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ABSTRACT

The nearly commensurable case of the planar restricted three-
body problem is treated by application of the two variable expansion
procedure. The polar angle of the infinitesimal body, rather than the
time, is taken as the independent variable. A set of four coupled first
order differential equations, which govern the long-period behavior of
the orbital elements, is obtained by imposing the requirement that the
assumed form of the expansions must be self-consistent., The
independent variable in these equations is the "slow variable". It is
then found that the short-period perturbations of the motion of the
infinitesimal body do not contain small divisors or secular terms.

Approximate solutions for the orbital elements are given, for
two different cases. Both libratory and non-libratory solutions are
found, depending upon the initial conditions. Numerical results are
calculated from these solutions, and are compared to numerical

computations recently reported in the literature.
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1
I. INTRODUCTION

The planar restricted three-body problem may be stated as
follows: Two bodies move in circular orbits about their common
center of mass, ;nd are assumed to be point masses. A third body
having infinitesimal mass moves in the orbital plane of the two large
rnass‘es, under their combined gravitational attraction.

The above problem, although highly idealized, provides an
approximate mathematical model of several actual problems which
occur in celestial mechanics. One such problem is the motion of an
asteroid (minor planet) about the sun. The mass of an asteroid is
sufficiently small, in comparison to the masses of the sun and major
planets, that the effect of the gravitational pull of the asteroid upon
the motion of these larger bodies may be neglected.

The two largest plar;ets in the solar system are Jupiter and
Saturn, the mass of Saturn being approximately 0.299 that of Jupiter.
(The next largest planet, Neptune, has a mass only 0,053 that of
Jupiter. ) The orbit of Jupiter lies much closer to the orbits of the
asteroids than does the orbit of Saturn. Therefore, the perturbations
of the motion of an asteroid caused by the gravitational attraction of
Jupiter are much larger than those caused by any other single planet.

The orbit of Jupiter around the sun is nearly circular, its
eccentricity being approximately 0.0482. The orbital inclinations of
many of the asteroids, with respect to the sun-Jupiter plane, are only
a few degrees. For the above reasons, a solution of the planar re-
stricted three-body problem may be expected to provide an approxi-

mation to the motion of an asteroid around the sun.



The mass of Jupiter, although being large in comparison to the
masses of the other planets, is only about 1/1047 that of the sun. This
suggests the application of a perturbation procedure to obtain an
approximate solution of the problem.

Another instance in which the planar restricted three-body
problem may be used as an approximate model is the motion of an
artificial earth satellite in the orbital plane of the earth-moon system.
In this case the motion of the artificial satellite about the earth is
perturbed by the gravitational attraction of the moon.

A serious difficulty occurs in the classical variation of con-
stants solution of the problem, for those cases where the period of
the infinitesimal body is commensurable with that of the perturbing
body. This difficulty will be briefly described, following a discussion
by Brouwer and Clemence, (1)

The equations of motion for the infinitesimal body are solved
by the method of variation of constants. The first approximation
yields a Keplerian orbit that may be described in terms of four orbital
elements. The perturbations caused by the gravitational attraction of
the body of mass ' are taken into account in the next approximation,
and a set of four first-order equations is obtained for the variation of
the constants of integration; i.e. for the behavior of the orbital

elements. For example, the equation for —g% is as follows:

%/é{‘ = ,5 is FiCy g, Gt )T+ i+ a4



with the notation

semimajor axis of the orbit of the infinitesimal body

time

mass of the perturbing body

mean motion of the infinitesimal body

mean motion of the perturbing body

mean longitude of the infinitesimal body at

longitude of the pericenter of the infinitesimal body

c o coefficients depending only on a and e (for the planar
J192J3  restricted three-body problem)

jl,jz, j3 integers which are summed over

and where agsnse 0, and €, are the corresponding unperturbed

a
t
'
[Th
n

n'

em

{1 { O T I B I 1

Keplerian values. The series on the r. h. s. of the above equation can

be arranged in integral powers of the eccentricity e .

Equations similar in form to the above are obtained for -g—% ,
dw de . . ' . .
TP an d 5" These equations are integrated by neglecting the vari-

ation of the orbital elements of the infinitesimal body on the r. h. s.,
as is indicated by the use of agsm s, and € instead of a, n, w, ande.

The following result is obtained for the semimajor axis:
a=a-+da

where
.l . s t . . w,
da = Z ( M +¢sm) Ciinja cod[(jimtjaVE + 6ot 2 ]
J")}z ,

The solutions for 6e, dw, and 6€ are similar in form to that for &a.

If the mean motions n and n' are approximately commensur-

able, there will exist a particular pair of integers jl= Jl and j3= J3

n
for which (J3+ J, —-?—) == 0., The expressions for 6a, 6e, 6w, and b¢
, n

will then contain terms which are divided by the small divisor(J+J, --'9-).
n



For cases in which these small divisors occur, the above
solution is not valid. This is because the orbital elements a,e, w, and

€ as given above undergo large oscillations having amplitude pro-

portional to (J;+J, P—?——)—l, in violation of the approximation that was

. . . da de dw de ..
used in integrating the equations for I a0 aT and vk This is

known as the "difficulty of small divisors".

The difficulty of small divisors also occurs in the variation of
constants solution of the non-planar restricted three-body problem, as
well as in the more general problem where the orbit of the perturbing
body is taken as elliptic rather than circular. However, in order to
investigate the basic features of the difficulty of small divisors, with-
out becoming unnecessarily encumbered by algebraic detail, it is
reasonable to consider the simplest problem where the difficulty
occurs—the planar restricted three-body problem.

A qualitative method of treating the problem of small divisors
has been given by Poincaré(z) for the case where the mean motions
are in the ratio ‘I‘-];l'—-l, with J a positive integer. The time is taken as
the independent variable, and all the short-period perturbations are
neglected. Two approximate integrals of the long-period motion are
obtained, because the Hamiltonian then contains neither the time nor
the short-period angular variable. However, only the general form of
the Hamiltonian is given, without specifying the expressions for those
terms which are multiplied by the perturbing mass. Hence the time-
dependence of the motion is not treated in a satisfactory manner.

Hagihara(3) later extended Poincaré's method to the case



where the mean motions are in the ratio lT—;i{, J and K being positive

integers. Higher powers of the eccentricity are retained in the per-
turbing terms. However, in treating the time-dependence of the
motion, several important perturbing terms have incorrectly béen
neglected, as the result of not having ordered the small quantities in a
systematic manner.

Schubart(4) has published the results of extensive numerical
computations for the nearly commensurable case of the restricted
three-body problem. In his work, the short-period perturbations are
removed by a numerical averaging process, and only the long-period
effects are included in the orbital elements. These results provide
considerable insight into the qualitative and quantitative features of the
motion for a wide range of initial conditions.

The purpose of the work described in this thesis is to demon-
strate how the two variable expansion procedure may be used to obtain
a solution which is free of small divisors. This method establishes
the proper time-like variable for the long-period motion, and clarifies
the dependence of the amplitudes of the orbital elements on the small
parameter in the problem. Both the short-period and long-period

perturbations of the motion of the infinitesimal body can be determined.



1I. EQUATIONS OF MOTION

The planar restricted three-body problem will be non-
dimensionalized by choosing the units of mass, length, and time as
follows: the unit of mass is chosen in such a way that the larger of
the t(;vo massive bodies has mass 1l-p, and the smaller one has mass
n, where 0<p < 1+ for all cases; the unit of length is chosen such
that the constant distance between the two massive bodies, as they
revolve in their circp.lar orbits, is equal to 1; the unit of time is
chosen such that the constant angular velocity of the fwo large bodies
about their common center of mass is equal to L

The center of mass will lie on the line joining the two large
bodies, at a distance p from the body of mass l-p. The center of
mass is assumed to be moving at constant rectilinear velocity with
respect to an inertial frame of reference.

Let the non-rotating X-Y coordinate system have its origin
fixed at the center of mass. This frame of reference will be an
inertial one. The line of centers will rotate about the mass center
with unit angular velocity., Choose the angular orientation of the
X-Y system in such a way that the positive X axis coincides with
the position of mass pu at time t = 0. The line of centers then
makes an angle t with the positive X axis.

The geometrical situation is shown in Figure L



CENTER OF Mass
Mass I~

Figure 1. Barycentric Coordinate System

Let the X*- 'Y* system be a non-rotating reference frame
centered at the body of mass l-p. As seen from the inertial frame
X-Y, the origin of coordinates of the X* - Y* system will move at
constant angular velocity in a circle of radius p about the center of
mass, and hence the X*- Y>:< frame is not an inertial one. Let the
X*- Y>;< system have the same fixed angular orientation as does the
X-Y system. The positive X*-a.xis will then pass through the
position of mass p at t =0, Therefore the line of centers will make
an angle t with the positive X*-axis.

¥ %
The geometrical situation inthe X -Y system is shown in

Figure 2. *
£ Y

INFINITESIMAL
Mass

MAss [-d X*

Figure 2. Heliocentric Coordinate System



Let r denote the distance of the infinitesimal body from the
origin of the X*,- Y system, and let 0 denote the angle from the
positive X* axis to the radius vector of the infinitesimal body. The
distance between the infinitesimal body and the body of mass p is
then equal to [1+r2-2r cos(O-t)J}&.

The equations of motion of the infinitesimal body may easily be
derived in terms of r aﬁd 0, considered as functions of the time t.

They are as follows (where r =-§-1;— , etc.):

1) A 246 = asin(o-t) —u —ain(e=t)
[1#42 =21 c0(0-L)]%

. L2y / [~ +rco(e-t)]
- L = —wesd(0-1) +u-b =
(2) A—A6 T < [/+/Lz—24w(9—t)_]35

In applying the two variable expansion procedure that‘ will later
be used to solve these equations, a different set of variables is more
useful. The new form of the equations will make it easier to treat in
a proper manner the terms which would otherwise produce small
divisors,

Introduce the variable

N
(3) 4=

Then transform to 6 instead of t as the independent variable, so

that s = s(0), t =t(0). This may be done by means of the following

relations:



. o

ds.

5=~ _ ), &)
(%) & &

The equatmns of motion for the planar restricted three-body

problem then assume the following form:

B N A .

+45-24C0d (e—t)]%

) A‘(ﬁ’affw(e—f) ~A§4(f/ffm@_f)
I & SN et = —4c0d(6-1)+ G4 sin (B~

[I+A- —~2.4c84 (6 t)_'jsf

It is seen that both the time t(8, p) and the independent
variable 6 appear explicitly in the equations of motion, in the
tertﬁs which involve sin(0-t) and cos(6-t). The problem is there-
fore non-~autonomous.

Because of the manner in which the orientation of the X*- Y

axes was specified, the initial condition on t is as follows:

(6) Z‘—(G,J,d):O

where 6, is the initial angle between the radius vector to the infini-

tesimal body and the line of centers of the two massive bodies.
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The terms which involve [l—!- s -28 cos(G-t)] lead to the
occurrence of small divisors. These terms represent the gravitational
attraction of the body of mass p upon the infinitesimal body. The
term _p,( 2 dt>2 on the r.h.s. of eq. (5) occurs as a result of having
chosen 1l-u, instead of l,‘) for the mass of the larger body. The re-
maining terms on the r.h.s. of eqs. (4) and (5) are "apparentforces"
which result from the fact that the X% - Y* system is not an inertial
reference frame. These "apparent forces" do not lead to small
divisors.

