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ABSTRACT 

Experiments a r e  described in which measurements were made 

of the drag of semi -infinite bodies moving parallel to a uniform mag- 

netic field in a conducting fluid. Two of these bodies were moderately 

streamlined halfbodies and a third was a blunt halfbody. The drag 

coefficients of all three bodies were found to increase monotonically 

a s  a function of the interaction parameter, N. This parameter was 

varied in the experiments from O to about 24. The drag coefficients 

of the streamlined halfbodies were found to increase linearly with N 

for N < - O(1) in agreement with a simple theory based on a calculation 

of the Joule dissipation, On the other hand, for the same range of 

N, the drag coefficient of the blunt halfbody was found to increase 

negligibly from i ts  zero-field value of 0. 66. For  N> > 1 ,  the drag 

coefficients of all three bodies were s f  O(1) and appeared to be 

asymptotically converging to some common limiting value. Although 

the drag could not be calculated for large, finite values of N, an 

inviscid theoretical model of the flow i s  described from which i t  i s  

concluded that the drag coefficient of any halfbody must approach 

unity a s  N-, m. 

Pn addition to the experiments with the semi-infinite bodies, 

experiments a r e  also described in which measurements were made of 

the non-magnetic drag of impulsively- started flat disks. Some mex- 

pected and interesting transient variations in tRis drag were observed 

and a r e  attributed to the vortex formation process in the wake. 
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I. INTRODUCTION 

Experimental research in incompressible magnetofluid- 

dynamics (MFD) was initiated a t  GALCIT in 1960 with the construction 

of a mercury tow tank facility designed for the study of MFD flows 

past bodies (see reference 1). At that time, not a single experiment 

on such flows was known to have been performed; whereas the theory 

had been worked out for a number of different cases under a wide 

variety of assumptions (see e, g. ,  references 2 through 6 ) .  The need 

fo r  experiments to test the various theoretical solutions that had been 

proposed was rather apparent; but it was perhaps even more compel- 

ling to conduct experiments to study fundamentally important regimes 

of flow which so far had not been amenable to theoretical analysis 

(e. g. , transition at high Reynolds number). 

Since 1960, various investigators have carried out experiments 

which have to some extent met these demands. Maxworthy (Ref. 7) 

has measured the drag of freely-descending spheres dropped into 

liquid sodium; Ahlstrorn (Ref. $), in an experiment in the GALCIT 

facility, has measured the magnetic field perturbations produced ahead 

of a semi-infinite Rankine body; Motz (Ref. 9) has determined the drag 

and induced electric field of an oscillating sphere in mercury; and 

most recently, Uonas (Ref. 10) has measured the drag of spheres and 

of a flat disk in a liquid sodium tunnel. In all of these experiments 

the applied magnetic field was aligned parallel to either the uniform 

flow or  to the motion of the body. The only other experiment on MFD 

flows past bodies appears to be that of Dorman and Mikhailov (Ref. 11) 

who measured the induced magnetic and electric: fields of a sphere 



moving perpendicular to an applied magnetic field in mercury. That 

more experiments have not been performed attests to the difficulties 

involved in setting up such experiments. A problem almost inherent 

in  MFD experiments i s  the rather long-range effects which the bound- 

ar ies  can have on the flow via the Alfven wave mechanism. Suck 

boundary effects appear to have been encountered, to a greater or  

lesser  degree, in all of the experiments described. The results of 

some of these experiments - -  in particular, those relevant to the 

present work -- will be described in later sections. 

The experiments considered here were the latest to be per- 

formed in the GALCfT mercury tow tank and were mainly concerned 

with the drag of semi-infinite bodies moving parallel to an applied 

magnetic field. The drag was measured with a force transducer 

which was specially designed and developed for use in the tow tank. 

The description of the experiments will be covered in chapter f H and 

their results presented in chapter PIP. However, before proceeding to 

these discussions, some preliminary discussion i s  in order on the 

general theoretical problem of MIFD flows past bodies in aligned 

magnetic fields. 

The equations, in dimensionless form, governing the steady 

laminar flow of an incompressible, viscous and electrically conducting 

fluid a r e  (Ref. 12) 

(l.  la)  

(1. lb) 



(1, l c )  

1 
where : 

The starred quantities denote dimensional quantities, and we shall 

follow this designation henceforth. The three dimensionless param- 

eters appearing in these equations a r e  the Reynolds number Re, the 

magnetic Reynolds number Rrn and the interaction parameter N, 

which a r e  defined by 

R e =  - Ud - bnertia force/viscous force 1 
v 

Rrn = pvUd - [body speed/magnetic diffusion speed 2 

2 wBod 
N = - - [magnetic force/inertia force 1 

P u 

These three parameters together with the force coefficient can be 

shown to completely characterize the problem (Ref. I)  and a r e  the 

most convenient ones for our purposes here, Two other commonly- 

used dimensionleas parameters, which may be expressed in terms of 

those chosen above, a r e  the Harmmnurnber:  

" The definitions of the various symbols may be found in the List of 
Symbols on p.viii, 



Ha = JNRe = ~~d /zi - [magnetic force/viscous force] i!i 

and the Alfven number: 

E 

a = gm = A - [ AlfvCn speed/body speed] 
u f i  

At this point, we may gain some perspective on the practical 

aspects of the problem by considering what the ranges of these 

parameters a r e  In laboratory experiments. In the present experi- 

ments and in those cited earlier, the achievable conditions were 

limited to  

And in general, i t  is probably quite realistic to set the limits, 

Re >> l and N<< Re, on the conditions which can presently be 

achieved in laboratory experiments, at least with the common 

terrestrial  liquid metals. 

The practical limits established above have important impli- 

cations when they a r e  compared with the conditions assumed in the 

various existing theoretical solutions on MFD flows past bodies. 

Such a comparison has been made by Yonnas (Ref. 10) who comes to 

the conclusion that most of these solutions a r e  for problems which 



2 
cannot be physically realized . For  example, he shows that the 

conditions appropriate to Rm = oo a re  far from being approached 

in the laboratory, and concludes that the well-known controversy 

over the solution for this case of Sears and Resler (Ref. 4) on the 

one hand, and that of Stewartson (Ref. 5) on the other, i s  quite 

unlikely to be resolved through experiments. He also points out 

that even the modified Stokes problem treated by Chester (Ref. 13), 

which seems quite physically realistic, would be extremely difficult 

to  verify experimentally since the condition, Ha>> Re, i s  required. 

The limitations of these and many other theories were discussed at  

some length by Uonas, and we hardly need to go through such a 

discussion again here. The only point we note i s  that despite all 

the existing theories, he was unable to find a single one which could 

describe the results of his experiments. In order to explain these 

results, he proposed a nodinear theoretical model of his flow (c, f,  , 

See. 4.21, but left some subtle, basic questions unanswered. 

In the case of the present experiments, because of simpler 

flow conditions, the theory i s  considerably better defined. For  the 

case N<< 1, the drag of streamlined semi-infinite bodies can be 

calculated explicitly, And in the general case of arbitrary IN, it 

will be seen that a fairly complete picture of the flow is obtainable 

through a strictly inviscid theoretical model. We defer detailed 

discussion of the theory until chapter fV. However, i t  will be 

Some of these solutions could conceivably find application in  astro- 
physical phenomena, but he is presumabPy excluding suck exotic 
possibilities. 
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convenient for us to reduce eqns. (1. 1) now to the considerably 

simpler form in which they a r e  used in chapter IV. This will be 

done by invoking a pair of assumptions which a r e  consistent with 

the conditions of the experiments. 

The first  assumption i s  that the magnetic field i s  everywhere 

equal to the uniform applied field; i. e. , - B* = - B i (see figure 1 ) .  
0 - 

This assumption i s  consistent with the condition, Rm* 1, and can be 

inferred from Amperefs law: 

V x - B = R m i  = Rm ( q x g )  

The Past equality follows from O h ' s  law since - E = 0 in axisymmetric 

flows, This equation suggests that the change in field is 3 

for  2, q = O(1). In effect, what this says i s  that the fluid (Hg) i s  such 

a poor conductor that it may to a first  approximation be treated as  a 

nonconducting medium. Direct confirmation i s  provided by Ahlstrom's 

measurements (Ref. 8) which have shown that the induced fields a r e  

less  than 1 per cent of the applied magnetic field strengths. 

Thus, the assumption appears to be a very reasonable one and 

results in a considerable simplification because i t  effectively uncouples 

the momentum equation from the induction equation. Since the current 

density i s  now given by J =-q x i  =-v i -8 ' the magnetic force term in 

eqn. (1. Pb) i s  reduced to 

J This i s  a conservative estimate because for N>>1 Childress 
(Ref. 34) shows that A B =  - o ( R ~ / N ) ,  



where v is the radial velocity component. A rather simple picture of 

the currents and magnetic forces can now be drawn a s  shown infigpre 1. 

The currents flow in rings about the axis of the body and the current 

density at any radius i s  just proportional to the radial velocity at that 

radius. The magnetic force acts in a direction directly opposing the 

radial motion and is also just proportional to the radial velocity. 

The second simplifying assumption i s  that the flow i s  inviscid; 

i. e. , Re = a. Although this i s  consistent with the condition, Re >> 1, 

i t  certainly would not be very meaningful i f  the flow i s  separated and/or 

turbulent. However, hindsight gained from the experiments indicates 

that the flows past the Rankine and ogive halfbodies may always be 

laminar and unseparated, and that the same may be true for the blunt 

halfbody at  large values of N. In any case, we can invoke the assump- 

tion - a posteriori. This assumption together with the former then 

reduces the momentum equation to the form: 

(go V )  gl = -Vp -Nvi  -r 

Note that the only parameter left in this equation is the interaction 

parameter, N. Therefore, i f  this i s  the correct equation for the flow, 

we should expect the drag coefficient to be a function of N alone; i. e. , 

CD=f(N) 

W e  must finally mention that in addition to the MFD drag 

measurements on the semi-infinite bodies, measurements were also 

made of the non-magnetic transient drag of a flat disk. Very i n t e r d n g  
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effects in the behavior of this transient drag were somewhat inadvert- 

ently observed during unsuccessful attempts to measure the MFD drag 

of the disk. Since almost identical measurement techniques were 

involved, we found it convenient to describe these measurements 

concurrentl-y vvith the others. 



I I. DESCRIPTION OF EXPERIMENTS 

2.1 The Mercury Tow Tank 

The GALCIT mercury tow tank facility consists essentially of a 

cylindrical stainless steel tank, 5* in. in internal diameter and 55 in. 

long, which i s  filled with about 700 lb, of mercury (see figure 2) .  Sur- 

rounding the tank i s  a water-cooled copper solenoid which can produce 

steady, axial magnetic fields up to 12 kilogauss in strength. Measuxe- 

ments with a Hall-effect probe have shown that the magnetic fields a r e  

uniform axially to 5 per cent and uniform radially to 2 per cent in the 

middle 25 in. of the solenoid. 

Models a r e  driven through the mercury on the end of a hollow 

1 in. OD stainless steel shaft which passes through a graphitar sleeve 

bearing at the bottom of the tank. It i s  from this feature that the 

facility receives i ts  designation a s  a tow tank. The shaft itself is 

driven through a system of cables and a magnetic clutch by a vzriable- 

speed electric motor capable of driving the shaft at  speeds up to 

3 m/sec. 

The velocity of the drive shaft i s  measured by means of a 

velocity servo consisting of a rotating potentiometer geared to the 

cable drive. The voltage output of the potentiometer, which i s  

directly proportional to the distance traveled by the drive shaft, i s  

electronically differentiated to give a voltage output directly propor - 
tional to the dr ive shaft velocity. The drive shaft was found to 

accelerate to constant velocity in 2 to 3 inches and was usually 

allowed to travel a total distance of 30 to  36 inches, 



The top of the tow tank i s  covered by a lucite transition sec - 
tion which leads into a 1 in. ID pyrex standpipe. When the drive shaft 

moves upward into the tank, i t  displaces mercury into the standpipe. 

Since the ID of the standpipe is the same as  the OD of the drive shaft, 

the mercury level in the standpipe rises at the same rate a s  the shaft, 

thereby keeping the hydrostatic pressure acting on the end of the shaft 

constant. We shall explain in the next section why i t  was necessary to 

maintain this constant hydrostatic head. 

Further details about the design and construction of the CALCIT 

mercury tow tank facility may be found in reference 1. 

The Drag Balance 

An earlier attempt (see Ref. B) to measure drag in the tow 

tank consisted of timing the ascent of freely-rising spheres, However, 

the measurements did not yield an accurate check on the accepted stan- 

dard values for sphere drag at zero magnetic field strength; and i t  was 

subsequently discovered that the spheres did not r ise  vertically along a 

straight path, but spiraled upward along a helical path. Consequently, 

this technique was abandoned and efforts were directed toward the 

development of a force transducer, or drag balance, which could be 

mounted on the end of the tow tank drive shaft. Several early versions 

of such a balance were tried, including capacitance and piezo - electric 

devices, but were unsuccessful due mainly to difficulties associated 

with rather peculiar pressure, accePeration and vibration forces 

which a r e  produced ia. the tow tank. 



