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ABSTRACT 

An experimental investigation of the relationship between the 

dynamic buckling and the static buckling e hen omen on was carr ied  out. 

The f i r s t  half of the paper studies the stability of shallow 

arches  subjected to lateral  forces. Concentrated static and step loads 

were applied to circular arches  with geometric parameters 7 < ?'< 20. 

Equilibrium path and the dynamic response a t  the loading position were 

recorded. Dynamic buckling i s  distinct. Supercritical and subcritical 

responses were separated by 0 .5  O /o of the total load. The sensitivity 

of the a rch  to loading imperfection was studied. The effect was pro- 

nounced in the static tes ts  but moderate in the dynamic responses. 

The second half of the paper studies the response of clamped 

circular arches  under lateral  impulse. The motion of the a rch  was 

recorded by a high speed camera and the deflected a r c h  shape was 

measured in detail. The response was expressed in t e rms  of the 

average displacement and three generalized displacement coordinates 

representing the amplitudes of the assumed mode shapes. The critical 

impulse i s  defined a s  the impulse level a t  the inflection point of the 

curve of maximum response versus impulse. 
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NOMENCLATURE 

2 
Cross sectional a r ea  of the a r ch  (in ) 

Arch width (in) 

Young's Modulus (psi) 

Arch thickness (in) 

Central a r ch  r i s e  (in) 

2' 
Specific impulse (lb- see /in ) 

4 
Moment of inertia (in 

Nondimensional impulse = 
41' Jk2 

h 4 ~  p 

Arch length (in) 

Distance between load and center of a r c h  (in) 

Concentrated load (1bB 7r q 

Nondimensional load = 
PW-' A l / 2  

( 
m 

Generalized displacement coordinates 

Arch radius (in) 

Time (sec)  

Arc11 displacement (in) 

Nondimensional average displacement 

weight of explosive (gm) 

Arch coordinate (radians) 

Arch half angle (radians) 

Geometric parameter  = - 4Rh 

A E  Percentage of eccentricity = - L 
3 

Mass density (slug/in ) 
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NOMENCLATURE (Cont'd) 

Subscripts: 

CR Experimental critical value 

CE Clas sicaP theoretical value 

MAX Maximum value 
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I. INTRODUCTION 

A prominent scientist, Kirchhoff, once said that "Dynamics" 

i s  a science of motion and forces. Thus dynamics includes statics 

which deals with the state of equilibrium. This relationship stimu- 

lated this research work. It i s  focused on the understanding of the 

dynamic buckling phenomenon of nonlinear structures a s  related to 

their static buckling. 

The static stability of cylindrical and spherical shells was 

studied intensively not long after  the invention of the airplane. How- 

ever ,  the experimental results had considerable scat ter  and were only 

* 
30-50 "/o of the classical buckling load (Ref. P )  for some loading 

** 
conditions. Tsien (Ref. 2)  proposed an  energy criterion which 

seemed to be in better agreement with the experiments. However, to 

achieve buckling a t  the load given by the energy criterion, a perturba- 

tion of unspecified magnitude i s  required. ,But how and where to apply 

this perturbation i s  not prescribed. Therefore, this criterion i s  

believed to be built on an unsound basis .  In the past few years,  

% 
The classical buckling load of a shell i s  defined a s  the lowest eigen- 
value of the linearized theory. The linearized theory i s  derived by 
perturbing the nonlinear equations of the perfect shell about a 
membrane prebuckling equilibrium state. For  the a r c h  problems 
which will be considered later ,  the exact solution of the nonlinear 
equations i s  the classical solution. The critical condition i s  
reached when either the equilibrium path yields a local maximum 
of the loading parameter o r  the path bifurcates into additional 
branches. 

*% 
The buckling load i s  reached when the total energy in a possible 
equilibrium state is equal to the total energy in the unbuckled state. 
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experimental techniques have improved. Experimental results for 

cylindrical shells under axial compression a r e  closer to the classical 

solution than to the energy solution (Ref. 3 ) .  On the other hand, i f  

initial geometric imperfections a r e  included in the analysis,  the 

experimental buckling loads can be predicted reasonably well (Ref. 4). 

The classical analysis and the energy criterion were also 

applied to other nonlinear structures. Fung and Kaplan (Ref. 5) found 

that  the classical solution compares well with experiments on simply 

supported arches.  Gjelsvik and Bodner found that the experimental 

resul ts  for the clamped shallow a r c h  subjected to a concentrated load 

lie in between the two theories (Refs. 6 and 7).  To confirm this point, 

s imi lar  tes ts  were performed in this investigation. 

The problem of dynamic buckling o r  nonlinear response of shell 

s tructures has been widely discussed in the past few years.  The 

question of dynamic buckling i s  of concern since this phenomenon i s  

associated with a large change in the structural response with a small 

change in the loading conditions. This change of response character 

with load i s  s imilar  to the stability problem of static loading and hence 

the name dynamic buckling has often been adopted. However, since 

the loading and response a r e  functions of time, the analogy i s  not quite 

complete. This has led to a variety of definitions of dynamic buckling. 

The definition of stability used here  i s  not in the conventional sense of 

a bounded o r  unbounded motion. It should be stated a s  a finite increase 

of maximum response due to a n  infinitesimal increase of the loading 

parameter .  No matter  how small  this discontinuitymay be, a s  long a s  
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i t  exists,  the load level a t  which it  occurs i s  defined a s  the dynamic 

buckling load. 

The differential equations that govern the motion of the shell 

s tructures a r e  time dependent and nonlinear. The exact solution of 

these equations i s  the counterpart of the static classical analysis. 

However, to solve these hyperbolic nonlinear equations is  not an easy 

matter .  No exact solution has been obtained so far  for those structures 

of interest. Numerical integration of the equations seems to be the 

only alternative. Specifying the initial values for the structure, the 

type of loading and the boundary conditions, the differential equation 

can be integrated with various schemes. Due to the nature of the 

equations, the convergence of most schemes i s  a serious matter .  The 

stability of the integration e r r o r  should be investigated thoroughly 

before the results become trustworthy. The computation time i s  

another major problem. Iterations a r e  necessary for each time step 

and space coordinate. Depending on the complexity of the structure, 

the computation time may vary f rom moderate to enormous. 

For these apparent reasons, one i s  inclined to use the much 

simpler energy approach. Although the energy criterion lost i ts  

influence in static stability studies, under some loading conditions, the 

extended energy analysis i s  very convenient in the analysis of the 

dynamic response (Refs. 8 -  11).  Unfortunately, there has been no 

experimental data to compare with these analytical results.  Therefore, 

some step loading and impulsive loading experiments were carr ied  out. 

The shallow a rch  was chosen a s  a model because this simple structure 

has nonlinear characteristics similar  to much more  complicated shell 
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structures.  A wide range of this nonlinear behavior can be exhibited 

by changing the end conditions, loading, o r  geometry of the arch.  

The energy method i s  built up by using the static equilibrium 

states. Knowing the static response, one can derive some of the 

interesting features of the dynamic response. Let us s tar t  with the 

simplest example. Figure 1 shows the response of a linear spring 

m a s s  system. The amount s f  force applied to the m a s s  i s  P and q 

i s  the displacement of the mass .  On the force-displacement diagram, 

a linear static equilibrium path OA is  traced. If the force is  applied 

a s  a Heavi side step function, the response will be a simple harmonic 

motion around the static equilibrium position. The dynamic response 

is  illustrated a t  two load levels P and PE. The dotted lines along D 

the time axis a r e  the corresponding equilibrium positions. In this 

case,  the maximum dynamic response i s  twice the static response. 

