too 

low to be effective for the desired closed-loop control by themselves. Figure B.l(b) 

summarizes the control problem in terms of block diagram. For all analyses and 

design in this paper, we use a 13th order discrete-time linear model derived from 

the full 41st order continuous-time linearized model through balanced realization and 

standard discretization techniques [46,3]. The validity of these models were checked 

carefully through frequency-domain analyses and simulations. 
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B .2.2 Uncertainty Modelling 

Modelling system uncertainty rigorously and nonconservatively for practical systems 

is a very difficult task. Currently, there exists no general methodology that enables 

engineers to carry out this important task. Traditionally, researchers have suggested 

a conservative approach (overmodelling) to modelling system uncertainty so that 

"robust performance" indeed guarantees the specifed performance level. However, our 

experience with complex chemical systems such as distillation columns and packed- 

bed reactors has convinced us that it is almost impossible to obtain a practically useful 

uncertainty description that encompasses a11 system/model mismatch including the 

effects of nonlinearity [9]. Hence, in this work, we take the approach of "parsimonious" 

uncertainty modelling, that is we model only the uncertainty that we believe exists and 

is important for closed-loop stability and performance. The uncertainty structure we 

chose is shown in Figure B.2. A* represents the structured multiplicative uncertainty 

on the inputs; it can be interpreted as relative errors on the actuator signals L and 

V. A. is the structured multiplicative uncertainty on the outputs; it is interpreted 

as relative errors on the sensor signals. The precise mathematical nature of these 

uncertainty blocks will be given in the following section. The particular uncertainty 



structure was chosen for the following reasons: 

e Such types of uncertainty always exist, especially in distillation columns. 

They are important for closed-loop stability and performance since they lie 

within the feedback path. 

The multiplicative input uncertainty was shown to be the dominating uncer- 

tainty for LV high-purity distillation columns because of their ill-conditioning 

property [60]. 

For control structure selection, the "parsimonious" uncertainty modelling approach 

is clearly justified since control strucuture selection involves eliminating undesirable 

candidates for which a controller achieving 'robust performance" cannot be found for 

the given uncertainty structure and level. An overly conservative uncertainty descrip- 

tion will either leave no viable candidate or eliminate some of the desirable candidates. 

For control system performance analysis, we should take "robust performance" as a 

minimum necessary robustness requirement. The closed-loop performance of a control 

system should be ultimately judged through simulation and actual implementation. 

This is true for almost all complex process control problems, where rigorous modelling 

of uncertainty is difficult. 

B .2.3 Structured Singular Value Analysis 

Since the objective of the paper is not to present a full account of the Structured 

Singular Value (SSV) Theory, our discussion on the subject will be brief and some- 

what incomplete. For a complete and rigorous discussion on the subject, readers 

are referred to Doyle [17]. We will develop this paper in the discrete-time setting; 

however, all theories presented in the paper (except for the finite receding horizon 

control technique) have their continuous- time counterparts. The SSV analysis is not 

applicable to multi-rate sampled-data systems without introducing approximations 



Figure B.3. Putting the High-Purity Distillation Column Control Problem Into SSV 
Framework 

[50] or conservativensss [16]. Hence, we use the SSV analysis to analyze the control 

systems involving the secondary measurements only. In the discrete-time setting, we 

can manipulate the block diagram of Figure B.2 and express the closed-loop system 

as a Linear Fractional Transformation (LFT) of G and A,, as shown in Figure B.3. 

G is the pulse transfer function model relating the input vectors (w;, d, v, and u) to 

the output vector (w,, y,, and y,). A, is a structured norm-bounded perturbation to 

G that belongs to the set BAu defined at each frequency as follows: 

BAu = {A, E Au : @(A,) 5 1) 

t is the number of actuators (2 for this problem) plus the number of temperature 

measurements used. Wd and W, represent user-chosen frequency weighting functions 



that are used to normalize the external input and controlled output signals. The 

standard definition of "robust performancen is that the "worst-casen induced t2 norm 

