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Abstract

Each stage of the engineering design process, and particularly the preliminary
phase, includes imprecision, stochastic uncertainty, and possibilistic uncertainty. A
technique is presented by which the various levels of imprecision (where imprecision
is: “uncertainty in choosing among alternatives”) in the description of design ele-
ments may be represented and manipulated. The calculus of Fuzzy Sets provides the
foundation of the approach. An analogous method to representing and manipulat-
ing imprecision using probability calculus is presented and compared with the fuzzy
calculus technique. Extended Hybrid Numbers are then introduced to combine the ef-
fects of imprecision with stochastic and possibilistic uncertainty. Using the results, a
preliﬁﬁnary set of metrics is proposed by which a désigner can make decisions among
alternative configurations in preliminary design.

In general, the hypothesis underlying the techniques described above is that
making more information available than conventional approaches will enhance the
decision-making capability of the designer in preliminary design. A number of ele-
mental concepts toward this hypothesis have been formulated during the evolution of

this work:

¢ Imprecision is a hallmark of preliminary engineering design. To carry out deci-
sions based on the information available to the designer and on basic engineering
principles, the imprecise descriptions of possible solution technologies must be
formalized and quantified in some way. The application of the fuzzy calculus
along with a fundamental interpretation provides a new and straight-forward

means by which imprecision can be represented and manipulated.

o Besides imprecision, other uncertainties, categorized as stochastic and possi-



bilistic, are prevalent in design, even in the early stages of the design process.
Providing a method by which these uncertainties can be represented in the con-
text of the imprecision is an iméortant and necessary step when considering
the evaluation of a design’s performance. Extended Hybrid Numbers have been
introduced in this work in order to couple the stochastic and possibilistic com-
ponents of uncertainty with imprecision such that no information is lost in the

process.

o Because of the size, coupling, and complexity of the functional requirement
space in any realistic design, it is difficult to make decisions with regard to the
performance of a design, even with an Extended Hybrid Number representation.
Defining and utilizing metrics (or figures of merit) in the evaluation of how wella
design meets the functional requirements reduces the complexity of this process.
Such metrics also have merit when we begin to think of languages of design and
adding the necessary pragmatics of “ will a generated or proposed design satisfy
the performance requirements with respect to the ever-present and unavoidable

uncertainties?”.

These concepts form the central focus of this work. The mathematical methods

presented here were developed to support and formalize these ideas.
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Chapter 1

Introduction

1.1 Summary and Hypothesis

Engineering design, both in practice and research, is evolving rapidly, especially in
the development of computer-based tools. Emphasis is moving from the later stagesA
of design, to computational tools for preliminary design. In Appendix D, a gen-
eral philosophical approach to computational tools in preliminary engineering design
and a model of the design process is described. The global aim of this model is to
provide a structure for the development of tools to assist the designer in: manag-
ing the large amount of information encountered in the design process; determining
a design’s functional requirements and constraints; evaluating the coupling between
the design parameters; and carrying out the process of choosing between alternative
design concepts.

A particular aim of this work is to develop tools to assist the designer in the
preliminary phase of engineering design, by making more information available on
the performance of design alternatives than is available using conventional design
techniques. The most important design decisions (and potentially the most costly,
if wrong) are made at the preliminary stage. Increased information, over what is

available by traditional design methods, will enable these decisions to be made with



o

greater confidence and reduced risk. The effect will be greater, the earlier in the
design cycle additional information can be made available.

In order to contribute to a theory of engineering design [3] in the context
of providing and representing design information, it is necessary to formulate a hy-
pothesis that will lead to a better understanding of design practice by developing
morphologies of design, or by improving current analytical or computational design
procedures. This research primarily falls in the latter of these categories, where the
main objective is to provide methods and tools for the decision-making aspect of

preliminary engineering design.

1.2 Terminology and Mathematical Model

1.2.1 Design Definitions

Parameter: A variable or quantity used in the design process.

Design Parameter [DP]: Any free or independent parameter whose value is deter-
mined during the design process.

(synonyms: Design Variable, Input Parameter.)

Performance Parameter [PP]: Any parameter used in the design process that
has a specified value, or range of values, [FR| determined independent of (and
usually in advance of) the design process. The performance parameters [PPs]
are usually dependent on the design parameters [DPs], and possibly some other

PPs.

Output Parameter [OP]: Any parameter used in the design process that is depen-

dent on the design parameters [DPs], and possibly some performance parameters



[PPs], but has no specified functional requirement [FR] value.

Functional Requirement [FR]: A value, or range of values, or fuzzy number that
is the specified value for a Performance Parameter [PP].
This value is determined independent of (and usually in advance of) the design
process. Each Performance Parameter has an FR.
(synonyms: Performance Specification, Constraint.)
(Note that this distinction between the Performance Parameter and its specified
value [Functional Requirement] is to permit a Performance Parameter not to
be identically equal to its specified Functional Requirement value at all times

during the design process.)

Performance Parameter Expression [PPE]: An expression, relation, or equa-
tion relating some or all of the Design Parameters to a Performance Parameter.
Can arise from exact, empirical, approximate, or qualitative engineering prin-

ciples. Each PP has a PPE.

1.2.2 Implementation Definitions

Support: A crisp set of all values of a fuzzy set where the membership is greater
than zero. Alternatively: The range of parameter values over which the fuzzy

set membership is greater than zero.

Imprecision: The range (support) or spread of values about the peak [functional
value of one (1)] of a parameter’s preference function (in fuzzy form). The
greater the imprecision, the greater the spread on the left or right (or both) sides

of the fuzzy function. This is loosely analogous to variance in the stochastic



sense.! The interpretation of imprecision, as used in design, was introduced

earlier and will be discussed further in the next chapter.

1.2.3 Mathematical Model

The terminology presented in the previous section can be cast in the form of a math-
ematical model of the method proposed in this document. Such a model has the
following advantages: it helps to enumerate a formalism for the method; consistency
and understanding of the notation can be obtained.

The problem this document considers can be expressed formally as follows:
Given a design universe I and a possible solution configuration (i.e., design alter-
native) A in U, there exists m design parameters d;,z = 1,2,...,m (where the d;
are sometimes referred to as u; to underscore their uncertain nature) lying in an m-
dimensional design parameter space D such that A is defined uniquely by specifying
d= {di1,d2,...,dn} € D. The associated performance of A can be specified by n
performance parameters p;,j = 1,2,...,n (also denoted by z for the case of a single
performance parameter and the deriving of certain mathematical operations), where
? = {p1,P2,---,Pn} € P. P represents the n-dimensional performance parameter
space. The p; are related to the d; through some relationship (a performance expres-

-

sion) p; = fi(dy,...,d,), t.e.,, P= f(d) To determine whether d € D gives a feasible

—_ -

design, a check must be made whether 5= f(d) € R C P, where R is the functional

requirement space.

1The mathematics of fuzzy sets are different from the mathematics of probability, and the fuzzy
calculus is more well-suited to solving imprecise problems in the preliminary phase of design. Prob-
ability continues to be most appropriate for representing and manipulating the stochastic aspects
of design problems. A comparison of probabilistic and fuzzy methods in design will be addressed in

Chapter 5. Many design problems will require both methods.



1.3 Problem Description and Instantiation

1.3.1 Imprecision: A Hallmark of Preliminary Design

Engineering design, as a process, embodies many functions: analysis of requirements,
concept generation, concept evaluation and refinement, evaluation of imprecise de-
scriptions of simplified versions of the design, judgement of design feasibility, embod-
iment design, detail design, etc. [29, 30, 43, 44, 59, 67]. The concept generation and
simplification processes will not be addressed by the research reported here; rather,
the aim is to provide a technique for representing, manipulating, and evaluating the
approximate, or imprecise, descriptions of the (preliminary) design artifact.

Once several concepts have been generated, the design process can be viewed
as one of reducing the uncertainty with which each design alternative is described.
At the preliminary stage, the designer is not certain what values will be used for
each design parameter. Instead, the design parameters are usually given in terms of
“approximate” (imprecise) values within a certain range. Uncertainty of this type
may be referred to as uncertainty in choosing among alternatives (imprecision). Typ-
ical examples of imprecise descriptions in preliminary design include: an irregular
cross-section structural member might be represented by a rectangular section for
the purposes of initial evaluation; a gear set might be represented by a pair of circles
rolling on each other (without slip), and an approximate speed ratio; a length of shaft
might be represented as “about 25 cm”; etc. These are approximate, or imprecise,
descriptions of the design artifact, not incomplete descriptions. The gear set, impre-
cisely represented above, has all of the functional attributes of a gear set, but none
of the detail (gear teeth lengths, pitch, etc.).

As the design process proceeds from the preliminary stage to more-detailed



design and analysis, the level of imprecision in the description of the design artifact is
reduced. Naturally at the end of the design cycle, the level of imprecision is very small,
although other uncertainties (e.g., tolerances) usually remain. It is this spectrum of
levels of precision (see Figure 1.1) that characterizes progress through the design
process, from a description of a need, to a (precise) description of a device to fulfill
that need.

While the description and quantification of imprecision used in this study
pertains directly to the case of parameterizations of design alternatives (as introduced
in the next section), the global discussion and representation of imprecision transcends
the parametric view. It will be shown in future work that the general technique of
representing imprecision can be expanded to higher level configuration design or other

stages in the design process.

1.3.2 Uncertainty in Engineering Design

Figure 1.1 separates, in a new and evolutionary manner, the phenomenon of un-
certainty in engineering design into a three-component structure. Uncertainty in
choosing among alternatives (imprecision) is directly distinguished from stochastic
and possibilistic uncertainty in the figure, where the ordinate represents a qualitative
magnitude of uncertainty as a function of the time progression of the design cycle.
(Note: the curves in Figure 1.1 describe the general trends of the magnitude of uncer-
tainty for illustration only; they are not meant to precisely characterize uncertainty
at each pbint in the design process.) As described above, an imprecise parameter
in preliminary design is a parameter that may potentially assume any value within
a possible range because the designer does not know, apriori, the final value that

will emerge from the design process. The value of the coeflicient of friction for a
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vehicle’s brake design is an example of an imprecise parameter. Even though the
designer is uncertain about the final value of the coefficient of friction (depending on
a set of possible materials), he or she usually has a preference or desire for choosing
certain materials over others (in terms of cost, material properties, and so on). The
additional (subjective) preference information can be exploited to quantify the im-
precision with which the design parameters are known (in the preliminary phase of
engineering design). The actual method of representing, interpreting, and manipu-
lating this quantification of imprecision is referred to in this study as the imprecision
problem.

Besides imprecision, there exist two other separable components of uncertainty
in engineering design: stochastic and possibilistic. Engineers are usually most familiar
with stochastic uncertainty. It consists of uncertainty in truth (plausibility), and
arises from a lack of knowledge of a parameter due to some process the designer has
no direct control or choice over. Using the coefficient of friction example once again,
stochastic uncertainty enters because a particular material’s coefficient of friction can
be predicted (subjectively or objectively) only within certain limits, i.e., a distribution
of values. Uncertainties of this type are usually represented and manipulated with a
quantification of plausibility using multi-valued probability logic.

Possibilistic uncertainty also consists of uncertainty of truth; however, in cer-
tain design situations, it is easier and more realistic to determine the possibility a
parameter will assume a certain value, than the probability of this. The possible
operating conditions (oil, weather, debris, etc.) for a brake design (coefficient of
friction), for example, may be subjectively predicted and quantified. Chapter 6 will
develop further the need to include possibilistic uncertainty in our model, instead of

using multi-valued probability to quantify all uncertainties in truth.



Even though these two latter uncertainty components do not make up as large a
magnitude of uncertainty as imprecision in preliminary design, they are of course very
important when making decisions concerning the performance of design alternatives.
Coupling the effects of stochastic and possibilistic uncertainties with imprecision rep-
resents a vital addition to the imprecision problem. This research addresses both the
imprecision problem and this addition as they pertain to the hypothesis of enhancing

the designer’s decision-making capability.

1.4 A Delineation of Specific Goals

1.4.1 Design Problem Objectives

An approach for representing and manipulating the uncertainties encountered in de-
sign will be described. This method, developed to aid the designer in making decisions
in the the preliminary phase of design, has the following objectives: (1) to determine
the performance parameters for alternative designs including the designer’s subjectiv-
ity concerning the choice of input design parameter values (the imprecision problem);
(2) to determine the interaction of the input parameters with respect to the output
(coupling and importance of inputs); (3) to rate the performance of each alternative
design; (4) to compare the major differences among alternative designs; and (5) to
include, without loss of information, the effects of other uncertainties in the context of

the imprecision. Computational efficiency of the design technique is a final objective.

1.4.2 Computational Considerations

It has been difficult to provide computational tools for the preliminary phase of the

design process, largely because of the relative paucity of algorithms and techniques
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that can operate on imprecise data. Solid modeling, optimization, mechanism analy-
sis, and other CAD methods all require a highly precise representation of the objects
being designed. This document presents a novel (to the engineering design process)
application of a method for representing and manipulating imprecision.? A set of
computational tools make up the foundation of this technique such that the designer
is able to rate a design alternative according to its merit in relation to the others
under consideration.

These computational tools are for use in the preliminary and conceptual syn-
thesis stages of design, but do not attempt to supplant the designer. The idea is
not to fully automate the design process, nor to automatically generate design alter-
natives, rather it is to make it easier for the designer to evaluate more alternatives
in less time, and to provide more information on the performance of each of those
alternatives. These developments form a semi-automated approach to design, where
the emphasis is on computational efficiency, i.e, near real-time results for the design

problem objectives.

1.5 Organization of Thesis

This thesis presents, chapter by chapter, a progression of the central ideas of the
research in much the same way that the work was completed chronologically. In-
stead of attempting to describe a unified model for the three types of uncertainties
from the beginning chapters, the imprecision problem, being the most significant in

preliminary design, is considered first in Chapters 2 through 5. Stochastic and pos-

2Fuzzy sets have been applied to other domains including: seismic risk analysis (20, 18, 19, 21, 38],
optimization [26, 60], reliability [50, 85], expert systems [52], logic and decision support [7, 8, 9, 10,
33, 37, 84, 91, 89], language and grammar [33, 40, 93], and others.
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sibilistic uncertainties are added to the model in Chapter 6, and details related to
decision making for complex designs, i.e., designs with many design and performance

parameters, follow in Chapter 7. A precise outline of this thesis is presented below:

o Chapter 2 introduces the imprecision problem, including background informa-
tion on existing techniques for handling this type of uncertainty. A new and
novel means of representing, interpreting, and manipulating imprecision is also
presented, along with a design measure for determining the coupling and sig-
nificance of design parameters. The chapter concludes with a simple frame

example, illustrating the imprecision calculation technique.

e While Chapter 2 concentrates on a global means for modeling imprecision, only'
ideal, continuous, and single-source functions are used for modeling purposes.
Because the activity of engineering design is by no means ideal, Chapter 3
addresses the problems of discrete design parameter data, multiple-source im-
precision, and normalizing the preference information over the set of imprecise
DPs. This chapter is not a central component in the understanding of the
methodology; however, it does address relevant problems for any realistic de-

sign pursuit.

e Chapter 4 presents a real-world brake design problem using the approach of
Chapter 2. Two primary alternatives are considered: an internally-actuated

pivoted rim brake and a disk brake.

o Although Chapter 2 discusses possible existing techniques for representing and
manipulating imprecision, no detailed comparison of other methods with the

fuzzy calculus approach, adopted in this research, is given. Chapter 5 compares
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an analogous probability approach to the fuzzy technique, due to probability

theory’s wide use and applicability in related domains.

Chapter 6 introduces Extended Hybrid Numbers to combine stochastic and pos-
sibilistic uncertainties with imprecision. Computational considerations for the
stochastic component are discussed in this chapter, with an application in the

form a of single-speed transmission design.

The first six chapters combine to form a general semi-automated approach for
making preliminary design decisions under uncertainty. For complex designs
with varying degrees of coupling and conflicting performance parameter results,
a metric (or figure of merit) is needed to provide an overall rating of design.
alternatives. Chapter 7 presents a preliminary metric for this purpose, and a

design matrix for determining the coupling effects.

Chapter 8 concludes the main body of this thesis with a discussion of the rele-
vance of the research, how this work fits into the anatomy of current and existing
design research, and possible future projects that exist as natural outgrowths

of this research.
Appendix A highlights certain fuzzy mathematical concepts used in this thesis.

Appendix B derives the necessary probability density function operations used
in Chapter 5. The derivation of the cumulative distribution form of these op-

erations, as needed in Chapter 6, is also given.

Appendix C presents, in detail, the algorithms and computation requirements

of the techniques presented in Chapters 2 through 7.



13

e Appendix D contains a version of an earlier paper published by the author. It

is included for completeness, as it is referenced in the thesis.

e Appendix E demonstrates the use of the cumulative distribution form of the

probability operations, with an example from Chapter 6.
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Chapter 2

The Imprecision Problem in Engineering Design

Chapter 1 discussed the various types of uncertainty encountered in engineering de-
sign. This chapter will discuss one type in particular: imprecision. Background
information concerning the imprecision problem will be presented, including a rep-
resentation and interpretation of imprecision, and how it relates to other possible
techniques. An approach for modeling imprecision follows the background section,

and the chapter concludes with a simple design example.

2.1 Background

Most of engineering, particularly design, can best be represented with some level of

imprecision or approximation. According to Goguen [39]:

“Fuzziness is more than the exception in engineering design problems:

usually there is no well-defined best solution or design.”

The imprecision that is being represented and manipulated by the technique reported
here is meant to capture the approximations made during the early phases of engi-
neering design. Chapter 1 introduced certain types of approximations, with particular
emphasis on parametric design. (The general idea of representing imprecision is not

only useful for this parametric view, but also has applications in configuration design
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and other stages of the design process.) Continuing in the theme of Chapter 1, it
is common that geometry and other physical characteristics are described approx-
imately. The length of a beam, for example, may be approximated as “about five
meters,” or an irregular three-dimensional object may be represented with a simplified
geometry, such as a cube or sphere with varying dimension or diameter, for prelimi-
nary analysis. Imprecision is also common in the specification of material properties.
The material used for a brake shoe lining may be described as “having a coefficient
of friction (p) of approximately 0.4,” where there exists a number of choices of mate-
rials with p values distributed about 0.4. Because these imprecise descriptions are a
natural consequence of the simplifications and approximations made in the prelimi-
nary design, a method must be devised for representing and interpreting the varyingr

degrees of imprecision.

2.1.1 Representation and Interpretation of Imprecision

A simple range might be used to represent the imprecision for a parameter. This is the
technique used in interval analysis [57]. Instead of a range, the imprecise parameter
will be represented by a range and a preference function to describe the desirability
of using that particular value within the range. This preference function is similar to
the notion of a fuzzy set, or more specifically a fuzzy number restricted to the set of
real numbers.

A fuzzy set (as developed by Zadeh [87]) is a set with boundaries that are
not sharply defined. Membership in the set is not the customary 0 or 1, but can
be described by a continuum of grades of membership. In the approach described
here, preference values are used, analogous to membership, to represent imprecision

or approximation of engineering design parameters. For example, a designer may
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want to represent a dimension of “about 25 cm.” He or she would do so by specifying
a fuzzy preference function to represent that approximate parameter.

The first step is to decide the range of values that the parameter may assume.
Values less than the low end of the range, and greater than the high end of the range
will have a preference of zero (0) in the fuzzy representation. For example, there may
be a restriction on the dimension to be being greater than 20 cm, and the designer
may wish to keep it shorter than 30 cm. The value, or values, that the designer feels
the greatest confidence in using, or desire to use, are assigned a preference of one (1).
Certainly 25 cm will have a preference of 1 (one) in the preference function: “about
25 cm,” and values away from 25 will have lower preference, as shown in Figure 2.1.
Preference is assigned depending on the designer’s desires to use those parameter
values. The more confident, or the more the designer desires to use an input value,
the higher its preference in the parameter’s set. The resulting function of this process
is a quantification of design preference, and not the usual notion of membership in
a symbolically labeled fuzzy set, which usually denotes vagueness in meaning. In
this way parameters whose values are not known precisely can be represented (and
manipulated), and the designer’s experience and judgement can be represented and
incorporated into the design evaluation.

Therefore imprecision is interpreted as representing the designer’s desire to
use a particular value for a design parameter. Naturally these desires may change
as the design proceeds, and this is easily accomplished using fuzzy preference func-
tions. This evolution of knowledge, desire, and emphasis is a common element of
the design process, and the technique reported here permits their representation and
manipulation.

In the example given above, Figure 2.1, the input preference function depends
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Figure 2.1: Preference Function Representation of “About 25 cm”, with an a-cut at

0.5.



18

solely on the subjectivity of the designer. Preference functions need not always be
dependent in this way; engineering data can also be used. For example, a variety
of materials might be used, and the preference of the designer is to minimize cost,
solubility, or some other measurable material property (or any combinations of these).
If the cost or other material data are available, the preference function can be easily
constructed by normalizing the data between zero and one, and interpolating a curve
between the data points (a method for handling discrete data will be given in the
following chapter). Figure 2.2 is an example preference function constructed from
the cost data for certain steel alloys, where the designer has specified a preference of
minimum cost.