This i s  shown a s  the straight line BEDB. 

The relationship s f  the static and dynamic response can be 

clarified by the potential energy (U)  s f  the system. The potential 

energy is  a function of the external load and the displacement. It can 

be decomposed into two parts.  The f i rs t  part  i s  the strain energy 

stored in the spring. This strain energy is  proportional to the square 

of the displacement, and is  always positive. The second part  i s  the 

potential of the external load. This t e rm  is' linearly proportional to 

the displacement and is  negative for  positive displacement, For  small 

deformation, the second t e rm dominates and the total potential energy 

decreases until a minimurn i s  reached which corresponds to the stable 

static equilibrium position. There a r e  two energy curves shown for 



PE and PD. The dynamic response i s  analogous to a ball rolling 

along these energy curves. If no energy is  dissipated o r  supplied 

during the course of oscillation, the ball will r i s e  to a position of the 

same elevation a s  the initial position and oscillates thereafter. There-  

fore ,  positions E and D a r e  the maximum dynamic responses a t  the 

step load level PE and PD respectively. 

Next, we consider a nonlinear one degree s f  freedom system. 

Assume the static load deflection curve has the form OABC a s  shown 

on Figure 2a. 8 A  and B@ represent stable branches while the AB 

branch i s  statically unstable under dead weight loading. Starting a t  

the origin, with half the initial slope, the maximum dynamic response 

i s  shown by the dotted line. Influenced by the softening nonlinearity, 

the curve extends with ever - les  sening slope. The inter section of this 

curve with the branch AB i s  significant, because this determines the 

unique position a t  which the a rch  snaps under step load. This state- 

ment will be proved by using the potential energy curves (Figure 2b). 

Point D i s  a local maximum in the energy curve because it is 

on the AB branch. This local maximum has zero potential energy 

since point D is  on the maximum dynamic response curve. Hence, 

i f  a ball rolls along the energy curve corresponding to P = PD, it 

takes an infinite amount of time to a r r ive  a t  the static equilibrium 

position D, Should the load be increased infinitesimally, the energy 

of the local maximum will drop below zero and the ball will cover an  

additional terr i tory.  PD i s  therefore defined a s  the critical load. 

The response histories at a. super critical and subcritical load 

level a r e  illustrated a t  the left par t  of Figure 2a where time is  plotted 
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a s  the third axis perpendicular to the P-ql plane. The supercritical 

response has a bell shape curve since the kinetic energy i s  low when 

the response crosses  the local maximum of the energy curve. Thus 

the system moves slower through such a range. 

When a two degrees-of-freedom system i s  considered, the 

potential energy can no longer be expressed a s  a single curve, but a s  

a continuous surface. On a surface, one can. move f rom one point to 

another along an  infinite number of paths. Therefore, the energy 

method fails to yield a unique critical condition. The alternative is to 

obtain necessary o r  sufficient conditions for the lower and upper 

bounds respectively. This i s  illustrated by Figure 3 .  A typical 

three-dimensional static equilibrium path i s  shown on the left part of 

Figure 3a. The elliptic path between A and B represents the 

bifurcated branch which is  on a plane perpendicular to the POql plane. 

The maximum dynamic response i s  shown a s  OED. Three energy 

surfaces for load levels between P and PB a r e  shown in Figure A 

3b, c, d. These surfaces have five equilibrium positions: the center 

one i s  unstable (hill), the left and right ones a r e  stable (depression), 

and the upper and lower ones a r e  unstable (saddle). It i s  again eas ier  

to visualize the dynamic response by using the analogy of the motion 

of a ball on the energy surface. Figure 3b shows the energy surface 

a t  P = PD. The local maximum D has zero energy. If the response 

is  restricted to the q l  component, the ball will take an  infinite amount 

of time to a r r ive  a t  E). Should the load be increased infinitesimally, 

the local maximum has negative potential energy and a l l  interior 

points bounded by U = 0 have U < 0. With a little higher energy, the 
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ball can leap over the local maximum and gets to the far  side of the 

region. This sudden increase of response entitles PD to be the 

upper critical load. 

The energy surface for  P = PE i s  shown in Figure 3c. The 

domain US 0 becomes doubly connected. If the response i s  re -  

stricted to the q l  component, the ball can not reach the far  side of 

the region. Hence, PE i s  not significant. The lower bound for the 

load, using this energy method i s  shown in Figure 3d where the 

energy a t  the saddle points i s  zero. An infinitesimal increase of the 

load decreases the energy a t  the saddle points below zero and allows 

the ball to roll over to the fa r  side through one of the two saddle 

points. 

the above concept in mind, a generalization to a multiple 

degree-of-freedom system is  straightforward. At each load level, 

the muitiple dimensional energy surface i s  examined. The Power 

bound will be determined by a load such that the f i r s t  static equilibri- 

um position appears in the zero potential energy surface. The upper 

bound will be defined a t  a load level where the potential energy of al l  

local maximums is  below o r  equal to zero, 

So far ,  the upper bound i s  clearly defined provided the static 

critical load i s  higher than PD. If this i s  not satisfied, the static 

critical load will be the governing upper bound. At such a load level, 

two saddle points merge with the near stable equilibrium position and 

convert this stable position to another saddle point. This conversion 

s f  an equilibrium position makes a l l  points on the left of the Escal 

maximum unstable. A perturbation of any magnitude causes the ball 
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to diverge from the q l  axis, to by-pass the hill and finally to ar r ive  

a t  the far  stable region. This bound i s  named by Simitses a s  the 

"Minimum Guaranteed Critical Load". 

Furthermore,  necessary o r  sufficient conditions discussed 

ear l i e r  a r e  for elastic structures without damping. Should damping 

be present,  the picture would be a little different. The estimation of 

the necessary condition is not affected because energy i s  needed to 

account for dissipation. If the undamped system can not escape from 

the near stable region, it i s  reasonable to think that the damped system 

also will not escape. However, the sufficient condition must be re-  

considered. The upper bound for the undamped system would be an 

under-estimated upper bound for the damped system. As a matter  of 

fact, the energy dissipated i s  a function of the dynamic path and thus 

depends on the initial conditions. An upper bound similar  to the 

undamped case seems to be meaningless unless one can find a descend- 

ing path on the energy surface that connects the original position to 

the far  stable region. This i s  exactly the case for the static critical 

load a s  discussed in the previous paragraph. Therefore, the static 

critical load is  the upper bound for the damped system. 

The experiments were carr ied  out with many objectives. The 

static tests  were to confirm Gjelsvik and Bodner's experiments and to 

compare with the analyses. The step loading tes ts  supplied data for 

comparison with the results obtained by the numerical integration of 

the nonlinear differential equation (Ref. 12) and the results  from the 

energy analysis (Ref. 93. The sensitivity of the a rch  to loading 

imperfections was studied. Finally, a valuable by-product of the 
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experiment showed the non-existence of other stable equilibrium 

positions upon total removal of external load. The non-existence of 

these positions does not allow an impulsively loaded clamped a r ch  to 

be classified a s  a stability problem in the str ict  mathematical sense. 