The drag balance that was finally developed and successfully 

used in the present experiments i s  basically a simple damped spring- 

mass  system in which the displacement of the spring produced by the 

drag force i s  converted into an output voltage. Two identical stainless 

steel bellows having a combined spring constant of around 40 lb/in 

serve a s  the spring. These a r e  mounted with an epoxy cement, one 3 

inches above the other, inside of a 1 in. OD stainless steel cylinder 

which simply becomes a continuation of the drive shaft (see figure 3). 

The end plates of the two bellows a re  connected by an 11/64 in. 

diameter shaft which has an extension above the upper bellows that 

serves a s  a sting for supporting models. Mounted near the mid-point 

s f  this shaft is a short length. of 1/8 in. diameter fiber-optics image 

1 conduit with a miniature lamp attached to one end. The light from 

the lamp i s  transmitted by the image conduit to i ts  other end which i s  

masked to collimate the emitted light into a thin beam. This light beam 

2 
falls on a photoelectric transducer which converts any displacements 

of the beam into changes in voltage. Damping for this spring-mass 

system was provided by filling the lower bellows and a small reservoir 

above i t  with a silicon oil having a viscosity of 800 centistokes. The 

interior of the balance was sealed from the mercury by the use of O -  

rings (not shown in figure 3).  

Product of the American Optical Go. . Its purpose was to remove 
the lamp from the proximity of the photoelectric transducer in 
order to reduce voltage drift of the transducer due to heating. 

Trade name: Photopot, manufactured by the Giannini Controls Corp. 
This transducer i s  in essence a miniature ($xi in. square) slide- 
wire potentiometer in which the slide-wire is replaced by the 
frictionless light beam. 



The necessary electrical leads for the balance were supplied by 

a 3 -conductor shielded cable brought up through the hollow drive shaft. 

A diagram of the electrical circuit employed for the balance is given 

i n  figure 4. The photoelectric transducer was incorporated into a 

bridge circuit using a floating 9 V battery supply. The bridge output 

was passed through a low-pass filter which cut-off noise components 

above about 45 cps before being fed into the amplifier of a dual-beam 

oscilloscope, Current for the miniature lamp was provided by a 5 V 

regulated power supply. The overall frequency response of the sys-  

t em was just that of the low-pass filter since the balance had a 

frequency response of around 50 cps. 

One other important feature of the drag balance that should be 

described is the incorporation of the static p ressure  holes which lead 

into the chamber surrounding the lower bellows. These holes allow 

the hydrostatic p ressure  of the mercury to act on the lower bellows s o  

a s  to produce an upward force which can counterbalance the downward 

force  produced by the hydrostatic pressure  acting on the upper bellows. 

This counterbalancing scheme was essential for the successful oper- 

ation of the balance because i t  rendered the balance insensitive to the 

3 pressure  changes which were produced in the tow tank . There  was 

always a large initial pressure  jump (which is calculated in appendixB) 

caused by the in e rcury accelerating into the standpipe. Moreover, 

3 
However, due to a slight difference (about 2 $ )  in the surface a r eas  
of the bellows, the balance was not totally insensitive to  changes i n  
pressure. A very small correction due to  this unbalance is given 
in  Sec, 2. 5. 



this pressure jump was accompanied by low frequency (- 6 cps), 

slowly-damped fluctuations in pressure  caused by the oscillation 

of the mercury in the standpipe. A previous version of the present 

drag balance, designed by Dr. H. G .  Ahlstrom, was unsuccessful 

because the hydrostatic pressure  was allowed to act only on the upper 

bellows so that the pressure  changes which occurred were not balanced 

out and completely obliterated the desired measurement. 

At one time i t  was thought that the tow tank could be operated 

without the standpipe (i. e. , with a f ree  surface of mercury at  a fixed 

level) since the balance with i ts  c o u n t e r b a l ~  feature would be 

relatively unaffected even by the tremendous decrease (over 1 atmo- 

sphere) in hydrostatic pressure  to which it would then be subjected. 

Unfortunately, it was found that tiny a i r  bubbles trapped between the 

convolutions of the bellows would expand under the large negative 

pressure  gradient and cause the balance to respond in a very erratic, 

unsatisfactory manner. Although various schemes were tried, such a s  

placing the entire tow tank under vacuum, these a i r  bubbles could 

never be eliminated to the point where they were not aproblem. Con- 

s equently, we decided to retain the standpipe since i t  circumvented 

the problem by keeping the hydrostatic pressure  on the balance 

cons tamt. 

2. 3 The Drag Models 

The f i rs t  drag measurements with the balance were made on a 

flat disk. This model was selected for the initial measurements 

because i ts  high drag was relatively easy to measure and could be 



readily checked since i ts  non-magnetic drag coefficient has a constant, 

3 
stable value at high Reynolds numbers (CD = 1.17 for Re>lO accord- 

ing to Ref. 14). For  these measurements, the top of the balance was 

capped by a lucite cone and the flat disk, also made of lucite, was 

mounted on the end of an 8 in, long, 1/8 in. diameter stainless steel 

sting which extended through a hole in the cone from the sting mount on 

the upper bellows (see figure 5a). However, this set-up subjected the 

balance not only to the drag force of the disk, but also to an unwanted 

force due to the dynamic pressure in the wake of the disk acting on the 

upper bellows. Therefore, a separate measurement of this "tare 

drag" force was necessary and was made by mounting the sting 

independently a s  shown in figure 5b such that the drag force of the 

disk was not transmitted to the balance. Three different size disks 

of diameters .50 in. , ,754 in. and 1.00 in, were used in these 

measurements. 

As mentioned in the Introduction, the MFD drag measurements 

on the disk were not successful. The main difficulty was an uncer- 

tainty about the upstream influence of the drag balance on the flow in 

the wake of the disk, This did not appear to have an important effect 

on the non-magnetic drag (c. f. , Sec. 3. 2); but with the magnetic field 

present, the upstream propagation of Alfven waves results in the 

formation of the so-called sfupstream wakess (Ref. 8 )  ahead of the 

balance which may have interacted strongly with the downstream wake 

of the disk. Although this problem had been anticipated, we had hoped 

to resolve i t  experimentally by measuring the MFD drag with stings of 

different lengths and extrapof ating the results. However, the results 



of such measurements were inconclusive sinc e no significant change in 

the drag was observed over a variation in sting length from 4 in. to 

8 in. The MFD drag was always found to be slightly lower (10 per cent 

a t  most) than the non-magnetic drag even at the strongest field strength 

corresponding to an N of 20. These results a r e  in complete disagree- 

ment with those obtained in the liquid sodium tunnel experiments of 

Yonas (Ref. 10; also see Sec. 3. 1) who found that the drag s f  a disk 

increased about 75 per cent over the same range of M. The only major 

difference between the two experiments appears to be that in Yonas' 

experiments there was no body, such as  a drag balance or  strut, 

located downstream of the disk; the disk being suspended by wires 

from the tunnel walls. Therefore, the most plausible explanation a t  the 

present time for the discrepancy between the results of the experi- 

ments i s  that the MFD drag of the disk in the mercury tow tank 

experiments was unduly iniluenced by the presence of the drag Mance. 

However, in chapter 1[V we shall mention an interesting inviscid theory 

for closed bodies which predicts that CD+l as  M+m, with stagnation 

pressure developing on the front s f  the body and freestream static 

pressure om the rear. This i s  the trend observed in our disk drag 

data, and one might speculate whether the presence of the drag 

balance may have produced conditions appropriate to this theory. 

The difficulty encountered in the measurements on the disk 

undoubtedly would also have been encountered with any closed body 

since the drag balance would necessarily have to be located in  the 

wake of such bodies. A semi-infinite body, however, avoids this 

difficulty by allowing the drag balance to become a part of the model 



itself. Ideally, a semi-infinite body consists of a head form followed 

by an infinitely -long afterbody of circular cross - section. Such a body 

was easily simulated in the tow tank by mounting the desired head 

form directly on the drag balance and letting the balance and drive 

shaft serve a s  the "infinitely-long" afterbody. This set-up has 

already been shown in figure 3. 

Three semi-infinite bodies of different shape were chosen for 

the MFD drag measurements. These included a classical Rankine 

halfbody, a 2 -caliber ogive and a blunt halfbody. The head forms 

used for these bodies were made of lucite and their shapes and dimen- 

sions a r e  shown in figure 6 .  The Rankine halfbody, which i s  defined by 

a source in a uniform stream, was an obvious choice because of the 

simple analytical form of i ts  potential flow and because the magnetic 

field induced by the body had been measured previously by Ahlstrom 

(Ref. 8). Furthermore, the zero-field drag of such a body was ex- 

pected to be very low so that, hopefully, the drag with field would be 

almost entirely MFD drag. The blunt halfbody i s  the simplest repre- 

sentative of high drag shapes and was chosen to study the effect of 

body shape. The choice of the ogive was originally based on the fact 

that i t  was an easily machineable streamlined shape. This was a con- 

sideration of practical importance because we had planned to make 

pressure distribution measurements with the drag balance which re-  

. quired a number of head forms of identical shape. However, due to 

various difficulties, these measurements were never completed. 

Nevertheless, we retained the ogive as  a drag model since i t  was 



available and was also representative of slightly more streamlined 

shapes than the Rankine halfbody. 

Just a s  in the case of the flat disks, a ta re  drag measurement 

was also made on the semi-infinite bodies. The set-up for this 

measurement i s  also shown in figure 6 and differs from the tare  drag 

set-up for the disks in that only the difference between the pressure 

acting on the upper bellows and that on the lower bellows could be 

measured. The unwanted force due to the decrease or  increase in the 

pressure acting on the base of the models could not be determined 

directly from the tare  drag measurement alone. The calculation of 

this '!base drag" force will be described in Sec. 2, 5. 

2 . 4  Experimental Procedure 

The calibration of the drag balance had to be carried out sep- 

arately For each model because i t  varied considerably depending on 

the modelss bouyancy in mercury. This variation was due to the non- 

linearity of the bellows which became significant over the very Parge 

range of the bouyancy force. However, over the much smaller load 

4 
range corresponding to the expected drag forces , the calibration for  

each model was nearly linear. The calibrations were carried out 

directly in the tow tank with the drag balance completely immersed in 

the mercury and only the very top of each model showing above the 

mercury surface. Some typical calibration curves for the Rankine 

halfbody, the blunt halfbody and the disks a r e  shown in figure 7. 

The maximum bou ancy force on a model was around 600 g m ;  
whereas the drag Y orces were usually less than 100 gm. 



In the series of runs for a particular model, two measure- 

ments of drag were made at each run condition. One was the 

measurement of the total drag which included not only the drag of the 

model but also other extraneous forces (see next section). The other 

was the tare  drag measurement for which the balance set-ups de- 

scribed in the previous section were used. During each run, the 

voltage outputs from the drag balance bridge circuit and the velocity 

servo were displayed simultaneously on a dual-beam oscilloscope and 

their traces photographed with a Polaroid camera. Photographs 

typical of those obtained for the semi -infinite bodies a r e  shown in 

figure 8. The data a r e  for the Rankine halfbody a t  magnetic field 

strengths of 01 3 ,300 ,  6,600 and 11,000 gauss and at  a fixed velocity of 

about 0 . 3  m/sgc. In all of the photographs, the upper trace i s  the drag 

balance bridge circuit output and the lower trace i s  the velocity servo 

output. The time increases from left to right. From these tracesi  it 

can be seen that the drag reaches i ts  steady value quite rapidly and 

increases substantially with magnetic field. 

Typical photographs of the data obtained in the non-magnetic 

drag measurements on the three flat disks a r e  shown in figure 9. 

Identification of the upper and lower traces i s  the same as  in  the 

previous figure. The velocity was again fixed at  about 0. 3 m/sec. The 

interesting transient variations which can be seen in the drag traces 

will be discussed in detail in Sec. 3 . 2 .  

The experimental runs were made a t  velocities ranging from 

about . 13 m/sec. to .9 m/sec, and fo r  magnetic field strengths from 

0 to 12,500 gauss. The corresponding ranges in the basic 
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dimensionless parameters were a s  follows: 

4 3 x 10 < Re < 2 x lo5 ,  2 x l o m 3  < Rrn < 1 x - - - - 

It should also be mentioned that all the runs with magnetic field were 

under sub-Alfv8nic flow conditions (a>l). The range in conditions for 

each particular model will be given more specifically in chapter 111. 

