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ABSTRACT

The problem of plasma collection by an obstacle is investigated systematically
to identify potentially important physical effects.

In the absence of an ambient toroidal plasma flow, plasma collection by a
two-dimensional obstacle of half-width d extending to infinity in the y-direction
(slab geometry) is studied in detail. The transport process is taken to be classical.
The plasma is assumed to be strongly magnetized. The external magnetic field
is assumed to be uniform, and is perpendicular to the obstacle’s surface. Our
numerical results suggest that both ion viscosity and ion viscous heating can be
important in the regions where the ion velocity possesses sharp gradients, e.g., the
region near the obstacle’s tip.

A two-dimensional, semi-empirical, model is proposed to account for the effect
of anomalous transport due to a low-frequency, microscopic, electrostatic fluctua-
tion of the poloidal electric field. The obstacle has a half-width of d, and is assumed
to extend to infinity in the y-direction. The plasma is assumed to be strongly mag-
netized. The external magnetic field is assumed to be uniform, and is perpendicular
to the obstacle’s surface. In general, our proposed model suggests the following:

1. Contrary to that which has been suggested in the literature, the cross-field
ion viscosity coefficient (as well as the cross-field ion thermal conductivity) is
not enhanced because the cross-field transport is dominated by the fluctuation-

induced convection.

N

Viscous heating may have an important effect on the ion temperature when
there exists a large velocity gradient. Furthermore, in the presence of anoma-
lous transport, the physical mechanism by which viscous heating is generated
is quite different from the case where the transport process is classical.

In the absence of an ambient toroidal plasma flow, our numerical results suggest
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that for realistic plasma parameters, the peaked ion temperature is up to 85% higher
than the ambient ion temperature due to ion viscous heating.

A numerical code based on the above model is developed to deal with the
case where the ambient toroidal plasma flow is finite. Such a situation arises in
connection with experimental data obtained by the so-called Janus probe or Mach
probe. Our numerical results indicate that near the obstacle’s tip, the ions on the

downstream side are hotter than those on the upstream side.
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CHAPTER 1

Introduction

For the past several decades, tremendous efforts have been undertaken to study
the physics of ionized gases, especially in association with controlled thermonuclear
fusion. If thermonuclear fusion can be harnessed, it will provide an inexpensive,
efficient method of producing virtually unlimited energy. Furthermore, controlled
thermonuclear fusion is a relatively clean method of producing energy because there
are very few dangerous radioactive byproducts associated with it. It is projected
that scientific breakeven for controlled thermonuclear fusion will be achieved in the

near future.

In order for nuclear fusion to occur under laboratory conditions, the ions have
to be confined at high density and temperature for a sufficient amount of time to
overcome the (ion-ion) Coulomb repulsion. The tokamaks (toroidal confinement

devices) are the most promising confinement devices available today.

One of the major ongoing efforts is to improve the particle and the energy
confinement time of the tokamak. Several suspects have been identified as being
responsible for particle and energy losses. Two suspects are anomalous transport
and high levels of impurity. Anomalous transport, transport that cannot be ac-
counted for by classical transport theory, is believed to be the result of a randomly
(turbulent) fluctuating electric field in the plasma. High levels of impurity are detri-
mental to the energy confinement time because the high Z impurity ions, usually
heavy, have high radiation losses: they take energy from the plasma via collisions

and other processes, and give it up in the form of radiation.

The efforts to reduce the impurity level in, as well as to characterize the state
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of, the plasma usually involves introducing foreign objects into the main body of the

plasma. Consequently, it is essential that the physics underlying the plasma-object

interactions be well understood. To demonstrate typical situations where foreign

objects are introduced into the plasma, consider the following three examples.

1. In fusion tokamaks, in order to define the plasma edge and to reduce the level

of ion impurity, limiters are used to collect energetic plasma particles escaping
the core plasma before they bombard the containment wall. Consequently,
shadows, the regions where the plasma density is partially depleted, are created

by limiters, as illustrated in figure 1.1.

. A common plasma diagnostic for density measurements consists of a single or
an array of electrostatic Langmuir probes mounted in a probe housing. ! The
probe housing, in addition to its intended purpose as a protective housing, also
collects plasma particles and, in most cases, even disturbs the plasma locally.
In the extreme case where the probe housing is large, it essentially acts as a

limiter? (see figure 1.1).

. A typical Mach probe consists of two electrostatic Langmuir probes mounted
on either side of an obstacle?, as shown in figure 1.2. This probe is based on the
concept of obstructing the plasma flow by means of a mechanical obstruction,
and thereby seperating the upstream and downstream particle fluxes. It should
be noted that is it desirable to position the obstacle such that it is normal to
the ambient plasma flow. The electrostatic Langmuir probes on both sides of
the obstacle are biased negatively to collect the upstream and downstream ion
saturation currents. The collected ion saturation currents are assumed to be
representative of the plasma flows in the upstream and downstream shadows of
the obstacle. The objective is to use the measured upstream/downstream ion
flux ratio to infer the magnitude of the ambient plasma flow. Currently, there
are disagreements in the literature regarding the interpretation of Mach probe

data.

Both computational and experimental aspects of plasma collection by an obsta-
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cle have been studied by many authors. Several experiments have been performed
regarding the perturbing effects of large probes and limiters. 4~ In addition to
the experimental effort, extensive theoretical effort has also been focused on the
modelling of, as well as the interpretation of data from, large probes. %13
Despite the fact that so much effort has been expended in the subject of plasma
collection by an obstacle, a number of fundamental issues have not been either
addressed or satisfactorily resolved. This thesis is aimed at addressing a limited
number of such issues. In particular, the fundamental physics of interest are:
1. Is it appropriate to neglect the parallel electron-ion collisional drag as is often
done in the literature (without a priori or a postertors justification) ?
2. Can the ions be treated as an inviscid fluid, or should they be treated as a

viscid fluid ? If the ions should be treated as a viscid fluid, which component
of the ion viscosity tensor is important for the transport of momentum 7

3. What is the role of, and how important is, ion viscous heating ?

4. Do the ions remain sufficiently isothermal while being accelerated toward the
obstacle, so that one can neglect the ion energy equation ?

5. How should the cross-field ion viscosity and ion thermal conductivity be mod-
ified to account for anomalous transport ?

6. How should the experimental data from Mach probes be interpreted in order
to infer the magnitude of the ambient plasma flow ?

An electrostatic sheath, a thin layer of electron-depleted plasma whose thickness
is of the order of the Debye shielding distance, is formed on the surface of an obstacle
when immersed in a plasma. Upon entering this electrostatic sheath, the ions ac-
quire a speed of at least c,, the ion acoustic speed. 1*~2% Consequently, an obstacle,
when immersed in a plasma, acts as a particle collector. Often a qualitative argu-
ment based on particle balance!! is used to show that such a particle collector will
create a shadow (see figure 1.1), the region in which the plasma density is partially
depleted, whose extent to either side of the obstacle is of the order L, ~ csd*/D

(d is the dimension of the obstacle). If many obstacles are located sufficiently close
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to each other, their shadows can overlap, and probe measurements in such a plasma
region will yield erroneous information regarding the unperturbed plasma parame-
ters. Several models have been proposed to infer unperturbed plasma parameters
from such probe measurements. 11712 In these models, three basic assumptions are
made: (1) the ions are isothermal, (2) the ions are inviscid, and (3) the paralle]
electron-ion collisional drag is neglected. However, as will be shown in chapter 3,

the validity of these assumptions is questionable.

Because each particle collected at the obstacle’s surface carries some momentum
and energy, the surface is subject to a power flux that can heat up the obstacle. If
the obstacle is brought to a sufficiently high temperature, it will release impurity
ions into the main plasma. It is therefore desirable to construct a plausible model
to predict power loading on obstacles under given operating conditions. There
are transport codes available for this purpose.?! However, such transport codes
are far too complicated, and thus are not efficient. Furthermore, because of the
complexity of these transport codes, it is difficult to identify the dominating physical

mechanisms.

In the scrape-off layer, Mach probe measurements indicate that the ion satura-
tion currents collected on the two sides of the obstacle are not equal, ® suggesting the
existence of an ambient plasma flow. Two contending models have been proposed to
infer the magnitude of the ambient plasma flow from the upstream/downstream ion
flux ratio. °!% In one model,? the ions are assumed to be isothermal and inviscid,
i.e., the effects of ion viscosity and ion viscous heating are neglected altogether. As
will be shown in chapter 5, the validity of this model is questionable. In the other
model, }° the ions are assumed to be isothermal and viscid. In fact, the cross-field
lon viscosity coefficient is assumed to be anomalous due to turbulent transports.
In particular, it was postulated that n, /nM D, the viscosity/diffusivity ratio, is
of the order 1. As will be shown in chapter 5, the validity of this model is also

questionable.



Thesis Qutline

In chapter 2, the usual derivation of the two-fluid description of plasmas from
the Boltzmann equation is modified to account for particle, momentum, and energy
sources. The two-fluid description of plasma so obtained is then simplified to model
a fully ionized, strongly magnetized plasma consisting of only two species: electrons

and singly charged ions.

Chapter 3 begins with a simple model of plasma collection by an obstacle in
the absence of an ambient plasma flow. In this model, the ions are assumed to be
isothermal and inviscid. Five other models in which the ambient plasma flow is
also assumed to be absent are then constructed, each taking into account a poten-
tially important physical effect. The numerical results from these models are then
compared with those from the first simple model where the ions are assumed to
be isothermal and inviscid. Because each model isolates a different physical mech-
anism, the effects of different physical mechanisms are decoupled. Consequently,
the dominating physical mechanisms can be easily identified. The potentially im-
portant physical effects considered in this chapter are: (1) the localization of the
replacement particles, (2) the dependence of D on the particle density n(z, z),
(3) the parallel electron-ion collisional drag, (4) ion viscosity, and (5) ion viscous
heating. Throughout chapter 3, the electrons are assumed to be isothermal and
inviscid, and the transport process is taken to be classical. Furthermore, the actual
toroidal geometry shown in figure 1.1 is idealized to simplify tedious geometrical
cosiderations. Figures 1.3a and 1.3b illustrate the idealized geometry employed in
this chapter. A rectangular lattice of obstacles and its wunit cell are shown in fig-
ure 1.3a. Because of symmetry, the actual domain of interest consists of only one
quarter of the unit cell, as shown in figure 1.3b. The 2 and z directions correspond
to the radial and toroidal directions, respectively. The y direction corresponds to
the poloidal direction, and is assumed to be the ignorable direction. The (toroidal)

magnetic field is assumed to be strong and uniform.

In chapter 4, a semi-empirical model is proposed to account for turbulent trans-
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port caused by a low-frequency, microscopic, electrostatic fluctuation of the poloidal
electric field. In this chapter, the ambient plasma flow is taken to be zero. Numerical
results are obtained for a set of plausible plasma parameters.

Chapter 5 is an extension of chapter 4 in an effort to account for the effect
of a subsonic ambient plasma flow in the toroidal direction. Numerical results are
obtained for three values of the ambient plasma flow. The results of this chapter
have direct applications in the interpretation of Mach probe measurements.

Chapter 6 concludes the thesis with a brief summary of the primary numerical
results regarding plasma collection by an obstacle.

Four appendices relevant to the work presented in chapters 2-5 are included
in this thesis. Appendix A is a one-dimensional model of electrostatic sheaths
with warm ions. Appendix B contains the coordinate transformations employed in
chapters 2-5. Appendix C is a simple one-dimensional model of plasma collection
by an obstacle. The primary purpose of Appendix C is to explain the origin and
the nature of the singular behaviour found in the plasma response at the obstacle’s
surface. Appendix D contains the normalization procedure for a typical set of

transport equations, and a listing of the computer code employed in section 3.7.
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Figure 1.1: An obstacle and its shadow (region of reduced density) in a tokamak.
The shadow is formed on both sides of the obstacle. Poloidal limiters or relatively
large protective housings for diagnostic instruments will also have similar perturbing

effects.
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Figure 1.2: A Mach probe and its orientation with respect to the magnetic field. The
upstream and downstream particle fluxes are separated by a mechanical obstruction.
The probes on both sides of the obstacle are biased negatively so as to collect the ion

saturation currents representative of the plasma flows in the shadows of the obstacle.
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o= ZO =

Toroidal
(b)

Figure 1.3: Idealized geometry consisting of a rectangular lattice of obstacles. The
dashed box in (a) represents a unit cell of the lattice. Because of symmetry, the

domain of interest is only one quarter of the unit cell, as shown in (b).
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CHAPTER 2

A Derivation of the Two-Fluid Description of Plasmas
with Particle, Momentum, and Energy Sources

In this chapter, we will first present the general two-fluid description of plasmas,
which accounts for particle, momentum, and energy sources. We will then apply
this two-fluid description to a fully ionized, strongly magnetized plasma consisting

of only two species: electrons and singly charged ions.

2.1 Formulation

The derivation of the two-fluid description of plasmas from the Boltzmann
equation has been given by many authors. 2272 However, one of the main assump-
tions of this derivation is that there are no sources of particles, momentum, or en-
ergy. In order to appropriately account for particle, momentum, and energy sources,
we shall modify the derivation of the macroscopic transport equations. Our effort
1s not an attempt to reiterate such a well-known derivation, but rather a modest
attempt to incorporate particle, momentum, and energy sources into the transport
equations.

The Boltzmann equation, which describes the motion of particles in phase
space, can be written in the following form (see, for example, [22-24]):

Ofa | Ovgfa) |, O (Fap .\ _ (9t :
ot T fu, +8vﬂ(mafa>—<3t>c (2.1)

where m, is the particle mass of species a. f,(r,v,t) is the distribution function of

species a, i.e., fu(r,v,t) d®r d®v is the number of particles of species a in the volume
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element d3r d®v located at the point (r,v) in phase space at time ¢t. F, is the net
force exerted on a particle of species a at the position (r,v) in phase space. We
shall limit our scope to the motion of charged particles in an electric field E and a

magnetic field B. If the particles of species a carry a charge e,,
F, = e, (E +vxB) (2.2)

The R.H.S. of the Boltzmann equation represents the rate of change of the

distribution function of species a due to collisions. In our model, we have chosen to

write

fa
= E = 2.
<5t>c C'aa+b¢acab+7a+°a 29)

The first two terms of the R.H.S. of equation (2.3) represent collisions between
charged particles. The first term, C,,, is the self-collision term. It accounts for
Coulomb collisions between charged particles of the same species. The quantity
Cap represents Coulomb collisions between charged particles of species a and those

of species b. Thus, the second term, Z Cp, accounts for collisions between charged

b#a
particles of species a with those of all other species. The Coulomb collisions repre-

sented by C,, and z C,p are taken to be elastic collisions. We will assume that

b#a
these Coulomb collisions do not convert particles of one species into another. Hence,

/Ca,,d% =0, V{ab) (2.4)

Because the Coulomb collisions are assumed to be elastic, momentum and
energy are conserved. As a result, the self-collision term C',, will have the following

properties:

/mavC’aa d*v =0 (2.5)

P}

"1 :
/ —5mavzcaa dv=0 (2.6)

In any plasma, there is always a finite amount of background neutral gas.

Although the kinetics of the neutral gas particles need not be taken into account if
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the neutral gas particles represent only a small fraction of the system, as is often
the case with fully tonized tokamak fusion plasmas, we should account for their
collisions with charged particles since these collisions do give rise to a finite rate
of ionization. The term -, represents the rate of ionization due to such collisions.
This term accounts for a source of particles. In general, this term also gives rise to
a net input of momentum and energy since each particle introduced into the system

carries with it some momentum and energy.

The term ¢, represents processes that introduce energy into the system without

introducing significant amounts of particles and momentum to it, i.e.,
/E“Fv:o (2.7)
/mav g d®v =0 (2.8)

Let us now define two convenient weighted-averages, namely,

<¢>a:%/w@d3v

(650 = g [ drad'y

where

Sm:/%fv (2.9)

Spg 1s the net volumetric source of particles of species a since all other terms
on the R.H.S. of equation (2.1) do not account for ionization, recombination, or
dissociation. (%), and (1 )g, are the weighted-average of the quantity ¢ with
respect to the particle distribution function f,, and the source distribution function

Ya, respectively.

Our goal is to obtain the transport equations in terms of the macroscopic

variables
na(r,t) = /fa(r,v,t) d*v (2.10)
V.= (v), (2.11)

T.(r,t) = < é—ma|v - Va]2> (2.12)
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In general, for an arbitrary distribution function, one cannot close the set of macro-
scopic transport equations with a finite number of moments of the Bolztmann equa-
tion since the second term of the L.H.S. of equation (2.1) always introduces the
(n 4 1)** moment into the equation for the n** moment. The standard practice to
circumvent this problem is to use only the first three moments of the Boltzmann

1 . .
equation, i.e., multiplying equation (2.1) by {1,m,v, 5ma"02} and integrating the

F

resulting equations over velocity. Because of the second term of the L.H.S. of equa-

1 .
tion (2.1), the equation resulting from taking the second moment (< §mavz> )

a

1 .

contains the third moment (< §mav2v > ). In order to evaluate the third moment,
a

1t is assumed that each species is near thermodynamic equilibrium, i.e., its distribu-

tion function can only have small deviations from a Maxwellian distribution. The

distribution function can then be expanded about a Maxwellian distribution, i.e.,

_ me (ma|v =V, 5 5
fa(r,v,t) = n(r,t) 5T exp | — 5m (1+ 6a) (2.13)

where 6, 1s treated as a small perturbation (6, < 1). The first order correction &,
can be obtained explicitly by linearizing equation (2.1) using the above expression,
given that the detail of the collision processes are known. The third moment can
then be computed from the first-order corrected distribution function (see equation
(2.13)) in terms of the first three moments. The set of transport equations can thus
be closed with the first three moments of the Boltzmann equation. The reason we
cannot properly close the set of transport equations with less than three moments is
that it takes three moments to uniquely specify a Maxwellian distribution function:
the zeroth moment specifies the distribution’s volume in velocity space (particle
density), the first moment specifies the distribution’s mean value (mean drift ve-
locity), and the third moment specifies the distribution’s width (temperature). It
should be kept in mind that this approach is no longer satisfactory if the species
are not near thermodynamic equilibrium.

Taking the first three moments of the Boltzmann equation, using equations

(2.3)~(2.12) and the fact that the distribution function vanishes sufficiently fast as
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|v] — oo, we obtain:

Oong,
Ot

%(manaVa) + V- (mana{vv),) — eana(E+ Vo XB) = Spyma (V)g, + Ra (2.15)

+ V- (naVe) = Spa (2.14)

0 /[/1 1 ‘
gt— <§771a71a <U2 >a> + V. <§mana <U2V >a> - eanaE'\’ra = Pa (216)

where

R, = /mavZC’ab div

b#£a

1
P, = /—2—77za02 (Z Cab + Yo + €a> dPv

b#a

Equations (2.14)—(2.16) are termed the continuity, momentum, and energy equa-
tions, respectively.

It is convenient to write the velocity v as the sum of two components: V, the
mean drift velocity weighted with respect to the particle distribution function f,,
and v', the random velocity as seen by an observer moving with the mean drift

velocity V,, i.e.,

v=V,+v'
It follows from the above equation that (v'), = 0. Hence,

Mae (VV), = menaVeVa + mang (vIiv'),

= 7nanavava + naTaI + 7,
1 1
'2—7na7’ba <U2 >a = ;mana(VaQ + <DI 2 >a)
1 3
= §7nanaVa2 + 5naTa
1 1 |
smarta (V'Y ), = 5mana(Vy Ve + (v7), Vo +2(v/v /) Vot (v/2v'),)

1 5
= <5manaVa2 + é‘naTa>Va + V., T, + 9
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1
Ty =mgng{ v'v — =021
3 a

=mung (v'v'), —n,T,1

where

1
t2_ .1
Qe = :_mana<v v >a

2

Carrying out a similar transformation and making use of equation (2.4), one obtains:

R, = /mavZCabd3v = /mav' ZCabdgv’

b#a b#a
1
P, = /§mav2 (Z Cop +7a + Ea> d3v
b#a
=R,V S ! Y 3T )
- a "’ a+ZQab+ Pa ’Q"ma Sa+§ Sa| T OEq
b#a
where
VSa = <V )Sa
1
Tsq = < gmalv — Vgal? >
Sa

1
Qab = /gmavlzcab d3V,
1 2. 13
SEa = 5MaV €a d’v

We need to relate the quantities Z Qub, Yo, Ta, and R, to the macroscopic
bZa
variables n,, V,, and T,. These relations can be derived by the kinetic method

previously outlined, i.e., by linearizing equation (2.1) using equation (2.13) and the

fact that the self-collision term C,, and the cross-collision term Z Cp represent
b#a
elastic Coulomb collisions. The distribution function f, can then be corrected to

first order. One can use the corrected distribution function to evaluate z Qabs Ya,
b#a
7., and R, (see, for example, [23]).

We will consider a simple system consisting of only two species of particles:
electrons (a = e) and singly charged ions (¢ = i), i.e., ¢; = —e, = €¢; m and M will

denote the electron and ion mass hereafter.
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We will assume that our system is quasi-neutral, i.e., n, = n; = n. The reason
is that any small deviation from quasi-neutrality will produce a very large electric
field that tends to restore quasi-neutrality.

R., the rate of change of the electron momentum due to electron-ion collisions,

derived by kinetic methods, ?3 can be written in the following form:
R, =mnv(V; - V,.) (2.17)

where v is the electron-ion collision rate. The above result can be understood on
the basis of elastic binary collisions. In an electron-ion collision, the momentum
imparted on the ion has to be equal in magnitude and opposite in direction as
that of the electron. However, because of mass disparity, the ion’s velocity appears
unchanged. A direct analogy to this situation is a ping-pong ball hitting a perfectly
elastic brick wall. The momentum imparted on the electron is of the order of its
initial momentum in the ion’s inertial frame. The above equation gives the rate of
change of the electron’s momentum averaged over many such collisions. Of course,
conservation of momentum demands that R = R; = —R.. It is important to note
that it is the electron-ion collision rate rather than the ion-ion or electron-electron
collision rate that governs the rate of particle diffusion since collisions between two
like-particles do not result in a displacement of the center of mass. 7;, the electron-

ion collision time, has been computed by Braginskii??

3m!/2Te
4(2m)/2ln Ae* Zn

V—l = Tes =

(2.18)

where In A is the Coulomb logarithm,*? the logarithm of the ratio of the maximum
to minimum impact parameter. Z, the degree of ionization of the ions, is equal to
1 in our system.

The heat flux due to random motions q,, derived by kinetic methods,?? can

be written in the following form:

qe = —-Iia_LV_LTa — Ka" V” Ta — Kva/\ZAXV_LTa (2.19)
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where z is the unit vector in the direction of B. Z shall retain the same meaning
hereafter. Since the general expressions for the thermal conductivities are compli-
cated, we shall focus our attention on strongly magnetized plasmas as this is often
the case with tokamak fusion plasmas. A plasma is said to be strongly magne-
tized if wq;7;; > 1, where 74; and we; are the ion-ion Coulomb collision time and

the ion cyclotron frequency, respectively. 7;; is related to 7¢; through the following

Tis 1 M 1/2 Tz 3/2
Een(n) (3)

For a strongly magnetized plasma, the thermal conductivities are:

relation: 23

23

Te €
oy = 3165
m
T,
Kot = 4.66—
mw?2, Tee
5 nT,
RKen = %
2 e¢B
T f (2.20)
iy = 3.9 Y
il =270
il Mcugini
5 nTi
Ripn = —T
A 2 eB /

where Te. ~ 7.;. The reason is that the relative velocity between an electron and
an ion is of the same order as that between two electrons, and as a result, electron-

electron collisions and electron-ion collisions occur at about the same rate.

Electron viscosity has a negligible contribution in the electron momentum equa-
tion because the electrons have a small mass. We will therefore neglect the contri-

bution from electron viscosity.

Ion viscosity, derived by kinetic methods,?® can be written in the following
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form:
\

Rax = =310 (Was + Wyg) = 3m(Wae = Wyy) = 15 Wy
Tyy = —%770(WM + Wyy) + %m(Wm = Wyy) + 13 Way
Toe = —NoWes

oy = — M Way + %UB(WM - Wyy)

ez = —N2Wer — naWy,

Tye = —n2Wy + 7aWe,

where

oV; BVM 2
~ =608V V;
Ozp * dzq 3 7 )

dop is the well-known Kronecker delta function. By definition (see equation (2.20)),

Wap =

7, is a symmetric second rank tensor. The set of equations above, along with the

appropriate set of coefficients ({nt}, £ =1,...,4), completely defines ion viscosity.

For a strongly magnetized plasma, the ion viscosity coefficients are: 23

no = 0.96nT;7;; )
1 3 nT;

R T P (2.22)
1 1 nT;

BN S

Since the particle source Sp, comes from ionization of neutral particles, electric

charge balance requires that
Spe=2ZSp; = Sp

with Z, the degree of ionization of the ions, being 1 in our physical system.

Qic, the amount of heat transferred from the electrons to the ions by collisions,

)
15‘3

m n .
Qie =377 T(Te ~T;) (2.23)

(e, the amount of heat transferred from the ions to the electrons by collisions,
is 23

Qei =R-(V; = V) - Qi (2.24)
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Rewriting equations (2.14)—(2.16), we obtain:

V-J=0 (2.25)

L V-(aV) =5 (2.26)

_a%(Man)+V(ManVz) = en(E-}—V,*XB)-—V(nTi)~—V~7Ti+SpMVSi+R (2.27)

%(mnVe) + V- (mnV,V,)=—en(E+V .xB)—-V(nT,)+ SpmVgs. — R (2.28)

g—t [%anzz + g—nﬂ} +V. [(%.Man + gnTi)Vi}:—V~ (Vi-m)+ (enE+R)-V;
1, 3
= V-qi + 5p| 5 MVs; + 5 Tsi
+ SEi + Qie (2.29)

o1 ., 3 1, 5 B
En {-Q—mnVe + gnTeJ + V. [(§mnVe + §nTe)Ve] =—(enrE4+R)-V,~-V.-q,

1 3
+ Sp [5mV§e + §T56J + Sge.

+ Qei (2.30)

where R, 7, qi, qe, Qic, and Q.; are given by equations (2.17)-(2.24). Equa-
tions (2.25)—(2.30) form a closed set of valid transport equations, provided that the
assumptions we made are satisfied by the physical system. These equations are,

however, not geometry-specific.

2.2 Application of Transport Equations to Steady-Flow Problems
We would like to use the transport equations in the context of a two-dimensional
model. Figure 2.1 illustrates the geometry of our system. The external magnetic
field i1s in the 2 direction. zy and zy are the physical extents of the plasma column.
The obstacle is modeled as a two-dimensional strip of width 2d, extending to infinity

in the y direction, i.e., y is the ignorable coordinate. We would like to study the
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behaviour of the macroscopic quantities such as the plasma density, velocity field,

and temperature in the presence of one or more such obstacles.

An electrostatic sheath, a thin layer of non-neutral, electron-depleted plasma
whose thickness is of the order of the Debye shielding distance Ap, is formed on
the surface of an obstacle when immersed in a plasma. The ions are accelerated
to a speed of at least ¢y, the ion acoustic speed, upon entering the electrostatic
sheath. This is the Bohm sheath criterion, first shown by Bohm for cold ions.!*
Extensions of this work by others®~2% show that this condition is also valid for
warm ions. A simple physical explanation for this effect can be stated as follows.
Consider a hypothetical situation where an obstacle is introduced into a plasma
that is in equilibrium and has no mean flow. The electrons, being lighter and
faster, arrive at the obstacle faster and in greater numbers than the ions. Since
there is a finite probability for the electrons to be captured by the obstacle, some
of the electrons that arrive at the obstacle will stick on the surface. As a result,
the obstacle, initially neutral, is negatively charged and therefore accelerates ions
toward it. The electrons, however, are repelled by the obstacle. Only those electrons
with a kinetic energy greater than the height of the obstacle’s electrostatic potential
energy barrier can impinge on its surface. In fact, since the electrons impinge on the
surface of the obstacle at such a high rate, only a small fraction of the electrons can
be allowed to reach the obstacle if a steady-state is to be reached. In steady-state,
the obstacle’s potential barrier adjusts itself in such a manner that the electrons
and ions arrive at the obstacle at equal rates, i.e., no net current is collected at the
wall. An ion accelerated through such an electrostatic potential will obtain a speed
of at least ¢; upon entering the sheath. Appendix A is a simple one-dimensional
model of electrostatic sheaths with warm ions. This model is a variation of the

one-dimensional model of electrostatic sheaths with cold ions proposed by Chen. 7

Although more rigorous models have been presented in the literature, =2 our
simple model is much easier to understand, and contains the essential physics of

sheath formations.
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It was shown by Self1® that the transition from a quasineutral plasma to a
non-neutral sheath is a smooth transition. The division between the sheath and
the main plasma is therefore an artificial one. However, when the Debye shielding
distance is small, the electrostatic potential possesses two markedly different scale
lengths. The plasma can then be well approximated by two regions: one where
the plasma is quasineutral, and one whose thickness is of the order of the Debye
shielding distance Ap where the plasma is electron-depleted. It is in this limit that

the concept of an electrostatic sheath is a useful one.

We will assume that the Debye shielding distance is small in our physical sys-
tem. This is often a good assumption in most tokamak fusion plasmas. In principle,
our transport equations, used in conjunction with Poisson’s equation, are adequate
for modelling the plasma including the sheath region. However, since the sheath
has a very small scale length, we have to solve an elliptic PDE (Poisson’s equation)
on an extremely fine grid at every iteration. This is computationally difficult and
unnecessary. We will therefore assume that the plasma is quasineutral and exclude
the sheath region from our domain of interest. Since the sheath is assumed to be
thin in our physical system, we will define the sheath edge to be the location where
the ions acquire a speed equal to the local ion acoustic speed (the ion’s velocity
component parallel to the external magnetic field B is taken to be the ion acoustic

speed at the obstacle).

As particles are being removed at the obstacle, momentum and energy are also
being removed since each particle carries with it some momentum and energy. The
particle, momentum, and energy fluxes removed at the obstacle are replenished
by their respective volumetric sources in the macroscopic transport equations. A
steady state is achieved when there is an exact balance of particle, momentum, and
energy. It is this steady-state collection of particles, momentum, and energy that

we would like to investigate.

In steady-state, the electric field can be expressed as the gradient of an elec-
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trostatic potential, i.e.,
E=-V¢ (2.31)
The externally applied magnetic field B is assumed to be static and uniform. 6B,
the magnetic field generated by the plasma current, is assumed to be negligible
compared to B. This is a good approximation in most tokamak fusion plasmas.
Due to the lack of knowledge of details of the ionization process, Vg; and
Ts; are unknown quantities. However, assuming that the exact treatment of these
quantities will not affect the solution significantly, we will therefore assume that the

source lons are born with the mean velocity and temperature of the bulk ions, i.e.,
Ts; =T; (2.33)

Because the ratio of electron to ion mass is small, several simplifications can
be made to the transport equations. First of all, we can assume that the electrons
are 1sothermal because of their high thermal conductivities in the direction parallel
to B. Only a small parallel gradient of T, is necessary to cause a finite amount of
heat flux required for energy balance. Second, both the L.H.S. (electron inertia)
and the third term of the R.H.S. of equation (2.28) (electron momentum source)

can be neglected.
In summary, the transport equations (2.25)-(2.30), when applied to our steady-

flow problems, can be reduced to the following form:
V- I=0 (2.34)

V.(nV,) = Sp (2.35)
A\ (ManVz) = 671(-—-V¢ + ViXB)— V(?’LTZ)—-V 7T,'+SPMV1'—|-R (236)
0=—en(-V¢+V.xB)-T,Vn—R (2.37)
1 5 O
\& (5]\471‘/;" + 571TL>V1} =-V- (‘fz . 71'1‘) -+ (enE -+ R) .V, - V. q;

1 , 3
+ Sp [§MV{ + ~2—Tz] + Spi + Qie (2.38)
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Equations (2.34)-(2.38) are the transport equations in the conservative form. Equa-
tion (2.37) is often called the generalized Ohm’s law. As a reminder, the above set

of transport equations can be closed with equations (2.17)-(2.24).
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Figure 2.1: Geometry of physical system in the absence of an ambient flow. The
dashed lines represent the periodic boundary. The thick solid line represents the
obstacle. The magnetic field B is assumed to be uniform, and is in the z-direction.
The two-dimensional obstacle extends to infinity in the y-direction, and has a width

of 2d.
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CHAPTER 3

Plasma Collection by an Obstacle
with No Ambient Plasma Flow
in the Absence of Anomalous Transport

In this chapter, we will perform a detailed numerical study of plasma collection
by a two-dimensional insulating obstacle in the absence of an ambient plasma flow,
using the classical transport equations derived in chapter 2. Our goal is to con-
struct the simplest model possible that contains the essential physics. The physical
effects to be investigated in this chapter are: (1) parallel electron-ion collisional
drag, (2) ion viscosity, (3) ion viscous heating near the limiter, (4) localization of
particle sources, and (5) density-dependent particle transport coefficient. We will
study each effect separately to assess its relative importance. Slab geometry is
studied since the obstacle is assumed to be a two-dimensional strip. The results for
slab geometry should provide the correct qualitative behaviour of the macroscopic

variables. Extension of this model to cylindrical geometry is straightforward.