The experiments were divided into three sets.  The f i rs t  se t  

was concerned with the static buckling of clamped circular  arches  

subjected to concentrated loads. The second set extended the f i rs t  

se t  to include a step function load. The last set considered a uniform- 

ly distributed impulsive load. Although the f i rs t  two se ts  a r e  different 

in nature, they used similar equipment and were performed with 

identical specimens. They will be presented together in P a r t  11. The 

impulsive load experiments are  presented in P a r t  111. 
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11. STABILITY OF CLAMPED SHALLOW CIRCULAR ARCHES 

UNDER STATIC CONCENTRATED LOADS 

AND STEP  CONCENTMTED LOADS 

Four arches  with geometric parameters  7' = - 
4Rh 

of approxi- 

mately 7,  11, 14 and 18 were used in the tes ts .  The load was applied 

a t  various locations on the a rch .  Although the ent ire  deformed a r c h  

shape was not measured,  the displacement a t  the loading point was 

recorded. The combination of the static response and the maximum 

dynamic response gives a c lea re r  picture of the buckling phenomenon. 

A. Experiment 

The experimental set  up used fo r  static loading is  s imi lar  to 

the one used by Cjelsvik and Bodner (Ref. 4).  The step load was 

developed by suddenly releasing a dead weight which initially touched 

the a r ch  surface. However, the inertia of the ciead weight changed the 

effective force on the a r ch  and in turn affected the frequency and 

magnitude of the response. In fact, it was detected that the load 

detached f rom the a r c h  during the f i r s t  few cycles. The effect of 

inertia was reduced by placing a very soft spring between the a r ch  and 

the weight. The softer the spring, the longer the initial s t retch which 

may be much l a rger  than the response of the arch .  With this ar range-  

ment,  it was found that the variation in load was l e s s  than 10 O/o of the 

total dead weight. The large variation occurred af ter  the a r c h  buckled, 

thus i ts  affect was small  on the determination of the cr i t ical  load. 
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1. Tes t  Specimens 

The equations that describe.a shallow a r ch  show that the 

circular  a r ch  can be characterized by one nondimensional parameter  

Y (Figure 4) where 

The three variables a r e  length, thickness and radius of curvature. 

Fo r  a l l  of the arches  tested, the thickness was held constant and the 

same nominal radius of curvature was used. 

The specimens were cut from 1/16 inch thick 2024 T3 aluminum 

sheet, and were tr immed by the milling machine to 3 /4 inch wide. The 

str ips were then rolled to approximately 30 inches radius in a three-  

rol l  roller.  The radius was rough checked using a template. After 

rolling, 4 inches from both ends were cut off. The arches  were then 

heat treated for eight hours a t  375  degrees Fahrenheit. 

Straight tensile specimens were tested in an Instron testing 

6 2 machine. Young s Modulus was found to be 10.5 x 18 lb /in and the 

2 
proportional l imit above 44,008 lb/in . Curved tensile specimens with 

a radius of 38 inches were similarly tested and the results  were much 

the same. A typical tensile tes t  of a curved specimen i s  shown in 

Figure 5, 

The arches  were mounted into a heavy steel f rame for testing. 

The ends a r e  secured using Devcon B. An a r c h  mounted in the f rame 

i s  shown in Figure 6. The geometry of the tested arches  can be found 

in Table I. 



2. Experimental Setup 

Except for the recording system, both the static and dynamic 

t e s t s  used the same equipment a s  explained below. A schematic 

drawing of the setup i s  shown in Figure 7. A description of each i tem 

marked by a le t ter  i s  a s  follows. 

a .  Aluminum Arch 

The center line and eccentricity lines were marked on 

the convex side of the a r ch  surface. 

b. Steel Support for  the Arch 

This support could be moved to the left o r  right in 

o rder  to position the point of loading directly under the 

knife edge. 

c. Knife Edge Assembly 

Through a retractable pin, the knife edge was hung 

on a support shown in Figure 8. The whole assembly 

could be moved up and down so that the knife edge was 

just touching the a rch  surface before performing the 

test .  After adjusting the elevation, the support was 

Pocked in position. The retractable pin was connected 

to a solenoid. When the circuit  was closed, the solenoid 

pulled the pin back and the weight car r ied  by the knife 

edge could be t ransfer red  to the arch.  Fo r  static t e s t s ,  

the knife edge was disengaged f rom the pin manually and 

was gently set  on to the arch .  The hanging weight 

accounted for the initial load. 



13 

d. Displacement Transducer 

The housing of the t ransducer was fixed to the 

stationary part ,  while the sliding core was connected 

to the top of the knife edge ( see  Figure 8). As the 

knife edge moved with the a rch ,  the "Lansducer 

measured the vertical displacement a t  the loading 

point . 
The calibration of this transducer was linear with 

a working range of 3". By adjusting the control, the 

output was 100 MV per  inch of the displacement. 

e.  Tension Spring 

The spring i s  connected to the bottom par t  of the 

knife edge. In static tes ts ,  i t  serves  a s  a safety device 

to avoid breakage of the fragile load cell  due to ex- 

cessive displacement f rom below. Ht was changed to a 

very soft spring f o r  dynamic t e s t s  for reasons 

mentioned previously. 

f .  Load Cell 

The load cell was a 0. 01Ofs thick Mylar tensile 

specimen. The s t r ip  was 1.25" wide and 6. 5" long. 

Two S R - 4  paper s train gages were placed in se r i es  on 

each side of the Mylar s t r ip  a s  active gages. The same 

number of dummy gages were placed on the same s t r ip  

and were perpendicular to the active ones. The gages 

were supplied by a 12V D. C .  power supply. The 

working range corresponded to about one quarter  of the 



ultimate s t r e s s  of Mylar. The calibration was l inear  

and gave 0.493 MV output pe r  pound weight. On top 

of the initial load, this  gave the total applied load for  

the static tes ts .  In the dynamic tes ts ,  the load cell  

measured the variation of the effective load a s  a 

function of time. 

g. Dead Weight 

This was the main difference in the arrangement 

between the dynamic and static tes ts .  Fo r  the fo rmer  

one, a pot of weight was hung to the Boad cell and the 

weight was the last  in the se r i es ,  In static tes ts ,  the 

weight rested on a hydraulic jack and was fastened to 

the Boad cell  by a nylon cord. 

h. Hydraulic Jack 

The hydraulic jack was used for  the static tests .  

It worked a s  a moving platform for  the weights. At 

the beginning of the tes t ,  the piston was brought to 

the upper most  position. When the valve was opened 

the piston sank slowly. In the process of loading, the 

load regulated automatically with the displacement. 

Thus this arrangement established itself a s  a "near 

rigid m a ~ h i n e ' ~  and was able to map the unstable 

branch of the equilibrium path. 

The recording system used in the static tes ts  was a n  X - Y  

plotter. Without using an amplifier,  the output f rom the displacement 

t ransducer was connected to the X axis ,  while the output f rom the 
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load cell went to Y axis. The result was a single load deflection 

curve representing the equilibriwn path. 