2. 5 Data Reduction Procedure 

It was necessary to apply certain corrections to the total mea- 

sured drag of both the semi-infinite bodies and the flat disks, Some of 

these, such as  the tare drag of the flat disks, were directly measur- 

able; others had to be estimated or assumed, Fortunately, the 

corrections which were the most uncertain or arbitrary were also 

relatively small compared to the total drag (see Sec. 3.3) .  The 

procedure followed in determining the corrections for the data of the 

semi-infinite bodies will be described first. 

The total measured drag of a semi-infinite body was found to 

consist of three parts: a base drag Db, a viscous drag D and the v 

MFD drag DM. The first  two were unwanted contributions which, if  

possible, we wished to separate from the total drag in order to isolate 

the MFD drag. The base drag was mainly due to a pressure decrease 

a t  the base of the models arising from the presence of the tow tank 

walls. The viscous drag was due to either skin friction, a s  in  the 



cases of the Rankine and ogive halfbodies, or  to viscous dissipation in 

a separated wake flow, a s  in the case of the blunt halfbody. 

The f i r s t  step taken to determine those unwanted contributions 

was to measure the total drag of the models without the magnetic field. 

Pr ior  to these measurements, the existence of the base drag was not 

realized and the drag was expected to be entirely viscous drag. Sub- 

sequently, however, the measured zero-field drag of the Rankine and 

ogive halfbodies was found to be in rather poor agreement with the 

theoretical laminar skin-f riction drag. It was then disc overed by 

some simple calculations that a substantial base drag could also exist 

which could account for  the discrepancy. Therefore, before presenting 

the results of the zero-field drag measurements, we shall show how 

the base drag of the semi-infinite bodies can be calculated. 

For  a streamlined halfbody, such a s  the Rankine and ogive 

halfbodies, the zero-field base drag can be calculated in a very s t r w i g  

forward manner, The flow past the body i s  assumed to be inviscid and 

mass,  momentum and energy balances a r e  carried out on the body- 

fixed control volume shown in figure BO. This calculation, which i s  

described in appendix A,  yields the following value for the base drag 

5. coefficient . 

It may seem paradoxical that a drag force i s  obtained in an inviscid 
flow, but i t  can be easily seen by noticing that the flow downstream 
(in the frame of figure PO) i s  accelerated to a velocity which i s  
slightly greater than that of the uniform flow upstream. This 
causes a decrease in the downstream static pressure acting on the 
base s f  the model and results in  a net drag force, 
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There i s  another, almost negligible contribution which may be 

considered a s  part of the base drag. This contribution was discovered 

through the ta re  drag measurements described in Sec. 2.3. In these 

measurements, an extremely small positive net force was picked-up 

by the balance, indicating that the pressure at the upper bellows was 

slightly greater than at  the lower bellows. However, this force can 

actually be attributed to an increase in the overall pressure of the tow 

tank caused by the acceleration of mercury into the standpipe. 

Because the effective area of the upper bellows i s  slightly greater 

than that of the lower bellows, this pressure increase resulted in a net 

positive force acting on the balance. This force can be explicitly 

calculated (see appendix B) and gives an additional contribution of 

.084 to the base drag coefficient. Although the accuracy of the ta re  

drag measurements was poor (about + 3 0 4 )  because the forces were so 

sm-an, they agreed within the e ~ p e r i ~ e ~ t a ?  accuracy ~ 5 t h  the calcu- 

lated forces. Therefore, in the cases of the Rankine and ogive half - 
bodies, i t  was assumed that the pressure difference between the upper 

and lower bellows was negligible and that the zero-field base drag 

coefficient was given by 

We mention in advance that the ta re  drag measurements with magnetic 

field gave essentially the same results; i. e . ,  CD .004, so that the 

pressure difference between the upper and lower bellows will also be 

assumed to be negligible when a magnetic field i s  present. This was 

true again of the ta re  drag measurements on the blunt halfbody a t  the 



stronger field strengths (N greater than about 5), so for this body at  

these conditions, the same assumption will be made. 

The calculation of the zero-field base drag for the blunt half- 

body i s  not nearly so straightforward. However, i t  can be crudely 

estimated and, fortunately, turns out to be a small fraction s f  the 

total drag. The calculation procedure i s  similar to the previous case 

except the drag i s  now assumed to be due mostly to viscous dissipation 

so that a dissipation term must be added to the energy balance. A 

pressure coefficient of -. 08 i s  calculated by this procedure (see 

appendix C) for a point f a r  downstream of the nose. The pressure 

coefficient at the lower bellows will be assumed to have this value. 

Now in the tare  drag measurements on the blunt halfbody, positive 

pressure differences were always found between the upper and lower 

bellows which correspond to an approximately constant pressure 

coefficient difference of +. 05.  Therefore, the net presrsure, coefficient 

at  the b a ~ e  must be -, 08 + .05 = -. 03, and so the base drag coefficient 

is just 

Having calculated the base drag coefficients, we a r e  mav ready 

to present the results of the zero-field drag measurements on the d-. 

infinite bodies, These a r e  given in figure 1 I where the drag coefficknts 

of the Rankine, ogive and blunt halfbodies a r e  shown plotted against the 

Reynolds number, The unfilled data points correspond to drag coef- 

ficients based on the total drag; whereas the filled data points 

correspond to the drag coefficients obtained by rsubtracting (2.1) from 



the total drag coefficients of the Rankine and ogive halfbodies and 

(2. 2) from the total drag coefficients of the blunt halfbody. 

We first  compare the filled data points of the Rankine and 

ogive halfbodies with the theoretical laminar skin-friction drag 

coefficients calculated for flat plates of the same length and surface 

areas  a s  these models. These calculated coefficients a r e  represented 

in figure 11 by the solid line in the case of the Rankine halfbody and by 

the dashed line in the case of the ogive halfbody. Although the theo- 

retical lines apaear to fall slightly below the data, the agreement i s  
I 

good considering that flat plate theory was used. In fact, Goldstein 

(Ref. 16) states that the more complicated theories for axisymmetric 

boundary Payers usually give skin-fri ction coefficients which a r e  10 to 

15 per cent above those for a flat plate. In any case, we may conclude 

that the boundary layer flow was laminarb and assume that the skin- 

friction drag coefficient scales with R e  - + The best fit to the data 

a r e  then given by 

for the Rankine halfbody and 

This appears to be consistent with the fact that the maximum 
Reyylds number based on the length of the models was about 
7x10 p c h  i s  just barely above the minimum Reynolds number 
of 5x1 0 that is usually taken for the onset of transition, 



f o r  the ogive halfbody, The total zero-field drag coefficient can there- 

fore be written a s  

where n = 11.3 for the Rankine halfbody and 10.0 for the ogive half- 

body. This equation is plotted in figure 11 and can be seen to f i t  the 

data very well. 

The drag coefficients of the blunt halfbody corresponding to the 

uppermost filled data points in figure 11 remain to be considered. 

There i s  no theory with which these drag coefficients can be compared, 

but their average value of 0.66 compares very well with the experi- 

mental value of 0.65 given in  Ref. 14 for the forebody drag coefficient 

of a blunt halfbody. In fact, this average value i s  not too fa r  from the 

value of 0.72 obtained by subtracting the base pressure coefficient of a 

flat disk from i ts  total drag coefficient (Ref. I? ) .  Thus, the measured 

drag for the blunt halfbody appears to be fairly well substantiated. 

Now that we have established that the total zero-field drag of 

the halfbodies consists of a base drag and a viscous drag, we must 

consider next the determination of these quantities when the magnetic 

field is present. 

Fo r  the Rankine and sgive halfbodies, we simply assume that 

the base drag and viscous drag at  any field strength is given by 

where GD is just the total zero-field drag coefficient given by eqn. 
0 



( 2 . 3 ) .  For N< 1, this should be a very good assumption since the flow 

should only be slightly disturbed from zero-field flow conditions (also 

see discussion in Sec. 4. 1). In particular, the base drag and viscous 

drag should be little affected. For  N> 1, the assumption i s  admittedly 

somewhat arbitrary, but some justification can be given. F i rs t  of ail, 

we show in appendix C that the base drag coefficient, CDb2 must 

increase a s  N increases, However, i t  cannot become greater than a 

value of .107, which i s  about equal to the maximum qero-field drag, 

C D o  Secondly, in appendix D we show by an order-of-magnitude 

analysis of the equations of motion that the ordinary viscous boundary 

layer equations should describe the boundary layer flow under the 

conditions of the present experiments. If this i s  true, then the skin- 

friction drag coefficient, C , should decrease a s  N increases 
Dv 

because the flow velocity at the outer edge of the boundary layer i s  

decreasing due to the development or" a vorticai wake which wiii be 

described in chapter IV. It i s  also shown in chapter HV that a stagnant 

region must develop in front of the bodies a s  N increases, which 

should further reduce the skin-friction drag. Thus, i f  CDb increases 

and CDv decreases a s  N gets ldrger, then it i s  possible that the sum 

of the two quantities may remain approximately constant and equal to  

C ~ O  
. In any case, in the absence of even an approximate theory by 

which these quantities could be calculated, this appeared to be the 

most logical assumption to make in attempting to isolate the MFD 

drag. Moreover, at the higher values s f  M where the assumption may 

be questioned the most, the uncertainty in the quantities was only a 

small percentage (around 5 per cent) of the MFD drag. Consequently, 



the drag coefficients for the Rankine and ogive halfbodies were based 

on the MFD drag assumed to be obtained by subtracting the total zero- 

field drag from the total drag with field. 

For  the blunt halfbody, i t  i s  not only impossible but also illog- 

ical to attempt to separate the viscous drag from the MFD drag. The 

two drag forces a r e  undoubtedly closely coupled in this case since even 

a small magnetic field could have large effects on the viscous drag by 

affecting the stability o r  turbulence level of the wake. The calculation 

of such an interacting flow is unlikely to be accomplished in the near 

future. Therefore, no attempt was made to separate the viscous drag 

from the MFD drag, and instead, the drag coefficients for this body 

were based on the total drag minus a small base drag correction. 

This base drag was calculated in the same way a s  the zero-field base 

drag (see appendix D). Since the total drag increased only slightly 

(c. f. , Sec. 3. 11, the pressure coefficient at the lower hellnws was 

assumed to be the same as  in the zero-field case; i, e. , C = -. 08. 
P 

The base drag was then calculated by adding to this the difference 

between the pressure coefficients at  the upper and Power bellows as  

obtained by the tare  drag measurements. We mentioned earlier that 

this difference became negligible at  the stronger fields so.that for 

these conditions, C -. -k .08. 
Db 

We must finally consider the procedure followed in reducing 

the flat disk data. The procedure in this case was trivial compared 

to the previous cases. It simply consisted of subtracting the mea- 

sured ta re  drag from the measured total drag. No corrections were 

made for  possible wall blockage effects since it was the time 



dependence of the drag that was mainly of interest and not i ts  absolute 

magnitude. The data were also not corrected for the inertia forces 

produced during the initial acceleration period because the measure- 

ments were not considered reliable at  these very early times. The 

data from this period, which constituted o d y  a small fraction of the 

total data since acceleration occurred only during the first 2 to  3 

inches of travel, were disregarded. 



111. RESULTS OF THE EXPERIMENTS 

3. 1 MFD Drag of Semi-Infinite Bodies 

The results of the drag measurements on the semi-infinite 

bodies a re  presented in figure 12 where the drag coefficients of these 

bodies a r e  plotted as  functions of the interaction parameter for various 

values of the Reynolds number and magnetic Reynolds number. As 

discussed in Sec. 2.5, the drag coefficients of the Rankine and ogive 

halfbodies were based on the MFD drag; whereas, the drag coefficients 

of the blunt halfbody viere based on the sum of the MFD drag and viscou~l 

drag. The e r ro r  bars on the data points at  the higher values of N will 

be explained in See. 3 . 3 .  

The drag coefficients of all three bodies a r e  seen to correlate 

to within the experimental scatter in the data with N alone. There 

appears to be no systematic dependence on the Reynolds number or  

P 
magnetic Reynolds a ~ m ~ b e r  . This correPat i~a with N was iiot tinex- 

pected since i t  was strongly suggested by the equations of motion 

presented earlier in chapter I and also by other theoretical consider- 

ations to be discussed in chapter IV. 

Moreover, such a correlation had been found previously by 

Yonas (Ref. 10). The main result of his experiment, which was 

briefly described in the Introduction, was that the drag coefficients of 

both the sphere and the flat disk increase rnonotonicaPly from their 

zero-field values a s  a function of IN only. This increase was found to 

It should be noted that the ratio, ~ m / R e  = plrv, i s  a constant fixed 
by the properties of the fluid so that one of these parameters could 
not be varied independent of the other. 



be negligible for N< 1, but for larger values of N (N> 10 for the sphere 

and N>20 for the disk) the increase was found to be proportional to 

Our results corroborate Yonas1 conclusion that N i s  the prin- 

cipal correlation parameter, but the dependence of the drag coefficiernts 

on N found by us differs markedly from that found by him. We shall 

discuss some of the reasons for the difference in behavior in 

chapter IV. 

