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The Keplerian motion of a single parti&le in a dissipating 

medium, such a s  a i r ,  i s  analysed and a theory of micrometeorite 

capture and resulting orbital lifetime i s  developed. The equations 

of motion a r e  derived for a planar, two-dimensional model, and 

all  orbital variables a r e  assumed to be perturbed slightly from 

their Keplerian values, The equations a r e  then linearized and solved. 

Then a statistical model of the interplanetary micrometeorite flux 

i s  developed in which the distribution of velocities a t  infinity relative 

to the earth and masses  of the oart icles a r e  taken into account. ,. 

4 -PV& 
The velocity distribution i s  taken to be qn(V ) = BV e The 

00 00 

distribution of the masses  i s  taken a s  a constant number of parti- 

cle flux M(m) a t  infinity, Finally, this statistical model is coinbined 

with the theory of capture and lifetime to furnish a possible explana- 

tion for the micrometeorite concentration near the earth. 
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LET OF SYMBOLS 

A = hfuesntail area of particle 

a = semi-major axis 

C 
2 .  = angular momentum = r 8 

@ID = - drag coefficient 

d = diameter of particle 

D = drag force 

E = specific total energy of orbit 
g o ~ 2  

g = local gravitational acceleration = 7 
' r  

go 
= gravitational acceleration at  sea level 

H = scale height = R T / ~  

M U = drag parameter = - zm Pp 

K ~ ( ~ / Z )  = modified Bessel functions of the second kind with 

argument p/2 

3-n = mass of particle 

P = pressure 

51 = E / I+€  

P = radial distance measured from the center of the earth 

R = radius of the earth 

f i  = gas constant 

t = time, epoch 

T = temperature 

u 
1 = reciprocal of the radial distance = 7 



-vii - 

L E T  O F  SYMBOLS (Cont'd) 

iocal velacity sf the particle 

relative velocity s f  the p ~ r t i c l e  wit& respect to the ear th  

altitude about the earth surface 

dummy variable 

eccentricity of t5e orbit 

polar cngle rneas l i red  a s  sha~vx/a 21; &igure 1 

impact parameter  

angle betweeri Q direciion alrd t'I5.e velocity v e c ~ o r  

reciprocal of scale height - A ' i fi-i 

gravitational constant = goR 2 

material  Cieilsity s f  partiela 

density  of a i r  

density ratio = ?IPp 
KepEeriari values 

values a t  perigee 

initial value a 
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1. INTRODUCTION 

The main sources of information concerning the existence of 

interplanetary particles in the vicinity of the earth prior to the advent 

of rockets and satellites were: 1) scattering of sunlight by particles 

in the space, i.e., the zodiacal light measurements; 2) influx of 

meteors i-nto the earth's atmosphere; 3) the accretion of fine parti- 

cles on the surface of the earth; and 4) the sediments of particles of 

extra-terrestrial origin on the ocean beds. These interplanetary 

particles a re  called micrometeorites (sometimes dust particles) and 

a r e  only a few microns in size. These micrometeorites consist of 

either stony o r  metallic material. The consensus of a majority of 

people regarding the origin of these particles i s  that they a re  of 

cometary origin. 

After the coming of the space age, numerous impact meas- 

urements of micPometeorites in space from rockets and satellites 

have been obtained, and the measurements do confirm the existence 

of "Aese tiny particles in the interplanetary space near the earth a s  

well a s  far away from the earth. The numerous measurements from 

various rockets and space vehicles a r e  very widely scattered, and 

there seems to be no proper correlation between them. However, a 

definite trend has been established by these measurements, and that 

i s  that the particle concentration in the neighborhood of the earth is 

very high and it falls off smoothly to insignificant numbers far away 

from the earth. in interplanetary space. Whipple (1) has inferred 

a s  early ae 1960 by studying the various impact measurements 



t k a :  tl;2 2zrticie ce~cen t r a t i on  near the earth is about 13" times 

thzt in i~ t e rp l ane t a ry  space, More  recently, Alexander ( 2 )  has 

concluded from the Mariner XI mic rome teo~ i t e  impact measure-  

4 memts that the concentration near the earth is TO times that 2x1 

space Ear away from the earth. From the most  r e c e ~ t  Mariner IV 

measurements,  Alexander, et  a l e  (3 )  state again that the new data 

from Mariner I-V substantiate the conc2usicjn derived from the Mari- 

ner 45 flux measurements, 

Many physical mechanisms have beer, offered to axplain this 

high concentration of inke~planetary particles in the neighborhood of 

the ear&, whippPe (4) h2s discr lssed a few mechanSs~7s, One 04: 

