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Abstract

Much is understood about the behavior of perfectly flexible and perfectly rigid polymer

chains; however, many polymers, for example DNA, are somewhere in between these two

limiting cases. Such polymers are termed semiflexible, and their molecular elasticity can play

a significant role in single-chain behavior as well as contribute to collective effects. Using

analytical theory and numerical methods, we address several problems that focus on the

equilibrium and dynamic behavior of semiflexible polymers to gain a deeper understanding

of their fundamental physics. We consider the equilibrium statistical behavior of semiflexible

polymers under the influence of external fields, confinement, and the collective influence

of a nematic liquid-crystal phase. We then turn to the dynamics of a deformed elastic

thread, addressing instances of instability and the subsequent nonlinear relaxation. Once

we establish an understanding of these physical effects, we discuss the role that they play

in DNA packaging, specifically focusing on the role of twist in DNA packaging in chromatin

and the formation of an ordered conformation within a viral capsid.
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Chapter 1

Introduction

Polymers are big molecules. Because of their large size, the physical behavior of individual

polymer molecules is dramatically different than that of their small-molecule analogues.

In many instances, interactions that occur at molecular length scales convey information

that persists up to macroscopic length scales, significantly altering material properties and

behavior in frequently unexpected and novel ways. As a consequence, polymeric materials

play an important role in many technological applications. Furthermore, all biological

entities are based on polymeric materials.

Much of our theoretical understanding of the behavior of polymeric materials is based on

descriptions of macromolecules as either perfectly rigid bodies or perfectly flexible threads [1,

2]. Certainly a wide range of physical issues are elucidated by such treatments; however,

many polymers are somewhere in between these two limiting cases. For example, a polymer

molecule with molecular architecture that instills rigidity to the resulting assembly can

behave dramatically different than its idealized counterparts in its equilibrium, dynamic,

single-molecule, and collective behavior. We utilize analytical theory and computational

techniques to explore the physical behavior of macromolecular systems, focusing on the

effect of molecular elasticity on single-molecule and collective behavior.

Elasticity has historically played an important role in macroscopic mechanics and ma-
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terial physics [3, 4]. For elastic bodies that exist at very small length scales, the energy

associated with substantial deformation of the elastic body is comparable to the thermal

energy; therefore, the thermal energy acts to deform the malleable elastic object. An elastic

chain resists bending deformation; the energetic cost is larger for shorter or tighter bends

than for more sweeping deformations. As a result, thermally induced deformation is more

dramatic at larger length scales than at smaller length scales. This effect is demonstrated

in Fig. 1.1, which shows a typical equilibrium conformation of an elastic thread subject to

thermal fluctuations at successively smaller length scales. Figure 1.1 demonstrates the dual

behavior that arises from molecular elasticity: at small length scales, the chain behaves

as a rigid rod, and at large length scales, the chain appears flexible. This effect is called

semiflexibility, which plays a key role in the behavior of such polymers.

This thesis represents research on the behavior of semiflexible polymers. Chapters 2

through 4 present fundamental theory on the equilibrium behavior of semiflexible polymers

in several scenarios of physical and biological relevance, focusing on the coupling between

thermodynamic behavior and chain conformation. Chapters 5 and 6 address two instances

where chain deformation results in dynamic instability, leading to complex relaxation dy-

namics. After establishing a fundamental understanding of the equilibrium and dynamic

behavior of semiflexible polymers in Chaps. 2 through 6, Chaps. 7 and 8 turn to two prob-

lems of biological relevance that intrinsically involve these effects.

Much of our theoretical understanding of the equilibrium behavior of polymeric materi-

als is based on field-theoretical techniques, which require as input a method of evaluating the

statistical behavior of a single polymer chain in a fluctuating external field [5]. The calcu-

lation of the statistical behavior of a flexible polymer frequently yields analytical solutions;

however, very few problems involving semiflexible polymers admit solutions for their statis-
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Figure 1.1: Conformation of a semiflexible polymer at successively smaller length scales.
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tical behavior. Therefore, there are many unsolved problems that address the fundamental

thermodynamic behavior of polymeric materials composed of semiflexible polymers.

The behavior of a semiflexible polymer in a homogeneous external field is important

in addressing several important physical problems. The response of DNA to end tension,

as in optical and magnetic tweezer experiments [6], is modeled as a semiflexible polymer

chain in an external dipole field [7, 8]. Furthermore, a semiflexible polymer in a dipole

field is needed to calculate the structure factor, which is required to predict the results of

scattering experiments of a dilute solution of semiflexible polymers [9] and to study the

thermodynamic behavior of a polymer solution including mean-field fluctuations [10]. The

behavior of a semiflexible polymer in a nematic liquid crystal phase is frequently studied

using polymer field theory, requiring as input a solution for the statistical behavior of a

semiflexible chain in an external quadrupole field [11]. Thus, the statistical behavior of a

semiflexible polymer in an external field is necessary to study several important biological

and material systems.

In Chap. 2, we provide exact analytical solutions for the statistical behavior of a semi-

flexible polymer, modeled as a wormlike chain, subject to the influence of a dipole and a

quadrupole field in both two and three spatial dimensions [12]. With these solutions, we

address all of the problems mentioned in the previous paragraph without approximations

whose validity is not generally well understood. Our results adopt a simple and compact

analytical structure that make them extremely convenient to use, and our techniques are

applicable to a wide range of additional physical problems including a helical wormlike

chain [13], a quantum-mechanical rigid rotor, and a rotating Brownian particle.

The physical confinement of a polymer molecule is important in a number of techno-

logical applications and biological processes. The packaging of DNA or RNA in viruses
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involves confinement of the polymer chain to a region that is much smaller than the un-

constrained radius of gyration of the strand [14]. Confinement also occurs in the case of a

polymer chain interacting with a strongly attractive particle, which is relevant in a number

of instances including colloidal stabilization [15] and DNA condensation in chromatin [16]

and gene therapy applications [17].

The thermodynamic effect of confinement on a flexible polymer is entirely entropic, thus

the confined flexible chain tends to fill the available volume [1]. Confining a semiflexible

polymer involves both energetic and entropic contributions with the balance controlled by

the ratio between the persistence length and the length scale of the confinement. A number

of analytical results exist that describe the behavior of a flexible polymer in a confinement;

however, solutions for the behavior of semiflexible polymer in a confined geometry are non-

existent.

In Chap. 3, we consider the behavior of a semiflexible polymer confined to the surface of

a sphere, which acts as a model problem for the confinement of a semiflexible polymer [18].

Our closed-form, analytical solution for the mean-square end-to-end distance, which is valid

for arbitrary chain length, persistence length, and sphere radius, provides insight into the

balance between energy and entropy that is a common feature in the confinement of a

semiflexible polymer chain. Furthermore, this problem is relevant to systems with a polymer

strongly adsorbed to a sphere surface, which model DNA/protein complexes and polymer

adsorption on colloidal particles [19, 20, 21].

The enhanced alignment associated with the formation of liquid crystal phases influences

bulk properties, resulting in novel high-strength and optical materials [22], and processing

behavior including flow-induced crystallization [23]. Solutions of rigid molecules tend to

form liquid crystal phases at low temperatures and/or high concentrations, resulting in a loss
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of rotational freedom [24]. Semiflexible polymer solutions also form ordered liquid crystal

phases; this transition is accompanied by a loss of both the rotational degrees of freedom as

well as the conformation entropy of the chain segments. The thermodynamic contribution

of the conformation entropy dramatically alters the equilibrium behavior of semiflexible

polymer solutions from their perfectly rigid analogous. Furthermore, the conformation of a

semiflexible chain in a liquid crystal phase is dramatically influenced by its ability to adopt

a variety of shapes. For example, the polymer chain can exhibit sharp reversals in direction

called hairpin defects, which dramatically alter the volume that the polymer occupies [25].

Chapter 4 turns to the equilibrium behavior of a semiflexible polymer solution using

polymer field theory to predict the phase behavior and the conformation statistics of a main-

chain polymer liquid-crystal solution [11]. We use the exact solution for the chain statistics

of a semiflexible polymer chain in the nematic liquid-crystalline phase, which provides a

simple set of equations that govern the phase behavior and the single-chain conformation

properties and is a necessary input in addressing concentration and order fluctuations away

from the mean-field solution. Conformation fluctuations are shown to significantly suppress

molecular ordering and thus dramatically decrease the isotropic-nematic transition temper-

ature. Analysis of the conformation statistics predicts the conditions where hairpin defects

are prevalent in the polymer chain and their influence on the polymer volume.

Slender elastic filaments [3, 4] play a role in a wide range of engineering applications

from macroscopic beams and cables, to nanoscale devices, to molecular threads. Further-

more, microscopic organisms use the whip-like motion of their flagella to propel themselves

through the surrounding viscous environment. The response of an elastic filament to ex-

treme deformation exhibits rich physical behavior that includes instability and subsequent

nonlinear relaxation. Predicting the resulting dynamics from deformation provides insight
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into the dynamic behavior of elastic filaments in a number of engineering applications and

biological phenomena.

Novel materials such as anionic hydrogels respond to changes in pH and salt concentra-

tion by reversibly swelling to many times their original volume [26]; filaments composed of

such materials have potential application as mechanical levers in nanoscale devices [27]. In

Chap. 5, we study the dynamics of an initially straight elastic filament undergoing expan-

sion after a sudden change in the solvent conditions using computer simulation [28]. The

expansion proceeds by buckling in the transverse direction with a characteristic wavelength

that we predict using linear stability analysis. The wavelike buckles locally adopt helical

structures with domains of common handedness; these domains grow in time until the con-

formation tends to a pure helix in the late stages in the relaxation process. The coarsening

dynamics exhibited in the simulations are analyzed using nonlinear scaling arguments that

provide insight into the fundamental nature of the relaxation processes.

The dynamics of a twisted elastic filament is applicable to a wide range of engineering

applications and biological phenomena including macroscopic cables [29], bacterial propul-

sion [30, 31, 32], and DNA supercoiling [33, 34, 35]. The supercoiling phenomenon is marked

by a competition between purely helical structures and the interwound helices that are gen-

erally seen in DNA supercoiling; these interwound helices, or plectonemes, are favored over

pure helices, or solenoids, as they are more efficient at alleviating the twist deformation

in the chain [36]. Chapter 6 studies the dynamic problem of a clamped, twisted elastic

filament undergoing supercoiling dynamics. We perform a linear stability analysis to find

the conditions for supercoiling and the structure of the initial instability, which is a pure

helix. Analysis of the post-buckling structure shows a localization of the helices into a sin-

gle loop [29, 35], which eventually becomes the cap of the growing plectonemic supercoil.
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Numerical solutions of the equations of motion demonstrate a propensity for loop formation

near the chain ends; these loops collapse, and two plectonemes twirl out into the quiescent

fluid. The plectonemes grow until they encompass the entire chain or they are arrested by

the end tension.

The physical manipulation of DNA is an important goal in the packaging of DNA within

a viral capsid or the nucleus of a eukaryotic cell. Precise control is necessary in storing the

excessively large DNA strand and in accessing the all-important genetic information that

it contains. The exquisite control that Nature has over DNA conformation is desired in a

number of technological applications including gene therapy [17] and novel nanomaterials

based on DNA self assembly [37]. Understanding the interplay of the underlying physical

forces that are at work provides insight into the methods that Nature has designed to

conduct the necessary biological processes involving DNA and establishes an understanding

of how we can predict and control DNA behavior in technological applications.

DNA is packaged to near-crystalline density inside a virus at the considerable expense

of the deformation of the chain, the conformational entropy loss, and the electrostatic self-

repulsion. The packaged genome of several species of double-stranded DNA bacteriophage

appears to adopt a highly ordered spool conformation within the capsid [38, 39, 40, 41, 42].

The genome of the φ29 bacteriophage is packaged by a powerful protein motor that liter-

ally grabs the DNA and shoves it into the viral capsid. The structure of this packaging

motor suggests that the DNA is rotated as it is transferred into the capsid [43], potentially

implicating twist as a possible player in the chain ordering. Chapter 7 studies the dynam-

ics of viral packaging using computer simulations of a polymer chain being forced into a

spherical cavity with an emphasis on the evolution of a highly ordered conformation within

the capsid. When the polymer is rotated during the packaging, the chain adopts a more
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ordered conformation than when the polymer is packaged without rotation. Furthermore,

ejection dynamics show that the structure resulting from packaging with rotation ejects

more polymer than the structure resulting from packaging without rotation.

DNA is packaged in a eukaryotic cell into a structure called chromatin, which is both

compact and accessible to the nuclear environment. The fundamental unit of chromatin is

a nucleosome core particle consisting of a short stretch of DNA wrapped around a cationic

protein complex called the histone octamer [44]. The packaging of DNA in a nucleosome

is strongly influenced by the salt concentration [45] and, for plasmid DNA, the linking

number of the strand [46], resulting in polymorphism in the stable packaged DNA. The in

vitro assembly of a chromatin fiber with reproducible physical properties involves a very

particular salt history [47]. In Chap. 8, the effect of twist on the formation of a nucleosome

core particle is studied by considering a polyelectrolyte ring interacting with an oppositely

charged sphere. The interaction between polymer and sphere is modulated by the salt

concentration, resulting in wrapping transitions. Our results capture the conformational

polymorphism and the salt hysteresis exhibited by the experimental system.
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Chapter 2

Exact Results for a Semiflexible
Polymer Chain in an Aligning
Field

We provide exact results for the Laplace-transformed partition function of a wormlike chain

subject to a tensile force and in a nematic field, in both 2 and 3 dimensions. The results are

in the form of infinite continued fractions, which are obtained by exploiting the hierarchical

structure of a moment-based expansion of the partition function. The case of an imaginary

force corresponds to the end-to-end distance distribution in Laplace-Fourier space. We

illustrate the utility of these exact results by examining the structure factor of a wormlike

chain, the deformation free energy of a chain in a nematic field, and the self-consistent-field

solution for the isotropic-nematic transition of wormlike chains.

2.1 Introduction

A number of physical problems involving semiflexible polymers can be mapped to that of

a single chain in an external field. The force-extension behavior of a single semiflexible

polymer is described as the response of a polymer to a dipole aligning field acting on the

end-to-end distance vector [1, 2, 3, 4]. The behavior of a semiflexible chain dissolved in



14

a nematic liquid crystal corresponds to a polymer in a quadrupole aligning field [5]. The

latter problem also naturally arises in the self-consistent-field description of polymer liquid

crystals [6, 7, 8, 9]. Perhaps less obvious, finding the end-to-end distance distribution

function of a polymer involves solving for the partition function of a chain in an imaginary

dipole field [10, 11, 12]. Since these problems share a similar mathematical representation,

methods for studying the behavior of a semiflexible chain in an external aligning field have

many applications in polymer physics.

In this chapter, we provide exact analytical solutions for the partition function in Laplace

space of a wormlike polymer subject to real and imaginary dipole fields and a nematic

quadrupole field, in both two and three dimensions, and use these results to examine the

structure factor, the deformation free energy of a polymer chain in a nematic liquid crystal,

and the self-consistent-field solution for the isotropic-nematic transition of wormlike chains.

The methods employed in this chapter rely on the use of the diagrammatic representa-

tion of Yamakawa [10] for the moments of the end-to-end distance distribution function.

By exploiting the hierarchical structure of the moment expansion of the various partition

functions, we are able to re-sum the infinite diagrammatic series into a simple, exact, and

concise continued-fraction form. We note that the end-to-end distance distribution for the

wormlike chain model was recently obtained by two groups. Samuel and Sinha provided

a numerical solution by a direct diagonalization of the truncated scattering matrix [11].

Stepanow and Schütz obtained exact results [12] using algebraic techniques developed by

Temperley and Lieb in their study of graph-theoretical problems involving regular planar

lattices [13]. However, our results are advantageous by virtue of their simple and compact

analytical structure which makes them convenient to use. In addition, our re-summation

method is applicable to a single chain in a nematic field, a helical wormlike chain, and
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a class of physical problems including a quantum-mechanical rigid rotor and a Brownian

particle undergoing rotational diffusion.

The rest of this chapter is organized as follows. In Sec. 2.2, we discuss our analytical so-

lutions in two dimensions with a detailed explanation of the method. In Sec. 2.3, we present

the analogous three-dimensional solutions and provide a discussion on the generalization

of our techniques. In Sec. 2.4, we use our result for the end-to-end distance distribution

function to study the structure factor of a wormlike chain. In Sec. 2.5, we discuss the de-

formation of a wormlike chain in a nematic liquid crystal and the self-consistent-field free

energy of polymer liquid crystals in conjunction with our earlier work on the subject [9].

Finally, we conclude with a summary of our results in Sec. 2.6.

2.2 Two-Dimensional Solutions

The wormlike chain model in d dimensions is described by an inextensible spacecurve ~r(s)

parameterized by the path-length coordinate s that runs from zero to the contour length of

the chain L. The inextensibility is enforced by constraining the tangent vector ~u ≡ ∂s~r such

that |~u| = 1 for all s. The bending deformation energy, which is quadratic in the curvature

of the spacecurve, is given by [14]

βH0 =
lp
2

∫ L

0
ds

(
∂~u

∂s

)2
, (2.1)

where lp is the persistence length and β = 1/(kBT ). The total chain Hamiltonian is given

by βH = βH0 + βHext, where βHext represents the interaction between the polymer chain

and the external field.

In two dimensions, the orientation of the tangent vector is defined by the angle θ between
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the tangent and the x-axis of an arbitrarily chosen coordinate system. The orientational

statistics of the wormlike chain in the absence of an external field is described by the Green’s

function G0(θ|θ0;L) defined to be the conditional probability that a chain of length L with

initial orientation angle θ0 will have the final orientation angle θ. The Green’s function

is found by summing over the paths between θ0 and θ, giving each path the amplitude

exp(−βH0), which is formally stated as

G0(θ|θ0;L) =
∫ θ(s=L)=θ

θ(s=0)=θ0
D[θ(s)] exp (−βH0[θ(s)]) , (2.2)

where D[θ(s)] indicates path integration over the fluctuating field θ(s).

The formal statement of G0(θ|θ0;L) (Eq. 2.2) reflects the correspondence between the

Green’s function of the wormlike chain model and the quantum-mechanical propagator

of a quantum particle confined to a unit circle [15]; our current problem corresponds to

finding the propagator of a quantum particle confined to a unit circle with the bending

energy playing the role of the kinetic energy and the contour length acting as an imaginary

time. Using this quantum-mechanical analogy, the Green’s function can be written as an

eigenfunction expansion

G0(θ|θ0;L) =
∞∑

m=−∞

1
2π
eim(θ−θ0) exp

(
−m

2L

2lp

)
. (2.3)

With this background, we now consider the partition function of a wormlike chain sub-

ject to a tensile force ~f acting on the end-to-end distance vector ~R ≡
∫ L
0 ds~u. The interaction

due to this force is accounted for by βHext = −~f ·
∫ L
0 ds~u. Without loss of generality, we

assume the force to be aligned along the x-axis. The partition function of the chain q(f ;L)
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relative to that of the free chain is now given by

q(f ;L) = 〈exp (fRx)〉0 =
∞∑
n=0

f2n

(2n)!

〈
R2n
x

〉
0
, (2.4)

where f is the magnitude of ~f , and 〈. . .〉0 indicates an average taken with respect to βH0

(Eq. 2.1). We note that the second form of Eq. 2.4 excludes the odd moments of Rx because

of the rotational invariance of βH0. The first form of q(f ;L) in Eq. 2.4 might suggest that

the solution technique would be a cumulant expansion of the argument of the exponential;

however, a cumulant expansion is rapidly convergent only for statistics that are close to

Gaussian, which is not the case for the wormlike chain model. The second form of q(f ;L)

in Eq. 2.4 is the so-called moment-based expansion [10], which we proceed to exploit.

Using Rx =
∫ L
0 cos θ(s), we write the moments

〈
R2n
x

〉
0 in the following form

〈
R2n
x

〉
0

= (2n)!

〈
2n∏
i=1

∫ si−1

0
dsi cos θ(si)

〉
0

, (2.5)

where s0 = L, and the factor of (2n)! comes from the “time” ordering of the integrations.

Taking advantage of the Markovian nature of the orientation statistics, we evaluate the

above average by inserting a propagator (Eq. 2.3) between successive factors in the product

on the right-hand side of Eq. 2.5 and integrating over the initial, final, and intermediate

orientations. For
〈
R2n
x

〉
0, there are 2n + 1 propagators and thus 2n + 1 m-indices to sum

over.

The summation over the m-indices after integration over the angular variables is greatly

simplified because of the completeness and orthogonality of the eigenfunctions eimθ. The

integration over the initial and final orientations results in setting the first and last m-

indices to zero. Since cos θeimθ = ei(m+1)θ/2 + ei(m−1)θ/2, the intermediate m-indices that
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make non-zero contributions to the average are selected by the criteria that they are offset

from their neighbors by either 1 or −1. As an example, we consider
〈
R2
x

〉
0, which contains

three m-indices from three propagators. Performing the average, we have

〈
R2
x

〉
0

=
1
2

∫ L

0
ds1

∫ s1

0
ds2

∑
m1,m2,m3

δ0,m1Cm1(L− s1)

(δm1,m2+1 + δm1,m2−1)Cm2(s1 − s2)

(δm2,m3+1 + δm2,m3−1)Cm3(s2)δm3,0, (2.6)

where the summations over the m-indices run from negative infinity to infinity, δm,n is

the Kronecker delta function, and Cm(L) = exp[−m2L/(2lp)]. Performing the summations

over the m-indices leaves only two sets of values that contribute to the average: (m1 =

0,m2 = 1,m3 = 0) and (m1 = 0,m2 = −1,m3 = 0). These two sets of m-indices satisfy the

previously mentioned selection criteria; the selectedm-indices are offset from their neighbors

by either 1 or −1 with starting and ending values of zero.

We now generalize the calculation to
〈
R2n
x

〉
0. Using Eq. 2.5 with the solution for the

propagator (Eq. 2.3), the value of a given moment is

〈
R2n
x

〉
0

=
(2n)!
22n

2n∏
i=1

∑
{mi}

δ0,m1

∫ τi−1

0
dτiCmi(τi−1 − τi)

(
δmi,mi+1+1 + δmi,mi+1−1

)
δm2n+1,0Cm2n+1(τ2n), (2.7)

where τ = s/(2lp) [τ0 = N ≡ L/(2lp)], the sum over {mi} indicates summation over all mi

(i = 1, 2, . . . , 2n+1) from negative infinity to infinity, and we have non-dimensionalized Rx

by 2lp. Evaluating Eq. 2.7 involves finding the values of the 2n+1m-indices that are selected

by the Kronecker delta functions upon summing over the m-index values. Essentially, this
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A

B

Figure 2.1: The stone-fence diagrams contributing to the calculation of
〈
R4
x

〉
(A) and

〈
R6
x

〉
(B) in two dimensions.

task involves finding the m-index values that correspond to paths between zero and zero

with 2n steps of unit magnitude in between. Performing a Laplace transform of Eq. 2.7

from N to p, we have

L
(〈
R2n
x

〉
0

)
=

(2n)!
22n

2n∏
i=1

∑
{mi}

δ0,m1

1
Pmi

1
Pm2n+1(

δmi,mi+1+1 + δmi,mi+1−1
)
δm2n+1,0, (2.8)

where L indicates a Laplace transform from N to p, and Pm = p +m2, which arises from

the convolution present in Eq. 2.7. The form of Eq. 2.8 indicates that our current problem

involves algebraically summing the terms that contribute to the moment by finding the

m-index paths that result in non-zero contributions upon summing over the m-indices.

The selected m-index paths can be expressed diagrammatically using a stone-fence rep-

resentation proposed by Yamakawa [10]; in Fig. 2.1, we provide the diagrams that contribute
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to the calculation of
〈
R4
x

〉
0 (A) and

〈
R6
x

〉
0 (B). These diagrams show all the possible m-index

combinations that run from zero to zero while following the intermediate selection rules for

these two moments. For example, the first diagram in A of Fig. 2.1 corresponds to m-index

values of (m1 = 0, m2 = 1, m3 = 0, m4 = 1, m5 = 0), giving an algebraic contribution

P−3
0 P−2

1 to the Laplace transform of
〈
R4
x

〉
0. Since the moment

〈
R2n
x

〉
0 contains 2n + 1

m-indices and thus 2n intermediate steps, contributing diagrams require an equal number

(n) of up and down steps to run from zero to zero. As a result,
〈
R2n
x

〉
0 contains (2n)!/(n!)2

distinct diagrams, which is the number of ways of distributing n up steps and n down steps

in 2n total steps.

Using Eq. 2.8, we restate Eq. 2.4 in Laplace space as

q(F ; p) =
∞∑
n=0

(
F

2

)2n 0→0∑
paths µ

2n+1∏
i=1

1
P
m

(µ)
i

, (2.9)

where F = 2lpf and the summation over the paths µ implies a summation over all available

stone-fence diagrams of 2n steps starting and ending at m = 0. Equation 2.9 as it stands

groups the diagrams according to the number of m-indices they contain, where the nth

term in the expansion contains diagrams with 2n + 1 m-indices. Evaluation of Eq. 2.9 in

this manner is a formidable task since all diagrams for each order n must be explicitly

calculated, and the number of diagrams increases exponentially with n [as (2n)!/(n!)2].

We now develop a re-summation technique for evaluating Eq. 2.9 by re-grouping the

diagrams. To this end, we modify the definition of the stone-fence diagrams by absorbing

the factor (F/2)2n into the diagrams. In the modified stone-fence diagrams, each m-index

is associated with a factor P−1
m = (p + m2)−1 and each step is associated with a factor

F/2. Henceforth we will refer to these modified diagrams as F-diagrams. In terms of these
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F-diagrams, Eq. 2.9 can be written as

q(F ; p) = sum of all F diagrams that begin and

terminate at m = 0 (2.10)

The full set (infinite number) of F-diagrams can be classified according to the number of

intermediate m-indices that are zero; thus

q(F ; p) = the diagram with a single m = 0 index +

sum of all F diagrams that begin and

terminate at m = 0 with no

intermediate zero valued m indices +

sum of all F diagrams that begin and

terminate at m = 0 with one

intermediate zero valued m indices +

sum of all F diagrams that begin and

terminate at m = 0 with two

intermediate zero valued m indices + . . .

= P−1
0 + q(1) + q(2) + q(3) + . . . , (2.11)

The ellipsis within Eq. 2.11 indicates that q(F ; p) is recast as an infinite summation of q(l),

where q(l) represents the infinite sum of F-diagrams that begin and terminate at m = 0

with l − 1 intermediate zero-valued m-indices.

The diagrams within the first subset of F-diagrams (q(1)) fall into two categories: dia-
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grams that start and end at m = 0 by going through positive values of m and diagrams

that start and end at m = 0 by going through negative values of m. The diagrams within

the first category can be written as

1
P0

F

2
w1
F

2
1
P0

= P−2
0

(
F 2

4

)
w1, (2.12)

where w1 represents all diagrams beginning and terminating at m = 1 with no intermediate

m-indices below 1. Similarly, the diagrams within the second category can be written as

1
P0

F

2
w−1

F

2
1
P0

= P−2
0

(
F 2

4

)
w−1, (2.13)

where w−1 represents all diagrams beginning and terminating at m = −1 with no interme-

diate m-indices above -1. Thus,

q(1)(F ; p) = P−2
0

(
F 2

4

)
(w1 + w−1) . (2.14)

We can now express the diagrams in each group using the functions w1 and w−1. Some

reflection should convince the reader that the sum of all F-diagrams that begin and termi-

nate at m = 0 with one intermediate zero-valued m-index (q(2)) can be written as

q(2)(F ; p) = P−1
0

F

2
w1
F

2
P−1

0

F

2
w1
F

2
P−1

0

+ P−1
0

F

2
w−1

F

2
P−1

0

F

2
w−1

F

2
P−1

0

+ P−1
0

F

2
w1
F

2
P−1

0

F

2
w−1

F

2
P−1

0

+ P−1
0

F

2
w−1

F

2
P−1

0

F

2
w1
F

2
P−1

0

= P−3
0

(
F 2

4

)2
(w1 + w−1)

2 (2.15)
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Generalizing this to q(l), we obtain

q(l)(F ; p) = P−l−1
0

(
F 2

4

)l
(w1 + w−1)l. (2.16)

In terms of w1 and w−1, Eq. 2.9 can now be written as

q(F ; p) =
∞∑
l=0

(
F 2

4

)l
(w1 + w−1)l

P l+1
0

=
∞∑
l=0

(
F 2

4

)l
(2w1)l

P l+1
0

=
1

P0 − F 2w1/2
, (2.17)

where the second form is due to the equivalence between w1 and w−1 (since Pj = P−j).

Describing Eq. 2.17 in words, we have performed a re-summation of Eq. 2.9 by collecting

all diagrams that contain the same number of intermediate zero-valued m-indices and col-

lapsing the sum of diagrams between adjacent zero-valued m-indices into the function w1

for diagrams that remain above zero and the function w−1 for diagrams that remain below

zero.

A similar classification scheme to the one we have used to write q(F ; p) can be developed

for the functions w1 and w−1. For example,

w1 = the diagram with a single m = 1 index +

sum of all F diagrams that begin and

terminate at m = 1 with all intermediate

m indices above 1 +

sum of all F diagrams that begin and



24

terminate at m = 1 with one intermediate

m index equal 1 and all other intermediate

m indices above 1 +

sum of all F diagrams that begin and

terminate at m = 1 with two intermediate

m indices equal 1 and all other intermediate

m indices above 1 + . . .

= P−1
1 + w

(1)
1 + w

(2)
1 + w

(3)
1 + . . . (2.18)

The ellipsis within Eq. 2.18 indicates that w1 is recast as an infinite summation of w(l),

where w(l) represents the infinite sum of F-diagrams that begin and terminate at m = 1

with l − 1 intermediate m-indices equal 1 and all other intermediate m-indices above 1.

Introducing w2 as the infinite sum of all F-diagrams that begin and terminate at m = 2

with no intermediate m-indices below 2, w1 can be written as

w1 = P−1
1 + P−1

1

F

2
w2
F

2
P−1

1 + P−1
1

F

2
w2
F

2
P−1

1

F

2
w2
F

2
P−1

1 + ...

=
∞∑
l=0

(
F 2

4

)l
wl2
P l+1

1

=
1

P1 − F 2w2/4
. (2.19)

In general, if we define wj as the infinite sum of all F-diagrams that begin and terminate

at m = j with no intermediate m-indices below j (for positive j’s), we obtain the following
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recursive relation:

wj =
∞∑
l=0

(
F 2

4

)l
wlj+1

P l+1
j

=
1

Pj − F 2wj+1/4
, (2.20)

where Pj = p + j2. For negative j’s, wj+1 in the above equation should be replaced by

wj−1. The recursive form reflects a hierarchical self-similarity in the relationship between

the summation of diagrams at a given level with the summation of diagrams at the next

level.

Equation 2.17 can be equivalently written as q(F ; p) = 1/[P0 − (F 2/2)/J1] with the

recursive relation Jn = Pn − (F 2/4)/Jn+1 (n ≥ 1). Repeated use of the recursive relation

leads to an infinite continued fraction representation of the partition function of a wormlike

chain under tension:

q(F ; p) =
1

P0 − F 2/2

P1− F2/4

P2−
F2/4

P3−
F2/4
···

. (2.21)

The emergence of the continued fraction form of Eq. 2.21 is a natural manifestation of the

self-similarity of the summation of diagrams at different levels. The extra factor of two at

the zeroth level of Eq. 2.21 is due to the equivalence between Pm and P−m; the denominator

of Eq. 2.21 can be equivalently written as a continued fraction to positive infinity plus a

continued fraction to negative infinity.

The partition function q(F ;L) can be used to describe the thermodynamic behavior of

a wormlike chain under tension. In particular, the derivatives of the partition function with
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respect to the force yields moments of the end-to-end distance in the direction of the force:

〈Rnx〉 =
1
q

dnq

dFn
, (2.22)

where Rx is non-dimensionalized by 2lp. Of special interest is the first moment, which gives

the force-extension behavior of the chain.

When the derivatives in Eq. 2.22 are evaluated at F = 0, we obtain the moments of the

end-to-end distribution in the absence of the force. Inspection of Eq. 2.4 shows that q(F ;L)

acts as a moment-generating function, i.e.,

〈
R2n
x

〉
0

=
d2nq

dF 2n

∣∣∣∣∣
F=0

. (2.23)

Using the relationship in two dimensions
〈
R2n

〉
0 = (n!)24n

〈
R2n
x

〉
0 /(2n)!, Eq. 2.21 provides a

convenient means for calculating any moments of the end-distribution function without the

laborious efforts of enumerating and computing all the stone-fence diagrams that contribute

to a moment of a given order. Equation 2.23 also provides an easy way of verifying the

validity of Eq. 2.21. We have computed moments up to
〈
R10

〉
0 using Eq. 2.23 and find

perfect agreement with the known solutions [16].

We now consider the end-to-end distribution function G(~R;L), which gives the proba-

bility that a chain that begins at the origin will have end position ~R, independent of the

initial and final tangential orientations. G(~R;L) can be written as

G(~R;L) =

〈
δ

(
~R−

∫ L

0
ds~u

)〉
0

, (2.24)

where 〈. . .〉0 indicates an average taken with respect to the unperturbed Hamiltonian βH0.
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Upon Fourier transforming from the variable ~R to ~k, our problem becomes that of a single

wormlike chain in the external dipole field i~k; thus βHext = −i~k ·
∫ L
0 ds~u. The form of

βHext is identical to that for the chain under a tensile force ~f with ~f → i~k. Aligning ~k

along the x-axis and defining K ≡ 2lpk, where k is the magnitude of ~k, the Laplace-Fourier

transformed end-to-end distribution can be trivially obtained from Eq. 2.21 by replacing

F 2 with −K2; the result is

G(K; p) =
1

P0 + K2/2

P1+
K2/4

P2+
K2/4

P3+
K2/4
···

. (2.25)

The end-to-end distribution function G(R;L) can be obtained by an inverse Laplace-Fourier

transform.