A Honeywell Visicorder (Model 1508) was used to record the 

dynamic response and the variation of the effective load. The outputs 

were amplified three and one hundred times respectively for the 

displacement transducer and the load cell. Inside the Visicorder, 

Honeywell galvanometers were used in recording oscillographs to 

t ransfer  voltage variations to a photographic record. The oscillo- 

graphs were recorded on Kodak extra thin Linagraph Direct Print  

paper (Type 1799). 

3 .  Test  Procedure 

There were three main steps in the complete testing of an 

arch.  Namely, they were an initial imperfection measurement, a 

quasi- static tes t  and a dynamic test.  Arches were reusable. They 

0 
ware reloaded at different locations, including from O O /o up to 6 / o  

offset from the center, This gave the reduction of critical load due 

to an  eccentric load. In between tests ,  imperfections of the a rch  

shape were measured in order  to assure  that the a r ch  was not 

subjected to excessive plastic deformation. 

To obtain results with high accuracy, the dynamic tes ts  were 

to be performed following the static test a t  the same loading location. 

However, repeated tests  showed that the response characteristics 

were reproducable and were little influenced by the order  of testing. 

In fact, after approximately one hundred tests  on the same arch,  the 

critical load remained within 2 O/o. Therefore, to simplify the 



16 

the testing procedures, static tes ts  were carried out for a l l  loading 

positions and were followed by the dynamic tests.  

In static tes ts ,  the critical load was defined a s  the local maxi- 

mum of the loading parameter on the equilibrium path. However, in 

the dynamic tests ,  the critical load could not be determined by only 

one test.  Different load levels were applied to the arch. Slightly 

increased amplitude of vibration resulted from a small increase in 

load. At a critical load, the maximum amplitude increased abruptly. 

a .  Initial Imperfection Measurement 

A pendulum like apparatus was built to measure 

bpe r f ec t i ons  of the arch.  It consisted of a fixed center 

and rotatable a r m  which could be adjusted in length. A 

dial gauge with a working range of 8.868 inches was 

installed a t  the tip of the a r m  (see Figures 9 and 10)- 

The measurement was made by f i rs t  adjusting the 

a r m  to the appropriate radius then pressing the concave 

side of the a rch  gently against the dial gauge. Starting 

from one end of the a rch  the dial gauge readings were 

taken a t  half inch intervals along the a r ch  until the dial 

gauge could not advance another full step. This gave 

the deviation of the a rch  shape from the preset  radius. 

Applying the "Least Square Method" to the measured 

data the "best fit radius" and the "best fit imperfection1' 

can be found. The derivation of the equations to 

accomplish this can be found in Appendix I, 
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Before the arches were mounted on the supports 

the imperfections were measured. Only those arches  

with imperfection amplitudes l e s s  than five thousandth 

of an  inch were used. Also, they were cut from longer 

ones so that the selected sections had a minimum 

amount of asymmetric imperfection. When the a r ch  

was mounted and the Devcon was hardened, the a r c h  

shape was measured again to make sure  that it  had not 

been excessively deformed due to the process of 

mounting. The imperfections of the tested arches  a r e  

shown in Figure 11. 

b. Static Test 

The a r ch  was put into the knife edge assembly such 

that the loading position was directly under the edge. 

The assembly was lowered so that the edge just touched 

the a r ch  surface. At this point, the output from the 

displacement transducer represented zero displacement 

of the arch.  When this was recorded on the X - Y  

plotter, the knife edge was disengaged manually f rom 

the assembly. The a rch  deformed a little due to the 

weight of the knife edge and the spring system. This 

was compensated in the plotter a s  initial load. 

External load was applied to the a rch  gradually a s  

the piston in the hydraulic jack sank slowly. After the 

a r ch  buckled, the load was released by raising the 

piston back to the upper position. 
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c. Dynamic Test 

The procedures before the disengagement of the 

knife edge were the same a s  in static tests .  A motor 

in the Visicorder was turned on and accelerated the 

Linagraph paper to a constant speed of 80" per second. 

0 . 2  second la ter ,  the knife edge was released by the 

withdrawal of the retractable gin. The response of 

the a r ch  and the external load were transformed into 

an  optical signal and recorded on photo sensitive paper. 

The Linagraph paper was latensified by exposing to 

fluorescent light. The record t races  became visible 

and readable in a few seconds. 

When the motion of the a rch  subsided, the load was 

released and the experiment was repreated with a 

different amount of load. The critical Eoad was deter- 

mined to within 0.05 lb. o r  less.  

B. Test  Results 

Four arches  were used in the tes t  program. The geometric 

parameters were roughly 7, 11, 14 and 18. The arches were used 

repeatedly until a l l  information was acquired, Between tes ts ,  

imperfection measurements showed a slight plastic deformation around 

the point of loading. In spite of this, repeated tes ts  showed almost 

identical response characteristics.  

The critical static load i s  shown a s  a nondirrnensional Eoad in 

Table PI. It appears that higher arches  have higher critical loads 
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because the nondimensional load i s  the product of the applied load and 

the geometric parameter .  In fact, the flatter arches  have a higher 

buckling load. Figure 12 shows the effect of asymmetric loading. In 

0 
general, a 10 /o reduction of critical load was detected when the 

load was applied offset from the center a n  amount equal to 6 O/o of the 

a r ch  length. This effect was especially sensitive in the neighborhood 

of the center because the curve forms a cusp a t  c = 0, Similar 

behavior was obtained theoretically and experimentally by Thompson 

for simpler structures (Ref. 13). 

Figure 13 i s  a comparison of the experiments with the existing 

analysis. The critical loads a r e  normalized by Schreyer a d  d a s u r ' s  

classical solution (Ref. 7 )  and this ratio i s  called the critical load 

ratio. The upper curve is  the classicali solution for a sinusoidal a r c h  

(Ref. 9).  The lowest curve i s  the static energy solution for clamped 

circular arches  (Ref. 6 ) .  Experiments performed by Gjelsvik and 

Bodner have considerable scattering and the results a r e  much lower 

than the present ones, 

It was observed on the load deflection diagram that the 

equilibrium paths crossed the abscissa (disilacement axis)  a t  no 

point other than the origin. Therefore, only the original configuration 

i s  a possible equilibrium position a t  the zero load condition. 

Step loading tes ts  a r e  summarized in Table 111. Figures l4a- 

114d a r e  typical deflection-time t races  a t  the loading point when a step 

load was applied. The numbers attached to the curves a r e  the load 

expressed in pounds. The closest pair  which change in nature defines 

the critical load. At the critical range, a one-half per  cent change of 
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load will result in a factor of three change in response. The dotted 

straight lines represent  the static equilibrium positions a t  the corres-  

ponding load levels. The subcritical responses were damped to the 

near equilibrium positions while the super critical responses vibrated 

around the fa r  equilibrium positions. If damping were not present,  

the supercritical response would have completed the bell shape 

curves. The superposition of the static response and the maximurn 

dynamic response is  shown in Figures 15a-15d, One observes that 

subcritical maximum dynamic response i s  always less  than the second 

branch of the static equilibrium path. This agrees  with the statement 

in the introduction that the energy level a t  such a branch is  higher. 

The effect of loading imperfections i s  shown in Figure 16. In 

contrast to static tes ts ,  the influence of the loading location i s  much 

l e s s  and the reduction of the critical Poad appears to have a smooth 

transition near the center. 

