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ABSTRACT

An experimental investigation of the relationship between the
dynamic buckling and the static buckling phenomenon was carried out.

The first half of the paper studies the stability of shallow
arches subjected to lateral forces. Concentrated static and step loads
were applied to circular arches with geometric parameters 7 <Y< 20.
Equilibrium path and the dynamic response at the loading position were
recorded. Dynamic buckling is distinct. Supercritical and subcritical
responses were separated by 0.5 ©/o of the total load. The sensitivity
of the arch to loading imperfection was studied. The effect was pro-
nounced in the static tests but moderate in the dynamic responses.

The second half of the paper studies the response of clamped
circular arches under lateral impulse. The motion of the arch was
recorded by a high speed camera and the deflected arch shape was
measured in detail. The response was expressed in terms of the
average displacement and three generalized displacement coordinates
representing the amplitudes of the assumed mode shapes. The criticai
impulse is defined as the impulse level at the inflection point of the

curve of maximum response versus impulse.
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NOMENCLATURE
, . . 2
A Cross sectional area of the arch (in")
b Arch width (in)
E Young's Modulus (psi)
h Arch thickness (in)
H Central arch rise (in)
I Specific impulse (lb—sec/inz)
Im Moment of inertia (in4)
2.2
1 Nondimensional impulse = %———8———
h"E p
L Arch length (in)
AL Distance between load and center of arch (in)
P Concentrated load (Ib)
L.\3
= P A1)z
P Nondimensional load = —w— (/)
4E1 I
m m
d;5 95593 Generalized displacement coordinates
R Arch radius (in)
t Time (sec)

Arch displacement (in)

g =

Nondimensional average displacement

We Weight of explosive (gm)
o Arch coordinate (radians)

Arch half angle (radians)

: LZ

Y i =

Geometric parameter = iRE

.. _ AL

€ Percentage of eccentricity = T

p Mass density (slug /in3)
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NOMENCLATURE (Cont'd)

Subscripts:

CR Experimental critical value
CL Classical theoretical value

MAX ' Maximum value
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I. INTRODUCTION

A prominent scientist, Kirchhoff, once said that ""Dynamics"
is a science of motion and forces. Thus dynamics includes statics
which deals with the state of equilibrium. This relationship stimu-
lated this research work. It is focused on the understanding of the
dynamic buckling phenomenon of nonlinear structures as related to
their static buckling.

The static stability of cylindrical and spherical shells was
studied intensively not long after the invention of the airplane. How-
ever, the experimental results had considerable scatter and were only
30-50 ° /o of the classical buckling Ioad* (Ref. 1) for some loading
conditions. Tsien (Ref. 2) proposed an energy criterion** which
seemed to be in better agreement with the experiments. However, to
achieve buckling at the load given by the energy criterion, a perturba-
tion of unspecified magnitude is required. But how and where to apply
this perturbation is not prescribed. Therefore, this criterion is

believed to be built on an unsound basis. In the past few years,

3*

The classical buckling load of a shell is defined as the lowest eigen-
value of the linearized theory. The linearized theory is derived by
perturbing the nonlinear equations of the perfect shell abouta
membrane prebuckling equilibrium state. For the arch problems
which will be considered later, the exact solution of the nonlinear
equations is the classical solution. The critical condition is
reached when either the equilibrium path yields a local maximum

of the loading parameter or the path bifurcates into additional
branches.

The buckling load is reached when the total energy in a possible
equilibrium state is equal to the total energy in the unbuckled state.
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experimental techniques have improved. Experimental results for
cylindrical shells under axial compression are closer to the classical
solution than to the energy solution (Ref. 3). On the other hand, if
initial geometric imperfections are included in the analysis, the
experimental buckling loads can be predicted reasonably well (Ref. 4).

The classical analysis and the energy' criterion were also
applied to other nonlinear structures. Fung and Kaplan (Ref. 5) found
that the classical solution compares well with experiments on simply
supported arches. Gjelsvik and Bodner found that the experimental
results for the clamped shallow arch subjected to a concentrated load
lie in between the two theories (Refs. 6 and 7). To confirm this point,
similar tests were performed in this investigationn

The problem of dynamic buckling or nonlinear response of shell
structures has been widely discussed in the past few years. The
question of dynamic buckling is of concern since this phenomenon is
associated with a large change in the structural response with a small
change in the loading conditions. This change of response character
with load is similar to the stability problem of static loading and hence
the name dynamic buckling has often been adopted. However, since
the loading and response are funétions of time, the analégy is not ‘quite
complete. This has led to a variety of definitions of dynamic buckling.
The definition of stability used here is not in the conventional sense of
a bounded or unbounded motion. It should be stated as a finite increase
of maximum response due to an infinite simal increase of the loading

parameter. No matter how small this discontinuity may be, as long as
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it exists, the load level at which it occurs is defined as the dynamic
buckling load.

The differential equations that govern the motion of the shell
str\ictures are time dependent and nonlinear. The exact solution of
these equations is the counterpart of the static classical analysis.
However, to solve these hyperbolic nonlinear equations is not an easy
matter. No exact solution has been obtained so far for those structures
of interest. Numerical integration of the equations seems to be the
only alternative. Specifying the initial values for the structure, the
type of loading and the boundary conditions, the differential equation
can be integrated with various schemes. Due to the nature of the
equations, the convergence of most schemes is a serious matter. The
stability of the integration error should be investigated thoroughly
before the results become trustworthy. The computation time is
another major problem. Iterations are necessary for each time step
and space coordinate. Depending on the complexity of the structure,
‘thev computation time may vary from moderate to enormous.

For these apparent reasons, one is inclined to use the much
simpler energy approach. Although the energy criterion lost its
influence in static stability studies, under some loading conditions, the
extended energy analysis is very convenient in the analysis of the
dynamic response (Refs. 8-11). Unfortunately, there has been no
experimental data to compare with these analytical results. Therefore,
some step loading and impulsive loading experiments were carried out.
The shallow arch was chosen as a model because this simple structure

has nonlinear characteristics similar to much more complicated shell
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structures. A wide range of this nonlinear behavior can be exhibited
by changing the end conditions, loading, or geometry of the arch.

The energy method is built up by using the static equilibrium
states. Knowing theb static response, one can derive some of the
interesting features of the dynamic response. Let us start with the
simplest example. Figure ! shows the response of a linear spring
mass system. The amount of force applied to the mass is P and g
is the displacement of the mass. On the force-displacement diagram,
a linear static equilibrium path OA is traced. If the force is applied
as a Heaviside step function, the response will be a simple harmonic
motion around the static equilibrium position. The dynamic response
is illustrated at two load levels PD and PE' The dotted lines along
the time axis are the corresponding equilibrium positions. In this
case, the maximum dynamic response is twice the static response.
This is shown as the straight line OEDB.

