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Robust Inferential Control: A Methodology for Control Structure
Selection and Inferential Control System Design in the Presence
of Model/Plant Mismatch

Jay H. Lee

Abstract

Two major tasks that are required to obtain a control system utilizing secondary
measurements are measurement selection and inferential control system design. The
first involves choosing an appropriate subset of the available measurements and the
second involves designing a feedback controller based on the chosen measurements.
The important issues to be addressed are not only the theoretical performance of the
closed-loop system, but also the effects arising from the factors prevalent in practical
environments such as model/plant mismatch, constraints, and failures of actuators
and sensors.

General measurement selection methodology is developed accounting for all the
factors that can affect the measurement selection in signifcant ways. These factors
include model uncertainty, signal-to-noise ratios, and measurement dynamics. The
underlying philosophy is to reduce the number of candidates to a sufficiently low level
before going onto detailed analysis by eliminating those candidates for which there
does not exist a linear time-invariant controller meeting the required level of robust
performance. Based on this philosophy and using the Structured Singular Value
theory as a vehicle, a number of numerically efficient screening tools are developed.
Conditions are derived under which some of the new criteria reduce to previously

published measurement selection criteria. The proposed tools are applied to the
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measurement selection problems in a multi-component distillation column and a high-
purity distillation column.

Two different approaches are considered for inferential control system design: an
output estimation based design approach and a state estimation based design ap-
proach. The former approach involves independent design of an output estimator
and a feedback controller while the latter involves direct one step design although the
design can be actually separated into those of a state estimator and of a feedback
regulator using the separation principle argument.

For the former approach, design of the output estimator was examined for two
different cases: the case where a full dynamic model is available and the case where
only the time records of the primary and secondary measurements are available ei-
ther from simulations or from process measurements. For the former case, multi-rate
Kalman filter design and p-Synthesis design are discussed. For the latter case, the
estimator design problem is formulated as a regression problem and various regression
techniques are evaluated in terms of their suitability to the output estimator design
problem. For design of the feedback controller, traditional techniques such as LQG,
IMC, and MPC were combined into a control technique that has nice algorithmic
properties as well as many operational merits such as straightforward constraint han-
dling and simple, intuitive on-line tuning. A heavy-oil fractionator was used as an
example application.

For the latter approach, general state estimation techniques (e.g., multi-rate
Kalman filtering) used in LQG and finite receding horizon control used in tradi-
tional MPC were integrated into a control technique that can incorporate general
disturbances and multi-rate sampled measurements and has desirable operational
characteristics. The concept of classical IMC was extended to equip the control sys-
tem with on-line tuning parameters that have direct connections with the speed of

the closed-loop responses. Application to a high purity distillation column demon-
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strates the effectiveness of the control technique in terms of closed-loop performance

and operational flexibility.
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Chapter 1

Introduction

The objective of this thesis is to develop a rigorous, yet practical methodology for sec-
ondary measurement selection and control system design for processes the controlled
variable measurements of which are either unavailable or unsuitable for feedback con-
trol because of technical and/or economic reasons. By “rigorous, yet practical,” we
mean that the methodology must have a solid theoretical foundation and at the same
time must be useful in solving “real world” control problems. In order for the theory
to be practical, it must not rest on assumptions that are unrealistic for real world
processes and should also address all issues that can affect the final control system
performance in significant ways. The key practical issues we address in this thesis are

model/plant mismatch, process constraints, and actuator/sensor failure tolerance.

1.1 Motivation

Real world control problems are often complicated by “difficult” controlled variable
measurements. Control difficulties may stem from one or more of the following mea-

surement characteristics:

o Slow Sampling Rate
The “primary measurements” (that is, the measurements of the controlled vari-

ables) may not be available at a sufficiently fast sampling rate required for the

desired closed-loop bandwidth.



e Large Sampling Delay
The primary measurements may necessarily accompany delays that are too long

for the desired closed-loop bandwidth.

e Poor Signal-To-Noise Ratio

The signal-to-noise ratios for the primary measurements may be too low for

effective feedback control.

o Operational Unreliability
The measurement devices may be operationally unreliable (that is, they may
experience frequent failures or need frequent services and readjustments) leading

to frequent shut-down of the control system.

These factors are represented schematically in Figure 1.1. When one or more of the
above factors make the design of an effective feedback control system based on the
primary measurements alone infeasible, “secondary measurements” (that is, measure-
ments of other process variables) must be utilized. In this thesis, we define “inferential

control” in its broadest possible sense:

Inferential control refers to control techniques that use measurements

other than those of controlled variables.

The above definition of inferential control naturally includes feedforward control.

A successful feedback control using secondary measurements depends on two im-
portant tasks: the selection of secondary measurements and inferential control system
design. In practice, it is often the case that the number of secondary process variables
that are available for measurements far exceeds the number of secondary measure-
ments that are ultimately used by the control system. It could be argued that using
more measurements should not degrade the final closed-loop performance in any way
and hence using all the available measurements effectively removes the problem of

measurement selection. While this is true in principle, it is often impractical from
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Figure 1.1. Motivations for Using Secondary Measurements

both technical and economic standpoints to build a control system that uses all the
available measurements. Not only would such a control system be highly complex
and therefore difficult to design and maintain, but it would also be prohibitively ex-
pensive. These considerations necessitate the selection of an appropriate subset of
available measurements. There are strong practical and theoretical evidences pointing
toward the importance of measurement selection for the success of feedback control.
A wrong choice of measurements can put a fundamental limitation on the system’s
closed-loop performance that cannot be overcome by “smart” controller design.

A correct measurement selection must be followed by “good” inferential control
system design. The control system design for systems with secondary measurements is
more difficult and complex than that for systems for which the controlled variables co-
incide with the measured variables since good control of the secondary variables do not
necessarily imply good control of the primary variables. In many cases, the primary
measurements are available, though at a slow sampling rate and with low reliability,
for improved feedback control. This naturally gives rise to a multi-rate sampled-data

system, to which most control design methods are not applicable straightforwardly.



1.2 Issues of Practical Importance

As will be elucidated in the next section, there are a number of industrial processes
that can benefit significantly from improved inferential control. However, even af-
ter several decades of numerous theoretical advances, the impact of modern control
theory to these processes has been negligible. This unfortunate trend can probably
be attributed to most modern control theories’ difficiency in addressing practically
relevant issues in a realistic, unified manner. Hence, it is important right from the
start to examine carefully all the issues that can affect the measurement selection
decision and final control system performance in signifcant ways.

For measurement selection, the essential question may be stated as “what makes
one measurement set superior to another?” The factors that should be accounted for

in measurement selection are as follows:

e Model/Plant Mismatch
A mathematical model never represents the true physical system exactly. This
is true even for very detailed first principles models or experimentally identified
models. For low-order, linear models that are often used for the control system
design, this “model/plant mismatch,” or “model uncertainty,” can be quite sig-
nificant. In addition, various process parameters may change over the course of
time giving rise to additional mismatch. A control system showing an excellent
closed-loop performance for the model may suffer significant performance dete-
rioration when implemented to the real system because of the mismatch. This
deterioration may be arbitrarily large meaning the closed-loop system can even

be unstable.

For analysis, it is essential to express the model/plant mismatch in well-defined
mathematical terms. The model/plant mismatch is often described mathemat-

ically as a set of norm-bounded perturations to the model. These perturbations



supposedly capture either partially or entirely the possible discrepancies be-
tween the model and the real process. It is conceivable that a measurement
set is intrinsically more sensitive to these perturbations than another measure-
ment set. Since a control system, when implemented to the real system, will
be potentially subjected to these perturbations, a measurement set with low

sensitivity to the perturbations is preferred over a set with high sensitivity.

o Delays, Inverse Responses
Measurements which show significant delayed or inverse responses to various
process disturbances may be undesirable because they may not be able to pro-
vide “efficient” enough estimates of the controlled variables. For example, if
a secondary variable does not respond to a process disturbance for 10 minutes
while the disturbance affects the controlled variables immediately, the secondary
variable cannot predict the excursion of the controlled variables from their set-
points caused by the disturbance for at least 10 minutes. A similar argument
can be made for measurements showing inverse reponses. A measurement set
with delays and/or inverse responses that are insiginficant with respect to the

desired closed-loop bandwidth must be chosen.

e Signal-To-Noise Ratios
Measurements that are insensitive to process disturbances may be adversely
affected by measurement noise. For example, if a secondary variable changes by
an order of 1 to typical disturbances while the measurment noise associated with
the variable is of an order of 10, the disturbance effects on the measurements
will be masked entirely by the measurement noise. A measurement set with

adequate signal-to-noise ratios must be chosen.

For control system design, most research efforts have been directed toward devel-

opment of pure algorithms. However, various operational aspects of a control system



is as important to its success in a practical environment as its algorithmic merits. The
following issues must be addressed in designing and analyzing an inferential control

system:

e Model/Plant Mismatch
The degree of performance deterioration of a control system caused by
model/plant mismatch depends largely on the characteristics of the control
system. A control system is said to be “robust” if its performance deterio-
rates insignificantly when implemented to processes the behavior of which is
significantly different from what the model predicts. A control system must be
designed to meet the required performance specifications for all systems that

the perturbations used to describe potential model/plant mismatches render.

o Constraints
Constraints are often of great relevance to process control since the economically
optimal operating regions for most processes lie at the intersection of constraints
[2]. On the other hand, most advanced control algorithms are developed un-
der the assumption of infinite input/output domain. Controllers designed using
such algorithms must be fixed subsequently to incorporate various constraint-
handling capabilities. Some of popular ad hoc fixes are anti-reset windup mecha-
nisms, selectors, overrides, etc. Such ad hoc fixes not only can cause undesirable
performance degradation, but also require significant engineering efforts because
their designs tend to be case-specific. In view of ever increasing complexity and
sophistication of today’s control algorithms, it is extremely important from both
economic and safety standpoints that these constraints are taken into account
at the design stage and do not have to be dealt with afterwards in some ad hoc

fashion.

o Actuator/Sensor Failure



It is common in industrial processes that some of the actuators and sensors fail.
One of the main motivations for inferential control was potential operational
unreliability of the primary measurements. The primary measurement devices
may need to be shut down frequently because they require servicing or the
readings from these devices become unacceptably inaccurate for various reasons.
In addition, some of the actuators may simply “get stuck” and become not
manipulable. It is desirable that the required changes in the control system in
the event of actuator/sensor failures can be made by the operating personnel in

a straightforward manner without expert’s intervention.

Fase and Flexibility of Design and Implementation

Given sufficient time and money, engineers can usually come up with adequate
solutions to most control problems assuming such solutions exist. However,
the investment of significant engineering efforts in the control system design
can only be justified when its cost is outweighed by the promise of increased
profitability of the control system. In practice, it is possible that the real process
may behave entirely differently from what the engineer expected initially. This
may necessitate several painstaking trial and error designs before obtaining an
adequate control system. In addition, a control system that is applicable to a
wide range of processes with minor modifications (for example, PID controllers)
can save significant engineering efforts and expenses. From these considerations,
the control systems equipped with flexible on-line tuning parameters are more
desirable than those without. In addition, it is better if the control algorithm
is intuitive and simple enough to be understood and accepted readily by plant

operators.



1.3 Industrial Applications

The research is well motivated by the abundance of industrial processes for which the
product quality measurements are hampered by long sampling delays and frequent
shutdowns of the measurement devices. In order to further motivate the topic of
this thesis, some of the potential applications are discussed in this section, paying
particular attention to the process characteristics in concern with the issues outlined

in the previous section.

1.3.1 Distillation Columns

One important application of the methodology developed in this thesis is distillation
column control. Tight control of product compositions enables distillation columns to
be operated at a point closer to the economically optimal operating point leading to
significant energy savings and higher product yields. However, the product composi-
tion measurements through various composition analyzers such as gas chromatographs
often require large sampling time and are prone to failures as the analyzers need fre-
quent servicing and recalibration. In practice, the secondary process variables such
as tray temperatures and the column pressure are often measured and used instead
for feedback control of the product compositions. A large number of trays in most
industrial distillation columns leads to a large number of potential secondary mea-
surements and necessitates measurement selection. Industrial experience reports that
the choice of temperature sensor location is of paramount importance to successful
product composition control.

Despite a long history of intense efforts devoted to developing an accurate first
principles model for distillation columns, the complexity of the process proved to
be too high to render an accurate quantitative model for the process. Simple linear
models that are often used for the control system design invariably lead to substan-

tial model/plant mismatches for these processes. In addition, further mismatches



between the model and the real process are introduced by the inaccuracy of actuator
valve positionings and sensor readings. Most columns are also subject to a number
of constraints arising from plant-wide optimizations, actuator hardware limits, and
various safety considerations (e.g., column pressure). Control systems for distilla-
tion columns are subject to frequent actuator/sensor failures as columns are often
switched to manual operation. These nontrivial model uncertainty and operational
complexity probably explain why most industrial columns today are still controlled
through single-loop PID controllers and measurement selection decisions are made
on the basis of intuition and heuristics rather than through systematic methods. Po-
tential benefits of a new measument selection and inferential control system design
methodolgy for distillation columns are high if they correctly address all the issues

outlined in the previous section.

1.3.2 Packed-Bed Reactors and Other Chemical Processes

Most chemical processes that require control of product or substrate concentrations
share the same measurement difficulties. A packed-bed reactor for which the outlet
concentration must be controlled as well as the maximum bed temperature serves as
another good example. Essentially any number of temperature sensors can be placed
along the packed-bed for the purpose of inferring the outlet product composition and
the maximum bed temperature. Industrial experience reports that the location of
temperature sensors has a strong influence on the final control system performance.

Because the process is a distributed parameter system described through a set of
highly nonlinear partial differential equations, linear time-invariant (LTI) models used
for control system design are only a coarse approximation of the real process. Again,
model/plant mismatch is a key factor for the sensor placement and control system
design. Hot spot temperature must be maintained below a certain critical level giving

rise to an output constraint in addition to the input saturation constraints. The new
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methodology may be able to solve control problems arising in these processes that

traditional methods failed to.

1.3.3 Pulp Digesters

In paper manufacturing, it is important that the quality of the pulp is maintained at a
constant, desired level. The quality of the pulp is measured through what is known as
the “Kappa Number,” which expresses the degree of delignification. Heterogeneous
nature of feed woodchips introduce unmeasurable disturbances to the process and
proper control of the Kappa Number is imperative to an efficient, economic produc-
tion of superior, constant quality paper. The devices used for the Kappa Number
measurements share many similar characteristics as those used for the composition
measurements. The Kappa Number measurements require large sampling time (some-
times of an order of hours) and the measurements may disappear without warning
for a sustained period of time. For reliable, efficient Kappa Number control, sec-
ondary process variables such as the PH number, conductivity and temperatures of
the digester liquor can be utilized for the real-time estimation of the Kappa Number.

The control problems for pulp digesters share many characteristics of those for the
process industry. First, the process is poorly understood. Despite intense activities
in the field, quantitatively accurate models for the delignification process are yet
to be available. It is unclear what measurements must be used for the best on-
line estimation of the Kappa Number. There are a number of potential constraints
arising from the optimization layer since various units of pulp and paper mills are
often interactive with extensive recycling. Improved inferential control methodology
can bring potentially significant savings to the industry.

The potential benefits of the new methodology that we are intent on developing
as the end goal of this thesis are well exemplified by the above-discussed applications.

Other potential application areas include fermentation reactors, coating processes,
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and navigation.

1.4 Previous Work

In this section, we examine some of the major research results on the topics of mea-
surement selection and inferential control system design that were available prior to
the time when this thesis work began. It will be made apparent that there has been
a lack of systematic methodology that addresses all of the practically relevant issues
outlined in the previous section. The intent of this section is not to provide a com-
plete, extensive literature survey on the topics; this survey inevitably left out some
of the relevant work on the topics. Instead, the purpose of this section is to elucidate
the need for more systematic measurement selection and inferential control system

design methods.

1.4.1 Previous Work on Measurement Selection

During the 60s and 70s, a popular approach in the control research community was
to model the system in a stochastic framework. When this modelling approach was
combined with a time-domain quadratic performance index, the “optimal” (in proba-
blistic sense) controller known as the “Linear Quadratic Gaussian (LQG)” controller
could be found analytically. The celebrated “separation principle” showed that the
LQG controller could be decomposed into the optimal state observer (Kalman filter)
and the optimal LQ state feedback regulator that can be designed independently of
each other [62]. An implication of the separation principle for measurement selection
is that the choice of measurement set can be optimized by minimizing an appropriate
scalar measure of the state estimation error covariance matrix, that can be calculated
straightforwardly. Based on this idea, a number of researchers proposed measurement
selection criteria in the context of sensor location problem for packed-bed reactors

[35,34] as well as in more general contexts [29].
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A serious deficiency of the LQG framework as a ground for developing practial
measurement selection criteria is its inability to address the model/plant mismatch
explicitly. The idea of model/plant mismatch has to be incorporated in an ad hoc
fashion, such as through arbitrarily chosen state excitation noise. Not only is the
choice of this noise that gives rise to a physically plausible model unclear, but the
effects of state excitation noise on the closed-loop systems is also qualitatively dif-
ferent from those of model/plant mismatch. For example, the latter can introduce
instability to an otherwise stable system while the former can’t. Hence, the practical
applicability of the criteria developed using the LQG control theory must be seriously
questioned.

In the late 70s, Brosilow and coworkers attempted to address the issue of
model/plant mismatch more rigorously to the problem of measurement selection
[61,32,7,31]. They studied the effect of a perturbation (an error on the gain ma-
trix relating disturbances to measured variables) on the accuracy of the steady-state
disturbance estimates when a “least-square” type estimator is used. They proposed
what is known as the “Condition Number Criterion” by showing that an upperbound
of its effect can be minimized by choosing the measurement set with the lowest con-
dition number of the gain matrix. They also indicated that the Condition Number
Criterion often conflicts with minization of the nominal (that is, in the absence of the
perturbation) estimation error and left the compromise to engineering judgments.

The work by Brosilow and coworkers can be regarded as the first attempt toward
the right direction for developing practically useful measurement selection criteria.
However, these studies were conducted at a time when robust control theory was
not developed to its full maturity, and naturally, there are serious problems associ-
ated with the proposed criteria. First, model/plant mismatch for practical systems
is neither adequately nor parsimoniously captured by the unstructured perturbation

that led to the Condition Number Criterion. In practice, model/plant mismatches
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are often best described as a highly structured set of perturbations. Consequently,
the perturbation that the Condition Number Criterion subsumes can not only ex-
clude some of realistic model/plant mismatches, but also include many gain matrices
that are physically inplausible. It is conceivable that measurement selection criteria
which are based on an overly conservative model uncertainty description may lead
to a wrong choice of measurements. In addition, the “least-square” type estimator
that is inherent in their criteria is generally not the best choice in the presence of
model/plant mismatch. Finally, the steady-state analysis alone may not provide a
sufficient amount of information needed for measurement selection since dynamic mer-
its of measurement candidate sets cannot be neglected (as explained in the previous
section).

The decade of 80s was a brand-new era for control research. The research com-
munity recognized model/plant mismatch as a key issue for most practical control
problems and such an awareness led to the development of a number of new mea-
surement selection criteria. Moore and coworkers suggested a set of empirical rules
for measurement selection based on the singular value decomposition (SVD) of the
steady-state gain matrix relating manipuated variables to measured variables [47].
In one of the proposed criteria, they defined what is called “intersivity index” and
suggested that the index be minimized in selecting the measurements. Two factors
determine the intersivity index: the sensitivity of measurements to manipulated vari-
ables and the condition number of the gain matrix. Intuitively, it is clear that neither
factors should have significant effects on the closed-loop performance since the ul-
timate role of the secondary measurements is to provide estimates for the effect of
disturbances on various system states and controlled outputs. Even though the crite-
ria may have provided correct results to the particular application that they studied,
they should be dismissed as general measurement selection criteria.

Bequette and Edgar suggested a slightly different approach to measurement selec-
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tion [5]. They proposed to minimize the maximum singular value of the “inferential
error” matrix, which is a measure of the “worst-possible” steady-state errors in the
controlled variables when the secondary variables are controlled perfectly through a
controller with integral action. They also suggest that minimization of the inferential
error should be balanced against the sensitivity of measurements to manipulated vari-
ables and leave the final trade-off to engineering judgments. Their criteria have two
major problems. First, the sensitivity of measurements to the manipulated variables
is not a relevant issue for measurement selection as pointed out previously. Second,
it is generally not the best (although often done in practice) to use controllers with
integral action for inferential control as the perfect control of the secondary variables
can lead to arbitrarily large errors in the primary variables.

To summarize, there is a clear need for better measurement selection criteria that
address the “real-world-relevant” issues in a general, correct manner. Fortunately, the
time is ripe for directing efforts to such a need as there has been a major development
in robust control. Doyle introduced a powerful new theory called the “Structured
Singular Value (SSV)” that enables analysis of frequency-domain performance of a
closed-loop system in the presence of general “structured” perturbations describing
model uncertainty [22]. As demonstrated in this thesis, the SSV theory provides a
convenient framework to develop measurement selection criteria addressing the issue

of model/plant mismatch generally and explicitly.

1.4.2 Previous Work in Inferential Control System Design

Inferential control system design methods can be classified into two major categories:
a state estimation based approach and an output estimation based approach. In
the state estimation based approach, a mathematical model relating various system
inputs to the outputs is used to build implicitly or explicitly an estimator for the

system states and/or controlled outputs. Then this state estimator is combined with
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a control law which calculates the control inputs on the basis of these estimates.
In the output estimation based approach, an explicit relationship (either static or
dynamic) between the secondary measurements and the primary variables is derived
using a mathematical model or plant data and is combined with a control system
that is designed under the assumption that the primary measurements are reliably
available at the sampling rate of secondary measurements.

Before the era of optimal control (and even today to a wide extent), inferential
control was mostly accomplished through PID controllers with ad hoc fixes. This
approach was based on the premise that secondary measurements with similar be-
havior in responding to disturbances and manipulated inputs as the primary variables
could be chosen. When this premise was not satisfied, the resulting steady-state off-
sets in the primary variables were quite substantial. To resolve this serious problem,
auxiliary PID controllers using the “slow” primary measurements were cascaded to
the main inferential controllers to provide setpoints for them [44]. These so called
“parallel cascade controllers” were heuristically designed for most cases and dynamic
performance was at times quite poor [53].

In the 60s and 70s, many control research efforts were directed toward the time-
domain stochastic optimal control. The Linear Quadratic Gaussian optimal control
theory, or the H-optimal control theory, provided a unified design method for gen-
eral multivariable linear systems, based on the objective of minimizing the variance of
the chosen (possibly frequency weighted) controlled variables under certain stochas-
tic assumptions on the system disturbances and measurement noise [36,3]. A nice
property of the LQG controller is that its design can be decomposed into those of the
optimal state estimator (Kalman filter) and of the optimal state feedback regulator.
This separation naturally fit to the interpretation of an inferential control system as
a composite of an estimator and a regulator.

Various modified forms of the standard Kalman filter design appeared. One no-
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table version is that proposed by Morari and Stephanopoulos who showed how the
problem of indetectability caused by the presence of nonstationary noise could be
overcome in an optimal way [49]. Brosilow and coworkers suggested a slightly dif-
ferent approach in which a “least-square” type static estimator is combined with ad
hoc chosen lead-lag dynamic elements [32,31,7]. The approach is clearly related to
the Kalman filter design as the “least-square” type static estimator correponds to the
steady-state Kalman filter gain when all the disturbances are modelled as nonstation-
ary noises.

After decades of much excitement and intense research efforts, it became apparent
that the LQG design method suffered some serious drawbacks as a general methodol-
ogy to solve practical control system design problems, especially those for the process
industry. The failure of the LQG design in terms of general practical applicability
can be attributed to its two major deficiencies: its inability to incorportate the model
uncertainty explicitly and its inability to deal with constraints. As Doyle [21] showed,
there is no inherent robustness margin for LQG controllers. However, there are clearly
enough degrees of freedom in LQG controllers to achieve desirable robustness charac-
teristics for most problems. The main problem is that robustness has to be achieved
through various indirect design parameters such as input penalty weights and noise
covariance matrices. At the time when a rigorous robustness analysis method such
as the SSV theory was not available, it must have been very frustrating, if not im-
possible, for engineers to determine these indirect parameters such that a closed-loop
system with desirable performance and robustness characteristics is obtained. In ad-
dition, a lack of general theory for designing anti-windup, bumpless transfer schemes
that are commonly employed in industry to deal with various problems arising from
process constraints was another major impediment to successful application of the

LQG design method.

Two notable developments during the 80s have partially alleviated these deficien-
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cies of the LQG design method. First, with the SSV analysis method [22], engineers
can at least readily check the robustness of the designed controller (although sig-
nificant trial and error may be necessary before obtaining a satisfactory design). In
addition, a general theory on the topic of anti-windup and bumpless transfer has been
developed for multivariable controllers [10].

In the 80s, the failure of the LQG design in practical environments spurred two
distinct approaches to control system design, opening a new era of feedback control:
H,-optimal control and Model Predictive Control (MPC). The H,-optimal control
was initiated by the work of Zames in which he suggested that performance spec-
ifications for most practical control problems may be better posed in terms of the
H -norm rather than the H,-norm (i.e., the standard integral square norm used in
the LQG theory) [65]. Since then, the H.-optimal control has grown to become the
topic of the 80s receiving much attention and substantial research efforts. Today a
complete state-space solution to the general H.,-optimal design problem is available
[18]. Much of the enthusiasm and attention devoted to the H,-optimal control comes
from the fact that the H,-optimal synthesis can be combined with Doyle’s SSV anal-
ysis into an iterative design algorithm called “u-Synthesis [17].” A distinct merit of
this algorithm is that it directly exploits the given description of model uncertainty.
Today the u-Synthesis stands alone in the list of design methods that can incorporate
the available information on model/plant mismatch directly.

Although the H,-optimal design method can be regarded as a theoretically com-
plete design method and p-Synthesis holds high promises as a design method for
the future, it will probably take some time before they can have a strong impact on
practical applications. In order for them to be useful for the inferential control prob-
lem posed in this thesis, the issue of multi-rate sampling and sensor failure tolerance
must be addressed. In addition, the theory does not extend to systems described

through nonlinear operators, and consequently, the constraint issues cannot be ad-
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dressed directly in the designs, even though the aforementioned developments in the
anti-windup, bumpless transfer significantly widened the scope of application for these
design methods.

In parallel to the developments in the H, -optimal control which came mostly from
researchers in applied mathematics and electrical engineering, process industry devel-
oped a technique called Model Predictive Control that can address various operational
issues in a general, systematic way. This development was motivated by increasing
cost and engineering efforts required to design and debug various constraint handling
schemes for increasingly sophisticated control configurations used by the industry.
Today’s enthusiasm for MPC probably originated from the work of Cutler, in which
he suggested a technique called “Dynamic Matrix Control (DMC) [15].” Even though
the intial version of MPC was rather intuitively based and heuristic in derivation, a
number of researchers, notably Garcia and Morari [24], have since discovered that
there is a connetion between the MPC and various modern design methods. Much
of the attraction for MPC comes from the fact that various constraints are handled
directly in the formulation through the use of on-line optimization. In addition, the
technique was originally developed for nonparametric (finite impulse response or step
response) models and therefore were more accessible to process engineers who lack
traditional control backgrounds.

Since the introduction of DMC, a number of different versions of MPC have ap-
peared in both academic community and industry, some of them using parametric
models [42,57,12,13]. However, there has been a lack of a unifying framework which
connects all the MPC techniques and also various LTI design techniques such as the
LQG method. A consequence of this lack of a unifying framework is that MPC can-
not stand as a truly general design methodology. The scope of application for various
MPC techniques are limited to the problems where the primary measurements are

available (or their estimates are provided through an independently designed output
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estimator). Their extensions to inferential control problems have not been available.

An MPC controller in its unconstrained form amounts to nothing more than a
linear time invariant controller. In the presence of active constraints, however, the
controller is inherently nonlinear and its stability and robustness analysis becomes
very difficult, if not impossible. Various strange behaviors of MPC controllers in the
presence of active constraints have been observed and documented [64]. Another de-
ficiency is a lack of intuitive robustness tuning parameters. There are clearly enough
on-line tuning parameters to make MPC controllers robust. However, none of them
have a very direct interpretation to system robustness such as an explicit relation-
ship with closed-loop bandwidth. The overabundance of tuning parameters simply
confuses engineers and makes tuning more difficult. In order for MPC to continue
its success in a practical environment, it is important that a new version of MPC
equipped with tuning parameters having specific, well-understood effects on the sys-
tem robustness become available in the near future.

An additional issue for the output estimation based approach is how to design an
estimator based on the available plant data. Standard regression techniques such as
the Least Square (LS) regression would be directly applicable if the regressor inputs
(the secondary measurement data) could be freely chosen by engineers as in open-loop
identification experiments. However, such is not the case and the regression matrix
often tends to be ill-conditioned, leading to an estimator with high sensitivity to
measurement noise. More sophisticated techniques such as the Partial Least Square
(PLS) regression has been suggested as an alternative to overcome this difficulty [45].

The above-discussed developments and unresolved issues are outlined schemati-
cally in Figure 1.2. In summary, there is a number of research issues that must be
resolved before these advanced control techniques can be applied successfully (in a
general sense of the word) to “real world” inferential control problems. Some of more

pressing issues include
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1. Establishment of a unifying framework for MPC in which a clear connection
is drawn between various MPC controllers and LTI controllers and subsequent

extension of traditional MPC techniques to general inferential control problems.

2. Providing MPC and LQG controllers with tuning/design parameters that have

specific, well-understood effects on the system robustness.

3. Devising constraint handling strategies and failure tolerance schemes for LQG,

MPC, and p-Synthesis controllers.

This thesis will provide answers (some complete and others only partial) to these

issues.

1.5 Thesis Overview

Chapter 2 provides a necessary mathematical background for the further develop-
ments in the thesis. Some definitions and terminologies used in robust control are
given and the inferential control problem studied in this thesis is formally introduced.
The section also provides a brief summary of major results for the Structured Singular
Value theory, which is the main theoretical basis for the work in this thesis.

The rest of the thesis is roughly divided into two parts: Chapter 3 which is devoted
to the topic of measurement selection and Chapters 4-5 that are devoted to inferential
control system design.

In Chapter 3, an approach to the problem of measurement selection is outlined.
The approach taken is to eliminate systematically undesirable candidates for which
a controller satisfying a given performance specification cannot be designed. Within
this framework, the SSV theory is used as a main vehicle to develop a number of
measurement screening tools that address the issue of model/plant mismatch as well
as other aforementioned issues in a rigorous and general way. Some proposed tools are

independent of the design methods while others are tied to specific design methods.
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Various previously proposed criteria are discussed in perspective of the new method.
Even though we develop the chapter in the context of measurement selection, the
presented method is applicable to the general problem of control structure selection
(which involves selection of actuators as well as measurements) without modification.
Two example applications of the new tools are discussed: applications to a binary
high-purity distillation column and multi-component distillation column.

Chapter 4 is devoted to the output estimation based approach to inferential control
systems design. This approach involves two independent design steps: design of an
output estimator which calculates the estimates for the primary variables from the
available measurements and that of a controller which computes the manipulated
input moves on the basis of the estimates. The strategic positioning of the output
estimation based approach before the state estimation based approach (which is the
major contribution of this thesis) in this thesis is due to the fact that the control
system design for the former approach is a special case of the state estimation based
design presented in Chapter 5 and is therefore much simpler. By presenting the
simper methods first, we hope that readers will acquire background knowledge and
familiarity with our notation before moving onto more complex and general cases.

The output estimator design is discussed in two different contexts: the case where
a full dynamic model relating manipulated inputs and disturbances to primary and
secondary variables is available and the case where only plant data for primary and
secondary variables are available. For the former case, two major design approaches,
Kalman filter design and g-Synthesis design, are outlined and their relative merits
are compared. For the latter case, various regression techniques in the literature and
their suitability for the estimator design are discussed.

For control system design, traditional techniques such as LQG and IMC are dis-
cussed and extended. We also present a novel MPC technique which combines the

general state estimation of LQG and operational merits of the tranditional MPC
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techniques. It is also shown that LQG and MPC controllers can be equipped with
a set of intuitive, simple on-line tuning parameters without introducing additional
complexity to the controllers. Their connections to the traditional techniques such
as IMC and DMC are clearly drawn and some of the limitations of these traditional
techniques are pointed out.

In order to make the discussion complete, we also discuss p-Synthesis, which can
directly exploit the given uncertainty model. It is presented as more of a forward-
looking research topic and a number of open theoretical/practical issues are pointed
out. The chapter concludes with an application of the techniques to a heavy oil
fractionator (“Shell Control Problem”) [54].

Chapter 5 is devoted to the development of a general inferential control system
design method via state estimation. In contrast to the output estimation based
approach of Chapter 4, the approach taken in this chapter is to design directly a full
inferential controller that computes the input moves from available measurements.
We address the stability/performance issues in the presence of model/plant mismatch
as well as various operational issues such as constraint handling and actuator/sensor
failure tolerance. First, the traditional LQG design method is presented for a modified
state space model to which most process control problems fit in more a natural way.
Constraint-handling strategies and actuator/sensor failure handling schemes for the
LQG controllers are discussed. Finally, an augmented form of the LQG controller
which eliminates nonintuitive, redundant design parameters and provides for intuitive
on-line tuning is introduced. The main purpose of the discussion on the LQG design
is not in itself, but to lead into the subsequent development of a Model Predictive
Control technique.

One of the main contributions of this thesis is a novel Model Predicitve Control
technique that is applicable to the general inferential control problem. State estima-

tion techniques for the LQG design method is combined with finite receding horizon
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control used by the tranditional MPC techniques and the end result is an inferential
control system design method that is capable of dealing with the issue of model uncer-
tainty as well as various operational issues. A drawback of the method is that it does
not exploit the given information on model uncertainty in a direct way as p-Synthesis
does for example. Design/tuning parameters are rather to be selected on the basis of
qualitative understandings, and the quantitative performance of the designed control
system in the presence of possible mismatches have to be tested through the SSV
analysis. Chapter 5 concludes with an application of discussed design methods to a
binary high-purity distillation column.

In Chapter 6, the contributions of the thesis are summarized and put in perspec-
tive. In addition, suggestions for future research work on the topic of measurement
seletion and inferential control system design are given.

Appendix A presents an MPC technique that is analogous to the state-space MPC
technique presented in Chapter 4 and uses step response models. Main contributions
of this work is that it extends the applicability of the step response model based MPC
techniques to integrating systems and to systems with “slow” disturbances and that it
provides for intuitive tuning parameters that has direct relationships with closed-loop
response time.

Appendix B presents a case study of a high-purity distillation column in which
some of the techniques developed in the thesis are brought together and applied to a

practical control problem.
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Chapter 2

Preliminaries

2.1 Definitions, Nomenclature

In this section, we present a few mathematical definitions that are necessary for

further development of the paper.

2.1.1 Function Norms
Lo-Norm of Continuous-Time Signals

A continuous-time-domain signal z(t) (R — R") belongs to the function space

£5[0, 00) if
lL.z(t)=0 Vt<O0
2. lz(®)lle, < 00
where the L£;-norm of z(t) is defined as follows:

e, = ([~ <" Ox(at) 1)

From Parseval’s relation,

ol = (o [~ #elosds) (2:2)
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where % represents the Laplace-transform of signal z(¢) and (-)* denotes the complex

conjugate.

H,-Norm of Continuous-Time, Causal Convolution Operators

Let M be a convolution operator mapping L£2[0, 00) to £3[0,00). Then, Hj-norm of
M is defined as follows:

M|z = (21—” /_0; trace (M*M]Fjw) dw) 2 (2.3)

where M is the Laplace transform of the impulse response matrix of M.

H.-Norm (Induced £,-Norm) of Continuous-Time, Causal Convolution Op-

erators

Let M be a convolution operator mapping £2[0,c0) to £2[0, 00). He-norm of M is
defined as the induced-norm of M in the space of £;[0, c0) that can be expressed as
follows:

Moo= sup LI _ qup 5ty (2.4

seLaloeo) |IZ]cs w
where M is again the Laplace transform of the impulse response matrix of M and
5(-) denotes the maximum singular value.

An analogous set of definitions are available for discrete-time signals and covolu-

tion operators as well.

¢,-Norm of Discrete-Time Signals

A discrete-time-domain signal z(k) (Z — R") belongs to the function space £2[0, co)
if
l. ¢(k)=0 Vk<O0

2. |lz(k)lle, < o0
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where the ¢;-norm of z(k) is defined as follows:

. 1/2
(), = (z xT<k>x<k)) (25)

Again, from Parseval’s relation,
T % - 1/2
oWl = (3= 7 &"olmero) 29)
where &(z) = Z(z(k)). Z{z(k)} is defined as

oo

Z{a(B)} = S a(h) (27)

k=0

T is the time interval that each discrete time unit represents. The reason for specifying
T in the formula instead of letting 7" = 1 as many text books do is because we want

to give the frequency w the same meaning as in the continuous-time case.

H,-Norm of Discrete-Time, Causal Convolution Operators

Let M be a convolution operator mapping £3[0, o) to £;[0, 00). Then, Hz-norm of M

is defined as follows:

M|z = (1 /~% trace (M*M|z=em) dw) v (2.8)

2r J-z

where M(z) is defined as

. lfork=0
M(z) = Z{Ms(k)}; (k) = (2.9)

0fork#0
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H..-Norm (Induced ¢,-Norm) of Discrete-Time, Causal Convolution Opera-

tors

Let M be a convolution operator mapping £3[0, 00) to £2{0,00). The induced-norm of

M in the space of £,[0,00) (“He-norm”) is expressed as

Mo = sup BEle o 5001 en) (2.10)
zetoo) e 0w %

2.1.2 Linear Fractional Transformation

We will use the following notations for linear fractional transformations (LFT):

fu(X, Y) = X22 + X21Y(I - X11Y)—1X12 (211)

f'g(X, Y) = Xll + Xle(I - X22Y)—1X21 (212)

where X is partitioned in such a way that X;; has the same dimension as YT for
the upper LFT (F,) and X;2 has the same dimension as Y7 for the lower LFT ().
These definitions are illustrated in terms of block diagram in Figure 2.1. X and YV

can be either transfer functions or complex matrices.

2.1.3 Strucutured Singular Value

The Structured Singular Value (g : C™*™ x A — Rop4) is defined as follows:

Definition 2.1 Structured Singular Value (y)
Let M € C**™ and define the set A as follows:

I3 m
A= {diag[A; e Dy 1Ly O ] A € CPRPL 6 EC;}:p;—}—er = n}

=1 7=1

(2.13)



Ky
> X111 X12
= Xo1 | Xo2 -

(a) Upper Linear Fractional Transformation

> X1 Xi2
Xo1 | Xo2
R,

(b) Lower Linear Fractional Transformation

Figure 2.1. Upper and Lower Linear Fractional Transformations
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Then ua(M) (1 of M with respect to the uncertainty structure A) is defined as

[mina {5(A) : det(I + MA) =0, A e A}™!
pa(M) = | (2.14)
0 if 3 no A € A such that det(] + MA) =0

The structured singular value has the following lower and upper bounds:

max p(QM) = ua(M) < (=) jnf 5(DMD™) (2.15)
where
Q = {QeA:QQ=1) (2.16)

= {diag[dil,,,-,del,,, Dry-++yDy) 1 d; € Ry, D; € C7¥7, D, = D} > 0}

(2.17)

and p(-) denotes the spectral radius. The maximum of the lower bound is always
equal to g, but the maximization is a nonconvex optimization [52]. The minimization
of the upper bound in general does not achieve p except for a few special cases (e.g.,
cases where A has the block structure of three or less blocks). However, the infimum is
very close (essentially equal within the accuracy of engineering significance) to g even
for general cases. The minimization can be formulated into a convex optimization
and, for that reason, the infimum has been used extensively in various tests involving

the numerical calculation of pu.

2.2 Modelling of Systems

Most real systems are modelled more naturally in continuous time. However, discrete

time models are often used in digital control system design and analysis for mathe-
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matical convenience. In this section, we present general system descriptions, both for
the continuous- and discrete-time domains, that are used for the inferential control

problem treated in this thesis.
Because our problem involves multiple sampling rates, it is convenient to introduce

the following time units and express the time in terms of these units:

Definition 2.2 Shortest Time Unit (STU)

Let the sampling times of measurements be ni7,na7, -+, nu7. Then 75 (denoting

STU) is defined as follows:

s = {g.c.d.(n1,ng, -+, ) }7 (2.18)

where g.c.d.{-} represents the greatest common divisor.

Definition 2.3 Basic Time Unit (BTU)

Let the sampling times of measurements be ny7,ner, -+ ,n,,7. Then, 7 (denoting

BTU) is defined as follows:

g = {L.cm.(ny,ng, -+, ) }T (2.19)

where £.c.m.{-} represents the least common multiple.

The time ¢ will be sometimes represented by the pair (k, ;) denoting t = (kN + j)7s
where k € I°*,j = 1,--- N — 1 and N = 15/75. For convenience of exposition, we
will occasionally write t = (k,mN + j) to mean t = (k + m, j).