3.1 Typical Tokamak Plasma Parameters

In this section, we will present typical plasma parameters found in the edge
region of large tokamaks. The edge region of the tokamak is often referred to
as the scrape-off layer (SOL). The plasma in this region is generally cooler and
more tenuous than the core plasma. Because the plasma in the SOL is relatively
cool, probes and material objects can be inserted without releasing large amounts
of impurity ions which, in practice, can disrupt the plasma. Consequently, the

plasma-probe interaction is modeled only in the SOL.
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3.1.1 Basic Plasma Parameters
T, ~T; ~30eV
ne &~ n; ~ 101% cm ™3
B~5T
For a hydrogen plasma, (electrons and protons), we have:
vini = \/Ti /M ~ 5x10° cm/s

Othe = /Te/m ~ 2x10° cm/s

Cs =4/ TeA—;Ti ~ 8x10%cm/s

wei = eB/M ~ 5x10% sec™!

wee = eB/m ~ 10'? sec™!
—2
pPi = Uth,i/wci ~ 1x107°cm

Pe = Vth,e/Wee ~ 2x107% cm

T, _3
Ap = Tonoz ™ 1x107° cm

For a wide range of plasma temperature and plasma density, In A (the Coulomb
logarithm) is approximately 10. The collision times and the collision mean-free-

paths can be computed from the above plasma parameters:

3 /232 5

Tii = 4270/ o At 2o, ~ 3x107" sec
37711/2'1163/2

et — ~ 8 10_7

! 4(27)1/2 In AetZn 8 wee

Tee ~ Tei ~ 8% 1077 sec
Aei = Ugh,eTei ~ 2x10% cm
)\ii = Uth,iTi ™~ 2X 102 cm
Aee = Uth eTee ~ 2X 102 cm
: 4
WeiTii ~ 2x10

WeeTee ~ 8% 10°



—927—

3.1.2 Classical Transport Coefficients

2 2
DJ_:—"—CS Nﬂe—NO.Zch/S
WeeWeiTed Tei
77“i K'”i Ti 8 9
= = celel ;Tii) ~ 8x10
nMD, nD, \T.+T; (eeTes)(weitis)
14 _ Kl1j _ Tl WeeTes ~ 20
TLM.DJ_ nD_L Te + Tz WeiTig
Tye — EZE ~2%1072
i i i
T le _ Ek ( WeiTis ) ~ 10—5
N1 T; 14 WeeTee
Fpe _ MTetee o
K;”i m Ti Tii
fle _ %ETE(L"”" )2 ~2x1072
Kli M TG T \WeeTee

3.2 Isothermal, Inviscid Model

In this section, we will study particle collection by a single insulating obstacle,
using the simplest model. Figure 3.1 illustrates the geometry of our model. The
obstacle is assumed to be a two-dimensional strip of width 2d, extending to infinity
in the y direction, i.e., y is the ignorable coordinate. OQur domain of interest is

0<z<zgand 0 <2< 2.

3.2.1 Basic Assumptions and Formulation

Physically, the ions are expected to cool as they approach the obstacle, except
for the region where viscous heating is important (see section 3.7). However, for
simplicity, we will neglect the ion energy equation and assume that the ions are
isothermal. The validity of this assumption will be discussed in more detail in a
later section.

Ion viscosity represents the diffusion of ion momentum from one region of the
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plasma to another. It is caused by deviations of the ion distribution function from
a Maxwellian distribution. If the ions are in perfect thermodynamic equilibrium,
i.e., the ion distribution function is exactly Maxwellian, ion viscosity will vanish. In
this simple model, we will assume that the ions are in thermodynamic equilibrium

and neglect ion viscosity.

In a magnetized plasma, individual charged particles (electrons and ions) gyrate
about fixed magnetic field lines. In the absence of interspecies collisions, charged
particles cannot diffuse across the field lines. The perpendicular electron-ion col-
lisional drag R is the only mechanism causing particle diffusion across the field
lines. Without collisions, the electrons and ions simply drift in the y direction (y
is the ignorable coordinate), causing no particle diffusion across the field lines. The
drift velocity in this case is the sum of the EXB and the diamagnetic drifts. Since
particle diffusion across the field lines is caused by electron-ion collisions, these

collisions actually enhance the perpendicular ion motion.

The paralle] electron-ion collisional drag R, does not have the same role in the
parallel ion motion as R does in the cross-field ion motion. The basic difference
is that the ion motion across the field lines is diffusive, whereas the ion motion
along the field lines is a free-streaming motion. Since the parallel ion motion is a
free-streaming motion, the electron-ion collisional drag along the field lines hinders
the motion. Conceptually, the term R, is not very important since its only effect
is to compete against the electric field and the ion pressure gradient, which are the
principal driving forces in the parallel direction. Therefore, we will neglect it in this
simple model. A more elaborate discussion of this term will be offered in a later

section.

Detailed balance requires particles to be replenished as they are removed at the
obstacle. Otherwise, all particles in the plasma column will be removed after some
time, resulting in a trivial steady state where the plasma density is zero everywhere.
Assuming that the exact treatment of the particle source will not affect the solution

significantly (this assumption will be justified a posteriori), we will take Sp to be



spatially uniform.

The electron-ion collision rate v (see equation (2.18)) is proportional to the
particle density n. However, we will take v to be independent of n in this model.
Although this model might not be quantitatively correct, it should provide us with
the correct qualitative features of the macroscopic variables.

With the assumptions made in this simple model, equations (2.34)—(2.38) can

be reduced to the following form:

V.1=0 (3.1)
V. (nV;) = S (3.2)

\& (M?ZVZVL) = 67?,(-—-V¢ + VZXB) - TzOVn + Soj\ivl + 771721/0(Ve — V«i)_L (33)

0=—en(=Vo+ V. XB)—T,oVn—mniy(V,—V;)1 (3.4)

We would like to extract the physical quantities n (plasma density) and V, (ion
fluid velocity) from the above equations. This can be achieved by manipulating the
generalized Ohm’s law (equation (3.4)) to obtain both the electrostatic potential ¢
and the electron fluid velocity V, in terms of n and V,. These expressions for ¢ and
V. can be substituted into equation (3.3). The resulting equation and the continuity
equation (3.2) then form a closed set of transport equations for our model.
Integrating the z-component of equation (3.4) with respect to z, and then

differentiating the resulting equation with respect to x, one obtains:

0¢ T, On déo  Teo Eldi;g = f(2) (3.5)

e =e
Ox n Ox dz ng

where ¢o(z) = ¢(z,0) and no(a) = n(z,0).
The perpendicular component of the generalized Ohm’s law can be rewritten

in the following form:

0=—en(—V1i¢+ Vi xB)+ I xB -~ TyVin+ Tg”ﬂh
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Solving for J, from the above expression, using equation (3.5) and the fact that y

is the ignorable coordinate, one obtains:

m

mf(@’)(a:@ +9) (3.6)

J. = 1+ Z(Vz_L+04Vz_LXZ)

where a = mvg/eB.

Because the obstacle in this model is assumed to be an insulating one, the
local current density collected on the surface of the obstacle can be taken to be
identically zero. From symmetry, the component of the current density normal to
all other boundaries is required to vanish. As a result, J, must satisfy the following

constraint for all values of z:

20
/Jx(:v,z)dz:()
0
Substituting the z-component of equation (3.6) into the expression
above, one obtains:

B ”’°
flz) = el (Vn + aViy)dz// ndz (3.7)
0 0

(87

Since we would like to investigate the problem of plasma collection by a single
obstacle, the quantities zo and zy will be chosen sufficiently large that the region
far from the obstacle is unperturbed. For such large values of zg, f(z) is negligible,
i.e., equation (3.6) reduces to:

J_L 1+ Z(Vz_L+OZV,_LXZ>

Since we have eliminated the electron fluid velocity from the transport equa-
tions, we can now let v denote the ion fluid velocity without causing any confusion.

With this new notation, the transport equations for our model become:

V. (nv) = So (3.8)

B | |
ne —(vixz—avy) = (To+Tu)Vn+SoMv  (3.9)

V- (Mnvv) =
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where a = muvy/eB.

In general, the macroscopic transport equations are appropriate for describing
the fluid motion of the plasma when the ion Larmor radius is small compared to
the width of the obstacle, i.e., ¢s/we; € d. Otherwise, the individual particle orbits
have to be separately accounted for, and the approach of averaging over particle
orbits is no longer appropriate.

The tip of the obstacle, i.e., the point (z = d,z = z9), proves to be a problem
for the following reason. From symmetry, v,, the ion’s velocity component parallel
to the magnetic field B, is required to be zero above the tip (d < z < zg, z = 2).
vy, on the other hand, is taken to be +c¢; below the tip (0 < =z < d, z = z)
according to the Bohm sheath criterion. The behaviour of v, in the neighourhood
of the tip is not well understood. At this time, we do not have a satisfactory remedy
for this problem. Instead, in order to assess the importance of the exact treatment
of the tip, we will study two cases where (1) v, is taken to be uniform below the
tip, 1.e.,

v, =%cs, 0<z<d, z=2

and (2) v, is taken to have a sharp, but continuous, profile below the tip, e.g.,

z 16
1—(2) :l, 0_<_$'<d,Z:ZQ

In both cases, v, is taken to be zero on and above the tip (0 < z < d, z = 7).

vy, = Ty

3.2.2 Analytical Results

Three essential features of the model can be extracted analytically from the
transport equations (3.8)—(3.9).

From symmetry, the normal component of the ion fluid velocity and that of
the density gradient on the bottom boundary (the line # = 0) are zero. The
z-component of the ion momentum equation (equation (3.9)) on this boundary
becomes:

on

v,
]\/lnvz—a—z— = —(Tio + Te())“é;
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Integrating the above equation with respect to z, using the fact that v, vanishes on

the left boundary (the line z = 0) due to symmetry, one obtains:

)

n(z =0,z) =n(0,0)exp ( -

N
mlc
[0 N RN V)

where ¢y = \/(TZ‘() + Tep)/M. Since v, is taken to be ¢, on the surface of the obstacle

(Bohm'’s sheath criterion), we have:
n(0, 20) = n(0,0)e™1/? ~ 0.611(0, 0) (3.10)

Thus, one important feature of the solution to the transport equations is that the
plasma density on the obstacle is always about 40% lower than the unperturbed
plasma density, independent of vy, So, B, Ty, or Tey. This result is also valid
independent of the exact treatment of the particle source term, e.g., it is valid even
if the particle source is proportional to n instead of being spatially uniform.
Particle balance demands that the rate of particle production be equal to the
rate at which particles are removed at the obstacle. Thus, using the assumption

that the particle source is spatially uniform, one obtains:

d
Somoz():/n(a:,zo)vz(x,z())dx
0

Using equation (3.10) and the Bohm’s sheath criterion, the above equation yields:

Soxoz
1/2—(’—;%3 (3.11)

Neo >~ n(0,0) ~ e
The above equation shows how the unperturbed plasma density is related to the rate
of particle production. Furthermore, it can be easily shown, by scaling the transport
equations (3.8)-(3.9) with Sy, that the plasma density profile n(z, z) scales linearly
with Sy, whereas the ion fluid velocity v is independent of Sy. As a result, it is not
important which value one uses for Sy as long as Sy > 0.
An obstacle inserted into a magnetized plasma will cast a shadow along the
magnetic field lines. The particle collection length of such an obstacle is a mea-

sure of the length of its shadow. Often a qualitative argument based on parti-

cle balance?’ is used to show that a floating obstacle inserted into a magnetized
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plasma will have a particle collection length of the order L, ~ d%*c,/D . This result
is obtained by equating the perpendicular particle flux diffusing into the shadow
which, presumably, extends into the plasma by a distance L, from the obstacle, to
the rate at which particles are removed at the obstacle. We can show, from the
transport equations (3.8)—(3.9), that this is in fact valid, provided that the parti-
cle source is spatially uniform. Let us assume that the perpendicular convective
term Mn(v - V)v, is small, and can be neglected. The conditions under which
this assumption is valid will be presented a posteriori. With this assumption, the

perpendicular component of the ion momentum equation (equation (3.9)) becomes:

neB
0= (vixz—avi) = (T + T)Vin

14 o
Solving for the cross-field particle flux nv) from the above equation, one obtains:
2
o2
nvy = —+(—aVin+ :ixVyn)

ct
2

— D, Vin+ -2:xVin (3.12)
where
2 2
D, = 8% - &Y (3.13)
Weg Weeldei

Equation (3.12) states that the ion fluid motion is the superposition of a cross-field
diffusion and a diamagnetic drift. Substituting the above expression for nv, into
the continuity equation (equation (3.10)), and using the fact that y is the ignorable

coordinate, one obtains:

Pn 0
—.l)_L—a—a:-2 + -a—;(nvz) = 50
The above equation can be written in the following form:
Pn 0

o Tz =

where & = z/d, 2 = D z/c,d*, ¥, = v, /cs, and Sy = d*Sp/D;. Thus, for a given
value of Sy, the density profile n(Z, Z) has a unique solution. As a result, the particle

collection length must have the following form:

csd?
x
1< D,

L (3.14)
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This is consistent with the argument based on particle balance.

From equation (3.12), it is clear that the convective term Mn(v-V)v can be
neglected only if D /c,d < 1 and ¢, /we;d < 1. For a typical obstacle with a width
of 2 cm, the plasma parameters given in section (3.1) yield D, /ced ~ 3x1078
and ¢s/weid ~ 0.02. It is readily seen that the requirements D, /csd < 1 and
cs/weid K 1 are easily satisfied in the SOL of a large tokamak.

To understand the physical meaning of the definition of D, (equation (3.13)),
let us recall that in an electron-ion collision, the center of mass is displaced by
a distance of the order of p., the electron Larmor radius. Following the usual

random-walk argument, the cross-field particle transport coefficient is given by

Dy ~ pivg
Te/m
" (eB/mp"
T./M muy,
~ (eB/M) ¢B

2
Cg&x

2
Wi

This is also consistent with equation (3.13).

3.2.3 Numerical Method
We have chosen to solve the transport equations in the non-conservative form.

The transport equations (3.8)~(3.9) can be written in the non-conservative form as

follows:
nV-v+v-Vn=.79, (3.15)
Wei c?
(v Vv = 1+C;z2 (ViXZ—av,y)— iVn (3.16)

Equations (3.15)-(3.16) are solved using three different numerical schemes. We
are confident of the numerical solutions of the transport equations since all three

different numerical schemes yield, within numerical accuracy, the same result.
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Initial-Value Method
In this method, equations (3.15)—(3.16) will not be solved directly. Instead, we

will solve the following time-dependent equations:

%ltZ—JrnV-v—i—v-Vn:SO (3.17)
ov Wez 2 Cz
B—t—-l—(v.V)v: 1+a2(VlXZ_aVL)—;;Vn (3.18)

The steady-state solution of the above equations is also the solution of the transport
equations (3.15)—(3.16).

For the numerical solution of equations (3.17)—(3.18) we use the corresponding
difference equations on a non-uniform rectangular grid of 49x49 (see Appendix B
for the details of the coordinate transformations). In order to obtain the solution
to equations (3.15)~(3.16), equations (3.17)-(3.18) are advanced in time until a
steady-state solution is reached. The equations are advanced in time using a two-

step method as follows:
[ 9 [ 6t [
P =gk SR
,¢ k+1 - ¢ k +(5tF(’¢ k+1/2)
where
_ %

T ot

The superscript denotes time, i.e., t = két. All spatial derivatives are evaluated

F

using central differences (see Appendix B), making our numerical scheme accurate
to second order in space.

The principal advantage of this numerical scheme is that it is easy to implement,
and does not require a large amount of core memory. A major drawback of this
method is that the Courant condition imposes an upper bound on the time step &t.
For a relatively fine grid, this restriction on 6t becomes so severe that it takes up to

one week on an IBM-PS2/Model 80 (an IBM personal computer based on the Intel
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80386 CPU) to complete one run. This is our main motivation for exploring other

available numerical schemes.

Pseudo Newton-Raphson Method

With some algebraic manipulation, equations (3.15)—(3.16) can be rewritten as

follows:
nV.-v+v-Vn=.5, (3.19)
) 2
v _—_—D;L (v-V)V+E§Vn] + ! ZX (V-V)V+£€Vn (3.20)
Cs n Wes 7

Because the above PDEs are obtained from equations (3.15)-(3.16) by pure al-
gebraic manipulations, the finite-difference solutions of the two sets of PDEs are
identical. In this numerical scheme, equations (3.19)-(3.20) are solved directly by
linearization. We first set up the problem in exactly the same manner as the stan-
dard Newton-Raphson method for solving a set of non-linear algebraic equations
(see, for example, [26-28]). v and n can be written as follows:
v=vg+¢
} (3.21)
n = "g +ny
In essence, vy and ny are the trial solution, and have to be known a priori. ¢ and
ny are the difference between the exact solution and the trial solution. Our goal
is to solve for € and ny in terms of vy and ng. Linearizing equations (3.19)-(3.20)

using (3.21), one obtains:

ngV-€E+nV-vg+vg -V, +&-Vng =Sy —nygV- vy —vy-Vny (3.22)

D ) D
1+ c'j_ [(VO -V)E+(£-V)vg - VoL — c; [(Vo - Vv
2 2 2
+ ES—an — 1 5‘f’,—Vno} + —ciVno}
Mg ng L) :
) = (3.23)
— —2X (vo - V)¢ + (€ V)vg +w ~ZX {(VO.V)VO
2 2 2
+ —=Vny —m —%VnoJ + —S—Vno}
no ng ] ng

0
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In our scheme, equation (3.22) is used to determine ny. The z, y, and 2
components of equation (3.23) are used to determine &, {,, and ., respectively.
Figure 3.1 illustrates our indexing convention. ¢ (1 < ¢ < ¢,) and 7 (1 < 7 <
Jm) are the indices for the z and z direction, respectively. The finite-difference

approximation of equations (3.22)-(3.23) can be written in the following matrix

form:
B, C; $1 ry
A2 Bz Cg $2 ro
A3 B3 Cg €3 = ry (324)
A‘im Bim S‘im rim
where ¢ is the column vector containing all unknowns on the :** row, i.e.,
f 1l
e
£ 12
12
=1 "™
£ tm
im
nq

Since € is a three-component vector, the column vector ¢; has 4j,, elements. r; is
the residual vector of the i1'* row. A;, B;, and C; are square matrices of rank 4j,,.
Furthermore, these square matrices have relatively simple band structures.

The remaining task is to solve equation (3.24) for £ and n, and use them to
correct the initial trial solution vy and ng. This process is repeated until the desired
accuracy is achieved.

Standard iterative methods for solving linear systems of algebraic equations are
generally applicable only to systems with diagonally dominant matrices. Unfortu-
nately, equation (3.24) does not fall within this category since it is a finite-difference
approximation of a set of hyperbolic PDEs. Thus, in order to be able to utilize it-
erative techniques, we will modify equation (3.24) in such a manner as to make the
block-tridiagonal matrix diagonally dominant. The easiest way to do so is to add 81

to each diagonal element of the block-tridiagonal matrix of equation (3.24), where
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B is a parameter one can adjust. I is the identity matrix of rank 4j,,. The resulting

equation is written as follows:

B, Gy 1 r

A, By G 2 ry
A; By C; 3 | =] s (3.25)

A, B, Sim i

where B; = B; + BI. For lack of better words, we have chosen to call equation
(3.25) the Pseudo Newton-Raphson method. The reason is that although equation
(3.25) is a variation of the Newton-Raphson method, it does not have the quadratic-
convergent property.

Equation (3.25) is solved by the block Gauss-Seidel iterative technique,?” i.e.,
treating the z-direction explicitly and the z-direction implicitly. In effect, we are

solving the following equation:

B: ¢ 0 ¢ ¢F
B, € H Ay 0 O Th
Bim §1Tf+1 Airn O gln{c
L]
ro
+ : (3.26)
r;.,

When the above matrix equation converges to the desired accuracy (inner it-
eration loop), the trial solution vy and ng can be corrected. The whole process is
repeated until vy and ng converge to the desired accuracy (outer iteration loop).
Since there are two iteration loops, it is really an art to choose a good value for
B. If 8 is too large, the inner iteration loop (equation (3.26)) converges very fast.
However, the rate of convergence of the outer iteration loop is slow. On the other
hand, if 8 is too small, the inner iteration loop converges very slowly, or not at all.
The trick is to choose # in such a way that both the inner and outer iteration loops

converge sufficiently fast.
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The inner iteration loop (equation (3.26)) can be solved quite efficiently since
B; has a simple band structure. In general, for a system of four first-order hyperbolic
PDEs, B; contains at most seven bands on either side of the principle diagonal. In
our particular case, B; has only five bands to either side of the principle diagonal.

The principle advantage of the Pseudo Newton-Raphson method is that it does
not require a large amount of core memory. Also, it is fairly efficient since algebraic
equations involving band matrices are easy to solve. The only drawback 1s that it is
not easy to implement. We find that the pseudo Newton-Raphson method is about

a 65% improvement in computer time over the time-dependent method described

previously.

Newton-Raphson Method

The only difference between this method and the Pseudo Newton-
Raphson method is that in this method, equation (3.24) is solved directly by Gaus-
sian elimination without modification. The Pseudo Newton-Raphson has to solve
a modified version of equation (3.24) iteratively. The principle of the Newton-
Raphson method has already been outlined in the previous section.

The main advantage of this method is that it converges quadratically. Nor-
mally, convergence to within the accuracy of the double precision number is ob-
tained in only five or six iterations. Of course, as a matter of practicality, we only
need to obtain a convergence to within the order of the truncation error. We find
that this method is about a 70% improvement in computer time over the pseudo
Newton-Raphson method described previously. The major drawback of this numer-
ical scheme is that it requires a tremendous amount of core memory not available
on small mainframe computers. Fortunately, this problem can be overcome with
careful memory management and with the aid of a mass storage device. The reason
is that equation (3.24) is a block-tridiagonal system. At any time, it is sufficient to
keep only five square matrices of dimension 47, in core memory for manipulation.

After each elimination process, matrices are written onto the mass storage device
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for the backward substitution process. This entire problem with a moderately fine
grid (49Xx49) was done on a personal computer equipped with 4 megabytes of core
memory and 20 megabytes of mass storage capacity. Another drawback is that this
numerical scheme is very tedious to implement. However, despite all of the techni-
cal difficulties associated with the implementation, we prefer this method over both
the pseudo Newton-Raphson and the time-dependent method. For our particular

transport equations, we are fairly satisfied with the efficiency of this method.

3.2.4 Boundary Conditions

It is convenient to distinguish two types of boundaries: a physical boundary
(the obstacle’s surface, drawn as a solid line in figure 2.1), and a periodic boundary

(drawn as dashed lines in figure 2.1).

Periodic boundary conditions are to be applied on the periodic boundary. In
particular, v, and v, are odd functions about the top and bottom boundaries. v,
and n are even functions about these same boundaries. v, vy, and n are even
functions about the left and right periodic boundaries. v, is an odd function about
these same boundaries. These particular boundary conditions imply that there is
no particle, momentum, or energy flux crossing the periodic boundary. With these
periodic boundary conditions, the transport equations (3.8)—(3.9) are automatically

satisfied on the periodic boundary.

The boundary conditions to be applied on the obstacle’s surface are more sub-
tle. The perpendicular and parallel components of the ion momentum equation
(equation (3.9)) determine the perpendicular and parallel component of the ion
fluid velocity, respectively. The continuity equation (equation (3.8)) determines
the particle density. In order to utilize the perpendicular component of the ion
momentum equation to determine v, we need to know 9vy /dz. Since such a
boundary condition is not available, we will approximate dv, /0z by a one-sided
finite difference. Our justification for doing so is that as the grid gets finer, this

approximation becomes more accurate. In order to utilize the continuity equation
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and the parallel component of the ion momentum equation, we need to know dn/0z
and Jv,/0z. Again, such explicit boundary conditions are not available. However,
we do know that on the obstacle’s suface, v, is taken to be ¢, by the virtue of
the Bohm’s sheath criterion. The question is whether one should use the Bohm’s
sheath criterion in conjunction with the parallel component of the ion momentum
equation or the Bohm'’s sheath criterion, discarding the parallel component of the
ion momentum equation. In either case, we still need to know On/dz. As before,
we will approximate it by a one-sided finite difference. If we choose to utilize the
parallel component of the ion momentum equation instead of discarding it, we can
use it in conjunction with the one-sided finite difference approximation of 9n/dz to
determine Jv,/0z, i.e., we need not specify dv,/0z explicitly. This seems to be the
correct choice since specifying both v, and 0v,/dz on the same boundary would
be overspecifying boundary conditions. On the other hand, if we use the Bohm’s
sheath criterion and discard the parallel component of the ion momentum equation,
we would need to approximate Jv,/0dz by a one-sided finite difference. This method
appears to be wrong since we are specifying both v, and dv,/0z on the same bound-
ary. The subtlety is that it is actually the correct choice to use the Bohm’s sheath
criterion and discard the parallel component of the ion momentum equation. The
reason is that v, and n are singular at the obstacle’s surface. Appendix C is an

extensive discussion of this important point.

3.2.5 Numerical Results

The plasma response was obtained for various magnetic field strengths (char-
acterized by the size of the ion orbit) and diffusion coefficients. Figures 3.2a and
3.2b are a three-dimensional plot and a contour plot of the particle density. For
this particular case, D, [csd = 1/256 , cs/weid = 1072, 20 /d = 2, and 2¢/d = 640.
The parallel ion fluid velocity v, is taken to be c, identically across the obstacle’s
surface. zg and zy are chosen in such a manner that the particle density on both

the left and the top boundaries is approximately uniform.
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Figure 3.2a shows that there exists a small region near the obstacle where
the density is partially depleted. This region is often referred to as the obstacle’s
shadow. We define the particle collection length as the distance (along the bottom
boundary) from the obstacle’s surface where the particle density is 0.6n (7200 is
the particle density far from the obstacle) to the point where the particle density
is 0.8n. Figure 3.3 is a plot of the particle collection length versus the inverse
of the cross-field diffusion coefficient for two values of the magnetic field strength.
In both cases, the particle collection length appears to be inversely proportional
to the diffusion coefficient and linearly proportional to both the ion acoustic speed
(cs) and the square of the obstacle’s half-width. For ¢;/wcid = 1072, the particle

collection can be approximated as follows:

if Di/ed<1

Thus, if the transport of particles in the SOL of a tokamak is classical, the length
of the shadow is about 107 cm for d ~ 1cm. However, if the transport process is
anomalous as is often the case with tokamak plasmas, the length of the shadow
will be significantly reduced. The effect of anomalous transport will be discussed in
more detail in chapter 4.

Our numerical results also show that the particle density (along the bottom
periodic boundary) at the obstacle’s surface is about 0.6n.

In summary, we find that the numerical results exhibit the same qualitative
features found in the analytical analysis (see section 3.2.2).

A potential problem with the above results is that by assumption, the parallel
ion fluid velocity v, is discontinuous at the tip of the obstacle. v, is taken to be
¢y identically across the obstacle’s surface (Bohm'’s sheath criterion), whereas it
is taken to be 0 along the right boundary above the obstacle due to symmetry,
resulting in a discontinuity at the tip of the obstacle. We would like to assess
the sensitivity of the plasma response with respect to the treatment of v, in the

neighbourhood of the obstacle’s tip. This is achieved by assuming that v, has a
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sharp, but continuous profile, e.g.,

Cs [1 - (w/d)mJ ifz <d
v, =
0 ifz>d

Figures 3.4a and 3.4b are a three-dimensional plot and a contour plot of the particle
density. For this particular case, D, fcsd = 1/256 , ¢s/weid = 1072, 24/d = 2, and
z0/d = 640. Figures 3.4 and 3.2 correspond to the same set of physical parameters.
The only difference between the two solutions is the difference in boundary condition
on the obstacle’s surface. Let n(z, z) and n*(z, z) be the particle densities presented
in figures 3.4 (countinous boundary condition) and 3.2 (discontinuous boundary

condition), respectively. We define én(z, z) as follows:

n—n"

bn =

*
noo

Figure 3.5 is a three-dimensional plot of én as a function of spatial position. It
shows that the two solutions differ the most in the neighbourhood of the tip of the
obstacle. However, the overall difference is not significant.

Figure 3.6 i1s a plot of the particle collection length versus the inverse of the
diffusion coefficient for the two different treatments of the boundary condition on the
obstacle. In both cases, ¢s/wqd = 1072, Figure 3.6 also shows that the difference
between the two solutions is not significant.

It is our conclusion that the exact treatment of the obstacle’s tip is not impor-
tant in this simple model since the solution of the transport equations (3.8)-(3.9)
is not sensitive to the discontinuity there. As a result, we will take the parallel ion

fluid v, to be ¢, across the obstacle’s surface hereafter, e.g.,

c, ifae<d

0 ifz>d

3.3 Localization of Particle Source
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In section 3.2, we assumed that there is no particle, momentum, or energy flux
crossing the boundary, except at the obstacle where they are removed. The com-
pensating particles came entirely from within the plasma column. The volumetric
rate of particle production was assumed to be spatially uniform.

In this section, unlike section 3.2, we will assume the other extreme limit where
the volumetric rate of particle production within the plasma column is zero. The
compensating particles come entirely from the top boundary. The plasma collection
process is still assumed to be isothermal and inviscid. Thus, the transport equations
(3.8)—(3.9) with Sy = 0 are applicable to this study.

In a real system, it is actually a mixture of the two extreme limits. The com-
pensating particles come partially from the ezierior region, and partially from the
interior region. Our purpose is to study the qualitative difference, if any, between
the two extreme limits and to examine how sensitive the particle density is to the
localization of the particle source.

In section 3.2, the particles removed at the obstacle come partly from within
(volumetric source Sg) and partly from outside (cross-field particle diffusion) the
obstacle’s shadow. When the volumetric particle source 1s assumed to be zero, the
particles removed at the obstacle come entirely from outside the shadow region via
cross-field diffusion. In this case, an average particle traverses a longer path before
being removed. Therefore, the obstacle’s shadow is expected to extend farther into

the plasma.

3.3.1 Boundary Conditions

The boundary conditions are the same as those described in section 3.2.4 except

at the top boundary. There, the cross-field particle flux is taken to be uniform, e.g.,
n(zo, z)vs(xo,2) =T (3.28)

where I'g is constant (not a function of z).



—45—

Nneo can be related to 'y through detailed balance, i.e.,

d
Tozg :cs/ n(z, zg )dz
0

Since we have shown in section 3.2.2 that n(0, z0) = e~'/?n,, the above equation

reduces to:

r
Moo ™ 61/2—(:9—29- (3.29)

It can be shown from the above equation and the transport equations (3.8)—(3.9)
with Sy = 0 that the particle density n scales linearly with I’y and that the ion fluid
velocity v is independent of T'y.

Along the top boundary, we also need to know v, /0z, Ov,/0z, and On/0z in
addition to equation (3.28). dv, /0 is taken to be zero along the top boundary. The

two remaining cross-field gradients are approximated by one-sided finite differences.

3.3.2 Numerical Results

We have obtained the plasma response of the transport equations (Sy = 0) for
various values of the cross-field diffusion coefficient. The magnetic field strength for
these cases was chosen so that ¢, /w.;d = 1072, Figures 3.7a and 3.7b are a three-
dimensional plot and a contour plot of the particle density. For this particular case,
D, /esd =1/256 , csfweid = 1072, 29 /d = 2, and zy/d = 640.