them is the captktre of particles frmm the imzitter ejected during am- 

pacts of ia rge  meteoritzs on the moon, He proposes that ao,me of 

ths particles thrown up have velocities l a rger  than t L e  lixiar esczpe  

velocityy, Consequently, these particles leave -the -moon and go into 

t e r res t r i a l  orbitso Then he considers it pclssible for  these orbits 

to converge towards the earth and thus edmcce &kie population of 

particles near the earth. However, Whipple has not offered a,-,y 

q.,nanti.";aLive basis for  tI3i.s hypothesis, He hds also considered other 

mechanism s such a s  gravitational conce12.,tsakion, electrostatic ex- 

pl.osionx of $rigid particles, ete, These do not appear to account for 

f ie obsexved high concentrations, Beard 45) had predieteC eartier 
% 

"hat the cssncentratisn near the earth i s  aba;~z ! 0- " t7_s20s t ~ ~ a t  ia outer 

space, based om a tlxeoretical ~mode'i of gia~!~"ta**ion;b; capture bazween 

sup-earth-particle system. This again docs not aaccstmt 20r $he 

observed high chsncentratJsna, Hibbs 46) has conchded* by stzdying 
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the data of measured impacts of micrometeorites from the satellite 

Exp%orer I ,  that the particles must be in closed orbits around the 

earth. Consequently, he has suggested that these particles were 

captured by the earth into closed orbits due to aerodynamic drag 

while passing through the upper regions of the ea r th ' s  atmosphere, 

In this paper the supposition that large observed particle 

concentrations come from closed orbits around the earth and that 

they a r e  captured by the aerodynamic drag of the atmosphere i s  

considered, Part icles captured a t  certain heights from the surface 

of the earth will have very  long orbital lifetimes and thereby enhance 

the population near the earth. Consequently, a theoretical model 

for this process i s  set  up, and a theory of the atmospheric capture 

mechanism and the resulting orbital lifetime for these micrometeor- 

ites i s  developed. This theory i s  based on the perturbation of a 

Keplerian orbit due to the presence of aerodynamic drag. A plane, 

two-dimensional problem in the ecliptic plane of the earth i s  con- 

sidered. Here ,  the atmosphere i s  assumed to be spherical and 

symmetric about the earth and non-rotating. This theory is then 

combined with a statistical model of the micrometeorite f lux 

distribution in the interplanetary space to obtain a complete rnecl-n- 

anism to account for this high concentration near the earth, 
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11. METHOD OF APPROACH 

The problem consists of two parts .  The f i r s t  par t  deals with 

the analysis of the orbital motion of a single particle in a dissipating 

medium, such a s  a i r ,  to develop a theory for  the capture mechanism 

and the resulting orbital lifetime, The second par t  deals with the 

construction of a statistical model of the micrometeorite flux dis- 

tribution in the interplanetary space, which is  then combined with 

the f i r s t  part  to obtain the complete picture. 

In the absence of a dissipating medium, the trajectory of a 

particle moving under the influence of a central  force field is  a 

Keplerian conic section. The angular momentum and the total energy 

of such an orbit a r e  constants. However, when a dissipating medium 

is  present,  the orbit of the particle i s  not quite Keplerian, and the 

angular momentum and the total energy a r e  not constants any more. 