The relationship of the static and dynamic response can be
clarified by the potential energy (U) of the system. The potential
energy is a function of the external load and the displacement. It can
be decomposed into two parts. The first part is the strain energy
stored in the spring. This strain energy is proportional to the square
of the displacement, and is always positive. The second part is the
potential of the external load. This term is linearly proportional to
the displacement and is negative for positive displacement. For small
deformation, the second term dominates and the total potential energy
decreases until a minimum is reached which corresponds to‘the stable

static equilibrium position. There are two energy curves shown for



5
PE and PD. The dynamic response is analogous to a ball rolling
along these energy curves. If no energy is dissipated or supplied
during the course of oscillation, the ball will rise to a position of the
same elevation as the initial position and oscillates thereafter. There-
fore, positions E and D are the maximum dynamic responses at the
step load level Pr and Py respectively.

Next, we consider a nonlinear one degree of freedom system.
Assume the static load deflection curve has the form OABC as shown
on Figure 2a. OA and BC represent stable branches while the AB
branch is statically unstabie under dead weight loading. Starting at
the origin, with half the initial slope, the maximum dynamic response
is shown by the dotted line. Influenced by the softening nonlinearity,
the curve extends with éver-lessening slope. The intersection of this
curve with the branch AB is significant, because this determines the
uniqﬁe position at which the arch snaps under step load. This state-
ment will be proved by using the potential energy curves (Figure 2b).

Point D is a local maximum in the energy curve because it is
on the AB branch. This local maximum has zero potential energy
since point D is on the maximum dynamic response curve. Hence,
if a ball rolls along the energy curve corresponding to P = PD, it
takes an infinite amount of time to arrive at the static equilibrium
position D. Should the load be increased infinitesimally, the energy
of the local maximum will drop below zero and the ball will cover an
additional territory. PD is therefore defined as the critical load.

The response histories at a supercritical and subcritical load

level are illustrated at the left part of Figure 2a where time is plotted
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as the third axis perpendicular to the P--q1 plane. The supercritical
response has a bell shape curve since the kinetic energy is low when
the response crosses the local maximum of the energy curve. Thus
the system moves slower through such a range.

When a two degrees-of-freedom system is considered, the
potential energy can no longer be expressed as a single curve, but as
a continuous surface. On a surface, one can move from one point to
another along an infinite number of paths. Therefore, the energy
method fails to yield a unique critical condition. The alternative is to
obtain necessary or sufficient conditions for the lower and upper
bounds respectively. This is illustrated by Figure 3. A typical
three-dimensional static equilibrium path is shown on the left part of
Figure 3a. The elliptic path between A and B represents the
bifurcated branch which is on a plane perpendi'cular to the POq1 plane.
The maximum dynamic response is shown as OED. Three energy
surfaces for load levels between PA and PB are shown in Figure
3b,c,d. These surfaces have five equilibrium positions: the center
one is unstable (hill), the left and right ones are stable (depression),
and the upper and lower ones are unstable (saddle). It is again easier
to visualize the dynamic response by using the analogy of the motion
of a ball on the energy surface. Figure 3b shows the energy surface
at P = PD. The local maximum D has zero energy. If the response
is restricted to the q, component, the ball will take an infinite amount
of time to arrive at D. Should the load be increased infinitesimally,
the local maximum has negative potential energy and all interior

points bounded by U = 0 have U< 0. With a little higher energy, the
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ball can leap over the local maximum and gets to the far side of the
region. This sudden increase of response entitles PD to be the
upper critical load.

The energy surface for P = PE is shown in Figure 3c. The
domain UZL0 becomes doubly connected. If the response is re-
stricted to the q; component, the ball can not reach the far side of
the region. Hence, PE is not significant. The lower bound for the
load, using this energy method is shown in Figure 3d where the
energy at the saddle points is zero. An infihitesirﬁal increase of the
load decreases the energy at the saddle points below zero and allows
the ball to roll over to the far side through one of the two saddle
points.

With the above concept in mind, a generalization to a multiple
degree-of-freedom system is straightforward. At each load level,
the multiple dimensional energy surface is exai‘nined. The lower
bound will be determined by a load such that the first static equilibri-
um position appears in the zero potential energy surface. The upper
bound will be defined at a load level where the potential energy of all
local maximums is below or equal to zero.

So far, the upper bound is clearly defined provided the static
critical load is higher than PD. If this is not satisfied, the static
critical load will be the governing upper bound. At such a load level,
two saddle points merge with the near stable equilibriurh position and
convert this stable position to another saddle point. This conversion
of an equilibrium position makes all points on the left of the local

maximum unstable. A perturbation of any magnitude causes the ball
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to diverge from the q, axis, to by-pass the hill and finally to arrive
at the far stable region. This bound is named by Simitses as the
"Minimum Guaranteed Critical Load".

Furthermore, necessary or sufficient conditions discussed
earlier are for elastic structures without damping. Should damping
be present, the picture would be a little different. The estimation of
the necessary condition is not affected because energy is needed to
account for dissipation. If the undamped system can not escape from
the near stable region, it is reasonable to think that the damped system
also will not escape. However, the sufficient condition must be re-
considered. The upper bound for the undamped system would be an
under-estimated upper bound for the damped system. As a matter of
fact, the energy dissipated is a function of the dynamic path and thus
depends on the initial conditions. An upper bound similar to the
undamped case seems to be meaningless unless one can find a descend-
ing path on the energy surface that connects the original position to
thé far stable region. This is exactly the case for the static critical
load as discussed in the previous paragraph. Therefore, the static
critical load is the upper bound for the damped system.

The experiments were carried out with many objectives. The
static tests were to confirm Gjelsvik and Bodner's experiments and to
compare with the analyses. The step loading tests supplied data for
comparison with the results obtained by the numerical integration of
the nonlinear differential equation (Ref. 12) and the results from the
energy analysis (Ref. 9). The sensitivity of the arch to loading

imperfections was studied. Finally, a valuable by-product of the
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experiment showed the non-existence of other stable equilibrium
positions upon total removal of external load. The non-existence of
these positions does not allow an impulsively loaded clamped arch to
be classified as a stability problem in the strict mathematical sense.

The experiments were divided into three sets. The first set
was concerned with the static buckling of clamped circular arches
subjected to concentrated loads. The second set extended the first
set to include a step function load. The last set considered a uniform-
ly distributed impulsive load. Although the first two sets are different
in nature, they used similar equipment and were performed with
identical specimens. They will be presented together in Part II. The

impulsive load experiments are presented in Part III.
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iI. STABILITY OF CLAMPED SHALLOW CIRCULAR ARCHES
UNDER STATIC CONCENTRATED LOADS
AND STEP CONCENTRATED LOADS

2
Four arches with geometric parameters ¥ = i‘—R—h of approxi-

mately 7, 11, 14 and 18 were used in the tests. The load was applied
at various locations on the arch. Although the entire deformed arch
shape was not measured, the displacement at the loading point was
recorded. The combination of the static response and the maximum

dynamic response gives a clearer picture of the buckling phenomenon.