The cases presented in figures 3.2 and 3.7 correspond to the same set of physical
parameters. The only difference between them is the origin of the source particles.
One noticeable difference is that unlike figure 3.2a, figure 3.7a indicates that the
particle density on the top boundary has a non-vanishing cross-field gradient. This
1s expected since a non-vanishing density gradient is required to support a cross-field
particle diffusion which, in turn, is required for detailed balance. Comparing figure
3.7b to figure 3.2b (contour plots of the particle density) reveals that the obstacle’s
shadow extends farther into the plasma. This effect of lengthening the obstacle’s

shadow can also be observed by noticing that in figure 3.7a, the particle density is
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not quite uniform on the left boundary. In fact, the obstacle’s shadow is expected
to extend farther into the plasma by the qualitative argument presented in section

3.2.

Figure 3.8 is a plot of the particle collection length versus the inverse of the
cross-field diffusion coefficient. The upper curve results when the replacement par-
ticles come entirely from the top boundary of the plasma column. In this case, the
volumetric particle source Sy is assumed to be zero. For the purpose of compar-
ison, we have also included the lower curve, which results when the replacement
particles come entirely from within the plasma column via a uniform volumetric
particle source Sy (see section 3.2.5). In this case, the particle flux crossing the top
boundary of the plasma column is assumed to be zero. Figure 3.8 shows that the
particle collection length of an obstacle is indeed lengthened when the replacement
particles come from outside the plasma column via particle diffusion across the top

boundary.

In summary, the plasma response obtained exhibits the same qualitative fea-
tures one expects from a simple argument. We have studied the two extreme limits
where (1) the replacement particles come entirely from within the plasma column
via a uniform volumetric source (section 3.1), and (2) the replacement particles come
entirely from outside the plasma column via cross-field particle diffusion across the
top boundary. In a realistic physical system, it is actually a mixture of the two
extreme limits. Usually, we do not know what fraction of the replacement par-
ticles come from the exterior or interior region. The purpose of this study is to
determine the uncertainty due to the lack of knowledge regarding the localization
of the replacement particles. For the purpose of studying the qualitative features
of the plasma response, we think that it is not important to determine the exact
localization of the replacement particles. Thus, we will assume hereafter that the
replacement particles come entirely from within the plasma column via a spatially
uniform volumetric particle source. The cross-field particle flux at the top boundary

is assumed to be zero.
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3.4 Non-Uniform Cross-Field Diffusion Coefficient
The cross-field diffusion coefficient can be written as follows (see equation

(3.13)):
p, =

WeeWe:

where vg, the electron-ion collision rate, is given by the following expression (see
equation (2.18)):
B 4(2m)/2InAetZn

Vo =
’ 37711/2Te3/2

xXn

Using the above expressions, the cross-field diffusion coefficient is rewritten as fol-

lows:

D, =Dio— (3.30)

oo

In section 3.2, we assumed that the cross-field diffusion coefficient is spatially
uniform. From the above equation, we see that this assumption is not correct.

In this section, we will take the cross-field diffusion coefficient to be proportional
to the particle density n. D, the cross-field diffusion coeflicient far from the
obstacle, is a specified coefficient in this model. The plasma collection process is
still assumed to be isothermal and inviscid. The transport equations (3.8)—(3.9),
with D given by equation (3.30), are still applicable in this model.

In the obstacle’s shadow region where the particle density is partially depleted,
the rate of cross-field particle diffusion is lower when the diffusion coefficient is
taken to be proportional to the particle density than when the diffusion coefficient
is assumed to be spatially uniform. Thus, in order to transport enough particles
into the shadow region for removal, cross-field particle diffusion must occur over a
longer scale length, i.e., the particle collection length of the obstacle must extend
farther into the plasma. This is the only conceivable effect on the plasma response
by assuming that the cross-field diffusion coefficient is proportional to the particle
density n.

The boundary conditions for this model are exactly the same as those described
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in section 3.2.4. Equation (3.30) is linearized as follows:

N LS TN 1o
D) =D, + - —
Moo Noco 71000

Equations (3.22)(3.23) (linearized forms of the transport equations (3.8)—(3.9)),
used in conjunction with the above equation, are solved using the Newton-Raphson

method described in section 3.2.3.

Numerical Results

The plasma response was obtained for various values of the cross-field diffusion
coefficient D o. For these cases, the magnetic field strength was chosen so that
cs/weid = 1071, Figures 3.9a and 3.9b are a three-dimensional plot and a contour
plot of the particle density. For this particular case, D, o, = 1/256, csfwe;d = 1072,
zo/d =2, and z5/d = 640.

The cases presented in figures 3.2 and 3.9 correspond to the same set of physical
parameters. The only difference between them is that in figure 3.2, the cross-field
diffusion coefficient is assumed to be spatially uniform, whereas it is taken to be
proportional to the particle density n in figure 3.9. Let n(z,z) and n*(z, z) be the
particle densities presented in figures 3.9 (D, proportional to n) and 3.2 (spatially

uniform D ), respectively. We define én(z, z) as follows:

n—n*

bn =
n*

oo
Figure 3.10 is a three-dimensional plot of én as a function of spatial position. It
shows that the two solutions differ the most in the shadow region where the particle
density is relatively low. Far from the obstacle, i.e., outside the shadow region, the
two solutions differ very little. The overall difference it not significant.

Figure 3.11 is a plot of the particle collection length versus the inverse of the
cross-field diffusion coefficient for ¢, Jweid = 1072, The upper curve results when

the diffusion coefficient is taken to be proportional to the particle density n. For

the purpose of comparison, we have also included the lower curve, which results
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when the diffusion coefficient is assumed to be spatially uniform (see section 3.2.5).
Figure 3.11 shows that the particle collection length is lengthened by only about
15%. It should be noted that the effect of lengthening the particle collection length

has been anticipated by the simple argument given in section 3.4.

In summary, we see that the plasma response changes very little when the
cross-field diffusion coefficient is taken to be proportional to the particle density
n. The particle collection length increases by only about 15%. It is our conclusion
that the assumption that the cross-field diffusion coefficient is spatially uniform is
a rather good assumption. The additional complexity due to the exact treatment
of the spatial variation of the diffusion coefficient is not justified because the overall

correction is not significant.

3.5 Parallel Electron-Ion Collisional Drag

In all of the previous sections, the parallel electron-ion collisional drag R, was
neglected. However, we did not give a justification for doing so. In this section, we
will show by dimensional analysis that it appears necessary to account for this term
because its magnitude is of the order of the parallel electron pressure gradient. The

plasma collection process is still assumed to be isothermal and inviscid.

3.5.1 Dimensional Analysis

The purpose of this section is to estimate the magnitude of the parallel electron-
ion collisional drag. This is achieved by first assuming that it can be neglected. An
approximate plasma response can then be obtained. The magnitude of the parallel
electron-ion collisional drag is evaluated a posteriori using the approximate plasma

response.

When the parallel electron-ion collisional drag is neglected, J is given as
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follows:
ne

:1+a2

where o = vy/wee = Djwe;/c2, provided that z is sufficiently large compared to

J (V_L'{"O!V_LXZA) (331)

the particle collection (see section 3.2.1).
With the above expression, the isothermal, inviscid transport equations can be

written as follows:

V-J=0 (3.32)
Wes A
V.(nvv) = T+ o n(VixXz—avy)—c:Vn+ Sov (3.34)

Solving for the cross-field ion fluid velocity using equation (3.33) and the perpen-
dicular component of equation (3.34), one obtains:

2
1
vi=-2 [(v Vvi+ C_svw} TP
n w

ct

2
(v -V)vy + %V_Ln

8

Assuming that the cross-field convective term (v-V)v] is small, v can be approx-

imated by two successive approximations, e.g.,

1 e .
vor=—(—D,Vin+ —22xVin
n Wei

Cct

D
Vi =Vl — C—Q'L [(V" V)vor + (VO.L‘V)VO_LJ

S

_|_

L sx [(v“ V)vor + (VO_L'V)VOJ_J

Cct

Using the two equations above and equation (3.31), the perpendicular current

density J; can be written as follows:

ne . S Vin
Ji=—2X|c;——+ (v, V)vorL + (voL-V)vor (3.35)

Wes n

In the obstacle’s shadow, the parallel ion fluid velocity is of the order of the ion
acoustic speed, i.e., v, ~ O(cs). Furthermore, the perpendicular and the parallel

scale lengths are expected to be d and L, respectively, i.e.,

i
V. ~0(1/d)3

Vv, ~O(1/L,)?
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A simple relation between L, and d has also been found in section 3.2.2, namely
L, ~ O(csd?/D )

Substituting the above expressions into equations (3.32) and (3.35), using the fact
that y is the ignorable coordinate, one obtains:

J: ~ Ol(csd/Dy)J;]

Jy ~ O[(Dce/w?d?) ency)

From the above expressions, one obtains:

2
cs
J.~0 [(Wcz‘d> encs]

The ratio of the parallel electron-ion collisional drag to the parallel electron pressure

gradient is estimated as follows:

R“ . muvgdJ,
T.0n/0z  eT,0n/0z

2 L
~ O |mv Cs enc I
0 Weid *neT,

~ 0(1 + Te/Tz)

where vy = D wew.i/c? (see equation (3.13)). The above expression states that
the parallel electron-ion collisional drag might not small compared to the parallel
electron pressure gradient. Therefore, it appears necessary to account for it in the

transport equations.

3.5.2 Formulation
For an isothermal, inviscid plasma with a spatially uniform rate of particle

production, the transport equations (2.34)-(2.38) are reduced as follows:

V-3=0 (3.36)

V. (nv) = S (3.37)
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V- (Mnvv) = en(=Vé +vxB) — TioVn + Sy Mv — 220 (3.38)
[+

0= —en(—Vé+vxB)+IxB - T,oVn+ =23 (3.39)

e

where J is the net current density. vy, rate of electron-ion collision, is taken to be
spatially uniform. If the parallel electron-ion collisional drag were neglected as in
section 3.2, equations (3.37)—(3.39) would form a closed set of transport equations,
and it would have been unnecessary to include equation (3.36). However, since the
parallel electron-ion collisional drag is included, we have introduced an additional
unknown, namely, J ;- In this case, equations (3.37)—(3.39) no longer form a closed
set of equations since we have more unknowns than equations. Therefore, it is
necessary to include equation (3.36) to close the set of transport equations. By
integrating the z-component of the generalized Ohm’s law (equation (3.39)), and

then differentiating it with respect to z, one obtains:

8(]5 TeO 8n d¢0 TeO dno mly a /Z JZ<.T, ZI)
E - — T = = — — — — — —
0

where ¢o(z) = #(z,0) and no(z) = n(z,0). The last term of the R.H.S. of the
above equation is the additional effect due to the parallel electron-ion collisional
drag. Were it not for this term, the particle density n would be related to the

electrostatic potential ¢ by the usual Boltzmann factor, i.e.,

n(z, z) = no(z) exp [6¢($’ Z)T; 6¢O(~"¢)J

Solving for J| from the perpendicular components of the generalized Ohm’s

law, one obtains:

0 [* J.(z,2") a
— 2 LA r_
Ja = 1+a? vz +avy) +a 833/0 n(z,z") dz Bfo(w)J
Jr — nev,
Jo= T

where

d¢0 TeO dno
n dz
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Dividing both sides of the equation above for J, by n, differentiating the result

with respect to z, one obtains:

(1 +a2)ﬁ<J$> 2 0 <f—) _ 658;(% + avy) (3.40)

2 I S
0z \ n oz \ n
Since the current density J is divergenceless, it can be easily formulated in

terms of a stream function ¥, i.e.,

Jy = e%\—p—
Z\P (3.41)
Jz = —65

With the above definition, equation (3.36) is automatically satisfied. Substituting
the definition for ¥ into equation (3.40), one obtains a Poisson-like equation for ¥
as follows:

2 0 (107 , 0 [10V 0
N —-— _—f —— = . 2
(1+a )62 (n 82) +a Oz <n ax) az(vl avy) (3.42)

Using the generalized Ohm’s law and the definition for ¥, one can eliminate
both the current density J and the electric field V¢ from the ion momentum equa-

tion (equation (3.38)). The result is as follows:

V- (nvv) = w; [:2’51; (%% - nng) — Qg—f} — cEVn + Sov (3.43)

In summary, as a result of the parallel electron-ion collisional drag, the electrons

no longer obey the simple Boltzmann relation. Because the current density J is
divergenceless, it can be defined in terms of a stream function ¥. The general
Ohm’s law is then used to obtain a Poisson-like equation for the stream function
. The electric field is eliminated from the ion momentum equation by using the
generalized Ohm’s law. With both the current density J and the electrostatic
potential ¢ eliminated, our primitive variables consist of only three variables: the
ion fluid velocity v, the particle density n, and the stream function ¥. In this case,
equations (3.37) and (3.42)—(3.43) form a closed set of isothermal, inviscid transport

equations that account for the parallel electron-ion collisional drag.
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3.5.3 Numerical Method

For reasons regarding numerical stability, we will not obtain the plasma re-
sponse directly from equations (3.37) and (3.42)-(3.43). We will, however, obtain
the plasma response from a mathematically equivalent set of equations. The trans-

formation begins with the following choice for rewriting the stream function ¥:

=9+
“ n(vg + avy)

With a fair amount of tedious manipulation, equations (3.37) and (3.42)(3.43) can

be written in the following form:

nV-v4+v-Vn=.35, (3.45)
2 2 1 2\ 1 ,
v, = —PTJ' I:(V-V)V—I—E—S—VR:I—]— ! ZX [(v-V)v—{—C—SVn} —( T > — %ﬁ (3.46)
2 n i n n Oz

O (100, w0 (1), 20 (108)
(1+a)3z(naz)+aax(nax>+a0:6(718:1:)_0 (347)

The new set of primitive variables are: the ion fluid velocity v, the particle density
n, ¥, and ®. Our choice of splitting the stream function ¥ into two parts is not
arbitrary, and has a clear physical meaning. ® is that part of the stream function
that is independent of the parallel electron-ion collisional drag. ¥, on the other
hand, is that part of the stream function that is exclusively due to the parallel
electron-ion collision drag. In fact, if 1) were neglected, we would recover the same
set of transport equations obtained by neglecting the parallel electron-ion collisional
drag.

The plasma response is obtained from equations (3.44)(3.47). This set of
equations is solved by the Newton-Raphson method (linearization) described in
section 3.2.3. In addition, the linearized form of equation (3.44) is integrated using
Simpson’s rule. Equations (3.45)-(3.47) are discretized using second-order central

differences (see Appendix B).
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3.5.4 Boundary Conditions

Periodic boundary conditions are used on the domain’s boundary except at the
obstacle. v, and v, are odd functions about the top and bottom boundaries. v, and
n are even functions about these same boundaries. v,, v,, and n are even about
the left and right boundaries except at the obstacle. v, is an odd function about
these same boundaries. On the obstacle’s surface, v, is taken to be the ion acoustic
speed ¢, (Bohm’s sheath criterion). ¢ is equal to zero on the top, bottom, and left
boundary. On the right boundary, ¥ = —®. Since ® is a definite integral, it does

not need any boundary condition.

3.5.5 Numerical Results

The plasma response was obtained for various values of the cross-field diffusion
coefficient. For these cases, the magnetic field strength was chosen so that csfweid =
1072, Figure 3.12a and 3.12b are a three-dimensional plot and a contour plot of
the particle density. For this particular case, D [c,d = 1/256, c,/wed = 1072,
zo/d = 2, and z9/d = 640. For the purpose of comparison, we define a relative

deviation én(z, z) as follows:

n—n*

bn = -
nOO

where n and n* are the particle densities presented in figures 3.12 (parallel electron-
ion collisional drag accounted for) and 3.2 (no parallel electron-ion collisional drag).
Figure 3.13 1s a three-dimensional plot of én as a function of spatial position. It
shows that there is no discernable difference between the two plasma responses in
this case. Figure 3.14 is a plot of the parallel collection length versus the inverse of
the cross-field diffusion coefficient. For the purpose of comparison, a similar curve
for the case where the parallel electron-ion collisional drag was neglected has also
been included. This figure also shows that there is no discernable difference between

the plasma responses for various values of the diffusion coefficient.

In summary, it is our conclusion that although a dimensional analysis shows
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that the parallel electron-ion collisional drag may be an important physical effect,
its inclusion does not change the plasma response appreciably. This is both a
peculiarity and a disappointment. However, this rather extensive investigation is
not a total loss. Without this study, one could not justify neglecting the parallel

electron-ion collisional drag a priori.

3.6 Isothermal, Viscid Model

In previous sections, we have neglected ion viscosity. However, a simple analysis
will show that the ion viscosity tensor has two important terms that cannot be
neglected: the cross-field transport of y-directed and z-directed momenta. In this
model, we will take these terms into account. The plasma collection process is

assumed to be isothermal.

3.6.1 Formulation

Unlike particle diffusion, which is due to electron-ion collision, ion viscosity
is due to ion-ion collisions. It represents the diffusion of ion fluid momentum in
configuration space. In the absence of anomalous transport, the viscosity coefficients
computed from classical transport theory for a strongly magnetized plasma can be

written as follows (see equation (2.22)):

no ~ nI;y;
o

7]1 ~ 7]2 ~
(weiTii)?

(3.48)

N3 ~ Ny~

WeiTi
where 7;; is the ion-ilon collision time. Since the ions are much heavier than the
electrons, the ion-ion collision time is longer than the electron-ion collision time.
In particular, 7.;/7i; ~ /m/M provided that T, ~ T; (see section 2.1). Using the

fact that D) = ¢2/weeweiTei, the cross-field ion viscosity coefficient can be related
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to the cross-field particle diffusion coefficient as follows:

N 72 VM/m (3.49)

nMD | ~ nMD, ~

The above expression states that the ion momentum can diffuse across the magnetic
field much easier than particles can. While momentum is carried by particles,
the rates at which momentum and particles diffuse across the magnetic field are
different. At first, this seems to be a counter-intuitive result. However, a simple
qualitative argument will show that the rate of ion momentum diffusion is in fact
greater than that of particle diffusion by a factor of \/W The subtlety is that
particle and momentum diffusion are governed by two different collision processes,
l.e., electron-ion and ion-ion collisions, respectively. The step size of the random
walk process for ion-ion collision is of the order of the ion Larmor radius, whereas it
is only of the order of the electron Larmor radius for electron-ion collision. Following
the usual qualitative argument, the cross-field particle diffusion coefficient and the

cross-field ion viscosity coefficient can be estimated as follows:
D_L ~ pg/Tei
N~~~ nMp; /Ty

Taking the ratio of the above expressions, one obtains:

nL
1= /M
nMD, /m

This result is consistent with equation (3.49).

The cross-field ion viscosity coefficient n is reduced by a factor of (w¢;7;;)?
compared with the parallel viscosity coefficient ng. This is a manifestation of the
fact that in an ion-ion collision, the momentum is transported across the magnetic
field by a distance of the order of the ion Larmor radius, whereas it is transported
along the field by a distance of the order of the ion-ion mean-free-path.

In a two-dimensional flow with y being the ignorable coordinate, the ion vis-

cosity tensor given by equation (2.21) yields:

V- = a—ﬂ-ai +8_7TZ_1_ 7+ aTrxy 67TZy J + aﬂ-l‘z 077-22 o
"\ T )"\ Yo )V T )f
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Tez = 730\ 92 ) Moz ™oy
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Ty = Myg = _7715— n3 Oz
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2 Qavz_avz
Tez = 730\ %5, ™ oz )

Following the same qualitative argument presented in section 3.5.1 (dimen-
sional analysis), we can show that the expression above for ion viscosity can be

approximated by the following expression:

5’ avy N 0 avz ~
V'ﬂ'N—é;(nJ_a—x)y——a—:B(m_ 6:1;)Z (3.50)

The first term of the R.H.S. of the above expression represents the transport of the

y-directed momentum across the magnetic field. The second term of the R.H.S.
represents the cross-field transport of parallel momentum.

Because the addition of ion viscosity does not affect the generalized Ohm’s law,
the expression for J; derived from it (see section 3.2.1) is still valid in this model,

le.,
ne

J =
= 14+ a2

(V_L -+ OéVJ_X?:’)
Using equations (3.49)-(3.50) and the above expression for J , the 2-D trans-
port equations can be written as follows:
V.(nv) =5, (3.51)

B
je—a“g(VL X2 ~avy)—=(Ti+Te)Vn—-V-w+SoMv  (3.52)

14
a avy " a a'Uz IS
vom= 79?(“67) - 55(’“ o2 )

nL
nMD, VY M/m

V- (Mnvv) =

where
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Equations (3.51)—(3.52) are the two-dimensional isothermal, viscid transport

equations describing ion fluid motion in the absence of anomalous transport.

3.6.2 Numerical Method and Boundary Conditions

With some manipulation, equations (3.51)—(3.52) can be written as follows:

nV-v+v-Vn=.5, (3.53)

D 2 1
sz——Czi (v-V)v+ %’-Vn+V~1r] + —2X

2
(V-V)v+ 2Vn+ V.| (3.54)
(2

8 ct

The plasma response is obtained from equations (3.53)—(3.54) using the Newton-
Raphson method (linearization) described in section 3.2.3.

Periodic boundary conditions requiring that no particle and momentum fluxes
can be transported into the domain of interest are applied on the boundary except

for the surface of the obstacle. There, the Bohm sheath criterion is utilized.

3.6.3 Numerical Results and Discussion

The plasma response was obtained for various values of the cross-field diffusion
coefficient. The magnetic field was chosen so that ¢s/we;d = 1072, Figure 3.15 is a
three-dimensional plot of the particle density. For this particular case, D, /csd =
1/256, c,/weid = 1072, zo/d = 2, and zp/d = 40. The only difference between
the case presented here and the case presented in figure 3.2 is the inclusion of ion
viscosity. A comparison between the two cases reveals several interesting qualitative
differences.

First, for a hydrogen plasma where \/m ~ 43, the inclusion of ion viscosity
reduces the scale length in the parallel direction by roughly an order of magnitude.
Second, the ratio of the particle density at the obstacle to the undisturbed particle
density is no longer e~1/? as in sections 3.2-3.5 where ion viscosity was neglected.
Last, the particle density near the tip of the obstacle is higher than that far away

from the obstacle. This is a very counter-intuitive result since one expects the
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particle density far away from the obstacle to be highest. However, the following
intuitive qualitative argument will show that this behaviour is to be expected. At a
given parallel distance away from the obstacle, the particles at the bottom boundary
are accelerated toward the obstacle at a faster rate than those elsewhere. In fact,
the parallel ion fluid velocity v, monotonically decreases away from the bottom
boundary. Thus, at any given point, parallel momentum is transported across the
magnetic field from the bottom boundary to the top boundary. Since the cross-field
flux of parallel momentum is zero on both the top and bottom boundaries, parallel
momentum is simply being transported from one part of the plasma column to
another. The motion toward the obstacle of the ion fluid elements near the bottom
boundary, especially those on the bottom boundary, is retarded because they have
to drag the slower fluid elements from above with them. Because of this retarding
force (ion viscosity), the rate at which particles arrive at the obstacle is reduced,
resulting in a lower particle density at the obstacle. The particle collection (scale
length in the parallel direction) is therefore reduced accordingly. Near the top
boundary, the parallel motion of the ion fluid elements is enhanced since they are
being dragged from below by the faster fluid elements. As a result, they pile up on
the right boundary above the obstacle and form a density bump.

Another explanation, though less intuitive, can be offered to explain the ob-
served behaviour of the plasma response. Because the parallel ion fluid velocity
v, monotonically decreases away from the bottom boundary, the z-directed flux of
parallel ion momentum always points away from the shadow region (in the direc-
tion from the bottom boundary to the top boundary) except at the top and bottom
boundaries. There, the z-directed flux of parallel momentum is zero. Since parallel
momentum is being deposited into the region near the top boundary and has no
place to go, a density gradient is necessary to balance the additional viscous force,
resulting in a density bump. The parallel momentum deposited into the region near
the top boundary actually comes from the region near the bottom boundary. There,

since the parallel momentum is being removed without replacement, an additional



—61-

density gradient is necessary to balance the viscous force, resulting in further low-
ering of the particle density on the obstacle’s surface.

Figure 3.16 is a plot of the particle collection length versus the inverse of the
cross-field particle diffusion coefficient for a hydrogen plasma. The magnetic field
was chosen so that ¢,/wc;d = 1072, For the purpose of comparison, a similar plot
for the case where ion viscosity was neglected (see section 3.2) has been included.
The lower curve results when ion viscosity is included, whereas the upper curve
results when ion viscosity is neglected. Figure 3.16 shows that when ion viscosity

is included, the particle collection is reduced roughly by an order of magnitude.

In summary, it is our conclusion that ion viscosity can be an important effect
in classical transport theory. Its inclusion changes the qualitative behaviour of the
plasma response, e.g., the formation of a density bump. For a hydrogen plasma, the
scale length in the parallel direction is also reduced by about an order of magnitude

when ion viscosity is included.

3.7 Non-Isothermal, Viscid Model

In previous models (see sections 3.2-3.6), the ions and the electrons are assumed
to be isothermal and the energy equations are not used. This approach is justified
when both species of particles (ions and electrons) can conduct heat along and
across the magnetic field at a sufficiently fast rate. In this section, we would like to

examine the validity of this assumption.

3.7.1 Basic Assumptions and Formulation

On the obstacle’s surface, both the ions and the electrons are assumed to have
a parallel sonic flow at the obstacle’s surface (Bohm’s sheath criterion). Immedi-
ately above the obstacle, the flow along the magnetic field for both the ions and
the electrons vanish due to symmetry. Therefore, there exists a large perpendicular

shear of parallel flow in the neighbourhood of the obstacle’s tip. If the perpendic-
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ular viscosity coefficient is sufficiently large, the heat generated by viscosity due to
this perpendicular shear of parallel flow can make an important contribution to the
plasma response. In a strongly magnetized plasma, the heat generated by electron
viscosity is small because the electrons have a small perpendicular viscosity coeffi-
cient. The heat generated by ion viscosity is, on the contrary, significant because
the ions have a much higher perpendicular viscosity coefficient.

The electrons have a high thermal conductivity along the magnetic field be-
cause of their light mass. As a result, only a small parallel gradient of T is required
to conduct heat to a local heat sink, or away from a local heat source. Since the
electrons have no significant heat sink or heat source, they remain nearly isother-
mal. Thus, we conclude that the assumption that the electrons are isothermal is a
plausible assumption in this model.

Because the ions are much heavier than the electrons, they have a smaller
thermal conductivity coefficient along the magnetic field, and as a result, they
cannot conduct heat along the magnetic field sufficiently fast to be isothermal,
especially when there exists a significant heat sink or heat source. In this particular
study, the heat generated by ion viscosity in the neighbourhood of the obstacle’s
tip is rather significant. Therefore, the assumption that the ions are isothermal is
not a valid assumption. As a result, we will need to use the ion energy equation to
describe the ions’ energy transport.

With the assumption that the electrons are isothermal, the transport equations

can be written as follows (see section 2.2):

V- (nv) =S (3.55)
V- (Mnvv) =ne(E+vxB)-V(nT;) - V- + S5Mv +R (3.56)
1 5 Ovg
V. [(:2-]\/_1'02 + §Ti>an =(neE+R-V.m)-v— Waﬂ—a? + Qi
1 5 D

0=-ne(E+vxB)+JIxB -T,Vn-R (3.58)
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where
E=-V¢
R=_—27
e

When 7. ~ T}, the electron-ion energy equilibration time is much longer than
either the electron-electron or the ion-ion energy equilibration time. We are in-
terested in the short time scale in which the ions and the electrons have reached
their respective equilibria without establishing an equilibrium among each other.
Q;e, the heat transferred from the electrons to the ions by collisions, is therefore
neglected because it occurs over a long time scale in which we are not interested.

A simple dimensional analysis similar to that presented in section 3.5.1 shows
that the contribution of ion viscosity in the ion momentum equation can be approx-

imated as follows:

where
nTi
niL~ —3
WeiTid
M r3/2 T\ /2
=\ —nMD,|o— :
mn + 1—|—7‘<Tioo>
r:%ﬁ (3.59)
2
D_Loo - Csco
WeeWeiTer
TeO + Tzoo
Csoo = A
M

r:;; and 7.; are the ion-ion Coulomb collision time and the electron-ion Coulomb
collision time, respectively.

—~TagOva /OB is the energy dissipation term due to ion viscosity. It is often
referred to as the heat generated by viscosity. It represents the conversion of kinetic
energy into thermal energy due to ion-ion collisions. A simple dimensional analysis

similar to that presented in section 3.5.1 shows that this energy dissipation term
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can be approximated as follows:

L= % % 2+ v, i
szs = —Tap 8ﬂ L aCL Oz

The contribution of the ion heat flux can be written as follows:

Vg 9 (, 9L\ _0/( on
=755z ) "o, \"1%,

where
nTiTii
Y
1 c? > m 1 T; 5/2
“ Dl (T) V32 +0) " (Ti )
Ky ~ iy
(WeiTii)?
M 713/2 T, —-1/2
~ ] = 0D o
m neL 147 (Ti ) )

(3.60)

We also need to know the detail (spatial variation) of Sg, the volumetric source

of energy. However, since we are interested in the qualitative behaviour of the

plasma response, any reasonable choice for Sg will probably suffice. In this par-

ticular model, we will take Sg to be spatially uniform, i.e., Sg = Sgo. It can be

readily shown from the transport equations (3.55)—(3.58) that Sgg = ST iee.

The numerical results of section 3.5 suggest that R, the parallel electron-ion

collisional drag, does not make an important contribution to the generalized Ohm’s

law. As a result, we will neglect the contribution of R“ in the transport equations

(3.55)~(3.58).

Following the same approach presented in section 3.2, the electric field and

the perpendicular current density can be deduced from the generalized Ohm'’s laws,

e.g.,
nek = -T,,Vn

ne
1 + a?

Ji (V_L+O£VJ_X2)

where a = 1/7¢;wee.
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Using the above expressions for E and J i, equations (3.55)-(3.58) can be

reduced to the following form:

V- (nv) =5, (3.61)
neB R
V. (Mnvv) Tra2 (vixz—avy)—V[n(Tw +T;)
8 avy R 8 a'Uz A
+87<7“8_x)y+5§<7” 8$)Z+SOMV (3.62)

3 3} oT; 7] oT;
577,V-VT,‘ =—-nT;V-v+ 53;(,:@ 52 ) + $<&”E>

, \* | [0v.\’ + S T; (3.63)
+77_L 8$ + Oz 04700 -

where the transports coefficients are given by equations (3.59)—(3.60). Equations

(3.61)—(3.63) form a set of self-consistent transport equations appropriate to this
model.

The plasma response is obtained by solving the transport equations (3.61)-
(3.63) using the standard linearization technique (Newton-Raphson). Appendix D
contains a detailed description of the normalization of physical variables as well as

a complete listing of the computer code.

3.7.2 Boundary Conditions

The usual periodic boundary conditions are applied on the boundary of the
domain except at the obstacle. There, the ions are assumed to have a local sonic
flow by virtue of the Bohm’s sheath criterion. Above the obstacle, the ions cannot
have any parallel flow due to symmetry. As a result, a large perpendicular shear
of parallel flow exists at the obstacle’s tip, causing heat to be generated (at the
expense of the ions’ kinetic energy) via ion-ion collisions. The amount of heat
generated by ion viscosity depends on the magnitude of the perpendicular shear of

parallel flow. Up to the present time, only one-dimensional models of electrostatic



— 66—

sheaths (infinite collecting walls) have been proposed. 14=20 Therefore, the exact
transition from local sonic flow to zero parallel flow in the neighbourhood of the
obstacle’s tip is not known.

We propose the following qualitative argument to estimate the perpendicular
shear of parallel flow at the tip of the obstacle. In one-dimensional models of
electrostatic sheaths, the ions are assumed to be collisionless and unmagnetized.
In the SOL (scrape-off layer) of most fusion tokamaks, the Debye length is much
smaller than both the ion-ion mean-free-path and the ion Larmor radius (see section
3.1). Therefore, the ions are more or less collisionless and unmagnetized within the
sheath region. Furthermore, since the Debye length is much smaller than the size of
a typical obstacle, the sheath region can be treated as being one-dimensional, and
the Bohm’s sheath criterion can be used. However, within an ion Larmor radius
from the tip of the obstacle, the ions with zero mean flow can enter the sheath region
via either ion-ion collisions or gyration. Consequently, the one-dimensional Bohm’s
sheath criterion cannot be applied to the region within a distance of the order of
an ion Larmor radius from the obstacle’s tip. It is therefore physically plausible to
assume that the transition from local sonic flow to zero parallel flow occurs within

a distance of the order of an ion Larmor radius, 1.e.,

The above expression can be used in conjunction with the Bohm’s sheath crite-
rion to obtain the plasma response. Because of the inherent uncertainty associated
with the treatment of the obstacle’s tip, the plasma response obtained can only

provide us with the qualitative behaviour of the actual plasma response.