Hence the presence of a dissipating medium, such a s  a i r ,  perturbs 

the motion of the particle away from a Kepierian motion. The mag- 

nitude of this perturbation i s  very  small. The f i r s t  par t  of the 

problem investigates the effect of this perturbation on the orbital 

parameters based on a Keplerian trajectory, A two-dimensional 

planar problem around the earth i s  considered, The gravitational 

field of the earth i s  taken a s  that of a point mass  at the ear th ' s  

center,  and the variations in the field due to the non-sphericity of 

the earth a r e  neglected. Other minor perturbing forces  due to the 

sun, moon,  and other planets, electromagnetic effects, etc, , a r e  

neglected. 
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The only major perturbing force considered in this paper i s  

the aerodynamic resistance due to tlie atmosphere surrounding the 

earth. This resistance decreases  very rapidly with increasing dis- 

tance from the earth, Since the magnitude of the perturbing force 

i s  quite small ,  mathematical perturbation techniques can be used to 

analyze the problem. The rotations of the earth and the atmosphere 

a r e  neglected. It i s  also assumed that the atmosphere i s  spherically 

symmetric about the earth. 

The aerodynamic drag force,  D, normally defined in t e rms  

of the dimensionless drag coefficient, CD, i s  written a s  

D = ~ c  A p V  L D 

where A i s  the frontal a r ea  of the particle, p i s  the a i r  density, and 

V i s  the velocity of the particle. 

The Mach number dependence of CD i s  neglected. As the 

r a m  ,,iv3n ,-. af i ~ t e r e s t  l ies  abcve 50 miles altitude, the fiSewtenian ap- 

proximation for the estimation of GD i s  used. This approximation 

says that the mean f ree  path of the a i r  molecules i s  much larger  

than the characterist ic  length of the body and that CD is constant 

with a value very  close to 2. It i s  convenient to rewrite equation 

(2 .1)  in the form of drag per unit mass.  Consequently, 

where m is  the mass  of the particle and p i s  some reference 
P 

density (in this case ,  the density a t  perigee), o( r )  i s  the density 

ratio, and K - ( C ~ A . / Z ~ ) ~ ~  i s  assumed to be a constant and has  the 



-1 * 
dimensions of (length) . 

Under the above mentioned assumptions, the equations of 

motion of a particle a r e  se t  up and the appropriate perturbations 

a r e  evaluated. 

Then a statistical model of the distribution of the micro-  

meteorite flux in the interplanetary space i s  developed. Here it  i s  

assumed that these particles in space have different masses  and 

velocities. These velocities a r e  defined in t e rms  of the relative 

velocities a t  infinity with respect to the earth (sometimes called 

the hyperbolic excess velocities). It i s  c lear  that these velocities 

and masses  should be considered in estimating the total flux. 

Consequently , simple rnodeis of the statf stical distribution of L&e 

velocities and masses  a r e  used, Finally, the theory of captures 

and the resulting lifetimes a r e  combined with the statistical model 

to obtain the overall integrated flux. 

:g 
If the charge effects on the particles a r e  included, the basic phe- 

nomenon i s  affected only to the extent that the value of GD will be 
different from 2, Since K i s  assumed to be constant, this change 
in CD requires a corresponding change in  the size and mass  of the 
particle. 
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111, ANALYSIS OF THE MOTION OF A SINGLE PARTICLE 

IN A DISSIPATING MEDIUM 

1. Derivation of the Equations of Motion 

Consider a particle of mass  m travelling along a Keplerian 

trajectory f a r  away from the earth with an eccentricity E > 1, a s  

shown in Figure 1. Then i t s  t rajectory with respect  to the earth 

i s  a hyperbola whose asymptotes a r e  given by rt 8 = cos - As E *  

mentioned before, we a r e  considering a planar problem. 

Let V be the velocity of the orbiting particle. Using polar 

coordinates r and 8 ,  the velocity V i s  written a s  

where the dots denote differentiation with respect  to t ime and i ' s  

a r e  unit vectors. 

Then the acceleration of a particle with unit mass  i s  given by 

As the particle approaches closer  to the earth,  it begins to 

experience the a i r  drag mentioned previously, Then the particle i s  

acted upon by both the gravitational force and the drag force. F rom 

Figure 1 ,  this force i s  written a s  

where 9 i s  the angle between the velocity vector and the 8 direction. 

