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ABSTRACT 

The nearly commensurable case  of the planar res t r ic ted  three-  

body problem is t reated by application of the two variable expansion 

procedure. The polar angle of the infinitesimal body, ra ther  than the 

t ime, is taken a s  the independent variable. A s e t  of four coupled f i r s t  

order  differential equations, which govern the long-period behavior of 

the orbital  elements, i s  obtained by imposing the requirement that the  

assumed form of the expansions must be self-consistent. The 

independent variable in these equations is the "slow variable". It is 

then found that the short-period perturbations of the motion of the 

infinitesimal body do not contain smal l  divisors or  secular  t e rms .  

Approximate solutions for  the orbital  elements a r e  given, for  

two different cases.  Both l ibratory and non-libratory solutions a r e  

found, depending upon the initial conditions. Numerical resul t s  a r e  

calculated f r o m  these solutions, and a r e  compared t o  numerical  

computations recently reported in the l i terature.  



TABLE OF CONTENTS 

I. INTRODUCTION 1 

11. EQUATIONS OF MOTION 6 

111. METHOD OF AVOIDING SMALL DIVISORS 11 

Justification for Use of the Two Variable Expansion 12 
Procedure  
The F o r m  of the Expansions 13 
Solution of the O(pO ) Equations 16 
Occurrence of Small  Divisors in sI and t l  18 
Explicit Inclusion of Commensur~abili ty in the Expansions 20 
Geometrical Significance of @(€I, p) 24 
Dependence of the Orbital Elements  on p. 26 
The O(p) Equations 2 9 
Ser i e s  Expansion of the Perturbing T e r m s  3 0 
Removal of Resonant Perturbing T e r m s  3 4 

IV, BEHAVIOR OF THE ORBITAL ELEMENTS 42 

1. Equations for the Orbital Elements  
2. Use of the Jacobi Integral 
3. Approximate Solution for  e(9, p) eo 

N 

% A  4. Approximate Solution for  e(9, p) = p e(8,p) 58 
5. Comparison of Resul ts  with Calculations by Schubart 64 

APPENDICES 

VI. NOTATION 

VII. REFERENCES 



1 

I. INTRODUCTION 

The planar r e s t r i c t ed  three-body problem may be stated a s  

follows: Two bodies move in c i rcu lar  orbi ts  about the i r  common 

center  of mass,  and a r e  assumed t o  be point masses .  A third body 

having infinitesimal m a s s  moves in the orbital  plane of the two la rge  

masses ,  under their  combined gravitational attraction. 

The above problem, although highly idealized, provides an 

approximate mathematical model of seve ra l  actual problems which 

occur in ce les t ia l  mechanics. One such problem i s  the motion of a n  

asteroid (minor  planet) about the sun. The m a s s  of an as te ro id  is 

sufficiently small, in  comparison to  the masses  of the sun and major  

planets, that the effect of the gravitational pull of the as te ro id  upon 

the motion of these l a rge r  bodies may be neglected. 

The two la rges t  planets in  the solar  sys tem a r e  Jupi ter  and 

Saturn, the m a s s  of Saturn being approximately 0.299 that of Jupiter. 

(The next la rges t  planet, Neptune, has a m a s s  only 0.053 that of 

Jupiter. ) The orbit of Jupi ter  l ies  much c loser  to  the orbi ts  of the 

asteroids  than does the orbit of Saturn. The refore,  the perturbations 

of the motion of an  as te ro id  caused by the gravitational a t t ract ion of 

Jupi ter  a r e  much l a rge r  than those caused by any other single planet. 

The orbit  of Jupi ter  around the sun is nearly circular ,  its 

eccentricity being approximately 0.0482. The orbital  inclinations of 

many of the asteroids ,  with respec t  t o  the sun-Jupiter plane, a r e  only 

a few degrees.  F o r  the above reasons,  a solution of the planar r e -  

s t r ic ted  three-body problem may be expected t o  provide a n  approxi- 

mation to  the motion of an as te ro id  around the sun. 



The mass  of Jupiter, although being large in comparison t o  the 

masses  of the other planets, i s  only about 1/1047 that of the sun. This 

suggests the application of a perturbation procedure t o  obtain an 

approximate s olut'ion of the problem. 

. Another instance in which the planar res t r ic ted  three-body 

problem may be used a s  an  approximate model i s  the motion of an 

artificial  ea r th  satell i te in  the orbital  plane of the earth-moon system. 

In this case  the motion of the artificial  satellite about the ea r th  is 

perturbed by the gravitational attraction of the moon. 

A ser ious difficulty occurs in  the classical  variation of con- 

stants solution of the problem, for those cases  where the period of 

the infinitesimal body i s  commensurable with that of the perturbing 

body. This difficulty will be briefly described, following a discussion 

by Brouwer and Clemence. (1) 

The equations of motion for  the infinitesimal body a r e  solved 

by the method of variation of constants. The f i r s t  approximation 

yields a Keplerian orbit that may be described in t e r m s  of four orbital  

elements. The perturbations caused by the gravitational attraction of 

the body of mass  a r e  taken into account in  the next approximation, 

and a se t  of four f i r s t -order  equations is obtained for  the variation of 

the constants of integration; i.e. for the behavior of the orbital  

elements. F o r  example, the equation for da is a s  follows: 



with the notation ' 

semimajor  axis  of the orbit of the infinitesimal body 
time 
m a s s  of the perturbing body 
mean motion of the infinitesimal body 
mean motion of the perturbing body 
mean longitude of the infinite sirnal body a f  @ 
longitude of the pericenter of the infinitesimal body 
coefficients depending only on a and e (for  the planar 
res t r ic ted  three -body problem) 
integers  which a r e  summed over 

and where ao, no, eo, woP and E a r e  the corresponding unperturbed 
0 

Keplerian values. The s e r i e s  on the r. h. s. of the above equation can 

be arranged in  integral powers of the eccentricity e . 
de Equations s imilar  in  f o r m  to the above a r e  obtained for  - 
d t  ' 

- dw and - 
d t' 

dE These equations a r e  integrated by neglecting the va r i -  
d t  ' 

ation of the orbital  elements of the infinitesimal body on the r. h. s. , 

a s  is indicated by the use of a n o and eo instead of a, n, w, andc. 
0' 0' 0' 

The following resul t  is obtained for  the semimajor  axis: 

where 

The solutions for de, do, and 6~ a r e  s imi lar  in  f o r m  to  that for  da. 

If the mean motions n and n1 a r e  approximately commensur-  
0 

able, there will exist  a particular pair of integers  jl= J1 and jg= J 3  
n 

0 for  which (J3$ J, 7 )  = 0 . The expressions for  da, de, do, and 66 - 
n n 

0 
will then contain t e r m s  which a r e  divided by the  smal l  d i v i ~ o r ( ; r j + J , ~ ) .  

n 



F o r  cases  in  which these smal l  divisors occur, the above 

solution is not valid. This is because the orbital  elements a, e, a, and 

E a s  given above undergo large oscillations having amplitude pro-  

portional to  (J3 t J, 3)-', in  violation of the approximation that was 

used in integrating the equations for  da de dw and .%. This is dt' dt9 dt' dt ' 

known a s  the "difficulty of smal l  divisors1'. 

The difficulty of smal l  divisors  a l so  occurs in the variation of 

constants solution of the non-planar res t r ic ted  three -body problem, a s  

well a s  in  the more general  problem where the orbit of the perturbing 

body is taken a s  elliptic ra ther  than circular .  However, in  order  to  

investigate the basic features  of the difficulty of smal l  divisors,  with- 

out becoming unnecessarily encumbered by algebraic detail, i t  is 

reasonable to  consider the s implest  problem where the difficulty 

occurs -the planar res t r ic ted  three-body problem. 

A qualitative method of treating the problem of smal l  divisors 

has been given by ~ o i n c a r 6 ' ~ )  for the case  where the mean motions 

a r e  in the r a t io  J'l - with J a positive integer. The t ime is taken a s  J 

the independent variable, and a l l  the s hort-period perturbations a r e  

neglected. Two approximate integrals of the long-period motion a r e  

obtained, because the Hamiltonian then contains neither the t ime nor 

the short-period angular variable. However, only the general  f o r m  of 

the Hamiltonian is given, without specifying the expressions for  those 

t e r m s  which a r e  multiplied by the perturbing mass.  Hence the t ime- 

dependence of the motion is not t reated in a satisfactory manner. 

~ a ~ i h a r a ( ~ )  la te r  extended Poincar6Is method t o  the case  



where the mean motions a r e  in the ra t io  kK, J and K being positive J 

integers. Higher powers of the eccentricity a r e  retained in the per -  

turbing te rms.  However, in treating the time-dependence of the 

motion, severa l  important perturbing t e r m s  have incorrect ly been 

neglected, a s  the resul t  of not having ordered the smal l  quantities in  a 

systematic manner. 

 chuba art'^) has published the resul t s  of extensive numerical 

computations for the nearly commensurable case  of the res t r ic ted  

three-body problem. In his work, the short-period perturbations a r e  

removed by a numerical averaging process ,  and only the long-period 

effects a r e  included in the orbital  elements. These resul t s  provide 

considerable insight into the qualitative and quantitative features  of the 

motion for a wide range of initial conditions. 

The purpose of the work described in this thesis  i s  to  demon- 

s t r a t e  how the two variable expansion procedure may be used to  obtain 

a solution which i s  f r ee  of smal l  divisors. This method establ ishes 

the proper t ime-like variable for the long-period motion, and clar i f ies  

the dependence of the amplitudes of the orbital  elements on the smal l  

parameter  i n  the problem. Both the short-period and long-period 

perturbations of the motion of the infinitesimal body can be determined. 



EQUATIONS OF MOTION 

The planar  r e s t r i c t ed  three-body problem will be non- 

dimensionalized by choosing the units of mass ,  length, and t ime a s  

follows: the unit of m a s s  i s  chosen in  such a way that the l a r g e r  of 

the two mass ive  bodies has m a s s  1-p,  and the sma l l e r  one has m a s s  

p,, where 0 < p, 4 for  a l l  c a s e s ;  the unit of length is chosen such 

that  the constant distance between the two mass ive  bodies, a s  they 

revolve in  the i r  c i r cu l a r  orbits ,  i s  equal t o  1; the unit of t ime i s  

chosen such that the constant angular velocity of the two la rge  bodies 

about their  common center  of m a s s  i s  equal t o  1. 