Finally, the dynamic critical loads were normaiized by 

Schreyer and Masurss  static classical solution. The results a r e  

plotted in Figure 17. In addition, the upper bound and lower bound of 

the dynamic critical Poad for a sinusoidal a r ch  (Ref. 9 )  and the 

numerical solution for the circular a rch  (Ref. 12) a r e  superimposed 

on the same diagram. The present experiments agree  very well with 

Vahidi's numerical results.  

C. Conclusions 

The present static experiments show higher critical loads than 

those obtained previously in reference 6. Among other things, the 
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difference between the two experiments i s  partly due to the different 

way of estimating the radius of curvature. The nondimensional load 

i s  proportional to the square of the radius. A 5 "/o e r r o r  in calculat- 

0 
ing the radius, therefore causes a 18 /o e r r o r  in the load. The 

geometric parameter  Y i s  also proportional to the radius. Therefore, 

an  accurate determination of the radius i s  important in reducing the 

data for comparison with the analysis. Previously, the radius was 

calculated by measuring the relative positions of three points on the 

arch.  In present tes ts ,  the arch was measured a t  many stations. The 

calculated radius i s  a best fit to a l l  measured points. In addition, the 

knowledge of the initial geometric imperfection provided a better 

choice of specimens and avoided unnecessary complications. 

Overall, the static tes ts  agree reasonably well with Schreyer 

and Masurs s exact solution. The results a r e  sensitive to the position 

of loading. The critical load i s  reduced sharply when the load i s  

slightly off center. On the other hand, the dynamic response i s  quite 

insensitive in this respect. 

For al l  step loading tests ,  the critical dynamic load was 

determined to within 0.05 pound. This amount of load corresponds to 

one-half per  cent change in the total load which causes an increase of 

the maximum displacement by a factor of three. 

The step loading tests  and the analyses a r e  summarized in Fig. 

17.  The upper bound obtained by Hsu o r  Simitses i s  for sinusoidal 

arches.  They defined the static critical load a s  the upper bound. For 

the circular arches,  the dotted lines a r e  the bounds which a r e  defined 

in the introduction. To obtain the bounds, the static equilibrium 
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positions for each load level must be found. This i s  carr ied  out in 

Appendix 11. These positions correspond to the local minimums, 

saddle points o r  the local maximums on the energy surfaces. 

In the case of clamped circular arches,  asymmetric equilibri- 

um positions a r e  possible for  7 2 11.8. Hence, for 7 <  11.0 ,  

asymmetric saddle points do not exist. Consequently, the upper and 

lower bounds merge together. As pointed out in the introduction, this 

bound i s  more  appropriately called a lower bound if  damping i s  

considered. The static critical load will be the corresponding upper 

critical load. 

The reason why the lower bound i s  above the critical load 

obtained by Vahidi, who used numerical integration is  not clear.  How- 

ever,  the difference between the results from the two analyses is  very 

small. In addition, the experimental results were expected to lie 

above the lower bound. i f  damping affected the experiments, the 

results should compare with the theory more  favorably. However, the 

experimental results a r e  a little below the lower bound. Static experi- 

ments show similar reduced critical load from the exact solution. 

This may be due to the effect of the initial geometric imperfections. 

The analytical results for clamped arches have shown that the 

difference between an  energy determination of the critical load under 

step loading and the results obtained by a direct integration of the 

differential equations is  very small. The experiments show good 

agreement with both analytical results. Therefore, the success of the 

energy method has been demonstrated for this structure. It seems 
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significant to extend this type of work to more  complicated structures 

where a direct solution of the differential equations i s  impractical. 

Finally, it was found that the original res t  configuration of 

the a rch  was the only equilibrium position a t  the zero load condition. 

This i s  in agreement with Vahidi's calculation (Ref. 14). Since the 

existence of other equilibrium positions i s  a requirement in an  energy 

approach to determine the critical load level, the impulsive loaded 

clamped circular a r ch  can not be rigorously classified a s  a buckling 

problem. 
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111. STABILITY OF CLAMPED SHALLOW CIRCULAR ARCHES 

UNDER UNIFORMLY DISTRIBUTED IMPULSIVE LOAD 

For  the impulsive loading experiments 11 arches  were used. 

They were divided into two groups. One group had a geometric para-  

mete r  close to 10, the other group close to 20. Silver acetylidebsilver 

nitrate was sprayed directly on the arch.  This light sensitive explo- 

sive was detonated by a Xenon flash tube. The response of the a rch  

was recorded by a high speed camera. The displacement was 

measured carefully and the data analyzed on a digital computer. The 

explosive load was a very short duration pressure  loading, If the 

duration i s  much shorter than the fundamental natural period, the 

loading can be treated a s  giving the a rch  an initial velocity. For al l  

positive time, the a rch  i s  f ree  from lateral  load and i s  in f ree  vibra- 

tion. Obviously, this i s  a particular case of Pa r t  11, where the energy 

surface a t  zero load condition should be investigated. Although there 

exists only one equilibrium position, it i s  suspected that there may be 

a significant change of maximum response in a relatively narrow 

range of impulse parameter.  If this i s  the case, the determination of 

the inflection point 6n the maximum response curve i s  therefore 

significant. 

A, Expe riment 

These experiments consisted of loading a clamped circular 

a r ch  with a very short duration uniform pressure  load. The arches 

were fabricated, chosen and mounted the same way a s  in P a r t  11. The 

resulting motion of the a r ch  was recorded using high speed photography. 
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A detailed description of the experimental work i s  presented in the 

following sections. The resul ts  a r e  compared with Humphreys 

experiments and analysis (Refs. 15 and 16). 

1 . Impul s ive Load 

Silver Acetylide-Silver Nitrate was used to apply a very short 

duration p ressure  loading on the arch .  The advantage of this  chemical 

is  the low level of impulse, which i s  approximately one-tenth of other 

commercially available explosives, and i t s  ability to be detonated with 

a n  intense light. The general propert ies  a r e  discussed in references 

17 and 18. Here a brief description of the preparation and calibration 

of this explosive will be given. 

To begin with, each 10 g rams  of silver nitrate salt  a r e  

dissolved into 40 cc. of distilled water. Then 6 cc. of concentrated 

ni tr ic  acid ( s .  g. 1.4) i s  slowly added. The solution i s  gently s t i r r ed  

until a l l  crystals  a r e  dissolved and then acetylene gas i s  bubbled 

through the solution. Fine grained white precipitate i s  obtained by 

Petting the gas come through very slowly. This i s  more  desirable for  

spraying, After the white powder ceases to precipitate, it i s  washed 

with acetone. With acetone a s  a thinner the precipitate i s  sprayed on 

the a r ch  surface. It i s  then dried in an  oven a t  about 100 degrees 

Fahrenheit. Aging for more  than one day i s  not recommended. 

The weight of explosive needed for  each a r ch  must  be accurate-  

ly  calculated before spraying. The amount that i s  going to be applied 

to the a r c h  must  be sprayed very carefully so that i t  differs not more  

than several  hundredths of a g ram to that estimated. Over spraying 
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cannot be remedied and the whole process has to be repeated f rom the 

very beginning. 