3.7.3 Numerical Results and Discussion
The plasma response was obtained for various values of the cross-field diffu-
sion coefficient. In this particular study, the plasma is assumed to consist of only

electrons and protons, i.e., /M /m ~ 43. The magnetic field was chosen so that
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Csoo[Weid = 1072, Figures 3.17-3.20 are three-dimensional plots of the parallel flow,
the ion temperature, the particle density, and the ion pressure, respectively. For this
particular case, Do /Coood = 1/256, Cyoo/weid = 1072, Too/Tieo = 1, z¢/d = 2,
and z9/d = 40. The viscosity coeflicient and the thermal conductivities are related
to the cross-field diffusion coefficient by equations (3.59)—(3.60).

Figure 3.17 shows that the parallel flow (v,) is nearly uniform across the surface
of the obstacle, and that a large perpendicular shear of parallel flow exists only
within a small region away from the obstacle’s tip. Thus, the effect of ion heating
due to viscosity is localized to a small region near the tip of the obstacle.

Figure 3.18 shows that the ion temperature is strongly enhanced in the neigh-
bourhood of the obtacle’s tip. Furthermore, 0T;/0z is discontinuous at the ob-
stacle’s tip. The reason is that the heat generated by ion viscosity due to the
perpendicular shear of parallel flow at the obstacle’s tip is treated as a point source
of energy. In order to thermally conduct heat away from such a point source, the
perpendicular derivative of the ion temperature must be discontinuous. There is
an apparent paradox regarding how the ions can sustain such a large perpendicular
shear of parallel flow, and thereby converts kinetic energy into thermal energy by
means of viscous heating. How is it possible that the ions can heat themselves up
indefinitely? The explanation is that the ions can sustain such a large perpendicular
shear of parallel flow by accelerating through the presheath’s potential. The ions’
kinetic energy is then converted into thermal energy via ion-ion collisions (viscos-
ity). Another question is, of course, how the sheath’s potential can accelerate ions
indefinitely without collapsing. The following hypothetical situation will help to
demonstrate this question.

Imagine a collection of k electrons tightly bounded on a finite-sized object,
e.g., the obstacle in our particular study. Suppose further that the object on which
the electrons are bounded is a metallic sphere of radius ry. Consequently, the
electrostatic potential due to this metallic sphere is

ke

7

¢:
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where r > rq. A singly charged ion starting from rest at infinity will be accelerated

toward the object according to

%Mv2+e¢:0

Upon arrival at the metallic sphere, the ion obtains a speed of

2eg 2ke?

M MTO

Vg = —

After the arrival to the ion, the electrostatic potential due to the metallic sphere is

(k=1

r

¢:

where r > rg. It is evident that the ion derives its kinetic energy from the elec-
trostatic potential. The initial electrostatic field has enough energy to collect only
k singly charged ions. After collecting k singly charged ions, the metallic sphere
is neutralized, and the initial electrostatic potential energy is completely converted

into kinetic energy.

By the same token, we can argue that the electrostatic sheath cannot accelerate
1ons indefinitely. Yet, the Bohm’s sheath criterion insists that the sheath accelerates

the ions to the local ion acoustic speed indefinitely. How is this possible?

This apparent paradox can be resolved by noting that the sheath’s electrostatic
potential is set up in such a manner that the electrons and the ions arrive at the
sheath in equal numbers. Therefore, for every ion that enters the sheath, there
1s an accompanying electron. Consequently, the sheath’s electrostatic potential is
unchanged, i.e., it is sustained indefinitely. Of course, the collected electrons and
ions will have to be replenished. The thermal energy of the source electrons is
the source of energy from which the electrostatic sheath derives its energy. The
electrostatic energy of the sheath is in turn the source of energy from which the
accelerating ions derive their kinetic energy. The ions’ kinetic energy is in turn
converted into thermal energy by means of ion-ion collisions. We see that the

transfer of thermal energy from the electrons to the ions is rather subtle.



—69—

Figure 3.19 shows that the particle density builds up above the obstacle, and
that it decreases sharply in a small region near the tip of the obstacle. The build-
up of particles is an effect due to ion viscosity (see section 3.5). Near the obstacle
where the ions are heated up significantly, the particle density is sharply reduced
in order to keep the ion pressure from being too high. Otherwise, the force balance
equation (ion momentum equation) cannot be satisfied. Figure 3.20 shows that the
ion pressure is indeed not too strongly enhanced in the region near the obstacle
where the ion temperature is significantly enhanced.

Comparing figures 3.18 and 3.19 shows that the plasma response possesses two
markedly different scale lengths: a long scale length over which particles diffuse into
the obstacle’s shadow for collection, and a short scale length over which the ions
are heated up significantly due to ion viscous heating. The two scale lengths can be
related by the following qualitative argument. As shown in section 3.2.2, the particle
collection length L, is found by equating the contributions of the perpendicular and

parallel particle fluxes, resulting in the following expression

cgd?
1~ D,

L (3.64)

Similarly, L7, the scale length for the ion temperature, can be found by equating
the contributions of the perpendicular and parallel thermal fluxes, i.e.,

oT;
—K1

Ly~ ne,T;d

x
A simple estimate of the above expression shows that

nced?

Ly~ (3.65)

Kl

Using equation (3.60), equations (3.64)—(3.65) can be manipulated to yield:

LT m
o<1 3.
I ,/M < (3.66)

As aresult of equation (3.66), the plasma response possesses a boundary layer. This

is the reason why we needed a rather large number of grid points in the parallel

direction.
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In summary, it is our conclusion that the effect of ion heating due to ion vis-
cosity can be important in the region near the obstacle’s tip where there exists a
large velocity gradient. Furthermore, the introduction of the ion energy equation
introduces a boundary layer into the plasma response. Our numerical results sug-
gest that the assumption that the ions are isothermal is a rather poor assumption.
Furthermore, the ions cannot be treated as being adiabatic since the ion thermal

flux is not negligible.

3.8 Summary

Three major models of plasma collection by an insulating, floating obstacle were
proposed in this chapter: (1) the inviscid, isothermal model, (2) the viscid, isother-
mal model, and (3) the viscid, non-isothermal model. In the absence of anomalous
transport, we find that the first two models are not adequate for describing the
plasma collection process. The reason is that the cross-field ion viscosity coefficient
is much larger than the cross-field particle diffusion coefficient, and as a result,
the effect of momentum transport across the magnetic field cannot be neglected.
Furthermore, because of a large perpendicular shear of parallel flow in the region
near the obstacle’s tip, the heat generated by ion viscosity (the conversion of ki-
netic energy into thermal energy via ion-ion collisions) cannot be neglected. The
ions cannot be considered isothermal because they do not thermally conduct heat
away from the obstacle’s tip fast enough. Although the third model is far more
complicated than the first two models, it contains the important physics needed to

properly describe the plasma collection process.

According to the viscid, non-isothermal model, the plasma response possesses
two highly disparate scale lengths. The particle collection length L, is the long

scale length. L, the scale length for the ion temperature, is the short scale length.
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The two scale lengths can be related as follows:

Ly — (3.67)
-L—”— ~ \/% <1

Furthermore, this model predicts that the ion temperature is strongly enhanced
in the region near the obstacle’s tip where there is a large perpendicular shear of
parallel flow. As a result, the tip of the obstacle has to withstand a greater incoming
flux of energy. Except near the obstacle’s tip, our numerical results indicate that
the ions cool slightly as they approach the surface of the obstacle.

Another interesting observation suggested by our numerical results is that one-
dimensional models of the plasma collection process do not provide a qualitatively
correct plasma response because the edge-effect is not accounted for properly; it is
the edge-effect that causes the ion to be heated up.

The particle density is predicted to rise in the region above the obstacle due
to the effect of ion viscosity, and to decrease sharply within a layer of thickness Ly

due to the heating of ions.
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Figure 3.1: Computational grid and indexing convention. A non-uniform, rectan-
gular computational grid is constructed such that the grid is finest at the obstacle’s
tip where the gradients are expected to be steepest. The indices 7 and J correspond

to the z and z coordinates, respectively.
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Figure 3.2: n(z,z) obtained from isothermal, inviscid classical transport equations

with: R, neglected, v.(z,z) discontinuous at obstacle’s tip, volumetric particle

generation. D [c,d = 1/256, c;/wid = 1072, ro/d = 2, and z¢/d = 640.
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Figure 3.3: L, /d vs. ¢,d/D, for isothermal, inviscid transport equations with: R,

neglected, v.(z, z) discontinuous at obstacle’s tip, volumetric particle generation.

The curves are obtained with ¢,/wc;d = 1071, 10~2.
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Figure 3.4: n(z, z) obtained from isothermal, inviscid classical transport equations

¥

with: R, neglected, v.(z,z) continuous at obstacle’s tip, volumetric particle gener-

ation. D [cod = 1/256, cs/weid = 1072, 2 /d = 2, and zo/d = 640.
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Figure 3.5: 3-D plot of én(z, z) showing the percentage discrepancy between n(z, z)
obtained by assuming: (a) v.(z, z) discontinuous at obstacle’s tip (figure 3.4a), and
(b) v:(,2) continuous at obstacle’s tip (figure 3.2a). The rectangular box shown

above has a height of 1.
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Figure 3.6: L, /d vs. c,d/D, for isothermal, inviscid transport equations with: R,
neglected, v.(z, z) continuous at obstacle’s tip, volumetric particle generation. For
comparison, a similar curve obtained by assuming that v 2(z, z) is discontinuous at

the obstacle’s tip (figure 3.3) is also included. ¢,/wed = 10~2 for both curves.
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Figure 3.7: n(z,z) obtained from isothermal, inviscid classical transport equations
with: R, neglected, v.(z,z) discontinuous at obstacle’s tip, replacement particles

coming from top boundary. D /c,d=1/256, c;/w;d=10"2, z,/d=2, zo/d=640.
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Figure 3.8: L, /d vs. c,d/ D for isothermal, inviscid transport equations with: R,
neglected, v.(z,z) continuous at obstacle’s tip, replacement particles coming from
top boundary (no volumetric particle generation). For comparison, a similar curve
obtained by assuming that the replacement particles are generated throughout the

volume (figure 3.6) is also included. c,/wcid = 1072 for both curves.
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Figure 3.9: n(z,z) obtained from isothermal, inviscid classical transport equations

¥

with: R, neglected, v.(z, z) continuous at obstacle’s tip, volumetric particle genera-

tion, D) = D oo(n/Noo). Dicofcsd=1/256, c,/we;d=10"2, zo/d=2, zy/d=640.
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Figure 3.10: 3-D plot of én(z, z) showing the percentage discrepancy between n(z, z)
obtained by assuming: (a) D1 = Dc(n/ne) (figure 3.9a), and (b) D = constant
(figure 3.2a). Djoo/csd = 1/256, cs/weid = 1072, zo/d =2, and zy/d = 640. The

rectangular box shown above has a height of 1.
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Figure 3.11: L /d vs. ¢,d/D for isothermal, inviscid transport equations with:
R, neglected, v.(z,z) continuous at obstacle’s tip, volumetric particle generation,
D) = Djo(n/ns). For comparison, a similar curve obtained by assuming that

D, = constant (figure 3.8) is also included. ¢,/w.;d = 10~2 for both curves.
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Figure 3.12: n(z, z) obtained from isothermal, inviscid classical transport equations

with: R, included, v,(z, z) discontinuous at obstacle’s tip, volumetric particle gen-

eration. D /e,d =1/256, co/weid = 1072, zo/d = 2, and z,/d = 640.
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Figure 3.13: 3-D plot of én(z, z) showing the percentage discrepancy between n(z, z)
obtained from isothermal, inviscid classical transport equations with: (a) R, in-
cluded (figure 3.12a), and (b) R, neglected (figure 3.2a). The rectangular box

shown above has a height of 1.
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Figure 3.14: L, /dvs. c,d/ D for isothermal, inviscid transport equations with: R,
included, v.(z, z) discontinuous at obstacle’s tip, volumetric particle generation. For
comparison, a similar curve obtained with R, neglected (figure 3.3) is also included.
¢s/weid = 1072 for both curves. Note that R, and J ; are related by a multiplicative

constant.
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Figure 3.15: 3-D plot of n(z, z) obtained from isothermal, viscid classical transport
equations with: R, neglected, v.(z,z) discontinuous at obstacle’s tip, volumetric
particle generation. D /c,d = 1/256, cs/weid = 1072, 24 /d = 2, zo/d = 640. Note

that a density bump is formed above the obstacle.
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Figure 3.16: L, /d vs. ¢,d/D for isothermal, viscid transport equations with: R,
neglected, v, (z, z) discontinuous at obstacle’s tip, volumetric particle generation.
For comparison, a similar curve obtained by assuming that the ions are inviscid is
also included (figure 3.3). ¢,/w.id = 1072 for both curves. The plasma is taken to
be a hydrogen plasma, i.e., \/W ~ 43. Note that the inclusion of ion viscosity

reduces the parallel scale length by about an order of magnitude.
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Figure 3.17: 3-D plot of v,(z,z) obtained from non
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grid of 49x193. However, a grid of only 25x25 is shown for clarity.
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Figure 3.18: Tj(z, z) obtained from non-isothermal, viscid classical transport equa-

lumetric par-
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ticle generation. D o/cs00d

ro/d=2, zo/d=40. The transport coefficients are taken to be the Braginskii transport

coeflicients. The dark arrows in (a) and (b) refer to the same physical location.
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Figure 3.19: n(z,z) obtained from non-isothermal, viscid classical transport equa-
tions with: R" neglected, v (x, z) discontinuous at obstacle’s tip, volumetric particle
generation. D o/Coo0d = 1/256, Teo/Ti0 = 1, M/m ~ 1837, cso0/weid = 1072,
zo/d = 2, and z9/d = 40. The transport coefficients are taken to be the Braginskii
transport coefficients. The numerical results were obtained for a grid of 49x193.

However, a grid of only 25x49 is shown for clarity.
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Figure 3.20: 3-D plot of ion pressure obtained from non-isothermal, viscid classical
transport equations with: R, neglected, v.(z,z) discontinuous at obstacle’s tip,
volumetric particle generation. D o /co00d = 1/256, Teo/Tico = 1, M/m ~ 1837,
Csoo/weid = 1072, zg/d = 2, and 2¢/d = 40. The transport coefficients are taken to
be the Braginskii transport coefficients. The numerical results were obtained for a

grid of 49x193. However, a grid of only 25x49 is shown for clarity.
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CHAPTER 4

Plasma Collection by an Obstacle
with No Ambient Plasma Flow
in the Presence of Anomalous Transport

Plasma turbulence is a subject of such complexity that there is not a uni-
fied approach of modelling a realistic plasma system. Many different theoretical
approaches have been developed to study various aspects of plasma turbulence. 2°
Much effort has also been focused on measuring fluctuation levels of various macro-
scopic variables to assess (1) the characteristics of plasma turbulence in a given
experiment, and (2) the correlation between different fluctuating quantities. An

extensive summary of theoretical and experimental studies of plasma turbulence in

connection with anomalous transport is given in Ref. [30].

Due to the complexity of plasma turbulence, we will not attempt to derive
the various anomalous transport coefficients from the theories of turbulence. In-
stead, we will take a more rudimentary approach of expressing anomalous fluzes
in terms of correlation of respective fluctuating macroscopic variables. Our goal is
to identify, under restrictive assumptions, the correlations necessary to characterize
the effects of the underlying microscopic turbulence on the transport of particle,
momentum, and energy. Measurements of fluctuation levels of a limited number
of macroscopic variables have been given in the literature (see, for example, [31]).
Typical experimentally determined correlations can be used in our model as given.
The fluctuations of macroscopic variables are not treated in a self-consistent manner
in our approach. It should be noted that we do not pretend to understand the basic

nature of plasma turbulence. Our study is only an effort to describe the effects of
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plasma turbulence in a purely phenomenological manner.

4.1 Basic Assumptions

Our model still assumes the usual two-dimensional geometry with y being the
ignorable coordinate (see figure 2.1). In our model, plasma turbulence is assumed
to be caused by a low frequency (w < w¢;), microscopic (p; < A < d, where A is
a typical wavelength), electrostatic (f’) = 0) fluctuation of the electric field in the

perpendicular direction, i.e.,
E(z,z,t) = —Vé(z,2) + EL (2, 2,1)

As a result, various macroscopic variables also fluctuate on a similar time scale.
Since the fluctuations occur on a time scale much slower than the electron re-
sponse time, the electrons remain nearly isothermal. The electrons are also taken
to be inviscid because of their light mass. As suggested in section 3.5, the parallel
electron-ion collisional drag is taken to be small, and will be neglected. As a result,
the electrons obey the usual Boltzmann relation in both the parallel and the per-
pendicular directions (see section 3.2). The ions are assumed to be born with the

temperature and mean velocity of the bulk ions.

Following the same formulation presented in chapter 3 and assuming that both
the perpendicular ion inertia and viscous force are small compared with the perpen-
dicular pressure gradient, we can show that the transport equations can be written

as follows:

9
-5’;5 +V-(nv) =5, (4.1)

%(an”) + V- (Mnvv,)=JIxB=V[n(To + ;)] - (V-7), + SoMv, (4.2)

vy

Waﬂﬁ_ﬂ— + S0 00 (43)

3 (0T,
571( 5 +V-VT,> =-n;V-v—-V.q-



—94—

where

ne ) \
J'L:1—|—a2 <V_L——‘VD_L+a(VJ__VD_L)XZ>
EJ_XB
VDL =""p3
v 0 oT; 0 oT;
. [ J —_ — | K, —
1 Oz il Oz Oz \' 1 0z
a _Dice (4.4)
2 ooWei
T = eO/Tioo
) 1 oo > m T;
" Do \ we M r3/2 1+7r) Tioo
—1/2
oM ré/?
L (wC,-T,-,-) DJ_ool + 7"

The ion viscosity tensor is the same as that given in section (3.6). The particle

density n(z, z,t) can be written as follows:

n(z,z,t) =n(z, z) + n(z, z,t) (4.5)

where 72 is the time-averaged density. 7 represents a density fluctuation with zero
mean, i.e., # = 0. It should be noted that the time-scale over which time-averaging is
performed must satisfy two requirements: (a) it must be long compared to the char-
acteristic time of the fluctuations, and (b) it must be short compared to any macro-
scopic time scale of the plasma system. Since we are interested in a steady-state
plasma response in which the ion-electron energy equilibration process is neglected,
the second requirement will be satisfied if the electron-ion energy equilibration time
is sufficiently long. Similar definitions can be written for T;, 7., and v. In our
model, only second-order correlations are retained. Correlations of third-order or

higher are assumed to be negligible. Furthermore, the transport coefficients and
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plasma parameters far from the obstacle are assumed to be non-fluctuating, i.e.,

Mo [ Cheo > [m 1
oo = Do\ wg M T‘3/2(1 +T)

| M r3/2
=1/=5 4.6
Koo m noo-D_Lool T+ f ( )

Moo = Mk oo

Nloo = M/Q_Loo

ﬁooT'ioo
T )

Nhoco =
Wese

where r = TeO/ Tico- The functional forms of the viscosity coefficients and thermal

conductivities are given bellow:

=
}_
I
=
}_.
3
N
e
N—
S
R e
8
N—
I
Z
(e

4.1.1 Time-Averaged Continuity Equation

Because the parallel electric field, one of the principal driving forces in the
parallel direction, is assumed to be non-fluctuating, the parallel component of the
ion velocity will also be taken to be non-fluctuating, i.e., v, = V,. Time-averaging

equation (4.1) (in steady-state), one obtains:

V-(ﬁV+I‘tl):So (4.7)
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where I'; | = 7V is often referred to as the fluctuation-induced particle flux.

4.1.2 Time-Averaged Momentum Equation
Time-averaging the parallel component of equation (4.2) (in steady-state), one
obtains:
V- (MAv)) = =V, (T + T0)] - (V- 7), + SoMv, (4.8)

We will now evaluate the equation above term by term. First, the time-averaged

parallel flux of momentum can be written as follows:

M#vv, = M(7¥ + T, )7, (4.9)

Equation (4.8) states that an anomalous flux of particles will also result in an
anomalous flux of momentum by means of convection.

The time-averaged total pressure can be written as follows:
n(Teo + T;) = A(Teo + T3) + fidoo + AT (4.10)
The time-averaged ion viscosity tensor can be written as follows:
T =7, + m, (4.11)

where . is the classical ion viscosity tensor. m; is the anmomalous ion viscosity
tensor. The classical viscosity tensor can be written in the following form (see

equation (2.21)):

1 w = . 1 — — —
Teirs = =5 Me(Wes + W) = 501eW e = W) = nc Wy

1 — — 1 — —
Te,yy = —577"0(VV“~ + Wyy) + 577J-C(Wm = Wyy) + AWy

1

Moz = gyl (4.12)

_ 1 _ __
Te,xy = _nLchy + 577/\0(sz - Wyy)

Te,xz = _77_LCVVIZ - 77/\ch2

Teyz = _nchyz + 77/\C—W1IZ J
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where

—  Ov, g 2 _
= — — _5a V.
Wa'@ 837,3 a;va 3 p M

n T; \*/*
Me = e\ 5 )\ T

_ 7.\ 12 (4.13)
Nlie = Ml %_ T_

n T;
NAae = MTAoco ﬁ* T )

The anomalous viscosity tensor can be written in the following form:

1 _ — — 1 — _
Ttz = — 5(7711 =My )(Wae + Wyy) — ‘2”(’& ~Nie)(Wae — Wyy)
—(Ma~ WAC)Wzy

L (4.14)

1 = | 1, —
+(7a — UAC)ny\

1 <ﬁﬁ/m + AW,y 5 TiWa, + TW, )
27l

- (4.15)

(4.16)
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_ T 1 —
Moy = = (1L = 11)Way + S0 = 1ac)(Wes — Wyy)
AW,y 1 T Wy
+ .177Ac<ﬁW“ Wy Diler - T yy)
2 n T, /
Tz = — (L — ULC)WIZ — (A — WAC)WZJZ )
AW, 1T,W,. Wye |, T, (4.18)
Nlic n 2 -T-Z NAc 7 T, ]
Tiyz=— (7L — 77LC)Wyz + (Tn = ac) W
iW,. 1TW,. N AW, . . TW,. (4.19)
nJ_C — 2 Tl 77/\6 ﬁ Tz J
where
~ 0vq 00g 2 .
Wap = —= — =63V
p Org  Orq 3 pY Y
A — NAc i gﬁ
e WL (4.20)
Ty “ e 57a = Nac
77“0 2 77/\0
N1 —7ic _ _lﬁ/\ ~ Nnc
NAe 2 MAc J
4.1.3 Time-Averaged Energy Equation
Time-averaging equation (4.3) (in steady-state), one obtains:
SNV TV.v-V. Vo | 6T (4.21)
SNV i = A afl 5, 100 4
2n —n q TapB 8ﬁ 0
We will now evaluate the equation above term by term.
nv-VT; = (av + T, ) - VT; +7v, - VT, + v-aVT, (4.22)

nTZVV—_—(ﬁT,-l-fLT)VV—f—ﬁTZV{/_L +Tl-ﬁV-\”u (4.23)
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The time-averaged heat flux q can be written as follows:
q=qc+q (4.24)

where q. is the classical heat flux. q¢ is the anomalous heat fluz. The classical heat

flux is:

—32 (4.25)

where

The anomalous heat flux is:

_ oT; i 110 ==1)\.
Q= — { (kL — KLc) 5 THLe| =5 —Z?a—m( )| ) &
0

(4.27)

where

The heat generated by viscosity (dissipation) can be written as follows:

ov., 0ts . Ob,

_Waﬂw = —(ﬂ'c,aﬁ + Wt,aﬁ)—ag — Waﬁﬁ (4.29)

The fluctuation 7,45 can be computed in terms of various correlations, but is too
lengthy to be included. It should be noted that only second-order correlations are

retained. Correlations of higher orders are assumed to be negligible.

4.2 Estimates of Correlations
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It is evident that turbulent transport is an extremely complex process. Dif-
ferent modes of plasma turbulence lead to different transport properties (see, for
example, [29]). It is a rather formidable task, if at all possible, to study turbulent
transport of a plasma system with arbitrary perturbations. It is our goal to study
the time-averaged steady-state plasma response in the presence of a low-frequency,
microscopic, electrostatic fluctuation of the electric field in the y direction. This
corresponds to a fluctuation of the poloidal electric field in toroidal geometry. Even
under these restrictive assumptions, only a limited set of fluctuating macroscopic
quantities have been measured. Consequently, we do not have as much information
as necessary to characterize the plasma turbulence process. Qur goal is to utilize
as much of the information available in the literature as possible. The correlations
that have not been measured will not be treated.

Because the electric field fluctuates on a time-scale slower than the ion response
time, it causes a slowly fluctuating ExB drift, i.e., vp | = EXB/BQ. It has been
observed in the edge plasmas of several tokamaks that low-frequency, electrostatic
fluctuations are similar in characteristic independent of the size of the tokamaks.
In particular, typical fluctuation levels in the edge plasma of the Caltech Research

Tokamak have been observed to be: 132

\ /fg
7 15%

ﬁ?

~ 30% — 50%

n

- AE | xB
nv,|=|-—m-——

B‘Z

-1

l ~1-2%x10"" cm™%sec

on
Ly 5%x10'" em™*

Oz

(I7el/Te),p, ~ 03

max

(131/7) ., ~ 08

We will make the usual conjecture that the anomalous particle flux is proportional
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to the mean density gradient, i.e.,
I‘tJ_ = ﬁ{’J_ = —.D_LtVJ_ n (430)

It should be noted that the conjecture above has not been verified experimentally.
The anomalous cross-field particle diffusion coefficient can then be estimated as

follows:

ﬁ/B 1—-2x10'" cm™2sec™!
on/0x 5x10M1 cm—4

Dy, = ~2—4x10% cm?/s (4.31)

In the edge of the Caltech Research Tokamak, the classical particle diffusion
coefficient D | o, is about 0.2 cm? /s, which is much less than the observed anomalous
diffusion coefficient D ;. As a result, the following approximation is taken to be
valid:

nv, +1I'y ~I'yy =-D,V,n

Recent measurements suggested that although T, and # are not small, they
do not tend to be well-correlated. For instance, for T, and 7 comparable to those
presented in Ref. [32] ; Lin et al. 3® found that ﬁ—i/ﬁTe = 0.017. Therefore, we
will neglect the correlation %TTQ in our model.

Unlike Te, Ti has not been measured since the usual Langmuir probe measure-
ments do not contain information regarding the ion temperature. Because of this
lack of knowledge, we are forced to neglect correlations containing 75, eg., ﬁhﬂ As

a result, the anomalous viscosity tensor can be estimated as follows:

Tt,zx ~ — (ZI__C> ﬁW'l}l
2n

Ttyy ~ Ttz

Tt,z2 ™ 0

rey (mc) s (4.32)

Nlc\ <5
Ttez ™~ — — nwas
n
Mac
Ttyz ~ — Ttzz
Nic




where
—= 4 0,
Wey = gn Ox
AW, = 720

z
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~ 07 g @ m) ) ~ o 2 (ruufm))

0 0

~ O(ﬁéz(m/ﬁ)) ~ O(ﬁgg(l’lt/ﬁ)>

(4.33)

Finally, the last term of the R.H.S. of equation (4.30) can be written in the

following form:

it aﬁa =7 % + 7 aﬁx
Tap 85 = Tgy Oz Tz 92
71'3;3;%‘ ~ —577"c<71 a;l,' ( — yy) _'_ I/Vg,l%
ﬁ_xz avaj ~ nLcwmz i’ 77/\0Wyz ﬁavr —_ I/T/'lz
aZ n az
where
~ > 9
Ve 2R, ( aa:) = O(ax (T1e/7
- > g
I/sz az - 'ﬁ‘Q <n 82) “O<82<PJJ/”

4.3 Model Equations

Using the estimates of various correlations presented in section (4.2), the time-

(4.34)

(4.35)

averaged continuity, momentum, and energy equations can be written as follows:

V, (V)= DL Vin=25,

(4.36)

M(nv =Dy Vi) V¥V, ==V [7(Te+ 'Tl-)]+V-<n"CV” vV, 7LV V”> (4.37)

3 _ _
SV, =D V7)) VTi=—aT; V. (v -

D
I —= Vlﬁ)
n

+ V- (K_LCVJ_Ti + IiI"CV” T,)

v, 2
+77J_c _8; +77

+ SOTlOO

oz

n

,: Jd (D_Lt on
e = 9.

Oz

]

(4.38)
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It should be noted that a dimensional analysis has also been performed, and only the
most significant contributions from (V- 7), and W are retained. Equa-
tions (4.36)—(4.38) were derived under a number of restrictive assumptions, and
can be solved to obtain the time-averaged plasma response in the presence of a
low-frequency, microscopic, electrostatic fluctuation of the electric field in the y
direction. Although the time-averaged plasma response so obtained may not be
quantitatively correct, it should provide useful information regarding the qualita-

tive behaviour of the actual time-averaged plasma response.

4.4 Numerical Results

The plasma response is obtained from the transport equations (4.36)-(4.38).
The transport equations are solved using the usual Newton-Raphson method on
a grid of 193x41. For the cases to be presented in this chapter, realistic plasma

parameters are used, i.e.,

Dy, 4
~ 2x10
D,

M ~ 1837

m
Cso0 ~ 102
weid

The physical extents of the system are chosen sufficiently large to ensure that
far from the obstacle, the density n(z,z) and the ion temperature T;(z, z) are un-
perturbed. For the cases to be presented in this chapter, zo/d = 2 and z,/L = 2
with L = cyo0d?/D 4.

The plasma response for two particular cases for which T,/Tieoe = 1 and
Teo/T;00 = 1.5 have been obtained numerically.

Figures 4.1a and 4.1b are a three dimensional plot and a contour plot of the
density n(z, z) with Too/Tioo = 1. Our numerical results indicate that the parallel
particle collection length of the obstacle is of the order of L. Comparing figures 4.1a
and 4.1b (anomalous transport) with figures 3.2a and 3.2b (classical transport with

inviscid, isothermal ions), we see that the density n(z,z) is qualitatively similar



-104-

for the two models except for the difference in the parallel collection length. In
particular, L /L . ~ D1./Dj, = 5x107°.

Figure 4.2 is a three dimensional plot of the ion temperature Ti(z,z) with
Teo/Tico = 1. Figure 4.2 shows that the ions remain nearly isothermal in the entire
domain except for a small region around the tip of the obstacle. There, the jons
are heated up significantly due to viscous heating. For this particular case, the ion
temperature is peaked slightly below the obstacle’s tip, and is about 80% higher
than the ambient ion temperature. Comparing figure 4.2 with figure 3.19 (classical
transport with viscid, non-isothermal ions) shows that the qualitative behaviours of
the ion temperature for the two models are quite different. In figure 3.19, the ions
near the obstacle’s tip are heated by a point source of energy (perpendicular shear
of parallel velocity), resulting in a cusp at the obstacle’s tip. In figure 4.2, the ions
near the obstacle’s tip are heated predominantly by viscous heating caused by the
perpendicular shear of perpendicular velocity. Because the perpendicular velocity is
continuous at the obstacle’s tip, no cusp is formed. Therefore, although the ions are
heated up near the tip of the obstacle by means of viscous heating in both models,

the mechanisms by which viscous heating is generated are very different.

Figures 4.3a and 4.3b are a three dimensional plot and a contour plot of the
density n(z, z) with T.o/Tise = 1.5. Comparing figures 4.3a and 4.3b with figures
4.1a and 4.1b (T¢o /Tico = 1) shows that the density n(z,z) is somewhat insensitive

to the exact value of T,o/T;co.

Figure 4.4 is a three dimensional plot of the ion temperature Ti(z,z) with
Teo/Tico = 1.5. Comparing figure 4.4 with figure 4.2 (Teo/Tioo = 1) shows that
the peaked ion temperature is a fairly sensitive function of the ratio Teo/Tico. In
this particular case where Ty /T;oo = 1.5, the peaked ion temperature is about 25%
higher than the ambient ion temperature.