Egs. (4) and (5) are an exact mathematical representation of
the planar restricted three-body problem, valid for all values of
0<pm <% . These equations possess one exact integral, the well-known

Jacobi integral:

(1) (agt)[i(?é)”' 44 ~CH) L)

+4 [A»+ ea(@~-1)— = —] =C

\] /+.42~2.4ca(o-t)

where C depends only on the initial conditions.
In the remainder of this work, it will be assumed that 0<u<<j}.
The quantity p may then be treated as a small parameter in the

equations of motion.
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III. METHOD OF AVOIDING SMALL DIVISORS

The occurrence of small divisors in the variation of constants
treatment of the problem results from having neglected the variation
of the mean motion, and the other orbital elements, while carrying
out the integration of the perturbation equations. The small divisors
are produced by the integration of terms whose period is very large
compared to the orbital period of the infinitesimal body. This
suggests the existence of a second time scale, the "slow-time" scale,
over which important changes occur in the orbital elements.

The physical reason for the occurrence of the difficulty is the
fact that the perturbing force is nearly resonant with the motion of
the infinitesimal body. This near-resonance aspect of the motion will
now be discussed briefly.

Assume that the infinitesimal body moves in an elliptical orbit
about the larger mass l-p. This elliptical orbit will be perturbed by
the gravitational force exerted by the mass p. The distance between
the infinitesimal body and the perturbing body will be approximately
a periodic function of time, so that the perturbing force is also nearly
periodic. If the orbital period of the infinitesimal body is approx-
imately a rational fraction of the orbital period of the perturbing body,
the perturbing force oscillates with a nearly resonant frequency. The
improper mathematical treatment of this near-resonance leads to the
occurrence of small divisors.

The problem at hand is to derive a set of equations which

gives an adequate description of the behavior of the orbital elements,
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in the presence of the nearly-resonant perturbing forces.

1, Justification for Use of the Two Variable Expansion Procedure

The two variable expansion procedure has been discussed in

(5) and by Kevorkian.‘é) Itis a

the literature by Cole and Kevorkian,
systematic method of constructing an expansion, of the solution of an
ordinary differential equation containing a small parameter, which
remains valid for large values of the independent variable. This
method is especially useful in problems where a small perturbing
force produces important effects which occur over a time scale that

is large compared to the time scale of the main features of the motion,

In applying the two variable procedure, it is assumed that the
exact solution may be represented by an expansion which depends
explicitly upon two different time (or time-like) variables, a "fast
time" variable and a "slow time" variable. The use of two different
variables introduces an indeterminacy into the various terms of the
expansion. This indeterminacy is removed by requiring that the
assumed form of the expansion must he self-consistent.

When the two variable expansion procedure is applied to the
planar restricted three-body problem, the orbital elements will
exhibit only long-period effects. Short-period perturbations will be
taken into account by the second term of the expansion. However, it
is precisely in the long-period effects that the fundamental difficulty
of the problem lies. Thus the use of the two variable expansion
procedure leads directly to a study of the basic difficulties of the

problem.
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The variation of constants approach yields both short-period
and long-period effects in the orbital elements. The short-period
effects must be removed before the fundamental difficulty of the

problem can be studied.

2. The Form of the Expansions

For |.L<<%, the terms on the r.h.s., of egs. (4) and (5) may be
treated as small I.)erturbations, provided that [l+sz-2s cos(6-t)] y2
does not become arbitrarily small. This implies that the infinit-
esimal body must not make a "close approach"” to the body of mass .
Close approaches cannot occur for orbits which lie entirely withinthe
orbit of the perturbing body; i.e. for orbits having s(6, u)>1 for all 0.
For cases where s(0, p)<1 during part of the orbit, the perturbations
will remain small only if [1+sz-Zs cos(0-t)] ¥z remains bounded
away from zero."

Orbits for which [1+sz—Zs cos(9-t)]3/2 approaches 0 will not
be considered in this work.

The solution of eqgs. (4) and (5) will be sought by use of the two

variable e}‘cpansion procedure in the following form:

(8a) 4(6,4) = 4,(0,84) +.ud,(6,8«x) + o)
(8b) - o) = L,(6,84) +ul;(68.4) + &Cu)
where the slow variable is

The essential features of the difficulty of small divisors occur
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in the terms of O(u); i.e. in the solutions for 51(6, 5, 1) and t1(9, 5, M)
Hence, for the purpose of resolving the basic difficulty, the terms of
higher order in p may be neglected.

Derivatives are to be calculated by the rule

,. d %2
(10) ds = 3—""’”29

The following expansions are obtained by applying this derivative rule

to expansions (8a) and (8b):

ey G=2 +ak2le w2+ o)

(11b) dt % 5—2—4 —/—,agé +.6-(4)
(11c) 455—- 29{7’ g2+ %5 )+,a@"’at' "'24439) + (o)

Applying the derivative rule again,

dy _ 2%, . %, 2. 2%
Gza) Gk =55r r ¥ ny) + (G +2E) + 00

(12b)' ;‘,’5@2%)*-5%( )""" [279‘( )"'Ba’@é)]

o) 5 (5| +-04)

+ [a—%@‘?—g-/—u )

These expansions may be used to express the L. h.s. of egs. (4)
and (5), retaining all terms of O(p.o), O(p.l/z), and O(u).

It is now necessary to discuss the manner in which the per-
turbing terms on the r.h.s. of the equations of motion may be expanded

in powers of . Since only the terms of O 0), O( ]/2), and O(p) are
P o S y b M
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to be retained, it is sufficient to use the O(p.o) approximation to the
quantities in braces on the r. h. s. of eqs. (4) and (5).

The terms which involve powers of s, %—Z— » and %% may be ex-

panded as above. The only remaining terms are those which involve

sin(6~t) and cos(0-t).

By the expansion for t(0, ) we have

(13) (6-t) = 6 ~L,(88.4) ~4L(68.4) +.0(2)

The two variable expansion procedure will be used to make t1(9, '5, )
a bounded function of 6. Therefore p.tl(G, 5, p) will remain a quantity

of O(w), and may be dropped from eq. (13), so that

(14) A (-] = ain[(0-t)~at, +0¢)]
= sin(o-t,) + Olut)
= sin(6-1,) + Ofa)
Similarly,
as)  a(e-t) = cas(e-t,) + OCa)

The following expansion is therefore valid for the terms on the

r. h.s. of eq. (4):

06) [ =a? (@ imo-2) + @) 3[/+4i?ﬁ;2-t>]3‘}

= A G e 10
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A similar expansion is valid for the terms on the r. h. s. of eq. (5).
Thus the perturbation terms of O(p) involve only the quantities

so(G, 5, ) and to(e, 5, i) and their derivatives. However, this

approximation will be valid only if it can be shown that t1(9, 5, p) and

31(6, 5,,,};) are indeed bounded functions of 6.

3. Solution of the O([J.O) Equations

The terms multiplied by Ho in the equations of motion lead to-

the following equations:

(17) 2(£%)=0

2%,

— /2 LY
) Zeva = @5

These are the equations of Keplerian motion, That is, if the
perturbing mass p were equal to zero, the infinitesimal body would
describe an unperturbed Keplerian orbit about the large mass.

In this work only direct orbits will be considered. That is, it
will be assumed that both the infinitesimal body and the perturbing
mass M revolve about the large mass in a counterclockwise direction
(see Figure 2).

Eqgs. (17) and (18) will be solved, regarding 6 and b as

being two entirely different variables. Eq. (17) has the solution

(19) |

226 ~ {a(-e)
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where
a= a(5, p) = semimajor axis of the orbit of the infinitesimal body
e = e(a, p) = eccentricity of the orbit of the infinitesimal body

Eq. (19) defines the angular momentum of the orbit. For retrograde
orbits, eq. (19) would be replaced by Soz -85%)- = _a']/Z(l_,eZ)-l/Z .
Only elliptical orbits (0 <e<1) will be considered here. Para-
bolic and hyperbolic orbits (e >1) do not produce the difficulty of
small divisors, because the motion of the infinitesimal body is not

periodic in these cases,

Eq. (18) becomes

s [
(20) —a—é—g b, = -2

The general solution of this equation is

2,(8,84) = + A(B4)0046 + B(B,u)4m8

4
a(-e?)

where A and B are arbitrary functions. In terms of the Keplerian

orbital elements, these functions are

~ N CCOW )= CAMmwW
A(B,//)——Z?’—_;;; 5 3(9,’”) a,(/—c’-)'

where

w = w(a, ) = longitude of pericenter of the orbit of the
infinitesimal body

Therefore,

(21) 4,(e,8.4) = /:e(,cfge-w)
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The quantity to(G, 5, p) may be obtained from the relation

ot _ L éai; ()%
(22) 56 = 2r @) = [1+e cos(o-w)f*
so that
(23) Ll(e8.4)= f a% (1-e)* de
0 [/+eca¢(e—w)]z
6,
where

Eq. (22) is still satisfied if an arbitrary function of 6 is added to
to(e, 0, u).

If one expands the integrand on the r. h.s. of eq. (23) in a
Taylor series about e = 0, and then holds 6 fixed while carrying

out the integral w. r.t. 6, the following expression is obtained:

short-period sinusoidal functions

(24) Z;(géﬂ]:T@y),«.ffe-/— of 6, multiplied by e, €2, e3, etc.}

where 'I’(5, i) is an arbitrary function which defines the position of

the infinitesimal body in its orbit.

4, Occurrence of Small Divisors in 8 and tl

The unbounded part of to(G, 5, i) is entirely contained in the

quantity [ T + a3/29] . Therefore

L short-period sinusoidal functions
(25) (e—i;)=(/—a§é)e -7 + {of 0, multiplied by e, e, e3, etc‘.}
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It follows that

(26) | short-period sinusoidal functions
4[”, (6-1;): L [ﬁ—i‘)@-—ﬂ + {of 0, multiplied by e, e, e3, etc.}
A similar expansion would be valid for cds(@-to).

74 Therefore, if eq. (24) were used for to(G, 5, k) it would be
found that the equations for sl( 6, 5, i) and tl( a, 5, i) would contain
forcing functions which would involve sin| (1-a3/2)9-T] and
cos| (1-a3/2)6- T]. Since 5 is held fixed during the integrations w.rnt.
0, the quantity (1—a3/2) would appear as a constant frequency. In
combination with other frequencies which are present in the perturbing
terms, these terms would produce sinusoidal functions of X: having
frequencies close to zero and others with frequencies close to 1, for
certain values of a3/2. Upon integration w.r.t. 8, these terms would
pryoduce small divisors in 89 and ‘c1 .

By expressing the perturbing terms as functions of 6 and the
orbital elements ‘a3/2, e,w, T, and then expanding in periodic series'’
to determine which frequencies occur, it may be shown that small
divisors would occur in sl( 6, 5, p) and tl(O, 5, p) for direct elliptical

orbits in those cases where the semimajor axis has a value such that

35 ot M=
== =77

where n and m are relatively prime positive integers, with n>m.
It may also be shown that the perturbing terms which are
multiplied by the first power of the eccentricity would produce small

divisors only for commensurabilities with m = 1; the perturbing
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terms multiplied by e2 would produce small divisors for both the
m=l and m=2 cases; .those multiplied by e3 would produce small
divisors for the m=l, ﬁ1=2, and m=3 cases; etc. Correspondingly,
one would expect the behavior of the orbital elements to be somewhat
different for the various values of m. |

For brevity, this analysis will not be carried out here. How-
ever, it should be mentioned that the occurrence of small divisors in
the above form is equivalent to the corresponding difficulty encountered
in the variation of constants treatment of the problem.