The center  of m a s s  will lie on the line joining the two la rge  

bodies, a t  a distance p f r o m  the body of m a s s  1-p. The center  of 

m a s s  i s  assumed to  be moving a t  constant rect i l inear  velocity with 

respec t  to  an  iner t ia l  f r ame  of reference.  

Let the non-rotating X-Y coordinate sys t em have i t s  origin 

fixed a t  the center  of mass .  This f r ame  of re fe rence  will be an  

iner t ia l  one. The line of cen te r s  will rota te  about the m a s s  cen te r  

with unit angular velocity. Choose the angular orientation of the 

X-Y s y s t e m  in  such a way that the positive X axis  coincides with 

the position of m a s s  p a t  t ime t = 0. The line of cen te r s  then 

makes a n  angle t with the positive X axis. 

The geomet r ica l  si tuation i s  shown in  F igure  1. 



MASS I - !  

Figure  1. Barycent r ic  Coordinate Sys tem 

* * 
Let  the X - Y s y s t e m  be a non-rotating re fe rence  f r a m e  

cente red  a t  the body of m a s s  1-p. As seen  f r o m  the iner t ia l  f r a m e  

* * 
X-Y, the origin of coordinates of the X - Y s y s t e m  will move a t  

constant angular velocity i n  a c i rc le  of rad ius  p about the cen te r  of 

* sg 
mass,  and hence the X - Y f r a m e  i s  not a n  iner t ia l  one. Let the 

x*- Y* s y s t e m  have the s a m e  fixed angular orientation a s  does the 

* 
X-Y system.  The positive X -axis  will then p a s s  through the 

position of m a s s  p a t  t  = 0. Therefore  the line of cen te r s  wil lmake 

*c 
an  angle t with the positive X -axis. 

* 
The geomet r ica l  si tuation in  the x*- Y s y s t e m  i s  shown i n  

F igure  2. 

F igu re  2. Heliocentric Coordinate Sys t em 



Let r denote the distance of the infinitesimal body f r o m  the 

$ * 
origin of the X - Y system, and let 8 denote the angle f r o m  the 

* 
positive X axis to the radius vector of the infinitesimal body. The 

distance between the infinitesimal body and the body of m a s s  p i s  
& 

then equal to  [l+r2-2r cos(8-td . 
The equations of motion of the infinitesimal body may easi ly  be 

derived in t e r m s  of r and 8 ,  considered a s  functions of the t ime t. 

d r  They a r e  a s  follows (where r = etc. ) : 

In applying the two variable expansion procedure that will la ter  

be used to  solve these equations, a different se t  of var iables  i s  more  

useful. The new f o r m  of the equations will make i t  ea s i e r  to  t rea t  in  

a proper  manner the t e r m s  which would otherwise produce sma l l  

divisors. 

Introduce the variable 

Then t r ans fo rm to 8 instead of t a s  the independent variable, s o  

that s = ~ ( 8 ) ~  t = t(8) . This may be done by rneans of the following 

relations: 



The equations of motion fo r  the planar res t r ic ted  three-body 

problem then assume the following form: 

It i s  seen that both the time t(8, p) and the independent 

variable 8 appear explicitly in the equations of motion, in  the 

t e r m s  which involve sin(8-t) and cos(6-t). The problem i s  there-  

fore non-autonomous. 

* * 
Because of the manner in  which the orientation of the X - Y 

axes was specified, the initial condition on t i s  a s  follows: 

where 0, i s  the initial angle between the radius vector to  the infini- 

tes imal  body and the line of centers  of the two massive bodies. 



The t e r m s  which involve 1 + s2-2s cos(9-t)  [ I - 3'2 lead to the 

occurrence of sma l l  divisors. These t e r m s  represent  the gravitational 

attraction of the body of m a s s  y upon the infinitesimal body. The 

dt on the r.h.s. of eq. (5)  occurs  a s  a resu l t  of having t e r m  -y(s  
I 

chosen l-yI instead of 1 ,  fo r  the mass  of the l a rge r  body. The r e -  

maining t e r m s  on the r.h. s. of eqs. (4)  and (5) a r e  "apparent forces"  

which resul t  f r o m  the fact  that the X* - Y* sys tem i s  not an iner t ia l  

reference frame.  These "apparent forces"  do not lead to sma l l  

divisors. 

Eqs. (4) and (5) a r e  a n  exact mathematical representat ion of 

the planar res t r ic ted  three-body problem, valid for  a l l  values of 

O <  y < $ . These equations possess  one exact integral, the well-known 

Jacobi integral: ~ 

where C depends only on the initial conditions. 

In the remainder  of this  work, i t  will be assumed that ~<p.<<i. 

The quantity y may then be t reated a s  a sma l l  parameter  in the 

equations of motion. 



METHOD AVOIDING SMALL DIVISORS 

The occurrence of sma l l  divisors in the variation of constants 

t reatment  of the problem resul t s  f r o m  having neglected the variation 

of the mean motion, and the other orbital  elements,  while carrying 

out the integration of the perturbation equations. The s m a l l  divisors  

a r e  produced by the integration of t e r m s  whose period i s  v e r y  large 

compared to  the orbital  period of the infinitesimal body. This 

suggests the existence of a second t ime scale, the "slow-time" scale, 

over which important changes occur in the orbital  elements. 

The physical reason  for  the occurrence of the difficulty i s  the 

fact  that the perturbing force i s  nearly resonant with the motion of 

the infinitesimal body. This near-resonance aspect  of the motion will 

now be discussed briefly. 

Assume that the infinitesimal body moves in an  ell iptical  orbit  

about the l a rge r  m a s s  1-p. This ell iptical  orbit  will be per turbed by 

the gravitational force exerted by the mass  p. The distance between 

the infinitesimal body and the perturbing body will be approximately 

a periodic function of time, s o  that the perturbing force i s  a l s o  nearly 

periodic. If the orbital  period of the infinitesimal body i s  approx- 

imately a rat ional  f rac t ion  of the orbital  period of the perturbing body, 

the perturbing force oscil lates with a nearly resonant frequency. The 

improper  mathematical t reatment  of this near-resonance leads to  the 

occurrence of sma l l  divisors.  

The problem a t  hand is to  derive a se t  of equations which 

gives a n  adequate description of the behavior of the orbi ta l  elements,  



in the presence of the nearly-resonant perturbing forces.  

1. Justification for Use of the Two Variable Expansion Procedure 

The two variable expansion procedure has been discussed in 

the l i terature by Cole and ~ e v o r k i a n , ' ~ )  and by Kevorkian. ( 6 )  1t is a 

syste'matic method of constructing an expansion, of the solution of a n  

ordinary differential equation containing a sma l l  parameter ,  which 

remains valid for  large values of the independent variable. This 

method is especially useful in  problems where a sma l l  perturbing 

force produces important effects which occur over a t ime scale  that 

is large compared t o  the t ime scale  of the main features  of the motion. 

In applying the two variable procedure, it is assumed that the 

exact solution may be represented by an  expansion which depends 

explicitly upon two different t ime (or  t ime-like) variables,  a "fast 

t ime" variable and a "slow t ime" variable. The use of two different 

variables  introduces an  indeterminacy into the various t e r m s  of the 

expansion. This indeterminacy is removed by requiring that the 

assumed f o r m  of the expansion must he self-consistent. 

When the two variable expansion procedure is applied t o  the 

planar res t r ic ted  three -body problem, the orbital  elements will 

exhibit only long-period effects. Short-period perturbations will be 

taken into account by the second t e r m  of the expansion. However, it 

is precisely in  the long-period effects that the fundamental difficulty 

of the problem lies. Thus the use of the two variable expansion 

procedure leads direct ly to  a study of the basic difficulties of the 

p rob lem 



The variation of constants approach yields both short-period 

and long-period effects  in the orbital  elements. The short-period 

effects must  be removed before the fundamental difficulty of the 

problem can  be studied. 

2. The F o r m  of the Expansions 

F o r  p<<i, the t e r m s  on the r. h. s. of eqs. (4) and (5) may be 

t reated a s  sma l l  perturbations, provided that [1+ s2- 2s cos(8- t)] 3/2 

does .not become a rb i t r a r i ly  small. This implies that the infinit- 

es imal  body must not make a "close approach" to  the body of m a s s  p. 

Close approaches cannot occur for orbits which lie ent i rely withinthe 

orbit of the perturbing body; i.e, for  orbits having s(8, p)>1 for a l l  8. 

F o r  cases  where s(8, p)<1 during par t  of the orbit, the perturbations 

will remain  sma l l  only if [ l+s2-2s cos(8-t)] 3/2 remains  bounded 

away f r o m  zero. ' 

Orbits for  which [ l+s2-2s cos(8-t)] 312 approaches 0 will not 

be considered in this work. 

The solution of eqs. (4) and (5)  will be sought by use of the two 

variable expansion procedure in the following form: 

where the slow variable i s  

( 9 )  8 = ~ 4 e  

The essent ia l  features  of the difficulty of sma l l  divisors  occur 



N N 

in  the t e r m s  of 0(p) ;  i.e. in the solutions for  s1(f3, 8, p) and t (0, 0, p). 1 

Hence, fo r  the purpose of resolving the basic difficulty, the t e r m s  of 

higher order  in p may be neglected. 

Derivatives a r e  to be calculated by the rule 

The following expansions a r e  obtained by applying this derivative rule  

to  expansions (8a)  and (8b): 

Applying the derivative ru le  again, 

These expansions may be used t o  express  the 1. h. s. of eqs. (4) 

1/2 and (5). retaining a l l  t e r m s  of O(pO), O(p ), and O(p). 

It is now necessary  to  discuss  the manner in  which the per -  

turbing t e r m s  on the r.h. s. of the equations of motion may be expanded 

4'2 in powers of p. Since only the t e r m s  of O(pO), 0 ( p  ), and O(p) a r e  



0 
to be retained, i t  i s  sufficient t o  use the O(p ) approximation t o  the 

quantities in braces  on the r. h. s. of eqs. (4)  and (5). 