The desirability interpretation, as discussed above, applies to input DPs (those
parameters whose value the designer is free to choose). Target values for Performance
Parameters are specified by Functional Requirements, not by the designer’s desires
(at least not in the same sense as the input DPs). Performance Parameters, resulting
from calculations with imprecise input Design Parameters, will also be represented by
fuzzy preference functions. These preference functions also represent the designer’s
desires, but in a slightly different way. The output parameter value with a preference
of 1 (one) corresponds to the input values with preference of 1. This is a natural
consequence of calculations with the Fuzzy Calculus [33, 46, 94]. This implies that
if the designer’s desires are met (inputs with preference of 1), then the performance
will be the output value with preference of 1. Correspondingly, if the performance
parameter output value with preference of 1 satisfies the Functional Requirement(s),
then the designer can use the input Design Parameter values with preference of 1. If
it is required to use an off-peak value for the performance (to satisfy a Functional

Requirement), then either the designer’s desires must be adjusted, or input values
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other than the most desirable must be used. This will be discussed in detail below.

2.1.2 Existing Techniques

There exists a variety of means by which imprecise parameters can be represented and
manipulated in engineering design calculations. The most basic approach is to choose
single (crisp, non-fuzzy) values for each of the parameters, substitute these into the
governing equations, and record the crisp single-valued output. This method benefits
from simplicity, but suffers from the time required to “explore” any real design space.

Optimization schemes potentially provide a means for handling imprecise pa-
rameters. These methods include direct search methods such as Simplex and three-
point equal-interval searches, gradient methods such as Newton’s and the Conjugate
Gradient search [62]. However, conventional optimization methods require precise
representations and analyses, and are therefore most useful in the latter stages of
design. A. Diaz [26, 27, 28] is developing an optimization technique using imprecise
(fuzzy) constraints. This method will be useful for solving imprecise optimization
problems, but will not provide as much information on the performance of a design
operating over a range of design parameters as the method reported here.

Interval analysis [57] is another method for carrying out computations with
imprecise parameters. In this technique an interval (a range of numbers represented
by its boundaries) is used to represent a DP in the design calculations. The output
(PP) is similarly represented by the two numbers at the end points of an interval.
This method has some similarity to the method developed by the authors in that it
indicates ranges of possible values for inputs and outputs. Interval analysis, however,
provides no information on the performance of a design within the interval. All that

can be said, when interpreting a Performance Parameter output, is that the design
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- will perform somewhere between the boundaries of the interval. Furthermore, the
input values that contributed to any one particular value of the output cannot be
directly determined (except at the boundaries). As the number of intervals used to
represent DPs increases (e.g., a succession of decreasing interval sizes may be used to
cause a PP to approach a desired value), interval analysis could approach the method
reported here.

G. Taguchi [23, 77] has developed a technique for evaluating the “quality” of
a design based on his loss function. This function is essentially a preference function
for a fuzzy representation.! Taguchi does not apply the mathematics of fuzzy sets
to the evaluation or comparison of designs. Instead, his method uses the principles
of “experimental design,” which “explore” the design space one (or two) crisp design
parameter value(s) at a time. Taguchi suggests that the Parameter Design phase will
have the most impact on quality. In this phase the values for DPs can be selected
to create a design that will be as insensitive as possible to manufacturing errors,
environmental conditions, variability in use, etc. The design technique presented
here will be a useful extension to Taguchi’s method in the Parameter Design phase
(by permitting a more thorough evaluation of the performance parameters over ranges
of the design parameters), and performing its intended purpose in the preliminary
design phase.

Sensitivity analysis permits the evaluation of the rate of change of an output
PP as input DPs change. This relies on the evaluation of partial derivatives or La-
grange multipliers of system equations.? Sensitivity analysis is a powerful design tool,

but provides information only at a single operating point each time it is evaluated,

!See particularly the Quadratic Loss Function shown in Figure 3 of [23].

2Reference [62] pages 168 and 609.
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and will provide no information when only discrete values of input design parame-
ters are available. Furthermore, the change in desirability of inputs and outputs is
not included in the calculation. For example: one input may have a narrow range
of acceptable values, and a different input may have a much wider range of desir-
ability. Even if the numerical sensitivity of one output is the same with respect to
these two inputs, different design decisions should be reached regarding the effect of
altering them. When a preference function is used instead of a range (to represent
the designer’s desires) even more information in the form of the rate of change of
desirability of an output with respect to an input’s desirability can be found. The
7v-level measure will be introduced later to evaluate this effect. Sensitivity analysis,
as it is usually applied, does not include the effects of imprecision, or the designer’s
desires.

If a multi-valued logic form of probability analysis is used (instead of the more
common event-frequency form), imprecision of input DPs may be represented, and
imprecise output PPs can be calculated [12, 24, 42, 69]. However, the probability
calculus does not permit the relationships between inputs and outputs to be found.
If, for example, a probability calculation shows that the desired performance has a low
likelihood, determining which DPs to change, and how to change them is not possible
from the probability calculations alone. Furthermore, some probability calculations
(on imprecise parameters rather than uncertain parameters) can produce unexpected
results.’

The method presented here, based on a fuzzy representation of imprecision,

3For example: y = mz+b where m, z, and b have probabilistic representations centered at a value
of 3.0, produces an output with a peak likelihood at y = 11.6 rather than the value 12. A detailed

comparison of probability analysis and the author’s technique will be addressed in Chapter 5.
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extends the capabilities of the methods described above by permitting: representation
of imprecise input Design Parameters; calculation of resulting Performance Param-
eters (with corresponding levels of imprecision); evaluation of Design Parameters to
attain a desired Performance Parameter; and estimates the relationship between DPs

and PPs over a wide range of values.

2.2 Approach

As described in the previous section, | have adopted the fuzzy calculus as a mathemat-
ical representation of imprecision in engineering design. The arithmetic and calculus
of fuzzy sets and fuzzy numbers provides a method for manipulating the imprecise
representations.

Fuzzy numbers and their associated arithmetic and calculus are the subject of
many publications and several textbooks [33, 46, 94] and will not be presented here
in detail. Instead, the necessary tools needed to understand the approach (and later

compare with the probability calculus) will be described below and in Appendix A.

2.2.1 Fuzzy Arithmetic Operations

In his seminal paper [87], Zadeh puts forth the concept of a fuzzy set as “a class
of objects with a continuum of grades of membership.” From the many theoretical
developments and applications that have appeared subsequent to this original work,
a sub-area of research has been devoted to the concept of a fuzzy number, which
exclusively concerns the universe of real numbers ®. Kaufmann and Gupta [46]
define a fuzzy number as “a fuzzy subset of R that is convex and normal.” Using
this concept, and defining imprecise input design parameters as fuzzy numbers, the

extension principle of Zadeh [91] may be directly applied to design computations,
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thus extending algebraic operations on real numbers to the fuzzy domain.

Specifically, let the imprecise input parameters 4, 4y, ..., un be defined in the
universes X, X, ..., Xn, respectively. The mapping from X; x---x Xn to a universe
Y is defined as a function f such that y = f(z;,...,2n). The extension principle

then implies that with an imprecise performance parameter p on Y, which is induced

from 4, ..., uy through f, the resulting membership function is
ﬂg’) =  sup min(uf—fll), ey ugj")).
T, TN

y=f(z:1 yeesZN)

The ordinary binary operations and other function operations (extended trigonomet-
ric functions, etc.) can be derived from this principle in this max-min form. For

example, the addition of two imprecise parameters 4; and 4, can be written as

ﬂﬁx@ﬁz(y) = \/ (/‘ﬁl A /‘ﬁz)’ (2'1)

y=ur+uz

where @ denotes extended addition and V and A denote max and min, respectively.
Equivalently, extended addition may be expressed in the intervals of confidence, level

of presumption, and a-cut form of Kaufmann and Gupta [46]:
e ® 0 = (47 +ug}, ui? + i), (22)

where %;, € [ufal'),uf‘;)] The method for applying the extended addition and the
other extended operations in the design domain are in Appendix A and the example
section of this chapter. Note the change in nomenclature from Equation 2.1 (u) to
Equation 2.2 (a), reflecting the change from the general extension principle to the

a-cut method.

2.2.1.1 Analytical and Numerical Applications

For a given design performance expression z = f(u;), where z is the performance

parameter and the u; are the design parameters, the fuzzy output Z can be determined
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analytically by applying the a-cut form of the extended operations (Kaufmann and
Gupta [46]) as presented earlier, Equation 2.2. Such an application requires that
the input parameters be represented algebraically, where the result after algebraic
manipulation is 2,, which is a function of the preference values a. Substituting
a value for o will give an output corresponding to that level of desirability. (The
analytical application for an example multiplication are in Appendix A, and the
general approach for the analytical application of fuzzy arithmetic is in [33, 46].)
Even for a modest number of design parameters, the analytical fuzzy calculus
method for calculating imprecise performance parameters (e.g., application of combi-
nations of equations of the form of Equation 2.2) is impractical for computer-a,ssistedb
design applications, due to algebraic complexity. A discrete numerical method, such
as the Fuzzy Weighted Average (FWA) algorithm [31] and its extensions (presented
in Appendix C), is necessary to meet this need for computational efficiency. FWA
approximates the analytical approach by discretizing the functions of the input fuzzy
numbers into a prescribed number of a-cuts. Figure 2.1 shows an a-cut at prefer-
ence 0.5. The discrete FWA algorithm treats each a-cut as an interval, and performs
combinatorial interval analysis to calculate each output preference interval [31]. The
important addition to interval analysis, however, is the preference value associated
with each value in the fuzzy number. [t can be seen that as successively smaller inter-
vals are used in a calculation, interval analysis approaches the fuzzy set mathematics
technique. A condensed version of the algorithm from [31] is in Appendix C (where
the terminology has been changed to reflect the application to design calculations).
For N fuzzy design inputs and M discrete preference points, the algorithmic

complexity of the FWA implementation is of order

H~ M2V (2.3)
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where H equals the number of operations and & equals the number of multiplications
and divisions in f(u;). The extended version discussed in Appendix C further reduces

this complexity to
H~ M. 2NP 1.y (2.4)

where N — p is the number of repeated design parameters in the performance expres-
sion and v equals the number of interval operations in the expression f(u;).

One important ramification of fuzzy mathematics is that once a forward cal-
culation is made (operating on inputs to determine an output fuzzy function), then
backward calculations can be obtained with no further computation. The peak of a
fuzzy output corresponds to the peak value for each of the inputs, and off-peak output.
values correspond to off-peak inputs with the same preference value. For example, if a
designer performed a fuzzy calculation, and the output parameter’s peak value (pref-
erence of one (1)) was not acceptable, then he or she could select a different output
value and determine its preference value. The designer then knows that the inputs
required to produce that output have the same preference or less. If the designer
wishes to use an output parameter value with preference of 0.7, then he or she knows
that at least one input must also have a preference of 0.7 or less, the other inputs
having preference distributed about 0.7. In this way the relationship between inputs
and outputs is readily observed. The backward path through the calculations is a
natural consequence of the fuzzy arithmetic implementation developed by the author,
and requires no further calculations once the forward path has been calculated.

In general, the author’s computationally efficient implementation of FWA,
when combined with an appropriate user interface, provides a means for carrying
out real-time imprecise calculations, where the output results can be easily evaluated

with respect to the inputs, and where a backward path can be utilized without further



computation.

2.2.2 Preference Function Shapes for Design Parameters

A simple form of the preference functions described above is triangular (single most
desired/confident value with linear interpolation to the zero confidence values) or
trapezoidal (interval of most desired/confident values at preference of one (1)). For
preliminary design, the experiments conducted to date indicate that these two classes
of preference function shapes will adequately approximate many of the input DPs
imprecise representations. These types of functions also satisfy the normality and
convexity conditions required of fuzzy numbers. If it becomes necessary to use higher-
order functions, they can be included without modification to the technique or im-
plementation described here. For example, to bias a preference around the most
preferred input, a quadratic function can be used. Likewise, to bias the preference
in the opposite sense, an inverse quadratic function, which approaches a Dirac delta
function in the extreme case, may be applicable. Furthermore, if multiple peaks
are found to be required, then the convexity condition can be relaxed slightly such
that the preference functions are treated as multiple locally convex functions (see
Figure 2.3).

In addition to triangular and trapezoidal functions, preference functions may
be constructed from engineering data (Figure 2.2), if the data and interpretation are
available. For an incomplete set of data, a preference function can be approximated
by curve fitting (somewhat analogous to the construction of subjective probability
density functions) to certain known points of preference in a design parameter’s input
range.

For triangular inputs, the outputs of design performance analysis functions
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may not always be linear functions, as shown by the example in Appendix A. A fuzzy
multiplication with triangular input functions does not result in a triangular output
function, but instead two combined functions raised to the one-half power. Addition
and subtraction will preserve the shape of the input function, but the multiplication
and division operators both produce nonlinear results. In general, curves of different
shape than the input can be expected for the results of fuzzy engineering design com-
putations; however, the result of a fuzzy calculation can be interpreted as previously
discussed, whatever its shape.

The intent of this section has not been to provide an exhaustive presentation
of all possible preference function shapes, but, instead, to introduce certain classes of
functions that can be applied easily in preliminary design. Future work will expand
on these classes of functions, and present formal methods for selecting DP preference

shapes.

2.2.3 A Design Measure

In any design calculation, some input parameters are very strongly coupled to the
outputs, and others are nearly independent. A means of determining the relative
coupling between imprecise (fuzzy) inputs and outputs can be used to determine which
parameters the designer can change and produce little effect on the performance, and
which parameters will have the most profound effect on the output. A new measure
developed for this purpose, called the y-level measure, is presented below, along with

a well-known Measure of Fuzziness.
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2.2.3.1 Measure of Fuzziness

The Measure of Fuzziness expresses “the difficulty of deciding which elements belong
and which do not belong to a given fuzzy set” [33]. Using d(C) to denote the measure
of fuzziness and using the definition for the complement of a fuzzy set (Appendix A),

d(C) must satisfy the following conditions: [53]

1. d(C) = 0iff C is a crisp set in X, i.e., the membership function takes on only

values of zero and one.
2. d(C) must assume a maximum iff as(z) = 1vz e X.

3. d(C) > d(C*) if C* is any “sharpened” version of C, i.e., a crisper version. We
can express this more precisely as az < ag. for ag > % and the converse for
as S %

4. d(C) = d(C) where d(C) is the complement of d(C). This simply says that

& -

d(C) is as fuzzy as d(C).

where ags is the membership function of the fuzzy set (or number) d(C) defined
Vz € X. The following entropy function satisfies the conditions required of a measure
of fuzziness [53]:

i IX|
d(C) = K'Y ¥ag(a.), (23)

where:

¥(y) = —yIn(y) - (1 = y)In(1 - y),
g is the membership function of the fuzzy set C, | X | is the length of the discretized
support (region of non-zero membership) of C, and K is an integer.

Unfortunately the entropy function as defined in Equation 2.5 measures values

centered on o = 3. A membership value of one-half has the highest degree of
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“difficulty of deciding” whether it is a member of the set or not. Memberships close
to one (1) are closer to being in the set, memberships close to zero (0) are closer
to being out of the set. Thus this measure indicates how much of the membership
function is close to one-half. In design, the engineer needs a measure of the values

“spread” of the preference function (near 1),

centered on as = 1, indicating the
not the steepness of the bounding curves (for membership functions). Figure 2.4
illustrates the difference. The Measure of Fuzziness will have the same value for
membership functions C; and C; since these two curves have the same amount of z
near a = 0.5, however, C; has much greater imprecision (in the preference function

interpretation) than C, (a much larger amount of z near a = 1.0). To avoid this

difficulty, a new measure has been developed here.

2.2.3.2 The y-Level Measure

A new measure, which will be referred to as the y-level measure, has been developed.

This measure is defined in the following manner:

1 X|
D(C) =y ("= — 1y, (2.6)

i=1

where

3‘-:;(7—:2 ifag <y

Bl =19, aen

Drocls) if g 2,

0<y<l,
and m is an integer such that as m increases, the measure becomes more concentrated
for values about az = 4. The value of v may be set so that D(é’) measures values in
the support centered about it. For v = 7 the y-level measure satisfies the conditions

for the Measure of Fuzziness [53], listed earlier. For the purpose of this study, v = 1.0

and m = 1.0 will be used in Equation 2.6. (Note: a relevant property of the v-level
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measure is that it does not depend on the unit-system used for the design parameters,
i.e., non-dimensional parameter groups are not required in order to apply the v-level
measure. )

An outline of the process by which this 4-level measure can be used as a qual-
itative measure of the relationship between input design parameters and output per-
formance parameters is shown below. Let #,..., %y be N imprecise inputs (Design

Parameters), and let P be the output (Performance Parameter) of the computation

¥y = f(ug,...,un).
1. Determine P using the FWA algorithm [31].

2. Let A; and ), be equal to the two z values for which ap = minimum on both the
left and right extremes of P. A = [A;, ;] makes up an interval of the support

of P.

3. Discretize the interval A into n equally spaced steps, such that | X |= n in

Equation 2.6.

4. For each input parameter, %;, i = 1,...,N, set all other &;,7 # j, to their
nominal crisp value (where a3 = 1). For¢ = 1,..., N, use the FWA to calculate
the output, ©;, where the i** fuzzy input remains fuzzy in the calculation, and

all others are made crisp as above.

5. Calculate the y-level measure (v = 1) for P and all ©;.

6. Normalize the D(©;)s with respect to D(P). The result is an ordering of the
inputs according to importance (relative measure), giving a qualitative relation-

ship of inputs to the output.
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For the engineer who uses fuzzy preference functions in the description of design
and performance parameters, this new measure provides the ability to determine some
information on the coupling between the inputs and outputs of design calculations.
The measure can also be used to determine which parameters the designer can change
and produce little or no effect on the performance, and which parameters will alter the
output the most. Those parameters with small influence may be fixed to the most-
desired value by the engineer, resulting in a simplification of the design problem. The
coupling information not only includes the rate of change of an output with respect
to an input (over the range of acceptable values), but also includes the change in
desirability of the parameters. If a small change of an input produces a large change in
an output, but a small change in the desirability of the output, the v-level measure will
be small (even though the sensitivity of the output to that input is large). Similarly,
if a large change of an input produces a small change in an output, but a large change
in the desirability of the output, the y-level measure will be large.

Figure 2.5 illustrates an example application of the v-level measure. P is the
output fuzzy function of some performance parameter, functionally related through
a PPE to three imprecise input parameters, u;, uz, and us. The ©; sets make up
fuzzy outputs for only one fuzzy input parameter (and the other inputs held at their
crisp value). After applying the y-level measure to each of these output sets, the
results may be ordered from largest to smallest. In this case, the ordering consists
of the following: D(P), D(©,), D(©,), D(©3). Normalizing the output measures
D(©;) with respect to D(P) shows that D(©,) is much greater than for D(©3). The ?
parameter for ©3 (u3) contributes very little to the preliminary design analysis when

/

compared to the parameter for ©; (v;). Thus, the input parameter uz might be fixed %

i
3,

to its crisp value (where its preference equals one (1)).
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2.3 Example

A simple mechanical design example using the approach described in the previous
section is presented here to illustrate the representation and manipulation of imprecise
parameters in preliminary engineering design. The problem is to design a mechanical
structure, attached to a wall at one end, which will support an overhanging vertical
point load. Constraints on the problem include: the distance the load is from the
wall; the total width of the supporting structure; and the materials used for the
structural elements. One possible configuration, shown in Figure 2.6, consists of a
two-member frame, where the compression member (AB) is attached to the wall at
an angle of sixty degrees (60°) and both members have rectangular cross-sections.
The global design objective is to avoid failure in either component of the frame.
Performance expressions can be obtained for the two Functional Requirements by
considering beam bending theory for the horizontal member (C D), and buckling for
the compression member (AB).* The resulting Performance Parameters for the design

are the maximum bending stress ¢ in CD and the column load Fg on AB:

UW + Yen
U:?—.(____t_i.s___)., (2.7)
wCDt
9 Wep  Was 3 Wep
= J{=(W 24 (2 2, .
Fa= [l W + 22 1 Tz g 2w 4 ooy (28)

The design parameters for this example are as follows: the applied load (W);
the length of member C'D (I); the width of the compression member (w4p); and the
thickness (t). If a different material is used, or a range of material properties are

available, £ and p may also be included as imprecise DPs. The relationships for the

4Shear stress in the horizontal member and elastic deformation of the entire frame do not con-

tribute significantly to the problem.
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weight of the two members, and a constraint on width (w) are:

Wep = pgweptl, (2.9)
44/31
9

Wap = pgwapt( ), (2.10)

wep = w4 — 2.5 cm. (2.11)

2.3.1 Performance Specifications

In this design, o must be less than the maximum bending stress before yield. This
example assumes that the material has been specified to be steel. Thus, the Functional

Requirement for maximum bending stress is:
o< o7 =225 MPa,

where the superscript » denotes “requirement.”

The performance expression for the column load Fp does not consist of a crisp
(single value) inequality as in the case of o”. Instead, column-buckling theory is used
to specify a requirement on the critical load of the compression member. Because the
critical load depends on the dimensions of the member, the Euler-Johnson Condition
must be calculated first to determine whether the Euler or Johnson equation should

be applied. This condition along with the equations for the critical load can be given

as:

VariE I,

Cor=—<5—Gma) (2.12)
t 2
= ﬂé%/_;__@ (Euler), (2.13)
n(3% )
_ SywABt Sy(%{%’)z

PC,- = —n—'—‘ {1 - m— (Johnson), (214)
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where S, is the yield strength and n is the factor of safety (both assumed constant for

simplicity). The resulting performance expression for the column load Fg becomes:

Fg < P, = (Euler or Johnson Equation) kN.