2.2.1 Continuous Time

Nominal Model

The nominal process model we use is the following state-space differential equation:
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Process:
z(t) = A°z(t) + Biu(t) + Bd(t) (2.20)
y.(t) = Cz(t) (2.21)
ys(t) = Ctz(t) (2.22)
(2.23)
Measurements:

Jeo. (k4] Co(7)z(k,7 — 0 ve(k, g

ycon( ) _ o)z (k, ) n o(k,7) (2.24)

gsg,(kaj) Cs(])x(k,] "93) va(k’j)

T : state vector

d : disturbance vector

r : primary variable reference input vector

V! primary measurement noise vector

vyt secondary measurement noise vector

v : manipulated input vector

Y. primary variable vector

Ye: primary variable error (y, —r) vector

Ys: secondary variable vector

Yc: noise-corrupt primary measurement vector

Js: noise-corrupt secondary measurement vector

w: external input vector (w=[dT T vT VT]7T)

e : controlled variable vector (e = [y7 uT]7)

The superscript {-}° is used to distinguish the model parameters from those of the

discrete-time model that is introduced subsequently. C¢(j) and C¢(j) are C¢ and C¢
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with the elements of all rows corresponding to the measurements unavailable at j
sampling instant set to zeros. It is assumed that (A°, BS) is a stabilizable pair and
Ce
C;

of STU) of the primary and secondary measurements respectively.

,A¢| is a detectable pair. 8. and 6, are the measurement delays (in terms

Figure 2.2 is a block diagram representation of the inferential control problem
for the system described through (2.20)-(2.24). The relationships between the input-

output representation and the state space model are as follows:

Gya(s) = Ci(sl—A°)'By (2.25)
Gy.a(s) = C(sI — A°)™'B; (2.26)
Gyu(8) = C(sI = A)'B: (2.27)
Gyu(s) = C(sI— A B (2.28)

The above model assumes that the effect of the disturbances (d) and manipulated
inputs (u) on the system outputs (y. and y,) are described by strictly proper transfer
functions and the measurement noise (v, and v,) and the system disturbances (d)
are uncorrelated. These assumptions are satisfied for almost all practical problems.

Otherwise, the formulation is general enough to treat any conceivable control problem.

Uncertain Model

An inexactly known continuous-time system can be represented as an LFT of G(s)
and A, (see Figure 2.3). G(s) is the transfer function model relating the input vector
Gaz Ga3

Gasz G
nominal model of the sytem. A, is a set of complex perturbations to the frequency

T T
[UOT wT uT] to the output vector [v,T el §7 47T rT] . (& Paom) is the

response matrix of the nominal model. More specifically, the “true” system can be

any system Pa(s) satisfying the following two conditions:
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W = ;1 r————1 )e-‘-'[;e]
z: P Oc O,’ Ac
nom 65| .',"‘.’[ 5‘,5]

u e > T

Continuous (Discrete-Time) Signal
memmsasm MR Sampled Signal

Gya =1 0 0|G,.

0 0 0 0f I
Pom=|Gya 0 I 0|Gyu (2.29)

Gua 0 0 I|G,.

0 I 00| 0

Figure 2.2. General Block Diagram Representation of a Multi-Rate Sampled-Data
System

1. The frequency response matrix of the system Pa|,=j. for each frequency belongs

to the set Py (w) where

Puw) = {(FulG)A)],j, 1 Au € BALY
BA, = {AcA,:5(A)<1) (2.30)

Ay = {diag(Ar,- Ay 611, 8nl,,) 1 A €CP¥PL6 €C,
dYopi+ Y ri=dim{v,} =dim{v;},1 <i<{1<5 < m}
¢ 3
2. Pa(s) has the same number of unstable poles (poles in the closed RHP) as the

nominal model Ppom(s).

We will refer to the set of systems satisfying the above conditions as Pyy. The above

uncertainty type is called structured since A, carries a specific block-structure as
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Au

— G11§G12§G13‘i - .
w_ Go1i Go2iGas l "[Xe]
.........:.......E........ - . Xc

B G31§G32§G33| ' T[YS]
: i r

. —
. | Pa i
= > T

Figure 2.3. General Block Diagram Representation of a System with Norm-Bounded
Perturbations Describing Model/Plant Mismatch

opposed to being a single full block. We assumed that each A; is square. This is
without loss of generality since we can always express a m x n or n x m (m > n)
nonsquare A; as the product of a m x m square A; and a weighting matrix:

n

AR = ATX™ (2.31)
0

N [ I O]A:"Xm (2.32)
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2.2.2 -Discrete Time

Nominal Model

The process may be sometimes described as a discrete-time system where each discrete
time unit represents the time interval of 7g, the STU. The discrete-time model that
corresponds to the continuous-time model described through (2.20)-(2.24) is given by

the following state-space difference equation:

Process:
2(k,j) = As(k,j—1)+ Buu(k,j — 1) + Bad(k,j — 1) (233)
ye(k,j) = Cex(k,j) (2.34)
ys(k7j) = Csm(k7j) (235)
(2.36)
Measurements:
Ace ky- Cc. kyi'—oc cka‘
Yoo, (K, 7) _ (7)z(k,j —6.) N ve(k, ) (2.37)
ﬁso,(khj) Cs(j)z(k,j —0,) v,(k,7)

C.

Again, it is assumed that (A, B,) is a stabilizable pair and LA is a de-
Cs

tectable pair.

The input/output representation for the system is given by the pulse transfer

function

Gpd(z) = Cu(zI — A)Y'By (2.38)

Gu.i(z) = Cy(zI - A)'By (2.39)
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Gyu(z) = Co(zI — A)'B, (2.40)

G,u(z) = Cy(zI —A)'B, (2.41)

where z represents a forward-shift operator. Again, the above model assumes that the
effect of the disturbances (d) and manipulated inputs (u) on the system outputs (y.
and y,) are described by strictly proper pulse transfer functions (implying delay of at
least one STU) and the measurement noise (v. and v,) and the system disturbances

(d) are uncorrelated.

Uncertain Model

In an analogous manner to the continuous-time case, an inexactly known discrete-
time system can be represented as an LFT of G(z) and A,. G(z) is again the pulse
transfer function model relating the input vector {v{ w? uT]T to the output vec-
tor [v,T el T §7 rT‘]T. The only minor difference is in the characterization of the

perturbation A,. For a discrete-time system, the set of potential “true” systems is

characterized by Pa(z) satisfying the following two conditions:

1. The frequency response matrix of the system Pa|,—jur for 0 < w belongs to

the set Py(w) where

Pyw) = {(Fu(G,Au)],ceior : Au € BAy}
BA,

i

(A€ Ag:5(A) <1} (2.42)

Ay = {diag(Ay, -, Ay i1, 0, 6ul,) 1 As €CP¥P 6 €C,

Zp,--{-er=dim{vo}=dim{v,-},1 <i<{,1<j _<_m}
i J

T represents the time interval that each discrete time unit represents (75 in this

case).
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Figure 2.4. Closed-Loop Performance Specifications for a General System with
Norm-Bounded Perturbations

2. Pa(z) has the same number of unstable poles (poles outside the open unit disk)

as the nominal model Pyom(z).

Again, we will refer to the set of systems satisfying the above conditions as Pry.

2.3 Performance Measures

Two popular performance measures are the H,- and H,,-norm (as defined in Sec-
tion 2.1.1) of the closed-loop operator M shown in Figure 2.4. M, is the closed-

loop operator relating the normalized inputs w’ to the weighted outputs ¢’ (through
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frequency-dependent weights W, and W, respectively). Hence,
My = W, Fo(Pa, KW, (2.43)

In the robust control terminology, a control system is said to achieve nominal
performance when it satisfies the performance specification in the absence of any
model/plant mismatch (A, =0 Vw). In addition, it is said to achieve robust perfor-
mance when it satisfies the performance specification in the face of all prespecified

model/plant mismatches (in other words, for every system belonging to Py).

2.3.1 Continuous Time

A difficulty associated with assessing the closed-loop performance in the continuous
time domain is that the presence of samplers cause the closed-loop system to be
time-varying (although it is periodically time varying). Dailey [16] showed how the
periodicity of time variance of samplers can be exploited to derive “conic sector”
bounds which enable rigorous, though conservative, performance analysis. However,
the conservativeness of the analysis method can be quite significant for some cases,
limiting the method’s universal applicability. When the sampling time is chosen
to be small relative to the closed-loop bandwidth, a sampled-data system can be
well approximated as an LTI system. In this section, we summarize first typical
performance specifications and performance analysis methods for LTI systems. Then,
we briefly discuss how sampled-data systems can be modified so that the introduced

analysis methods can be applied to them.

H, Performance Measure for LTI Systems

Consider a hypothetical experiment where a unit impulse is injected to each input

channel one by one. The Hy-norm of M measures the sum of the squared £;-norm
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of the output vectors €/(t). In other words,

dim{d'}

1/2
> /OOO(MA&(t))TMA‘S{(t)dt) (2.44)

=1

[Mallz = (

where §; is the unit impulse in the ;** channel. By appropriate choices of normalizin
p g

weights Wy and W, we can define the following two performance objectives:

1. The nominal performance is achieved if

| Mnoml]z < 1 (2.45)

Myom 1s Ma for A, =0 and can be expressed as
Muom = Wp(Gaz + GoaK(I — G K) ' Ga)W,, (2.46)

2. The robust performance is achieved if

Mall, < 1 2.47
Pg},xn | Mall2 (247)

Unfortunately, there is no method to test the condition (2.47) at current time.

H,, Performance Measure for LTI Systems

Consider all input signals w’ such that ||w'||r, < 1. As a performance objective, we
may want to minimize the “worst-possible” L£o-norm of the output €’(k). This “worst-
possible” £, norm of €’(k) is the H,,-norm of Ma. Again, by appropriately choosing

the weighting functions W,, and W,,, we can define the following two objectives:

1. The nominal performance is achieved if

[Miomiloo < 1 (2.48)
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2. The robust performance is achieved if

Piréai,xn IMalleo <1 (2.49)

The condition (2.49) can be tested through a function called the Structured Singular
Value (often denoted as “p”) [17):

Pir‘léal,)xn IMallo <1 (2.50)

if and only if

1. Nominal Stability:

Myom 1s stable

2. Structured Singular Value Condition:

1 1
7 Fe(G, K) <1 Yw€[0,00)
Ay Wp J W )
s=jw
AP
(2.51)
Ap={A: A gcimiGal} (2.52)

Frequency-Domain Performance Analysis for Single-Rate Sampled-Data
Systems

A block diagram representing a typical sampled-data system is shown in Figure 2.5.
The problem in performing frequency-domain analysis for sampled-data systems is
that the samplers cannot be represented as transfer functions since they are time-

varying. However, we may approximate them as LTI operators under certain as-
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i Single-Rate Sampled Signal

Approximation Conic
Sector

S

il
\%\%@5
S
R %2&@ =

T

Figure 2.5. Block Diagram Representation of Typical Sampled-Data Systems Modi-
fications for Frequency-Domain Analysis
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sumptions.
The Fourier-transform of the sampled singal {ym }7 (expressed as impulse trains)
is

* J
L{(ym)T}l-s:jw - —j—v_ Z E{ym}ls::jw-b-kz?" (2'53)
k=—00

The notation L£{-} represents the Laplace transform. Now assume that frequency

content of signal y,, is limited to within the Nyquist band. That is, assume

|£{ym }s=jw| = 0 for % <w< oo (2.54)
Then,
* 1 s
L{(ym)T Homjurrzg = 7 L{ym Homjw for 0 Sw < 77, Vk (2.55)

Hence, within the Nyquist band (0 < w < %), the sampler is well approximated
as 7 assuming (2.54) is true. When the signals are properly anti-aliased, (2.54) is
a good approximation. Note that he approximation of the samplers as % does not
hold outside the Nyquist band. However, the performance outside the Nyquist band
is often of little interest since signals above the Nyquist frequency are attenuated
through “holds” and “anti-aliasing filters.” The Bode plot of a zero-order-hold is
shown in Figure 2.6.

Another method that allows for a rigorous, conservative analysis is the “conic
sector” method. In the conic sector method, the samplers are expressed conservatively
as an LTI operator (called “cone center”) plus an LTV block the norm-bound of which
(called “cone radius”) is expressed through another LTI operator — see Figure 2.5. It
turns out that the optimal cone center for the sampler is exactly -11: Most of the u-
analysis results can be extended to treat the norm-bounded LTV blocks (together with
the usual LTI blocks). Further details will not be discussed in this thesis; interested

readers are referred to Dailey [16].
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Figure 2.6. Bode Plot of Zero-Order-Hold

Frequency-Domain Performance Analysis for Multi-Rate Sampled-Data Sys-

tem

The approximation method and the conic sector method that were discussed for
single-rate sampled-data systems extend straightforwardly to multi-rate sampled-data
systems. Namely, each sampler can be approximated (or its cone center can be chosen)
as -11:: where T; is its respective sampling time. For multi-rate systems, however, the
assumption of band-limitedness of signals may not hold for “slow-sampled” signals
and a conservative approach such as the conic sector method may be necessary. In
addition, another difficulty may arise from the fact that some of the sampled signals
may go through parts of the controller that are shift-varying with respect to their
sampling times. To elucidate this point, a typical control system for a double-rate

sampled-data system is shown in Figure 2.7. The samplers within the controller
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Sunmusnnnm

DR
Controller

NI "Fast" Single-Rate Sampled Signal
=mmmae  "Slow" Single-Rate Sampled Signal

Figure 2.7. Block Diagram for Typical Double-Rate Sampled-Data Systems

(referred to as “digial sampler” in this thesis) must also be approximated or bounded
with conic sectors (with shift-invariant cone center, radius and shift-varying A block).

This will be discussed in the context of discrete-time systems in Section 2.3.2.

2.3.2 Discrete Time

In an analgous manner to the continuous-time case, one can specify performance re-
quirements based on the H,- and H,-norm of the discrete-time closed-loop operator.
Discrete-time performance analysis should be adequate for continuous-time systems

if sampling time is chosen to be insignificant relative to the closed-loop bandwidth
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and appropriate “anti-aliasing” of the measurements are performed [3,50].
pPprop g

H, Performance Measure for SR Discrete-Time Systems

Suppose that Ma is a discrete-time closed-loop operator for a single-rate (SR)
discrete-time system where all measurements are available at every time unit. Con-
sider a hypothetical experiment where a unit impulse is injected to each input channel
one by one. The Hz-norm of Ma measures the sum of the squared £;-norm of the

output vectors €’(k). In other words,

dim{d'} co 1/2
IMall2 = ( ; g(MA&(k))TMA&(k)) (2.56)

where §; is the discrete-time unit pulse in the i*" channel. Again, by appropriate

normalization of €', we can define the following two performance objectives:

1. The nominal performance is achieved if

| Muomll2 < 1 | (2.57)

where

Mnom = Wp(G22 + GZSK(I - GSSK)_IGS2)Ww (258)

2. The robust performance is achieved if

Piré%xn IMall2 < 1 (2.59)

As for the continuous-time case, there is no method to test the condition (2.59) at

present.
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H, Performance Measure for MR Discrete-Time Systems

When the measurements are sampled at multiple rates, the resulting M, is a periodi-
cally shift-varying (PSV) system with the period of 75. Hence, §; entering the system
at t = (k,j) and t = (m,n) lead to different outputs Maé; if j # n. However, the
periodicity of the system ensures that the outputs are the same for k # m as long as

4 = n. The natural way of extending the definition of H;-norm to MR systems is as

follows:
1 N-1dim{w'} oo

1/2

IMall = (—N- > Z ) (MA[5i]z(t))TMA[5i]z(t)) (2.60)
=0 i=1 t=(0,0)

where [6;]; denotes unit impulse entering at i*® channel at ¢ = (0,£). Note that the

above definition reduces to the standard Hz-norm definition if the system is shift-

invariant. In addition, the resulting Hi-norm for a PTV system is independent of

the choice of time zero. The nominal performance and robust performance can be

defined in exactly the same way as for SR systems.

H,, Performance Measure for SR Discrete-Time Systems

Consider all input signals d’ such that ||d’||z, < 1. As a performance objective, we
may want to minimize the “worst-possible” ¢;-norm of the output €'(k). This “worst
possible” ¢ norm of €'(k) is the Ho-norm of Ma. As before, we can define the

following two objectives:

1. The nominal performance is achieved if

| Maomlloo < 1 (2.61)

2. The robust performance is achieved if

o 2.
g 1Mafle <1 (2.62)
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The condition (2.62) can be tested through the following condition on the Structured

Singular Value:

Pfleai’xn IMallo <1 (2.63)

if and only if

1. Nominal Stability:

M, om 1s stable.

2. Structured Singular Value Condition:

I I ﬂ
[ W, wo ||
L A
(2.64)
Ap={A: A ectimi@nl} (2.65)

H,, Performance Measure for MR Discrete-Time Systems

For systems where one or more measurements are available only at -every integer-
multiple 7g, the resulting M, is a shift-varying operator. Let us define the H.,-norm
for a PSV operator as its induced ¢;-norm. Clearly, the induced norm does not depend
on the choice of time zero even for PSV operators. The main difficulty with the H,
performance analysis of a MR system, however, lies in that the system is shift-varying
and the pulse transfer function representation of the closed-loop system does not exist
(in terms of time unit 75). Hence, the frequency-domain techniques just described
cannot be applied to MR systems straightforwardly. As for the sampled-data systems
in the continuous-time domain, the samplers can either be approximated as shift-

invariant operators or be bounded using conic sectors.
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Frequency-Domain Performance Analysis for MR Discrete-Time Systems

Suppose the system is represented as a discrete-time system of 75, which is a common
divider of all sampling times. Consider a continuous-time signal y¢,. The fourier

transform of the signal sampled at every 7g is

L{(ym)rs}

e
=05 2 Llmleminz (2.66)

s=jw

If the sampling time of y¢, is N;7g, then the fourier transform of the sampled-signal
is

1
s=jw N TS

L{(¥m)Nyrs}

> L Hom st e (2.67)

S k=~

Now let y,.(k) be a general discrete-time signal where each time unit represents
the time interval of 75 and denote its sampled signal sampled at every N time unit
as (ym(k))n,- From the above discussion, it is apparent that the fourier transform of

(ym(k))N, (expressed as impulse trains) can be expressed as

1 N -1

Z{Om DN gs = 7 2 0 s (2.68)

where Z{ym(k)} represents 332, ym (k). Assuming that the inputs to the samplers
are band-limited (i.e., Z{ym(k)}|,cpjors @0 for 3= <w < I),

Z{(ym ) }

=37 Z{ym(k)}lz._e)wrs for O < [#3] <

A 2.6
z=el¥TS 1 Ts ( 9)

Typical discrete-time multi-rate sampled-data systems are represented schemat-
cally in Figure 2.8. Under the assumption of band-limitedness of the signals, the
above discussion implies that each sampler may be replaced with 1/N; where N; is
its respective sampling time expressed in terms of the discrete time unit, 7s. Similar

arguments can be made to the samplers within the controller as well. The samplers
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within the controller may be replaced by N;/Np where Ny and Ny are the sampling
intervals (in terms of 7s) for the input and output signals of the sampler respectively
(see Figure 2.8). A more conservative approach is to represent these samplers as LSI
operator plus the norm-bounded LSV block as in the conic sector approach for the

continuous time system. Details of this method will not be discussed in this thesis.

2.4 Description of Constraints

Typical linear constraints in process control can be described as follows:

U!ow(k’j) < u(kvj) < uhigh(kvj) Vk,j (270)
|Au(k,j)| < Aumas(k,j) VEk,j (2.71)
(yc)low(ksj) S yc(ka.;') S (" c)high(ksj) \/ks] (272)

Ulow and upign are the upper and lower bounds on the control inputs, Auy,,, is the
maximum allowed changes in the control inputs, and (y.)iow and (y.)rign are the upper
and lower bounds on the control outputs. Note that we allow the constraints to vary

with time.
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Chapter 3

Robust Control Structure Selection —
Secondary Measurement Selection in the
Presence of Model/Plant Mismatch

The purpose of this chapter is to present a unified methodology for measurement
selection in the presence of model/plant mismatch. First, we outline an underlying
philosophy on which we base our efforts to develop measurement selection tools.
The rest of the chapter presents various measurement selection tools that have been
developed thus far within this philosophy. Some tools require only the system-intrinsic
information (i.e., information that is independent of the controller) while other tools
are developed assuming certain properties of the controller and are therefore tied
to specific controller design methods. Even though we develop this chapter in the
context of measurement selection only, all the proposed methods are applicable to
the more general problem of control structure selection (which involves selection of

actuators as well as measurements) without modification.

3.1 General Approach/Philosophy

The conventional approach to the problem of measurement selection has been to
develop a criterion or a set of criteria based on which the comparative merits of
measurement candidates are evaluated and the best candidate is chosen [5,31,35,29].

However, we believe there must be another layer to the measurement selection pro-
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cedure. For most practical problems, the number of measurement candidates (that
consist of all the possible combinations of the available sensors) is extremely large.
The criteria that accout for all the relevant characteristics of measurements with suf-
ficient generality and precision are not only very difficult to develop, but also tend to
be numerically complex. Reducing the number of candidates through simple criteria
before applying detailed analysis should lessen the required efforts for measurement
selection dramatically.

Hence, the approach we take to the problem of measurement selection is to elim-
inate first systematically those candidates for which a controller meeting a given
performance specification cannot be designed (as illustrated in Figure 3.1). This
added layer resolves one difficult problem for the conventional approach: In practical
applications, a nonconservative, rigorous uncertainty model is often unavailable. It
is generally not desirable to make the ultimate measurement selection based on the
uncertainty information that is either incomplete or conservative. When the objective
is to eliminate undesirable candidates, however, “parsimonious” uncertainty models
(that is, models that encompass only those mismatches that are highly probable to
arise in practice and have strong influences on the closed-loop stability and perfor-
mance) can be used. In other words, the elimination process can be carried out even
with incomplete knowledge of system uncertainty. Once the number of candidates
has been reduced to a sufficiently low level, detailed analysis (such as actual control
system design and simulations) can be carried out to make the final decision.

The screening of the candidates can be accomplished in two steps as illustrated
in Figure 3.1. The first proposed step is to eliminate the candidates for which a
controller achieving a desired level of robust performance does not exist regardless of
what controller design method is used. The criteria that can be used to accomplish
this design-independent screening will be referred to as “general screening tools.” This

screening process leaves candidates for which a control system leading to satisfactory
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performance may potentially exist. However, this alone may not reduce the number
of candidates down to a sufficiently low level. In some cases, the control design
methods available to the engineer may invariably lead to controllers with certain
intrinsic properties. We may exploit these properties and carry out an additional
screening in the context of a particular design method. That is, one may choose
to further eliminate those candidates for which the particular design approach under
consideration cannot yield a controller achieving a desired level of robust performance.
The criteria that can be used under a particular design approach will be referred to
as “design-specific screening tools.” If the second screening under a particular design
approach does not leave any viable candidate, it is implied that a more complex,
involved design approach is necessary. The screening process may be repeated in the
context of another design approach.

In the subsequent parts of this chapter, we introduce a number of numerically effi-
cient screening tools, both general and design-specific, that can be used to reduce the
number of measurement candidates. The whole approach will be based on the Struc-

tured Singular Value theory, therefore, allowing a general norm-bounded uncertainty

description.

3.2 Measurement Selection Problem Formulation

The general measurement selection problem we treat in this thesis is depicted in Fig-
ure 3.2. yJ. represents the j*! set of measurements (including the primary, secondary
measured variables) excluding those variables that cannot be measured reliably. The
reason for excluding the operationally unreliable measurements is because it is desir-
able to choose a measurement set such that a required level of performance can be
maintained even when some of the failure-prone measurements become unavailable.
In many practical applications, the primary variables that are sampled at a slow

rate are also operationally unreliable. In this case, y,, consists only of the secondary
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Figure 3.1. Schematic Representation of Proposed Measurement Selection Procedure
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variables that are often sampled at a uniform sampling rate.
The ultimate objective of measurement selection in this thesis is to select a mea-
surement set such that K can be designed satisfying the H,, robust performance

requirement:

P IWpFe(Pa, )Wyl < 1 (3.1)

Our main theoretical basis for developing measurement selection tools will be the

Structured Singular Value theory. Because the theory does not extend straightfor-
wardly to sampled-data systems and multi-rate sampled-data systems for continuous-
and discrete-time systems respectively, one of the following two approach must be

taken:

1. Bound the time varying parts (for a continous-time system) or the shift-varying

parts (for a discrete-time system) of the system with conic sectors.

2. Assume that the signals sampled are band-limited and approximate the samplers

as time-invariant or shift-invariant operators (as explained in Chapter 2).

The first apporach, though rigorous, introduces significant conservativeness and is
not suitable for developing measurement screening tools. The second approach re-
lies on the assumption that the signals going into the samplers are band-limited.
When signals are anti-aliased properly, the assumption is well justified. In addition,
the operator obtained with the approximation is exactly the “cone center” for the
conic sector used in the first approach. Hence, robust performance under the second
approach is a necessary condition for robust performance under the first approach.
From these considerations, we conclude that the second approach is more suitable for
measurement selection.

In this thesis, we develop all our measurement selection tools in the continuous
time domain, with the added assumption that all measurements are available contin-

uously. Extensions to discrete-time systems follows trivially from the discussion in
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Section 2.3 since most tools are based on frequency-domain conditions. The proposed
tools can be applied to continuous-time systems with sampled measurements as well

by using the above-discussed approximation.

3.3 General Screening Tools

In this section, we develop screening tools that can be used to eliminate measurement
candidates for which a controller meeting the robust performance requirement does
not exist. First, we derive a necessary and sufficient (but not testable) condition for
the existence of a controller achieving robust performance. Based on the condition,
we derive several necessary conditions that can be checked efficiently. For example,
by relaxing the causality requirement of the controller, we can derive necessary con-
ditions that can be formulated into convex optimization. The necessary conditions
are proposed as screening tools.

We base further development of this section on the assumption that the infimum
of the upper bound of u is always equal to u for all cases (not just for cases with
block structures of three or less blocks). This assumption is well justified since there
has been no example where the upperbound of p differs from p significantly enough

for engineering interest).

Approximation 3.1 The infimum of the upper bound of p is same as p.
— 1 - -1
pa(M) = inf 5(DMD™) (32)

From Approximation 3.1, the structured singular value condition (2.51) is equivalent

I I
inf &|D Fi(G,K) D'l <1 Yw (3.3)
€ rp Wp Ww

s=jw
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where

Drp = {diag [d11p1’ . ',d(.[p“ D], e ’Dm,dl+11d.im{e'}] . dJ E R+, D,‘ 6 Crixri,Di f—d D: > O}
(3.4)

3.3.1 Test Condition for Existence of a Causal Controller Achiev-
ing Robust Performance

Our goal is to test whether or not a controller meeting the robust performance re-
quirement exists for a given set of measurements. Mathematically, we test if the

following condition is satisfied:

I : {I I
. . - i -1
Klg)fC;sng(inga D(w) E(G,K)L D™ w)| <1
“P ”w

Lo
(3.5)
where G? and W denote the plant model G and the disturbance weight W, for the
J*® set of measurements respectively. For simplicity of notation, we will drop the
superscript {-}? from this point on.
KCs represents the set of all stabilizing, “causal” controllers. The causality of
the controller implies that the controller’s current/future inputs cannot affect its past

outputs. Hence, the causality is necessary for the controller to be physically realizable.

Mathmatically, K, is expressed as

I —GuK)t Gss(I — KGs3)™
k.=lxer,.| T70=5 = S (3.6)
K(I -GxK)t (I —-KGi)™?
where R, represents the set of all proper rational transfer functions (of size dim{u} x
(dim{y,} + dim{r})) and RH., represents the set of all proper rational transfer
functions (of appropriate size) that are analytic in the closed RHP. Note that K

has nonlinear constraints and enters F;(G?, K) in a nonlinear fashion as well. The
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following parametrization of X, [63] yields an affine parametrization of the closed-loop

operator without any nonlinear constraints:

Ko = {K:K=(Y-TQ)(X -5Q)™,Q € RM..} (3.7)
= {K:K=(X-Q8)™ (Y - QT),Q € RHo.} (3.8)

where (S,T) and (8,T) are right and left coprime factors of Gass respectively (i.e.,
Gaz = ST-1 =T"18 ), and (X, Y, X, f/) is a solution to the following Bezout identity:

X -Y||TvY
) =17 (3.9)
-5 T S X
Note that, for open-loop stable systems, we can choose T =T = —-I, § = § =

Gy, X =X =-Tand Y =V = 0; the parametrization (3.7) simply becomes
Ks={K:K=Q+GQ)',Q € RHy}. In this case, the parametrization can
be also expressed in terms of a block diagram as shown in Figure 3.3. Using the

parametrization (3.7)-(3.8), (3.5) becomes

. . _ -1
Qel’ll’zl%w sup D(ug}sfvrpa {D(w) (Nu + Ni2QNgy)l,_j, D (w)] <1 (3.10)
where
Gu G2 Gi3 .
Ny = + TY[ Gy G ] (3.11)
] Ga1 Gy Ga3
G
N12 = e T (312)
] Ga3
N21 = T[ G3l G3.2 ] (3.13)

Hence, the Youla parametrization gives us a test condition, which is affine with re-
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Figure 3.3. Block-Diagram Representation of Youla Parametrization of Nominally
Stabilizing Controller for Open-Loop Stable Systems

spect to the parameter (). The only restriction on @ is that it should be analytic in
the closed RHP. However, the coupling of the parameters () and D makes the left-
hand side of (3.10) a nonconvex optimization problem. There is currently no general
method of checking it. p-Synthesis that combines the H,,-optimal design with the
optimal D-scaling used in g-analysis in an iterative manner, is the only ad hoc solu-
tion. However, the procedure does not guarantee convergence to the true optimum
and involves many numerically intensive steps and fragile approximations. Hence,

(3.10) cannot be considered as a viable screening tool.

3.3.2 Test Condition for Existence of a Causal Controller Achiev-
ing Nominal Performance

One of necessary conditions for robust performance is nominal performance (i.e.,
meeting the performance requirements when the real system matches the nominal

model exactly). Hence, in order for (3.10) to be satisfied, the following condition
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must be satisfied:

611121;;‘°<> sgp& [(Nu + leQNn)L=jw] <1 (3.14)
where
Nu = G22 + G23T?G32 (315)
le = G23T (316)
Ngl = TG32 (317)

During the past decade, various methods have been developed that enables us to test
the condition (3.14). According to the latest method by Doyle et al. [18], checking
(3.14) essentially amounts to checking if positive semidefinite solutions to two Riccati
equations exist and the spectral radius of the product of the two solutions is less than

a certain constant (see [18] for detail).

General Screening Tool #1 Eliminate the measurement candidates for which

Qei%%oo sgp& [(Nu + N12QN21)1 , } >1 (3.18)

szmJw

3.3.3 Test Condition for Existence of an Acausal Controller
Achieving Robust Performance

Let us consider dropping the causality requirement on (). Hence, we allow the con-
troller parameter @) to be “acausal” meaning the current/future inputs to the operator
() may affect its past outputs. Mathematically, this is equivalent to replacing the re-

quirement of @ € RHo with @ € R,. The condition (3.10) with @ € R, is equivalent
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to the following frequency-by-frequency condition:

Qi&fx DiGanrp&(D(Nu + N12QN21)l,=ij—l) <1l VYw (3.19)

The superscript {-}¥ in C¥ implies that it is the set of complex matrices of size
dim{u} x (dim{y,, } + dim{r}). The following lemma gives a necessary and sufficient
condition for the existence of an acausal @ satisfying (3.10) that does not require

finding the double coprime factor or solving the Bezout identity.

Lemma 3.1 Let Ny, Ny2 and Nyy be defined as in (3.11)-(3.13). Then

Qié%fza Diengrp &(D(N1y + N12QNpy)|s=ju DY) <1 Vw (3.20)
if and only if
Qi?CfK Die%frp&(D(Nu + NpQNy)e=jwD7Y) < 1 Vo (3.21)
where
Ny = G G Ny = Grs Ny = [ Gz Gag ] (3.22)
G21 G22 G23

Proof  Note that

Gn Gi Gis . -
Ni + N1oQNy = + (TQT +TY) [ Gay Gao } (3.23)
Ga Gz Gas

Define Q = TQT + TY. From the equivalence
{Q:QecXy={TQT+TY :Q eck} (3.24)

we arrive at (3.21). n
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Comments on Lemma 3.1:

1. There is no need for finding the double coprime factor of G, and solving the

Bezout identity since the expression for N involves only G.

2. For open-loop stable systems, (3.21) is a necessary and sufficient condition for
existence of an acausal controller K satisfying the robust performance require-
ment. In other words, dropping the causality requirement on @ is equivalent to
dropping the same requirement on K. When the causality requirement on K is

relaxed, the requirement of (3.6) on K disappears leading to the condition

I . I
inf inf & | D(w) F(G’,K) D Hw)| <1 Vw
KGCK D(W)EDrp W

s=jw

(3.25)
Replacing K € CX with K € {Q(I — GQ)™' : Q € CX} leads to the exact
same result. However, it is more intuitive to think in terms of acausal ) than
acausal K. Since @) is required to be stable for internal stability, we can write
Q = @1 + Q2 where @y mapping L£;[0, 00) to £2[0, c0) (Toeplitz operator) rep-
resents the causal part of the controller and @2 mapping £;[0, 0o) to £2[0, —c0)
(Hankel operator) represents the acausal part of the controller. Such a direct
interpretation doesn’t exist for K since a stabilizing acausal K is not necessar-
ily a map from £5[0,00) — L2(—00,00) (it does not have to be stable for the

closed-loop to be internally stable).

3. For open-loop unstable systems, (3.21) is only a necessary condition for the
existence of an “acausal” controller K achieving robust performance. This is
because, when @ is allowed to be acausal, the Youla parametrization (3.7)
does not necessarily lead to a stabilizing controller K. For example, choosing

Q(jw) = T7'Y (jw) Yw leads to K = 0, which is not a stabilizing controller.
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However, (3.21) is nevertheless a necessary condition for (3.10) since

sup Qig:fk Dienvf,,, 7(D(N11 + N12QNay ) |s=j D7) (3.26)

< _inf sup inf 6(D(Nn+N12QN21)I3=J'WD"1)

T Qe€RHo w DEDyy

Hence, it can be used as a screening tool to eliminate candidates for open-loop

unstable systems as well.

Thus far, we have shown that

Qiélcfx Diergrp&(D(Nu + N2QNgy)e=juD™Y) < 1 Vo (3.27)

is a necessary condition for the existence of a controller achieving robust performance.
It was interpreted as a necessary and sufficient condition for the existence of an acausal
controller achieving robust performance for open-loop stable systems and a necessary
condition for open-loop unstable systems. Next, we show that the condition (3.27)
can be transformed into two separate conditions that can be formulated into convex
optimization [39].

We first reparametrize Q as follows:
Q €CX = Q € (N5, Ni2) QN N3, ) 7P mj : @ €CF} (3.28)

The notation {-}* represents the adjoint operator for transfer functions (i.e.,
N*(s) = NT(—s) and the complex conjugate for constant matrices). Using the new
parametrization, the condition (3.27) can now be transformed into

Q_iélch Dier%)frpa(D(Nu + Ni2QNo)lsmjuD™Y) < 1 Vo (3.29)
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where

Ny = le(Nszu)-l/? (3.30)

Ngl = (Ngllv;l)-I/zNz] (331)

Note that NfzjleIs:jw = [ and N21N3‘1 |s=jw = I for all w. The following theorem
shows that the condition (3.29) can be checked through two conditions each of which

is a convex optimization problem.

- Theorem 3.1 Let R € C™**,U € C™*" and V € C**". Suppose U*U = I.,VV* =1,
and Uy € (=) and V| € C*=9%" qre chosen such that [ U U, ] € C™ " and

v
€ C™*™ are unitary. Then
Vi

. . ~ -1
Qélclfm Dlenvf,, Fg(D(R4+UQV)D™ )< «a (3.32)

if and only if X € D,, such that

Aax[VL(B*XR — 2 X)V]] <0 (3.33)
and
Amax[US(RX'R* = a®X~)UL] < 0 (3.34)
Proof
. - -11 _ . - -1 -1
Qi [D(R+UQV)D™] = Qinf,, [DRD™ + (DU)Q(VD™Y) (3.35)

We first replace @ € C™** with

Q € {[(PU) (DU 2QVD (VDT @ e c}
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Then,
Qo [D(R+UQV)D™] = Qérclfxt 5 (DRD™* + UQV) (3.36)

where
U = (DU)|(DU)Y(DU)? (3.37)
V = [(VDY)WVDY]Y¥vD™) (3.38)

We want to find U, and V, such that [ U U, ] and | are both unitary. Simple
Vi

calculation shows that

U, = (D) 'UL(UND*D)™'UL)~Y? (3.39)
V. = (V.D*DV}) Y?*V,D* (3.40)
Now
_inf & (DRD™+0QV) (3.41)
Qecrxt
( . .11 @ o 14
= inf & DRD"+[U 0, A (3.42)
QeCrxt \ ] 0 0 f )
(. R 1% Q 0
= inf || U.L] DRD™'| + (3.43)
geemt ¢ Vi 0 0
Ry+Q R
= inf &|| ¢ o (3.44)
Qecrx¢ \ Ry Ry,
where

Ry, = U*DRD-'V* (3.45)

Ry, = U*DRD™'V; (3.46)
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Ry = UIDRD™'WV~ (3.47)
Ry, = UDRD™'WV; (3.48)
From Doyle (1984),
Ru+Q R L R
_inf & 11~ 7 ~12 = max &([ Ry Ry ]),& ~12 (3.49)
gecrxt Ryn Ra Ros

Hence, the condition (3.32) is satisfied if and only if there exists D € D,, such that

(] = = || Br
a ([ Ry R ]) < aand & 3 <« (3.50)
Ry,

= &(U;DRD™) (3.53)
= & [(D")'UL(Ui(D* D) UL) ™) DRD™| (3.54)
= & [(UI(D*D)“‘UL)—I/ : UIRD‘I} (3.55)
Similarly, one can show that
= Rl2 — * x\—1/2
|| =& [DRV; (V.D*DV;)™? (3.56)
Ry,
Now
5 [(U;(D*D)-IUL)“” ? UJ_RD’I] <a (3.57)

-1/2

o dmae [(U2(D*D)0) UL R(D DY RUL (U3(D7D)0) T - et < 0
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& Amax|UIR(D*D)'R*U, — Q*U(D*D)"'U.] <0 (3.58)
“ AualU7 (R(D*D)'R* — o*(D*D)™) U] < 0 (3.59)
Likewise,

5 [DRV; (V.D*DV}) ™V <

& Amax[Vi (R*(D*D)™'R — o*(D*D)™) V;] < 0 | (3.60)

Defining X = D*D completes the proof. |

Comments on Theorem 3.1:

1. (3.33) and (3.34) are convex with respect to X and X! respectively. Each of
the two conditions is a necessary condition for the existence of a causal controller
achieving robust performance and can be checked through standard algorithms

such as “cutting-plane” method [6].

2. Checking the conditions (3.33)-(3.34) together is more difficult and is not re-

solved at the moment except for the following special cases:

¢ Full Control Case:
If U has a full column rank, the condition (3.34) drops out and (3.33) is

necessary and sufficient for (3.32).

e Full Information Case:

If V has a full row rank, the condition (3.33) drops out and (3.34) is

necessary and sufficient for (3.32).
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e 2 Full-Block Case:
For the cases of 2 full-block A, (3.32) is

i it a(| RiuQv)| &'
Qé%rxtdhifek...a( ng ( + Q ) 11

By multiplying and then dividing the expression by d;, (3.61) becomes

Qe

dI
Qélclfxt dler%zﬂ a( ; (R+UQV) ; )< a (3.62)

where d = %21. Hence, for 2 full-block cases, the condition (3.33)-(3.34) can

be expressed as follows:

dI dI
g(d) = Amax |VL | R* R —a? Vil <0
I I
(3.63)
1 iy iy
B(5) = Ama |UL|R ¢ R —a?| ¢ ULl <0
I | !
(3.64)

Trc = {s € R4+ : 9(s) < 0} and Ty = {t € R4 : h(t) < 0} are open inter-
vals (since g(s) and h(t) are convex with respect to s and t) and can be

easily checked if they intersect.
Using the results from Theorem 3.1, we now propose the following screening tools:

General Screening Tool #2 Eliminate the measurement candidates for which

XiGan Amax [(Ngl)L(NleNII — X)(Nzl)j_[,:jw] >0 forsomew  (3.65)
rp
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General Screening Tool #3 Eliminate the measurement candidates for which
inf /\max [(NIZ)I_(NIIXNﬂ - X)(Nl2)i.ls=jw] 2 0 for some w (366)
X€Drp
General Screening Tool #4 Eliminate the measurement candidates for which

T (w) N T (w) =0 for some w and
for some (i,5) € {(1,7) : 1 # 731 <1,j <L+1}

(3.67)

where

.. y . sl ...
Tro(w) = Is € Ry : Amax | (N3]) 1 (Nﬁ)*{ Ni

I
sI .
- (N21)1 <0 (3.68)
I .
s=3w
FIw) = qtE€ Ry Amax [(NiD)L M| ! (Ni1)”
iy o
- (M2)! <0 (3.69)
I .
v e A .. S=Jw
Ny = XN (x9)T (3.70)
N = Nyu(x9)T (3.71)
N = XN, (3.72)

[==]

- 0 - Iyma,
X4 = dim{a:) (3.73)

0 LRI .. Idim{AJ}

[l
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The last screening tool exploits the fact that the robust performance condition must

be satisfied for any combination of two blocks among the present A blocks.