But from the geometry, 

sin cp = -?/v 



Part ic le 

Figure 1, Notation showing the motion of the particle along a 
hyperbolic orbit with the center E a s  a focus 



and 

cos p = rB/v . 
Therefore, the force equation i s  rewritten a s  

-+. 
F = -  DE --? r6 t 

(mg tT)  ir - D T  i e .  

Newton's second law, for  a particle with constant mass  m ,  

gives the equation of motion a s  

This leads to the following equations of motion along r and 0 direc-  

tions, respectively: 

and 

Also, the velocity i s  given by 

2 2 2 .2  V = E  t r 8  

In the limiting case,  when the dissipative drag force i s  zero,  

equations (3.4) and (3.5) will be shown to reduce to the Keplerian 

case. When the right hand side is zero,  equation (3.5) can be writ-  

ten a s  

d 2.  2 - (r 8) = 0 3 r 8 = constant = C . 
dt 

This shows the constancy of the angular momentum as  defined by 

the Keplerian motion. Writing r = l /u,  we have 



by using (3.7). Similarly, the second derivative of r i s  written a s  

Substituting (3.8) and (3.7) into (3.4) in the limiting case  when 

D = 0, we get 
., 

2 2 2 2 where g = (goR )/r = goR u . This i s  the Kepler equation of motion 

which has the general solution of a conic section: 

Now the equations of motion given by equations (3.4) and 

(3.5) a r e  not in a convenient form to analyze the motion, By a few 

manipulations, they can be put into a simpler  form,  a s  shown be- 

low, Differentiation of the expression for  the particle velocity given 

by equation (3,6) yields 

Multiplying equation (3,4) by i. and rearranging gives 

Substituting this expression for  E "r" in equation ( 3 .  l l ) ,  we get 

DE 2 2. .. ~ i r  = - -  - g t  + 2r+b2 + r e e  
mV (3.13) 

Again, multiplication of equation (3.5) by r b  gives 

Finally, substituting equation (3,14) into (3. 13), we obtain 



2 2 But g = ) . Therefore,  equation (3.15) i s  rewritten a s  

where equation (2.2) has  been substituted for ~ / m ,  

Similarly, the elimination of the las t  t e rm  on the right hand 

side of equations (3.4) and (3.5) yields the other equation 
-, 

Equations (3,16) and (3.17) a r e  the governing differential 

equations for a particle in a dissipating medium with the forces act-  

ing along the velocity vector and perpendicular to i t ,  respectively, 

Now it i s  convenient to transform the independent variable t 

to 8. This changes the dynamic problem to an orbital problem. 

Therefore, 

Then 

and 

By using equations (3.18), (3.19), and (3,20), we obtain the 

governing orbital equations f rom equations (3.16) and (3.17) a s  



and 
3 

Also, the velocity equation is  rewritten a s  

Then equations (3.21), (3,22), and (3,23) a r e  the basic equations 

relevant to this problem, 

2, Linearization 

As mentioned previously, the effect of atmospheric a i r  drag 

i s  quite small and the trajectory of the particle deviates slightly 

from the Keplerian trajectory in vacuum. Therefore, it i s  reason- 

able to assume that the various orbital parameters  a r e  only slightly 

perturbed from their Keplerian values. As these effects a r e  small ,  

the squares of these effects can be neglected. Consequently, the 

various orbital quantities a r e  written a s  

where the subscript o i s  used to indicate the Keplerian values of the 

parameters and A( ) refer  to the fir s t  order perturbations. 