For the Rankine and ogive halfbodies, the dependence of the 

MFD drag coefficients on N may be divided into two regions of behav- 

ior. Over the range, 0<M - < 2, the dependence an N i s  linear to within 

2 the experimental e r ror  of f 25 per cent . This may be seen by com- 
1 

paring the data with the three lines proportional to N ~ ,  N and N 1 - 5  

which have been plotted on figure 12. The mean trend of the data i s  

.-- UAlmistalKeab?y best repreaeEted by el.., T:,,,, I:,, 
=,a ,,,I ..,, ,r 

1 1 t ;  x u1 va1u t ;a  u1 N 

greater than 2, the dependence on N becomes quite nonlinear. The 

rate of increase of the drag coefficients i s  seen to diminish rapidly 

a s  N increases and at the higher values of N, they appear to be 

leveling off to some asymptotic value. In chapter IV, it i s  suggested 

that the drag coefficient of any halfbody must reach a limiting value of 

unity and this trend i s  definitely evident in the behavior of the data. 

L This e r ror  may seem rather high, but i t  can ar i se  because the 
drag coefficients were based on the difference between two drag 
measurements. FOP N< 1 , this difference was relatively small so 
that i ts  relative er ror  was much larger than the e r ro r  in the 
measurements (also see Sec. 3 .3 ) .  



For  the blunt halfbody, the dependence of the drag coefficient 

on N i s  seen to be very slight. The maximum increase in CD i s  only 

3 
about 25 per cent. This behavior was in fact anticipated since the 

drag without field was around 0.7 and, a s  mentioned above, was ex- 

pected to increase to a value of 1 at most. However, we should point 

out that this expectation i s  based on the assumption that the drag of 

the halfbody becomes entirely MFD drag and that the viscous drag due 

to separated flow vanishes a s  N-.oo. Some support f p r  this assump- 

tion i s  provided by the fact that the drag coefficients of all three 

halfbodies appear to be converging at the higher values of N. Since i t  

i s  reasonable to assume that the MFD drag of the blunt halfbody was 

of the same order a s  the MFD drag of the Rankine an$ ogive halfbodies 

a t  these higher yalues of N, this implies that the viscous drag of the 
\ 

blunt halfbody was becoming very small. 

Before eone:uding this s eetion, we feel compelled to remark 

that the correlation with N in figure 12 may appear deceivingly obvious 

since this was the only form in which the data was presented. The 

extent to which the correlation succeeds may have been better appre- 

ciated had we plotted the data in a different form first. As an example, 

we have taken the MFD drag coefficients of the Rankine halfbody and 

have plotted them in figure 13  against the Reynolds number at  various 

Hartmann numbers. This closely corresponds to the form in which 

the data was originally obtained; i. e. , with the increase in drag plotted 

This accounts for. the fewer data points plotted for this body. Only 
enough measurements sufficient to establish this rather ominter- 
esting behavior were made, 
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against the velocity at  various field strengths. We can now see more 

clearly what the correlation accomplishes. It i s  essentially this: 

Each horizontal line, CD=constant, in figure 13 i s  transformed by the 

correlation into a single point on the curve for the Rankine halfbody in 

figure 92. 

3 . 2  Drag of Impulsively-Started Flat Disks 

The data obtained from the non-magnetic drag measurements on 

the flat disks a r e  offered here simply as  preliminary experimental 

findings of an interesting flow phenomena. We will attempt no theoret- 

ical analysis of the flow, but we will discuss some qualitative ideas 

about the nature of the flow. 

Results a r e  first presented in figure 14 from the drag measure- 

ments on the three disks of 1.0, . 75 and .50 in. diameter taken at a 

fixed velocity of . 3 0  m/sec. The traces for these measurements were 

shown earlier in figure 9. For  reasons discussed in See. 2.5, data 

a r e  not plotted for the initial acceleration period. In the upper half of 

the figure, the data for the three disks a r e  given essentially in their 

raw form with the drag balance output in millivolts plotted against the 

time in seconds. The drag amplitudes of the three disks and the 

times at which changes in these amplitudes occur a r e  seen to differ 

considerably. In the lower half of the figure, the drag has been con- 

, verted into a drag coefficient and plotted against the time divided 

by the characteristic time, d / ~ ,  The three drag curves scaled in 

this way can now b e  s e e n  to correlate fairly well. 
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In order to show that this correlation holds over a fairly wide 

range of Reynolds number, results a r e  presented in figure 15 from 

the drag measurements on the .75 in. diameter disk taken over a 

4 5 
Reynolds range of 2. 2x10 to 1. 2x10 . Data points rather than 

continuous curves have been used to plot the drag coefficients in this 

figure so that the runs at the different Reynolds numbers can be 

distinguished. Although considerable variation in the data can be 

seen, there appears to be no systematic dependence on Reynolds 

number. 

A number of interesting features may be observed in the time- 

dependent behavior of the drag coefficient. After the initial acceler- 

ation period, i t  appears to be decreasing from some higher level and 

drops to a minimum value of about 1. 0 at  around ~ t / d  = 6 .  It then 

increases to a maximum value lying between 1.5  and 1.8 a t  around 

~ t / d  = 15 before d e c r e a s i ~ g  again to i ts  steadxr-state Y value. F o r  the 

1. 0 and . 75 in. diameter disks, the steady-state value lies somewhat 

above the accepted standard value of 1. 17 given in Ref,. 14, but this 

discrepancy can be accounted for by the blockage effect of the tow 

tank walls. It should finally be observed that the steady-state value is 

not reached until the disk has traveled a distance equal to about 25 

times i ts  diameter (since Ut i s  approximately the distance traveled). 

This is a surprisingly long distance and i t  is probably much longer 

than intuition would lead most people to expect. 

The above results appear to be the f i rs t  to the author's know- 

ledge for the time-dependent drag of an axisymmetric body in an 



impulsively-started flow. However, a number of other investigators 

have found similar results in closely-related experiments. 

Schmidt (Ref. l a ) ,  in a very early experiment (1919), measured 

the acceleration velocities of freely-falling spheres in water and of 

free-rising balloons in air. His results for three of the spheres, for 

which terminal velocity was reached, have been plotted (after non- 

dimensionalizing the velocities with the terminal velocity, Ut, and the 

time with d/ut) along with the drag data in the lower part of figure 15. 

The f i r s t  maximum in the velocity can be seen to occur at about the 

same time that C reaches i ts  minimum. Conversely, the minimum in D 

the velocity occurs at about the same time that C reaches i ts  maxi- D 

mum. Further-, the time ( scaled with d/ut) required to attain 

steady-state i s  also about the same; i. e. , utt/d = 25-30. This close 

correlation between the results of the two experiments indicates that 

the development of the flow may have been nearly the same in both. 

In another early experiment ( 1935) conducted by Schwabe 

(Ref. 19),  the time -dependent drag of a two-dimensional circular 

cylinder was determined. He used an indirect method in which the 

velocities and pressures were succ es sively calculated from photo- 

graphs of the flow taken at  many stages s f  development. His results 

showed that the f orm-drag coefficient ( skin-f riction not included) of 

the cylinder increased monotonically with time to a value of 2.07 a t  

~ t / d  = 4. 5, which is considerably above i ts  steady-state value of 

about 1. The drag was not determined beyond ~ t / d  = 4.5. 

Finally, in a very recent experiment (1966), Sarpkaya (Ref. 20) 

made direct measurements of the time-dependent drag s f  two- 



dimensional circular cylinders and flat plates. The duration of his 

experiments was long enough so that steady-state was reached. His 

results for the circular cylinders showed that the drag coefficients 

increased initially very much like *abets, but at  ~ t / d  = 4 i t  reached 

a maximum value of about 1. 54 and then slowly decreased to i ts  steady- 

state value. More relevant to our results a r e  his measurements on 

the flat plates which were taken over a range of Reynolds numbers 

4 5 
from 1 . 5 ~ 1 0  to 1. 1x10 , which i s  nearly the same range as  ours. 

The drag coefficient calculated from these measurements i s  repre- 

sented by the shaded curve plotted in figure 15. The drag coefficient 

amplitudes of the flat plates a re  seen to be about twice those of the 

flat disks, but the time-dependent behavior of the drag coefficient i s  

seen to be very similar. The minimum and second maximum for both 

occur at  approximately the same times. 

Sarpkaya also made detailed visual flow studies of the cieveiop- 

ment of the vortices behind a flat plate and was able to correlate the 

various stages of their development with the changes in drag. He 

found that the flow was potential flow initially, but shortly after the 

start  s f  the motion separation occurred and a pair of symmetrical 

vortices began to grow behind the plate. During this period of growth, 

which evidently extended up to the time C reached i ts  minimum, the D 

drag i s  thought to be due mainly to the energy consumption required 

for the enlargement of the vortices. Shortly after the minimum CD 

was reached, the vortices were observed to become unsymmetrical 

and this apparently caused the drag to increase again until the second 

maximum in CD was reached. This maximum C I ~  was found to 



correspond with the shedding of the first  vortex. Subsequently, the 

drag decreased and underwent a number of oscillations before finally 

reaching i ts  steady-state value. Each one of the peaks in these oscil- 

lations was found to correspond to a shedding of another vortex. 

A similar series of events may also take place during the 

development of the vortices behind a flat disk. This i s  suggested not 

only by the similarity in the time-dependent behavior gf the drag 

coefficients, but also by some visual flow studies carried out by 
3 

Schmidt (Ref. 181 in conjunction with his experiment described above. 

From these observations, he was able to determine that a falling 

sphere reached i ts  minimum velocity (maximum @ ) at  the same time D 

that the first  vortex ring (vortex pair at cylinder) separated from the 

sphere, which corresponds exactly with Sarpkaya's observation. Of 

course, i t  i s  not strictly correct to compare two-dimensional flows 

with axisymmetric flows because the vortex structure i s  known to be 

much more complex in axisymmetric flows (Ref. 21). Nevertheless, 

there i s  certainly strong evidence for believing that the growth and 

shedding of vortices have about the same general effect and occur on 

about the same time scales in the two flows. 

There i s  one other curve plotted in figure 15 which has not 

been discussed yet. This i s  the curve designated "Theory of Fromm 

and Harlow" which appears to compare rather well with the drag 

coefficient of the flat disk. Unfortunately, this agreement i s  entirely 

fortuitous. The curve i s  the result of extensive computer calculations 

by Fromm and Harlow (Ref. 229 for two-dimensional flow past a flat 

platet and thus should actually be compared with Sarpkaya's data. 



However, the agreement with Sarpkayafs data i s  poor and i s  attributed 

by Sarpkaya to the fact that Fromm and Harlowf s result i s  for a 

Reynolds number of 300 which i s  much lower than the Reynolds numbers 

of the experiment. Nevertheless, the calculated drag coefficient does 

show very similar variations with time. Moreover, the calculated 

streamline patterns showed that the vortices develop in essentially the 

same way that was observed experimentally by Sarpkaya. Thus, i t  

would appear that the results of the numerical calculations a r e  rea- 

sonably in accord with the experimental observations. 

It i s  difficult to say at  this time what practical significance, i f  

any, our results will have. They undoubtedly will have some relevance 

to the motion of any rapidly-accelerated body for  which a separated 

wake develops. One example i s  the commonly-performed experiment 

in  which the drag of a body i s  measured by letting the body rise or fall 

freely and timing i ts  rate of ascent or  descent. Our results indicate 

that serious er rors  may be incurred i f  the measurements a r e  made too 

early. We might also mention here that the time-dependent drag coef- 

ficient of the two-dimensional circular cylinder has been used to 

calculate the force coefficients of slender bodies at angles of attack in 

steady subsonic to moderately supersonic flows (Ref. 20). 1x1 such 

calculations i t  i s  assumed that the development of the crossflow along 

the slender body i s  analogous to the development with the time of the 

flow past a cylinder which has been started impulsively in motion. 

However, there appeaps to be no such andogy appropriate to the 

axisymmetric case, 



3 . 3  Discussion of Uncertainties 

The uncertainties which pertain to all the measurements in 

general will be summarized first. For  the directly measured quan- 

t i t ies ,  the average uncertainties were a s  follows: 

Magnetic Field, Bo . . . . f 19 

Drag Balance Calibration f 2$ 

There  were also uncertainties in the values of the fluid properties 

which entered into the computation of the interaction parameter. 

These a r e  the density, p, and the electrical conductivityp cr, and their 

values for mercury were taken as  (Ref. 23): 

Some variations in these values occurred due to temperature changes 

of up to 30-40°F caused by the heating of the magnet. This resulted 

in an uncertainty in the ratio v / ~  of about f 2g. The'combination of 

all of the above uncertainties leads to an average uncertainty in the 

drag coefficient of f64 and an average uncertainty in the interaction 

parameter of f 4 % .  