The t e r m s  which involve powers of s ds  dt 
3 and TiB may be ex- 

panded a s  above. The only remaining t e r m s  a r e  those which involve 

s in(8- t )  and cos(8-t) .  

By the expansion for  t(8, p.) we have 

H 

The two variable expansion procedure will be used to  make tl(O, 0, P) 
N 

a bounded function of 0. Therefore pt1(0. 0, p) will r ema in  a quantity 

of O(y), and may be dropped f r o m  eq. (13), s o  that 

(14) &(e-t) = &[(e-~)  -AC +&@I 
= ACvz(e-to) f B(U$) 

= A(e-$)  + B,+) 
Similarly, 

(15) a(*-t) = m ( e - t )  + 8 ( ~ )  

The following expansion i s  therefore valid for  the t e r m s  on the 

r. h. s. of eq. (4): 



A s imi la r  expansion i s  valid for  the t e r m s  on the r. h. s ,  of eq. (5). 

Thus the per turbat ion t e r m s  of O(p) involve only the quantities 

N N 

so(O, 0, p) and to(O, 0, p) and their  derivatives.  However, th is  
N 

approximation will be valid only if i t  can  be shown that t (8, 0, p) and 1 
N 

s (8, 8, p) a r e  indeed bounded functions of 8, 
1 

3. Solution of the O(pO) Equations 

0 
The t e r m s  multiplied by p i n  the equations of motion lead to 

the following equations: 

These a r e ' t h e  equations of Keplerian motion. That is ,  i f  the 

pertu-rbing m a s s  p were equal t o  zero, the infinitesimal body would 

descr ibe a n  unperturbed Keplerian orbit  about the la rge  mass .  

In this  work only d i rec t  orbits  will be considered.  That is ,  i t  

will be a s sumed  that  both the infinitesimal body and the per turbing 

m a s s  p revolve about the la rge  m a s s  in a counterclockwise direct ion 

( s e e  F igure  2). 

Eqs. (17) and (18) will be solved, regarding 0 and a s  

being two en t i re ly  different variables.  Eq. (17) has  the solution 



where 
N 

a = a(8, p) = semimajor  axis of the orbit of the infinitesimal body 

e = e(0, p) = eccentricity of the orbit of the infinitesimal body 

~ q .  (19) defines the angular momentum of the orbit. F o r  re t rograde  

2 orbits, eq. (19) would be replaced by s, 
2 -1/2 

W =  -a-V2(1-e ) . 
Only ell iptical  orbits ( 0  ,< e < 1) will be considered here. Para- 

bolic and hyperbolic orbits (e  3 1) do not produce the difficulty of 

sma l l  divisors,  because the motion of the infinitesimal body is not 

periodic in  these cases .  

Eq. (18) becomes 

The general  solution of this equation i s  

where A and B , a r e  a r b i t r a r y  functions. In t e r m s  of the Keplerian 

orbital  elements,  these functions a r e  

where - 
w = w(8, p) = longitude of per icenter  of the orbit  of the 

infinitesimal body 

Therefore, 



s o  that 

(23) 

H 

The quantity tO(O, 8, p) may be obtained f r o m  the relation 

where 

w 

Eq. (22) i s  s t i l l  satisfied if an  a rb i t r a ry  function of 0 is added to 

If one expands the integrand on the r. h. s. of eq. (23) in  a 
w 

Taylor s e r i e s  about e = 0, and then holds 0 fixed while carrying 

out the integral  w. r. t. 6, the following expression i s  obtained: 

sinusoidal functions 
, multiplied by e, e2, e3, 

where T(;, p) i s  an a rb i t r a ry  function which defines the position of 

the infinitesimal body in i t s  orbit. 

4. Occurrence of Small  Divisors in  s ,  and t ,  

N 

The unbounded pa r t  of to(O, 8, p) i s  ent i rely contained i n  the 

quantity [ T  + 2/20]. Therefore 

short-period sinus oidal functions 
(25) @-c) = =(/-)B -7- f {of 0, multiplied by e, e2, e3, etcLf 



It follows that 

( 2 6 )  short-period sinusoidal functions 
&,,, (*-t)= [~-$)@-d f- {of 0, multiplied by e, e2, e3, etc] 

A s imi lar  expansion would be valid for  cos(8-t  ). 
0 

N 

Therefore,  if eq. (24) were used f o r  to(O, 8, p) i t  would be 
N N 

found that the equations fo r  sl(O, 0, p) and tl(8, 0, p) would contain 

3/2 forcing functions which would involve sin[ (1-a )8- T] and 

3/2 N 

cos [ (1-a )8- T] . Since 0 i s  held fixed during the integrations w. r. t. 

8, the quantity (1-$I2) would appear a s  a constant frequency. In 

combination with other frequencies which a r e  present  i n  the perturbing 

t e rms ,  these t e r m s  would produce sinusoidal functions of 8 having 

frequencies close to  ze ro  and others with frequencies close t o  1, for  

cer tain values of a312. Upon integration w.r.t. 0, these t e r m s  would 

produce s m a l l  divisors in  s1 and t 1'  

By expressing the perturbing t e r m s  a s  functions of 0 and the 

orbital  elements a3I2, e,w, T, and then expanding in  periodic se r i e s1  

to  determine which frequencies occur, i t  may be shown that sma l l  
N 

divisors would occur in  sl(O, z, p) and tl(6. 8, p) for  d i rec t  ell iptical  

orbits in  those cases  where the semimajor  axis has a value such that 

where n and m a r e  relatively pr ime positive integers,  with n >  rn . 
It may a l so  be shown that the perturbing t e r m s  which a r e  

multiplied by the f i r s t  power of the eccentricity would produce s m a l l  

divisors only fo r  commensurabili t ies with m = 1; the perturbing 



2 
t e r m s  multiplied by e would produce sma l l  divisors  for  both the 

3 
m=l  and m=2 cases ;  those multiplied by e would produce sma l l  

divisors for  the m=l, m=2, and m=3 cases ;  etc. Correspondingly, 

one would expect the behavior of the orbital  elements to  be somewhat 

different fo r  the various values of m. 

F o r  brevity, this analysis will not be c a r r i e d  out here. How- 

ever ,  i t  should be mentioned that the occurrence of sma l l  divisors  in 

the above f o r m  i s  equivalent to  the corresponding difficulty encountered 

in the variation of constants t reatment  of the problem. 

Although retrograde (clockwise) elliptical orbits will not be 

discussed here,  sma l l  divisors would occur for cer tain cases  where 

2/2 i s  the ra t io  of two positive integers.  These smal l  divisors  could 

be avoided by a method s imi lar  to  that which will be discussed in  the 

next section. 

5. Explicit Inclusion of Commensurability in the Expansions 

As discussed above, smal l  divisors would occur if the semi-  

n- m major axis i s  such that a3/2(& p) i s  near one of the values -, 
n 

This suggests that the near-commensurabili ty should be taken into 

account f rom the outset, and that the semimajor  axis  should be ex- 

panded in  the f o r m  

The corresponding derivative is  



N 

The express ion  for  to($, 0, p) must  now be re-examined, taking 

into account expansion (27). The express ion  given i n  eq. (24) was ob- - 
tained by holding the slow var iable  8 fixed while car ry ing  out the 

integration w. r. t. 0. Such a procedure is valid for  the t e r m s  which do 

not givk r i s e  t o  unbounded quantities proportional t o  8. Therefore  

s imi l a r  short -per iod sinusoidal functions 
of 6, multiplied by e3, e4, - - - 

There  i s  no non-uniform approximation t o  the unbounded p a r t  of - 3 4 to(B, 0, p) caused by dropping the t e r m s  multiplied by e , e , - - - . 
since the integrals  of a l l  such t e r m s  w.r.t. 0 a r e  bounded. 

Using eq. (27) for  a ,  p ,  one obtains 

If the in tegra l  on the r.h.s. of eq. (30)  can be exp res sed  a s  a 
M N 

function of 8 alone, r a the r  than a s  a function of both 0 and 0, i t  

will be possible t o  dist inguish between the unbounded behavior of 
H 

to(8, 0, p) which i s  proportional to  0 and the unboundedness which i s  
N 

proportional t o  0 . This  will make i t  possible t o  avoid the occur rence  
N N 

of s m a l l  d iv i sors  in  s l ( O ,  0, p) and tl(O, 0, p) . - ]/2 T o  accomplish th i s  i t  i s  neces sa ry  t o  use  the re la t ion 0=p 6 

when car ry ing  out the in tegra l  on the r.h.s, of eq, (30). Therefore  



Introduce the notation 

Eq. (29)  may now be written a s  follows: 

+ 3 % s imi lar  short-period sinusoidal 
of 0, multipliedby e3,e4, - - - 

F o r  brevity, the following notation will be used, whenever it is con- 

ve nie nt: 

The corresponding derivative i s  

Eq. (33) then becomes 

short-period sinusoidal functions 
by e3, e$ - - - . 3 



This expression will be used for  t f rom this point on. 
0 

The t e r m  -- (n-m) 9 represents  the unbounded behavior of t n o 
H 

which is proportional to  6,and (P(9, p) represents  a possible unbound- 

edness of to on the ; scale. A geometrical interpretation of @ will 

be given later.  

Having expressed t by eq. (36) i t  i s  necessary to express  
a t  

0 
ato 

0 
the de rivative s a 3  and -NI in  a self-consistent manner. The 

ae  
f o r m e r  i s  given by 

By the derivative rule  (10) we expect that 

Formally applying the derivative rule to  eq. (33), i t  is found that 

(38b)&(t)= mim+~'(&+iy+ of short-period t e r m s  3 
a derivatives of short-period t e r m s  3 

F r o m  eqs. (37), (38a), and (38b) i t  follows that 

(39 )  .& - dr + (&derivatives of short-period 
dG -a 

- &-;% + - di3 
a derivatives of short-period t e r m s  3 

The quantity T(;, p) should be regarded a s  the fourth orbital  
N 

element, The quantity @(8, p) i s  completely defined in t e r m s  of 

T and g3I2 by eq. (34). 