A. EXEerimen’c

The experimental set up used for static loading is similar to
the one used by Gjelsvik and Bodner (Ref. 6). The step load was
developed by suddenly releasing a dead weight which initially touched
'~ the arch surface. However, the inertia of the dead weight changed the
effective force on the arch and in turn affected the frequency and
magnitude of the response. In fact, it was detected that the load
detached from the arch during the first few cyclésa The effect of
inertia was reduced by placing a very soft spring between the arch and
the weight. The softer the spring, the longer the initial stretch which
may be much larger than the response of the arch. With this arrange-
ment, it was found that the variation in load was less than 10 O/o of the
total dead weight. The large variation occurred after the arch buckled,

thus its affect was small on the determination of the critical load.
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1. Test Specimens

The equations that describe a shallow arch show that the
circular arch can be characterized by one nondimensional parameter

Y (Figure 4) where

The three variables are length, thickness and radius of curvature.
For all of the arches tested, the thickness was held constant and the
same nominal radius of curvature was used.

The specimens were cut from 1/16 inch thick 2024 T3 aluminum
sheet, and were trimmed by the milling machine to 3/4 inch wide. The
strips were then rolled to approximately 30 inches radius in a three-
roll roller. The radius was rough checked using a template. After
rolling, 4 inches from both ends were cut off. Tﬁe arches were then
heat treated for eight hours at 375 degrees Fahrenheit.

Straight tensile specimens were tested in an Instron testing
machine. Young's Modulus was found to be 10.5 x 106 l‘b/j‘m2 and the
proportional limit above 46, 000 lb/inz. Curved tensile specimens with
a radius of 30 inches were similarly tested and the results were much
the same. A typical tensile test of a curved specimen is shown in
Figure 5.

The arches were mounted into a heavy steel frame for testing.
The ends are secured using Devcon B. An arch mounted in the frame

is shown in Figure 6. The geometry of the tested arches can be found

in Table I.
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2. Experimental Setup

Except for the recording system, both the static and dynamic
tests used the same equipment as explained below. A schematic
drawing of the setup is shown in Figure 7. A description of each item
marked by a letter is as follows.

a. Aluminum Arch

The center line and eccentricity lines were marked on
the convex side of the arch surface.

b. Steel Support for the Arch

This support could be moved to the left or right in
order to position the point of loading directly under the
knife edge.

c. Knife Edge Assembly

Through a retractable pin, the knife edge was hung
on a support shown in Figure 8. The whole assembly
could be moved up and down so that the knife edge was
just touching the arch surface before performing the
test. After adjusting the elevation, the support was
locked in position. The retractable pin was connected
to a solenoid. When the circuit was closed, the solenoid
pulled the pin back and the weight carried by the knife
edge could be transferred to the arch. For static tests,
the knife edge was disengaged from the pin manually and
was gently set on to the arch. The hanging weight

accounted for the initial load.
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d. Displacement Transducer

The housing of the transducer was fixed to the
stationary part, while the sliding core was connected
to the top of the knife edge (see Figure 8). As the
knife edge moved with the arch, the transducer
measured the vertical displacement at the loading
point.

The calibration of this transducer was linear with
a working range of 3'"'. By adjusting the control, the
oﬁtput was 100 MV per inch of the displacement.

e. Tension Spring

The spring is connected to the bottom part of the
knife edge. In static tests, it serves as a safety device
to avoid breakage of the fragile load cell due to ex-
cessive displacement from below. It was changed to a
very soft spring for dynamic tests for reasons |
mentioned previously.

f. Load Cell

The load cell was a 0.010" thick Mylar tensile
specimen. The strip was 1.25" wide and 6. 5" long.
Two SR-4 paper strain gages were placed in series on
each side of the Mylar strip as active gages. The same
number of dummy gages were placed on the same strip
and were perpendicular to the active ones. The gages
were supplied by a 12V D. C. power supply. The

working range corresponded to about one quarter of the
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ultimate stress of Mylar. The calibration was linear
and gave 0.493 MV output per pound weight. On top
of the initial load, this gave the total applied load for
the static tests. In the dynamic tests, the load cell
measured the variation of the effective load as a
function of time.

g. Dead Weight

This was the main difference in the arrangement
between the dynamic and static tests. For the former
one, a pot of weight was hung to the load cell and the
weight was the last in the series. In static tests, the
weight rested on a hydraulic jack and was fastened to
the load cell by a nylon cord.

h. Hydraulic Jack

The hydraulic jack was used for the static tests.
It worked as a moving platform for the weights. At
the beginning of the test, the piston was brought to
the upper most position. Whén the valve was opened
the piston sank slowly. In the process of loading, the
load regulated automatically with the displacement.
Thus this arrangement established itself as a ''near
rigid machine' and was able to map the unstable
branch of the equilibrium path.
The recording system used in the static tests was an X-Y
plotter. Without using an amplifier, the output from the displacement

transducer was connected to the X axis, while the output from the
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load cell went to Y axis. The result was a single load deflection
curve representing the equilibrium path.

A Honeywell Visicorder (Model 1508) was used to record the
dynamic response and the variation of the effective load. The outputs
were amplified three and one hundred times respectively for the
displacement traﬁsducer and the load cell. Inside the Visicorder,
Honeywell galvanometers were used in recording oscillographs to
transfer voltage variations to a photographic record. The oscillo-
graphs were recorded on Kodak extra thin L’inagréph Direct Print
paper (Type 1799).

3. Test Procedure

There were three main steps in the complete testing of an
arch. Namely, they were an initial imperfection measurement, a
quasi-static test and a d&namic test. Arches were reusable. They
were reloaded at different locations, includingv from 0 % /o up to 6 °/o
offset from the center. This gave the reduction of critical load due
to an eccentric load. In between tests, imperfections of the arch
shape were measured in order to assure that the arch was not
subjected to excessive plastic deformation.

To obtain results with high accuracy, the dynamic tests were
to be performed following the static test at the same loading location.
However, repeated tests showed that the response characteristics
were reproducable and were little influenced by the order of £esting.
In fact, after approximately one hundred tests on the same arch, the

critical load remained within 2 o/ca. Therefore, to simplify the
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the testing procedures, static tests were carried out for all loading
positions and were followed by the dynamic tests.

In static tests, the critical load was defined as the local maxi-
mum of the loading parameter on the equilibfium path.‘ However, in
the dynamic tests, the critical load could not be determined by only
one test. Different load levels were applied to the arch. Slightly
increased amplitude of vibration resulted from a small increase in
load. | At a critical load, the maximum amplitude increased abruptly.

a. Initial Imperfection Measurement

A pendulum like apparatus was built to measure
imperfections of the arch. It consisted of a fixed center
and rotatable arm which could be adjusted in length. A
dial gauge with a working range of 0.060 inches was
installed at the tip of the arm (see Figures 9 and 10).