With these assumptions, the equations of motion (3.21) and 

(3.22), together with (3.23), a r e  linearized, Now the linearized 

differential operators a r e  



Now 

and 

For  the Keplerian case  we have, from equation ( 3 . 2 1 ) ,  

Using these relations, the linearized form of equation ( 3 . 2  1) is 

given by 

where o = o(r0Ie 
0 

The Keplerian form of equation ( 3 . 2 2 )  i s  
7 

where p g R~ i s  the gravitational constant of the earth and C = 
0 0 



L 
r 8 is  the angular momentum constant. With these relations, the 

0 0 

linearized form of ( 3 . 2 2 )  i s  

and the linearized form of ( 3 . 2 3 )  is 

At this stage, it i s  useful to obtain the linearized form of the 

specific totai energy of the orbiting particie. The total energy per 

unit mass  i s  written a s  

Writing this LQ difference form,  we obtain 

But this i s  the same expression given inside the brackets in equation 

( 3 . 2 8 ) .  Consequently, we obtain a f i r s t  order differential equation 

fo r  AE from equation ( 3 . 2 8 )  a s  
'2 

Then the. perturbed quantities A r ,  ~8~ AE, and AQ can be determined 

by solving the linearized equations ( 3 . 2 8 ) ,  (3 .301 ,  ( 3 . 3  l ) ,  and (3 .  34) .  
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IV. SOLUTIONS 

1, Solution for A r  

The differential equation for  the radial perturbation A r  i s  ob- 

tained from equations (3.28), (3.30), and (3.3 1). If the initial condi- 

tions a r e  known, then equation (3,28) can be directly integrated, F o r  

hyperbolic orbits,  i. e . ,  E > 1, the initial point i s  given by €I = 8 = 
0 1 

-1 1 
cos - 

E n  
F o r  al l  other cases ,  i. e . ,  E < 1, the apogee point of the 

particle, for  which Q 0  = 0, i s  chosen a s  the initial point. As the 

problem concerns the perturbation of the Keplerian orbit,  the initial 

conditions for  the perturbed quantities a r e  matched to the Keplerian 

values a t  the initial point, t = 0. Hence the initial conditions a r e  

and a t  t = 0, 

-1 1 for  E > 1, 8 = e l  = cos - 
0 E 

f o r ~ < l ~  0 = € I  = 0 .  
0 1 

Substitution of equation (3.31) into (3.28) and an integration 

with the initial conditions given by (4. 1) yields 

Solving for  d ~ e / d 0 ~ ,  this i s  rewritten a s  

When this i s  differentiated once with respect  to 8 , it gives o 



Substitution of equations (4,2) and (4.3) into (3.30) to elimi- 

nate the f i r s t  and the second derivatives of A6 yields the following 

equation for Ar :  

By using the Keplerian equation (3,29),  equation (4.4) i s  

further simplif'ied. 

Now the Keplerian equation for  the velocity i s  

Finally, using equation (4.6) together with equation (3.29), the 



differential equation (4.4) for  the radial perturbation A r  is reduced to 

the simple form 

2 d A r  

d8 
0 

It i s  found that the coefficient of the f i r s t  derivative d ~ r / d 8 ~  col- 

2 2 lapses to zero  and both d / ( d ~ ~ )  A r  and A r  have the same coefficient 

v:/c: . Finally, we have 

Because of the simple form of equation (4.7), i t s  solution, satisfy- 

ing the initial conditions, i s  immediately written as: 

where C;IB),  representing the forcing function, i s  equal to  

However, C(8) has to be expressed explicitly in t e rms  of the orbital 

parameters before the integral can be evaluated. 

Now, for  a Keplerian trajectory, the position of the particle 

is given by the orbital equation 



2 ' 
where (r = g o ~ 2 ,  C = r 8 and t i s  the eccentricity of the orbit. 