6. Geometrical Significance of @(;, p.) 

Using the approximation 

i t  follows that 

s imilar  s hort-period sinusoidal functions 
+ {of 6 , multiplied by e 3 , e 4 ., - - - 

The quantity (8- t)  represents  the angle f rom the line of centers  of 

the two large masses  to  the radius vector of the idini tesirnal  body. 

The geometrical situation is shown in Figure 3. 

Y* 

Figure 3. Geometry of the Orbit 



M N 

The elements a(8, p) and e(8, p) specify the s ize and shape of 
U 

the slowly-varying elliptical orbit. The longitude of pericenter  4 0 ,  p) 

specifies i t s  angular orientation. The quantity 4(?, p) specifies the 

position of the infinitesimal body in i t s  orbit. 

- Consider the geometrical situation which occurs every  n t h  

time the infinitesimal body i s  a t  pericenter.  Between two such occur- 

ences, the infinitesimal body will have completed exactly n revolutions 

in i t s  elliptical orbit, and the m a s s  y will have completed approx- 

imately (n-m) revolutions in  i t s  c ircular  orbit. At each such  instant, 

0 = w(~A)+&~&T ; p a non-negative integer 

s o  that eq. (41) becomes 

The simple f o r m  of eq. (42) resul t s  f rom the fact that each of the 

short-period t e r m s  in to  vanishes when 8 =a S p *  2 n n. The geo- 

metr ica l  situation when the infinitesimal body i s  a t  pericenter  is 

shown in Figure  4. 



m Figure  4. Geometrical Significance of (- w - 4 )  
n 

m Thus the quantity ( - ) i s  equal to the angle between the 

pericenter  of the infinitesimal body and the position of the m a s s  p., 

measured eve ry  n t h  t ime the infinitesimal body i s  a t  pericenter.  

7. Dependence of the Orbital Elements on p 
N 

The eccentr ic i ty  i s  assumed t o  depend on 8 and p. in  the 

following manner : 

(43) e(q~() = eo +A% (q4) ; e o a constant 

The corresponding derivative i s  

In cer tain cases  i t  will be possible to use the approximation 

l/z e = e o t  O(p. ) However, if eo  i s  sufficiently small ,  i t  i s  necessary  

to  retain both t e r m s  on the r. h. s. of eq. (43). 



N 

The quantities w and r a r e  both unbounded functions of 8, in  
N 

general. They will be assumed to depend on 8 and p in  the following 

manner : 

(45 1 w ( q ~ ) =  W , + A ' ~ ( ~ M )  ; a. a constant 

(46) T ( ~ A )  = 7; +~'fel/) ; TO a constant 

The corresponding derivatives a r e  a s  follows: 

It i s  not necessary to  assume in advance that eo9w , and 70 
0 

a r e  constants. However, i f  one begins with eqs. (43), (45), and (46) 

deo - i t  wil-1 be found that --7;- - 0, = 0, dTO - - 0 ~y assuming 
d8 do do 

eo,w , and 'rO to  be constants f r o m  the outset, these unnecessary 
0 

calculations a r e  avoided. 

A - A N  
The quantities ~ ( 6 ,  p) and ~ ( 8 ,  p) will be unbounded functions 

N 

0 
J/z of 8 in general. Hence i t  i s  not co r rec t  to write o = w  + O(p ) or  

1/2 T =rot O(p ) Both t e r m s  on the r. h. s. of eqs. (45) and (46) must  

be retained. 

By substitution of the expansions (11) and (12) into eqs. (4)  

and (5), the following equations a r e  obtained f r o m  the t e r m s  which 

v 2  a r e  formally of O(y ): 



It will now be shown that because of the f o r m  of the expansions 

3/2 de da dw d r  
0 I;; , , and -: , the t e r m s  which occur in  eqs. (49) 

d o  do do d0 
0 and (50) a r e  actually of 0(d2), instead of O(p ). By eq. (19). 

F r o m  eq. (21), it follows that 

By carrying out the indicated derivatives in eq. (391, and 

2 - 2  2 - 2  2 
then multiplying by s = a ( l -e  ) [ 1 t e cos(6-a) ]  , the following 

0 

resu l t  i s  obtained: 

z at, 4 -9 ~2p+(wl (54) 4 =A5 [(&$-&)g+(%+~(@$e&]+M kz& 8-a2 

4 e2 di? t e r m s  multiplied 
by e 3 , e 4 ,  - - - I 

Note: There  is no equation (53). 



By differentiation of eq. (54) w. r. t. 0, i t  follows that 

Thus, each t e r m  which occurs in eqs. (49) and (50) i s  

v 2  actually of 0 ( p  ) ra ther  than O(yO). These t e r m s  must  therefore 

]/z be included in the O(p) equations. Hence there a r e  no O(y ) eq- 

uations t o  solve. 

8. The O(p) Equations 

By use of eqs. 1 1 ,  ( 2 ,  (16,  ( 4  ( 5 0 ,  and (55) i t  may be 

shown that the O(y) t e r m s  of the equations of motion lead to the foll- 

owing equations : 

+ - 2 e A w  & ,-A emu da%+ r&e? d'& 
[a(,-@) diF 3 - a] 

.a$ 2 at. "'@%)[@gf 2dkI@+& G ~ ~ ~ ) ]  f ~ ~ @ ~ c & i ( * - ~ )  - (A- =- 
[/-~~-c.-t;)f-g$&(e-tJ 

[I+A,Z-~A.C~~('-~,I% 
The quantity is of o(ELO), a s  may be seen f r o m  eq.(54). 

1 2 The notation 7 ( 6  -) i s  mere ly  a convenient way of writing this 
)L O a 5  

term. 
Note: There  i s  no equation (56). 



9. Ser ies  Expansion of the Perturbing T e r m s  

In order  to  express  the perturbing t e r m s  which involve sin(8-to) 

and cos(8-t ) in  a useful form, i t  i s  necessary t o  expand these quan- 
0 

t i t ies in powers of e. The amount of algebraic labor that is required 

increases  very  rapidly a s  higher powers of e a r e  retained. F o r  this 

3 4 
reason, a l l  t e r m s  multiplied by e , e , - - -  will be neglected in the , 

remainder of this work. F o r  orbits with smal l  eccentricit ies,  this 

should yield a reasonable approximation. The approximation could be 

improved in  a straightforward manner, me re ly  by retaining the higher 

powers of e. 

Using eq. (36) for  to, the quantity sin(0-t ) may be expand- 
0 

ed  in powers of e a s  follows: 

(59) -(*-c) = .din($e-4) -I- ~ P e k ( B - ~ ) ~ & e - + )  

-~a%~!~&?(e-w)~~@$?+-(6)+{ similar  sinus oidal functions 

f of 8, multiplied by e 

The quantity cos(8-to) may be expanded in a s imi lar  form. 

The perturbing t e r m s  on the r.h.s. of eqs. (57) and (58) may 

then be expanded in powers of e. F o r  example, 

s imilar  sinus oidal functions 
f {of 8, multiplied by e3, e4, - -1 



3 
Similar expansions can be made for the t e r m s  -s: (%) sin(8-to ) and 

The expansions of 

and (s: %)I [1-so cos (9-to in  

powers of e a r e  quite lengthy, and a r e  therefore given in  the 

appendix. 

The r.h.s. of eqs. (57) and (58) have now been expressed a s  

functions of 6 and the orbital  elements 2/2.e,w, and 4. However, 

the integration of these equations cannot be ca r r i ed  out explicitly with 

the r.h.s. in  its present  form. 

A convenient way to  c a r r y  out the integration is to  express  the 

various periodic functions of 9 in their Four ier  s e r i e s '  expansions, 

and then to  integrate these s e r i e s 1  termwise. The use of Four ie r  

se r i e s1  identifies the various frequencies which occur in  the perturb-  

ing t e rms ,  thereby making i t  possible to  identify and remove the 

t e r m s  which would otherwise produce quantities proportional to  8 in  

s l  and t l .  

There  a r e  severa l  ways in which the Four ier  expansions could 

be ca r r i ed  out. The one that will be used here is convenient when one 

wishes t o  determine the numerical values of the Four ie r  coefficients. 

It i s  sufficient to  use the following three Four ier  s e r i e s  expansions: 



The Four ier  coefficients a r e  given by 

N 

for  k = 0,1, 2, - - -  . The value of a(@, p) i s  held fixed in carrying out 

these integrations with respect  to  x. 

3 
If a l l  the perturbing t e r m s  multiplied by e were retained, it 

2 - 9 / 2  
would be necessary to  express  the quantity [I+ a -2a C O S ( ~ D - $ I ) ]  n 

in i ts  Four ier  expansion. In general, one additional Four ier  expansion 

of the above type i s  required for each additional power of e that i s  

retained in the perturbing te rms.  

The s e r i e s  representation of each perturbing t e r m  can be ob- 

tained f r o m  the above Four ier  expansions, by termwise multiplication. 

F o r  example, 

Similar expansions can be made for each of the perturbing te rms.  

These Four ier  coefficients may be expressed in t e r m s  of the 

hyper geometric function. F o r  example, 



Similar expressions a r e  valid for  Bk(a) and Ck(a). They may a lso  be 

expressed  in t e r m s  of the complete elliptic integrals  of the f i r s t  and 

second kinds, K(a) and E(a),  respectively. The recurs ion  relations 

for  the hypergeometric function may be used to  prove cer ta in  relation- 

ships between the Four i e r  coefficients. 

In  order  to  obtain resu l t s  re lated to  the behavior of the orbi ta l  

elements for  a specific numerical value of y, i t  is necessary  to 

know the numerical  values of the Four ier  coefficients. These co - 
efficients could be calculated direct ly  f r o m  the definitions in eqs. (62a), 

(62b), and (62c), by numerical integration over the range 0 6 x ,( 2 n. 

However, these values may a lso  be obtained f r o m  extensive 

(7) 
tables published by Brown and Brouwer These tables give numer- 

ica l  values of G ( ~ )  (a), G ( ~ )  (a), and G ( ~ )  ( a )  for 0.0 6 a S 0.845, 
3/2 5/2 7/2 

where 

for  k = 0,1, 2, - - -  (k)  (k) and G . The quantities G3/2, G5/2. (k) a r e  
7/2 

known a s  Laplace coefficients. 