( i . e . ,  the energy norm) of the closed-loop operator from the weighted external input 

vector d' to the weighted output error vector yi is less than one. Mathematically, 

robust performance condition is expressed as follows: 

max max 1/-%~d1(Au~ K)11e2  < 1 
AEBAu d1Et2  1 ld'l It2 

where FY;B(Au, K) is the closed-loop operator from d to y',. Doyle [20] showed that, 

when the closed-loop system is nominally stable, robust performance can be tested 

conveniently through the following frequency-by-frequency condition on a function 

called p (see Doyle [17] for definition of p ) :  

where 



a n d  W, is the Nyquist frequency corresponding to the sampling time of the secondary 

measurements ( i . e . ,  w, = z). T In this work, we use instead the following robust 

performance condition based on a very "tightn upperbound (exact for Au involving 

less than 3 blocks and close within 98-99% for most problems) of p: 

where 

B, 3 Control Structure Selection 

In this section, we present a control structure selection methodology based on the SSV 

theory and its application to the high-purity distillation column. First, we propose 

a general approach to the control structure selection problem and propose screening 

tools that can be used in efficient elimination of undesirable candidates. Next we 

introduce a simple robust control system design method called "Inferential Loop- 

Shaping," and screening tools that can help further reduce the number of candidates 

in the context of this particular design approach. The results obtained from applying 

these screening tools and the design method to the high-purity column are presented. 

B. 3.1 General Approach to Control Structure Selection 

The approach we propose for control structure selection is illustrated in Figure B.4. 

Control structure candidates consist of all possible combinations of the available ac- 

tuators and sensors. Owing to the combinatorial nature of the problem, the number 

of candidates is often very large. For the distillation column under consideration, 

there are 10 different actuator combinations (since 2 actuators must be selected out 

of 5) and 63 different sensor combinations (since the number of sensors is not fixed). 



This leads to 630 control structure candidates. Naturally, a method to reduce the 

number of candidates before applying detailed analyses will be of significant practical 

value. Since we formulated "robust performance" as a minimum necessary robustness 

requirement, the first proposed step is to eliminate those candidates for which a con- 

troller achieving the "robust performance" does not exist no matter what controller 

design method is used. The criteria that can be used to accomplish this screening 

will be referred to as "general screening tools." This screening process leaves candi- 

dates for which a control system with satisfactory performance may potentially exist. 

However, this alone may not reduce the number of candidates to a low enough level. 

Also, it is not clear if control design methods available to the engineer can lead to a 

controller achieving the "robust performance." Hence, an additional screening may 

be carried out subsequently in the context of a chosen design approach. That is, 

one may choose to further eliminate those candidates for which the particular design 

approach under consideration does not yield a controller achieving "robust perfor- 

mance." The criteria that can be used under a particular design approach will be 

called "design-dependent screening tools." If the screening under a particular design 

approach does not leave any viable candidate, one has to assume a more complex, 

involved design approach and repeat the screening process. Once the number of can- 

didates is reduced down to a low enough level, one can apply more detailed analysis 

methods or evaluate each candidate through the actual control system design and 

simulation. 

General Screening Tools 

Due to the space limitation, our discussion on the theoretical aspects of the proposed 

screening tools will be rather brief. Readers are referred to Lee et al. [39] for de- 

tails. In order to facilitate the exposition, we limit our discussion to open-loop stable 

systems. However, all screening tools presented are applicable to open-loop unstable 
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and sufficient or necessary conditions for the existence of such a controller. Invoking 

the Youla parametrization of all stabilizing controllers (K E {K : K = -&(I + 
N22Q)-l, Q E RB,)) and substituting it to the condition (B.10), a necessary and 

sufficient condition for the existence of a robustly performing controller for a particular 

control structure can be stated as follows: 
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The restriction of Q E R'H, implies that it should be analytic outside the open unit 

disk. Unfortunately, the coupling of the parameters Q and D makes the condition 

(B.12) a nonconvex optimization and there is currently no general method of checking 

it. Hence (B.12) is not a viable screening tool. 

At this point, let us consider dropping the causality requirement on Q, that is we 

allow the controller parameter Q to be acausal meaning the current/future inputs of Q 

can affect its past outputs. With relaxation of the causality requirement, the condition 

(B.12) can be transformed into the following frequency-by-frequency condition: 

The superscript {.IK in CK implies that it is the set of complex matrices of size 

dimju) x dimjy,). By reparametrizing 0 such that the matrices pre- and post- 

multiplying Q in (B.13) are both unitary, the condition (B.13) can be written as 

where ~ 1 2  = and N~~ = fi12 and N~~ are both 

unitary matrices for all w. The following theorem shows that the condition (B.14) 

can be checked through two separate conditions each of which is a convex optimization 

problem. 