3.4 Design-Specific Screening Tools

In this section, we develop screening tools that are tied to specific design methods. We
first introduce a parametrization of the controller gain matrix that leads to an affine
closed-loop gain expression with respect to the parameter. Then, we show that certain
controller design approaches (LQG, MPC designs for example) invariably lead to a
specific form of the gain matrix. Based on this property, we propose some screening

tools and put them in perspective with other criteria that have been suggested by
various authors.

3.4.1 Steady-State Screening Tools

Affine Parametrization of the Closed-Loop Gain Operator

The steady-state gain K. for the controller K can be parametrized as

Ky € {Que(I — G2Que) ™" : Qu € R} (3.74)

Figure 3.4 shows a block-diagram representation of the parametrization. Using the

parametrization, the nominal closed-loop expression from w to y. can be shown to be

as follows:

[ liim{y.y 0 ] (G2 + G3QG32) (3.75)

For convenience, we will adopt the following notation:

G’22 G23 _ [Idjm{yc} 0] 0 G22 G23 Hw 0

o (3.76)
Gsz Gss 0 I Gy Gas 0 I
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Figure 3.4. Affine Parametrization of the Closed-Loop Gain Operator
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where H,, is a diagonal matrix which expresses relative magnitudes of external inputs
at steady state. For example, the elements corresponding to “nonpersistent” (or

stationary in stochastic sense) inputs are set to zero.

Controllers Minimizing Projection Error (LQG/MPC)

The LQG (“H,-optimal”) design method and the MPC design method that are in-
troduced in Chapter 5 minimize the variance of y. at steady state. More specifically,

these design methods invariably lead to Q4. that minimizes the quantity
1Ga2 + G23QucGaz |7 = trace{(Gaz + G23QucGa2) (G2 + G23QucG2)}  (3.77)

|| - ||z denotes the Frobenious norm which is the square root of the sum of the squares
of all elements (which is equivalent to the right-hand-side expression). The following

theorem gives an explicit expression for 4. minimizing the quantity (3.77).

Theorem 3.2 Suppose Gz, Gap and Gos are real matrices and G, and Goz have

full row and column rank respectively. Then,

Qdce%gm{f‘} G2z + G23QacGaz || 7 (3.78)
is achieved by
Que = Q5 = —(GRGas) ' GHGnGE(G2GT)™ (3.79)

Proof Define
Qdc = (G%623)1/2Qdc(é325§2)1ﬁ (380)
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It follows straightforwardly that

inf 1G22 + G23QucGa2 || 7

QchRdim{K}

= o 1Gn + Cn(G50a) ™ Que( G G5y) Gl (3.81)

Denote the matrices Gaa(GLGa3)~Y? and (G3,GL,)"1/2Gay as U and V respectively.

V
Then, we can always find U, and V| such that [ U U, ] and are unitary
Vi
matrices. Now
|G+ UQuV |, (3.82)
= Qde 0 |4
= [IGa+ [ U U, ] (3.83)
0 O Vi
_'F
T ~
[ T _ V Qdc 0
[ UTCLVT 4§ e UTGpuVE
_ 22— Qd _22 L (3.85)
UTGy,vT UTGyuVE

The choice for Qdc that minimizes the quantity (3.85) is —UT G2, VT which, in terms

of original notation, can be written as

— (GG23) GGGy (G Gy) 12 (3.86)
Hence,
o) = —(GL,Gaa) 1 GL GG (GG ™! (3.87)
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From Theorem 3.2, a necessary condition for robust performance for the LQG or

MPC controllers regardless of their tuning is

u (MPe) < 1 (3.88)
Ay

Ap
where MP™ = F, (G, QEH(I + G Q5 "1) and can be written as

G + G13Q§205031 (G2 + G13Q5203G32)Wd
W, (G2 + G23Q520jG31) Wo(Ga2 + stQSZOjGw)Wd

MP™ =

The following screening tools is proposed.

Design-Specific Screening Tool for LQG/MPC #1 Eliminate the candidates
for which

[z (MPrl) > 1 (3.89)
Ay

AP
Controllers with Integral Action

It is common in practice to use controllers with integral action so that all measured
variables have zero steady-state offsets in the face of asymptotically constant distur-
bances. For example, most industrial distillation columns are controlled by putting
PID loops on the chosen tray temperatures. For controllers with integral action, the

expression for Q4. can be written as

Qu= @it = [ ~(G,..)7

0 ] (3.90)

We naturally assumed that there are at least as many manipulated variables as the

measured variables by assuming that (G,,..);?, a right inverse of G, exists (other-
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wise, integral action on all measured variables is not possible). In addition, because
the primary variables are not estimated directly in this approach, setpoint changes
must be done by providing appropriate new setpoints for the measured variables. In
the above formula for Q'*®, we assumed that no reference inputs are to be given

in order to keep the discussion simple. Given the expression for @, the following

screening tool can be easily derived.

Design-Specific Screening Tool for Controllers with Integral Action #1
Eliminate the candidates for which

m (M™&) > 1 (3.91)

M8 ig defined as

G + Glan;tgGsl (Giz+ GISQE;‘gG:BZ)Wd
Wo(Gar + G23Q§1TgG31) Wp(Gaz + stQZtgGsz)Wd

Mintg —

3.4.2 Relationships with Previous Criteria

The steady-state screening tools presented in Section 3.4.1 test whether the given
performance specification is satisfied in the presence of the “worst-case” uncertainty.
We can extend these ideas a bit further to obtain a method for calculating the actual
“worst-case” closed-loop error at steady state. In this section, we present a method to
compute the “worst-case” closed-loop error in the presence of general norm-bounded
perturbations. Using this method, it is shown that some of the previously proposed
criteria arise naturally under specific uncertainty structures and some restrictive as-

sumptions on the performance/disturbance weights.
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Methodology for Calculating the “Worst-Case” Closed-Loop Error

The following lemma enables the explicit calculation of the “worst-case” closed-loop

error at steady state [40].

Lemma 3.2 Let My € CP*? | My € CP*" | My € C™*P and My € C™¥™.
Define the set BA, as follows:

BA, = {Ae€A,:5(A)<1} (3.92)
A, = {dia,g(Al, o A8 60 ) s Ay € CPRPL S € C
pr+er=p,1$iS£’,15j§m} (3.93)
i i
Also define
_ My My,
fle)=nra, (3.94)
CpM21 CpM22
Ap
where
Ap={A:Aecm} (3.95)

Assume that pa,(My) < 1. Then,

AueBAY 5[Maz2 + Mn Ay(I — MuAy) ™ M) = z

(3.96)

where &, solves the equation f(g,) =1.

Proof = We must prove that

Mll M12
ETA
" My T M
AP

— Fley My + My Ay (I - MpA) TMp] =1 VA, € Ay (3.97)
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The proof is done by contradiction.

First, suppose that
5‘[5;M22 + E;leAu(I — MuAu)—lMlg] <1 VAu € BAU
Then

p(Ap(epMay + G Mn Ay (I — MuA) " Myp))

IA

7(Ap)5 (S, Moz + SMu Au(I — M Ay) ™ M)

<1 VA, eBAjand A, € {A:5(A)<1,A eC™™}

This implies that
My My \

H A < 1
" M2 o Ma,
Ap

which contradicts the assumption.

Next, suppose that
ey Moy + Sy Mo Ay (I — M1 A)'Myp] > 1 for certain A, € BAy

Let
EMa + My AL (1 — MuA) My, =UEVT

(3.98)

(3.99)
(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

where U and V are unitary matrices and ¥ is a real, positive semidefinite diagonal

matrix. Then

P(Ap(E Moz + S MuAy(I — My A) ™ Myg)) > 1 for A, = VUT

(3‘.105)
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This means that 3A, € C™*" such that
E(Ap) <1 and det(I -+ Ap(ar,Mzz + E;M‘zlAu(I - MnAu)‘lMlg)) =0 (3106)

This implies that
My My,

Hr A >1 (3107)
" &My T My
Ap

which again contradicts the assumption. ||

Since f(c,) is a nondecreasing function of ¢,, ¢ can be easily computed through
simple search procedures such as the bisection method. In the statement of the
theorem, we assumed that the performance block A, is square. This is without loss
of generality since a nonsquare block can always be represented as product between
a square block and a constant matrix (see Chapter 2).

It is often convenient to use the “tight” upper-bound of x4 (Approximation 3.1);

hence, we will restate Lemma 3.2 in terms of the upperbound.

Corollary 3.1 Let My; € CP*? |, My, € CP*" , My € C™*P and My, € C™°™.
Define the set BAy as follows:

»

BA,

i

(A €Ay:5(A) <1} (3.108)

A, = {diag(Ay,-, A &L, 6,1,,) A €CPXPLE €C; (3.109)

Zpi+zrj=17,1$i$€,1$j§m}
i i

Also define

. Mll Ml2 -1
flep) = DlI}pf D D (3.110)
€Prp CpM21 CPM22
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where

D,, = {diag [d1Ip1,’ -oydelp, Dy, oy D 1L di € Ry, D; eC™*™,D; = D; > 0}
(3.111)

Assume that

DieanN(DMuD‘l) <1 (3.112)

where

D,, = {diag [d1Ip1,'*',delpuDl"",Dm] :d; € Ry, D; e CH*" D; = D7 >0}

(3.113)
Then,

(
=ci_for€§2,m=0
max &[Ms + My Ay(I — My A,) ™ My, » (3.114)

A.eBAy < (=)L otherwise
P
where ¢, solves f(c}) = 1.

For convenience of notation, let us define the operator £,,,4; as follows:

My M
gworat H " ’ BAn =

M21 M22

(3.115)

'an*l'—‘

When the matrix M holds a special structure, a simpler formula can be derived

as the following lemma shows.

Lemma 3.3 Let My3, My, and D,,, D,, be defined as in Corollary 3.1. Then,

. 0 My, p =
inf &|D D™'| = inf \/5(c,MpyD-1)5(DMy;)  (3.116)
Dé€Drp DeD,

CpMn 0 s
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Proof
(| b 0o My, || b
inf & (3.117)
DeDr. \ | In Cple 0 In
_ ( 0 DM,
= _inf & 3 (3.118)
DeDy, K CPMQID_I 0
0 DM
= iof inf o oo (3.119)
Dep,, der de,MyD™t 0
- I
_ . . - —1 ~ (1
= Dlenvf,,, dé’%ﬁ max (a (dcnglD ) , 7 (dDMlg)) (3.120)
= inf |5 (coMn DY) 5 (DMir) (3.121)
n
The lemma implies that
M,y M " -
Eorst TP BAG| = inf (/5 (MuD-1) 5 (DMy,) (3.122)
M21 M22 DGDra
Finally, the following lemma will prove to be useful in the further development.
Lemma 3.4 Let Myz, M2y, My, and D,,, D, be defined as in Corollary 3.1. Then,
0 M 0 M,
inf 7| D " p] < Jnf 5| D " I pt| (3.123)
® Cngl 0 i CpM21 CpM22
Proof  Let D* be the D-scale achieving
0 M,
inf 7|D D! (3.124)

DeDyrp
CpM21 Cngg
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In addition, let v be the input vector corresponding to the maximum singular value

of the matrix

. 0 M12 =1
D (D*) (3.125)
CPM21 0

For convenience of notation, partition v and D* as follows:

Vy D3
v= D* = (3.126)
Ve D;
Then
D* 0 My, (0| v = D3 Miy(D3) oy
oMo cp My cp D3 M1 (D7) vy + ¢, D3 Maa(D3)  og
(3.127)
Now, note that
D;Mlz(D;)—l’v[ D;‘Mu(D;)"lw (3 128)
¢, D5 Max(D3) " vu + ¢, D5 Maa(D3)Mve || || e D3Ma(D]) v ||
or
—D*M,,(D2) v DM, (D) v
1 12( 2) {4 > 1 12( 2) {4 (3'129)
CpD;Mgl(D;)_l’Uu —_ CpD;Mgg(D;)—I’U( 5 CpD;Mgl(DI)—lvu .

Hence, by choosing the sign of v, appropriately, one can show that there exists a

unitary vector v such that

0 M: 0 M
D* 12 (D*)—l v 2 D* 12 (D*)—-l v
C,,Mm Cngz ) Cngl 0 .
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Hence,

. _ 0 M12 __1\
Dmg g|D D (3.131)
€Vrp CpM21 CPM22
( * 0 M12 *y—1
> || D (D) | v (3.132)
\ _CpM21 CpMzz )
/ -
* 0 M12 *)~1
> D (DY Mo (3.133)
\ -Cple 0 9
0 M
= 5| D" (o) (3.134)
Cple 0
; 0 12 -1
> inf ¢|D D (3.135)
DeD,y
\ [ @Ma O /

These lemmas will be used to derive simple measurement selection rules for specific

uncertainty structures. The derived rules are analogous to some of the previously

available criteria.

Multiplicative Uncertainty on the Disturbance Gain Matrix

Consider the following multiplicative perturbation on the gain matrix relating the

disturbances and the measured variables:

Gymi = (I + Wol))Gyna, Do € Ao = {A:5(A,) < 1) (3.136)

The uncertainty is represented schematically in Figure 3.5. Let us make the following

assumptions to simplify the discussion:
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Figure 3.5. Multiplicative Uncertainty on the Disturbance Gain Matrix

1. Gy, has full row rank. This means that there are at least as many manipulated

variables as the controlled variables.

| Sh]

. There is no noise corrupting the measurements at steady state.

w

. No input weighting is used at steady state.

These assumptions amount to restricting the structures of the external input and

performance weights to be

Wi
wy
W, = (3.137)
0
0
W'ye
W, = P (3.138)
0
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and

=Gy [ ~GyeaGT 4 (GymaGL )1 I ] (3.139)

With these assumptions,

. My M
Meroi = | TR (3.140)
My My
where
MPe = 0 (3.141)
Migeri = | G, aW2 0 0 0 ] (3.142)
To) _WgeGvchgmd(Gydegmd)“IWO
Mé)l ) = (3.143)
0
- . 1
T T -1
0 000

Since the rows and columns do not affect x, we can define M to be the following

matrix instead:

] 0 Gymdwg)
MP™ =
_ngeGychg'md(Gy’"ng'md)—IWO WPGycd(I - GZmd(Gydegmd)_lemd)ng
(3.145)
From Lemma 3.4,
Sworst(Mpmj, Ao) S gworst(Mproj’ Ao) (3146)
where
N 0 GymaWe
MP™® = (3.147)

—W§’°Gych3"md(Gydefmd)“1Wo 0

Hence Ewo,st(Mpmj,Ao) provides a lower bound for the “worst-case” closed-loop

steady-state error. Note that M;;Oj is the nominal (i.e., in the absence of the pertur-
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bation) closed-error matrix. When G4 is a nonsingular, square matrix, MEPP = g
and Sworst(Mpmj, Ao) = gworst(Mpmj’ AO)-
Special Case I: Unstructured A, - Condition Number Criterion

Suppose A, has no particular structure within itself. Hence,
A, € AP = {A:5(A) <1,A  ctmlimbxdimium} (3.148)
Then, from Lemma 3.3
Euora M, AB) = inf a(wg=Gycdag‘md(aymdcgmd)-lwo%)&(dedeg) (3.149)

Suppose W, = w,I, W¥Gy 4 = w,1, and Wd = wyl. The last two assumptions
imply that the disturbances enter directly into the controlled variables (with same

weights). Then (3.149) becomes

&(WgeGychg‘md(GydeZmd).—lWO)&(Gydezi) (3.150)
= [wpw0,04|5(GT, 4(GynaGT,0) )5 (Gyma) (3.151)
= |wyw,wq|k(Gypna) (3.152)

where k denotes the condition number, the ratio between the maximum and minumum

singular values. Hence, steady-state measurement selection criteria can be stated as

1. Minimize the quantity 3(W¥ Gy aGT (GynaGL 1) ' Wo)3(GyaWe).

ymd ymd

2. If Wo = w1, W¥Gya = wpl, and W34 = wyl, minimize the condition number

Of Gymd-

Thus we have shown that Brosilow’s Condition Number Criterion [31] holds

only under some very specific assumptions on model uncertainty and distur-

bance/performance weights.
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Special Case II: Diagonal A, - Minimized Condition Number/ RGA Cri-

terion
Describing the gain uncertainty using the unstructured A, is very conservative for
most practical cases; usually model uncertainty occurs physically in a more structured

manner [22,60]. For instance, a more physically meaningful A, can be

61
A, € A% = (6] <1, &€C, 1<i<n (3.153)
bn

With diagonal weighting matrix W,, it represents the multiplicative uncertainty on
each output of G,_4.

From Lemma 3.3,

Eworst(MP™I A = inf  G(WY¥GyuGT (Gy,.aGT ) 'W, D YV)3(DG,, WE)
DEDdiag

(3.154)

where
Diiag = {diag(dy, -+, datim(ym)) : di € R*,1 < < dim{ym}} (3.155)
If we assume again W, = w,], W¥Gya = wpl, and W2 = wyl,

gworst(Mpmj ’ A(s)t)

= |wywowa| _inf &(GyaGr ((GynaGT ) D 5(DGya)  (3.156)

ymd
€ diag
< |wywows| min k(DGy,.q4) (= if G,,.4 is a square matrix)  (3.157)
diag

Here we used the inequality (equality if G, 4 is a square matrix)

5(Gyd(GymdGra) ' D7) < {2(DGya)} ™, VD € Daig (3.158)
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Hence, for diagonal A,, the measurement selection criterion corresponding to
Brosilow’s Condition Number Criterion is to minimize the condition number of G, 4
minimized with respect to output scaling matrices.

The following inequality (Nett and Manousiouthakis, [51]) shows that, for cases
where G .4 is square, the RGA of G, 4 can be used as a screening tool for measure-

ment selection:

IAllm =1 < Dlyl)l2I]éfDdiag £(D1Gsa D7) (3.159)
< _inf &(DG.a) (3.160)
DeDdiag
1 ~
= T Cyors prol st 3.161
]wpw,wdlg (M, 807 (3.161)
1 .
T... . jCwors MpmJ’ASt 3.162
- lwpwswd'g t( 0) ( 6 )
where
A = Ga®(Gr)" (3.163)
IAllm = 2max{||Alli, [Allio} (3.164)
and ®, ||« |li and || - ||ic denote the Schur product, induced 1-norm and co-norm

respectively. (3.159) says that a large RGA of G, 4 necessarily implies a large
Eworst(MP™I, ASY). Hence, the RGA of G, 4 can be a useful screening tool to eliminate

undesirable measurement sets for these cases. The measurement selection criteria can

be summarized as

1. Minimize the quantity

inf (WG aGT (GynaGT ) W,D™)5(DG,,,aWE)

d
DEDyiag Ym

2. If W, = w,I, WG, 4= w,l, and W = wyl,
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Figure 3.6. Multiplicative Uncertainty on Manipulated and Measured Signals

e Eliminate the measurements with large RGA of the gain matriz G, 4.

o Minimize the condition number of Gy,.4 minimized with respect to output

scaling matrices.

Uncertainty Present Within the Feedback Loop

When a controller with full integral action is used, the effect of all uncertainty present
within the feedback loop disappears at steady state. For example, let us consider the

following uncertainty descriptions:

Ureal = (I+ I/V,A,)u, A; € A = {A : (-I(A) < 1} (3165)

(Ym)rea = (T4 WolAi)ym; Ao € Ag = {A:5(A) <1} (3.166)

The uncertainty is represented schematically in Figure 3.6. To keep the discussion
as general as possible, we let Ay and A have specific structures within themselves.
The perturbations A1 and Agp can be interpreted as multiplicative errors in the

actuator and sensor signals respectively. Assuming no setpoint change is to be made
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(w= {dT v},:]), the resulting M'™8 is as follows:

"VVi "G;,iuWo G;,,l,uGymew

Mintg o 0 Wo 0 (3167)
[ 0 WpGeuG;':uWo ] Wp(Gew - GeuG;,,l,uGymw)Ww

It is very easy to show that

gworst Mintg, ! =0 (WP(GEw - GeuG;nlauGyth)Ww) (3168)
Ao
assuming
-W: -G, W,
7 " <1 (3.169)
AN 0 w,
Ao

which is equivalent to

pay(Wi) <1land paqy (W) <1 (3.170)

The condition (3.169) is the condition for robust stability at w = 0. The expression

. Ar
for Epors: | M™ME, is equivalent to the maximum singular value of the

Ao

“inferential error” matrix that Bequette and Edgar [5] proposed to minimize in their

measurement selection criteria.

3.5 Numerical Example 1: Multicomponent Distillation

We apply the screening tools to a multi-component distillation column that was stud-
ied by Weber & Brosilow [61]. We first apply a generalized version of Brosilow’s cri-

teria and show that they lead to a counter-intuitive result. Then, we apply the new
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D (Distilate)
>
Yb

{Overhead Butane

L(Reflux

S ﬁ Composition)
“—
T
F(Feed) p—
T.
A
V(Boil-Up)

B (Bottom) Xg (Bottom Propane
Composition)

Figure 3.7. Schematic Diagram of a Multi-Component Distillation Column and its
Control Structure

screening tools under various uncertainty assumptions. The example will demonstrate
that the new screening tools provide an effective way of analyzing the sensitivity of

candidate measurement sets to various uncertainty structures.

3.5.1 Problem Description

The schematic diagram of the column and proposed control configuration is shown in
Figure 3.7. 1t is a 16 stage, 5 component distillation column with a total condenser
and a total reboiler. The detailed information on the operating conditions and mod-
elling assumptions of the column can be found in Tong & Brosilow [7]. The control
objective is to maintain constant overhead and bottom product compositions (yp

and zp respectively) in the presence of feed disturbances. The mainpulated variables
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are the reflux ratio (L) and vapor boilup rate (V). The temperature measurements
are available for the 1st, 3rd, 8th, 14th, and 16th trays (73,73,7Ts, T4 and Tig re-
spectively) of the column. The model for the input-output relationships between

disturbances/manipuated variables and controlled/measured variables are as follows:

dy d, ds d, ds L 1%
—0.188 —0.163 0.0199  0.0043 0.002 —0.173  0.0305
YD | 7241 TT2s+1  T0s+1  80s+1 85s+1 | 70541 75841
z 0.0174 0.0259 0.0045 ~—0.00029 —0.00099 | 0.015 —0.00768
B | T5s41 T13s+1 ds+1 33+1 3s+1 18s+1 To+1
T -7.99 —9.78 —5.28 3.59 6.09 7.47 2.70
1 Os+1 9s+1 5s+1 8s5+1 55+1 8a+1 1s+1
T, | z1129 =15.91 -423 3.63 4.75 9.80 3.79
3 | 12541 12s+1  Bs+41 8s+1 5st+1 155+1 5s+1
Te | =18.28 =—16.43 -047 3.96 4.60 8.20 2.30
8 5341 10s+41 5841 3s+1 1.58+1 30s+1 18s+1
T —42.02 —35.92 4.45 1.10 0.46 36.0 6.82
14 | 50s+1 70s+1  65s+1 T0s+1 T5s+1 855+1 T0s+1
T —5047 —25.26 _3.15 0.68 0.32 30.0 3.46
16 | 2551 T75s+1  70s+1 78s+1 80s+1 67s+1 70541

To facilitate the exposition, we limit ourselves to the following combinations of tem-

perature measurements:

One Temperature Measurement:

yrln=T1 !/,27,=T3 yf;=Ts yfn=T14 yfn=T16

/ Tl T1 T1 T1 T3
Yo = Ym = Yo = Yy = Yyn =
\ T3 Tg T14 T16 TS
(
Ts T Tg Ty Ti4
Ym = Y = Yo = Ym = Ym =

\ T4 Tie T4 Tie Tie
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Three Temperature Measurements:

T
?J’}f:(Ts Ti4 T16>

Four Temperature Measurements:

T
y111;7=(T3 Ty T Tw)

Five Temperature Measurements:

T
yrlfz(Tl T, Ty T TIG)

3.5.2 Application of Brosilow’s Criteria
Brosilow’s Criteria

Brosilow and coworkers [61,31] suggested the following two steady-state criteria for

measurement selection:

1. Minimization of Projection Error (Nominal Estimation Error)

Minimize the projection error € where

€ =5 Gyt — GyedGh o(GY, 4G pd) ' Gynd] (3.171)

ymd

2. Minimization of Condition Number (Sensitivity to Modelling Error)

Minimize the condition number & of G4 where

- &(Gymd)
K(Gyma) = 2Coa) (3.172)

They indicate that the above two quantities conflict as the number of the measure-

ments are varied, and leave the final trade-off to engineering judgement. We note
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that the projection error £ as was originally defined by Brosilow and coworkers is not

that of (3.171), but

_ trace{R}
~ trace{GY ;G,.qa} (3.173)
where
R = G} Gyei = Gy 4Gynd(CyniGa) " Gy, 4Gyt (3.174)

The original definition of the projection error is appropriate when the disturbance
vector is a random variable with zero mean and an identity covariance matrix (i.e.,
E{d} = 0,E{ddT} = I). In the “worst-case” error setting such as H,, control,
(3.171) is the appropriate generalization of (3.173), since it is the measure of the

worst-possible 2-norm of y. for all d such that ||d|]; < 1.

Theoretical justification of Brosilow’s Criteria

Suppose that the model error on G,, .4 can be described as follows:

Uncertainty A: Unstructured Multiplicative Ouput Uncertainty
{Gyndtiue = T+ wAYG,,4; A€ A= {A € Rdim{ym}xdim{ym} . 5(A) < 1} (3.175)

w is a real positive scalar indicating the size of the ball describing uncertainty. Fur-
thermore, assume that the least-square type controller will be used. More precisely,

K is to be designed such that

K(0)

Qis

Qus(I + Gypnu(0)Qu) ™" (3.176)

(Gycu):lGychgmd(Gydegmd)“l (3.177)

I

Here, we assumed that (G,,,);!, a right inverse of G,_,, exists. When G,, does not
have a full column rank, (Gy,.); ! should be replaced by (G, ,Gy..) *GL . However,

we do not consider this case in order to simplify the derivation. The closed-loop
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expression from d to y. with the above choice of K is as follows:
Fued(0) = [Gyed = GyaGh (GyaGl )7 G| + W [GyoaGl, (GGl ) ' AGy,4)

(3.178)

Hence, the worst-possible 2-norm of the output y, for ||d]|l; < 1 is expressed as

max 5(Fy.q(0))
< 5[Gya— GyedGL 4(GynaGT, ) Gy +w max g GyeaGE i(GymdGE, ) AGY, 4]

= &[Gyt = G1uaGla(GundGld) " Guma] + 07 [GyuaGl o GymaGla) ™ 7 (Gl

ymd

= €+ wk(Gyna) (with the assumption that G, 4 = kI) (3.179)

Note that, in order to obtain the last step, we needed the assumption that G, 4 is a
scalar-times-identity matrix (w’ = w * k). Hence, the disturbances must be rescaled

such that the assumption is satisfied before the criterion can be applied.

Application to the Multi-Component Column

We just showed that minimizing £ + w'&(Gy,.q) minimizes only the upper-bound of
the “worst-case” closed-loop output error. Actually, one can easily calculate the exact
value of maxaea 6(F,.4(0)) by using Lemma 3.2. Figure 3.8 shows the worst-possible
closed-loop error calculated through Lemma 3.2 (as well as the projection error and
the condition number) for each measurement candidate when w is set at 0.1. One
notable result is that the closed-loop errors become worse as more measurements are
added. This is counter-intuitive: Adding more measurements should not degrade
the achievable performance since one can always set any measurement’s effect to be
zero through a control system. This counter-intuitive result can be attributed to the

following two facts about Brosilow’s criteria:
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1. The uncertainty description (3.175) is “physically inconsistent.” Note that, for

example,

10
{GuaI +wh): A A} # Gueal+wA):Aec A} (3.180)

0 0
From a physical standpoint, the two sets must be the same, since adding or
taking out a measurement should not affect the uncertainty associated with the

subsystem that does not involve the added/subtracted measurement.

2. The particular choice of K (i.e., K(0) = Qi(I + G,,.(0)Qs)"") is in general
not the best choice, since it does not consider the effect of uncertainty. The
criterion depends explicitly on the assumption that such a controller is to be

used.

3.5.3 Application of General Screening Tools
Physically Consistent Unstructured Ouput Uncertainty

First, we make the uncertainty description (3.175) physically consistent by modifying
it as follows:

Uncertainty B: Unstructured Additive QOutput Uncertainty

r - cond
& 0 0 0 0
0 6 0 0 0
{Gymattre=Gya+w| 0 0 6 0 0 AsxsGyisa (3.181)
0 0 0 &4 O
|00 0 0 &g |

where the §; = 1 if i*® tray temperature measurement is included in y,, and 0 oth-

erwise. The notation [-]°°d implies that the matrix is “condensated” meaning all
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tainty A and “Least-Square” Controller
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rows containg only zero elements are deleted. It is not our claim that the uncertainty
description (3.181) is a physically meaningful one; we simply started from the un-
certainty description that Brosilow & coworkers used in developing their criteria and
modified it such that it became physically consistent.

Because the SSV test for robust performance involves 2-block A (Ajys and A,),
General Screening Tool #3 proposed in Section 3.3 is a necessary and sufficient con-
dition for the existence of a constant matrix K satisfying a given “worst-case” closed-
loop error bound on the output. Instead of simply checking if a specific “worst-case”
error bound can be satisfied for each measurement set, we calculated its achievable
“worst-case” error, that is the “worst-case” error under the “y-optimal” controller

expressed by

rnhi,n max a(Fy.q(0)) (3.182)

This can be easily done by multiplying a real positive scalar ¢, to G, 4 and G,,4 and
increasing it just enough such that the condition corresponding to General Screening
Tool #3 is no longer satisfied. The achievable “worst-case” error is the inverse of
this particular value of c,. The results are shown in Figure 3.9. Note that, although
the achievable “worst-case” error decreases as more measurements are added (which
is consistent with our physical intuition), the “worst-case” error for y!® involving
only two measurements is almost as low as that of y2® involving five measurements.
Hence, if the uncertainty description were indeed a physcially meaningful one, the
use of more than two measurements is hardly justified in this case. Figure 3.10
shows the achievable “worst-case” closed-loop error for each measurement set when
the “physically inconsistent” uncertainty description (3.175) is used. Figure 3.11
shows the “worst-case” closed-loop errors when the least-square controller (3.176) is
used along with the uncertainty description (3.181). Note that, in both cases, the

“worst-case” closed-loop errors increase as more measurements are added.
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3.6 Numerical Example 2: High-Purity Distillation Col-
umn

As an example application of proposed design-dependent screening tools, we study
the high-purity distillation column shown in Figure 3.12. The column and the model -
are described in detail in Appendix A of Morari & Zafiriou [50]. The control problem
of the column is presented in Figure 3.13.

Problem Description

Disturbances/Noise

The most common disturbances are those in the feed; it often changes according to
the conditions in another plant unit such as a reactor. Measurement error (noise)

is often another important factor. We will study the effect of one physically moti-
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vated measurement error: uncompensated pressure variation. The following set of

disturbances/noise is considered:

Feed flowrate (F')
Feed composition (zr)

Uncompensated pressure variation (P)

Measured Variables

Measurements are usually not limited to a specific number although it is common to
use two tray temperatures for two-point composition control. In this example, for
the sake of simplicity, we restrict ourselves to two tray temperatures (7, and T3). In
addition, for brevity of presentation, we consider only the placements symmetric with

respect to the feedtray (such as tray #1/tray #41, tray #2/tray #40, and so on).
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“This is logical since the column is symmetric with respect to the feedtray.
Uncertainty

We limit ourselves to uncertainty in the manipulated variables. They have been shown
to be the dominant uncertainty for high-purtity distillation columns [60]. We choose

the same uncertainty weight W; that Skogestad & Morari [60] used in their study:

5s +1
=02—— 3.183
Wi 020.53+II ( )

Performance and Disturbance Weight
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The performance weight W), and the disturbance weight W, are chosen as follows:

W, = 0.38;%0L]

10s+4-0.01

(3.184)
Wy, = [I W]
* where e (%)
W, =0.04 ———— =T 1
0 040.125s+1 [(%) ] (3.185)
T=T;

As usual, much tighter specifications are imposed in the low frequency region in order
to ensure good steady-state response.

Steady-State Performance

We apply the Design-Dependent Screening Tool #1 for LQG/MPC of (3.89) to re-
duce the number of measurements to consider. The plot of the left-hand side of the
inequality (3.89) vs. measurement sets is shown in Figure 3.14(a). It represents the
measure of the “worst-possible” performance when the controller is designed yielding
no steady-state offsets in compositions nominally (in the absence of uncertainty and
measurement error). The measurement set of 77 and T35 shows the best steady-state
performance. In fact, it is the only measurement set that satisfies the condition (3.89).
This result can be interpreted physically. The temperatures measured close to the
reboiler and the condenser have poor signal-to-noise ratio because the gains from dis-
turbances to these measurements are “small.” On the other hand, the measurements
far away from the reboiler and the condenser are sensitive to model uncertainty since
the relationships between the end-point compositions and the measurements become
less direct. Hence, placement of the temperature sensors involves a compromise be-
tween these two factors. This is apparent from the plots shown in Figure 3.14(a) that
represent the values for the left-hand side of the inequality (3.89) when measurement
error (uncompensated pressure variation) / model uncertainty are neglected. The

measurement set T7/T3s is apparently the best compromise between the signal-to-
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noise ratio and the sensitivity to model uncertainty. Note that neglecting either the
model uncertainty or the measurement error would have resulted in a wrong choice of
measurements. Figure 3.14(b) represents the condition numbers of the steady-state
gain matrices from the disturbances to the measurements (G,4(0)). Note that the con-
dition number (Brosilow’s criterion) does not reflect the measurements’ sensitivity to
the uncertainty correctly in this particular problem.

Output Estimation Based IMC Controller Design for Robust Performance
To verify the result, we design controllers for the following three candidates: T /Ty,
T7/T3s and Ty7/Tss. For controllers, dynamic output estimators designed via Kalman
filter design was combined with an IMC controller. IMC filters were designed
separately for each candidate using the robust performance bounds derived for
(Fimc(jw)) and &(I — Fimc(jw)). The design method is explained in detail in
Chapter 4. The robust performance bounds on (Fipmc(jw)) and 6(1 — Frye(jw))
for the measurement set T7/T3s are shown in Figure 3.15(a). The bounds are “feasi-
ble” since the following transfer function meets at least one of the bounds at every

frequency as we can see from Figure 3.15(a):

107.59s +1 I
(100s + 1)(7.58 +1)(2s + 1)

Frue(s) = g(s)I = (3.186)

The bounds for the other two candidates were not ,“feasible” and the IMC filter was
designed so that the bounds are satisfied for as wide a frequency range as possible.
The p-plot for robust performance (Figure 3.15(b)) shows that robust performance is
achieved for the measurement set T7/T35. Although not shown, the SSVs for the other
two candidates exceeded 1 in some frequency regions, implying robust performance
is not achieved. Figure 3.16 shows the simulated responses of g and yp to unit step
disturbances in zr and F' and a measurement noise in the form of a pseudo-random

binary signal of unit magnitude filtered through W,. The specific multiplicative
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Chapter 4

Output Estimation Based Inferential Control
System Design

4.1 Overview

The topic of this chapter is inferential control system design based on output esti-
mation. The output estimation based inferential control system design involves two

independent design steps: design of an output estimator which constructs estimates

u_ | PROCESS
geoB=| Hold = - i
Feedback N
Controller 1
Ym

Output Estimation Based Inferential Control System

Figure 4.1. Output Estimation Based Inferential Control System
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for the controlled outputs from the available measurements and that of a feedback
controller that uses these estimates as feedback signals. The resulting inferential
control system is represented schematically in Figure 4.1.

The advantages of this approach are that the design is divided into two simpler
tasks and that it does not require a full dynamic model relating disturbances and
primary/secondary variables. Plant data for primary and secondary variables may be
used instead to construct an output estimator via regression techniques. A disadvan-
tage is that, because secondary measurements are reduced to output estimates, some
useful information on the future effects of disturbances may be lost. Hence, for sys-
tems with significant nonminimum-phase characteristics, the achievable performance
can be lower when compared to the state estimation based approach discussed in
Chapter 5.

The first topic of the chapter is output estimator design. Output estimator de-
sign is discussed in two different contexts: the case where a full dynamic model is
to be used for the design and the case where only the plant data for primary and
secondary variables are available. For the former case, design techniques such as
Kalman filtering and u-Synthesis are discussed. For the latter case, standard linear
regression techniques and their suitability for the estimator design are examined. In
this case, the estimator design problem is formulated as a parametric identification
problem. The standard Least Square (LS) regression method is discussed and poten-
tial problems that can arise from collinearity of the regression data are elucidated.
Various modifications to the standard Least Square method available in the literature
(in order to overcome the collinearity problem) are discussed and their merits for the
estimator design are evaluated.

Since the estimator is designed to provide the control system with the estimates
for the controlled variables at a desired rate with no delay, we next discuss feedback

controller design for a limited class of systems for which the measurements of con-
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trolled variables are provided in such a manner. We present four distinct, yet related
design methods: LQG design in a form that is slightly different from the tranditional
version in order to provide for integral action in the presence of nonstationary distur-
bances, IMC design which is a tailored version of LQG design with the advantage of
simplified tuning, MPC design which is also an extension of LQG to handle various
process constraints directly through on-line optimization, and finally p-Synthesis that
exploits the given uncertainty model for robust design.

At a cursory glance, this chapter may seem like nothing more than a collection
of well-known advanced design techniques. However, several important new ideas
and interpretations for these modern techniques are given here. For example, for
the first time, various H,-optimal design methods such as LQG, IMC and MPC are

interpreted in a unifying framework. This unification has some important practical

implications:

1. MPC techniques based on state-space models have been around, but none of
them had as transparent a connection with the tranditional techniques (DMC
for example) as our version. Based on the new interpretation of MPC controllers
as a state-observer-based compensator, the traditional techniques are shown
to be special cases of the new technique under some restrictive assumptions
about the system disturbances and measurement noise. The new version not
only provides for wider applicability, but is also more readily extendable to
other classes of control problems. One immediate extension of the new MPC

technique is the inferential MPC technique discussed in Chapter 5.

2. Application of traditional MPC techniques was hampered by a lack of intuitive,
simple on-line tuning parameters. The new version provides a set of simple,
intuitive tuning parameters each of which has specific, well-understood effects

on the closed-loop stability and performance.
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3. The new state-space interpretation of IMC gives new insights and provides a
basis for further extensions of the technique. For example, the interpretation
of IMC as an observer-based-compensator renders naturally an anti-windup
mechanism that is superior to the traditional IMC anti-windup scheme. In
addition, the interpretation gives a basis upon which we can combine IMC with

MPC to provide for simpler on/off-line tuning.

With the above-mentioned modifications, the potential for success of these modern
methods in a practical environment is far enhanced.

All control techniques presented in this paper use the standard state-space model.
For cases where use of step-response models is desired, Appendix A presents a MPC
technique for step response models that is completely analogous to the technique
presented in this chapter. An alternative is to convert the step-response model to a
“low-order” state-space model by performing model reduction. Gu et al. [27] discusses
a hankel model reduction technique that removes the difficulty of having to solve the
Lyapunouv equation numerically.

The chapter concludes with an application of the IMC design method to a heavy oil

fractionator. Example applications of the MPC method can be found in Appendix A
and B.

4.2 Estimator Design

The topic of this section is design of the output estimator. The objective is to design
either a static or a dynamic estimator that computes the estimates for the controlled
outputs, y., based on the available measurements, §,,, and the past input moves
u. For convenience of notation, we will denote the input vector to the estimator,
[ uf T ]T, as §¢, (see Figure 4.1). The output estimator design can be done in
two ways: the first way is to use a first principles or identified model and the other

way is through regression of the input/output records available from simulation or
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actual process measurements. The use of the latter method is inevitable when it is
impractical to develop a full dynamic model of the system and only the plant data of

measurements and controlled outputs are available.

4.2.1 Model Based Design

We first discuss the design of the output estimator based on a dynamic (or static)
model. There are many techniques available for output estimator design, but we limit

our discussion to two most important and general methods: Kalman filter design and

p-Synthesis.

Kalman Filter Design

The general multi-rate Kalman filter discussed in Chapter 5 provides the optimal
estimates for the current controlled outputs (along with other state estimates) under
certain stochastic assumptions on the external input signals. The estimator can
accommodate measurements that are available at multiple sampling rates. Detailed
design procedure can be found in Section 5.2 of Chapter 5.

In the case where some of the primary measurements are prone to failure, one can
use the cascaded Kalman filter discussed in Section 5.2 of Chapter 5. The cascaded
Kalman filter has the advantage that the estimator is guaranteed to maintain certain

integrity in the events of failures of one or more primary measurements.

p-Synthesis Design

The objective of u-Synthesis is to find the estimator £ that minimizes the following

quantity (see Figure 4.2):

sup  inf 7 (D(w)Fy (M, ), [D(@)]™") (4.1)

p-Synthesis iterates between the follwing two steps (see Section 4.6 for detail):
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o Step A: H,-Optimal Estimator Synthesis

Find F that minimizes
sup5 (D(w)Fe (M*, E)|,j, (D(w))™") (4.2)

o Step B: Optimal D-Scaling (u-Analysis)

For each w, find D(w) € D,, that minimizes
5 (D(@)F2 (M", B)],ojo (D)) (43)

Because the minimization is nonconvex, the procedure does not guarantee convergence
to the true optimum.