The uncertainties which pertain only to measurements in a 

particular range of N will be discussed next. F i rs t  of all, we shall 

estimate the uncertainty in the MFD drag coefficients of the Rankine 

and ogive halfbodies for N< 1. These drag coefficients were based on - 
the difference between two drag measurements; i. e. , on CD - CD 

0 



Now since CD - C was only about 25-30$ of CD for N<1 and since 
Do 

the individual uncertainties in CD and CD were i 6$, , the uncertain- 
0 

t y i n C D  - C musthavebeenabout f20-256. Thisisapproximately 
Do 

the order of the scatter in the data of figure 13 for N<1. - 
Secondly, we must explain the uncertainties associated with the 

e r ro r  bars on the data points for N > 10 in figure 12. These uncer- 

tainties arose because the drag did not level-off to a constant value at 

these higher valyes of N, but continued to decrease very slightly 

(5-10$ ) throughaut a run. This decrease, which i s  given by the length 

of the er ror  bars ,  i s  attributed to the interaction of the small dis- 

4 placement flow caused by the drive shaft entering the tow tank with 

the fringing magnetic field near the top of the tank. Because of this 

interaction, the velocity profile of the displacement Plow becomes 

5 quite peaked near the axis of the tow tank . This peaked velocity 

profile could extend down the tank for some distance at high fleld 

strengths. Consequently, as  a model moves upward in the tank, it 

effectively sees the velocity upstream decreasing, thus accounting 

fo r  the decrease in drag. The uncertainty due to this effect was 

probably on the order of f 6 5 .  

Since the ratio of the cross-sectional area of the tank to that of the 
drive shaft i s  30:1, the mean velocity of this displacement flow is 
1/38 the velocity of the shaft. 

Such an effect has been observed by Maxworthy (Ref. 24) in a 
liquid sodium tunnel. Some very preliminary velocity measure- 
ments in the tow tank taken by Mr. B. M. Lake (Ref. 25) also 
give some evidence for this. 



Finally, we must mention the effect of the magnetic field on the 

drag balance. Although all parts of the balance were made of suppos- 

edly non-magnetic stainless steel (Type 303 or  304), they were still 

very slightly magnetic. Therefore, a small force was picked-up by 

the balance a s  i t  passed through the fringe field near the bottom of the 

tow tank. This force was measured by running the balance through the 

fringe field at  a very slow speed. For  N > 10, the correction to the 

drag for this eBect i s  estimated to result in an additiopal uncertainty 

of f 4$ .  

Thus, tltie total uncertainty in the drag coefficients for N > 10 

is estimated to be about f 9% 



IV. THEORETICAL DISCUSSION 

In chapter I, the general equations were considered for the flow 

of an incompressible, viscous and electrically conducting fluid past an 

axisyrnmetric body in an aligned magnetic field. For  the limiting case, 

Rm+O, and Re+ ao, corresponding to an invi scid, slightly conducting 

fluid, these were reduced to the following equations: 

(4. la )  

(4. lb) 

(4. lc )  

The induced magnetic field for this limiting case was shown to be neg- 

ligibly small and the magnetic field was everywhere taken to be equal 

to the uniform applied field. In this chapter, solutions to eqns. (4.1) 

will be considered for the two special cases of (1) weak interaction 

between the flow and magnetic field, N 4  1, and (2) strong interaction 

between the flow and the magnetic field N >> 1. Since N i s  proportion- 

2 a1 to B ~ / u ,  the first  case can exist either for weak magnetic fields or 

high velocities, and the second for strong magnetic fields o r  Pow 

velocities. 

4. P Weak Interaction Case, N < <  B 

In this case, to zeroth order in N, the magnetic force term in 

egns. (4.1) may be neglected in  comparison with the inertia force 



terms. The equations then reduce to the classical hydrodynamic 

equations for an inviscid fluid. Thus, to a first  approximation, the 

flow past a body can be simply assumed to be potential flow. 

Under this assumption, a rather simple first-order calculation 

can be made of the MFD drag of the body. The method of calculation 

is based on the first  law of thermodynamics in accordance with which 

the work done on the fluid by the drag force per unit time is equated 

to  the energy dissipated by Joule heating per unit time; i. e. , 

where V* is the total volume occupied by the fluid. Now the current 

density i s  given by Ohrnss Paw: 

But in the present approximation, CJ,* i s  to be taken a s  the potential 

velocity, g, and - I 9  a s  the undisturbed uniform applied field, -B i . 
0- 

so that the current density i s  just 
, 

where v* is the radial component of the potential velocity, In general, 
0 

for a body of characteristic dimension d in a uniform flow of velocity 

U, v* may be written in the form: 
0 



where 2 = - x*/d. Substitution of (4.3) and (4 .4)  into (4. 2) leads to  

2 3 
where N = aB d / p ~  and dV = d ~ * / d  . 

0 

Note that according to (4.5) the drag coefficient increases 

linearly with N as  long as  vo i s  independent of N, which i t  obviously is 

for  potential flow. However, (4. 5) also gives the Joule-loss contribu- 

tion to the drag for inviseid, small Rm flows at arbitrary N; but in this 

case v may be a function of N. The integral of (4.5) should be con- 
0 

The weak-interaction theory described above appears to have 

been first  applied by Chopra and Singer (Ref. 27). They used the 

Joule-loss method to calculate the drag of a uniformly magnetized 

sphere and of a sphere of finite conductivity in a uniform external 

field for both translational and rotational motions. However, sub- 

sequently, Reitz and Foldy (Ref, 28) pointed out that some of Chopra 

and Singer's results were in e r ro r  due to their neglect of induction 

effects within the sphere and rederived the correct expression for the 

drag. Furthermore, they also carried out a complete first-order 

perturbation solution of the inviscid MFD equations (including 

perturbations of the magnetic field) for  the case of a sphere moving 



parallel to a uniform applied field and showed that the drag calculated 

directly from the perturbed pressure distribution was the same as  that 

calculated from the Joule -10s s method. One other calculation that 

deserves mention i s  that of Ludford (Ref, 29) who used the Joule-loss 

method to calculate the drag of a sphere having an internal dipole field. 

Although the weak-interaction theory based on the Joule-10s e 

method leads ta a simple calculation for the MFD drag, i t  i s  a valid 

approximation anly A, for small N flows which a r e  closply described by a 

potential field. It certainly cannot be applied to flows past bluff bodies 

at  high Reynolds numbers since the separated flow behind such bodies 

is not describqble by potential flow theory and in some flow regimes 

may be strongly affected by even small magnetic fields. This would 

appear to be the main difficulty with the various cases of MFD flow 

past a sphere treated in the above-mentioned papers. However, there 

a r e  at  least two physically realizable cases for which the theory should 

be.valid and we shall discuss these next. 

One case i s  that of a sphere which i s  rapidly oscillating paral- 

lel  to a uniform applied magnetic field. This was the case that was 

studied both theoretically and experimentally by Motz (Ref. 9) whose 

experiment was briefly described in the Introduction. The oscillation 

frequency of the sphere in this experiment was sufficiently high to 

justify using the potential velocity field to describe the bulk motion at  

small N. As one would expect, the drag amplitude calculated by 

Motz by the Joule-Boss method has the same value as  the drag calculat-- 

ed by Reitz and Foldy for the steady motion of a sphere, Motz also 

calculated second and third-order corrections to the drag using a 



formula derived by Ludford and Murray (Ref. 30) for  the steady motion 

1 
of a sphere . He found excellent agreement between this third-order 

calculation and his measured drag. Both his theory and data departed 

from linear behavior a t  an equivalent2 N of about 0.1 and a r e  about 30 

per cent lower than the linear theory at  an equivalent N of 0.3. 

The other case which should be describable by a potential 

field i s  the small N flow past a streamlined semi -infinite body. In 

particular, such a description should be valid for the ogive and 

Rankine halfbodies which were used in the present experiments. The 

results of the zero-field drag measurements presented in Sec. 2.5 
I 

indicated that the flow past these bodies was very close to potential 

flow. The calculation of the drag coefficient by the Jnule-loss method 

i s  easily carriegl out in the case of the Rankine halfbadly since i ts  

potential field i s  given simply by a source in a uniform stream. On the 

other hand, there is no simple analytical expression for the potential 

field of the ogive haPfbody and this precludes a calculation of i ts  drag 

coefficient. However, it was seen in figure 112 that the MFD drag 

coefficient for this body exhibits the linear behavior predicted by 

eqn. (4. 5). 

There a r e  several points about this analysis which a r e  quite unclear 
to the present author. For  example, it does not appear at all obvi- 
ous that Ludford and Murrafs drag formula for steady flow can be 
applied without modification to periodic flows. There also appears 
to be an inconsistency in the derivation of the higher-order equa- 
tions governing the velocity fields. In particular, the complete 
neglect of the convection terms and the magnetic field perturbations 
does not appear justifiable for the third-order calculation. 

2 Motz defines the interaction parameter a s  hT=w ~ d p w  where w is 
the frequency in rad/sec, 



The radial velocity for potential flow past a Rankine halfbody 

is given by 

where the cylindrical coordinates, x and r, have been nondimension- 

alized by the asymptotic body diameter, d (see figure 10). Substitution 

of the above expression into (4. 5) gives 

where the body radius, rb, i s  a transcendental function of x defined by 

(Ref. 31) 

Also note that rb = O at x = -a. Integration of (4.61, which requires 

numerical evaluation of the integral involving rb, leads to the following 

result: 

This result has been plotted in figure 16 a s  a dashed line and 

can be compared with the data for the Rankine halfbody which have been 

replotted in this figure from figure 112. The theoretical line can be 

seen to l ie somewhat above the data (about 15-20 per cent), but this 

discrepancy may be attributed to the presence of the tow tank walls. 

If the integrals in (4.6) a r e  evaluated only out to the radius, 



r = r = 2.75, of the tow tank instead of to infinite radius, the pro- w 

portionality constant is reduced by about 13 percent and the equation 

for the drag coefficient becomes 

This equation, which i s  the solid line plotted on figure 16, shows 

fairly good agreement with the data, although i t  may still be about 5 

percent higher than the mean of the data. Even this small discrepancy 

could probably be accounted for if a correction were made for the fact 

that the radial velocities given by eqn. 44. 6) do not vanish at the tow 

tank walls. Although these velocities a re  very small (v  = .008 at  
0 max 

r = r ), this correction may possibly reduce the drag coefficient by 
W 

another few percent. However, such a correction was not calculated 

because i t  was found to involve evaluation of a volume integral of 

integrals of elliptic functions which would have required exkensive 

computations even on a computer. 

In any case, in view of the scatter in the data, the agreement 

of eqn. (4.8) i s  sufficiently close so that it can be concluded that the 

validity s f  the weak-interaction theory based on the Joule-loss method 

has been verified. Moreover, the main consequence of the theory was 

the linear increase of the drag coefficient with N, and this predicted 

behavior i s  fully confirmed by the data of both the ogive and Rankine 

halfbodies at small values of N. 

The verification of the weak-interaction theory for IN< < 1 is 

hardly surprising since the theory is very straightforward and no gross 



assumptions were made. What i s  surprising i s  the apparent agree- 

ment of the data with this linear theory over a range of N which 

appears to extend almost up to N = 2. From eqn. (4.5), we would 

expect to see C,, increase more slowly with N for values of N of O(1) 

since the radial velocities must be appreciably reduced for these 

conditions by the magnetic force. However, a very plausible expla- 

nation can be given for the observed behavior of the data. Most of the 

important physical and theoretical concepts underlying this explanation 

were found in a paper by Tamadla (Ref. 32). Since his work also offers 

considerable insight into MFD flows in general, it will be discussed 

first. 

Tamada considered the theoretical problem of flow past a two- 

dimensional circular cylinder for the special limiting case: Rm-+O, 

2 a -) oo and N << 1. The equations used by him for this problem a r e  

identical to eqns. (4. 1). His method of solution was to solve the 

vorticity equation, obtained by taking the curl of the momentum equa- 

tion, by expanding q and the vorticity, w as  power series in N. The 

most significant feature of his fir st-order solution was a nondiffusive 

vortical wake which he found existed downstream of the cylinder. His 

3 result for N = - 4  (based on cylinder diameter) i s  illustrated in figure 

17. The most important point to note about this wake i s  that i ts  profile 

neither widens nor dissipates, but remains fixed in shape as  it travels 

downstream. At the same time, the pressure and transverse velocity 

decay to zero. 

A similar result was found by Leonard (Ref. 33) from a numerical 
solution of the same problem, 



Although such a solution may at  first sight appear physically 

unacceptable because of the nonuniformity at downstream infinity, i t  

becomes reasonable when one considers the effect of a small viscosity. 

As Tamada pointed out, this agency will ultimately diffuse the wake 

so that eventually uniform flow conditions will be regained far  down- 

stream. However, at high Reynolds number, the action of viscosity 

takes place over a very long distance so that i ts  effect near the body 

may be ignored. 