Although retrograde (clockwise) elliptical orbits will not be
discussed here, small divisors would occur for certain cases where

a3/2

is the ratio of two positive integers. These small divisors could
be avoided by a method similar to that which will be discussed in the

next section,

5. Explicit Inclusion of Commensurability in the Expansions

As discussed above, small divisors would occur if the semi-~

3/2

. L n-m
major axis is such that a

(5, i) is near one of the values
This suggests that the near-commensurability should be taken into
account from the outset, and that the semimajor axis should be ex-

panded in the form

A
(27) d?é(g),q) — i/;_/’l.”: ,«_,a‘éasé(e,x/)

The corresponding derivative is

29 Rt
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The expreésion for to(9, 5, p) must now be re-examined, taking
into account expansion (27). The expression given in eq. (24) was ob-
tained by holding the slow variable ® fixed while carrying out the
integration w.r.t. 6. Such a procedure is valid for the terms which do

not give rise to unbounded quantities proportional to 6, Therefore

e
(29) L(6,54)= T15.4) + f a¥do —2a%esino-u) +Za% et sin2(o-w)
-}

+ similar short-period sinusoidal functions
of 6, multiplied by e3, e4, - - -

There is no non-uniform approximation to the unbounded part of

to(G, 5, f) caused by dropping the terms multiplied by e3, e4, - - -

since the integrals of all such terms w.r.t. 8 are bounded.

Using eq. (27) for a3/2(5, i), one obtains

o o o
(30) f a*de = f [—’”—,Z’i +,d’é£3éfé;x/)]d9 = -(—”%”-'-"—)(e-q) gy ’f[ a*(Gy)do
6, = =)

If the integral on the r.h.s. of eq.(30) can be expressed as a

~

function of 6 alone, rather than as a function of both 6 and 6, it
will be possible to distinguish between the unbounded behavior of
tO(G, 5, @) which is proportional to 6 and the unboundedness which is
proportional to ®. This will make it possible to avoid the occurrence
of small divisors in (6, 6, ) and (6,0, ).

To accomplish this it is necessary to use the relation 5=|J.]’/29

when carrying out the integral on the r.h.s. of eq.(30). Therefore
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}'

(31) u% a?é(éu)a’a = f A”i(e ) dw’6) = ; P u)dE
=X

%6,

Introduce the notation

(32) T(g4) = 7 (8,4) —%1—"—"326,
Eq. (29) may now be written as follows:

&
(33) L(684) = @/Eﬁe + T(64) -/jé‘%dg —2d’e sn©@-w)

o,

similar short-period sinusoidal functions
CAW!Z -
(9 )+{ multiplied by e3,e4, - - - }

For brevity, the following notation will be used, whenever it is con-

venient:

a3'/\
(34) PE4) = T(G4) + f .2
| &

The corresponding derivative is

a’ _ dr

Eq.(33) then becomes

~ 2%

(36) %(884) = i"_la + H(E4) —24%c.4info-w) +;?a.$5e  gom.2 (6-)

similar short-period s1nu801dal functions
+ {of 6, multiplied by e3, e4, - - -,
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This expression will be ‘used for t from this point on.

The term i—r-l—;l—-nl)- 0 represents the unbounded behavior of tO
which is proportional to §,and ¢(5, ) represents a possible unbound-
edness of t on the 6 scale. A geometrical interpretation of ¢ will
be given later.

Having expressed t, by eq. (36) it is necessary to express

8t at°
the derivatives and —2 in a self-consistent manner. The
W 00

former is given by

296 a(-€ *
e _L(A [/+em(e-w)}

By the derivative rule (10) we expect that

(38a) dt, _ ot

e L
do = 26 1 39

Formally applying the derivative rule to eq. (33), it is found that

(38b) %{ﬁ):%@—+ﬂ‘ég§+£‘i)+{-a%derivatives of short-period termsi}

,a'é{é% derivatives of short-period terms}
From egs. (37), (38a), and (38b) it follows that

(39) 22%=5{£ o+ {.a_%derivatives of short-period term?}
(=]

— g_lg_a'}”é + é%derivatives of short-period terms}

The quantity 7(5, p) should be regarded as the fourth orbital
element. The quantity ¢(5, p) is c‘ompletely defined in terms of

7 and Q3/2 by eq. (34).
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6. Geometrical Significance of q§(5, )

Using the approximation
(40) tle,.u) = £ (68.4) + O(«)

it follows that

(41) (e-t) = (6-t.,) + O@)

= 2% — P(G4) + 2a%e sin(6-w) —Fa*mn2 (o-w)

similar short-period sinusoidal functions
)
+ {of 8, multiplied by e3, e4~, - - +C9()

The quantity (0-t) represents the angle from the line of centers of

the two large masses to the radius vector of the infinitesimal body.

The geometrical situation is shownin Figure 3.

s Y*

(Zo-9)

A § SHORT~ PERIOD
TERMS

Mass A4

OrBiT OF
INFINITESIMAL
Boor

CircuLAR OrBIT
FoOLLOWED B8y MAsS &

Figure 3. Geometry of the Orbit
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The elements a(a, 1) and e(a, R) specify the size and shape Qf
~ the slowly-varying elliptical orbit. The longitude of pericenter w(a, )
specifies its angular orientation. The quantity ¢(5, i) specifies the
position of the infinitesimal body in its orbit.

Consider the geometrical situation which occurs every nth
time the infinitesimal body is at pericenter. Between two such occur-
ences, the infinitesimal body will have completed exactly n revolutions
in its elliptical orbit, and the mass p will have completed approx-

imately (n-m) revolutions in its circular orbit. At each such instant,
© = W(B4)+¢p-2n ; p a non-negative integer

so that eq. (41) becomes

(42) (6-t) = (g;f—cu—;b) + pom-2ll + Otu)

The simple form of eq. (42) results from the fact that each of the
short-period terms in t_ vanishes when 0=w+p- 2nw. The geo-
metrical situation when the infinitesimal body is at pericenter is

shown in Figure 4.



(Frw-9)

Mass

Figure 4. Geometrical Significance of (%1 w-¢)

Thus the quantity (%— w-¢ ) is equal to the angle between the
pericenter of the infinitesimal body and the position of the mass p,

measured every nth time the infinitesimal body is at pericenter.

7. Dependence of the Orbital Elements on p

The eccentricity is assumed to depend on 6 and B in the

following manner:
Py
(43) e(éju)= (= +,4/‘?6(9,x/) poe, @ constant

The corresponding derivative is

de . ,%dé
(44) 7%-«”4%'%

In certain cases it will be possible to use the approximation
e = eo+ O(p.]/z). However, if e, is sufficiently small, it is necessary

to retain both terms on the r. h. s. of eq. (43).
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~

The quantities w and 7 are both unbounded functions of 6, in

general. They will be assumed to depend on 6 and P in the following

manner:
(45) w(é}a) = 4, +xljé¢3(é;//) ; Wy a constant
(46) T(g)‘,a) = T, -/-,d’é’le(é;xl) i Ty a constant

The corresponding derivatives are as follows:

% gd
(47) %z";zﬂéj—g-—

dr _ St
(48) 75’""’ a6

It is not necessary to assume in advance that ST and L

are constants. However, if one begins with eqgs. (43), (45), and (46)

deo dwo d'To
it will be found that — = 0 —— = 0, —— = 0. By assuming
do do do

SIS and 'r0 to be constants from the outset, these unnecessary

calculations are avoided.

The quantities 2)(5, ) and 9(’5, i) will be unbounded functions
of 0 in general. Hence it is not correct to write w=w + O(p.]/z) or
’r.='ro+ O(p.l/z). Both terms on the r. h.s. of egs. (45) and (46) must
be retained.

By substitution of the expansions (11) and (12) into eqgs. (4)
and (5), the following equations are obtained from the terms which

are formally of O(p.l/z):
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(49) @292") 42k) = 0
50 22»4‘0 -2 Zaz; 22t .
(50) 25505 NG
It will now be shown that because of the form of the expansions
32
for da~ s -(-1—2- , iw; , and _‘_i_": s the terms which occur in egs. (49)
deo d6 do do

and (50) are actually of O(pl/z), instead of O(p.o). By eq. (19),

2 (2t _ d [/
(51) 55@55‘ = 23’[7_“& (/—e)%]
] i A c/ﬂ"f e
= 3a?'/ % 45 T 7&(7-—}’249]
From eq. (21), it follows that

2% ecdw
(52) 3% = mez‘[ a—e=)] """’92‘[ (-

ecww did din W 14-€)dm
=S @ 3 éo-é)% * ﬁmf‘% cxb

@ /a) s et 5/
w S B - S G

By carrying out the indicated derivatives in eq. (39), and
then multiplying by si= a-2(1~e2)_2[ l1+ecos(f-w)] 2, the following

result is obtained:

o0 4Tl B o) e B e
M- (Gt SE)e - 22 ainlo-a) (Bt i) e 2 22 i osto)

"y [ +ée%+_5(ea) ]wz(e_w>+ [sim;;aretser;?s r-r.11:-1.1t-i.p1ied]
1] b}

Note: There is no equation (53),
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By differentiation of eq. (54) w.r.t. 6, it follows that

(55) 36(4231‘) Ote*)

Thus, each term which occurs in egs. (49) and (50) is
actually of O(p.l/z), rather than O(p.o). These terms must therefore

be included in the O(p) equations. Hence there are no O(p.]'/ ) eqg-
uations to solve.

8. The O(u) Equations

By use of egs. (l1),(12), (16),(49),(50), and (55) it may be

shown that the O(p) terms of the equations of motion lead to the foll--
owing equations:’

e

(57) [( 2%1“4-24,4 )_,_ L (422t )J — 34‘//—32)‘2 gég?z_ . 5’%
3 20L, A
i Gty + GG e o

Fa, ~2ecadw ) y da¥% _ 2(r+Slamw
(58)  Zg2 T4 = [a(/—ea) BrEEG S T ag-oF %]code

—2e4inw 45 ecyw  a%, 2w dé] om0
* {a,(f-ez) Z-4; %(-) d& T a(meF b

2035 G20 35) 5 3B #.42(BE eva(ot) - (WEE

o , /=408 (B-1,)+ 55e4m(6-L,)
_Aa_ﬂ-%)m(e %) +(« at) 7l [/+A.9—24),°:; -¢)]* :

ot
( 2 -—:? is of O(p.o), as may be seen from eq.(54).

The quantity

ot

. 1 2 . . o .
The notation Tz (so —— ) is merely a convenient way of writing this

term.
Note: There is no equation (56),
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9. Series Expansion of the Perturbing Terms

In order to express the perturbing terms which involve sin(@-to)
and cos(@—to) in a useful form, it is necessary to expand these quan-
tities in powers of e. The amount of algebraic labor that is required
increases very rapidly as higher powers of e are retained, For this
rleason, all terms mulf:iplied by e3, e4', --- will be neglected in the
remainder of this work. For orbits with small eccentricities, this
should yield a reasonable approximation. The approximation could be
improved in a straightforward manner, merely by retaining the higher
powers of €,

Using eq. (36) for t» the quantity sin(G—to) may be expand-

ed in powers of e as follows:

(59)  sin(o-t) = tin(Ze—@) + 2d¥esin@-u)csGro-¢)

—d’Euin(Zro-¢) + Lefens 26-wsin(Zro-4)

-—-‘/-?-a.aéez . z(e_w)m(%&e_@"_{similar sinusoidal functions -}

of 6, multiplied by e3, e4, -

The quantity cos(G—to) may be expanded in a similar form.
The perturbing terms on the r.h.s. of eqgs. (57) and (58) may

then be expanded in powers of e. For example,
2 . .