The main attraction for the design method is that it can incorporate the model
uncertainty information explicitly. In order to put the use of p-Synthesis for estimator

design in proper perspective, the following practical issues must be considered:

e H_ -optimal design problems for sampled-data systems and MR discrete-time
systems have not been solved completely although progress is being made in
the area [11,33]. Hence, at this point, we must approximate these systems
as continuous-time systems and SR discrete-time systems respectively. Often
in practice, secondary measurements can be sampled at a uniform rate. In
this case, one can design the estimator based on the secondary measurements
only and incorporate the primary measurements (that cannot be sampled at
the same rate as the secondary measurements) through an auxiliary estimator.
This is discussed in Section 4.2.3. Figure 4.2 depicts the estimator design for

continuous systems with measurements available at a uniform sampling rate.

e u-analysis for sampled-data systems and MR discrete-time systems requires

introducing either an approximation or conservativeness (see Section 2.3).
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o In order to ensure tolerance to failures of unreliable primary measurements,
failure-prone primary measurements must be excluded from the estimator design
even though they can be sampled at the same rate as the secondary measure-
ments. These measurements can be used in improving the estimates through

an auxiliary estimator (see Section 4.2.3 for details).

In addition to the lack of truly general theory, p-Synthesis requires an accurate,
nonconservative uncertainty model which is often unavailble to engineers in practice.
The method is to be looked at as more of a forward-looking research topic rather than

as a practical estimator design method at this point.

4.2.2 Regression Based Design

In this section, we discuss the output estimator design based on the records of inputs
and outputs for the estimator. These data may be obtained from simulation or from
the actual process measurements. It is important that these data are obtained under
a closed-loop environment similar to the one which the estimator will be subjected to.
We first show that the estimator design problem can be formulated as a parameter
identification problem and discuss various regression techniques.

Throughout this section, we assume that all the measured variables, the inputs
to the estimator, can be made available to the estimatdr at a uniform rate. This is
not very restrictive since, for most practical cases, the secondary measurements can
be sampled at a uniform rate and the primary measurements that are often sampled
at a much slower rate can be incorporated through an auxiliary estimator discussed
in Section 4.2.3. The regression based estimator design for truly multi-rate systems

has not been studied and is left as a future research topic.
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Formuation of Estimator Design Into A Parameter Identification Problem

For simplicity, let us first discuss design of a static estimator. Hence, we would like

to find a constant matrix £ such that

ye(k,7) = e(k,7) £ EjS(k,7) (4.4)

where §.(k, j) represents the estimate for y.(k, 7) at time (k, j). Suppose that we have
N data points available for the measured variable g, and the controlled variable y..
We assume that N is greater than both the dimension of y. and that of §;,. Ignoring

measurement errors, we can write the estimator design problem as

Y = XET (4.5)

where
= [0, 95(2), - G (N (4.6)
Y = [gc(l)’ gc(z)’ ot 7ﬁc(N)]T (47)

For dynamic estimator design, the same principle can be applied when an Auto Re-
gressive Moving Average (ARMA) model is used to represent the relationship between
each element of §¢ and that of y, [43]. When the data for §,, and y. are available
at different intervals, one must reformulate the model in terms of the basic time unit
(BTU) beore regression techniques can be applied [28]. Design of a dynamic estimator

will not be discussed in detail.
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Regression Techniques

The focus of discussion for the regression based estimator design is the choice of £

for the following problem:
Y = XET (4.8)

If the matrix X has full column rank, the choice that minimizes the least square error

(Y = XET||x where || - || represents the Frobenious norm) is
E=Es 2YTX(XTX)™! (4.9)

In this case, one can show that the parameters converge to the true values exponen-
tially as N — oo in spite of white measurement noise in Y (i.e., §.(k) = y.(k) +v.(k))
[4]. When the dimension of y¢, is large, however, collinearity in the measurements
often exists and X tend to be singular or close to being singular (i.e., singularity may
be masked by measurement noise in the data X). This can be understood through a
simple argument for a linear system. If there are n inputs that affect y2,, X can at
most have the rank of n. When the number of measurements exceed n, the matrix
X will be singular.

Various modifications to the standard least square regression method have been
suggested to overcome the collinearity problem. In this thesis, we look at the two
most popular such techniques: Principle Component Analysis (PCA) and Partial
Least Square (PLS). The basic idea for both methods is to use only those directions
in the matrix X that are excited by the inputs in finding the pseudo-inverse of X.
Two methods differ in how these directions are chosen.

To understand the PCA method, let the singular value decomposition (SVD) of

the matrix X be as follows:

X = vuznvT (4.10)
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2y 14
Us ] (4.11)
Sy || VE

A [U1

We partition U, X,V such that X, represents singular values that are zero or close to
zero. Hence, U, and V, correspond to input and output directions of the matrix X
that are not excited by manipulated inputs and disturbances. The idea of PCA is to
discard these directions in calculating the psedo-inverse of X. In other words, PCA

finds F according to the following formula:
E = Epca 2YTU,TWVT (4.12)

A drawback of PCA is that, when the effect of manipulated inputs and distur-
bances on yZ, is small in certain directions, these directions can be discarded, while
they (the manipulated inputs and disturbances in these particular directions) may
affect the estimated variables y. in significant ways. PLS takes into account the di-
rections in Y as well as those in X when finding the approximate pseudo-inverse of
X. More specifically, PLS uses the dominant eigenvectors (i.e., eigenvectors corre-
sponding to nonnegligible eigenvalues) for the matrix X7YY7X instead of those for
the matrix XTX (i.e., V4). Let us express the matrix X as follows:

Pl
T; ] (4.13)

Py

X=[T1

where the columns of P correspond to the dominant eigenvectors of the matrix

XTYYTX. Then, the formula for E is as follows:
E = Epps 2 YT {TTT,}* PT (4.14)

Note that, if we choose P, = V;, then 77 = U1, and the formulas (4.12) and (4.14)
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Figure 4.3. Use of “Slow” and “Unreliable” Primary Measurements for Output
Estimation

become equivalent. An application of the PLS method to the static estimator design

problem for a high-purity distillation column can be found in Mejdell [45].

4.2.3 Use of On-Line Primary Measurements

We mentioned that the primary measurements that are either available at a slow
sampling rate or prone to failures should not be included as inputs to the output
estimator (with the exception of the MR Kalman filter design that can incorporate
general multi-rate sampled measurements). However, these primary measurements
can be useful in improving the estimates when available. They can be incorporated
as a part of the output estimator through an auxiliary estimator shown in Figure 4.3.
The auxiliary estimator calculates the correction term for the estimates, 2™, on the
basis of the difference between these estimates and the actual primary measurements.
Details for the design of the auxiliary estimator can be found in Section 5.2 of Chap-
ter 5. Because the auxiliary estimator is often designed to be diagonal, measurement
failures can be dealt with through a simple switch box that sets the inputs to the

estimator corresponding to the failed measurement to zero.
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4.3 Linear Quadratic Gaussian (LQG)

4.3.1 Model

In the output-based approach, a general discrete-time model for control system design
is given by the following state-space difference equation:

Process:

o(k) = Az(k—1)+ Byu(k — 1)+ Byd(k — 1) (4.15)

ye(k) = Cez(k) (4.16)

Controlled Variables:

ye(k) = Coz(k) — r(k) (4.17)

Measurements:

Je(k) = Cea(k) + ve(k) (4.18)

(k) represents the estimates of y. available from the output estimator. By perform-
ing some simple algebraic manipulation, we can put (4.15)-(4.18) into the following

standard state-space form:

X(k) = ®X(k—1)+Tyu(k—1)+ TCad(k —1) (4.19)
ge(k) = EX(k)+ vc(k) (4.20)

where
x) = | °P (4.21)

ye(k)
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) A 0 B, By
3 = T, = Ty = (4.22)
CCA 0 CcBu Cch
= = [0 Lingo | (4.23)

For LQG design method (or MPC design method introduced subsequently), it is
convenient to express the model in terms of the changes in the inputs rather than
the inputs themselves. For this purpose, we subtract the equation (4.19) at t = k-1

from that at ¢ = k to arrive at the following state-space representation of the system:

AX(k) = OAX(k—-1)4+TuAU(k -1)+T Ad(k -1) (4.24)
g.(k) = ZAX(k)+ v.(k) (4.25)
where
[ Az(k)
AX(k) = (4.26)
ye(k)
4 0|
® = (4.27)
] CA I

A variable represents the change in the variable from the previous sampling time

(e.g., Az(k) = z(k) — z(k — 1)).
Theorem 4.1 The system described through (4.24)-(4.25) is

1. detectable if and only if (C,, A) is detectable.

2. stabilizable if and only if (A, B,) is stabilizable and Ker{(C.(I — A)"'B,) } = 0

where Ker{-} denotes the kernel space.

Proof  We first prove the detectability condition. From Hautus [30], (Z,®) is a
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detectable pair if and only if

AT (C.A)T 0 _
rank - A =dim{®} VA eC,|A\|>1 (4.28)
0 1 I
Clearly,
AT (C.A)T 0 .
rank - = rank {[ AT (CCA)T ] - )\I}—i—dlm{yc}
0 I I
(4.29)
From Hautus [30],
rank{[ AT (C.A)T ] _ /\I} = dim{®) VAeC, A|>1 (4.30)

if and only if (C,A, A) is a detectable pair. In addition, (C.A, A) is a detectable pair
if and only if (C,, A) is a detectable pair.

Next, we prove the stabilizability condition. Again, from Hautus [30], (,T',) is a

detectable pair if and only if

A 0 u
rank — Al =dim{®} VAeCl,[A\|>1 (4.31)
CA I C.B,

For all A # 1, it is clear that the rank condition is satisfied if and only if

rank {[ A- )\ B, ]} = dim{A} (4.32)

The above condition is equivalent to the stabilizablity of (A, B,). For A = 1, the rank

condition becomes
A-I B,
rank = dim{®} (4.33)
C.A C.B,
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Simple algebraic manipulation shows that

A-I B, A-1 B,
rank = rank (4.34)
CcA CcBu Cc 0
T he condition
A-1 B,
rank = dim{®} (4.35)
C. 0

is equivalent to

1. Stabilizablity of (A, B,)

rank {[ A-I B, ]} — dim{A} (4.36)

2. Input/Output Controllability at Steady State
Ker{(Co(I - A)'B.) } = 0 (4.37)

Condition 2 implies that there must be at least as many manipulated variables as

controlled variables.

- The modified state-space model has the following advantages:

1. In the LQG design, the optimal state estimator design assumes that the in-
puts to model states and measurements are described as white noise of chosen
covariances. On the other hand, most disturbances in process industry are non-
stationary in nature. This necessitates augmenting system states to include
integrators for the disturbanqes, which can cause indetectablity when the num-
ber of disturbances exceeds the number of measurements [49]. In the modified

state-space model on the other hand, modelling Ad as white noise implies that
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the disturbances are integrated white noise (that is, sum of random steps ampli-
tudes of which follow normal distribution and time of occurrence follows Poisson
distribution), which are often very reasonable. If desired, these nonstationary
inputs can be made to include more complex dynamics by further augmenting

the system states.

2. The objective function for the LQG design has a term involving control inputs.
When the function includes a finite weight on u, integral action on the controlled
variables is not automatically provided. For the modified model, the objective
function weights the changes in the control inputs (Au) rather than the control
inputs themselves (u). This automatically leads to a control system with inte-
gral action necessary to reject nonstationary disturbances or follow persistent

reference inputs without offsets.

4.3.2 Minimization Objective

Let us consider the following inputs to the system:

ad| |
arl =l o s (4.38)

where §; is a unit impulse entering the :** channel at ¢ = 0. The objective is to

minimize the following function:

(4.39)

q o0

(v7 (k) Ayoye(k) + AuT (k) A auAu(k))

¢ i

=1 k=0

where ¢ = (dim{d} + dim{r} +dim{v.}). The subscript (-); represents that y.(k) and
Au(k) are those resulting from the input é;. This problem can be formulated into the

standard Hj-optimal control problem when the weights W,, and W, in Chapter 2 are
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chosen as follows:

-
=0y
W, = 2-Q1/? (4.40)
R1/2
-i‘—lAX?’
W, = 2o (4.41)
_ AL

In the stochastic framework, the minimization objective is interpreted as minimiz-
ing the variance of y. and Au (weighted through A;{ 2 and AX: respectively) when
Ad, Ar and v, are independent white noises of covariance matrices @4, @,, and R,
respectively. Often, the reason for including the 2-norm of Au in the minimization
objective is to limit the controller moves in order to achieve better robustness. Hence,
Aa, for most cases can be viewed as a robustness design parameter.

The above formulation assumes that reference vector is modelled as integrated
white noise. In some cases, future reference trajectory may be known. In other cases,
reference vector may be described better as other types of stochastic signals (such as
double-integrated white noise). Extension of the subsequently developed technique

to such cases is straightforward and will be discussed in detail.

4.3.3 Optimal Control Design

According to the separation principle, the Hj-optimal controller can be obtained by
combining the optimal estimator with the optimal state feedback regulator.

Optimal Estimator: Kalman Filter

The optimal estimator for the given process and disturbances is the following Kalman

filter:

AX(klk) = ®AX(k -1k —1)+T,Au(k -1)
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+ Kglj.(k) —Z{®AX(k — 1) + T, Au(k —1)}] (4.42)
where
Kg =2,ZT{Z2,=ZT + R.}! (4.43)
¥, represents the unique stabilizing solution (i.e., the solution that leads to a stable
® — KgZ®) to the following Algebraic Riccati Equation (ARE):

z, = 0%,07 — 03,2T{=%,ZT + R.}7'ER,87 4+ Q.7 (4.44)

The optimal estimator is probably expressed more intuitively and conveniently as the

following two-step estimator:

AX(klk—-1) = ®AX(k -1k —-1)+T,Au(k -1) (4.45)

AX(kE) = X(klk—1) + Kg{ge(k) — =X (k|k — 1)} (4.46)

The notation {~}(k|¢) implies that it is the estimate at time k using measurements
up to time £. For simplicity of notation, we will denote A X (k|k) as AX (k) from this
point on.

The unique stabilizing solution to ARE (4.44) (X,) may be obtained by iterating

on the following Riccati difference equation until a steady-state solution is reached:
Sk +1) = 0Z(k)dT — dT(K)ET (k) {EX(K)ET + R} IED(K)®T 4+ TLQTY  (4.47)

To guarantee the exponential convergence of equation (4.47) to the unique, positive

semidefinite solution, we need the following assumptions (besides the detectabilty of

(Ce, A)):

1. ¥(0) >0 and R, > 0.
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2. (®,T4Q"?) is a stabilizable pair.

The former condition states that the initial error covariance matrix has to be positive
semi-definite and the measurement noise covariance matrix has to be positive definite.
The latter condition states that all unstable dynamics of the system should be excited
through the state excitation noise Ad.

Optimal Compensator: LQ State Feedback

The optimal state feedback compensator for the given objective (4.39) is as follows:

-A:c(k‘)
Au(k) = —-LLQ (448)
i ye(k)
' Az(k) 0
= —Lrg{ — (4.49)
yo(k) r(k)

where

Lig= [ (CTW,Ty + Aau) 'TT0,9 | Odim(y,) ] (4.50)

¥, is the solution to the following algebraic Riccati equation (ARE):
W = 87UD — §TUT,(TTUT, + An,)'TTUS + diog [ 04y A, | (451

For the existence of a stablizing solution to the above equation, we need the stabiliz-
ability of the pair (®,T',). Note that, in order for the rank condition on the matrix
C:(I — A)"'B, of Theorem 4.1 to be satisfied, there must be at least as many lin-
early independent manipulated variables as the number of controlled variables (i.e.,
dim{u} > dim{y.}). Appendix 4.A discusses how the number of controlled variables
can be reduced in an optimal way when the condition is not satisfied. In order for
the Riccati difference equation correponding to (4.51) to converge exponentially to a

stabilizing solution, we need the stabilizability of (7, diag{Ogim{z}, A}/2}) in addition
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to the stabilizability of (®,T,).

One notable point is that, in the above formulation, the reference input vector
r(k) is assumed to be a step (or integrated white noise in the stochastic framework).
For more general types of reference inputs, the LQ controller must be calcualated
for an augemented system. For example, suppose Ar(k) = r(k) —r(k — 1) is to be

generated by the following equation:

z"(k) = Az"(k—1)+ B"6 (k) (4.52)
Ar(k) = CTa"(k) (4.53)

where 67(k) is a random, but known impulse. In some cases, future information
on reference trajectory may be available. For example, we may know the reference
changes p time steps ahead and describe the change in the reference at time k + p to

be the output of the above dynamical system driven by a known pulse:

2"(k) = Az"(k—1)+ B (k) (4.54)

Ar(k+p) = Ca"(k) (4.55)

The augmented system equation is

I 1 A 0 0 0 0 0j0 ]y '
Az(k) Az(k —-1)
0 A 0 0 0 0/0
z"(k) z"(k —1)
0 |CAr 0 O 0f0
Ar(k + p) Ar(k+p-1)
0 0 I 0 0]0
Ar(k+p-1) | = Ar(k +p —2)
) 0 0 0 I 0(0
Ar(k+1) Ar(k)
0 0 0 --- I 0f0
ye(k) ye(k - 1)
; cA{ 0 —-I 0 --- 0T}~ :
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Au(k-1)+

The corresponding LQ controller is

Au(k) = —-Lig

|

Az(k)
z"(k)
Ar(k + p)
Ar(k+p-1)

0
ye(k)

& (k)

0
z"(k)
Ar(k + p)
Ar(k+p-—1)

Ar(k+1)
—r(k —1) — Ar(k)

(4.56)

(4.57)

> (4.58)

/

where L7 is the LQ optimal state feedback gain for the augmented system (4.56).

The LQ controller is represented schematically in Figure 4.4. To simplify the discus-

sion, we will assume that r(k) is described as integrated white noise from this point
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Figure 4.4. LQG Controllers with General Reference Inputs

on.
H,-Optimal Controller: Kalman Filter + LQ State Feedback
The H,-optimal controller for the given problem is a combination of the MR Kalman

filter and the LQ state feedback compensator written as follows:

AX(k) = (® — Ko=® —Tulig + Ko=TuLio)AX (k - 1)
- (I - KGE)I‘,,LLQI‘,r(k — 1) + Kgﬁc(k) (459)

Au(k) = —Lrg{AX(k)+T,r(k)} (4.60)

where I', =

-I

4.3.4 Constraint Handling: Extended Kalman Filter

In the events of input saturation or mode switching, the controller (4.59)-(4.60) can
exhibit significant “wind-up” as Au(k) # —LLg (A)_( (k) + F,r(k)). The phenomenon
of wind-up can render detrimental consequences including severe performance dete-

rioration and instability. The simplest anti-windup scheme for the LQG controllers
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is the Extended Kalman filter in which (4.59) is replaced by
AX(k) = (® — KgE®)AX (k — 1) + (I — KgE)T,Atgrue(k — 1) + Kgic(k) (4.61)

and Aug,. represents the “true” input to the system. In the presence of input con-
straints, Ausme(k) can be chosen as u,q — Ugrye(k — 1), which is the projection of
Utrue(k — 1) — LLQA)_(“’ (AXe 2 AX(k) + I',r(k) ) onto the constrained input space
of u(k).

For multivariable systems, however, Aus.,.(k) calculated by projecting usrye(k —
1)—LzgAX¢®(k) onto the constrained input space of u(k) is not optimal in general and
can cause significant performance deterioration. This is because input constraints can
change the direction of the input and make the loop gains significantly different from
those in the absence of constraints, especially for ill-conditioned systems combined
with a directionally sensitive controller. A simple fix to circumvent this problem
is to make the true input u4,. be in the same direction as u(k)(=A= Uspye(k — 1) —
LrgAXe(k)) (see Figure 4.5). The following directionality correction scheme can be

used to accomplish this ([19]):

Utrue(k — 1) — LrgAX (k) when ||(usrue(k — 1) — LrgAXe(k))/tsat]joo < 1

usrue(k=1)-LrgAXe(k Ce
u(u,,f,,(;c-(x)-L),,QALf\P'c(k))(/u),),,,uoo when ||(ttrue(k — 1) — LLgAX*(k))/thsat]leo > 1

(4.62)
where Usq: 1S Utrue(k — 1) + Auya(k) and [1]/[-] is the element-by-element divsion

utrue(k) =

operator. The extended Kalman filter with the directionality correction scheme is
shown in Figure 4.6.
Various output constraints (constraints on y.) must be handled in ad hoc ways

(e.g., mode switching). The output constraints can be addressed more directly in the

subsequently discussed MPC.
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Figure 4.6. Extended Kalman Filter with Directionality Correction Scheme
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4.3.5 Robust Design/Tuning

As mentioned before, a serious drawback of LQG design from industrial perspective
has been the overabundance of indirect, nonintuitive design paramaters and a lack of
simple, intuitive on-line tuning parameters. The purpose of this section is to equip the
LQG controllers with a parsimonious set of tuning parameters and develop simple,

intuitive tuing rules for this set of parameters.

Closed-Loop Relationships

It is easy to derive the following closed-loop relationships between various external

inputs / system states and their estimates:

[ AX(k) o ~I'yLig AX(k-1) ]
AX (k) KgE® & - Kg=® —T,L1g AX(k-1) J
- Ad(k -1)
T4 0 —TuLigl,
+ v (k) (4.63)
KgEl'y Kg -T'yLigl,

r(k)

Subtracting the second equation from the first one, we obtain

AX (k) ® -TI',Lig AX(k-1)
AX(k) — AX(k) 0 & - Kg=d AX(k-1)-AX(k-1)
- Ad(k —1)
Ty 0 —TuLpgl,
+ ' ve(k)
(KgE—- 1Ty —Kg 0

- r(k)
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T
The closed-loop transfer function from [ ( A'd)T( z) v.T(2) #T(z) ] to y.(z) can be

-
.

expressed as follows (the notation (*)(z) represents the z-transform of the signal):

®-T,Lrg T.Lig Ty 0 —TuLrol, | | (Ad)(2)
Je(z) = 0 ® - KgE® | (Kg=-I)Ty —Kg 0 20,(2)
= 0 0 0 0 z7(2)
(4.65)
where
A|B
=C(zI-A)™'B+D (4.66)
C|D

The following insights on the closed-loop stability, performance and robustness

can be drawn from the above equation:

1. Closed-Loop Stability

The eigenvalues of the closed-loop matrix are those of ® —I',L;g and & — KZ=9.
Hence, the closed-loop system is stable if and only if all eigenvalues of ®—I',L1g
(i.e., regulator poles) and those of ® — KgZE® (i.e., observer poles) lie strictly
inside the unit disk. The observer/regulator poles are guaranteed to lie inside
the unit disk since Kg and Ly are obtained from stabilizing solutions of their

respective Riccati equations.

2. Asymptotic Disturbance Rejection Property

The closed-loop system rejects “persistent” disturbances (when d is integrated
white noise) and follows step setpoint changes with no offset as long as the
observer/regulator poles are placed in the unit disk. This can be seen from the
closed-loop relationships between Ad(k) and y.(k): y.(k) is simply expressed as

a white-noise passed through stable (closed-loop) dynamics.

3. Sensitivity and Robustness

The closed-loop expressions provide insights and guidelines for closed-loop per-
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formance and robustness as well.

e Note that the observer dynamics affect the closed-loop transfer function
from disturbance (Ad(k)) and measurement noise (v), but not the closed-
loop transfer function from the output reference vector (Ar(k)). On the
other hand, the regulator dynamics affect all the closed-loop tranfer func-

tions.

o The closed-loop transfer function from —v,(z) to §(z) can be expressed as

H= E(Z —-& + FuLLQ)—IPULLQ(Z -0 + Kggq))-lKG(ZI) (467)

The function H is called “complementary sensitivity function” and has
a direct relevance to the closed-loop system’s sensitivity and robustness.
For example, the complement of H (i.e., I — H) is called “sensitivity func-
tion” and expresses the relationship between open-loop and closed-loop
responses of the controlled variables to disturbances. Note that the state-
feedback gain (L) and the filter gain (Kg) both affect the complementary

sensitivity function.

One major difficulty for LQG design from robustness perspective is that there is no
transparent rule on how the traditional LQG design parameters (A,,, Aay, Qq, @- and
R,) must be chosen in order to obtain a desired complementary sensitivity function
(which has a more transparent connection with closed-loop performance and robust-
ness [20]). Consequently, design must be based on intuition, experience, and painstak-
ing trial and errors. In addition, on-line tuning of these traditional parameters require
solving Riccati equations every time some of the parameters are changed. Motivated
by these considerations, we next look for a way of combining all the traditional design
parameters into a simple set of intuitive, on-line tuneable parameters. It turns out

that, under reasonable assumptions on system disturbances and measurement noise,
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we can find such a set of parameters for LQG controllers.

Integrated White Noise Output Disturbances with White Measurement Noise

In many chemical systems, disturbances and measurement noise are well described as

integrated white noise (i.e., random step functions whose magnitudes are normally

distributed and time-occurrence follows Poisson distribution) and white-noise entering

each output indepedently respectively. The model for such a system is

Az(k)
Ad(k)
ye(k)

ge (k)

Au 0 0 ACE(IC ot 1)
0 0 0|]|Adk-1)
CcAll I I yc(k — 1)

K B,
I1Adk-1D)+] o |Auk-1)
0 J C.B,
Az(k)
(0 0 I] Ad(k) | +ve(k)
- y.(k)

where Ad' and v, are white noise with following covariance matrices:

E{AdAdT} = diag(q,",qn)

E{A’UCA’UZ} = dia'g(rla'arﬂ)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

n is the number of controlled outputs. The system is represented in terms of block

diagram in Figure 4.7.

The system described through (4.68)-(4.70) can be shown to be equivalent to the
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Figure 4.7. System with Integrated White Noise Disturbances and White Measure-
ment Noise Entering Each Ouput Independently

following reduced-order system:

As(k) | Ay 0| [ Ae(k—1)] ,
= (4.73)
ye(k) J I CcAn I ye(k —1) ]
- ; 5 :
+ Ad(k —1) + Au(k —1) (4.74)
i I C.B, |
r Az(k)
i) = |0 1] + v (k) (4.75)
' ye(k)

The following expression for Kg shows that the optimal filter gain for the above

system is parametrized in terms of an n-dimensional real vector, each element of

which lies in (0, 1)}.

Ko = (4.76)



140

where

h

Ja

iz G + /@ + 44
L G @+4a+2

G = ¢ri forl1<i<n

We immediately see that 0 < f; <1 and

fi — Oasg —0

fi = lasg — o0

The complementary sensitivity functon matrix H is expressed as

H = E(Z -0 + I‘,,LLQ)’lI‘uLLQ(z -0 + I{GEQ)“lKG(zI)

Simple calculation shows that, for the system (4.73)-(4.75)

0
(z = I + F)"'F(z])

(z — ® + Kg=0)~1(2I) =

For convenience, denote (z — ® + I',Lrg) ' L1 as

(Gre)n (Grohe
(Grg)ar (Grg)2

(z — &+ I‘uLLQ)‘IFuLLQ =

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)



141

Then, straightforward algebra leads to
H = (G1q)u(s — I + F)F(z) (4.85)

(GLg)22 is interpreted as the complementary sensitivity function when measurements
are perfect (just replace F with an identity matrix). For minimum-phase systems

with zero input weight ( Aa, = 0), it can be shown that
1
(Grg)az = -Z-I (4.86)
Hence, the resulting complementary sensitivity function for this case is

. fi In '
H = diag(——"—™M——, -+, ———— 4.87
gy Ty (4.87)
and the closed-loop response of the i** output to a disturbance is described as a first-
order system with time constant of —m where T is the sampling time. Even for
nonminimum-phase systems, we see that (z —I + F)"1F(zI) acts as a first-order low-

pass filter that detunes the “ideal (perfect measurement)” complementary sensitivity

function.

Double-Integrated White Noise Output Disturbances with White Measure-

ment Noise

For systems with integrators or other stable “slow” dynamics (relative to the desired
closed-loop bandwidth), disturbances and measurement noise are often described as

double-integrated white-noise and white-noise entering each output indepedently re-
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spectively. The model for such a system is

Az (k) - Ay 0 0| Az(k—1)
Ad(k) | = 0 I 0|]| Adk-1)
ye(k) | CeAn T 1 ye(k —1)
- B, 0
+ 0 |Auk-=1)+| 1 |Ad(K-1) (4.88)
| CeB, 0
Az (k)
Je(k) = [0 0 1] Ad(k) | +ve(k) (4.89)
ye(k)

where Ad’ and v, are white noise with following covariance matrices:

E{AdAT} = diag(g:, - 4n) (4.90)

E{Av,AvT} = diag(ry,-,7s) (4.91)

Again, n is the number of controlled outputs. The system is represented in terms of

block diagram in Figure 4.8.

The optimal filter gain Kg for the system is also parametrized in terms of an

n-dimension real vector, each element of which lies in (0, 1].

Ke=| F, (4.92)
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2 Double
White-Noise Integrators
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Figure 4.8. System with Double-Integrated White Noise Disturbances and White
Measurement Noise Entering Each Ouput Independently

where
[ (o
F, = (4.93)
i (fo)n
(o)
F, = (4.94)
i (fa)n
(fo)i = 2(—fz)f?a).~ (4.95)
(fa)i = Et_i‘_l (4.96)
G = E—l (4.97)
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. 2 [ i [@ :
i = = = +4§; —44; — —\/ = +4§; 2 (4.
b 5 T\ T4+ | -4+ | 5 7 T4 / (4.98)
G = q/ri for1<:i<n (4.99)
Again, we immediately see that 0 < f; <1 and
fi = O0asg —0 (4.100)
fi = lasg — oo (4.101)

We next relate the complementary sensitivity functon matrix H with (f;)s. Recall

that H is expressed as
H=Z(z—®+T,L1g) 'Tulig(z — ® + Ke=®) ' Kg(z]) (4.102)
Simple calculation shows that, for the system (4.88)-(4.89)

0
szz - sz

(2=0+Ko=0) Ka(=D) = | [
l F,2* — (F, — F})z

(8~ QI = Fo - R)z + (I - F))™ J

(4.103)

For convenience, denote (z — ® + T'yL1q)~'T,L1q as

(Gre)u (Groh: (Grehs
(z=@+TuLrg) 'Tulrg = | (Gro)n (Grg)z (Grg)as (4.104)

(Gro)at (Grg)s:: (GrLg)ss
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Then, straightforward algebra leads to

Fb22 - sz 2 »
H = [ (Gre)s2 (Grq)ss } (1= (21 —F,—F)z+(I - F,))
17:1252 - (Fa - Fb)z

(4.105)
For minimum-phase systems with zero input weight ( Aa, = 0), it can be shown

that

[(GLQ)az (Gro)ss ] =—i—[1 I] (4.106)

Hence, the resulting complementary sensitivity function for this case is

dlag ( ((fa)l + (fb)l)z - (fa)l . ((fa)n + (fb)ﬂ)z - (fa)n )
2% — (2 - (fa)l - (fb)l)z + (1 - (fa)l), 2% — (2 - (fa)n - (fb)n)z + (1 - (fa)n)

and the closed-loop response of the i™ output is described as a second-order system

poles of which are directly affected by the choice of (f,);. Note that

2z -1

22

hi —

as (fa)i — 1 (4.107)

With the above complementary sensitivity function, the closed-loop system rejects
“ramp” disturbances perfectly after one sampling unit. One may desire the closed-
loop response to be of second order with real poles; in this case, the following rela-

tionship between (f,); and (f;); can be used instead of (4.95):

(fo)i =2 —(fa)i = 2¢/1 = (fa)s (4.108)

When the above relationship is used, the closed-loop system is a second order system

with both time constants —T'/In(y/1 — (f,):)-

For nonminimum-phase systems and/or nonzero input weights, the tuning param-

eters (f,)is can still be used to detune (1 — 2)(GLg)s2 + (GLq)as, the ideal comple-
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mentary sensitivity function, in an intuitive manner.

Discussion on More General Disturbances

The two types of disturbances that we were able to parametrize the optimal filter
gain for are quite general from a practical standpoint. In addition, for most chemical
processes, exact modelling of disturbances is impossible; only its asymptotic nature
may be known. For instance, integrated white noise disturbances that enter the
outputs through overdamped, but “fast” dynamics (relative to the desired closed-
loop bandwidth) can be well approximated as integrated white noise. On the other
hand, step disturbances that enter the outputs through overdamped,“slow” dynamics
(relative to the desired closed-loop bandwidth) are well approximated as double-
integrated white noise. For most chemical systems, disturbances are one of these
types and the proposed tuning rules can be used.

For nondecoupled disturbances and disturbances of more general dynamics, we
have not been able to find a parametrization for the optimal filter gain that is suitable
for on-line tuning. However, one may sacrifice the “optimality” (which is valid only
when the stochastic assumptions on the signals are perfectly satisfied) and combine
the LQ controller with an estimator equipped with tuning parameters that determine
the complementary sensitivity function in a transparent manner. This motivation will

be explored in the subsequent section in the context of a technique called Internal

Model Control.

Robust Design/Tuning Rules
In summary, the proposed LQG tuning rule involves two sets of tuning parameters:

1. fi or (f,); affects the closed-loop response of the i** output and lies in (0, 1].
These parameters are most suitable for on-line tuning. One can start with

(f2): = 0 which implies open-loop, and move toward (f,); = 1 until performance
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2. Aay can be set to essentially zero for SISO systems or well-conditioned (i.e.,
directionally insensitive) MIMO systems. For ill-conditioned systems, however,
setting Aay yields a directionally sensitive controller (e.g., inverse-based con-
troller), and detuning the closed-loop response of each output independently
through f; may not lead to a desirable closed-loop reponse, especially in the
presence of input uncertainty [60]. For these cases, a nonzero Aa, makes the
resulting control system less sensitive to directionality. Since changing Aa,
requires resolving a Riccati equation, it is more practical to determine A,, off-
line. A procedure to determine A, analytically is given in Section 4.4 where a

tuning procedure for IMC controllers is presented.

4.4 Internal Model Control (IMC)

In an effort to provide general LQG controllers with design/tuning parameters that
have a transparent connection with system robustness, we tailor the LQG design
method and propose a techique similar to Internal Model Control proposed by Garcia
and Morari [24]. At this point, the proposed technique is applicable only to open-
loop stable systems, although extensions to open-loop unstable systems should be
possible. The model we use for control system design is the modified sta,teospa,cei

difference model of (4.24)-(4.25) that we used for the LQG design.

4.4.1 Minimization Objective

In the proposed IMC design method, we first design the LQG controller with the

following minimization objective:

(4.109)

q f_oj (57 (B)Ay.ye(k) + Au" (k) AnuAu(k)).
i=1 k=0

%
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where (-); represents that y.(k) and Au(k) are those resulting from the input

Ad Qu
Ar | = Q- 6; (4.110)
Ve 0

i

§; is a unit impulse entering the i** channel at ¢ = 0. As before, ¢ = (dim{d} +
dim{r} + dim{v.}). The correponding choices of W,, and W, for the standard H,-

optimal control discussed in Chapter 2 problem are as follows:

2 A1/2
z—-1%d
0
| Ay
W, = (4.112)
o

4.4.2 Detuning for Robustness

Once the LQG controller based on the above objective is designed, the next step is to
detune the closed-loop in order to obtain a complementary sensitivity function that
is desirable from the robustness viewpoint. The main question that arises then is how
to best accompish this “detuning.”

Consider the block diagram of Figure 4.9(a) that represents the closed-loop system
with the LQG optimal controller. One can add and subtract the transfer function
block Gy, and obtain the diagram of Figure 4.9(b). Note that the closed-loop transfer
function from v, to y, is =Gy .Qimc- Hence, G, ,Qmc represents the “ideal” com-
plementary sensitivity function (i.e., the optimal complementary sensitivity function
in the absence of measurement noise and modelling errors) which must be detuned

for robustness. A natural way of detuning is to add a filter block Fya¢ as shown in
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Figure 4.9. IMC Detuning for Robustness and Noise-Sensitivity Reduction
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Figure 4.9(c). The resulting complementary sensitivity function is Gy..QmcFrumc-
Hence, Fiyc detunes the ideal complementary sensitivity function in a user chosen
manner. Note that the only requirement on Fype for internal stability is that it is
stable itself. For the case where G,,, has a stable, causal right inverse and A5, = 0.

Qimc = (Gyu);! and Fipye is indeed the complementary sensitivity function.

4.4.3 State Space Formula for IMC Controller

The optimal estimator for the given process and disturbances is the following Kalman

filter:

AX(k) = ®AX(k—1)+T,Au(k—1)

+ Koli! (k) —Z{®AX(k — 1) + T, Au(k - 1)}] (4.113)

where

Kive = BimcE {ELmeET}! (4.114)

Yrmco represents the unique stabilizing solution (i.e., the solution that leads to a

stable ® — Kpc=®) to the following Algebraic Riccati Equation (ARE):
Yive = 0% 1me®T — OXimeET{ES mecET } ' EE e ®T + TuQalT  (4.115)

The optimal state feedback is same as before. The Hj-optimal controller for the given

problem is a combination of the Kalman filter and the LQ state feedback compensator

written as follows:

AX(k) = (® — KipeE® —Tulig + KimeZEluLig)AX(k — 1)
- (I - K[Mcs)FuLLQF,.T(k — 1) + K[Mcgg(k) (4116)

Au(k) = —Lrg{AX(k)+T.r(k)} (4.117)
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Next we must augment this controller with the robustness filter Fypc. The real-

ization of the transfer function G, , can be written as follows:

Az*(k) A 0 Az¥(k-1) C.
= | + Au(k — 1) (4.118)
Y i Az (k)
ge(k) = |o 1 ] (4.119)
) ge (k) '
In addition, let the realization of Fjac be written as
(k) = Alz/(k—1)+B/(g.(k) —g2(k)) (4.120)
Juclk) = izl (k) (4.121)
Now, we can express y({f as
i = Tzl (k) + g (k) (4.122)
= I (A3 (k —1) + B (e(k) — g2(K))) + G2(k) (4.123)
= CIA'# (k- 1)+ (I - ¢! BHg (k) + C? B §.(k) (4.124)

= CIAT# (k- 1)+ (I - C'B))(C.AAZ*(k — 1) + §*(k — 1) + C.B,Au(k — 1))

+ C'BYj.(k) (4.125)

The “undetuned” LQG estimator has the realization

Az(k) A 0 Ai(k—-l)‘

= + o Auk —1)
ye(k) C.A I gk —1) C.B,
. Az(k -1)
+ Kmc | 9(k) - [ C.A I ] — C.B,Au(k —1)
gc(k - 1)

(4.126)
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Combining (4.125) and (4.126),

Az(k)
ye(k)

+

+

+

( A 0 Az(k - 1)
- Kmc { C.A I }
\| CA I Je(k —1)
([ B
“ | = KimcC.B. | Au(k — 1)
\_ C.B,

Kie {CI A2 (k - 1)
(I - C/B")(C.AAZ*(k — 1) + g2 (k — 1) + C.B.Au(k — 1))

C!B’j(k)} (4.127)

A general state-space formula for the IMC controller can now be written as follows:

XLMC(k)
AXe(k)

Au(k)

where

XIMC(IC)

(I)IMC

= ®IMORIMO(} _ 1) 4 TIMOAy(k —1) + rifc‘ffc*c(k) (4.128)

u

00 0T 0]._ 0
_ xMe _ | 7 | (k) (4.129)
0 0001 I
= —LgAXe® (4.130)
Az (k)
ge (k)
5/ (k) (4.131)
Az (k)
ge(k)
A 0
0
C.A I
_Bf[CcA I] Af
_KIMC[(I—Cfo)CCA I—C’fo] KimcCl A
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0
0
(4.132)
A 0
— Krmc { C.A I ]
CA I
B,
CCB'U-
rMe = —-B/C.B, (4.133)
B,
— KimcC/BfC.B,
C.B,
0
0
riMo - (4.134)
Bf
K[Mcchf

It may be computationally advantageous to implement the above estimator in series

since the matrix ®MC has a block-triangular structure.

4.4.4 Constraint Handling

For input constraints, the idea of extended Kalman filtering can be applied to the
IMC estimator transparently. Hence, in the presence of input constraints or mode

switching, the IMC estimator of (4.128) can be replaced by the following estimator:
X™C (k) = @™MOXIMO (1) + TIMC Augpye (b — 1) + TIMOG. (k) (4.135)

where Aty is the “true” input to the process. Note that this anti-windup mech-
anism is different from the traditional IMC anti-windup method, which is known to

cause sluggish recovery from saturation when the process contains dynamics that are
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slow relative to the closed-loop bandwidth [10]. The proposed anti-windup scheme
will not have this problem since, unlike in the traditional scheme, all the controller
states are correctly updated. This can be seen transparently from Figure 4.10.
When an ill-conditioned MIMO system is subjected to input constraints, the di-
rectional correction scheme proposed in Section 4.3.4 can be used. All the output

constraints must be handled through ad hoc ways such as mode-switching.

4.4.5 Robust Design/Tuning of IMC Filter

In this section, we present a method to design the IMC filter directly such that the
robust performance requirement is satisfied. The method is based on the frequency-

domain robust performance normbounds that can be easily derived using the SSV

analysis.