Finally, we consider the partition function of a wormlike chain in a nematic quadrupole

field, which can either describe a wormlike chain dissolved in a nematic liquid-crystal

medium or a wormlike chain in the self-consistent-field potential due to other chains in the

nematic state [9]. In two dimensions, the quadrupole field adds βHext = −λ
∫ L
0 ds

(
u2
x − 1/2

)
to the total chain Hamiltonian, where we have chosen the nematic director to be along the

x-axis. Since u2
x − 1/2 = cos(2θ)/2, the diagrammatic representation for this problem has

similar rules to those for the previous two problems, with the exception that the step size

in the diagrams is of magnitude 2 instead of 1. Following the same derivation as in the

previous problems, we find that the partition function q for a single chain in a nematic

quadrupole field is given by

q(Λ; p) =
1

P0 − Λ2/8

P2− Λ2/16

P4−
Λ2/16

P6−
Λ2/16
···

, (2.26)
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where Λ = 2lpλ. This solution permits the evaluation of a number of thermodynamic

properties of a wormlike chain in a nematic field including the chain deformation free energy

by the field in two dimensions. It also provides the key input in the self-consistent-field

theory for the nematic phase of wormlike chains.

All of the solutions given in this section can be verified by generating moments of the

external field by taking derivatives of q with respect to the field strength parameters (K,

F , and Λ) evaluated at zero field strength. The solutions can be checked by finding the

diagrams that represent these moments, a process that further extends the usefulness of the

diagrammatic representation. We find agreement between our solutions and the analytical

solutions for the moments of the external field for all cases.

2.3 Three-Dimensional Solutions

The analogous solutions in three dimensions are found by using virtually identical techniques

as those used to find the two-dimensional solutions. We first review the solution of the chain

statistics for a wormlike chain in three dimensions in the absence of an external field. The

orientation of the tangent vector is defined by the polar angle θ between the tangent and the

z-axis and the azimuthal angle φ that defines the rotation of the tangent about the z-axis.

The Green’s function G0(~u|~u0;L) gives the conditional probability that a chain of contour

length L beginning with an initial tangent orientation ~u0 will end with tangent orientation

~u. As in two dimensions, the Green’s function is found using the path integral formalism

given by

G0(~u|~u0;L) =
∫ ~u(s=L)=~u

~u(s=0)=~u0

D[~u(s)] exp (−βH0[~u(s)]) , (2.27)
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where the path integration includes the spherical angles θ and φ. Solving the Schrödinger

equation derived from Eq. 2.27, the solution for the Green’s function in three dimensions is

given by

G0(~u|~u0;L) =
∞∑
l=0

l∑
m=−l

Y m
l (~u)Y m∗

l (~u0)Cl(N), (2.28)

where Cl(N) = exp[−l(l + 1)N ] [N = L/(2lp)], and Y m
l are the spherical harmonics [17].

We begin with the partition function for a chain under tension described by the interac-

tion βHext = −~f ·
∫ L
0 ds~u. We choose our coordinate system so that ~f lies along the z-axis;

thus Eq. 2.4 in three dimensions replaces Rx with Rz. As in two dimensions, we make use

of the moment-based expansion of Eq. 2.4, with some slight modification of the subsequent

steps to account for the statistical behavior in three dimensions.

The moment
〈
R2n
z

〉
0 is found by using orientation statistics with the help of Eq. 2.5,

where Rx is now replaced with Rz. Because of the “time” ordering in Eq. 2.5, the Markovian

nature of the tangent vector statistics permits the evaluation of
〈
R2n
z

〉
0 by insertion of a

propagator (Eq. 2.28) between each successive factor in the product of Eq. 2.5. Since

there are 2n + 1 propagators inserted, there are 2n + 1 l-indices and 2n + 1 m-indices to

sum over. The initial, final, and intermediate tangent vector orientations (2n + 1 total)

are then integrated over, which selects for certain values of the l-indices and m-indices.

The integration over the initial and final tangent orientation selects l1 = l2n+1 = 0 and

m1 = m2n+1 = 0, and upon integration over the intermediate azimuthal angles φi, the

intermediate m-indices are also set to zero. The intermediate selection rules for the l-

indices are found by noting that cos θY 0
l = al+1Y

0
l+1 + alY

0
l−1 where al = l/

√
4l2 − 1 [17],

thus the l-indices selected are off-set from their neighbors by a value of 1 or −1. Since

the l-indices cannot take negative values, the chosen l-indices for
〈
R2n
z

〉
0 follow paths of 2n

steps with unit step size that start at zero and end at zero while never wandering below



30

l = 0 .

The diagrammatic representation in three dimensions reflects these selection rules. For

example,
〈
R2
z

〉
0 in three dimensions contains only 1 l-index path (l1 = 0, l2 = 1, l3 = 0).

The three-dimensional version of Fig. 2.1 contains only the first and fifth diagrams in A and

the first in lines 1, 3, 4, and 5 and the third in line 5 of B. For the moment
〈
R2n
z

〉
0, there

are (2n)!/[n!(n + 1)!] diagrams that satisfy the selection rules [10]. The value of a given

diagram is again most easily stated in Laplace space (with the Laplace variable p): for a

diagram corresponding to a particular path {l1, l2, ..., li, ..., l2n+1}, the functional value is

P−1
l1

∏2n+1
i=2 ali+tiP

−1
li

where Pl = p+ l(l+ 1), and ti = 0 if li = li−1 + 1 (step up) and ti = 1

if li = li−1 − 1 (step down). For example, the diagram in three dimensions corresponding

to the fifth diagram in A of Fig. 2.1 is given by P−1
0 a1P

−1
1 a2P

−1
2 a2P

−1
1 a1P

−1
0 .

We now construct the diagrammatic representation of the partition function q(F ; p).

We assign a factor P−1
l = [p+ l(l+1)]−1 for each l-index and a factor Fali+ti for a step that

connects two adjacent values of the indices li and li−1, where the value of ti (defined in the

previous paragraph) depends on whether the step is up or down. We call these diagrams

Fa-diagrams. In terms of these diagrams, the partition function can be written as

q(F ; p) = sum of all Fa diagrams that begin and

terminate at l = 0 without ever

wandering below l = 0. (2.29)

Following a virtually identical procedure as the two-dimensional analogue for manipulating
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the diagrams, we obtain the following recursive form for q(F ; p):

q(F ; p) = 1/J0 (2.30)

where Jn obeys the recursive relation

Jn = Pn − a2
n+1F

2/Jn+1 (2.31)

with Pn = p + n(n + 1) and an = n/
√

4n2 − 1. Written as an infinite continued fraction,

the partition function now reads

q(F ; p) =
1

P0 −
a2
1F

2

P1−
a2
2

F2

P2−
a2
3

F2

···

. (2.32)

The validity of Eq. 2.32 can be verified by generating moments of q(F ; p) using Eq. 2.23.

With the expression
〈
R2n

〉
0 = (2n + 1)!

〈
R2n
z

〉
0 /(2n)!, our solution provides a convenient

method for generating arbitrary moments of the end-to-end distance analytically. As in two

dimensions, we have checked our solution by generating moments up to
〈
R10

〉
0 and have

found exact agreement with the available solutions [10].

As in two dimensions, the end-to-end distance distribution function in Fourier-Laplace

space can be obtained trivially from Eq. 2.32 by the substitution ~f → i~k; the result is

G(K; p) =
1

P0 + a2
1K

2

P1+
a2
2

K2

P2+
a2
3

K2

···

, (2.33)

whereK = 2lpk and k is the magnitude of ~k. We verify that our techniques produce identical
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results as those given in a previous study [12] by truncating the infinite continued fraction

(Eq. 2.33) at the third level and finding equivalence between the two solution methods.

A semiflexible chain in the nematic quadrupole field in three dimensions is described by

the interaction term βHext = −λ
∫ L
0 ds

(
u2
z − 1/3

)
in the chain Hamiltonian. Noting that

(
cos2 θ − 1/3

)
Y 0
l = αl+2Y

0
l+2 + βlY

0
l + αlY

0
l−2 where αl = al−1al (al = l/

√
4l2 − 1) and

βl = a2
l+1 + a2

l − 1/3 [17], we see that the selection rules for this external field includes up

and down steps of magnitude 2 as well as horizontal steps. However, the diagrammatic re-

summation technique discussed earlier can be easily extended to account for this additional

horizontal step. The result is

q(Λ; p) =
1

P0 − β0Λ−
α2

2Λ2

P2−β2Λ−
α2
4
Λ2

P4−β4Λ−
α2
6
Λ2

···

, (2.34)

where Pn = p+n(n+ 1), Λ = 2lpλ, αl = al−1al (al = l/
√

4l2 − 1), and βl = a2
l+1 + a2

l − 1/3

(note β0 = 0). Equation 2.34 is equivalently stated as q(Λ; p) = 1/J0 where Jn = Pn −

βnΛ− α2
n+2Λ

2/Jn+2 for n ≥ 0.

We conclude this section by providing a discussion of the similarities between the so-

lutions in two and three dimensions and generalization of our solution methods to a wider

range of similar problems. One important conclusion that is evident from our results is that

the infinite continued fraction is a natural form for these solutions, which is highly advan-

tageous in its simplicity and its convergence behavior. In deriving our solutions, we have

described the formation of the continued fraction as adding layers onto the diagrammatic

representation; the use of the diagrammatic techniques provides a means of visualizing our

algebraic methods.

The end-to-end distribution function in two dimensions (Eq. 2.25) and three dimensions
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(Eq. 2.33) are almost identical with only subtle differences. Consulting the selection rules

in two and three dimensions, we see that an = 1/2 for all n in two dimensions; whereas

an = n/
√

4n2 − 1 in three dimensions. Inserting an = 1/2 (the two-dimensional case) into

Eq. 2.33 yields Eq. 2.25 with a factor of two missing in the first layer of the continued

fraction. This difference is due to the selection rules for the m-index of the two-dimensional

case: m runs from negative infinity to infinity whereas the l-index of the three-dimensional

case runs from zero to infinity.

We clarify this distinction by considering an interesting variant of the end-distribution

function. We define G(j)(k; p) as the collection of diagrams that run from j to j [thus

G(k; p) = G(0)(k; p)]. In two dimensions, G(j)(k; p) is given by

G(j)(k; p) =
1

K2/4

J
(−)
j−1

+ Pj + K2/4

J
(+)
j+1

, (2.35)

where Pn = p+ n2, K = 2lpk, and the recursive forms of the continued fractions are given

by J
(+)
n = Pn + (K2/4)/J (+)

n+1 and J
(−)
n = Pn + (K2/4)/J (−)

n−1 for any value of n. In three

dimensions, G(j)(k; p) is given by

G(j)(k; p) =
1

a2
jK

2

J
(−)
j−1

+ Pj +
a2

j+1K
2

J
(+)
j+1

, (2.36)

where Pn = p+n(n+1), an = n/
√

4n2 − 1, K = 2lpk, and the recursive forms of the contin-

ued fractions are given by J (+)
n = Pn + (a2

n+1K
2)/J (+)

n+1 (n ≥ 0), J (−)
n = Pn + (a2

nK
2)/J (−)

n−1

(n ≥ 1), and J
(−)
0 = P0. The partial continued fractions provide the diagrammatic contri-

butions to G(j) that are above j in the case of J (+)
j+1 and below j in the case of J (−)

j−1. We see

the three-dimensional solution for G(j)(k; p) differs from the two-dimensional solution since
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the continued fractions do not extend past the zeroth layer in three dimensions because

the l-index in three dimensions take only non-negative values. The function G(j)(k; p) is

necessary in constructing the full end-distribution function including end-tangent orienta-

tions, where the diagrams included in the summation have non-zero initial and final m-

and l-index values [10]; thus Eq. 2.35 and Eq. 2.36 are important in further extending our

current results.

2.4 Structure Factor of a Wormlike Chain

The single-chain structure factor is one of the most important properties of a polymer. It

provides a direct connection to scattering experiments and also the essential theoretical

input for treating many-chain systems. While the structure factor for a flexible Gaussian

chain model is the well-known Debye function, rigorous results for the structure factor of

a semiflexible chain that are valid for arbitrary chain length and persistence length have

not been explicitly provided [18]. To date, quantitatively the best available theory for the

structure factor for a semiflexible polymer is based on a Dirac-equation model proposed

by Kholodenko [19, 20]. However, this model is designed to smoothly interpolate between

the rigid and flexible limits; the extent of its accuracy for intermediate stiffness is not

clear. Furthermore, the model cannot be described by a simple Hamiltonian (such as

given by Eq. 2.1); thus the physical interpretation of its parameters is not straightforward.

A variant of the wormlike chain model that permits analytical expressions for the chain

statistics involves relaxing the local chain length constraint and enforcing a total chain

length constraint instead [21, 22]. The accuracy of such a model in predicting the structure

factor is questionable due to uncertain contribution of local chain length fluctuations.

In this section, we examine the structure factor of a free wormlike chain for arbitrary
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chain stiffness using Eq. 2.33. We define the structure factor as

S(~k) =
1
L2

∫ L

0
ds1

∫ L

0
ds2
〈
exp

[
i~k ·(~r(s1)−~r(s2))

]〉
, (2.37)

where the angular brackets indicate an average with respect to the particular chain statistics

(in our case wormlike chain in the absence of external fields). Note that this definition

differs from the more conventional one by an extra factor of L in the denominator. We

choose this dimensionless form in order to simplify our comparison with previous results by

Kholodenko [23, 24].

We first recapitulate the structure factors for a Gaussian chain and for a rigid rod. For

a chain obeying Gaussian statistics, the scattering function is given by

S(~k) =
1
L2

∫ L

0
ds1

∫ L

0
ds2 exp

(
−2lp |s1 − s2|~k2

6

)

=
72
NK2

(
1
6
− 1− exp(−NK2/6)

NK2

)
, (2.38)

where N = L/(2lp) and K = 2lp|~k|. We have set the Gaussian step size b to the Kuhn

length 2lp to facilitate comparison with the wormlike chain model. For a perfectly rigid

chain, the scattering function is given by

S(~k) =
2

NK

(
Si(NK)− 1− cos(NK)

NK

)
, (2.39)

where Si(x) is the sine integral, defined as Si(x) =
∫ x
0 dz sin(z)/z. We express Eq. 2.39

in terms of NK, which is equal to kL, for ease of comparison with the Gaussian-chain

behavior and our current results. We note that as NK →∞, the structure factor behaves

as S(k) → π/(NK).



36

2 4 6 8 10 12 14 16 18 20
2.0

2.5

3.0

3.5

Lk

kL
S

(k
)

Figure 2.2: The scattering function kLS(k) versus the wavenumber Lk for N = 0.1 (solid
curve), N = 0.5 (dashed curve), and N = 1 (dashed-dotted curve). We include the scatter-
ing function for a rigid rod (dotted curve), given by Eq. 2.39.

The structure factor is related to the Green’s function through

S(~k) =
1
L2

∫ L

0
ds1

∫ L

0
ds2G(~k; s1 − s2)

=
2
N2

L−1
(
G(K; p)
p2

)
, (2.40)

where L−1 indicates Laplace inversion from p to N . In two dimensions, G(K; p) in Eq. 2.40

is given by Eq. 2.25; in three dimensions, it is given by Eq. 2.33. Equation 2.40 is valid

for a polymer chain of arbitrary rigidity, provided the Laplace inversion can be accurately

performed. All of our numerical results are obtained by truncating the infinite contin-

ued fraction at the 20th level and evaluating the inverse Laplace transform by computing

residues of the resulting expression numerically. We limit our discussion of the behavior of

the structure factor to 3 dimensions.

Figure 2.2 shows the behavior of the structure factor (Eq. 2.40) in three dimensions

for relatively rigid chains [N = 0.1 (solid curve), N = 0.5 (dashed curve), and N = 1
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(dashed-dotted curve)]. We plot the product kLS(k) in order to clearly show the asymptotic

behavior as Lk → ∞ to be kLS(k) → π regardless of the chain rigidity. The rigid rod

solution (Eq. 2.39) is also included in Fig. 2.2 (dotted curve) for comparison. We see that

as N → 0 the structure factor approaches that for the rigid rod; the two become virtually

indistinguishable for N < 0.02 (not shown in the Figure). The rigid-rod solution exhibits

an oscillation in kLS(k) when the wavelength 1/k are multiples of the chain length L.

As the stiffness decreases in Fig. 2.2, the frequency of the oscillations in the structure

factor decreases due to the presence of thermal wrinkles in the conformation which shorten

the effective length of the chain. In addition, the first peak in kLS(k) emerges dominant

as the stiffness decreases, and the subsequent peaks are suppressed because of decreased

persistence length.

The behavior of the structure factor for intermediate stiffness is presented in Fig. 2.3 for

N ranging from 0.1 (relatively rigid) to 10 (essentially flexible). The dominant peak in the

scattering function continues to grow as N increases, and the secondary peaks are no longer

noticeable for N > 1. For comparison we include in Fig. 2.3 the behavior of the structure

factor for a semiflexible chain as defined by Dirac statistics [23, 24] (dashed curves). This

theory is designed to exactly capture the wormlike chain behavior in the perfectly rigid and

flexible limits with an interpolating behavior that captures the wormlike chain behavior in a

qualitative manner (see reference [24] for a comparison). Although these two models agree

qualitatively, we see in Fig. 2.3 that the wormlike chain model and the Dirac model differ

appreciably for semiflexible chains of intermediate stiffness (N ≈ 1).

As the chain length increases further, the chain becomes more flexible. In Fig. 2.4, we

present the scaled structure factor kLS(k) for a chain of length N = 100 (solid curve) and

compare it with that for a Gaussian chain (dashed curve) given by Eq. 2.38. Here we plot



38

2 4 6 8 10 12 14 16 18 20
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lk

kL
S

(k
)

N=0.1 

N=1 

N=5 

N=10 

Figure 2.3: The scattering function kLS(k) versus the wavenumber Lk for N = 0.1, N = 1,
N = 5, and N = 10 calculated using Eq. 2.40 (solid curves) and from solutions found in
reference [23] (dashed curves).

kLS(k) against K = 2lpk since the shortest length scale is now lp. The dominant peak in

Fig. 2.4 occurs when K ≈ 1, i.e., when the incident wavelength is approximately a Kuhn

length 2lp. The wormlike chain model closely agrees with the Gaussian chain model for

small K; however, as K increases, these two models diverge. Since a wormlike chain is

rigid at sufficiently small length scales, the structure factor for the wormlike chain model

approaches the rigid rod limit kLS(k) → π as k → ∞ regardless of the stiffness of the

chain. This limit occurs when K � 1 for flexible chains (N � 1) or kL� 1 for rigid chains

(N � 1). Such behavior is not captured by the Gaussian chain model since a Gaussian

chain has no (bending) stiffness at any length scales.

The features of the structure factor illustrated in Figs. 2.2 through 2.4 demonstrate the

behavior of a wormlike chain ranging from perfectly rigid to flexible. On the rigid side of the

spectrum (shown in Fig. 2.2), the structure factor of a wormlike chain becomes essentially

indistinguishable from that for the perfectly rigid rod when N < 0.02 or when the length
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Figure 2.4: The scattering function kLS(k) versus the wavenumber K = 2lpk for N = 100
for the wormlike chain (solid curve) and the Gaussian chain (dashed curve). The dotted
line is the asymptotic value for the wormlike chain kLS(k) → π as K →∞.

of the chain is roughly one twentieth of a Kuhn length. However, the difference can be

appreciable even for relatively stiff chains (N ≈ 0.1). This is consistent with the effect of

semiflexibility on the thermodynamic behavior of a polymer liquid-crystal solution [9], where

conformation fluctuation substantially alters the nematic-isotropic transition temperature.

In the flexible-chain limit (cf. Fig. 2.4), the structure factor for a wormlike chain only

coincides with the Gaussian chain result in the small k-limit. The large k-limit of the

structure factor, which probes the small length scales of the fluctuating chain, is affected by

the bending stiffness of the wormlike chain, which renders the chain rigid at length scales

much less than the persistence length.

2.5 Polymer Nematics

The formation of a liquid-crystalline phase can be studied at the mean-field level by consid-

ering an isolated molecule interacting with an effective self-consistent field that captures the
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local structure of the ordered phase. In the case of a homogeneous nematic liquid-crystal,

the mean-field behavior is captured at the lowest order by a quadrupolar interaction be-

tween the molecular orientation and the effective field [6, 7]. For semiflexible polymer

chains interacting with a Maier-Saupe pseudopotential, the mean-field statistical mechanics

of the nematic phase has been solved exactly [8, 9] through an expansion of the tangent-

vector orientation Green’s function in the spheroidal functions [25]. However, evaluating

the spheroidal functions is a nontrivial mathematical/computational task.

The solutions we provide in this chapter for the partition function of a wormlike chain in

a quadrupole field provide convenient alternative means for studying a number of important

issues involving nematic liquid-crystalline polymers in two and three dimensions. For exam-

ple, such additional issues include the presence of solvent molecules, both non-mesogenic [9]

and mesogenic [5], and the effect of chain self-assembly on the phase-transition behav-

ior [26]. Regardless of the particular situation, an important input is the behavior of a

single semiflexible chain interacting with a quadrupole field.

We thus begin the discussion of the use of our results by considering the thermodynamic

behavior of a wormlike chain in an external quadrupole field of strength λ. Focusing on the

three-dimensional behavior, the partition function q is given by Eq. 2.34, and the Gibbs

free energy is given by βg(N ;λ) = − log q. The nematic order parameter, which measures

the degree of orientational order is given by

m =
1
L

∫ L

0
ds

〈(
3
2
u2
z −

1
2

)〉
=

3
2L

∂ log q
∂λ

. (2.41)

The Helmholtz free energy f(N ;m) is then obtained through a Legendre transform as

βf(N ;m) = βg(N ;λ) + (3/2)λm. Since both the Gibbs and Helmholtz free energies are
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defined relative to the isotropic (rotationally invariant) state, the free energy f includes a

decrease in the bending energy and a loss of conformation entropy due to alignment by the

quadrupole field. We plot the free energy versus the field strength Λ = 2lpλ in Fig. 2.5 for

N = L/(2lp) = 3.3333.

The free energy in Fig. 2.5, exhibits two distinct scaling regimes. The small Λ scaling

of Λ2 arises from the fact that in the isotropic phase there is no quadrupole order; thus

the lowest-order contribution to q must be quadratic in the quadrupole order in the limit

of weak field strength. Mathematically, this is seen by noting that β0 = 0 in Eq. 2.34;

thus as Λ → 0, the lowest contribution to q is quadratic in Λ. The large Λ scaling can

be understood by considering the behavior of the chain conformation in the quadrupole

field. In reference [9], we found that the thermodynamic behavior has a distinct cross-over

when the chain is essentially aligned in the quadrupole field, dictated by suppression of

the conformation fluctuations in the direction perpendicular to the quadrupole field. This

cross-over results in the large Λ scaling of Λ1/2 exhibited in Fig. 2.5. The thermodynamic

behavior demonstrated in Fig. 2.5 captures the free energy of confining a single semiflexible

chain in a quadrupole field, regardless of the underlying cause of the field.

We now specify to the mean-field (self-consistent field) treatment of nematic liquid-

crystalline polymer phase by replacing the external field with a self-consistent field that

approximates the many-body interactions within the nematic phase. The derivation of

the full set of self-consistent-field equations is given in reference [9]. For simplicity, here

we restrict our discussion to the solvent-free thermotropic system. If the strength of the

Maier-Saupe interaction is defined to be κ, the self-consistent field is then λ = κm and the
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Figure 2.5: The behavior of the free energy βf versus the quadrupole field strength Λ = 2lpλ
for N = L/(2lp) = 3.3333 with appropriate scaling behavior for large and small Λ.

Helmholtz free energy of the nematic phase relative to the isotropic phase is given by [9]

β∆f =
κL

3
m2 − log q(κm). (2.42)

The self-consistent calculation of the order parameter m is performed by evaluating

Eq. 2.42, treating m as a variational parameter and finding values of m that minimize β∆f .

The stability of the nematic phase is determined by finding the curvature at the thermody-

namically determined value of m. In Fig. 2.6, we show the behavior of the Helmholtz free

energy β∆f versus the order parameter m for N = L/(2lp) = 3.3333 and three different

values of κ; these three curves represent the conditions corresponding to the spinodal of the

nematic phase, coexistence between the isotropic and nematic phases, and the spinodal of

the isotropic phase. When 2lpκ = 20.7582 (dashed curve), β∆f has an inflection point at

m = 0.2631 (indicated by the circle); thus a system initially in the nematic phase becomes

unstable with respect to order fluctuations and will spontaneously transform to the ther-
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Figure 2.6: The free energy relative to the isotropic state β∆f versus the order parameter
m for a thermotropic liquid-crystalline polymer system with N = L/(2lp) = 3.3333. When
the nematic interaction 2lpκ = 20.7582 (dashed curve), the nematic phase with m = 0.2631
(◦) is unstable, thus the system will spontaneously transition to the isotropic phase with
m = 0 (×). When 2lpκ = 21.0606 (solid curve), the isotropic phase (×) is in coexistence
with the nematic phase with m = 0.3493 (�). When 2lpκ = 23.6844 (dotted curve), the
isotropic phase (×) spontaneously orders into a nematic phase with m = 0.4983 (2). The
inset magnifies the behavior near the origin to clarify the coexistence and nematic-spinodal
curves.

modynamically favored isotropic phase with m = 0 (indicated by the ×). By increasing the

strength of the nematic interaction to 2lpκ = 21.0606 (solid curve), we reach coexistence

between the isotropic phase with m = 0 (×) and nematic phase with m = 0.3493 (�), where

the Helmholtz free energy for the two phases become degenerate. When we increase the ne-

matic interaction further to 2lpκ = 23.6844, β∆f exhibits an inflection point at m = 0 (×);

thus a system initially in the isotropic phase is unstable with respect to order parameter

fluctuations and will spontaneously order to a nematic phase with m = 0.4983 (2). The

inset of Fig. 2.6 provides a close-up of the dashed and solid curves for clarification.

The results shown in Fig. 2.6 are in full agreement with those obtained in reference [9]

using spheroidal functions, thus reaffirming the equivalence between these two approaches.
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This equivalence implies an interesting mathematical connection between the poles of the

continued fraction representation and the eigenvalues of the spheroidal functions, which is

worth exploring further.

2.6 Conclusions

In this chapter, we present exact, analytical results for the partition function in Laplace

space of a single wormlike chain in an external dipole and quadrupole field in two and

three dimensions. The results are in the form of infinite continued fractions, which emerge

naturally from the hierarchical structure of the diagrammatic techniques employed. The

diagrammatic representation, taken from reference [10], provides a visually intuitive means

for re-summing the infinite, moment-based expansion of the various partition functions into

successive layers. Thus the rank order of the layers in the continued fraction corresponds

to the rank order of layers in the diagrammatic representation.

The greatest appeal of our results is the simplicity and conciseness of the form of the

solutions, which makes them easy to use in practical calculations. Because of the rapid con-

vergence of the continued fraction as opposed to simple power series expansions, truncation

after a few layers in the infinite continued fraction usually results in sufficient numerical

accuracy. For example, the scattering function for a polymer chain in three dimensions

with N = 1 is accurately captured [less than 1% maximum deviation from the data dis-

played in Fig. 2.2 (2 < kL < 20)] by truncation of the infinite continued fraction at the

fourth level [27] We note that truncation at the nth level exactly reproduces all moments

of the distribution function up to the 2nth moment and approximately captures the higher

moments.

The solutions given by eqs 2.21, 2.25, 2.26, 2.32, 2.33, and 2.34 provide the governing
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equations that are necessary to solve for the end-to-end distance distribution, the structure

factor, the response of a chain subject to end tension, and the thermodynamics of nematic

liquid-crystalline polymers in two and three dimensions. We have illustrated the use of our

results by presenting the exact structure factor of a wormlike chain and the exact mean-field

solution for the isotropic-nematic transition in solvent-free semiflexible polymers interact-

ing with a Maier-Saupe type potential. That a number of physical problems involving

semiflexible polymers can be addressed by using our results demonstrates their utility.
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Chapter 3

A Semiflexible Polymer Confined
to a Spherical Surface

We develop a formalism for describing the kinematics of a wormlike chain confined to

the surface of a sphere that simultaneously satisfies the spherical confinement and the

inextensibility of the chain contour. We use this formalism to study the statistical behavior

of the wormlike chain on a spherical surface. In particular, we provide an exact, closed-

form expression for the mean square end-to-end distance that is valid for any value of chain

length L, persistence length lp, and sphere radius R. We predict two qualitatively different

behaviors for a long polymer depending on the ratio R/lp. For R/lp > 4, the mean square

end-to-end distance increases monotonically with the chain length, whereas for R/lp < 4, a

damped oscillatory behavior is predicted.

3.1 Introduction

A polymer in a confined geometry is a fundamental problem in polymer physics that un-

derlies some important biological processes and technological applications. For example,

polymer confinement is relevant to DNA or RNA packaging in viruses [1] and DNA pack-

aging in eukaryotic cells [2], where, in both cases, the genome is confined within a cavity

that is many orders of magnitude smaller than its unconfined radius of gyration.
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While the effect of confinement for a flexible polymer is primarily entropic [3], confin-

ing a semiflexible polymer involves both energetic and entropic effects, with the balance

controlled by the stiffness of the chain and the length scale of confinement [4, 5, 6]. Con-

sider a long, ideal polymer chain confined to a spherical cavity. In the case of a flexible

polymer, the chain has the entropic tendency to fill the available space, with the highest

concentration of chain segments in the center of the cavity [7]. In the limit of high stiff-

ness, on the other hand, the chain is forced to circle near the surface of the cavity due to

its tendency to minimize the bending energy cost. The interplay among the three length

scales, namely, the length of the chain, the persistence length, and the characteristic size of

the confinement, is thus a fundamental feature in the study of a semiflexible polymer in a

confined geometry. Unfortunately, few problems involving semiflexible chains admit exact,

closed-form solutions, and we are not aware of such solutions for a semiflexible chain in a

confined geometry.

In this chapter, we present an exact, closed-form solution for the conformation of a

semiflexible chain confined to the surface of a sphere using the wormlike chain model [8].

This problem is relevant to systems involving strongly adsorbed polymers on spherical

surfaces which are often used as simple models for studying DNA/protein complexes and

adsorption of a polymer on colloidal particles [5, 9, 10]. By exploiting a novel representation

of the differential geometry of an inextensible curve on a spherical surface, we arrive at a

simple and concise description of the chain kinematics, which in turn permits the evaluation

of the mean square end-to-end distance in a simple, closed-form expression valid for arbitrary

chain length, stiffness, and sphere radius.
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3.2 Spherical Kinematics

We consider a wormlike chain of contour length L that is confined to the surface of a sphere

of radius R. The chain trajectory defines a space curve ~r(s) where the pathlength parameter

s has units of length and runs from zero at one end of the polymer chain to L at the other

end. The chain contour is assumed inextensible, which requires that the tangent vector

~u ≡ ∂s~r(s) satisfies |~u(s)| = 1. The energetics of the wormlike chain model is given by a

bending Hamiltonian of the form [11]

βH =
lp
2

∫ L

0
ds

(
∂2~r

∂s2

)2
, (3.1)

where β = 1/(kBT ) and lp is the persistence length of the free polymer chain. Since we

are interested in the equilibrium statistical behavior of an open chain with free ends, the

twist degrees of freedom are irrelevant. In problems where the polymer is either closed or

torsionally constrained, twist plays a crucial role in the equilibrium and dynamic properties

of the polymer; these problems are beyond the scope of this chapter, however.

The constraint that the chain must lie on the surface of the sphere requires that the

position vector ~r(s) be a fixed distance R away from the center of the sphere. We now seek

a convenient description of the chain kinematics that automatically satisfies this constraint

as well as the local inextensibility of the chain contour. Setting the origin of the coordinate

system to be the center of the sphere, we define a local orthogonal unit triad ~ti (i = 1, 2, 3)

and choose the position vector to lie in the 3rd direction [~r(s) = R~t3(s)]; this guarantees

that the chain is confined to the spherical surface. The rotation of the triad system as we

progress along the chain contour is given by a rotation vector ~ω that acts as ∂s~ti = ~ω × ~ti;

thus the chain position is determined by the rotation of ~t3 over s. The tangent vector is
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easily shown to be ~u = R(ω2~t1 − ω1~t2), and the chain inextensibility constraint is satisfied

by requiring ω2
1 +ω2

2 = R−2. By choosing this coordinate frame, we have effectively altered

the complicated constraints on the chain conformation to a simple relationship between ω1

and ω2 that can be trivially satisfied.

We now relate the rotation vector ~ω to the three Euler angles of rotation φ, θ, and ψ.

Performing an infinitesimal rotation of the triad system, we can express the components of ~ω

in terms of ∂sφ, ∂sθ, ∂sψ [8]. We complete our description of the spherical chain kinematics

by setting ∂sφ equal to zero and ∂sθ equal to R−1, leaving only the angle ψ to describe

the chain conformation that satisfies the constraints. Our mathematical description of the

chain kinematics is more clearly understood by considering the chain curvature vector

∂~u

∂s
= 2 cosψ

∂ψ

∂s
~t1 + 2 sinψ

∂ψ

∂s
~t2 −

1
R
~t3, (3.2)

which shows that the choice of ψ as the chain coordinate effectively decouples the curvature

due to the spherical confinement from the curvature due to deflection of the chain on the

spherical surface.

A physically intuitive description of the conformation is to consider the triad system as

a spinning top. For stretches of the chain where the angle ψ is constant, the top rotates

about a fixed axis, and the chain lies along an equator of the spherical body. When the

angle ψ is altered, the spinning top wobbles and resets its axis of rotation such that the

pathlength of the chain is maintained during the deflection. We can consider a reference

frame of the spinning top that removes the wobbling motion associated with deflection of

the angle ψ [12]. This frame is constructed by removing the accumulated wobble by rotating

~t1 and ~t2 about the vector ~t3 by the total wobble angle ψ(s) − ψ(0). We set ψ(0) to zero
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Figure 3.1: The conformation of a polymer chain wrapping around a unit sphere with a
constant curvature that orbits after ten revolutions around the sphere.

without loss of generality and define the complex tangent ~ε ≡ (~t1 + i~t2) exp(iψ) and the

complex curvature η ≡ iR−1 exp(i2ψ) to give the rate of rotation of this reference frame.