In summary, our numerical results suggest that in the presence of anomalous

transport caused by low-frequency, microscopic, electrostatic fluctuations, the par-

ticle density n(z, z) has a scalelength of the order of L = ¢, d? /D1¢. Furthermore,
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n(z, z) can be found, within reasonable accuracy, by solving a simpler model describ-
ing the motion of inviscid, isothermal ions with an effective perpendicular diffusion
coefficient D ;. Our results also suggest that the ions are significantly heated in a
small region near the tip of the obstacle by means of viscous heating. The ratio of
the peaked ion temperature to the ambient ion temperature is a sensitive function of
the ratio T,g/T;. Because the ion temperature is high near the tip of the obstacle,

the obstacle’s tip has to withstand a significantly higher heat flux than elsewhere.



y

b= 2o =

Figure 4.1: n(z, #) obtained from semi-empirical transport equations accounting for
anomalous transport and viscous effects with no ambient flow. D 1t/D1c.=2x10%,

Too/Tioo=1, M/m=1837, cyo0/weid=10"2, zo/d=2, zo/L=2 (L=cs0od?/Dy).
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Figure 4.2: 3-D plot of Tj(z,z) obtained from semi-empirical transport equations
accounting for anomalous particle transport, ion viscosity, and ion viscous heating
in the absence of an ambient plasma flow. Dyi/Dy. = 2x10%, Too/Tieo = 1,
M/m ~ 1837, ¢seo/weid = 1072, 24/d = 2, and z0/L = 2 (L = cs00d?/D ).
Anomalous particle transport is assumed to be caused by a randomly fluctuating

poloidal electric field.
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Figure 4.3: n(z, z) obtained from semi-empirical transport equations accounting for

anomalous transport and viscous effects with no ambient flow. D 1t/D1.=2x10*%,

Teo/Tico=3/2, M/m=1837, cs00/weid=10"2, zo/d=2, 29/ L=2 (L=c¢s00d?/ D 1y).
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Figure 4.4: 3-D plot of Tj(z,z) obtained from semi-empirical transport equations
accounting for anomalous particle transport, ion viscosity, and ion viscous heating
in the absence of an ambient plasma flow. Dii/Di. = 2%x10%, T,0/Ti0o = 3/2,
M/m ~ 1837, cyoo/weid = 1072, 29/d = 2, and z0/L = 2 (L = cs00d?/D ).
Anomalous particle transport is assumed to be caused by a randomly fluctuating

poloidal electric field.
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CHAPTER 5

Plasma Collection by an Obstacle
with a Subsonic Ambient Plasma Flow
in the Presence of Anomalous Transport

A problem of interest is one in which two electrostatic Langmuir probes mounted
on either side of an unbiased (floating at the plasma potential) obstacle are used
to measure the upstream and downstream ion fluxes. Such a plasma diagnostic is
the so-called Mach probe or Janus probe.® In the absence of an ambient plasma
flow, aside from various asymmetries of the experimental apparatus, the measured
upstream and downstream ion fluxes would be roughly equal. In the presence of
an ambient plasma flow, the measured upstream and downstream ion fluxes are no
longer equal. Several models have been proposed to interpret experimental data
from the Janus probes.?~1%34 The main objective of these models is to infer the

ambient plasma flow from the upstream/downstream ion flux ratio.

Stangeby * proposed a one-dimensional fluid model in which the ions are taken
to be inviscid and isothermal. Hutchinson,'® on the other hand, proposed a model
in which the ions are taken to be isothermal and the cross-field ion viscosity co-
efficient is postulated to be amomalous, i.e., n, ~ nMD,, Because of the dif-
ference in the treatment of ion viscosity, Hutchinson’s model predicts an ambient
plasma flow much smaller than that predicted by Stangeby’s model for any given

upstream/downstream ion flux ratio.

There have been strong disagreements in the literature regarding the impor-
tance of ion viscosity in connection with the interpretation of Janus probe data. 336

In Ref. [35], it was pointed out that although the ratio ni/nMD,, is not known,
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the choice ny /nMD ; ~ 1 “is an arbitrary one and assumes much stronger vis-
cosity than previously considered in the literature.” In reply to this comment, it
was conceded in Ref. [36] that although the choice n; /nM D, ~ 1 is an arbitrary
one, it is “plainly less ‘arbitrary’ than choosing 77, = 0,” and that all theories that
assume 3 = (0 are “fatally flawed.”

In this chapter, we propose a two-fluid model describing plasma collection by
an obstacle with a subsonic ambient plasma flow in the presence of anomalous
transport. In our model, anomalous transport is assumed to be caused by a low
frequency, microscopic, electrostatic fluctuation of the poloidal electric field (see
chapter 4). Our goal is to predict the upstream/downstream ion flux ratio given
that the ambient plasma flow is known. The physical mechanisms included in our

model are different from those in Refs. [9-10].

5.1 Model and Discussion

The geometry of our model is shown in figure 5.1. The thick solid line represents
the obstacle with half-width d. The obstacle is located at z = 0. The ambient
plasma flow is taken to be My, on both the left and right boundaries (z = £20).
The external magnetic field is in the z-direction, and is taken to be uniform. The top
and bottom boundaries (z = 0,z ) are periodic boundaries, i.e., the particle density
n(z, z), the parallel ion fluid velocity v, (2, 2), and the ion temperature T;(z, z) are
symmetrical about these boundaries.

In our model, anomalous transport is assumed to be caused by a low-frequency,
microscopic, electrostatic fluctuation of the poloidal electric field (the y direction
in our two-dimensional geometry corresponds to the poloidal direction in toroidal
geometry). Using the model proposed in chapter 4, the transport equations are

written as follows (see equations (4.36)—(4.38)):

V, (av,) =D, Vin==5 (5.1)

M(HV” —D_LtVJ_—ﬁ)~VV” = —V"[—TZ(T(:,O"' T;‘)]-{-V'(WIICV" VII-{—?]J_CVL V"> (52)
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o= () (7)
O (5.4)
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A discussion about the difference between our proposed model and previous
models 27193536 i5 in order.

First and foremost, our previous numerical results (see chapters 3 and 4) have
consistently indicated that viscous heating can be an important effect near the
obstacle’s tip. Consequently, unlike previous models that either assume that the
ions are isothermal or do not take into account the effect of viscous heating, our
model allows for the possibility of ion heating by viscous dissipation (see equation
(5.3)).

Our model, based on a number of plausible assumptions, indicates that al-
though the cross-field particle diffusion coefficient is enhanced because of turbulent
transport, the viscosity coefficients and thermal conductivities are not enhanced.
The subtlety is that because of anomalous particle transport, the cross-field trans-
port of momentum and energy associated with convection is indeed enhanced. How-
ever, the cross-field transport of momentum and energy associated with the random

motion of particles (viscosity and thermal conduction) is not enhanced. As a result,

it will be shown in the forthcoming discussion that our model neither agrees nor
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disagrees entirely with those presented in Refs. [9-10, 35-36].

According to our model, n, /nMD,; = D;./D,, ~ 10~%. Consequently, we
agree with Stangeby 3° in that the choice of 7, /nM D ; ~ 1 overestimates the effect
of cross-field viscosity. However, we disagree with Stangeby !° because he neglected
the effect of ion viscosity altogether. In fact, the plasma response obtained with
the effect of ion viscosity entirely neglected is not physically plausible. To illustrate

this point, equation (5.2) on the bottom boundary (z = 0) is written as follows:
S _ Cooo O
oz n Oz
where ion viscosity has been entirely neglected. For simplicity, the ions are also

taken to be isothermal. Integrating the equation above with respect to z and ap-

plying the proper boundary conditions, one obtains:

1v%(0,2) — M%
n(0, —zp) exp (— — - > —20< 2< 0™

2
2 Choo

n(0,z) =
v2(0,2) — M2,
n(0, zp) exp < - % "( )

3 ) 0+ < z< 2z
CSOO
Of course, zp is chosen sufficiently large that n(0,2¢) = n(0, —20) = ne. Applying

the Bohm sheath criterion, one obtains:

1M2 _ .2
n(0,07) = 1(0,0%) = 110y exp <_M)

2
2 Csoo

The equation above states that independent of the ambient plasma flow, the up-
stream density and the downstream density are always equal. Physically, one ex-
pects the upstream density to be higher than the downstream density because on the
upstream side, in addition to cross-field diffusion, particles are constantly stream-
ing into the shadow region by virtue of the ambient plasma flow. Consequently,
neglecting ion viscosity entirely leads to an unphysical plasma repsonse.
Hutchinson %3¢ recognized that viscosity can be an important effect. In this

respect, we agree with him that if a plausible model is to be constructed, the effect of
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lon viscosity should be included. However, we strongly disagree with him that ‘unity
remains arguably the most plausible order of magnitude for the viscosity /diffusivity
ratio.”® In fact, in our model, the parallel transport of parallel momentum, rather
than the perpendicular transport of parallel momentum, is the dominant viscous

force.

5.2 Numerical Results

The plasma response is obtained from the transport equations (5.1)~(5.4). The
transport equations are solved using the usual Newton-Raphson method on a non-
uniform grid of 49x97. For the cases to be presented in this chapter, the basic

plasma parameters are taken as follows:

Dy,
DJ_C
% ~ 1837

m

~ 10*

CSOO -9
~107*
we;d

TeO
Ti [e%S)

~1

Figure 5.2is a three-dimensional plot of the particle density n(z, z) with M., = 0.20,
where M, is defined as the ratio of the ambient plasma flow to the ambient ion
acoustic speed. For clarity, the upstream and downstream density profiles have been
plotted separately. It should be noted that the z coordinate has been scaled by the
characteristic length L = ¢;0,d*>/D 4. For realistic plasma parameters, L ~ 10% cm.
Figure 5.3 is a plot of the density along the boundary that partitions the upstream
and downstream sides (z = 0). Figures 5.2 and 5.3 suggest three interesting features.

First, the shadow extends longer into the downstream side of the obstacle
than it does on the upstream side. This effect can be explained by the following
qualitative argument. On the upstream side of the obstacle, in addition to the
diffusion process through which particles are displaced into the shadow region for

collection, plasma particles are also being swept into the shadow region by means
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of the ambient plasma flow. Consequently, fewer particles need to be displaced
into the shadow region for collection, resulting in a shorter parallel scale length on
the upstream side. On the downstream side, because of the ambient plasma flow,
particles being displaced into the shadow region for collection by means of diffusion
are initially moving away from the obstacle. These particles have to be decelerated
to a complete halt, turned around, and accelerated in the opposite direction in
order to be collected on the downstream surface of the obstacle, resulting in a

longer parallel scale length on the downstream side.

Second, the density on the upstream surface is higher than that on the down-
stream surface. This effect can also be explained by the qualitative argument given
above. It should be noted that this is a rather important effect. The reason is that
in a realistic situation where only the upstream/downstream ion flux ratio is known
(Mach probe data), we would like to be able to infer the ambient plasma flow from
this ratio. For this particular case, the upstream/downstream ion flux ratio is about

1.20.

Third, the density on the downstream surface of the obstacle is lowest near the
obstacle’s tip, not at the point (, z) = (0,0%) where one expects the density to be
lowest. The reason is that near the tip where ion viscous heating is most significant,
the ion temperature is highest, resulting in a higher rate of particle collection and

a lower local particle density than elsewhere.

Figure 5.4 is a three-dimensional plot of the ion temperature Ti(z,z) with
Mo = 0.20. For clarity, the upstream and downstream density profiles have been
plotted separately. For comparison, a plot of the ion temperature on both the up-
stream and downstream surfaces of the obstacle is shown in figure 5.5. Figures 5.4
and 5.5 indicate that the ions on the upstream surface of the obstacles are some-
what hotter than those on the downstream surface, except near the obstacle’s tip.
There, the ions on the downstream surface of the obstacles are significantly hotter
than those on the upstream surface. The reason is that the perpendicular shear of

perpendicular velocity associated with diffusion is much larger on the downstream
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surface than on the upstream surface, resulting in a greater amount of viscous heat-
ing on the downstream surface near the obstacle’s tip. Figure 5.4 indicates that
except for a small region near the obstacle’s tip where viscous heating is significant,
the ions remain relatively isothermal.

Figure 5.6 is a plot of typical streamlines with M, = 0.20. One may think of
these streamlines as the trajectories of tagged ion fluid elements. Figure 5.6 shows
that there are three distinct types of flow separated by two separatices. Those
streamlines below the lower separatrix represent particles accelerating toward the
upstream surface of obstacle. Those streamlines between the two separatrices rep-
resent particles accelerating from the upstream side into the downstream side where
they are eventually decelerated to a complete halt, turned around, and accelerated
in the opposite direction toward the downstream surface of the obstacle. Those
streamlines above the upper separatrix represent particles flowing past the obsta-
cle. These particles are not collected on either surface of the obstacle.

Numerical results have also been obtained for the cases in which M, = 0.10
and Mo = 0.15. For these cases, the upstream /downstream ion flux ratio is about
1.10 and 1.15, respectively. The density, ion temperature, and streamlines for these
particular cases are qualitatively similar to the case in which M., = 0.20.

In summary, our numerical results suggest that the parallel scale length on
the downstream side is longer than that on the upstream side. The ion flux on
the upstream surface is found to be higher than that on the downstream surface.
For the cases presented in this chapter in which M., = 0.10, 0.15, 0.20, the up-
stream /downstream ion flux ratio is about 1.10, 1.15, and 1.20, respectively. It was
also found that near the tip of the obstacle, the ions on the downstream surface
are significantly hotter than those on the upstream surface. An examination of the
plasma flow pattern suggested that there are three distinct types of flow separated

by two separatrices.
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Figure 5.2: n(z, z) obtained from semi-empirical transport equations accounting for
anomalous particle transport, ion viscosity, and ion viscous heating in the presence
of a subsonic ambient flow. My, = 0.20, D;/D,. = 104, Teo/Tico = 1, M/m ~
1837, Csoo/weid = 1072, 29 = 2, and zo/L = 2.5 (L = ¢500d?/D ). For clarity, the

upstream and downstream density profiles are plotted separately.
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Figure 5.3: 2-D plot of n(z, 0) (density profile on upstream and downstream surfaces
of obstacle). n(z,z) is obtained from semi-empirical transport equations account-
ing for anomalous particle transport, ion viscosity, and ion viscous heating in the
presence of a subsonic ambient flow. My, = 0.20, D,,/D . = 104, Too/Ti00 = 1,
M/m ~ 1837, cseo/weid = 1072, 2o = 2, and 20/L = 2.5 (L = cs00d?/Dy).

Anomalous transport is assumed to be caused by a randomly fluctuating poloidal

electric field.
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Figure 5.4: T;(z, z) obtained from semi-empirical transport equations accounting for

anomalous particle transport, ion viscosity, and ion viscous heating in the presence
of a subsonic ambient flow. My, = 0.20, Di4/D,.=10% T./Tieo = 1, M/m ~
1837, ¢soo/weid = 1072, 29 = 2, and z9/L = 2.5 (L = ¢s00d?/ D). For clarity, the

upstream and downstream ion temperature profiles are plotted separately.
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Figure 5.5: 2-D plot of T;(z,0) (ion temperature profile on upstream and down-
stream surfaces of obstacle). Tj(z,z) is obtained from semi-empirical transport
equations accounting for anomalous particle transport, ion viscosity, and ion vis-
cous heating in the presence of a subsonic ambient flow. M, = 0.20, D,;/D,, =
10%, Teo/Tico = 1, M/m ~ 1837, csoo/weid = 1072, 29 = 2, and z/L = 2.5
(L = cs00d%/D14). Anomalous transport is assumed to be caused by a randomly

fluctuating poloidal electric field.
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CHAPTER 6

Summary and Conclusions

In this thesis, various aspects of plasma collection by an obstacle were studied
in detail. A summary of our primary numerical results and conclusions is given

below.

In chapter 3, a number of potentially important physical mechanisms associated
with the classical diffusion and collection of plasma particles by a two-dimensional
obstacle were considered. Our numerical results suggested that the effects of ion vis-
cosity and viscous heating can be important in the plasma region where the velocity
gradient is large, e.g., the region near the obstacle’s tip. In fact, the inclusion of ion
viscosity and ion viscous heating lead to two unexpected behaviours of the plasma
response, which had not been anticipated previously. First, due to ion viscosity,
the plasma near the obstacle’s tip is denser than the ambient plasma. This result
is surprising since the plasma in regions where the collection occurs is expected to
be more tenuous than the ambient plasma. Second, due to ion viscous heating, the
ion temperature near the obstacle’s tip is significantly higher than the ambient ion
temperature. This result is also surprising since the ions are expected to cool down

as they are accelerated toward the obstacle.

In chapter 4, a semi-empirical model is proposed to account for anomalous
transport caused by a randomly fluctuating poloidal electric field. Contrary to that
which has been suggested in the literature, our proposed model suggested that in
the presence of anomalous transport, it is not physically plausible to postulate that
ni/nMD,,, the viscosity/diffusivity, is of the order 1. In fact, our proposed model
suggests that 7, /nMD, s ~ D,./D;; < 1 is a more plausible choice. Qur nu-
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merical results (for a set of plausible plasma parameters) indicated that the ion
temperature near the obstacle’s tip is up to 85% higher than the ambient ion tem-

perature.

In chapter 5, an extension of the model proposed in chapter 4 was constructed
to account for a subsonic ambient plasma flow. This problem is of interest because
it has direct applications in the interpretation of Mach probe measurements. Our
numerical results suggest that the ions on the upstream side of the obstacle are
hotter than those on the downstream side except near the obstacle’s tip where the
density gradient is largest. There, the ions on the downstream side are hotter than

those on the upstream side.

In the course of this thesis, two difficult, yet fundamental, issues have been
identified. Because of their complexity, it is likely that these issues cannot be
resolved within a reasonable time limit. Consequently, they were left unaddressed.
However, it would be interesting to study these fundamental issues in detail. The

two unaddressed issues are described below.

First, it has been recognized in chapters 3 and 4 that the obstacle’s tip is a
special point for the following reason. Below the obstacle, the ion velocity compo-
nent parallel to the external magnetic field (perpendicular to the obstacle’s surface)
is taken to be ¢, the ion acoustic speed. This is the Bohm sheath criterion, and
is obtained by solving for the one-dimensional collisionless transport equations and
requiring that the electrostatic potential be monotonically decreasing with decreas-
ing distance from the obstacle’s surface. Since both the Debye shielding distance
and the ion Larmor radius are small compared with the width of the obstacle, the
one-dimensional Bohm sheath criterion can be applied to the entire surface of the
obstacle except for a small region near the tip. Above the obstacle, the ion velocity
component parallel to the external magnetic field is, in the absence of an ambient
plasma flow, zero due to symmetry. Consequently, the ions appear to make the
transition from sonic flow to zero flow in a small scale length. In order to un-

derstand this transition, it is perhaps necessary to solve for the two-dimensional
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plasma-sheath equation self-consistently.

Second, in order to construct a realistic model describing plasma-probe interac-
tions in the SOL (scrape-off layer), it is important, in principle, to include the effect
of the containment vessel. Because the vacuum vessel is parallel to the toroidal
magnetic field, a magnetic sheath is formed on the surface of the vacuum vessel
in addition to the usual electrostatic sheath. Unfortunately, the magnetic sheath
is not well understood, and is riddled with numerous problems. Consequently, the
effect of the containment vessel was neglected entirely in this thesis.

Obvious and interesting extensions of this thesis are recommended below.

Throughout the course of this thesis, the obstacle is assumed to be insulating,
Consequently, the net electric current density is required to vanish at each point
on the obstacle’s surface. It would be interesting to see the plasma response for
an unbiased conducting obstacle. For an unbiased conducting obstacle, the net
electric current density is not necessarily zero at each point on the obstacle’s surface.
Instead, the net current density integrated over the entire surface of the obstacle
1s required to vanish. It would also be interesting to see the result of biasing the
conducting obstacle.

In the scrape-off layer, both the electric and the magnetic fields have been
observed to be fluctuating. It has been suggested that the electric fluctuation is
responsible for anomalous particle transport, and that the magnetic fluctuation is
responsible for anomalous energy transport. In this thesis, a semi-empirical model
is proposed to account for anomalous transport caused by a randomly fluctuating
poloidal electric field. It would be interesting if the same approach is taken to model

anomalous transport caused by a randomly fluctuating radial magnetic field.
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Appendix A

A One-Dimensional Model of
Electrostatic Sheaths with Warm Ions

This appendix contains a simple one-dimensional model of electrostatic sheaths
with warm ions. The model presented here is a variation of the one-dimensional
model of electrostatic sheaths with cold ions proposed by Chen.!” Although more
rigorous models of electrostatic sheaths with warm ions have been presented in the
literature (see, for example, [14-16, 18-20]), our simple model is much easier to
understand, and contains the essential physics of sheath formations. An important
observation is that all models of electrostatic sheaths suggest that the ions must
obtain a speed above some threshold value upon entering the sheath in order for
the electrostatic potential to be stable, i.e., monotonically decreasing.

In our model, the plasma is assumed to be collisionless. This is a good as-
sumption if the collisional mean-free-paths are much longer than the thickness of

the sheath, i.e,
Aee ~ Aei ~ Aii > Ap (A.l)

where Ace, Aei, Aji, and Ap are the electron-electron collisional mean-free-path,
the electron-ion collisional mean-free-path, the ion-ion collisional mean-free-path,
and the Debye length, respectively. Equation (A.1) is satisfied in most tokamak
plasmas (see section 3.1). Therefore, our assumption that the plasma is collisionless
is justified. The electrons and the ions are also assumed to be isothermal since their
self-collisional mean-free-paths are also much longer than the Debye length. Figure
A.1 illustrates the geometry of the one-dimensional electrostatic sheath. The ions

are assumed to enter the sheath with a speed of vy. The sheath’s thickness is of
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the order of the Debye length. At the sheath edge (z = 0), the electron density and

the ion density are assumed to be equal. The equations of motion are written as

follows:
dv do Ty dn;
MUE———GE— E';l; (AZ)
d¢ TeO
— oY A.
0 e . (A.3)
d(n;v) ~0 (A.4)
dz
d?¢ €
T T g (45

where M 1is the ion mass.
By integrating equations (A.2)-(A.4) and rearranging the resulting equations,

one obtains:

1 ;

——M(vz — vg) = —e¢p + T ln <£> (A.6)
2 Vo

ne = e®¢/Teo (A7)

niv = ngvy (A.8)

Near the sheath edge (z/Ap < 1), we have:

ed
1
TeO <
vV — Vg <<1
Vo

By linearizing equations (A.6)-(A.8) with respect to the parameters above and

rearranging the resulting equations, one obtains:

e
n; >~ Ny 1-}—7'—
M o — 420

e ™ Ng (1 + ;¢ )
el

where equation (A.9) is valid only for z/Ap < 1.

(4.9)
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Substituting equation (A.9) into equation (A.5), one obtains:

¢ enoed (1 T
dz? e T.o M -1,

Since d¢/dz is taken to be zero at the sheath edge, d*¢/dz? must be negative if
¢ is to decrease with increasing z. Thus, near the sheath edge, both ¢ and d?¢/dz?

must be negative. As a result, the Bohm sheath criterion is obtained, i.e.,

TeO
]———<0
Mo T,

Alternatively, the above expression can be written as follows:

Teo + Tio

- (4.10)

’l)0>

The most important assumption of our model is that both the electrostatic
potential and the electric field are taken to be zero at the sheath edge. However,
in order for the ions to acquire a speed of vy upon entering the sheath, there must
exist a non-zero electric field in the presheath (the transition layer between the
main plasma and the sheath region). Therefore, our assumption that both the
electrostatic potential and the electric field are zero at the sheath edge is not entirely
correct. However, since there are two markedly different scale lengths, the electric
field at the sheath edge is much smaller than that within the sheath region, and our

assumption is partly justified.
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Figure A.1: Geometry of 1-D electrostatic sheaths with stable, monotonically de-
creasing electrostatic potential. The sheath’s thickness is of the order of the Debye
shielding distance Ap. The electrostatic potential ¢ (shown above) and the electric
field —d¢/dz are both taken to be 0 at the sheath edge (z = 0) where the plasma

is assumed to be quasineutral. The ions enter the sheath with a velocity vy.
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Appendix B

Coordinate Transformations

This appendix contains a detailed description of the coordinate transformations
used in solving the two-dimensional transport equations. The parallel gradients are
expected to be steepest near the obstacle’s surface since this is where the collection
of particles, momentum, and energy occurs. The perpendicular gradients are ex-
pected to be steepest near the tip of the obstacle. We would like to construct the
perpendicular and parallel coordinate transformations in such a manner that the

mesh spacing is finest where the gradients are steepest.

B.1 Transformation of »

In the parallel direction, the coordinate transformation is chosen as follows:
O(z) = e** (B.1)

Using the above coordinate transformation and the basic rules of differentiation,

the parallel derivatives are transformed as follows:

(B.2)

Our task is to find an optimal value for the coefficient . This is achieved by
solving the transport equations on a moderately coarse grid with various values of
a. Figure B.1 is a plot of n(z = 0, z), the particle density on the bottom boundary,

for different values of a. For our particular set of governing equations, we found
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that there exists a value for a such that n(z = 0, 2) corresponding to that value of a
is higher than that corresponding to other values of a. This is actually the optimal
value of a. The reason is that increasing a reduces the truncation error near the
obstacle’s surface and at the same time increases the truncation error near the left
boundary. The overall truncation error of the solution is the larger of the two
truncation errors. For a grid corresponding to uniform spacing in z, the truncation
error near the obstacle’s surface dominates. In this case, increasing a will improve
the solution. The direction in which the curve n(z = 0,2) shifts is the direction
toward the optimal solution, e.g., it is the upward direction in our case. However,
as a reaches its optimal value, the truncation error near the obstacle’s surface is
about the same as that near the left boundary. Increasing « further will now cause
the truncation error near the left boundary to dominate, and therefore causes the
solution to deteriorate. The value of a such that n(z = 0,z) lies above all other

curves is therefore the optimal value of a.

B.2 Transformation of =

In our model, z¢ has to be sufficiently large that the plasma is undisturbed
far from the obstacle, e.g., the particle density should be approximately uniform on
the top periodic boundary. We found that z¢/d = 2 meets this requirement. Qur

coordinate transformation is chosen as follows:
A(z) = tanh[b(z — d)] (B.3)

Using the above coordinate transformation and the basic rules of differentiation,

the perpendicular derivatives are transformed as follows:

5 )
a: =My

" (B.4)
o _ 72 2 2y 0° 9 ‘
R T A T

where 0 < z < 2d.
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As before, we now have to find an algorithm to determine the optimal value for
the coefficient b. We have solved the transport equations on a moderately coarse grid
for different values of b. The particle density on the right boundary, n(z,z = zj), is
also plotted for several values of b. Unfortunately, these curves do not possess the
property discussed in the previous section. Therefore, we have to find a different
way to determine the optimal value for b. This is achieved with the following steps.
First, we solve the transport equations on a uniform grid (uniform spacing in )
of various sizes: 49x13 (the first and second numbers refer to the number of grid
points in the = and z directions, respectively), 97x13, 193x13, and finally 385x13.
Figure B.2 is a plot of n(z, z = z) for these different grid sizes. We see that as the
grid gets finer (in the z-direction), the truncation error becomes smaller. Now, we
solve for the transport equations on a grid of 49x13 for different values of 5. The
optimal value of b is chosen such that n(z,z = zg) corresponding to this particular
value of b is closest to that corresponding to a uniform grid of 385x13. Figure B.3

shows that in this particular case, b ~ 2.4 is the optimal choice.

We can construct a mathematical proof to show that the optimal value for
the coefficient b chosen in this manner is independent of the number of grid points
used in the z-direction, e.g., we would obtain the same optimal value for b if we
used 25 grid points in the z direction instead of 13. Numerical results obtained also
confirm this assessment. Because the coordinate transformations in the parallel and
perpendicular directions are independent and because our governing equations do

not contain any cross-derivatives, e.g., 3*/9z0z, we have:
n(A,0,64,80,b,a) = n(A,©) + Y Cr(A,b)(6A)* + > Di(0,a)(50)*
k=1 k=1

The L.H.S. of the above equation is the particle density obtained from the finite-
difference approximation of the transport equations. n(A, ©) is the exact solution of
the transport equations. The last two terms of the R.H.S. of the above equation are

just the truncation errors of the perpendicular and parallel directions, respectively.
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The equation above is used to construct the following equation:

n(A, ©,6A,600,b,a0) — n(A,©,8A,601,b,a1) = > Dy(0,a0)(60,)F

k=1
— ) " Di(©,a,)(80;)*
k=1

The above equation can be carried one step further to give:
n(A, ©,6A,600,by,a9)— n(A, 0,600,601, by,ay)—
n(A, 0, 8A1,500, by, a0) } B {n(A,G),(SAl,&G)l,bl,al)
In essence, the above equation states that two given finite-difference solutions of the
transport equations with different b (grid non-uniformity factor in the z-direction)
and a different number of grid intervals in the z-direction will change by exactly the
same amount if a (grid non-uniformity factor in the z-direction) and the number
of grid intervals in the z-direction are changed accordingly. Figure B.4 is a plot of
the particle density on the right boundary with different values of §A, 60, b, and
a. It seems to confirm the above assessment. Thus, our method for determining
the optimal value for b appears to yield the same result independent of both the

number of grid points in the z-direction and a (the grid non-uniformity factor in

the z-direction).

B.3 Mesh Discretization
The mesh is uniform in the domain of the transformed coordinates A(z) and

O(z). The spatial derivatives are discretized on this uniform mesh as follows:

ov 1
(a—A) = gex Vi i)
ij
ov 1
o ’ , (B.5)
( A2>.. = —_(5A)2(‘I’i+1,j = 2W,;; + ¥, ;)
i
82\11> 1
= =g (Wi — 205 + 0y 54)
<a®2 5 (60)2 A
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where the indices 7 and j refer to the spatial position in A and O, respectively. This

differencing scheme is second order in both §A and 60.
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Figure B.1: 2-D plot of n(z = 0,z) (density along bottom boundary) for several
values of a, the grid non-uniformity factor in the z-direction. The number of grid
intervals (in both the z and z directions) is the same for all of the cases above (12
intervals in the z-direction and 24 intervals in the z-direction). The solid curve
corresponds to a = 2.9. Any curve corresponding to a # 2.9 lies below the solid

curve, suggesting that aopsimaer ~ 2.9.
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Figure B.2: 2-D plot of n(z, z9) (density along obstacle’s surface) for different grid
sizes in the z-direction. The number of grid intervals in the z-direction is the same
in all cases (12 intervals in the z-direction). The grid is uniform in the z-direction.
Note that as the grid gets finer (in the z-direction), the truncation error is reduced

accordingly.
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Figure B.3: 2-D plot of n(z, zp) (density along obstacle’s surface) for several values
of b, the grid non-uniformity factor in the z-direction. The number of grid intervals
in the z-direction is the same for all cases (12 intervals in the z-direction). The solid
curve is obtained with 384 uniform grid intervals in the z-direction. Note that the
curve corresponding to b = 2.4 with 48 grid intervals in the z-direction is closest to

the solid curve, suggesting that byptimar ~ 2.4.
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Figure B.4: 2-D plot of n(z,zp) (density along obstacle’s surface) for 4 different
grid sizes. It is demonstrated that the choice of boptimai is independent of the grid
spacing in the z-direction. From this, one can also infer that the choice of a,ptimai

is independent of the grid spacing in the z-direction.
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Appendix C

Plasma Collection by an Obstacle: A 1-D Model

This appendix contains a detailed discussion of a one-dimensional model of
the transport equations (3.8)—(3.9). Figure C.1 illustrates the geometry of this
model. The obstacles are assumed to be planes extending to infinity in both the
z and y directions. This study proves to be useful because the exact solution of
the one-dimensional isothermal, inviscid tranport equations is readily available. We
can study the general behaviour of the transport equations. We can also compare
our numerical solution of the one-dimensional transport equations with the exact

solution.

C.1 One-Dimensional Isothermal, Inviscid Transport Equations

In one dimension, the transport equations (3.8)-(3.9) can be written as follows:

dv cg dn
d(nv)
= So (C.2)

where both v and n are functions of z only. As a reminder, v is taken to be ¢, on
the obstacle. Equation (C.1) states that in one dimension, the ions free-fall through
a scalar potential field.

Integrating the equations above with respect to z, one obtains:

%vz - 2 [n?())} (C.3)
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The equation above can be written as follows:

v v? 1/2 2
L exp | - 2 ) = e71/2 2
Cs P ( 2c§> ¢ 2z
n v?
— -2 C.4
n(0) P ( 2c§> (©4)
n(0) = ¢!/2 2020
Cs J

Equation (C.4) is the exact solution of the one-dimensional isothermal, inviscid
transport equations.