Because Equations 2.13 and 2.14 depend on the design parameters of the problem,
the performance specification P], will be a fuzzy requirement as a function of the
DPs. Once the DPs have been determined, P, can be calculated and subsequently
updated if any of the design parameters should change during the design process.
Overall, these two performance parameters, in the form of a crisp inequality
and fuzzy inequality, make up the set of Functional Requirements for this simple
design. This set can now be used to rate the frame configuration’s performance pa-
rameters. For simplicity, the frame configuration shown in Figure 2.6 will not be
compared with other alternative designs. The application presented in Chapter 4 will
demonstrate the technique with a problem containing more realistic design complex-

ities, and comparisons of design alternatives.

2.3.2 Input Design Parameters

The designer specifies the input parameters as preference functions according to the
approach outlined previously. Here the parameters that need to be selected as part of
the design process are: W, wap, I, and t. In this example, the subjective knowledge,
experience, and desires of the engineer are used to imprecisely determine these input
parameters. For example, the applied vertical load W is constrained by a maximum
load that a proposed configuration is expected to withstand without failure. There
also exists some latitude (due to other design considerations) by which this design
load may be decreased such that the design is still satisfactory, but less desirable due

to the decrease. Thus, the input parameter W is imprecisely defined in a range of
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possible values where the desirability decreases from the maximum value in the range
to the minimum value shown in Figure 2.7. For this design problem, the maximum
design load is 20 kN, which corresponds to the upper endpoint of the range. W may
not be less than 15 kN, corresponding to the lower endpoint.

The remaining design parameters may be specified in a similar manner. Be-
cause each input set for this problem is in the form of a triangular function (naturally,
more complex functions could have been used), the fuzzy DPs can be represented by
three-values: left-extreme value for preference of zero, peak value for preference of
one, and right-extreme value for preference of zero. Table 2.1 provides the necessary
data for constructing the preference functions for the entire set of design parameters,

and Table 2.2 lists other constant data used in this example design problem.

2.3.3 Output Performance Parameters

The fuzzy outputs for the performance parameters ¢ and Fp can be obtained by use
of Equations 2.7 and 2.8 and the application of the FWA algorithm described earlier.
The results are shown in Figures 2.8 through 2.11.

After the calculations have been performed to produce the outputs, the next
step is to compare the output sets with the performance criteria. Figure 2.8 shows the
imprecise performance parameter results for the maximum bending stress of member
CD (Equation 2.7). The output at the peak of &(4ia=1) is equal to 994 MPa. This
peak output does not satisfy the Functional Requirement & < ¢" = 225 MPa. To
satisfy the requirement o”, the input parameters must deviate from the peak (most
desired) values. At least one design parameter must decrease in preference, to the left
of the peak, by between 0.5 and 0.6 (&(4ia=0.5) = 259 MPa and &(4;4=0.4) = 206 MPa),

to meet the requirement on o. (If a factor of safety is desired, a further decrease in
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DPs (units) a=0|a=1|a=0

W (kN) 150 [20.0 |20.0
wap (m) 0.04 |0.07 |0.13
I (m) 3.0 |40 |4.0

t (m) 0.04 [0.06 |0.10

Table 2.1: Example Problem: Fuzzy Design Parameter Data.

Constant (units) | Value
E (GPa) 207.0
o (L) 7830.0
g (m/sec?) 9.81
Sy (MPa) 225.0
n )

Table 2.2: Design Example: “Constant” Data.
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preference will be required.)

The backward path of the imprecise calculation can be applied at this point
to determine the effect of changing the preference of any one input design parameter.
Data from the solution for & show that the input parameters of W and ! could
be decreased to the left of their peak values (at @ = 1) so that o will meet its
Functional Requirement, whereas the inputs wsp and t must be decreased to the
right of their peak values. This result cannot be obtained easily from inspection of
the governing equation, because wyp and t appear both in the denominator and the
numerator of Equation 2.7, when combined with Equation 2.10. While this same
result could be obtained through calculation of partial derivatives of the output with
respect to each of the inputs, it was instead found by use of stored values calculated
during the solution of the (imprecise) performance parameter by use of the author’s
implementation of the FWA algorithm. No additional calculations were required.
These results show that o™ may be satisfied by the frame configuration, but only with
a large change in preference of the DPs from the most desired input peak values.

When considering other PPs as part of this design analysis (in addition to
o), care must be taken when adjusting the DPs (which are coupled to o) to obtain
acceptable performance values in those other PPs. A small adjustment of one DP to
obtain a satisfactory performance value for one PP may adversely affect a different
PP. The v-level measure can be used to determine the magnitude of the coupling
between parameters, and permit the designer to minimize the adverse effect of DP
adjustment.

Figure 2.9 shows the output results for the column load performance parameter
Fg. To compare Fp with the performance criterion P, the fuzzy requirement for

the critical load must be determined. Figure 2.10 provides the output preference
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function for the Euler-Johnson Condition (Equation 2.12), where values less than zero
correspond to an Euler column and values greater than zero to a Johnson column.
Analyzing the figure, the majority of combinations of input parameters conform to
an Euler column configuration. Although some combinations with large preference
changes correspond to a Johnson column, it will be assumed at this preliminary design
phase, that the Euler equation may be used as an approximation (over the entire
input domain). This approximation can be verified later if the preference values of
the design parameters deviate greatly from their peak values.

The critical-load results, using the Euler Equation 2.13, are in Figure 2.11.
Comparing the peak values of Fg (Figure 2.9) and P.., it is found that F B(ato=1)
is greater than }56,( ata=1). Lhus, the column load does not satisfy the buckling per-
formance criterion P, for the most desired input parameter values. To satisfy the
performance criteria, one of two avenues must be pursued: (1) adjust the input pa-
rameters with respect to Fip such that the critical load P, is satisfied, or (2) adjust
the design parameters with respect to the Euler equation such that P, matches the
output value for Fg. Because both Fg and P., depend on the same input parameters,
coupling will be important. Using the v-level measure results (presented later), the
most important input parameter for Fg is W, ¢ is the important parameter for P.,;
and both Fp and P., are uncoupled with respect to W and t. Thus, the preference of
W may be decreased with respect to Fig without significantly affecting P,,, whereas
the converse is true for ¢ with respect to P.,. Considering the output curves Fg and
P., once again, the preference of t need be changed only slightly (decreased by 0.1)
to the right of the peak to satisfy the performance specification, while the preference
of W would need a much greater decrease (approximately 0.4) to the left. These re-

sults demonstrate that P}, may be satisfied with only a small sacrifice in desirability,
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depending on the design parameters that are changed.

2.3.4 Applying the v-Level Measure

The +-level measure, as described earlier, can be used to provide the engineer with
qualitative information on the relationship between input parameters in the design.
When a design parameter has the greatest qualitative importance for a given per-
formance parameter, the numerical measure produces a normalized value of one (1).
As the measure decreases in value, the corresponding input has little effect in deter-
mining the performance, meaning that even a large change in the design parameter
(decrease in preference/desirability) produces a small change in output. The output
of the y-level measure is loosely analogous to sensitivity, but applies to the imprecise
parameters, and represents the entire range of the parameters, not a single operating
point. Moreover, this sensitivity is weighted by the designer’s desires, as identified in
the input parameters’ fuzzy preference functions.

Table 2.3 lists the 7-level results for the frame configuration. While much
information can be extracted from these data, only two important aspects will be
discussed. First, analyzing the v-level measures for o, the input parameters t and
w4p are obviously the most important parameters that must be changed from their
peak preference values to meet the FR. W and [ contribute very little when compared
with ¢ and wgp. Because [ is relatively unimportant with respect to o and the other
performance parameters, it may be set to a representative or preferred value, resulting
in a simplification of the frame design. Next, considering Fg and P.,, W and ¢ are by
far the most important design parameters, respectively. In terms of Fig, this result
verifies that the contributions of the weights of the frame members will be small.

Further analysis also shows that due to the small y-level measure (0.0135) for ¢ with



50
respect to Fg, Fig is nearly uncoupled from ¢. Similarly, P., is uncoupled from W.

2.3.5 Discussion

This example shows how imprecision in the design parameters can be handled, how
the designer can move forward and backward through the design calculations to de-
termine interactions of the DPs for the performance parameters, and how the 7-level
measure can be used to determine information relative to the importance of the de-
sign parameters. Conclusions can be drawn from the results as to the ability of the
configuration to satisfactorily meet the performance criteria (including consideration
of the designer’s desires), and if the configuration should be carried on to the next
stage in the design process.

This design problem has been a simple example, with none of the complica-
tions that normally beset engineering designers, such as alternative configurations
or technologies to compare; poor knowledge of the relationships between functional
requirements and design parameters; and intangible requirements and specifications,
such as aesthetics. The example does, however, demonstrate an enhanced capability
for the designer to determine acceptable DP values, or ranges, simply and quickly
by use of imprecise computations. Examples, which are considerably more complex
in terms of comparing different design alternatives and in terms of including other

uncertainty effects, in addition to imprecision, will be presented in later chapters.



Performance Parameters

DPs | o Fpg P.,

W 0.130 | 1.0 0.0
wyp | 1.0 0.0234 | 0.342
) 0.130 | 0.00338 | 0.178

t 0.910 1 0.0135 | 1.0

Table 2.3: «y-Level Measure Results: Frame Configuration.
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Chapter 3

Discrete and Multiple Imprecision

3.1 Introduction

Chapter 2 describes a method for representing and manipulating the design impreci-
sion in the input design parameters. The intrinsic assumptions used in the method
are: (1) the design parameters will be continuous over the full range of possible
choices, and (2) the imprecision for a given DP will come from one source. While the
use of these assumptions provides a straightforward means for presenting the method,
any realistic design problem will violate at least one if not both of them. This chap-
ter discusses an extension of the method to the domain of discrete design parameters
and multiple-source imprecision for a given design parameter. It will be shown that
each of these domains conforms to the interpretation and computational procedures

outlined in Chapter 2.

3.2 Discrete Design Parameters

Discrete design parameters (i.e., finite sets of mutually exclusive choices) are often
present in engineering design disciplines; decision making with discrete data is a regu-
lar occurrence. Examples of discrete DPs range from variables associated with certain

types of materials to parameters describing the geometric dimensions of mechanical
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components to the selection of electric motors from a catalog. As an example, there
may exist only a finite number of alternatives for the choice of metals associated with
a structure’s tensile strength design parameter. Likewise, the choice for size, shape,
and threading of the bolts for a subsystem bracket design may include only those bolts
commercially available from one vendor. Having the ability to make decisions with
such variables is a necessity in any design methodology, especially when considering
the large dimensionality of discrete choices in preliminary design. (Many researchers
have worked on discrete parameters, especially in optimization [4].)

This section will build on the information contained in Chapter 2, and extend
the method for representing and manipulating imprecision to the discrete domain.
As shown in Appendix A and in [33], the fuzzy calculus for discrete parameters is
well developed. In fact, the extended operations discussed in Section 2.2.1 are essen-
tially equivalent for both the continuous and discrete functions. However, because of
the interpretation imposed on the imprecise design parameters, and because of the
computational scheme (the extended FWA algorithm) used, the application of the
mathematics is not the same for the discrete and continuous case. The method for
representing a discrete parameter versus its continuous counterpart is the key to the

problem.

3.2.1 Two Representations for Discrete DPs

Two distinct cases exist for representing, interpreting, and manipulating discrete-
imprecise design parameters. Consider the case, for example, of two discrete design
parameters, u; and Uz, which have values in the input set of real numbers shown in
Figure 3.1. Because the computational technique requires a continuous representation

at all values of preference, two possible representations can be constructed from “step”
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type functions, illustrated in Figures 3.2 and 3.3. The first discrete representation,
Figure 3.2, is constructed, from the left boundary of the input range to the most
preferred input, by first stepping vertically to the next level of preference where there
exists a value of the dgsign parameter. A horizontal line is then extended to the input
with the higher preference level. The process is reversed for input design parameter
values ranging from the most preferred value to the right boundary.

The second possible representation scheme, Figure 3.3, is constructed in a
similar fashion to Representation A. However, in this case, the step function starts
with the horizontal move, followed by the vertical step to the next level of preference
(from the left boundary to the most preferred input). Once again, the process isA
reversed to the right of the most preferred design parameter input.

To determine which representation (A or B) will conform to the interpretation
outlined in Section 2.1.1 and Section 2.2.1.1, consider an example calculation z =

f(uy, up), where u; and u, are given by Figure 3.1, and
z = u O us.

Figure 3.4 shows the results of this calculation. Representation A for u; and u, was
used to determine the output curve shown on the top of Figure 3.4. Representation B
was used to arrive at the bottom curve in the figure. Notice that no distinct levels in
the output range are realizable for the case of Representation A, except for the end
points. This implies that no information as to which input parameters combined to
give a value within the output range can be obtained.

When considering Representation B, on the other hand, many distinct levels
are present on the output curve for z. In fact, given all possible values of z as listed in
Table 3.1, the curve clearly conforms to the interpretation outlined in Section 2.2.1.1.

That is, for simplicity, a given output value z may be obtained by decreasing at least
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Discrete Parameters u_1 and u_2

3 A

S ]

- X

o ]

b A ]

b ] )

5 ! . 7N

I : : I

X L 1 N

- Q

™ 1

3 t

e ]

b [0 :

[ ! : N

L . ! :

[ N ! ' !
0.0 1.0 2.0 3.0 4.0 5.0

Discrete Design Parameters u_1 and u_2

a Parameter u_1
o Parameteru_2

Figure 3.1: Discrete Parameters, u; and u,.



Preference Function, alpha

Preterence Function, alpha

1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.20
1.00
0.80
0.60
0.40
0.20
0.00

56

Discrete Parameter Representation A
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Discrete Parameter Representation B
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one input parameter to the corresponding preference value on the output curve. For
example, in Figure 3.4, the preference value for z = 4 is @, = 0.6. Table 3.1 confirms
that at least one design parameter must decrease to «a,, = 0.6 (or lower) to achieve
this value of 2.

From these results, Representation B is the choice for representing discrete
design parameters. To demonstrate this further, the same simple multiplication op-
eration as above will be used for z. However, in this case, more discrete choices for
each parameter u; are available. Refer to the new design parameters as us and u,.
Figures 3.5 and 3.6 show the input preference functions; Figure 3.7 shows the corre-
sponding outputs for each representation. Notice that in the output range z = 6 to
z = 20 for Representation A, the values of the inputs contributing to a particular z
value cannot be discerned. This is not the case for Representation B, confirming once
again, by induction, that Representation B conforms better to the interpretation used

for imprecision.

3.2.2 Discrete Frame Example

The frame example presented in Chapter 2 will be used to demonstrate the application
of the discrete representation shown above. Continuous preference functions were used
in Chapter 2 to represent the design parameters: [, wyp, t, and W. Assume, for this
case, that the design parameters [, wag, and t have the same possible input ranges
and the same general preference functions, but with only discrete points available.
Assume also that the design parameter W is a constant for this case, W = 20kN.
Figure 3.8 shows the discrete preference functions for the three design parameters.
The result of the bending stress calculation (Equation 2.7 using the extended FWA

algorithm) is provided in Figure 3.9. Notice from Figure 3.9 that the results are very
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Discrete Parameter Representation A, More Choices
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Discrete Parameter Representation B, More Choices
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Preference Output for (z = u_3 * u_4)
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similar to those in Chapter 2, with the exception that W is a constant.

3.2.3 Combining Continuous and Discrete DPs; The v Level Measure

In the general case for a design alternative, there will exist both discrete and contin-
uous design parameters. A method is therefore required to combine these two input
types using the computation technique described in Chapter 2. The multiplication
example (z = u; © u) discussed in the previous section will illustrate such a method.

Figure 3.10 shows the preference functions, one discrete and one continuous,
for u; and u;. A modified form of the extended FWA algorithm can be applied to
the expression for z to determine the output function. Figure 3.11 shows the results
at a 0.1 resolution of preference. Figure 3.12 gives the same results for a higher
resolution (0.05) and lower resolution (0.2). Notice in the figures that discontinuity
exists, as expected, due to the discrete design parameter. To capture the discontinuity
effects, the application of the calculation technique must use a-cuts less than the o
resolution desired. This means, for example, that if the preference for each output
value is desired within 0.1, a-cuts every 0.05 must be applied within each discrete
value of a design parameter, to achieve the desired resolution. Appendix C discusses
the modification to the extended FWA needed to accomplish this task.

To further demonstrate the technique for combining continuous and discrete
design parameters, consider the frame example once again. Instead of the input
load W remaining as a constant, W will now be considered as having a continuous
representation as shown in Figure 2.7. The other design parameters, /, ¢, and wyp,
will continue to be represented by the input functions of Figure 3.8. Applying the
extended FWA algorithm, the resulting bending stress o preference function is as

shown in Figure 3.13. Theresults are very similar to those in Figure 2.8, a requirement
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Design Parameters: |, t, w

0.0 0.5 1.0 1.5 20 25 3.0 35 40 45 5.0
! <>__L_L*
3 >

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Design Parameters: | (top), t (middle), w_AB (bottom) [meters]
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Discrete Case: Maximum Bending Stress
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Figure 3.9: Discrete Case: Maximum Bending Stress o.
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of the technique. Moreover, the v-level measures (Table 3.2) corresponding to this
combined continuous and discrete example show little difference to those listed in

Table 2.3.

3.3 Multiple-Source Imprecision

Chapter 2 discussed the interpretation of imprecision and design parameters in terms
of single-source imprecision. That is, the preference function for a given design pa-
rameter depends only on subjective or objective data from one variable. For example,
Figure 2.2 shows a preference function for tensile strength that depends only on cost
for a given material. Single-source imprecision of this type will not always be the
case. The imprecision for a DP may instead be associated with two or more sources.
In the case of the tensile strength design parameter, the designer might not only
wish to capture the imprecision due to cost, but also due to the various corrosive
characteristics of the materials being used, for example. This section will present a

straightforward method for combining multiple-source imprecision.

3.3.1 Combining Multiple Imprecision

It is unrealistic to use, simultaneously, multiple preference functions for one design
variable. Because the performance parameter expression is a one-to-one mapping of
design parameters (in a set fashion), the outcome of a calculation with multiple pref-
erence curves would, in general, not be unique. Thus, the preference functions should
be combined in some fashion, such that the designer’s information is maintained.
Many operations come to mind when considering the combination of preference

functions. The most fundamental include the union and intersection set theoretic
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Output z | ay, | oy,
2 0.5 {06
3 0.5 1.0
4 1.0 | 0.6
4 05 |04
6 1.0 | 1.0
6 0.3 | 0.6
8 1.0 |04
9 03 [ 1.0
12 03 {04

Table 3.1: Possible z Values for Combinations of u; and u,.

Performance Parameter
DPs || o
w 0.140
wap || 1.0
l 0.124
t 0.821

Table 3.2: v-Level Measure Results: Discrete/Continuous DPs for Frame.
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Discrete/Continuous Case: u_1 andu_2
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Discrete/Continuous Case: (z=u_1*u_2)
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Discrete/Continuous Case: z (Higher and Lower Resolution)
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Discrete/Continuous Case: Maximum Bending Stress
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operations:

Uy (8 = @y [ @y (3.1)
Uy Jua (@) = @ U @ (3.2)

Yz € U, where U is universe of real numbers possible for u; and u,. Intersection and
union operations are context and situation dependent. The most common intersection

operations are:

Uy (s (2) = @uy N\ @y, 0r (3.3)
aul ﬂu;(‘r) = Qyy * Qg (34)

where A denotes the min operator, and Equation 3.4 is the algebraic product. Like-

wise, the most common union operators are:

Uy (@) = @y V @y, or (3.5)

au1 ng(x) = Qy + Qyy = Qg * Uy, (36)

where V denotes the max operator and Equation 3.6 is the algebraic sum.

An evaluation of these operations in the context of the interpretation of im-
precision presented in Chapter 2 shows that the union operation can be discarded
immediately. When the union operation is applied to two preference functions for the
same design parameter, the resulting support will envelope each and every value of
the design parameter having a preference greater than zero in either of the original
preference functions. This violates the interpretation of preference. If a value having
preference of zero in one preference function does not correspond to a zero preference
in another preference function, the union operator (in either the form of Equation 3.5
or of Equation 3.6) will include the design value in the resulting function. But a

design value with zero preference in any of the preference sources implies that the
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designer does not choose to use the value in any way. An operation used to combine
multiple preferences should capture this principle.

The intersection operation, when applied to two preference functions, includes
only design values in the resulting support that have preferences greater than zero
in both of the original preference functions. Given that the intersection satisfies this
principle, Equation 3.3 and Equation 3.4 must be compared to determine which is
appropriate for the case at hand. The algebraic product (Equation 3.4) combines the
preferences for two design preference functions such that the output preference for
a given value is less than both of the originals. Essentially, this operation collapses
the preference functions toward zero. For many preference functions for the same
design variable and subsequent combinations, the collapsing effect may be dangerous
because the preference values of a design parameter will not be distinguishable, i.e.,
oy, (z) =0 Vz.