Using these definitions, the kinematic equations describing the polymer conformations lying

on a spherical surface are given by

∂~ε

∂s
=

i

R
ei2ψ~t3, (3.3)

∂~t3
∂s

= −Real
(
i

R
ei2ψ~ε ∗

)
, (3.4)

where the asterisk indicates complex conjugation.

We now give two examples of the solution to Eqs. 3.3 and 3.4 to clarify the use of this

coordinate frame. The simplest example is the function ψ = νs which describes a circle with

radius R(1 + 4R2ν2)−1/2 and period 2π/ω where ω2 = R−2 + 4ν2. As the second example,

we consider a function ψ that is a saw-tooth function of s with a slope ν and period 2π/ω.
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This function results in a conformation with a constant curvature similar to wrapping yarn

in a spool. Figure 3.1 shows such a conformation that comes to a closed orbit after ten

periods around a sphere. Chain conformations like this are of particular importance when

dealing with chain self-interaction, which are very difficult to describe in terms of cartesian

coordinates.

3.3 Mean Square End-to-End Distance

With our description of the chain kinematics, the bending Hamiltonian becomes

βH = 2lp
∫ L

0
ds

(
∂ψ

∂s

)2
+
Llp
2R2

, (3.5)

where the first term is due to chain curvature deformation in the spherical surface and the

second term is due to the curvature of the confining surface. The chain statistics are given

by the probability that a chain with initial angle ψ(0) = ψ0 will have a final angle ψ(L) = ψ

defined as the Green’s function G(ψ|ψ0, L). The Green’s function is found by summing all

of the statistical contributions of the paths between ψ0 and ψ of the fluctuating field ψ(s),

weighted by the Boltzmann factor exp(−βH[ψ(s)]) [8]. The result can be written as an

eigenfunction expansion

G(ψ|ψ0, L) =
∞∑

m=−∞

1
2π
eim(ψ−ψ0) exp

(
−m

2L

8lp

)
. (3.6)

Equation 3.6 is equivalent to the quantum mechanical propagator for a particle confined

to a circle, with the bending energy in Eq. 3.5 playing the role of the kinetic energy and

the contour length acting as an imaginary time. Use of Eq. 3.6 in finding chain averages
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requires expressing the quantity of interest in terms of the function ψ, thus making our

compact expressions for the chain kinematics (Eqs. 3.3 and 3.4) extremely useful.

We note that the bending deformation due to the confinement of the sphere is uncoupled

from undulations within the surface of the sphere; thus conformation fluctuations within

the spherical surface are unaffected by the overall spherical confinement. This is consistent

with previous work which demonstrates that, in a tightly bent semiflexible polymer, those

fluctuations that do not affect the constraint are not suppressed [6].

We now evaluate the mean square end-to-end distance for the polymer. Using the

definition of the end-to-end vector ~R = ~r(L)− ~r(0), we can write ~R2 as

~R2 = 2R2
(
1− ~t3(0) · ~t3(L)

)
= 2R2

∞∑
n=1

(−1)n+1

2nR2n

 2n∏
j=1

∫ sj−1

0
dsj

{ n∏
k=1

Real
[
ei2(ψ2k−1−ψ2k)

]}
, (3.7)

where s0 = L and ψk = ψ(sk). The second line of Eq. 3.7 is obtained by eliminating the

complex tangent ~ε from Eqs. 3.3 and 3.4 iteratively starting from the initial position. The

average of Eq. 3.7 is performed by inserting a propagator (Eq. 3.6) between each successive

function of ψ in the expansion. The resulting expression is

〈
~R2
〉

= −
∞∑
n=1

2R2(−1)n
(

2lp
R

)2n
An(N), (3.8)

where we define N = L/(2lp). The coefficients of the expansion An(N) are compactly

defined through the recursive relation

An(N) =
∫ N

0
dτ1

∫ τ1

0
dτ2 exp(−τ1 + τ2)An−1(τ2), (3.9)
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Figure 3.2: The mean square end-to-end distance of a polymer chain confined to a sphere
with R/lp = 40.

with A0(N) = 1. The recursive relation is more conveniently written in the differential form

(
∂2
N + ∂N

)
An(N) = An−1(N), with the initial conditions An(0) = 0 and ∂NAn(0) = 0. This

differential recursive equation can be readily solved by a Laplace transform from the variable

N to p to give An(p) = p−n−1(p + 1)−n. Inserting this result into Eq. 3.8, performing the

straightforward summation, and inverse Laplace transforming the resulting expression lead

to our final result for the mean square end-to-end distance of a chain confined to a spherical

surface

〈
~R2
〉

= 2R2 − 2R2 exp

(
− L

4lp

)cosh

 L

4lp

(
1−

16l2p
R2

)1/2 +

(
1−

16l2p
R2

)−1/2

sinh

 L

4lp

(
1−

16l2p
R2

)1/2 . (3.10)

It can be easily verified that Eq. 3.10 recovers several important limiting results. If

the chain length is much less than the radius, we expect that the chain will not feel the
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effect of the spherical confinement. As the radius goes to infinity, the leading order term in

the lp/R expansion of Eq. 3.10 yields the 2 dimensional solution for a free wormlike chain

4lpL + 8l2p{exp[−L/(2lp)] − 1} [13]. Similarly, as the chain length goes to zero, Eq. 3.10

approaches L2 for any finite sphere radius. Finally, for a fixed radius R, we expect that

for a sufficiently long chain the end position becomes uncorrelated from the initial position,

thus leading to a uniform coverage of the sphere by the chain segments. This results in

a mean square end-to-end distance of 2R2 as can be seen from Eq. 3.10 in the limit of L

approaching infinity for fixed lp and R.

In Fig. 3.2, we present a plot of Eq. 3.10 as a function of the chain length for a fixed value

of R/lp of 40. The mean square end-to-end distance in Fig. 3.2 exhibits three distinct scaling

regimes due to the three relevant length scales. With R/lp = 40, the radius is large enough

that short stretches of the chain behave as a chain in two dimensions. Figure 3.2 scales as

L2 for short chains (L < 2lp), which is the rigid-rod behavior. In the intermediate regime

[2lp < L < R2/(2lp)], the chain behaves with the random walk scaling of L. Essentially,

the chain is sufficiently long such that the end orientations are uncorrelated; however, the

chain is not long enough to feel the finite area of the confining spherical surface. For a

sufficiently long chain [L > R2/(2lp)], the polymer has diffused over a distance where the

curvature of the confining surface restricts the magnitude of the end-to-end vector; thus the

final regime approaches a value of 2R2. Our results for these latter two regimes agree with

those predicted using the flexible Gaussian chain model [14].

A qualitatively different behavior emerges when the radius of the sphere is smaller than

the persistence length. Specifically, for R < 4lp, the arguments of the hyperbolic functions

in Eq. 3.10 are imaginary, resulting in an oscillatory mean square end-to-end distance.

Physically, the chain revolves around the sphere due to the orientation correlation. In
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Figure 3.3: The mean square end-to-end distance versus the polymer chain length for
R/lp = 1/10 (solid curve), R/lp = 1/4 (dashed curve), R/lp = 2/5 (dashed-dotted curve),
and R/lp = 11/20 (dotted curve).

the limit of infinite chain stiffness, the mean square end-to-end distance becomes 2R2 −

2R2 cos(L/R), which corresponds to a polymer chain confined to the equator of a sphere.

For finite chain stiffness, the L dependence of Eq. 3.10 contains an exponentially decaying

oscillation with a periodicity in L of 8πlpR(16l2p − R2)−1/2. The exponential decay of the

oscillations reflects the eventual loss of correlation due to the thermal fluctuations of the

semiflexible chain. The periodicity in L is larger than that at infinite chain stiffness (2πR)

because of the wrinkling of the chain due to fluctuation. For R > 4lp, the chain orientation

becomes uncorrelated before the polymer completes a single pass over the sphere, manifested

in the lack of oscillation in Fig. 3.2. The cross-over at R = 4lp is analogous to a damped

harmonic oscillator where critical damping occurs when the damping coefficient [1/(4lp) in

our case] is equal to the natural frequency of the oscillation (1/R) [15].

The oscillatory behavior of Eq. 3.10 for R < 4lp is shown in Fig. 3.3. As expected, the

short chain (L� lp) behavior is independent of the radius. The damping of the oscillations
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occurs exponentially in L with a correlation length of 4lp (independent of R); however, since

the period of the oscillations is shorter for smaller radius, the number of correlated spherical

wraps decreases with increasing sphere radius. As the chain length goes to infinity, all of

the curves in Fig. 3.3 approach 2R2.

The behavior of the mean square end-to-end distance suggests the nature of the surface

coverage by the polymer as the length of the polymer increases. In the regime corresponding

to Fig. 3.2, the polymer covers the sphere in a diffusive manner from the starting point. The

scenario is that of the polymer chain creeping over the sphere starting at one pole towards

the opposite pole as the length of the chain increases. For the high chain stiffness shown in

Fig. 3.3, the orientation correlation causes the chain to lie on the equator of the sphere, and

conformation fluctuations cause the segment density to spread from the equator toward the

poles.

Our treatment ignores the interactions between chain segments, which will modify the

predicted behavior. However, some salient features predicted by our work will remain. For

example, our predicted change in the manner in which the chain wraps the sphere as the

stiffness increases is consistent with the Monte Carlo results in ref. [10], which included both

excluded volume and electrostatic interactions. Thus our results both provide a concise and

unified expression for elucidating the dominant effects due to the interplay among the three

length scales in the problem and serve as a useful reference for examining new effects due

to additional interactions.

The main advantage of the chain kinematics we have developed is that it provides a

convenient way to satisfy the constraints associated with the wormlike chain model and the

chain confinement. Physically, strict confinement of the chain to a sphere surface corre-

sponds to infinitely strong adsorption. However, our formalism can be extended to allow
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radial fluctuations away from the sphere surface while still conserving the contour length.

This will enable us to treat a wormlike chain near an attractive spherical particle or within

a spherical cavity.
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Chapter 4

Semiflexible Polymer Solutions:
Phase Behavior and Single-Chain
Statistics

We study the thermodynamics and single-chain statistics of wormlike polymer solutions with

Maier-Saupe type interactions using self-consistent-field (SCF) theory. The SCF equations

are derived using a systematic field-theoretical approach which yields the SCF equations as

the lowest order approximation, but permits fluctuation corrections to be incorporated. We

solve the SCF equations using the spheroidal functions, which provides a non-perturbative

description of the thermodynamics and single-chain statistics in the nematic state for ar-

bitrary degrees of nematic order. Several types of phase diagrams are predicted, with an

emphasis on the limit of metastability (spinodal) associated with each phase. The shape and

location of these spinodals suggest interesting scenarios for the phase transition kinetics. A

large but finite persistence length is shown to significantly decrease the isotropic-nematic

transition temperature relative to that for rigid rods. In the nematic state, the mean-

square end-to-end distance in the parallel and perpendicular directions are governed by

two separate correlation lengths. An exact relationship between these correlation lengths

and the eigenvalues of the spheroidal functions is provided, which reproduces the analyt-

ical expressions predicted from earlier studies in the limit of large nematic strength. The
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dominant contribution to the single-chain thermodynamics is shown to arise from small am-

plitude undulations in the directions perpendicular to the nematic direction; the presence

of hairpins, though crucial for determining the dimensions of the polymer, has insignificant

consequences on the single-chain thermodynamics.

4.1 Introduction

Polymers with sufficient backbone bending rigidity can form nematic liquid crystalline

phases at low temperatures and/or high concentrations. The enhanced alignment of the

polymer chains in the nematic state is the basis for several material properties and pro-

cesses such as high strength fibers [1] and flow induced crystallization [2, 3, 4, 5, 6]. So-

lutions of DNA form lyotropic liquid crystalline phases under several biologically relevant

conditions including molecular crowding [7], large molecular weight [8], polycationic agents

(synthetic [9] and natural [10]), and supercoiling in plasmid DNA [11]. Thus the nematic

state of main-chain liquid crystalline polymers is a subject of importance in both materials

science and biology.

In this chapter, we study the nematic phase of solutions of semiflexible polymers: poly-

mers with a backbone of uniform, finite stiffness. In contrast to the simpler case of rigid

rods where nematic ordering is associated with only a loss of the rotational degrees of

freedom, the nematic state of semiflexible polymers is accompanied by a loss of both the

overall rotational entropy of the chain and the conformation entropy of the chain segments.

The conformation degrees of freedom lead to two important effects. At length scales less

than the natural persistence length, the undulation of the chain backbone acts to weaken

the aligning interactions between neighboring molecules and is thus expected to affect the

nematic ordering of the chains. At larger length scales, for sufficiently long chains, the poly-



63

mer can undergo sharp reversals in direction to form hairpin defects [12]. The presence of

hairpins in liquid-crystalline polymers has profound effects on the chain dimensions [13, 14]

and the elastic behavior [15] of the nematic state. The finite bending rigidity of the chains

has also been suggested as being responsible for the unusual rheological behavior of nematic

liquid-crystalline polymers, such as shear-induced banding [16].

We examine the phase behavior and conformation properties of lyotropic polymer liquid

crystals using the wormlike chain model [17] with a Maier-Saupe pseudopotential [18, 19].

This model has been employed by a number of authors to study main-chain liquid crystalline

polymers. Warner and co-workers studied both the phase behavior and chain conformation

properties in solvent-free systems based on the exact solution of the mean-field equations

using spheroidal functions [20, 14]. However, the addition of a second component (whether

another polymer species or small nonmesogenic solvent) produces new qualitative features in

the phase behavior as shown by Liu and Fredrickson [21, 22]. In addition, in the approach by

Warner and co-workers, the mean-field approximation is introduced as an ansatz instead of

being derived as the lowest order approximation in a systematic approach. Furthermore, by

restricting the interaction to a spatially independent scalar form using the second Legendre

polynomial P2(τ) = 3u2
z(τ)/2− 1/2, the approach can only treat the homogeneous state.

Liu and Fredrickson [21] derived an analytical free energy functional for semiflexible

polymer blends using a gradient and order parameter expansion to the quartic order around

the uniform isotropic state. Their approach begins with a field-theoretical formulation of the

exact partition function and develops the free energy expansion in a systematic manner.

The advantage of the Liu-Fredrickson theory is that it is analytical and convenient for

treating inhomogenous systems [23]. However, its accuracy for describing the nematic state

is a priori not clear, given the strongly first-order nature of the isotropic-nematic transition.
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Furthermore, the order parameter expansion uses chain statistics in the isotropic state and

thus cannot describe the chain conformation properties in the nematic state.

Other authors used simplified versions of the wormlike chain model which do not con-

serve the local contour length [24, 25, 26, 27]. While such simplified models may capture

the qualitative behavior of certain aggregate properties, the chain statistics described by

these models are different from that given by the wormlike chain model. They also fail to

capture the dynamic properties of a semiflexible chain [28, 29].

In this article, we adapt the exact mean-field solution method of Warner and co-workers

to the study of lyotropic systems. We follow the field-theoretical formulation of Liu and

Fredrickson, but instead of performing an expansion around the isotropic state, we derive the

exact mean-field equations valid for both the isotropic and nematic states, and solve these

equations using the spheroidal functions. Our work thus combines the strengths of both

approaches. In particular, it provides a non-perturbative description of the thermodynamics

and single-chain conformation properties in the nematic state and is amenable to systematic

corrections to account for fluctuation effects.

This chapter is organized as follows. In Sec. 4.2, we present the model and develop the

mean-field equations as the lowest-order approximation to a more systematic approach. The

solution method using spheroidal functions is discussed in Sec. 4.3 where we also work out

the ground-state dominance criteria useful for obtaining a number of analytical results in the

long chain limit and explore the asymptotic behavior of some thermodynamic properties in

the strong nematic field limit. In Sec. 4.4, we present the bulk (zero wavenumber) fluctuation

free energy to quadratic order around the mean-field solution in connection to the calculation

of the limit of stability (spinodal) of the various phases. In Sec. 4.5 we present the main

results of the calculation. Several phase diagrams are calculated to illustrate different
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types of phase behaviors that can result depending on the interplay between the isotropic

and anisotropic part of the two-body interaction. By analyzing the shape and location

of spinodal curves in these phase diagrams, we propose several interesting scenarios for

the phase transition kinetics. The effects of chain stiffness on the nematic order are also

briefly discussed in reference to the rigid-rod limit and we find that small fluctuations of the

backbone of the polymers can significantly suppress the emergence of nematic order. We

then examine a number of single-chain properties in the nematic state, with an emphasis on

the anisotropy of the chain conformation and various energetic contributions. For sufficiently

long chains, we provide exact expressions for the longitudinal and transverse correlation

lengths in terms of the eigenvalues of the spheroidal functions, which reduce to earlier results

by Odijk [30, 31, 32] and Tkachenko and Rabin [33] derived in the limit of large nematic

field strength. We end this chapter with a brief summary and conclusion in Sec. 4.6.

4.2 Self-Consistent-Field Theory

We consider an incompressible system composed of np polymer chains and ns solvent

molecules. The polymer molecules are modeled as wormlike chains [17] with cross-sectional

area A and fixed contour length L, and the solvent molecules are spherical, non-mesogenic

particles with volume v. We work with an open system (grand canonical ensemble) wherein

the polymer solution in volume V and at temperature T is connected to an external reserv-

ior; thus the characteristic free energy G of our system is

G(V, µ) = V g(µ) = V [f(φp)− µφp], (4.1)
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where f is the Helmholtz free energy density and µ a chemical potential-like variable that

is conjugate to the polymer volume fraction φp.

The configuration of our system is given by the position and conformation of each

polymer molecule and the position of each solvent molecule. The position and conformation

of the i-th polymer is described by the spacecurve ~ri(τ) where the path coordinate τ runs

from zero to L. We define the tangent vector ~ui(τ) = ∂τ~ri(τ) and enforce the fixed polymer

length constraint by requiring |~ui(τ)| = 1 at all τ . The position of the j-th solvent molecule

is denoted by ~rj .

We model the interactions in the system by a local two-body pseudopotential and sepa-

rate the pseudopotential into isotropic and anisotropic contributions. Thus the Hamiltonian

of our system is

βH =
np∑
i=1

ε

2

∫ L

0

(
∂~ui
∂τ

)2
dτ + χ

∫
d~r φ̂s(~r )φ̂p(~r )− a

2

∫
d~r Ŝ(~r ) : Ŝ(~r ), (4.2)

where φ̂s and φ̂p, are respectively the local dimensionless density (volume fraction) of the

solvent and polymer molecules, and Ŝ is the tensorial nematic order parameter density

(again made dimensionless). They are given by

φ̂s(~r ) = v
ns∑
j=1

δ(~r − ~rj), (4.3)

φ̂p(~r ) = A

np∑
i=1

∫ L

0
dτδ(~r − ~ri(τ)), (4.4)

Ŝ(~r ) = A

np∑
i=1

∫ L

0
dτδ(~r − ~ri(τ))

(
~ui(τ)~ui(τ)−

1
3
I
)
. (4.5)

The first term in the Hamiltonian (Eq. 4.2) is the bending energy of the np polymer

chains, assumed to be quadratic in the curvature of the polymer conformations. The bending
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modulus ε, which has units of length, is equal to the persistence length of the fluctuating

chain in the absence of inter-molecular interactions. The second term in Eq. 4.2 is the

isotropic part of the two-body interaction between polymer and solvent molecules, taken to

be the Flory-Huggins type [34]. The Flory-Huggins parameter χ contains both an athermal

entropic contribution as well as an enthalpic component [35], thus we may write χ as

χ = χS + χH/T . The last term in Eq. 4.2 is the anisotropic component of the two-body

polymer-polymer interaction taken to be of the Maier-Saupe type [18, 19], which prefers to

align the polymer chains within the solution. In general, the Maier-Saupe potential contains

both hard-core contact interactions and soft attractive interactions; therefore, we anticipate

the Maier-Saupe parameter a, which has units of inverse volume, to have the temperature

dependence a = aS + aH/T [24]. The details of the molecular interactions are simplified

by introducing these two phenomenological pseudo-potentials, and the effect of hard-core

short-ranged repulsion is accounted for through the incompressibility constraint.

The grand canonical partition function Ξ is found by summing over all system configu-

rations that are consistent with the incompressibility and chain length constraints that we

impose on our system; it is given by

Ξ = exp[−βG(T, V, µ)]

=
∞∑

ns,np=0

1
ns!np!

eβµLAnp

vns(LA)np

∫ ns∏
j=1

d~rj

∫ np∏
i=1

D[~ri]

×
∏
~r

δ(φ̂s + φ̂p − 1)
∏
τ

δ(|∂τ~ri| − 1)e−βH, (4.6)

where
∏
~r δ(φ̂s + φ̂p − 1) accounts for the incompressibility constraint φ̂s + φ̂p = 1 at all

locations within the system volume, and
∏
τ δ(|∂τ~ri| − 1) denotes the fixed chain length

constraint |∂τ~ri| = 1 over the entirety of the path coordinate τ for each polymer chain.
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The integration over D[~ri] implies path integration over all conformations of the polymer

chain [36]. We use the solvent volume v and polymer volume LA as volume scales instead of

the de Broglie wavelengths cubed, which merely shifts the chemical potential by a constant

quantity and does not affect the thermodynamic behavior of our system.

The partition function Eq. 4.6 cannot be evaluated exactly due to the many-chain nature

of the molecular interactions and the incompressibility constraint. To make progress, we

use field-theoretical techniques [37, 38] to transform the many-chain problem into a single-

chain problem in fluctuating effective potential fields. This is done by performing a series

of identity transformations through functional integration over a number of auxiliary field

variables. The resulting expression for the grand canonical partition function is now

Ξ =
∫
DφpDWsDWpDSDΛ exp

{
i

∫
d~rWs(1− φp)+

i

∫
d~r [Wpφp + Λ : S]− χ

∫
d~r φp(1− φp) +

a

2

∫
d~r S : S +

1
v
zs(Ws) +

eβµLA

LA
zp(Wp,Λ)

}
, (4.7)

where φp and S are respectively the local volume fraction and order parameter density

fields, and Ws,Wp, and Λ are effective fluctuating fields conjugate to the solvent volume

fraction, the polymer volume fraction, and the order parameter density, respectively. The

solvent volume fraction has been eliminated by the use of the incompressibility constraint. In

Eq. 4.7, zs(Ws) and zp(Wp,Λ) are respectively the single-solvent-molecule partition function

and single-polymer-chain partition function, given by

zs(Ws) =
∫
d~r e−ivWs(~r ), (4.8)
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and

zp(Wp,Λ) =
∫
D[~r (τ)] exp

{
− ε

2

∫ L

0

(
∂~u

∂τ

)2
dτ−

iA

∫ L

0
dτ

[
Wp(~r (τ)) + Λ(~r (τ)) :

(
~u~u− 1

3
I
)]}

. (4.9)

Though equally difficult to evaluate exactly, the partition function written in the form of Eq.

4.7 is more amenable to systematic approximations. In particular, the self-consistent-field,

or mean-field approximation (we will use these two terms synonymously in this chapter),

is obtained by a saddle-point approximation to the functional integrals, i.e.,by locating the

stationary points of the exponent in Eq. 4.7 with respect to the field variables.

Setting the functional derivatives of the exponent in Eq. 4.7 with respect to the field

variables to zero, we obtain the self-consistent-field equations:

1− φp = e−vws , (4.10)

φp = −e
βµLA

LA

δzp
δwp

, (4.11)

wp − ws = χ(1− 2φp), (4.12)

h = −aS, (4.13)

S = −e
βµLA

LA

δzp
δh

, (4.14)

where we have defined the fields ws = iWs, wp = iWp, and h = iΛ on account of the fact

that the saddle-point values of the field variables Ws, Wp and Λ lie on the imaginary axis.

At the mean-field level, the above set of equations fully describe the thermodynamics,

and, through the single-chain partition function (Eq. 4.9), the conformation properties of

the liquid-crystalline polymer solution modeled by the Hamiltonian (Eq. 4.2). They are
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applicable to problems involving spatial inhomogeneity of polymer concentration and order.

Here we focus on the equilibrium, bulk behavior with uniaxial order.

We choose the nematic director to be aligned in the z-direction; thus the order parameter

is given by

S = S0

(
ẑẑ − 1

3
I
)
. (4.15)

The self-consistent-field equations can be solved analytically by first eliminating the vari-

ables, ws, wp and h in favor of the bulk volume fraction of the polymers, φp, and the scalar

order parameter S0. Because S is defined as the order parameter density, S0 vanishes in

the limit of zero concentration even if all the chains are fully aligned. We thus define a

normalized scalar order parameter m by

m =
S0

φp
=

1
L

∫ L

0
dτ

〈(
3
2
u2
z(τ)−

1
2

)〉
, (4.16)

where 〈. . .〉 indicates an average with respect to the single-chain, self-consistent-field Hamil-

tonian,

βH0 =
ε

2

∫ L

0

(
∂~u

∂τ

)2

dτ − aφpmA

∫ L

0
dτ

(
u2
z(τ)−

1
3

)
. (4.17)

We note the effective Hamiltonian (Eq. 4.17) only contains orientation terms thus simplify-

ing the calculation of the chain statistics, which we discuss in more detail in the following

section.

The grand potential density g is equivalently expressed as the osmotic pressure defined

through p = −[g(φp)− g(0)] and given by

βp = −1
v

log(1− φp)− χφ2
p −

1
3
aφ2

pm
2 − φp

v
+

φp
LA

. (4.18)
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The chemical potential µ is given by

βµ =
1
LA

log φp −
1
v

log(1− φp) + χ(1− 2φp)−
1
LA

log q, (4.19)

where the single-polymer molecule orientation partition function q is calculated from the

self-consistent field Hamiltonian, Eq. 4.17. And finally, the Helmholtz free energy density

(up to an additive constant) for a single, homogeneous phase is

βf = −βp+ βµφp

=
φp
LA

log φp +
(1− φp)

v
log(1− φp) + χφp(1− φp)

+
a

3
φ2
pm

2 +
φp
v
− φp
LA

− φp
LA

log q. (4.20)

Phase coexistence can be found by minimizing the total Helmholtz free energy of a composite

system of two homogeneous phases or equivalently by the respective equality of the osmotic

pressure and the chemical potential of the two coexisting phases. In Sec. 4.5, we demonstrate

several scenarios for phase separation that is predicted by our model.

Eqs. 4.10 through 4.14 constitute the exact solution for the saddle point of Eq. 4.7.

The solution of the self-consistent Eq. 4.16 and the evaluation of the single-chain partition

function q in Eq. 4.19 require the conformation statistics of a single chain in a finite nematic

field (cf. Eq. 4.17). We address the single chain statistics in Sec. 4.3 by mapping it to the

quantum mechanics of a rigid rotor in a quadrupole field for which spheroidal functions

provide the exact eigenfunctions.

In the solvent-free limit, our results reduce to that previously given by Wang and Warner

for thermotropic nematic polymers [20]. Transition from an isotropic phase to a nematic
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phase occurs when

− log 4π =
aLA

3
m2 − log q, (4.21)

where m is determined self-consistently from Eq. 4.16.

4.3 Chain Statistics

The self-consistent-field approximation reduces the many-chain problem to a single chain

in a (self-consistent) external field. Thus an essential input to the SCF theory is the single-

chain statistics. The chain statistics are described by a Green’s function G(~r, ~u|~r0, ~u0, L),

which gives the joint probability for a polymer chain to start and end with specified positions

and orientations as a function of the chain length. While in general we need to consider

both the position and orientation dependence of the Green’s function, for the homogeneous

phases we consider here, it suffices to focus on the orientation variable. Thus we consider

the reduced Green’s function G(~u|~u0, L), defined as

G(~u|~u0, L) =
∫ ~u

~u0

D[~u(τ)]e−βH0[~u(τ)], (4.22)

from which the partition function q and the order parameter m can be calculated using

q =
∫
d~u

∫
d~u0G(~u|~u0, L), (4.23)

m =
3

2L

(
∂ log q
∂κ

)
ε
, (4.24)

where κ = aφpmA.

The orientation path integration for the Green’s function of a wormlike chain is analo-

gous to the calculation of the probability amplitude for a quantum mechanical rotor, where
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the chain length plays the role of an imaginary time variable [36, 39]. Using this analogy,

we derive a diffusion equation for the chain statistics that is analogous to the Schrödinger

equation. The diffusion equation for the Green’s function is

[
∂

∂L
− 1

2ε
∇2
u − aφpmA

(
uzuz −

1
3

)]
G(~u|~u0, L) = δ(L)δ(~u− ~u0) (4.25)

where ∇2
u is the angular portion of the Laplace operator. Our statistical problem is essen-

tially a unit vector diffusing over the surface of a sphere, biased by a quadrupole potential

favoring the poles.

Equation 4.25 is solved using an eigenfunction expansion by defining the Hamiltonian

operator H = −∇2
u − γuzuz, where γ = 2aφpεmA = 2εκ. The eigenfunctions of H are the

spheroidal functions [40] Yspml with eigenvalues Eml (γ). Owing to the completeness of the

spheroidal functions, the Green’s function is written as

G(~u|~u0, L) =
∞∑
l=0

l∑
m=−l

Cml (L)Yspml (~u)Yspm∗l (~u0), (4.26)

accounting for the initial condition G(~u|~u0, 0) = δ(~u−~u0), where the chain-length dependent

coefficients are given by

Cml = exp
[
−
(
Eml (γ) +

γ

3

)
L

2ε

]
. (4.27)

Since the Green’s function only provides orientation statistics, the expectation value of

any quantity must be expressed in terms of orientation variables only. Clearly the Green’s

function including position variables provides an easier formalism for calculating arbitrary

averages; however, analytical expressions for the full Green’s function do not exist, and

approximate techniques have a limited range of validity [39].
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Several methods exist for the calculation of the spheroidal functions. Numerical pack-

ages [41, 42, 43] have been developed that accurately evaluate the functions and their

eigenvalues. The spheroidal functions can also be evaluated by expansion in terms of the

more common spherical harmonics (Y m
l ) [40, 20]; we outline this technique in Appendix

A. The spheroidal functions asymptotically approach the spherical harmonics in the limit

of γ → 0, thus in this limit, Eml approaches l(l + 1). The opposite limit (γ → ∞) yields

asymptotic expressions for Eml in terms of γ [40], which we exploit later in this section.

While the eigenfunction expansion Eq. 4.26 is formally exact for any bending rigidity,

the limit of a fully rigid chain (ε → ∞) is more conveniently solved directly by setting

ε→∞ in Eq. 4.25, which yields

G(~u|~u0, L) = exp
[
aφpmAL

(
u2
z −

1
3

)]
δ(~u− ~u0). (4.28)

The partition function in this limit is

q = 4πh−1 exp

(
−h

2

3

)∫ h

0
dx exp(x2)

= 2π3/2h−1 exp

(
−h

2

3

)
erf(ih), (4.29)

where h =
√
aφpmAL and erf is the error function. The order parameter is given by

m =
3π exp

(
2
3h

2
)

h2q
− 3

4h2
− 1

2
. (4.30)

The expression for the partition function requires evaluation of the parameter h by solv-

ing the self-consistent equation for the order parameter. The rigid rod limit provides an

important reference for examining the effects of finite chain flexibility, which we discuss in
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Sec. 4.5.

Since the rigid rod limit represents the limit where all eigenfunctions are necessary

in the Green’s function to properly capture the chain statistics, the opposite limit occurs

when only a couple of eigenfunctions need to be included in the Green’s function, which

we define as the limit of ground-state dominance [20, 44]. This typically occurs for long

chain length; however, the behavior of the arguments of Cml within Eq. 4.26 in the presence

of the nematic interaction alters the criteria for ground-state dominance. Furthermore,

the number of eigenfunctions required to capture the chain statistics depends on the field

strength; for example, the isotropic state requires only the ground state, whereas it is

necessary to include both the ground and first excited states to capture the chain statistics

in the limit of strong field strength. Therefore for arbitrary field strength γ, we identify the

general criteria for ground-state dominance as

L(E0
2 − E0

0 )
2ε

� 1, (4.31)

requiring a large separation between the ground and second excited states. We determine the

ground-state dominance criteria analytically for the limit of weak and strong field strength.

As previously stated, the eigenvalues Eml approach l(l + 1) as γ goes to zero (weak

nematic interaction). In this limit, ground-state dominance occurs when L/ε � 1. The

Green’s function is dominated by the first term only, which has a trivial behavior since

Y sp0
0 → 1/

√
4π in this limit (independent of orientation); the effect of the chain rigidity is

only significant when the chain length is comparable in size to the persistence length.

The case of strong nematic interaction (γ � 1) presents a very different scenario. In

this limit, adjacent eigenvalues of the spheroidal functions asymptotically approach each
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other, i.e. Emm+2n+1 → Emm+2n (n = 0, 1, 2, . . .) as γ → ∞; therefore, the coefficient of the

ground and first excited states asymptotically approach each other in Eq. 4.26 (C0
0 → C0

1 ).

We must include both the ground and first excited states in this limit in order to properly

capture the chain statistics. Criteria for ground-state dominance (Eq. 4.31) requires a large

separation between the nearly degenerate ground states and the next excited state. Using

the asymptotic behavior of Eml for γ � 1 [40], this occurs when

L

2ε

[
4γ1/2 − 4− 7

2γ1/2
+O(γ−1)

]
� 1. (4.32)

Ground-state dominance thus occurs for a combination of long polymer chains and/or large

interaction strength. Unlike the case of ground-state dominance for weak interaction, the

Green’s function in this limit demonstrates very rich physical behavior, which we explore

in Sec. 4.5.