One may also question why such a wake should develop in  the 

f i rs t  place. Tamada answered this question by considering a gener- 

alized Bernoulli law for  inviscid, MFD flows. This law may be 

obtained by rewriting eqn. (1. Pb) in the form: 

2 
v ( $ s  + P) -gx(vxg.) = N(ljxB) 

Taking the scalar product of this equation with 3 gives 

2 2 where H = (u + v ) + p. Since 9. v H i s  the change of H along a 

2 streamline and j > 8, the above relation states that H can only 

decrease along a streamline. What this means physically i s  that 

the kinetic energy of a fluid particle i s  being dissipated by Joule 

heating; and since the fluid i s  assumed inviscid, this energy cannot 

be recovered by energy transfer from adjacent fluid particles. 

If we now specify that p = v = 0 and u = 1 at x = - GO (up- 

stream inrfifity), which is a physically reasonable assumption for 



finite N and Rm, then eqn. (4.9) requires that 

along all streamlines where j # 0. If we further specify that p, v-. 0 

a s  x-. + oo (downstream infinity), then we see immediately from this 

inequality that the downstream vortical wake in question i s  inevitable. 

In fact, this vortical wake i s  not unlike the rotational flow which 

develops behind a curved bow shock in inviscid, compressible flows. 

At this point, i t  should be noted that eqns. (4.9) and (4.10) 

a r e  rather general results which were derived for arbitrary N and 

Rm (< ao) for both two-dimensional and axisymmetric flows with 

aligned fields. We shall have occasion to refer to these results again 

in the next section when they a r e  applied to the case N>> B e  

It i s  clear that Tamadags results presented above a r e  also 

directly applicable to the case under consideration; i. e.,  to the flow 

past a serni-infinite body. Here, to09 a nondiffusive, vsrtieaP wake 

can be expected to exist far  downstream. The main consequence of 

this, as  pointed out by Childress (Ref. 341, i s  that the vortical wake 

must now be taken into account when calculating momentum and energy 

balances. As an explicit example, we shall reconsider the energy 

balance that led to the result given by eqn, (4. 5). 

We choose a control volume which moves at steady velocity U 

with the halfbody but i s  viewed from a frame which i s  at rest with 

respect to the fluid at  x = - a, (see figure l8a). The surfaces of this 

control volume a r e  taken to be a t  large distances from the nose of the 

halfbody, and we assume that outside the vortical wake the flow 
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perturbations decay sufficiently fast with distance from the nose such 

that they contribute negligibly to the energy flux through these surfaces. 

This assumption will be examined in more detail below, ]Following 

Childress (Ref. 34), we define a non-negative wake function, F(r;N), 

such that 

a*- U(l - F) i as  x*-,ao, r* fixed - 

Now the first  law of thermodynamics states that 

where W i s  the work done on the fluid per unit time, Q i s  the heat 

transferred from the system per unit time and A E  i s  the change in 

the internal energy of the system per unit time. For  the present flow 

system, W i s  just the work done by the drag force, @ i s  the Joule dis-  

sipation and A E  i s  the kinetic energy which is transferred out of the 

control volume via the vortical wake. Therefore, the first  law may 

be written as  

where V* i s  the volume occupied by the fluid within the control volume 

and S* i s  the interval, d/2 < - r* < OD at x*-, OB. This equation may be - 
rewritten in the following dimensionless form: 



2 
where dV = dv*/d3, dS = d ~ * / d  and S i s  the inverval 4 < r < - m, 

Thus, we see that an additional term due to the vortical wake 

4 
now appears in the equation for the drag coefficient . Since F< - 0, 

this term always gives a positive contribution to CD. In fact, i t  i s  

just this contribution which may account for the observed linear behav- 

io r  of CD even for values of N of O(1). What i s  postulated here i s  that 

although the dependence of the Joule-loss term on N i s  decreasing, 

this decrease i s  just balanced by an increasing contribution from the 

wake term. Consequently, the drag coefficient continues to increase 

5 
linearly with N . It would be interesting to calculate the wake contri- 

bution for Tamada's result at  N = .4 which was shown in figure 17. An 

approximate integration of his calculated wake function shows that the 

wake term i s  about 9 percent of the first-order Joule-loss term. 

For  N* 1, the Joule-loss term i s  much larger than the wake 

te rm so that we were justified in omitting the latter term in eqn. (4. 51. 

In order to show this in general, i t  will be convenient to derive 

another expression for the drag which i s  strictly in terms of the 

function F. For  this purpose, a momentum balance i s  considered; 

this time in a frame fixed to the halfbody as  shown in figure 18b. 

Again we.assume that the flow perturbations far  away from the nose of 

* We might note that i f  viscosity were introduced into the problem, 
this term would vanish but an additional viscous dissipation term 
would have to be added. 

This could possibly be checked experimentally by measuring the 
velocity field in the wake to determine F, 



the body and outside the vortical wake contribute negligibly to the 

momentum flux. Note that in order to conserve mass,  there must be 

a mass flux through the sides of the cylindrical control volume. A 

momentum balance then gives 

6 
Or in dimensionless form , 

Subtracting this from eqn. (4. 1 1) gives 

Now the first-order Joule-loss term gives CDDC N for N e< 1, But 

then eqn. (4. 13) requires that F X N .  Therefore, the wake term in 

2 
eqn. (4. 11) must be of order N and the ratio of this term divided by 

the Joule-loss term must approach zero as  N-.O,. 

The results obtained above, in particular eqns, (4. 11) and 

(4.12), a re  general expressions7 which hold for arbitrary, though 

Note that the same result i s  applicable to ordinary viscous flows. 
However, in this case F i s  the velocity defect due to viscous dis- 
sipation and changes i ts  form a s  the wake widens downstream. 

By redefining S to be the interval 0< - r <  - a3 at x-. oo, these same 
expressions may be applied to axisymmetric closed bodies. 



finite, values of N provided the assumptions invoked in deriving them 

a r e  valid. Since these results a r e  relevant not only to the foregoing 

discussion but also to the discussion in the next section, we shall 

examine the assumptions in detail. The major assumptions were 

the following: ( 1) the flow i s  inviscid, (2) p*, v*+ 0 as  x*-, ao and 

(3) the flow perturbations outside the vortical wake decay sufficiently 

fast with distance from the nbse of the body such that they contribute 

8 
negligibly to the energy and momentum fluxes a t  infinity . 

Some support for the first  assumption i s  provided by the 

experimental results which have shown that CD i s  only a function of the 

strictly inviscid parameter, N. The assumption i s  also physically 

reasonable i f  the Reynolds number of the flow i s  high and there i s  no 

separation. These conditions a re  certainly satisfied for flow past 

streamlined halfbodies, and the data for the blunt halfbody (c. f. , 

Sec. 3. 1, p. 30) indicate that they may also be satisfied for bluff half- 

bodies at high N. In the case of flow past bluff closed bodies at  high 

N, the inviscid flow assumption raises some subtle questions which 

will be discussed in connection with assumption ( 2 ) .  

We would certainly expect the second assumption to be a 

physically reasonable one for any real flow which includes viscosity. 

However, Yonas (Ref. P O )  has shown that a strictly inviscid flow 

analysis cannot satisfy this assumption and stiel be compatible with the 

results of his measurements (c. f. , Sec. 3. 1) which showed that a 

Note that we have taken the freestream pressure to be zero. This 
i s  convenient since the drag i s  always measured with regerence to 
the freestream pressure. 



stagnant region of large  negative pressure  must develop on the down- 

s t ream side of a closed body for N >>1. This incompatibility is easily 

shown by letting pl = -P (Po>O) and ul = vl = 0 at some stagnation 
0 

point x l , r l .  Then f rom eqn. (4.9), which is valid only for inviscid 

flows, we get 

a t  any point along the streamline originating from the upstream point 
\ 

xis r ln  Thus, if we require that p, v+ 0 a s  x-. so, this inequality is 

violated and we must conclude that negative pressures  a r e  not 

allowable a t  stagnation points in  strictly inviscid flows. However, 

this i s  not t rue  i f  viscosity is introduced into the problem because 

then the pressure  can recover to  the zero downstream value through 

the momentum transferred from the outer flow. This is the mechanism 

proposed by Yonas to  explain the results of his experiments but due to  

the complexity of the problem he was unable to  give any details. 

In the case  of semi-infinite bodies, on the other hand, such 

stagnant regions of negative pressure  a r e  quite unlikely to develop 

since the flow does not have to close behind the body. In fact, this is 

supported by some stagnation pressure  measurements we made on the 

Rankine and ogive halfbodies using the drag balance a s  a p ressure  

transducer. The measured pressures  even at the strongest fields 

were  found to be at most 2 to 3 percent higher than the measured 

pressure  without field. Stagnation pressure  increases of this order  

were  expected due to a slight pressure  drop downstream caused by the 



presence of the tow tank walls ( see  appendix C), but i f  there  had been 

a more significant pressure  drop downstream, it would have acted on 

the  lower bellows of the balance ( see  figure 3) and produced a cor res -  

ponding increase in the measured pressure. Thus, it appears that 

assumption (2) is a reasonable one for semi-infinite bodies, One 

consequence of this assumption is that i t  requires the drag of a half- 

body to be due eptirely to  excess p ressure  acting on the nose of the 

body since the pressure  a t  the base is assumed to  be  zero. 

We must finally consider the third assumption. In o rder  to  
\ 

examine this assumption, Childress (Ref. 34) has suggested d escrib-  

ing the flow near infinity and outside the vortical wake by the 

linearized MFD equations of the Oseen type; i. e. , by replacing (I** 17 ) 

8 and (B*v) - with U /ax* and B 8/8x*, respectively. In this approxi- 
0 

mation, the body i s  replaced by a concentrated point force a t  the 

origin. SoPutions to this problem have been carr ied out by Gourdine 

(Ref. 6 )  for  arbi t rary  Rm, Re and N, The most striking feature of 

these solutions is the appearance sf the so-called upstream wake for  

2 a > 1. Within this wake, the rotational perturbation components 

("transverse components8') of the axial velocity and magnetic field, 

T T denoted a s  u and h by Gourdine, decay algebraically a s  x-. - co. At 
X X 

f i r s t  glance, one might think by analogy with the viscous Bseen wake 

that a finite flux of momentum is carr ied out to  upstream infinity in 

such a wake, However, i t  can be  shown from the results of Gour&nets 

work that this flux is identically zero  for Re4m. The reason for this 

is that the flux a t  x = - a, is given by the sum of an integral of uT and 
X 



T an integral of hx, and these integrals cancel each other exactly. In 

fact, for Redco i t  can be easily shown from the x-component of the 

linearized momentum equations that p + u' = 0 (where p and uf a r e  

perturbation quantities), from which i t  i s  immediately obvious that 

the total momentum flux of the flow perturbations i s  zero through 

any infinite plane located at  x< 0. The same conclusion holds for 

the energy flux of the flow perturbations. Thus, these results 

indicate that assumption (3)  may be valid in general. 

One final point we should note about the linear solution i s  that 
I 

the drag i s  carried entirely by the downstream viscous wake. For  

Re+ co, this wake degenerates to a singularity along the x-axis given 

by u = -H(x) 6 ( r ) ,  where H(x) i s  the Heaviside function and 6 ( r )  i s  the 

delta function. In a sense, ,this degenerate wake could be thought of 

a s  the representation of the vortical wake in the linear approximation. 

In fact, Childress (Ref. 34) has attempted to construct a uniformly 

valid approximation of the flow field by matching the vortical wake 

to the linear solution. However, the details of his matching procedure 

a r e  rather obscure to the present author. 

This completes our examination of the major assumptions 

invoked in arriving at  eqns. (4.11) and (4.12) and we have at  least 

provided some justification for their validity. However, a s  useful a s  

these general results have been for qualitative explanations, they 

still cannot provide us with explicit values of the drag coefficient for 

N = O(1). This requires solving eqns. (4. P) for N = O ( P ) ,  but the 

difficulty is that these equations: can no longer be linearized since all 

terms become of the same order. We can presently only say that 
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the features of the flow past the streamlined halfbodies at N = O ( 1 )  

should be qualitatively similar to those at N< < 1 with one important 

exception. In the former case, a nondiffusive, vortical wake may 

exist far downstream which could account for a large part of the drag. 



4.2 Strong Interaction Case, N >  > 1 

We shall show that eqns. (4. 1) a r e  also basically nonlinear in 

this case so that solutions were again not obtainable. However, we 

will still be able to obtain a fairly complete qualitative picture of the 

flow by making use of some of the general results obtained in the 

previous section and by examining eqns. (4. 1) for N>> 1. Further- 

more, we shall obtain a limiting value for the drag coefficient in the 

limit a s  N-, oo. 