The transport equations (C.1)-(C.2) are suspected to have a singularity at
z = zo for the following reason. At z = zp, v is taken to be ¢, by virtue of the

Bohm’s sheath criterion. Thus, equations (C.1)~(C.2) at z = zo become:

d _ _cdn
dz ndz
dv dn
n—CE + 085 =5y

If we attempted to substitute the top equation into the bottom one, we would obtain
0 = Sy, which 1s known to be wrong.
In fact, we can show that the transport equations (C.1)—(C.2) possess a singular

behaviour at z = zo. Substituting equation (C.1) into equation (C.2), one obtains:

v2\ do
71(1— E)E = SO

Substituting equation (C.3) into the equation above, one obtains:

v v\ dv v .
1+ —|(1-=)=== !
( + cs) (1 cs> dz z (€.5)

Consider the following Taylor expansion in the neighbourhood of z:

v(zg) = v[z + (20 — 2)]

dv
= v(2) + (20— 2) =

Since v(zg) = ¢, the equation above becomes:

v 1 dv
1— — = (20— 2)——
Cs (20 Z)cs dz
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Substituting the equation above into equation (C.5), one obtains:

fi 2000 _ Loy L (C.6)

= —1
¢—1 dz \/i Cl—% V31—

where ¢ = z/zy. The equation above describes the singular behaviour of the trans-
port equations (C.1)-(C.2). Although n and v have finite values at the obstacle,
their gradients go to infinity there. This is a manifestation of the fact that in our
model, the electric field goes to infinity at the obstacle. However, it has been shown
by Self® that at the sheath edge, the electric field does not really go to infinity. In
fact, our model, which assumes that the plasma is quasi-neutral, breaks down at
the sheath edge. Thus, as an artifact of our model, the electric field goes to infinity

at the obstacle.

C.2 Numerical Method
Since this is a one-dimensional problem, the transport equations (C.1)-(C.2)
can be solved efficiently by the Newton-Ralphson method (linearization). Lineariz-

ing equations (C.1)-(C.2), one obtains:

duvg dé c2 dng ¢ dn, B dvy  c? dng
dz +vodz —nlng dz +n0 dz “_UOE_nOE (€7)
dno d§ d’UO dnl dvo dno y
Yo Pt g =S mm —wg(08)
where
v =y +§

n=ng+ ny
We will use the same coordinate transformation as described in Appendix A.
At z = 0, we require v and dn/dz to vanish. At z = 29, the Bohm’s sheath
criterion 1s used to replace the ion momentum equation, and dv/dz and dn/dz are

approximated by one-sided finite differences.

C.3 Results
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Figure C.2 is a plot of the finite-difference solution of the transport equations
(C.1)-(C.2) versus the exact solution. In this case, there are 41 mesh points. Figure
C.2 shows that even with only 41 mesh points, there is a good agreement between
the finite-difference solution and the exact solution. Figure C.3 is a similar plot
with 101 mesh points. The agreement between the finite-difference solution and the
exact solution is even better in this case. Both the finite-difference solution and
the exact solution of the transport equations (C.1)-(C.2) show that n and v have

infinite slopes at the obstacle.
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Infinite Obstacle
5
Plane of Symmetry
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Infinite Obstacle

I
o

2 = —Z2, yA 2 = Z,
Figure C.1: Geometry of 1-D plasma collection by an obstacle. The ions are as-
sumed to enter the electrostatic sheath at the local ion acoustic speed. The transport

process is taken to be inviscid and isothermal.
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Exact Solution

....... Numerical Solution

Exact Solution

....... Numerical Solution

0
0 z/z, 1

Figure C.2: Comparison between exact solution (both n(z) and v(z)) and numer-

ical solution of 1-D isothermal, inviscid transport equations. In this case, the 1-D

computational grid has 40 intervals.
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Exact Solution

....... Numerical Solution

Exact Solution

........ Numerical Solution

0 z/z, 1
Figure C.3: Comparison between exact solution (both n(z) and v(z)) and numer-
ical solution of 1-D isothermal, inviscid transport equations. In this case, the 1-D

computational grid has 100 intervals.
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Appendix D

Normalization Procedure and Program Listing

This appendix contains a detailed description of the normalization of the macro-
scopic variables v (ion fluid velocity), n (particle density), and 7; (ion temperature).

A complete listing of the computer code is also included in this appendix.

D.1 Viscid, Non-Isothermal Two-Fluid Equations
When the transport process is assumed to be classical, the two-fluid description

of the plasma response can be reduced to equations (3.61)-(3.63). For clarity, these

equations are rewritten below:

V-(nv) =5 (D.1)

neB

o (vixz—avy)—Vin(Te+T;)} - V-7 +SoMv (D.2)

V.- (Mnvv) =

Oz L Oz 0z K“—a_z_

e (2) 4 (22V] S s D3
5 ) T\ 5 + ST 00 (D.3)

gnv'VTi:—7’LTiV-v+_a_( 3Ti>+9_< 8Ti)

where
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Various plasma parameters and transport coefficients are defined as follows:
A

_D_Loowci
T,
c TeO+Tioo
SO M
[M P32 0T T
Ny = _’I';nMD_Lool-FT(Eoo)
T, > (D.4)
r:Tioo
1 /3 \* [m 1 T: \°/?
1Y Dl (T) VM Bz +r) " (T,—oo>
M r3/2 T; —1/2
Kl ~ \/;{DLOO——I_FTn(TiOO) )

D.2 Normalization Procedure

The ion fluid velocity v and the ion temperature 7; are normalized to the ion
acoustic speed and the ion temperature of the ambient plasma, respectively. The
particle density n is not normalized. The spatial coordinates = and z are both
normalized to d, the half-width of the obstacle. The resulting normalized variables

and coordinates can be written as follows:

V=v/Cs00
T; = Ti/Tico
F=a/d
Z=1z/d

The transport equations (D.1)—(D.3) are normalized with respect to the above

transformation, and the resulting equations are written below:
V(nv) = S, (D.5)

(1 —}—r)—l/?
pi(l + a?)

+(§a—<maav )y (~ 8vz> + So¥ (D.6)

V.(nvv) = n(Vixs—avy)— V(s + &)




o0z Z Z
_[/op,\? 05\ -
() (2] es o
where .
b1 = )
14
52:1—61

1 T,
0; = pi/d = —
pi = pif oaV
a=(1+r)""2Dic/pi

> (D.8)
D_Loo — D_Loo
Csool
M ~ 7‘3/2 ~_1/r)
N, = K = —_— D T -
/AN K1 m Loo 1+r ni;

~2
. Pi /™M _3/2, m5/2
/i'," ~ ﬁ_LOO 'MT' / TZTI-

Equations (D.5)—(D.8) are the dimensionless two-fluid equations describing the
viscid, non-isothermal 1ion motion, provided that the transport process is classical.
Given r (the ratio of the electron temperature to the ion temperature far from the
obstacle), the ion-to-electron mass ratio, Do (the normalized particle diffusion
coefficient far from the obstacle), and p; (the ratio of the ion Larmor radius far
from the obstacle to the half-width of the obstacle), the plasma response can be

obtained by solving equations (D.5)—(D.8).

D.3 Program Listing

A complete listing of our computer code is given below.
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C*******************k***************************************************

c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*

This program computes the plasma response when the ion motion is
viscid and non-~isothermal. The electrons are assumed to be
inviscid and isothermal. The transport process is taken to be
classical. A set of 5 coupled non-linear PDE’s are solved by

the standard method of linearization (Newton-Raphson).

this method requires much more core memory than our IBM-

the source of "virtual memory."™ In order to be able to

Because
PC is

run a

case with a grid of 49 by 193, 4 MB of core memory and 90 MB of

mass storage are required.

x
*
*
*
*
*
equiped with, we are forced to utilize to mass storage device as *
*
*
*
*
*

c*******"k**********************************************************‘k‘k'k‘k

[¢]

implicit real*8(a-h,n-z),integer (i-m)
integer nmax,nmaxml,nb,ndis,npos
real*8 kperp,kpar

character*8 crunchr(249,494),crunchrhs(494),crunchdiag(494)

dimension vx0(49,193),vy0(49,193),vz0(49,193),n0(49,193)
&,t0(49,193),x(49),2(193),dud=z(193) ,dvdx(49),dvdxsgr (49)
&,ddvdxdv (49) ,dudzsqgr (193) ,ddudzdu (193) ,bandl (249, 494)
&,bandr (249,494) ,diag(494),rhs (494),s501(47285)

common /matrx2/ nmax,nmaxml

common /v0On0/ vx0,vy0,vz0,n0,t0

common /inputl/ aperp, rhoi,x0,2z0,imax, jmax,tol0,s,dperp,
&,eta,etapar,kpar, imid,gvis

taul, kperp

common /input2/ dzm,x,z,dudz,dudzsqgr, ddudzdu, dvdx, dvdxsqr, ddvdxdv

common /relax/ beta,beta2,dell,del2, optaul
common /start/ istart, iter
common /clength/ zpar

common /error/ errvilOm,errvylm,errvzOm,errnlm,errtOm, resmax

common /mesh/ zmeshx

common /b0/ bandl,bandr

common /bl/ diag,rhs

common /b2/ nb,ndis

equivalence (crunchr,bandr)
equivalence (crunchrhs, rhs)
equivalence (crunchdiag,diag)
call dostim(ihour, imin,isec,ith)

Read input parameters from external input data file.

call input

Initialized the plasma response (initial guess).

call initial

Set up direct access files for virtual memory usage.

maxrecl=8% (nb+2)

J1liml=68

J1lim2=13%

open{unit=2, file="e:\\tmp\\virtual.dat’, status='unknown’
&,access="'direct’,form="unformatted’, recl=maxrecl)

open (unit=3, file='d:\\tmp\\virtual.dat’, status="unknown’
&,access="direct’,form="unformatted’, recl=maxrecl)
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open(unit=4, file='c:\\tmp\\virtual.dat’, status="unknown’
&,access="direct’, form="unformatted’, recl=maxrecl)

Keep track of the number of iteration.

iter=0
1 iter=iter+l

Set up initial relaxation factors.

if (iter.ge.b) then
beta=1.00000
beta2=0.00000

endif

Find maximum density.

nOmn=0.
do 2 i=1,imax
do 2 j=1, jmax
2 n0m=dmaxl (n0m, dabs (n0 (i, j)))

Initialize band matrix.

do 25 i=1,nmax

diag(i)=1.

rhs (1)=0.

do 25 j=1,nb

bandl (j,1i)=0.
25  bandr(3,1i)=0.

Set up the Jacobian matrix of first column of the two~dimensional
grid.

do 11 i=1,imax
ipl=i+1
iml=1i-1

Compute derivatives in the x-direction.

if (i.eg.l) then

dvx0dx=vx0(2,1)/x(2)
dvy0dx=vy0(2,1) /x(2)

dvz0dx=0.

dn0dx=0.

dt0dx=0,
d2vz0dx2=2.*dvdxsqr (1) *(vz0(2,1)-vz0(1,1))
d2t0dx2=2.*dvdxsqgr (1) *(t0(2,1)-t0(1,1))
else if (i.eqg.imax) then
dvxz0dx=-vx0 (iml, 1) /x(2)
dvy0dx=-~vy0 (iml, 1) /x(2)

dvz0dx=0.
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dn0dx=0.

dt0dx=0.

d2vz0dx2=2,*dvdxsqgr (i) *(vz0(iml, 1) -vz0(i, 1))
d2t0dx2=2.*dvdxsqr (i) *(£t0(iml,1)-t0(i,1))

else

dvx0dx=dvdx (i) * (vx0 (ipl,1) -vx0 (iml, 1))
dvy0dx=dvdx (1) * (vy0 (ipl,1) -vy0 (iml, 1))
dvz0dx=dvdx (i) * (vz0 (ipl, 1) -vz0 (iml, 1))
dn0dx=dvdx (i) *(n0 (ipl, 1) -n0(iml, 1))
dt0dx=dvdx (i) * (£0(ipl,1)-t0(iml, 1))
d2vy0dx2=dvdxsqr (i) * (vy0(ipl,1)-2.*vy0(i,1)+vy0(iml, 1))
&+ddvdxdv (1) *dvy0dx
d2vz0dx2=dvdxsqr (i) *(vz0 (ipl, 1) ~2.*vz0(i,1) +vz0 (iml, 1))
&+ddvdxdv (i) *dvz0dx

d2t 0dx2=dvdxsqgr (i) *(t0(ipl,1)-2.*t0(1i,1)+t0 (iml, 1))
&+ddvdxdv (i) *dt0dx

endif

Compute derivatives in the z-direction.

dvz0dz=vz0 (i, 2) /z(2)
d2t0dz2=2.*dudzsgr (1) *(t0(i,2)-t0 (1, 1))

divv0=dvx0dx+dvz0dz
vdgvx0=vx0 (i,1) *dvx0dx
vdgvy0=vx0 (1i,1) *dvy0dx
vdgvz0=vx0 (1i,1) *dvz0dx
vdgn0=vx0 (i, 1) *dn0dx
vdgt 0=vx0 (i, 1) *dt0dx
k=5*(1-1)+1

kpl=k+1

kp2=k+2

kp3=k+3

kp4=k+4

Equation for vzl (i,3j) has been taken care of since vz (x,z) is
equal to zero on this boundary.

Equation for vxl(i,j) has been taken care of since vx(x,z) is
equal to 0 when x=0.

Equation for wyl(i,3j) has been taken care of since vy(x,z) is
equal to 0 when x=0.

Equation for nl(i,3).

diag (kp3)=beta2+beta*divv0
bandr(2,kp3)=n0(1,1) /x(2)
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rhs (kp3)=s~n0(1,1) *divv0

Equation for tl(i,j).

bandr(1,kp4)=t0(1,1)/x(2)

bandr (2, kp4)=-2.*optaul*eta*dvy0dx/ (x(2) *dsqrt (t0(1,1)))
bandl(1,kp4)=s/n0(1,1) **2

bandr (5, kpd)=-2.*kperp*dvdxsqr (1) /dsqrt (£t0(1,1))
diag(kp4)=beta2+beta* (divv0+2.* (kperp*dvdxsqgr (1) /dsqgrt (£t0(1,1))
&t+kpar*dsqrt (£0(i,1)) **5*dudzsgr (1))
&+0.5*optaul*eta*dvy0dx**2/dsqrt (£t0(1,1)) **3
&~2.5*optaul*etapar*dsgrt (£0(1,1)) **3*dvz0dz**2
&+0.5*kperp*d2t0dx2/dsqgrt (£0(1,1)) **3
&-2.5*kpar*dsqrt (t0(i, 1)) **3*d2t0dz2)

rhs (kp4)=s/n0(1,1)-t0(1,1) *divv0
&tkperp*d2t0dx2/dsgrt (£t0(1,1) ) +tkpar*dsqgrt {(£t0(i,1) ) **5*d2t0d=z2
&+optaul* (eta*dvyOdx**2/dsqrt (£t0(1,1))
&tetapar*dsgrt (t0(1,1)) **5*dvz0dz**2)

else if (i.eq.imax) then

Equation for wvxl(i,]j) has been taken care of since vx{x,z) is
equal to 0 when x=0.

Equation for vyl(i,Jj) has been taken care of since vy(x,z) is
equal to 0 when x=0.

Equation for nl(i,J).

diag(kp3)=beta2+beta*divv(
bandl(8,kp3)=-n0{(i,1)/x(2)
rhs (kp3)=s-n0(i,1) *divv0

Equation for tl(i,]).

bandl (9,kp4)=-t0(i,1)/x(2)

bandl (8,kp4d)=2.*optaul*eta*dvy0dx/ (x(2) *dsqrt (£t0(i,1)))
bandl(l,kpd)=s/n0(i, 1) **2

bandl (5, kp4)=-2. *kperp*dvdxsqgr (i) /dsqrt (£0(i, 1))

diag (kp4)=beta2+beta* (divv0+2.* (kperp*dvdxsqgr (i) /dsqgrt (t0(i, 1))
&tkpar*dsqgrt (£t0(1,1)) **5*dudzsqgr(l))
&+0.5*%optaul*eta*dvy0dx**2/dsqgrt (£0(i, 1)) **3
&—2.5*optaul*etapar*dsqgrt (£0({i,1)) **3*dvz0dz**2
&+0.5%kperp*d2t 0dx2/dsqrt (£0 (i,1)) **3
&—2.5%kpar*dsgrt (t0 (i, 1)) **3*d2t0dz2)

rhs (kp4)=s/n0(i,1)~t0(i,1) *divv0
&+kperp*d2t0dx2/dsqrt (£0(i,1)) +kpar*dsqrt (t0 (i, 1)) **5*d2t0d=z2
&+optaul* (eta*dvy0dx**2/dsqrt (£0(1i,1))
&+etapar*dsqgrt (£0 (i, 1)) **5*dvz0dz**2)



aQ0000aQ

-153 -

Equation for wvxl(i,j).

bandl (5,k)=-dperp*vx0 (i, 1) *dvdx (1)

bandr (5, k)=-bandl (5, k)

diag (k) =beta2+beta* (1.+dperp*dvx0dx+rhoi*dvy0dx)

bandl (4,k)=-rhoi* (eta*dvdxsgr (i) /dsqrt (t0{(i,1))
&+ (vx0(i,1) -
seta* (ddvdxdv (i) +dn0dx/n0(i,1)-0.5*dt0dx/t0(i, 1)) /dsqrt (t0(i,1)))*
&dvdx (1))

bandr (6, k)=-rhoi* (eta*dvdxsqgr (i) /dsgrt (t0(i, 1))
&~(vx0(i,1)-
&eta* (ddvdxdv (i) +dn0dx/n0 (i, 1) -0.5*dt0dx/t0(1i,1)) /dsgrt (£t0(i,1)))*
&dvdx (1))

bandr (1,k)=2.*rhoi*eta*dvdxsqr (i) /dsgrt(t0(i,1))

bandl (2, k)=(rhoi*eta*dvy0dx/dsgrt (t0(i, 1))
&~dperp* (dell+del2*t0(i,1))) *dvdx (i) /n0(i, 1)

bandr (8, k)=-bandl (2, k)

bandr (3,k)=(rhoi*eta*dvy0dx/dsqrt (£t0(i,1))
&—dperp* (dell+del2*t0(i, 1)) ) *dn0dx/n0 (i, 1) **2

bandl (1,k)=-dperp*del2*dvdx (1)
&-0.5*%rhoi*eta*dvy0dx*dvdx (i) /dsqrt (£t0 (i, 1)) **3

bandr (9,k)=-bandl (1, k)

bandr (4, k) =dperp*del2*dn0dx/n0 (i, 1)

&+0.5*rhoi* {eta/dsqrt (£0(i, 1)) **3) *
& (d2vy0dx2+ (dn0dx/n0 (i,1)-1.5*dt0dx/t0 (i, 1)) *dvy0dx)

rhs (k) =-vx0 (i, 1)

&+rhoix (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0 (i, 1) -0.5*dt0dx/t0(i,1)))/
&dsqgrt (£0(i, 1)) -vdgvy0)

&~-dperp* (del2*dt0dx+ (dell+del2*t0 (i, 1)) *dn0dx/n0 (i, 1) +vdgvx0)

Equation for wyl(i,]j).

bandl (6, kpl)=rhoi*vx0(i, 1) *dvdx (1)

bandr (4, kpl)=-bandl (6, k)

bandl (1, kpl)=-rhoi*dvx0dx+dperp*dvy0dx

bandl (5, kpl) =-dperp* (eta*dvdxsqr (i) /dsqrt (£t0(i, 1))

&+ (vx0 (i, 1)

&-eta* (ddvdxdv (i) +dn0dx/n0(i,1)-0.5*dt0dx/t0(i, 1)) /dsqgrt(t0(i,1)))*
&dvdx (1))

bandr (5, kpl)=~-dperp* (eta*dvdxsqgr (i) /dsqrt (t0(i,1))

&~ (vx0(i,1)

&—eta* (ddvdxdv (1) +dn0dx/n0(i, 1) -0.5*dt0dx/t0 (i, 1)) /dsgrt (t0(i,1))) *
&dvdx (1))

diag(kpl)=beta2+beta* (1.+2.*dperp*eta*dvdxsqgr (i) /dsgrt (£0{(i, 1)))
bandl (3, kpl)=(rhoi* (dell+del2*t0(i, 1))
&+dperp*eta*dvy0dx/dsqgrt (£t0(i,1))) *dvdx (i) /n0 (i,1)

bandr {7, kpl)=-bandl (3, kpl)

bandr (2,kpl) = (rhoi* (dell+del2*t0 (i, 1)) +dperp*eta*dvy0dx/

&dsqgrt (£t0(i,1))) *dn0dx/n0 (i, 1) **2

bandl (2, kpl)=rhoi*del2*dvdx (i)
&—0.5*dperp*eta*dvy0dx*dvdx (i) /dsqgrt (£t0(1i,1)) **3

bandr (8, kpl)=-bandl (2,kpl)

bandr (3, kpl)=-rhoi*del2*dn0dx/n0 (i, 1)

&+0.5*dperp*eta* (d2vy0dx2+ (dn0dx/n0(i,1) ~1.5*%dt0dx/t0 (i, 1)) *dvy0dx)
&/dsqgrt (£t0(1i,1)) **3

rhs (kpl)=-vy0 (i, 1)

&+dperp* (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0(i,1) ~0.5*dt0dx/t0(i,1)))/
&dsqgrt (t0(i,1)) ~-vdgvy0)
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&+rhoi* (del2*dt0dx+ (dell+del2+*t0(i, 1)) *dn0dx/n0 (i, 1) +vdgvx0)

Equation for nl(i, Jj).

bandl (8, kp3)=-n0(i, 1) *dvdx (1)
bandr (2, kp3) =-bandl (8, kp3)
bandl (3, kp3) =dn0dx

bandl (5, kp3)=-vx0(1,1) *dvdx (1)
bandr (5, kp3)=-bandl (5, kp3)
diag (kp3)=betaZ+beta*divv0

rhs (kp3)=s-n0(i, 1) *divv0-vdgn0

Equation for tl(i,3]).

bandl(9,kp4)=-t0(i,1) *dvdx (i)

bandr (1, kp4)=-bandl (9, kp4)

bandl (4,kp4)=1.5*dt0dx

bandl (8, kp4)=2.*optaul*eta*dvy0dx*dvdx (i) /dsqrt (t0(i, 1))
bandr (2, kp4)=-bandl (8, kp4)

bandl (6, kp4) =kperp*dt 0dx*dvdx (1) / (n0 (i, 1) *dsqgrt (t0(i,1)))
bandr (4, kpd)y=—bandl (6, kp4)

bandl (1, kp4)=(s+kperp*dn0dx*dt0dx/dsqrt (£0(i,1))) /n0 (i, 1) **2
bandl (5, kp4)=~kperp*dvdxsqgr (i) /dsqrt (t0 (i, 1))
&+ (kperp* (ddvdxdv (i) +dn0dx/n0 (i, 1) -dt0dx/t0 (i, 1)) /dsqrt (t0(i, 1))
&=1.5*%vx0(i,1)) *dvdx (i)

bandr (5, kp4)=-kperp*dvdxsqgr (i) /dsqrt (t0(i, 1))
&— (kperp* (ddvdxdv (i) +dn0dx/n0 (i, 1) ~dt0dx/t0(i, 1)) /dsgrt (t0(i, 1))
&~-1.5*%vx0(i,1)) *dvdx (i)

diag(kp4)=betaZ+beta* (divv0
&+2 .* (kperp*dvdxsqgr (i) /dsgrt (£t0(i,1))
&+kpar*dsqgrt (£0(i,1)) **5*dudzsgr (1))
&+0.5%optaul*eta*dvy0dx**2/dsqrt (£t0 (i, 1)) **3

&-2 .5*%optaul*etapar*dsqrt (£0 (i, 1)) **3*dvz0dz**2
&=0.5%kperp*dt0dx**2/ (dsgrt (t0(i, 1)) *t0(i,1) **2)

&+0.5% (kperp/dsgrt (£t0(i, 1)) **3) * (A2£0dx2-0.5*AL0dx**2/£0 (i, 1)
&§+dt0dx*dn0dx/n0 (i, 1))
&-2 .5*%kpar*dsqrt (0 (i, 1)) **3*d2t0dz2)

rhs (kp4)=s/n0(i,1)-t0(i,1) *divv0~-1.5*vdgt0
&+optaul* (eta*dvy0dx**2/dsgrt (t0(i, 1))
&+etapar*dsgrt (t0(i,1)) **5*dvz0dz**2)

&+kperp* (d2t0dx2~0.5*dt0dx**2/t0 (i, 1) +dt 0dx*dn0dx/n0(i,1))/
&dsqgrt (t0 (i, 1)) +kpar*dsqgrt (£t0(i,1)) **5*d2t0dz2

bandr (ndis-1,kp3)=n0(i,1)/z(2)

bandr (ndis-2,kp4)=(t0(i, 1)
&-2.*optaul*etapar*dsqrt (t0(i,1)) **5*dvz0dz) /z (2)
bandr (ndis, kpé)=-2.*kpar*dsgrt (£0 (i, 1)) **5*dudzsgr (1)
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Find maximum residue of the first row.
resmax=0.

do 12 i=1,ndis

12 resmax=dmaxl (resmax,dabs (rhs (i)))

Set up the Jacobian matrix for all other columns of the
two-dimensional grid except for the last column.
do 30 j=2, jmax-1

Jml=5-1

jpl=j+1

do 35 i=1, imax

ipl=i+1

iml=i-1

Compute derivatives in the x-direction.

if (i.eq.1l) then

dvx0dx=vx0(2, j) /x(2)

dvy0dx=vy0(2, 3) /x(2)

dvz0dx=0.

dn0dx=0.

dt0dx=0.
d2szdX2=2.*dvdxsqr(1)*(sz(Z,j)—sz(l,j))
d2t0dx2=2. *dvdxsqgr (1) * (£t0(2, J) -t0(1,3))

else if (i.eq.imax) then

dvx0dx=-vx0 (iml, j) /x(2)

dvy0dx=-vy0 (iml, J) /x (2)

dvz0dx=0.

dn0dx=0.

dt0dx=0.
d2szdX2=2.*dvdxsqr(i)*(sz(iml,j)—sz(i,j))
d2t0dx2=2.*dvdxsqr (i) * (£0 (iml, §) ~t0 (i, §))

else

dvadx=dvdx(i)*(va(ipl,j)—va(iml,j))
dvyOdx=dvdx (i) * (vy0 (ipl, j) -vy0 (iml, j))
dszdx=dvdx(i)*(sz(ipl,j)—sz(iml,j))
andx=dvdx(i)*(n0(ipl,j)—nO(iml,j))

dtO0dx=dvdx (i) * (0 (ipl, 3) -t 0 (iml, 3))
d2vy0dx2=dvdxsqr(i)*(vyO(ipl,j)—2.*vy0(i,j)+vy0(im1,j))
&+ddvdxdv (1) *dvy0dx
d2szdx2=dvdxsqr(i)*(sz(ipl,j)—2.*sz(i,j)+sz(im1,j))
&+ddvdxdv (i) *dvz0dx
d2t0dx2=dvdxsqr(i)*(t0(ipl,j)—2.*t0(i,j)+t0(im1,j))
&+ddvdxdv (1) *dt0dx

endif

Compute derivatives in the z-direction.

dvx0dz=dudz (j) * (vx0 (i, jpl) ~vx0 (i, jml))
dvy0Odz=dudz (j) * (vy0 (i, jpl) -vy0 (i, jml))
dvz0dz=dudz (j) * (vz0 (i, jpl) -vz0 (i, jml))
dn0dz=dudz (j) * (n0 (i, jpl) -n0 (i, jml))
dt0dz=dudz (3) * (£0 (i, jpl) ~t0 (i, jml))
d2szd22=dudzsqr(j)*(sz(i,jpl)—2.*sz(i,j)+sz(i,jm1))
&+ddudzdu (j) *dvz0dz
d2t0d22=dudzsqr(j)*(t0(i,jpl)—2.*t0(i,j)+t0(i,jm1))
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&+ddudzdu (j) *dt0dz

vdgvx0=vx0 (i, j) *dvx0dx+vz0 (i, j) *dvx0dz
vdgvy0=vx0 (1, j) *dvy0dx+vz0 (i, j) *dvy0dz
vdgvz0=vx0 (i, §) *dvz0d=x+vz0 (i, J) *dvz0dz
divv0=dvx0dx+dvz0dz

vdgn0=vx0 (i, j) *dn0dx+vz0 (i, j) *dnOdz
vdgt 0=vx0 (1, J) *dt0dx+vz0 (i, j) *dt0dz
k=ndis+5* (i-1)+1

kpl=k+1

kp2=k+2

kp3=k+3

kpé4=k+4

if (i.eq.l) then

Equation for vxl(i,j) has been taken care of since vx(x,z) is
equal to 0 when =x=x0.

Equation for wyl(i,]) has been taken care of since vy(x,z) is
equal to 0 when x=x0.

Equation for vzl(i,]j).

bandr (5,kp2)=-2.*eta*dvdxsqgr (1) /dsqrt (£t0(1, 3))
diag(kp2)=beta2

&+beta* (dvz0dz+2. * (eta*dvdxsqgr (1) /dsqrt (€0 (1, J))
&+tetapar*dudzsgr (J) *dsqrt (£0 (1, j)) **5))

bandr (1, kp2)=(etapar*dvz0dz*dsqrt (£0(1, j)) **5
&-dell-del2*t0 (1, 3)) *dn0dz/n0 (1, ) **2

bandr (2, kp2)=del2*dn0dz/n0 (1, j)
&+0.5*%eta*d2vz0dx2/dsqgrt (£0(1,3) ) **3
&-2.5*%etapar*dsqrt (t0 (1, J) ) **3*%(d2vz0dz2+ (dn0dz/n0 (1, )
&+1.5*dt0dz/t0(1, j)) *dvz0dz)

rhs {(kp2) =~ (dell+del2*t0(1, j)) *dn0dz/n0 (1, j) ~del2*dc0dz-vdgvz0
&+eta*d2vz0dx2/dsgrt (£t0(1, 5))
&tetapar*dsgrt (t0(1,J) ) **5* (d2vz0dz2

&+ (dn0dz/n0(1, ) +2.5*dt0dz/t0 (1, j) ) *dvz0dz)

Equation for nl (i, j).

bandr (2,kp3)=n0(1,73) /x(2)
bandl (1, kp3)=dn0dz

diag (kp3)=beta2+beta*divv(

rhs (kp3)=s-n0 (1, j) *divv0-vdgn0

Equation for tl(i,j).

bandr (1, kp4)=t0(1, ) /x(2)

bandr (2, kp4)=-2.*optaul*eta*dvy0dx/ (x(2) *dsgrt (£t0(1,3)))

bandl (2,kp4)=1.5*dt0dz

bandl (1, kp4)=(stkpar*dsqrt (£t0 (1, Jj) ) **5*dt0dz*dn0dz) /n0 (1, J) **2
bandr (5, kp4)=-2.*kperp*dvdxsqgr (1) /dsqrt (£0 {1, J))
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diag (kp4)=beta2+beta* (divv0
&+2.*(kperp*dvdxsqr(1)/dsqrt(tO(l,j))
&+kpar*dsqrt(t0(l,j))**5*dudzsqr(j))
&+0.5*optau0*eta*dvyde**Z/dsqrt(t0(1,j))**3
&—2.5*optau0*etapar*dsqrt(tO(l,j))**3*dszdz**2
&+2.5%kpar*dsqrt (0 (1, ) ) *dt 0dz**2
&+0.5*kperp*d2t0dx2/dsqrt(tO(1,j))**3
&-2.5*kpar*dsqrt(t0(l,j))**3*(d2t0d22+2.5*dt0dz**2/t0(l,j)
&+dt0dz*dn0dz*n0 (1, J)))
rhs(kp4)=s/n0(1,j)—t0(1,j)*divv0—1.5*vdgt0
&+optau0*(eta*dvyde**Z/dsqrt(tO(1,j))
&tetapar*dsqrt (£0(1, j)) **5*dvz0dz**2)
&+tkperp*d2t0dx2/dsqrt (£0 (1, §))
&+kpar*dsqrt(t0(1,j))**5*(d2t0d22+2.5*dt0dz**2/t0(1,j)
&+dt0dz*dn0dz/n0 (1, J))

Equation for vxl(i,j) has been taken care of since vx(x,z) is
equal to 0 when x=x0.

Equation for vyl(i,j) has been taken care of since vy (x,z) is
equal to 0 when x=x0.