10. Removal of Resonant Perturbing T e r m s  

2 at l  at, 1 2 a t  
The quantity [ (so -t 2sos1 -t (So g)] must  be 

P 
known explicitly in  term.s of 8 before eq. (58) can be solved. Hence 

eq. (57) will be solved f i rs t .  After expressing each of the perturbing 

t e r m s  a s  discussed above, eq. (57) can be written in  the following 

form: 

where the bounded function h i s  composed of t e r m s  of the following 1 

types : 

0 2 
( a )  severa l  infinite se r i e s1  which a r e  multiplied by e , e, e , 

etc. and which contain sinusoidaJ functions of 8, whose 
frequencies a r e  independent of 8. These infinite s e r i e s  ' - - 

resul t  f r o m  the ansion of the t e r m  
2 

1 
-2socos(8-to)  I sin(@-t ) in  powers of e. 

o 

(b )  sinusoidal functions of 6 which resu l t  f r o m  the expansion 

3 a to  3 
of -so (w) sin(@-t ) in powers of e. 

0 

In carrying out the integration of eq. (65) w. r. t. 0,  the slow 

variable will be held fixed. Therefore any t e r m  which depends only 
N 

on 8 (i.e. which i s  independent of 8) would produce an  unbounded - 

t e r m  proportional to  8 in  the quantity 2 "o). This 

would lead to  the occurrence of s imi lar  unbounded t e r m s  i n  s jQ < p) 

and tl(8, g, p), cont rary  to  the assumptions of the original two v a r -  

iable expansion, 



Several t e r m s  which a r e  independent of 0 will occur in  the 

infinite ser ies1 .  These a r e  the t e rms  which produce smal l  divisors 

in the variation of constants solution. F o r  example, i f  the integers 

m and n have values such that there exists a non-negative integer k 

n n such that - - 1 = k ,  then the (--1)th t e r m  of severa l  of the infinite 
m m 

se r i e s '  will contain the quantity 

Each of the s e r i e s t  will contain one o r  more t e r m s  of the above type, 

depending upon the values of m and n. By a careful  inspection of the 

se r i e s '  which occur on the r.h.s. of eq. (65) ,  the s u m  of a l l  such 

t e r m s  may be determined. 

F r o m  this point on, only the case m = 1 will be discussed in 

detail. This i s  the most important case for comparison of the resul t s  

with the motion of asteroids.  

In order  that 2 
will not contain a t e r m  

proportional to  0, the s u m  of a l l  t e r m s  on the r.h.s. s f  eq. (65) 

which a r e  independent of 0 must vanish. This requirement yields 

the following equation: 

++ e2dinr @-a#) + s imi lar  t e r m s  multiplied 
by e3 ,e4 ,  - - - J 

3/z The quantities Q, and p a r e  functions of a only, and a r e  de - 
fined in the appendix. They a r e  the s u m  of severa l  of the Four ie r  



3/2 coefficients, each multiplied by some power of a . 
F o r  the case  rn = 2, the r. h. s. of eq. (67) would not contain 

2 a t e r m  multiplied by e ;  the leading t e r m  would be multiplied by e . 
3 F o r  m = 3, the leading t e r m  would be multiplied by e , etc. 

After the t e r m s  which a r e  independent of 0 have beenremoved 

by means of eq. (67), eq. (65) can be integrated with respect  to  8, 

holding 5 fixed. The resul t  will be f ree  of sma l l  divisors, but will 

not be written out explicitly here. 

The expression for the integral of eq. (65) can then be sub- 

stituted into eq. (58). The resul t  will be a s  follows: 

where the bounded function h2 contains t e r m s  of the following types: 

0 2 
(a) severa l  infinite se r i e s1  which a r e  multiplied by e ,  e, e 

etc. , and which contain sinusoidal functions of 0 whose 
frequencies a r e  independent of g. These s e r i e s f  resul t  

f r o m  the expansion of the quantity 

+xi- in  powers of e, 

and a lso  f r o m  the 

ae 
(b) sinusoidal functions of 8 which resul t  f r o m  the expan - 

sion of the quantities s cos(0-t ) and so 88 
0 



*sin($-t ) in  powers of e, and a l so  f r o m  the correspond- 
0 

a to 1 s2 ing term. contained in  [(< + 2s04 a8 + T ( o  G)]. 
P 2 

If a t e r m  in s in 8 or cos 8 were to occur on the r.h. s. of eq. 

(68), the response to this t e r m  would contain the unbounded quantity 

8 s in 6 or 9 cos 8. This would clear ly be a resonance effect, and 
N 

would violate the assumption that psl(8, 8, p) remains a sma l l  quantity 

Several  such t e r m s  in s in 8 and cos 8 a r e  contained in  the 

infinite ser ies ' .  F o r  example, if the integers m and n have values 

2n 
such that there  exists a non-negative integer k for which - -1 = k, m 

2n the (- -1)th t e r m  of severa l  of the infinite se r i e s1  will contain the 
m 

quantity 

Each of the infinite se r i e s1  will contain one or  more  such 

te rms,  provided that m and n have the necessary  values. By a 
a2S- 

1 
careful inspection of the r.h.s. of the equation for 3 + sl, the s u m  

of a l l  t e rms  in  s in 8 and cos 8 may be determined. 
N 

In order  for s (8, 8, p.) not to  contain a t e r m  proportional to  8, 1 

the s u m  of the t e r m s  in s i n 0  and cos 8 must vanish, for a l l  values 

of z. This requi res  that the coefficients of s in  8 and cos 8 must 
IY 

vanish separately,  for all values of 8. This leads to  the following 

equations, for  the case  m = 1: 



t e r m s  
by e , e , - - - 

The quantities K ~ ~ P ,  yn,dnsqn, and e n  depend only on a 3/2 . 
They a r e  defined in the appendix. 

After  the t e r m s  in  s i n 6  and cos 8 have been removed f r o m  

eq. (68)  by means of eqs. (70) and (71), the solution for  sl  will be 

a s  follows: 

where the bounded function h3 contains t e r m s  of the following types: 

0 2 
(a) seve ra l  infinite se r i e s '  which a r e  multiplied by e , e, e , 

etc. ,  and which contain sinusoidal functions of 8. These 
infinite ser ies '  do not contain any sma l l  divisors. 

(b) sinusoidal functions of 6 which a r e  multiplied by e, 

d@ dQ d+ sinw, cos W, sin n @, cos n @, LNL, , and --.;;. 
d8 d6 d9 



The derivatives --;5 , - d+ 
d' dD and - may be eliminated f r o m  
d8 dz  ' dg 

the equation for  s af ter  the expressions f o r  these derivatives have 
1 

3/2 been found in  t e r m s  of a , e, o, and $I. The resulting expression 
N 

for  ~ ~ ( 8 ,  8, p) will be f r ee  f r o m  smal l  divisors.  

a 
The quantity -T may be expressed a s  follows: a 

a t  
When the expressions for s 1 and C( integral  of eq. ( 6 5 ) ] - i 6 z  G)] 

~2 a e  
-I 

a r e  substituted into eq. (73), the following equation i s  obtained: 

where the bounded function h contains t e r m s  of the following types: 4 
0 2 

(a )  s eve ra l  infinite s e r i e s '  which a r e  multiplied by e , e, e , 
etc. and which contain sinusoida2 functions of 8, whose 
frequencies a r e  independent of 8. 

(b) sinusoidal functions of 8 r h i c h  a r e  multiplied by e, 
d2 dw d? s i n  up cos W, s in  n @, --;Z , --;= , and -= . 
d8 do d 8 

In carrying out the integration of eq. (74), the same consider- 

ations that were discussed in relation to  the integration of eq. (65) will 

apply. The s u m  of a l l  t e r m s  on the r.h.s. which a r e  independent of 8 
N 

must  vanish for  a l l  8. This requirement yields the following equation: 



The quantities )I, hn, r, and 5 depend only on a3I2, and a r e  defined .n 

i n  the appendix. 

After the t e rms  which a r e  independent of 8 have been removed 

f r o m  eq. (74) by means of eq. (75), eq. (74) may be integrated w.nt. 

8, holding fixed. The resu l t  i s  of the following form: 

where the bounded function h5 contains t e r m s  of the following types: 

0 2 
(a)  s eve ra l  infinite s e r i e s '  which a r e  multiplied by e , e, e , 

etc. and which contain sinusoida2 functions of 8, whose 
frequencies a r e  independent of 8. These s e r i e s '  a r e  
f r e e  f r o m  smal l  divisors. 

(b) sinusoidal functions of 8 which a r e  Amultiplied,,by e, 
d$ do d r  sinw, cosw, s i n n 4 ,  c o s n @ ,  , , and :. 
d8 ' d8 d8 

d$ dG 
The derivatives --;2, :, and - dTA may be eliminated f r o m  the ex- 

d8 do dZ 
press ion  f o r  t by use of eqs. (67), (70), (71), and (75). 1 

Thus the assumed f o r m  of the two variable expansions given in 

eqs. (8a) and (8b) has been shown to yield a self-consistent approx- 

imation to  the solution of eqs. (4) and (5), provided that the orbital  

elements sat isfy the four f i r s t -o rde r  differential equations (67), (70), 
N N 

(71), and (75). The perturbation t e r m s  ~ s ~ ( 8 ,  8, p.) and p.tl(8, 8, p), 

a s  given i n  eqs. (72) and (76), will be f r e e  f r o m  smal l  divisors  and 



will r ema in  smal l  quantities of O(y). 

If the perturbing t e r m s  of O(y2) were  taken into account, the 

r. h. s. of eqs. (67), (70), (71), and (75) would a l so  contain O( y) t e r m s  

involving a, e, o, and (b, The short-period perturbations would be 
IY N 

accounted fo r  by t e r m s  p2 sZ (0, 0, y) and y2t2 (8, 8, y), similar in 

nature t o  s, and t l  . 
Therefore an  approximate solution for  the motion of the infinit- 

e s ima l  body, which remains  valid fo r  large values of 0, has been 

obtained for  the case  of nearly commensurable mean motions. The 

difficulty of sma l l  divisors  has been avoided i n  this  solution by 

requiring that the orbi ta l  e lements  must  satisfy a se t  of four f i r s t  

o rder  differential  equations. 