Any thgoretical model of the flow must, of course, be 

capable of describing the experimental results presented in Sec. 3.1. 

For  large values of N, the main result was that the drag coefficients of 

all three halfbodies were of O(1) and appeared to be converging to some 

common value. Before describing our nonlinear theoretical model, i t  

is of interest to bompare this empirical result with the results of two 

existing linear theories. 

The first i s  a theory proposed by Stewartson (Ref. 2j for the 

2 limit: Re-, oo, Rm-c O and a -. cn. He solved a linearized time- 

dependent problem in this limit for the flow past an infinitely conduct- 

ing sphere. The same problem was later treated by Ludford and 

Singh (Ref. 35) who corrected an e r ro r  made by Stewartson in a 

boundary condition. However, this resulted in only a slight modifi- 

cation of his solution. They also carried out the solution for the 

case of the insulated sphere. Both of these solutions gave essentially 

the same results. In the ultimate steady flow, infinitely-long cylin- 

ders  of fluid were found both ahead of and behind the sphere and 

moved with the sphere a s  if solid. The pressure and radial velocity 
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both inside and outside these cylinders were found to decay ultimately 

to  zero. The main consequence of this flow model is that the drag i s  

zero. 

Now there seems to be no reason why this theory should not 

give the same solution for a semi-infinite body. In fact, the infinitely- 

long cylinder of fluid behind the sphere could just a s  easily be thought 

of a s  a solid infinitely-long afterbody. The drag in this case would 

also be zero. Such a result i s  obviously in contradiction to the experi- 

mental result, and we must therefore reject this theoretical model as  

physically untrue. The failure of this theory i s  undoubtedly due to the 

fact that the nonlinear convection terms were neglected in the equations 

of motion. Without these terms, excess pressure can never be 

developed on the nose of the body. 

The other linear theory i s  that of Lary (Ref. 3 6 )  who consid- 

ered inviscid MFD flows past slender bodies. He used the inviscid 

version of the linear Oseen-type equations solved by Gourdine (c. f., 

2 previous section). His results showed that CD = O( c fi) for N> > 1 

where e << l i s  the thickness ratio of the body. However, these 

results a r e  of limited interest to us because the restriction on N for 

2 the validity of his theory i s  N<< l /  r which means that CD< O( c ). 

Therefore, his theory cannot be used to predict C of O(1). D 

In constructing our theoretical model of the flow, we shall 

f i r s t  show that the experimental result necessarily implies that stagnant 

regions of excess pressure must develop in front s f  the halfbodies. 

This i s  easily shown from eqn. (4.10) which, by aoting that C = 2p, 
P 



can be put into the form: 

9 
Since CD = 0(1), we must have C = O(1) on the front of the halfbodies , 

P 
2 2 

which means that u + v < < I ,  i, e. , the flow i s  stagnant. We also 

note from this equation that C can never exceed 1, In fact, the 
P 

maximum pressure i s  reached at the stagnation point where C = 1. 
P 

This follows from eqn. (4.9) since along the dividing streamline, 

j2 = O and so q * V H  = 0. 

Given the existence of a stagnant region of excess pressure 

ahead of the halfbodies, we now ask how this pressure is built up. 

More specificaqlly, for fixed x .rt 0, how does the pressure rise from 

18 
i ts  zero freestream value at r = as to a value of O(1) a s  r - ~  O ?  Some 

idea of how this happens may be obtained by examining eqn. (4. lc), the 

radial component .of the momentum equation. F o r  N> > 1, the inertia 

te rms in this equation may be neglected and we get 

Hence, we see that the pressure increase i s  mainly due to the action 

of the magnetic force, which in turn depends om the distribution of 

currents since j = v. However, we also wish to know just how the 

This conclusion follows since i t  was shown in the previous section 
that the drag of a halfbody i s  entirely due to excess pressure acting 
on the front of the body. 

In keeping with the definition of the dimensionless pressure given in 
chapter 1, pressures will often be referred to a s  zero if  they equal 
the freestream pressure p*,. 



currents a r e  distributed. In an attempt to determine this, we shall 

f i r s t  look for  a solution of eqns. (4. 1) in the limit a s  N-. oo. Our 

procedure will be very similar to that used by Chang (Ref. 37) in his 

demonstration of the singular perturbation method on another MFD 

flow problem for the limiting case: Ha+m, ~ a / R e - .  0. 

We proceed formally by letting N-, oo in eqns. (4.1) and keeping 

(x, r) fixed. The equations which result a r e  

The general solution of these equations a re  

where f and g a r e  arbitrary functions. Now the boundary conditions 

which must be satisfied a r e  

yon- = 0 on the body, n = outward normal to body - 
surface 

where P(r) i s  the unknown wake function defined in the previous section 

The development of the downstream vortical wake for the condition, 

N>> l , will be discussed later. It i s  obvious that (4.15) cannot satisfy 

all of these boundary conditions, which means that the present limit is 

not uniformly valid and indicates that the problem is of the singular 

perturbation type (Ref, 381. In anticipation of this, we choose f and g 

such that (see figure 19) 



for r < & ,  x <  0 

g = i ,  p =  0 for r>$ , x < 0 - 

Notice that this solution satisfies our requirement for a stag- 

nant region of excess pressure ahead of the body. In fact, we have set 

the pressure just equal to the maximum pressure of & (C  = 1) so this 
P 

solution must represent the case of maximum drag for which GD = 1. 

One should also notice that the s olution satisfies the boundary conditions 

on the body, at r-r m and at x-i + a. However, i t  does not satisfy the 

upstream boundary conditions with r< , and it is cliscontinuous at  

r = a ( x <  0) and at x = 0 ( r>  *): In order to satisfy the upstream 

boundary conditions, an intermediate region (or regions) of flow a r e  

required. Ktermediate regions a r e  also required at  the surfaces on 

whish the (3Liscontin~itie8 OCCUP so that a continuous "matching" of the 

solution can be accomplished (this procedure i s  well illustrated in 

reference 37). These intermediate regions of flow will be examined 

next. 

Of particular interest is the pressure jump which occurs across 

r = This in fact establishes the location of the currents since by 

eqn. (4.14) such a pressure jump can only occur if there a r e  currents 

concentrated in a thin layer near r = 3.. We can study this current 

layer in more detail by introducing the scaled variables: 



and new dependent variables defined by 

where R(N) and V(N) a r e  undetermined parameters depending on N. In 

defining the above variables, we have assumed that thk current layer 
- - 

thickness is of 0 ( 1 / ~ )  and that u, V/V and 5 a r e  the first  terms in 

the expansions of u, v and p in terms of the small parameter 1 / ~ .  

Substitution of (4. 18) and (4. 19) into eqns. (4. 1) gives , 

i 

Now the pressure term in eqn* ( 4 2 0 ~ )  can balance the magnetic term 

only if R = N/V. Also, eqn. (4.20a) can only be satisfied if 1 / ~  = 

R/V. Hence, we must have 

Then in the limit as N-4 a, eqns. (4-20) must reduce to 



Note that the nonlinear inertia terms survive in the x-component 

of the momentum equation. These terms a r e  essential in order to 

balance the large changes in pressure which occur along the stream- 

wise direction, but they a r e  also the greatest obstacles standing in the 

way of solutions to eqns. (4. I ) .  

From (4.21) we can now give the following estimates of the 

current layer tbiekwees, 6, and the magnitude of the ctnrrede, j = v: 

s = s ( a / ~ )  = o( 1 = 0(1/ fi) for x = 1 

O( f 1 f o r X =  ]C9 

j = o ( ~ / v )  = 0(1/ E) = O ( P /  fi) for x = 1 

0 ( 1 / ~ )  for X = N 

Thus, the current layers must spread from a thickness of 0(1/ fi) at  

x = O(1) and merge into a single layer of thickness O(1) at x = O(N). 

The spreading of these layers is illustrated in figure 20. 

We can also estimate the current dissipation in the layers a s  



Hence, the current dissipation remains finite a s  N-. a, even thmgh 

6 4 0  and j-,O. 

The thin current layer model described above was first  

mentioned by Childress (Ref. 39) in analogy with a solution he carried 

out for  the case, N / R ~ > >  1. It was later developed in more detail by 

Yonas (Ref. 10) who proposed that such current layers could support 

not only stagnant regions of positive pressure in front of a closed 

body, but also stagnant regions of negative pressure behind the body. 

The merging of the current layers near x = O(N) into a single 

wake-like region suggests the possibility of matching i t  to the up - 
s t ream wake given by Gourdine9s linear solution (Ref, 6). This linear 

solution could then satisfy the upstream boundary conditions. However, 

such a matching i s  not possible because the linear sollution canmot 

match pressures of O(1) and still be valid. Therefore, there must be 

a t  least  one intermediate region between the stagnant region and the 

region far upstream where the linear solution is valid. 

Pn order to determine the equations for this idermediate 

region, we introduce the following limit process: 

N 

v N 

u =  G =  O(X) v =  = O(I/V) , p = p = O(1) 

Substituting these variablee into eqns, (4. 1) and proceeang a s  before, 

we find that 

X = B T = P J  



so  that 

j = v = o ( ~ / N )  

And in the limit a s  N-( a, eqns, (4.1) reduce to 

a; = 0 8; + - - 
ax" a; 

N 

- a u  -si? - u -  +v,,  
- - 

ax" a r  8; 

which a re  identical to eqns. (4. 22) for the current layers. Thus, the 

equations for this "intermediate region a r e  also basically nonlinear. 

However, these equations may be valid over a much wider region. In 

fact, Childress (Ref. B 5) has attempted to apply eqns. (4. 23) to the 

entire flow field in order to determine the drag of a two-dimensional 

circular cylinder. In the strained coordinate system of these 

equations, such a cylinder simply appears a s  a flat plate on which 

simpler boundary conditions may be specified. Using a successive 

approximations technique to solve eqns. (4, 231, Childress found 

CD = 0.721 from the first  approximation. Due to the increasing 

complexity of the equations, he was unable to car ry  the solution to 

higher approximations. However, it would seem clear without 

calculation that higher approfirnations should lead to CD4 P since 

Childress assumed 43 = O on the rear  of the plate and we have shown 
I' 



that C -* 1 on the front of a body a s  N+w. Yonas (Ref. 10) has also 
P 

alluded to this point, 

It should also be mentioned here that an exact similarity solu- 

tion of eqns. (4.23) has been found by Kovasznay and Fung (Ref. 40) 

and by Childress (Ref. 34). However, i t  corresponds to sink flow at 

high N and finds no application to flow past bodies. 

We must 'finally consider the nonuniformity near x = 0 ( r >  B). 
The detailed structure of this region appears to be quite complicated 

and, in fact, there may be more than one region required in order to 

describe it. Unlike the previous two regions, a consistent limit 

process could not be defined which yielded a unique set of equations. 

The proper equations can probably only be determined by obtaining 

explicit solutions and carrying out the difficult matching of the various 

regions which come t o gether a t  x = 0, r = $ . , Although we can 

presently say very little about the detailed structure of the flow in this 

region, i t  probably would not add anything essential to our qualitative 

understanding of the Overall flow, 

This completes our descriptive analysis of the various regions 

of nonuniforrnity, but so far we have said very little about the non- 

diffusive, vortical wake which has been assumed to exist far  down- 

stream. However, i t  has already been shown that the Joule dissipation 

in the current layers remains finite a s  N-+ m. This implies that there 

will always be a. decrease in the Bernoulli M-function along the stream- 

lines, which in turn means that a. vsrtical wake must exist fa r  down- 

stream. This can also be? s h o w  from egn, (4.12) which gives the drag 



coefficient in terms of an integral of the F-function, and i s  supposedly 

valid for arbitrary N. We see from this equation that i f  CD- 1 a s  

N- oct, then F cannot approach 1, 0 or  change abruptly from 0 to 1 any- 

where, for otherwise, CD+ 0 .  

A possible profile for the F-function i s  shown in figure 21 where 

we have also tried to summarize what has been deduced about the struc- 

ture  of the rest  of the flow field in the limit N4 oo. A stagnant region 

in  which C = 1 extends from the front of the body to x = - a. The 
P 

pressure in this region i s  supported by a cylindrical current sheet a t  

r = 3 in which the currents a r e  becoming vanishingly small. Outside 

this current sheet a t  x4 oo, the velocity i s  parallel and equal to unity 

and the pressure i s  zero. F a r  downstream, the pressure i s  again 

zero and the flow i s  p,arallel, but there i s  a nondiffusive, vortical wake. 

A l l  these features of the limiting flow field a r e  quite consistent with the 

trend of the experimental results. Since the body shape i s  immaterial 

in this limiting flow field, i t  explains why the cirag coefficient curves of 

all three halfbodies appear to  be converging into one. Furthermore, 

the drag coefficient of a halfiody in the limiting flow field is unity, and 

indeed, the drag coefficients of the halfbodies do appear to be gradually 

approaching this upper limit. 