The intersection operation given by Equation 3.3, on the other hand, does not
result in a collapsing of the combined preference function. The min operator simply
“selects” the minimum preference for each value of the design parameter. Such a
combination makes sense when considering the imprecision interpretation of Chap-
ter 2. The preference function associated with a design parameter denotes a range of
acceptability of a design parameter value from completely unacceptable (&« = 0.0)
to fully acceptable (& = 1.0). By operating with the least preference from multiple-
source imprecision, the acceptability of a value for a design parameter may always
be justified in terms of the worst case scenario. Furthermore, the preference values
resulting from a combination of the form of Equation 3.3 may always be traced back
to the original preference curve contributing the value. This is useful to determine

the effect of making changes to the preference functions during different stages of the



design process.

Thus, the intersection operation given by Equation 3.3 will be used in this
methodology to combine multiple-source imprecision. Note that a combined prefer-
ence for a design parameter u; must be extended vertically to a preference of one
(1.0) because the operation may, in general, cause a non-normal curve. This exten-
sion, or normality condition, is required because the computation technique outlined
in Chapter 2 requires a value (or interval) for a design parameter at each a-cut. The
interpretation of this extension is straightforward. Because the combined preference
curve for a design parameter u; may have a peak less than one (1.0), no value in the
input range is fully acceptable. By extending the peak of the combination vertically
to a preference of one (1.0), the most acceptable value in the input range is used for
calculations at higher a-cut levels. The backward path may be used to determine the
preference values of the design parameters contributing to any value on the output

performance curve.

3.4 Remarks on the Extensions

The problems addressed in this chapter, i.e., discreteness and multiple-source impre-
cision, are often a source of high dimensionality in engineering design, especially when
contemplating exhaustive design techniques that explore the entire design space. Such
problems can often be intractable (combinatorially) for even the most basic analy-
ses. By extending the imprecision problem approach (Chapter 2) to the discrete and
multiple-source domains, the designer is not provided with all possible information
to evaluate the alternatives; however, worst-case information and evaluations of sets
of possible choices are easily presented and computed. The extensions discussed in

this chapter require very little modification to the approach described in Chapter 2,
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and are in fact not fundamental in the understanding of the model of representing
and manipulating imprecision. But when dealing with the pragmatics of practical
design, the ability to reasonably represent discreteness and multiple imprecision is a

necessity.



Chapter 4

An Application of the “Semi-Automated”

Approach to the Imprecision Problem

4.1 A Brake Design Example

A brake design will illustrate the computational approach of Chapter 2 for a problem
with realistic design complexities, i.e., geometric and algebraic non-linearities in the
performance parameter expressions, along with a need to simultaneously evaluate

multiple (alternative) configurations.

4.1.1 Brake Example Nomenclature

a = distance from center of drum brake to pivot

b = face width of frictional material

c = perpendicular distance, hinge to actuating force
h = convection coefficient

k = conductivity

Da = mazimum operating pressure of material

Pmaz = mazimum pressure for disk brake, uniform wear
Pp = pressure for disk brake, uniform pressure

r = {nner drum brake radius



Rwheel

Tambient

-3

-3

outer radius of disk brake

inner radius of disk brake

time

factored common expression to simplify formulas
factored common expression to simplify formulas
specific heat

actuating force

actuating force for drum brake

actuating force for disk brake, uniform pressure
actuating force for disk brake, uniform wear
force on one wheel

z-component of actuating force

y-component of actuating force

mass moment of inertia of the drum system
width dimension of drum brake

width dimension of disk brake

mass of brake parts

moment due to frictional forces

moment due to normal forces

mass of vehicle

outer radius of drum brake

radius of wheel

torque for drum brake

ambient temperature

temperature rise



Ty = temperature decay profile

T, = torque for disk brake, uniform pressure

T, = torque for disk brake, uniform wear

V. = welocity of vehicle

i = coefficient of friction

w = angular velocity of the drum brake

p = density of brake drum material

0, = angle of maz pressure measured from pivot
01 = angle to beginning of frictional material

0, = angle to end of frictional material

= (tilde) denotes a preference function

4.1.2 The Problem Statement

Brakes perform the action of transforming the energy of a moving vehicle into heat
(usually by use of friction) over an interval of time. Many factors must be considered
when designing such devices. Of primary importance is the ability of the device
to avoid destructive temperature rises while still dissipating wide ranges of output
power. Figure 4.1 schematically represents a brake system, where the drum has a
rotational speed of w and the ground symbol on the brake indicates no rotation.
The problem here is to design a braking system for a vehicle that will ade-
quately stop the vehicle for a certain range of speeds and that will not degrade appre-
ciably (‘fade’ due to temperature rise) over time. Two possible design configurations
for the problem (Figures 4.2 and 4.3) will be considered. The first is an internally
actuated, pivoted rim brake (a drum brake), where only one shoe has been shown in

the figure. The other shoe would be placed in a symmetrical arrangement with the
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Figure 4.1: Brake Problem.
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Disk Brake Configuration
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Figure 4.3 Disk Brake System.
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one shown. Using, in part, the mathematical formulation of Shigley and Mitchell [67],
four primary performance parameters can be chosen for the drum brake: actuating
force F,, transmitted torque 7, temperature rise T, and temperature decay profile

(proportional to heat rejection) Ty. In equation form, these PPs can be expressed as:

My —
F, = M, (4.1)
¢
_ ppabr? B
T = i (cosf; — cosb,), (4.2)
E
T, = o (4.3)

- 2r Lyt
T,=T, - (Tre (P %swm). (4.4)

In order to completely describe the brake drum problem, the expressions for

total system energy E, A, B, My, M,, I;, and M, must be given:

E=inw+ imve (4.5)

2 2

1, . 2 .2
A= §(sm g, — sin®#8;), (4.6)
6 sin 20 0 sin 26
B=(Z W%y & _ st (47)
Up.br a, . .

M, = m;—[r(cos 6, — cosby) — §(s1n2 f; — sin®6,)], (4.8)

__ Pabra
My = nd. B, (4.9)
L= 2 My (R + 1), (4.10)
My=mpL, (R} — ). (4.11)

The design parameters for the problem are as follows: the pivot distance a;
the radius r; the material angles 8, and 6,; the coefficient of friction u; the material

pressure p,; the actuating force distance c; the face width b; the angular velocity w; the
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specific heat C; the vehicle mass M,; the outer drum radius R,; the drum width L,
the drum material conductivity k; and the coefficient of convection k. Note that the
velocity of the vehicle V' is not an independent DP because it depends directly on w.
The imprecision due to the “constant” p is viewed as negligible for this design. If
desired, p can be included as a DP (instead of a constant) to verify this assumption.

The second configuration to be considered is a disk brake system, comprising
two simultaneously actuated brake pads that close on both sides of the rotating
disk. The same PPs exist for the disk configuration as for the drum configuration.
However, in this case, the actuating force and torque for the system depend on an
assumption: uniform wear or uniform pressure. Denoting the actuating force and
torque for uniform wear as F,, and T,, and similarly denoting these properties for

uniform pressure as F, and T}, the governing PPs can be expressed as:

Fy = 27 prazri(ro — 13), (4.12)
Fyp = mpy(rs — 1), (4.13)
Tw = ”Tupma:z:ri(rg — T‘?), (414)
2
T, = Srupy(r3 1), (4.15)
_h21vr2
Ty=T, — (T,e W“) . (4.16)

The energy expression and temperature rise performance parameter are the same
as the drum brake configuration, except the expression for the mass of the brake
parts M, differs:

My = wpriL,,. (4.17)

The corresponding DPs for the disk brake problem are: maximum pressure for

uniform wear p,,..; outer radius of disk r,; inner point of contact of brake shoe r;
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coefficient of friction p; pressure for uniform pressure p,; specific heat C; convection

coefficient h; width of disk L,;; angular velocity w; and vehicle mass M,,.

4.1.3 Performance Specifications

Given the four PPs for each brake configuration as above, preliminary performance
criteria can be specified. For example, the designer might associate a limiting value
(functional requirement) F" for the actuating force F,, F,, or F,. Such a limiting
value represents a maximum actuating force that can be used in the design, i.e.,

F must be less than or equal to F” where:

F < F° = 250 kN.

Consider the next PP, torque (7, 7,, or 7,). Instead of a maximum as with the
actuating force, the torque must meet a minimum limit for the design. Specifically,
the frictional torque developed by the brake system must be matched by the frictional
torque developed between the road and the tires. A common value to use for the
torque on the brake is three-fourths (3/4) of the average force (weight) on one of the
wheels multiplied by the radius of the wheel. The resulting minimum performance

torque for the brake design can be expressed as:

T 2 T = %thedXRwheel kN'm’

where Fyh.e1 equals the force on the wheel, Ryse.; equals the wheel radius. Notice that
a single numerical FR value does not result for 7. Because 7" depends on the force
on one wheel which in turn depends on the mass of the vehicle M,, the functional
requirement 77 is a preference curve as a function of the vehicle mass. (The radius

of the wheel is assumed to be specified as a crisp constant for the design.) After the
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input design parameter M, has been determined, 7" can be calculated and updated
if M, subsequently changes.

A specification for the maximum temperature rise can be obtained from em-
pirical data:

Tr < T: = (260—Tambient) °C.

The performance parameter Ty does not have a single FR value or a preference
function representation. A qualitative specification (denoted by T']) must therefore be
used: mazimize heat dissipation to minimize the possibility of destructive temperatures
for the frictional material.

These four performance specifications, comprised of two single values, one.
preference function, and one qualitative statement, form the set of FRs for the design
or functional requirement space (FRS). This FRS will be used to (1) rate each design
configuration individually according to performance, (2) compare the alternatives to
determine major differences, and (3) evaluate whether each configuration should be

carried to the next stage in the design process.

4.1.4 Input Design Parameters

Triangular functions have been used for the input fuzzy parameters in both the drum
brake and disk brake configurations. Table 4.1 lists the necessary data for constructing
the brake design’s input parameters, where the three data values for each DP have
the following meaning: left-extreme value for preference of zero (0), peak value for
preference of one (1), and right-extreme value for preference of zero (0). Various
interpretations exist by which the engineer can assign the preference functions, i.e.,
the preference functions can be constructed from objective or subjective data as

discussed in Chapter 2. The input parameter w is a special case. The preference
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DPs (units) |a=0 |a=1 |a=0

a (m) 0.010 |0.020 |0.030
b (m) 0.025 |0.050 |0.075
[ 0.10 |0.30 |0.50
Pa (kPa) 300.0 | 1100.0 | 1900.0
r (m) 0.10 |0.15 |0.20
R; (m) 0.005 |0.015 |0.030
6, (deg.) 0.0 0.0 30.0
8, (deg.) 90.0 |120.0 |150.0

k(W/m°C) |500 |650 |80.0

h (W/m?°C) | 120.0 |150.0 |180.0
M, (kg) 200.0 | 900.0 | 1600.0
L, (m) 0.025 |0.060 |0.100
C (J/kg°C) |400.0 |500.0 |900.0

Pmaz (kPa) 300.0 |1100.0 | 1900.0

pp (kPa) 300.0 |{1100.0 | 1900.0
T, (m) 0.10 0.15 0.20
r; (m) 0.000 |0.025 | 0.040
L, (m) 0.0125 { 0.0250 | 0.0375

Table 4.1: Brake Example: Fuzzy Design Parameter Data.
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value associated with each design parameter value of the support of & (the range of
inputs making up the set 0.0 to 30.0 rps) represents the complete range of speeds the
brake is being designed to meet. The corresponding preference may be explained as
follows. The peak of the preference function with preference of one (1) represents the
speed that the brake design should adequately handle (design speed: w = 15.0 rps).
The need for the design to meet values of speed greater than 15 rps is less important,
hence for support values to the right of the input preference function’s peak, the
preference decreases. To the left of the peak, the preference takes on smaller values
as the design speed w decreases from w = 15 rps, indicating a lower desirability of a
brake system designed to handle only those speeds.

Other preference functions with slightly different interpretations could have
been used for the input w parameter. For example, instead of a single peak at
w = 15 rps, an interval of adequate or required speeds could have been specified
(with preference of one (1)), resulting in a trapezoidal function.

The other input parameters have similar interpretations to that presented in

Chapter 2.

4.1.5 Output Performance Parameters

With the input parameters specified, the outputs of the PPs can be determined using
the performance parameter equations listed earlier, and the FWA implementation
procedure discussed in Chapter 2. The schematic representations of the fuzzy outputs

for both the drum and disk brake alternatives are in Figures 4.4 through 4.18.
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4.1.5.1 Drum Brake Output Performance Parameters

Using the fuzzy outputs for the drum brake configuration (Figures 4.4 through 4.9),
the performance parameters can be rated against the performance specifications, F7,
T7,T7, and T;. Figure 4.4 represents the fuzzy output F, for the drum brake actuat-
ing force performance parameter, from Equation 4.1. The value of F, for preference
of one (ap = 1) is F, = 1.94 kN. Comparing this result with F", ﬁa(atanz:l) is less
than F” by at least a factor of ten. The imprecision in the actuating force output
(i.e., the change of F, with respect to preference ag, ) is very small when compared to
the difference of F* and F a(atag =1)- In fact, the actuating force for the drum brake
does not exceed F" until o = 0.2, implying that a change in any, some, or all of
the input parameters with preferences greater than or equal to 0.2 for one side of the
preference function will still satisfy F". Thus, the drum brake configuration satisfies
the actuating force functional requirement for the most confident (or desired) values
of the input DPs, and input values with preferences far off the peaks.

The negative force results found in Figure 4.4 must also be considered. In
this case, a geometrical dependency inherent in the problem, i.e., the relationship
between the input parameter a and the radius r, can produce negative actuating
forces. Although such negative force values are perfectly correct physically, control
problems arise of lifting the shoe from the drum with F, instead of applying the shoe
to the drum with this force. These output results for F, show that care must be taken
when using one or more input parameters with preference less than 0.3.

The fuzzy output for the torque performance parameter 7, from Equation 4.2,
is shown in Figure 4.5. Note the large range (typical in preliminary engineering design)
for the performance parameter 7 (> 10°) that results from reasonable ranges for the

five design parameters (Table 4.1). This demonstrates the need for a computationally
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efficient method for this stage of the design process.

Before this output can be compared with the performance specification, 7" must
be calculated using the fuzzy input parameter M,. Figure 4.10 shows the result. (The
right side of the curve in Figure 4.10 corresponds to increasing values of M,, while
the left side corresponds to the converse.) The value of 7" for preference of one is
7" = 0.579 kN-m. Comparing this value with the fuzzy output for 7, ’]?ata?:l) is
less than 77; thus the torque output for the most confident inputs does not satisfy
the FR. Values to the right of the peak in Figure 4.5 are found to satisfy 7"; in fact,
for a3 = 0.9, 7 = 0.736 kN-m. Checking the fuzzy performance specification for 7"
in Figure 4.10, it is found that if M, is the parameter that changes, the correspond-
ing 77 to the right of the peak is satisfied. The output torque results for the drum
brake configuration demonstrate that further analysis must be performed to satisfy
the functional requirements. Specifically, for the most confident input parameter val-
ues, and values with preference off the peaks, the torque requirement might be barely
satisfied or not at all.

The temperature rise output set for the drum brake configuration is in Fig-
ure 4.6. Using a constant ambient temperature of T, ppien: = 24°C, the correspond-
ing performance specification for temperature rise is 77 = 236°C. As expected for
any braking system, a complete stop from the design speed of w = 15 rps (or ap-
proximately 35 m/s) produces a temperature rise, Tr(amfrﬂ) = 35°C, which falls
well within the functional requirement 77. It can be inferred that a few stops in
succession at this speed will also result in an accumulative temperature rise that
meets 7. However, for many multiple braking actions in succession, a nominal value
of T, = 35°C for each action will accumulate to temperatures approaching the perfor-

mance requirement. Moreover, considering the output values for 7., a small change
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in af, on the right portion of the curve (say aj = 0.7) results in temperature rises
that quickly approach the FR in a few stops. This means that the imprecision of T,
is very dramatic for increasing values of T, to the right of the peak. While all values
to the left of the peak of T. satisfy T7, the peak of 7. and values to the right demon-
strate that a small decrease in preference of any or all of the inputs might produce
undesired design results. Temperature rise is therefore a critical performance param-
eter, requiring special attention in later stages of the design with respect to the input
parameters.

Equation 4.4 represents the PPE for the drum brake’s temperature decay pro-
file PP. Before analyzing the output results for T; with respect to T, the form of |
Equation 4.4 warrants some explanation. The units of T, are temperature (°C), where
the rate of change is proportional to the heat rejection or dissipation of the drum
brake. An alternative expression for heat dissipation is the time constant associated
with the exponential term in Equation 4.4. Such an expression becomes difficult to
evaluate, however, with respect to the performance specification T'J, which is depen-
dent on the temperature rise T, of the brake components. Equation 4.4, on the other
hand, takes into account the imprecision inherent in 7, as an output parameter of
the design, and provides a convenient comparison to T7.

Figure 4.7 contains the output set for the temperature decay profile T} for a
time of t = 1 sec and for a fuzzy input 7, with peak at 7. = 60°C and right and
left boundaries of 7, = 175°C and T, = 0°C, respectively. At af, = 1.0, the output
parameter value is Ty = 0.016°C. Figure 4.8 contains the output T after t = 60 sec,
where Td(atafdzl) = 0.96°C. These results demonstrate that the temperature decay
is approximately linear for the time interval being considered (within 60 seconds).

The resultant values for T; where ar, = 1 also show that the temperature decay is
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very slow for the most confident inputs. Analyzing Figures 4.7 and 4.8, it appears
that much greater (by an order of magnitude) temperature rejection can be obtained
by choosing inputs with small preference; however, these output values are not only
dependent on the input design parameters under consideration (L, R, r, k, h,
and C) but also on the output performance parameter T,. Only the DPs can be
altered to obtain required performance, not PPs such as T,. Thus, to determine how
the T; output set varies for different DPs, T, must be set to a representative crisp
value (e.g., T, = 60°C), and the output set T; must be recalculated using this value.
Figure 4.9 shows the result of such a calculation for time ¢t = 60 sec. Notice that when
compared with Figure 4.8, greater temperature decay occurs as T, increases. Notice
further that the imprecision due to 7, was the major contributor to the imprecision
in Ty in Figure 4.8, implying that any change of any or all of the DPs will not
significantly change the amount of heat dissipation.

Relating this discussion to T, the heat rejection of the drum brake does not
compare well to the possible temperature rise values obtained in the system. Because
of the small imprecision produced by changing one or many of the input design
parameters, very little can be done to maximize the heat dissipation beyond that
given by the peak of the T; output curve. The v-level measure (discussed in the next

section) will provide further evaluation of the T performance specification.

4.1.5.2 Disk Brake Output Performance Parameters

The fuzzy output results for the disk brake configuration are in Figures 4.11 through 4.18.
Our approach will show the ease by which the different assumptions of uniform wear
or uniform pressure can be simultaneously evaluated for the disk configuration. An

alternative means of performing this evaluation would be to classify each assumption
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case as a separate configuration.

The actuating force parameters, with given PPEs (Equations 4.12 and 4.13),
have output sets shown in Figures 4.11 and 4.12. The peaks of the curves are
Fw(amfwﬂ) = 21.6 kN and Fp(ataﬁ}’:l) = 23.8 kN, respectively. When compared
to F'" = 25 kN, each actuating force value satisfies the FR. The uniform wear case
performs slightly better than uniform pressure for small preference change to the right
of the preference function’s peaks. However, both cases have an imprecision in the
output on the order of the difference between F™ and the peak actuating force value.
Thus the actuating force performance parameter for either uniform wear or uniform
pressure nominally satisfy the performance specification (at, and to the left of, the
peak); yet, a small decrease in preference of one or more of the inputs may result in
inadmissible output values.

The output sets 7, and 7, are shown in Figures 4.13 and 4.14. As in the
drum brake configuration, Figure 4.10 represents the fuzzy performance specification
for torque. For preference equal to one (1), 77 = 0.579 kN-m, 7,, = 0.890 kN-m,
and 7, = 0.983 kN-m. A comparison of 7, and 7, to 7" shows that both uniform
wear and uniform pressure for the disk brake meet the torque design requirement. For
small changes of the input parameters (except M,) to the left of the output torques’
peaks (e.g., a decrease in preference to 0.8), the values for 7,, and 7, still satisfy the
performance criteria. If the design parameter M, changes preference proportionally
to any other input parameter, the output torque values for uniform wear and uniform
pressure will always meet the performance specification. Overall, the uniform pressure
case performs better than uniform wear for torque considerations. Even though both
cases have possible combinations of the input parameters not meeting the performance

specification, satisfactory solutions do exist. Special care must be taken in adjusting
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M,.

Using Figure 4.15, the disk brake configuration satisfies the performance speci-
fication for temperature rise at the peak value (T’ (atag =1) = 17.7°C). For decreasing
preference to the right of the peak, large changes in preference (e.g., a7 = 0.5) for
any input parameter still satisfy 7). For repeated braking episodes, the results are
similar to the drum brake system. Due to the large imprecision in 7}, a decrease
in preference of any of the inputs to 0.8 or below may result in 7T, values that may
accumulate for successive braking actions, such that they approach the performance
criteria, 7). Therefore, T, for the disk brake configuration is once again a critical
performance parameter, but not as critical as in the case of the drum brake be-
cause the values of T, j;,x about the peak are smaller by a factor of two than T} 4rum
(e.9., Traisk = 17.7°C compared with T} 4rum = 35.3°C).