IV. BEHAVIOR OF THE ORBITAL ELEMENTS 

In section 111 it was shown that the difficulty of s m a l l  divisors  

can be avoided by requiring that the orbital  elements of the infinites- 

imal  body must  satisfy a set  of four coupled f i r s t -o rde r  equations, 

having the independent variable 8" = & 0 ra ther  than 0. In this  

section, some approximate solutions of these equations will be given. 

1. Equations for  the Orbital  Elements  
- ,  

d8'/~ d$ 
Eq. (67) gives one relation between -7 and --;;. A second 

d0 d0 
relation may be obtained by multiplication of eq. (70) by -a( l -e2)coso 

and multiplication of eq. (71) by a(1-e2)sino, followed by addition of 

the resul ts :  

% Multiplication of eq. (67) by -2a e ( l - e2 )%,  followed by addition of 

the r e su l t  t o  eq. (77) yields 

F r o m  eq. (67) i t  then follows that 



Similarly, multiplication of eq. (70) by a(1-e2 )sin o and eq. (71) 

by a(1-e2)cos a, followed by addition of the results,  yields the 

following: 

Eq. (75) then yields the following equation, after dropping a l l  t e r m s  in 

e3, e4,  etc: 

Since the angular quantity (w-n$) occurs frequently in  the 
N 

above equations, i t s  behavior a s  a function of 0 will be of consider- 

do 
able importance. Using the expressions for -= and 9 defined 

d0 d z  
previously, one obtains 

Using eqs. (80) and (81) this becomes 



The second t e r m  on the r.h.s, of eq. (82) i s  writ ten separately f r o m  

1/2 Y2 the other t e r m s  of 0 ( p  ) because if e ( a p )  is sma l l  of O(p ) this  

t e r m  will become O(pO). 

If the perturbing t e r m s  of O(p2) f r o m  eqs. (4) and (5) had 

been retained, equations (78)-(82) would contain additional t e r m s  of 

higher order  i n  p on the r.h.s. These additional t e r m s  would involve 

3/2 a , e,w, and @ . 
Having obtained the equations for  the behavior of the orbi ta l  

elements,  i t  is useful t o  distinguish between those t e r m s  which occur 

on the r.h. s. of eqs. (78)-(82) because of the nearly commensurable 

periods, and those which would a lso  occur in the non-commensurable 

case. Each  t e r m  which contains a sinusoidal function of (w-n@) is 

solely the resu l t  of the commensurability. In the non-commensurable 

case  these t e r m s  would not occur. The t e r m s  which involve the co- 

efficient s p , ~ ,  and w a r e  not the resul t  of the commensurability, and 

would therefore occur in the non-commensurable case  a s  well. 
1 

Thus, if ;=p12 0 were  used a s  the slow variable  for  the non- 

commensurable c a s e  of the planar r e s t r i c t ed  three-body problem, it 

would be found that 



s 
This implies that 8 = ye is the co r rec t  slow variable for  the non- 

commensurable case. 

A heuristic explanation of why the angle (a-n@) will tend t o  

oscillate about the value 0" will now be given, for  the case  m=l. 

This explanation is based on the crude approximation that the total  

effect, produced by the mass  y on the motion of the infinitesimal 

body during one complete orbit, will be qualitatively the same a s  the 

effect exerted near  the point of closest  approach to  the perturbing 

body. 

For  the case  m=l, the point of closest  approach occurs once 

during every  n revolutions of the infinitesimal body in i t s  orbit. If 

(a-n@) 0°, the point of closest  approach occurs every  nth revolution 

at approximately the time of pericenter passage. 

Let 8=8, designate an instant when the infinitesimal body is 
N 

at  pericenter,  s o  that = o ( B l ,  y) wl. (See Figure 4, ) Let 
H 

@(el ,y)  designate the value of @ a t  this same instant. Assume 

that (wl  - n o l )  = 0'. After n additional complete revolutions in its 

orbit, the infinitesimal body will again be a t  pericenter,  s o  that 
N 

€12 = 2 n n t w ( 8 2 , y ) ~  2 n n t o 2 .  However, w 2  will differ slightly f r o m  w l ,  

s o  that the infinitesimal body will have made slightly more  o r  l e s s  than 

n complete revolutions about the large mass,  measured in  the non- 

* * N 

rotating X -Y system. Also, @(Bz,y) q2 will differ slightly f r o m  

n-1 @ Since a % z - the mass  p. will have made approximately 
n ' 

(n-1) complete revolutions about the large mass  (1-p). 

If a t  the end of the above interval, the angle (% - 9, )  is 



smal l  but > 0°, the infinitesimal body will be slightly displaced 

counterclockwise f r o m  the m a s s  p.. The perturbing force at  the point 

of closest approach will then act in  a clockwise direction. This force  

will tend to decrease  the counterclockwise angular velocity of the 

infinitesimal body. Since the m a s s  p moves at constant angular 

velocity, i t  will begin to "catch up" with the infinitesimal body during 
N 

the next such interval O2 d 8 s  = 4n7t t 0(e3 ,p). Therefore,  by the 

W 
instant when 8 = €$ the angle (- - @ )  will have decreased somewhat, n 

so  that (3- n $,) < (2- n $,). 

Thus if ( - ) i s  smal l  but > 0' a "restoring fo rcen  comes 

into play near  the point of pericenter  passage, and this res tor ingforce  

tends to  decrease  the value of (2 - $1). Th i s  situation will r ecur  in  
n 

the same qualitative manner at  the end of each n revolutions, s o  

W 
long a s  (- - ) is smal l  and > 0'. Finally ( - ) will become <0°, n n 

and the restor ing force will change sign. That is, when (E - @) is n 

smal l  and < 0" the restor ing force will tend t o  increase  the angle 

0 
( - ) toward the value 0'. 

2 F r o m  the definition of ( p )  it follows that a change in -- 
d B  

requi res  a change in 2 3 X ( ~ , p ) .  Hence oscillations of ( o-n@) about 0' 

will be accompanied by oscillations of :I2 (z, t . ~ )  about some fixed value 

n-1 close t o  - . n 

2. Use of the Jacobi Integral 

The Jacobi integral  (7) will now be expressed in  t e r m s  of the 

two variable expansions. Using eqs. (11) it may be shown that 



r I 
The t e r m s  on the r.h.s. of eq. (83)  which appear t o  be of 

Y2 "/z O(y ) a r e  actually of O(p), since % and a r e  of O(p ). 
a e  a e  

F o r  this same reason, severa l  t e r m s  involving !kQ which appear 

3/2 
a'ii 

to  be of O(p.) or of O(y ) a r e  actually of O(p2). It may be 

shown that 

The Jacobi integral may therefore be written a s  follows, in  t e r m s  of 

the two variable expansions being used: 



r-O&") c 
where C is a constant which depends only on the init ial  conditions. 

It must  be r emembered  that the t e r m s  i n  eq. (86) which involve % 
a t  "/2 and 4 a r e  of O(p), r a the r  than O(p ) , 
a e  

By fo rma l  differentiation w.r.t. 8, followed by use  of eqs. (57) 

and (58) to  eliminate t e r m s  i n  s l y  t l  , 9, %, etc. , it may be 

shown that 

N 

The r.h.s. of eq. (87)  is independent of 8, and depends a t  most  on 8. 

However, the quantity in braces  on the 1.h. s. does not contain any 

t e r m s  which a r e  proportional to  8. Therefore the a derivative of 

this  quantity cannot produce a t e r m  which i s  independent of 8. This  

implies that the r. h. s. must  vanish; i.e. that 



s o  that 

Eq. (89) represents  one of the four general  integrals necessary  t o  

determine the behavior of the orbital  elements. It is valid for a l l  

values of the integers  n > m > 0. 

By use of expansion (27) it may be shown that 

Eq. (89) then becomes 

N N 

Eq. (90) may be used t o  express  a(8, p) in t e r m s  of e2(8, p) and the 

initial conditions. 

N 

3. Approximate Solution for e(8,p) g eo 

Approximate solutions of e qs. (78)-(82) will now be investigated 

by neglecting the variation of e on the r.h. s. That is, the approxi- 

(91) e(4.l)= e . t i 3 i i Y )  ; e, constant 

will be used on the r.h.s. of the equations. This approximation i s  not 

valid for extremely smal l  eo ,  since the variable par t  of e is then 

not negligible. 



1 
The coefficients ( $ a  K,), ( z  a y  n), etc. , may be expanded in 

powers of p about a = - %. Eqs. (78)-(82) then become, 
( n )  

respectively, 

The coefficients ( t a ~ , ) ,  (ayn), etc., on the r.h.s. of eqs. (92)-96) 

depend only on n. 

Since the angle (a-n@) will be unbounded in  many cases ,  i t  is 
1 

necessary  t o  include those t e r m s  of O ( p h )  on the r.h.8. of eq. (96) 

which would contribute to a possible secular  behavior of (w-n@). Let  

1/2 n b  designate the ,constant pa r t  of the O(p ) t e r m s  i n  eq. (96). Then 



s o  that 

Division of eq. (98) by eq. (93) yields the integral 

( 9 9 )  (~~-&!)'= s, + ~ ~ c ~ ( w - ~ ) + q , s ~ ~ ~ ~ ~ - ~ )  

with 

The value of cos(w-no) must remain  such that (23'2 -p%b)2 2 0. 

By computing the numerical values of /3 and yn a t  

a = ( )  it may be shown that S3 < 0 for the cases  n = 2, 3,4. It 

should be noted that the r, h. s. of eq. (99) would contain t e r m s  multi- 

plied by e:, e:, - - -  if the corresponding t e r m s  i n  e3, e4 ,  - - -  had 

been retained in eq. (79). 
N 

The behavior of cos(o-no)  a s  a function of 8 will now be 

determined. F r o m  eq. (98), 

Using eq. (99) and writing 5 in  place of cos(w-n$), this becomes 



The r.h.s. may  be factored a s  follows: 

where 

Depending upon the initial conditions, P1 and P2 will be either both 

real-valued, or complex conjugates. Since S3 < 0 it follows that 

P23P1 when Pl and P2 a r e  real-valued. Also, P1d5dP2 in order  

that (c% - p'b) be B 0. 