Here we provide the asymptotic expressions for the single-chain partition function and

the normalized nematic order parameter that appear in the SCF equations in the limit of

γ � 1. Keeping all available terms,

log q =
L

2ε

(
2
3
γ − 2γ1/2 + 1 +

1
4γ1/2

+
1
4γ

+

23
64γ3/2

+
41

64γ2
+

681
512γ5/2

+O(γ−3)
)
, (4.33)

m = 1− 3
2γ1/2

− 3
16γ3/2

− 3
8γ2

− 207
256γ5/2

−

123
64γ3

− 10215
2048γ7/2

−O(γ−4). (4.34)

As in the rigid limit, Eq. 4.34 provides a self-consistent equation for solving for the order

parameter m, or equivalently the interaction strength γ, which is then used in the expres-
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sion for q. We define the single-chain quadrupole (i.e., second Legendre polynomial P2)

fluctuation as

∆m =
1
L2

∫ L

0
dτ

∫ L

0
dτ ′

〈
P2(τ)P2(τ ′)

〉
−
(

1
L

∫ L

0
dτ 〈P2(τ)〉

)2

=
9

4L2

(
∂2 log q
∂κ2

)
ε

, (4.35)

which we make use of in Sec. 4.4. The asymptotic behavior of ∆m is given by

∆m =
9ε
4L

(
1
γ3/2

+
3

8γ5/2
+

1
γ3

+
345

128γ7/2
+

123
16γ4

+
23835

1024γ9/2
+O(γ−5)

)
. (4.36)

The asymptotic behavior for q, m, and ∆m permits the evaluation of the binodal and

spinodal curves in the limit defined by Eq. 4.31.

In the flexible chain limit (ε/L → 0), the spheroidal functions become the spherical

harmonics; therefore, the use of Eq. 4.26 in the flexible limit provides analytical expressions

for chain averages. The flexible limit results in a solution with no orientational order

(m = 0); however, the quadrupole fluctuation ∆m has a finite value [21], which is given by

∆m =
6ε

45L

{
1− ε

3L

[
1− exp

(
−3L
ε

)]}
. (4.37)

With this expression, the limit of metastability of the isotropic phase can be calculated

using the equations provided in Sec. 4.4.
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4.4 Gaussian Fluctuations

Our development of the SCF theory provides a natural framework for incorporating fluc-

tuations. This is accomplished by including fluctuations in the field variables from their

saddle-point or SCF values. Of particular interest is the free energy cost for arbitrary density

and order parameter fluctuations in the nematic state. Such a free energy yields information

on the concentration-concentration, order-parameter-order-parameter, and concentration-

order-parameter correlations, as well as the thermodynamic stability of the system. When

properly projected, the fluctuation free energy in the nematic state can be used to de-

termine the three Frank elastic constants [45] for the long wavelength bending, splay and

twist deformation of the nematic director. This idea has been used in the work of Liu and

Fredrickson [21]. However, as alluded to in the introduction, their treatment of the nematic

state is through an order-parameter expansion around the isotropic state which makes use

of chain statistics in the isotropic state. Not only is the description of the nematic state

approximate, but the chain conformation change as described in Sec. 4.5 and its influ-

ence on the thermodynamics cannot be properly captured in this perturbative approach.

In contrast, our theory will treat fluctuations around the exact saddle point; the chain

conformation changes and the attended changes in thermodynamics will be automatically

incorporated through the single-chain partition function in the self-consistent field.

We defer the presentation of the general fluctuation theory to a future paper. In this

chapter, we restrict our consideration to homogeneous, or zero-wavenumber fluctuations in

the density and the magnitude of the order-parameter to illustrate the main idea. The

spinodal, or limit of metastability, is determined from the vanishing of the determinant of

the quadratic coefficients of the fluctuation free energy.

Starting from our expression for Ξ in terms of the functional integral (Eq. 4.7), we write
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the field variables as their saddle-point values plus fluctuations, and expand the exponent

in the integrand to quadratic order in the fluctuations. The linear terms vanish identi-

cally owing to the saddle-point nature of the expansion. The quadratic fluctuations in the

auxilliary fields ∆Ws, ∆Wp and ∆Λ can be easily integrated out to yield a resulting fluc-

tuation free energy in terms of the fluctuation in the physical fields: the density ∆φp and

the order-parameter ∆S. The fluctuation free energy is

β∆G
V

=
1
2

(
1

v(1− φp)
+

1
LAφp

+
m2

LAφp∆m
− 2χ

)
∆φp∆φp −

m

LAφp∆m
∆φp∆S +

1
2

(
1

LAφp∆m
− 2a

3

)
∆S∆S

≡ Cφφ
2

∆φp∆φp + CφS∆φp∆S +
CSS
2

∆S∆S. (4.38)

We use Eq. 4.38 to determine the limit of metastability, or spinodal, of a homogeneous

phase, either isotropic or nematic. Instability occurs when fluctuations reduce the free

energy. In the case of an isotropic phase, the order-parameter and concentration fluctuations

are uncoupled; thus the spinodal occurs when either CSS or Cφφ is equal to zero, the

former corresponding to an instability with respect to the nematic state and the latter

corresponding to isotropic-isotropic phase separation. For the nematic case, we see that

the modes are coupled in the fluctuation free energy; therefore, instability occurs by a

mixture of concentration and order-parameter fluctuations, marked by the vanishing of the

determinant of Cij (i,j = φp,S).

We note that, perhaps to be expected, the spinodals identified from examining the

fluctuation around the saddle point coincide with those determined from the matrix of

the second derivatives of the Helmholtz free energy. However, the free energy cost for

fluctuations around the saddle point can only be correctly calculated by the fluctuation free
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energy described here.

4.5 Results and Discussion

With the self-consistent-field theory, we can address both the phase behavior and the chain

statistics at the mean-field level. We first define the set of dimensionless parameters that

will be used in the calculations presented in this section. Since the volume of the solvent

v enters as a natural volume scale, we define a dimensionless volume of the polymer N by

N = LA/v, which can be considered an effective degree of polymerization. The Maier-

Saupe and Flory-Huggins parameters, both having dimensions of inverse volume, can be

similarly made dimensionless by defining ã = av and χ̃ = χv. A dimensionless persistence

length (or bending energy) can be defined by ε̃ = εA/v; thus, N/ε̃ = L/ε. In the interest of

simplifying notation, we will drop the tilde from these dimensionless parameters.

4.5.1 Phase Behavior

We start with a discussion of the phase behavior of a semiflexible polymer solution. In

addition to the coexistence curves between thermodynamically stable phases, we are also

interested in determining the various spinodals for the limit of metastable states. Both

pieces of information can be obtained from examining the behavior of the grand free energy

density (the negative of the osmotic pressure p up to a constant) and the chemical potential

µ. A typical plot of these two quantities that shows coexistence and spinodal is given in

Fig. 4.1 for a fixed set of parameter values (N = 20, ε = a = 3.7875, and χ = 1.0100). We

now discuss its key features.

In Fig. 4.1, we denote the isotropic branch by the solid line and the nematic branch

by the dashed line. For low polymer volume fractions, the osmotic pressure is low and the
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chemical potential is large and negative; the system is a dilute isotropic solution. On the

scale of the figure this dilute solution behavior is represented by the nearly vertical line. This

line intersects the line representing the concentrated isotropic solution (φp = ∂p/∂µ) at the

point indicated by the diamond. This is the coexistence between a polymer-lean isotropic

phase (φp = 0.0030) and a polymer-rich isotropic phase (φp = 0.6404). This transition is

caused by the positive (repulsive) Flory-Huggins parameter between the solvent and the

polymer and is identical to phase separation of flexible polymer solutions at the mean-

field level. The segment between the diamond and the asterisk represents a metastable

(supersaturated) polymer-lean solution. The asterisk with φp = 0.0518 marks the limit of

metastability. Similarly, the segment between the diamond and the pentagram corresponds

to a metastable (undersaturated) polymer-rich phase, the limit of metastability occuring

at the pentagram with φp = 0.4779. The segment between the pentagram and the asterisk

corresponds to thermodynamically unstable states; a system having an overall composition

in this range will spontaneously phase separate into the thermodynamically stable polymer-

rich and polymer-lean phases with their equilibrium compositions.

For overall volume fractions above φp = 0.6404, the isotropic branch of the polymer-rich

phase crosses the nematic branch at the point indicated by the circle. At this point, the

isotropic phase, with a volume fraction of φp = 0.6966, is in coexistence with a nematic

phase, with a volume fraction of φp = 0.8082. The transition from isotropic to nematic is

associated with a first order jump in the order parameter from zero to m = 0.4711 for the

chosen set of parameters. To the right of the circle, the thermodynamically stable state is

the nematic phase. However, the isotropic phase can remain metastable for volume fractions

up to φp = 0.8371 indicated by the square in Fig. 4.1, where the isotropic phase reaches its

spinodal with respect to the nematic state. An interesting characteristic of this instability
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Figure 4.1: The solution for the phase behavior for N = 20, a = ε = 3.7875, and χ = 1.0100
is indicated in this plot of βp verses βµ. The nematic branch (dashed line) approaches the
isotropic branch (solid line) as the field strength approaches zero. The point of isotropic-
nematic coexistence (circle) occurs when the two branches cross. The points of instability
associated with this phase transition occur at the triangle and the square. The point of
isotropic-isotropic coexistence (diamond) corresponds to the Flory-Huggins phase transi-
tion [34], and the limits of metastability associated with this phase transition are indicated
by the asterisk and the pentagram.



83

is that the volume fraction of the isotropic phase at the spinodal is larger than the volume

fraction of the nematic phase at the binodal. Consequently, we expect that the metastable

isotropic phase will transition directly into a pure nematic phase rather than phase separate

into coexisting isotropic and nematic phases. On the nematic branch, in the direction of

decreasing the polymer volume fraction, the nematic state becomes metastable below the

coexistence volume fraction, φp = 0.8082. The metastable state terminates at the spinodal

point of φp = 0.7589, indicated by the triangle. As discussed in Sec. IV, the instability of

the nematic state is due to a combination of concentration and order-parameter fluctuation.

Performing the analysis discussed above as we vary the parameters of the model al-

lows us to construct the phase diagram in these parameters. The interplay between the

isotropic Flory-Huggins interaction and the nematic Maier-Saupe interaction, and the dif-

ferent combinations of the enthalpic and entropic contributions in these parameters, can

lead to different types of equilibrium phase diagrams. Phase diagrams of our current system,

as well as closely related systems, have been found with similar topology as the diagrams

that we present in this section [22, 46, 47]. Assuming a given temperature dependence of

the parameters in the model, these phase diagrams can be reproduced more accurately with

our current SCF method. However, rather than an exhaustive listing of the types of phase

diagrams, we will only discuss three phase diagrams, as examples of the application of our

SCF method and to discuss certain issues not emphasized in previous studies.

In the first example, we show a full phase diagram (Fig. 4.2) for a fixed length of

polymer chains N = 20 over a range of the other parameters (a = ε = 3.75χ). When these

parameters are purely energetic in origin, increasing them is equivalent to decreasing the

temperature. In general, however, χ and a contain both entropic and enthalpic components;

thus varying them with the fixed ratio should be more properly interpreted as specifying
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Figure 4.2: A phase diagram for a polymer-solvent system with polymer molecules with
degree of polymerization N = 20 for parameter values of a = ε = 3.75χ. The solid lines
are the binodal coexistence curves. The dashed line is the isotropic spinodal curve due to
concentration fluctuations, and the dotted line is the isotropic spinodal curve due to order
fluctuations. The dashed-dotted line is the nematic phase spinodal curve, which occurs due
to a combination of concentration and order fluctuations. The equilibrium phase behavior
is labeled within each region. We label several points of significance that are explained
further in the text.

a particular surface in the larger multi-dimensional phase diagram. The features we will

discuss are not affected by how these parameters are to be interpreted, but for convenience,

we will refer to the increase in these interaction parameters as decreasing the temperature.

The equilibrium coexistence curves for the different phases labeled in Fig. 4.2 are shown

by the thick solid lines. As the values of these interaction parameters increase from zero,

the first point of significance in Fig. 4.2 is a critical point at χ = 0.7486 and φp = 0.1829

indicating the beginning of a two-phase region of the phase diagram where a polymer-lean

isotropic phase is in coexistence with a polymer-rich isotropic phase. This point corresponds

to the critical point predicted in the Flory-Huggins theory [34], which at the mean-field level

is unaffected by the alignment interaction and the bending rigidity. The second point of
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interest is the onset of nematic ordering in the solvent-free limit (φp = 1), which occurs at

a = ε = 3.2528 where the order parameter jumps from zero to m = 0.3488. When solvent

is present, the first-order transition in the order parameter is accompanied by a finite

concentration change between the isotropic and nematic phases. The isotropic-isotropic

coexistence and the isotropic-nematic coexistence meet at a triple point (indicated by the

diamond) for χ = 1.0271 and a = ε = 3.8515 where three phases coexist [isotropic 1

(φp = 0.0024), isotropic 2 (φp = 0.6530), and nematic (φp = 0.8055)]. Above the triple

point, the thermodynamically preferred phase behavior within the binodal envelope is a

polymer-lean isotropic phase in coexistence with a polymer-rich nematic phase.

Of particular interest are the various spinodal lines in the phase diagram. Examination

of the location of these spinodals reveals interesting mechanisms for the possible kinetics

of the phase changes. Consider, for example, a temperature quench along the vertical bar

at φp = 0.45 in Fig. 4.2 from the isotropic phase (point A) to a point inside the dashed

spinodal. If the quench is to a temperature higher than the triple point (point B), then

the system will undergo spinodal decomposition into a polymer-lean isotropic phase and

a polymer-rich isotropic phase. However, if the quench is deeper than the triple point,

the situation is quite subtle. The reason is that the polymer-rich isotropic branch of the

binodal (shown by the thin solid line), though superseded by the nematic branch, never

loses its local thermodynamic stability. As long as the concentration of the (isotropic)

polymer-rich phase is still below the spinodal with respect to the nematic state shown by

the dotted line, it can exist as a metastable state. Thus it is conceivable that for quenches

slightly above the triple-point but less than indicated by the cross (point C), the first step

in the phase separation is still spinodal decomposition into a polymer-lean isotropic phase

and a polymer-rich isotropic phase. The appearance of the nematic phase will take place
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inside the polymer-rich phase via nucleation. For quenches beyond the cross (point D),

the concentration of the polymer in the polymer-rich phase that results from the spinodal

decomposition exceeds the spinodal for appearance of the nematic phase; thus as soon as the

system phase separates in concentration, the nematic phase will appear spontaneously in the

polymer-rich phase. Finally, for very deep quenches beyond the spinodal with respect to the

nematic phase (point E), nematic order will appear directly, driving the phase separation

into a polymer-lean isotropic phase and a polymer-rich nematic phase. In practice, the last

two phase separation scenarios may not be distinguishable, although the primary driving

forces are different.

The spinodals to the right of the triple point similarly have interesting kinetic implica-

tions. In particular, part of the spinodal of the isotropic polymer-rich phase with respect

to nematic ordering lies within the two-phase coexistence region and part of it lies in the

single-phase nematic region. Thus, for example, a quench at say φp = 0.7 beyond this spin-

odal will lead to phase separation into a polymer-lean isotropic phase and a polymer-rich

nematic phase, whereas a quench at φp = 0.9 will lead to the spontaneous appearance of

the nematic order without any phase separation. The kinetic scenario for the latter case is

likely the coarsening of nematic domains via non-conserved order parameter dynamics.

The dynamics of spinodal decomposition in a liquid crystal (rodlike)-polymer system [46]

is shown to exhibit fibrillar network morphologies in similar scenarios of decomposition as

described here. These findings suggest that domain morphology during phase separation

is strongly influenced by the quench on the phase diagram as well as the phase separation

and ordering kinetics.

As we decrease the Flory-Huggins parameter relative to the Maier-Saupe interaction,

the isotropic-isotropic bulge in the phase diagram will shrink, eventually shifting the critical
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Figure 4.3: A phase diagram for a polymer-solvent system with polymer molecules with
degree of polymerization N = 20 for parameter values of a = ε = 7.5χ. The solid lines
are the binodal coexistence curves. The dashed line is the isotropic spinodal curve due to
concentration fluctuations, the dotted line is the isotropic spinodal due to order fluctuations,
and the dashed-dotted line is the nematic phase spinodal curve. The equilibrium phase
behavior is labeled within each region.

point inside the isotropic-nematic envelope, thus making it a metastable critical point.

Fig. 4.3 shows such a phase diagram for a system with N = 20 and a = ε = 7.5χ (similar

parameters as for Fig. 4.2 with a reduced χ-parameter). Metastable critical points occur in

a number of physical systems. In model colloidal systems, for example, when the coexistence

curve between two fluid phases lies within the phase envelope between a dilute fluid phase

and a crystalline phase, the presence of the metastable critical point is shown to have a

dramatic effect on the nucleation barrier for the formation of the crystalline phase [48,

49]. In the vicinity of the critical point, the free-energy barrier is dramatically decreased,

and nucleation rates increase by many orders of magnitude. Critical fluctuation in the

colloidal density creates a locally dense fluid pocket which facilitates the formation of the

crystalline phase. It has also been suggested that polymer crystallization from the melt can

be similarly assisted by the presence of a buried fluid-fluid binodal curve within the fluid-
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Figure 4.4: A phase diagram for a polymer-solvent system with polymer molecules with
degree of polymerization N = 20 for parameter values of a = ε and χ = 0. The solid lines
are the binodal coexistence curves. The dotted line is the isotropic spinodal curve, and the
dashed-dotted line is the nematic phase spinodal curve. The equilibrium phase behavior is
labeled within each region.

crystal coexistence envelope, where the nucleation barrier also goes through a minimum

at the metastable critical point [50]. The enhancement of crystal nucleation due to the

presence of a metastable critical point has important implications in protein and polymer

crystallization, where the quality of the final crystalline material is dramatically influenced

by the nature of the crystallization process. Because the phase diagram shown in Fig. 4.3 has

identical topology to those for the systems just mentioned, we expect phenomenologically

similar effects on nucleation of the nematic phase due to the presence of a metastable

isotropic-isotropic critical point.

To complete our discussion of the effect of reduced Flory-Huggins parameter on the

phase behavior, we show in Fig. 4.4 a phase diagram for the limiting case of χ = 0, keeping

other parameters to be the same as in Figs. 4.2 and 4.3. In this case, the isotropic-isotropic

coexistence has completely disappeared and the driving force for phase separation is entirely
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due to the Maier-Saupe alignment interaction. Nevertheless, the energy gain for chains to

locally align with each other creates an effective attraction between the chain segments,

leading to a large fractionation in the chain density between the isotropic phase and the

nematic phase.

The three phase diagrams presented in this article are essentially snapshots of the full

phase diagrams along some particular coordinate in the parameter space. Many other types

of phase diagrams are possible. For example, for systems where chain alignment is caused

by hard-core repulsion, the isotropic part of the chain-chain interaction is repulsive, leading

to a negative χ parameter. The phase diagram that results from this case then resembles

that of the Onsager type [51] for the hard rods with a narrow concentration gap between

the isotropic and nematic phases.

We end this section on the phase behavior with a brief discussion of the effects of chain

rigidity. Depending on the ratio between the persistence length and the contour length, a

wormlike chain is broadly categorized into three scaling regimes: flexible when this ratio is

small, rigid when this ratio is large, and semiflexible when this ratio is of order unity. An

interesting question is to what extent can a wormlike chain with large but finite stiffness

be described as an effective rigid rod with regard to the phase behavior. To address this

question, we have computed several phase diagrams by varying the chain stiffness while

keeping other parameters fixed. Instead of showing more phase diagrams, in this article we

focus on the value of the Maier-Saupe parameter aT at the thermotropic (φp = 1) isotropic-

nematic transition, which is governed by Eq. 4.21. This information is implicitly included

in most theoretical studies on the isotropic-nematic transition in wormlike polymers, but we

are not aware of any efforts at explicitly addressing the effect of chain stiffness in reference

to the rigid limit.
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Figure 4.5: The behavior of the Maier-Saupe parameter at the thermotropic transition point
aT relative to the rigid rod value versus the reduced chain rigidity ε/N for a chain length
of N = 20.

Using Eqs. 4.29 and 4.30, we find, for a rigid rod system, the thermotropic isotropic-

nematic transition occurs at aRRT = 6.8122/N (the superscript RR denotes rigid rod) where

the order parameter transitions from zero to mRR = 0.4290. Since fluctuation from the per-

fectly straight conformation reduces the degree of orientational order, the onset of nematic

order requires a larger Maier-Saupe parameter (or lower temperature) when the bending

rigidity is reduced. We plot in Fig. 4.5 the deviation of aT from aRRT [(aT−aRRT )/aRRT ] over a

range of bending rigidity for a fixed chain length N = 20, found by solving Eq. 4.21. Fig. 4.5

covers the transition behavior over several orders of magnitude of the reduced chain rigidity

ε/N thus providing data for polymer systems ranging from very flexible to very rigid. Even

for relatively rigid polymer chains, the difference from the perfectly rigid rod transition is

substantial. For example, when ε/N ≈ 10, we see the rigid rod prediction for aT , and thus

the isotropic-nematic transition temperature, is inaccurate by approximately 10%. This

substantial inaccuracy suggests that the range of validity of the rigid rod approximation is
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quite limited, thus demonstrating the need to consider the finite flexibility for predicting

the isotropic-nematic transition in experimental systems.

4.5.2 Chain Statistics

In this section, we consider the single-chain conformation and thermodynamic properties

in a nematic field. At the self-consistent-field level, the single-chain behavior is described

by a wormlike chain in a quadrupole potential field of strength κ = aφpmA; see Eq. 4.17.

Note that since several different combinations of the Maier-Saupe parameter a, the volume

fraction of the polymer φp and the normalized order-parameter m can give the same κ,

the single-chain behavior at the SCF level does not correspond to a unique thermodynamic

state.

We start with mean-square end-to-end distance tensor given by

〈RiRj〉 =
∫ L

0
dτ1

∫ L

0
dτ2 〈ui(τ1)uj(τ2)〉 , (4.39)

where Ri (i = 1, 2, 3) is the i-th component of the end-to-end vector ~R ≡ ~r(L) − ~r(0) of

the polymer and we choose the 3rd direction to be that of the nematic director. Evaluation

of Eq. 4.39 is accomplished by calculating the thermal average using the Green’s function

provided in Sec. 4.3 or, alternatively, using the perturbation partition function method

given in Appendix B. Since the perturbation partition function is a generator of arbitrary

moments of ~R, it can be used to numerically solve for the Green’s function that includes

the end locations by performing a moment-based expansion [39]; we will not pursue such

an effort in this chapter, however.

In the limit of zero field strength κ, the Hamiltonian Eq. 4.17 is invariant under arbitrary

rotation of the coordinate frame; therefore, the average end-to-end distance is equivalent
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in all three directions, and symmetry dictates that 〈RiRj〉 = 0 for i 6= j. In this limit, the

polymer chain end-to-end behavior is

〈RiRj〉 =
2
3
δij

[
εL+ ε2 exp

(
−L
ε

)
− ε2

]
, (4.40)

where δij is the Kronecker delta. Eq. 4.40 has the ballistic scaling L2 for L/ε � 1 and

the diffusive scaling L for L/ε � 1, signifying the cross-over from a relatively rigid to a

relatively flexible polymer chain. The chain statistics identify the persistence length ε as an

orientation correlation length.

For finite values of the field strength κ, the arbitrary rotational invariance of the Hamil-

tonian is broken. However, Eq. 4.17 is invariant under rotation about the z axis (3rd

direction). The chain statistics for the Hamiltonian results in
〈
R2

1

〉
=
〈
R2

2

〉
6=
〈
R2

3

〉
, and

symmetry dictates that 〈RiRj〉 = 0 for i 6= j. The splitting of the average end-to-end

distance in the directions perpendicular (transverse) to the nematic field (1 and 2) from the

parallel (longitudinal) direction (3) implies the emergence of two different orientation corre-

lation lengths: the transverse correlation length ξ⊥ and the longitudinal correlation length

ξ‖. Due to the favorable interaction between the chain tangent vector and the nematic field,

we expect ξ‖ > ξ⊥.

The average 〈RiRj〉 can be readily evaluated numerically using the eigenfunction expan-

sion of the Green’s function. However, ground-state dominance is valid over a wide range

of parameter values (criteria discussed in Sec. 4.3) and is useful in predicting the behavior

of ξ⊥ and ξ‖. Evaluation of 〈ui(τ1)uj(τj)〉 is greatly simplified for the case of ground-state
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dominance, and we find

ξ⊥ =
2ε

E1
1 − E0

0

, (4.41)

ξ‖ =
2ε

E0
1 − E0

0

. (4.42)

Eqs. 4.41 and 4.42 are valid for arbitrary values of γ (recall γ = 2εκ) provided that the

ground-state dominance conditions are met. It is instructive to consider the asymptotic

behaviors for weak and strong nematic interaction. For weak field strength (γ � 1), the

correlation lengths in the two directions are ξ⊥ = ξ‖ = ε, as expected, since E0
0 = 0 and

E1
1 = E0

1 = 2 at γ = 0. In the limit of strong nematic interaction (γ � 1), we make use of

the asymptotic behavior of Eml [40, 20] and find

ξ⊥ =
ε

γ1/2
(
1− 1

2γ1/2 −O(γ−1)
) , (4.43)

ξ‖ =
ε exp

(
2γ1/2

)
16γ

(
1− 1

γ1/2 −O(γ−1)
) . (4.44)

The leading-order terms in these asymptotic expressions recover the scaling behavior of

these two correlation lengths given in previous studies [30, 31, 32, 33]. Note that the chain

deformation in the nematic phase is characterized by an exponential growth of ξ‖ in the

field strength γ and an algebraic decay of ξ⊥. The large discrepancy in the chain geometry

has been demonstrated experimentally [13], clearly showing the elongation of the chain in

the direction of nematic ordering.

In Fig. 4.6, we show the behavior of ξ⊥ (solid line) and ξ‖ (dashed line) versus the field

strength γ using the exact solutions given by Eqs. 4.41 and 4.42. In the isotropic phase

(γ = 0), the two correlation lengths are equal, and, as we increase the nematic interaction
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Figure 4.6: The perpendicular correlation length ξ⊥/ε (solid line) and parallel correlation
length ξ‖/ε (dashed line) versus the field strength γ from Eqs. 4.41 and 4.42, respectively.
The asymptotic behavior of ξ⊥ (dashed-dotted line) and ξ‖ (dotted line), given by the
leading-order term in Eqs. 4.43 and 4.44, respectively, are included for large γ.

from zero, the two correlation lengths split. For γ > 10, we see the correlation lengths

rapidly diverge from each other, indicative of the coil-to-stretch transition. The asymptotic

behavior given by the leading-order term in Eq. 4.43 (dashed-dotted line) and Eq. 4.44

(dotted line) respectively, are included in Fig. 4.6 for large γ, which converge on our exact

solutions near γ = 100. Fig. 4.6 illustrates the usefulness of our results in capturing the

chain statistical behavior in the intermediate-field-strength regime, which is important in

describing the chain behavior under experimentally relevant conditions.

Following Ref. [33], we construct a general expression for 〈ui(τ1)uj(τ2)〉making use of the

correlation lengths ξ⊥ and ξ‖ that are consistent with the definition of the order parameter

m [33],

〈ui(τ1)uj(τ2)〉 =
δij − δi3δj3

3
(1−m) exp

(
−|τ1 − τ2|

ξ⊥

)
+

δi3δj3
3

(1 + 2m) exp

(
−|τ1 − τ2|

ξ‖

)
. (4.45)
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We comment that while this expression recovers the exact known result in the isotropic

state, it is only valid for sufficiently long chain or large field strength in the nematic state.

The reason is that in the nematic state the end portions of the chain behave differently

from the mid portion; the difference becomes insignificant only in the long chain or large

field strength limit. Mathematically this limit is equivalent to the ground-state dominance

condition discussed in Sec. 4.3. Combining the ground-state dominance criterion (Eq. 4.31)

with the general expression for the correlation length in the perpendicular direction Eq. 4.43,

we find that the condition becomes simply L � ξ⊥ [52]. Using Eq. 4.45 in Eq. 4.39 and

noting the condition L� ξ⊥, we obtain

〈RiRj〉 =
2
3
(δij − δi3δj3)(1−m)ξ⊥L+

1
3
δi3δj3(1 + 2m)

{
2ξ‖L− 2ξ2‖

[
1− exp

(
− L
ξ‖

)]}
, (4.46)

The behavior of
〈
R2

3

〉
(parallel direction) shows a scaling cross-over from L2 to L at L ∼ ξ‖

caused by the emergence of hairpin defects in the chain conformation; thus the correlation

length ξ‖ can be identified as the average length between hairpin defects for a polymer chain

in a uniform nematic phase.

In Fig. 4.7, we show the behavior of the mean square end-to-end distance (Eq. 4.39)

for a range of chain lengths at a fixed value of ε = κ = 3, which is consistent with the

order of magnitude of the parameters in Figs. 4.2, 4.3, and 4.4. The plot shows
〈
R2

3

〉
(solid

line) and
〈
R2

1

〉
(dashed line) together with the isotropic solution (dotted line) (Eq. 4.40)

as a function of the non-dimensionalized chain length N (recall N = LA/v, where A is

the cross-section area of the chain and v is the volume of a solvent molecule). Fig. 4.7

shows three distinct regimes. For very short chains (L < ξ⊥), the mean square end-to-end
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Figure 4.7: The mean square end-to-end distance in the nematic and the perpendicular
directions versus the chain length for fixed ε = κ = 3. The top figure shows

〈
R2

3

〉
(solid line)

and
〈
R2

1

〉
(dashed line) plotted with the isotropic solution (dotted line) given by Eq. 4.40,

with appropriate scalings included.

distances in the transverse (1st) and longitudinal (3rd) directions are equal to the mean-

square end-to-end distance in the isotropic phase and exhibit the ballistic N2 scaling. For

longer chains (ξ⊥ < L < ξ‖), we see the separation between the end-to-end distances in

the transverse and longitudinal directions due to the presence of nematic order. The chain

conformation is essentially aligned in the nematic direction with small excursions in the

transverse directions thus resulting in the ballistic scaling N2 in the longitudinal direction

and the diffusive scaling N in the transverse direction in this intermediate regime. In the

final regime (N > ξ‖), the end-to-end distance in the parallel direction now also scales as N

due to the introduction of hairpin turns in the conformation that can be located anywhere

along the chain with nearly equal probability.

Next we discuss the effect of the nematic interaction on the single-chain energetics. We

define the free energy of a single chain fSC = − log [q/(4π)] relative to the isotropic phase

in units of kBT . There are two energy contributions to the free energy, the bending energy,
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EbendSC , and the energy due to alignment by the nematic field, EalignSC , which can be obtained

from

EbendSC = −ε
(
∂ log q
∂ε

)
κ
, (4.47)

EalignSC = −κ
(
∂ log q
∂κ

)
ε
. (4.48)

The single chain entropy sSC , in units of kB, is calculated using the definition of the free

energy fSC = EbendSC + EalignSC − sSC . Since these thermodynamic quantities are relative to

the isotropic phase, they all approach zero in the limit of κ→ 0.

Upon increasing κ from zero, all these thermodynamic quantities decrease: EalignSC ob-

viously decreases as can be seen directly from the second term in the effective single-chain

Hamiltonian Eq. 4.17. The increased degree of alignment suppresses the thermal wrinkles

in the chain conformation, which reduces the bending energy EbendSC . The entropy sSC is

similarly reduced because of the reduction in the effective number of degrees of freedom

associated with the thermal wrinkles. And finally, thermodynamic stability dictates the

free energy fSC must decrease as the alignment field strength increases.

In the limit of weak field strength κ, the partition function can be expanded in powers

of κ. This is equivalent to a perturbation expansion around the isotropic state. Because

of the rotational symmetry, the linear terms in the field κ vanish identically. Thus, the

thermodynamic quantities all scale as κ2 as the leading correction in the weak field limit.

In the limit of strong field strength κ, we can find the asymptotic behavior of the ther-

modynamic quantities using ground-state dominance of the partition function q (Eq. 4.33),

which is good for parameters satisfying Eq. 4.31. The limiting behavior of the free energy

and the alignment energy is fSC = EalignSC = −2Lκ/3 + O(κ1/2), and the bending energy
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and entropy approach sSC = 2EbendSC = −L
√

2κ/ε + O(κ0) as κ → ∞. Thus the free en-

ergy is dominated by the alignment energy and the relationship between the entropy and

the bending energy is a manifestation of the equipartition theorem for the small trans-

verse fluctuation of a nearly straight chain. In this strong field limit, it is more instructive

to define changes in the thermodynamic quantities relative to the infinite field (perfectly

aligned) state. Using the ground-state equations in Sec. 4.3 and the limiting behavior of ξ⊥

(Eq. 4.43), we find

∆fSC
fSC

∼ ∆EalignSC

EalignSC

∼ ∆EbendSC

EbendSC

∼ ∆sSC
sSC

∼ ξ⊥
ε
, (4.49)

where ∆fSC = fSC − fSC(κ→∞) (similarly for the other quantities). Thus in the strong

field limit, the relative change in the thermodynamic quantities with reference to the per-

fectly aligned state scales as the ratio of the transverse correlation length to the natural

persistence length of the chain. This scaling reflects the importance of the small amplitude

fluctuations in the transverse directions for the single-chain thermodynamics in this limit.

Since the longitudinal correlation length ξ‖ does not appear at the leading order, hairpin

defects do not play a significant role in the thermodynamic quantities, even though they

play a key role in determining the chain size. The reason is that in the strong field limit,

ξ‖ is exponentially larger than ξ⊥ (see Eqs. 4.43 and 4.44), and hence the number of active

degrees of freedom associated with the hairpin defects is exponentially small compared to

the degrees of freedom due to the local transverse fluctuations.

In Fig. 4.8, we show the behavior of the single-chain free energy (solid line), the bending

energy (dashed-dotted line), the alignment energy (dashed line), and the entropy (dotted

line) over a range of the field strength κ for a fixed chain length N = 20 and persistence
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Figure 4.8: The behavior of the Free Energy fSC(solid line), the bending energy
EbendSC (dashed-dotted line), the alignment energy EalignSC (dashed line), and the entropy (dot-
ted line) of a single chain relative to the isotropic state as a function of the field strength κ
for a fixed value of N = 20 and ε = 3. Appropriate scalings in κ are included.

length ε = 3. The indicated scalings for large field strength κ are consistent with the limiting

behaviors just described. The scaling cross-over evident in Fig. 4.8 is due to the freezing

of the small amplitude conformation fluctuations that occurs as ξ⊥/ε → 0. The crossover

occurs at ξ⊥/ε ∼ 1 or equivalently γ ∼ 1.

4.6 Summary and Conclusions

In this chapter, we have studied the liquid crystalline polymer solution behavior by using a

systematic self-consistent-field approach that simultaneously describes the solution thermo-

dynamics and the single-chain statistical properties. The set of SCF equations are derived

by using a field-theoretical approach and emerge as the lowest order approximation to the

exact solution. The SCF theory reduces the many-chain problem to a single-chain in a

self-consistent quadrupole field, which is then solved exactly using spheroidal functions.