Equation for vzl(i, j).

bandl(5,kp2)=—2.*eta*dvdxsqr(i)/dsqrt(tO(i,j))
diag(kp2)=beta2
&+beta*(dszdz+2.*(eta*dvdxsqr(i)/dsqrt(tO(i,j))
&t+etapar*dudzsqr (j) *dsqrt (t0 (i, §)) **5))
bandr(l,kp2)=(etapar*dszdz*dsqrt(t0(i,j))**5
&—(dell+de12*t0(i,j)))*andz/nO(i,j)**Z
bandr(2,kp2)=de12*dn0dz/n0(i,j)
&+O.5*eta*d2szdx2/dsqrt(tO(i,j))**3
&—2.5*etapar*dsqrt(t0(i,j))**3*(d2szd22+(andz/n0(i,j)
&+1.5*dt0dz/t0 (1, J) ) *dvz0dz)
rhs(kp2)=—(dell+de12*t0(i,j))*andz/nO(i,j)—delZ*dtOdz—vdgsz
&teta*d2vz0dx2/dsqrt (£0(i, j})
&t+tetapar*dsqgrt (t0 (i, J)) **5*% (d2vz0dz2
&+(dn0dz/n0 (1, j)+2.5*dt0dz/t0 (i, §) ) *dvz0dz)

Equation for nl (i, J).

bandl (8, kp3)=-n0 (i, ) /= (2)
bandl (1, kp3)=dn0dz

diag (kp3)=beta2+beta*divv0

rhs (kp3) =s~n0 (i, ) *divv0-vdgn0

Equation for tl1(i,Jj).

bandl (9, kp4)=~-t0 (i, j) /x(2)
bandl(8,kp4)=2.*optauO*eta*dvyde/(x(2)*dsqrt(tO(i,j)))
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bandl (2,kp4)=1.5*dt0dz

bandl (1, kpd)=(s+kpar*dsqrt (t0 (i, J)) **5*dt0dz*dn0dz) /n0 (i, j) **2
bandl (5, kp4)=-2.*kperp*dvdxsqr (i) /dsgrt (t0(i,3)))
diag(kp4)=betaZ+beta* (divv0

&+2.* (kperp*dvdxsqgr (i) /dsqgrt (£0 (i, j))
&+kpar*dsqrt (£t0 (i, J)) **5*dudzsqgr (Jj))
&+0.5*optaul*eta*dvy0dx**2/dsqrt (t0 (i, j)) **3
&-2.5*%optaul*etapar*dsqrt (t0 (i, j)) **3*dvz0dz**2

&+2 .5*kpar*dsqgrt (£t0 (i, j) ) *dt0dz**2
&+0.5*kperp*d2t0dx2/dsgrt (£0(i, J)) **3
&-2.5*kpar*dsqrt (t0 (i, 3)) **3* (d2t0dz2+2 .5*dt0dz**2/t0 (i, J)
&+dt0dz*dn0dz/n0 (i, j)))

rhs (kp4)=s/n0 (i, §)-t0(i, ) *divv0-1.5*vdgt0
&+optaul* (eta*dvyldx**2/dsqgrt (£0 (1, 3))
&tetapar*dsqrt (t0 (i, j)) **5*dvz0dz**2)
&+kperp*d2t0dx2/dsqrt (t0 (i, j))

s+kpar*dsqgrt (£t0 (i, 3)) **5* (A2£0dz2+2.5*dt0dz**2/t0 (i, J)
&+dt0dz*dn0dz/n0 (i, 3))

Equation for vxl(i,]).

bandl (5, k)=-dperp*vx0 (i, j) *dvdx (1}~

bandr (5, k)=-bandl (5, k)

diag(k)=beta2+beta* (1.+dperp*dvx0dx+rhoi*dvy0dx)

bandl (4,k)=-rhoi* (eta*dvdxsqr (i) /dsgrt (t0 (i, 3))

&+ (vx0(i,3) -

&eta* (ddvdxdv (i) +dn0dx/n0 (i, §) -0.5*dt 0dx/t0 (i, §)) /dsqrt (£0 (i, §))) *

&dvdx (1))

bandr (6, k)=-rhoi* (eta*dvdxsqgr (i) /dsgrt (£t0 (i, 3))

&=~ (vx0(i,j)~-

&eta* (ddvdxdv (i) +dn0dx/n0 (i, 3) ~0.5*At0dx/t0 (i, ) ) /dsgrt (£0 (i, §)))*
&dvdx (1))

bandr(l,k)=2.*rhoi*eta*dvdxsqgr (i) /dsqgrt (£0(i, j))
bandr (2, k) =dperp*dvx0dz+rhoi*dvy0dz

bandl (2,k)=(rhoi*eta*dvy0dx/dsqrt (t0(i, j))

&~dperp* (dell+del2*t0 (i, 3))) *dvdx (1) /n0 (i, J)

bandr (8, k)=~bandl (2, k)

bandr (3,k)=(rhoi*eta*dvy0dx/dsqrt (t0 (i, J))

&-dperp* (dell+del2*t0 (i, J))) *dn0dx/n0 (i, j) **2

bandl (1,k)=-dperp*del2*dvdx (i)
&-0.5*rhoi*eta*dvy0dx*dvdx (1) /dsqrt (£t0(i,])) **3
bandr (9, k)=-bandl (1, k)

bandr (4, k) =dperp*del2*dn0dx/n0 (i, j)

&+0.5*rhoi* (eta/dsqrt (£0(i,j) ) **3) *

& (d2vy0dx2+ (dn0dx/n0 (i, j) ~-1.5*dt0dx/t0 (i, ) ) *dvy0dx)
rhs (k) =-vx0 (1, )

&+rhoi* (eta* (d2vy0dx2+dvy0dx* (dAn0dx/n0 (i, J) -0.5*At0dx/t0 (i, 3)) )/
&dsqrt (£0 (i, j) ) ~vdgvy0)
&—dperp* (del2*dt0dx+ (dell+del2*t0 (1, j)) *dn0dx/n0 (i, J) +vdgvx0)
bandl (ndis, k)=-dperp*vz0 (i, j) *dudz (3)

bandr (ndis, k)=-bandl (ndis, k)

bandl (ndis-1,k)=~rhoi*vz0 (i, j) *dudz (J)

bandr (ndis+1, k)=-bandl (ndis-1, k)

Equation for vyl (i, J).
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bandl (6, kpl) =rhoi*vx0 (i, j) *dvdx (1)

bandr (4, kpl)=-bandl (6, kpl)

bandl (1, kpl)=-rhoi*dvz0dx+dperp*dvy0dx

bandl (5, kpl)=-dperp* (eta*dvdxsqr (i) /dsqrt (£t0 (i, j))

&+ (vx0 (i, 3)

&~eta* (ddvdxdv (i) +dn0dx/n0 (i, ) -0.5*dt0dx/t0 (i, 3)) /dsqgrt (t0 (i, J)))*
&dvdx (1))

bandr (5, kpl)=-dperp* (eta*dvdxsqr (i) /dsqgrt (t0 (i, j))

&= (vx0(i, 3)

&-eta* (ddvdxzdv (1) +dn0dx/n0 (i, ) -0.5*dt0dx/t0 (i, J)) /dsgrt (t0(i,3))) *
&dvdx (1))

diag({kpl)=betal+beta* (1.+2.*dperp*eta*dvdxsqgr (1) /dsqgrt (t0(i,3j)))
bandr(l,kpl)=-rhoi*dvx0dz+dperp*dvy0dz

bandl(3,kpl)={rhoi* (dell+del2*t0 (i, J))
&+dperp*eta*dvy0dx/dsqrt (£t0(i, j)) ) *dvdx (1) /n0 (i, 3)

bandr (7, kpl)=-bandl (3, kpl)

bandr (2,kpl)=(rhoi* {dell+del2*t0 (i, J)) +dperp*eta*dvy0dx/
&dsqgrt (£0 (i, §))) *dn0dx/n0 (i, J) **2

bandl (2, kpl)=rhoi*del2*dvdx (i)
&=0.5*%dperp*eta*dvy0dx*dvdx (i) /dsqrt (£t0(i,J) ) **3

bandr (8,kpl)=-bandl (2, kpl)

bandr (3,kpl)=~rhoi*del2*dn0dx/n0 (i, j)
&+0.5*dperp*eta* (d2vy0dx2+ (dn0dx/n0 (i, ) -1.5*dt0dx/t0 (i, J) ) *dvy0dx)
&/dsqgrt (£0(1,3)) **3

rhs (kpl)=-vy0 (41, J)

&+dperp* (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0 (i, J) -0.5*%dt0dx/t0(1i,3)))/
&dsqrt (t0(i, 3)) -vdgvy0)

&+rhoi* (del2*dt0dx+(dell+del2*t0 (1, ))) *dn0dx/n0 (i, ) +vdgvx0)
bandl (ndis+1,kpl)=rhoi*vz0 (i, 3) *dudz (J)

bandr (ndis~1,kpl)=-bandl (ndis+1,kpl)

bandl (ndis, kpl)=-dperp*vz0 (1, J) *dudz (J)

bandr (ndis, kpl)=-bandl (ndis, kpl)

Equation for wvzl(i,J).

bandl (2, kp2)=dvz0dx

bandl (5,kp2)=-eta*dvdxsqgr (i) /dsqgrt (£0 (i, I))

&= (vx0 (i, j)~eta* (ddvdxdv (i) +dn0dx/n0 (i, j)-0.5*dt0dx/t0(i,3))/
&dsqrt (t0 (i, 5)) ) *dvdx (i)

bandr (5, kp2) =-eta*dvdxsqr (i) /dsqgrt (t0 (i, j))

&+ (vx0 (i, j) —eta* (ddvdxdv (i) +dn0dx/n0 (i, 3)-0.5*dt0dx/t0(i,3) )/
&dsqrt (£0(i,3))) *dvdx (i)

diag (kp2)=betaZ2

&+beta* (dvz0dz+2.* (eta*dvdxsqgr (1) /dsgrt (£t0 (i, J))
&+etapar*dudzsqgr () *dsqrt (£0 (1, 3)) **5))

bandl (4, kp2)=eta*dvz0dx*dvdx (i) / (n0 (i, j) *dsgrt (£t0 (i, J)))
bandr (6, kp2) =-bandl (4, kp2)

bandr (1, kp2)=(eta*dvz0dx*dn0dx/dsgrt (£t0(i, 3))

&+ (etapar*dvzO0dz*dsgrt (£0 (i, j) ) **5

&-dell-del2*t0 (i, j)) *dn0dz) /n0 (i, §) **2

bandl (3,kp2)=-0.5*eta*dvz0dx*dvdx (i) /dsqgrt (£t0 (i, ) ) **3

bandr (7, kp2)=-bandl (3, kp2)

bandr (2, kp2) =de12*dn0dz/n0 (i, j)

&+0.5*% (eta/dsgrt (0 (i, J)) **3) * (d2vz0dx2+ (dn0dx/n0 (i, j)
&-1.5*%3t0dx/t0 (i, 3)) *dvz0dx)
&-2.5%etapar*dsqrt (t0(1i,§)) **3* (d2vz0dz2+ (dn0dz/n0 (i, 3)
&+1.5%dt0dz/t0(4i, j)) *dvz0dz)

rhs (kp2) == {dell+del2*t0 (i, j)) *dn0dz/n0 (i, j) ~del2*dt0dz~-vdgvz0
&teta* (d2vz0dx2+dvzldx* (dn0dx/n0 (i, 3)-0.5*3At0dx/£0(i,3)) )/
&dsqgrt (£0(i, 3))
&+etapar*dsqrt (t0 (1, J)) **5%
& (d2vz0dz2+dvz0dz* (dn0dz/n0 (i, §)+2.5*at0dz/t0(i,3)))
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Equation for nl (i, 3j).

bandl (8, kp3)=-n0 (i, J) *dvdx (1)
bandr (2, kp3)=-bandl (8, kp3)
bandl (3, kp3) =dn0dx
bandl (1, kp3)=dn0dz

bandl (5, kp3)=-vx0 (1, ) *dvdx (1)
bandr (5, kp3)=-bandl (5, kp3)
diag (kp3)=beta2+beta*divv0

rhs (kp3)=s5-n0 (i, j) *divv0-vdgn0

Equation for tl (i, J).

bandl (9, kp4)=-t0 (i, j) *dvdx (i)

bandr (1, kp4)=-bandl (9, kp4)

bandl (4, kpd)=1.5*dt0dx

bandl (8, kp4)=2.*optaul*eta*dvy0dx*dvdx (1) /dsqrt (£t0 (i, j))
bandr (2, kp4)=-bandl (8, kp4)

bandl (7,kp4) =2.*optaul*eta*dvz0dx*dvdx (1) /dsqgrt (£t0 (i, j))
bandr (3, kp4)=~-bandl (7, kp4)

bandl (2,kp4)=1.5*%dt0dz

bandl (6, kp4) =kperp*dt0dx*dvdx (1) / (n0 (i, j) *dsqgrt (t0(i, 3)))
bandr (4, kp4)=-bandl (6, kp4)

bandl (1,kp4)=(s+kperp*dnldx*dt0dx/dsqgrt (£t0 (i, 3))
&+kpar*dsgrt (£0 (1, j)) **5*dAn0dz*dt0dz) /n0 (i, J) **2

bandl (5, kp4d) =-kperp*dvdxsqr (1) /dsgrt (£t0 (i, j))
&+ (kperp* (ddvdxdv (i) +dn0dx/n0 (i, ) -dt0dx/t0 (i, 3) ) /dsqrt (£0 (i, 3))
&=1.5%vx0 (i, J)) *dvdxz (1)

bandr (5, kp4)=-kperp*dvdxsqr (i) /dsqrt (t0 (i, J))
&- (kperp* (ddvdxdv (i) +dn0dx/n0 (i, ) ~dc0dx/t0 (i, §) ) /dsqgrt (t0 (i, 3))
&-1.5*%vx0 (i, 3)) *dvdx (i)

diag(kp4)=betal+beta* (divv0

&+2 . * (kperp*dvdxsqgr (i) /dsqgrt (£0 (i, J))
&+kpar*dsqgrt (£0(i, J)) **5*dudzsgr (3))
&+0.5*optaul*eta* (dvy0dx**2+dvz0dx**2) /dsqrt (£t0 (i, 3)) **3
&-2.5*optaul*etapar*dsqgrt (£t0 (1, j)) **3*dvz0dz**2
&-0.5*kperp*dt 0dx**2/ (dsqrt (t0 (1, 3) ) *£0 (1, J) **2)
&+2 .5*kpar*dsqgrt (£0 (i, 3)) *dt0dz**2

&+0.5*kperp* (d2t0dx2-0.5*dt0dx**2/t0 (i, j) +dt 0dx*dn0dx/n0 (i, §)) /
&dsqgrt (t0 (i, 3)) **3
&-2.5*%kpar*dsgrt (L0 (i, ) ) **3* (d2t0d=z2+2.5*%dc0dz**2/£0 (1, J)
&+dt0dz*dn0dz/n0 (i, 9)))

rhs (kp4)=s/n0(i,j) -t0 (i, j) *divv0-1.5*vdgt0

&+optaul* (eta* (dvz0dx**2+dvy0dx**2) /dsqgrt (£0 (1, j))
&+etapar*dsqgrt (L0 (i, 3) ) **5*dvz0dz**2)

&+kperp* (d2t0dx2-0.5*dt0dx**2/t0 (1, j) +dt 0dx*dn0dx/n0 (i, 3) )}/
&dsqgrt (t0(i, 3))

&+kpar*dsgrt (t0 (i, J) ) **5* (d2t0dz2+2.5*%dt 0dz**2/t0 (1, J)
&+dt0dz*dn0dz/n0 (i, 3))

bandl (ndis, kp2)=—-etapar*dudzsqgr (j) *t0 (i, j) **2.5
&={vz0 (i, j)—etapar*t0 (i, ) **2.5%
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& (ddudzdu (J) +dn0dz/n0 (i, ) +2.5*dt0dz/t0 (i, j) ) ) *dudz (3J)

bandr (ndis, kp2) =-etapar*dudzsgr (j) *t0 (i, j) **2.5

&+ (vz0(i,j)~etapar*t0 (i, j)**2.5%

& (ddudzdu (J) +dn0dz/n0 (i, j) +2.5*dt0dz/t0 (i, 3) ) ) *dudz (3)

bandl (ndis-1,kp2)=(etapar*dvz0dz*t0 (i, j) **2.5

&-dell-del2*t0 (i, 3)) *dudz (3) /n0 (i, 3)

bandr (ndis+1, kp2) =-bandl (ndis-~1, kp2)

bandl (ndis-2,kp2)=(2.5%etapar*t0(i, j) **1.5*dvz0dz-del2) *dudz (J)
bandr (ndis+2, kp2) =-bandl (ndis-2, kp2)

bandl (ndis+1,kp3)=-n0 (i, j) *dudz ()

bandr (ndis-1, kp3)=-bandl (ndis+1, kp3)

bandl (ndis, kp3)=-vz0 (i, J) *dudz (J)

bandr (ndis, kp3)=-bandl (ndis, kp3)

bandl (ndis+2,kp4)=(2.*optaul*etapar*dsqgrt (t0{i, j)) **5*dvz0dz
&-t0 (i, 3)) *dudz (J)

bandr (ndis-2, kp4)=~bandl (ndis+2, kp4)

bandl (ndis+1,kp4)=kpar*dsqrt (£0 (i, j) ) **5%dt0dz*dudz (J) /n0 (i, j)
bandr (ndis-1,kp4)=-bandl (ndis+1, kp4)

bandl (ndis, kp4)=-kpar*dsqrt (t0 (i, j)) **5*dudzsqgr (])

&+ (kpar*dsqrt (£0 (i, J) ) **5% (ddudzdu(J)
&+dn0dz/n0 (i, §)+5.*dt0dz/£0(1i, 3))

&=1.5*vz0 (i, 3)) *dudz (3)

bandr (ndis, kp4)=-kpar*dsqrt (t0 (i, j)) **5*dudzsqgr (J)

&= (kpar*dsqgrt (£t0 (i, J) ) **5* (ddudzdu (3)
&+dn0dz/n0 (i, 3)+5.*dt0dz/t0 (41, 3))

&=1.5*vz0 (1, J)) *dudz (J)

Find maximum residue.

do 36 i=ndis+1l,nmax
36 resmax=dmaxl (resmax, dabs (rhs(i)))

Start Gaussian elimination. Gaussian elimination is done one
row at a time.

call gauss

Move that part of the Jacobian matrix that has been eliminated
into the virtual storage device.

if (j.le.jliml) then
do 40 i=1,ndis
write (2, rec=(j-2) *ndis+i) crunchdiag(i), (crunchr(ki, i), ki=1l,nb)
&, crunchrhs (i)
40 continue
else if (j.le.jlim2) then
do 45 i=1,ndis
write (3, rec=(j-jliml-1) *ndis+i) crunchdiag (i)
&, (crunchr(ki, i), ki=1,nb),crunchrhs (i)
45 continue
else
do 47 i=1,ndis
write (4, rec=(j-jlim2-1) *ndis+i) crunchdiag(i)
&, (crunchr(ki, i), ki=1,nb),crunchrhs(i)
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47 continue
endif

Reinitialize band matrix. This band matrix is Jjust a buffer
device.

do 50 i=ndis,1,-1
ipndis=i+ndis
diag{i)=diag(ipndis)
diag{ipndis)=1.
rhs (i) =rhs (ipndis)
rhs (ipndis)=0.
do 55 ki=1l,i-1

55 bandl (ki, i)=bandl (ki, ipndis)
do 50 ki=nb,1,-1
bandr (ki, i) =bandr (ki, ipndis)
bandr (ki, ipndis)=0.

50 bandl (ki,ipndis)=0.

30 continue

Set up Jacobian matrix of the last column of the two-dimensional
grid.

do 61 i=1,imax
ipi=i+1
iml=i-1

Compute derivatives in the z-direction.

if (x(i).1lt.l.) then
dvx0dz=(vx0 (i, jmax) -vx0 (i, jmax-1)) /dzm
dvy0dz=(vy0 (i, jmax) -vy0 (i, jmax-1)) /dzm
dvz0dz=(vz0 (i, jmax) -vz0 (i, jmax-1)) /dzm
dn0dz=(n0 (i, jmax) -n0 (i, jmax-1)) /dzm
dt0dz=(t0 (i, jmax) -t 0 (i, jmax~1))/dzm
else

dvx0dz=0.

dvy0dz=0.

dvz0dz=~vz0 (i, jmax-1) /dzm

dn0dz=0.

dt0dz=0.

d2t0dz2=2, *dudzsqgr (jmax) * (£t0 (1, jmax-1) ~t0 (i, jmax) )
endif

Compute derivatives in the x-direction.

if (i.eqg.l) then

dvx0dx=vx0 (2, jmax) /x(2)
dvy0dx=vy0 (2, jmax) /x(2)

dvz0dx=0.

dn0dx=0.

dt0dx=0.
d2t0dx2=2.*dvdxsqgr (1) *(t0 (2, jmax)-t0 (1, jmax))
else if (i.eq.imax) then

dvx0dx=-vx0 (imax~-1, jmax) /x (2)

dvy0dx=-vy0 (imax-1, jmax) /x (2)
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dvz0dx=0.

dn0dx=0.

dt0dx=0.
d2t0dx2=2.*dvdxsqr (imax) * (£0 (imax~-1, jmax) -t 0 (imax, jmax) )
else

dvx0dx=dvdx (i) * (vx0 (ipl, jmax) -vx0 (iml, jmax) )

dvy0dx=dvdx (i) * (vy0 (ipl, jmax) -vy0 (iml, jmax))

dnldx=dvdx (i) * (n0 (ipl, jmax) -n0 (iml, jmax))

dt 0dx=dvdx (1) * (£t0 (ipl, jmax) -t 0 (iml, jmax) )
dvz0dx=0.5*del2*dt0dx/dsgrt (dell+del2*t0 (i, jmax))
d2vy0dx2=dvdxsqr (i) * (vy0 (ipl, jmax) -2.*vy0 (1, jmax) +vy0 (iml, jmax) )
&+ddvdxdv (1) *dvy0dx

d2t 0dx2=dvdxsqgr (1) * (£t0 (ipl, jmax) -2.*t0 (i, jmax) +t0 (iml, jmax))
&+ddvdxdv (1) *dt 0dx

endif

divv0=dvx0dx+dvz0dz

vdgvx0=vx0 (i, jmax) *dvx0dx+vz0 (i, jmax) *dvx0dz
vdgvy0=vx0 (i, jmax) *dvy0dx+vz0 (i, jmax) *dvyOdz
vdgn0=vx0 (i, jmax) *dn0dx+vz0 (i, jmax) *dn0dz
vdgt 0=vx0 (i, jmax) *dt 0dx+vz0 (i, jmax) *dt 0dz
k=ndis+5* (i-1)+1

kpl=k+1

kp2=k+2

kp3=k+3

kp4=k+4

Equation for vxl(i,j) has been taken care of since vx(x,z) is
equal to 0 when x=0.

Equation for vyl (i, j) has been taken care of since vz (x,z) is
equal to 0 when x=0.

Equation for vzl (i,3).

diag(kp2)=beta2+beta
bandr (2, kp2)=-0.5*del2/dsgrt (dell+del2*t0 (1, jmax))
rhs (kp2) =-vz0 (1, jmax) +dsqgrt (dell+del2*t0 (1, jmax))

Equation for nl (i, 3]).

bandr (2,kp3)=n0 (1, jmax) /x(2)

bandl (1, kp3)=n0(1, jmax) /dzm+dnldz
diag(kp3)=beta2+beta* (divv0+vz0 (1, jmax) /dzm)
rhs (kp3)=s-n0 (1, jmax) *divv0~vdgn0

bandl {(ndis+1l,kp3)=-n0 (1, jmax) /dzm

bandl {(ndis, kp3)=-vz0 (1, jmax) /dzm
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Equation for tl(i,]J).

bandr (1, kp4)=t0 (1, jmax) /x(2)

bandr (2,kp4)=-2.*optaul*eta*dvy0dx/ (x(2) *dsgrt (£0 (1, jmax)))

bandl (2, kp4)=(t0 (1, jmax)
&-2.*optaul*etapar*dsqgrt (t0 (1, Jmax)) **5*dvz0dz) /dzm+1l.5*dt0dz
bandl (1, kp4)=(s+kperp*dt0dx*dn0dx/dsgrt (t0 (1, jmax))) /nl (1, jmax) **2
&~kpar*dsqgrt (t0 (1, jmax) ) **5* (1, /dzm-dn0dz/n0 (1, jmax))
&*dt0dz/n0 (1, jmax)

bandr (5, kp4)=-2.*kperp*dvdxsqgr (1) /dsgrt (t0 (1, Jmax))

diag (kp4)=beta2
&tbeta* (divv0+1.5*vz0 (1, jmax) /dzm
&+2.*kperp*dvdxsqr (1) /dsqgrt (£t0 (1, jmax))
&-kpar*dsqgrt (£0(1, jmax)) **5* (dn0dz/n0 (1, jmax) +5.*dt0dz/t0 (1, Jmax))
&/dzm

&+0.5%optaul*eta*dvy0dx**2/dsqrt (£t0 (1, jmax) ) **3
&-2.5*optaul*etapar*dsqrt (t0 (1, jmax) ) **3*dvz0dz**2

&+2 .5*kpar*dsqrt (£t0 (1, jmax) ) *dt0dz**2
&+0.5*kperp*d2t0dx2/dsqrt (£0 (1, jmax) ) **3

&-2.5%kpar*dsqrt (t0 (1, jmax) ) **3% (2.5%dt0dz**2/t0 (1, jmax)
&+dt0dz*dnl0dz/nl (1, Jmax)) )

rhs (kp4)=s/n0 (1, jmax) -t 0 (1, jmax) *divv0~-1.5*vdgt0
&+kperp*d2t0dx2/dsqgrt (t0 (1, jmax))

&+kpar*dsqgrt (t0 (1, Jmax) ) **5*% (2.5*dt0dz**2/t0 (1, jmax)
&+dt0dz*dn0dz/n0 (1, jmax))

&+optaul* (eta*dvy0dx**2/dsqgrt (£0 (1, jmax))
&+etapar*dsqgrt (t0 (1, jmax) ) **5*dvz0dz**2)

bandl (ndis+2,kp4)=(2.*optaul*etapar*dsqrt (t0 (1, jmax)) **5*dvz0dz
&-t0 (1, jmax)) /dzm

bandl (ndis+1, kp4)=kpar*dsqgrt (t0 (1, jmax) ) **5*dt0dz/ (n0 (1, jmax) *dzm)
bandl {ndis, kp4)=(kpar* (dn0dz/n0 (1, jmax) +5.*dt0dz/t0 (1, jmax))
&*dsqrt (£0{1, jmax) ) **5-1.5%vz0 (1, jmax)) /dzm

Equation for vxl(i,j) has been taken care of since vx(x,z) is
equal to 0 when x=x0.

Equation for vyl(i,j) has been taken care of since vy(x,z) is
equal to 0 when x=x0.

Equation for wvzl(i,]j) has been taken care of since vz(x,z) is
equal to 0 when x/4d > 1.

Equation for nl(i,j).
bandl (8, kp3)=-n0 (i, jmax) /x(2)
diag(kp3)=betaZ+beta*divv0

rhs (kp3)=s-n0 (i, jmax) *divv0
bandl (ndis+1,kp3)=-n0 (i, jmax) /dzm

Equation for til(i,Jj).
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bandl (9, kp4)=-t0 (i, jmax) /x(2)

bandl (8, kp4d)=2.*optaul*eta*xdvy0dx/ (x(2) *dsqrt (£0 (i, jmax)))

bandl (1, kp4) = (s+kperp*dt 0dx*dn0dx/dsqrt (£t0 (i, Jmax))) /n0 (i, jmax) **2
bandl (5, kp4)=-2.*kperp*dvdxsqgr (i) /dsqrt (£t0 (i, jmax))
diag(kp4)=beta2

&tbeta* (divv0
&+2.* (kperp*dvdxsqr (i) /dsqgrt (t0 (i, jmax) )
&tkpar*dsqgrt (t0 (1, jmax)) **5*dudzsqgr (jmax) )
&+0.5*%optaul*eta*dvy0dx**2/dsqgrt (t0 (i, jmax) ) **3
&-2.5*%optaul*etapar*dsqgrt (£t0 (i, jmax)) **3*dvz0dz**2
&+0.5*%kperp*d2t0dx2/dsqrt (t0 (i, jmax) ) **3
&-2.5*%kpar*dsqrt (t0 (i, Jmax) ) **3*d2t0dz2)

rhs (kpd)=s5/n0 (i, jmax) -t 0 (i, jmax) *divv0
&+kperp*d2t0dx2/dsqgrt (£t0 (i, jmax) ) +kpar*dsqgrt (0 (i, jmax)) **5*d2t0dz2
&+optaul* (eta*dvy0dx**2/dsqgrt (t0 (i, jmax))
&+etapar*dsqgrt (t0 (i, jmax) ) **5*dvz0dz**2)

bandl (ndis+2, kpd)=(2.*optaul*etapar*dsqgrt (t0 (i, jmax)) **5*dvz0dz
&-t0 (i, jmax) ) /dzm

bandl(ndis, kp4)=~2.*kpar*dsqgrt (t0 (1, jmax) ) **5*dudzsqr ( jmax)

Egquation for wvxl(i,]j).

bandl (5, k) =—-dperp*vx0 (i, jmax) *dvdx (1)

bandr (5, k)=-bandl (5, k)
diag(k)=beta2+beta* (1.+dperp* (vz0 (i, jmax)/dzmnt+dvx0dx) +rhoi*dvy0dx)
bandl (4,k)=-rhoi* (eta*dvdxsqgr (i) /dsqrt (t0 (i, jmax))

&+ (vx0 (i, jmax) -

geta* (ddvdxdv (i) +dn0dx/n0 (i, jmax)
&~0.5*%dt0dx/t0 (i, jmax) ) /dsart (£0 (i, Jmax)) ) *dvdx (i})

bandr (6, k)=~rhoi* (eta*dvdxsqgr (i) /dsqrt (t0 (i, jmax))
&-(vx0 (1, jmax) -

&eta* (ddvdxdv (i) +dn0dx/n0 (i, jmax)
&-0.5%dt0dx/t0 (i, jmax) ) /dsgrt (t0 (i, jmax)) ) *dvdx (i) )

bandr (1,k)=rhoi*(2.*eta*dvdxsqgr (i) /dsqrt (£0 (i, jmax))
&+vz0 (1, jmax) /dzm)

bandr (2, k) =dperp*dvx0dz+rhoi*dvy0dz

bandl (2, k) =(rhoi*eta*dvy0dx/dsqgrt (t0 (i, jmax))

&-dperp* (dell+del2*t0 (i, jmax))) *dvdx (i) /n0 (i, jmax)

bandr (8,k)=~bandl(2,k)

bandr (3, k) =(rhoi*eta*dvyOdx/dsqrt (t0 (i, jmax))

&—dperp* (dell+del2*t0 (i, jmax))) *dn0dx/n0 (i, jmax) **2

bandl (1, k) =-dperp*del2*dvdx (i)
&-0.5*rhoi*eta*dvy0dx*dvdx (i) /dsqgrt (t0 (i, jmax)) **3

bandr (9, k)=-bandl (1,k)

bandr (4, k) =dperp*del2*dn0dx/n0 (i, jmax)

&+0.5*rhoi* (eta/dsqrt (£t0 (i, jmax) ) **3) *
& (A2vy0dx2+ (dn0dx/n0 (i, jmax) ~-1.5*dt0dx/t0 (i, jmax) ) *dvy0dx)
rhs (k)=-vx0 (i, jmax)

&+rhoi* (eta* (dA2vy0dx2+dvy0dx* (dn0dx/n0 (i, jmax) -0.5*dt0dx/t0 (i, jmax)
&)) /dsgrt (t0 (i, jmax) ) ~vdgvy0)
&—dperp* (del2*dt0dx+ (dell+del2*t0 (i, jmax) ) *dn0dx/n0 (i, jmax) +vdgvx0)
bandl (ndis, k) =-dperp*vz0 (i, jmax) /dzm

bandl (ndis~-1,k)=-rhoi*vz0 (i, jmax) /dzm
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Equation for vyl(i,J).

bandl (6, kpl)=rhoi*vx0 (i, jmax) *dvdx (1)

bandr (4, kpl) =—bandl (6, kpl)
bandl(l,kpl)=-rhoi*{(vz0 (i, jmax) /dzmt+dvx0dx) +dperp*dvy0dx
bandl (5, kpl) =-dperp* (eta*dvdxsqr (i) /dsgrt (t0 (i, jmax))