Derivation of Robust Performance Norm-Bounds

In this section, we present briefly a method for deriving robust performance norm-
bounds on desired transfer function matrices. The following theorem enables the
calculation of the “tightest” frequency-domain bounds on the maximum singluar value

of a chosen closed-loop transfer function, guaranteeing robust performance [59).

Theorem 4.2 Let M € C**™ be written as
M = Rll + RuL(I - R22L)—1R2]_ (4136)

where

Ry € C™™, Ry € C™™®, Ry, € C**™ Ry € C¥¥P and L € CP** (4.137)
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Define
flew) { f - f ] (4.138)
Ccr)=u A .
cLRy  cpLRy
Ag
where
A
£ ¢
A = {A:A= ;Zm,-zm En;——:n, A; € CMi
g1 =1
Y,
Ap = {A:AecrH) (4.139)
cr € R+
Assume
,u/A(Rll) <1 and det(] — R22L) -‘,é 0 (4140)
then
pa(M) <1 (4.141)
if
(L) < ¢, (4.142)
where ¢}, solves f(c}) = 1.
Proof  see Skogestad & Morari [59]. |

Theorem 4.2 suggests that the norm bound on L guaranteeing robust performance
can be obtained by parametrizing the closed-loop system in terms of L and choosing
the frequency-dependent scaling factor cj (w) such that f(cj(w)) =1 Vw. ¢i(w) is the
tightest norm bound of L in the sense that, for each ¢f,(w) > ¢} (w) for some w, there
exists at least one L such that 5(L(jw)) = ez (w) and sup, f(cr(w)) > 1.

Comments on Theorem 4.2:



157

1. f(ecg) is a non-decreasing function of ¢;. Thus the scaling factor ¢} can be easily

found through a simple search-procedure (e.g., bisection method).

2. Because f;, is monotonically increasing function of cr, the requirement for

c;, > 0is that g <1 for L =0.

3. There may exist many sets of J,L parametrizing K. The norm bounds on
different L’s can be combined over different frequency ranges. For example,
suppose that both L; and L, parametrize K. Then, robust performance is met

if, for each w, 5(L1(jw)) < ¢, (w) or 5(L2(jw)) < cf,(w).

4. Condition (4.142) is only sufficient for robust performance as robust perfor-
mance must be guaranteed for every L (as opposed to a particular L), which

satisfies 0 < 6(L)(w) < ¢j(w). pa(R11) < 1 requires that f(cr) <1 for ¢, = 0.

5. Tightest bounds can be obtained if we restrict L to be a scalar-times-identity

matrix. Then, the y can be calculated with respect to Ay, = {51”"" 16 € C}.

Using Robust Performance Normbounds for Design of IMC Filter

We can use the above method in designing the IMC filter for robust performance.
Figure 4.11(a) shows a block diagram for general robust performance problems. We
can parametrize the closed-loop system in terms of Fpc as shown in Figure 4.11(b)
and derive the robust performance norm-bound on Fjp;c. One problem is that the
bound on &(Fpmc(jw) will not be feasible (i.e., drop to zero) in the low frequency
region since Fypc = 0 implies open-loop (see the second comment on Theorem 4.2).
An immediate way to overcome this problem is to reparametrize the closed-loop in
terms of I — Frpe as shown in Figure 4.11(c) and to derive the robust performance
norm-bound on I — Fiye. The bound on (I — Fipe(jw)) should be feasible in
the low frequency region, but will often be infeasible in the high frequency region

where detuning is required for robust stability (I — Frae = 0 implies no detuning).
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Hence, the bound on &(Fipc(jw)) must be combined with that on (I — Fipc(jw))
in designing Fipc. More specifically, if Frpe is designed such that either of the
bounds is satisfied at each frequency, then we may conclude that robust performance

is achieved.

Robust Design/Tuning Rules

In summary of the foregoing discussion, we propose the following design/tuning rules

for IMC controllers:

1. As mentioned before, a nonzero input weight can reduce the directional sen-
sitivity of the LQ controller for an ill-conditioned system. Hence, the input
weight Aa, (chosen as a constant-times-identity matrix for simplicity) is grad-
ually increased until the resulting robust performance norm-bounds on Fipe

and I — Fpe start deteriorating.

2. The robust performance norm-bounds on Frape and I — Frae are used to design
Fipe satisfying robust performance, if possible. Otherwise, a more elaborate

design such as p-Synthesis may be necessary.

3. Equipping the Fypec with on-line tuning parameters that directly affect the

speed of the closed-loop response (e.g., pole locations) can add further flexibility

of the control system.

4.4.6 Relationship with LQG and Traditional IMC

To clarify the relationship between LQG and IMC, we reconsider the two special types
of disturbance/noise for which we were able to parametrize the optimal estimator with

a real parameter vector and establish a connection between the two techniques.
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Integrated White Noise Disturbance in Each Output with White Measurement
Noise

Recall that, for LQG controllers, the complementary sensitivity function was ex-

pressed as

Hige = (GLq)zg(z — I+ F)—IF(ZI) (4.143)

On the other hand, for IMC controllers, the complementary sensitivity function is

Hive = GyuQime Fime (4.144)

It can be easily seen by letting F' = I that the “undetuned” complementary sensi-
tivity function Gy,.Q1mc i8 (GLg)2- Hence, Fipc that leads to an IMC controller

equivalent to the LQG controller is simply the following diagonal first-order filter.
Fiye = (z — I+ F)_IF(ZI) (4.145)

Double-Integrated White Noise Disturbance on Each Output with White

Measurement Noise

The complementary sensitivity function for LQG controllers is

sz2 - FbZ 2 -1
Hrqe = [ (Grg)sz (Grq)ss ] (z°—(2I-F,~ F)z+(I - F2))
F,2* — (F, - Fy)z

(4.146)

On the other hand, for IMC controllers, the complementary sensitivity function is

Hipe = GyuQimcFive (4.147)

z=1]
= [ (GLQ)32 (GLQ)33 ] zI FIMC (4148)
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Fipe that leads to an IMC controller equivalent to the LQG controller is

( =i
Frme = [ (Gre)sz (Grq)ss ] ’ [ (Gre)s2 (GLg)sa ]
[ Fb22 - sz
(z*1 — (21 — F, — Fy)z + (I — F,))"(4.149)
| F.2? — (Fu - Fy)z

In general, such a filter would be extremely complex and is a function of Ljg as well
as F, and F,. The only exception is the case of a minimum-phase system with zero

input weight. For this case,

[ (Grg)s2 (GLg)ss ] = ‘i‘ [ I1I ] (4.150)

and the expression (4.117) reduces to

- = 2 2 -1
Frme = 53— (Fo+ F)2 = Faz) (221 = (2 = Fa — R)z+ (I = F,))” (4.151)

Using similar arguments, one can show that, for general disturbances, Fipsc lead-
ing to an IMC controller equivalent to its correponding LQG controller is very complex
and is a function of Lig as well as Kg.

The proposed IMC technique differs from the standard IMC techﬁique [50] in that
the IMC controllers are interpreted as state-observer based compensators and that
its formulation allows for the flexibility of including a nonzero input weight in the
objective function. Standard IMC is developed in an input/output setting and Q¢
is calculated directly assuming a zero input weight. The flexibility of including a
nonzero input weight can be important for ill-conditioned systems for which inverse-

based controllers are not desirable from a robust viewpoint.
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4.5 Model Predictive Control (MPC)

For the LQG and IMC controllers, input constraints are handled through an extended
estimator combined with a directionality correction scheme. These constraint han-
dling schemes are simple and intuitive, but are ad hoc and suboptimal. In addition,
various output constraints must be handled in heuristic ways (e.g., mode switching).
Motivated by these considerations, we develop in this section a Model Predictive Con-
trol technique that can incorporate various constraints in a direct manner. Before we
begin our discussion on MPC, we would like to remark that the proposed technique
represents a significant step forward for MPC. The new interpretation of MPC con-
trollers as a combination of a state observer and a compensator (constant linear state
feedback for unconstrained cases and nonlinear state feedback for cases) enables more
transparent analysis of the control system and flexible, intuitive design and tuning as

well.

4.5.1 Minimization Objective

Consider the same disturbances as in (4.38). The minimization objective of MPC is

based on a finite moving time horizon: Minimize at each ¢t = k the function

(4.152)

i

33 (5 (O)ALYe(t) + AuT () Anulu(?))

p is called “prediction horizon,” and often used as a tuning parameter in traditional
MPC techniques. The main motivation for adopting the ﬁnite—moving—horizon-based
objective function is that on-line constrained optimization can be performed to cal-
culate the best controller moves in the presence of input/output constraints. This is

discussed in Section 4.5.3.
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4.5.2 Optimal Control Design

The separation principle still applies for the MPC in the absence of constraints.

Hence, we can design the state estimator and the compensator separately and combine

them to obtain the optimal control system.

Optimal Estimator: Kalman Filter

Since disturbances to the system have not changed, the optimal estimator remains

the same as before: the Kalman filter of (4.42).

Optimal Compensator: MPC State Feedback

To obtain the optimal state feedback for the objective (4.152), we develop the follow-

ing prediction equation (note that it is optimal to set Ad(q) = 0 for ¢ > k since it is

zero-mean white noise):

where

Vi(k +1k)

AU (k)

Vo(k+1k) = YP(k+1|k) — RP(k +1|k)
YP(k+1k) = S®Az(k)+ IPy.(k) + SYAU(k)
Gk +118) | [ gk + 118) |
ge(k + 2|k) $2(k +11k) = ge(k + 2|k)
| 7e(k +plF) | | 7e(k + plk) |
Au(k) r(k+1|k)
Au(k +1) RP(k 4 1[k) = r(k + 2|k)
LAu(k-{—m—l)_ Lr(k+p|k)_

(4.153)

(4.154)



164

Idim{yc} CCA
v = Tgim{y} 5 — C.A% + C.A
] Lgim{y.} ] i Yr  CA |
C.B, 0 e 0
CCABu + CcBu CcBu con 0
SY =
yr_,C.A"'B, YPIC.A'B, ... pomHl o Ai-1R,

(4.155)

Ye(k + qlk,j) represents the prediction of y.(k + ¢) based on the measurements at
t = k. We also allowed the flexibility of specifying the number of input moves, m,
differently from the output prediction horizon p (i.e., 1 < m < p). In the LQG design,
we assumed that r is described as integrated white noise. An analogous treatment
would be to set RP(k + 1|k) = r(k)ZP. By incorporating information on the future
reference changes into the prediction equation, MPC can handle more general types
of reference inputs without increasing the system order.

Simple least-square solution calculation shows that the optimal state feedback law

for the objective (4.152) is as follows:

Az(k)
Au(k) = —Lupc ® + KmpcRP(k + 1k) (4.156)
Ye

where

Lypec = —Kumpc [ S® I”] (4.157)

~p o~ - - =1 oy o~
Kupc = [1 0 --- 0]((5“):’"/\3; RS + AL, Anu) ™ (S)TALA,(4.158)
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where 1~\ye = diag(A,,," -+, Ay, ) and A,, is defined in the same way. The compensator
is stable if and only if all eigenvalues of (® — I'a,Lapc) lie inside the unit disk.
Assuming the reference vector is a step function,

Az (k) 0
Au(k) = “LMPC - (4.159)

ye(k) r(k)
which is same control law as the LQ regulator with Lpg replaced by Lypc. By
definition, Lype — Lrg as p,g — oo for minimum-phase systems since Lypc is
guaranteed to be a stabilizing control law in this case (one would need weighting on
Au at t = co to guarantee stability for nonminimum-phase systems).
Optimal “Unconstrained” MPC: Kalman Filter + MPC State Feedback

The optimal unconstrained controller is the combination of the Kalman filter and

MPC state feedback:

Az(k)
Au(k) = —Lypc + KmpcRP(k + 1k) (4.160)
ye(k)

4.5.3 Constraint Handling: On-Line Quadratic Programming

The main advantage of MPC is that constraints can be incorporated directly into the
controller formulation. In the presence of the constraints described through (2.70)-
(2.72), the MPC state feedback is replaced by an on-line optimizer that calculates at
every t = k the optimal control moves (not violating the given constraints) for the
specified number of steps ahead and implements the first move. The optimization

can be written as follows:

k+p

i, 3 (57 ()AL T(t) + AuT () AnuAu(?)) (4.161)
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such that

ulow(k + q)
|Au(k + q)|

IA

u(k,j+q) Supgn(k+q) 0<g<m—1  (4162)

A

AUumaz(k+q) 0<g<m-—1 (4.163)

Wiow(k+9) < yo(kyj+q) < (YInign(k+q) 1<q<p (4.164)

Of course, if m < p — 1, then we constrain Au(k + ¢) to be zero form < q <p-—1.
The above optimzation problem can be formulated into the following standard
Quadratic Programming problem:

sin {IAO2 (kg + Uk, §) = R*(k + LR)IP + [IAKEAU™ (k)| Y 4.165)

st CUAU™(E) > C(k + p|k) (4.166)

C*(k + plk)

I

(4.167) -

L -

I dim{u} 0 te 0

yA3

Idim{u} Id.im{u} 0

Idim{u} Idim{u} Idxm{u} |

m
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Iiimpy 0 -+ 0

0 Iymry -+ 0
Ip = e ' . o (4.168)
0 0 ... Im{u}

u(k — 1) — upign(k)

u(k —1) — upign(k +m — 1)
ulow(k) - u(k - 1)

Uow(k + m —1) —u(k - 1)
—Atpaz (k)
Clk+plk) = '
—Atmor(k+m —1)
_Auma:c(k)

—AUpar(k, 7+ q — 1)
STAz(k) + IPg.(k) — YR n(k + 1]k)
| —S*AE(E) — Z75) + k1R |

(4.169)

where Y}, ./ VP, represent upper/lower bounds on )P:

T
Viign(k + 1|k) = [ ((Ynigh(k + 1Y ((wednign(k +2)T -+ ((e)nign(k + p))T ]

(4.170)

T

Yo+ 1) = | (@doulk+ DI (@holE+ D) - (@ehiull + )T |
(4.171)

The optimization can be solved by the standard Quadratic Programming (QP). For
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details on the solution procedures, the readers are referred to Garcia & Morshedi [25]

and Ricker [56].

4.5.4 Robust Design/Tuning

MPC controllers are equipped with many potential design/tuning parameters. The

traditional tuning parameters include:

1. Prediction Horizon (p)

2. Number of Calculated Control Moves (m)
3. Output/Input Weights (A,, and Aa,)

4. Constraints on Au.

With the introduction of a general state observer to MPC, we have added more of
these indirect parameters such as noise covariance matrices. In spite of the abundance
of tuning parameters, tuning MPC controllers is not known to be an easy task. The
main reason is that none of the tuning parameters have transparent connection with
closed-loop performance and robustness.

In the new framework, we recommend the following set of tuning rules:

1. Decide on the prediction horizon and number of control moves such that the
resulting ® — LyspeT, @ has all its eigenvalues strictly inside the unit disk. In
general, we recommend that the prediction horizon, p, be chosen longer than
the desired settling time and the number of input moves, m, be chosen as close

to p as possible (within computational limits).

2. Assuming the inputs and outputs are scaled correctly, choose A, to be an
identity matrix and Aa, to be a scalar-times-identity matrix. For SISO systems
or well-conditioned MIMO systems, choose the scalar for the input weight just

large enough to satisfy the stability criterion. For ill-condtioned MIMO systems,
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choose the scalar somewhat larger; a good method to decide on the scalar is to
derive robust performance norm-bounds on Fpye and I — Frpge for each tested
value of the scalar and choose the value at which the bounds start deteriorating.

Further on-line adjustments may be made later.

. For case where disturbances and measurement noise are described as integrated
(or double-integrated) white noise and white noise respectively, use the param-
eter F' (or F,) for the state estimator to adjust the speed of the closed-loop
response. For cases of more general disturbances, use the IMC estimator de-
scribed in Section 4.4.3 instead of the Kalman filter to obtain the state estimates,
Az and Ay, for the prediction equation. The IMC filter may be designed off-line

using the robust performance norm-bounds and further adjusted on-line.

We do not recommend using constraints on Au as tuning parameters because this

makes the controller necessarily nonlinear and analysis of such a controller is very

difficult. The tuning procedure outlined above should simplify the tuning for MPC

controllers immensely as all the parameters are intuitive and their effects are well

understood.

4.5.5 Relationship with Dynamic Matrix Control

The proposed MPC technique is completely equivalent to the standard Dynamic

Matrix Control (DMC) technique [15] when the state estimator is designed for the

following systems:

Ad(k) | = 0 0 0[] Adk-1) (4.172)
ye(k) CAn I 1 ye(k —1)
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[ o B,
+ |1 |Adk-D)+]| o |Auk-1) (4.173)
0 C.B,
Az(k)
ge(k) = :o 0 1] Ad(k) (4.174)
ye(k)

Hence, DMC assumes that system disturbances are described through integrated
white noise entering each output independently. In addition, it assumes that the
measurements are noise-free. These assumptions, especially the first assumption, can

lead to poor performance regardless of the choice of tuning parameters.

4.6 u-Synthesis

In Chapter 3, we mentioned that there exists no general method of solving the opti-

mization problem

inf sup inf &[D(w) Fi(G, K)|

KeKs w D(w)eEDrp D (LU)J (4.175)

s=jw

As a partial solution to the problem, Doyle [17] suggested a method called “u-
Synthesis.” For the sake of completeness, we review this design method and point

out some of the practical barriers for the method.

4.6.1 Algorithm

p-Synthesis is an iterative procedure to obtain a suboptimal solution to the optimiza-

tion problem (4.175). The algorithm can be summarized as follows:
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Step 1 Initialize the D-scaling by choosing a unimodular Do € D;, where
D!, = {D € RMoo: D' € RHoo, D(jw) € DypVuw} (4.176)
Often, the identity matrix is a good choice when no information is available on

how best to choose Dy.

Step 2 Using the standard H,-optimal design method (Doyle et al. [18]), find K €
K, that minimizes

sup | Do G, K) D5’

s=jw] (4.177)

Step 3 For a selected set of frequencies W, find D(w) € D,, that minimizes

(4.178)

‘s=jw / N /

7 [D(w) (DoFe(G, K)D;)| D*l(w\]

Step 4 Let D(w) = D(w)*Do(jw) for each w € W. Then, find a new Dq € D;, such
that Do(jw) = U(w)D(w) Vw € W where U(w) is any unitary matrix.

Step 5 Go back to Step 2 and repeat the procedure until B(w) does not change

significantly from the last iteration for all w € W.

4.6.2 Practical Barriers

It is important to note that (4.175) is nonconvex with respect to (@, D(w)), and hence,
the procedure does not guarantee convergence to the global minimum. However, it is
the only design method available, the objective of which is to explicitly minimize the
upperbound of the Structured Singular Value for robust performance. The following

numerical problems can make application of this powerful design method difficult.

1. Step 2 is a very involved, iterative optimization. Qur experience with the avail-

able software shows that the algorithm is unreliable for a certain class of systems.
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2. Step 4 introduces error since D-scale is approximated only at a finite number

of frequencies. This error can cause the algorithm to diverge.

In addition, u-Synthesis design yields a controller with no on-line tuning parameters.
This implies that the design engineer must have access to an uncertainty model that
is accurate quantitatively as well as qualitatively. Unfortunately, this is seldom the

case for most chemical processes.

4.6.3 Constraint-Handling

In the presence of input constraints and mode-switching, a controller designed via pu-
Synthesis can show significant performance deterioration if implemented as is. For u-
Synthesis controllers, there does not exist a simple anti-windup compensation scheme
like the extended Kalman filtering. However, recent work by Campo [10] provided
a theoretical basis for synthesizing anti-windup, bumpless transfer schemes for gen-
eral multivariable controllers. The technique guarantees the recovery of the original
linear performance when the input matches the controller output exactly, and aims
at “quick” recovery from saturation or mode switching by minimizing the “memory”
(expressed through the hankel norm) of the control system. For details, readers are

referred to Campo [10].

4.7 Numerical Example: Heavy Oil Fractionator

In this section, we apply the proposed IMC design method to a heavy oil fractionating
column. The schematic diagram of the fractionating column is shown in Figure 4.12.
The control system design problem (shown in Figure 4.13) is a simplified version
of that presented in The Shell Process Control Workshop (so called “Shell Control
Problem”) [54].
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Problem Statement
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The control problem we consider is shown in Figure 4.13. The transfer function

models are given as follows:

Gycu

Gycd

Gyou

Gy.s d

4055 LTS5
| 5395 5125
12057 Laag
L5250t 1835
o0t Lo
5925 25450
41387 2385
4 0613,,4.1 4 183?3.:1
1 1611.:+1 1 276.:;-1
1 73 5:&-1 1 79 19.9+1
1 312.91-}—1 1 26223+1
RE Vgar 173m

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

O represents measurement delays and it is identity in this case. We can factor out the

time delays in G,,, and G4 as measurement delays, ©, and consider the equivalent

control problem where

Gycu

Gycd

4055 L1786
5 39‘,":)3+1 3. 7214”1
1 2045:+1 1. 4440 e}
|1 32 18335

-

(4.184)

(4.185)
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Figure 4.13. Control Problem in the Heavy Oil Fractionator
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Since no specific sampling limitation was provided in the Shell Control Problem, we
assume that both §. and §, can be measured continuously.

We consider a simple measurement noise, that affects all temperature measure-
ments in the same manner. Furthermore, it is assumed that the measurement noise

associated with the primary measurements is negligible. Hence, we choose

1
1 0

Gyov = Gyov = (4.187)
1 0
1

One physical source of such measurement error is the pressure variation in the column
that often has a much stronger influence on the temperatures than the compositions.

The following performance specification and noise model is used:

I 0 0
0.3520L 1
Wa=|00 0 W, = 1000t (4.188)

0 0

LO 0 0.25:2tL

0.258+1

Hence, we are not including any reference change and input penalty term. (4.188)
requires almost no offset (attenuation of all signals by a factor of 3500) at steady-
state and attenuation of all signals of frequency smaller than 0.1 rad /min. In addition,
it requires that the measurement noise at frequency higher than 10 rad/min is not
amplified (see Figure 4.14).

The uncertainty we consider is described in Figure 4.13. A;,Ae@, and A, are
best viewed as the uncertainty associated with actuators, primary measurements,

and secondary measurements respectively. We use the following uncertainty weights:

25+ 1 5s+1
W, =W, = 0101 +II We—O.lmI (4.189)
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Figure 4.14. Magnitudes of Disturbance/Noise, Performance Weights

The magnitudes of W;, W,, and Wy are plotted in Figure 4.15. (4.189) allows 10%
error in all the actuators and measurements in the low frequency region. (4.189) also
allows time delay errors of approximately 1 minute in the primary measurements (¢p)
and approximately 1/2 minute in the secondary measurements and actuators.

Our objective is to design a control system achieving robust performance.

4.7.2 Preliminary Analysis

Let us first check if it is possible to achieve nominal performance with a control system
using the composition measurements alone. When the time delays are approximated
by second order Padé elements, the achievable H,,-norm for nominal closed-loop per-
formance is greater than 1, which implies that it is impossible to design a controller
meeting the performance specification with composition measurements alone, even in
the absence of model uncertainty. This is due to the significant delays in the mea-

surements; we must utilize the temperature measurements, which have no deadtime
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associated with them. There are four temperature measurements available. Since

the number of the disturbances we are concerned with is only two (I/RD and URD),

two measurements are sufficient for the design of an inferential controller yielding a

perfect nominal performance (i.e., in the absence of uncertainty and measurement

noise). Hence, our objective becomes to select two temperatures among the four

available ones and design a control system achieving robust performance. We have

the following six possible choices for temperature-pair measurements:

Yn =

\ URT |
. [ vrT )
o \ sDT

=
3w
I

Yo =

( pp
\SDT/

/URT\

ye,

\IRT/

( TT
\IRT

( SDT
\ IRT

Let us next look at the possibility of designing an output estimation based IMC

controller achieving robust performance using the temperature measurements alone.
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Measurement Set || maxa,eay 0(Fea(Au, @, E))u=o
81 3.688 x 10°
S92 1.951 x 10°
83 1.993 x 10°
S4 2.233 x 10°
S5 7.511 x 10°
S¢ ~ 0

The Worst-Case Steady-State Performance with Inferential Controllers for All Mea-
surement Sets

Since Gy, is minimum-phase and square, we choose Qpmc = G’;clu. In addition,
because (,,q is minimum-phase and square, the following output estimator gives

perfect estimation of y, in the absence of modelling error and measurement noise:

Yo = Gych;,ld (s — Gyouu) + Gyouu (4.190)
= GyedGykils + (Gyeu — GyoaGyiGyu) (4.191)

Nonproper transfer functions are approximated with proper transfer functions by
adding poles at a high frequency (i.e., w = 1000). Table 4.1 shows the worst possible
steady-state performance (maxa,ecAy, 7(Fy.w(0))). We observe that, for all measur-
ment candidates, this is far greater than 1 due to the model uncertainty and the
stringent performance specification at steady-state (i.e., attenuation of all signals by
a factor of 3500). Actually, the measurement set yielding the best steady-state per-
formance (s;) is only slightly better than the open-loop ( 1.951 x 103 vs. 1.060 x 10*).
This analysis lets us conclude that we must utilize both the composition and tem-
perature measurements in output estimation. In the next section, we examine the
viability of designing an IMC controller based on the output estimator which utilizes

both the temperature and composition measurements.
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4.7.3 Measurement Selection and Design of an Output Estimation
Based IMC Controller

In this section, we examine the possibility of designing an IMC controller achieving
robust performance based on an output estimator that uses the composition measure-
ments as well as the temperature measurements. For the output estimator design, we
follow the method introduced in Section 4.2.3. For the main estimator, we use the
nominally “perfect” estimator of (4.190). In addition, we augment the main estimator
with an auxiliary estimator, which is designed to yield the following decoupled first

order response from the estimation error, g, — §2™, to the correction term, §2™:

1

g™ = 26s+1 1 (e — 7™ (4.192)

1337s+1
Note that time constants are chosen as %‘f—i.

Next the norm bounds on [I — Fipc(jw)] and Fipe(jw) are derived. The bounds
for all six measurements are shown in Figure 4.16. We observe that the bounds for
y2, are superior to those for all other measurements. Indeed, y2 and y2, are the only
measurement sets which yield “feasible” sets of bounds. The following simple filter

satisfies one of the bounds on (I — Fype(jw)) and 6(Frye(jw)) for y2 at every

frequency (see Figure 4.17):
1

A diagonal first order filter Fryc is designed for each measurement set so that it
fits the bounds (shown in Figure 4.16) as much as possible. Figure 4.18 shows the
plots of the Structured Singular Values for robust performance for all measurement
sets with the designed filters. The u-plot for y% confirms that robust performance is
indeed achieved for y2. Although y3 also satisfies the robust performance condition,

the p-plots clearly show that the performance of y2 is superior to that for 3>, at all
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frequencies.
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Appendix 4.A: Minimizing the Error Due to Uncontrollable
Subspace

In Section 4.3.3, we state that the matrix C.(I — A)™'B, must have full row rank in
order to design the LQ state feedback controller achieving the integral action. When
this condition is not met, we must reduce the number of controlled variables. The
optimal way (in the sense of the Frobenious norm of the matrix relating disturbances
to the steady state errors) of doing this is to replace y, with y*, that is the projection
of y. into the controllable subspace X. The projection of y. into the space X can be
easily calculated by the following formula:

¥t = P¥ye = Gyou(GT ,Gyn) 1GE Lye (4.194)
X Y. Y. Ye

YelU

One can simply replace Ay, with Ay, = (P§)TA, P in calculating the optimal feed-
back gain. This is equivalent to reducing the dimension of y, optimally in order to

make the LQ design feasible.
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Chapter 5

State Estimation Based Inferential Control
System Design

5.1 Overview

The topic of this chapter is state estimation based inferential control system design.
In contrast to the approach taken in Chapter 4 where an independently designed
output estimator and a conventional feedback controller are combined into an in-
ferential control system, a control system that calculates the input moves directly
from secondary measurements is to be designed using a first principles or empirically
identified model in this chapter. Hence, for the control techniques developed in this
chapter, we relax the assumption of the primary measurements’ availability at a uni-
form, desirable sampling rate. The introduced techniques can incorporate multi-rate
sampled secondary measurements as well as potentially unreliable primary measure-
ments. When compared to the two step design approach of Chapter 4, the direct
approach has the potential advantage of higher achievable performance. However, it
has the disadvantage that it requires a full dynamic model relating the manipulated
variables/disturbances and primary/secondary variables.

As in Chapter 4, our main objective is to devise an inferential control technique
that can offer true “multi-variable” performance and has desirable operational char-
acteristics like PID controllers. The operational characteristics of our main concern

are flexible, intuitive on/off-line tuning and straightforward handling of constraints
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and actuator/sensor failures. For sensor failures, we are particularly concerned with
those of unreliable primary measurements. A desirable failure tolerance property for

primary measurements may be stated as follows:

A failure of a primary measurement does not affect the closed-loop re-
sponses of the other primary variables and the primary variables corre-

sponding to the failed measurement maintains an “acceptable” behavior.

We will refer to this measurement failure property as “Decentralized Failure Tolerance
(DFT).”

Given the formulation for measurement selection in Chapter 3, the most straight-
forward approach is to design the controller that minimizes the “worst-case” H.,-norm
of the closed-loop system from weighted external inputs to weighted controlled out-
puts. As we mentioned in Chapter 4, the problem of synthesizing the controller min-
imizing the “worst-case” error has not been solved even for SR (or continuous-time)
systems. As an alternative, we described a synthesis procedure called u-Synthesis that
combines the H-optimal design with u-analysis in an iterative manner. However,
there are several theoretical drawbacks that prevent the extension of the technique

to multi-rate sampled-data systems. Some of the theoretical barriers include
1. Lack of H-optimal solution for general multi-rate sampled-data systems.

2. Nonapplicability of frequency-domain g-analysis to time-varying continuous-
time or shift-varying discrete-time systems without resorting to approximations

or conservativeness.

3. Lack of general framework to address the issue of failure tolerance to the syn-

thesis procedure.

Although progress is made in this area [33,23], it will be awhile before these theoretical

issues are resolved completely.
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In addition to the theoretical barriers, there are often overlooked practical barriers
for the practical application of u-Synthesis. p-Synthesis is basically an off-line design
method with no on-line tuning parameters. The method requires a mathematical
model of system uncertainty and choosing frequency-domain weighting functions for
external inputs and outputs. When the uncertainty model and chosen weighting func-
tions do not reflect the model/plant mismatches and performance objectives for real
systems correctly, the control system can lead to less-than-acceptable performance.
Since there is no way of adjusting the controller on-line, the design must be aban-
doned and a new design must be carried out based on a different uncertainty model
and/or weighting functions. For chemical processes, most engineers have access nei-
ther to an accurate, nonconservative, uncertainty model nor to expertise required for
proper selection of weighting functions without extensive trial and errors. Upon these
considerations, we seek alternatives in this chapter.

We develop this chapter in a parallel fashion to Chapter 4. We first introduce
a modified state space model that is suitable for designing controllers with integral
action. Then, design of the optimal state estimator for a multi-rate sampled-data
system under general stochastic assumptions about the external input signals is dis-
cussed. When combined with the LQ feedback regulator, this gives the Hj-optimal
controller (as defined in Chapter 2). For systems with failure-prone primary measure-
ments, we also discuss design of a suboptimal, cascaded state estimator that can lead
to a control system with the DFT property. In order to provide a basis for simple,
intuitive design and tuning for robustness, we extend the state space IMC technique
presented in Chapter 4 to our inferential control problem.

Extension of the output based MPC technique introduced in Chapter 4 to multi-
rate sampled-data systems is straightforward. We simply use the state estimates
from either the optimal state estimator or the IMC estimator to develop prediction

for future outputs. The proposed MPC technique accomplishes the goal we set out.
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It incorporates the full model information and has enough degrees of freedom to give
true “multi-variable” performance and robustness. Yet, the controllers have many de-
sirable operational properties such as flexible, intuitive on-line tuning, straightforward
input/output constraint handling, and tolerance to actuator/sensor failures.

The chapter concludes with an application to a high-purity distillation column.
The merits of the proposed techniques during various nonideal operating modes are

demonstrated as well as their performance during an ideal operating mode.

5.2 Linear Quadratic Gaussian (LQG)

5.2.1 Process Model

The following state-space difference equation can be used to describe a general linear
multi-rate sampled-data system:

Process:

x(kaJ) = A.’I)(k,] - 1) + Buu(k’] - 1) + de(ka] - 1) (51)
yc(k’j) = ch(kv.]) (52)
ys(k’j) = Csw(kaj) (53)

Controlled Variables:

ye(k,j) = Cex(k, j) — r(k,J) (5.4)

Measurements:

:l]cec(k,j) _ Ce(5)z(k, 5 —8.) n ve(k, 7)
gsgs (kvj) Cs(])m(k,] "03) vs(k?j)
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C.(7) and C,(j) are C, and C, with the elements of all rows corresponding to the
measurements unavailable at j** sampling instant set to zeros. It is assumed that

[

(A, B,) is a stabilizable pair and ,A| is a detectable pair. 8, and 4, are the
C,

measurement delays (in terms of STU) of the primary and secondary measurements
respectively.
By performing some simple algebraic manipulation, we can put (5.1)-(5.5) into

the following standard state-space form:

X(kaj) = ‘I),X(ksj - 1) + Fuu(k»J - 1) + Fdd(k73 - 1) (56)

Y(k,j) = Z()X(k,j)+V(k,j) (5.7)

™ N

z(k, )
ye(k,7)
Yoy (kaJ)

Xthi) = | vtk | T®i=| =B vy | FE s

. Jse, (k) Vi(k,5)
ys(k,7) ’

ysx(k,j)

i ysg,(khj) §
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0 0/0 O 0 0
0 00 O 0 0
0 0{0 O 0 0
0 - 0[0 O 0 0
I 0|0 O 0 0 (5.9)
0 00 O 0 0
0 0|1 O 0 0
0 0j]0 I O -0
0 0 0j0 O I 0
By
C.Bq
0
Iy= 0 (5.10)
CsBd
0
0
0{0 0 --- HJ (5){0 0 --. 0
G) (5.11)

0{0 0 .- 0 [0 0 --- H(j)
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(hl)c(])
H(j) = (5.12)

(hl)c(])

(h1)s(7)

H,(j) = (5.13)
i (hl)s(j ) ]
' 1 if ¢** primary measurement is available at j*! sampling instant
(hi)e(7) = { (5.14)

0 otherwise 1 <i<dim{y.}

1 if 7* secondary measurement is available at j*® sampling ins‘zgnlt

(he)s(3) = 9

0 otherwise 1 <i<dim{y,}

\

It is assumed, for convenience of notation, that all measurements are synchronized at
7 = 0 implying that =(0) has full row rank. For simplicity of exposition, we assume
from this point on that the measurement delays 8, and 8, are zero. However, all
results obtained in this chapter are applicable without modification to cases where
these delays are not zero.

For the reasons explained in Chapter 4, it is convenient to express the model in
terms of the changes in the inputs. For this purpose, we subtract the equation (5.6)

at t = (k,j — 1) from that at ¢ = (k,j) to obtain the following modified state-space

representation of the system:

AX(k,j) = ®AX(k,j—1)+T.Au(k,j —1) +TsAd(k,j —1)  (5.16)

Y(k,j) = Z()AX(k,j)+V(kJ) (5.17)
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where

-A:c(k,j)

AX(kJ) = | yelk,J)

Ys(k,7)

A 00

= |CATO (5.18)
| C.A 01

A variable represents the change in the variable from the previous sampling time

(e.g., Az(k,j) = z(k, ) — z(k,j — 1)).

Theorem 5.1 : Detectability of Multi-Rate Sampled-Data System
The system (5.16)-(5.17) is detectable if and only if

C.
,A| is a detectable pair. (5.19)
C,
Proof  See Appendix 5.B. |
A 0 B,
In addition, from Section 4.3.1, , is a stabilizable pair if

CA I C.B,
and only if (B,, A) is a stabilizable pair and Ker{(C.(I — A)™'B,)T} = 0. We are

not concerned with the stabilizability of the whole system (i.e., the stabilizability of
(®,T,)) since our performance objective does not include the errors in the secondary
variables. In other words, we do not require that the integrators on the states y, to

be stabilized since offsets in y, do not cause any problem.



192

5.2.2 Minimization Objective

Let us consider the following inputs to the system:

Ad

Vs

where [6;]; is a unit impulse entering the i** channel at ¢t = (0,£). The objective

function is as follows:

Zq: i (3T (DAve(t) + AuT (DAnuAu(t)) (5.21)

where ¢ = (dim{d}+dim{r}+dim{v.}+dim{v,}). The subscript (-)i, represents that
y.(t) and Au(t) are those resulting from the input [-];,. In the stochastic framework,
the objective is interpreted as minimization of the steady-state variances of y. and Au
(weighted through A}/? and AY? respectively) when Ad and V are white noise with
covariance matrices of @, and R respectively. The above objective also assumes that
Ar is a white noise; however, all techniques in this chapter can be trivially extended

to more general types of reference inputs and this will be discussed in detail.

5.2.3 Optimal Control Design

Invoking the separation principle, the Hy-optimal controller is the combination of the
optimal state estimator and the LQ regulator.
Optimal Estimator: MR Kalman Filter

The optimal estimator for the given process and disturbances is the following Kalman
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filter:

AX(k,j) = ®AX(k,j —1)+ TuAu(k,j —1)

+ Ke()[Y(k,j) —E(G){®AX (k,j — 1) + Tulu(k,j — 1)}] (5.22)

where

Kg(j) = Z,()ETDW{EG)B.()E" () + By (5.23)

¥,(j) represents the steady-state solution to the following periodically time varying

(PTV) Riccati equation:

S(k,j+1) = ®%(k,j)®T — 82(k,§)ZT (H{EG)S(k,5)ET(7) + R} 'E()E(k,5)97

+ TuQal'y (5.24)

Because the above Riccati difference equation is PTV, its steady-state solution X, is

also PTV.

Definition 5.1 A Stabilizing Solution to PTV Riccati Equation

A steady-state solution to the PTV Riccati equation (5.24) is called

1. a “stabilizing solution” if the matriz H;-\;'(')I(Q — Ke(7)=(7)®) has all its eigen-

values (called “observer eigenvalues”) strictly inside the unit disk.

2. a “strong solution” if all the eigenvalues lie within the closed unit disk.

There are two ways to obtain the stabilizing ¥,(j). One way is to convert the
PTV system to a shift invariant (SI) system by changing the time scale from 75 to
7. This method allows us to obtain the stabilizing solution by solving an algebraic
Riccati equation and is discussed in detail in Appendix 5.A.

The other way is to iterate on the PTV Riccati difference equation until X(k +

1,j) = X(k,j) Vj. The following conditions (in addition to the detectablity of
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(2(j), ®) guarantee the convergence of the Riccati difference equation (5.24) to a

stabilizing solution:
1. £(0,0) >0 and R > 0.
2. (9, I‘dQ;ﬂ) is a stabilizable pair.

The former condition requires a positive semidefinite initial error covariance matrix
and nonsingular measurement noise. The latter condition states that all unstable
dynamics of the system should be excited through the state excitation noise Ad. If
this condition is not satisfied, the obtained filter gain may lead to bias in the estimates
when there are disturbances other than those modelled and/or mismatches between
the model and the real system. A simple way to get around this problem is to add
more disturbances that can account for modelling errors, etc.

The assumption of nonsingular R is necessary to prevent the matrix
(Z2()2(k,))=T(§) + R) from becoming singular. The matrix can become singular
because Z(j) can contain rows of zeros. If the solution to the singular problem is

desired, the following step has to be taken:

“Condensate” the measurement matrix =(j) meaning =(7) is made to have
full row rank by deleting all rows that contain only zero elements or, more

generally, that are linearly dependent.

If we denote the “condensated” =(j) as Z°(j), the stabilizability of (@, Fin/ %) guar-
antees that the matrix (E"(j)E(k, E( ))T) is nonsingular.
Optimal Compensator: LQ State Feedback

The optimal state feedback compensator for the given objective (5.21) is as follows:

Az(k, j)
Au(k,j) = —Lrg| y.(k,j) (5.25)
ys(kvj)
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Az(k,7) 0
= —Lig ye(k,3) | — | r(k,7) (5.26)
ys(k, ) 0

where

Lig= [ (CTQ,I, + Aa) ' TTV, 0 Odim{ys} ] (5.27)

U, is the solution to the following algebraic Riccati equation (ARE):
¥ = Twd — §TUL, (FTUL, + Ap,) 'TTU® + diag [Ouimizy, Ay (5.28)

where & is the (dim{z} +dim{y.}) % (dim{z} + dim{y.}) subblock of ® starting from
the top-left corner. T', are the first dim{z} + dim{y.} rows of I',. The ARE (5.28)
does not have a stabilizing solution unless (®,T',) is a stabilizable pair. The condition
Ker{(C.(I — A)~*B,)"} = 0 (which is required for the stabilizability) is not satisfied
if C.(I — A)~'B, does not have full row rank (for example, dim{y.} > dim{u}). As
explained in Section 4.3.3, the number of primary variables must be reduced first in
this case by projecting y. onto the controllable subspace in order for the LQ design
to be feasible.