As applications of the SCF theory, we have examined the phase behavior of the liquid-
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crystalline polymer solutions and calculated the single-chain conformation and thermody-

namic properties in the nematic state. The interplay between the isotropic Flory-Huggins

and anisotropic Maier-Saupe part of the two-body interaction leads to a variety of interest-

ing phase diagrams. Analysis of the various spinodal curves in the phase diagram suggests

rich and complex phase transition kinetics. For systems with sufficiently strong Flory-

Huggins repulsive interactions between the polymer and the solvent, we point out several

interesting situations where phase transition kinetics evolves along a multiple-step path that

involves changes in the primary thermodynamic driving forces due to the coupling between

concentration and nematic order. For example, for temperature quenches into certain part

of the phase diagram we predict spinodal decomposition dynamics leading to isotropic-

isotropic phase separation followed by subsequent nucleation of the nematic phase from the

polymer-rich isotropic phase. When the polymer-solvent interaction is reduced, the critical

point for isotropic-isotropic transition shifts inside the isotropic-nematic coexistence enve-

lope thus becoming a metastable critical point. Just as in previous studies on colloidal

systems and polymer crystallization with similar phase diagrams where it has been shown

that the metastable critical point dramatically facilitates the formation of the crystalline

phase near it, so here too we expect that the nucleation barrier for a liquid crystalline phase

near a metastable critical point will be significantly reduced. By a comparison with the

rigid-rod system. we find that chain flexibility significantly reduces the degree of nematic

order even for quite stiff chains.

The single-chain statistics in the nematic state at the mean-field level is shown to be

governed by only the natural persistence length of the polymer ε and a dimensionless nematic

field strength γ = 2εaφpmA where a is the strength of the Maier-Saupe interaction, φp the

volume fraction of the polymer, m a normalized nematic order parameter, and A the cross-
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section area of the chain. Thus a given γ can correspond to multiple thermodynamic states

of the polymer solution. The presence of a nematic field leads to the appearance of two

length scales, a correlation length parallel to the nematic direction ξ‖ and a correlation

length perpendicular to the nematic direction ξ⊥. Using ground-state dominance valid for

sufficiently long chains, we provide exact results for these length scales that are valid for

arbitrary field strengths and that reduce to the known results in the large field limit. In the

strong field limit, these length scales correspond respectively to the average distance between

hairpins and the persistence length for the fluctuation of the director in the transverse

directions. Interestingly, we find that whereas hairpins play a critical role in determining

the chain dimensions in the nematic state, it is the transverse fluctuations that dominate

the single-chain thermodynamic properties in the strong field limit.

A major advantage of our approach is the systematicness with which mean-field the-

ory is derived and the exact treatment of the chain statistics at the mean-field level. Our

development of the self-consistent-field theory provides a natural framework for incorporat-

ing fluctuations, with the mean-field thermodynamic and single-chain properties calculated

here serving as the essential input. In particular, the exact treatment of the chain statistics

in the nematic state allows a non-perturbative treatment of the coupling between concen-

tration and nematic order in the nematic phase. We have provided a cursory outline of the

structure of the fluctuation theory for zero wave-number or homogeneous concentration and

order parameter fluctuations and used this theory to determine the limit of metastability

of the various phases. In a future publication, we will present the full fluctuation theory;

such a theory will provide a non-perturbative, first-principles approach for computing the

Frank elastic constants of a nematic polymer solution.
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Appendix A: Spheroidal Functions

We have chosen to calculate the spheroidal functions by expanding them in terms of the

more familiar spherical harmonics [53]. Application of recursive relations to the spherical

harmonics results in

cosθY m
l = A

(+)m
l Y m

l+1 +A
(−)m
l Y m

l−1, (A-1)

where the coefficients are given by

A
(+)m
l =

[
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)

]1/2
,

(A-2)

A
(−)m
l =

[
(l −m)(l +m)
(2l − 1)(2l + 1)

]1/2
.

(A-3)

The Hamiltonian matrix for our eigenvalue problem is given by

〈
Y m′
l′ |HY m

l

〉
= l(l + 1)δl,l′δm,m′ −

γ
[(
A

(+)m
l A

(−)m
l+1 +A

(−)m
l A

(+)m
l−1

)
δl,l′ +

A
(+)m
l A

(+)m
l+1 δl+2,l′ +A

(−)m
l A

(−)m
l−1 δl−2,l′

]
δm,m′ , (A-4)

and the spheroidal functions are found by inversion of the Hamiltonian matrix, which is

written in expansion form as

Yspml =
∞∑
n=0

a
|m|
l,n Y

m
n . (A-5)

We note within the expansion that evaluation of cos2θY m
l results in spherical harmonics

with the l index raised and lowered by 2 and the m index unaffected, thus the expansion of

the spheroidal functions into spherical harmonics does not require a summation over an m

index. Furthermore, the summation over n in the expansion only requires the same parity



103

functions to show up, meaning that for odd l, the summation need only include odd n, and

for even l, the summation need only include even n.

The spherical harmonics are an orthonormal basis set of the form

∫
d~uY m

l Y m′∗
l′ = δl,l′δm,m′ ; (A-6)

furthermore, the complex conjugate of a spherical harmonic satisfies

Y m∗
l = (−1)mY −m

l , (A-7)

thus the spheroidal functions and their coefficients satisfy

Yspm∗l = (−1)mYsp−ml , (A-8)

∞∑
n=0

a
|m|
l,n a

|m|∗
l′,n = δl,l′ . (A-9)

The numerical evaluation of the expansion coefficients requires truncation of the summation

to a finite number of functions; however, as the ratio L/(2ε) grows large, only the first couple

of eigenfunctions are necessary to accurately calculate the chain statistics. We have found

agreement of the eigenvalues of the spheroidal functions given in current literature [41] when

we sum the spherical harmonics up to an l-index of 150 for modest values of γ.

Numerical evaluation of the spheroidal functions allows for the evaluation of

q = 4π
∞∑
l=0

C0
l (L)|a0

l,0|2, (A-10)

m =
3

2L

(
∂ log q
∂κ

)
ε
, (A-11)
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where κ = aφpmA. In addition to the evaluation of the equilibrium potentials, knowledge

of the chain statistics allows us to evaluate averages within the nematic phase [20].

Appendix B: Perturbation Partition Function

An average quantity can be evaluated by integrating over all values of the quantity times

the probability, which, depending on the complexity of the average, is quite difficult to per-

form numerically. For example, the average end-to-end distance in the z-direction squared

requires the evaluation of 〈cos θ(τ) cos θ(τ ′)〉, which contains three Green’s functions in

the integration: G(~uf |~u(τ), L − τ), G(~u(τ)|~u(τ ′), τ − τ ′), and G(~u(τ ′)|~u0, τ
′). After some

simplifications, the quantity 〈cos θ(τ) cos θ(τ ′)〉 contains five summations in the numerical

summation, which is extremely time consuming to calculate accurately. This is a very sim-

ple average in comparison to the averages that are necessary to account for density and

order fluctuations in the free energy [21].

Since we have already approximated the partition function by expanding the spheroidal

functions in the spherical harmonics, we can calculate the partition function by adding

a perturbation term to the Hamiltonian, thus rendering a partition function that acts as

a generating function of the averages of interest. Specifically, we calculate the partition

function for the Hamiltonian

βH∆ = βH0 − ~∆ ·
∫ L

0
dτ~u(τ), (B-1)

which has chain statistics that satisfy

[
∂

∂L
− 1

2ε
∇2
u − aφpmA

(
uzuz −

1
3

)
− ~∆ · ~u

]
G(~u|~u0, L) = δ(L)δ(~u− ~u0). (B-2)
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Formulating the solution identically to the solution of the spheroidal functions, the eigen-

functions of this equation are expanded in terms of the spherical harmonics. Application of

recurrence relations to the spherical harmonics [53] results in

eiφ sinθY m
l = −B(+)m

l Y m+1
l+1 +B

(−)m
l Y m+1

l−1 , (B-3)

e−iφ sinθY m
l = B

(+)−m
l Y m−1

l+1 −B
(−)−m
l Y m−1

l−1 , (B-4)

where the coefficients are given by

B
(+)m
l =

[
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)

]1/2
,

(B-5)

B
(−)m
l =

[
(l −m)(l −m− 1)

(2l − 1)(2l + 1)

]1/2
.

(B-6)

The resulting Hamiltonian matrix for our eigenvalue problem is

〈
Y m′
l′ |HY m

l

〉
= l(l + 1)δl,l′δm,m′ −

γ
[(
A

(+)m
l A

(−)m
l+1 +A

(−)m
l A

(+)m
l−1

)
δl,l′ +

A
(+)m
l A

(+)m
l+1 δl+2,l′ +A

(−)m
l A

(−)m
l−1 δl−2,l′

]
δm,m′

+
∆x

2

(
B

(+)m
l δl+1,l′ −B

(−)m
l δl−1,l′

)
δm+1,m′

−∆x

2

(
B

(+)−m
l δl+1,l′ −B

(−)−m
l δl−1,l′

)
δm−1,m′

+
∆y

2i

(
B

(+)m
l δl+1,l′ −B

(−)m
l δl−1,l′

)
δm+1,m′

+
∆y

2i

(
B

(+)−m
l δl+1,l′ −B

(−)−m
l δl−1,l′

)
δm−1,m′

−∆z

(
A

(+)m
l δl+1,l′ +A

(−)m
l δl−1,l′

)
δm,m′ . (B-7)

Solving the eigenvalue problem, we expand the Green’s function in terms of these new
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eigenfunctions, which can be integrated over the end orientations to yield the partition

function q∆. Taking derivatives with respect to the perturbation field strength ~∆ generates

end-to-end averages, which we perform numerically.
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Chapter 5

Free Expansion of Elastic
Filaments

The dynamics of an elastic polymer filament undergoing contour length expansion is studied

using computer simulation. The expansion occurs by development of transverse buckling

waves which grow through a coarsening process. The growing buckles locally organize into

a helical structure with a characteristic persistence length. The helical domain boundaries

are eliminated from the relaxing structure by unwinding through the ends of the rod. The

growth of the helical domains results in self-propulsive motion of the expanding rod as one

large helix spanning the entire chain relaxes during the late stages of the dynamics. Stability

analyses and scaling arguments are provided to explain the simulation results.

5.1 Introduction

Many important biological and polymeric systems quickly respond to changes in their sur-

rounding conditions by altering their conformations. These conformational adjustments

include volume expansion in response to changes in conditions of the solution (pH, temper-

ature, salinity) and volume compression due to externally applied stress or intramolecular

attraction. For example, anionic hydrogel [1] microspheres respond to changes in pH and salt

concentration by expanding to a swelling ratio of as much as 12. Microgels, which respond
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to these changes much faster than slab gels (0.5 seconds verses hours), are being evaluated as

likely candidates for drug delivery systems because of their small size (∼ 10 µm) and short

response time. Similar gel chemistry is employed in the production of nanoscale conduits [2].

Single nanotubes can be formed from biomembrane vesicles by bonding a substrate to the

membrane surface and drawing a stabilized fluid-lipid bilayer. The caliber of the nanometer

scale tube can be experimentally controlled in the range 20 to 200 nanometers. The nan-

otube is stabilized by photochemical polymerization of cross-linking monomers contained

within the lipid bilayer, resulting in a cross-linked gel cylinder of nanometer scale radius

and near-millimeter length. When anionic hydrogel chemistry is employed, nanotubes with

the capability of expanding their equilibrium lengths are produced. Nanoscale devices may

use the expansion of these nanotubes for hydrodynamic propulsion or as mechanical levers,

where adjustments in the solution conditions trigger the desired response. Understanding

the dynamics of this expansion process is important for the design of nanoscale devices.

Toward this goal, we simulate and analyze the free expansion of an initially straight elastic

rod after a sudden change in the solvent conditions.

A closely related problem of buckling of an elastic filament in a viscous medium un-

der uniaxial compression with fixed ends has been studied by Golubovic et al [3]. It was

found that the compression causes a transverse buckling instability with a characteristic

wavelength. Through buckling, the compressional strain is reduced by expansion in the

transverse direction at the expense of incurring bending deformation. The buckling phe-

nomenon occurs spontaneously through a symmetry breaking, and the buckled configuration

evolves as a phase ordering process.

The expansion of an elastic filament with free ends after a sudden change of solvent

condition can exhibit a similar buckling instability to the case of applied external stress with
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fixed ends. This conclusion, however, is not obvious, because whereas transverse buckling

is the only mechanism to relieve the compressional strain in the case of fixed ends, a rod

with free ends has the option of increasing its length through longitudinal expansion. We

will identify the conditions under which longitudinal relaxation dominates the expansion

process. Since free expansion through transverse buckling represents a richer and more

interesting phenomenon, it will be the focus of our study. Nevertheless, longitudinal motion

will be shown to have a significant effect on the dynamics, particularly on the expansion of

the major axis of the rod.

We study the expansion dynamics by computer simulation and by extending previous

analyses of the buckling phenomenon of filaments with fixed ends. We focus on the three

dimensional structure of the dynamic process of expansion. The initial instability produces

wavelike deformations in the two transverse directions. As the wavelike buckles grow, they

coalesce to form helical structures in order to assume a growing conformation of constant

curvature along the backbone. Domains of helical orientation spontaneously form due to

statistical deviation of the buckle wavelength from the most unstable value. The sizes

of the helical domains grow as the rod expands, until the rod conformation is dominated

by a single helical orientation. The final structure is a pure helix (single handedness);

although the system initially lacks any chiral preference. An interesting consequence of the

growth of the helical domains is the phenomenon of self-propulsion [4] of the expanding

body throughout the expansion process. We present methods for measuring the average

persistence length of the helical domains and explain their growth as a dissipative process.
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5.2 Elastic Rod Model

We consider a thin rod of initial equilibrium length L0 and uniform circular cross-sectional

area A0, made of isotropic elastic material. At the order of linear elasticity, the deformation

of the rod can be decomposed into compression/expansion, bending, and twist. In this

first study, we ignore the twist deformation. In the case of a rod with free ends, twist

deformation is dissipated out of the unconstrained body. The resistance to twist dissipation

is much smaller than the resistance to drift motion of the entire rod; therefore, we neglect

body rotation and focus on the drift motion of the chain. The shape of this thin rod is then

described by a space curve r(s) where s is an internal contour coordinate that runs from 0

to L0. The linear compression/expansion strain, measured with respect to the initial rest

length L0, is given by

e(s) = 1−
∣∣∣∣∂r∂s

∣∣∣∣ , (5.1)

where we have defined the strain to be positive if it corresponds to compression. How-

ever, we are interested in the dynamic evolution of the rod after a sudden change in the

solvent condition causes a change in the equilibrium length. Under the new condition, the

equilibrium length of the rod becomes Lf > L0. The rod at the initial length L0 will now

experience a compressional strain with respect to the new equilibrium length. It is therefore

more convenient to define a strain with respect to the new equilibrium length Lf :

e(s) = γ0 −
∣∣∣∣∂r∂s

∣∣∣∣ , (5.2)

where γ0 ≡ Lf/L0 is the swelling ratio in the longitudinal direction.
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The strain energy due to compression is then

Ucom =
κ̃

2

∫ L0

0
e(s)2ds, (5.3)

where κ̃ is the compression modulus and is related to the Young’s modulus E of the elastic

material by κ̃ = EA0. We will ignore the change in the Young’s modulus due to the

expansion of the rod.

The bending energy is due to curvature distortion of the rod from its equilibrium value,

which in our case is taken to be zero. For an unstretchable rod model, such as the Kratky-

Porod wormlike chain model [5, 6], the curvature is simply ∂2r
∂s2

. However, in our case the

length of the rod is not conserved, and curvature is more properly defined as 1
γ
∂
∂s

1
γ
∂r
∂s where

γ(s) =
(
dr
ds ·

dr
ds

)1/2
relates the true arc length to the backbone internal coordinate. The

bending energy is then given by

Ubend =
ε̃

2

∫ L0

0

(
1
γ

∂

∂s

1
γ

∂r
∂s

)2

ds, (5.4)

where the bending modulus ε̃ is found from the geometry of a gently bent cylinder to be

EA2
0/(4π) [7].

To numerically solve the dynamic equation of motion, we discretize the rod into N + 1

“beads” with an initial bead separation of l0 = L0/N . In this discretized representation,

the compression and bending energies become

Ucom =
κ

2

N∑
n=1

e2n, (5.5)
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where en = γ0 − |Rn+1−Rn|
l0

gives the internal strain, and

Ubend =
ε

2

N−1∑
n=1

(tn+1 − tn)2, (5.6)

where tn = (Rn+1−Rn)
|Rn+1−Rn| is the unit tangent vector. The moduli are now given by κ = l0κ̃ =

El0A0 and ε = ε̃/l0 = EA2
0/(4πl0) and have units of energy. We will use the moduli κ and

ε in the subsequent analysis.

We describe the dynamics of the thin rod by an overdamped Rouse dynamics in a viscous

medium [8]. The equation of motion is

ξ
∂Rn(t)
∂t

= − ∂U

∂Rn
+ fn(t), (5.7)

where ξ is the friction coefficient of the solvent and fn(t) represents the random forces

due to thermal noise. We will be interested in deformation energies (both bending and

compression) that are large compared to the thermal energy; therefore, we will ignore any

randomness except that associated with the initial perturbation. In Sec. IV, we further

discuss the conditions where thermal fluctuations significantly contribute to the expansion

dynamics and justify the neglect of the thermal fluctuations in our study.

Analysis of the equations of motion of the beads yields two fundamental time scales

τcom = ξl20/κ and τbend = ξl20/ε, associated with the location compression and bending re-

laxation, respectively. An additional time scale τ0 associated with the buckling phenomenon

(see Sec. IV) arises from the expansion dynamics. In order to resolve these fundamental

time scales (τcom, τbend, and τ0), the numerical solution of Eq. 5.7 is conducted using time

steps that are small in comparison. For the parameters that we choose, these three time

scales are on the same order of magnitude; therefore, we arbitrarily choose to scale time by
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the fundamental buckling time τ0.

5.3 Expansion Dynamics

Our simulations focus on the dynamics of an initially straight rod of length 199.0 l0 expand-

ing to a final equilibrium length of 298.5 l0 (50 % expansion). We use a Young’s modulus of

104 Nm−2, representing that of polyethyleneglycol (400) methacrylate hydrogel [9]. Choos-

ing an initial interbead spacing lo = 346.38 nm and radius R = 292.40 nm results in a

compression modulus κ = 9.304× 10−16 J and bending modulus ε = 1.657× 10−16 J .

We seed the initially straight chain with a small random perturbation in the transverse

direction of an amplitude of 0.01 l0. (This initial condition does not reflect the tendency

for a chain under thermal fluctuations to favor long wavelength perturbations. We have

conducted simulations with perturbations produced by thermal equilibration of a chain

with the initial interbead spacing, and observe qualitatively similar results to those with

random perturbations.) At time zero, the equilibrium interbead separation is suddenly

changed from l0 to 1.5 l0, and the subsequent evolution of the structure of the chain is

followed by numerically integrating Eq. 5.7.

We analyze the dynamics of the expanding chain using several metrics. The compres-

sion and bending energies are calculated from the bead coordinates using Eq. 5.5 and

Eq. 5.6. The shape of the chain is characterized by the radius-of-gyration tensor T [10].

The transverse buckling wavelength is measured by using the slope-slope correlation func-

tion Kss(r, t) [3]. And finally, the correlation length of the handedness of the transverse

fluctuation is measured by introducing the torsion-torsion correlation function Kττ (r, t).

A typical set of snapshots of the expanding chain is shown in Fig. 5.1. It is clearly

seen that an initially straight chain develops buckling waves and that these waves grow
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Figure 5.1: Snapshots of the chain conformation during the free expansion process. We
show conformations at 2.2051 τ0, 11.233 τ0, 57.224 τ0, 291.51 τ0, 1485.0 τ0, 7564.6 τ0, 38535
τ0, 196300 τ0, and 1000000 τ0, successively.
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Figure 5.2: Bending energy Ubend (dashed curve), compression energy Ucom (dashed-dotted
curve) and total potential energy U = Ubend + Ucom (solid curve) during the expansion
process.

through a coarsening process. The organization of the buckling waves into helices can also

be observed.

Upon the development of buckling waves, the compression energy due to the altered

equilibrium interbead spacing is partially converted into bending energy. This repartitioning

of energy continues throughout the entire coarsening process. In Fig. 5.2, we show the

evolution of the two energy contributions during the expansion of the chain. The drop in

the compression energy and sharp rise in the bending energy corresponds to a time when

the buckling waves begin to grow significantly. Once the buckling waves are fully developed,

both energy contributions decay due to dissipation. Over a broad intermediate time range,

the decay of both contributions follows a power law with exponent −1/2 and −1 for the

bending and compression energies, respectively. These features are qualitatively similar to

those in the buckling dynamics due to compression along a rod with fixed ends, as analyzed

by Ref. [3]. The very long time behavior is the relaxation of a bend with a length scale the
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size of the entire chain; relaxation of this long wavelength bend should be exponential and

will be governed by the longest relaxation time associated with the bending motion. We

note that full relaxation cannot be reached in the case of chains with fixed ends, and the

simulation time in Ref. [3] was not long enough to reach this terminal regime.

To analyze the shape evolution of the expanding chain, we introduce the radius-of-

gyration tensor T, calculated from the bead coordinates Rn and the center of mass coordi-

nate Rc(t) = 1
N+1

∑N+1
n=1 Rn(t):

Tij(t) =
1

N + 1

N+1∑
n=1

[Ri,n(t)−Rci (t)][Rj,n(t)−Rcj(t)], (5.8)

where i and j denote cartesian components x, y, and z, and n denotes the discrete backbone

coordinate. The square roots of the three eigenvalues of the tensor T (R1, R2, and R3)

give a measure of the size of the chain along the major axis x1 and the two minor axes x2

and x3, which are the eigenvectors of T. Fig. 5.3 shows the evolution of the three principal

radii of gyration with time. Since the major radius R1 starts from a large nonzero initial

value, we present data for R1(t)−R1(0). This difference is seen to increase linearly at first

and then turn into a slower square-root power increase around the time the buckling waves

develop. The two minor radii start at a small value and then rapidly increase when the

buckling waves begin to develop. Afterwards, they follow a t1/4 power law growth until

eventually dropping back to zero when the chain is fully relaxed. The small differences in

R2 and R3 are due to statistical errors, as these two axes are equivalent.

Following Ref. [3], we define the slope-slope correlation function Kss to calculate the

characteristic wavelength λ of the buckling waves. The transverse slope VT
n is the projection
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Figure 5.3: (a) Expansion dynamics of the major axis ∆R1 = R1−R1(t = 0) (solid curve).
The dashed curve corresponds to the analytical solution (Eq. 5.16) for the expansion of a
rod in one dimension. (b) Time evolution of the minor axes R2 (solid curve) and R3 (dashed
curve) during the expansion process.
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Figure 5.4: The time evolution of the average wavelength of the buckled perturbation
λ (solid curve) and the average persistence length of the buckle handedness λH (dashed
curve).

of the relative bead position Vn = Rn+1 −Rn onto the tranverse axes x2 and x3:

VT
n (t) = [x2(t) ·Vn(t)]x2 + [x3(t) ·Vn(t)]x3, (5.9)

and the slope-slope correlation function is defined as

Kss(r, t) =< VT
n+r(t) ·VT

n (t) >, (5.10)

where the angular brackets refer to a statistical averaging of many runs with different real-

izations of the initial random seeding. For a perfect sinusoidal wave, the function Kss(r, t)

changes sign twice during one full period in r, the first zero occurring at one quarter of the

wavelength λ. We therefore define the characteristic wavelength as four times the value of

r where Kss(r, t) first becomes zero.

In order to measure the persistence of the handedness of the transverse fluctuation λH ,
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we introduce the torsion-torsion correlation function Kττ . For a space curve, torsion τ is

defined to measure the instantaneous amount that the curve is distorted out of a planar

path. Mathematically [11],

τ = −n · db
ds
, (5.11)

where n is the unit normal, which is a measure of the normalized rate of change of the

tangent vector t with respect to the arc length s and b is the unit binormal, defined as the

cross product of the tangent vector with the unit normal. The sign of the torsion determines

the handedness of the distortion: a right handed distortion generates a positive torsion; a

left handed distortion generates a negative torsion. The torsion-torsion correlation function

is defined as

Kττ (r, t) =< τn+r(t)τn(t) > . (5.12)

This function switches sign at half the correlation length of the helical orientation λH .

In Fig. 5.4, we show the time evolution of the buckling wave length λ and the helical

correlation length λH . The initial random seeding does not favor any particular wavelength;

however, after some initial incubation period, the transverse fluctuation picks up a domi-

nant wavenumber corresponding to a plateau in λ(t). Subsequently, the coarsening of the

buckles leads to an increase in the average wavelength, manifested as a t1/4 power law for

a broad range of the intermediate times. The growing wavelike buckles in three dimen-

sions organize into helical domains, which are separated by domain boundaries that may

be viewed as imperfections within the helical structure. The energy associated with the

boundary imperfections is relaxed by diffusion of the imperfections from the system, thus

the helical correlation length increases until the structure is a pure helix.

In order to clearly show the formation of a helical buckled conformation, we have per-
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Figure 5.5: Early stage time evolution of the minor axes R2 (solid curve) and R3 (dashed
curve). This simulation seeds one transverse direction with the unstable wavelength λo of
amplitude 0.1 l0 and the other transverse direction with random perturbation of amplitude
0.01 l0.

formed simulations where the initial condition is seeded with a preferential perturbation

along one of the two transverse directions. Specifically, we set the y-component of the ini-

tial transverse perturbation to a sinusoidal wave with an amplitude of 0.1 l0 and with a

wavelength λo, the fastest growing wavelength determined from the linear stability analysis

(see next section). The z-component of the initial perturbation is set to a random fluctu-

ation with an amplitude of 0.01 l0. The time evolution of the two minor axes is shown in

Fig. 5.5. The separation of the two minor axes R2 and R3 at the beginning of the expansion

process reflects the favoring of the y-component. The two magnitudes increase parallel to

each other until R2 has expanded to a threshold value, at which point R2 levels off. The

smaller minor axis R3 catches up to the larger minor axis R2. Thereafter, they continue to

increase; however, the two radii become roughly equal. The structure at this point becomes

clearly helical, as confirmed by direct visualization of the chain configuration. The helical

conformation minimizes the bending energy by distributing a constant curvature over the



125

length of the elastic chain.

5.4 Linear Stability Analysis and Dynamic Scaling

In this section, we perform a linear stability and scaling analysis with the goal of obtaining a

physical understanding of the results presented in the previous section. We first analyze the

early stage dynamics which focuses on the initial expansion of the chain in the longitudinal

direction and the development of the buckling wave. We then use a simple energy argument

to understand the driving force for the formation of helices. Finally, we use scaling anal-

ysis to rationalize the observed intermediate and long time scaling behavior of the various

quantities.

At the early stage of the expansion, the chain is essentially straight with small transverse

perturbations. It is therefore convenient to decompose the chain configuration into longitu-

dinal and transverse components, with the longitudinal axis parallel to the initial orientation

of the chain. We define a longitudinal deformation u(s) through rL = [s+ u(s, t)]x̂, where

rL is the longitudinal position of the chain backbone at internal coordinate s. Note here

that the longitudinal deformation is defined with respect to the initial equilibrium position

of the chain. The transverse deformation RT (s) at s is simply the deviation from the initial

chain axis. The equations of motion for these components are obtained in a manner similar

to Eq. 5.7 taking special care to maintain the dimensions in the continuous model; they are

ξ
∂u

∂t
= −κ∂e

∂s
− εl20

∂

∂s

{
1
γ

∂

∂s

[
1
γ2

∂

∂s

(
1
γ

∂(s+ u)
∂s

)]}
, (5.13)

ξ
∂RT

∂t
= −κ ∂

∂s

(
e
∂RT

∂s

)
− εl20

∂

∂s

{
1
γ

∂

∂s

[
1
γ2

∂

∂s

(
1
γ

∂RT

∂s

)]}
. (5.14)

The early stage dynamics is dominated by the compression energy. Since the initial
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conformation is essentially straight, the beads move in the longitudinal direction as if they

are confined to move in one dimension. Ignoring the transverse components leads to the

following simplified equation of motion for the longitudinal deformation:

ξ
∂u

∂t
= κ

∂2u

∂s2
. (5.15)

It is convenient to define the internal coordinate s ∈ [−L0/2, L0/2]. This equation is

supplemented by the final value u(s,∞) = e0s and the zero strain boundary conditions at

the two chain ends. The solution can be readily obtained as an eigenfunction expansion

which reads

u = e0s−
e0L0

π2

∞∑
p=0

(−1)p

(p+ 1
2)2

sin
[
2π
(
p+

1
2

)
s

L0

]
exp

[
−4π2κ

(
p+

1
2

)2 t

ξL2
0

]
. (5.16)

Eq. 5.16 defines a set of relaxation times for the eigenmodes. In particular, a “Rouse-

like” time associated with the slowest longitudinal relaxation mode can be identified as

τlong = ξL2
0/(π

2κ).

Using Eq. 5.16, we obtain the evolution in the radius of gyration for a chain expanding

in one dimension. For short times, the change in the radius of gyration is given by

Rg −Rg(t = 0) =

√
1
L0

∫ L0/2

−L0/2
(s+ u)2ds− L0

2
√

3

≈ 2
√

3κe0
ξL0

t

= L0e0
2
√

3
π2

t

τlong
. (5.17)

This predicted linear behavior is in perfect agreement with the simulation result shown in

Fig. 5.3.
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The one-dimensional configuration of a chain with internal compressional strain is unsta-

ble with respect to small transverse perturbation. The initial instability can be understood

through a simple linear stability analysis. Representing the transverse perturbation as a si-

nusoidal wave with wavenumber k, RT ∼ Ak exp(iks), and substituting it into the equation

of motion, Eq. 5.14, we find that the amplitude of the perturbation Ak will grow for k’s

in the range |k| < e
1/2
0 (κ/ε)1/2/l0. The most unstable (i.e., fastest growing) mode is that

with ko = ±e1/20 (κ/ε)1/2/(
√

2l0), corresponding to a wavelength λo of 2πl0[κe0/(2ε)]−1/2.

The most unstable mode predicted from the linear stability analysis does not favor the y

or z directions, nor does it favor the cosine or sine contributions. This suggests that the

transverse perturbations in the two unexplored dimensions initially are independent of each

other; however, statistically, the amplitude of the most unstable mode is equivalent in these

two dimensions.

The linear stability analysis predicts an exponential growth of the most unstable mode

at a rate of τ−1
o = κ2e20/(4l

2
0ξε), thus the transverse displacement becomes significant when

t ∼ τo. This time therefore signals the termination of the one-dimensional growth dominated

by the compression energy. This is shown clearly as the end of the plateau in the compression

energy in Fig. 5.2, and the deviation from linear growth in the radius of gyration of the

major axis (Fig. 5.3). This time also correlates well with the onset of scaling behavior in

other properties.

The expanding transverse buckles force the bending energy to overcome the compression

energy at times t > τo. The growing wavelike structure locally conforms to a path between

a planar wave and a helix. The three dimensional buckled structure relaxes by following

the steepest descent on the potential energy surface. We now show that the bending energy

favors organization of the buckles into helices. To this end, we focus on the bending energy
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Figure 5.6: Contour plots of the bending energy for a single period wavelike distortion. The
amplitudes ∆ry and ∆rz correspond to the relative contribution of the sine component and
the cosine component respectively.

contribution in a segment of the chain spanning a single period of wavelength λo. Since the

longitudinal expansion requires an orchestrated motion of the entire chain, the transverse

buckles grow outward without appreciably spreading longitudinally. Thus, for the present

purpose we keep the longitudinal distance of this chain segment fixed, so that chain expan-

sion occurs only through the growth of the buckling wave in the transverse directions. We

represent the distortion of the chain by assuming

r = X(s)x̂+ ∆ry sin (kos)ŷ + ∆rz cos (kos)ẑ (5.18)

subject to a given swelling ratio |drds | = γ, with γ varying between 1 and 1.5 corresponding

to the initial and final length of the chain, respectively. Note that either the sine or cosine

part in the above equation corresponds to a two-dimensional wave, whereas when both sine

and cosine are present with equal coefficients, we obtain a perfect helix. Therefore, we plot

the bending energy as a function of ([∆ry − ∆rz]/λ0); the result is shown in Fig. 5.6. It
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is clear that the helical structure is an energy minimum at all values of γ (representing

a time progression in the expansion), reflecting the tendency of the wavelike structure to

assume a conformation of constant curvature. The energy difference between the helix and

a two-dimensional deformation increases with increasing swelling ratio and approaches zero

as the swelling ratio approaches one, the latter being consistent with the lack of a transverse

directional preference of the buckling predicted by the linear stability analysis. Thus the

formation of helices is a nonlinear effect.

As the wavelike deformations grow in the transverse direction, the driving force for

coalescing into a helical conformation increases. The handedness of a helix is dictated by

the sign of the local torsion τ . The random initial perturbation does not favor one over

the other. However, because of the continuity of the space curve, correlation develops as

the chain expands so that the local torsion persists over a length λH . The result is a

helical structure with helical domains of length λH , which are separated by kink domain

boundaries.

The dynamics for the intermediate times τf > t > τ0, where τf is a terminal relaxation

time scale to be obtained later, is characterized by power law dependence in a number of

properties. To understand the observed scaling behavior, we perform a scaling analysis,

following similar arguments given in Refs. [3, 12] in the study of compressed rods and

membranes.

We choose a transverse displacement scale RT , ignoring for the present purpose the

difference between R2 and R3. The longitudinal deformation is characterized by the in-

crease of the length along the major axis ∆R1, which scales similarly to the displacement u

introduced at the beginning of this section. The length scale for the bending deformation

is the wavelength of the buckles λ and that for the longitudinal displacement is L0. The
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fact that the contour length increases will be accounted for by the leading dependence in

longitudinal strain, but otherwise has little effect.