The measurement was made by first adjusting the
arm to the appropriate radius then pressing the concave
side ofb the arch gently against the dial gauge. Starting
from one end of the arch the dial gauge readings were
taken at half inch intervals along the arch until the dial
gauge could not advance another full step. This gave
the deviation of the arch shape from the preset radius.
Applying the "Least Square Method'" to the measured
~data the '"best fit radius' and the ""best fit imperfection'
can be found. The derivation of the equations to

accomplish this can be found in Appendix I.
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Before the arches were mounted on the supports
the imperfection's were measured. Only those arches
with imperfection amplitudes less than five thousandth
of an inch were used. Also, they were cut from longer
ones so that the selected sections had a minimum
amount of asymmetric imperfection. When the arch
wa s mounted and the Devcon was hardened, the arch
shape was measured again to make sure that it had not
been excessively deformed due to the process of
mounting. The imperfections of the tested arches are
shown in Figure 11.

b. Static Test

The arch was put into the knife edge assembly such
that the loading position was directly under the edge.
The assembly was lowered so that the edge just touched
the arch surface. At this point, the output from the
displacement transducer represented zero displacement
of the arch. When this was recorded on the X-Y
plotter, the knife edge was disengaged manually from
the assembly. The arch deformed a little due to the
weight of the knife edge and the spring system. This
was compensated in the plotter as initial load.

External load was applied to the arch gradually as
the piston in the hydraulic jack sank slowly. After the
arch buckled, the load was released by raising the

piston back to the upper position.
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c. Dynamic Test

The procedures before the disengagement of the
knife edge were the same as in static tests. A motor
in the Visicorder was turned on and accelerated the
Linagraph paper to a constant speed of 80" per second.
0.2 second later, the knife edge was released by the
withdrawal of the retractable pin. The response of
the arch and the external load were transformed into
an optical signal and recorded on photo sensitive paper.
The Linagraph paper was latensified by exposing to
fluorescent light. The record traces became visible
and readable in a few seconds.

When the motion of the arch subsided, the load was
released and the experiment was repreated with a
different amount of load. The critical load was deter-

mined to within 0.05 1b. or less.

B. Test Results

Four arches were used in the test program. The geometric
parameters were roughly 7, 11, 14 and 18. The arches were used
repeatedly until all information was acquired. Between tests,
imperfection measurements showed a slight élastic deformation around
the point of loading. In spite of this, repeated tests showed almost
identical response characteristics.

The critical static load is shown as a nondimensional load in

Table II. It appears that higher arches have higher critical loads
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because the nondimensional load is the product of the applied load and
the geometric parametér. In fact, the flatter arches have a higher
buckling load. Figure 12 shows the effect of asymmetric loading. In
general, a 10 O/o reduction of critical load was detect ed when the
load was applied offset from the center an amount equal to 6 ® /o of the
arch length. This effect was especially sensitive in the neighborhood
of the center because the curve forms a cusp at € = 0. Similar
behavior was obtained theoretically and experimentally by Thompson
for simpler structures (Ref. 13).

Figure 13 is a comparison of the experiments with the existing
analysis. The critical loads are normalized by Schreyer and Masur's
classical solution (Ref. 7) and this ratio is called the critical load
ratio. The upper curve is the classical solution for a sinusoidal arch
(Ref. 9). The lowest curve is the static energy solution for clamped
circular arches (Ref. 6). Experiments performed by Gjelsvik and
Bodner have considerable scattering and the results are much lower
than the present ones.

It was observed on the load deflection diagram that the
equilibrium paths crossed the abscissa (displacement axis) at no
point other than the origin. Therefore, only the original configuration
is a possible equilibrium position at the zero load condition.

Step loading tests are summarized in Table III. Figures 14a-
14d are typical deflection-time traces at the loading point when a step
load was applied. The numbers attached to the curves are the load
expressed in pounds. The closest pair which change in nature defines

the critical load. At the critical range, a one-half per cent change of
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load will result in a factor of three change in response. The dotted
straight lines represent the static equilibrium positions at the corres-
ponding load levels. The subcritical responses were damped to the
near equilibrium positions while the supercritical responses vibrated
around the far equilibrium positions. If damping were not present,
the supercritical response would have completed the bell shape
curves. The superposition of the static response and the maximum
dynamic response is shown in Figures 15a-15d. One observes that
subcritical maximum dynamic response is always less than the second
branch of the static equilibrium path. This agrees with the statement
in the introduction that the energy level at such a branch is higher.

The effect of loading imperfections is shown in Figure 16. In |
contrast to static tests, the influence of the loading location is much
less and the reduction of the critical load appears to have a smooth
transition near the center.

Finally, ’thé dynamic critical loads were normalized by
Schreyer and Masur's static classical solution. The results are
plotted in Figure 17. In addition, the upper bound and lower bound of
the dynamic critical load for a sinusoidal arch (Ref. 9) and the
numerical solution for the circular arch (Ref. 12) are superimposed
cn the same diagram. The present experiments agree very well with

Vahidi's numerical results.

C. Conclusions

The present static experiments show .higher critical loads than

those obtained previously in reference 6. Among other things, the
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difference between the two experiments is partly due to the different
way of estimating the radius of curvature. The nondimensional load
is proportional to the square of the radius. A 5 ®/o error in calculat-
ing the radius, therefore causes a 10 O/o error in the load. The
geometric parameter ¥ is also proportional to the radius. Therefore,
an accurate determination of the radius is important in reducing the
data for comparison with the analysis. Previously, the radius was
calculated by measuring the relative positions of three points on the
arch. In present tests, the arch was measured at many stations. The
calculated radius is a best fit to all measuréd points. In addition, the
knowledge of the initial geometric imperfection provided a better
choice of specimens and avoided unnecessary complications.

Overall, the static tests agree reasonably well with Schreyer
and Masur's exact solution. The results are sensitive to the position
of loading. The critical load is reduced sharply when the load is
slightly off center. On the other hand, the dynamic response is quite
insensitive in this respect.

For all step loading tests, the critbical dynamic load was
determined to within 0. 05 pound. This amount of load corresponds to
one-half per cent change in the total load which causes an increase of
the maximum displacement by a factor of three.

The step loading tests and the analyses are summarized in Fig.
17. The upper bound obtained by Hsu or Simitses is for sinusoidal
arches. They defined the static critical load as the upper bound. For
the circular arches, the dotted lines are the bounds which are defined

in the introduction. To obtain the bounds, the static equilibrium
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positions for each load level must be found. This is carried out in
Appendix II. These positions correspond to the local minimums,
saddle points or the local maximums on the energy surfaces.

In the case of clamped circular arches, asymmetric equilibri-
um positions are possi‘ble for vy2 11.0. Hence, for vy« 11.0,
asymmetric saddle points do not exist. Consequently, the upper and
lower bounds merge together. As pointed out in the introduction, this
bound is more appropriately called a lower bound if damping is
considered. The static critical load will be the corresponding upper
critical load.

The reason why the lower bound is above the critical load
obtained by Vahidi, who used numerical integration is not clear. How-
ever, the difference between the results from the two analyses is very
small. In addition, the experimental results were expected to lie
above the lower bound. If damping affected the experiments, the
results should compare with the theory more favorably. However, the
experimental results are a little below the lower bound. Static experi-
ments show similar reduced critical load from the exact solution.