The physical model we have described above has led to consid- 

erable insight into the structure of the flow field for N>> 1. Although 

the model i s  admittedly incomplete inn many of i ts  details and we a r e  

unable to provide explicit calculations of the drag for large, finite 

values of N, most of the furrdamental features of the flow appear lo be 

qualitatively well-understood. 



V. CONCLUSION 

Results have been presented from MFD drag measurements on 

three semi-infinite bodies over the range, 0< - N C  - 24. Two of the 

bodies, a Rankine halfbody and a 2-caliber ogive, were streamlined 

shapes, and the third was a blunt halfbody. For  N < - 0(1), the drag 

coefficients of the streamlined halfbodies were found to increase 

linearly with N; but the drag coefficient of the blunt halfbody was 

relatively unaffected, For  N >  > 1, the drag coefficients of all three 

halfbodies were of 0(1) and appeared to be asymptotically converging to 

some common limiting value. 

A simple theoretical calculation of the drag coefficient of the 

Rankine halfboqy was possible for N< C 1 which agreed quite well with 

the experimental results. However, there was apparent agreement 

even for  N = 0(1j for which the theoretical calculation i s  no longer 

valid. This was explained by a strictly inviscid theory which showed 

that a nondiffusive, vortical wake must exist at  downstream infinity. 

By extending the results of this inviscid theory to the case N> > 1 ,  a 

physical model of the flow was constructed which led to the conclusion 

that a s  N-rm an infinitely-long stagnant slug must form in front of a 

halfbody and the drag coefficient of the body must approach a maximum 

value of unity. Although all the features of this model a r e  consistent 

with the trend of the experimental results, more complete experimental 

verification is needed. 

]It i s  particularly important to establish the extent to which the 

inviscid flow approximation i s  valid. This might be studied by 



measuring the wake velocities at  various distances downstream. Also 

in question i s  the existence of the thin current layers and long stag- 

nant slugs in front of the halfbodies. The answer to this question 

could be provided by detailed measurements of the velocity and 

magnetic field. 

There is perhaps even a greater need for further theoretical 

work on the problem. Although the MFD drag can be calculated for 

small N and an upper bound on i ts  value has been established for 

N-. a>, i t  cannot a s  yet be calculated for intermediate values of N. 

Hopefully, the physical framework that has been provided here will 

grove beneficial in this endeavor. 

Finally, results have also been presentd from measurements 

made of the transient drag of flat disks which were started impulsively 

from rest. The drag of a disk was found to overshoot i ts  steady- 

state value by 30 to 50 per cent and required a distance of about 25 

disk diameters to reach this steady+state value. This behavior was 

attributed to the vortex formation process occurring in the wake of the 

disk. Additional experiments, p a r ~ c d a r l y  visual flow studies, would 

probably lead to a better understanding of this interesting process. 
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APPENDICES 

A .  Calculation of Base Drag without Dissipation 

The base drag will be calculated assuming that the flow i s  

inviscid and non-dissipative. The coordinate frame i s  fixed to the 

halfbody and a control volume i s  selected which consists of the tow 

tank walls and two cross-sections, I and I I, of the tow tank a s  shown 

in figure 10. The entry cross-section I of area A1 i s  chosen far  enough 

upstream such that the velocity ul and pressure pl a r e  uniform across 

it. Likewise, the exit cross-section 11 of area A 2  i s  chosen far  

enough downstream such that the velocity u2 and pressure p2 a r e  

uniform across it. These latter conditions a r e  assumed to exist by 

the time the flow reaches the lower bellows of the drag balance. Under 

the above assumptions, the conservation equations may be written a s  

follows : 

ulAl = u2A2 ( Continuity) 

2 2 
p1Al * WlAl = pZAZ * puZAZ 3- (Momentum) 

3 3 
plulAI 4- * ~ u 1 . A ~  ' P 2 2  u A 2 * h 2 A Z  {Energy, or  

B ernoulli law) 

Elimination of u2 and p2 from these equations leads to 

Since the drag is always measured with reference to pl ,  we can 

simply set p = 0.  The drag coefficient i s  then given by P 



Since A1/A2 = 1.035 for the tow tank, CD = 0.0357. 

B. Calculation of Pressure Jump due to Flow in Standpipe 

The pressure jump in the tow tank due to the acceleration of the 

mercury flowin@ into the standpipe may be easily calculated by consid- 
k 

ering the balance of mass and energy of the system shown in the sketch 

Again, the flow i s  assumed to be inviscid and the velocities and pres- 

sures at  sections 1 I I  and IV a r e  assumed uniform. The velocity u3 

i s  just the velocity of the fluid displaced by the drive shaft, and since 

the ID of the standpipe equals the OD of the drive shaft, u4 i s  just 

equal to the drive shaft velocity, u2. Conservation of mass and energy 

thein gives: 



A little algebra then gives the pressure jump a s  

since A ~ / A ~  = 1/30. 

Now i f  the difference in the effective areas  of the bellows i s  

AA and the cross-sectional area of a model is A ,  then the drag coef- b 

ficient corresponmding to the apparent drag force produced by the pres- 

The ratio A/Ab,  where A i s  the average effective area of the bellows, b 

i s  5.5 and hAb/Ab i s  about -025 (this was determined by increasing 

the mercury hydrostatic head by a known amount and measuring the 

change in the drag balance output). Therefore. CD = .025/5.5 6 .004. 

It should also be noted that there may be an additional pressure 

increase in the tow t a d  due to viscous effects in the standpipe flow. 

However, this increase was calculated assuming fully-developed 



turbulent flow and was found to be only about 10 percent of the pree- 

sure  jump calculated above. 

C. Calculation of Base Drag with Dissipation 

We again choose the control volume shown in figure 10. A s  in 

the non-dissipative case (appendix A ) ,  the conditions across section I 

a r e  assumed to be uniform. However, we can no longer make this 

assumption about the conditions across  section I I. If kinetic energy is 

being dissipated in the region near the nose, due either to viscous o r  

ohmic losses,  then a vortical wake forms downstream and the velocity 

across section II 'may appear a s  shown by the dashed line denoted a s  

5 id  figure i0. In any real flow, this wake i s  ultimately dissipated 

very far  downstream by the action of viscosity and uniform flow 

conditions a r e  regained. 

Although the velocity 5 is nonuniform across section 11, if 

this section is taken sufficiently f a r  downstrearm (say at the location 

of the lower bellows), then the streamlines should become nearly 

parallel and the pressure across the section may be assumed constant. 

Under this assumption, the continuity and energy equations for the 

system 'may be written a s  follows: 



where Q is the dissipation pe r  unit t ime within the control volume. 1 

Using (C. 1) in (C. 2), we get 

It will be  shown below that the t e rm in brackets may differ from unity 

by only 1 per  cent s o  that i t  will simply be  taken equal to unity. We 

estimate Ql by soting that the work done by the drag force, Du2, is 

not only dissipated into heat but an appxeciable fraction may also be  

carr ied out of the control volume a s  kinetic energy by the vortical 

wake. This is shown eqlicitlly in  Sec. 4.1 for the case  illustrated in  

figure 18a. Thus, if we let  Ql = $ Du2 (Oc f, < I ) ,  then (C. 3) can be  

written a s  

where 



F o r  the tow tank, A 1 / ~ 2  = 1.035 so 

This result i s  e9sentially a statement of the simple fqct that the pres- 

sure in a pipe should drop i f  there i s  any dissipation. Without 

dissipation the pressure drop i s  given by C = -. 070, so that the 
P 2  

term - .035  $ CD i s  a measure of the pressure drop due to dissipation. 

We shall now go back and estimate the term in brackets in eqn. 

(C. 3) which wa$ taken to be unity in arriving at  eqn. (6.4). This term 

will be estimated by considering the fictitious process in which the 
N 

vortical wake, u2, flowing out of section PI is ultimately dissipated as  

heat, Q2, such that the velocity becomes uniform again across some 

I section P I1 farther downstream a The mass and energy balances for 

the fluid between sections I f  ant3 I P P give 

and 

The process i s  fictitious because in the real flow the effects of the 
halfbody boundary layer a re  bound to become important very far  
downstream and the flow will approach cylindrical Couette flow. 
However, by considering euch a fictitious process, we can ignore 
these effects. 



Since A j  = A2, ug = u2 and the energy equation may be rewritten as  

But p2 - pg > 0 ,  so 

By the same argument used above for  Q l ,  we can set  Qf YDu, Q< y < l .  

In particular, we assume Y =*  which is probably a s  g o d  a guess a s  

ny, Then the above relation becomes 

CD= 1,015 for %=1 

which gives the required result. 

From eqn. ((2.4) we can now obtain an estimate for C . For  
P, 

&# 

the blunt halfbody we take CD = .8 and rather arbitrarily assume p = B. 
The pressure drop is then given by 



This admittedly crude estimate i s  probably as  good (or  bad) for N = 0 

a s  i t  i s  for N>O since CD does not vary much with N (c. f . ,  Sec. 3 , l )  

and the dissipation within the control volume probably stays about the 

same even though the dominant di s sipative mechanism may change 

from viscous to ohmic. Hn any case, the estimate cannot be too far  off 

since for C = 1 and $ = l ,  (C, 4) gives D 

In the case of the Rankine and ogive halfbodies, the dissipation 

2 
was almost zero at N = 0, but surely increased a s  N increased , cor- 

respondingtoiinincreasein BC ineqn. (C.4). Thus, C musthave D P2 
decreased accordingly as  N increased. However, i t  i s  shown in Sec. 

4. 2 that CD< 1, so that C cannot decrease below the value given by 

3 5 
(6.5)  , which corresponds to a maximum base drag coefficient of 

C = t. lQ5. Therefore, the base drag coefficients s f  the Rankine and 
Db 

ogive halfbodies must vary from their zero-field value of .036 (c, f. 

appendix A)  to a maximum value of . 105 as  N becomes very large. 

D. Derivation of MFD Boundary Layer Equations 

We consider the laminar flow of a conducting fluid past an 

insulated flat plate for the following conditions: 

In Sec. 3. 1 i t  will be shown that CD increases monotonically with N. 

3 Some stagnation pressure measurements described in Sec. 4. l 
(pp. 54 -55) indicate that the pressure at the lower bePBows of the 
drag balance does not in fact decrease below this value. 



We shall assume that Rm-, 0 so that eqns. ( 1. l a )  and (1.1 b) can be 

used with - B = -i. The variables a re  then defined as  follows: - 

where V, P and Y a r e  unknown scaling factors which depend on Re and 

N. Since we want to relate the results of this analysis to the boundary 

layer flow over a halfbody, i t  was convenient to retain the halfbody 

diameter, d, as  the characteristic length in defining the parameters 

in (D. 1) and the dimensionless variables, x and y, in (D. 2). Note 

that this implies x* = xd = O(d). In terms of the variable@ defined in 

(D. 2 ) ,  the continuity and momentum equations take the following 

forms: 

(D. 3a) 

(D. 3b) 

1 2- a';; v - a';; - Ps  -NV';;+ v v i & +  1 u s j -  -- 
I! aY 

Now eqn. (D. 3a) can only be satisfied if  V = Y. The viscous and 

inertia forces in eqn, (D, 3b) can then be balanced by requiring that 



The only terms that can now be balanced in eqn, (D. 3c) is the pressure 

gradient against the magnetic force. This requires that 

Thus, the following estimates have been obtained: 

where 6 = W/d i'tq the dimensionless boundary layer thickness. In the 

limit, We-, ao, N+w,  eqns, (D. 3) reduce to 

The first  two equations a r e  just the ordinary boundary layer equations 

for  a flat plate. The third equation gives the pressure across the 

boundary layer once 7 i s  obtained from the solution s f  the first  two 

equations. However, the Blasius solution for 7 leads to 85/& > 0 

s s  i f  this term were included in the second equation above, it would 

cause the flow to decelerate and boundary layer to thicken. Therefore, 

we must examine this effect more closely in order to  determine i f  i t  

can cause the boundary layer to  separate, A crude estimate can be 

made by evaluating the KBrmgn-PolhPhatosen parameter (Ref. 41): 



Now from (D.4) 

Hence, 

Since the criterion for separation i s  = -12, this estimate 

indicates that separation i s  very unlikely. 

Thus, we have shown that the ordinary boundary layer 
- 

equations a re  very likely to be valid for the conditions given by 

( D  1). 1\90 unusual effects, such as  upstream-growing boundary 

layers and reversed flow (indicating a breakdown in the boundary 

layer equations) which have been predicted by some theoretical 

solutions (e. g. , Refs, 42 a d  43), a r e  expected for these conditions 

because the interaction between the flow and the magnetic, field is 

extremely weak, 
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Figlore 5, DRAG BAQANCE SET-UPS FOR FLAT DISK: 
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Figure 10. CONTROL WKUME FOR CALCULATION OF BASE DRAG 
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