This explosive can be detonated by an electr ic  spark o r  an  

intense light. It has been shown that a fairly large a r ea  can be 

detonated within a few microseconds i f  expendable Xenon flash tubes 

a r e  used (Ref. 18). It was found that if one nonexpendable Xenon 

flash tube was used, complete detonation over the longest a r ch  could 

be accomplished in l ess  than 150 microseconds. This duration of 

loading on the whole a r ch  i s  short enough that it can be considered 

impulsive (Ref. 1 5). 

A GE-522 Xenon flash tube, mounted in a parabolic reflector,  

was used a s  the detonator. The tube was driven by a 250 microfarad 

capacitor charged to 5, 000 volts. The r i se  time of the tube was about 

20 microseconds and the duration of the light pulse was of the order  of 

300 microseconds. 

The calibration of the impulse generated by this explosive was 

carr ied  out on a ballistic pendulum. The explosive was deposited 

evenly on a 2 inch square steel plate and attached to the end of the 

pivoted a r m  of the pendulum. The calibration curve of impulse vs. 

weight i s  shown in Fig. 18. The offset f r om the origin i s  due to the 

friction a t  the pivot point. Fromthese  data an  impulse level of 

lb-sec/ in 
2 2 

0.152 (6.75 x 10 dyne-sec/cm ) was calculated. This 
gm /in2 

2 
gm/cm 

i s  about 3.6 per  cent lower than previously found in Ref. 17. 
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2. Camera Setup 

A 16 mm,  high speed motion picture camera (HyCam, Red 

Lake Laboratories)  was used to record  the response of the arch.  The 

axis  of the camera was aligned perpendicular to the base line of the 

arch .  To eliminate a s  much distortion as  possible, the camera was 

placed a t  least  7 feet away. Two different lenses were used to cover 

the size of field necessary for the different length a rches  tested. 

These lenses were a f /1 .9  Cosmicar Television Lens with a focal 

length of 75 m m  and a f/1.8 Super Talcumar f rom Asahi Optical 

Company with a focal length of 55 mrn. 

The light was provided by four 1 ,  000 watt quartz-iodine flood 

lamps. They were placed on the side of the a r ch  opposite the camera 

and aimed directly a t  the camera. In o rder  to collect more  light a t  

the camera,  a large plastic Fresnel  lens of focal length of 30 inches 

was placed between the a rch  and the lamps,  A sheet of clear  Mylar 

was placed on the flat side of the Fresne l  lens to help diffuse the 

intense and unevenly concentrated light. A spot light mete r  a t  the 

camera position was used to check the evenness of the lighting of the 

Fresnel  lens. The camera setup i s  shown in Figure 19. 

A 400 foot rol l  of Kodak Tri-X negative (ASA rating of 400) of 

standard thickness (0.006 inches) was used for each tes t  shot. How- 

ever ,  the desired framing rate  s f  10, 000 pictures pe r  second was 

only obtained on the las t  100 feet of film. The exact framing ra te  was 

determined by a timing light which exposed a small  dot of light on the 

edge of the film every  1 /I000 of a second. 
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3 .  Response Measurement 

A detailed deflection history of the a rch  motion was obtained 

by reading the film frame by frame. The film was projected using a 

500 watt slide projector on a m i r r o r  a t  a distance of about 15 feet. 

The image was reflected to a screen ruled with 21 equally spaced 

lines (Fig. 20). The distance to the m i r r o r  was adjusted until the 

a r ch  image from support to support fix exactly on the twenty equal 

division on the screen. The lines then serve a s  the X coordinate 

for the arch.  The Y distance was measured using a stretched wire 

perpendicular to the X lines. This wire was attached to a moving 

slide whose position was measured by a linear potentiometer. The 

wire was carefully moved to each intersection of the a rch  image and 

the lines ruled on the screen. The potentiometer reading was 

automatically recorded on punched cards for digital computer 

reduction. Approximately 50 frames were read for each tes t  covering 

about 10 milliseconds of motion. 

4. Test  Procedure 

When a particular value of 7 was selected the arch was cut to 

the appropriate length and a 3 / 16 inch hole was drilled in each end. 

This hole provided a more secure support of the a r ch  in the frame. 

The surface of the a rch  was then cleaned and the weight determined 

to the nearest  1 /2000 of a gram. An estimation of the weight of the 

explosive was made and then it  was sprayed on the convex side of the 

arch. The explosive was cured for one hour a t  100 degrees 

Fahrenheit. The a rch  and the explosive a r e  then weighed and the 

amount of deposited explosive determined. If the correct  amount i s  
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not obtained the process was repeated until the weight differs from that 

desired by a few hundredths of a gram. Next the a r ch  was secured in 

the steel frame with Devcon B. 

After the Devcon has hardened, the a r ch  and support a r e  align- 

ed with the camera. The Xenon flash tube was placed about 10 inches 

above the surface of the arch and the evenness of the light source was 

checked. The camera was started and an Event Synchronizer built 

into the camera discharged the Xenon tube when 325 feet of film had 

been exposed. This point i s  shown a s  point A in the camera perform- 

ance curve (Fig. 2 1). The deformation of the a r ch  that i s  of interest 

takes about 3 feet of film. The last  100 feet of exposed film was 

developed and the part  of interest retained. 

B. Test  Results 

A total of 11 tes ts  were recorded by the high speed camera. 

These tests  were divided into two groups. Group B has a geometric 

parameter "/ close to 10 and for group C, "/ was close to 20. The 

dimensions a r e  listed in Table IV. The arches used for testing were 

selected so a s  to minimize the size of initial imperfections. The 

initial imperfections a r e  shown in Figure 22. In a l l  cases the deviation 

f rom the perfect a r c h  was less  than 5 per cent of the thickness. 

The response of the arches to impulsive loading was examined 

in several manners. Fir st the average displacement was calculated 

for the time of response of interest. This displacement i s  defined a s  

the area  between the deformed and undeformed arch. It i s  normalized 

to the a rea  enclosed by the undeformed a r ch  and the base line. The 
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values of the maximum average displacement a r e  listed in Table V 

and a r e  shown in Figure 23 a s  a function of the nondimensional 

impulseT. This figure shows that the a rch  exhibits a large increase 

in maximum response over a rather small range of impulse level. 

The maximum rate of change of response (the inflection points for the 

faired curves in Figure 23) a r e  a t  an  impulse level 7f- of 9 and 22 for 

Y equal to 10 and 20 respectively. It i s  interesting to note that these 

points a r e  close to the point of average displacement equal to one 

which was used by Humphreys (Ref. 15) to define the critical load. 

However, they a r e  about 6-7 times a s  high a s  Humphreys' experi- 

mental results.  The reason for this i s  not known a t  this time, A 

comparison with Humphreyss results i s  shown in Figure 24. 

The deformation of the a rch  can also be displayed a s  successive 

pictures of the a rch  shape. This i s  done for two representative shots 

in Figure 25. Time s tar ts  a t  the top of the figure and the time 

between successive shapes i s  about 200 microseconds. 

In order  to get a more  quantitative picture of the a rch  deforma- 

tion, a three mode approximation to the deformed shape was calculated, 

The representation used is  a s  follows: 

The coefficients were determined by using a "Least Square Fit" of the 

experimental data f rom the high speed pictures. The time history of 

the two symmetric modes is  shown in Figure 26 for the arches  tested. 