0 0 0' 

F rom equation (4. l o ) ,  Po i s  obtained by differentiating it  

with respect  to time. Differentiating (4. 10) once, we get 

c2 0 
E = -  

2 * E sineoQO , 0 y(  1 -€coseo) 

but 

Hence 

0 

From these two relations, the velocity of the orbiting particle i s  

obtained in the form 

Now we will investigate the model for the a i r  density, 

As stated previously, the atmosphere i s  assumed to be spher- 

ically symmetric and non-rotating. It i s  also assumed that 

the density does not vary  with time and i t  depends only on the 

radial distance r from the center of the earth, As the scale height 

H i s  small  compared to the perigee distance r the flat earth hydro- 
- p9 
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static equilibrium equation for the variation of the pressure  with the 
.I, 

altitude is  written a sT  

where g i s  the local gravitational acceleration, 

Assuming that the atmosphere follows the perfect gas law, 

P = p X T ,  equation (4.15) i s  written a s  

Since the region of discussion involved i s  confined to a few 

scale heights about the perigee distance, the variation in the gravi- 

tational acceleration i s  neglected and g i s  assumed to be constant 

in the above analysis, Equation (4.16) can now be integrated if i t  

i s  assumed that the temperature distribution a t  the orbital altitudes 

is isothermal. Consequently, using the above assumptions, inte- 

gration of equation (4. 16) yields 

* 
It will be shown that this i s  a very  good approximation to the 

spherical earth pressure  distribution. 
The hydrostatic equilibrium equation for  a spherical earth i s  

2 
but - << 1 in general. Hence the hydrostatic equilibrium for  
a sp%erical earth can be approximated to equation (4. 15): 



where X = $/RT = constant = 1 / ~ .  H i s  defined a s  the scale height. 

The subscript p denotes the reference condition a t  the perigee 

point r At the perigee point r = r 8 = T. Hence, from equa- 
P 0 p' 0 

tion (4. l o ) ,  r i s  given a s  
P 
c2 

0 r =- 
P d l + ~ )  a 

Therefore, the density distribution given by equation (4.17) i s  written 

in the form xc 
0 - -  1 

h r  (I ( I - E C O S Q  ) 
o(ro)  = ~ ( 0 ~ )  = e P O  e O (4.19) 0 

However, r i s  not defined for values of 8 between zero and 
0 0 

-1 1 L-- cos - ~ U L  ~ l ~ p e r b o l i c  trajectories.  Consequently, we set 
E 

Substituting the relations (4. l o ) ,  (4.1 1) , (4. 13), together with 

(4,141, in equation (4.9), the forcing function G(O ) i s  written a s  
0 

1 

 KC^ o ( l f ~ ~ - 2 ~ c o s 0 ~ ) ~  
G(eo) = - 2 E 4 sine ~ ( 0 ~ )  

(1-6 ~ 0 ~ 8 ~ )  
0 

- (I 

Hence the solution for  A r  i s  
1 

(1tE2-2Ecos00)~ 
0 = f s i n  f -0 o ) ( 1 - ~ c o s 0  sin0 *0(9,) 0 

0 ) 
1 



where Bf i s  some final value of Oo. 

This  representat ion fo r  Ar i s  valid f o r  a l l  values of eccen- 

t r ic i ty  s tar t ing f rom zero .  However,  the evaluation of the integral  

is not easy  f o r  all values of 6 .  Consequently, the integral  i s  f i r s t  

evaluated fo r  values of E nea r  1 in a c losed form. Then a long, 

cumbersome s e r i e s  solution valid f o r  0 _< E < 1 is a l so  obtained. 

L e t  u s  now consider  the f i r s t  c a s e  when E - 1. Now. G(Bo) 

i s  writ ten as 

where 

and 

Then 

This integral  fo r  the perturbation in the radial  distance r will be 

evaluated for  Of = T. Therefore ,  equation (4.25) i s  wri t ten a s  

TT 

sinOoG1(Bo)dBl - sin00G2(00)d00 s" 
$1 



It i s  convenient to change the independent variable 8 to a 
0 

new variable s given by the following transformation 

1 2 - =  tan e 0 / 2 .  
S 

Then 

Also, a t  eo = el, 1 / ~  = cos8 - ( s - l ) / ( l t s ) .  
1 - 

Solving for  s ,  

and a t  Qo = r, s = 0. 