Figures 4.16 and 4.17 contain the output set for the temperature decay pro-
file T for times of t = 1 sec and ¢t = 60 sec. The peak value for Figure 4.16 cor-
responds to Td(atafd=l) = 0.11°C, whereas the peak value for Figure 4.3 occurs at
Td(at ap,=1) = 6.0°C. These results illustrate that the slow rate of temperature decay
is generally similar to the drum brake configuration. Yet, for output values about the
peak of T, the magnitude of the temperature decay is significantly higher than the
corresponding values for the drum brake.

To obtain a measure of the imprecision of the temperature decay in terms of the
DPs (i.e., excluding T,), T, must be set to a crisp value as shown earlier for the drum
brake. This is because T, is a performance parameter, not a design parameter, and the
designer cannot select values for T,. The resultant calculation, using constant 7, and
fuzzy design parameters, is in Figure 4.18. Once again, T, was the major contributor

to the overall imprecision in Ty (comparing Figures 4.17 and 4.18), but the output
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imprecision for the case of constant 7, is still significant, implying that a change in
one or more of the DPs will result in a large change of temperature decay. In terms
of the performance criteria T, the disk brake system dissipates heat to a greater
extent than the results found for the drum brake system. Due to the possibility
of large imprecision in the temperature decay profile for a corresponding change in
the disk brake DPs, heat dissipation may be maximized beyond the values centered
about the peak of the T output curve. The following section (7-level measure) will
provide information on discerning which of the input parameters will bias such a

maximization.

4.1.6 Applying the y-Level Measure

The 7-level measure can be used to provide the engineer with qualitative information
concerning the role of the input parameters in the brake design. The process of using
and algorithmically implementing the v-level measure is in Chapter 2. Tables 4.2, 4.3,
and 4.4 list normalized +-level measures for the brake design.

When an input is not related to a performance parameter, the numerical mea-
sure produces a zero (0.0). As the normalized numerical measure increases in value,
the corresponding input parameter has a greater qualitative importance in determin-
ing the particular performance parameter in question, meaning that a comparatively
small change in the input parameter produces a large change in the output. The
y-level measure can be used to order the input parameters according to importance.
Further, if one input parameter has a significantly higher v-level measure for an out-
put set, when compared to another input parameter (where the second parameter’s
measure is not zero), the designer can fix the value of the second parameter without

affecting performance.
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Performance Parameters

DPs | F, |T E T, | T4

a 0.21 { 0.0 |0.0 0.0 |0.0
r 1.0 1092 {0.0 0.44 | 0.0
6, 0.30 { 0.04 | 0.0 0.0 {0.0
0, 0.43 | 0.41 | 0.0 0.0 |0.0
7 0.77 1 0.92 | 0.0 0.0 0.0
Pa 094 110 |0.0 0.0 0.0
c 0.93 |0.0 0.0 0.0 0.0
b 0.64 | 0.0 |0.0 0.0 (0.0

0.0 {00 |1.0 1.0 {0.0

Q

0.0 {0.0 0.0 0.19 | 0.19

s

0.0 {00 |0.39 |0.39 0.0
R, 0.0 |0.0 |0.001]0.210.19

L, 0.0 {0.0 0.0 0.36 | 0.0

k 0.0 [0.0 0.0 0.0 |0.004
h 0.0 100 |0.0 0.0 }0.09
T, 0.0 (0.0 0.0 1.0 {1.0

Table 4.2: ~-level Measure Results for Drum Brake.
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4.1.6.1 Drum Brake ~v-Level Measure

Table 4.2 lists the results of the v-level measure for the drum brake configuration as
applied to each input parameter with respect to each output set.

In the case of the energy expression F, the v-level measure indicates that the
only significant input parameters for energy considerations are the mass of the vehicle
and the angular velocity w. This makes perfect sense when examining the terms of
Equation 4.5. When this equation was derived, all contributing factors to the energy
were taken into account. The left portion of the equation contains the energy term
due to the brake parts, while the right portion contains the contribution due to the
kinetic energy of the vehicle. The energy of the brake parts will be insignificant when
compared to the vehicle’s kinetic energy. The v-level measure indicates this result.

Table 4.2 lists the «y-level measure results for the torque performance param-
eter 7 in the second column. The design parameters r, u, and p, are shown to
have nearly the same importance with respect to 7. Notice, however, that the in-
put parameter §; contributes very little to the output set. This indicates that 6; is
essentially orthogonal to 7.

The conductivity input parameter k£ has little contribution to Ty (a y-level
measure result of 0.004) and can be fixed to a representative material value. The
~-level measure is especially useful for determining the interactions between input

DPs and output PPs in this way.

4.1.6.2 Disk Brake v-Level Measure

Table 4.4 lists the v-level results for the temperature decay performance parameter
where T, takes on a representative crisp value. Because the temperature rise 7, can

take on a wide range of values, depending on vehicle speed, etc., it has been fixed to



109

Performance Parameters

DPs |F, |F, |T, |7, |T. |Tu

Pmaz || 1.0 0.0 109500 |0.0 |0.0
To 0.55 10.49 1.0 10991037 0.0
T; 093 (10 (08209600 |0.0
7 0.0 |00 08209600 |0.0
Pp 0.0 {09800 |10 |00 |0.0
w 00 (00 (00 |00 (1.0 |0O.0
C 0.0 |00 {00 (0.0 [0.19]0.18
h 00 (00 |00 (0.0 [0.0 [0O.10
L, |00 {00 {00 |00 |0.28)0.27
M, 0.0 {00 (0.0 |0.0 }0.39(0.0
T, 00 (00 |00 [00 |10 [1.0

Table 4.8 ~-level Measure Results for Disk Brake.

Design Parameters

PP (constant T}) || v, | C h LT,

Ty 0.0 1069 (03510 [0.0

Table 4.4: Disk Brake: v-level Measure Results for T}.
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a nominal value here for comparison of the two alternative design configurations.
Because the output results of T, for the disk brake (discussed above) indicated
that a change in the input parameters will have a large effect on the temperature
decay, the most important design parameters must be determined to focus the design
efforts on those that will contribute the greatest to maximizing heat dissipation (i.e.,
satisfying Tj). Table 4.4 shows that the design efforts should first focus on Ly; and

subsequently C to produce better heat dissipation.

4.1.7 Execution Times

Timing results for the brake example illustrate that one calculation of a PP preference
function takes 2.5 seconds on average (Sun Microsystems 3/260 workstation without

a floating point accelerator).

4.1.8 Discussion

The brake design example presented in this section demonstrates how imprecisely
described configurations can be evaluated with respect to a functional requirement
space. The alternative configurations can be compared for each dimension in the
Functional Requirement Space (FRS) to determine the major differences. It is seen
(above) that both of the brake configurations satisfy the actuating force requirement
where the output performance parameter preference () = 1. Although a small change
in a DP associated with the disk brake can make a large change in the actuating force
PP so that it no longer satisfies its FR, the DPs associated with the actuating force
PP are not likely to change. A discussion of the results above illustrates that the
primary input parameters that can require change from the peak values are L., and

C (determined by the v-level measure, and the influence of those parameters on the
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temperature rise). These DPs are independent of the actuating force PPs for the disk
brake, and will thus have no effect on the actuating force output set.

The torque results for the disk brake configuration (also discussed earlier) are
superior to those for the drum brake. Both cases have combinations of the input
parameters where the performance specification will not be satisfied. However, the
disk brake is less sensitive to changes in the DPs when compared to the drum brake
case.

The temperature rise PP was found to be a critical parameter for both brake
alternatives. Small changes in the DPs result in large changes in T,, often beyond
the acceptable range. In comparing the two alternatives, the disk brake configuration
out-performed the drum brake by a factor of two in the region of interest. Care will
need to be taken as the input parameters are adjusted in the later design stages for
either configuration because of the large degree of coupling between the temperature
rise PP and the temperature decay profile PP.

The final dimension of the FRS to be considered is the temperature decay
profile. The disk brake far out-performed the drum brake design. Not only do the
results illustrate that heat is rejected faster (by a factor of six) for the disk brake, but
they also show that better results can be obtained by adjusting the DPs relevant to
the disk brake’s Ty performance parameter. This is not the case for the drum brake.

With this data, the engineer is equipped to choose between the disk and drum
brakes. The only advantage of the drum brake (in this example) is the small change
in actuating force for comparatively large changes in DPs. As shown, the more
important performance parameters of temperature rise and temperature decay profile

are handled much better by the disk brake design.
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4.2 Conclusions

The exémple presented above shows how the theory of computations with impre-
cise parameters developed in Chapter 2 are applied to modest engineering design
problems. The solutions presented here were reached with a minimum of application-
specific programming, and required only a few seconds of CPU time (to compute
PP preference functions). Imprecise design parameters are easily handled, even in
relatively complex design equations (PPEs). The imprecise performance parameter
results provide powerful insight into these particular design examples, especially with
regard to the interaction of parameters and the effect of varying parameter values.

The brake design example illustrates the semi-automated approach to prelim-
inary design. Alternatives can be evaluated easily and efficiently by providing the
designer with performance information and by reducing the usual complexities of
working with the imprecise descriptions of the alternatives. Although this approach
was constructed for use in the preliminary stages of design, it can also be useful later
in the design process, especially when combined with other more traditional design
tools such as optimization techniques.

The method demonstrated here for performing computations with imprecise
parameters is only one small, and separable, part of an overall methodology for en-
gineering design, as generally described in Appendix D. However, this technique is
central to the methodology, both from theoretical and implementational points of
view. Coping with imprecision in engineering design is vital to the development of
comprehensive approaches to augmenting designers’ abilities. Finding techniques for
efficiently computing with those imprecise representations is similarly necessary.

The brake example contained one imprecise (fuzzy) functional requirement

(FR) (along with other crisp inequality FRs), as did the frame example shown in
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Chapter 2. Later in this document, this technique will be extended further into the
areas of imprecise specifications and requirements, and the development of a design

methodology, terminology, and environment will continue.
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Chapter 5

A Comparison of Fuzzy and Probability Calculus

for Representing Imprecision

5.1 Introduction

Chapter 2 through Chapter 4 describe the first steps toward the realization of the
central hypothesis of this work. Those chapters present a method for modeling the un-
certainty in choosing among alternatives found in preliminary design (which is defined
as imprecision), using the fuzzy calculus. They also develop analytical and computa-
tional procedures for carrying out calculations with this type of uncertain (imprecise)
design parameter. This chapter will develop a similar technique using probability
calculus to represent and manipulate imprecise parameters, and will compare it with
the fuzzy calculus method.

Other methods (e.g., probability logic [42, 69], interval analysis [56], sensitivity
analysis [16, 17, 51], the Taguchi method [23, 77], etc.) have previously been applied
to representing and manipulating the subjective or uncertain aspects of engineering
problems. Probability calculus, in particular, is known to be appropriate for ma-
nipulating one type of uncertainty (referred to here as stochastic uncertainty). As a
comparison with these methods, an approach is presented here using the probability

calculus to manipulate the imprecision aspect of uncertainty (not the stochastic un-
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certainty) in a way analogous to the fuzzy calculus method. The next section will
develop, in full, a probabilistic alternative to the theory of imprecise calculations. Ex-
amples using both methods are then presented, followed by a discussion of the major
differences. It will be shown that the probability method is applicable for calcula-
tions with stochastically uncertain parameters, and the fuzzy calculus is well-suited
for representing and manipulating imprecise design descriptions. It will also be shown
that the probability method is not as well-suited as the fuzzy calculus for modeling

imprecise design descriptions.

5.2 The Probability Approach

The first portion of this section will present the necessary tools to construct the
probability approach. Operation rules for imprecise calculations are then derived,
followed by the interpretation scheme for carrying out these calculations. Analytical
and numerical applications of the method conclude this section.

The probability approach can be developed on either of two interpretations:
the “classical” relative frequency of occurrences, or (“Bayesian”) probability logic as
a measure of plausibility of propositions [24, 45]. However, the calculus is the same for
both interpretations. Here we use the calculus of probability and introduce another
interpretation of its meaning: that of preference. For convenience, this chapter will
continue to use the term “probability” although it is emphasized once again that
the term does not denote its usual meaning, but only its associated calculus. This
is done to compare the use of the probability calculus with the fuzzy calculus for
representing and manipulating imprecision. Naturally the usual notion of probability
would continue to be used to represent stochastic uncertainty.

Only three axioms are required in the process of constructing the calculus for
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probability logic [24]:

P(a|b) >0, and P(a | a) =1, (5.1)
Pla|b)y+Pa|bd) =1, (5.2)
P(a,b|c)= P(a|b,c)- P(b]| c). (5.3)

The first of these axioms simply states the conventions that the probability of a given
information b must be nonnegative, and the probability of a given itself is unity. The
second axiom represents a statement giving the probability of the negation of a in
terms of the probability of a, under the same hypothesis b, i.e., the probability of a
given b summed with the probability of the contradiction of a on the same information
must equal unity. Finally, axiom 5.3 is the product rule giving the probability of a and
b under the hypothesis c in terms of more elementary probabilities, or equivalently [45]
“the probability of the joint assertion of two propositions on any data c is the product
of the probability of one of them on data ¢ and that of the other on the first and c.”
The form of the axioms given in Equations 5.2 and 5.3 is partly conventional and
partly a requirement for internal consistency of the calculus [24]. Axioms 5.2 and 5.3
imply that

P(aorb|c)=Pla|c)+ P(b]|c)— Pla,b] ), (5.4)

which is referred to here as the addition rule.

5.2.1 Probability Function Operations

To construct the analogous form of the fuzzy calculus method for imprecise calcula-
tions, the rules for calculation operations must be developed first. For the sake of
brevity, only the rules for the binary operations of addition, subtraction, multiplica-

tion, and division, along with the unitary operations for the sine and cosine functions,
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will be presented. Appendix B presents the detailed derivations of these operations

given two independent “input” parameters Z and § and “output” parameter 3:
z= f(i" 3)),
where the function f is made up of any combination of the six possible operations

listed. The resulting probability density functions (pdfs) for the output parameter 3

are summarized below:

Pada(z | ) = /_oo px(z — y) py(y) dy. (5.5)
prs(z | 1) = [ pale +9) paly) dy, (5.6)

Pl 1 1) = [~ =pCypile) (57)
pa(z 1 D)= [~y palz-9) myly) dy, (53)

(sin™!(2)), (- <sin7H(2) < 7), (5.9)

1
Psin(z | 1) = ﬁpz

cos™1(2)), (0 < cos™!(z) < 7). (5.10)

1
cos I) = ——rx z
Pear(z 1 1) = =l
5.2.2 The Probability Interpretation

As discussed earlier, the fuzzy calculus technique represents imprecision by a range
and a function defined in that range to describe the desirability or preference of
using one particular over another. The more confident, or the more designer desires
to use an input value, the higher its preference value in the parameter’s normalized
(between zero and one) preference function. A similar interpretation for the probability
approach to representing imprecision is developed below.

The input design parameters can be described by probability density functions
(pdf) pi() with each p;() having unit area. Figure 5.1 shows an example input pa-

rameter u;. The vertical axis values of the pdfcapture the subjective imprecision or
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approximate character of u;, in a way analogous to the membership for the fuzzy cal-
culus approach. p;(u;) value(s) of maximum height correspond to the value(s) of u; for
which the designer rates as highest in terms of confidence or desirability. Conversely,
u; values with p;(u;) equal to zero are those the designer rates as least preferred or
unacceptable (the endpoints of the interval of confidence for u;). A fuzzy number
captures the desires of the designer by use of a function ranging from zero to one,
whereas a corresponding pdf for some input parameters may vary in height depending
on the need to meet the unit-area condition. These two methods of representing the
subjective nature of an input parameter’s imprecision are equivalent in what follows,
because the ratio of any value in the input range to the most desired input(s) is kept
the same for the fuzzy and probability approaches.

When using Equations 5.5 through 5.10, the result of a calculation 2 = f(z, 7)
will be a pdf, with unit area. This output form does not have a direct analogous
interpretation to the fuzzy approach. Figure 5.1 provides an example output pdf
from some f(z,y), along with a uniformly scaled version of the output, ranging from
(0.0) to (1.0) on the vertical axis. The output pdfis normalized (P(z) with respect
to max[P(z)]) to compare it directly with the fuzzy result. The normalization is

mathematically equivalent to the following procedure:
1. Consider a finite interval, é, centered at the peak of the output pdf curve.

2. Calculate the area under the curve for this interval. The result is the probability

of obtaining the most probable output, plus or minus g—. Call the result ©,.

3. For each interval, of width 6, in the range of the output off the peak, calculate

the area under the curve, ©;, i = 2,... ,n.

4. Normalize the results, ©;, : = 1,...,n with respect to 9.
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The result of this process is the scaled curve P,,p,; given in Figure 5.1. This curve
is called the relative desirability of 2 as it represents the ratio of the pdf for a given

value of 2 to the maximum pdf value.

5.2.3 Analytical Application of the Probability Approach

Calculations with fuzzy numbers (defined as an interval of confidence and level of
presumption) are performed using operation rules based on a-cuts [46, 33]. Using the
interpretation scheme and operation rules defined previously, an analytical method
for calculating outputs for the probability approach can be likewise developed.
Consider a general input design parameter, u;, graphically represented by the
pdfshown in the top of Figure 5.1. Here only triangular pdfs will be considered such

that p,,(u;) may then be defined as follows:

P

0 u; < ¢

laer)(ea=er) 2(C2_C1)(u; -¢) afluyu <q
Pu, (u;) = ¢ (5.11)
2

(C3—C1)(C2-—C3)(ui - C3) C2 S Ug S C3

{ 0 U; > C3
where
(c3 —c1) = input range € R.
For a given functional requirement expression z = f(w;), ¢ = 1,...,N and known

pdfs for py,(u1),...,puy(un), the end-product p(z) is equal to a multiple integral
expression of order (N — 1). To deal with the discontinuity in the triangular input

and the intervals for which the integrals will be applied, a Heaviside function will be
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defined for convenience:

H(z) = (5.12)
1 z>0.

H(z) is defined to be zero for = 0 to properly handle the limits of integration on
the integral terms for p(z). The pdf in Figure 5.1 and Equation 5.11 may now be

redefined in terms of the Heaviside function:

Pui(w) = [H(wi—a)—H(w —c)]- Dr- (ui —cr)

+[H(ui — ¢2) — H(ui — ¢3)] - Dg - (w; — c3), (5.13)
where
2
D = and
' (s —ca1)(ca — 1)
D2 = 2

(cs—e1)(ez —c3)’
The general form of the analytical imprecise calculation for the probability approach
is given by:

2(2) =.-/_:.--/_Z(...)duN_l...dul, (5.14)

where the term (...) is made up of the product of pdfs in the form of Equation 5.13.
Substitution of Equation 5.13 for the pdfs in the term (...) will reduce Equation 5.14

to

p(z) = 3_[Gr(ej(er, 2)) = Gu(fi(er, 2))] - Hes(er 2) = filer, 2)), (5.15)

J

where

G(e) = [ aule)de,
gr(z) = a product of Di(u; — ¢;) with itself, with Dy(u; — c3),

or Dy(u; — ¢3) with itself,



e;(ei, 2),
fi(ci,z) = functions of ¢;, and z depending on the j** operation
and limits of integration,
I = 1,...,3,
e;() # £i0).

5.2.4 Numerical Application of the Probability Approach

As shown earlier, the fuzzy calculus method for analytically calculating imprecise per-
formance parameters is impractical for computer-assisted design applications, due to
algebraic complexity. A discrete numerical method thus becomes necessary to satisfy
computational requirements. A form of the Fuzzy Weighted Average algorithm [31]
and its extensions was presented in Chapter 2 (detailed algorithm in Appendix C) to
meet this need.

When considering the analytical application of the probability approach, a sim-
ilar combinatorial problem arises for an increasing number of design parameters due
to the resulting multiple integrations. A numerical scheme for calculating the impre-
cise output as expressed by Equation 5.14 must therefore be developed. Because the
calculation rule given by Equation 5.14 depends on the output variable of interest (2
in this case), the output range must be combinatorially determined through interval
analysis and then discretized for a numerical approximation. Implementing such a
discretized output range, a numerical algorithm for the probability approach can be

used as follows:

1. Assuming the general case Z = f(u;), determine the upper and lower bound on

z, denoted by z, and z, through interval analysis.
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2. Discretize the output parameter 2: 2 = mAz + 2, wherem = 0,1,..., g—%ﬂl.

3. For each integration variable u; with corresponding triangular input function

Py, (u;) (Figure 5.1), discretize u;: u; = n;Ay; + ¢;.