&+ (vx0 (i, jmax)

&—eta* (ddvdxdv (i) +dn0dx/n0 (i, jmax) -0.5*dt0dx/t0 (i, jmax) )/
&dsqgrt (t0 (i, jmax)) ) *dvdx (1))

bandr (5, kpl) =-dperp* (eta*dvdxsqgr (i) /dsqrt (£t0 (i, jmax))

&= (vx0 (i, jmax)

&-eta* (ddvdxdv (i) +dn0dx/n0 (i, jmax) -0.5*dt0dx/£0 (1, Jmax)) /
&dsqgrt (£0 (i, jmax))) *dvdx (1))

diag(kpl)=beta2+beta* (1.+dperp*(

&2 .*eta*dvdxsqr (i) /dsqgrt (£0 (i, jmax) ) +vz0 (i, jmax) /dzm) )
bandr(1,kpl)=-rhoi*dvx0dz+dperp*dvy0dz

bandl (3,kpl)=(rhoi* (dell+del2*t0 (i, jmax))
&+dperp*eta*dvyldx/dsqrt (t0 (i, jmax) ) ) *dvdx (1) /n0 (i, jmax)
bandr (7, kpl)=-bandl (3, kpl)

bandr (2, kpl)={(rhoi* (dell+del2*t0 (i, jmax) ) +dperp*eta*dvy0dx/
&dsqgrt (t0 (i, jmax))) *dn0dx/n0 (i, jmax) **2

bandl (2, kpl)=rhoi*del2*dvdx (i)
&~-0.5*dperp*eta*dvy0dx*dvdx (i) /dsqgrt (t0 (i, jmax) ) **3

bandr (8, kpl) =-bandl (2, kpl)

bandr (3, kpl)=-rhoi*del2*dn0dx/n0 (i, jmax)
&+0.5*dperp*eta* (d2vy0dx2+ (dn0dx/n0 (1, jmax)
&-1.5*%dt0dx/t0 (1, jmax) ) *dvy0dx)

&/dsqrt (t0 (i, Jmax) ) **3

rhs (kpl) =-vy0 (i, jmax)

&t+dperp* (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0 (i, jmax)
&-0.5%dt0dx/t0 (i, Imax)) )/

&dsqrt (t0 (i, jmax) ) -vdgvy0)

&+rhoi* (del2*dt0dx+ (dell+del2*t0 (i, jmax) ) *dn0dx/n0 (i, jmax) +vdgvx0)
bandl (ndis+1l,kpl)=rhoi*vz( (i, jmax) /dzm

bandl (ndis, kpl)=-dperp*vz0 (i, jmax) /dzm

Equation for vzl(i,j). On this part of the boundary ( x/d < 1),
the Bohm’s sheath criterion is imposed.

diag(kp2)=betaZ+beta
bandr (2,kp2)=-0.5*del2/dsqrt (dell+del2*t0 (i, jmax))
rhs (kp2) =-vz0 (i, jmax) +dsqgrt (dell+del2*t0 (i, Jmax))

Equation for nl(i,J).

bandl (8, kp3)=-n0 (i, jmax) *dvdx (1)

bandr (2, kp3)=-bandl (8, kp3)
bandl (3, kp3)=dn0dx

bandl (1, kp3)=n0 (i, jmax) /dzm+dn0dz

bandl (5, kp3)=-vx0 (i, jmax) *dvdx (1)

bandr (5, kp3) =-bandl (5, kp3)

diag (kp3)=beta2+beta* (divv0+vz0 (i, jmax) /dzm)
rhs (kp3)=s8-n0 (i, jmax) *divv0-vdgn0

bandl (ndis+1, kp3)=-n0 (i, jmax) /dzm

bandl (ndis, kp3) =-vz0 (i, jmax) /dzm
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Equation for tl(i,3J).

bandl (9,kp4)=-t0 (i, jmax) *dvdx (1)

bandr (1, kp4)=-bandl (9, kp4)

bandl (4,kp4)=1.5*dt0dx

bandl (8, kp4)=2.*optaul*eta*dvyOdx*dvdx (i) /dsgrt (£0 (i, jmax))
bandr (2, kp4)=-bandl (8, kp4)

bandl (2,kp4)=(t0 (i, jmax)
&-2.*optaul*etapar*dsqgrt (£t0 (1, jmax)) **5*dvz0dz) /dzm+1.5*dt0dz
bandl (6, kp4) =kperp*dt 0dx*dvdx (1) / (n0 (i, jmax) *dsgrt (£t0 (i, Jmax)))
bandr (4, kp4)=-bandl (6, kp4)

bandl (1, kp4) = (s+kperp*dt0dx*dn0dx/dsqgrt (t0 (i, jmax))
&+kpar*dsqgrt (£0 (i, jmax) ) **5*dt0dz*dn0dz) /n0 (i, jmax) **2
&—kpar*dsqrt (£0 (i, jmax) ) **5*dt 0dz/ (n0 (i, jmax) *dzm)

bandl (5, kp4) =—kperp*dvdxsqgr (i) /dsqgrt (t0 (i, jmax))
&=(1.5*vx0 (i, jmax)
&—-optaul*del2*eta*dvz0dx/dsqgrt {t0 (i, jmax) * (dell+del2*£0 (i, jmax)))
&-kperp* (ddvdxdv (i) +dn0dx/n0 (i, jmax) ~dt0dx/t0 (i, jmax)) /

&dsqgrt (t0 (i, jmax))) *dvdx (1)

bandr (5, kp4) =—-kperp*dvdxsqgr (i) /dsqgrt (t0 (i, jmax))
&+ (1.5*%vx0 (i, jmax)
&-optaul*del2*eta*dvz0dx/dsqrt (t0 (i, jmax) * (dell+del2*t0 (i, jmax)))
&—kperp* (ddvdxdv (1) +dn0dx/n0 (i, jmax) -dt0dx/t0 (i, jmax)) /

&dsgrt (t0 (i, jmax))) *dvdx (1)

diag(kp4)=beta2
&+beta* (divv0- (kpar*dsgrt (£t0 (1, jmax) ) **5%*

& (dn0dz/n0 (i, jmax) +5.*dt0dz/t0 (i, jmax) ) -1.5*vz0 (1, jmax) ) /dzm
&+2 . *kperp*dvdxsqr (1) /dsqrt (£0 (i, jmax))
&+0.5%optaul*eta* (dvy0dx**2+dvz0dx**2) /dsqgrt (t0 (i, jmax) ) **3
&=2 .5*%optaul*etapar*dsqrt (t0 (i, jmax) ) **3*dvz0dz**2
&-0.5*%kperp*dt0dx**2/ (dsgrt (£0 (i, jmax) ) *t0 (i, Jmax) **2)
&+2 .5*%kpar*dsgrt (£0 (i, jmax) ) *dt0dz**2
&+0.5%kperp* (d2t0dx2-0.5*dt0dx**2/t0 (i, jmax) +dt 0dx*dn0dx/n0 (i, jmax)
&) /dsqgrt (£0 (i, jmax) ) **3
&-2.5*kpar*dsqgrt (£0 (i, jmax) ) **3* (2.5*dt0dz**2/t0 (1, jmax)
&+dt0dz*dn0dz/n0 (i, jmax))
&+0.5%optaul*del2**2*eta*dvz0dx*dt0dx/
& {dsgrt (t0 (i, jmax) * (dell+del2*t0 (i, jmax))) * (dell+del2*t0 (i, jmax))))
rhs (kp4)=s/n0 (i, jmax) -t0 (i, jmax) *divv0-1.5*vdgt0

&+optaul* {eta* (dvz0dx**2+dvy0dx**2) /dsqrt (t0 (i, jmax))
&tetapar*dsqgrt (£0 (i, jmax)) **5*dvz0dz**2)
&+kperp* (d2£0dx2-0.5*dt0dx**2/t0 (i, jmax) +dt0dx*dn0dx/n0 (i, jmax))
&/dsqrt (£t0 (i, jmax))

&+kpar*dsqrt (£t0 (i, jmax) ) **5* (2.5*dt0dz**2/t0 (1, jmax)
&+dt0dz*dn0dz/n0 (i, jmax) )

bandl (ndis+2,kp4)=(2.*optaul*etapar*dsqrt (t0 (i, jmax) ) **5*dvz0dz
&~t0 (i, jmax)) /dzm

bandl (ndis+1, kp4) =kpar*dsqgrt (£t0 (i, jmax) ) **5*dt0dz/ (n0 (i, jmax) *dzm)
bandl (ndis, kp4) =(kpar*dsqrt (£t0 (i, dmax) ) **5* (dn0dz/nol (i, jmax)
&+5.*dt0dz/t0 (i, jmax))-1.5*vz0 (i, jmax) ) /dzm

Equation for wvxl1(i,]).

bandl (5, k) =-dperp*vx0 (1, jmax) *dvdx (1)

bandr (5, k)=-bandl (5,k)

diag (k) =beta2+beta* (1l.+dperp*dvx0dx+rhoi*dvy0dx)
bandl (4, k)=-rhoi* (eta*dvdxsqgr (i) /dsgrt (t0 (i, jmax))



-168—-

&+ (vx0 (i, jmax) -
geta* (ddvdxdv (i) +dn0dx/n0 (i, jmax) —-0.5*dt0dx/t0 (i, jmax))
&/dsqgrt (t0 (i, jmax) )) *dvdx (1))

bandr (6, k) =-rhoi* (eta*dvdxsqgr (i) Adsqrt (t0 (i, jmax))
&= (vx0 (i, jmax) ~
seta* (ddvdxdv (1) +dn0dx/n0 (1, jmax) -0.5*dt0dx/t0 (i, jmax) )
&/dsgrt (t0 (1, jmax))) *dvdx (1))

bandr (1,k)=2.*rhoi*eta*dvdxsqgr (i) /dsqrt (t0 (1, jmax))

bandl (2,k)=(rhoi*eta*dvy0dx/dsqgrt (t0 (i, jmax))
&~dperp* (dell+del2*£0 (i, jmax)) ) *dvdx (i) /n0 (i, jmax)

bandr (8, k)=-bandl (2, k)

bandr (3,k)=(rhoi*eta*dvy0dx/dsqrt (£0 (i, jmax))
&—dperp* (dell+del2*t0 (i, jmax))) *dn0dx/n0 (i, jmax) **2
bandl(1l,k)=-dperp*del2*dvdx (i)
&-0.5*rhoi*eta*dvy0dx*dvdx (i) /dsqgrt (t0 (i, jmax) ) **3

bandr (9, k)=-bandl (1, k)

bandr (4, k) =dperp*del2*dn0dx/n0 (i, jmax)
&+0.5*%rhoi* (eta/dsqrt (0 (i, jmax)) **3) *
& (d2vy0dx2+ (dn0dx/n0 (i, jmax) -1.5*%dt0dx/t0 (i, jmax) ) *dvy0dx)
rhs (k) =-vx0 (i, jmax)
§+rhoi* (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0 (1, jmax) -0.5*dc0dx/t0 (1, Jjmax)
&))/dsqrt (t0 (i, jmax) ) -vdgvy0)
&~dperp* (del2*dt0dx+ (dell+del2*t0 (i, jmax) ) *dn0dx/n0 (i, jmax) +vdgvx0)

Equation for vyl (i,Jj).

bandl (6, kpl)=rhoi*vx0 (i, jmax) *dvdx (i)

bandr (4, kpl)=-bandl (6, kpl)

bandl (1, kpl)=-rhoi*dvx0dx+dperp*dvy0dx

bandl (5, kpl)=~dperp* (eta*dvdxsqr (i) /dsgrt (£t0 (i, jmax))

&+ (vx0 (i, jmax)

&-eta* (ddvdxdv (i) +dn0dx/n0 (i, jmax)-0.5*dt0dx/t0 (i, jmax))
&/dsqgrt (£0 (i, jmax))) *dvdx (1))

bandr (5,kpl)=-dperp* (eta*dvdxsqgr (1) /dsqgrt (£0 (i, jmax) )
&-(vx0 (i, Jmax)

&—eta* (ddvdxdv (i) +dn0dx/n0 (i, jmax) ~0.5*dt0dx/t0 (i, jmax))
&/dsgrt (£0 (i, jmax)) ) *dvdx(i))

diag (kpl)=beta2+beta* (1.+2.*dperp*eta*dvdxsqgr (i)
&/dsgrt (t0 (i, jmax)))

bandl (3, kpl)={rhoi* (dell+del2*t0 (i, jmax))
&+dperp*eta*dvy0dx/dsqgrt (£t0 (i, jmax)) ) *dvdx (i) /n0 (i, jmax)
bandr (7, kpl)=-bandl (3, kpl)

bandr (2, kpl)=(rhoi* (dell+del2*t0 (i, jmax) ) +dperp*eta*dvy0dx/
&dsqgrt (£0 (i, jmax))) *dn0d=x/nl (i, jmax) **2

bandl (2, kpl) =rhoi*del2*dvdx (i)
&—0.5*dperp*eta*dvy0dx*dvdx (i) /dsqgrt (£0 (i, Jmax) ) **3

bandr (8, kpl)=-bandl (2, kpl)

bandr (3, kpl)=-rhoi*del2*dn0dx/n0 (i, jmax)

&+0.5*dperp*eta* (d2vy0d=z2+ (dn0dx/n0 (i, jmax) -1.5*dt0dx/t0 (i, jmax) ) *
&dvy0dx)

&/dsqgrt (£t0 (i, Jmax) ) **3

rhs (kpl)=~-vy0 (i, jmax) .

&+dperp* (eta* (d2vy0dx2+dvy0dx* (dn0dx/n0 (i, jmax)
&—0.5*%dt0dx/t0 (1, jmax))) /dsqrt (t0 (i, jmax) ) -vdgvy0)

&+rhoi* (del2*dt0dx+ (dell+del2*L0 (i, Jmax) ) *dnddx/n0 (i, jmax) +vdgvx0)

Equation for vzl{i,]j) has been taken care of since vz(x,z) is
equal to 0 when x/d > 1.
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Equation for nl (i, j).

bandl (8, kp3)=-n0 (i, jmax) *dvdx (1)
bandr (2, kp3)=-bandl (8, kp3)
bandl (3, kp3)=dn0dx

bandl (5, kp3)=-vx0 (i, jmax) *dvdx (i)
bandr (5, kp3)=-bandl (5, kp3)

diag (kp3)=beta2+beta*divv0

rhs (kp3)=s-n0 (i, jmax) *divv0-vdgn0
bandl (ndis+1l,kp3)=-n0(i, jmax) /dzm

Equation for tl(i,J).

bandl (9,kp4)=-t0 (i, jmax) *dvdx (1)

bandr (1, kp4)=-bandl (9, kp4)

bandl (4,kp4)=1.5*dt0dx

bandl (8,kp4)=2.*%optaul*eta*dvy0dx*dvdx (i) /dsqgrt (t0 (i, jmax))
bandr (2, kpé4) =-bandl (8, kp4)

bandl (6, kp4)=kperp*dt0dx*dvdx (i) / (n0 (i, Jmax) *dsqgrt (£t0 (i, jmax)))
bandr (4, kp4) =-bandl (6, kp4)

bandl (1, kp4d)=(s+kperp*dt0dx*dnldx/dsqrt (£t0 (i, jmax))) /n0 (i, jmax) **2
bandl (5, kp4d)=-kperp*dvdxsqr (1} /dsqgrt (£0 (i, jmax))

&= (1.5*vx0 (i, jmax)

&=kperp* (ddvdxdv (1) +dn0dx/n0 (i, jmax) -dt0dx/t0 (i, jmax) )/

&dsgrt (£0 (i, jmax))) *dvdx (1)

bandr (5, kp4)=-kperp*dvdxsqr (1) /dsqrt (£0 (i, jmax) )
&+(1.5*%vx0 (i, jmax)

&-kperp* (ddvdxdv (i) +dn0dx/n0 (i, jmax) -dt0dx/t0 (i, jmax) )/

&dsqgrt (0 (i, jmax)) ) *dvdx (i)

diag(kp4)=beta2

&+beta* (divv0

&+2 . * (kperp*dvdxsqr (i) /dsqgrt (t0 (i, jmax))
&tkpar*dsqgrt (£0 (i, jmax) ) **5*dudzsqgr (jmax) )
&+0.5*%optaul*eta*dvy0dx**2/dsqrt (t0 (i, jmax) ) **3
&-2.5*optaul*etapar*dsqrt (t0 (i, jmax)) **3*dvz0dz**2
&-0.5*kperp*dt 0dx**2/ (dsqgrt (t0 (i, Jmax) ) *t0 (1, jmax) *¥*2)
&+0.5*%kperp* (d2t0dx2-0.5*dt 0dx**2/£0 (i, jmax) +dt 0dx*dn0dx/n0 (i, jmax)
&) /dsqrt (t0 (i, jmax) ) **3

&-2.5%kpar*dsqrt (£0 (i, jmax) ) **3*d2t0dz2)

rhs (kp4)=s/n0 (i, jmax) ~t0 (i, jmax) *divv(0-1.5*%vdgt0

&+optaul* (eta*dvy0dx**2/dsqrt (£0 (i, jmax))
&+etapar*dsqgrt (0 (i, jmax) ) **5*dvz0dz**2)

&t+kperp* (d2t0dx2-0.5*%dt0dx**2/¢0 (i, jmax) +dt 0dx*dn0dx/n0 (i, jmax))
&/dsqgrt (t0 (i, jmax) ) +kpar*dsqrt (£0 (i, jmax) ) **5*d2t0d4z2

bandl (ndis+2,kp4)=(2.*optaul*etapar*dsqgrt (t0 (i, jmax)) **5*dvz0dz
&-t0 (i, jmax))/dzm

bandl (ndis, kp4)=-2.*kpar*dsqgrt (£t0 (i, jmax) ) **5*dudzsqgr (jmax)

Include heat generated by viscosity at the tip of the obstacle
with the following statements.

if (i.eq.imid) then

rhs (kp4)=rhs (kp4) +qvis
diag(kp4)=diag(kp4)-beta2+beta2/rhoi
endif



-170-

c Find maximum residue of the last row.

do 62 i=ndis+1l,nmax
62 resmax=dmaxl (resmax,dabs (rhs (i) ))

Solve for the last two rows of the two-dimensional grid.

call eband

c start backward substitution

do 80 j=jmax-1,2,-1
do 90 i=ndis,1,-1
ipndis=i+tndis
sol(j*ndis+i)=rhs (ipndis)
90 rhs (ipndis)=rhs (i)
if (j.le.jliml) then
do 100 i=1,ndis
read (2, rec=(j-2) *ndis+i) crunchdiag (i), (crunchr(ki, i), ki=1,nb)
&, crunchrhs (1)
100 continue
else if (j.le.jlim2) then
do 105 i=1,ndis
read (3, rec=(3j-jliml-1) *ndis+i) crunchdiag (i)
&, (crunchr(ki, i), ki=1l,nb),crunchrhs (i)
105 continue
else
do 107 i=1,ndis
read (4, rec={j-31lim2-1) *ndis+i) crunchdiag(i)
&, (crunchr(ki, i), ki=1l,nb),crunchrhs (i}
107 continue
endif
do 110 i=ndis,1,-1
dummy=rhs (i)
do 120 ki=1,nb
temp=-~bandr (ki, i)
120 if (temp.ne.0.) dummy=dummy+temp*rhs (ki+i)
110 rhs(i)=dummy/diag(i)
80 continue
do 130 i=1,nmax
130 sol(i)=rhs (i)

Update the variables and compute the maximum corrections.

QQ

errvx0m=0.
errvyOm=0.
errvz0m=0.
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errn0m=0.
errtOm=0.
do 250 j=1, jmax
npos=5% (j~1) *imax
do 250 i=1,imax
k=npos+5* (i-1)+1
temp00=sol (k)
temp0l=sol (k+1)
temp02=s01l (k+2)
temp03=s0l (k+3)
temp04=s0l (k+4)
errvOm=dmaxl (errvx0m, dabs (temp00) )
errvyOm=dmaxl (errvyOm, dabs (temp(1l))
errvzOm=dmaxl (errvz0m, dabs (temp02))
errnOm=dmaxl (errnlm, dabs (temp03) )
errtOm=dmaxl (errtOm, dabs (temp04))
vx0 (i, j)=vx0 (i, j)+temp00
vy0 (i, j)=vy0 (i, j)+templl
vz0 (i, j)=vz0 (i, j)+temp02
n0 (i, j)=n0 (i, j)+temp03
250 t0(i,3)=t0(i, ) +ttempl4

c
i o o e e e e e e e e e e et e e e e e et e e
c
c Write result to output data file after every iteration.
c

call output

write(*,’ (14,3920.10)") iter,errnlm,nlm, resmax
c
e o e e e e e e e e e e e e e e e e
c
c Check to see if convergence is reached.
c

if (errnOm.ge.tol0*n0Om) goto 1
c
e e e e e e e e e e e e e e e e e e e e e e
c
c Close virtual memory access.
c

close (unit=2)

close (unit=3)

close (unit=4)
c
o e e e e e e e e e
c

do 1210 i=imax,1,-1
vz0(i,1)=0.

1210 if (x(i).ge.l.) wvz0(i, jmax)=0.
do 1300 j=jmax,1,-1
vx0(1,3)=0.
vy0(1,3)=0.
vx0 (imax, Jj)=0.

1300 vy0 (imax, j)=0.

c
o m o e e e
c

c Write final result to output data file.

c

call output

c

e e
c

Compute time elapsed.

QO
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call dostim{ihourl, iminl,isecl,ithl)
total=3600.*dble (ihourl-ihour) +60.*dble (iminl-imin)
&+dble (isecl-isec) +dble (ithl-ith) /100.

write(*,*) ’'total time in seconds =’,total

subroutine input

implicit real*8(a-h,o0-z),integer(i-n)

real*8 kperp,kpar,lambda

dimension x(49),z(193),dudz(193),dvdx(49), dvdxsqr(49) ddvdxdv (49)
&,dudzsgr(193), ddudzdu(193)

common /matrx2/ nmax, nmaxml

common /inputl/ aperp,rhoi,x0,z0,imax, jmax,tol0,s,dperp,taul, kperp
&,eta,etapar, kpar, imid, gvis

common /input2/ dzm,x, z,dudz,dudzsqgr, ddudzdu, dvdx, dvdxsqr, ddvdxdv
common /relax/ beta,beta2,dell,del2,optaul

common /start/ istart, iter

common /mesh/ zmeshx

common /b2/ nb,ndis

open(unit=1,file="in.dat’,status="0ld’)

read(l,*) aperp,rhoi,taul,eta,kperp,lambda

read (1, *) x0,z0

read(l,*) imax, jmax

read(l,*) tol0

read (1, *)

QQaQ

read (1, *)
read (1, *)
read (1, *)

s
beta,beta?2
istart
zmeshx

close (unit=1)

imid=(imax-1) /2+1

s=s/2z0

dperp=aperp*rhoi

ndis=5*imax

nmax=2*ndis

nmaxml=nmax-1

nb=5* (imax+1) -1

optaul=1.+taul

dell=taul/optaul

del2=1.-dell

etapar=rhoi**2/ (dperp*eta*optaul*dsgrt {(taud) **3)
eta=dperp*eta*dsqgrt (taul) **3/optaul
kperp=eta

kpar=etapar

Set up coordinate arrays and coordinate transfomation.

dv=2.* ((dexp (2. *zmeshx)~1.)/ (dexp (2. *zmeshx) +1.)) /dble (imax-1)
tdv=2.*dv

dvsgr=dv**2

imid= (imax~1) /2+1

v=0.

do 10 i=imid, imax

x(i)=1.40.5*dlog((1.+v)/(1.-v))/zmeshx

dummy=zmeshx* (1.,-v**2)

dvdx (i) =dummy/tdv

dvdxsqr (i) =dummy**2/dvsgr
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ddvdxdv (i) =-2. *zmeshx*v
v=v+dv

do 15 i=1,imid-1
x(1)=2.-x(2*imid-1)

dvdx (1) =dvdx (2*imid-i)
dvdxsqgr (i) =dvdxsqgr {2*imid-1i)
ddvdxdv (i) =~ddvdxdv (2*imid-1i)
dvdxsqgr(l)=1./x(2) **2
dvdxsgr (imax) =dvdxsqr (1)

du=-1./dble (jmax~-1)
dusqgr=du**2

tdu=2.*du

do 20 j=1,jmax-1
u=l.+du*dble (j-1)
dummy=-0.5/ (z0*u)

dudz (3) =dummy/tdu
dudzsqgr (j) =dummy**2/dusqr
z(3)=z0* (1.-u*x*2)
ddudzdu (j) =-dummy /u

z (Jjmax)=z0
dzm=z0-z ( jmax-1)

dudz (jmax)=1./dzm
dudzsqgr (jmax)=1./dzm*x*2
dudzsgr(l)=1./z(2) **2

gvis=0.5%eta*dsqgrt (optaul) **3/ (lambda* (x (imid+1) -1.))
return
end

subroutine initial

implicit real*8(a-h,n-z),integer (i-m)

real*8 kperp,kpar

dimension vx0(49,193),vy0(49,193),vz0(49,193),n0(49,193)
&,t0(49,193),x(49),2(193),dudz(193) ,dvdx(49),dvdxsqgr (49)
&,ddvdxdv (49) ,dudzsqgr (193) ,ddudzdu (193)

common /vOn0/ vx0,vy0,vz0,n0,t0

common /inputl/ aperp,rhoi,x0,z0,imax, jmax,tol0,s,dperp,taul, kperp
&,eta,etapar,kpar,imid,gvis

common /input2/ dzm, x, z,dudz, dudzsqr, ddudzdu, dvdx, dvdxsqgr, ddvdxdv
common /start/ istart,iter

if (istart.eq.0) then

do 10 i=1, imax

do 20 j=1, jmax

vx0 (i, j)=0.

vy0 (i, j)=0.
vz0 (i, j)=0.
n0(i,3)=1.

t0(i,j)=1.0

if (x(i).1lt.1.) vz0(i, jmax)=1.

else

open (unit=1,file='g.dat’,status='0ld’)

do 30 k=1,26

read (1, *)

do 40 i=1,imax

do 40 j=1, jmax

read(1l,*) vx0(i,3),vy0(i,3),vz0(i,3),n0(i,J),t0(i,3)
close (unit=1)
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endif
return
end

subroutine length

implicit real*8(a-h,n-z),integer(i-m)

real*8 kperp, kpar

dimension vx0(49,193),vy0(49,193),vz0(49,193),n0(49,193)
&,t0(49,193),x(49),2(193),dudz(193),dvdx (49) ,dvdxsqgr (49)
&, ddvdxdv (49) ,dudzsqr (193) ,ddudzdu (193)

common /vOn0/ vx0,vy0,vz0,n0,t0

common /input2/ dzm,x,z,dudz,dudzsqr,ddudzdu,dvdx, dvdxsqr, ddvdzdv
common /clength/ zpar

common /inputl/ aperp,rhoi,x0,z0,imax, jmax,tol0,s,dperp,taul, kperp
&,eta,etapar, kpar,imid, gvis

test=0.5%¥(n0(1,1)+n0 (1, jmax))

do 10 j=jmax,3,-2

if ((n0(1l,3).le.test) .and. (n0(1l,j-2).ge.test))
&zpar=z (jmax) -z () +(z(j) -z (j-2)) *(test-nl0(1,3))
&/(n0(1,3j-2)-n0(1,3))

10 continue
return
end

subroutine output

implicit real*8 (a-h,n-z),integer(i-m)

real*8 kperp,kpar

dimension vx0(49,193),vy0(49,193),vz0(49,193),n0(49,193)
&,t0(49,193),x(49),2(193),dudz(193) ,dvdx (49) ,dvdxsqgr (49)
&,ddvdxdv (49) ,dudzsqr (193) ,ddudzdu (193)

common /vO0n0/ vx0,vy0,vz0,n0,t0

common /inputl/ aperp,rhoi,x0,z0,imax, jmax,t£0l0,s,dperp,taul, kperp
&,eta,etapar, kpar,imid,gvis

common /input2/ dzm,x, z,dudz,dudzsqgr,ddudzdu, dvdx, dvdxsqgr, ddvdxdv
common /relax/ beta,beta2,dell,del2, optaul

common /start/ istart,iter

common /clength/ zpar

common /error/ errvx0m,errvyOm,errvz0m,errnlm,errtOm, resmax
common /mesh/ zmeshx

compute collection length
call length

open (unit=1,file=’'out.dat’,status="unknown’)

write(l,*) ’ parallel particle collection length = ', zpar
write(1l,*) 7 x0 =7, x0
write(l,*) ’ z0 =7, z0
write(l,*) 7 imax =7, imax
write(l,*) 7 Jjmax = ', jmax
write(l,*) ’ mesh non-uniformity factor ( x ) = 7, zmeshx
write(1l,*) ’ alpha perp = I, aperp
write(l,*) ' rho_i = ', rhoi
write(l,*) ' perpendicular diffusion coeficcient = 7, dperp
write(l,*) ’ perpendicular viscosity/diffusivity = ', eta/dperp
write(l,*) ’ perpendicular kappa/viscosity = 7, kperp/eta
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write(l,*) ' parallel kappa/perpendicular kappa = ', kpar/kperp
write(l,*) ' T e/T i ="', taul
write(l,*) ’ particle source (s_p) =17, s
write(l,*) ' maximum error on vx = 7, errvxOm
write(l,*) ’/ maximum error on vy =7, errvyOm
write(l,*) ’ maximum error on vz = !  errvzOm
write(l,*) ' maximum error on n ="', errnOm
write(l,*) ' maximum error on T = !, errtOm
write(l,*) ’ maximum residue = !, resmax
write(l,*) ’ number of iterations ="', iter
write(1l,*) ’ convergence criteria =7, toll
write(l,*) ' under relaxation factor #1 ( beta ) = ', beta
write(l,*) ’ under relaxation factor #2 ( beta2 ) = ', beta2

r 7

write (1, *)
write(l,*) * ¢
do 10 i=1,imax
do 10 j=1, jmax
10 write(l,*) wx0(4i,3J) rvy0 (i, 3),vz0(i, ) (00{i,3),t0(1i,
close (unit=1)
return
end

subroutine gauss
implicit real*8(a-h,o0-z),integer (i-n)
dimension bandl (249, 494) ,bandr (249, 494) ,diag(494),rhs (494)
common /b0/ bandl,bandr
common /bl/ diag,rhs
cormmon /b2/ nb,ndis
do 10 i=1,ndis
do 10 j=1,nb
ipj=i+j
temp=-bandl (j, ipj) /diag (i)
if (temp.eq.0.) goto 10
diag (ipj)=diag (ipj) +temp*bandr (j, i)
rhs (ipj)=rhs {ipj) +temp*rhs (i)
do 20 k=1,3-1
20 bandl (k, ipj) =bandl (k, ipj) +temp*bandr (j-k, i)
do 30 k=1,nb-j
30 bandr (k, ipj) =bandr (k, ipj) +temp*bandr (j+k, i)
10 continue
return
end

subroutine eband

implicit real*8(a-h,o-z),integer (i-n)

dimension bandl(249,494),bandr(249,494),diag(494),rhs(494)
common /b0/ bandl,bandr

common /bl/ diag, rhs

common /b2/ nb,ndis

common /matrx2/ n,nll

forward elimination

do 100 i=1,nl1l

jmax=n-~i

if (jmax.gt.nb) jmax=nb
do 90 j=1, jmax

Jr=j+i
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jpl=3j+1

j11=3-1

if (bandl(j,jr).eq.0.) go to 90

temp=-bandl (j, jr) /diag (i)

diag(jr)=diag(jr)+temp*bandr(j,i)

rhs (jr)=rhs (jr) +temp*rhs (1)

do 50 k=jpl, jmax

kcol=k-j

bandr (kcol, jr) =bandr (kcol, jr) +temp*bandr (k, 1)
50 continue

do 60 k=1,311

kcol=j-k

bandl (kcol, jr)=bandl (kcol, jr) +temp*bandr (k, i)
60 continue
90 continue
100 continue

backward substitution

rhs (n)=rhs (n) /diag(n)
do 200 ii=1,nll
i=n=-iji
jmax=3ii
if (jmax.gt.nb) jmax=nb
temp=rhs (i)
do 150 j=1, jmax
temp=temp-bandr (j, 1) *rhs (i+3])
150 continue
200 rhs(i)=temp/diag(i)

return
end
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