The reason why we exclude the states y, from our calculation is that we are not
interested in the performance of y,. The computation of the optimal state feedback

with these states left in will require an unnecessarily large number of manipulated

Ce
variables since the stabilizability of (®,T',) requires that (I — A)'B, | has
Cs

full row rank because of the additional integrators on the states y,.
The above control law is valid for step reference inputs. For more general types
of reference inputs, we need to use augmented states in calculating the control moves

as discussed in Section 4.3.3.

H;-Optimal Controller: MR Kalman Filter + LQ State Feedback
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Figure 5.1. LQG Controller for MR Sampled-Data Systems

The H;-optimal controller for the given problem is a combination of the MR Kalman

filter and the LQ state feedback compensator written as follows:

AX(k,j) = (2 —Ka(j)E(7)® — TuLlrg + Ka(§)=()Tuli)AX (k,j — 1)

— (I = K°()Z())TuLliql,r(k,j — 1) + Kc(§)Y (k, ) (5.29)
AXe(k,j) = X(k,j)+T.r(k,j) (5.30)
Au(k’J) = _LLQAXe(kvj) ' (531)
where
0
T,=| -1 (5.32)
0

The control system is described pictorially in Figure 5.1.
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Figure 5.2. Extended MR Kalman Filter with Directionality Correction Scheme

5.2.4 Constraint Handling: Extended Kalman Filter

In the presence of input constraints (constraints on u and Au), the controller (5.29)-
(5.31) can show significant “wind-up” as Au(k,j) # —LroAXe(k,j). The simplest

anti-windup scheme is the Extended Kalman filter where (5.29) is replaced by

AX(k,j) = (2= Ks()=(j))AX(k,j —1) + (I = Ka()=())Tultitrue(k,j — 1)

+ KgYV(k,j) (5.33)

and Auy.,. represents the “true” input to the system, which is the projection of
Utrue(kyj — 1) = LrgAX®(k,j) onto the constrained input space of u(k,j). For ill-
conditioned MIMO systems, the directionality correction scheme discussed in Sec-
tion 4.3.4 can be used in conjunction with the Extended Kalman filter. The anti-
windup scheme is described pictorially in Figure 5.2.

A drawback of LQG controllers is that the output constraints (constraints on y,)
are handled in ad hoc ways (e.g., mode switching). The MPC technique, discussed

subsequently, addresses various types of constraints explicitly through on-line opti-
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mization.

5.2.5 Failure Tolerance: Cascaded Kalman Filter

The MR Kalman filter is “optimal” when all the measureinents are available. How-
ever, when any of the primary measurements fails, the performance can deteriorate
severely and can even lead to instability. In order to incorporate the failure tolerance
property (ideally, the DFT property discussed earlier), we suggest to replace the MR
Kalman filter with the cascaded Kalman filter shown in Figure 5.3(b). For the design

of the cascaded filter, we partition the R matrix as follows:

R= (5.34)

Hence, we assume that v, and v, are uncorrelated. Not only are most measurement
noises independent, but it is also impractical to model measurement noises account-
ing for their correlation. Therefore, almost all control problems would satisfy the
assumption. The cascaded estimator is composed of two parts: the main estimator
using the “reliable” secondary measurements and the auxiliary estimator using the
“unreliable” primary measurements. The notation {-}*™ and {-}*™ will be used to
imply that the variables or matrices under consideration are relevant to the main and
auxiliary estimators respectively.

Design of Main Estimator

The main estimator is to be designed to depend only on the “reliable” secondary
measurements. Hence, we construct the optimal state estimator for system (5.16)

with the measurements

gs(ksj) = Es(])AX(k7]) + va(kaj) (535)
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Figure 5.3. MR Kalman Filter vs. Failure-Tolerant Cascaded Kalman Filter
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where Z,(j) = [ 0 0 H,(j) ] The optimal estimator for system (5.16), (5.35) is of

the form:

AX*™(k,j) = ®AX™(k,j — 1)+ TuAu(k,j —1)

+ KsGm(])ws(k’J) - Es(]){@AX(k7] - 1) + FuAu(k’] - 1)}]

(5.36)
and the optimal filter gain is given by:
K& (5) = MG E) D {ED B () (E)T(5) + R} (5.37)

¥3™(4) represents the steady-state solution to the following PTV Riccati equation:

Sk, +1) = d8™(k,5)dT
— BTk, )(Ze)T(G){E ()™ (R, 5)(Ea)T () + Ra} IS (5)Z (K, 5) T

+ TuQar] (5.38)

Note that (5.38) can be written as an algebraic Riccati equation (ARE) if all secondary

variables are sampled at a uniform rate.

One difficulty is that (Z,(j), ®) is not a detectable pair. The integrators on the
states y, cannot be observed through the measurements §,. However, we can still find

the optimal filter gain under the following assumptions:
Assumption 1 (C,, A) is a detectable pair.

Assumption 2 Ker{C,(I — A)"'By} C Ker{C.(I — A)~'B,}.
Assumption 3 ¥°™(0,0) > 0 and R > 0.

The PTV Riccati equation (5.38) under the above assumptions has the following
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property:

0 0 O
Property 1 limg_o 2™ (k,§) 2 £(j) = £ () + | 0 Tgp

0 0 O

Property 2 £™(j) does not depend on the initial condition £*™(0,0).
The above results call for some clarification.

1. The first assumption is reasonable, since it is required to maintain closed-loop

stability even when all the primary measurements fail.

2. The second assumption says that all disturbances (d) affecting the primary
variables y. should be observable from the secondary measurements. Assuming
all disturbances are linearly independent (i.e., Q4 has a full rank), this is clearly
required for the convergence of the Riccati equation (5.38), since we cannot
estimate y. perfectly at steady state otherwise. If dim{d} > dim{y,}, the
assumption is violated. In this case, the number of disturbances must be reduced

by projecting d onto the observable space; this is discussed in Appendix 5.C.

3. The second property implies that the optimal gain K&™(j) does not depend
on the initial condition X7 since this part of £¢™(j) does not show up in the

expression for K&".

A 0 B,

C,A 0 CsB,

bilizable pair (i.e., all unstable modes are excited by disturbance), K§"(j) calcu-

1/2] .
d/ 18 a sta-

In addition to the three assumptions, if |

lated from £°™(j) leads to n observer eigenvalues at (1,0) and the rest strictly
inside the unit disk where n is the dimension of y.. The n eigenvalues corre-
spond to the integrators on y. that are in the unobservable subspace and cannot
be moved regardless of the choice of the filter gain. Hence, $29m(5) is a strong so-

lution, but not a stabilizing solution. A consequence is that, when the assumption
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of Ker{C,(I — A)"'Bs} C Ker{C.(I — A)~'B,;} is not satisfied, the estimate of y,
will exhibit bias. In practice, the assumption is almost always not satisfied because
of unknown disturbances and insufficient number of measurements. Another factor
that can cause bias in the estimates is model uncertainty. An implication is that the
main estimator alone will lead to steady-state offsets in practice. We overcome this
problem by cascading the main estimator with an auxiliary estimator that uses the
primary measurements.

Design of Auxiliary Estimator

The auxiliary estimator is designed for the following system:

w(k, j A° 0 w(k,j —1 B¢
(ki) | _ (k=10 | | W'(k,5)  (5.39)
ye™(k, 4) ce I || yr™(k,j—1) D¢
gk, 5) 2 ek, 5) — Z(G) Xk, 5) (5.40)
, w(k, 7) .
= [g Hc(])} ' + v.(k,7) (5.41)
ye™(k, )

where w'(k, 7) is a white noise with covariance matrix Q.. Physically, y?™ represents
the error between y. and the estimate of y. in the main estimator (y:™). This error
may arise from various factors such as unmodelled disturbances, modelling errors, and
insufficient number of measurements. Note that, in the above formulation, Ay?™, the
change in y?™ from the previous sampling time, is modelled as a white noise passed
through dynamics B®(2I — A*)~1C*®+ D°. The optimal estimator for the above system

is

’LT)(k,]) _ A 0 U-J(k,j - 1) (5 42)
g™ (k. ) oo 1 || ki) |
lf)(k,j - 1)

yer (kg —1)

+ K&G) 92 d) - H() | co 1]
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KZ'G) = SG)EYTG) {EG)mG)E)TG) + R} (5.43)

where
==[o | (5.44)

P™(5) is the steady-state periodic solution to the PTV Riccati equation

£k, +1) = T (k,§)()"

— Pk, )(E) HEG) Tk, A)ENTG) + B} TE )T (k) ()
+ Fele(Fe)T (5‘45)

and

ot = re = (5.46)
ce I D

Partition K&™ and KE" as follows:

(K&)*() (K G)
KEG)= | (kgro) |5 KED=| (’.) (5.47)
(g (3) o

The main and auxiliary filter may be combined into a single estimator as follows:

Xcas(k,j) — @casXcas(k’j _ 1) + Pf‘asAu(k,j _ 1)
+ Kca.a(j) [Y(k,]) — Ecas(j) {Qcas)_(cas(k,j . 1) _ ansAu(k,j _ 1)}]

(5.48)



where

Xcas

@CGS

=(j)

I(Caa(]‘)

>

Xsm
w
i
1 - 5
A 0 00 B,
0 A 0 O 0
I\f‘asz
CA C I 0 C.B,
C,A 0 0 I C.B.
=G) | [0 0 HG) o
=G)| |00 0 HG)
0 ([ o ] )
(K& )*(5) 0 —cass -
N I R o EO)
(KE™)¥(4) (KE")v(5)
0 \ 0 }
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(KEy()
0
(K5 ()
(K ()

(5.49)

(5.50)

(5.51)

(5.52)

The LQ feedback must be calculated for the extended system (including the states

w) as well.

In practice, it is almost impossible to model accurately the error between the

estimate of y, and the actual y.. Often, the following two simple models lead to ade-

quate results and have the advantages of not having to solve a PTV Riccati equation

and yielding an auxiliary estimator equipped with a set of intuitive on-line tuning

parameters:

e Case I: Integrated White Noise Errors:

If we model the error between 2™ and the actual y, as random steps, the system
Ye



205

(5.39)-(5.41) simplifies to

yer(k,g) = y&(kj - 1) +w'(k,j) (5.53)

gim(kyg) = H(3)yE™ (k. 3) + ve(k, 5) (5.54)

In order to achieve a desirable failure tolerance property, we restrict our design
such that the failure of one primary measurement (a component of y2™) does not
affect the estimates of the other components of y.. Then, if the compensator is
designed to be noninteracting, we achieve the DFT property. For this purpose,
we constrain the choice of ),» and R, to be diagonal so that the resulting KZ"

will be diagonal as well. For diagonal @), and R,, it can be shown that

KE"(j) = diag[f1(4),-- -, fa(h)] (5.55)
where

£9) fi if #*® measurement is available at j*® sampling instant.
() =

0 if ** measurement is unavailable at j'" sampling instant.

(5.56)

Since the it® element of the vector multiplying KZ"(j) in (5.42) is zero whenever

fi(4) = 0, one can simply implement KE" = diag(f;,---, f.]. fi is a constant

between 0 and 1 (see Section 4.3 of Chapter 4 for the exact relationship between

fi and the signal-to-noise ratio) and can be used as on-line tuning parameters.
0

Defining X = X*™ + gP™ |, straightforward algebra shows that the cascaded
0

estimator can be put into the same structure as the MR Kalman filter (5.22)
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with Kg(j) replaced by K&*(j) where

0 0
Kg*G)=| Kg'G) ||1-| K&"G) | Z0) | K&() (5:57)
0 0

where Z.(5) = [ 0 HJ(j) 0

Case II: Double-Integrated White Noise Errors:
If we model the error between the estimate of y. (72™) and the actual y, as ran-

dom ramps (double-integrated white noise), the system (5.39)-(5.41) becomes

verkd) | _ |11 ] i =D O]w'(k,j) (5.58)
w(ka) _O IJ w(kaj_l) i IJ
- pm k,‘
i) = [m o] |07 s us ) (5.59)
- w(k,j) |

Again, to achieve the DFT property, we restrict the choice of Q.+ and R, to be
diagonal so that the resulting K&" be diagonal as well. For diagonal @, and

R., it can be shown that

I<g}’m(]) = dla'g {[fa]l(j)v Ty [fa]n(j)’ [fb]l(])’ T [fb]n(])} (560)

where
N B i*® measurement is available at j*! sampling instant.
Jelila) = 0 if i*" measurement is unavailable at 7" sampling instant.
(5.61)
and
[feli(4) = Ml-)— (5.62)

2- [fa]t(])
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[fa]i is a constant between 0 and 1 (see Section 4.3 of Chapter 4 for the exact
relationship between f; and the signal-to-noise ratio). As before, for implemen-

tation,

Kgm(]) = dia'g {[fa]l""a[fa]m[fb]h”"[fb]n} Vj (5'63)

(fa)i can be used as on-line tuning parameters.

In the event of a failure of a primary measurement, the parameter auxiliary filter
gain f; (or [f.];) corresponding to the failed measurement is simply set to zero (see
Figure 5.3(b)).

It can be shown easily that K&*(j) calculated from the strong solution £:™(j)
and the stabilizing solution ¥?™(j) places all the observer poles strictly inside the unit
disk. The cascaded estimator constructed under the above two models is generally
suboptimal since §. is used to update only the states y. (and w for Case II) and not
Az and y,. However, this performance degradation is insignificant especially when
the primary measurements are accompanied by large sampling delays since, for these
cases, the primary measurements can be used only to correct for the “low frequency”
errors in the estimates. Our numerical experience reveals that the cascaded estimator
indeed performs almost as well as the optimal MR filter for most practical problems.
On the other hand, it is preferred to the MR Kalman filter for its superior failure-

tolerance property.

5.3 Internal Model Control (IMC)

LQG controllers for multi-rate sampled-data systems have many design/tuning pa-
rameters that must be chosen properly for good performance and robustness. These
parameters are not related to the system performance and robustness in a direct, in-
tuitive manner. This presents a great difficulty for engineers since not only are most

of the parameters (such as noise covariance matrices and input weights) not readily



208

on-line adjustable, but it is also unclear how they should be changed in order to im-
prove the robustness characteristics. Motivated by these considerations, we extend
the state-space Internal Model Control technique (discussed in Chapter 4) to multi-
rate sampled-data systems with secondary measurements. The technique aims at
replacing the nonintuitive design/tuning parameters for LQG controllers with those

that have a transparent connection with frequency response of the closed-loop system.

5.3.1 Minimization Objective

Let us consider the same disturbances as in (5.20), but assume that there is no

measurement noise (Q,, = @»,, = 0). The objective is to minimize the following

quadratic index:

N

[y

i i ( ()AL ye( t)+AuT(k)AAuAu(k)) (5.64)

£=0 i=1{=(0,0)

where ¢ = (dim{d} + dim{r}). The corresponding weights W,, and W), in Chapter 2

are as follows:

z_i—lQl/2
Wy = Z-QL? (5.65)
0
=l
W, = (5.66)
A1/2
L Ye

5.3.2 Detuning for Robustness

Since the controller is designed assuming no measurement noise, the resulting con-
troller can be quite sensitive measurement noise and model uncertainty. Hence, we
must detune the closed-loop in order to obtain a complementary sensitivity function

that is desirable from the robustness viewpoint. Again, it is desirable from viewpoint
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of robustness to detune the complementary sensitivity function directly.

Consider the block diagram of Figure 5.4(a). It represents the closed-loop sys-
tem with the LQG optimal controller. One can add and subtract the block Gj,,
and Gy, and obtain the diagram of Figure 5.4(b). Gj;,, and Gj,, are operators
relating the input move u to the secondary and primary measurements, §, and ¥,
respectively. They may not be shift-invariant operators due to the presence of the
multi-rate samplers and hence transfer function representations for these operators
may not exist. Note that the closed-loop operator from [vT,vT]7 to y, is —Gy,.0Qmc-

Hence, G, o Qramc represents the “ideal” complementary sensitivity opeator (i.e.,
Y p
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the optimal complementary sensitivity operator in the absence of measurement noise
and modelling errors) which must be detuned for robustness. A natural way of de-
tuning is to add diagonal low-pass filter blocks Fii-(j) and Fiyo(j) as shown in
Figure 5.4(c). Each diagonal element of Fj7;-(7) and Fiyo(j) is a low-pass filter
that runs at the rate corresponding to the sampling time of its respective measure-
ment. The resulting complementary sensitivity operator is Gy., 0 Qrmc © Firac where
Frue = diag [Fifio(3), Fiaie(7)]- Hence, Fipe detunes the ideal complementary sen-
sitivity operator in a user chosen manner. The only requirement on Fjj;- and Fiye
for internal stability is that they should be stable themselves.

When the cascaded Kalman filter is used instead of the MR Kalman filter, the
auxiliary filter is already equipped with intuitive tuning parameters (f; or (f,):)-
Hence, the IMC filter block is needed only for the secondary measurements as shown
in Figure 5.5, simplifying the controller structure. Since, for most practical cases,
the cascaded Kalman filter is preferred to the MR Kalman filter, we will limit our
discussion to control systems with the cascaded Kalman filters from this point on.

Let us concentrate for a moment on the closed-loop characteristics of a single-rate
(SR) system with secondary measurements only. Then the transfer function from d

to y. can be written as

Fyed = Gyd — GyuQimcFimcGy,a (5.67)

Unlike the output estimation based inferential control systems studied in Chapter 4,
the transfer function I — Fjjj, does not represent the transfer function between
the open-loop and closed-loop effects of the disturbances on the controlled variables
(i.e., the usual sense of “sensitivity function”) even for the ideal case where Qarc is

designed to give perfect control (i.e., Qrme = G, Gy.a(Gy,a)7!). In other words,

Fyea # (I = Fiize)Gye (5.68)
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even when Q¢ is designed for perfect control. A consequence is that we cannot

adjust the speed of the closed-loop response for each controlled variable separately.

5.3.3 State Space Formula for IMC Controller

The cascasded Kalman filter with an auxiliary estimator designed for integrated white

noise errors (Case I) can be written as:

AX(k,j) = ®AX(k,j—1)+TuAu(k,j —1)

Y

k) || P | —20){@AX(k,j — 1) + TuAu(k,j — 1)}
31 (k,5)
(5.69)
where

[ 0 0

Kpici) = KE® || 1= | K&"(5) | E0) | Kific(d) (5.70)
i 0 0
[ £,0)

Kg"(j) = (5.71)
_ ()

Kfmci) = (SHe()EOT{EGSROET)" 612

=¢(j) represents “condensated” =,(j) meaning the rows of =,(j) that correspond to
the measurements unavailable at j** sampling instant (and therefore contain only zero
elements) are deleted. The operator (-)*¢ implies that the matrix is “uncondensed”
meaning columns of zeros are added for the measurements unavailable at j** sam-
pling time. Xjyz(j) represents the strong solution (i.e., the solution that leads to

N3 (® — Ki7c(§)Zs(j)®@) with all eigenvalues inside the unit disk except for the n



213

eigenvalues at (1,0) corresponding to unobservable subspace) to the following PTV

Riccati equation:

ok, j+1) = ®L(k,j)e”
— ek, 1) EONTE)E ek ) EG) T Y E) Efre (k)07

+ TaQuly (5.73)

The optimal state feedback is the same as before. The Hjz-optimal controller for
the given problem is a combination of the Kalman filter and the LQ state feedback

compensator written as follows:

AX(k,j) = (- Kfhic(1)=0)® - Tulig + Kfiic(1)=()TuLrg)AX (k,j — 1)

Ca-s cas e gc(k’j)
— (I = Kpiic(5)Z0) e Liqlr(k,5 — 1) + Kiare(J) ~|(5.74)

, 93 (. 1)
AX(k,j) = X(k,j)+T.r(kj) (5.75)
Au(kaj) = "‘LLQAXe(k’j) (576)

Next we must augment this controller with the robustness filter Fjpc. The real-

ization of the transfer function Gy, can be written as follows:

Az (k, j A 0| Az¥(k,j -1 B,
(k9 = (ki =1) + Au(k,j —1)
gg(k7]) CaA I g:(k7] - 1) CsBu
(5.77)
urr - i Az (k, )
Js(k.3) = |0 H,(j) ] _ (5.78)
- gu(k, )

In addition, let the realization of Ffjj, be written as

#(k,j) = A& (k,j—1)+B Gk, 5) - 52(k,5)) (5.79)
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yive(k,j) = CIEl(k,j) (5.80)

We assumed here that all the secondary measurements are available at a uniform
sampling rate of STU (i.e., every j). With this assumption, F{j;. is a shift-invariant
operator and haty®(k,j) = §¥(k,j). For general multi-rate sample-data systems,

Af,Bf,C’ and D' are PTV matrices.

Now, we can express y! as

gi(k,5) = CT&l(k,j) +5i(k, ]) (5.81)
= O (A2l (k,j = 1) + B/ (§u(k, ) — 94(k, ) + T2 (k,5)  (5.82)
= CIATZ (k,j - 1)+ (I - CIBN)g¥(k,j) + CIBIg,(k,5) (5.83)
= C'A'F(k,j -1)+ U - C!BHH, () (C,AAZ* (k,j — 1)

+ g(k,j — 1)+ C,B,Au(k,j — 1)) + C/BY§,(k, j) (5.84)

The “undetuned” LQG estimator has the realization

Az (k,j) A 00| | Az(kji-1) C.
Ju(kj) | = | CA T 0| Gulkyi—1) |+ | CB. |Bulki—1)
7k, ) A 0 1|| alki-1) | |C.B.
o (| 4 0ol aski-1
+ Kol f’;(k”') —ZG)S| C.A T 0 || Blki-1)
\ (k) [ Ca 0 T|] dki-1)
B,
- | c.B, | Aulk,j-1) (5.85)
C.B. |
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Partition K§}j. as follows:
Kioli) = | (Kstio)=() | (K3t () | (5.56)

Combining (5.84) and (5.85),

Az(k, ) ([ 4 00 A 00 Az(k,j —1)
go(k,7) | = C.A I 0|-Khc()=EG)|C.A T O Je(k,5 = 1)
Fo(k, 7) \| C.4 0 I C,A 0 I a(k,j —1)
(] B, B,
+ C.B. | — Kixc()=0) | C.B, | | Au(k—-1)
\ C,B, C,B,

+ (Kiio)(1)ie(k, §) + (Kfsic)? (7) {C AT a4 (k,j — 1)
+ (I-C/BNH,()(C.,AAZ (k,j — 1) + 72(k,j — 1)

+ C,B.Au(k,j —1)) + C!B§,(k,5)} (5.87)
A general state-space formula for the IMC controller can be now written as follows:

AX™C(k 5) = @IMCAXIMO(L ;1) 4 TIMCAy(k,j —1) + F{/MCYIMc(k,j)

(5.88)
Az(k, ) 0

X(k,3) = | guk,5) |+ | =1 |r(k,3) (5.89)
0 0

Au(k,j) = _LLQAXe(kvj) (5.90)
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(5.91)

(5.92)

where X i
Az(k, )
gy (k,J)
_ ik, j . je(k,j)
AXIMC(k,j) — ( J) YIMC(k,j) — y( ])
Az(k, j) 9s(k, 7)
Ye(k,7)
(k)
A 0
pIMC  _ Ced 1
—Bch(j)[C,A 1] Al
| (K G)I - B | A 1] (Kiiio)*()Cr 4!
0
0
A 00 A 00
C.A I 0|—-Kpic()ZEG)| C.A T o
CiA 0 I CsA 0 I
B,
C,B,
rIMC _ -B/C,B,

CsB,

C.B, | — (K§330)% (j)H,()C! B! C,B, — (K$30)%(j) H.(5)C.B,

(5.93)
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0 0
0 0

Mo = (5.94)
0 B!

S/ ol /.
(Kfife)* (i) | (Kftic)" ()C! B

Even though the above formula is useful for analysis purpose, it is computationally

advantageous to implement the above estimator sequentially because of the block-

triangular structure of the matrix ®/MC,

5.3.4 Constraint Handling

For input constraints, the idea of extended Kalman filtering can be applied to the
IMC estimator straightforwardly. Hence, in the presence of input constraints or mode

switching, the IMC estimator of (5.88) can be replaced by the following estimator:

AX™O(f i) = @IMCAXIMO(f ;i _ 1) 4 TIMO Ay, . (k,j — 1) + F{,MC}‘/IMC(IC’J-)
(5.95)
where Auyyy, is the “true” input to the process. This anti-windup mechanism is differ-
ent from the traditional IMC anti-windup method, which is known to cause sluggish
recovery from saturation when the process contains dynamics that are slow relative
to the closed-loop bandwidth [10]. The proposed anti-windup scheme removes this
problem since, unlike in the traditional scheme, all the controller states are correctly
updated (see Section 4.4 of Chapter 4 for detail).
When an ill-conditioned MIMO system is subjected to input constraints, the di-
rectional correction scheme proposed in Section 4.3.4 can be used. All the output

constraints must be handled through ad hoc ways such as mode-switching.
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5.3.5 Robust Design/Tuning Rules

In summary of the foregoing discussion, we propose the following design/tuning rules

for IMC controllers:

1. As mentioned before, a nonzero input weight can reduce the directional sen-
sitivity of the LQ controller for an ill-conditioned system. Hence, the input
weight Aa, (chosen as a constant-times-identity matrix for simplicity) is grad-
ually increased until the resulting robust performance norm-bounds on Fyf;.
and I — Fif}c (that can be derived using the method discussed in Chapter 4)

start deteriorating.

2. The robust performance normbounds on Fijj- and I — Fijj are used to design
Fifio satisfying robust performance, if possible. Otherwise, a more elaborate

design such as pu-Synthesis may be necessary.

3. Equipping the Fjpc with on-line tuning parameters that directly affect the
speed of the closed-loop response (e.g., pole locations) can add further flexibil-
ity of the control system. Furthermore, the parameters f;(j) of the auxiliary
estimator can be adjusted on-line to influence the effect of primary measure-

ments on the closed-loop response.

5.4 Model Predictive Control (MPC)

In this section, we develop an inferential MPC technique for multi-rate sampled-data

systems.
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5.4.1 Minimization Objective

Consider the same disturbances as in (5.20). The minimization objective of MPC is

based on the finite moving time horizon: Minimize at each t = (k, ) the function

Xq: Z (yf(t)Ayeyc(t)+AuT(t)AAuAu(t))“ (5.96)

£=0 i=1 t=(k,3)

p is called “prediction horizon,” and often used as a tuning parameter. The main
motivation for adopting the finite-moving-horizon-based objective function is that
the on-line constrained optimization can be performed to calculate the best controller

moves in the presence of input/output constraints. This is discussed in Section 5.4.3.

5.4.2 Optimal Control Design

The separation principle still applies for the MPC in the absence of constraints.
Hence, we can design the state estimator and the compensator separately and combine
them to obtain the optimal control system.

Optimal Estimator: MR Kalman Filter

Since disturbances to the system have not changed, the optimal estimator remains
the same as before: the MR Kalman filter of (5.22).

Optimal Compensator: MPC State Feedback

To obtain the optimal state feedback for the objective (5.96), we develop the following
prediction equation (note that it is optimal to set Ad(k,q) = 0 for ¢ > j):

YVo(k,j+1lk,5) = Ye(k,j+1|k,5) = RP(k,j + 1]k, ) (5.97)

ek, j +1lk,5) = S°Aw(k, )+ IPyc(k,j) + S AU™(k, ) (5.98)
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where
Ye(k,J + 1|k, 5) Je(k,j + 11k, j)
N : Je(k,5 + 2|k, 7) - - Je(k,J + 2|k, 5)
Ye(k,j +1lk,j) = _ Ve(k +1,5lk,5) = ,
| Ze(k,5 + plk,J7) | Ge(k, 7 +plk,J) |
Au(k, j) r(k,j + 11k, )
) Au(k,7 +1 ) ) r(k,j + 2|k, J
AU™(k,j) = ( ' ) RP(k,j + 1|k, j) = ( _ k:)
Au(k,]—’{—m-—l) | r(k,]-’{—p!k,]) ]
Ldim{ycy CeA
T = Idim{yc} S° = C’cAZ + C.A
i Idim{yc} ] ] Z;’:l CCAj ]
C.B, 0 o 0
C.AB, + C.B, C.B, e 0
SY =
Z?:l CcAj—lBu Z’;;% CcAjclBu e ?:-_.;’H-l CcAj—lBu
(5.99)

Ye(k, 7 + 1|k, j) represents the prediction of y.(k, j + ¢q) based on the measurements at
t = (k,j). We incorporated the flexibility of specifying the number of input moves,
m, differently from the output prediction horizon p (i.e., 1 < m < p). If the reference
vector r(k, j) is either a step function or is best assumed as a step function (because no
information on the future reference changes is available), R?(k, j +plk, j) = r(k, 7)I?.
However, through R?(k,j + 1|k,j), MPC cannot only handle more general types of

reference inputs but can also incorporate information on future reference changes
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without increasing the system order.
The problem of minimizing the objective function (5.96) with the constraint posed
by the prediction equation (5.97) can be formulated as a least-square problem and

the optimal state feedback law turns out to be as follows:

. Az(k, ;) . .
Au(k,j) = —Lype + KmpcRP(k,j + 11k, ) (5.100)
ye(k, j)
where
LMPC = ——I(Mpc [ ST 7° ] (5.101)

~ ~ ~ -~ -1 ~ ~
Kypo = [ 10 -0 ] ((8*)TALA,.8" + AL, Aa.)” (S)TALA,(5.102)
——e,
where A,, = diag(A,,, -+, A,,) and Aa, is defined in the same way. The compensator
is stable if and only if all eigenvalues of (® — I'a,Larpc) lie inside the unit disk.
Assuming the reference vector is a step function (i.e., R?(k,j + plk,j) = r(k, )I7),

. Az(k, j) 0
Au(k,]) = "‘LMPC - (5.103)

ye(k,J) r(k,J)
This is the same control law as the LQ regulator except that L1g replaced by Lypc.
By definition, Lypc — Lpg as p,q — oo for nonsingular I',. For singular T'a,,
Lyrpc can give an unstable control law for nonminimum-phase system even when

p,q — oo. The control system is pictorially described in Figure 5.6.

5.4.3 Constraint Handling: On-Line Quadratic Programming

The main advantage of MPC is that constraints can be incorporated directly into the
controller formulation. In the presence of the constraints described through (2.70)-

(2.72), the MPC state feedback is replaced by an on-line optimizer that calculates
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Figure 5.6. State Estimation Based Model Predictive Control for Multi-Rate Sam-
pled-Data Systems

at every t = (k,j) the optimal control moves (not violating the given constraints)
within the prediction horizon and implements the first move. The optimization can

be written as follows:

N-1 d' (kj+p)
min 3030 3 (3 (DAw(t) + AuT()Asudu(t)) (5.104)
AU(RI) | 120 i=1 t=(ky) '
such that
ulow(k)j + Q) < u(k’] + q) < uhigh(kvj + q) 0< gsm-— 1 (5105)

|Au(k,j +¢q)] < Aumar(k,j+q) 0<g¢g<m-—1 (5.106)

(yc)zow(k,j + Q) < yc(kaj + ‘1) < (yc)high(k»j + ‘I) 0<q¢<p (5-107)
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Of course, if m < p — 1, then we constrain Au(k,j + q) to be zero form <j <p-1.
The optimization can be solved by the standard Quadratic Programming (QP). For
details, see Section 4.5.3 of Chapter 4.

5.4.4 Failure Tolerance: Cascaded Kalman Filter

To account for unreliable primary measurements, we recommend replacing the op-
timal MR Kalman filter with the cascaded Kalman filter discussed in section 5.2.5.
DFT property is achieved if the MPC state feedback is designed to be completely
noninteracting (i.e., the estimate of one primary variable does not affect the other
primary variables through control action). In practice, complete DFT property will
not be achieved since the presence of the constraints, weights on Au, and model/plant
mismatch will prevent the MPC compensator from being a completely decoupling
compensator. Nevertheless, the cascaded estimator should provide an acceptable fail-

ure tolerance property for most practical cases.

5.4.5 Robust Design/Tuning
Traditionally, the MPC controllers are tuned with nonintuitive parameters including
1. Prediction Horizon (p)
2. Number of Calculated Control Moves (m)
3. Output/Input Weights (A,, and Aa,)
4. Constraints on Au

Introduction of a general state observer (e.g., MR Kalman filter) to MPC gives rise

to additional indirect robustness tuning parameters including

1. Disturbance Covariance Matrix (Q4)

2. Measurement Noise Covariance Matrix (R)
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Tuning MPC controllers with the above parameters is a difficult task since none of
them have a transparent connection with closed-loop performance and robustness.

Hence, we recommend the following set of tuning rules:

1. Decide on the prediction horizon and number of control moves such that the
resulting ® — Laypel', @ has all its eigenvaules strictly inside the unit disk. In
general, we recommend that the prediction horizon be chosen longer than the
desired setting time and the number of input moves be chosen as close to the

prediction horizon as possible (within computational limit).

2. Choose A,, to be an identity matrix and Aa, to be a scalar-times-identity
matrix, assuming that the inputs and outputs are scaled correctly. For SISO
systems or well-conditioned MIMO systems, choose the input weight to be as
small as possible without violating the stability criterion. For ill-condtioned
MIMO systems, use a nontrivial scalar for the input weight. A good method to
decide on the scalar is to derive the robust performance norm-bounds on Frac
and I — Frpc for each tested value of the scalar and choose the value at which

the bounds start deteriorating. Further on-line adjustments may be made later.

3. Use the IMC estimator described in Section 5.3.3 instead of the Kalman filter to
obtain the state estimates, AZ and Ay,, for the prediction equation. The IMC
filter F{};- may be designed off-line using the robust performance norm-bounds
and further adjusted on-line. For the auxiliary estimator, use the parameters

(fi, or (fa)i) of the filter gain for on-line adjustments.

We do not recommend using constraints on Au as tuning parameters because this
makes the controller nonlinear and analysis of such a controller is very difficult. The
tuning procedure outlined above should simplify the tuning for MPC controllers im-
mensely as the IMC filter has a direct connection with the frequency-domain charac-

teristics of the complementary sensitivity function.
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5.5 Numerical Example: High-Purity Distillation Column

We consider the high-purity distillation column shown in Figure 5.7(a). The column

is similar to the one described in Appendix A of Morari & Zafiriou [50].

5.5.1 Description of Control Problems

The control problem we consider is shown in Figure 5.7(b).

o (Controlled Variables

The controlled variables are the bottom and the distillate compositions (denoted

by zp and yp respectively).

o Disturbances

The main disturbances we consider are the variations in the flowrate (F) and

the composition (zr).

e Manipulated Variables

The manipulated variables are the reflux flowrate (L) and the boil-up (V). It
is assumed that the responses of the level loops for condensers and reboilers are

immediate.

o Measurements

Although the measurement selection is an issue of great importance, we do
not treat this problem in this example. Instead, it is assumed that the tem-
peratures of Tray # 10 and Tray # 32 are measured. These locations were
selected, based on a compromise between signal-to-noise ratio and sensitivity
to uncertainty [41]. Both temperatures are assumed to be measured at one
minute intervals. To demonstrate the effect of the sampling rates and delays
of the primary measurements on the relative performance and failure tolerance

properties of the proposed estimators, we consider the following two cases:
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— Case A: “Fast,” Unreliable Primary Measurements
The composition measurements (zg and yp) are available at every one

minute with delays of one minute.

— Case B: “Slow,” Unreliable Primary Measurements
The composition measurements (zp and yp) are available at every ten

minutes with delays of ten minutes.

o Model

We use a 10 state model obtained by performing a model reduction (via balanced

realization) on a 41 state full material balance model.

o Design Parameters

The following state disturbance covariance matrices and measurement noise

covariance matrices were used for the filter designs:

0.001 0

Qa = (5.108)

0 0.001

0.000001 0 01 0

R, = R, = (5.109)
|0 0.000001 0 .01
1.0 0 0.1 0

I = A= (5.110)
| 010 0 0.1

For the auxiliary estimator of the cascaded Kalman filter, the signal-to-noise
ratio of identity was assumed. The output horizon p and the input horizon ¢

were chosen to be 30 and 10 respectively. The only constraints we imposed were

that |L] < 1.0 and |V| < 1.0 at all times.
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Figure 5.7. LV High-Purity Distillation Column and its Control Problem
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5.5.2 Results

We simulate the closed-loop response of zg and yp to step disturbances in F' and
zr. F and zp rise to 0.2 and to 0.1 respectively (corresponding to 20% change of the
steady-state values) at ¢ = 0, and then, fall to -0.2 and -0.1 at ¢ = 100. All simulations
were carried out with 20% uncertainty in the flows of L and V. Random noises of
covariance R, and R, were put into the temperature and composition measurements
respectively to simulate the measurement noise. The results for Case A and Case B

are shown in Figure 5.8 and Figure 5.9 respectively.

Case A Comparing the responses shown in Figure 5.8(a), we note that the per-
formance advantage of the MR-Kalman-filter-based MPC over the cascaded-
estimator-based MPC is almost negligible. Both controllers drive the composi-
tions to the steady-state operating points without offsets in spite of model/plant
mismatch and also give acceptable transient responses. On the other hand, the
failure tolerance property of the MR-optimal-estimator-based MPC is far worse
than that of the cascade-estimator-based MPC as illustrated in Figure 5.8(b)-
(c). In the case of a composition measurement failure, simple adjustments such
as setting the innovation term for the failed primary measurement zero is inad-

equate for the MR optimal estimator.

Case B The performance of the MR-optimal-estimator-based MPC and that of the
DR-cascade-estimator-based MPC are almost indistinguishable, as shown in
Figure 5.9(a). On the contrary to Case A, however, the MR-optimal-estimator-
based MPC maintains acceptable performance in the case of a composition
measurement failure, as illustrated in Figure 5.9(b)-(c). As the sampling rate
and delays of the primary measurements become significant, the dependence of
the estimator on these measurements become less, and the distinct performance

degradation that we saw for the MR-optimal-estimator-based MPC in Case A
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disappears.
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Appendix 5.A: Constructing a SR System for a MR
Sampled-Data System

The system expressed through (5.16)-(5.17) is a multi-rate sampled-data system and

therefore is shift varying with respect to g, the STU. We can express (5.16)-(5.17)

as a SR system with respect to the time unit of 75, the BTU. The following is the

SR system equivalent to the MR system of (5.16)-(5.17):

AX(k,0)

YSE(k,0)

where

AUSR(k,0)

YSR(k,0)

(I)SR

SR
I-‘U

-SSR

Au(k,0)
Au(k,1)

i Au(k,N - 1) ]
[ Y (k,0) -
Y (k1)

Y

(kN -1) |

(DN

[ gv-ir, @N-r,

@N—lrd ‘I)N_2Fd

ADSR(k,0) =

VSR(k,0) =

Ad(k,0)
Ad(k,1)

V(k,0)
V(k,1)

| V(k,N -1) |

Ad(k, N —1)

RAX(k —1,0) + TSRAUSR(E - 1,0) + TSRADSE(k — 1,0)

(5.111)

AX(k,0) + TRAUSR(k,0) + TIEADSE(,0) + VSE(k,0)

(5.112)

(5.113)

(5.114)

(5.115)
(5.116)

(5.117)
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Z(0)
=(1)@
=R = @ (5.118)
Z(N —1)@N-!
- 1 0 0 0
Z0) 0 0
" T, 0 0
0 ZE(1) --- 0
o= | _ . or, [, -0
0 0 =(N -1)
- - | V-, eN-r, 0
(5.119)
- ( 0 0 0
Z(0) 0 0
T, 0 0
0 E@1) - 0
T = | _ . ar, Iy -0
0 0 (N —1)
N N <I>N‘1I‘d <I>N"2I‘d -+ 0
(5.120)

The superscript {-}°F is used to distinguish the vectors and the matrices used for
the SR system. Note from the equations (5.111)-(5.112) that the state excitation
noise (FZRAD5R) and the measurement noise (T$RA DSR4+ VSR) are now correlated.
Denoting IZRADSR as WER and TERADSE 4+ VSR as WER and performing some

algebra, one can show that

Wi (k,0)
WYR(k, 0)

QSR TSR
CACHCONCESHODN R IR, LS



234

where

i o ;

Q*F = TP r3h* (5.122)
L Qd J
- .. :

TSR = T3F (T3 (5.123)
L Qd J

Qua R(0)
RSR = T$R (TSRT + (5.124)
¥ R(N -1)

The Riccati equation for the optimal filtering problem of the system (5.111)-(5.112)

is as follows:

ZSR _ \DESR\I,T + \IIESR(ESR)T {ESRzSR(ESR)T + RSR}-I ESRESR\IIT _ QSR =0
(5.125)

where

U = §5R _ TSR(RSR)-1Z5R (5.126)

The unique stabilizing solution to the Riccati equation (5.125) can be obtained
through various standard techniques [3,26]. The following Theorem due to Amit
[1] relates the solution of (5.125) to the steady-state solution of (5.24):

Theorem 5.2 Suppose LR solves the algebraic Riccati equation (5.125). Let L.(5)

be the periodic steady state solution of the Riccati equation (5.24). Then,
x(0) = &Sk (5.127)

Proof See Amit [1]. [ |
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Once X(0) is found, £(j),j = 1,---, N —1 can be easily found by the equation (5.24).