This may be due to the effect of the initial geometric imperfections.

The analytical results for clamped arches have shown that the
difference between an energy detérmination of the critical load under
step loading and the results obtained by a direct integration of the
differential equations is very small. The experiments show good
agreement with both analytical results., Therefore, the success of the

energy method has been demonstrated for this structure. It seems
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significant to extend this type of work to more complicated structures
where a direct solution of the differential equations is impractical.

Finally, it was found that the original rest configuration of
the arch was the only equilibrium position at the zero load condition.
This is in agreement with Vahidi's calculation (Ref. 14). Since the
existence of other equilibrium positions is a requirement in an energy
approach to determine the critical load level, the impulsive loaded
clamped circular arch can not be rigorously classified as a buckling

problem.
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111. STABILITY OF CLAMPED SHALLOW CIRCULAR ARCHES

UNDER UNIFORMLY DISTRIBUTED IMPULSIVE LOAD

For the impulsive loading experiments 11 arches were used.
They were divided into two groups. One group had a geometric para-
meter close to 10, the other group close to 20. Silver acetylide-silver
nitrate was sprayed directly on the arch. This light sensitive explo-
sive was detonated by a Xenon flash tube. The response of the arch
was recorded by a high speed camera. The displacement was
measured carefully and the data analyzed on a digital computer. The
explosive load was a very short duration pressure loading. If the
duration is much shorter than the fundamental nat{lral period, the
loading can be treated as giving the arch an initial velocity. For all
positive time, the arch is free from lateraly load and is in free vibra-
tion. Obviously, this is a particular case of Part II, where the energy
surface at zero load condition should be investigated. Although there
exists only one equilibrium position, it is suépected that there may be
a significant change of maximum response in a relatively narrow
range of impulse parameter. If this is the case, the determination of

the inflection point on the maximum response curve is therefore

significant.
A, Experiment

These experiments consisted of loading a clamped circular
arch with a very short duration uniform pressure load. The arches
were fabricated, chosen and mounted the same way as in Part II. The

resulting motion of the arch was recorded using high spe‘ed photography.
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A detailed description of the experimental work is presented in the
following sections. The results are compared with Humphreys
experiments and analysis (Refs. 15 and 16)?

1. Impulsive Load

Silver Acetylide-Silver Nitrate was used to apply a very short
duration pressure loading on the arch. The advantage of this chemical
is the low level of impulse, which is approximately one-tenth of other
commercially available explosives, and its ability to be detonated with
an intense light. The general properties are discussed in references
17 and 18. Here a brief description of the preparation and calibration
of this explosive will be given. |

To begin with, each 10 grams of silver nitrate salt are
dissolved into 40 cc. of distilled water. Then 6 cc. of concentrated
nitric acid (s.g. 1.4) is slowly added. The solution is gently stirred
until all crystals are dissoived and then acetylene gas is bubbled
through the solution. Fine grained white precipitate is obtainéd by
letting the gas come through very slowly. This is more desirable for
spraying. After the white powder ceéses to precipitate, it is washed
with acetone. With acetone as a thinner the precipitate is sprayed on
the arch surface. It is then dried in an oven at about 100 degrees -
Fahrenheit. Aging for more than one day is not recommended.

The weight of explosive needed for each arch must be accurate-
ly calculated before sprayihg. The amount that is going to be applied
to the arch must be sprayed very carefully so that it differs not more

than several hundredths of a gram to that estimated. Over spraying
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cannot be remedied and the whole process has to be repeated from the
very beginning.

This explosive can be detonated by aﬁ electric spark or an
intense light. It has been shown that a fairly large area can be
detonated within a few microseconds if expendable Xeﬁon flash tubes
are used (Ref. 18). It was found that if one nonexpendable Xenon
flash tube was used, complete detonation over the longest arch could
be accomplished in less than 150 microseconds. This duration of
loading on the whole arch is short enough that it can be considered
impulsive (Ref. 15).

A GE-522 Xenon flash tube, mounted in a parabolic reflector,
was used as the detonator. The tube was driven by a 250 microfarad
capacitor charged to 5, 000 volts. The rise time of the tube was about
20 microseconds and the duration of the light pulse was of the order of
300 microseconds.

The calibration of the impulse generated by this explosive was
carried out on a ballistic pendulum. The explosive was deposited
evenly on a 2 inch square steel plate and attached to the end of the
pivoted arm of the pendulum. The calibration curve of impulse vs.
weight is shown in Fig. 18. - The offset from the origin is due to the
friction at the pivot point. From thése data an impulse level of

2 )
0.152 tb=sec/in’ ., .5 % dyne-sec/cm”,

was calculated. This
gm/in gm/cm

is about 3.6 per cent lower than previously found in Ref. 17.
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2. Camera Setup

A 16 mm, high speed motion picture camera (HyCam, Red
Lake Laboratories) was used to record the response of the arch. The
axis of the camera was aligned perpendicular to the bése line of the
arch. To eliminate as much distortion as possible, the camera was
placed at least 7 feet away. Two different lenses were used to cover
the size of field necessary for the different length arches tested.
These lenses were a f/1.9 Cosmicar Television Lens with a focal
length of 75 mm and a £/1.8 Super Talcumar from Asahi Optical
Company with a focal length of 55 mm.

The light was provided by four 1, 000 watt quartz-iodine flood
lamps. They were placed on the side of the ai‘ch opposite the camera
and aimed directly at the camera. In order to collect more light at
the camera, a large plastic Fresnel lens of focal length of 30 inches
was placed between the arch and the lamps. A sheet of clear Mylar
was placed on the flat side of the Fresnel lens to hélp diffuse the
intense and unevenly concentrated light. A spot light meter at the
camera position was used to check the evenness of the lighting of the
Fresnel lens. The camera setup is shown in Figure 19.

A 400 foot roll of Kodak Tri-X negative (ASA rating of 400) of
standard thickness (0. 006 inches) was used for each test shot. How-
ever, the desired framing rate of 10, 000 pictures per second was
only obtained on the last 100 feet of film. The exact framing rate was
determined by a timing light which exposed a small dot of light on the

edge of the film every 1/1000 of a second.
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3. Response Measurement

A detailed deflection history of the arch motion was obtained
by reading the film frame by frame. The film was projected using a
500 watt slide projector on a mirror at a distance of about 15 feet.
The image was reflected to a screen ruled with 21 equally spaced
lines (Fig. 20). The distance to the mirror was adjusted until the
arch image from support to support fix exactly on the twenty equal
division on the screen. The lines then serve as the X coordinate
for the arch. Thé Y distance was measured using a stretched wire
perpendicular to the X lines. This wire was attached to a moving
slide whose position was measured by a linear potentiometer. The
wire was carefully moved to each intersection of the arch image and
the lines ruled on the screen. The potentiometer reading was
automatically recordeci on punched cards for digital computer
redﬁc’cion. Approximately 50 frames were read for each test covering

about 10 milliseconds of motion.