4. Replace the integral(s) in Equation 5.14 with discretized summation(s) such
that
p(z) = p(mAz+z)) = Aug -+ Auy_1 Y- 3 (-..) (5.16)
uy

UN -1
For N design parameters and corresponding discretizations, the complexity of the

numerical algorithm is of order
(cs—c)N1 (2, - z)

H~2N-1 . .
w1 Auy - Aun_y Az

'(N—l)'liz

where H is the number of operations, &; equals the number of multiplications and
divisions in f(u;), and k2 equals the number of multiplications and divisions in the
(...) term of Equation 5.16. If all input parameter ranges as well as the output range

are discretized into M intervals, the complexity becomes:
H~(N=1)-MN .k ks, (5.17)

which can be compared to the complexity of the extended fuzzy calculus FWA algo-

rithm (either Equation 2.3 or Equation 2.4) shown earlier.
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5.3 Examples

Using the probability approach along with its analytical and numerical applications,
as described in Section 5.2, this section will present a number of examples of impre-
cise calculations. The complexity of the examples will be a progression from simple
addition to calculations involving real-world design equations. The results of both the
probability approach and fuzzy calculus method are shown graphically; however, only
the mathematical development for the probability method is shown due to the thor-
ough treatment of the fuzzy calculus’ case earlier. In all fuzzy calculations, the input
parameters are represented with an interval of confidence and a preference function,
and the extended FWA algorithm is applied to obtain the output, where, for these

examples, M (the number of discretized preference function points) is equal to 11.

5.3.1 Example 5.1: Analytical Addition

Given two input parameters u; and u; both in the form of Figure 5.1, the problem is
to calculate the output

Z2=u + up (5.18)

using the analytical application. From Equation 5.5, p(z) is given by

P2) = [ (s = ) pus(ua) dua

Substituting p,, and p,, into Equation 5.13:

pe) = [ (M= w) =) = Mz —w) = )] Dy (s — ) — 1)
+HH((z = ug) = c2) = H((z —us) = c3)] - Dz - ((z = wa) = ca)} -
{(H(uz — 1) = H(uz — 2)] - Dy - (u2 — 1)

+[H(uz2 — c2) — H(ua — c3)] - D2+ (3 — uz)} dus. (5.19)
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Let ¢; = 2, ¢; = 3, and ¢3 = 4. Multiplying the terms of Equation 5.19 and applying

Equation 5.15, the result (after considerable algebraic manipulation) is

p(z) = ’H(z—-4)-{£—222+8z-——¥}

—2H(z = 5) - {——52 +252—-1——5—}
+6H(z — 6) - {——3z +18z—E)-§}
—2H(z—T). {—-72 +49z.-3‘-*3}
+H(z - 8)- {———42 +32z--2-5§} (5.20)

Considering z in the output interval [4,8)], the pdf p(z) can be constructed as shown
in Figure 5.2. The corresponding P,utpui(2) curve and the fuzzy result for z can also
be determined, as in Figure 5.2.

Comparing the results, it is found that the probability approach output ap-
proaches a normal distribution (recall the central limit theorem), while the fuzzy ap-
proach results in a triangular function. The peaks of P,y¢py:(2) and the fuzzy approach
results both fall at the sum of the most preferred inputs z,eqx = 6.0 (Figure 5.2). The
probability and fuzzy output curves are not of identical form; however, very similar
results occur for the output ranges where the vertical axis values (Figure 5.2) fall

between (0.7) and (1.0).

5.3.2 Example 5.2: Numerical Addition

Given the same problem as Example 5.1 (Equation 5.18), this example will illustrate
the numerical application of the probability approach. The upper and lower bound

on z are:
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Figure 5.2 Example 5.1: z = uy + us.



The discretizations for 2 and u; can be specified as

z = mAz-+4.0

Uy = nglAuy + 4.0.

Substituting into Equation 5.16, the result becomes

p(z) = Az Y puy (2 = u2) Pug(w2). (5.21)

Letting m,n, = 0,1,...,1000 such that Az = 0.004 and Au, = 0.004, the calculated
result of Equation 5.21 can be determined as in Figure 5.3.

When comparing the fuzzy result of Figure 5.3 with the probability approach,
the same statements can be made as for Example 5.1, where zp.qx = 6.0. Notice from
the figure that the numerical scheme, when compared with the analytical results, is

accurate within the small numerical error.
5.3.3 Example 5.3: Linear Equation
In this case, the governing equation is given by
2 = U1 * U + U3 (522)

where the top of Figure 5.1 represents u;, ¢t = 1,2,3 for ¢; = 2, ¢; = 3, and ¢3 = 4.

The numerical approach will be used here. The bounds on z are then:
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Discretizations for z, uy, and uj are expressed as

z = mAz+6.0,
Uy = TL2AU2+2.0,

Uz = TL3AU3 + 2.0.
Equation 5.16 becomes

p(z) = Auy - Auazz —pu z‘2“3>pu,<u2)pu3(ua>. (5.23)

ns m2
For discretization ny,n3 = 0,1,...,100 and m = 0,1,...,1000, Auy; = 0.02, Auz =
0.02 and Az = 0.014. Substituting these values into Equation 5.23, the calculated
result of Equation 5.22 are as in Figure 5.4, along with the fuzzy calculus result.

In contrast to the addition operation examples (Example 5.1 and 5.2), the
probability and fuzzy output curves are not symmetric about the peak. Furthermore,
due to the nonlinear operation of multiplication, the peak of P,ypu(2) does not fall
at the linear combination of the most preferred inputs, but instead at z,e. = 11.6.
The fuzzy result’s peak, on the other hand, does correspond to such a combination,
Zpeak = 12.0. In general, the curves have very little similarity because of the shifted

peaks as well as the collapsed range of the P,,i,(2) curve versus the fuzzy output.

5.3.4 Example 5.4: Trigonometric Operations

This example will consider simple trigonometric operations on a single parameter
u1. Only the output parameter, z, requires discretization due to the closed form of

Equations 5.9 and 5.10.
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5.3.4.1 Sine Operation

The equation of interest in this case is
Z4in = SIN Uy, (5.24)

where the input parameter u; is a triangular function with the peak at uj pest = %
and interval range of u; € [0.0,5]. From Equation 5.9, the output parameter’s pdf

can be calculated such that
P(zsin) = ————;—pul(sin’l(z,;n)). (5.25)

Considering the output range z,;, € [0.0, é], the result of the calculation p(z,n)

along with P,yiput(2sin) are shown in Figure 5.5.

5.3.4.2 Cosine Operation

Using the same input parameter u; as for the sine operation, this case will calculate
the cosine output:

Zeos = COS Uy, (5.26)

where the resulting pdf can be determined from

1 _
p(zcos) = ﬁpm(cos l(zcos))'

Figure 5.5 shows the output curves p(2.0s) and Poytput(zeos ), Where 2., € [0.5,1.0].

(5.27)

The limits on the ranges of the input angles for the trigonometric operations
used in this example were chosen to produce monotonic outputs. The sine output
functions are very similar for the probability approach and the fuzzy approach (u; €
(0.0, Z]). The cosine function for the same input, however, produces dissimilar results

as the input parameter approaches a value for which the cosine function has zero slope.
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Instead of Poyipue(2) approaching zero for the right extreme input (Figure 5.5), as in
the other examples, the output values are very high relative to the peak. Notice that
both trigonometric operations resulted in peak values corresponding to the expected

. . . _ . 3
input, i.e., for u; = £, Zyin peak = 0.5 and zcog peak = %:

5.3.5 Example 5.5: Beam Shear Stress

The problem is to design a horizontal beam that will not fail when subjected to
a vertical load distributed along its length. The configuration under consideration
for this example is a simply-supported beam with a pin connection on the left, a
roller connection on the right, a rectangular cross-section and a uniformly distributed
vertical load. Given design parameters of beam length L, width b, height A, and
applied load w, one important performance parameter is the maximum shear stress,

T
3wl
4bh°

(5.28)

Other performance parameters of interest, which are not considered here, might be:
mid-point deflection, maximum bending stress, etc. Table 5.1 lists the representative
data (left-extreme, right-extreme, and peak values) for the triangular design inputs,

where we define o = ;2;- so that Equation 5.28 becomes

wl

Applying Equations 5.7 and 5.8, p(7) is given by

p(7) .—./h/b/L (ﬁL—b) o (T'Z'b) pr(L)ps()pn (k) dL db dh. (5.30)

The numerical solution to Equation 5.30 can be formulated as follows:
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1. Combinatorially determine upper and lower bounds for 7.

il

0.9 MPa,

Ti

T. = 202.5 MPa.

Note the large range (typical in preliminary engineering design) for the per-
formance parameter 7 (> 10%) that results from reasonable ranges for the five
design parameters (Table 5.1). This demonstrates the need for a computation-

ally efficient method for this stage of the design process.

2. Discretize the output range for 7 and the input parameters L, b, and h:

T = mAT +0.9,
L = TLlAL + 30,
b = ngAb+ 01,

3. Express Equation 5.30 in the numerical application form:

o) =ar-ab- AT (L2) 5o (TE2) put) m i, (51

nyg n2

4. Letting n; = 0,1,...,50 and m = 0,1,...,1000 such that AL = 0.12, Ab =
Ah = 0.008, and At = 0.2016, calculate p(7) from Equation 5.31. The result

of such a calculation is shown in Figure 5.6.

Again we see that the peak of the curve produced by the probability calcu-
lus does not occur at the shear stress corresponding to the most preferred design

parameter values.
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5.3.6 Example 5.6: Torque for a Drum Brake

The motivation of this example is the design of a braking system for a vehicle that will
adequately stop the vehicle for a certain range of speeds. This example was explored
thoroughly in Chapter 4 with the fuzzy calculus to represent design imprecision. A
portion of the same example is repeated here to compare results with the probability
calculus. Given that a drum brake configuration is under consideration for this design,

one important performance parameter is the torque 7 [67]:

T = pp.br®(cosd, — cosby), (5.32)

where

b = face width of frictional material,

Pe = mazimum operating pressure of material,

r = inner drum brake radius,

i = coefficient of friction,

6, = angle to beginning of frictional material,

8, = angle to end of frictional material.

The representative data for the torque input parameters (b, p,, r, , 8;, and
6,) are in Table 5.2. Applying Equations 5.6, 5.7, and 5.10, the numerical scheme for

determining 7 is as follows:

1. Determine the bounds for 7":

7 = 0.00375 (kN-m),

= 5.3181(kN-m).

[

Note the large range for the performance parameter 7 (> 10°) that results from

reasonable ranges for the six design parameters (Table 4.1).
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DPs u; (units) || pu,(widiest =0 | pu(wi) = 1 | pug(wi)right = 0
L (m) 3.0 6.0 9.0

b (m) 0.10 0.30 0.50

h (m) 0.10 0.30 0.50

W (kN/m) 75.0 150.0 225.0

Table 5.1: Beam Example: Design Parameter Data.

DPs u; (units)

pu.‘(ui)left =0

pui(ui) =1

Dy, (ui)right =0

01 (deg.)
6, (deg.)

0.025
0.10
300.0
0.10
0.0

90.0

0.050
0.30
1100.0
0.15
30.0

120.0

0.075
0.50
1900.0
0.20
60.0

150.0

Table 5.2: Brake Example: Design Parameter Data.
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2. Write the analytical form of the expression for p(7):

- T) = /“/p/b/usfu2 (;—;1}7—7‘-) Pu(#)Pp, (Pa)ps(b)

T 1 .
Du, <u3 U Dy b) (\/1 " (us t u2)2) pg, (cos™ (uz + up))

1
—————| pp,(cos™ (uy)) duy duz dbdp, dpu, (5.33)
1—ul
where

uy = cos(6,),

u; = cos(,),

Uz = U — Uz,

uy = 712, and
_ p-(r)

Pu = S

3. Discretize the input and output ranges:

T = mAT +7,,

us = nyAus+ 0.5,

g = nAup+0.1,

Pa = n3Ap, + 300.0,
b = ny4Ab+0.025,

V3

Uy = TLGAUQ—' —

2

4. Transform Equation 5.33 into the form of Equation 5.16.

5. Letting n; = 0,1,...,10 and m = 0,1,...,100, the result of the numerical

calculation can be determined as shown in Figure 5.7.
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Examples 5.5 and 5.6 consist of calculations with real-world design equations,
building from the operations carried out in the previous examples. Figures 5.6 and 5.7
show that the nonlinear operations shift the peak of P,ytput when compared with
the fuzzy result. The height of the probability function versus the fuzzy preference
function also varies greatly in the output horizontal range. When compared with the
previous results for Examples 5.1 through 5.4, this effect is much more dramatic for

the shear stress and brake torque due to the increased number of operations.
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5.4 Discussion

Section 5.3 presents several examples of the probability calculus approach applied to
equation calculations with imprecise input parameters. This section will compare the
results of these examples with the fuzzy calculus approach.

The output parameters from the example calculations in Section 5.3 are made

up of continuous pdfs, which must have the following two properties:
1. p(z) 20,

2. [2 p(z)dz = 1.

o

Figures 5.2 through 5.7 possess both these properties. Furthermore, in the case
of Example 1 and Example 2, the central limit theorem applies, i.e., for a large
number of uncertain parameters uy,...,uy, the sum of the parameters will result
in an approximate Normal (Gaussian) distribution. Figures 5.2 and 5.3 illustrate
that for triangular input parameters, a single addition operation produces an output
similar to a Normal distribution.

The discussion of the fuzzy calculus approach, compared to the probability
approach for representing and manipulating imprecision, will be three-fold: an as-
sessment of the general character of the output (performance parameter) preference
functions in the two cases, the differences in the interpretations of these curves, and
the usefulness of applying either method in the design domain. It is found that two
primary differences occurred in the outputs of the probability approach calculations
compared to the fuzzy set method: the output peak is shifted, and the output height
over the range of the performance parameter is different. The differences in the
axiomatic development of the two calculi, of course, are the basis for these output

dissimilarities.
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The fuzzy approach relies on max-min operations using the extension princi-
ple [91], which assures that the peak of a calculation with triangular inputs will occur
at the calculated combination of the most desirable values (peaks) of the input pa-
rameters. The peak of the output from the probability approach, on the other hand,
will generally be shifted, and will have similar results to the fuzzy calculus only when
the calculation involves linear operations, but not for nonlinear operations.

The differences in the output height for the two methods can be explained
similarly. The fuzzy approach once again relies on the max-min solution, which tends
to broaden the output (i.e., greater preference values for points that approach the
extremes of the output range interval). The probability approach, however, relies on
the addition rule. For an increasing number of operations in f(u;), combinations of
input parameters with values far off the input curve’s peak will contribute very little
to the output curve, resulting in a collapsing of the output range (i.e., small output
height for the extreme output range values).

The interpretation of the output results for the two methods is also different.
The result of the fuzzy approach to imprecise calculations is in general a curve that
peaks (preference of one (1)) at the output value corresponding to the most preferred
input values, and has an associated interval range of all possible combinations of the
input parameters. The value at any point on the output preference function can
be directly traced back to the combination of input parameters that resulted in the
corresponding output value. Alternatively, the result of the probability approach is a
curve that peaks P,upui(2) = 1 at a point shifted, in general, from the output value
corresponding to the most preferred input values, and has the same output range as
the fuzzy calculus method. (If the usual interpretation of probability was being used,

the peak would occur at the most likely output value.) Because of the addition rule
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for probability, input values cannot be practically traced back from a given output on
the curve P,yi,u:(2). The reason for this is that a probability calculation for a point
on P,utput(2) is a combination of all the probabilities from inputs corresponding to a
specific output z value.

The use of probability to represent design imprecision has an additional dif-
ficulty. Probability calculations with large numbers of uncertain input parameters
(e.g., greater than 10) will be slow and computationally expensive (Equation 5.17)
in comparison to fuzzy calculations. As shown in the next chapter, it will be neces-
sary to use probability calculations for including the effects of stochastic uncertainty
along with the fuzzy calculus approach to design imprecision, as long as the number

of stochastically uncertain parameters is small.
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5.5 Conclusions

Using the analysis of the differences in output curves and interpretation as discussed
above, one can determine the applicability and usefulness of the fuzzy approach and
probability approach for the representing and manipulating imprecise parameters in
the design domain. The fuzzy approach is a technique that presents more information
to a designer than conventional single-valued or interval analysis, by indicating the
relative importance of input parameters and providing a method for comparing differ-
ent solution alternatives. The probability approach can satisfy the first objective of
this research (Chapter 1) in that the subjectivity of the designer can be represented
and manipulated. However, the performance parameter results are in a form that
makes the evaluation of the relative importance of inputs more difficult, due to the
narrowing of the output peak common to probability calculations (as shown in the
examples). The shifting of the peak of the output from the probability calculations,
away from the combination of the most preferred inputs, also reduces their usefulness.
Additionally, the ability to trace an output value back to a set of inputs that produced
it is absent in probability calculations with imprecise parameters. Finally, probability
calculations are far more computationally complex than fuzzy calculations. All of the
above contribute to making fuzzy calculations on design imprecision more applicable

and useful for preliminary engineering design.
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Chapter 6

Combining the Effects of Imprecision with

Stochastic and Possibilistic Uncertainties

6.1 Introduction

The fuzzy calculus has been shown to be useful for representing and manipulating
design imprecision. This chapter introduces a technique for handling stochastic and
possibilistic uncertainty in addition to imprecision. A single-speed transmission ex-

ample, with all three types of uncertainty present, demonstrates the method.

6.2 Combining Imprecision With Other Uncertainties

In Chapter 1, the imprecision component of design uncertainty and the stochastic
and possibilistic components were described. At least two of these effects are usually
present simultaneously. For example, a dimension of a part might be only impre-
cisely known to the designer, and the manufacturing method might introduce an
uncertainty (tolerance). Similarly for a coefficient used in the design process, such as
the convection coefficient in heat-transfer, some contributions to this coefficient the
designer can choose, such as geometry or surface finish; others, such as the conditions

under which the device will operate, he or she has no control over. The first of these
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effects is represented as imprecision, determined by the designer’s desires or by design
specifications. The second of these is represented as either stochastic or possibilistic
uncertainty, or both.

Stochastic and possibilistic uncertainty, in addition to imprecision, are present
at all stages of the design process. The usual sources of these two types of uncertain-
ties are tolerances in manufacturing processes resulting in uncertain dimensions and
uncertainties in material properties. Uncertainties can also exist related to applica-
tion. The coefficient of friction between a tire and the road can take on a wide range
of values depending on road, tire, and weather conditions. Similarly, there might
exist uncertainty in physical property models [49]. Sometimes these data will repre-
sent measured (objective) probability data; sometimes they will represent subjective
possibility data. As will be seen later, these two types of design uncertainty are kept
distinct.

This section presents a method for representing and manipulating imprecision
in conjunction with other uncertainties. Calculations are performed with these vari-
ables according to the governing performance expressions of the system. Qualitative
relations between the input and output performance parameters are determined such
that the designer is able to rank the design parameters according to their impact on
the performance results. The designer is also provided with the necessary informa-
tion by which a design alternative may be rated according to its merit in relation to
the design’s functional requirements, and in relation to the other alternatives under

consideration.
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6.2.1 Introducing Extended Hybrid Numbers

Chapters 2 through 5 develop a method for representing and manipulating impreci-
sion. To include stochastic and possibilistic uncertainty effects, an additional method
must be employed. Several methods already exist for representing and manipulating
these two complementary types of uncertainty in engineering [14, 36, 42, 50, 68, 69].
The need exists to combine the effects of stochastic and possibilistic uncertainties
with imprecision. Because imprecision is modeled with preference functions and the
fuzzy calculus, a logical way to include uncertainty effects is to also transform them
into a fuzzy representation. For example, an uncertain parameter that is described by
a probability density function can be normalized to have a peak of one (1), as shown
by Kaufmann and Gupta [46, pages 79-82]. Likewise, if a stochastic parameter @
is modeled by a Gaussian distribution, the following algorithm may be employed to
transform the parameter to an approximate fuzzy representation. Calculate the area
from the expected value to infinity, which corresponds to the probability of & being
greater than the expected value. Denote this probability by Pg. If areas are then cal-
culated from certain @ values to infinity such that the results are increments from 0.5
to 0.0, and if these are normalized with respect to Pg, values in increments from 1.0
to 0.0 will be obtained. Symmetry of the Gaussian distribution automatically gives
the same values for the left portion of the distribution for @&. An interpolated curve
between the resultant incremental values may now be considered as an approximate
membership function ag in the fuzzy interpretation of the results is adopted.

With the uncertain parameter represented fuzzily, and assuming an expression
exists relating the uncertain parameters to the imprecise parameters, the fuzzy calcu-
lus might be used to combine the scaled pdf representation or the ag representation

of the stochastic uncertainty with the imprecision of the design, resulting in a single
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output curve. The fuzzy output in this case has both stochastic uncertainty and
imprecise contributions. Unfortunately, as pointed out by Kaufmann and Gupta [46,

page 82|, information is lost by this process.

“Basically, we have transformed a measurement of an objective (mea-
sured) value to a valuation of a subjective (fuzzy) value, which results
in the loss of information. Although this procedure is mathematically
correct, it decreases the amount of information that is available in the

original data, and we should avoid it.”

There is no way to determine which portion of the result is due to stochastic uncer-
tainty and which is due to imprecision. Because these two effects are independent,
and the need exists to be able to determine their ramifications separately, a method
for keeping stochastic uncertainty and imprecision distinct in design calculations must
be developed.

Kaufmann and Gupta in [46] have proposed the notion of hybrid numbers
as a method of representing stochastic uncertainty and fuzzy uncertainty without
reducing the information content. This is somewhat similar to complex numbers,
with a real component and an imaginary component. Here, instead, the resulting
number includes a fuzzy component, and a stochastic one. In the model of the
engineering design process proposed in this document, the fuzzy component of the
hybrid numbers will be used to represent imprecision (or approximation); the other
component will represent stochastic uncertainty.