We start with the scaling behavior for the buckling wavelength λ. The driving force for

buckling is due to both the compression energy and the bending energy. Assuming that

the two driving forces contribute roughly equally, we have, from the transverse equation of

motion (Eq. 5.14),

ξ
RT
t
∼ κ

eRT
λ2

∼ εl20
RT
λ4
. (5.19)

The above relation can be re-written using the initial strain e0 ≡ γ0−1, and the wavelength

λ0 and time scale τ0 = 4l20ξε/[κ
2e20] identified from the linear stability analysis, as

τ0RT
t

∼ eRTλ
2
0

e0λ2
∼ RTλ

4
0

λ4
. (5.20)

It can be readily seen that the buckling wavelength scales as λ ∼ λ0(t/τ0)1/4. The inter-

nal strain is seen to scale as e ∼ e0(t/τ0)−1/2. Substituting the internal strain into the

compression energy yields Ucom ∼ κ(L0/l0)e20(t/τ0)
−1.

To understand the scaling behavior of the increase in the length along the major axis

of the rod, we analyze the governing equation for the longitudinal motion (Eq. 5.13). This

analysis requires careful consideration of the appropriate length scales. The contribution

of the compression energy is relatively unaffected by the presence of transverse buckles;

therefore, the proper backbone length scale for the compression energy is L0, leading to

ξ
∆R1

t
∼ κ

e

L0
. (5.21)

Using the scaling for the internal strain e, we obtain the scaling for the longitudinal dis-
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placement u as

∆R1 ∼ κ
e0t

1/2τ
1/2
0

ξL0
∼
(

t

τbend

)1/2 l20
L0
, (5.22)

where the last expression results from using the expressions for τ0 and τbend = ξl20/ε. This

accounts for the observed t1/2 power law increase in the major axis shown in Fig. 5.3.

The scaling behavior for RT shown in Fig. 5.3 can be understood by going back to

the expression for the internal strain which consists of both longitudinal and transverse

contributions:

e = e0 −
∂u

∂n
− 1

2

(
∂RT

∂n

)2

∼ e0 −
∆R1

L0
− R2

T

λ2
. (5.23)

For t > τ0 the strain becomes negligible compared to each individual term on the right

hand side of the equation. Thus, we can obtain the scaling behavior for RT by balancing

the three terms on the right. Assuming for the moment that we can ignore the (∆R1/L0)

term, we have

RT ∼ e
1/2
0 λ ∼ e

1/2
0 λ0

(
t

τ0

)1/4

, (5.24)

which is in agreement with the power law behavior in Fig. 5.3. Combining the scal-

ing for RT and λ, we obtain the scaling for the bending energy Ubend ∼ εl0L0R
2
T /λ

4 ∼

κe20(L0/l0)(t/τ0)−1/2. The power law behavior of RT (Eq. 5.24) terminates when the sec-

ond term in Eq. 5.23 (∆R1/L0) is no longer negligible, and this happens when

∆R1 ∼ e0L0 (5.25)
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or

t ∼ τf ∼ τbende
2
0

(
L0

l0

)4

. (5.26)

τf thus defines the terminal relaxation time when the rod has approached its final equilib-

rium length. This terminal relaxation time can also be obtained as the time required for

the wavelength of the buckles to reach the full length of the rod. Setting λ ∼ L0, we have

τf ∼ τbend

(
L0

l0

)4

, (5.27)

which apart from some numerical factor is identical to the scaling expression Eq. 5.26. We

note that this relaxation time is nothing but the transverse relaxation time for a semiflex-

ible polymer [13, 14]. Interestingly, the relaxation time associated with the longitudinal

relaxation (Eq. 5.16) does not play an explicit role in our study. This is because buckling

appears long before this relaxation time is reached since

τ0
τlong

∼ 4εl20
κe20L

2
0

� 1. (5.28)

The time scale τlong becomes obliterated once buckling waves dominate the relaxation dy-

namics. This inequality in fact specifies the condition under which the free expansion

problem exhibits similar transverse buckling to that in a compressed rod with fixed ends.

This condition reflects the significantly larger resistance associated with longitudinal relax-

ation than that associated with transverse buckling. If the parameters are altered such that

τlong ∼ τ0, then even though the transverse buckling instability may still exists [15], the

buckling waves will not be able to grow to any significant extent since the driving force

for buckling will have been dissipated through longitudinal relaxation. For an elastic rod
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made of isotropic material, this will be the case if the initial strain is less or comparable to

the inverse of the aspect ratio of the rod. (This result can be obtained by substituting the

explicit dependence of the bending and compression moduli on the diameter of the rod and

on the Young’s modulus of the materials.) For long rods with large strain, the scenario we

have presented in this study will prevail.

The increase of the helical persistence length λH is necessarily slower than that of the

wavelength λ. The wavelength λ grows by two modes of relaxation. It grows internally at

the helical domain boundaries; two helices meet and eliminate one another by turning the

imperfection around the axis of orientation. This process increases the wavelength without

effecting the length of the two helical domains. The wavelength also grows at the chain ends

by turning the end helices around the axis of orientation. This process increases both the

wavelength and the helical domain length. The helical persistence length grows at a slower

rate than the wavelength because the helical domains grow only by diffusion of writhe out of

the ends, and the wavelength grows by both internal relaxation and unwinding at the ends.

The physics of the relaxation of two pre-existing competing helical structures has recently

been analyzed for a chain of fixed length and bending/twisting degrees of freedom [16].

Two types of imperfection front propagation are identified: “crankshafting”, where one helix

spins around the axis of the other at the chain end (end dissipation), and “speedometer-cable

motion”, where each helix revolves around their own axis (internal relaxation). These modes

of front propagation are consistent with our description of domain relaxation; however, our

problem is complicated by the existence of many domains of helicity, and these two modes

occur simultaneously during the free expansion process. Also, the helices studied in Ref. [16]

correspond to energy minima in a bistable system, while the helices appearing in our study

are transient structures that arise spontaneously during the relaxation process in a system
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lacking an obvious propensity for helical formation.

Finally, we discuss the effects of neglecting thermal fluctuation in our study. To this

end, we compare the thermal energy with the compression and bending energies. Since the

compression energy decays faster than the bending energy, thermal fluctuation is expected

to affect the system behavior when Ucom ∼ NkBT . Since Ucom ∼ κNe20(t/τ0)
−1, the two

energies become comparable when t = τT ∼ (κ/kBT )e20τ0. For our choice of parameters

and assuming room temperature, κ/kBT ≈ 6N2; thus we estimate that τT ∼ 104τ0. On

the other hand, the bending energy remains much larger than the thermal energy until

well past the terminal relaxation time τf . Thus the t−1/2 decay in the bending energy

shown in Fig. 2 will be unaffected by the thermal fluctuation, while the t−1 decay in the

compression energy will reach a plateau value corresponding to the thermal energy of the

rod at t ∼ τT . However, since the scaling behavior of most the properties studied in this

chapter is determined by the bending energy, thermal fluctuation has little effect on these

properties. Interestingly, we find from separate calculations that included Brownian forces,

that even the t1/2 growth in the length of the major axis (which is expected to be affected

by the compression energy) persists well past the time when the compression energy reaches

a plateau.

We note that there are many situations in which thermal fluctuation plays an essential

role in the dynamics of a semiflexible polymer. Stress relaxation in semiflexible polymers

is an example that has attracted considerable attention in recent years [13, 14, 17, 18].

Similarly, the propagation of tension upon pulling a semiflexible polymer by one end is shown

to depend crucially on the thermal fluctuation spectrum in the initial configuration [19].

While the inclusion of thermal fluctuation in our work would undoubtedly be more realistic

and would lead to slight modifications in the behavior of some properties, we have chosen
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to focus our attention on situations where relaxation is driven by large mechanical energies

and hence the omission of thermal fluctuation is justified.

5.5 Conclusions

The free expansion of an elastic filament progresses along the energetic path of least re-

sistance, notably marked by the emergence of the transverse buckling, which occurs to

distribute the energy between compression and bending. The wavelike buckles grow as a

coarsening process until the wavelength reaches the full length of the chain, at which point

the chain relaxes back to its equilibrium straight conformation. The buckles expand in the

transverse direction and prefer to assume a helical orientation due to a nonlinear effect,

which is not predicted by linear stability analysis. Although the energetically preferred

conformation as the transverse displacement grows is a pure helix (single handedness), the

local handedness is determined by the local torsion; therefore, the wavelike buckles coalesce

into helical domains separated by kink imperfections, which are eliminated from the ex-

panding body by diffusion from the chain ends. The helical domains grow until the relaxing

conformation achieves a pure helical orientation, where the handedness is determined by

the orientation of statistical dominance.

The expansion dynamics present an interesting problem of symmetry breaking where

the system breaks symmetry in two ways: the straight rod spontaneously buckles in the

transverse direction and the wavelike buckles further organize into helical domains of com-

mon handedness. The former symmetry breaking occurs to preferentially distribute the

energy between bending and compression, rather than dissipating the energy through com-

pression alone. Energy redistribution during the relaxation process is common in problems

of stress dissipation. Similar to expanding rods, the expansion of compressed membranes
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exhibits transverse buckling in order to alleviate the compression energy [12]. Similarly,

when an elastic cube is stressed through inward pointing forces at the cube vertices, the

cube buckles along the cube edges [20]. An initially twisted rod may unwind the twist den-

sity via ”geometric untwisting”, where twist is converted to writhe, and stress is dissipated

through drift motion of the chain backbone [21]. This process, in which energy is redis-

tributed between twist and bending, is obviously analogous to the free expansion problem

we study here. This mode of relaxation, however, is the dominant mechanism only when the

moment about the twisted chain generated by the torsional deformation cannot overcome

the rotational resistence. Thus there is a further similarity between the relaxation of twist

deformation and the free expansion of elastic filaments, as in both systems redistribution

of energy through instability occurs only under certain conditions.

A recent theoretical analysis of DNA condensation [22] suggests that the chain collapse

occurs via an Euler buckling instability, thus partitioning the total energy into bending

and electrostatic energy. Our analysis of the freely expanding rod provides insight into the

existence of higher order structure within the buckle phase; therefore, if the chain collapse

occurs through a similar instability, it is likely that the condensing DNA strand also contains

helical domains. We are interested in analyzing the effect of helicity on the chain collapse

dynamics and determining its role in the morphology of the condensed DNA strand.
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Chapter 6

Dynamics of Supercoiling

We consider the dynamics of a twisted elastic chain held under tension using a combination

of analytical theory and numerical simulation. The conditions of stability of a straight con-

formation are found by performing a linear stability analysis, resulting in a phase diagram

that governs the behavior of the twisted chain. The instability is a helical buckle with

tighter coils for larger twist deformation, and the chain ends become insignificant as the

twist increases. We then analyze the post-buckling behavior by looking at the shape and

energy of a localized loop structure that acts as the seed to a plectonemic supercoil. We

find the formation of a loop under conditions where the straight conformation is stable is

associated with an energetic barrier, thus supercoiling is an activated process that is ac-

cessible even under stable conditions. Numerical solution of the equations of motion of a

twisted chain shows loop formation and subsequent plectoneme growth, localized near the

chain ends.

6.1 Introduction

A rubber band that is clamped at each end and twisted several times maintains a straight

conformation by applying sufficient end tension. Upon reducing the tension to some thresh-

old value, helical undulations appear in the conformation. As the helices grow, they tend
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to localize, and further growth results in looped structures in one or more locations. These

loops flip over, and a plectoneme, composed of two interwound helices, emerges and grows

from each loop. The plectonemes continue to grow until either their growth is arrested by

the tension or they encompass the entire rubber band. This simple experiment demonstrates

the supercoiling phenomenon, which plays a significant role in DNA biomechanics.

The study of the dynamics of twisted elastic threads is rooted in elasticity theory [1, 2],

which focuses on the energetics of deformation and the conditions of mechanical stability.

The hydrodynamic influence on slender bodies in motion acts to deform elastic objects

and is the driving force for the motion of bacteria [3, 4]. The dynamics of slender elastic

filaments combines elasticity theory with the effects of hydrodynamics; studies concerning

the motion of filaments have recently devoted attention to several biological applications

including DNA motion and bacterial propulsion [5, 6, 7]. The further influence of thermal

fluctuations introduces additional effects that significantly impact the chain behavior, both

at single-molecule and macroscopic length scales [8, 9].

The transition from a straight conformation to a supercoiled conformation marks the

point where twist deformation overcomes the elastic resistance to bending deformation. This

transition is important in a wide range of applications, including undersea cables [10] and

DNA mechanics [11]. The nature of the transition involves a competition between a helical

or solenoid state and a supercoiled plectoneme state. Energetic arguments suggest the

plectoneme state is preferred over the solenoid state [12]; however, the dynamic transition

involves a buckling process similar in nature to buckling due to compression [13, 14]. Such a

buckling transition involves a homogeneous wavelike instability; in contrast, the formation

of a plectoneme requires the localization of the instability to form a loop. Such helix

localization is theoretically observed in a twisted chain [15, 11, 16, 17], and loop formation
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is analyzed to predict the conditions of loop growth and elimination [10]. Our focus in this

paper is on the transition from a straight conformation and on the energy of the growing

looped structure.

In this paper, we analyze the dynamics of a twisted elastic filament held under tension.

We focus on the nature of the transition between a straight conformation and a plectonemic

supercoil. In Sec. 6.2, we find the conditions that govern the stability of the twisted chain

by performing a linear stability analysis. In Sec. 6.3, we analyze the post-buckling behavior

of the twisted chain, focusing on the shape and energy of a localized loop structure that

seeds the formation of a plectonemic supercoil. Section 6.4 presents numerical solutions

of the dynamic equations of motion of a twisted chain for comparison with our analytical

results.

6.2 Linear Stability Analysis

We consider the dynamics of a single polymer chain immersed in a quiescent fluid. The

polymer centerline coincides with a continuous spacecurve ~r(s) where the arclength param-

eter s, indicating the location along the chain, runs from −L/2 at one end of the chain

to L/2 at the other end. At each location along the chain, we attach a material orienta-

tion triad ~ti (i = 1, 2, 3) and align the unit vector ~t3 in the direction of the chain tangent

vector (~t3 = ∂s~r/|∂s~r|). The rotation of the material triad along the filament centerline,

which characterizes the chain deformation, is concisely stated by the kinematic relationship

∂s~ti = ~ω×~ti where ~ω is the strain vector. The components of ~ω decompose into bending and

twisting modes of deformation, with ω1 and ω2 contributing to the chain bending curvature,

and ω3 identifying the twist rate [1].

The total energy of the polymer chain contains several contributions. The chain de-
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formation energy at the lowest order in elasticity theory is expressed as a quadratic-order

function in the components of ~ω [1, 2]. The resistance of a slender elastic filament to com-

pression/extension is much larger than the contributions due to bending and twisting, thus

the polymer chain is effectively inextensible, requiring a Lagrange constraint that enforces

g ≡
√
∂s~r · ∂s~r − 1 = 0 [5]. The chain tension is included in the dynamics by introducing an

energetic term that couples the end-to-end vector ~r(L/2) − ~r(−L/2) to the tension vector

~f = fẑ, and the chain self-interaction is given by a potential that is strictly a function of

the distance between chain segments r(s, s′) = |~r(s)− ~r(s′)|. The total energy is given by

U =
A

2

∫ L/2

−L/2
ds
(
ω2

1 + ω2
2

)
+
B

2

∫ L/2

−L/2
dsω2

3 −
∫ L/2

−L/2
dsΛg

−~f ·
∫ L/2

−L/2
ds(∂s~r − ẑ) +

1
2

∫ L/2

−L/2
ds

∫ L/2

−L/2
ds′V [r(s, s′)], (6.1)

where A and B are the bending and twisting moduli respectively, Λ is a Lagrange tension

that enforces the constraint g = 0, and V (r) is the functional form of the chain self-

interaction.

The equations of motion for the centerline drift and the rotation about the tangent vector

are respectively found by a force and moment balance at each point along the chain [18, 6].

Since we consider over-damped viscous dynamics, the inertial forces are neglected. Further-

more, we choose a simple expression for the hydrodynamic resistance to filament motion

and rotation that is local and linear in the velocity and angular velocity of the filament. The

hydrodynamic drag force per unit length due to filament drift is given by −Γ · ∂t~r, where

generally the resistance tensor is written as Γ = Γ‖~t3~t3 + Γ⊥
(
I− ~t3~t3

)
to distinguish be-

tween chain motion in the tangential and normal directions. The hydrodynamic resistance

per unit length due to filament rotation about the centerline is given by −ΓR∂tα, where α
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is the rotation angle about the tangent vector. In this study, we neglect additional forces

and moments due to Brownian motion.

As a matter of convenience, we express our final equations of motion in terms of the

twist density ω3 instead of the rotation angle α. The equations of motion for the dynamical

variables ~r and ω3 are found, after some manipulations of the force and moment balance

equations, to be

Γ · ∂~r
∂t

= −A∂
4~r

∂s4
+B

∂

∂s

(
ω3
∂~r

∂s
× ∂2~r

∂s2

)
+

∂

∂s

(
Λ
∂~r

∂s

)
−
∫ L/2

−L/2
ds′

∂V

∂r
~e(s, s′), (6.2)

∂ω3

∂t
=

B

ΓR
∂2ω3

∂s2
+

(
∂~r

∂s
× ∂2~r

∂s2

)
· ∂
∂s

(
∂~r

∂t

)
, (6.3)

where ~e(s, s′) = (~r(s)− ~r(s′)) /|~r(s) − ~r(s′)|, and we must solve for Λ(s, t) by satisfying

∂tg = 0. We note the absence of the chain tension f in Eqs. 6.2 and 6.3 as it appears in

the boundary conditions at the chain ends. The terms on the right-hand side of Eq. 6.3 are

identified as the geometric modes of altering the local twist deformation; the first term is

the contribution due to inhomogeneous chain rotation, and the second term accounts for

writhing motion of the chain.

We consider a chain with clamped ends, thus the chain ends are fixed such that x̂ · ~r =

ŷ·~r = 0 at s = ±L/2, and the tangent vector is aligned along the z axis (x̂·∂s~r = ŷ·∂s~r = 0 at

s = ±L/2). Since the chain ends are free to slide along the z axis, the boundary conditions

of the z component of ~r at the chain ends is determined through the force balance; the z

component boundary conditions are ẑ · ∂2
s~r = 0 and, making use of the length constraint,

ẑ · ∂3
s~r = −

∣∣∂2
s~r
∣∣2. From the force balance, we also find the boundary condition on the

Lagrange tension to be Λ = f − A
∣∣∂2
s~r
∣∣2. Finally, the clamped ends cannot rotate about

the tangent vector (∂tα = 0 at s = ±L/2), which is equivalent to the condition ∂sω3 = 0.
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We consider an initially straight, twisted filament undergoing relaxation dynamics.

Defining the Twist as
∫ L
0 dsω3/(2π), we can write the initial conditions for our filament

as ~r = sẑ, ω3 = 2πTw0/L = ω0, and Λ = f ; we define Tw0 as the initial number of

twists within the conformation and ω0 as the initial twist density. The dynamics of small

amplitude deviations from the straight conformation are governed by the linearized repre-

sentation of Eqs. 6.2 and 6.3. Defining the complex normal as ~ε ≡ x̂+ iŷ and the complex

normal amplitude as ψ ≡ X(s) + iY (s) [19], the nearly straight conformation is written

as ~r(s) = Re (ψ~ε ∗) + (s− δ(s)) ẑ where the compression along the z axis δ is necessary in

maintaining the chain length constraint. Inserting this expression for ~r into Eq. 6.2 and

defining the dimensionless arclength parameter ρ = s/L and time τ = tA/(Γ⊥L4), we have

the equation for the normal-direction dynamics

∂ψ

∂τ
= −∂

4ψ

∂ρ4
+ iB∂

3ψ

∂ρ3
+ F ∂

2ψ

∂ρ2
, (6.4)

where B = 2πBTw0/A and F = fL2/A. Similar equations can be derived for the dynamics

of δ and ω3; however, the results are quadratic in ψ at lowest order, thus Eq. 6.4 is decoupled

from these dynamics at linear order.

Eq. 6.4 takes the form of a wave equation. Defining the Hermitian operator H =

−∂4
ρ + iB∂3

ρ + F∂2
ρ , the function ψ can be decomposed into eigenfunctions Ψn of H with

eigenvalues σn, where we adopt the convention of numbering our eigenfunctions in terms of

eigenvalue size with n = 1 corresponding to the largest eigenvalue. The eigenfunctions of H

represent natural relaxation modes; therefore, these functions are useful in both describing

the behavior of dynamic instability [6] as well as the relaxation spectrum of a thermally

fluctuating twisted elastic filament under tension [8, 9]. Generally, the eigenfunctions Ψn
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Figure 6.1: The stability diagram of a twisted polymer chain under tension, identifying B
and F (defined in the text) at the onset of instability. The inset shows the behavior near
B = 0, and the conformations for the points A, B, C, and D are shown below the stability
diagram.

take the form
∑4
µ=1C

(µ)
n exp

(
ik

(µ)
n ρ

)
with k(µ)

n being the four roots of σn = −k4
n+Bk3

n−Fk2
n.

For fixed values of B and F , the eigenvalues σn are found self-consistently by satisfying the

boundary conditions ψ = ∂ρψ = 0 at the chain ends (ρ = ±1/2).

We construct a stability diagram by finding the relationship between B and F that re-

sults in an eigenvalue of zero, which is equivalent to solving the linearized Euler-Lagrange

equation. Such solutions for Ψn take the form Ψn = C
(1)
n + C

(2)
n ρ + C

(3)
n exp

(
ik

(3)
n ρ

)
+

C
(4)
n exp

(
ik

(4)
n ρ

)
where k(3)

n =
(
B +

√
B2 − 4F

)
/2 and k

(4)
n =

(
B −

√
B2 − 4F

)
/2. Satis-
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fying the boundary conditions, we find the zero growth eigenfunctions obey the relationship

cos
(B

2

)
+

F√
B2 − 4F

sin

(√
B2 − 4F

2

)
= cos

(√
B2 − 4F

2

)
(6.5)

between B and F . For a fixed value B, there are an infinite number of values of F that

satisfy Eq. 6.5, each value corresponding to the point where one of the eigenfunctions goes

from decaying to growing. The solution with the largest value of F corresponds to the point

of initial instability.

In Fig. 6.1, we show a stability diagram for an initially straight, twisted chain subjected

to end tension as determined from Eq. 6.5. The inset in Fig. 6.1 shows the behavior near

B = 0 where the tension at the instability becomes negative; for B = 0, instability occurs

at F = −4π2 [2]. Below the stability diagram, we provide the conformations for the points

A, B, C, and D indicated in the stability diagram. Conformation A, with negative tension,

corresponds to buckling due to end compression, and the conformations B, C, and D, occur

due to the effect of increasing the twist in the initial conformation. Conformations B,

C, and D are essentially helical with a deviation near the clamped ends to accommodate

the boundary conditions. As the twist increases, the wavelength of the initial instability

shortens, and the ends become less significant as B becomes large. In fact, Fig. 6.1 tends

to F = B2/4 for B � 1, which is equivalent to f = B2ω2
0/(4A) (entirely independent of

the chain length L); this result exactly agrees with the stability criterion for an infinite

chain [10].

For conditions that lie below the stability diagram, small amplitude transverse fluctu-

ations in the conformation will spontaneously grow with a dominant shape given by Ψ1,

the fastest growing eigenfunction. The initial undulations are essentially helical, which is
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analogous to a solenoid conformation in a twisted elastic ring. Under these conditions, it

has been shown that although the solenoid conformation is energetically favorable over the

straight conformation, plectonemic or supercoiled structures are yet lower in energy [12].

Furthermore, the post-buckling behavior of a twisted elastic filament under tension is shown

to exhibit localization and loop formation [11] thus seeding the formation of plectonemes.

In the next section, we consider the post-buckling behavior of the twisted strand, focusing

on the formation of loops that lead to plectonemic supercoils.

6.3 Post-Buckling Behavior

In the previous section, we found through linear stability analysis that the dominant shape

of the instability is helical with a slight deviation near the ends to account for the clamped

boundary conditions. However, a twisted elastic thread tends to exhibit localization of the

deformation into a loop [15, 11, 17, 16], which seeds the formation of a plectoneme. The

plectoneme is energetically favored over the helical solenoid due to its efficiency in alleviating

the twist deformation; the interwound helices of a plectoneme eliminate twice the twist per

turn as a single helix [12]. In this section, we address the shape and energy of the filament

throughout the transition from straight to looped structure in order to understand the

idealized formation of a plectoneme and the nature of the transition.

Although the analysis of the previous section is rooted in the dynamic equations of

motion, we make use of purely energetic arguments in this section. We assume that for

conditions very near the stability curve in Fig. 6.1, the viscous motion of the chain is

sufficiently slow such that the conformation proceeds at an energy minimum. Therefore, we

perform a quasi-equilibrium analysis in this section of the shape of the filament as it proceeds

through the formation of a single loop structure. We specialize our analysis in this section
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to conditions where the end effects are negligible or B � 1 (previous section). Furthermore,

this simple analysis neglects the effect of self-interaction of the chain, which is required to

address the formation of the full plectoneme structure. Nonetheless, the initial stage of

plectoneme formation is accessible without self-interaction, provided the loop structure is

large relative to the diameter of the filament [10]. The looping process studied in Ref. [10]

provides the foundation for our analysis of plectoneme formation; in this section, we review

and adapt the results of Ref. [10] to our system.

To begin, we define an energy that contains contributions from bending and twisting

deformation along with a constraint that fixes the chain ends at a specified distance apart.

The constrained energy UT is given by

UT =
∫ L/2

−L/2
dsuT , (6.6)

where

uT =
A

2

(
ω2

1 + ω2
2

)
+
B

2
ω2

3 − T
(
1− ẑ · ~d3

)
. (6.7)

The Lagrange multiplier T in Eq. 6.7 enforces the length of the chain retraction along the

z-axis, thus it is the conjugate variable to ∆ =
∫ L/2
−L/2 ds

(
1− ẑ · ~d3

)
. The energy density

defined by Eq. 6.7 is not to be confused with the actual energy density of the filament u,

which is extracted from Eq. 6.1 to be

u =
A

2

(
ω2

1 + ω2
2

)
+
B

2
ω2

3 + f
(
1− ẑ · ~d3

)
(6.8)

after neglecting the self-interaction energy.

Thus far, we have described the chain conformation using cartesian coordinates; how-
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ever, general shapes of elastica are better described using Euler angles (φ, θ, ψ) [20], as

their use does not require complicated kinematic relationships to constrain the length of

the chain. The equations that govern equilibrium shapes for a twisted chain that is clamped

and held under tension are given by [1]

uT =
A

2

(
ω2

1 + ω2
2

)
+
B

2
ω2

3 − T (1− cos θ) = constant, (6.9)

m = −Aω1 sin θ cosψ +Aω2 sin θ sinψ +Bω3 cos θ = constant, (6.10)

ω3 =
∂ψ

∂s
+
∂φ

∂s
cos θ = constant. (6.11)

Eqs. 6.9 through 6.11 are found using the symmetries of the equilibrium conformation,

namely invariance with respect to “time” (or path length), rotation about the z-axis, and

rotation about the tangent vector. The conformation is found from the Euler angles using

the differential relationships: x̂ ·∂s~r = sin θ cosφ, ŷ ·∂s~r = sin θ sinφ, and ẑ ·∂s~r = cos θ. The

other curvature terms are related to the Euler angles through ω1 = ∂sθ sinψ−∂sφ sin θ cosψ

and ω2 = ∂sθ cosψ + ∂sφ sin θ sinψ.

Since Eqs. 6.9 through 6.11 are constant for any point along the chain, the constants are

evaluated by dictating the values at a single point. Taking into account the end conditions

(θ = ∂sθ = 0 at s = ±L/2), Eqs. 6.9 and 6.10 can be written as

uT =
Bω2

3

2
(6.12)

m = Bω3. (6.13)
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From this, we arrive at the governing equations for the chain conformation

∣∣∣∣ ∂θ∂S
∣∣∣∣ = 2 tan

(
θ

2

)√
cos2

(
θ

2

)
− C2, (6.14)

∂φ

∂S
=

C

cos2
(
θ
2

) , (6.15)

where C = Bω3/(2
√
AT ). All lengths are non-dimensionalized by

√
A/T , and S = s

√
T/A.

For L� 1, Eq. 6.14 has the approximate solution

sin
(
θ

2

)
=

√
1− C2

cosh
(
S
√

1− C2
) , (6.16)

and φ is found from the solution for θ to be

φ = CS + arctan


√

1− C2 tanh
(
S
√

1− C2
)

C

 . (6.17)

These equations give the conformation of a growing loop structure from a straight, twisted

chain for sufficiently long chains (
∣∣∣√1− C2L/2

∣∣∣ � 1). As the conformation proceeds

through the loop formation, the twist density ω3 changes from the initial twist density

ω0 due to the writhe of the looped structure. The Lagrange tension T also responds to the

transition. The straight conformation corresponds to a value of C = 1 or T = B2ω2
0/(4A),

which agrees with the conditions for instability found in the previous section.

In Fig. 6.2, we show the formation of a loop via a quasi-equilibrium transition using

Eqs. 6.16 and 6.17. Each of the conformations in Fig. 6.2 represents a stable structure for

the tension T found in C, which marks the progress through the transition. The beginning

of the transition occurs through a helical formation, much like the structures analyzed in

the previous section. However, further progress shows a localization of the helix into a loop
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Figure 6.2: Equilibrium conformations for the looping transition determined from Eqs. 6.16
and 6.17. These snapshots represent, from left to right, the stable conformations for C =
0.99, 0.89, 0.79, 0.69, 0.59, 0.49, 0.39, 0.29, 0.19, and 0.09. The length scale in this figure
is scaled by

√
A/T .
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structure similar to that found in Ref. [11]. This loop formation marks the initial stage of

plectoneme formation.

We now turn to the energy of the growing loop. The energetic contributions are found

using Eqs. 6.16 and 6.17 along with the total energy (Eq. 6.1). This calculation makes use

of the relationship between the retraction distance ∆ and the tension T found in Ref. [10],

which is given by

T =
B2

4A

[
ω0 − 4

L arcsin
(

∆
4

√
T
A

)]2
1−

(
∆
4

√
T
A

)2 , (6.18)

which is a transcendental equation for T in terms of ∆ and the material parameters of the

chain. Equation 6.18 exhibits a double value for T at a given retraction distance ∆; this

double value is the source of an instability associated with looping and popping-out [10].

The total energy of the looped chain is given by an integral of the energy density, which

is found from Eqs. 6.7 and 6.8 to be

u = T (1− cos θ) +
B

2
ω2

3 + f (1− cos θ) . (6.19)

The first term in Eq. 6.19 is the bending deformation energy, the second term is the twisting

deformation energy, and the third term is the work against the external load f . The total

energy is given by

U =
BL

2

ω0 −
4
L

arcsin

∆
4

√
T

A

 2

+ (f + T )∆, (6.20)

where the Lagrange tension T is found using Eq. 6.18. The total energy represents a non-

equilibrium energy function relating the energy to the distance of retraction ∆, and the

equilibrium value of ∆ is determined by the minimization of Eq. 6.20.
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Figure 6.3: The total energy ∆U = U − U(∆ = 0) (in kBT ) versus the end retraction ∆
(in nm) for a chain with A = B = 50 kBT nm, L = 1000 nm, and 100 turns of twist (ω0 =
0.6283 nm−1) subjected to end tension f = 20.2327 pN (dotted curve), f = 22.5561 pN
(dashed-dotted curve), f = 24.8796 pN (dashed curve), and f = 27.2031 pN (solid curve).

In Fig. 6.3, we plot the total energy ∆U = U − U(∆ = 0) (Eq. 6.20) measured in

units of the thermal energy kBT versus the end retraction ∆ (in nm) for a chain forming

a looped structure from a straight conformation. The properties of the chain in Fig. 6.3

are A = B = 50 kBT nm, L = 1000 nm, and 100 turns of twist (ω0 = 0.6283 nm−1),

and the end tension f is f = 20.2327 pN (dotted curve), f = 22.5561 pN (dashed-dotted

curve), f = 24.8796 pN (dashed curve), and f = 27.2031 pN (solid curve). We note that

for f = 20.2327 pN (dotted curve) the conditions are at the point of instability governed

by the stability diagram (Fig. 6.1), thus the other curves with larger tension f show the

non-equilibrium looping energy for conditions in the stable region of Fig. 6.1. These curves

exhibit an initial increase in the energy with the end retraction; however, these energy plots

eventually turn and decrease with further end retraction. The chain properties in Fig. 6.3

correspond to the material properties of a 3000 basepair strand of DNA subjected to end

tension. The predictions of Fig. 6.3 demonstrate an energy barrier to the formation of a
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loop for tensions above the stability curve; although the straight conformation is stable, loop

growth eventually leads to an energy decrease and the subsequent growth of a plectoneme.

In this analysis, we neglect thermal fluctuations. The non-equilibrium energy displayed

in Fig. 6.3 suggests that loop formation requires an energetic nudge in order to overcome

a barrier for sufficient end tension (conditions above the stability diagram in Fig. 6.1). A

molecular strand is subject to thermal fluctuations with characteristic energy kBT , thus

energies comparable to kBT are attainable by a fluctuating strand. For the conditions in

Fig. 6.3, thermal energy can easily overcome the boundary to loop formation, thus an AFM

or tweezer experiment conducted under these conditions is predicted to exhibit transient

loop formations leading to plectonemic supercoils, even under stable conditions.

In the following section, we numerically solve the equations of motion found in Sec. 6.2

in order to show the progression from straight, twisted chain through the instability and

the subsequent nonlinear dynamics. In particular, we compare and contrast the predictions

of this section to assess the validity of the pseudo-equilibrium approximation.

6.4 Nonlinear Dynamics

In this section, we numerically solve Eqs. 6.2 and 6.3 in order to see the full relaxation

behavior of a twisted elastic chain held under tension. Our mathematical analyses in the

previous two sections provide insight into the nature of the instability; however, the con-

tribution of chain self contact is neglected in our treatment. The dynamics in this section

include the self contact, which becomes important after the initial instability.