Theorem B. l  Let R E Cnxn, U E Cnxr and V E CtXn. Suppose U'U = I T ,  VV* = It 

and UL E c ~ ~ ( ~ - ~ )  and VL E c ( ~ - ~ ) ~ ~  a re chosen such that 

E Cnxn are unitary. Then 

inf inf a (D(R + UQV)D-') < a 
Q€CrXt DEDr, 



if and only if 3 X  E Z),, such that 

and 

x ~ , ~ [ u ; ( R x - ~ R *  - ~ r ~ x - l ) ~ ~ ]  < o 

Proof See Lee et al. [39]. 

Comments: 

1. (B.16) and (B.17) are convex with respect to X and X-' respectively. Each 

of the two conditions is a necessary condition for the existence of a controller 

achieving robust performance and can be checked through standard algorithms 

such as cutting plane method. 

2. Checking the conditions (B.16)-(B.17) together is more difficult and is not 

resolved at the moment except for the two block cases where X can be 

parametrized in terms of a single positive scalar. 

Using the results from Theorem B.1, we now propose the following screening tools: 

General Screening Tool #1 Eliminate the control structures for which 

inf L a x  [ ( f i 2 l ) l ( ~ ; ~ ~ ~ l l  - ~)(~2l);(z=elwn] 2 0 for some w E [O,w,] 
XED,, 

(B.18) 

General Screening Tool #2 Eliminate the control structures for which 

i f  a x  1 2 )  ( I  - ) ( I )  ] 2 0 for some w E [O, w,] 
XED,, 

(B.19) 



General Screening Tool #3 (2 Full-Block Cases) Eliminate the control struc- 

tures for which 

~ F C ( W )  n TIFI(w) = 0 for some w E [o, w,] 

where 

B. 3.3 Design-Dependent Screening Tools for Inferential Loop- 

Shaping 

Inferential Loop-Shapiing 

Inferential Loop-Shaping (ILS) is an extension of the multivariable loop-shaping de- 

sign technique to systems with secondary measurements. We present the technique 

briefly, and readers are referred to Lee & Morari [41] for details. 

In the standard multivariable loop-shaping, frequency-domain bounds on the max- 

imum singular values of the sensitivity and complementary sensitivity functions that 

guarantee robust performance are derived and used for controller design [20]. Such 

bounds cannot be used for inferential control problems in general since the sensitiv- 

ity function does not have the same relevance to closed-loop performance as in the 



Figure B.5. LLPseudo-Complementary Sensitivty" Function for Inferential 
Loop-Shaping 

standard loop-s haping problems. Hence, a natural extension of the standard loop- 

shaping technique to systems with secondary measurements is to use the bounds on 

those functions that play similar roles as the sensitivity and complementary sensitivity 

functions in the standard loop-shaping problems. Figure B.5(a) shows a parametriza- 

tion of the controller K in terms of H that has similar implications to closed-loop 

stability and performance as the complementary sensitivity function does. Note that 

H is the closed-loop transfer function from the setpoint r to the controlled variable 

y, and S = I - H is the closed-loop transfer function from GVcdd to y,. The following 

theorem enables the calculation of the "tighest" bounds on the maximum singular 

values of S and H guaranteeing robust performance. 

Theorem B.2 Let M E CnXm be written as 

where 

R11 E Cnxm,  R12 E CnXp, Rzl, E ckxm, R~~ E c k X p  and L E C P X ~  (B.24) 



Define 

where 

Assume 

then 

if 

p A ~ ~  (RI1)  < 1 and det(d - R22 L )  # 0 

where c; is that smallest CL that solves f (cL) = 1. 

Proof See Skogestad & Morari [59]. .I 

c; can be easily calculated through a simple search procedure such as bisection method 

since f (cL)  is a non-decreasing function of CL. The robust performance bounds on 

5 ( S )  and a ( H )  are derived using Theorem B.2 by setting L = S and L = H respec- 

tively. The key point is that, since S and H both parametrize K, robust performance 

condition is satisfied if either of the bounds is satisfied at each frequency. In general, 

the bound on 5 ( S )  is applicable in the low up to cross-over frequency region and the 



bound on 5(H) is applicable in the cross-over to high frequency region. 