4, Test Procedure

When a particular value of ¥ was selected the arch was cut to
the appropriate length and a 3/16 inch hole was drilled in each end.
This hole provided a more secure support of the arch in the frame.
The surface of the arch was then cleaned and the weight determined
to the nearest 1/2000 of a gram. An estimation of the weight of the
explosive was made and then it was sprayed on the convex side of the
arch. The explosive was cured for one hour at 100 degrees
Fahrenheit. The arch and the explosive a.Lre then weighed and the

amount of deposited explosive determined. If the correct amount is
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not obtained the process was repeated until the weight differs from that
desired by a few hundredths of a gram. Next the arch was secured in
the steel frame with Devcon B.

After the Devcon has hardened, the arch and support are align-
ed with the camera. The Xenon flash tube was placed about 10 inches
above the surface of the arch and the evenness of the light source was
checked. The camera was started and an Event Synchronizer built
into the camera discharged the Xenon tube when 325 feet of film had
been exposed. This point is shown as point A in the camera perform-
ance curve (Fig. 21). The deformation of the a‘rch that is of interest
takes about 3 feet of film. The last 100 feet of exposed film was

developed and the part of interest retained.

B. Test Results

A total of 11 tests were recorded by the high speed camera.
These tests were divided into two groups. Group B has a gedmetr.ic
parameter ¥ close to 10 and for group C, ¥ was close to 20. The
dimensions are listed in Table IV. The arches used for testing were
selected so as to minimize the size of initial imperfections. The
initial imperfections are shown in Figure 22. In all cases the deviation
from the perfect arch was less than 5 per cent of the thickness.

The response of the arches to impulsive loading was examined
in several manners. First the average displacement was calculated
for the time of response of interest. This displacement is defined as
the area bet\x}een the deformed and undeformed arch. It is normalized

to the area enclosed by the undeformed arch and the base line. The
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values of the maximum average displacement are listed in Table V
and are shown in Figure 23 as a function of the nondimensional
impulse I. This figure shows that the arch exhibits a large increase
in maximum response over a rather small range of impulse level.
The maximum rate of change of response (the inflection points for the
faired curves in Figure 23)are at an impulse level 1 of 9 and 22 for
Y equal to 10 and 20 respectively. It is interesting to note that these
points are close to the point of average displacement equal to one
which was used by Humphreys (Ref. 15) to define the critical load.
However, they are about 6-7 times as high as Humphreys' experi-
mental results. The reason for this is not known at this time. A
comparison with Humphreys' results is shown in Figure 24.

The deformation of the arch can alsc; be displayed as successive
pictures of the arch shape. This is done for two representative shots
in Figure 25. Time starts at the top of the figure and the time
between successive shapes is about 200 microseconds.

In order to get a more quantitative picture of the arch deforma-
tion, a three mode approximation to the deformed shape was calculated.

The representation used is as follows:

2 2
- a_ 2 a o
B B
The coefficients were determined by using a '""Least Square Fit" of the
experimental data from the high speed pictures. The time history of
the two symmetric modes is shown in Figure 26 for the arches tested.

The trajectories in a q;, 43 space can also be displayed. Figure 27
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shows a supercritical and subcritical response for each group of
arches. The line of average displacement equal to one is also shown
in the figures.

In addition to the dynamic tests results described above, an
attempt was made to determine the static equilibrium positions of the
clamped arch. This is of interest since the existence of these posi-
tions is a requirement in an energy approach to determining the
dynamic buckling loads. These tests were carried out by pushing the
arch through to a large displacement configuration by hand and
attempting to find a position where it would stay. This was unsuccess-
ful for the 4 arches used with Y~ 10 and 20. In addition, the existence
of an unstable equilibrium position could not be detected. This is
somewhat more difficult to determine experimentally since it is like
trying to balance a ball on top of a hill. However, there did not seem
to be any equilibrium points other than the undeformed position for the

arches te‘sted. This is in agreement with Vahidi's calculation (Ref. 14).

C. Conclusion

The experimental work on the impulsively loaded clamped
circular arch shows that the maximum response has a significant
increase in value for a small increase in load at some value of
impulse. It would appear from the data available that this increase
is a smooth transition from a small response to a large response at
some critical impulse level. Therefore, the use of a definition of
dynamic buckling which requires a finite change in response for an

infinitesimal increase in load would not consider this problem as a
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dynamic buckling problem. However, from a practical point of view
the increase in deflection is of the order of three for a small increase
in impulse level. This increase is about the same amount as one
obtains for step loading on a simply supported arch in the range of
geometric parameter where direct snapping occurs (Ref. 11).

It is of interest to note that this problem is like the one of
direct snapping as categofized by Lock (Ref. 11). In other words the
structure re#ches its maximum displacement on the first oscillation
of the fundamental mode. This can be seen from the response plots
(Fig. 26) combined with the trajectories (Fig. 27). An examination
of the nonsymmetric response was also made. The first component
of the antisymmetric response is shown in Figure 28. As seen from
these two cases of a subcritical and supercritical irnpulse, the anti-
symmetric mode was not parametrically excited by the fundamental
mode. It obtained its maximum or nearly maximum early in the
motion, and did not grow until the symmetric response achieved its
maximum displacement.

In summary, while no evidence has been found that the clamp-
ed circular arch under impulse loading can be rigorously categorized
as a dynamic buckling problem, it is clear that over a small range in
impulse the arch undergoes a significant increase in response. It is
therefore of practical significance to determine this range of
impulse. In addition, it was experimentally determined that no stable
equilibrium position exists for the clamped arch free from lateral
load other than the undeformed position. Also, the existence of an

unstable equilibrium position was not detected.
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APPENDIX I

LEAST SQUARE FIT OF THE IMPERFECT CIRCULAR ARCH

The concave side of the arch surface was marked every half an
inch. At these positions, the distance with respect to a fixed éoint
was measured by a rotatable arm as described previously (see Fig. 29).
These distances were denoted by Ri' The "Best Fit Radius" R, and
"Best Fit Center'" (BFC) were found by the method of least square
error. The distance between the two centers is r, and the angle
between a vertical line and the line joining two centers is 6. Further-
more, express Ri with respect to BFC and call that distance ﬁi'

The relation between Ei and Ri’ r is as follows:

1/2
R-i = [(Ri sinai + r.sin 9)2 + (Ri' cos e, + r.cos 9)2] (1)

Then, the deviation of the arch surface from the '"Best Fit Arch' is e,

where e. = R-R, - (2)
i i

Assuming that there were N positions along the arch, the total square

error € is given by

N

¢ :Z eiz (3)

i=1

The undetermined parameters R, r and 06 can be determined by the

* following variational equations.

8¢ . N(R -K
R

1--er cos 8) =0 (4)
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58 - K3 cos 8 + (KIKZ - K4) sin 8

(5)
2 . ~]__
+ [K K5c0529+(K2-K1K6) 8in 28] =0

5 = (KIKZ - K4) cos 6 - K3 sin 6

(6)
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and Z “sin a = 0. The relation (4) has been used in (5) and (6).