For a value of B = 150 (see Sec. 6.2), the initial instability occurs for a force F ≈

5615.12, indicated by point D in Fig. 6.1. If the force is reduced to F = 4700, the straight

conformation becomes unstable with a dominant growth rate σ1 ≈ 5.86× 106. We evaluate
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the post-buckling, nonlinear dynamics using a discrete representation of the polymer-chain

model. We solve the discrete analogues of Eqs. 6.2 and 6.3 for an initially straight polymer

chain, with a small random transverse perturbation, with twist B = 150 and tension F =

4700 including a contact term in the energy (Eq. 6.1) such that the chain cannot cross itself.

In Fig. 6.4, we show snapshots from the relaxation dynamics at several points in time,

which is nondimensionalized by the time-scale of instability growth τinst = Γ⊥L4/(Aσ1).

The first snapshot, occurring at t/τinst = 7.30, shows the conformation just beyond the

initial instability, which looks similar to conformation D in Fig. 6.1. Further growth of

the instability shows the localization of the helical undulations into loops near the ends

of the chain. Since the chain is of fixed length, the chain ends must retract during the

transverse growth, which is responsible for the helical localization near the chain ends.

The loop formation leads to the growth of plectonemes, which twirl out into the quiescent

fluid as the ends retract. From the fourth snapshot (t/τinst = 29.27) to the final snapshot

(t/τinst = 747.34), the two plectonemes grow as they are fed by the connecting chain

segment, thus the chain is reptating within each plectoneme as they grow. We note the

plectonemes trail off the ends due to the viscous drag as the chain ends are pulled towards

each other. The final snapshot in Fig. 6.4 shows the plectonemes in the final conformation

eventually cease to grow as they encompass the entire chain. Further relaxation shows the

two plectoneme straighten perpendicular to the tension direction; however, this process is

extremely slow in comparison to the dynamics shown here.

We find an interesting phenomenon occurs if we decrease the tension further than the

quench in Fig. 6.4; the retraction of the chain ends occur faster than the loop collapses on

itself. This has different ramifications depending on the method that the chain ends are

clamped. If the ends are clamped between two bars, the chain will loop around the bars
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Figure 6.4: Snapshots from the relaxation dynamics for B =
150 and F = 4700. The snapshots are for t/τinst =
7.30, 11.60, 18.43, 29.27, 46.50, 73.87, 117.35, 186.42, 296.15, 470.45, 747.34, respectively.
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at each end and climb them as they are pulled towards each other. If the chain ends are

fixed in space, as in an optical tweezers experiment, the chain is looped around the ends

several times, and then the chain is extended due to the elimination of the twist during this

process.

The dynamics presented in Fig. 6.4 suggest the chain ends play the role of nucleation

sites for plectoneme growth; however, in the case of DNA, several other factors may seed

the growth of supercoils. For example, sequence-specific elasticity has a dramatic effect

on the coiling of DNA around nucleosome particles [21]; therefore, we expect sequence-

dependent weak spots to serve as nucleation sights for supercoiling as well. Also, if the

chain conformation is not initially straight, as is certainly the case in DNA, the formation

of plectonemes is more likely to occur at locations of high curvature, since they form the

plectoneme end and also serve as a tension gradient to feed the growing plectoneme. In this

analysis, we neglect the role of thermal fluctuations; however, their effect would change the

dynamic behavior. For example, the stable region in the stability diagram (Fig. 6.1) results

in a stable straight chain; however, thermal fluctuations would allow the formation of the

loop structures shown in Fig. 6.2, leading to plectonemic supercoiling.
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Chapter 7

DNA Packaging in Bacteriophage:
Is Twist Important?

We study the packaging of DNA into a bacteriophage capsid using computer simulation,

specifically focusing on the potential impact of twist on the final packaged conformation. We

perform two dynamic simulations of packaging a polymer chain into a spherical confinement:

one where the chain end is rotated as it is fed, and one where the chain is fed without end

rotation. The final packaged conformation exhibits distinct differences in these two cases:

the packaged conformation from feeding with rotation exhibits a spool-like character that

is consistent with experimental and previous theoretical work, whereas feeding without

rotation results in a folded conformation inconsistent with a spool conformation. The chain

segment density shows a layered structure, which is more pronounced for packaging with

rotation. However in both cases, the conformation is marked by frequent jumps of the

polymer chain from layer to layer, potentially influencing the ability to disentangle during

subsequent ejection. Ejection simulations with and without Brownian forces show that

Brownian forces are necessary to achieve complete ejection of the polymer chain in the

absence of external forces.
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7.1 Introduction

The ability of bacteriophage to package, transport, and deliver its genome to a host bac-

terium involves the precise manipulation of DNA throughout the life cycle of the virus.

Despite the apparent simplicity of most species of bacteriophage, their ability to control

the conformation of DNA through physical manipulation is quite remarkable, a feat that

is desirable in many different biological and technological settings. Therefore, developing a

fundamental understanding of the physical mechanisms responsible for the exquisite control

that bacteriophage has over its DNA is important for understanding the principles of DNA

manipulation. In this chapter, we focus on the processes involved in the packaging of DNA

into an empty viral capsid. Specifically, we address whether the twist rigidity of the DNA

molecule plays an important role in affecting its conformation during the packaging process.

Although different species of bacteriophage can vary in many ways (host species, spe-

cific structural geometry, size of virus, size of genome/number of genes, as well as many

important biochemical distinctions), they also share several important similarities that are

relevant to our current discussion. A bacteriophage assembles its capsid particle before the

genome is packaged; then the genome is inserted into the empty capsid by an ATP-driven

packaging motor. As the capsid is filled with DNA, the packaging motor works against the

increasing resistance associated with compacting the long polymer chain to near-crystalline

density into the relatively small cavity. Once the new bacteriophage are packaged, the now-

virulent viruses lyse the host cell and escape into the surrounding medium to infect other

hosts, producing further progeny. The viruses no longer have access to the energy source

ATP once outside their host; therefore, any work performed during infection must be stored

within the virus particles before they leave the cell that produced them. Because of these

similarities, experimental observations of specific bacteriophage species can be incorporated
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into the general framework of DNA packaging.

The force generated by the bacteriophage φ29 packaging motor has been directly mea-

sured using optical tweezers [1], which showed a continuous build-up of the internal pressure

as packaging proceeds. The measured stall force of 57 pN makes the φ29 packaging motor

one of the most powerful protein motors known to date. Similarly, the pressurization of

packaged phage λ has been confirmed by using osmotic pressure as a resistive force against

DNA ejection, causing the ejection to cease and leaving partially filled capsid particles [2].

The internal pressure within these packaged viruses is directly related to the free energy

cost of forcing the DNA into a small cavity and provides the energy for conversion to work

in the injection of the DNA into the host cell.

A number of studies have addressed the DNA conformation within the capsid interior

using various experimental techniques for several different viral species [3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13]. The experimental evidences have inspired potential models for DNA

arrangement within the packaged capsid, including liquid crystal [8], folded toroid [14],

coaxial spool [15, 4], folded coaxial spool [16], and concentric spool [17, 18]. By electron

microscopy with image reconstruction, the conformation of the packaged genome of phage

T7 [11, 12], T4 [9], and P22 [13] appears to adopt a spool-like conformation with several

layers of order, consistent with the coaxial spool model, where the spools are ordered parallel

to each other and perpendicular to the axis of the tail. However, flow linear dichroism studies

of phage T4 suggest that the mean square value of the cosine of the angle between the tail

axis and the DNA strand is inconsistent with the coaxial spool model, lending credit to

the concentric spool model, where the spools are arranged at angles to each other [17, 18].

Recent theoretical work shows that the energetically preferred conformation of a polymer

in a spherical confinement is consistent with the concentric spool model [19]. The packaged
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conformation within a viral capsid remains an intriguing subject of debate.

Details of the packaging motor of φ29 suggest the potential for twist to play a role in the

packaging process. From the crystal structure of the φ29 packaging motor, a mechanism

for DNA translocation has been proposed whereby either the motor or the DNA itself is

rotated during the process [20]. The proposed mechanism involves a 12o rotation for every 2

basepairs that enter the capsid or a rate of rotation of roughly 1/6 the periodicity of the DNA

double helix. By existing experimental evidence, it is not clear whether the DNA rotates

during translocation; however, some results suggest that the final packaged conformation

is twisted or supercoiled. For example, the conformation of the genomes of phage λ [21]

and P22 [22] exhibit supercoiling when treated with cross-linker and released from their

capsids, indicative of a certain degree of twist deformation trapped within the internalized

conformation. Furthermore, bacteriophage φ29 genome with the covalently bound terminal

protein gp3 exhibits supercoiling; the supercoiling is believed to be a prerequisite for efficient

packaging [23].

If the DNA rotates as it enters the capsid, then either the DNA relaxes the twist de-

formation by axial rotation of the strand, or the conformation of the strand responds to

the twist deformation in some way. Inspired by this possible mechanism, we address the

problem of what qualitative features are altered in the packaged conformation if the DNA

is rotated while it is fed into the capsid.

Twist plays an essential role in the biophysical behavior of DNA, particularly manifest

in torsionally constrained DNA elements commonly present in plasmids of prokaryotes and

transiently-closed loops in gene regulation in eukaryotes. For example, binding of the lac

repressor of Escherichia coli is modulated by the length of DNA between binding sites, re-

sulting in oscillations in the repression level as the length passes through integer numbers of
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helical turns [24]. Twist affects the conformation of DNA through a well-known topological

constraint on torsionally constrained paths, which states that the linking number is a sum

of the twist and the writhe of the curve [25]. The underlying mathematical expressions

for these topological entities dictate the allowable states of a closed chain; however, the

thermodynamically preferred distribution between twist and writhe is determined by the

energetics of the chain conformation. The importance of chain topology on DNA biome-

chanics is evidenced by the existence of topoisomerases, a class of enzymes that control the

topology of DNA [26].

Provided the packaging motor of a bacteriophage rotates the DNA as it enters the cap-

sid, the conformation of the DNA within the capsid interior would be impacted by the twist

deformation. Specifically, we propose that twist deformation could provide the driving force

for adopting an ordered, spool-like conformation, as is observed in T7 [11, 12], T4 [9], and

P22 [13]. The concept of local action influencing global behavior is a common theme in

the biological function of DNA, and twist is an important mechanism for such “action at

a distance” [27]. Previous theoretical treatments of the packaging process have neglected

the role of twist on the packaged conformation [28, 29, 30, 31, 32, 33, 19, 34, 35, 36], based

on the assumption that either the motor does not introduce twist into the conformation or

that this twist is relaxed by axial rotation on timescales shorter than the the timescale for

the packaging process [37, 38]. While we do not suggest that neglecting twist is without jus-

tification, it is not currently known whether the end of the DNA is completely free to relax.

Alternatively, twist may be locked in the conformation by a number of possible mechanisms,

including DNA interaction with proteins, either unattached to the DNA (capsid proteins,

for example) or covalently bound to the DNA (the φ29 terminal protein gp3, for example),

or anomalous twist relaxation rates owing to the crowded electrolyte environment within



165

the capsid interior. Therefore, a reasonable question is how the conformation of DNA is

altered by twist deformation if the DNA is torsionally constrained.

In this chapter, we address this question using computer simulation. Since the end

condition of the DNA inside the capsid is unknown at present, we adopt the simplest model

of torsional constraint by taking the end to be clamped and fixed on the capsid wall opposite

to the portal of entry. We then perform two dynamic simulations of a polymer chain fed

into a spherical confinement: one where the chain is rotated at the portal as it is fed, and

one where the chain is fed without rotation. We compare the packaged conformation of the

chain in these two cases, and examine the consequences for ejection from these different

conformation structures. In order to focus on the most important aspects of the problem,

we move on directly to the description of the results and relegate the details of the model

and simulation method to the appendix.

7.2 Results

In order to simulate genome-length DNA at biologically relevant timescales, it is necessary

to adopt a simplified model of the DNA/capsid system. We model the DNA using a discrete

wormlike chain that includes the twist degrees of freedom [39, 40]; each discrete segment

of chain represents ∼8 basepairs of DNA. The elastic properties of the chain are chosen

to match the persistence length and torsional persistence length of DNA, with a large

stretching modulus that essentially renders the chain inextensible. The chain self-interaction

includes a screened electrostatic potential to approximate the influence of physiological

salt concentration (∼ 140 mM monovalent salt) and a hard-core repulsive potential that

addresses the short-range repulsive behavior of DNA (modeled using the repulsive part of

a Leonnard-Jones potential). The capsid is modeled as a spherical confinement through a
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simple repulsive potential that scales as the radius to the fourth power outside the capsid

radius [28]. With this model, we perform dynamic simulations, both with and without

the effect of Brownian forces and torques, to track the temporal evolution of the chain

conformation as it is fed into the spherical confinement. Further details of our model are

found in the appendix of this chapter.

We perform two sets of packaging simulations. The first simulation involves the simul-

taneous rotation of the chain segment at the portal of entry as the chain is fed into the

spherical confinement; thus the linking number increases linearly with the number of beads

fed. As mentioned in the introduction, the proposed mechanism for DNA translocation

by the φ29 motor involves approximately 60o of rotation of the chain per helical-turn fed.

Since it is not clear whether this mechanism involves rotation of the DNA or the motor,

and the packaging of φ29 is marked by frequent pauses and slips of the chain [1], we choose

to reduce the rate of rotation by a factor of 1/3 from the proposed mechanism of DNA

translocation [20]. The second simulation is performed without rotation of the chain as it

enters; thus the linking number remains at zero. In both sets of simulations, the feeding is

performed by alternating between feed intervals and relaxation intervals until the desired

volume fraction ΦP is achieved. One feed interval involves feeding 10 beads into the spheri-

cal cavity at a feed rate of 1 per time step (tB, defined in the appendix), and one relaxation

interval involves an equal amount of time (10 time steps) to relax the conformation to a

local minimum energy. In the feeding simulations, we neglect the role of Brownian forces

and torques in order to focus on the mechanical aspects of the packaging process and to

develop a basis for comparison with the case when Brownian fluctuations are included.

In Fig. 7.1, we show snapshots from the packaging dynamics for packaged volume fraction

ranging from ΦP = 0.063 to ΦP = 0.463 in even increments of 0.050. The snapshots in A of
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Figure 7.1: Snapshots during the process of feeding a single polyelectrolyte into a spherical
confinement. The snapshots in A track the progress for feeding with rotation (as described
in the text) for polymer volume fraction ranging in even increments from 0.063 to 0.463.
The snapshots in B are for feeding without rotation for the same polymer volume fractions
as A.
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Fig. 7.1 show the progress of packaging for coupled translocation and rotation during the

packaging process, while the snapshots in B of Fig. 7.1 are for packaging without rotation.

The most clear distinction between the two sets of snapshots is the qualitative manner in

which the packaged conformation evolves. The conformations in A (with rotation) appear

to evolve in a spool-like manner, whereas the process of packaging without rotation in B

occurs via a folding-type mechanism. Notably, the final conformations in A and B appear

to have distinctly different chain orientations. The final conformation in A is wrapped in

a spool that is on average perpendicular to the direction of entry, whereas in B the chain

segments tend to locally align along the longitudes.

The snapshots presented in Fig. 7.1 display the structure of the outermost layers of the

packaged polymer chain; however, it is desirable to look at the polymer density in the interior

of the spherical confinement. Taking the final conformation from the two simulations, we

perform Brownian dynamics simulations (thus including Brownian forces and torques) in

order to evaluate a thermally averaged density of beads as a function of position within

the capsid interior (averages are performed over 100 time steps ). In Fig. 7.2A, we show

the angle-averaged radial density ρ versus the radial distance R for the final packaged

conformation for the case of feeding with rotation (solid line) and feeding without rotation

(dashed line). In the case of feeding with rotation, four peaks are clearly visible in the

density plot, indicative of four layers of order, with the outermost peak dominating; this

layer ordering is quite reminiscent of the experimentally observed ordering in T7 [11, 12],

T4 [9], and P22 [13]. For feeding without rotation, the peaks are not as easily discernible

after the first two layers, indicative of the reduced degrees of layer order after the outermost

layers.

The density plot gives the positional order of the chain segments within the spherical
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Figure 7.2: Figure A shows the density of polymer ρ versus the radial distance from the
sphere center R for feeding with rotation (solid line) and without rotation (dashed line).
Figure B gives the average radial distance of polymer segments versus the chain contour
distance s/L for feeding with rotation. We note that s/L = 0 corresponds to the first
segment inserted into the spherical confinement.
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Figure 7.3: The topological quantities twist Tw (5), writhe Wr (4), and linking number
Lk (solid line) of the packaged conformation for feeding with rotation versus the volume
fraction of polymer added ΦP.

confinement; however, the density does not resolve the sections along the chain that con-

tribute to the layer ordering. Therefore in Fig. 7.2B, we plot the average radial distance

versus the rank order along the polymer chain s/L (s = 0 at the chain end attached to

the capsid wall, and s = L at the chain end that is fed through the portal) for the final

packaged conformation for feeding with rotation. The average for each data point in this

figure is performed over time (100 time steps) for each point along the chain. The layering

of the polymer within the sphere displays a preference for the beads first fed into the sphere

to be located near the sphere surface, and later beads fed tend to be localized closer to the

sphere center. However, the later fed beads frequently penetrate out to the sphere surface;

thus the plot exhibits frequent spikes associated with these “out of rank” penetrations. A

similar trend is displayed in the case of feeding without rotation (not shown).

Topological quantities including the linking number Lk (solid line), twist Tw (5), and

writheWr (4) for packaging with rotation are plotted in Fig. 7.3 against the volume fraction
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of packaged polymer ΦP. All three topological quantities are calculated independently. We

find that the topological constraint Lk = Tw +Wr is satisfied throughout the simulation

(to within machine precision), which is confirmation that the chain does not cross itself

during the simulation. For small volume fractions (ΦP < 0.163), the linking number is

almost entirely in the form of writhe, as the spooling process efficiently converts the twist

into the writhed spools. However, for larger volume fractions (ΦP ≥ 0.163), twist increases

essentially linearly with the added polymer. The twist remains much smaller than the writhe

as the chain is fed into the sphere, presumably due to the propensity for the chain to adopt

the spool-like conformation, which converts most of the twist from the loading into writhe.

As the twist and writhe increase linearly with the volume fraction, they maintain essentially

a constant ratio between them. Similarly, the process of DNA supercoiling generally involves

a distribution between twist and writhe, strongly influenced by salt concentration [41]. We

do not include the analogous plot as Fig. 7.3 for packaging without rotation since the linking

number Lk is zero throughout, and the twist and writhe remain near zero for most of the

packaging process (maximum value of |Tw| = |Wr| = 2.14 and final value at fully packaged

of Tw = −Wr = 0.39).

In Fig. 7.4A, the total energy E [◦, measured in kBT (∼ 4.1 pN nm = 0.6 kcal/mol)],

compression energy Ecom (+), bending energy Ebend (4), twisting energy Etwist (2), self-

interaction energy Eint (5), and capsid-interaction energy Ecapsid (×) are plotted against

the packaged volume fraction ΦP for packaging with rotation. The solid line is a polynomial

fit (fourth order) to the total energy E, which we make use of later to determine the force

opposing the packaging process. Early in the packaging process, the total energy E is dom-

inated by the bending deformation energy Ebend; however, at approximately ΦP = 0.32, the

bending energy Ebend is overcome by the self-interaction energy Eint. The capsid-interaction
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Figure 7.4: Figure A shows the total energy E (◦), compression energy Ecom (+), bending
energy Ebend (4), twisting energy Etwist (2), self-interaction energy Eint (5), and capsid-
interaction energy Ecapsid (×) versus the packed volume fraction ΦP for packaging with
rotation. The solid line is a polynomial fit (fourth order) to the total energy E. Figure B is
the difference between the total energy for packaging without rotation and packaging with
rotation ∆E versus the packaged volume fraction ΦP. Note, packaging without rotation
leads to a larger total energy (∆E > 0 in our simulations).
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energy Ecapsid remains small for small volume fraction polymer (ΦP < 0.3) but rises no-

ticeably at large volume fractions as the packing presses the polymer against the confining

wall. The compression energy Ecom and twisting energy Etwist are insignificant contribu-

tions throughout the packaging process. Although packaging involves chain rotation, the

twist is efficiently converted to writhe, thus the twisting energy Etwist remains quite small.

Specifically, the final value of the twisting energy Etwist is 17.3kBT for packaging with chain

rotation, and if all of the linking number remained in the form of twist, the final twisting

energy Etwist would be 234.8kBT .

Since the range in the figure is so large, the complimentary plot for packaging without ro-

tation is virtually indistinguishable from the one shown. Therefore to facilitate comparison,

we plot in Fig. 7.4B the difference between the total energy of the packaged conformation

without rotation and the total energy for packaging with rotation ∆E against the polymer

volume fraction ΦP. The energy for packaging without rotation is larger than the energy for

packaging with rotation, thus ∆E > 0 (with two exceptions at ΦP = 0.053 and ΦP = 0.263),

with a maximum value of 81.0 kBT . We note that, in the case of feeding with rotation, the

added twist deformation represents an additional energetic contribution that presumably

is not present in the case of feeding without rotation. In the case of feeding without rota-

tion, we restrict both ends from rotating, thus any writhe produced results in an equal and

opposite amount of twist to maintain the linking number. This local twist results in twist

deformation energy; however, this is small in comparison to the twist present in the case of

feeding with rotation. Therefore, it is quite remarkable that the energy of the conformation

resulting from packaging with rotation is less than that without rotation; this is due to

the reduced bending energy of the spooled conformation in the former versus the folded

conformation in the latter.
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Figure 7.5: The force opposing packaging (expressed in pN) versus volume fraction ΦP for
packaging with rotation (solid line) and without rotation (dashed line) determined using a
fourth-order polynomial fit to the total energy E (see text and Fig. 7.4).

The polynomial fit to the total energy E in Fig. 7.4A is used to calculate the force

opposing packaging F , from F = ∂LE. This assumes that the conformation within the

confinement remains at equilibrium throughout the packaging process, requiring that the

packaging is sufficiently slow to maintain equilibrium. In Fig. 7.5, we show the predicted

force opposing packaging (units of pN) using a fourth-order polynomial fit to the total energy

data (as in Fig. 7.4A) for packaging with rotation (solid line) and without rotation (dashed

line) against the packaged volume fraction ΦP. In both cases, the force opposing packaging

increases with the packaged length to a final value of approximately 20 pN. This value is

about three times smaller than the stall force of φ29 (57 pN) [1]. Because we have neglected

the thermal contributions to the osmotic pressure of the chain segments by ignoring the

Brownian forces and have used a crude interaction potential between the segments, a factor

of three discrepancy is not unreasonable. From the final twist value in Fig. 7.3, we estimate

the value of the torque τEND = 2πCTw/(N−2) necessary to disallow the attached end from
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Figure 7.6: The volume fraction ΦP versus time for ejection from the sphere beginning with
the final conformation from packaging with chain rotation [ejection with Brownian forces
(dashed-dotted line) and without Brownian forces (solid line)] and from packaging without
chain rotation [ejection with Brownian forces (dotted line) and without Brownian forces
(dashed line)]. Beneath the figure, we show the final conformations from eject without
Brownian forces beginning from packaging with chain rotation (left) and without chain
rotation (right).

rotating to be 1.2kBT . If all of the linking number remained as twist, the predicted end

torque τEND would be 4.5kBT . We note that these values of torque are within a reasonable

range where typical molecular forces (for example, hydrogen bonding and van der Waals

forces) could stabilize the end.

Beginning with the conformations predicted from the packaging simulations, we sim-

ulate the ejection of the chain from the spherical confinement by eliminating the feeding

force/torque and allowing the chain to exit through the portal of entry. In Fig. 7.6, we show
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the results of the ejection simulations by plotting the volume fraction ΦP left within the

sphere versus time (reduced by tB). For each starting conformation obtained from packaging

with and without rotation, we have performed two ejection simulations, one that included

the Brownian forces and one that did not. We find that Brownian forces dramatically in-

fluence the ability of the packaged sphere to eliminate the polymer within. Specifically, in

the absence of Brownian forces, ejection is unable to reach full completion for both con-

formations obtained from packaging with (solid line) and without rotation (dashed line),

indicated by the internal volume fraction tending to a non-zero value at long times. (We

note that full ejection occurs at ΦP = 0.017 because of the chain end attachment to the

sphere wall). When Brownian forces are included, ejection is marked by frequent fluctu-

ations in the length of chain within the sphere. Such length fluctuations are most likely

related to interior conformation fluctuations that may help to alleviate self entanglement,

thus allowing the chain to fully eject.

For ejection without Brownian forces, the ejection halts at a larger value of the vol-

ume fraction when the initial conformation is from packaging without rotation, presumably

because of a higher degree of entanglement in the folded conformation from packaging with-

out rotation than the spool-like conformation from packaging with rotation. However when

Brownian forces are included, the ejection proceeds to completion in both cases, and the

conformation from packaging without rotation (dotted line) ejects faster than the confor-

mation from packaging with rotation (dashed-dotted line). Further studies are needed to

explain this latter observation.
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7.3 Discussion

This preliminary study on the packaging of DNA within a bacteriophage capsid focuses on

the potential impact of twist on the packaged conformation, specifically if the packaging

motor rotates the DNA as it feeds. Towards this end, we perform two computer simulations

of a single polyelectrolyte actively inserted into a spherical confinement: one where the

polymer chain is rotated as it is fed, and one where the polymer chain is not rotated during

the feeding process. We choose to fix the non-feeding end to the capsid wall directly across

from the portal. This does not necessarily imply a proposed biological phenomenon; rather,

it is a convenient way to elucidate the effects of twist by imposing the topological constraint.

Our results show distinct differences between the conformation of the packaged polymer

in packaging with rotation and without rotation. Most notably, the final conformation

in packaging with rotation exhibits a spool-like character, perhaps more consistent with a

concentric spool [17, 18] than a coaxial spool [15, 4], whereas the final conformation for

packaging without rotation is folded with chain segments generally oriented parallel to the

axis of feeding. We note that the preference for the concentric spool is consistent with

energy-minimized conformations found in Ref. [19] for feeding without rotation and with a

free polymer end in the sphere interior. However, our approach is not to seek global energy

minima as in Ref. [19]; but rather to track the process of packaging as it proceeds along a

dynamically accessible trajectory.

Rotating the polymer chain while feeding acts to break chiral symmetry of the packaged

conformation, whereas feeding without rotation favors neither chirality. Packaging a tor-

sionally constrained polymer without rotation begins by coiling the chain in one direction

at random; this writhing gives rise to twist which eventually forces the chain to coil in the

opposite direction to alleviate the developing twist. This scenario is reminiscent of coiling
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a garden hose without rotation: coiling may proceed in one direction for several wraps

but must eventually coil in the opposite direction or suffer other twist-reducing instabilities

(formation of plectonemes, for example). On the other hand, orderly coiling a garden hose

is accomplished by twisting the hose as it lies down [42]. The energetically preferred confor-

mations found in Ref. [19] are invariant to reflection since they have no twist deformation,

which is assumed to be alleviated by axial rotation of the free end. Thus, presumably an

average over many packaged conformations predicted by a model that neglects twist de-

formation would not exhibit chiral preference. Packaging with rotation would provide the

driving force for spool-like packaging with a definitive chiral preference.

However, the adopted spool-like conformation from packaging with rotation is not a

perfect, idealized spool; rather it contains many defects of chain segments jumping from in-

terior layers to exterior layers. Although the density plot (Fig. 7.2A) exhibits layer ordering

(notably more pronounced for packaging with rotation than without rotation), the rank or-

dering plot (Fig. 7.2B) shows that the conformation does not proceed by filling the outmost

layer first before filling the interior shells but by placing the chain in available spaces, pre-

ferring the outmost shell throughout the packaging process. The physical argument of the

curvature stress off-setting the self-repulsion is certainly at work, as argued by continuum

modeling of the packaging process [35]; however, the curvature stress also drives inner loops

toward the outer layers when transient gaps or defects present themselves near the sphere

surface. Continuum models of the packaging process assume sequential spooling [35, 31]

without these layer-jumping instances, since the continuum treatment does not account for

local inhomogeneities. However, it is worth noting that such a continuum treatment [31]

achieves quantitative agreement with the experimentally measured force opposing packaging

in φ29 [1]. Nonetheless, the instances of defects may lead to entanglements as the polymer
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chain is ejected from the confinement. Our ejection results (presented in Fig. 7.6) demon-

strate that Brownian forces are necessary to achieve complete ejection of the chain from

the spherical cavity. We propose that this is due to the entanglements arising from interior

defects, which are not predicted from continuum treatments of the packaging process.

Packaging with chain rotation suggests that the increasing linking number of the strand

is introduced in the form of twist as the straight section of chain entering the spherical

confinement rotates, and conversion from twist to writhe occurs once the entering bead

is released into the capsid interior. During the initial stage of packaging (ΦP < 0.163 in

Fig. 7.3), our simulation shows that all of the twist is converted into writhe, and further

packaging results in most of the twist being converted into writhe, as they both increase

linearly but with different slopes. This suggests that during the initial stage, the driving

force for coiling is dominated by non-twist related forces (self-interaction and bending,

mainly), whereas further ordered packaging in coils occurs due to self-interaction, bending,

and stresses arising from twist deformation energy. Notably, the manner in which the

polymer chain alleviates the twist deformation is to form coils or solenoid-like structures,

which is completely dissimilar from the more prevalent plectonemic structures formed in a

twisted polymer chain in the absence of confinement. The preference for the plectonemic

form in free space is due to the fact that plectonemes more efficiently convert twist into

writhe than solenoid structures [43]. Although not shown in the previous section, we find

that performing packaging simulations with a larger rotation rate (larger linking number)

results in plectonemic structures in the sphere confinement rather than coils or solenoids.

The energy of the packaged conformation shows a steep increase as packaging proceeds,

indicative of the escalating resistance opposing packaging, as is evident in φ29 [1]. In

the early stage of packaging (ΦP < 0.32 in Fig. 7.4A), the bending energy dominates the
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total energy, and the conformation is driven to the outside wall. As packaging proceeds,

the self-interaction energy overcomes the bending energy, and the conformation tends to

explore more of the interior of the sphere (noting the tendency for layer jumping previously

discussed). All other energetic contributions are rather small in comparison to the bending

and self-interaction energies throughout the packaging process. This does not imply their

influence is insignificant, as demonstrated by the qualitative difference between the final

conformation from packaging with rotation and without rotation displayed in Fig. 7.1.

Throughout this chapter, we have deliberately avoided an explicit definition of the Brow-

nian timescale in actual units. This is because of the uncertainty in the drag coefficient for

DNA in a crowded, highly charged environment. It is tempting to assume that the drag is

the same as in free solution [44, 37, 38] or alternatively to consider a more detailed model

that includes hydrodynamic interactions [45] (both polymer/polymer and polymer/capsid

wall). However, it is very likely that the drag is not easily interpreted once we reach pack-

aging densities where the chains are separated by only a couple hydration layers, as is the

case here. Beyond the equilibrium hydration forces that occur [46], confined water exhibits

slow relaxation behaviors that may dramatically alter the effective drag coefficient on the

DNA strand [47].

We neglect Brownian forces in the packaging simulations in this chapter, and certainly

several features are not captured without their effect. For example, thermally induced reor-

ganization may act to disentangle the polymer chain as packaging proceeds, thus eliminating

some of the defects prevalent in our simulation results. However, we note that our ther-

mal averaging of the final conformation does not exhibit large-scale reorganization in the

timescale of the average (100 time steps) due to the extremely sluggish processes associated

with disentanglement at this volume fraction (ΦP = 0.463). Although we do not explore
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this in our current work, the disentanglement process for a single chain in a confinement has

several similarities to and non-trivial distinctions from the relaxation processes prevalent in

entanglement of a polymer chain in a melt [48, 49]. Brownian forces also acts as a source of

transient inhomogeneities in the local ordering, thus the instances of layer jumping described

earlier may be enhanced under the influence of thermal fluctuations. Thermal fluctuations

influence the tendency to order; for example, molecular crowding in semiflexible polymer

solutions results in ordered liquid-crystal phases [50]. One distinct effect of semiflexibility

on the liquid crystal phase is the presence of hairpin defects or instances of sharp reversal of

the chain orientation to form a loop [51, 50]. These effects may play a role in the formation

of ordered conformations within a packaged bacteriophage capsid, which we plan to explore

further in future studies. Overall, the influence of thermal fluctuations on the packaged

conformation remains an important issue that requires further investigation.

This study acts as preliminary evidence that twist may play a role in the packaged DNA

conformation in a bacteriophage capsid. Further work is needed to elucidate the connection

between the packaged conformation and the end goal of the viral packaging, the ability for

the virus to eject its genome from the capsid into the host cell. Future work will focus more

on the ejection process to make the connection between the manner of packaging and the

resulting ejection behavior.

Appendix A: Model of DNA/Capsid

Modeling the process of DNA packaging within a viral capsid is challenging because of

the large number of degrees of freedom of the DNA strand and the long timescale for the

packaging process. Therefore, it is necessary to adopt a simplified view of the DNA/capsid

system. Since our interest is in the behavior of the overall DNA conformation in the capsid,
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we neglect the individual atomic coordinates and reduce the description to a coarse-grained

model. A suitable model for our purposes is the wormlike chain model that includes the

twist degrees of freedom [52, 53], which is used to study a wide range of DNA-related

phenomena. The wormlike chain model is approximated as a beaded chain to make it

amenable to computer simulation [39, 40].

The DNA conformation is described as a string of beads with positions ~Ri (i = 1, 2, . . . , N),

thus there are N − 1 bond vectors ~ui = (~Ri+1 − ~Ri)/bi, where bi = |~Ri+1 − ~Ri|. To account

for the material twisting, two normal vectors ~fi and ~vi are attached to each bond vector ~ui

such that ~vi = ~ui × ~fi and ~fi · ~ui = 0. This leaves the polymer chain with a total of 4N − 1

degrees of freedom [40].