One potential problem is that a right inverse of G,,, and a left inverse of GySd 

may not exist. In addition, the usefulness of the bounds for control system design is 

somewhat limited when (GyCu);' or GyCd(Gysd);' are non-proper and/or have poles 

outside the unit disk. In this case, the stability and causality of H does not necessarily 

imply the internal stability and causality of the controller K. Hence, H is limited 

to those functions that yield stable, proper (G,,,);'HG~~~(G,,~)~', making a direct 

design of H difficult. We can overcome this difficulty by replacing (G,,,);' and 

G , ,~ (G , ,~ )~ '  with QIMC and EIMC that represent the IMC controller [50] and the 

IMC estimator [41], as shown in Figure B.5(b). Q is an approximate stable inverse of 

G,,, through spectral factorization [50], and E can be obtained using the modified 

Kalman filter technique with zero noise covariance matrix [49]. Now the loop-shaping 

bounds on o($) and C(H) can be derived and used for design instead. With this 

approach, the only restriction on the "peudo-complementary sensitivity" function H 

is that it should be stable and causal. 

Screening Tools for Inferential Loop-Shaping 

At steady state, it is necessary that the robust performance condition is satisfied for 

$ = 0 in order for the loop-shaping bounds to be feasible. This can be expressed in 

t errns of the following theorem: 

Theorem B.3 (Referring to Figure B.5(b)) 

c;(O) > 0 if and only i f  



where 

Proof Trivial from the fact that f(c3) is a nondecreasing function of c~ and 

hence f (0 )  < 1 in order for c: to be nonzero. II 

The condition (B.30) can be easily tested by letting EIMC(0)  = Gycd(Gysd)e1 and 

QIMC(0)  = (GyCu);l. When (GYsd);l and/or (G,,,);' do not exist, one can use 

EIMC(0)  = Grsd(GYsdG;'J-l and QIMC(0) = ( G ~ u G y c u ) - l G ~ u ,  which correpond to 

the least square solutions. Noting that we cannot expect a feasible bound on s ( f i ( 0 ) )  

since f i  = 0 implies open-loop, we can state the condition (B.30) as a screening tool. 

ILS Screening Tool # 1: Eliminate the candidates for which 

The frequency-domain robust bounds on b(S) and a ( 8 )  can be useful for rneasure- 

ment selection purpose as well: 

ILS Screening Tool # 1: Eliminate the candidates for which (c>,c;i) are infeasi- 

ble, that is neither of the bounds may be satisfied in a certain frequency region. 

Since the calculation of c3(w) and cR(w) can possibly require numerically involved 

tasks such as spectral factorization and solving a Riccati equation, for the purpose 

of measurement selection, one may ignore the stability/causality requirement and 

simply use QIMC = (Gysd)ql and EIMC = (GyCu);l or the least square solutions 



EIMC = G:~(GY.~G;~~)-' and Q I M C  = (G;cuGycu)-lGTcu if the correponding left 

and/or right inverse do not exist. 

B .3.4 Application to the High-Purity Distillation Column 

Due to the space limitation, we do not present the results obtained from applying 

the general screening tools. Interested readers are referred to Lee et  al. [39] for the 

application of these tools to a multi-component distillation column. In this section, 

we present the results from applying the ILS design-dependent screening tools to 

the high-purity distillation column. In order to simplify the present ation, we limit 

our discussion to those candidates consisting of 1 or 2 temperature measurements 

- the use of more temperature measurements were found to be unnecessary for this 

problem. Hence, the following candidates are considered: 

One Temperature Measurement 

Two Temperature Measurements 
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Figure B.6. Frequency Dependence of Disturbance Weight Wd 
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Figure B.7. Frequency Dependence of Input Uncertainty Weight 
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Figure B.8. Results from Applying ILS Screening Tool #1 

The disturbance weight (M/d) and input uncertainty weights (WI) we used for the 

measurement selection and controller design are plotted in Figure B.6 and Figure B.7 

respectively. The performance weight W, and the output uncertainty weight Wo 

were chosen as const ant-scalar-times-identity matrices; the const ant scalars I;V, and 

Wo were 1 and 0.1 respectively. The chosen disturbance/performance weights specify 

that the disturbances are attenuated at least by the factor of 50 at steady state and 

the measurement noise is attenuated by the factor of more than 2 in the cross-over 

to high frequency region. The input uncertainty weight allows up to 10 % errors at 

steady state and time delay errors of approximately 1 minute on each actuator signal. 

The output uncertainty weight allows up to 10 % errrors a t  every frequency on each 

sensor signal. 