Appendix 5.B: Proof of Theorem 5.1

The MR system (5.16)-(5.17) is detectable if and only if the SR equivalent system ex-
pressed through (5.111)-(5.112) is detectable. The following Lemma is due to Hautus
[30]:

Lemma 5.1 The system (5.111)-(5.112) is detectable if and only if
rank [ (@577 <A1 | (2597 | = dim(@%F) wAeC, W21 (5129
Hence, the MR system (5.16)-(5.17) is detectable if and only if

rank [ (®@MT — AI I EONT E1)9)T ... (EW -1IN-HT | =dim{?}
Yiec, |\ =1 (5.129)

The condition (5.129) is trivially satisfied if ) is not an eigenvalue of ®V. If A is an

eigenvalue of Y, (®)¥ maps Ker {(‘I)N Y — I } = Eiggn)r(}) into itself where

Eig(y(A) = {v:v =cb,c € R and ¥ is an eigenvector of {-} corresp. to the eigenvalue A}

(5.130)
Lemma 5.2
Im{[ (EO)NT E0)®)T ... EW -1)eVN-YHT ]} D Eig@gmr(A) (5.131)

if and only if

Im {(2°(0))" } > Eigiamyr(}) (5.132)
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Proof “If” part of the condition is obvious. To prove “only if” part, we
note that the synchronous sampling assumption implies that Im {(E(O))T} D
Im {(E(n))T} , n=1,---,N — 1. In addition, an eigenvector of (®")T is an eigen-
vector of (®")T, n=1,..., N — 1. Hence, Im{(E(n)@”)T} D Eig(gnyr if and only if
Im {(£(0))7} > Eig(gmr for n.=1,---,N — 1. This implies that

Im{[ (EONT EQ)P)T ... EN -1)V-HT ]} D Eiggnyr(A) (5.133)

only if

Im {(£(0))"} > Eig(amr(A) (5.134)

Using the above lemma, we can write

rank | (@%)7 -1 | @O E0@F - EW -1V | = dim{o)

VA €C,\>1  (5.135)

& rank (@MT — A | (E(0))T ] =dim{®} VAel, |A\|>1 (5.136)
& rank| (@M —AVT| (Z(0)T | = dim{®) WAeC, 21 (5.137)
& rank| ()T - AI|(2(O)T | =dim{0} vAeC, W21 (5.138)

The last equivalence is from the fact that Im{(®™)T — ANI} = Im{®T — AI}. This is

easy to see since

Ker {(@")T — AV I} (5.139)

Ker {(®)T — AI} (5.140)

{0} if X is not an eigenvalue of ®.
(5.141)

Eigg(A) if A is an eigenvalue of ®.
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rank (®)T — I l (E(0)T ] (5.142)
AT (C.A)T (C,A)T|0 0

= rank 0 I-X 0 |I 0 (5.143)
0 0 I-AI'|0 I

= rank | AT — \J l (C.AT (C,A)T | +dim(y.) + dim(y,) (5.144)

From Lemma 5.1,

rank | AT -1 | (CoAYT (C.A)T | = dim(a) (5.145)
if and only if
cal )
,Al is a detectable pair.
C,A )
(e C.A
In addition, one can easily show that , A is a detectable pair if and only
\ C,A
if ¢ ,A | is a detectable pair. Hence,

Cs

rank [ (®)T — AT I (Ze(0)T ] = dim(®) = dim(A) + dim(y.) + dim(y,) (5.146)

if and only if

c

,A| is a detectable pair.
Cs
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Appendix 5.C: Minimizing the Error Due to Unobservable
Disturbances

In Section 5.2.5, we state that the Ricatti Equation (5.38) converges to a positive
semidefinite symmetric solution only if Ker{C,(I — A)~1B;} C Ker{C.(I — A)~'By},
assuming Qaq has a full rank. When this condition is not satisfied, the optimal way
(in the sense of the Frobenious norm of the matrix relating disturbances to steady-
state estimation error) to guarantee the convergence is to replace d with d*, that is
the projection of d into the observable subspace Y. The projection of d into the space

Y can be easily calculated by the following formula:
d* = Pfd =Gl ;(Gy,4Gr 1) 'Gy,ud (5.147)

where G4 = C,(I — A)"'B,. Hence, replacing Qaq with Qag = PFQaa(PF)*
minimizes the error caused by unobservable disturbances and ensures the convergence

of the Riccatti Equation (5.38).
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Chapter 6

Conclusion and Recommendations

6.1 Summary of Contributions

This thesis was motivated by the fact that, in many chemical processes, the measure-
ments of the controlled variables alone do not provide an adequate basis for effective
feedback control. Some of the reasons included sampling delays, nonminimum-phase
characteristics of the process, poor signal-to-noise ratios of the measurements, and
operational unreliability of measurement devices. In the thesis, we have examined
two major tasks that are required to obtain a control system utilizing secondary mea-
surements for such processes: measurement selection and inferential control system
design.

In Chapter 3, we presented a general measurement selection methodology that can
incorporate in a unified manner all the factors that can influence the measurement
selection in significant ways. These factors included model uncertainty, signal-to-
noise ratios, measurement dynamics, etc. The underlying philosophy was to reduce
the number of candidates by eliminating those candidates for which no linear time
invariant controller exists meeting the required level of robust performance. Based on
this philosophy and using the Structured Singular Value theory, a number of numer-
ically efficient screening tools were developed. Some screening tools (called “general
screening tools”) can be used independently of the controller design methods to be

employed subsequently while others (called “design-dependent screening tools”) are
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tied to specific design approaches. Connections to the previously published measure-
ment selection criteria were clearly drawn and it was shown that the new measurement
selection tools has widened scope of applicability and generality. Applications of the
proposed tools to a multi-component distillation column and a high-purity distillation
column led to intuitive, phyically consistent results.

For inferential control system design, two different approaches were considered:
an output estimation based design approach and a state estimation based désign
approach. The output estimation based design approach involved two independent
design tasks: design of an output estimator and that of a feedback controller. While
it had the advantage of simpler design tasks and not requiring a full dynamic model
relating all external inputs to process variables, it had the disadvantage of lower
achievable performance. The state estimation based design approach, on the other
hand, had the advantage of yielding an optimal controller guaranteed by the separa-
tion principle, but had the disadvantage of always requiring a full dynamic model of
the process.

In Chapter 4, the focus was on the output estimation based design. Design of the
output estimator was discussed in two differgnt contexts: first, when one has access
to a full dynamic (or static) model, and then, when one has access only to records
of inputs and outputs of the estimator that are available from simulations or process
measurements. For the former case, multi-rate Kalman filter design and u-Synthesis
design were discussed. For the latter case, the estimator design problem was for-
mulated as a regression problem and suitability of various regression techniques was
examined. For design of the feedback controller, traditional techniques such as LQG,
IMC, and MPC were combined into a control technique that had nice algorithmic
properties as well as many operational merits such as straightforward constraint han-
dling and simple, intuitive on-line tuning. The new technique is clearly more general

and flexible than any of the traditional techniques since the new technique reduces
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to one of the traditional techniques under special assumptions on the external input
signals and/or under particular choices of design parameters. A heavy-oil fractionator
was used as an example application.

In Chapter 5, the main emphasis was on the state estimation based design. Gen-
eral state estimation techniques (e.g., multi-rate Kalman filtering) used by LQG and
finite receding horizon control used by traditional MPC were combined into a control
technique that can incorporate general disturbances and multi-rate sampled measure-
ments and has desirable operational characteristics. As in Chapter 4, the concept of
classical IMC was extended to equip the control system with on-line tuning param-
eters that have a direction connection with the speed of the closed-loop responses.
Application to a high purity distillation showed very promising results in terms of the

control system’s closed-loop performance and operational flexibility.

6.2 Suggestions for Future Work

For measurement selection, more work can be done under the new philosophy. They

include

e Developement of Tighter Screening Tools
Tighter necessary conditions for the existence of a controller achieving robust
performance imply screening tools that can eliminate more measurement candi-
dates before going to detailed analyses. In particular, development of a neces-
sary and sufficient condition for the existence of a robustly performing acausal
controller for general uncertainty block structures (not just two block cases)
would give a nice screening tool. In addition, extension of the methods to

include real parameter uncertainty would be beneficial.

e Number of Measurements

Clearly, more measurements imply higher achievable performance. However, in
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many cases, it may not be necessary to use all the available measurements. In
addition, most design methods will lead to performance degradation when too
many measurements are employed. It would be beneficial to identify such cases

and devise a general rule in choosing the number of measurements.

¢ Experimental Verification
Although the proposed measurement selection tools were tested on realistic
examples, experimental verification would greatly increase their fidelity. Distil-
lation columns seem to be good grounds to test these measurement selection

tools.
For inferential control system design, the following topics remain as challenges:

o Extension of u-Synthesis to Multi-Rate Sampled Data Systems
A major deficiency of the current method is that it cannot incorporate the
given uncertainty information explicitly. To extend p-Synthesis to multi-rate
sampled-data systems, H.-optimal synthesis problem and nonconservative u-

analysis problem for these systems must be resolved.

¢ Regression Based Design of Dynamic Estimators for General Multi-
Rate Sampled-Data Systems
The regression based estimator design techniques discussed in Chapter 4 is
applicable only when all the inputs to the estimator are available at a uniform
sampling rate. Extensions of the techniques to general multi-rate sampled data

systems would be beneficial.

¢ Stability and Robustness Analysis for Constrained MPC Controllers
With the new interpretation of MPC controllers as a combination of a linear
state observer and a nonlinear state feedback regulator, it may be possible to

derive stability or robustness conditions that are simpler than those currently

available [64].



243

¢ Experimental Verification
Even though simulation study showed that the closed-loop performance of the
proposed MPC controller was excellent both for ideal and nonideal operating
modes, evaluation of the technique for experimental systems would be beneficial.
This study can be done in conjuction with the experimental project suggested

for measurement selection.
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Appendix A

Model Predictive Control Using Step
Response Models

Abstract

We show that unconstrained Model Predictive Control (MPC) based on step response
models is identical to linear quadratic optimal output feedback under a particular dis-
turbance and measurement noise assumption. More specifically, MPC in its uncon-
strained form is equivalent to the optimal state observer (Kalman filter) designed for
step disturbances at the output and in the absence of measurement noise, plus linear
quadratic state feedback. Analytical results on the state estimation based on step
response models allow us to generalize the conventional MPC (which is widely ap-
plied in industry) to processes with integrators and to cases with white measurement
noise without introducing any additional complexity. For the case of an integrated
white noise disturbance at the output and white measurement noise, the optimal state
estimator is conveniently parametrized in terms of a real parameter vector whose di-
mension is equal to the number of outputs. A similar parametrization exists for the
case of a double-integrated white noise output disturbance. These parametrizations
are independent of model complexity and eliminate the need for solving a Riccati
equation of potentially very large order and provide natural on-line tuning param-
eters that can lead to the optimal estimator by proper adjustments. Our analysis

shows that the new state-estimation-based MPC is a direct extension of conventional
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MPC techniques such as Dynamic Matrix Control (DMC) and Internal Model Con-
trol (IMC). The new state-space interpretation also points out clearly cases where
the conventional MPC will not perform well regardless of tuning, in particular, the

cases where disturbances enter the output through slow dynamics.

A.1 Introduction

Model Predictive Control (MPC) has emerged as a powerful practical control tech-
nique during the last decade. Its strength lies in that it uses step response data which
are physically intuitive, and that it can handle hard constraints explicitly through on-
line optimization. Various MPC techniques such as Dynamic Matrix Control (DMC)
[15], Model Algorithmic Control (MAC) [58], and Internal Model Control (IMC) [24]
have demonstrated their effectiveness in industrial applications during the past ten
years [55,15,14]. One drawback has been that, because most MPC techniques are
developed in an unconventional manner using step response models, their generaliza-
tion to more complex cases has been slow. For example, MPC in its current form is
not applicable to integrating systems, which are common in chemical processes.
Lately, there have been efforts to interpret Model Predictive Control in a state-
space framework. This not only permits the use of “well-known” state-space theorems,
but also allows straightforward generalization to more complex cases such as systems
with noisy measurements. Clarke et al. developed what is known as “Generalized
Predictive Control (GPC),” based on parametric input-output models, and showed
its connection to LQ optimal control [12,13]. No discussion was given, however, on
how to extend the results to the cases of noisy measurements. Recently, Li et al.
presented a state-space interpretation of MPC based on step response models [42].
However, their generalization to systems with noisy measurements has introduced
significant numerical complexity such as the requirement to solve a Riccati equation

of potentially very large order (prediction horizon times the number of outputs).
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As will be shown in this paper, such additional complexity is unnecessary for most
industrial problems.

In this article, we establish a connection between standard MPC and linear
quadratic optimal output feedback. Specifically, they are shown to be equivalent
under the assumption of random-step (i.e., integrated white noise) disturbances at
the output and no measurement noise. Based on the interpretation of the MPC
controller as a state observer plus a state feedback regulator, we generalize the con-
ventional MPC to the case where white measurement noise occurs. Contrary to Li’s
work, however, our approach does not require solving a Riccati equation. Instead,
it is shown that the optimal state observer is conveniently parameterized through a
real parameter vector whose dimension is the same as the number of outputs. Each
element of the parameter vector lies in the interval (0,1] and therefore can be ad-
justed on-line. We further extend the results to processes with integrators. Finally,
it is shown that the adjustable parameters of the state observer directly affect the
speed of the closed-loop response. For stable systems with integrated white noise
disturbance at the output, the parameters play the same role as the time constants
of the IMC robust filter. We also identify the cases where an IMC controller can-
not be made equivalent to a linear quadratic optimal output feedback controller by
augmenting it with a simple low-pass filter. Several examples demonstrate that the
new state-estimation-based MPC is applicable to a wider range of control problems

without introducing further complexity.

A.2 Modelling the System

In this section, we demonstrate how the step response data can be put in a standard
state-space form for stable, integrating, or unstable systems. The representation for
stable systems is equivalent to that presented by Li et al. (1989). However, the

representations for integrating and unstable sytems seem to be new. Throughout this
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section, we assume that the stable modes of the system can be described through a
finite impulse response (FIR) model, or equivalently the step response coefficients of
the “stable part” of the system become constant after a finite number of time steps.
Such an assumption may not be perfectly satisfied in practice and an approximation
must be made by truncating the step response at a time step from which the outputs

change negligibly.
A.2.1 Stable SISO Systems

Let us suppose that the step response of a stable system is represented as

[51 Sy, v Sor S, S, ] (A1)

where the k" element represents the response of the output at time k to a unit
step input starting at time 0. Then, the step response model of the system can be

represented in the following standard state-space form.

Y(k) = MYk —1)+SAu(k —1) (A.2)
(k) = NY(k) (A3)
where

R = [GOhIR), G+ 11R), Gk +20R), gk +n BT (A4)

01 0 --- 0 O S

o0 1 .-« 0 0 S,
M = M°= yn; S = i (A5)

00 0 --- 0 1 Sn-1

00 0 -+ 0 1 Sn
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» 3

” “~

N =1[100-:00] (A.6)

Au(k) = u(k) — u(k — 1) represents the change in the manipulated variable at time
k. §(k) is the current process output. )(k) is a vector containing the dynamic
states of the system. Each dynamic state §(£|k) has a special interpretation: it is the
future process output at time £ assuming the manipulated variable does not change at
present or future (i.e., Au(k + j) = 0 for j > 0). The notation (%) is used throughout
to emphasize the fact that it is the output from the model, not from the true system.
The state-space equation is interpreted as follows: the new projection 52(k) is the old
projection Y(k — 1) shifted up/forward by one element plus the contribution made
by the latest input change Au(k —1).

A.2.2 SISO Systems with Integrators

Let us suppose that the step response of an integrating system is represented as

(S0 S v Sun Su (2Sw—=San) (BSe=25w0) -] (AT

Hence, the output increases with a constant slope starting at time n — 1. Then, the

model (A.2)-(A.3) holds for the integrating system when M* is replaced by M’ where

(010 - 0 0
001 -~ 0 0
M= > n (A.8)
00 0 .- 0 1
(00 0 - -1 2]]

Again, the new projection (k) is the old projection Y(k — 1) shifted up by one

element (the last element is computed asssuming the output maintains a constant
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slope) plus the contribution made by the latest input change Au(k —1).

A.2.3 Extension to Unstable SISO Systems

We note that the matrix M (M5 or M?) is in companion form [3]. Thus, if the last

row of M is [ me ™My -+ Ma_q ], then the characteristic polynomial of M? is
At = AV g AT i —mp =0 (A.9)
For stable systems (M), the characteristic polynomial and the eigenvalues are
AP ATl =0 A ==X =00, =1 (A.10)
For systems with integrator (M7),
AN A A2 o0 M == A =0 Ay = A =1 (A.11)

Unstable systems can be modelled in the same framework: the last row of M contains
the coefficients of the characteristic polynomial (whose roots include the unstable
poles). S contains the step response coefficients until the time when the stable modes
of the systems have settled plus m additional coefficients where m is the number of
unstable poles (excluding the integrator inherent in every step response model). For
example, recall that, for an integrating system, we used the step response coefficients

of one step beyond the time when the stable modes of the system have settled (i.e.,

t=n-1).
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A.2.4 MIMO Systems

For MIMO systems, we obtain the same form of model as before:

V) = MYk -1)+ SAu(k —1) (A.12)
g(k) = NY(k) (A.13)

The only difference is that §(k), §(k + 1|k), etc., are vectors and

0, 0 -~ 0 O
0 0 I, --- 0 0
M = M54 : s n for stable systems (A.14)
0 0 0 0 I,
0 ¢ O 0 I,
0 L, 0 0 0
0 0 I, 0 0
M = M'2 oL e el T : s n for integrating systems
0 0 0 0 I,
0 0 0 -I,, 2I,,
(A.15)
N =1[I,00..00] (A.16)
Sl " 7
S S12i 0 Stnei
S,
Soai S22i 0 Somai
s = ;oSi=| T el li=1,n (AL
Sn—-l
Sﬂ.y,l,t‘ Sﬂ.y,2,i et Sny;nuyi
Sn - -
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where Sy, ; is the i*P step response coefficient relating the m! input to the £*} output.
n, and n, are the number of inputs and outputs, respectively. Note that, with respect
to each output, the M matrix dynamics are completely decoupled. Mixing stable,

integrating, and unstable outputs requires only the appropriate selection of the last

n, rows of M.

A.2.5 Summary

Modelling via step response model is feasible only when the sytem has finitely many
nonzero impulse response coefficients or, equivalently, when the step response of the
system becomes constant after a finite number of sampling units. If the system
includes unstable modes (such as integrators), they can be expressed by augmenting
the step response model as demonstrated in this section. A step response model is
an intuitive, but non-parsimonious description of the system. If a state-space model
is desired for various reasons (e.g., more efficient on-line computation, etc.), one can
start with a step response model and then apply model reduction (e.g., balanced
realization) to obtain a lower-order model. This will be discussed in detail in a future

paper.

A.3 Modelling Disturbances and Noise

Disturbances and measurement noise are inherent in every physical system. In this
section, we discuss the type of disturbances and measurement noise that we treat in
this article. Admittedly, the disturbance/measurement noise descriptions introduced
here do not cover every physical system. The reason for restricting our discussion to
these particular disturbance/noise structures is that, under these disturbance/noise
descriptions, we can generalize MPC without introducing further complexity to the
technique. In addition, they are the simplest, yet practically meaningful distur-

bance/noise descriptions for feedback control purposes. As we shall demonstrate
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through several examples in Section A.9), many interesting, practically relevant con-
trol problems can be treated in the framework.
In this work, disturbances and measurement noise are described by adding white

noise to the step response model as follows:

V() = MY(k—1)+SAu(k —1) + Tw(k — 1) (A.18)
y(k) = NY(k) (A.19)
g(k) = y(k)+v(k) (A.20)

T is a matrix containing the step response coefficients of outputs to changes in dis-
turbances. Naturally, n should be chosen such that after n time steps, the output
responses to step changes in disturbances become constant when M = M or change

with constant slopes when M = M’. w(k) and v(k) are white noise with the following

covariance matrices:

Wi
E{w(k)w(k)T} = W= (A.21)
Wa,
|4
E{v(k)v(k)T} = V= (A.22)
e
Y(k) =| y(B)T y(k+1E)T - ylk+n—11k)T ] represents the dynamic states

of the system. Physically, y(£|k) represents the future process output at time £ as-
suming Au(k + j) = O;w(k +j) = 0 Vj > 0. g(k) represents the noise-corrupt
measurement of y(k).

In this article, we will concentrate on a particular choice of T, namely T =
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) 3

Ve ~

[0 0 -« 0 I, ]T. For stable systems (i.e., M = M%), the particular choice of T
makes the disturbance integrated white noise (i.e., random walk) added to the process
outputs (“type 1” disturbance). Note that, with the assumption of Au(k) =0 Vk >0
and y(0) =0, .
y(k-+) = 2 (s) (A.23)
i=
For integrating systems (i.e., M = MT), the disturbance is interpreted as double-

integrated white noise added to each output (“type 2" disturbance). In this case,

with the assumption of Au(k) =0 Vk > 0 and y(0) =0,

y(k+n) = Z E (A.24)

m=0 j=0

In some cases, disturbances for stable systems are better described by double-
integrated white-noise (i.e., random ramps) added to each output (“type 2” dis-
turbance). This is true when the disturbances enter the outputs through “slow”
dynamics (relative to the sampling time). For such systems, M can be chosen as
MY of dimension n + 1 instead of M®. Naturally, the matrix S should contain one
additional step response coefficient matrix such that S, = S,4;. Note that, with this
change, the augmented model is equivalent to (A.18)-(A.20) with M = M® except
that the disturbances are now interpreted as double-integrated white-noise at the out-
put as described by (A.24). In all cases, the disturbances at each output are assumed
uncorrelated (by requiring that W be a diagonal matrix). The measurement noise at

each output is white noise and is also assumed to be uncorrelated.

A.4 State Estimation

In this section, we develop the optimal state estimation technique for the step response

model (A.18)-(A.20); in other words, we will show how to estimate in an optimal
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fashion the dynamic states of the system )(k) on the basis of the measurements.

A.4.1 Optimal Estimator Form

For the system (A.18)-(A.20), the two-step optimal estimator (i.e., Kalman filter)
based on the measurements at time k is most conveniently expressed in the following
two-step form:

Model Prediction:

Ykl =1) = MP(k — 1|k —1) + SAu(k — 1) (A.25)

Correction Based on Measurements:

Y(k|k) = Y(klk — 1) + K {§(k) — §(klk — 1)} (A.26)

where

?(klk—1)=[g(k|k_1)? gk + 1k - 1)T ... gj(k+n——1|k—1)T]T (A-27)

§(£|m) represents the estimate of y(£) based on the measurements up to time m. The
notation (%) is used to emphasize the fact that it is the estimated variable. K is the

optimal filter gain that can be calculated from
K = SNT(NENT 4+ v)? (A.28)

where the n - n, x n - n, matrix ¥ is the positive-definite solution of the following

Riccati equation:

S - MEMT + MENT(NENT + V)INSMT —TWTT =0 (A.29)
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One noteworthy point is that, because of the specific model and disturbance/noise
assumptions we adopted, the Riccati equation decouples completely with respect to
each output. Hence, the optimal filter gain can be computed separately for each

output by solving n, reduced-order Riccati equations.

A.4.2 Stable Systems with “Step” Output Disturbances

It can be shown that, for a stable SISO system described through (A.18)-(A.20)
(where disturbances are integrated white noise at each output), the optimal filter gain

(A.28) computed from the Riccati equation (A.29) can be parametrized as follows:

>3

”~ Y

K=K’=[f f ... fI5; 0<f<1 (A.30)

Hence, the optimal filter gain is parametrized by a single real scalar f whose value lies

in (0,1] and is determined by the disturbance-to-noise ratio (W/V'). Indeed, for the

limiting cases

f—=0 for W/V-0 (A.31)

f—=1 for W/V - oo (A.32)

This parametrization is independent of model complexity (e.g., system order). Hence,
in practice, there is no need to solve the Riccati equation; instead, f can be used as
an on-line tuning parameter. Such simple parametrization of the optimal filter gain
is made possible by the fact that each state of the step response model has a specific
physical meaning: it is the future output assuming that all current and future inputs

to the process remain constant.
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The observer error dynamics (see Section A.T) is determined by the matrix

(0 1-f 0 0 -« 0 0
0 —f 1.0 --- 0 0
M—KNM = O _.f 0 .1 .0 0 (A.33)
0 —f 0 0 --- 0 1
0 —f 0 0 - 0 1]

The eigenvalues of M — KN M follow from the characteristic equation
M I A=14+f)=0=22 ==X =0\, =1—f (A.34)

Note that, in the case of no measurement noise (W/V — o0), a dead-beat observer

results (f = 1).
Extension to MIMO systems is trivial since the Riccati equation for the optimal

estimation problem is completely decoupled with respect to each output. Hence,

I(szEI°dia‘g{f1’f27""fny} (A35)

n
A

-~ Y

where T = | Ly I, -+ In, ]T and f; depends on the disturbance-to-noise ratio of
the ** output measurement.
A.4.3 Integrating Systems with “Ramp” Output Disturbances

It can be shown that for an integrating SISO system described through (A.18)-(A.20),

the optimal filter gain (A.28) computed from the Riccati equation (A.29) can be
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parametrized by two real scalars whose values lie in (0, 1]:

- - -

1 0

1 1
K=K'=f|1|+/| 2 | 0<fufi<l (A.36)
1 n—1
Again, for the limiting cases
faorfo—=0 for W/V -0 (A.37)
fa’fb —1 for W/V — 0 (A38)

We emphasize that the above parametrization is again independent of model complex-
ity. Hence, regardless of the step response model, f, and f, are completely determined
by the disturbance-to-noise ratio (W/V') alone. This implies that f, and f, can be
computed off-line by solving an appropriate 2 x 2 Riccati equation. In principle, f,
and f, can also be tuned on-line together for best performance, but this may present
some difficulty since it requires a two-dimensional search. Hence, we will look for a
way to combine two parameters into one. Note that the observer error dynamics is

determined by the matrix

0 1-f, 00 --- 0 0
0 (=fa—fo) 1 0 0 0

M- KNM = O (_f“'_%) 0 .1 ‘0 0 (A.39)
0 (~fa=(r=2)fs) 0 0 0 1
|0 (~fa=(n=1)fs) 0 0 -1 2
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The eigenvalues of M — K NM are calculated from the characteristic equation

NN A2 - fa=fo)+(1-fa))=0=

— — _ — 2
)\lz...z)\n_z___o; An-—-l,nzz ft21 fb:f:\/(z fa[.1 fb)

—1+fa

(A.40)

Note that, in the case of no measurement noise (i.e., W/V — o), a dead-beat
observer results (An,-1,An — 0). In general, 0 < f,,fy < 1 yields a complex pair
eigenvalues. We postulate to parametrize the observer gain through one adjustable
parameter by requiring that the observer poles A\,_; and ), be real and equal. This
rule leads to the following relationship between f, and f;:

Rule for Single Parameter Tuning of the Estimator

fr=2=fo=2/1~fa (AAl)

Hence, f, is the only adjustable parameter taking a value between 0 and 1. Our
numerical experience suggests that this f;/ f, relation and the resulting observer per-
formance are very similar to those of the optimal observer. An alternative to this
approach is to correlate f, and f, empirically by solving 2 x 2 Riccati equations for
various disturbance-to-noise ratios. Such calculation has to be carried out only once
since the parameters are completely determined by the disturbance-to-noise ratio
alone and are independent of model.

Again, owing to the decoupling property of the Riccati equation, extension to
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MIMO systems is trivial. Hence,

- - 0 - ~
fla flb

K=K'= S +| eI, I (A.42)

t_ fnya ] (n _ ]_)Iny L fnyb ]

fip can be determined from fi, using the rule (A.41), eliminating the need for a

two-dimensional search or for solving a 2 x 2 Riccati equation.

A.4.4 General Output Disturbance

T
For cases where T # { 00 - 0 I, ] , 1t seems that a simple parametrization
of the optimal filter gain does not exist. Hence, it is necessary to find explicitly the
positive-definite solution to the Riccati equation (A.29). One exception is the singular

noise case (i.e., V = 0). In this case, the optimal filter gain may be written as

K=[I T(T);' -+ Toa(Th);' Tu(Th)7? ' (A.43)

assuming that all eigenvalues of M — KN M lie inside the unit disk. Violation of
this assumption means that the filter gain computed by (A.43) leads to an unstable
state estimator. In order to calculate K through (A.43), it is also required that the
first step response coefficient matrix has a left inverse (T3);*. This is always satisfied
for cases where T; is a diagonal matrix (for 1 < i < n), since in these cases one can

always redefine the disturbances such that T; is nonsingular.
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A.5 Prediction

The dynamic states of the optimal estimators developed in the previous section rep-
resent the current and future outputs assuming all current and future inputs are zero
(i.e., Au(k + j) = 0 for j > 0). The predictive controller computes the best current
and future control moves based on the prediction of future outputs. Then future
outputs can be expressed in‘terms of current and (m — 1) future inputs through the

following equation:

I (k + 1k) = M, P(k[k) + ST AU(k) (A.44)
where
M, = | Liyxpn, O]M (A.45)
S, 0 e - 0 i ]
Au(k)
S, 5 o ... 0
L . Au(k +1)
sto= | T AU = : A.46)
S Spy o e S
Au(k+m —1)
Sy Spt vttt Spman | L -

The notation )Z’,"(k + 1]k) denotes the predicted future outputs up to time k 4 p for
constant inputs starting at time k + m, based on the measurements up to time k.
Hence, we allow the flexibility of setting the number of future input moves m (1 <
m < p) differently from the output prediction horizon p. The equation (A.44) provides
the “optimal” prediction of the future outputs based on the current measurements
since Y(k|k) is the optimal estimate of the states representing the current and future

process outputs assuming Au(k + j) =v(k+j+ 1) = w(k,j) =0 Vj >0 [3]. Note
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that it is optimal to develop the prediction with w(k+j) =v(k+j+1)=0 Vj >0

since they are white noises.

A.6 Feedback Control

We adopt the following quadratic optimzation objective (used in QDMC [25]):
i NPk +118) = R(k + DI + | AAU (B P (A7)

R(k+1) = [r(k+1),---,r(k+p)]7 is the future output reference vector. I and A are
weighting matrices that are chosen to be diagonal for most cases. This optimization

problem can be cast into the following least-squares problem:

rsy r o R(k +1) — M,Y(k|k )
o N RO -MIEE |
A 0 Inn, 0 }
L&k + 11k
= ( 1) (A.49)
0
The least-squares solution is
AU(k) = {(S)TTITS) + ATAY Y(S)TTTTE(k + 1]k) (A.50)
The curent control move is implemented:
Au(k)=[1, 0 --- 0]AU(K) (A.51)

The controller can be interpreted as a state-observer-based compensator (see Fig-

ure A.1) since

Au(k) = Kmpc(R(k + 1) — M, Y(kk)) (A.52)
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w(k-n)

State Feedback Regulator (double)

integrator

R (k+

State Observer

Figure A.1. Interpretation of the MPC Controller as a State-Observer-Based Com-
pensator

where

Kupo=[1I, 0 --- 0}{(STTTS! + ATA}YY(SM)TTTT (A.53)

A.7 Closed-Loop Relationships

We can derive the closed-loop relationships between the actual process output y(k)

and the system inputs w(k), v(k) and R(k) using the following relationships:

Y(k) = MY(k—1)+SAu(k —1)+ Tw(k —1) (A.54)
Y(klk) = (M = KNM)P(k = 1]k — 1) + K(k) + (I — KN)SAu(k {A)55)

(k) = NMY(k—1)+ NSAu(k —1) + NTw(k — 1) + v(k) (A.56)
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Au(k —1) = —KupeMpY(k — 1|k —1) + KppoR(k) (A.57)

Simple algebraic manipulations lead to

Y(k) B M ~SKppecM, Yk -1)
Y(k|k) KNM M - KNM — SKupcM, Yk -1k -1)
- ; w(k —1)
0 SK
+ MPo v(k) (A.58)
KNT K 0
- R(k)

Subtracting the second equation from the first one, we obtain

Y(k) | M~ SKupocM, SKupcM, Y(k —1)
Y(k) = Y(klk) | i 0 M—KNM || Y(k=1)=Y(k -1}k -1)
w(k —1)
T 0 SKurc
i (k)
| T-KNT -K 0

R(k)

T
The closed-loop transfer function from [wT(z) 37 (2) 7'37'(2) ] to g(z) can be

expressed as follows (the notation (*)(z) represents the z-transform of the signal):

M —-SKMpch SKMpch T 0 SKMPC ’LZ)(Z)
i(z) = 0 M-KNM|T -K 0 z5(z) | (A.60)
N 0 0 0 0 2R(2)

where

=C(zI - A)"'B+D (A.61)
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Remarks:

1. Closed-Loop Stability

The eigenvalues of the closed-loop matrix are those of M — KNM and M —
SKypcM,. Hence, the closed-loop system is stable if and only if all eigenvalues
of M — KNM (i.e., observer poles) and M — SKpypcM, (i.e., regulator poles)

lie strictly inside the unit disk.

o The observer poles are guaranteed to lie inside the unit disk from the

property of the Riccati equation.

e The regulator poles are functions of the tuning parameters (e.g., p, m, T,
A) and can be made to be stable by proper tuning. Under infinite in-
put/output prediction horizon (m = p = o), the MPC regulator is equiv-
alent to the LQ optimal regulator (computed from the Riccati equation)

and is therefore stable.

e The system cannot be stabilized by adjusting the filter parameters, when
the MPC tuning parameters are selected such that M — SKypcM, is

unstable.

2. Tuning for Sensitivity and Robustness

The closed-loop expressions provide insights and guidelines for selecting various

tuning parameters so that a desirable closed-loop response may be achieved.

e Note that the observer dynamics affect the closed-loop transfer function
from disturbance (w) and measurement noise (v), but not from the output
reference vector (R). On the other hand, the regulator dynamics affect all

closed-loop tranfer functions.

e The closed-loop transfer function from o(z) to §(z) is the complementary

sensitivity function which has a direct relevance to the closed-loop system’s
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sensitivity and robustness. Observer poles, which are adjusted through the
filter parameters, directly affect the complementary sensitivity function.
Hence, the adjustable parameters we introduced for the estimator can be

used to adjust the speed of disturbance response and system robustness.

3. Asymptotic Disturbance Rejection Property

The closed-loop system rejects “persistent” disturbances (steps for stable sys-
tems and ramps for integrating systems) with no offset as long as the ob-
server/regulator poles are placed in the unit disk. This can be seen from the
closed-loop relationship from w(k) to y(k): y(k) is simply expressed as a white-

noise passed through stable (closed-loop) dynamics.

A.8 Connection with Coventional MPC

In this section, we make a connection between the new state-estimation-based MPC
and the conventional MPC techniques such as Dynamic Matrix Control [15] and
Internal Model Control [24]. It is shown that the state-estimation-based MPC is a

‘direct extension.

A.8.1 Connection with DMC

In DMC, the prediction of the future process outputs is carried out through the fol-
lowing equations:

Model Update:

Y(k) = MY(k — 1) + SAu(k) (A.62)

Prediction with Correction Based on Measurements:

Vi (k+ 1]k) = M,Y(k) + Sy Au(k) + T(y(k) — §(k)) (A.63)
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where

P

7=17 = (I, I, I, 17 for type 1 disturbances (A.64)

?

TP=T = |21, 3I, (p+ DI, IF (A.65)

P
! 1
T .
- I, 2I,, pl, ] g for type 2 disturbances

For stable systems, the prediction from (A.62)-(A.63) is entirely equivalent to the
prediction from the state-estimation-based prediction equation (A.44) in the absence
of measurement noise (f = 1 for type 1 disturbances and f, = 1 and f;, = 1 for
type 2 disturbances). Hence, DMC does not perform noise filtering. For integrating
systems, the conventional MPC leads to an “internally unstable” closed-loop system
(the signal g(k) — g(k) can grow unbounded). This internal instability arises from
the fact that §(k) is not an estimate of the true output since it does not account for
the effect of disturbances. The new approach discussed in this paper does not suffer

from the same deficiency.

A.8.2 Connection with IMC

In the Internal Model Control (IMC) framework shown in Figure A.2, the feedback
signal §(k) — (k) is passed through a low-pass filter F' for noise reduction and robust-
ness; the filtered signal is then used as the input to the prediction equation (A.63) [50].
For stable systems with type 1 disturbances, the adjustable estimator parameter f
can be shown to play the same role as the IMC filter. More specifically, the prediction

from the optimal state estimation is equivalent to that from equations (A.62)-(A.63)
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when the feedback signal §(k) — §(k) is passed through the following IMC filter:

fiz
z—(1-f1)

F= (A.66)
z—(lnffn)

For stable systems with type 2 disturbances, in order to obtain the prediction equiv-
alent to that from the optimal state estimation, 7? in the prediction equation (A.63)

has to be chosen as follows:

F
F
FP
where
[ (fia+f16)22~ f1az 1
22—(2~fra=f16)z+(1- f1a)
K= (A.63)

(fryatfnys)z?—fnyaz

L zz—(2_fﬂyd'fnyb)2+(l“fnya)

(frat2f18)22—(fra+f10)z
22—(2-fra=f16)2+(1— f1a)

F, = .. (A.69)

(fnyo+2fnyb)22"(fnya+fnyb)z
L 22_(z”fnya"fuyb)z+(l_fnya) |

(A.70)

{(f1a+pf16)22=(fra+(p—1)f16)2
22~(2- fra— f1p)2+ (1~ f1a)

F, = e (A.71)

(fnya+anyb)z2-(fnya+(1?"1)fngb)z
22‘(Z—fnya"'fnyb)z'f'(l"‘fnya)

In general, there is no F such that

Th =Th - F (AT2)
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The exceptions are when p = 1 and when f;, = fi; V¢ (this relation does not hold
for the optimal estimator in general). When p = 1, the following IMC filter gives the
equivalence (i.e., T/, = T - F):

(fratf18)2%—fraz
22=(2= f1a— f16)2+ (1= f1a)

oz
T 922 -1

(A.73)

(fnya’f’fnyb)ZQ—fnyaZ
;‘r"(z"fnyo—fnyb)z*’(l"'fnya)

This result implies that, for systems with type 2 disturbances, the IMC filter that
will give the same performance as the linear quadratic optimal output feedback or
new state-estimation-based MPC will be generally quite complex. Indeed, in order

to establish the equivalence, F' must be chosen as

F=(Q)7'Qu, (AT4)

where (Q);! denotes a right inverse of the IMC controller @ (with R =0) and Qpy, is a

dynamic operator relating the input w; to the output w, through following equations:

V) = MYk—-1)+SAu(k —1) (A.75)
Au(k) = Quw,(k) (A.76)
wo(k) = —Kmpo(MpY(k) + Tf,wi(k)) (A.T7)

Such an F will be extremely complex in general. Exceptions are minimum-phase
systems (i.e., systems that have no zero outside the unit disk and are of relative
degree 1) for which choosing p = m = 1 yields the MPC regulator that is equivalent
to the linear quadratic optimal state feedback regulator (assuming zero input weight

has been used).

The IMC design philosophy is to make the IMC controller (Q in Figure A.2) to be
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close to the inverse of the plant model (P~1). This assures that the complementary
sensitivity function is approximately F. In our framework, we can take a similar
approach: Namely, we may abandon the input weighting completely (i.e., A = 0)
and use the filter parameters (having a direct connection to F') as the only adjustable
parameters for robustness. For minimum-phase systems with type 1 disturbances, it
can be shown that the closed-loop transfer function from the output disturbance d(z)

to the output 3(z) for A = 0 is as follows:

11
z—{1~ f1)
Foua=1- (A.T8)

,zn
z=(1-fn)

Hence, for minimum-phase systems, the state-estimation-based MPC with zero input
weighting gives a first-order closed-loop response of time constant —7'/In (1 — f;). For
minimum-phase systems with type 2 disturbances, the closed-loop transfer function

from the output disturbance d(z) to the output §(z) for A = 0 is as follows:

(fiatfib)z=fra
222~ fra~f18)2+(1 - f1a)

Foa=1-— ... (A.79)

(f’lya+fnyb)z—fnya
22-(2_fﬂy¢—fnyb)z+(1—fnya)

With the tuning rule (A.41), the state-estimation-based MPC with zero input weight-
ing gives a second-order closed-loop response of time constants —7'/ In /1 — f;. This
IMC-based tuning approach simplifies controller tuning considerably; however, for
“ill-conditioned” MIMO systems such as a high-purity distillation column, the input
weighting may serve as a useful tuning parameter since it can prevent the control

system from being “directionally sensitive” [37].
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Q = IMC Controller w(k-n) (d(;uble)
integrator
R x+1) E 11w Au(k) + y (k)
: Kwec plant >

M,

IMC Filter

Figure A.2. Block Diagram of Internal Model Control

A.9 Numerical Example

A.9.1 Example A: Distillation Column Base Level Control

Problem Description

The behavior of the liquid level in the column base of a distillation column can be

described as follows:

y(s) = Pu(s) + d(s) (A.80)

where u(s) represents the steam input (manipulated variable) and d(s) represents the
effect of various disturbances on the liquid level. The following model form was found

to describe the behavior of many industrial columns adequately [8,50]:

p =11 9c (A.81)
S
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Hence, it is an integrating system and exhibits inverse response behavior. The ob-
jective of the closed-loop control is to maintain a constant liquid level in the face of

disturbances d. In this example, we treat the following two types of disturbances:

d(s) = dj= -};P(s) Step Disturbance at the Input (A.82)
d(s) = do= :—2 Ramp Disturbance at the Output (A.83)

In practice, the dead-time 8 is often not known exactly. To investigate the robustness
of MPC controllers to dead-time uncertainty, we choose the following transfer func-

tions as the model and the real plant:

Model
L1
P=—-(1-2¢7) (A.84)
Plant
1 -
P = Po = ;(1 —2e 3) (A85)
P = P_= %(1 —2e7%%) (A.86)
P=pP= %(1 _ 9¢150) (A.87)
(A.88)

When the plant is described by Py, the model matches the plant exactly. When the

plant is described either by P_ or by P,, the model has a dead-time error of 1/2

minute.