(60) “A,%Ag%)m(e‘t)z a,e,Am(Q—w)M(f%e—¢) +6Lgezcodaé’%‘-‘9-¢)
— e 2(6-w)car(Zo-¢) — Zacsin 2(6-w)sin@io-g)

‘ similar sinusoidal functions
+ {of 6, multiplied by e3, e4, - -}
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,\k 3
Similar expansions can be made for the terms -s% (%) sin(0-ty) and

s2 (?:BL)Z cos (0-tg).
0\06 s -3,

The expansions of (s(z, %t—g) sin(e-to)[Hsg - 285cos (0-tg ):l

2 dtg\? dsy . 2 G
and (so 78 [Lso cos (0-t, )+3—§- sin(06-t, )JI:HSO -285cos(0-t, ):} in
powers of e are quite lengthy, and are therefore given in the
appendix.

The r.h.s. of eqs. (57) and (58) have now been expressed as
functions of 8 and the orbital elements as/z,e,w, and ¢. However,
the integration of these equations cannot be carried out explicitly with
the r.h.s. in its present form.

A convenient way to carry out the integration is to express the
various periodic functions of 0 in their Fourier series' expansions,
and then to integrate these series' termwise. The use of Fourier
series' identifies the various frequencies which occur in the perturb-
ing terms, thereby making it possible to identify and remove the
terms which would otherwise produce quantities proportional to 0 in
s; and t;.

There are several ways in which the Fourier expansions could
be carried out. The one that will be used here is convenient when one

wishes to determine the numerical values of the Fourier coefficients.

It is sufficient to use the following three Fourier series ekpansions:

(6la) [/+a2_zacod(§?9-¢)f%= +A,@) fef A @ cak(Fro~3)
=/

(61b) \[/+42_2am(%9_¢)]“’3= —-zL-BO(a)./:@Em B ck(Zo-9)
=/

1c) [1#a=2acB0-g)] "= £G@+Z Clelens AGEO~S)
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The Fourier coefficients are given by

2m -3%
(62a) A *@)=—#f [ (+a’-2a caan] con ot
2m —82 »
(62b) Bya) =3 f [1#a*-zacer] cobndr
2mw _3
(62¢) Ca@ = [ 1-+a%-20.con] cor by

for k=0,1,2, ---. The value of a(a, p) is held fixed in carrying out

these integrations with respect to x.

If all the perturbing terms multiplied by e3 were retained, it
would be necessary to express the quantity [1 + az' -2a cos(-—? 9-¢)J-9/2
in its Fourier expansion. In general, one additional Fourier expansion
of the above type is required for each additional power of e that is
retained in the perturbing terms.

The series representation of each perturbing term can be ob-

tained from the above Fourier expansions, by termwise multiplication.

For example,

(63) [/+a‘_zam(%6—¢)]'zé~9m@v_ﬂ9_¢) = -é—AOWm@”tﬂe—sﬁ)

—din |- é'/n—-/::uf@ﬂm o ~Che)g] Aéw[(_m’:f‘@_’m)e— 4 ’)Sif]

+4=A
Faz® |, M{ (/"-*/’;49*"”) e—&?ﬂ)qb] +M[(”°W'MJ 3—@5—')4’]

Similar expansions can be made for each of the perturbing terms.
These Fourier coefficients may be expressed in terms of the

hypergeometric function. For example,
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) = 22*M(+3) 2 Ber &P \
(64) Ale) = By TG Aed, A, &)

Similar expressions are valid for Bk(a) and Ck(a). They may also be
expressed in terms of the complete elliptic integrals of the first and
second kinds, K(a) and E(a), respectively. The recursion relations
for the hypergeometric function may be used to prove certain relation-
ships between the Fourier coefficients.

In order to obtain results related to the behavior of the orbital
elements for a specific numerical value of p, it is necessary to
know the numerical values of the Fourier coefficieﬁts. These co -
efficients could be calculated directly from the definitions in egs. (62a),
(62b), and (62c), by numerical integration over the range Osx<2m.

However, these values may also be obtained from extensive

7
tables published by Brown and Brouwer() . These tables give numer-

ical values of G(;/(z)(a), G(Sl/tz)(a), and Ggl;z)(a) for 0.0 <a <0,845,

where
-3 (ﬁ
A @ = -] 6w

By(a) = a.”(/—az)-gég @

-7 (H)
Cy@ = a(-8%6,

(k)

for k=0,1,2, ---. The quantities G3/2, G(k) ’and G(k)

5/2° 772 ?F°

known as Laplace coefficients.
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10. Removal of Resonant Perturbing Terms
The quantit (sz 0 L (s "oy t b
q y o 90 o'l 99 ;72 ®o 8_5. must be

known explicitly in terms of 6 before eq. (58) can be solved. Hence

eq. (57) will be solved first. After expressing each of the perturbing
terms as discussed above, eq. (57) can be written in the following

form:

5[/ 2nt 1 Ao 2
(65 55[@«%1‘24’4%)*,«7"{@5 é?%} = SEE dE T B

+’£/ (a) aﬁé, e) w) ¢)

where the bounded function h1 is composed of terms of the following

types:

(a) several infinite series' which are multiplied by eo, e, ez,
etc. and which contain sinusoidal functions of 6, whose
frequencies are independent of f. These infinite series'’

ot 3

result from the expansion of the term s2 ——99) [1+ s2

-3/ o 9 o
-Zsocos(e-to)] 81n(9-t0) in powers of e.

(b) sinusoidal functions of 8 which result from the expansion
ot 3
) . .

of -5, W) 51n(9-t0) in powers of e.

In carrying out the integration of eq. (65) w.r.t.0, the slow
variable § will be held fixed. Therefore any term which depends only
on 0 (i.e. . which is independent of 6) would produce an unbounded

ot ot
. . . 21 o .
term proportional to 0 in the quantity <so-5-§- + Zsosl—-a—g—). This
would lead to the occurrence of similar unbounded terms in 51(9, a )

and t.(6, 5, ), contrary to the assumptions of the original two var-
1 o y p g

iable expansion.
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Several terms which are independent of 6 will occur in the
infinite series'. These are the terms which produce small divisors
in the variation of constants solution. For example, if the integers
m and n have values such that there exists a non-negative integer k
such that _fnll - 1=k, then the (-%»—l)th term of‘ several of the infinite

series' will contain the quantity

(66) M[(’M'f‘;ﬁm+ﬁb)8_(ﬁ+o¢ - —Mﬁqb

Each of the series' will contain one or more terms of the above type,
depending upon the‘values of m and n. By a careful inspection of the
series' which occur on the r.h.s. of eq. (65), the sum of all such
terms may be determined.

From this point on, onlgr the case m =1 will be discussed in
detail. This is the most important case for comparison of the results
with the motion of asteroids.

ot ot

2 1 o . .
In order that (so 5T + Zsos1 -3—6—) will not contain a term

proportional to 6, the sum of all terms on the r.h.s. of eq. (65)
which are independent of 6 must vanish, This requirement yields

the following equation:

-/ a/a?!f a/,\ ]
67 e de
(e 3a%(1~e?)% d& * H(-FE B Z—?em(w-—@)

e 2 similar t ltiplied
+§2 ¢ 2@_/”45) 4 { 1m1b.=;rese1;ins _r-m—z. _1p ie }
2 s
o . 3/2
The quantities a and Bn are functions of a only, and are de-

fined in the appendix. They are the sum of several of the Fourier
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coefficients, each multikplied by some power of a3/2.

For the case m=2, the r.h.s. of eq. (67) would not contain
a term multiplied by e; the leading term would be multiplied by eZ.
For m=3, the leading term would be multiplied by e3, etc.

After the terms which are independent of 6 have beenremoved
by means of eq. (67), eq. (65) can be integrated with respect to 6,
holding ® fixed, The result will be free of small divisors, but will
not be written out explicitly here.

The expression for the integral of eq. (65) can then be sub-
stituted into eq. (58). The result will be as follows:

2%, — [-2 d: sinw da¥_ 2(+esmw 4
(68)  Zgz+4 = [‘w’?fcé’f)wzg § o ARRT ~% ]cwe

—2eunw di_ o ecsw da% , 2(HE) s 48 yino
+[4(/—e‘) dg’) ga“"i(/—ez)a’a * a(-e? Z-M

S % dé db /7
a@-& +’é(6’a 'S w’¢)2§’ g’ 7.
where the bounded function hZ contains terms of the following types:

(a) several infinite series' which are multiplied by eo, e, e2
etc., and which contain sinusoidal functions of 6 whose
frequencies are independent of #. These series' result

at 2
from the expansion of the quantity Ssz '5'9' [1 s cos(@ t )

+ 2% sin@-t )||1+ s°-2s cos@-t )|~
W 1n (o] (o] 0C s o]

ot
and also from the corresponding terms in [(So 57 7 288,

) T( o ae)]

(b) s1nus01da1 functions of 0 which result from the expan -
ot 2

sion of the quant1t1es s ( ) cos(f-t ) and s W(W)

in powers of e,
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nsin(e-to) in powers of e, and also from the COrrespond-
ot
o 2
+ 2s 50 + -——( )}
0% 99

ing terms contained in [(So 1

If a térm in sinf or cosf were to occur on the r.h.s. of eq.
(68), the response to this term would contain the unbounded quantity
0sinf or 6cosfH. This would clearly be a resonance effect, and
would violate the assumption that }le(G, 8, i) remains a small quantty
of Of(p).

Several such terms in sin® and cos @ are contained in the
infinite series’, For example, if the integers m and n have values
such that there exists a non-negative integer k for which -Zr—g -1 =k,

the (%r% -1)th term of several of the infinite series! will contain the

quantity

(69) M[(—m"'ﬁm"'m)a—mw);b] = ot Zch4im@ — Ain22kep ot

Each of the infinite series' will contain one or more such

terms, provided that m and n have the necessaryéralues. By a
0%s

2

careful inspection of the r.h.s. of the equation for + 810 the sum

of all terms in sin6 and cos8 may be determined.a’9

In order for 51(9, 5, ) nqt to contain a term proportional to 8,
the sum of the terms in sin® and cos 6 must vanish, for all values
of ©. This requires that the coefficients of sinf and cos 8 must

vanish separately, for all values of 6. This leads to the following

equations, for the case m =1:
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e4mw % (e
- A %-“é) L LB 1 Vi + ) esincs

e X)esin(o-2mg) + () Ltinsp +8, ) Soinlecsmg)

similar terms }

+(#E, ) sin@w-3nd) +{muttiplied by e e -

i % W e
oy Spudd-g e deX | (el & 1 Jousmp + (hr)ecase

H G Jecn(io-2nd) + (R vans + (£7,) et es-ng)

similar terms }

—(#5,)€ s w—-3mep) + multiplied by e e% - -
3/2 _

The quantities K sPs Yn’én’nn’ and §n depend only on a
They are defined in the appendix.
After the terms in sin8 and cos 8 have been removed from

eq. (68) by means of eqs. (70) and (71), the solution for 8 will be

as follows:
72  4(8,84)= ( -/-,4  (e,d% ,qgg’g)%ﬁjgg)

where the bounded function h; contains terms of the following types:

(a) several infinite series' which are multiplied by e°, e, e,
etc., and which contain sinusoidal functions of 8. These
infinite series’'do not contain any small divisors,

(b) sinusoidal functions of 6 which are multiplied by e,
dé  ad a7

sinw, cosw, sinn¢, cosn¢, ——, ——, and —.
dé dée da



39

AN

A
The derivatives é—i— ’ 92 , and —cl; may be eliminated from
- do do d6

the equation for 8 after the expressions for these derivatives have

been found in terms of a/z, e, w, and ¢. The resulting expression

for s (9 9, p) will be free from small divisors.
ot
The quantity _'51 may be expressed as follows:

13) Bo= 5 (B 4@8) + G [intipat of )~ G225}
- =2 az(/ - )gqu a2(1-€)
- [/+ec«1(9-w)]a +[/+ecoa(e-w)_'!2]_W%eef( Jxl‘ﬁ °ae}

0
When the expressions for 8 and {[ integral of eq. (65)]-—11-(2—:,9-2}
IJ_Z

are substituted into eq. (73), the following equation is obtained:

(74) gg = [—+—/2e2+0(e’?}§(r§ —[6ag’ﬁe+0ﬂe?]e§/g;’

+/£¢(9;“$é €, ;5’5 37—;%;;5-)

where the bounded function h4 contains terms of the following types:

{a) several infinite series’ which are multiplied by eo, e, e,
etc. and which contain sinusoidal functions of 6, whose
frequencies are independent of 0.