The results from applying the ILS Screening Tool #1 to the candidates are shown 

in Figure B.8. Only 4 of the 20 candidates passed the screening: yLO, yjl,  yL4, and 

gt5. For these four candidates, the robust performance bounds on 6 ( S )  and ~ ( f i )  are 

derived (the stability/causality requirement on QrMC and EIMC were ignored for the 

moment). The derived bounds are plotted in Figure B.9. Clearly, the candidate gt4 
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Figure B.9. Results from Applying ILS Screening Tool #2: RP Bounds on ~ ( 3 )  and 
S(H) 

yielded the most "feasible" bounds, especially around the cross-over frequency region. 

Hence, we next rederived the bounds for 3/f4 with the internal stability/causality 

requirements (Figure B.lO). QzMC was chosen as 2G;h (the optimal choice for 

ramp disturbances) and EzMC was designed through the Kalman filter technique 

(with infinite disturbance-to-noise ratio) as GySd had zeros outside the unit disk. The 

following H satisfied at  least one of the bounds at every frequency (except for a very 

narrow frequency band around the cross-over frequency where the conservativeness 



frequency (rad / min) 

Figure B.lO. Satisfying b b u s t  Performance Bounds on ~ ( 3 )  and B(H) 

of the bounds is the greatest) as can be seen from Figure B.lO: 

For each of the other three candidates, H was designed such that its respective bounds 

are satisfied for as wide a frequency range as possible. The SSV for robust performance 

for all of the four candidates are shown in Figure B.l l .  As expected, yf4 is the only 

candidate that achieves "robust performance." Figure B. 12 shows for the candidates 

y,1O, yil, yt4, yt5 and y,16 the simulated responses of the end-product compositions to 

the step disturbances in F and z~ in the presence of white measurement noise. The 

magnitudes of the flowrate and composition disturbances were chosen to be 0.2 and 0.1 

respectively; they correpond to 20% of the steady-state values. The specific input and 

output multiplicative uncertainty used for the simulation were both diag(0.1, -0.1). 

In addition, we appled time delay errors of 1 minute on both actuators. The simulation 
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Figure B. 11. Structured Singular Value ( p )  for Robust Performance 

results show that the candidates with sensors placed close to the reboiler and/or 

the condenser (ytO, y:', yi5) show extreme sensitivity to measurement noise. This is 

because the signal-to-noise ratios for these sensors are poor. On the other hand, 

the candidate with sensors placed too far away from the reboiler and/or condenser 

(yi6) shows minimum sensitivity to measurement noise, but yields large steady-state 

offsets. This is because the model uncertainty makes the inference of the product 

compositions from these sensors inaccurate. According to the simulation, yt4 is the 

best compromise between the two opposing trends; this fits well with the results 

obtained from our measurement selection method. 
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Figure B.13. Schematic Representation of Finite Receding Horizon Control of MR 
Sampled-Data Systems Through State Estimation and On-Line Optimization 

B.4.2 Finite Receding Horizon Control 

Motivated by the apparent lack of a control system design method that addresses 

all of these important practical issues, Lee et  al. [37] proposed a control technique 

that combines the state estimation and optimization techniques in the context of 

finite receding horizon control. Figure B.13 gives a schematic representation of the 

technique. In this paper, we present only the main ideas of the technique. Readers 

are referred to Lee et al. [37] for details. 

Modified State-Space Model for Control System Design 

We start with the following standard state-space model: 

We formulated the problem such that the primary measurements $, are available 

at every ,B sampling unit with delay of 0 (P  and 0 can be vectors for more general 



formulation). After some algebraic manipulation, (B.34)-(B.36) can be transformed 

into the following state-space represention: 

The new st ate-space represent ation is useful for two reasons: For st ate estimation, 

when Ad is modelled as white-noise, the disturbance vector d is modelled as a random 

step, which is reasonable for m s t  processes. For feedback control, integral action is 

automatically guaranteed even when a nonzero weight is imposed on the control input 

vector Au. 

State Estimator 

The "state estimator" estimates the current dynamic states Ax(k), yc(k), and y,(k) 

based on the measurements jjs(k) and jjc(k) (if available). The optimal estimator 

under a certain stochastic assumptions on Ad,v,, and vc can be obtained through the 

MR Kalman filter technique; the detailed design procedure can be found in Lee et al. 

[371. 

Predictor and On-Line Optimizer 

The "predictor" provides the optimal prediction of p future controlled outputs in 

terms of m currentlfuture control moves, based on the current state estimates A? 

and yc. p and m are user-chosen parameters. Mathematically, the prediction equation 



is in the form 

where f is a linear function (see Lee et al. [37] for the exact form) and 

yc(k + ilk) is the prediction of y,(k + i )  based on the measurements at time k. 