Combining (5) and (6) and eliminating r, a transcendental equation

for & is obtained

tan 6 = ——1}33; (7)
where
K .
A = K KZ K4+ 5 (K4K7 K1K2K7 + K4K6 - 3K1K2K6 o+ K3K5)
K
B = 1

K3(1—K2)+-—2——(K3K6-K3K - K, K. + K, K,K_.)

7 475 17275
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APPENDIX II
EQUILIBRIUM POSITIONS AND THEIR ENERGY LEVELS

OF CLAMPED ARCHES UNDER CONCENTRATED LOAD

NOMENCLATURE
A Cross sectional area of the arch
A 1’ AZ’ A3 s A4 Integration constant
Bl’ BZ’ B3, B4 Integration constant
E Young's Modulus
h Arch thickness
H Central arch rise
1 Moment of inertia
L Arch length
N Axial thrust
P Concentrated load
~_PL’[& o
P = TeEIN T Nondimensional load
R Arch radius
S(t) Heaviside step function
t Time
W Arch displacement
4x2
Wy = H(l-—-———z—) Initial arch shape
L
X Arch coordinate

X = I Nondimensional arch coordinate
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Nondimensional arch displacement

Nondimensional initial arch shape

Arch half angle

—-—EI Geometric Parameter

Dirac delta function
Nondimensional axial strain
Potential energy of the system

Nondimensional potential energy

Mass density

Nondimensional time
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A. Symmetric Equilibrium Positions

The coordinate system is shown in Figure 30. The equations
of motion of a shallow arch can be expressed in terms of the displace-

ment as derived in reference 8.

84w 84.Wo 82W BZW
Ell— - —5 )+ N— +pA— + P§(x)S(t) = 0 (1)
ox 0x ox ot
where
L/2

ow
0,2 ow
&Eﬁ —%§>]'“

_AE
N"?Ef

- L/2

Substituting the nondimensional quantities, (1) can be written

in dimensionless form as follows,

1

v oty +y+Te) s@ = 0 (2)

1
w2 =j [(Y'o)z - (Y')Z] dx . (3)

-1

where

The static equilibrium positions can be obtained by letting the

inertia term equal to zero. The corresponding static equation will

be

vy o+l y +P® = 0 (4)

The homogeneous solutions of (4) are:
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y, = A sinpX+A, cospX+A;X+A, [-1=%x< 0]

(5)

- : g = - ' -
Yy, = B1 s1nux+Bzcospnx-!—B3 x_+B4 [O< x__..l]

The boundary conditions for the clamped arches are:
Yl(_ 1, T ) = 0
yi-17) = yhi-1,7) = \37
(6)
y(L,t) =0
Yé(l,'r) = Yb(]-:?) = = 37
The continuity conditions and the jump in shear at the point of loading

(X = 0) are expressed as follows:

y,(0, T)

Yz(o, T) = 0

yi(0, T) - yy(0,7) = 0
(7)

il
o

1 it
yl(O, T) yz(O, T)

P

y7(0, ) - y3(0, T )

Substitute (5) into (6) and (7), and provided that tan p % pu, the unknown

constants are found as follows:

A = - “'I‘J’g‘
2u
o P
A2 = mZusinp, [2 \,;‘Y + — (cos p - 1)]

o
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P
A, = ——
3 202
A ___E.(l-f_l_n_l:‘.),A cos .
4 2 . 2

2
Blz"%

2p

(8)
B, = 4,
P

B, = - —
3 202
By = A4

The constants AI’ AZ’ oo, B4 are functions of p and ’5

The p~P relationship can be found by substituting (5) into (3).

-2 2 2 2 2 2 .
nt o= 27 +(A2-A1+BZ-B1)% sin 2p
. 2 .
- (AlAZ - Ble)u sin . - 2(A1A3 + B1B3) sin (9)
2
2 2 2,2 2 2
+ 2(A,A, - B, B,)(cos - 1)- (AT+ AZ+ B{+B5) - (AT+ BY)

The roots of this transcendental equation correspond to the

value of p at the equilibrium positions under the specified load level

P

P.

B. Antisymmetric Equilibrium Positions

In evaluating (6, 7), the following algebraic equation must be

solved
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- .
- sin p -1 A1 —-E-z(m-l)
2 M
0
= _ (10)
P
M COS W 1 A3 — (1 - cos p)
2
v
If the determinant of the coefficient of A vanishes, i.e., tan p =y,

AI’ A3 can not be determined uniquely as in (8). The lowest possible

uw that satisfies this condition is B = 4.492. In this case, only one of

(10) is independent.

A, = —E—-(u- sin u) - A, sin p (11)
3 2”3 1

Substitute (11) and (5) into (3). A quadratic equation of A‘ is obtained.

(sinz M- uz) ‘A? + % (sin2 Bo- uz) Ay
M

+ [u(sin B COS W - p,)AS + ——% (sin2 p+2cosp-2) A2 (12)
B :

2
+%(sinp.-p,)+2‘¥2-p,2]=0
v

The A Bl’ BZ’ B

20 By 3 and B4 will be determined according to (8).

C. Potential Energy of the System

Let II designate the potential energy

L/2 8Z(W-W ) 2
EI o 1 N 2
H:f _2_[__5;2____], dx-!-ZEA‘I_,(—A-E—) -P(w_ - )

’ o
- L/2

(13)
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The nondimensional potential energy TI is as follows:

1 2 1 4 o~
[ o -yptasgut - By, -y (14)
(o]
-1

I
Substitute (5) into (14), we get

3[p A2 2 2 2 1,,2 2 2 2, .
T [Z(Al +A2+ B1 + BZ)-Z(A1 -A2+ Bl- BZ) sin 2p

=i
]

(A,A, - B,B,) sinzp,}+ 2\[§7u[(A1 - B)(1 -cosp)  (15)

. 2,1 4 NN_’)
(A2+B2)s1np] + 67 +52—p -2 P > ‘Y—AZ-A4)

The results obtained above were evaluated numerically on an IBM
360/75 computer. The numerical results for the critical static load
agree with the results obtained by Schreyer and Masur (Ref. 7). The
values of the upper and lower bounds were numerically calculated and

are shown in Figure 17.
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TABLE I

Geometric Descriptions of the Tested Arches

Arch 32 Arch 29 Arch 28 Arch 25
b (in) 0.75 0. 75 0.75 0. 75
h (in) 0. 0632 0. 0643 0. 0643 0. 0643
L (in) 12.20 10. 90 9. 50 7. 75
R (in) 31. 56 32.09 32,01 31, 58
*y 18. 655 14. 395 10. 962 7.395
*H (in) 0. 5895 0. 4628 0.3524 0.2377
*8 (degree) 11,075 9. 729 8. 503 7. 030