If the roots  P1, P2, 1, -1, a r e  a l l  distinct, the value of 5 will 

not c r o s s  any of them, because this would make (3; < 0. Thus 
d; 

cos(w-n@) will oscillate between two fixed limits. If Pl and P2 a r e  

complex conjugates, 5 will oscillate between the values 1 and -1, 

corresponding to  a monotonic increase  or decrease  of (w-n@). 
LU 

To exhibit the explicit dependence of cos(w-n@) on 0 for a 

typical case  where (a -n@) oscil lates between two fixed limits,  

assume that the init ial  conditions 23/2 (zo ,1"), eo ,  and (wo -n@o)  a r e  

such that -1 < Pl< 5, < 1 < P2 . Then cos(w-n@) will oscil late 

between the two values P and 1. F r o m  eq. (97)  i t  is seen  that 

-!k%!& = 0 only when ( a  AX - p% b) = 0; that is ,  only when 
dG' 

cos(o-n@) = PI . Therefore (a-n@) will oscil late about 0" between 

t - 1 the l imits  - I cos  Pl I . This type of motion i s  known a s  libration. 

Keeping in  mind that S3 < 0, eq. (100) becomes 



The solution of eq. (103) may be expressed  i n  t e r m s  of elliptic functions. 

F o r  the sake of definiteness, assume that [a/2(60,p)-yXb]<0 

and c o s - ' ~ ~  < (wo -nqo )< 0" . 
Then d S 0 and --; I_>$ . After replacing 6 by 

d0 €I=@, 

cos(w-n@), the solution of eq. (103) becomes 

where 

I 

and 

(105) 

The function s n  is the Jacobian elliptic function, T i s  the oscillation 

period of the angle (w-n@), and K(k) i s  the complete elliptic integral  
N N 

of the f i r s t  kind. When 0 = €I0 f T the motion will begin to  repea t  itself. 

The quantity (8% - p% b) will oscillate between the values 

t ?4 - (S, +S2 eo tSS e t  ) attaining i t s  maximum and minimum values a t  

(a-n@)= 0". Hence a3I2 oscillates about the value pb with the n 
2 %  amplitude py2 ( s ~  tS2  eo +S3 eo ) . 



N 
1 Since cos(o-n@) i s  periodic in  8 with period i; T, the 

constant b i s  given by 

The t e r m s  in  cos(o-n@), cosZ(w-n@), and cos3(w-n@) may be 
N 

expressed  a s  functions of 8 by use of eq. (104). Since Pl, PZ, and T 

X a r e  independent of b co r rec t  t o  O(y ) the value of b may be 

'/z calculated f r o m  eq. (106), to  within t e r m s  of O(y ). 

An analysis s imi lar  t o  the above may always be used t o  

N 

determine cos(w-n@) a s  an  explicit function of 8, when the roots  

PI and PZ a r e  real-valued. After this has been done, the expressions 

A N 

f o r  $(gP), w ($,I"), and Q(8, p) can be obtained by integration of the 
N 

known r. h. s. of eqs. (9  2), (94), and (95) w. r. t. 0 . 
However, can  be obtained direct ly  f r o m  eqs. (99) and 

^?Amp% b) (104). Care  must  be taken to  choose the proper  sign for  ( a  

when taking the square  root of eq. (99). After $3'2 has been determired, 

A the expression fo r  e may be obtained by use of the integral  (89). 

us ing  expansions (27) and (43) for  a% and e, it may be shown that 



By eq. (89 ) ,  this implies that 

Specializing to  the case  m=l, and evaluating the constant of integration, 

this becomes 

A 
Thus e remains  bounded if eo  # 0. The value of the eccentr ic i ty  a t  

any instant is then given by 

e&,4 = e, +~@(%-ql 

F r o m  eq. (104) it is seen that if the initial conditions a r e  such 

that Pl = 1, cos(w-n#) will have the constant value t1. This c o r r e s -  

ponds t o  the condition (w-n@) = constant = 0". F r o m  eq. (102), the 

condition PI = 1 implies  that 

s,e,' + &e, +q =O 

Evaluating S1 for  the initial condition (w-n@o)=OO, this  requi res  

2*'~&>.iU!, =A 4A 
If PI is slightly l e s s  than 1, (a-n@) will undergo infinitesimal 

oscillations with the period T, in  accordance with eq. (104). The 

value of T i s  given by eq. (105) with PI= 1. Values of T calculated 

f r o m  eq. (105) a r e  given below for  severa l  values of e,, using the 

value y = r  for the case  n=Z. It should be r emembered  that  the 048' 

present  approximation (91) is not valid fo r  eo -t 0. 

1 Per iod  

612 years  
5 79 
576 
594 
644 

The difference between the numerical  values calculated f r o m  



(4) 
eq. (105) and those given by Schubart ( see  F igure  5)  is largely due to  

3 4 
the neglect of t e r m s  in eo ,  e o ,  etc. f r o m  eq. (99). The agreement  

could be improved by inclusion of the higher powers of eo in  the cal-  

culations, although a grea t  deal  of additional algebraic labor  would be 

3 
required even to  determine the coefficient of e,, . Since the magnitudes 

of the numerical  values of a n, fin, vn, Kn, etc. increase  with n, the 

influence of the higher powers of eo is relatively grea ter  for  l a rge r  n. 

Consider now the case  in  which PI and PZ a r e  complex con- 

jugates. This implies that (2% -p,%b) does not vanish, and is therefore 
N 

of constant sign. The angle (w-n@) will be a monotonic function of 8, 

decreasing if (;% -& b)> 0 and increasing if (kg -p,& b)< 0. Eq. (100) 

becomes 

For  the sake of definiteness assume that p%(t0 , t ~ ) - p .  b < 0 and that $ 1  
sin(wo -n@, )> 0. Then d(o-n(b) 

N N > O  and % I m  < O .  After  r e -  
d; d 0 = 0 0  

placing $ by cos(w-n@) the solution of eq. (108) is 

where 

I e;=4-f- i d/ 
fie. (-%I "fi-r'fi+r'~f-e)~-~j 

-I 

and 

(110) 



and 

The function cn is the Jacobian el l ipt ic  function, and T is the period 

of (w-n4). 

The constant b i s  e a s y  t o  evaluate for  this case.  Since ( a - n 4 )  

va r i e s  f r o m  ( ~ ~ - n # ~ )  to  ( ~ ~ - n $ ~ ) + 2 n  during one period, the contr i -  

bution to  b f r o m  each of the t e r m s  i n  cos(w-n@), cos2(a-n+), and 

cos3(w-n@) vanishes. Therefore 

N 

The quantity 2% may be obtained a s  an  explicit function of 6 

f r o m  eqs. (99) and (lO9), choosing the ' I - "  sign when taking the 
2 

square root of eq. (99). (2% -p,'b) will oscillate between the values 

and 

X with the period T. The amplitude of (:% -p  b) is therefore  



" A  " After 2% has been obtained a s  an explicit function of 0, e (8,p) can  be 

A " A "  
obtained f r o m  eq. (107). Also, a(@, p) and ~ ( 8 ,  p) can be expressed 

N 

a s  the integrals of the r.h.s. of eqs. (94) and (95) w.r.t. 8. 

" 
4. Appr oximate Solution for  e(0, p)= O(S, p,) 

The solutions discussed in  the previous section a r e  not valid 

when eo =0, because the variable par t  of e is then not negligible. In- 

stead, eq. (43) becomes 

Eqs. (78)-(82) become, respectively, 

where 4%) 

d(2-a 
4 = d ( a * = y  

3 9A A s  in the previous section, the coefficients ( i a ~ , ) ,  (3an*a K,), etc. 
.- 

n-l)g and therefore have been expanded in powers of pX"aX about a=(- n 



depend only on n. 

Eqs.  (113) and (114) have the integral 

Y2 Hence the oscillations in  a r e  O(p ) for this  case.  

Since (w-n$) will be unbounded in many cases ,  it is necessary  

1/2 t o  include those t e r m s  of O(p ) on the r.h.s. of eq. (117) that would 

contribute to  a possible secular  behavior of (o-n@), The remaining 

Y2 t e r m s  of O(p ) will only produce bounded t e r m s  in (a-nq) .  Let 

Eq. (117) then becomes Fk~r 

Eqs. (113) and (120) have the integral 

with 

A Since cos2(w-n+) must be G l ,  the value of e must  always sat isfy 

the condition 

Eq. (113) may now be written a s  



The quantity on the r. h. s. may be factored a s  follows: 

z A+ t AZ -6 e +(1-2~4)$~-4* = -4 ( C - ~ ) ( $ : ~ J  20 

where 

Therefore 

d 2  
If Q 1  and Q2 were  complex conjugates, -7 would never 

ff 

vanish, and G 2  would be an unbounded function of 8. The present  
ff 

approximation (112) would not be valid, a s  e(8, p) would become 

large. Therefore the approximate equations (113)-(117) will be valid 

only if Ql,Qz a r e  real-valued; i.e. only if 

F o r  real-valued Q1 and Q,, it is seen that Q1 3 Q z .  
> 

In o rde r  that 0 throughout the motion, i t  is necessary  

that 

A 2 
Since the sign of $ can change only when $ Z = Q ,  or a 2 = ~ , ,  the 

de 
value of g 2  will oscillate between these two limits. Correspondingly, 



the value of cos(w-n@) will oscillate between two limits. Using in- 

equality (125), i t  may be shown that Qz >, 0. In fact Qz vanishes, 

A and e consequently passes  through 0, only for  the special  c a s e  

F o r  this case  the maximum value of G2 is 

It is seen  f r o m  eq. (123) that Q, -co when ~ ' ( & , p )  -pKc . There-  

A 
fore, e will r ema in  of o rde r  unity only i f  k3/z(~0,p) is O(pO). This 

is in  agreement  with the well-known fact that there  a r e  no periodic 

orbits of the f i r s t  kind a t  commensurabili t ies with m=1. 