In engineering design, the random-variable frequency-based model of probabil-
ity won’t adequately represent all uncertainties in truth (i.e., uncertainty in predicting
a value a parameter will assume at any stage of the design). Some uncertainties of this

form are subjective, rather than measured. For example, the coefficient of friction
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of a brake shoe under a variety of possible operating conditions. These subjective
uncertainties can be represented by possibility, introduced by Zadeh [92]. This repre-
sentation of uncertainty (rather than incorporating all uncertainty into a multi-valued
logic probability formulation) has been adopted for computational efficiency, and to
adhere to the interpretation of these two distinct forms of uncertainty proposed by
Kubic and Stein in [50] as well as others.

Because these two separate forms of truth uncertainty, in addition to impreci-
sion, are a useful representation scheme in preliminary engineering design, Kaufmann
and Gupta’s hybrid numbers have been augmented to represent all three components.

This new representation will be referred to as Eztended Hybrid Numbers.

6.2.2 Computations with Extended Hybrid Numbers

The three distinct components that can comprise design parameters (imprecision,
possibilistic uncertainty, and stochastic uncertainty) can be operated on in a design
calculation, and then recombined into an extended hybrid representation of the result.
Imprecision is represented and calculated, and the result is interpreted as discussed
previously. The same fuzzy mathematics can be applied to the possibilistic uncer-
tainties [92], but the interpretation of the inputs and outputs are different. The input
interpretation corresponds to Kubic and Stein’s, and the output represents the per-
formance over the range of possible values of the input parameters. The designer’s
judgement can be incorporated at this stage by determining over what range of pos-
sible values the design should function; or a specification may require the design to
operate in some range of possible conditions. For example, in extreme cases the de-
sign must operate over all possible conditions, and the range of performance would

extend over the entire possible output range.
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6.2.2.1 The Stochastic Component of Uncertainty

The construction and choice of input parameter pdfs for the stochastic component

can be carried out in one of the following ways [11, 69]:

1. Subjectively determine the pdf p(u;) for an input parameter u; based upon past

experience or based upon the data from a similar former design scenario.

2. Subjectively construct p(u;) from a known range of plausible values of u;. The
shape and area of such a subjective pdf can be manipulated by curve fitting
functions and a normalization routine, respectively, in order to satisfy the unit

area condition.

3. Construct p(u;) from known data and by application of the maximum entropy

function.

Examples of input pdfs using these methods of choice are given in the machine design
problem at the end of the chapter.

Operation rules may be constructed from Cox’s [24] formulation of the calculus
for probability logic in order to carry out calculations with the stochastic component of
the extended hybrid numbers. These operation rules, along with a general analytical
and numerical approach, have been previously defined in Chapter 5. In contrast
to Chapter 5, the definition of probability as a quantification of preference is no
longer used; instead, it is necessary to return to the basic notion of probability as a
quantification of plausibility.

Although the numerical application presented in Chapter 5 proved useful and
adequate when comparing the fuzzy and probability calculus for the imprecision prob-

lem, the general approach has two short-comings: (1) the method is difficult to apply
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when dealing with a mathematically defined pdf p(u;) that has infinite tails; and (2)
the complexity of the method (Equation 5.17) makes it costly for a large number of
parameters. These short-comings may be overcome, at least in part, by discretizing
the cumulative probability rather than the range of each parameter in the multiple
integral expression (Equation 5.14). A change of this form, however, requires that the
binary operations (Equations 5.5 through 5.8) be defined in terms of the cumulative
distribution of the input parameters instead of the probability density function. Ap-
pendix B contains the derivation of the alternative forms for the binary operations,

summarized below:

d _ .
Paad(z | I) = Z;P(ZS z| 1)

= [ pslz —v)dP), (6.1)

pos(z | 1) = [ pals +)aP(y), (62)
pralz | 1) = [ p(5)eP0), (63
pan(z 1 1) = [ ypaly - 2)dP(y). (64

Applying these operation rules in the context of Equation 5.14, the new nu-

merical application is formulated as an algorithm in the following manner:

1. Assuming the general case 2 = f(u;), determine the upper and lower bound on

2, denoted by z, and z;, through combinatorial interval analysis.

2. Discretize the output parameter 2: 2 = mAz + z;,, where m =0, 1,..., L’%l.

3. For each integration variable u; with corresponding input pdf p,,(u;), convert

each p,,(u;) to its cumulative distribution P, (u;).
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4. Discretize each P, (u;) into L; equally spaced intervals, where

Py (w) = (- -2-)/L,,

5. Replace the integral(s) in Equation 5.14 with discretized summation(s) such

that

p(z):p(mAz+z;)=—I-Jl-;----LNq;--- (L) (6.5)

The usual likelihood interpretation of probability theory is applied to the normal-
ized output results of computations with Equation 6.5. The usual convergence and

stopping criteria apply for the algorithm.

6.2.2.2 A Stochastic Parameter Measure

The ~-level measure, defined in Chapter 2, has been developed on the premise of
determining the importance and coupling of the imprecision component of the design
parameters. Likewise, a measure is needed to determine the relative importance of
the stochastic component of uncertainty such that parameters with little influence
on the stochastic uncertainty can be assigned to their expected values. This results
in a decrease in dimension of the parameter space, and a corresponding reduction in
computation, especially in the context of the calculations performed over the entire
design cycle from the highly imprecise preliminary stage to the reliability measures
determined at a design’s completion.

Variance analysis provides a useful means by which the relative contribution of
the stochastic uncertainty of each design parameter may be determined with respect
to the stochastic component of the output extended-hybrid-number representation.

Consider, for example, that z; 7 = 1,..., M are the performance parameters, where z;
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represents the stochastic portion of the ;% output and uf, ¢ =1,..., N the stochastic
inputs.  The variance of z! may be determined using the second central moment of
the output pdf p(z;):

vs, = [ (55 = g 9las) 425 (66)
where fizs is the mean of 27. Similarly, the variance of the input parameters may be

found from the following:
o = [0 = pag)? pua () ds. (6.7)

The relative variance of input parameter u} to the total output variance of the per-

formance parameter z; can be estimated using

822\* Vs,
Tii = (8u]’) lug - (71‘) ; (6.8)

where the partial derivative of the performance parameter with respect to the input

parameter may be estimated by numerical differentiation if necessary. (Note: instead
of the variance approach, an application of the entropy measure of the marginal

distributions could have been used.)
6.2.2.3 Outline of Calculation Procedure

The calculation method for extended hybrid numbers may be summarized as follows:

o Given performance parameter expressions for the design, relating the design
parameters to the pérformance parameters, calculate the imprecision using the
nominal values for the possibilistic and stochastic uncertainties and the FWA

algorithm with extensions.

o Repeat with the nominal values for the imprecision and stochastic uncertainties

to determine the possibilistic component.
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e Determine the stochastic component using the numerical scheme presented
above, along with the nominal values for the imprecision and possibilistic un-

certainties, and normalize this result to get a relative plausibility function.

e Combine these resulting output functions.

The extended hybrid representation of the result can be shown on a single
graph. All three output functions will have a (relatively) common peak (at the nom-
inal value for the output). The three curves represent the imprecision, possibility,
and probability respectively, and can be compared to the design’s functional require-
ments. For example, consider the output performance for fatigue strength of a spur
gear system as shown in Figure 6.11. Assuming that the desired performance (func-
tional requirement) of the factor of safety is 2.0, the corresponding membership value
(a) of the imprecision curve can be read directly from the ordinate. In this case o
is approximately equal to 0.8. This implies that at least one design parameter must
decrease in membership to 0.8 in order to achieve a factor of safety equal to 2.0 and
satisfy the performance requirement.

The possibilistic uncertainty, however, must also be accounted for in the design.
In Figure 6.11 the possible ranges of the fatigue strength factor of safety for the spur
gear are indicated by the possibilistic uncertainty curve. Because a minimum value
(2.0) must be achieved for this parameter, the left portion (from the peak) of the
curve represents the possibilistic uncertainty that will be present. If a PP must meet
a maximum constraint (instead of a minimum) then the right portion of the curve
would be used. The effect of this uncertainty is to introduce a range of possible values
for each output PP value. Because the uncertain range may include unsatisfactory
performance values, the value of the PP must be chosen such that all possible values

satisfy the required performance.
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A particular range of possibilistic uncertainty is determined by the degree of
uncertainty the designer chooses to include. For example, the designer may wish this
device to operate over no less than 50% of the possible operating conditions. In this
case the range of possible outputs would be determined by the interval between the
left and right portions of the possibilistic uncertainty curve at a membership of 0.5.
For this example PP, shown in Figure 6.11, the nominal value is 1.61 for the spur
gear configuration. The value of the left portion of the curve at a = 0.5 is 0.99, and
1.70 for the right. Thus the range of uncertainty in this instance is 0.71, however it is
asymmetrically distributed, with the major portion (0.62) to the left of the PP value.
If the nominal value for this PP is used (1.61), the possible range of performance
would be from 0.99 to 1.70. Because the requirement on this PP is a minimum of
2.0, a value larger than the peak (nominal) output value must be used, such that the
lower end of the possible range still meets the requirement. A satisfactory PP value
can be obtained by adding the left portion of range to the required value. In this
case the designer would have to use a value no less than 0.62 + 2.0 = 2.62 to be sure
that no less than 50% of the possible values of the output would meet or exceed the
requirement.

A similar procedure can be carried out for the stochastic component of un-
certainty shown on the output curve, where the chosen stochastic uncertainty is sub-
sequently added to the functional requirement to obtain an equivalent uncertainty
performance specification in terms of both a possibilistic and stochastic contribution.
For example, assume that the imprecision and stochastic components of a perfor-
mance parameter (p;) have been calculated as shown in Figure 6.1, and that the
designer wishes to achieve 99% reliability for p;. Assume also that the functional

requirement for this performance parameter is expressed as a crisp inequality in one
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of two possible forms: p; < C, or p; > C), where “C” denotes a constraint. Example
functional requirement values are shown in the figure. According to the interpretation
of the imprecision calculation, at least one design parameter must be decreased in
preference to the value where the vertical line from either C, or C; intersects the im-
precision curve. In order to include the stochastic component for 99% reliability, the
value of the functional requirement must be shifted by an appropriate amount, either
&3 (to the right for C,) or &7 (to the left for C;). The values for 62 and/or 6} can be
determined from the equivalent cumulative distribution of the stochastic component
pj, as shown in Figure 6.2. pj, represents the value for which P(p? < p;°) = 0.99.
Likewise, p;, represents the value for which P(p} < p;*) = 0.01. &, and § can be

calculated from these values according to the following relationships:

bu = Piu— Pla=m

o = P;,a=1 - P;,I-
Notice here that the peak of the imprecision curve is not used in these calculations
due to the possibility that the peak will be shifted for a non-linear probability com-
putation. &, is now added to C, or §; is subtracted from C; to determine the resultant
functional requirement for the stochastic component of uncertainty.

In this procedure, the contribution of the stochastic component has been han-
dled by shifting the functional requirement. It must be noted that this is equivalent
to shifting the imprecision curve by §° either to the right or left depending on the
functional requirement. A shifting of the imprecision curve conforms to the mathe-
matical model of the performance parameters, because functional requirements are
really fixed constants for a design. No matter which method is used (either shifting
the functional requirement or the imprecision curve by §°), however, the results will

be the same.
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6.3 A Machine Design Example

To derﬁonstrate the approach described briefly above, an example preliminary design
problem will be presented. The problem is to design a single speed power transmission
for the “spin” cycle of a conventional domestic clothes washing machine. The details
of changing modes from agitation to spin are omitted for clarity. The drive motor
is a 1.5 kW (2 hp) electric motor with a nominal no-load speed of 1750 rpm. The
desired top speed of the drum is approximately 350 rpm. Both the motor shaft and
the drive shaft on the washer drum are vertical. As a design goal it is desirable to
minimize cost, as well as to achieve satisfactory performance in terms of strength,
durability, and belt life. For simplicity in this example, cost will be assumed to be
directly related to the diameter of the shafts. Three different alternative drives will
be compared: spur gears, helical gears, and a V-belt. The configuration of the gear

drives is shown in Figure 6.3, and the V-belt is shown in Figure 6.4.

6.3.1 Performance Expressions

A variety of performance issues arise when designing a speed reduction system as
described in the problem statement. For the spur and helical gear configurations,
gear strength, surface durability, lubrication, and reliability should be considered in
order to rate the design’s performance. Similarly, a successful V-belt design should
perform satisfactorily with respect to belt life, efficiency, reliability, etc.

A discussion of all performance aspects in this design example will not be pro-
vided. Instead, a typical set of performance characteristics has been chosen for each of
the three proposed configurations. For the spur gear and helical gear configurations,
the choice of performance parameters include: factor of safety for fatigue strength

ny; factor of safety for surface durability n,; and bearing load rating for the resul-
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tant gear forces C. In addition, two calculations relating to shaft diameter will be
considered: shaft diameter for deflection d, 4y; shaft diameter for strength (bending)
ds,str- Using, in part, the mathematical formulations found in [25, 32, 67, 71], the

corresponding performance expressions for these PPs may be specified as:!

057 K KK K K. Ky K4 S:Nm2n,pmwr

Nf spur = ) 6.9
Tosp 60 (10)3 K, K P[K3 + (Z22emE)) (6.9)
0.57 K, K, K, K, K, K7\ /K%S,Nm?n, ,mwg
Nf helical = , (6.10)
60 (10)° K, K,P cos® y[K4 + (/2D
. _ (ER%’KE(Z% Hp — 70)(10)%)*(r K4wrN?m?n,pm cos ¢ sin pmg) (6.11)
hope 2(60) (10)3 PI,IG[K3 + (X22em )| (mg + 1) ’
ik (2.76 Hg — 70)(10)8)% - (A - A
Ng helical (ATKRAelas( B )( ) ) ( 1+ 4Ag) (5.12)

2(60) (10)° P cos? peosdnKoKiy (K + (2E) (g + 1)

where :

Ay = ((0.95)y/ Kﬁprzmn,pm cos ¢, sin g,mg ),

_ [\/(21“30':1/} + m)2 — (N;zc(::;m)z_*_

Ay =
VBET +m)? — (RapZepte)s — (Mo,
1
s (32(60) (10°PLK K KoKy + tan? ¢ : 613
sstr T 4(0.55) 72 Nmn,pm Sy ’ (6.13)

. (4(60)(10)3PL3\/1+tan2¢)% (6.14)

sdef = 372 Nmn,,m Ey,

1The performance parameters will not be derived here. The equations shown for factor of safety,
rated belt load, and belt life may be formulated from the material in the cited references. Likewise,
the shaft diameter equations come directly from beam bending theory, and may be reproduced by

considering maximal moments from the moment and loading diagrams.
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1
3

32 (60) (10)3P cos waKkK,chf\/ [tangele 4 tenyNm)p | L3

4 cos i) 16
dt.,. = 6.15
sotr (0.55) 72 NmnyymS; » (615)

" (4 (60) (10)*P cos ¥L3\/1 + tan? qﬁt) : (6.16)
sdef = ) :

32 NmnpmEy,

_ (60(10)° Kw K, Ko Ptan g\ [, Lp. pm., 1 (13 1
oy = (DU el 1008 ) [ 20 oy L) (ﬂn(%)]ﬁ), (6.17)

3
Chelical = <%) (0.5 K Kp K,y cosyp tan ¢y + 1.4 sin )
rpm
Lp Nrpm 1 ]% 1
ZD . 6.18

From these performance expressions, the design parameters for the spur and
helical gear configurations are as follows: module m; speed n,pm; face width wg;
acceptable shaft deflection y,; Brinell hardness Hpg; surface finish factor K,; design
factor Ky; miscellaneous effects factor K.; surface finish and environment factor Kj;
service factor Kj; load-distribution Kj; overload factor K,; elastic coefficient K,q,:
preloading factor K,; oscillation factor K,,; shock factor K,,; reliability factor K,;
size factor K,; temperature factor K;; velocity factor K 4; life factor K; geometry
factor Kj; reliability factor Kg; temperature factor Kr; shaft length L,; failure
stress Sy; and tensile strength S;. The speed ratio mg and the input power P are
constants as specified in the problem statement. The pressure and helix angles, ¢
and ¥ respectively, as well as the number of teeth N, rated bearing life Ly, rated
bearing speed ng, and modulus of elasticity E are also considered as “constants” for
this design. Although these terms could be represented as imprecise parameters, their
contribution is viewed as either negligible (e.g., modulus of elasticity) or prescribed by
requirements on the design problem (e.g., the number of teeth is set at the minimum

value as prescribed in design tables).
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The final configuration to be considered is the V-belt system shown in Fig-
ure 6.4. The same performance parameters exist for the V-belt alternative as found
for the gear systems, with one exception. Instead of safety factors for fatigue strength
and surface durability, belt life is used as a measure of performance, where belt life
is directly related to the peak force encountered per belt-pass. Denoting expected
belt life by L. and peak force by F),, the governing expressions, that relate the V-belt

design parameters to the performance parameters, may be written as:

60 (10)3 PSfT,- + Kbe KCCb(den,meC)2

H vy re——— 108 ’ (6.19)
_ Nr {[3.57(dy(mg + 1) = Camg)] + Lalma=tl-Camal. (6:20)
° 60 7dpnrpm ’ '
1
y 32(60) (10)°K,s PL K Ky Koo KapJ{AV3EE )2 + 1\ ° ool
notr 8(0.55) 72 dpnppm Sy ’ (6:21)

# ( 4(60) (10)3K,,PL%/T? + T, + 1) ' 622)

sidef = 372 (T, — 1)dynrpm Eys

TdpNrpm Lr" np ’"6.84 [ln(4)]ss

The additional design parameters for the V-belt configuration are: pulley diameter

Cbe“:(60(10)3K,fK,thKosP) [(@)(n,,,m)( 1 )]%( 1 ) (6.23)

d,; belt bending force factor Kj; belt centrifugal force factor K,; service factor K, %

total belt passes Nz; and tension ratio T,.

6.3.2 Performance Specifications

In this design example it is assumed that preliminary performance criteria (functional
requirements) have been specified for: the fatigue strength factor of safety; surface
durability safety factor; shaft diameter; belt life; and bearing load rating. For the

first two of these, the designer will usually use a “rule-of-thumb” to determine the
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factor of safety PPs. The result represents a minimum safety factor that must be
achieved by the design. In other words, n; and n, must be greater than or equal to
n} and ng, te.

ng =2 np = 2.0,

ng > ny = L1.0.
In a similar manner, a minimum limit may be specified for the expected belt life per-
formance parameter. Assuming, under nominal conditions, that a washing machine
will be used an average of ten hours per week, the resultant minimum expected life

of the belt is:

L. > L' = 160 Kr.

A single functional requirement or specification is usually not given for the two re-
maining output parameters (d, and C) in the preliminary design phase. For this
example, it has been chosen to minimize shaft diameter to minimize material and
manufacturing costs. This specification is denoted by d}. A similar specification, C",
will be used for the bearing load rating.

These five performance specifications make up the preliminary functional re-
quirement set for this transmission example. When combined with the imprecise
output and <-level results (shown later), this set provides a means of rating each
design alternative according to individual performance, and in comparison to other

alternatives.

6.3.3 Specifying Input Design Parameters

As discussed earlier, each input parameter represents a triplet of information: im-
precision modeled with preference functions; possibilistic uncertainty modeled with

possibility functions; and stochastic uncertainty modeled with probability density
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functions. Triangular and linear (fuzzy) functions have been used to represent the
imprecision and possibilistic uncertainty in the input parameters. Probability den-
sity functions are used to represent the last component of information. Tables 6.1
and 6.2 list the data for constructing the imprecise and possibilistic components of the
input parameters, where the three data values for each DP represent the following:
left-extreme value for preference equal to zero, peak value for preference of unity, and
right-extreme value with zero preference. Table 6.3 lists the values used for the design
“constants.” Figures 6.5 through 6.10 show the probability density functions for those
parameters that include a stochastic component of uncertainty. The interpretation

and use of these data conforms to the explanations in Chapter 2 and Section 6.2.

6.3.4 Output Performance Parameters

Using the performance expressions (Equations 6.9 through 6.23) along with the de-
sign parameter data given in the previous section, the extended FWA procedure
was applied to obtain the imprecise and possibilistic performance outputs. The
cumulative-distribution form of the probability technique was also used to determine
the stochastic components of the performance parameters. (An example calculation
of the stochastic component for the shaft diameter d®,,. performance parameter is
derived in Appendix E.) Figures 6.11 through 6.20 show the performance outputs for

the spur gear, helical gear, and V-belt alternatives.