Results from State-Estimation-Based MPC

Since the system is an integrating system with type 2 disturbances, we used the state-

estimation technique described in Section A.4.3. The following MPC parameters were
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used:

Sampling Time: 0.1 minute

¢ Number of Step-Response Coefficients (n): 50
e Prediction Horizon (p): 50 sampling units

e Number of Calculated Input Moves (m): 10 sampling units

Input Weighting: 0

Output Weighting: 1

The filter parameter f, was varied to examine its effect on the robustness of the
resulting closed-loop system and f, was set according to the single parameter tuning
rule (A.41). The closed-loop responses to the disturbances dy and do (starting at
t=1) for P = Py, P-, and P, are shown in Figures A.3 - A.5 respectively. In order to
stabilize the closed-loop system with 1/2 minute delay errors (P = P_or P = P.), the
parameter f, had to be chosen as low as 0.1 (choosing f, = 0.2 resulted in instability
for P = P,). The simulations show that the filter parameter f, indeed determines

the speed of the closed-loop response and can be used to affect the robustness of the

closed-loop system.

A.9.2 Example B: SISO System with “Slow” Disturbances

Problem Description

Let us consider a single-input/single-output system described by

100
y(s) = oy 1u(s) + d(s) (A.89)
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and subjected to the following disturbances:

d(s) =

III

100s +1
d(s) = dg(s)

1
( 00 ) % Disturbance A (A.90)
! Disturbance B (A91)
s

Hence, Disturbance A is a step disturbance added to the output through “slow”

dynamics and Disturbance B is simply a step disturbance added to the output directly.

Results

We use the state-estimation-based MPC to minimize the effect of the disturbances
on the output. The sampling time, prediction horizon, number of input moves, and
input/output weights are chosen as in Example A. We compare the results obtained
from using two different types of state estimators: a Type 1 estimator for which
the disturbance is assumed to be integrated white noise (M = M5) and a Type 2
estimator for which the disturbance is assumed to be double-integrated white noise
(M = MT). Figure A.6 shows the closed-loop simulations of the output to Distur-
bances A and B (starting at t=1) under the MPC controller with a Type 1 estimator.
Figure A.7 shows the same closed-loop simulations when the Type 1 estimator is
replaced by a Type 2 estimator. Although the MPC controller with the Type 1
estimator rejects Disturbance B (a step disturbance at the output) adequately, the
responses of the output to Disturbance A (a “slow” disturbance) with the same con-
troller are poor. The settling times for all values of f are unacceptably long. This is
because an MPC controller with a Type 1 estimator projects the future outputs as-
suming the disturbance remains constant in the future; this is clearly not justified for
Disturbance A. On the other hand, for the MPC controller with a Type 2 estimator,
the responses of the output to Disturbance A are completely adequate. This improve-

ment is due to the fact that an MPC controller with a Type 2 estimator projects the
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future outputs assuming that the slope of the disturbance remains constant in the
future. For disturbance A, this assumption is well justified for the chosen prediction
horizon. While the responses of the output to Disturbance B are not as good as those

obtained for the Type 1 estimator, they are also quite acceptable.

A.10 Conclusions

In this article, we presented a state-space formulation of Model Predictive Control.
Based on state-estimation techniques, we showed that MPC can be generalized to
integrating systems and systems with white measurement noise without introducing
additional complexity to MPC. We showed that under simple, but meaningful distur-
bance/noise assumptions, the special structure of the step response model allows us
to parametrize the optimal estimator in terms of a real parameter vector that can be
used for on-line tuning. The state-space perspective also led to very simple tuning
rules for stability and robustness: namely, the MPC controller can be interpreted as
a state-observer-based compensator and its stability, sensitivity and robustness are
determined by the observer poles (which can be determined directly by the introduced
adjustable parameter) and regulator poles (which are determined by prediction hori-
zon, input weighting, etc.). We also made a connection between the new technique
and the traditional MPC techniques such as Internal Model Control and Dynamic
Matrix Control. Several examples demonstrated that the new state-estimation-based
MPC can treat a wider range of problems for which the conventional techniques either
would not have been applicable or would have led to poor results regardless of tuning.
Acknowledgement: Support from the National Science Foundation and the
Petroleum Research Fund administered by the American Chemical Society is grate-

fully acknowledged.
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Appendix B

Case Study: A High-Purity Distillation
Column

Abstract

The typical literature problems studied in robust control involve the design of a con-
troller for a system with specific actuators and sensors. However, the success of most
process control applications depends on more than just controller design. For exam-
ple, a correct control structure selection is as important to the successful closed-loop
control as the controller design. In addition, various operational aspects, such as
constraint handling and sensor/actuator failure tolerance, that are often neglected in
the literature, can be critical. In this article, we bring together a number of robust
control theories to develop systematic methods for control structure selection and
controller design. As case study, we use a high purity distillation column separating
an ideal binary mixture. Distillation can benefit immensely from tight, reliable con-
trol; however, the control is complicated by many practical issues such as large model
uncertainty, distinct high and low gain directions, and long sampling delays and op-
erational unreliability of the composition measurements. Even though the potential
benefits of robust control for distillation control are high, its application to indus-
trial distillation columns has been virtually nonexistent. It is demonstrated in this
work that the Structured Singular Value Theory provides a convenient framework to

develop a pratical, systematic control structure selection method. The control struc-
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ture selection method is applied to the sensor selection problem for the high-purity
distillation column. In addition, robust control and optimization techniques are com-
bined into a control technique that incorporates practical aspects such as constraint
handling and actuator/sensor failure tolerance as well as robustness. Through the
application to the high-purity distillation column, the technique is shown to be an

effective practical solution to complex process control problems.

B.1 Introduction

The typical robust control problems studied in the literature are stated as follows:
Design a controller for a given system with specific sensors and actuators such that
performance specifications are met despite model uncertainty. However, this alone
does not fully address the problem of designing a successful robust control system in
practice. One of the reasons is that the success of most process control applications
depends on more than just controller design. For example, control structure selection
which refers to the choice of actuators/sensors and their pairing is as important as
control system design. A wrong choice of actuators/sensors may put fundamental lim-
itations on the system’s closed-loop performance that cannot be overcome by “smart”
controller design. Even the problem of designing a control system for a chosen set of
actuators and sensors is not as simple in practice as most control literature states.
“Robust performance” (i.e., guaranteeing a certain performance level for all plants
within the prescribed uncertainty set) is rather an ill-defined concept in practice, since
rigorous, yet nonconservative modelling of system uncertainty is virtually impossible
for most complex practical systems. In addition, performance of a control system
in practical applications is judged upon many other aspects than mere robustness.
The control system’s ability to handle hard process constraints and actuator/sensor
failures is as important as its robustness to model uncertainty.

Distillation column control serves as a good industrial example to elucidate this
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point. Distillation is a unit operation in chemical engineering that can benefit signif-
icantly from improved control. Improved product composition control enables distil-
lation columns to be operated at a point closer to the economically optimal operating
point leading to significant energy savings and higher product yields. Application
of robust control theories can potentially bring significant advances in the state-of-
the-art of distillation control. However, even after a decade of numerous theoretical
advancements in robust control, control structure selection decisions for industrial
distillation control are still carried out in an intuitive, ad hoc fashion rather than sys-
tematically. In addition, most industrial columns are currently controlled by single-
loop PID controllers. The main reason for the lack of application of elegant robust
control theories is that the control problem for distillation columns is far too complex
for most theories to be applied directly. Firstly, there are at least five actuators and
as many temperature measurements as the number of trays available for the prod-
uct composition control. From these actuators and sensors, an appropriate subset
must be selected since three of the actuators must be used for inventory and pressure
control and using all temperature measurements results in an unnecessarily complex
and expensive control system. Secondly, modelling the uncertainty rigorously and
parsimoniously including all nonlinear effects is practically impossible for distillation
columns. Without a rigorous uncertainty model, application of complex robust design
methods is not justified. Thirdly, the actuators naturally have constraints on their
magnitudes and rates of change. In addition, there may be some hard constraints
imposed on the outputs for safety reasons. Lastly, measurements of the key controlled
variables, the product compositions, have significant delays associated with them and
are operationally unreliable. The control system must be able to incorporate multi-
rate (MR) sampled measurements, that is “fast-sampled” secondary measurements,
the tray temperatures, and “slow-sampled” primary measurement, the composition

measurements. In addition, it should maintain performance integrity in the face of
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frequent actuator/composition-measurement failures.

In this work, we bring together a number of robust control theories developed
during the past decade and tailor them into a unified control structure selection and
control system design methodology that is applicable to practical problems. As a
secondary objective, we wish to identify some of the shortcomings of available robust
control theories in terms of their practical applicability and tools that would help
bring these theories closer to practical problems. As case study, we use a high-purity
distillation column that has been previously studied by many investigators in the
context of robust control [60,57,41]. First, we apply a general, systematic control
structure selection methodology based on the Structured Singular Value (SSV) The-
ory [48,41,39] to the sensor placement problem for the distillation column. We show
that, even when the complete knowledge of the system uncertainty is not available,
the SSV Theory can be useful in reducing the number of control structure candidates
and obtaining insights that are helpful in eventually identifying a proper candidate.
Next, we show how robust control and on-line optimization techniques can be com-
bined and tailored into a design method that addresses relevant issues such as model
uncertainty, constraints, measurement/actuator failure tolerance, and multi-rate sam-
pling. The control system design method proposed is by no means “the answer” to
all practical robust control problems. It should be viewed rather as a current, prac-
tical answer to complex practical control problems such as the composition control
problem in distillation columns. By presenting what we believe is the best current
solution to these control problems, we hope to encourage theoreticians to conduct

more research on aspects of robust control that would help narrow the extant gap

between theory and practice.
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B.2 General Framework

B.2.1 Description of Distillation Column and its Control Problem

The distillation column we study in this paper is depicted in Figure B.1(a). The
column has 41 stages including the reboiler and the condenser, and separates an ideal
binary mixture into two high-purity (99% molar composition) products. For details
about the column’s operating conditions and modelling assumptions used, readers are
referred to Appendix A of Morari & Zafiriou [50]. The main disturbances entering
the column are those in the feed since its flowrate (F') and composition (zr) can
change significantly according to the conditions of other plant units. The objective of
distillation control is to maintain the product compositions at a specified operating
point despite these disturbances. The available manipulated variables are reflux (L),
boilup (V), distillate flow (D), bottom flow (B), and overhead vapor flow (V7). Three
of these variables must be used for the condensor/reboiler inventory control and
column pressure control. In order to simplify the presentation somewhat, we assume
in this paper that the variables D, B, and V7 are used for the condenser/reboiler
inventory and pressure control respectively, and the variables L and V are to be used
for the composition control. This so called “LV configuration” is the configuration
that is most commonly used in industry. For the purpose of feedback control, six
temperature measurements are available: the temperatures of the reboiler (T3), of
Tray # 7 (T7), of Tray # 17 (Ty7), of Tray # 25 (Ts), of Tray # 5 (I3s), and
of the condenser (Ty;). These measurements are sampled every minute (which is
adquate for the desired closed-loop bandwidth) and are subjected to measurement
noise (v,) arising from the column pressure variation and other sources. Among
the six temperatures, an appropriate subset is to be selected. In addition to the
temperature measurements, measurements of the product compositions are available

through composition analyzers. However, the sampling rates and delays for these
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Figure B.1. Schematic Representation of High-Purity Distillation Column and its
Control Prolblem

measurements are too long (both 10 minutes) and their operational reliability too
low to be effective for the desired closed-loop control by themselves. Figure B.1(b)
summarizes the control problem in terms of block diagram. For all analyses and
design in this paper, we use a 13th order discrete-time linear model derived from
the full 41st order continuous-time linearized model through balanced realization and
standard discretization techniques [46,3]. The validity of these models were checked

carefully through frequency-domain analyses and simulations.
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B.2.2 Uncertainty Modelling

Modelling system uncertainty rigorously and nonconservatively for practical systems
is a very difficult task. Currently, there exists no general methodology that enables
engineers to carry out this important task. Traditionally, researchers have suggested
a conservative approach (overmodelling) to modelling system uncertainty so that
“robust performance” indeed guarantees the specifed performance level. However, our
experience with complex chemical systems such as distillation columns and packed-
bed reactors has convinced us that it is almost impossible to obtain a practically useful
uncertainty description that encompasses all system/model mismatch including the
effects of nonlinearity [9]. Hence, in this work, we take the approach of “parsimonious”
uncertainty modelling, that is we model only the uncertainty that we believe exists and
is important for closed-loop stability and performance. The uncertainty structure we
chose is shown in Figure B.2. A, represents the structured multiplicative uncertainty
on the inputs; it can be interpreted as relative errors on the actuator signals L and
V. Ao is the structured multiplicative uncertainty on the outputs; it is interpreted
as relative errors on the sensor signals. The precise mathematical nature of these

uncertainty blocks will be given in the following section. The particular uncertainty
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structure was chosen for the following reasons:
e Such types of uncertainty always exist, especially in distillation columns.

e They are important for closed-loop stability and performance since they lie

within the feedback path.

e The multiplicative input uncertainty was shown to be the dominating uncer-
tainty for LV high-purity distillation columns because of their ill-conditioning

property [60].

For control structure selection, the “parsimonious” uncertainty modelling approach
is clearly justified since control strucuture selection involves eliminating undesirable -
candidates for which a controller achieving “robust performance” cannot be found for
the given uncertainty structure and level. An overly conservative uncertainty descrip-
tion will either leave no viable candidate or eliminate some of the desirable candidates.
For control system performance analysis, we should take “robust performance” as a
minimum necessary robustness requirement. The closed-loop performance of a control
system should be ultimately judged through simulation and actual implementation.
This is true for almost all complex process control problems, where rigorous modelling

of uncertainty is difficult.

B.2.3 Structured Singular Value Analysis

Since the objective of the paper is not to present a full account of the Structured
Singular Value (SSV) Theory, our discussion on the subject will be brief and some-
what incomplete. For a complete and rigorous discussion on the subject, readers
are referred to Doyle [17]. We will develop this paper in the discrete-time setting;
however, all theories presented in the paper (except for the finite receding horizon
control technique) have their continuous-time counterparts. The SSV analysis is not

applicable to multi-rate sampled-data systems without introducing approximations
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Figure B.3. Putting the High-Purity Distillation Column Control Problem Into SSV
Framework

[50] or conservativensss [16]. Hence, we use the SSV analysis to analyze the control
systems involving the secondary measurements only. In the discrete-time setting, we
can manipulate the block diagram of Figure B.2 and express the closed-loop system
as a Linear Fractional Transformation (LFT) of G and A,, as shown in Figure B.3.
G is the pulse transfer function model relating the input vectors (w;, d, v, and u) to
the output vector (w,, y., and y,). A, is a structured norm-bounded perturbation to

G that belongs to the set BA, defined at each frequency as follows:

BA, = {A,€Aq:5(4,) <1} (B.1)
Ay
A, = A €C, 1<i<n (B.2)
A

¢ is the number of actuators (2 for this problem) plus the number of temperature

measurements used. W, and W, represent user-chosen frequency weighting functions
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that are used to normalize the external input and controlled output signals. The
standard definition of “robust performance” is that the “worst-case” induced ¢; norm
(i.e., the energy norm) of the closed-loop operator from the weighted external input
vector d' to the weighted output error vector y. is less than one. Mathematically,

robust performance condition is expressed as follows:

T (Bu, K)lle,

AEBaDACu d'ety Hd'le

<1 (B.3)

where Fya(Ay, K) is the closed-loop operator from d’ to y.. Doyle [20] showed that,
when the closed-loop system is nominally stable, robust performance can be tested
conveniently through the following frequency-by-frequency condition on a function

called p (see Doyle [17] for definition of p):

an (N + NuzK(I = NpK)'N| ) <1 0<w<w, (B4
u
Ap
where
Ap = {A:A gdmeixdmid}) (B.5)
I Gun G I
Ny = (B-G)
W, 11 Gn Ga Wa
N12 = (B?)
] Wp 11 G23
o I
Ny = G31 G37, ] (BS)
I W,

Ny = Gs (B.9)
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and w, is the Nyquist frequency corresponding to the sampling time of the secondary
measurements (i.e., w, = %). In this work, we use instead the following robust
performance condition based on a very “tight” upperbound (exact for Ay involving
less than 3 blocks and close within 98-99% for most problems) of p:

inf 5{D (Nu+ NuK(I -~ NpK)™ Ny

D'} <1l 0<w<w, (B10)
DEDrp

z:cj“"n

where

Drp = {dla‘g [dla oy dn, Idim{y{;}] : dj € R+} (Bll)
B.3 Control Structure Selection

In this section, we present a control structure selection methodology based on the SSV
theory and its application to the high-purity distillation column. First, we propose
a general approach to the control structure selection problem and propose screening
tools that can be used in efficient elimination of undesirable candidates. Next we

introduce a simple robust control system design method called “Inferential Loop-

Shaping,” and screening tools that can help further reduce the number of candidates
in the context of this particular design approach. The results obtained from applying

these screening tools and the design method to the high-purity column are presented.

B.3.1 General Approach to Control Structure Selection

The approach we propose for control structure selection is illustrated in Figure B.4.
Control structure candidates consist of all possible combinations of the available ac-
tuators and sensors. Owing to the combinatorial nature of the problem, the number
of candidates is often very large. For the distillation column under consideration,
there are 10 different actuator combinations (since 2 actuators must be selected out

of 5) and 63 different sensor combinations (since the number of sensors is not fixed).
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This leads to 630 control structure candidates. Naturally, a method to reduce the
number of candidates before applying detailed analyses will be of significant practical
value. Since we formulated “robust performance” as a minimum necessary robustness
requirement, the first proposed step is to eliminate those candidates for which a con-
troller achieving the “robust performance” does not exist no matter what controller
design method is used. The criteria that can be used to accomplish this screening
will be referred to as “general screening tools.” This screening process leaves candi-
dates for which a control system with satisfactory performance may potentially exist.
However, this alone may not reduce the number of candidates to a low enough level.
Also, it is not clear if control design methods available to the engineer can lead to a
controller achieving the “robust performance.” Hence, an additional screening may
be carried out subsequently in the context of a chosen design approach. That is,
one may choose to further eliminate those candidates for which the particular design
approach under consideration does not yield a controller achieving “robust perfor-
mance.” The criteria that can be used under a particular design approach will be
called “design-dependent screening tools.” If the screening under a particular design
approach does not leave any viable candidate, one has to assume a more complex,
involved design approach and repeat the screening process. Once the number of can-
didates is reduced down to a low enough level, one can apply more detailed analysis

methods or evaluate each candidate through the actual control system design and

simulation.

B.3.2 General Screening Tools

Due to the space limitation, our discussion on the theoretical aspects of the proposed
screening tools will be rather brief. Readers are referred to Lee et al. [39] for de-
tails. In order to facilitate the exposition, we limit our discussion to open-loop stable

systems. However, all screening tools presented are applicable to open-loop unstable
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Figure B.4. Schematic Representation of Proposed Control Structure Selection Pro-
cedure

systems as well.

Since the objective is to eliminate those candidates for which a controller achieving
“robust performance” does not exist, it is natural to use as screening tools necessary
and sufficient or necessary conditions for the existence of such a controller. Invoking
the Youla parametrization of all stabilizing controllers (K € {K : K = —Q(I +
N22Q)™',Q € RHw}) and substituting it to the condition (B.10), a necessary and
sufficient condition for the existence of a robustly performing controller for a particular

control structure can be stated as follows:

. . _ -1
QEI%%OO Ossilspwn D(Jﬁ-:fv,p g [D(w) (N11 + N12Q N2y, jon D (w)] <1 (B.12)
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The restriction of Q € RH., implies that it should be analytic outside the open unit
disk. Unfortunately, the coupling of the parameters ) and D makes the condition
(B.12) a nonconvex optimization and there is currently no general method of checking
it. Hence (B.12) is not a viable screening tool.

At this point, let us consider dropping the causality requirement on @), that is we
allow the controller parameter @) to be acausal meaning the current/future inputs of ¢
can affect its past outputs. With relaxation of the causality requirement, the condition
(B.12) can be transformed into the following frequency-by-frequency condition:

QiéleK Dierg,, F(D(N1y 4+ N12QNg1)|,zeion D7) <1 0 S w < w, (B.13)

The superscript {-}¥ in CX implies that it is the set of complex matrices of size
dim{u} x dim{yn}. By reparametrizing Q such that the matrices pre- and post-
multiplying Q in (B.13) are both unitary, the condition (B.13) can be written as

Qigk o F(D(Nu + Ni2QNpy)zeion D) <1 0 Sw < wp (B.14)

where le = N12(N1*2N12)-1/2 and N21 = (N21N2*1)_1/2N21. le and NQ] are both
unitary matrices for all w. The following theorem shows that the condition (B.14)
can be checked through two separate conditions each of which is a convex optimization

problem.

Theorem B.1 Let R € C**™, U € C**" and V € C**™. Suppose U*U = I,,VV* = I,
and Uy € =7 gnd V, € C*=9%" qre chosen such that [ U U, } € C™*" and

14
€ C™*" are unitary. Then
Vi
. . _ -1
QélclfxtDlen‘grpa(D(R +UQV)D™H < « (B.15)
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if and only if 3X € D,, such that

MazVL(R"XR - *X)V}] <0 (B.16)
and
AazlUT(RX'R* — X NU, ] <0 (B.17)
Proof See Lee et al. [39]. n
Comments:

1. (B.16) and (B.17) are convex with respect to X and X! respectively. Each
of the two conditions is a necessary condition for the existence of a controller
achieving robust performance and can be checked through standard algorithms

such as cutting plane method.

2. Checking the conditions (B.16)-(B.17) together is more difficult and is not
resolved at the moment except for the two block cases where X can be

parametrized in terms of a single positive scalar.
Using the results from Theorem B.1, we now propose the following screening tools:
General Screening Tool #1 Eliminate the control structures for which

A Az [(N21) L(NF, X Nyy = X) (W)} Lsesn | 2 0 for some w € [0,w,]
rep
(B.18)

General Screening Tool #2 FEliminate the control structures for which

A Aoz [(N12) L (Vi X N3y = X)(B12) L |eeion] 2 0 for some w € [0, 0]
(B.19)
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General Screening Tool #3 (2 Full-Block Cases) Eliminate the control struc-

tures for which

Tro(w) () Trr(w) = @ for some w € [0, w,] (B.20)
where
. .| sl
TFC’(‘U) = s € R-{- . /\maz (N21).L Nu Nll
I
sl -
- (N21)1 <0 (B.21)
I ‘
Z=—elwn
T \% tl *
Trr(w) = {t€ Ry : Amao |(N12)1 | M1 Ni
I
tl .
- (N12) L <0 (B.22)
I .

B.3.3 Design-Dependent Screening Tools for Inferential Loop-
Shaping

Inferential Loop-Shapiing

Inferential Loop-Shaping (ILS) is an extension of the multivariable loop-shaping de-
sign technique to systems with secondary measurements. We present the technique
briefly, and readers are referred to Lee & Morari [41] for details.

In the standard multivariable loop-shaping, frequency-domain bounds on the max-
imum singular values of the sensitivity and complementary sensitivity functions that
guarantee robust performance are derived and used for controller design [20]. Such
bounds cannot be used for inferential control problems in general since the sensitiv-

ity function does not have the same relevance to closed-loop performance as in the
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Figure B.5. “Pseudo-Complementary Sensitivty” Function for Inferential

Loop-Shaping

standard loop-shaping problems. Hence, a natural extension of the standard loop-
shaping technique to systems with secondary measurements is to use the bounds on
those functions that play similar roles as the sensitivity and complementary sensitivity
functions in the standard loop-shaping problems. Figure B.5(a) shows a parametriza-
tion of the controller K in terms of H that has similar implications to closed-loop
stability and performance as the complementary sensitivity function does. Note that
H is the closed-loop transfer function from the setpoint r to the controlled variable
ye and S = I — H is the closed-loop transfer function from G, _4d to y.. The following
theorem enables the calculation of the “tighest” bounds on the maximum singular

values of S and H guaranteeing robust performance.

Theorem B.2 Let M € C™*™ be written as

M = Ry + RioL(I — R2L) 'Ry (B.23)

where

Rii € C™™ Rip € C™P, Ry, € C**™, Ryy € CF*? and L e CP** (B.24)
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Define
fer) [ o } (B.25)
L) = K .
Arp cLRa  cpRa
AL
where
A
¢ ¢
Arp = (A:A= ;Zm,-=m doni=n, A;eC™*™
i=1 =1
AV
Ap = {A:Aecmt} (B.26)
cp € Rt
Assume
pagp(Ri) <1 and det(l — RpL) #0 (B.27)
then
pagp(M) <1 (B.28)
if
g(L) < ¢}, (B.29)
where ¢}, is that smallest ¢y, that solves f(cr) = 1.
Proof See Skogestad & Morari [59]. |

cj, can be easily calculated through a simple search procedure such as bisection method

since f(cr) is a non-decreasing function of c¢;. The robust performance bounds on

o(S) and &(H) are derived using Theorem B.2 by setting L = S and L = H respec-

tively. The key point is that, since S and H both parametrize K, robust performance

condition is satisfied if either of the bounds is satisfied at each frequency. In general,

the bound on &(S) is applicable in the low up to cross-over frequency region and the
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bound on &(H) is applicable in the cross-over to high frequency region.

One potential problem is that a right inverse of G, , and a left inverse of G, 4
may not exist. In addition, the usefulness of the bounds for control system design is
somewhat limited when (G,,,);! or G, 4(G,,s);" are non-proper and/or have poles
outside the unit disk. In this case, the stability and causality of H does not necessarily
imply the internal stability and causality of the controller K. Hence, H is limited
to those functions that yield stable, proper (Gy. )7 ' HGy 4(G,y,qa)7 ', making a direct
design of H difficult. We can overcome this difficulty by replacing (G,..);' and
Gyed(Gy,a)7! with Qrmc and Epye that represent the IMC controller [50] and the
IMC estimator [41], as shown in Figure B.5(b). @ is an approximate stable inverse of
Gy through spectral factorization [50], and E can be obtained using the modified
Kalman filter technique with zero noise covariance matrix [49]. Now the loop-shaping
bounds on #(5) and &(H) can be derived and used for design instead. With this
approach, the only restriction on the “peudo-complementary sensitivity” function H

is that it should be stable and causal.

Screening Tools for Inferential Loop-Shaping

At steady state, it is necessary that the robust performance condition is satisfied for

S = 0 in order for the loop-shaping bounds to be feasible. This can be expressed in

terms of the following theorem:
Theorem B.3 (Referring to Figure B.5(b))
c3(0) > 0 if and only if

p (R(0)) <1 (B.30)
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where

G111 — G13Qimc ErmcGss (G11 — G13Qmc ErmcGaa) Wy G13Q1mc
R = Wp(G21 — GuQimcEimcGs1) Wyp(Ga2 — GuQrvme ErmcGa)Wy W,,Ga3Qrmce

—ErmcGa —ErmcGnW,y 0
(B.31)
Proof Trivial from the fact that f(csz) is a nondecreasing function of c; and
hence f(0) < 1 in order for c} to be nonzero. |

The condition (B.30) can be easily tested by letting Erc(0) = G,.4(Gy,a)7 ' and
Qmmc(0) = (Gy)7t. When (G,,2);! and/or (G,.);! do not exist, one can use

Emc(0) = GT 1(Gy,4GT ))™! and Qrmc(0) = (G, Gyeu) ' G,

yeu yew> Which correpond to

the least square solutions. Noting that we cannot expect a feasible bound on &(H(0))

since H = 0 implies open-loop, we can state the condition (B.30) as a screening tool.

ILS Screening Tool # 1: Eliminate the candidates for which

z (R(0)) > 1 (B.32)
A

Ap

The frequency-domain robust bounds on &(S) and &(H) can be useful for measure-

ment selection purpose as well:

ILS Screening Tool # 1: Eliminate the candidates for which (c},c};) are infeasi-

ble, that is neither of the bounds may be satisfied in a certain frequency region.

Since the calculation of c¢z(w) and cg(w) can possibly require numerically involved
tasks such as spectral factorization and solving a Riccati equation, for the purpose
of measurement selection, one may ignore the stability/causality requirement and

simply use Qe = (Gy.a)7' and Epye = (Gy.)7t or the least square solutions
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Emve = GT (GyaGT )™ and Qime = (GI,Gy.) 'GL, if the correponding left

YU

and/or right inverse do not exist.

B.3.4 Application to the High-Purity Distillation Column

Due to the space limitation, we do not present the results obtained from applying
the general screening tools. Interested readers are referred to Lee et al. [39] for the
application of these tools to a multi-component distillation column. In this section,
we present the results from applying the ILS design-dependent screening tools to
the high-purity distillation column. In order to simplify the presentation, we limit
our discussion to those candidates consisting of 1 or 2 temperature measurements
— the use of more temperature measurements were found to be unnecessary for this

problem. Hence, the following candidates are considered:

¢ One Temperature Measurement
w=Ty; yi=Ty y=Tw yi=Ts vyi=Ts ys=Tn

o Two Temperature Measurements

(
P A A PR
8 ) 8 ] 8 H 8 ’
\ T, Tz Ty Tss
(7 [ 7 [ ) (
1 TT T7 T7
y)' = oy = D Y = Y = ;
\ Th ) \ Ti7 } \ Tys / \ Ts5
( [ ) ()
T: Tz Ti7 Ty7
vt = Y= P Y = DY, = ;
\T«u) \Tzsj \Tssj \T41}
() ( ()
Tys T, T
y = A R -
KT35} T41) \T41)
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The disturbance weight (W,) and input uncertainty weights (W;) we used for the
measurement selection and controller design are plotted in Figure B.6 and Figure B.7
respectively. The performance weight W, and the output uncertainty weight Wo
were chosen as constant-scalar-times-identity matrices; the constant scalars W, and
Wo were 1 and 0.1 respectively. The chosen disturbance/performance weights specify
that the disturbances are attenuated at least by the factor of 50 at steady state and
the measurement noise is attenuated by the factor of more than 2 in the cross-over
to high frequency region. The input uncertainty weight allows up to 10 % errors at
steady state and time delay errors of approximately 1 minute on each actuator signal.
The output uncertainty weight allows up to 10 % errrors at every frequency on each
sensor signal.

The results from applying the ILS Screening Tool #1 to the candidates are shown
in Figure B.8. Only 4 of the 20 candidates passed the screening: y1° y!',yl*, and
y15, For these four candidates, the robust performance bounds on 5(S) and 5(H) are
derived (the stability/causality requirement on Qp¢ and Eryc were ignored for the

moment). The derived bounds are plotted in Figure B.9. Clearly, the candidate y,*
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yielded the most “feasible” bounds, especially around the cross-over frequency region.
Hence, we next rederived the bounds for y!* with the internal stability/causality
requirements (Figure B.10). Qmc was chosen as Z51GY, (the optimal choice for
ramp disturbances) and Ejpc was designed through the Kalman filter technique
(with infinite disturbance-to-noise ratio) as G, had zeros outside the unit disk. The

following H satisfied at least one of the bounds at every frequency (except for a very

narrow frequency band around the cross-over frequency where the conservativeness
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of the bounds is the greatest) as can be seen from Figure B.10:

" 0.011323 + 0.022722 — 0.02552 — 0.0058
T 2% —2.946823 + 3.222522 — 1.54942 + 0.2765

I (B.33)

For each of the other three candidates, H was designed such that its respective bounds
are satisfied for as wide a frequency range as possible. The SSV for robust performance
for all of the four candidates are shown in Figure B.11. As expected, y!* is the only
candidate that achieves “robust performance.” Figure B.12 shows for the candidates
y0 y1 y! 415 and y!® the simulated responses of the end-product compositions to
the step disturbances in F' and zr in the presence of white measurement noise. The
magnitudes of the flowrate and composition disturbances were chosen to be 0.2 and 0.1
respectively; they correpond to 20% of the steady-state values. The specific input and
output multiplicative uncertainty used for the simulation were both diag(0.1,—-0.1).

In addition, we appled time delay errors of 1 minute on both actuators. The simulation
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Figure B.11. Structured Singular Value (¢) for Robust Performance

results show that the candidates with sensors placed close to the reboiler and/or
the condenser (y1° y!,y!%) show extreme sensitivity to measurement noise. This is
because the signal-to-noise ratios for these sensors are poor. On the other hand,
the candidate with sensors placed too far away from the reboiler and/or condenser
(y16) shows minimum sensitivity to measurement noise, but yields large steady-state
offsets. This is because the model uncertainty makes the inference of the product
compositions from these sensors inaccurate. According to the simulation, y!* is the
best compromise between the two opposing trends; this fits well with the results

obtained from our measurement selection method.
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B.4 Robust Control System Design for MR Sampled-Data
Systems with Hard Constraints

B.4.1 Overview

During the past decade or so, a number of robust multivariable controller design
methods have been developed: LQG/LTR [20], Internal Model Control [24,50], and
p-Synthesis [17] to name a few. However, their practical applications to complex
processes such as distillation columns have been few. Some of the shortcomings of

these methods as solutions to practical control problems are as follows:

e In order to minimize the SSV explicitly in the design phase (as u-Synthesis
does), a rigorous uncertainty model is required; however, such a model is often

unavailable in practice.

e A lack of on-line tuning parameters for most robust control design techniques
(with the exception of the IMC technique) make the resulting controllers some-

what inflexible to unforeseen changes in the process.

e Most techniques involve iterative design algorithms of high theoreti-

cal/numerical complexity, which makes application by practitioners difficult.

¢ Because process constraints are not explicitly addressed within the framework
of most robust controller design methods, constraint handling must be done

through anti-windup schemes and other ad hoc means like mode-switching.

o The issuse of actuator/sensor failure tolerance cannot be addressed straightfor-

wardly within the formulation of most techniques.

e Most techniques are not applicable to multi-rate sampled-data systems.
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Figure B.13. Schematic Representation of Finite Receding Horizon Control of MR
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B.4.2 Finite Receding Horizon Control

Motivated by the apparent lack of a control system design method that addresses

all of these important practical issues, Lee et al. [37] proposed a control technique

that combines the state estimation and optimization techniques in the context of

finite receding horizon control. Figure B.13 gives a schematic representation of the

technique. In this paper, we present only the main ideas of the technique. Readers

are referred to Lee et al. [37] for details.

Modified State-Space Model for Control System Design

We start with the following standard state-space model:

z(k) =
Us(k) =
J.(Bk) =

Az(k — 1) + Byu(k — 1) + Bud(k — 1)

Csz(k) + vs(k)
C.z(fk — 0) + v.(k)

(B.34)
(B.35)

(B.36)

We formulated the problem such that the primary measurements . are available

at every B sampling unit with delay of 6 (8 and 6 can be vectors for more general
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formulation). After some algebraic manipulation, (B.34)-(B.36) can be transformed

into the following state-space represention:

Az(k) A 0 0| Az(k) B, By
ye(k) | = | CcA I 0| ye(k) |+ | C.B, | Au(k) + | C.B; | Ad(k)
ys(k) C,A 0 1 ys (k) C,B, C,B,
(B.37)
Js(k) = ys(k) +v,(k) (B.38)
Je(nk) = y(Bk —0) + v.(k) (B.39)

The new state-space representation is useful for two reasons: For state estimation,
when Ad is modelled as white-noise, the disturbance vector d is modelled as a random
step, which is reasonable for most processes. For feedback control, integral action is
automatically guaranteed even when a nonzero weight is imposed on the control input

vector Au.

State Estimator

The “state estimator” estimates the current dynamic states Az(k), y.(k), and y,(k)
based on the measurements §,(k) and g.(k) (if available). The optimal estimator
under a certain stochastic assumptions on Ad,v,, and v, can be obtained through the

MR Kalman filter technique; the detailed design procedure can be found in Lee et al.

[37].

Predictor and On-Line Optimizer

The “predictor” provides the optimal prediction of p future controlled outputs in
terms of m current/future control moves, based on the current state estimates AZ

and §.. p and m are user-chosen parameters. Mathematically, the prediction equation



310

is in the form

Yo(k) = f(AZ(k), 7. (k), AU™ (k) (B.40)

where f is a linear function (see Lee et al. [37] for the exact form) and

Y(k) = [gc(k-%-l[k), gc(k+plk)] (B.41)

AU™(k) = [Au(k), Au(k-&-m—l)} (B.42)

7.(k + i|k) is the prediction of y.(k + 7) based on the measurements at time k.
The “on-line optimizer” calculates AU™ (k) based on the following objective func-

tion:

P m~1
A%?k)z g (k +ilk)Ag(k + ilk) + 3 AuT(k + OTAu(k + ¢) (B.43)
g==1 £=0

under various constraints on Au, u, and §.. Quadratic Programming (QP) can be
applied directly for the constrainted optimization [25]. In the context of finite re-
ceding horizon control, the first control move Au(k) is implemented and the whole
optimization is repeated in the next sampling time. In the absence of constraints, the
optimal control law relating Az(k) and §.(k) to Au(k) is a constant function; hence,
the technique in its unconstrained form can be interpreted as a state-observer-based

constant feedback controller.

Actuator / Sensor Failure Handling

The on-line optimizer provides a natural way of handling an actuator failure. One can
simply put a zero constraint on the failed actuator move. In the case of unreliable pri-
mary measurements, one can replace the MR Kalman filter with a cascaded Kalman
filter shown in Figure B.14. The “auxiliary” estimator estimates the errors in the

estimates of y. (e.) on the basis of the difference between the actual measurement g.
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Figure B.14. Cascaded Kalman Filter for Unreliable Primary Measurements

and the estimate of y, from the main estimator (é° = g, — §™). The auxiliary estima-
tor can often be designed to be decentralized and a failure of a primary measurement

can be dealt straightforwardly by turning off the part of the estimator corresponding

to the failed measurement.

Robustness Tuning

The on-line tuneable parameters for the control technique are as follows: the pre-
diction horizon (p), the number of control moves (m), and the output and input
weights (A and T'). The disturbance/noise covariance matrices used for the Kalman
filter design are also user-chosen parameters, but they cannot be viewed as on-line
tuning parameters since a Riccati equation has to be resolved when these parameters
are changed. The abundance of on-line tuning/design parameters make the control
technique flexible, but controller tuning complex. Often, a convenient on-line tuning
parameter is the input weight, which has also shown to be an effective means to the
directional sensitivity of ill-conditioned systems [37]. For the cascaded Kalman filter,
the “optimal” auxiliary estimator can often be conveniently parametrized in terms of
a real vector whose dimension is the same as that of y. [38]. They provide natural

on-line tuning parameters with direct implications on the speed of the closed-loop



312

response.

B.4.3 Application to High-Purity Distillation Column

We apply the proposed control technique to the high-purity distillation column with
temperature sensors in Tray #7 and Tray #35 (Candidate #14). We do not use
the composition measurements since the steady-offsets for the ILS controller based
on these measurements were shown to be negligible. Readers are referred to Lee et
al. [37] for the application of the MR version of the technique to the column. The

following constraints on the actuators were imposed:
—-06<L<06;,-06<V<06;|L|,|V]|<0.1 (B.44)

The following parameters were used for the control move calculation:

10 01 0
p=30; m=10; A= ; I'= ; (B.45)
01 0 0.1
The state estimator was designed using the following covariance matrices:
1 2
B{Ad(k)AGT(k)) = ; E{v, (k)T (k)} = ; (B.46)
1 2

The simulated responses of the product compositions when the column is subjected to
the same feed disturbances as in Section B.3.4 are plotted in Figure B.15. The model
uncertainty and measurement noise were also chosen same as before. Note that the
responses in the absence of constraints are better than those obtained using the ILS
controller. We emphasize the fact that the tuning parameters were chosen without
much effort; no elaborate trial-and-error or search techniques were used. Figure B.16

shows the simulated responses in the face of actuator failures. The control system
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maintains performance integrity even with only one working actuator.

B.5 Conclusion

In this article, our main objective was to bring together a number of robust control
theories and to tailor them into practical control structure selection and controller
design methods suitable for complex processes like high-purity distillation columns.
By doing so, our main intention was to bring forward the aspects of current robust
control theories that are useful and those that are problematic for practical control
problems. We showed that the Structured Singular Value Theory provides a powerful
framework to develop a systematic control structure selection method that is useful
even when the complete knowledge of the process uncertainty is unavailable. On the
other hand, for control system design, most robust control theories address only a
subset of the issues which are of paramount importance to the success of the appli-
cation. At present, there is no unified, rigorous robust control system design method
that is suitable for complex practical control problems. We presented what we be-
lieved to be the best current solution to these complex problems. It is our hope that
this case study has exposed some of the new challenges for the researchers working

in the area of robust control.
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