¥ Calculated
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TABLE I1

Nondimensional Static Critical Load P

€ Arch 32 Arch 29 " Arch 28 Arch 25
. 00 218. 7 165. 3 124, 6 79.2
. 005 154. 6 115.5 - 74.1
. 01 212. 0 153. 4 113.2 72. 1
. 02 209. 0 151.0 112, 1 72.2
. 03 206. 4 148. 9 107.5 71.2
. 04 201.8 146. 5 .108. 8 70. 9
. 05 200. 3 144. 8 106. 6 69. 8
. 06 196. 2 144. 2 106. 6 70. 4
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TABLE III

Critical Step Load

Arch 32. 7Y = 18,655

€ P (1b) P Result
0, 00 10. 60 197,
10. 65 198.
10.70 199, buckled
0. 01 10, 40 193,
10. 60 197.
10. 65 198,
10. 70 199, buckled
10. 80 200, buckled
0. 02 10, 45 194,
10. 50. 195, buckled
10, 60 197. buckled
0. 03 10. 30 191,
10, 35 192, buckled
10. 40 193, buckled
10. 50 195, buckled
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TABLE III (Cont'd)

Critical Step Load

Arch 32. v 18. 655
€ P (1b) P Result

0. 04 10.20 189,

10. 25 190. buckled

10. 30 191, buckled
0. 05 10.20 189,

10,25 190.

10.25 190. buckled
0. 06 10.10 187.

10.15 188. buckled

10,20 189,

buckled
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TABLE III (Cont'd)

Critical Step Load

Arch29. v = 14,395
€ P (1b) P Result
0. 00 11. 65 144.
11. 70 144,
11. 75 145,
11. 80 146. buckled
0. 005 11.50 142.
11,70 144.
11,75 145,
11. 80 146. buckled
0. 01 11. 60 143.
ii. 65 144,
11. 70 144, buckled
0. 02 11.50 142,
11.55 143, buckled
0. 03 10, 95 135,
11. 00 136. buckled
11.10 137. buckled
11.20 138. buckled
11.25 139. buckled
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TABLE III (Cont'd)
Critical Step Load

Arch 29. v = 14, 395

€ P (1b) P Result
0.03 11. 30 139.9 buckled
11. 40 141.2 " buckled
11.50 142. 3 L buckled
0. 04 10. 50 129, 9
10. 60 131.2
10. 70 132. 4
10. 75 133.1
10. 80 133.7 buckled
0. 05 10. 50 129. 9
10. 60 131.2
10. 70 132. 4
10. 75 13301 buckled
0.06 10. 45 129. 4
10. 50 129. 9
10, 55 130. 6
10. 60 131.2 buckled
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TABLE III (Cont'd)

Critical Step Load

Arch 28, v = 10,962

€ P (1b) P Result
0. 00 12. 00 98. 3
13. 00 106. 5 buckled
13. 05 107. 0 buckled
13.10 107. 4 buckled
13,20 108, 1 buckled
13.50 110. 6 buckled
0.005 13. 00 106. 5
13. 05 107. 0 buckled
0. 01 12. 60 103. 2
12.70 104. 1
12. 80 104. 9
12. 90 105. 7
12. 95 106.1
13. 00 106.5 buckled
0. 02 12. 60 . 103. 2
12. 70 104, 1
12. 75 104. 5
12. 80 104. 9
12. 85 105. 3

12.90 105. 7 buckled
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TABLE III (Cont'd)

Critical Step Load

Arch 28. v = 10, 962

€ P (1b) P Result
0.03 12.70 104.1

12. 75 104. 5 buckled
0. 04 12, 50 102. 5

12. 55 102. 9 buckled
0. 05 12, 30 100. 8

12, 35 101.2.

12. 40 101. 6 buckled
0. 06 12.10 99, 2

12.20 100. 0

12,25 100. 4

12. 30 100. 8

12, 35 101.2

12. 40 101. 6 buckled
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TABLE III (Cont'd)

Critical Step Load

Arch 25, Y 7. 395

€ P (1b) P Result

0. 00 13. 50 60. 1

13. 60 60. 5

13. 70 61.0

13. 80 61.4

13. 90 61.9

14. 00 62.3

14, 05 62. 5

14,10 62. 7

14.15 63.0
14,20 63.2 buckled
14,50 64, 5 buckled
15, 00 66. 7 buckled

0. 005 14.15 63.0
14,20 63. 2 buckled

0. 01 14.15 63.0
14,20 63.2 buckled

0. 02 14.10 62.7
14,15 63.0 buckled
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TABLE III {(Cont'd)

Critical Step Load

Arch 25. Y= 7.395
€ P (1b) P Result
0.03 13,95 62.
14, 00 62.
14. 05 62. buckled
0. 04 13.906 61.
13. 95 62.
14, 00 62. buckled
0. 05 14. 00 62.
14. 05 62. buckled
0. 06 14. 05 62.
14,10 62.

‘ buckled
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TABLE IV

Geometric Description of Tested Arches

Arch Thickness Radius Length
(in) (in) (in)
B9 0. 0623 31. 76 8. 64 9. 43
B6 0. 0623 30.22 8. 43 9. 44
B7 0. 0622 25. 45 8.13 10, 44
B8 0. 0623 32.33 8. 57 9.12
C3 0. 0605 31. 31 12. 08 19. 25
of 0. 0605 31.57 12.20 - 19. 48
C5 0. 0605 30. 55 12. 28 20. 40
C4 0. 0605 28.10 12.12 21. 60
C8 0. 0604 29. 47 12. 03 20. 33
c7 0. 0604 26. 64 12.11 22. 79
C9 0. 0603 31. 84 12. 31 19. 73
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TABLE V
Summary of Impulse Tests
Arch We/A (gm/inz) T ?nax
B9 0. 0626 8. 43 . 5596
B6 0. 0749 10. 45 . 3905
B7 0. 0964 12.19 . 5830
B8 0. 0847 14, 82 . 7342
C3 0. 0742 12. 60 . 2281
C2 0. 0799 15. 08 . 3616
C5 0. 0826 16. 66 . 3969
C4 0. 0854 16. 95 . 4669
C8 0. 0962 20. 33 . 6239
Cc7 0.1098 21. 65 . 9185
C9 0.1037 27. 75 . 6227
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FIG.3 NONLINEAR RESPONSE OF TWO DEGREES
OF FREEDOM SYSTEM
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FIG. 4 COORDINATE SYSTEM OF CIRCULAR ARCH
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Axial Stress( psi x 103)
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Axial Strain x 103

FIG. 5 TYPICAL TENSILE TEST OF CURVED
2024 ALUMINUM SPECIMEN
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CIRCULAR ARCH BEFORE AND AFTER INSTALLATION

6.

FIG.
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IN STEEL FRAME
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FIG. 8. KNIFE EDGE ASSEMBLY
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FIG. 9. INITIAL IMPERFECTION MEASURING EQUIPMENT

FIG. 10. MEASURING OF INITIAL IMPERFECTION OF CIRCULAR

ARCH
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Arch C4

20

FIG.27TbTRAJECTORIES OF ARCHES FOR y = 20
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