(b) sinusoidal functions of 0 XJthh are Amultlphed by e,

dé 4w a7
sinw, cosw, sinng, —, — nd ——.
' dg dé db

In carrying out the integration of eq. (74), the same consider-
ations that were discussed in relation to the integration of eq. (65) will
apply. The sum of all terms on the r.h.s. which are independent of 6

must vanish for all 6. This re quirement yields the following e'quation:
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(73) [4+/ze +(9(e’):] + 6a,=e+(9(e3)]e 5— 'y + A ecss(w-mp)+cée

multiplied by e, e ", -~

Mf&)ezmz@"/ﬂ¢) + simi.lar. terms 3 4 -}
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The quantities ), Kn’ o, and Qn depend only on a”’"~, and are defined
in the appendix.,

After the terms which are independent of 6 have been removed
from eq. (74) by means of eq. (75), eq. (74) may be integrated w.xnt.

6, holding 6 fixed, The result is of the following form:

(76) Zf;(e,é}a) (9 a.35 e w yﬁ)gléjfi/é_e)j/r)

where the bounded function h5 contains terms of the following types:

(2) several infinite series' which are multiplied by &, e, eZ,
etc. and which contain sinusoidal functions of 6, whose
frequencies are independent of B. These series' are
free from small divisors,

(b) sinusoidal functions of 6 which are multiplied by e,

sinw, cos w, 51nnq§, cosn ¢, _cil_e_ dw s and 9-1-1-.
e  dao do
e do ar
The derivatives c s —-‘l:-, and -—1-'- may be eliminated from the ex-
a0 do de

pression for t by use of eqgs. (67),(70),(71), and (75).

Thus the assumed form of the two variable expansions given in
egs. (8a) and (8b) has been shown to yield a self-consistent approx-
imation to the solution of eqs. (4) and (5), provided that the orbital
elements satisfy the four first-order differential equations (67),(70),
(71), and (75). The perturbation terms ps,(6, 9,1) and uty(6, 8, w,

as given in eqgs. (72) and (76), will be free from small divisors and
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will remain small quantities of Of(u).

If the perturbing terms of O(u?) were taken into account, the
r.h.s. of egs. (67),(70),(71), and (75) would also éontain O(p) terms
involving a,e,w, and ¢. The short-period perturbations would be
accounted for by terms u?s,(6, 5, ) and p.ztz(é, 5, p), similar in
nature to s; and t; .

Therefore an approximate solution for the motién of the infinit-
esimal body, which remains valid for large values of 6, has been
obtained for the case of nearly commensurable mean motions. The
difficulty of small divisors has been avoided in this solution by
requiring that the orbital elements must satisfy a set of four first

order differential equations.
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IV. BEHAVIOR OF THE ORBITAL ELEMENTS
In section III it was shown that the difficulty of small divisors
can be avoided by requiring that the orbital elements of the infinites-
imal body must satisfy a set of four coupled first-order equations,
having the independent variable 5 = }LI/ZQ rather than 6. In this

section, some approximate solutions of these equations will be given.

l. Egquations for the Orbital Elements

/3\'3/2. de
Eq. (67) gives one relation between ——— and — . A second
dé de

relation may be obtained by multiplication of eq. (70) by -a(l-e?)cosw
and multiplication of eq. (71) by a(l-e?)sinw, followed by addition of

the results:

T G G = ot et

+@ o dek, ) binlo-m)~ (g )e2binS(-mg) +O(e?)

| 1
Multiplication of eq. (67) by -2a 2 e(l-ez)/z, followed by addition of

the result to eq. (77) yields
(78) 2& = ($a ) oin(umih) +(Fa e sin 2-mg) ~(a1,) ain(w-mg)
-/-(—df—‘f-a -1-2 o( —%()em(w—,nﬁ -/-0(53)

From eq. (67) it then follows that

(79) %—é:? = (3«,+2a%K ) edin(w-ng) + 6—.—?&4—524"34’") eZne(@-ng)
+0e)
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Similarly, multiplication of eq. (70) by a(l-e?)sinw and eq.(71)
by a(l-e?)cosw, followed by addition of the results, yields the

following:
(80) 4L = ($ak Jews(mt) + o + Fae cas2rmp)
+ (GG +partak, ) euf-ng) —(%af) e et 3w-ng)+0€)

Eq. (75) then yields the following equation, after dropping all terms in

e3, et, etc:

O) L= (K, Jectlug) + (5 7 ) o2

-/—(;f‘o‘-;?-u——g—a'%a)ee +e?)
Since the angular quantity (w-n¢) occurs frequently in the

above equations, its behavior as a function of 6 will be of consider-

able importance. Using the expressions for -@2 and ﬂi defined
a0 40

previously, one obtains

A58 = nide - M)

Using eqgs. (80) and (8l) this becomes

oo dlmd) sk [gak) D]

((Feetort) e gt

+—[—é—ad,;+,;{— o e W fmag— #a) ,g‘]e cod (w-mgp)
+[Zaytm(; Za=Y 75, )] cos2(v-mp) — (Fas,)e cora(@w-mg)
L—f- O(&) Grma %bm%/‘g’; + O(e®)

+4%<

/
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The second term on the r.h.s. of eq, (82) is written separately from
the other terms of O(p.%‘), because if e(a,p.) is small of O(pl/?) this
term will become O(u.°).

If the perturbing terms of O(p?) from eqs.(4) and (5) had
been retained, equations (78)-(82) would contain additional terms of
higher order in p on the r.h.s. These additional terms would involve
as/z, e,w, and ¢ .

Having obtained the equations for the behavior of the orbital
elements, it is useful to distinguish between those terms which occur
on the r.h.s. of egs.(78)-(82) because of the nearly commensurable
periods, and those which would also occur in'the non-commensurable
case. Each term which contains a sinusoidal function of (w-n¢) is
solely the result of the commensurability. In the non-commensurable
case these terms would not occur. The terms which involve the co-
efficients p,v, and o are not the result of the commensurability, and
would therefore occur in the non-commensurable case as well.

Thus, if 6=p1/2 0 were used as the slow variable for the non-
commensurable case of the planar restricted three-body problem, it

would be found that

c/a:’é = O(u%)
‘/“-’ = 0%
L = ¥[hap+0@)] + 0¥

g’f [ - 3% gzz)e‘+(>(e-’)] + 0%
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This implies that g = pO is the correct slow variable for the non-
commensurable case.

A heuristic explanation of why the angle (w-n¢) will tend to
oscillate about the value 0° will now be given, for the case m=l,
This explanation is based on the crude approximation that the total
effect, produced By the mass pu on the motion of the infinitesimal
body during one complete orbit, will be qualitatively the same as the
effect exerted near the point of closest approach to the perturbing
body.

For the case m=l, the point of closest approach'occurs once
duriqg every n revolutions of the infinitesimal body in its orbit. If
(w-ng) = 0°, the point of closest approach occurs évery nth revolution
at approximately the time of pericenter passage.

Let ©0=0, designate an instant when the infinitesimal body is
at pericenter, so that 0;= w(al,p.) = w;. (See Figure 4.) Let
¢(61,p) =9, designate the value of ¢ at this same instant. Assume
that | (w;-n¢p;) = 0°. After n additional complete revolutions in its
orbit, the infinitesimal body will again be at pericenter, so that
0, =2n7+ w(az,p.)E 2nm+w,. However, w, will differ slightly from w,,
so that the infinitesimal body will have made slightly more or less than
n complete revolutions about the large mass, measured in the non-
rotating X*-Yai< system, Also, ¢(62,p)5 ¢, will differ slightly from
¢;. Since a3/2 = -I—l-r:ll, the mass p will have made approximately
(n-1) complete revolutions about the large mass (l-p).

If at the end of the above interval, the angle (—%&— - ¢2) is
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small but > 0°, the infinitesimal body will be slightly displaced
counterclockwise from the mass . The perturbing force at the point
of closest approach will then act in a clockwise direction. This force
will tend to decrease the counterclockwise angular velocity of the
infinitesimal body. Since the mass u moves at constant angular
velocity, it will begin to "catch up" with the infinitesimal body duringk
the next such interval 0,<0<06; =4n7 + w(Bs,H). Therefore, by the
instant when 0 = 6; the angle (i;:- - ¢) will have decreased somewhat,
so that (2‘3- $3) < (‘i:lé- b2 ).

Thus if (—(;13 - ¢) is small but > 0° a "restoring force" comes
into play near the point of pericenter passage; and this restoring force
tends to decrease the value of (fr% - ¢). This situation will recur in
the same qualitative manner at the end of each n revolutions, so
long as (“(E - ¢) is small and > 0°. Finally (—g - ¢) will become <0°,
and the restoring force will change sign. That is, when (% - ¢) is
small and < 0° the restoring force will tend to increase the angle
(% - ¢) toward the value 0°.

From the definition of ¢(6,M) it follows that a change in -g-%
requires a change in Q%('é,p.). Hence oscillations of (w-n¢) about 0°
will be accompanied by oscillations of aS/Z(E,p.) about some fixedvalue

close to 3:—1 .
n

2., Use of the Jacobi Integral

The Jacobi int’egral (7) will now be expressed in terms of the

two variable expansions. Using egs. (11) it may be shown that



(83) ?['L(g“ "éL““@ft)"@ )] {2@22{')2[@94’4] 5'5_277 o

ol (——gf)—z{% 2+4 ,,z.%i (S‘ %3) (2% ]}
B a2 %9%@’*5@ E o] }
[&9222%@192’4 ](d %‘*'% ' 26 )+2L@g'f 4}2;5

é)<

~ »
and that
L 4
AFFcsd(6-1)~
(84) ’”{ F-ew(o-2) [1+47-2ac0-2)]%
A
=_t] by +-t—coso-{)~ 2 +0
0" by ( Z’L) [/""43_2400“(9-1‘})]‘5} )
y The terms on the r.h.s. of eq.(83) which appear to be of
1
2 ' L
O(p ) are actually of O(u), since ?-;S,—Q and Q‘E} are of O(p,/z )
00 26
For this same reason, several terms involving —Q—-Q which appear

99
to be of O(u) or of O(p./z) are actually of O(p?). It may be

shown that

(85) '-5(;2—;_5;_3; (543)1,4,7—(;2’5‘?)_4’ = —sL —ak(-)%
© e o

The Jacobi integral may therefore be written as follows, in terms of

the two variable expansions being used:
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240 2, AZ&L" |

(" "

wD | ® ,
L A,@ ,?;5)2

( a)’d *3 @ )CM(@ %) - [/-/-A . 2.4, cad(6- Q]‘é )

+0¢?) = C

where C is a constant which depends only on the initial conditions.

+
-

It must be remembered that the terms in eq, (86) which involve 959

ot y 2o
and —2 are of O(p), rather than O(n’2).
96
By formal differentiation w.r.t. 8, followed by use of eqgs. (57)

and (58) to eliminate terms in s, t;, g—%l-, %%—, etc., it may be

shown that
8% k)4 B e it

R - T
o )w(e—z:) .l ’%‘

[1+47-24, cw(e-t,?]"