The trajectories in a q l ,  q3 space can also be displayed. Figure 27 
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arches.  The line of average displacement equal to one i s  also shown 

in the figures. 

In addition to the dynamic tes ts  results described above, an 

attempt was made to determine the static equilibrium positions of the 

clamped arch. This i s  of interest since the existence of these posi- 

tions i s  a requirement in an energy approach to determining the 

dynamic buckling loads. These tes ts  were carr ied  out by pushing the 

a r ch  through to a Barge displacement configuration by hand and 

attempting to find a position where it would stay. This was unsuccess- 

ful for the 4 arches used with Y z 10 and 20. In addition, the existence 

of an  unstable equilibrium position could not be detected. This i s  

somewhat more  difficult to determine experimentally since it i s  like 

trying to balance a ball on top of a hill. However, there did not seem 

to be any equilibrium points other than the undeformed position for the 

arches  tested. This i s  in agreement with Vahidis s calculation (Ref. 14). 

C. Conclusion 

The experimental work on the impulsively loaded clamped 

circular a rch  shows that the maximum response has a significant 

increase in value for  a small increase in load a t  some value of 

impulse. It would appear from the data available that this increase 

i s  a smooth transition from a small  response to a large response a t  

some critical impulse level. Therefore, the use of a definition of 

dynamic buckling which requires a finite change in response for an 

infinitesimal increase in load would not consider this problem a s  a 
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dynamic buckling problem. However, from a practical point of view 

the increase in deflection i s  of the order  of three for a small increase 

in  impulse level. This increase is about the same amount a s  one 

obtains for  step loading on a simply supported arch in the range of 

geometric parameter  where direct snapping occurs (Ref. 11). 

It i s  of interest to note that this problem i s  like the one of 

direct snapping a s  categorized by Lock (Ref. 11). In other words the 

structure reaches its maximum displacement on the f i rs t  oscillation 

of the fundamental mode. This can be seen from the response plots 

(Fig. 26) combined with the trajectories (Fig. 27). An examination 

of the nonsyrnmetric response was also made. The f irst  component 

of the antisyrnmetric response i s  shown in Figure 28. As seen from 

these two cases of a subcritical and supercritical impulse, the anti- 

symmetric mode was not parametrically excited by the fundamental 

mode. It obtained i ts  maximum o r  nearly maximum early in the 

motion, and did not grow until the symmetric response achieved its 

maximum displacement. 

In summary, while no evidence has been found that the clamp- 

ed circular a rch  under impulse loading can be rigorously categorized 

a s  a dynamic buckling problem, it  i s  clear that over a small  range in 

impulse the a rch  undergoes a significant increase in response. It i s  

therefore of practical significance to determine this range of 

impulse. In addition, it was experimentally determined that no stable 

equilibrium position exists for the clamped a rch  f ree  from lateral  

load other than the undeformed position. Also, the existence of an 

unstable equilibrium position was not detected. 
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APPENDIX I 

LEAST SQUARE FIT OF THE IMPERFECT CIRCULAR ARCH 

The concave side of the a r ch  surface was marked every half an 

inch. At these positions, the distance with respect to a fixed point 

was measured by a rotatable a r m  a s  described previously (see Fig. 29). 

These distances were denoted by Ri. The "Best Fit Radius" E, and 

"Best Fit  Center" (BFC) were found by the method of least square 

e r ro r .  The distance between the two centers i s  r ,  and the angle 

between a vertical line and the line joining two centers i s  8. Further-  

more ,  express R. with respect to IBFC and call that distance E.. 
1 1 

The relation between E. and R., s i s  a s  follows: 
P 1 

1 la: 
2 

R. sincx. + r. sin 8) + (R.. cosa .  9 P. cos 0 )  
1 1 1 1 (1) 

Then, the deviation of the a rch  surface from the "Best Fit Archu i s  ei 
- - 

where e = R-Ri 
i (2) 

Assuming that there were N positions along the arch,  the total square 

e r r o r  e i s  given by 

- 
The undetermined parameters R, r and 8 can be determined by the 

following variational equations. 

8 6 - = N(R -K1 - rK2 cos 8) = 0 
aR 



a € - = (K1K2 - K4) cos 9 - K3 sin 8 ar (6) 
r 2 + ?[(K; - K1K6) cos 2 9 - K1K5 sin 2 B t  (K2+KlK7  - 2) = 0 I 

where 

P 
- N 

sin 2 a. 
1 

N 

K~ = kC - 1 cos 2 q; 
R: 

and sin u = 0. The relation (4) has been used in (5)  and (6). 
i 

i= B 
Combining (5) and (6)  and eliminating r ,  a transcendental equation 

for  8 i s  obtained 

B tan 8 = - - A 

where 

1 2  A = K K -K4+ (K4K7-K K K t K4K6 - 3K K K .+ K3K5) 
1 2 7  1 2 6  
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APPENDIX I1 

EQUILIBRIUM POSITIONS AND THEIR ENERGY LEVELS 

O F  CLAMPED ARCHES UNDER CONCENTWTED LOAD 

NOMENCLATURE 

Cross sectional a r ea  of the a r c h  

Integration constant 

Integration constant 

Young's Modulus 

Arch thickness 

Central a rch  r i se  

Moment of inertia 

Arch length 

Axial thrust 

Concentrated load 

Nondirnensional load 

Arch radius 

Heaviside step function 

T irne 

Arch displacement 

4x 2 
Initial a rch  shape 

x Arch coordinate 

- 2x x =  - 
L Nondimensional a r ch  coordinate 



Nondimensional a r c h  displacement 

W 
- -2g Nondirnensionalinitialarchshape 

yo 2 

I3 Arch  half angle 

y = -=--- L' 2H Geqmetric Pa ramete r  
4Rh h h 

Dirac delta function 

Nondimensional axial  s t ra in  

Potential energy of the sys tem 

Nondimensional potential energy 

P Mass density 

Nondimensional t ime 
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A. Symmetric Equilibrium Po sitions 

The coordinate system i s  shown in Figure 3 0 .  The equations 

of motion of a shallow arch  can be expressed in t e rms  of the displace- 

ment a s  derived in reference 8. 

where 

Substituting the nondimensional quantities, ( 1 ) can be written 

in dimensionless form a s  follows, 

2 
y"" + p, y" + y t ??6 (x) §(+I = O 

The static equilibrium positions can be obtained by letting the 

inertia t e r m  equal to zero. The corresponding static equation will 

The homogeneous solutions of (4) a re :  



y1 = Al  sin p P  + A 2  c o s p % + A 3  % + A 4  [-1SX< 01 

(5) - 
y2 = B~ s i n p ~  + B cos p~ + B x + B~ [o< F< 1 1  2 3 

The boundary conditions for the clamped arches  a r e :  

The continuity conditions and the jump in shear a t  the point of loading 

(i? = 8 )  a r e  expressed a s  follows: 

Substitute (5) into (6)  and (7), and provided that tan p .fi p, the unknown 

constants a r e  found a s  follows: 



w 
The constants A1, A2, . . . , B4 a r e  functions of p and P. 

4-d 

The p--P relationship can be found by substituting (5) into ( 3 ) .  