6.3.4.1 Spur Gear Output Performance Parameters

The spur gear output results contained in Figures 6.11 through 6.15 will be compared
to the performance criteria: n}, n}, d;, and C”. Figure 6.11 shows the extended-hybrid

output for the fatigue strength factor of safety (Equation 6.9). The imprecision curve
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Imprecision(7)/Possibilistic Uncertainty(u)
DPs (units) a;=0a;=1]a;=0]a,=0]a,=1]a,=0
K, 0.63 0.70 0.85 0.69 0.70 0.71
K, | 0.8 1.0 1.0
K, 0.702 | 0.814 | 0.897 | 0.780 0.814 0.830
St (MPa) 350.0 1065.0 | 1550.0
m (mm) 1.2 1.4 1.6
Trpm (rpm) || 1500.0 | 1750.0 | 2000.0
wr (mm) 6.0 9.5 13.0
K, 0.95 1.0 1.0
K. 1.31 1.33 1.35
K3 (m/s) 800.0 | 1200.0 | 1300.0
Kk (m/s) 60.0 78.0 100.0
K; 0.34 0.35 0.36
K, 1.0 1.0 1.4
K 1.3 1.3 1.5
Ky, 1.0 1.0 1.4 1.0 1.0 1.1
Kp 0.8 0.8 1.2 0.8 0.8 0.9
K.ias (kv/Pa) 187.0 |191.0 | 191.0
Hpg 100.0 { 310.0 | 460.0
Kr . 0.95 1.0 1.0
K¢ 1.0 1.1 1.3 1.05 1.1 1.15

Table 6.1: Machine Design Example: Fuzzy Design Parameter Data.
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Imprecision(z)/Possibilistic Uncertainty(u)
DPs (units) ;=0 |la;=1]a;=0|a,=0ja,=1}a,=0
L, (mm) 125.0 | 150.0 | 205.0
Sy (MPa) 175.0 350.0 1050
K 1.0 1.2 1.3
K. 1.4 1.6 1.8
Ky 1.2 1.5 1.7
Ys (mm) 1.0 2.0 3.0
Lp (khr) 12.0 16.0 16.0
R 0.95 0.99 0.99
K 1.4 1.5 1.6
K, 1.0 1.0 1.1
K, 0.95 1.0 1.05
T: 3.3 3.6 3.8
d, (mm) 75.0 | 850 |125.0
K. 0.1 0.6 2.0 0.4 0.6 0.9
K, 125.0 175.0 225.0
Nt (Mpasses) || 0.5 123.5 1400.0 | 75.0 123.5 175
K, 4 1.0 1.2 1.3

Table 6.2: Machine Design Example: Fuzzy Design Parameter Data (cont.).



“Constant” (units) | Value
N 18

P (kW) 1.5

B 3.2809
Cy 4.4482
C. 0.00328
¢ (deg.) 20.0
Y (deg.) 15.0
¢ (deg.) 20.65
$n (deg.) 20.0
E (GPa) 207.0
Lg (khr) 3.0

n, (rpm) 500.0
mg )

Table 6.3: Machine Design Example: “Constant” Data.
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is denoted by ;. Checking the output at the peak of 7% (preference of unity, o = 1),

it is found that 7} (atas1) equals 1.61. This output safety factor does not satisfy
the performance specified for the design, n} > 2.0. To reach this required value
the input parameters must deviate from their peak values. To achieve the minimum
desired performance at least one design parameter must decrease in preference of
approximately 0.2, i.e., R} 44208 = 2.15. Only imprecision has been considered
to arrive at this conclusion. If the other uncertainty effects shown in the figure are
also taken into consideration, the preference of one or more input parameters must
decrease by between 0.3 and 0.4 (R} (4007 = 2.47, and 7} (4;4=06 = 2.83) to
satisfy the performance specification including both the functional requirement and
uncertainty involved. These results demonstrate that the fatigue strength factor of
safety may be satisfied by the spur gear configuration, but only with a large change
in preference, and therefore also a large change in the choice of DP values. They also
show that care must be taken when adjusting PPs that are coupled, because adjusting
one DP may affect more than one PP.

A similar situation occurs in the case of the output surface durability safety fac-
tor for the spur gear, as shown in Figure 6.12. Once again, the performance criterion
ng is not satisfied at the peak (nominal value), 75 ,;,21) = 0.73. Considering output
values to the right of the peak and taking into account the represented uncertainty,
satisfactory performance will be just achieved at an output of 7] ,,4_07) = 1.63. Of
course, this means that a corresponding decrease in preference of the design parame-
ters is required; however, the decrease is not as drastic when compared to 7} due to
the nearness of the peak output to the functional requirement, and due to the greater

imprecision of the right portion of the curve (72 changes faster for a given change in

preference than 7i}). Even though 7§ is closer to meeting its FR than 7}, it may still
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be influenced by DP changes made to adjust other coupled PPs.
The remaining performance results for the shaft diameter calculations and
rated bearing load are shown in Figures 6.13, 6.14 and 6.15. These will be discussed

later, when the design alternatives are compared.

6.3.4.2 Helical Gear Output Performance Parameters

The imprecise and uncertainty output results for the helical gear configuration may
be found in Figures 6.11 through 6.15. For the case of the fatigue strength factor of
safety, Figure 6.11 shows the output sets as determined from Equation 6.10. The peak
of the imprecision curve corresponds to: ﬁ?,(ata:l) = 2.1. When compared with the
requirement n} > 2, the factor of safety is satisfactory. Considering the additional
uncertainty effect, the peak output does not meet n. To satisfy the functional

requirement, an output preference value of 0.9 must be used (ﬁ’f‘( sta=

0g) = 246).
Combining this result with the fact that the output curve for fz’} has imprecision on
the order of the difference between n} and the output peak, special care must be taken
when adjusting other PPs that are coupled to n? Despite these potential difficulties
the required performance is nearly satisfied with the nominal (peak) value for the
helical gear fatigue strength safety factor.

Using Figure 6.12, the helical gear configuration performs satisfactorily for the
surface durability factor of safety, ﬁi‘iam:l) = 1.53. Even with regard to uncertainty
considerations the nominal output meets the functional requirement n?. The only
concern involved with #* is the coupling with other performance parameters. Because
of the relatively small imprecision on the left-hand side of 7, small changes of a design

parameter’s preference to the left will have only a small influence on performance (this

may be verified by the backward path FWA implementation as described in Section 2).
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Thus, even though there exist combinations of input parameters that do not satisfy
the performance specifications, n” is a performance parameter that is closer to its FR
than n? or nj, and is not influenced as strongly by other coupled PPs as shown by

the small left-hand side imprecision.

6.3.4.3 V-Belt Output Performance Parameters

Figures 6.16 through 6.20 show the output performance curves for the V-belt con-
figuration. Equation 6.19 represents the performance parameter for belt peak force.
No performance is specified for peak force in this design. Instead, the performance
focus is on the expected life of the belt, as represented in PPE form in Equation 6.20.
Because the N7 design parameter implicitly depends on Fj, which in turn depends
on other design parameters in the problem, a method is required for determining L,
given the imprecise output for belt peak force. The approach used in this design is
to calculate the imprecise and uncertain peak force performance for both pulleys, as
shown in Figure 6.16. Using design tables and these results, the input parameter
Nr may be constructed (an approximation used for Ny may be found in Table 6.1)
and used in Equation 6.20. The result is the output for expected life as given in
Figure 6.17.

Analyzing Figure 6.17, the peak output value is: ze,( ata=1) = 8.3 khr. Com-
paring this result with L] > 16.0 khr, the nominal design does not satisfy the specified
performance, by a factor of two. However, the imprecision of the output is on the
order of the difference between LI and L,(amﬂ), implying that only a small change
in input parameter.preference is required. In the context of the uncertainty shown
in the figure, satisfactory performance is obtained between aj = 0.8 and a; =0.9,

i.e., ze,(at(_.‘:Q_g) = 26.0 khr and Ze'(amzo,g) = 17.0 khr.
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6.3.5 Applying the y-Level Measure

The v-level measure may be applied to the performance parameter outputs using the
procedure described in Chapter 2. The results provide the designer with qualitative
information concerning the importance and coupling of the input parameters for this
transmission design. Tables 6.4, 6.5, and 6.6 list normalized ~-level measures for the
three alternatives under consideration.

Reviewing the purpose and application of the v-level measure: when a design
parameter has the greatest qualitative importance for a given performance parame-
ter, the numerical measure produces a normalized value of one (1). As the measure
decreases in value, the corresponding input has little effect in determining the perfor-
mance parameter, meaning that even a large change in the design parameter (decrease
of preference) produces a small change in the output. The output is loosely analogous
to sensitivity, but applies to imprecise parameters, and represents the entire range of
the parameters, not a single operating point. Moreover, this sensitivity is weighted
by the designer’s desires, as identified in the input parameters’ preference functions.
The details of this weighting are discussed in Chapters 2 and 4.

The v-level measure may be used to determine importance of inputs simply by
comparing the normalized measure of one input relative to the others. This informa-
tion suggests that parameters with small v-level measures may be fixed, as changes in
those parameters will have only a small effect on performance. Coupling information
is also obtained. If a design parameter has a high measure with respect to one PP but
a very small measure with respect to another, the performance parameters in ques-
tion may be viewed. as uncoupled with respect to the design parameter. Further, in
terms of possibilistic uncertainty, the v-level measure can also provide an indication

of which parameters contribute the greatest to the uncertainty of the problem.
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Performance Parameters

DPs | ny |n, |d,(str.)|d,(def)|C
m 0.44 | 0.21 | 0.16 0.18 0.55
Nepm || 0.18 | 0.09 | 0.16 0.18 0.37
wg 0.65 | 0.31 | 0.0 0.0 0.0
S 1.0 {0.0 |0.0 0.0 0.0
Sy 0.0 (00 |1.0 0.0 0.0
K, 0.28 1 0.0 |0.0 0.0 0.0
K, 0.21 10.0 |0.0 0.0 0.0
K4 |1 0.0 |0.13 {0.0 0.0 0.0
Ky 0.0 |0.38]0.0 0.0 0.0
Kp 0.0 |0.29 0.0 0.0 0.0
Hp 00 (1.0 |0.0 0.0 0.0
K; 0.0 0.0 |0.15 0.0 0.0
L, 0.0 |0.0 [0.28 1.0 0.0
Ys 0.0 {00 |0.0 0.77 0.0
R 0.0 0.0 0.0 0.0 1.0
Lp 0.0 |0.0 |0.0 0.0 0.17

Table 6.4: ~y-level measure results for Spur Gear (Imprecision).
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Performance Parameters

DPs ||ny |n, |ds(str.)|d, (def)|C
m 0.49 1 0.23 | 0.15 0.18 0.55
Nepm || 0.24 | 0.11 | 0.16 0.18 0.37
wp 0.65 [ 0.31 | 0.0 0.0 0.0
St 1.0 | 0.0 |0.0 0.0 0.0
Sy 0.0 {00 |1.0 0.0 0.0
K, 0.28 { 0.0 |0.0 0.0 0.0
K, 0.21 [ 0.0 |0.0 0.0 0.0
Ko.s || 0.0 | 0.13 { 0.0 0.0 0.0
Ky 0.0 [0.49 0.0 0.0 0.0
Kp 0.0 [0.29 {0.0 0.0 0.0
Hp 00 (1.0 |0.0 0.0 0.0
K; 00 {00 [0.15 0.0 0.0
L, 0.0 [0.0 |0.28 1.0 0.0
Ys 0.0 0.0 |00 0.77 0.0
R 0.0 0.0 |0.0 0.0 1.0
Lp 0.0 10.0 |0.0 0.0 0.17

Table 6.5: v-level measure results for Helical Gear (Imprecision).
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Performance Parameters

DPs || F, (sm. pull.) | L. d, (str.) | d, (def.) | C
dp 1.0 0.001 | 0.29 0.33 0.95
Nrpm || 0.33 0.03 |[0.16 0.18 0.37
T, 0.07 0.0 0.04 0.05 0.0
Sy 0.0 0.0 1.0 0.0 0.0
K. 0.07 0.0 0.0 0.0 0.0
Ky 0.0 0.0 0.15 0.0 0.0
L, 0.0 0.0 0.28 1.0 0.0
Ys 0.0 0.0 0.0 0.78 0.0
N 0.0 1.0 0.0 0.0 0.0
R 0.0 0.0 0.0 0.0 1.0
Lp 0.0 0.0 0.0 0.0 0.17

Table 6.6: v-level measure results for V-Belt (Imprecision).
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6.3.5.1 Spur Gear v-Level Measure

Table 6.4 categorizes the v-level results for the spur gear configuration. Two im-
portant input parameters for a spur gear reduction unit are the speed n,p, and the
module m. Analyzing the v-level measures shows that n,,, contributes very little
to any of the performance parameters. This implies that the speed of the motor can
be fixed with respect to the spur gear design and not affect performance. While the
module design parameter also contributes very little to the shaft diameter results, the
7v-level measure shows that m may not be fixed relative to the factors of safety, n;
and n,, and the bearing load rating, C. As a result, it can be concluded that ny, n,,

and C are coupled with respect to m, but uncoupled with respect to d,.

6.3.5.2 Helical Gear v-Level Measure

The ~v-level measures for the helical gear alternative are shown in Table 6.5. Similar
results occur for the speed n,,, and the module m as found for the spur gear. Ad-
ditional information that can be inferred from the v-level results concerns the shaft
diameter performance specification, d]. The relevant design parameters for shaft di-
ameter (strength calculation, Equation 6.15) include: Sy, L,, nypm, m, and f. From
Table 6.5, the material property, Sy, obviously dominates the output performance,
with secondary effects from L,. This tells us that when attempting to satisfy d7, mini-
mization efforts should be first (and foremost) placed on choosing a material property
just to the right of the d, ,. peak value (Figure 6.13), with subsequent effort placed

in changing L,.
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6.3.5.3 V-Belt y-Level Measure

Table 6.6 lists the y-level measures for the V-belt configuration. A preliminary anal-
ysis of the table shows that the pulley diameter and speed contribute very little to
belt life performance L., with N7 dominating the imprecision. However, because Nt
implicitly depends on Fj, the peak force design parameters will bias the imprecision
of expected belt life to the greatest extent. Thus, considering the ~-level results for
F,, it is found that the most important parameters are pulley diameter (a v-level
measure of 1.0) and speed (0.334).

Another interesting result with regard to the peak force is the contribution of
the centrifugal force factor, K.. When the equation for belt peak force was derived,
all force contributions were considered, including tension force, bending force, and
centrifugal force. Of course, for the given belt tensions and bending, the centrifugal
component will contribute very little. The y-level measure verifies this result.

Finally, as with the helical gear, the failure stress design parameter plays the
most significant role in terms of imprecision of the shaft diameter output. In order to
meet the performance criteria on shaft diameter, efforts should once again be focused
on Sy, with secondary considerations of shaft length L, and pulley diameter d,, as

these parameters have the largest v-level measures.

6.3.6 Measuring the Stochastic Contribution

Equation 6.8 may be applied to those performance parameters that included at least
one design parameter with a stochastic component of uncertainty. A numerical dif-
ferentiation scheme was used to calculate the r;;. Table 6.7 shows the results. From
the table, the only parameters that contribute greatly to the stochastic PP output

are Sy, Hp, and Sy. The stochastic uncertainty (due to manufacturing tolerances) of
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the geometric dimensions impact the results very little. Thus, subsequent stochastic
calculations with a refined model of the design alternatives need only include S,, Hg,

and Sy, resulting in a decrease in the computation and stochastic parameter space.

6.3.7 Discussion

This example has demonstrated the evaluation of the imprecise and uncertain out-
put performance with respect to individual functional requirements. v-level measure
results have also provided information concerning the relative importance of certain
design parameters of the problem. Major differences of the alternative configurations
may now be determined. When comparing the spur gear and helical gear alterna-
tives, both configurations do not satisfy the nominal fatigue strength performance
n}, especially when uncertainty is included. Even though both the spur and helical
gears only require a small deviation in input preference from the most desired, the
helical configuration slightly out-performs the spur gear configuration. Figure 6.11
illustrates this higher performance due to the closer proximity of the peak of n’} to
n%, and due to the slightly higher imprecision of Fz’} to the right of the peak.

More drastic differences occur when comparing n* and n2. The helical system
satisfies the performance specification without change of input parameters. A signif-
icant change, by comparison, is required for the spur gear alternative. The order of
the imprecision is also significantly different. Figure 6.12 shows that a given change
in preference to the right of the peak will produce a change in output of more than
a factor of two for n? compared to n?. Thus, the helical gear alternative is less sensi-
tive to variance in design parameters, especially in terms of coupling with any other
performance parameters.

The performance criteria for shaft diameter and rated bearing load may be
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compared directly from Figures 6.13, 6.14, and 6.15. Both shaft diameter calcu-
lations (Equations 6.13 through 6.16) were carried out to determine the minimum
requirements for satisfying both strength and deflection considerations. Because the
strength calculation produces higher shaft diameters, Figure 6.13 will be used as a
basis for comparison. Considering Figure 6.13, the output performance curves are
essentially identical for both the spur and helical configurations. This implies that
the requirement d, will not be satisfied to any greater extent by choosing one gear sys-
tem over the other. The «-level measure suggests that efforts should concentrate on
varying the material property Sy and subsequently L, in order to decrease diameter.

Figure 6.15 shows the performance outputs for the rated bearing load. In
this case, the spur gear outperforms the helical system with respect to the nominal
output of the imprecision gear. Notice however that greater uncertainty exists for the
spur gear output. Considering the greatest uncertainty to the right of the peak for
both curves, the spur gear rated bearing load is less than the helical system, but not
significantly less.

At this point, both gear configurations may be compared directly with the
V-belt drive. However, the direct comparison of the gear systems showed that the
only advantage of the spur gear in terms of the functional requirements is the smaller
rated bearing load. Because the difference in bearing load was not significant, and
because the helical system outperformed the spur gear alternative in terms of fatigue
strength and surface durability, only the helical gear configuration will be compared
with the V-belt.

Using Figure 6.17 and the results discussed earlier, the nominal V-belt alter-
native does not satisfy the expected life requirement nominally, but requires a change

in design parameter preference. Although the expected life of the helical gear is not
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determined by a performance expression, the fatigue strength and surface durability
implicitly depend upon life through the factors involved in the equations. Comparing
L. to n’f‘ and n” in this sense, it is found that the helical gear requires similar changes
of design parameters to achieve the specified performance.

Similar results occur for the shaft diameter and rated bearing load. Even
though the V-belt alternative has lower nominal values at the peak of the imprecision
curve for both cases, the addition of uncertainty considerations shows little difference
between the V-belt and helical system. Thus, very little advantage exists for choosing
one configuration over the other to minimize either shaft diameter or rated bearing
load. Because of these results, a cost function might be devised for the next design

stage, in which material cost or volume might be used as a measure.



Design Parameters

PP S¢ | wr Hp | L, S dy
Nfspur || 0.93]006 (00 [00 |00 0.0
Nfhelicar || 0.92 [0.06 [0.0 {0.0 |0.0 [0.0
Msspur || 0.0 | 0.0006 [0.98 [0.0 |0.0 |0.0
Ng helical || 0.0 | 0.0006 [ 0.98 [ 0.0 |0.0 |0.0
ds .. 0.0 |0.0 0.0 |0.005|0.99 |0.0
d? e 0.0 |0.0 0.0 |[0.005|0.995 | 0.0
i 0.0 |0.0 0.0 |0.0050.97 |0.027
Chelt 0.0 {0.0 0.0 [00 (0.0 |1.0

Table 6.7 Relative Variance Contributions.
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6.4 Conclusions

This power transmission design example demonstrates an application of the semi-
automated approach to representing and manipulating both imprecision and other
uncertainties in preliminary design. The designer is able to represent preliminary
descriptions of design alternatives, even when they are very imprecisely described.
In the design example shown above, none of the three alternatives was precisely
described, yet conclusions could be drawn regarding the performance of each in this
application, subject to the requirements specified here. For example, it was found that
the helical gear drive is less sensitive to changes in design parameters, and appears to
meet the functional requirements more easily than the spur gear configuration. Nearly
the same performance was obtained for the helical gear and V-belt alternatives, when
compared to the functional requirements used here.

Further, the introduction of other uncertain data (to complement the imprecise
data in the design process) contributes additional information on the performance
of each design alternative. The other uncertain data are comprised of two distinct
components: a stochastic (objectively/subjectively measured) part, and a possibilistic
(subjective) portion. These three data are combined by use of Extended Hybrid
Numbers, which provide a consistent representation for input design parameters, and
evaluation of results. In this example, the possibilistic data played an important role
in indicating how the imprecise performance results might change over the possible
range of input parameters. The stochastic component indicated how sensitive the
design alternatives were to manufacturing and material processing uncertainties.

The ~-level measure also helps in the process of determining the relative im-
portance of design parameters. Input parameters are seen to have a large effect on

performance parameters in some cases, and a small effect in others, indicated by large
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or small (respectively) v-level measures. This is an indication of the coupling between
the DPs and the PPs. In some cases, parameters with small 4-level measures can be
fixed at a value of the designer’s choosing, and removed from further design consid-
eration, thus reducing the number of parameters that need to be considered. In the
design example used here the v-level measure showed that the motor speed, in the
case of the gears, affects the performance of the transmission very little.

Imprecision and other uncertainty data play an important role in engineer-
ing design. The approach described and demonstrated here comprises a method for
representing and manipulating all uncertainty aspects simultaneously. This method
provides more information to the designer at the preliminary stage than is available
using conventional design tools, especially with respect to the subjectivity of the de-
signer. In the next chapter, the approach will be extended by further developing the
method of determining the coupling of the design parameters, and by introducing a
preliminary metric by which designs with conflicting performance information can be

evaluated.



Chapter 7

A Design Figure of Merit

7.1 Introduction

Chapters 2 through 6 discuss an approach for representing, interpreting, and manipu-
lating uncertainties in preliminary engineering design. The focus of the approach is to
improve a designer’s decision-making capability by calculating with a two-dimensional
parameter space instead of the physical parameter space, i.e., the design parame-
ters are a function of the physical range of parameter v