The behavior of the polymer chain is dictated by the total chain energy, which in-

cludes elastic deformation energy, self-interaction energy, and capsid-interaction energy, all

expressible in terms of our degrees of freedom. The chain deformation energy takes the

simplest form possible: the compression, bending, and twisting deformation energies are

quadratic in the displacement away from a straight, untwisted conformation [54]. These

energy terms are given by

Ecom =
A

2

N−1∑
i=1

(bi/l0 − 1)2 , (A-1)

Ebend =
B

2

N−2∑
i=1

(~ui+1 − ~ui)2 , (A-2)

Etwist =
C

2

N−2∑
i=1

ω2
i , (A-3)

where A, B, and C are respectively the compression, bending, and twisting moduli (units

of energy), l0 is the equilibrium bond length, and ωi is the twist angle, which satisfies
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(1 + ~ui · ~ui+1) sinωi = ~vi · ~fi+1 − ~fi · ~vi+1 [40]. The self-interaction energy takes the form

Eint =
1
2

N∑
i=1

∑
j 6=i

vint(Rij), (A-4)

where Rij = |~Ri − ~Rj |, and vint(R) is the two-body interaction potential. In our model,

vint(R) is given by

vint(R) =



vHC
12

[(
σ
R

)12 − 2
(
σ
R

)6 + 1
]
+

ve
exp(−R/lD)

R if R < σ

ve
exp(−R/lD)

R if R ≥ σ,

(A-5)

which incorporates both a screened electrostatic potential (Debye-Hückel form) at all val-

ues of interbead distance R and a hard-core potential (repulsive Leonnard-Jones form) for

interbead distance R less than the hydrodynamic radius of DNA σ (∼ 2.5 nm). The elec-

trostatic interaction strength ve in Eq. A-5 is given by q2kBT lB, where q is the charge per

bead (in units of the electron charge), kBT is the thermal energy, and lB is the Bjerrum

length (∼0.7 nm for water at room temperature); the Debye length lD scales the length of

electrostatic screening. Although typical bacteriophage have icosahedral capsids, we model

the confining capsid as a sphere. The interaction between a chain segment and the capsid

wall is modeled as

Ecapsid =
N∑
i=1

vcapsid(|~Ri|); (A-6)

as in Ref. [28], we adopt a simple form for the capsid-interaction potential vcapsid(R), given

by

vcapsid(R) =


vc
(
R−Rc
l0

)4
if R > Rc

0 if R ≤ Rc,

(A-7)
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where vc is the capsid-interaction strength, and Rc is the radius of the capsid.

The forces and torques are found from the total energy E = Ecom + Ebend + Etwist +

Eint + Ecapsid using the method of variations. Specifically, the force ~fEi on the ith bead

and the torque τEi on the ith bond vector are found using the expression δE = −
∑N
i=1

~fEi ·

δ ~Ri −
∑N−1
i=1 τEi δψi, where ψi is the Euler angle of pure rotation [55], which is orthogonal

to the drift motion of the beads δ ~Ri. The dynamic equations of motion of the chain are

found by performing a force balance on the beads and a torque balance on the bonds, which

incorporates the forces and torques from the total energy E as well as terms accounting for

inertia, hydrodynamic drag, and Brownian fluctuations. As we consider highly viscous dy-

namics, we neglect inertial forces and torques. The hydrodynamic drag for this preliminary

study takes the simplest possible form: the drag force and torque is local and linear in the

velocity of the bead and the angular velocity of the bond, respectively. Thus the equations

of motion are given by

ξ
d~Ri
dt

= ~fEi + ~fBi (A-8)

ξR
dψi
dt

= τEi + τBi , (A-9)

where ξ is the drag coefficient for drift, and ξR is the drag coefficient for rotation. The

Brownian force ~fBi and torque τBi satisfy the fluctuation dissipation theorem such that〈
~fBi (t)~fBj (t′)

〉
= 2kBTξδijδ(t− t′)I and

〈
τBi (t)τBj (t′)

〉
= 2kBTξRδijδ(t− t′) [49].

In our simulations, we non-dimensionalize energy by kBT , length by l0, and time by

tB = ξl20/(kBT ). Choosing the equilibrium bond length to be l0 = 2.5 nm, the beads in the

chain just touch their neighbors, which essentially ensures the noncrossibility of the chain,

thus preserving the chain topology. Our non-dimensionalized simulation parameters are
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chosen as follows: A = 500, B = C = 20, lB = 0.284, lD = 0.328, q = −16.675, σ = 1,

vHC = 20, Rcap = 5, vcap = 20, ξ = 1, and ξR = 0.213. We note that our capsid radius

Rcap = 5 (12.5 nm) is substantially smaller than the typical bacteriophage capsid [32]. As

in Ref. [28], the reduced capsid size makes it possible to achieve a packaged volume fraction

ΦP of the typical bacteriophage (ΦP ∼ 0.45 [32]) while performing the computationally

taxing simulations in a reasonable time. For our choice of parameters, the volume fraction

is given by ΦP = 0.001N .

We perform packaging dynamics in a similar manner as in Ref. [28]; beads are fed into the

spherical confinement one at a time while tracking the interior bead motion by numerically

solving their equations of motion (Eqs. A-8 and A-9). However, we have two important

differences from Ref. [28]. First, the entering bond vector ~uN−1 is clamped such that the

direction of insertion is held fixed in the negative z-direction. Second, the opposite end of

the chain is clamped and held fixed opposite the portal of entry, thus ~u1 = ~uN−1 = ẑ, and

~R1 = −(Rcap+ l0)ẑ. We test the effect of twist on the packaged conformation by performing

simulations where the feeding chain end is rotated as the chain enters and comparing with

simulations where the feeding chain enters without rotation.

The chain topology is characterized by the linking number Lk, the twist Tw, and the

writhe Wr of the curve [25]. Typically these quantities are defined only for closed-circular

curves; however, we extend the chain ends out to infinity to render a topologically-fixed con-

formation. The linking number satisfies Lk = Tw+Wr, where these two contributions are

determined from the chain conformation and twist angles. For our discrete representation,

the twist Tw is given by

Tw =
1
2π

N−2∑
i=1

ωi. (A-10)

The writhe Wr of the conformation is given by a Gauss integral over the curve; the calcu-
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lation of Wr for our discrete chain representation makes use of techniques in Ref. [56] with

only slight alterations upon extending the chain ends to infinity. Performing the calculation

of Tw and Wr separately provides both a method of characterizing the topology of the

chain as well as a test of whether the chain has crossed itself due to the invariance of the

linking number Lk.
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Chapter 8

Wrapping Transitions of Plasmid
DNA in a Nucleosome

We study the formation of a nucleosome core particle on a minicircle of DNA by considering

a simple polyelectrolyte/macroion model. With this model, we find the equilibrium confor-

mations of a polyelectrolyte ring with fixed linking number interacting with an oppositely

charged sphere via a salt-mediated electrostatic potential. Equilibrium conformations show

a polymorphism in the stable equilibrium states with a salt-dependent hysteresis controlling

the conformational states, which are easily categorized according the number of wraps made

by the chain around the attractive particle. These wrapped states represent distinctly dif-

ferent writhed forms, thus the preferred state is strongly dependent on the linking number

of the ring. Our results are consistent with experimentally observed polymorphism of DNA

minicircles in a nucleosome, which is not observed for short stretches of open nucleosomal

DNA.

8.1 Introduction

All of the processes necessary for the survival of a eukaryotic cell hinge on the cell’s ability

to store and read the genetic information encoded in its DNA. The daunting task of pack-

aging 1 meter of DNA into a 1-micron diameter nucleus is complicated by the necessity
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of maintaining the accessibility of the DNA to the cell’s enzymatic machinery. The fun-

damental unit of packaged DNA, the nucleosome core particle, contains 146 base pairs of

DNA wrapped 1.7 times around a cationic protein complex called the histone octamer [1].

A string of nucleosomes is organized into higher order structures to form chromatin, a

remarkable complex that is compact yet maintains accessibility for genetic expression.

Although in vivo processes involving chromatin are aided by ATP-dependent nucleosome

remodeling proteins [2, 3], in vitro experiments show that RNA polymerase is capable of

transcibing through the nucleosome particle in the absence of such proteins [4, 5]. The dual

existence of nucleosomal DNA as both bound to the histone octamer and accessible to the

nuclear environment alters our picture of the nucleosome core particle from a static entity

to a more dynamic, malleable complex. Several conjectures concerning the accessibility of

nucleosomal DNA hinge on thermally driven conformation transitions [6, 7, 8], implying

that the biological function of packaged DNA hinges on its access to a variety of stable

conformations.

Nucleosomal DNA wraps the histone octamer due to favorable interactions between the

negative charges along the phosphate backbone of the DNA and positively charged lysine

and arginine residues decorating the histone-octamer surface at the expense of the bending

deformation energy of the highly curved DNA, the loss of entropy upon adopting a fixed con-

formation, and the unfavorable interaction of the DNA strand with itself. As electrostatic

interaction acts both to wrap the chain and to resist the corresponding collapse, altering

the nature of the electrostatic interaction, for example with salt-induced screening, dramat-

ically influences the ability to package DNA. For short strands of DNA (144± 2 base pairs)

interacting with core histones, the formation of a stable native nucleosome core particle oc-

curs within a range of intermediate salt concentrations (ionic strength = 2− 750 mM), and
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destabilization occurs at both low (< 1 mM) and high (> 1, 500 mM) salt concentrations [9].

A simple model of the nucleosome that captures these experimentally observed features is

a semiflexible polyelectrolyte interacting with an oppositely charged sphere [10], demon-

strating that nucleosome destabilization occurs at low salt concentration due to dominant

electrostatic self-interaction and at high salt concentration due to chain deformation. Direct

observation of a nucleosome over the intermediate range of ionic strength shows the shape

of the particle varies from a prolate ellipsoid to an oblate ellipsoid back to a prolate ellipsoid

as the DNA transitions through the salt-induced stability region [11], further demonstrating

the importance of salt-mediated electrostatics and the malleability of the nucleosome core

particle.

The double-helix structure of DNA results in a molecular strand that resists bending

and stretching deformation as well as positive twisting that tightens the double helix and

negative twisting that loosens the double helix. Twist plays an important role in the bio-

physical behavior of DNA in torsionally constrained plasmids of prokaryotes and transiently

closed loops that occur during gene regulation in eukaryotes. This is due to an underlying

topological invariant of torsionally constrained paths called the linking number, which is

given by a sum of the twist and the writhe for such closed elements [12]. The importance of

twist and topology on DNA behavior is demonstrated by the existence of topoisomerases,

a class of enzymes that control the DNA topology [13].

The crystal structure of the nucleosome core particle contains DNA wrapped in a left-

handed helix 1.7 times, thus contributing −1.7 of writhe to the linking number per nucleo-

some [1]. However, nucleosomal DNA adopts different conformational variants in solution,

particularly in the case of closed, circular DNA. Upon injected of its plasmid DNA, a eu-

karyotic virus such as SV40 hijacks the histone proteins of the host cell to form a minichro-
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mosome, and the packaged plasmid DNA undergoes topological relaxation using the host’s

topoisomerases. The genome of SV40, extracted from the minichromosome, exhibits a topo-

logical contribution of ∼−1 per nucleosome relative to a reference population of plasmids

relaxed by topoisomerase I [14, 15, 16], contrasting the change in the linking number of

∼−2 per nucleosome predicted by its crystal structure. Similar results are found for in vitro

packaging of plasmid DNA with only the four core histone proteins present [17, 18, 19].

The discrepancy between the linking number contribution per nucleosome in plasmid DNA

versus open DNA is called the “linking number paradox” [20].

Various experimental studies aim to elucidate the underlying mechanism responsible for

this apparent discrepancy. Studies of mononucleosomes on DNA minicircles demonstrate

the existence of a polymorphism in the states of packaged DNA that is strongly influenced by

linking number, salt concentration, and histone acetylation [20, 21]. For example, mononu-

cleosomes of 359 base pair plasmid DNA with linking number −2 in 10 mM monovalent

salt exhibit two alternative states, one where the loop extending off the nucleosome crosses

itself and one where the loop does not cross itself; whereas in 100 mM salt, only the crossed

state exists [20]. This salt-dependent polymorphism in packaged structure may underlie

the formation of a chromatin fiber in vitro, which requires a particular salt history to form

a stable fiber with reproducible physical properties [22]. Furthermore, the existence of a

variety of folded chromatin structures impacts the dynamic behavior of the packaged struc-

ture in vivo, where the DNA conformation and the location of associated proteins affects

accessibility and susceptibility to manipulation [23].

Closing DNA into a plasmid introduces several important effects that alter its behavior

both with and without interaction with associating proteins such as histones. Since un-

stressed DNA is straight and untwisted relative to the equilibrium twist of approximately
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10 base pairs per helical turn, closing the strand into a ring makes the straight, unstressed

state inaccessible, and the topology defined by the linking number identifies the accessible

distribution between twist and writhe. For short strands of open DNA interacting with

histone core proteins, the wrapped state is marked by a propensity for the nucleosome to be

located near the chain ends, predicted both theoretically and experimentally [10, 24]; this

of course cannot occur for a DNA minicircle in a nucleosome. Theoretical prediction of the

preferred conformation of open DNA in a nucleosome shows a gradual writhed wrapping

from the chain end as the salt concentration increases [10]. Closing the chain ends, the

writhed wraps incur twist deformation in order to maintain the linking number, and the

looped chain extending from the particle applies stresses that act to peel the wraps off the

particle surface, strongly enhanced by electrostatic self-interaction.

Polymorphism in the stable states of a mononucleosome exists in the case of plasmid

DNA minicircles but apparently does not exist for open DNA strands; therefore, closing

the strand into a loop introduces physical effects that qualitatively alter the behavior of the

packaged DNA. In this chapter, we show that polymorphism and salt-concentration hystere-

sis emerges naturally in a simple model of the DNA/protein system, a single polyelectrolyte

ring interacting with an oppositely charged sphere. Such a model lacks the molecular detail

and the inherent complexity that exists in the biological system [25]; however, several exper-

imentally observed features that exist in the nucleosome system are captured using similar

approaches, as demonstrated in studies of open [10, 24] and closed, circular [26, 27, 28, 29]

strands of DNA in a nucleosome. Furthermore, this approach provides a fundamental un-

derstanding of the dominant features of DNA packaging, acting as a basis for comparison

as more complexity is built into the model. This model is also applicable to colloid conden-

sation of DNA used in gene therapy applications.
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8.2 Results

Turning to our simple model, we address the minimum energy conformations of a ring

polyelectrolyte interacting with an oppositely charged sphere over a wide range of salt con-

centration. We treat the electrostatic interaction using Debye-Hückel, mean-field theory,

characterized by the Debye screening length lD given by lD = 1/
√

8πlBC, where C is the

monovalent salt concentration, and lB is the Bjerrum length characterizing the length scale

where the unscreened electrostatic potential equals the thermal energy kBT (approximately

0.7 nm for water at room temperature). The elastic properties of the ring are such that the

bare persistence length without charge interaction is 30 nm [30], the twist persistence length

is 50 nm, and the stretching modulus is 1000 nm−1. The length of the ring is 100 nm (∼294

base pairs or ∼28 helical turns). The linear charge density along the ring is 2 e−/(0.34 nm),

and the charge on the spherical macroion is 40. In addition to the electrostatic interac-

tion, we include hard-core interaction between chain segments at 2.5 nm and between chain

segments and the attractive particle at 5 nm.

We explore the accessible states over a range of salt concentrations (0 mM to 1 M) by

performing elevated-temperature Monte Carlo simulations (10× room temperature) with

transient quenches to zero temperature (energy minimization); these transient quenches

are recorded, and several distinct conformational variants emerge from the results. Each

variant is then subjected to energy minimizations over a range of salt concentrations in

order to determine their limit of stability and the transition characteristics at the point of

instability.

Figure 8.1 shows a progression of energy minimized structures for our model with the

linking number Lk = 0 beginning at low salt concentration and leading to high salt con-

centration. For low salt concentration, the favored conformation is an unwrapped, planar
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1/l  =0.025 nmD
-1 0.250 nm-1

1/l  =0.975 nmD
-1 1.350 nm-11.325 nm-1

0.275 nm-1 0.625 nm-1

3.000 nm-1

C=0.058 mM 5.818 mM 7.040 mM 36.364 mM

C=88.494 mM 163.432 mM 169.657 mM 837.814 mM

Figure 8.1: Minimum energy conformations of a polyelectrolyte ring (Lk = 0) interacting
with a charged particle beginning with the low-salt unwrapped conformation and proceeding
to the high-salt, tightly wrapped conformation. The colored lines beneath the conformations
identify the wrapping state of the conformers (see text), thus first-order transitions occur
between the second/third and sixth/seventh conformations. The inverse Debye length 1/lD
(units nm−1) and the monovalent salt concentration C (units mM) are identified beneath
each conformation. The last two conformations are rotated ninety degrees for clarity.
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conformation that glances off the sphere surface with minimal deflection from a circular

form, consistent with the short-length predictions of Ref. [29]. As the salt concentration

increases, the self-interaction is screened, and the attractive sphere draws in the ring. From

the first conformation to the second, the section of the ring in close contact with the sphere

increases, and the conformation adopts a peanut shape when viewed from above.

The neck of the peanut narrows with salt concentration, and self repulsion causes one

side to buckle out of the plane and the other to buckle into the plane, similar to the

out-of-plane buckling for an open strand, though at higher salt concentration [10]. This

first-order transition implies a hysteresis when traversing in the opposite direction in salt

concentration. For Lk = 0, neither buckle direction is preferred; although Fig. 8.1 shows the

positive-writhed form (third conformation), its mirror image is energetically identical. Non-

zero linking number prefers the buckle with writhe of the same sign as the linking number

in order to reduce twist deformation energy, and consequently, the first-order transition

occurring between the second and third conformations of Fig. 8.1 would not occur.

Further increase in salt concentration leads to sphere wrapping through rotation of the

chain about the south pole of the sphere (as viewed in Fig. 8.1), resulting in an increase in

the writhe and negative twisting to maintain zero linking number. The spherical wrapping

is comparable to a squat plectonemic structure, thus left-handed coiling about the sphere

surface in Fig. 8.1 corresponds to positive writhing. Eventually the loop shrinks until it feels

the presence of the attractive sphere at the north pole, which is void of chain segments due

to the nature of the wrapping process. At this point the loop collapses on the sphere surface,

and the polyelectrolyte ring adopts an essentially spherical conformation. This corresponds

to a sudden change in the writhe to zero, since all non-self-crossing closed curves that lie

on a sphere surface have zero writhe. For clarity, the last two conformations in Fig. 8.1 are



199

rotated by 90 degrees about the north/south pole axis.

The conformations in Fig. 8.1 show the kinetically accessible progression as salt concen-

tration increases; the exhibited first-order transitions result in transformations that natu-

rally emerge from the existing conformation. The ring in the first conformation of Fig. 8.1

has the appearance of an orbit that glances off the sphere surface without being caught in

its attractive pull, and all subsequent conformations result from smooth deformations from

the first. As a result, we categorize these conformations within a common family called

the 0-loop state, named for the orbital appearance of the first conformation whose bound

segment fails to complete a pass over the sphere surface. A distinguishing feature of the

0-loop state is the void of chain segments at the north pole of the sphere (as viewed in

Fig. 8.1), which facilitates the formation of the tightly-bound 0-loop state in the last two

conformations of Fig. 8.1. The colored arrows beneath the conformations in Fig. 8.1 iden-

tify the conformational state. Conformations above the black arrow exist in a planar 0-loop

state. The blue arrow identifies conformers that are in a wrapped 0-loop state, and the

dashed blue arrow distinguishes the conformers that are in a tightly wrapped 0-loop state,

essentially bound to the particle surface. Although these conformers exist in distinctly

different states separated by first-order transitions, they all belong in the 0-loop family.

The conformations in Fig. 8.2 show the opposite salt progression as Fig. 8.1, from

high salt to low salt, beginning with a stable looped conformation and proceeding to the

unwrapped 0-loop conformation (same as first conformation of Fig. 8.1). We first categorize

the conformations in Fig. 8.2 according to the number of loops in the bound segment of

the ring. The third conformation of Fig. 8.2 is essentially divided into an unbound loop

(essentially planar) and a bound segment that is caught in the attractive pull of the sphere,

making two complete passes over the sphere surface. Therefore, we categorize the first three
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1/l  =3.000 nmD
-1 1.775 nm-1 0.550 nm-1 0.525 nm-1

C=837.814 mM 293.293 mM 28.160 mM 25.658 mM

1/l  =0.400 nmD
-1 0.250 nm-1 0.225 nm-1 0.025 nm-1

C=14.894 mM 5.818 mM 4.713 mM 0.058 mM

Figure 8.2: Minimum energy conformations of a polyelectrolyte ring (Lk = 0) interacting
with a charged particle beginning with the stable 2-loop state at high salt concentration
and proceeding to the unwrapped 0-loop conformer at low salt concentration. First-order
transitions occur between the third/fourth and sixth/seventh conformations.



201

conformations of Fig. 8.2 in the 2-loop state and identify them by the green arrow. The

sixth conformation of Fig. 8.2 has a similar structure as the third conformation; however,

the bound segment completes only a single pass over the sphere surface. The fourth through

sixth conformations in Fig. 8.2 belong to the same conformer family called the 1-loop state,

identified by the red arrow. As in Fig. 8.1, the solid blue arrow denotes the 0-loop state in

Fig. 8.2.

Beginning with the stable 2-loop conformation at high salt (first conformation in Fig. 8.2),

the highly screened environment permits chain segments to come in close proximity leaving

a large portion of the sphere uncovered. The 2-loop wrapping results in two loops passing

over the north pole, thus restricting the exterior loop from collapsing on the sphere sur-

face as in Fig. 8.1. As the salt concentration decreases, the self-repulsion and exterior-loop

stresses cause the bound segments to separate toward the uncovered sphere region. The

third conformation of Fig. 8.2 shows the limit of stability of the 2-loop state; further re-

moval of salt causes a single loop to slip off the sphere surface, either toward the left or right

(viewed as in Fig. 8.2), resulting in a 1-loop conformation. Progression of the conformation

through the 1-loop region (conformations four to six in Fig. 8.2) occurs in a similar manner

as the 2-loop region. The sixth conformation marks the limit of stability of the 1-loop state;

further decrease in salt concentration causes the loop to slip off the sphere to the right or

left with equal probability, leading to the wrapped 0-loop state.

We show the conformer states that emerge from monotonically increasing and decreasing

salt concentration in Figs. 8.1 and 8.2 respectively; however, more complicated salt histories

permit access to each state over a wide range of salt concentration. For example, the 1-

loop state, accessed as in Fig. 8.2, remains stable upon increasing salt, leading to a highly

wrapped 1-loop state. Additionally, a variant of the 1-loop state exists that wraps in the
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opposite direction as the conformations of Fig. 8.2. Thus, we identify those conformations

in Fig. 8.2 as existing in the 1-loop state A, and the variant is called the 1-loop state B (not

shown in Figs. 8.1 and 8.2).

The conformations shown in Figs. 8.1 and 8.2 are for zero linking number; however,

qualitatively similar conformers exist for non-zero linking numbers. Despite the apparent

similarity in appearance, the energy and writhe of the resulting conformers are dramatically

influenced by the linking number. We define the binding energy ∆E as the difference

between the energy of the ring bound to the particle and an isolated ring, essentially giving

the energy change upon introducing the ring to the attractive particle. In Fig. 8.3, the

minimized binding energy ∆E and writhe Wr are plotted versus the inverse Debye length

1/lD for Lk = 0 (left plots) and Lk = 2 (right plots). The energy plots in Fig. 8.3 show

the underlying thermodynamic justification for the polymorphism exhibited in Figs. 8.1

and 8.2. The conformational states exhibit an energetic change with salt concentration

that begins at a maximum at the point of instability, and the minimum energy conformer

depends on the salt concentration. In comparison to the energy plot for Lk = 0, the energy

plot for Lk = 2 exhibits a dramatic energetic shift favoring the higher loop states owing to

the larger writhe of such states reducing the twist contribution to the linking number, thus

reducing the twist deformation energy contribution.

The writhe of the conformational states tends to increase with the number of loops.

Comparing the two writhe plots in Fig. 8.3, the linking number tends to alter the writhe

of each individual state towards the linking number value due to the reduction in the twist

deformation energy. The dominant conformer is chosen by a combination of factors. The

twist deformation energy is minimized for the conformer with number of loops closest to

the linking number of the ring; however, the salt mediated interaction between the ring
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Figure 8.3: Minimized energy of binding ∆E (units kBT ) and writheWr of a polyelectrolyte
ring (left plots are Lk = 0 and right plots are Lk = 2) interacting with a charged particle
against the inverse Debye length 1/lD (units nm−1). Curves within each plot correspond to
the 0-loop state (solid blue), the tight-wrapped 0-loop state (dashed blue), the 1-loop state
A (solid red), the 1-loop state B (dashed red), and the 2-loop state (solid green) as defined
in the text; the Lk = 0 plots contain additional curves for an unwrapped 0-loop state (solid
black). The dotted black lines in the writhe plots identify the linking number Lk; we note
that the twist is given by Tw = Lk −Wr.



204

and particle prefers the tightly bound state (conformations seven and eight in Fig. 8.1),

particularly at high salt concentration with short-range attractive pull. As the strength

of attraction decays with the salt concentration, the bending deformation stresses become

increasingly important, eventually leading to unbinding.

8.3 Discussion

Our simple model of plasmid DNA in a nucleosome captures a number of important ef-

fects that are exhibited in the experimental system. The salt-induced wrapping transition

exhibited by nucleosomal DNA [9] is clearly reflected in our results. Plasmid DNA in a

mononucleosome exhibits a polymorphism in the stable states that is strongly influenced by

salt concentration, histone acetylation, and linking number of the plasmid [20, 21]. Certainly

our model lacks the molecular detail necessary to address histone acetylation; however, the

polymorphism demonstrated by our results is strongly influenced by the salt concentration

and the topological state of the closed strand. Salt history is an important factor in the in

vitro assembly of a chromatin fiber [22]; similarly, the conformational state that is prevalent

in our model system is controlled by the particular salt history used in the calculation.

The diversity of the resulting structures that are prevalent in mononucleosomes on plas-

mid DNA [20, 21] is also exhibited in the results presented in the previous section. This

polymorphism is not exhibited for mononucleosomes with open DNA [9, 11]; theoretical

predictions from the same model employed in this study but with an open strand does

not exhibit salt-induced polymorphism [10]. In our current study and Ref. [10], the hi-

stone octamer is modeled as a structureless particle that carries a uniform charge on its

surface; clearly this simple model lacks the inherent complexity of the histone octamer [1].

Nonetheless, the diversity of equilibrium structures is an intrinsic manifestation from closing
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a chain into a ring, even when the packaging particle is completely structureless, as in our

current study. Although the polymorphism may be altered upon adding molecular detail

into the model, this structural diversity is inherent in a system as simple as a ring polymer

interacting with an attractive sphere, as demonstrated in this chapter.

When a chain interacts with an attractive particle, the adopted conformation is com-

posed of a wrapped section in close proximity of the sphere and an unwrapped section that

is less influenced by the attractive pull of the particle. Since the chain is closed, the un-

wrapped section is looped in a sweeping curve that attempts to minimize the deformation

energy while avoiding itself due to self-repulsion. This looped structure applies stresses that

act to peel the wrapped section off the sphere surface, clearly exhibited by the third and

sixth conformations of Fig. 8.2. The reason for the diversity in the wrapped states lies in

the loop stress that peels the chain off the surface of the sphere. The limit of stability of

the 2-loop state (third conformation of Fig. 8.2) and the 1-loop state (sixth conformation of

Fig. 8.2) show that this peeling stress results in wrapped sections that wind over the sphere

surface an integer number of orbital passes. The discrete number of orbital passes at the

limit of stability results in distinctly different wrapping structures thus a diversity in the

wrapped states.

The salt-dependent hysteresis prevalent in the formation of a chromatin fiber in vitro

is reflected in the results presented in the previous section. The particular protocol for

the in vitro assembly of a chromatin fiber involves a salt history beginning at high salt

concentration and then performing a slow salt dialysis to physiological conditions [22]; this

protocol is similar in nature to the progression given in Fig. 8.2. The resulting structure

predicted by our results for this salt history is more closely related to the crystal structure

of the nucleosome core particle [1] where the DNA is wrapped 1.7 times around the histone
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octamer in a helical manner. We propose that this particular salt history (high salt to low

salt) favors the native wrapping of the DNA thus avoiding misfolded structures, as in the

conformers prevalent in Fig. 8.1. This favoring of the native wrapped state for this salt

history may explain the particular protocol necessary to assemble a chromatin fiber with

reproducible physical properties in vitro [22].

The topological state of the closed strand, given by the linking number, favors those

wrapped states with more wraps. An increase in the linking number is associated with

adding twist into the conformation, the resulting twist deformation is energetically costly

to the polymer ring. However, the twist is alleviated when the ring adopts a writhed

conformation due to the geometric coupling between twist and writhe implied by the linking

number conservation in closed, circular threads (Lk = Tw + Wr) [12]. Comparing the

energy plots in Fig. 8.3 for Lk = 0 and Lk = 2, we see a dramatic shift in the favored

conformers from the small-writhe states for Lk = 0 (0-loop state is favored throughout) to

the large-writhe states for Lk = 2 (1-loop and 2-loop states favored for 1/lD > 0.316 nm−1).

Although the energetically favored states are thermodynamically preferred, non-energetically

favored states are at least mechanically stable. Our current work does not address the en-

ergetic barriers between wrapped states at a given salt concentration. Such barriers govern

the dynamic behavior in the presence of thermal fluctuations, which certainly play a role in

the behavior and function of nucleosomal DNA. In this study, we address the mechanical

aspects of the wrapping of a ring polymer around an attractive sphere; in future treatments,

we will include the effect of thermal fluctuations to address the dynamics of activated tran-

sitions between stable conformational states.
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Appendix A: Model of DNA/Core Particle

We study the behavior of a DNA minicircle in a nucleosome using a simple model, namely a

polyelectrolyte ring interacting with an oppositely charged sphere through a screened elec-

trostatic potential. This simplified approach neglects the details of the underlying molecular

architecture; however, a number of qualitative features of DNA packaging are captured with

this simple description. The polyelectrolyte ring is represented by a closed ring that carries a

homogeneous charge along its centerline. The ring responds to deformation through an elas-

tic energy that is consistent with the lowest-order contribution in elasticity theory [31]. As

the chain is closed in a ring, deformation does not change the topological state provided the

ring does not pass through itself; the electrostatic potential of self-interaction is bolstered

by a hard-core potential to model the short-range repulsive interaction of DNA. In order

to facilitate numerical modeling, we cast the model into a discrete form that is consistent

with the continuous description at sufficiently small length scales of discretization.

The DNA conformation is described as a string of beads at spatial locations ~Ri where i

runs from 1 to N . The beads are connected by N bond vectors ui = (~Ri+1− ~Ri)/|~Ri+1− ~Ri|

for i = 1, . . . , N − 1 and uN = (~R1 − ~RN )/|~R1 − ~RN |, thus closing the ring. The material

twisting is accounted for by tracking the two normal vectors ~vi and ~fi, which form an

orthonormal triad with ui since ~vi = ~ui × ~fi and ~fi · ~ui = 0 [32]. Altogether, our model

has 4N degrees of freedom including the positions of the N beads and N twist angles to

determine the material normal orientations.

The total energy of the chain includes terms that account for the elastic deformation

energy, the self-interaction energy, and the interaction between the ring and the charged

sphere. The deformation energy, including compression, bending, and twisting terms, are

quadratic in the displacement away from the straight equilibrium state [31]. These terms
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are given by

Ecom =
A

2

N∑
i=1

(bi/l0 − 1)2 , (A-1)

Ebend =
B

2
(~u1 − ~uN )2 +

B

2

N−1∑
i=1

(~ui+1 − ~ui)2 , (A-2)

Etwist =
C

2

N∑
i=1

ω2
i , (A-3)

where A, B, and C are the compression, bending, and twisting moduli, respectively. The

bond length bi is given by bi = |~Ri+1 − ~Ri| for i = 1, . . . , N − 1 and bN = |~R1 − ~RN |,

and l0 is the equilibrium bond length. The twist angle ωi satisfies (1 + ~ui · ~ui+1) sinωi =

~vi · ~fi+1 − ~fi · ~vi+1 [32]. The self-interaction energy takes the form

Eint =
1
2

N∑
i=1

∑
j 6=i

vint(Rij), (A-4)

where Rij = |~Ri − ~Rj |, and vint(R) is the two-body interaction potential. In our model,

vint(R) is given by

vint(R) =
kBT lBq

2 exp (−R/lD)
R

+ vHC exp [−(R− σ)/lHC ] , (A-5)

where the first term is the screened electrostatic self-repulsion, and the second term is the

hard-core repulsion at short length scales. In the first term, kBT is the thermal energy, lB is

the Bjerrum length (approximately 0.7 nm at room temperature), q is the charge per bead

given by −2l0/(0.34 nm), and lD is the Debye length given by lD = 1/
√

8πlBC where C is

the monovalent salt concentration. In the second term, vHC gives the strength of the hard-

core potential, lHC is the length scale of the potential, and σ is the hydrated diameter of
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DNA (approximately 2.5 nm). The purpose of the hard-core potential is to strictly enforce

the non-cross-ability of the chain, thus in principle the hard-core length scale should go to

zero. However, numerical studies requires a finite value of these terms, which are given by

vHC = kBT and lHC = 0.05 nm in our present study. The interaction between the ring and

the charged sphere is model as

Ehis =
N∑
i=1

vhis(|Ri|) (A-6)

where

vhis =
kBT lBZq

1 +Rhis/lD

exp (−R/lD)
R

+ vHC exp [−(R−Rhis)/lHC ] , (A-7)

where Z is the sphere charge (40 in our study), and Rhis is the histone core particle radius

(approximately 5 nm). We note that since q and Z have opposite signs, the interaction

between ring and sphere is attractive.

With this energetic model in place, we conduct several different types of simulations

in order to analyze the behavior of our system. Energy minimization is performed using

both dynamic simulations [32] and conjugate gradient minimization of our model. To ef-

ficiently search the conformational space, we also perform high-temperature Monte Carlo

simulations. The topology of the ring is characterized by the linking number is a constant

provided the chain cannot pass through itself. We calculate the twist and writhe separately

as a check on the non-cross-ability of the chain. The twist is calculated using the twist angle

ωi along the chain, and we make use of techniques in Ref. [33] to determine the writhe of

the ring.
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