2 2 2, 2 2 
p = 27 + ( A ~  - + B~ - B Y )  -$ sin 2p, 

2 - (AIAZ - B B )P sin (I - 2(A1A3 f BIB3) sin P 
1 2  (9) 

The roots of this transcendental equation correspond to the 

value of p a t  the equilibrium positions under the specified load level 

B. Antisymmetric Equilibrium Positions 

In evaluating ( 6 ,  7), the following algebraic equation must be 

solved 



If the determinant of the coefficient of A vanishes, i. e. , tan p = p, 

A1, A3 can not be determined uniquely a s  in (8). The lowest possible 

p that satisfies this condition i s  V = 4.492. In this  case, only one s f  

( 10) i s  independent. 

P 
A3 = ~ ( I I  - sin p) - A sin p 

2~ 
1 

Substitute (11) and ( 5 )  into (3). A quadratic equation of A i s  obtained. E 

2 P 2 
(s in p cos p - p)A2 + 7 (s in p 4- 2 cos p - 2) A2 (12) 

b'. 

The A2, A4, Bl ,  B2, B3 and B4 will be determined according to (8). 

C. Potential Energy of the System 

Let designate the potential energy 



4 3  

The nondimensional potential energy i s  a s  follows: 

1 2 1 4  =J (y" - y;) d x + -  p - 2i;(y0 - YII  
2 

1 0 - 1 
Substitute (5) into (14), we get 

- 2 2 2 2 1 2  2 2 2 II = p 3 B ( ~ ,  + A 2  + B1 + B2) - $(A1 - A2+ B - B2) sin 2p 
1 

- (AIA2 - BIB2) sin 2 l  p + 2 4- 3Yp [ (A1 - B1)(l - cos p) (15) 

The results obtained above were evaluated numerically on an IBM 

360/?5 computer. The numerical results for the critical static load 

agree  with the results obtained by Schreyer and Masur (Ref. 7).  The 

values of the upper and lower bounds were n m e r i c a l l y  calculated and 

a r e  shown in Figure 17. 
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TABLE I 

Geometric Descriptions of the Tested Arches 

Arch 32 Arch 29 Arch 28 Arch 25 

b (in) 0. 75 0. 75 0. 75 0. 75 

h (in) 0.0632 0.0643 0.0643 0.0643 

L (in) 12.20 10. 90 9. 50 7. 75 

R (in) 31. 56 32.09 32. 01 31. 58 

9 ,  Y 18.655 14. 395 10. 962 7.395 

" 
E-f (in) 0. 5895 0,4528 0. 3524 0.2377 

"p (degree) 11.075 9.729 8. 503 7.030 

* Calculated 



TABLE 11 - 
Nondirnensional Static Cr i t i ca l  Load P 

E Arch 32 Arch  29 Arch  28 Arch  25 
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TABLE 111 

Critical Step Load 

Arch 32. Y = 18. 655 

- 
P (lb) P Result 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 
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TABLE 111 (Contfd) 

Critical Step Load 

Arch 32. Y = 18.655 

- 
E P (1b) P Result 

buckled 

buckled 

buckled 

buckled 

buckled 



TABLE 111 (Contld) 

Critical Step Load 

Arch 29, Y = 14. 3 9 5  

- 
E P (lb) P Result 

144.2 

144. 8 

145.4 

144. 1 buckled 

11.80 146. 1 buckled 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 
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TABLE 111 (Cont'd) 

Critical Step Load 

Arch 29. 9' = 14. 395 

- 
d P (lb) P Re sult 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 
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TABLE 111 (Contld) 

Critical Step Load 

Arch 28, Y = 10. 962 

Result 

106. 5 buckled 

107. 0 buckled 

13.10 187.4 buckled 

108.1 buckled 

110.6 buckled 

106. 5 

107. 0 buckled 

buckled 

buckled 



5 1 

TABLE ILI (Contld) 

Critical Step Load 

Arch 28. 'Y = 10. 962 

Result 

104.1 

104. 5 buckled 

buckled 

buckled 

buckled 
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TABLE I11 (Contfd) 

Critical Step Load 

Arch25.  Y =  7.395 

- 
€ P (lb) P Result 

buckled 

buckled 

buckled 

buckled 

buckled 

buckled 
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TABLE III (Contld) 

Critical Step Load 

Arch25.  Y =  7.395 

- 
€ P (lb) P Result 

buckled 

buckled 

buckled 

buckled 
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TABLE IV 

Geometr ic  Description of Tes ted  Arches  

Arch  Thickness  Radius Length 
(in) (in) (in) Y 
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TABLE V 

Summary of Impulse Tests  

Arch wa 
max 



FIG* I RESPONSE OF LINEAR SPRING MASS SYSTEM 





FlG.3 NONLINEAR RESPONSE OF TWO DEGREES 
OF FREEDOM SYSTEM 



FIG. 4 COORDINATE SYSTEM OF CIRCULAR ARCH 



FIG* 5 TYPICAL TENSILE TEST OF CURVED 
2 0 2 4  ALUMINUM SPEC1 MEN 



FIG. 6.  CIRCULAR ARCH BEFORE AND A F T E R  INSTALLATION 
IN S T E E L  FRAME. 



F16.7 THE STATIC AND DWAMIC PEST APPARATUS 



FIG. 8 .  KNIFE EDGE ASSEMBLY 



FIG. 9. INITLAL IMPERFECTION MEASURING EQUIPMENT 

FIG. 10. MEASURING O F  INITIAL IMPERFECTION O F  CIRCULAR 

ARCH 
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f IG. I1  IMPERFECTIONS OF" THE TESTED ARCHES 



FIG. 12 NONDIMENSIONAL CRITICAL STA"IIG LOAD 
VS. LOADING IMPERFECTION 
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FIG. 83 COMPARISON OF STAnIG EXPER! MEMfS 
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FIG. !So LOAD DEFLECTION CURVE FOR ARCH 32 ,r= 18.66 



FIG.1Sb LOAD DEFLECTION CURVE FOR ARCH 29,1=14.40 
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FiG.15~ LOAD DEFLECTION CURVE FOR ARCH 28, ys10.96 



FIG.15d LOAD DEFLECTION CURVE FOR ARCH 2 5 , ~ .  7.40 



Arch 25 

FIG. 16 NONDIMENSIONAL CRITICAL STEP LOAD VS. 
LOADING IMPERFECTION 
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FIG. 19. CAMERA SETUP 

FIG. 20.  F ILM READER TO MEASURE DEFORMED ARCH SHAPE 
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FIG.22aINITIAL IMPERFECTIONS OF THE TESTED ARCHES 
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FIG.22blNITIAL IMPERFECTIONS OF THE TESTED ARCHES 
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FIG. 250 DEFORMED SHAPES OF ARCH €3 9 



FIG. 25 b DEFORMED SHAPES OF ARCH B 8  
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FIG.27DTRAJECTORIES OF ARCHES FOR y W  10 



FIG.27bTRAJECTORIES OF ARCHES FOR 7 @ 20 
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FIG.29 COORDINATE SYSTEM FOR FINDING BEST FIT 
TO THE MEASURED INITIAL IMPERFECTlONS 



FIG. X1 COORDINATE SYSTEM FOR THE CLAMPED 
CIRCULAR ARCHES 