The "on-line optimizer7' calculates aUm(k)  based on the following objective func- 

t ion: 

P 

min gr(k + ilk)Ay,(k + ilk) + E1 &'(k + ()rAu(k + C) 
l'Urn(" );=I 

(B.43) 
4=0 

under various constraints on Au, u, and yc. Quadratic Programming (QP) can be 

applied directly for the constrainted optimization [25]. In the context of finite re- 

ceding horizon control, the first control move Au(k) is implemented and the whole 

optimization is repeated in the next sampling time. In the absence of constraints, the 

optimal control law relating Af (k) and Vc(k) to Au(k) is a constant function; hence, 

the technique in its unconstrained form can be interpreted as a state-observer-based 

const ant feedback controller. 

Actuator / Sensor Failure Handling 

The on-line optimizer provides a natural way of handling an actuator failure. One can 

simply put a zero constraint on the failed actuator move. In the case of unreliable pri- 

mary measurements, one can replace the MR Kalman filter with a cascaded Kalman 

filter shown in Figure B.14. The "auxiliary" estimator estimates the errors in the 

estimates of y, (e,) on the basis of the difference between the actual measurement 6, 
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Figure B.14. Cascaded Kalman Filter for Unreliable Primary Measurements 

and the estimate of y, from the main estimator (dC = 6, - jj,"). The auxiliary estima- 

tor can often be designed to be decentralized and a failure of a primary measurement 

can be dealt straightforwardly by turning off the part of the estimator corresponding 

to the failed measurement. 

Robustness Tuning 

The on-line tuneable parameters for the control technique are as follows: the pre- 

diction horizon (p), the number of control moves (m), and the output and input 

weights (A  and I?). The disturbance/noise covariance matrices used for the Kalman 

filter design are also user-chosen parameters, but they cannot be viewed as on-line 

tuning parameters since a Riccati equation has to be resolved when these parameters 

are changed. The abundance of on-line tuning/design parameters make the control 

technique flexible, but controller tuning complex. Often, a convenient on-line tuning 

parameter is the input weight, which has also shown to be an effective means to the 

directional sensitivity of ill-conditioned systems [37]. For the cascaded Kalman filter, 

the "optimal" auxiliary estimator can often be conveniently parametrized in terms of 

a real vector whose dimension is the same as that of yc [38]. They provide natural 

on-line tuning parameters with direct implications on the speed of the closed-loop 



response. 

B.4.3 Application to High-Purity Distillation Column 

We apply the proposed control technique to the high-purity distillation column with 

temperature sensors in Tray #7 and Tray #35 (Candidate #14). We do not use 

the composition measurements since the steady-offset s for the ILS controller based 

on these measurements were shown to be negligible. Readers are referred to Lee e t  

al. [37] for the application of the MR version of the technique to the column. The 

following constraints on the actuators were imposed: 

The following parameters were used for the control move calculation: 

The state estimator was designed using the following covariance matrices: 

The simulated responses of the product compositions when the column is subjected to 

the same feed disturbances as in Section B.3.4 are plotted in Figure B.15. The model 

uncertainty and measurement noise were also chosen same as before. Note that the 

responses in the absence of constraints are better than those obtained using the ILS 

controller. We emphasize the fact that the tuning parameters were chosen without 

much effort; no elaborate trial-and-error or search techniques were used. Figure B.16 

shows the simulated responses in the face of actuator failures. The control system 



maintains performance integrity even with only one working actuator. 

Conclusion 

In this article, our main objective was to bring together a number of robust control 

theories and to tailor them into practical control structure select ion and controller 

design methods suitable for complex processes like high-purity distillation columns. 

By doing so, our main intention was to bring forward the aspects of current robust 

control theories that are useful and those that are problematic for practical control 

problems. We showed that the Structured Singular Value Theory provides a powerful 

framework to develop a systematic control structure selection method that is useful 

even when the complete knowledge of the process uncertainty is unavailable. On the 

other hand, for control system design, most robust control theories address only a 

subset of the issues which are of paramount importance to the success of the appli- 

cation. At present, there is no unified, rigorous robust control system design method 

that is suitable for complex practical control problems. We presented what we be- 

lieved to be the best current solution to these complex problems. It is our hope that 

this case study has exposed some of the new challenges for the researchers working 

in the area of robust control. 
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