A

- -

L [—L +a#(-)%] + Oy

= 4545 L2
The r.h.s. of eq. (87) is independent of 6, and depends at most on ®.
Howe\ver, the quantity in braces on the L.h.s. does not contain any
terms which are proportional to 0. Therefore the -58—5 derivative of
this quantity cannot produce a term which is independent of 6. This

implies that the r.h.s. must vanish; i.e. that
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(88) %[2—%+a%—e2)’/f] = 0 + Ot%)
so that
(89) 4 +a50-e)% = conadant + Otu™)

Eq.(89) represents one of the four general integrals necessary to
determine the behavior of the orbital elements. It is valid for all
values of the integers n > m > 0.

By use of expansion (27) it may be shown that

3 %
A _3m?  ma? .
28 = 2B Gy T O

Eq.(89) then becomes

[ m
(90) @ 2[(M-m)

-(,v_ez)‘é] = conalant + O)

Eg.(90) may be used to express a(a, i) in terms of e"‘(s, i) and the

initial conditions.

3. Approximate Solution for e(g,p) = e,

Approximate solutions of egs. (78)-(82) will now be investigated
by neglecting the variation of e on the r.h.s. That is, the approxi-

mation
(91) g(é;;,):_—eo-,t.&&/’é) ; e, constant

will be used on the r.h.s. of the equations. This approximation is not
valid for extremely small e,, since the variable part of e is then

not negligible.
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The coefficients (za Kn), (3ay n)’ etc., may be expanded in

1/ .3 12
powers of p./z"a\m /2 about a = (P—ﬁ—l) /3. Egs.(78)-(82) then become,
respectively,

a ha 2 - 2 '
02) gg& = @ Wi—f 5n)e, e (w-mgp) —(af, )e; cos¥{(w-mgp) gon(@-mg) +00%)
* (3 ag;—j—aym+¢ag,+§%_2_/¢,g)qz

03 %4; = |Gt 371, )e, +Cofy+3a%) w@—»nsb)]Mw@-msé) +00%)

049 %: = (Far-4a,) + [_@%g + (éw%ém—éamfag,)q] caw-mgp)
#(al,) cas(w-ni) —(az,)e,cts lw-nip) +-O(a?) + Ol
09 L = Lo 4 Gl fa o), i) + (S~ o e cartiun)
+ (o Fae—Fu—§S. 4 Fa%, )at + Ol

-

(Gar—pms) + Eoless o)
96 d(;je: = —miFru® -/-@‘-ad,;ﬁ% %—,’4"-‘/\”‘+@ma‘%_§),(;‘]g; ca(w-md)

(il o)~y ) s () -0
+06)

The coefficientsv (%al{n), (a.yn), etc., on the r.h.s. of eqgs. (92)-96)
depend only on n.

Since the angle (w-n¢) will be unbounded in many cases, it is
. necessary to include those terms of O(p,l/z) on the r.h.s. of eq. (96)

which would contribute to a possible secular behavior of (w-ng). Let

1
nb designate the constant part of the O(p/z) terms in eq. (96). Then
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(97) _cz’%'g_@ = —ma¥% 4 utnd + Olu*)

sO tha‘t
(98) 5{%@;@ = m(aE~uip) sin(w-mg) + Olu*)
Division of eq. (98) byveq. (93) vyields the integral
(99) (a%-u"24)’ = S, +5,e cas(Wmip) +S5,6 Codz(w—/nqS)
with
s, = [&%@E) "«”!%]2-52% coa(i=mp) — Syl cat (k)

S, = ,i(&x %)
2 (o84 3%
The Value of cos(w-n¢p) must remain such that (& /2 /zb)z?« 0.
By computing the numerical values of Bn and Y, at
é = (_r}_r:_l)% , it may be shown that S;<0 for the cases n =2, 3,4. It
should be noted that the r.h.s. of eq. (99) would contain terms multi-

plied by e3,e*, --- if the corresponding terms in e3, e?, --- had

0’ 0’
been retained in eq. (79).

The behavior of cos(w-n¢) as a function of ® will now be
determined. From egq.(98),

[Jw;gw—w) ] s )

Using eq. (99) and writing § in place of cos(w-ng), this,bec‘o’mes

(100) (f'lyei)z———' 0 Oy T R NTY +57)
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The r.h.s. may be factored as follows:
WD (-7 NS4S, 145,) = M58 =X ii)7)5E)

“where

-5, +\si~¢ss, . p= -s,~\S=4s5;

2S¢, ’ 2 25,6,

Il

(102) P

Depending upon the initial conditions, P; and P, will be either both
real-valued, or complex conjugates. Since S; < 0 it follows that
P,>P, when P, and P, are real-valued. Also, P,<{<DP, in order
that (3%- y.l/zb) be = 0.

If the roots P,;,P,,1, -1, are all distinct, the value of £ will‘
not cross any of thern, because this would make ( §) < 0. Thus
cos(w-n@p) will oscillate between two fixed limits.delf P, and P, are
complex conjugates, £ will oscillate between the values 1 and -1,
corresponding to a monotonic increase or decrease of (w-ng).

To exhibit the explicit dependence of cos{w-n¢) on ® for a
typ1cal case where (w- n(j)) oscillates between two fixed limits,
assume that the initial conditions /Z(GO,H), eg, and (w, -ngo) are
such that -1< P <§;<1<P, . Then cos{w-n¢p) will oscillate
between the two values P, and 1. From eq.(97) it is seen that
%&gﬁ_ =0 only when (Q% - p,l/z b) =0; that is, only when

cos(w-n¢p) = P; . Therefore (w-ng) will oscillate about 0° between

. + - . . .
the limits — | cos 1]?’1 | . This type of motion is known as libration.

Keeping in mind that S; <0, eq. (100) becomes
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003) ] S O N e-1) 2 0 5 Al )=

The solution of eq. (103) may be expressed in terms of elliptic functions,
- Ay v, 1
For the sake of definiteness, assume that |[a/2(0,,p)-p’2b [<0
and cos-lP1 <(wp -ngho )< 0° .

Then _d-(—w—;-m >0 and -(—i—% >0, After replacing £ by

~

de =6, ae |1e=6,

cos{w-n¢d), the solution of eq.(103) becomes

M

<5V~ P)"](e—e, +;{-7j N

N 2
P +E0-plor ~
R+3(1-) 8

/=4 (-)en’[E M‘—"’( )%—@‘é](e-—e w41)

(104) cog(w-mp) =

where
[}
5eg g ! df
V=8t e Tk | NG 0Ge)-2)G-5)
3,
coa(wmp)
and
v 4 4
(105) T_'/ne’ ~s,)¢ f NG-0G+)G-E-5)
R

4=z [(/—F.’)‘f’( H—@)’f]
T me(-5,)2(B-F)*% V2" (B-£)*%

The function sn is the Jacobian elliptic function, T is the oscillation
period of the angle (w-n¢), and K(k) is the complete elliptic integral
of the first kind. When 5=50 + T the motion will begin to repeat itself.
The quantity (33/2- p.l/zb) will oscillate between the values

j'-(Sl +S,eq+5; e§ )1/2, attaining its maximum and minimum values at

(n -1)

3
(w-ng)= 0°. Hence a/Z oscillates about the value + ub with the

5 1
amplitude p.l/z (S,+Sze+S; e(z) )/2 .
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~

Since cos(w-nqb)‘ is periodic in © with period 3T, the

constant b is given by

+

&
M—

(é’“f-#:m”) + %—@ cod(W-mg)
[pagt g, ~ 2t +(Fma Lt Je coslund) pdb
+(FaY, )t 2(w-mg) - (Faf )& ceaa(w-m)+0E)

(106) mb= —-,é:

&

The terms in cos(w-ng), cosZ(w-nqS), and cos3(w-—nq§) may be
expressed as functions of ® by use of eq. (104). Since P;,P,, and T
are independent of b correct to O(p% ), the value of b may be
calculated from eq. (106), to within terms of O(p.l/2 ).
An analysis similar to the above may always be used to

determine cos{w-n¢$) as an explicit function of 6, when the roots
P, and B, are real-valued. After this has been done, the expressions
for @(E,p.), 8('6,@), and 9(3, K} can be obtained by integration of the
known r.h.s. of egs.(92),(94), and (95) w.r.t. 0 .

| However, 3.3/2 can be obtained directly from eqs. (99) and
(104). Care must be taken to choose the proper sign for (a,/Z /zb)
when taking the square root of eq. (99). After {3\‘3/2 has been determired,
the expression for & may be obtained by use of the integral (89).
Y.

Using expansions (27) and (43) for a and e, it may be shownthat

% o )b n
s et = 0+ ol A

2% +0t)

4 [ m550-€2)* X
4 [ 36"-/»&)% - 3(//:—””)%]
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By eq. (89), this implies that
Y
é+ mﬁ‘ef)z[m __(,_Qz)‘é]a/}?é = W + 0&/5)
3pn-m)e, Lin-m,

Specializing to the case m=l, and evaluating the constant of integration,

this becomes

A ~e2)% 2%7r 2 Ass o A
a7 €=e @/’)"3”(2(;3)% [(;’"“W -k [ 4%~ %@, 4)] + 0w

Thus ¢ remains bounded if eg# 0. The value of the eccentricity at

any instant is then given by
eB,«) = e, +//'/Zé‘(f9;ﬂ)

From eq. (104) it is séen that if the initial conditions are such
that P; =1, cos(w-n¢) will have the constant value +1. This corres-
pbnds to the condition (w-ng) = constant = 0°. From eq. (102), the
condition P; =1 implies that

S,& +Se,+5 =0
Evaluating S; for the initial condition (w-ng¢,)=0°, this requires

&‘%(é:’x/ :://"éj

If P, is slightly less than 1, (w-n¢) will unciergo infinitesimal
oscillations with the period T, in accordance with eq.(104). The
value of T is given by eq.(105) with P,=1. Values of T calculated
from eq. (105) are given below for several values of e,, wusing the
value p= T(%ZB’ for the case n=2, It should be remembered that the
present approximation (91) is not valid for ey~ 0.

eg Period

. 065 | 612 years

. 085 | 579
. 105 | 576
. 125 | 594
. 145 | 644

The difference between the numerical values calculated from
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eq. (105) and those given by Schubargﬁzsee Figure 5) is largely due to
the neglect of terms in eg, eé, etc, from eq.(99). The agreement
could be improved by inclusion of the higher powers of e, in the cal-
culations, although a great deal of additional algebraic labor would be
required even to determine the coefficient of eg. Since the magnitudes
of the numerical values of o, ’Bn’ Yy Ko etc. increase with n, the
influence of the higher powers of e, is relatively greéter for larger n.
Consider now the case in which P, and P, are complex con-
jugates. This implies that (Q%-p%b) does not vanish, and is therefore
of constant sign. The angle (w-n¢) will be a monotonic function of o,
decreasing if (Q% —p.}éb)> 0 and increasing if (Q% —p.)éb)< 0. Egq.(100)

become s
(108) (L) = —w*sei0-2nil-eXr-5) 5 FEAd=4

For the sake of definiteness assume that [Q%(ao,p)-p.%b ] <0 and that

sin(wy ~-ngo )> 0. Then M >0 and _@% <0, After re-

o~

l 0= 90 do {o= 90
placing £ by cos(w-n¢) the solution of eq.(108) is

(5-4) — (ArB)on[ma- <s,)a8)e-)]
(A+8)+(A-Bon[ne(s)(28)@-g)] °

; 67§

(109) coy(w-ng) =

where
g =8+ e | )
A me (%)% J NO-X1iG-£)G-F)
and
(110) 7=

2 f /4 -
& C38)%) \| -G )7~ )
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and

A= [1-4B)] - 4(e-5F
B=[1+ £(p+)] = $ (-2

The function cn is the Jacobian elliptic function, and T is the period
of (w-nd). |

The constant b is easy to evaluate for this case. Since(w-n¢)
varies from (wp-n¢dy) to (wp-ngg)+2 7 during one period, the contri-
bution to b from each of the tefms in cos(w-ng), coéZ(w-nqb), and

cos3(w-n¢g) vanishes. Therefore
(111) 4= tap-gmy + OE)

The quantity Q%' may be obtained as an explicit function of ®
from egs. (99) and (109), choosing the "-" sign when taking the

square root ofeq. (99). (5\,"‘--}.:.}‘("b)Z will oscillate between the values
(pumatf] = [3%05.a)-uil] + & [ /- cad(ug-
[(#-at)f] = [EsEu~ats] + S [r-catuwnt]

+ S & [1-casigng)] at (w-ng)=0
and

{( ﬁié—ﬂyzj)lw = [ c’l‘;é(g‘;,a)—ﬂ‘éﬂ]z +S€, [—/- cod (- 27

+ S8 [1—cuu-np)]  al(w-mg)=e0"

2 ‘
with the period T. The amplitude of ({a\,%-p.)éb) is therefore
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[(é‘%_ﬂ‘éj)zjmx— [(‘3\35_,”%2_] = 28,6,

After g% has been obtained as an explicit function of 'é,é (a,p.) can be
obtained from eq. (107), Also, é\o(g, ) and 4(6, i) can be expressed

as the integrals of the r.h.s. of eqs.(94) and (95) w.r.t. 0.