By calculation of the numerical values of the Four i e r  coefficients 

and it may be shown that K ~ <  0 for n=2, 3,4. This  

is presumably a lso  t rue  for n>4.  

The solution of eq. (124) is 

with 

The value of cos-' { } should be chosen such that 



The expression for  8% then follows from'eq.  (118). The period of the 

A oscillations of e i s  

A 
Since e 0, it follows f r o m  eq. (121) that 

N 

Since 2 and cos(w-n$) a r e  periodic functions of 8 with 

period T, 

The constants R1, R2, Ql, Q2, and T a r e  independent of c, c o r r e c t  

X N 

t o  O(p ) After expressing the integrand in t e r m s  of 8 by use of 

eqs. (126) and (128), c may be evaluated f r o m  this  integral, co r rec t  

X t o  O(p 1. 
N 

Having d e t ~ r m i n e d  8 and cos(w-n$) a s  functions of 8, the 

A - A "  expressions fo r  w(8, p) and ~ ( 8 ,  p) may be obtained by integration of 

the r. h. s. of eqs. (115) and (116). 

The angle (w-n$) will attain a maximum or  minimum only if 

its derivative vanishes. By eq. (120) this  can only occur when 



which corresponds t o  

(130) 
Ri, 

- 2 ( ~ - m ~ )  = WR, ; g2= - 
6 

d(w-n ) If % l ies  outside the range Q, < G 2  <al,  the derivative 3 
R1 d9 

will never vanish, s o  that (a-n@) will increase  or  decrease  mono- 

tonically. However, for  cases  in  which (w-n@) oscil lates between 

two fixed limits,  eq. (130) may be used t o  determine the amplitude of 

oscillation, a s  a function of the initial conditions. 

It follows f r o m  eqs. (126) and (128) that 2 and (w-n$) a r e  

1 
constant, corresponding to  infinitesimal oscillations, i f  Ql = Q2 z 4 ~  

This corresponds to  

- 1  - =  - aK, R<s 9 23 2fi [~*(Z~>A)-M%] 

The choice of the sign follows f r o m  the fact  that $(<o,CL) 2 0. Since 

K,< 0, eq. (121) yields 

+I 7 a q N ) + Y %  
w(w-m.&) = &(%-&*) = 

-/ 2 ;%&>&)>A& 

It follows that infinitesimal oscillations with e=CL%$ a r e  possible only 

about (a-n@)= 0" when 23/2(G0 , j - ~ ) <  & c and only about (a-n$) = 180' 

when $.)I2 (Go, t ~ )  > c' c. 

In the derivation of eqs. (67), (70), (71), and (75) it was 

dw m 

assumed that the angular r a t e  - of the pericenter  angle w(9,p) is a 9  



smal l  in comparison to  the angular r a t e  1 of the infinitesimal aT= 
body. However, this  assumption would be increasingly violated in the 

case  of infinitesimal oscillations of (o-n@) with e = p, % g if it were  

A - 
attempted t o  make calculations for  e(OO ,p,) v e r y  small .  Accordingly 

the accuracy of the periods calculated f r o m  eq. (127) is not expected 

A - 
t o  be ve ry  good for  extremely sma l l  values of e (eO,  p,). 

5. Comparison of Results with Calculations by Schubart 

Extensive numerical  calculations have been c a r r i e d  out by 

Schubart (4) for  the nearly commensurable case  of the res t r ic ted  

three-body problem. The following variables  (writ ten in  t e r m s  of the 

present  notation) a r e  used in  his work: 

The disturbing function or  Hamiltonian i s  

where rnl i s  the m a s s  of the perturbing body and (1 + m l ) %  is i t s  

mean motion. 

The short-period t e r m s  involving A a r e  ljsmoothed out" f r o m  

F by a numerical  averaging process ,  and the resulting quantity is 

denoted by . Only long-period t e r m s  a r e  retained i n  Fe The 



following two integrals  a r e  then valid for the long-period effects: 

u = &  
F =  d 

The first of these i s  equivalent to  eq. (90), t o  within t e r m s  of O(p). 

Following a suggestion by ~ o i n c a r 6 ' ~ ) .  the var iables  

= (2s)%w4. 

a r e  introduced and the r e su l t s  of the calculations a r e  graphically p r e -  
- 

sented in the f o r m  of curves F(x, y, U) = constant, drawn in  the x - y  

plane for a fixed value of U. These curves bring out the nature of the 

behavior of (w- "9) and the eccentricity e, for  a wide range of m 

init ial  conditions, and a r e  therefore useful in  obtaining an  intuitive 

understanding of the motion. Since the numerical  averaging process  
- 

used to  convert  F t o  F was c a r r i e d  out on a n  electronic computer, 

without the necessi ty  of expanding F in powers of e, the calculations 

a r e  valid for  orbits of a l l  eccentr ic i t ies  0 ,( e < l. 

Although they clar i fy the qualitative nature of the motion, the 
- 

curves F = constant do not provide information about i t s  t ime  

dependence. However, r e f e r e n ~ e ' ~ )  gives the period of infinitesimal 

l ibrations of (a-n$) about 0" a s  a function of the eccentricity,  cal-  

culated by means of a numerical  variational theory. This was c a r r i e d  

out for  the c a s e s  n = 2, m = 1 and n = 3, m = 1, using the numerical  

value rnl 71047 to  correspond t o  the sun-Jupi ter-asteroid problem. 

These values a r e  plotted in F igure  5, The period of infinitesimal 





(4)  librations for  ve ry  sma l l  eccentr ic i t ies  is not given in  reference . 
However, this  can be calculated f r o m  eq. (127). The resu l t s  

a r e  shown in F igure  5. The accuracy of the resu l t s  dec reases  fo r  

A - 
large values of e (QO,  p.) because the approximation (112) becomes 

unrealistic. Schubartrs  resu l t s  for  n = 2 indicate that the period 

decreases  for  v e r y  smal l  e, and the values calculated f r o m  eq. (127) 

c lear ly  show t h i s .  Although the curves for n = 3 do not fi t  together a s  

well a s  do those for  n = 2, a marked decrease  in period is indicated 

fo r  sma l l  eccentricit ies.  

In o rde r  to  exhibit a typical case  of finite-amplitude l ibrations 

of (a-n@) about 0°,  the l ibration amplitude has been calculated f r o m  

1 
eq. (102) f o r  the case  n = 2 and using y = - 1048 ' 

In eq. (102) the value 
A) 

of e o  is taken equal t o  e - e(OO, p.). To facilitate comparison of initial- 

the present  resu l t s  with those given in r e f e r e n ~ e ' ~ ) ,  the l ibration is 

assumed to s t a r t  f r o m  the init ial  condition (wo - n q o )  = 0°, and the 

initial condition g3I2 ($ , p.) has been adjusted fo r  each value of einitial 

in  such a way that the relation U = aG[2-(1-e2 )y2] = .8000 is 

maintained. 

The comparison of resu l t s  is shown in  F igure  6, and the 

agreement  i s  good for la rge  amplitudes of (w-24). F o r  the l a rge r  

values of einitial, the neglect of the higher powers of eo causes  

eq. (102) to  yield amplitudes which a r e  somewhat too small. The 

3 
agreement  could be improved by retention of a l l  t e r m s  i n  e th rougbu t  

the calculations. 



F i g u r e  6. Libration Amplitude of (0-2@). 
1 

n = 2 ; a h[2-(l-e2)%] = .8000 



APPENDIX 1. Numerical Values of Commensurabilities 



APPENDIX 2, Expansions in Powers of e 

+ { similar terms in e3, e4, - - -3 



similar terms in e 3 ,  e4,  - - 



APPENDIX 3. Express ions  for  Coefficients 

= (&,%)A& + (a- $ 4 ~ ~  + (-.h + $&?)A,, +- 64a2+94k. 
m 

2 3 6  * f-#a+~&3-glL)ki&+' +(++pa -.a)%-, +-(F- fa3g+* 
,2/ 2 2/ 5 H r 1s + /s- 7 +(ra+Ta)g-r"& a'p ' p ) ~ ,  + (+%a + %'- $5&")&+/ 

+ (- Fd- 435a3- Bit,?~,, +(-$G2+/f a* ' $*+c r -r  01 
/5-9 / + (y'+f a'-$%3~, + (e - +YG+S C&O 1 b 8  4 ,  * &-3 

+ (-gp3-c gay c_, 





Note: The coefficients Cn-, , C ++, , - etc., a r e  t o  be included only 

when (n-3 ) 3 0, (-nts ) P 0, etc. The summation on k in the 

Fourier ser ies1 does not include k < 0 .  



NOTATION 

The symbols which appear most  often in the text a r e  l isted below: 

IJ m a s s  of the perturbing body divided by total  m a s s  
of the sys t em 

t t ime 

r, 8 polar coordinates of the infinitesimal body; see  
Figure 2. 
1 
1 

S - 
r 

s o ?  S1 leading t e r m s  of the two variable expansion for  s 

to* t l  I1 I1  I1 1 )  I I  I f  l r  'I t 

5 the slow variable ($= p% Q) 

9 0 9 5  initial values of 8 and 5 a t  t = 0 

a semimajor  axis of the orbit  of the infinitesimal body 
e eccentr ic i ty  II II  I I  11 rl 11 II 

w longitude of per icenter  " " 1' II 11 

a 

T quantity which defines the position of the infinitesimal 
body i n  i t s  orbit  

n, m positive integers  which specify the part icular  

..I 
commensurabili ty being considered 

~ o s ~ o * ~ o *  
9% 

A A A 
' various t e r m s  in  the expansions of the orbi ta l  

e,W, 7 elements 

@ a slowly-var ying angular quantity which defines the 
position of the infinitesimal body in i t s  orbit; 
s ee  eq. (34). 

Ak(a), Bk(a),Cda) Four i e r  coefficients used t o  expand the periodic 
perturbing t e r m s  

k summation index 

an, Sn, yn, ~ ~ , p ,  6*. various combinations of the F o u r i e r  coefficients 

r. h. 6 .  ; 1.h. s. right- hand side; left-hand side 
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