4. Approximate Solution for e('é‘, W)= p}é g(%,p.)

The solutions discussed in the previous section are not valid
when e,=0, because the variable part of e is then not negligible. In-

stead, eq.(43) becomes

(112) ' e@) =.u*%E(6,4)
Egs.(78)-(82) become, respectively,

(113) 2:;_. (E-ak, )oin (@w-ng) +Olu%)

W) ¥ = (ot 307K, ) 8 sim o) +O)

s L b Gk )LD, () o Jaselirmt) + LX), o

N

we %= pv 009

Hw-np) A gaxﬁgm@ws) Lk Fap—fmu+(Fad, ) 2(w-ng)
17 75&“ et ~ 44%«1@ )

where +0@)

4= J(z;gz

As in the previous section, the coefficients (%faxn), (3afn+-‘3-a

%
a )

BA

have been expanded in powers of p.}é Q% about a=(2t;—l-)g, and therefore

Kn), etc.
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depend only on n.

Egs. (113) and (114) have the integral
f\;é % (3 -/—fa. /() A2
(118) A% = a8, ) +.u . [ @.‘,,ﬂ)_]

Hence the oscillations in QS/Z are O(p.l/z) for this case.

Since (w-n¢) will be unbounded in many cases, it is necessary
to include those terms of O(pl/z) on the r.h.s. of eq, (117) that would
contribute to a possible secular behavior of (w-n¢). The remaining

1
terms of O(p./z) will only produce bounded terms in (w-n¢). Let

Lap_ ny— (30( +25L m) A2
(9) g JFTER €2, 4)

+ (#a ¥t 2(w-m@) +.4 a%&,.1) ﬁg_—ﬂ_@

ConsTANT
Eq.(117) then becomes ‘ PART

(120) i%ﬂﬂ‘z = [-—m2 é:,dl)+//5m,c] + (‘z"‘“/‘,’,)ﬂgu—f’—”-‘éz-f-ﬁﬂa‘i)

Egs. (113) and (120) have the integral

A 2
(121) Ecod(w-mp)—RE =R,
with

R )[a (5 4)~,a’éc]

Since cosz(w-nqb) must be <1, the value of € must always satisfy

the condition

Eq. (113) may now be written as
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2z (% ) =@k -7t (-26R)E-R]] 2 0

The quantity on the r. h. s. may be factored as follows:

/&4 (-2RR )& -R" = ~FIE-0)(E%a,) z0
where
(123) Q= (/-265’22)/;\!7—757?,—' ’; o= 0—2,9/?2);!,?—,—"
Therefore

(124) (f;) GRS R (6-6E%q)= 0

AY

If Q, and Q, were complex conjugates, —q%,—vvould never
de
vanish, and €2 would be an unbounded function of 0. The present

approximation (112) would not be valid, as e(a, i) would become
large. Therefore the approximate equations (113)-(117) will be valid

only if Q,Q, are real-valued; i.e. only if
(125) /—4RR Z0

For real-valued Q, and Q,, itis seen that Q;= Q,.

In order that )2 0 throughout the motion, it isnecessary
a6

that
> ,
Q=<4
de? A
Since the sign of — can change only when €2=Q, or €2=0Q,, the
de .

value of &2 will oscillate between these two limits. Correspondingly,
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the value of cos(w-nq)) will oscillate between two limits. Using in-
equality (125), it may be shown that Q,>0. In fact Q, vanishes,

and € consequently passes through 0, only for the special case

B(au) = Lalume) (k) cws(osmd)
| @ i m[ 335(@,4')-:(/‘%]

) . Ao .
For this case the maximum value of €2 is

0 =-L — @4)
1 /?,2 Mz[ﬁ*@#}—ﬂl&gz

It is seen from eq.(123) that Q; —» o when Q%('é’o,p)—»p%c . There-
fore, € will remain of order unity only if Qa/z(go,p) is O(p°). This
is in agreement with the well-known fact that there are no periodic
orbits of the first kind at commensurabilities with m=lL

By calculation of the numerical values of the Fourier coefficients
An’ An+1’ and An—l’ it may be shown that Kn<0 for n=2, 3,4. This
is presumably also true for n>4.

The solution of eq. (124) is

(126) &°= £(6+Q) +L+(6-0) cea[ KR E#C]

with

C= ~GhIrg +ai (g [E@A-Hara)f

The value of cos-l{ } should be chosen such that
Al . -

£ <o o ntomio

=8, ‘

gg’:% h>o - don(w-mdh)< O

=6,
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The expression for Q% then follows from'eq. (118). The period of the

, . A .
oscillations of e is

127 = = 21
wen TSGR = A

Since €= 0, it follows from eq. (121) that

(128)  cad(w-mg) = @{'ZL(Q:"‘QJ"‘.Jz"(ﬁ’;,“@)m[ﬁ/ﬁ)@g-*c_)}%
~%
# R #0+0.) +4(0- )eaftt o+ ff

Since & and cos{w~n¢) are periodic functions of 6 with

period T,

é+T

129) me= _L_f{é'“‘f'é’"”‘*'(‘[‘“%)mz@_w),/.j 2@‘;/1) m(‘w—méz

oK,
30{(2@ (€ 2.4

The constants R,;,R,, Q;,Q;, and T are independent of c, correct
to O(p.%). After expressing the integrand in terms of ] by use of
egs. (126) and (128), ¢ may be evaluated from this integral, correct
to O(|.1L)é ).

Having determined € and cos(w-n¢) as functions of 8, the
expressions for /&(6, p) and ?(5, i) may be obtained by integration of
the r.~h.s. of egs. (115) and (116).

The angle (w-n¢) will attain a maximum or minimum only if

its derivative vanishes. By eq, (120) this can only occur when

_ (BoK)colo-ng) _ cu(wrd) | o >0
T | aEE )] 2R, ?




63

which corresponds to

B a2_ PR

(130) e (wW-me) = 4RR, ; & = 2

If %-7: lies outside the range Q,< €2 <Q,, the derivative d((fi_en :
1

will never vanish, so that (w-n¢) will increase or decrease mono-

tonically. However, for cases in which (w-n¢) oscillates between

two fixed limits, eq. (130) may be used to determine the amplitude of

- oscillation, as a function of the initial conditions.

It follows from eqs. (126) and (128) that e and (w-n¢pp) are
1

constant, corresponding to infinitesimal oscillations, if Q,;=Q, =4_ﬁ—12~

This corresponds to

aky, P>
= 5 o
2R T 2m[an@u)-0%e] 7

e(Gu)=¢e(@4)=
=l _.__—ak,
2R, ZM[Q%(Q,J).I%A]

The choice of the sign follows from the fact that g('éo,p.) =2 0. Since

R<0

e

kK <0, eq. (121) vyields
Az i
+/ s aEEu)<de

ca(w-mep) = cod(thmm) = ’

/ 3 a%@u)>ube
It follows that infinitesimal oscillations with e=p.1/2é\ are possible 'only
about (w-n¢)=0° when Qs/z('éo,p)<pl/zc and only about (w-ng) = 180°
when {a\,a/z('éo,p.)> p.l/zc.

~ In the derivation of eqs. (67), (70),(71), and (75) it was

assumed that the angular rate g-%)- of the pericenter angle w(g,p.) is
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small in comparison to the angular rate %‘2’ =1 of the infinitesimal
body. However, this assumption would be increasingly violafed in the
case of infinitesimal oscillations of (w-n¢) with e =p.l/z € if it were
attempted to make calculations for @(50 sj) very small, Accordingly
the accuracy of the periods calculated from egq.(127) is not expected

to be very good for extremely small values of Q(EO, ).

5. Comparison of Results with Calculations by Schubart

Extensive numerical calculations have been carried out by

Schubart(4) for the nearly commensurable case of the restricted
three-body problem. The following variables (written in terms of the

present notation) are used in his work:
P I G
U=Zta®]1- G 0-%]

S = a¥%[/--V%]
A= Zro-¢

—_ 4L
o= ~w+ P

The disturbing function or Hamiltonian is

F= 2—3— +0+m,)'éalé(/—ea € +om, {"ZL cat(o-t)+ [/+A«i2»4 604(9-75')]5}

where m; is the mass of the perturbing body and (1+ ml)l/2 is its
mean motion.

The short-period terms involving A\ are "smoothed out" from
F by a numerical averaging procéss, and the resulting quantity is

denoted by F. Only long-period terms are retained in F. The
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following two integrals are then valid for the long-period effects:
U= conaZanl
F = condlan®

The first of these is equivalent to eq. (90), to within terms of O(u).
.(2)

Following a suggestion by Poincare' ', the variables
X = (25)'%6040‘
¢ = (25)%sina
are introduced and the results of the calculations are graphically pre-
sented in the form of curves i-:"‘-(x, y, U) = constant, drawn in the x-y
plane for a fixed value of U. These curves bring out the nature of the
behavior of (w——%qﬁ) and the eccentricity e, for a wide range of
initial conditions, and are therefore useful in obtaining an intuitive
understanding of the motion. Since the numerical averaging process
used to convert F to F was carried out on an electronic computer,
- without the necessity of expanding F in powers of e, the calculations
are valid for orbits of all eccentricities 0<e<l
Although they clarify the qualitative nature of the motion, the
curves F = constant do not provide information about its time

(4)

dependence. However, reference gives the period of infinitesimal
librations of (w-nq)) “about 0° as a function of the eccentricity, cal-

culated by means of a numerical variational theory. This was carried
out for the cases n=2, m=1 and n=3, m=1, using the numerical

value m; ¥ 1/1047 to correspond to the sun-Jupiter-asteroid problem.

These values are plotted in Figure 5. The period of infinitesimal



SUOTRIQIT [RPWISSIIUNU] JO polIdg °g 2an31g

]

oL 7 oz o/’ Lo’ +#0° 20°

!

and ; . + . B
R DU R U .'.VIF - S T URPAFEN TN T (N [V N I S NS \ [ -\ S
- v v - . 5 OO (OSSR SRS PO S Y 5 D P [ (PP B

66

"

W
N
;:l o
|
I
i
i
i
i
i

v * . GRS AN ISSEEE EREE AN SRR B S A A 00 T St IO O
wppovssmamy =+ | |

e e

[P A A D
L2 worivres

S
N

S
m
(S¥vIp) 00193y




67
librations for very small eccentricities is not given in reference(4).

However, this can be calculated from eq. (127). The results
are shown in Figure 5. The accuracy of the résults decreases for
large values of @(50, i) because the approximation (112) becomes
unrealistic, Schubart's results for n=2 indicate that the period
decreases for very small e, and the values calculated from eq. (127)
clearly show this.- Although the curves for n=3 do not fit together as
well as do those for n=2, a marked decrease in period is indicated
for small eccentricities.

In order to exhibit a typical case of finite~amplitude librations
of (w-n¢g) about 0°, the libration amplitude has been calculated from
eq. (102) for the case n=2 and using p= '1_017f§ . Ineq.(102) the value
nitial™ e(ao, p). To facilitate comparison of

(4)

the present results with those given in reference'”™’;, the libration is

of e, is taken equalto e,

assumed to start from the initial condition (wy-n¢o) = 0°, and the

3/ ~

initial condition Q/Z(Go,p.) has been adjusted for each value of e, ...

: initial
. . y y .
in such a way that the relation U= a’2[2-(1-e2)/2] =.,8000 is
maintained.

The comparison of results is shown in Figure 6, and the

agreement is good for large amplitudes of (w-2¢). For the larger

values of e, the neglect of the higher powers of e, causes

initial’
eq. (102) to yield amplitudes which are somewhat too small. The
agreement could be improved by retention of all terms in e’ throughout

the calculations.
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Numerical Values of Commensurabilities

(n-1) (n-2) (n-3) - (n-4)
n n n n

n=2 . 500

n=3 . 667 . 333

n=4 . 750 . 500 . 250

n=5 . 800 . 600 . 400 . 200

n=6 . 833 . 667 . 500 . 333

n="7 . 857 714 571 . 429

n=8 . 875 . 750 . 625 .500
n=9 . 889 . 778 . 667 .556

n=10 . 900 . 800 . 700 . 600

n=oo 1. 000 1. 000 1. 000 1. 000
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APPENDIX 2, Expansions in Powers of e

@%‘)M(G”t) _ dEen@eo-g)
[I+A.=..a4m(e-z';,)13é - [ / aP-2a con (%9— 9’5)]%

rz 3 _gon (6-w) cd (Bo-9)

+e<

I [

+2o% B@-wem2(Gto-¢) | o 4 sin(6-w)cr2(Zo-g)

- "M(Q') )
[+-7=20ma (26 "45)] 3@( 4 _ 3% B )Am(—"*e-sﬁ)

]55

[ JZ

.9 4 4in2(6-w) /5‘ % _sin(Se-¢)

P e et

I* J
-
a*E-ad)win (2o ~g) £ a%-cas2(0-wsinEle-¢) BMZG—M)W&QG"@
{I+a5 Zam(me-—sb)];é [ J% ~#e [ Fé

[
54 HEM@-)M?; 5~¢) +24%(-32) sin2(Zko-¢)

T
+2a % WZ@-w)MZ(%f -4) L5y 4 pin2(0-w)cad 2(26~p)
:d [ 7% [ 7%

+4£a _sin2(6-w) 1a% sm2@-wess(3o-¢) s 55 sm2 (56

]4'5

~¢)

[ e 72 F

+7/é5- %(‘/—-I-a /2@5) caaz(e—w)m(mg ¢9

[ J% [
- 15,% cMZ(e-@MZ%'fZ*@ — 152" ;J_Ji_z(e—w)mz (‘Fj;—qt)

+is (- ya?) 23 (56~ ¢) +,L_a_/é(,+4 2) ca 2(6-updin 3(50

WA Y

]7,
J%

~¢)

+ {similar terms in e3,e%, - - -}
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@z%)z [1-4cno-t)+2e sinto-t)] _

[1+4f-24,c00(6-1.)]%

4 (6~w)din(26-¢)
[I+az-2a m(%s-@]%

-6 a’% M@"w)‘“”"‘( 7%9 ‘¢)

(“
a(z:c*ﬁ,)

d—acs(Zo-9)

[ /+ a.‘—Za,cod(%g_gszé

- cad (9—0)) m(% 9"'¢)

[

]35

-

+€ 3 [ 75 + 3a(1+a) c?(e-w)m(%ej_g)_
:ga,zfe“:_@-_u% +3.5% A[f}n(e—w)xl&m‘:‘@ryﬁ’-?%# Y c?(a—w)mz&"ej—ggb)
2(/-0%) . w@o-8)  Bay)
[,342_2 G +a(a.—z)f“ ]é + 7 ¢_]%
- So-g, 5 _sin2o-wan(GEo-¢
a4 -a%) aEzz(e w)caLé 91%) +é_a§’ A(Emz(e w)m(l%e )

cod 2 (6-w)

[ T%

-3 a*(1+a%-a’)

+Fa(2-44%a%)

an2(6-w)em(2o-¢)

+Za(r+4a’~4a’) f@i&%

[ 1%

+ 2(24.3—3)[ oA
+€°4

coa2 (526-¢) + 3a¥(7a%-2)

002 (0-w)cos 2(200-) .

cos2(6-w)er (Fro-¢)

.

+Zaria’) 7

in2(0-w)an2( %e—@

]52

[ J%

£a? (4+a2+4a%)

| -iaf( 1-6a’~24%) [ i
c2(0-w)
[ %
75, % _aon2(6-w)oin (Zo—¢)
4 [ ] 75
+ -%,—5:426? +oga®) e T 2(F0~8) _ s

[ Te"2”

+ —g-'aa( 4trdimsa”)

-+~

+4 a?(2 +a’+4a%)

-,4654(4-;-//@24-44‘) [

- 7’;?@ ( 6‘—/—//@2-44?

ced 2(6-w)ca1 2 (2o -g)

[ J%
cot (B6-¢)
]75

&l 2(6-w)cod (L0

[ ]

% 11q) Lirv2lo-w)ain 2(56—¢)

( 1%

[ T

+ 5% in 2(6-w)am3(B0-8)

[ J%
.

+ {similar terms in e3,e%t, - - -}

Y, m:@-@ms{%

+ e hat) L2 209

JK

=
%

6-¢)

J%

o
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APPENDIX 3. Expressions for Coefficients

Lpfa) = —Zl-a's;q/nﬂ +é— —3'“5 'ia‘ég '/'"ia > A +@fa,%,u;}a,‘ 5,
+(FFa)E,

Buwy= (Bl-5a A, +(Rit$a%)A,, ~ a8, H(#*+32)8,,
+(—,%a +¢a,? - 7"(’"/54’6 -+ ,;‘9%., '/'6'5,2{“"—14,) o2
/5_4/ QM,-I-( -———ﬂ;lé ’/.-/—‘S-a:’*_ I}) .f 2+ )

+(#a" //65 a2 7% ) 2m—/ % %’L 7206,

+( /’2'" /’65' %), Comps (.é:afé 5 7_/_/:/2)

enté

K@) = &4, +Fah,,., —Eah,.

¥ (a) = La®4, +(; 25 LA, + (3d- )5, + fFarid+EdR)E,,
+(fo+ga-34E, , NESWPTY. 2 o +CEEHERE

f’(a,)"' “4a-24a%)A +(~Fa “+322)E + (Ba+Fa )G + (54 3255

L= (=294, +(a-3h,, + (-0t E)h, , +(~6d+5a)8,
+(-FatFa-ga) M+,+(3,S-7—w+§a""—§a‘j§:_ +(Fi-a%)8,,,
+ (i 3a)s L1527, + (Fat Fal- a) s
< ( %{ 95,3 __Qé‘a,) e .,L( /s z,L_sa'»‘ .L.a,) ez
+(FL g o), (’5’ L) g #5567 §0) s

ﬁ-als.;- ) “Nr3
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Y(a)= 2a%— aPA+a%A

pul)= ($a-FNA,, + (5 +48)A (354 fa®+347)8,
( Za +-9—a,s’§+? dr%v‘-z’“’) it +(% E_a,f__é’a;% .Eia,’é./_g a,) Bu-s

1) (P b GG (550 530G

_4s, 3 % __4_3; 3, fos
+( @ L—fa, -‘ﬁi'a, +‘-‘ra.)C +(4a + S Cm.—
HETRE T A )C +(—-’%z+{a, W AN 7 ﬁgy o
(453
( o - ﬁ—a?é i&%‘) 15' 43 /-5— )C —3+( a_...[__a?é./_ ) Corrs

£ (@)= (_ga% ~£a*)A e +(-}a‘5+ia"‘),43”_l+(§af—ga7i—g"a’)%n
A (Fatgafi-ga¥-3a)E, , +(~Yar TaFr§a 5)E,,
+EH-3a)8,, + (- Go% 1 2 2B, (S 1sa% 5 52)C,
+(-FariFa 3+’£"‘%+ 5‘m+/+(%‘22'+ L™ S o 2%)C 3m=/

5 ’572—1“—’54’{ /s.7 /5.3 5 6
( of +ifa a 07 )Cops ( £a- ’5'71 -—-a,) ane 8

(‘Afa.;.ﬁ'?s_ 5. /b' &_é{a)c&'_z + 324_?4%_,,_74)%_3

)\m(a,) ( $a¥%+a”)A Mﬂ'x‘-(-'za’zé-—dfj +iaa7é§v +(-§a?‘-—§al'g-3a.7)5n+,
| #(Ba%- 2% 37) B, (e 3498, + (§E-F2T)8,

@) = 3a%+CEaFAE) A (S v a0, + (6a¥i-Fat~22%)z
HCfal-salhess PG+ (o §-2PE+CEHAE FAC,
M S s e L G R S
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5,00 = 2 G, + B o b2,
-/-( ;fa—%—.?aiga"—:? IZ)B’ 'l’-(-frla?ﬁs‘-j’a"-—/—ga?—sa,’@%
~/
+($a -,L%/.,(_la_’f)ﬁ’ +(i¢71 G-I-EQ”E)E 4_(,5-472 /__ﬂi/*_/.fa)gw
% /66— !
Tw is.—z; :-%ZS: ’ /5’ /79 entl +( Fa% s %ﬁg—%z‘gﬂ,@%ﬂ‘l
-(-( fa. £a — o £a @c (7’;5:&’1‘-»‘-’%7

+5a'2)C,, o
HOES SRR R e

Note: The coefficients Cn-a: C-n+3’ etc., are to be included only

when (n-3) = 0, (-n+3)= 0, etc. The summation on k in the

Fourier series! does not include k <0,
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NOTATION

The symbols which appear most often in the text are listed below:

"

r, 0

5058,
e, ty

90’ 50

€ o

~3

n, m

/\3/ 2

eoinsTo’a IR

ANAA
€,W, T

¢

Ak(a), Bk(a),Ck(a)
| k
Qp Bn’ Y Kn’p’an’
Npr Ep VM0 6

n

r.h.s.; l.h.s.

mass of the perturbing body divided by total mass
of the system

time

polar coordinates of the infinitesimal body; see
Figure 2. '
1

- :
leading terms of the two variable expansion for s

n 1) n " n " i 1t t
ble (3ol
the slow variable (0=p/280)
initial values of © and © at t=0
semimajor axis of the orbit of the infinitesimal body
eccentricity noou " noon " "
longitude of pericenter " " " "

quantity which defines the position of the infinitesimal
body in its orbit

positive integers which specify the particular
commensurability being considered

various terms in the expansions of the orbital
elements

a slowly-varying angular quantity which defines the
position of the infinitesimal body in its orbit;
see eq. (34).

Fourier coefficients used to expand the periodic
perturbing terms

summation index

various combinations of the Fourier coefficients

right-hand side; left-hand side
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(4)

(5)
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