Now, 
1 - 

2s 
sineo = - l t s  

and 

2 2 l t 6 2 s  
14-6 - ~ E C O S ~ ~  = ( l t E )  (- I t s  ) 9 

and 

Let us consider the integral defined by I1. Substitution of the above 

relations and (4. 19) yields for I l  the following expression: 
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Even in this form this integral i s  very complicated. Some 

simplification i s  necessary to evaluate it. Since we a r e  interested 

in the solution for € .Y 1) i t  i s  recognized that 6 ,  a s  defined by 

(4.28)) goes to zero a s  & + 1. Therefore, the integrand i s  expanded 

2 in t e rms  of 6 fo r  6<< 1. Terms  of order  6 and higher a r e  ne- 

glected. Thus we have 

and 

Consequently, af ter  expansion, equation (4.29a) reduces to the form 

xcL 
where p =  Xr - 

It i s  pointed out here  that the upper limit of the integral l/b 

i s  very large for  small 6 and goes to infinity a s  6 -+ 0. Also, in this 

analysis, the exponent p i s  very large  and positive, and hence the 

main contribution to the integral comes when s 2! 0, Therefore, the 

upper limit in the above integral i s  taken to be oo in all  the following 

integrals, This corresponds to the asymptotic expansion of the 

integral using Watson's lemma, With these arguments, a function 

T(p) i s  defined a s  



Then the integral given by (4.29b) takes the form 

Now i t  is observed that T(p)  i s  the Laplace transform of the function 
1 1 

f ( s )  = sz(l ts)" .  Hence, f rom the tables,  T(p)  i s  given by 

T (p) = e p l 2  Kl (p/2) 
2P 

where Kl(p/2) i s  the modified Bessel  function of the second kind. 

Now 

and similarly,  

Combining and substituting these relations in the expression (4.30b) 

for  11, we get 

Let  us  now consider the integral defined by 12. It i s  given by 

Integration of equation (4.32) by pa r t s  yields the following expres-  

sion for 12: 



- . - 

2 0 2 - -  1 
 KC^ o i r p  f ( l i e  -2rcosB0) p. 1 - ~ c o s e  

t- e e dB 
4 0. 

( 4 . 3 3 )  
p 2 ~  8, (1-ecosBo) 

Now if F (p ,  E) i s  defined a s  

L 
where ( X C ~ ) / ~  = p ( l f ~ ) ,  then the las t  integral on the right hand side 

of equation (4.33) can be expressed as the second derivative of F 

with respect to p. With this definition, the integral I i s  written a s  2 

This integral i s  now evaluated in the same way a s  I Using 1" 

the transformation given in equation (4.27) for  the new independent 

variable, s ,  the integral fo r  F in equation (4.34) i s  written a s  

3 

cis 
l t s  

2 2 - P ( ~ )  
F = (1tE) ( I t 6  s )  @ 

0 ./so ( 1 - S S ) ~  

FOP & << 1, this reduces to the following form after expansion of the 

integrand for small 6 ,  Thus, 

F = ( 1 t ~ ) e  - ds 2 -ps 

l@iGj- 
(1 f (2-p)ds - bps )e  , 

0 

Using the same argument a s  before, we se t  the upper lirnit of the 



above integral equal to infinity. Again, a new function S i s  defined a s  

s E f  1 e -ps ds . (4,36a) 

0 &l-GG-) 

Then F i s  written in the form 

Here,  S(p) i s  again identified a s  the Laplace transform of the func- 

tion f ( s )  = 1 . From tables, this i s  evaluated a s  

where Ko(p/2) i s  the modified Bessel  function of the second kind. 

NOW d~ = fep/2 ( K ~ ( ~ / ~ ) - K ~ ( ~ / z ) \  
2 

d S -  / K (P/2) 
and 7- +eP o (p/2) - K1(p/2) + B 

dp P 

2 
Substitution of the above expressions for S, ds/dp, and d s/dp 

2 

in equation (4.37) yields the following expression for  F: 

Differentiation of equation (4.38) twice with respect  to p yields the 

following relations 

and 

I 

2, K1(p/2) 
t 2  ( l t  -) 0 

P P 



Substituting this value of the second derivative of F into equation 

(4.35), the integral I2 is evaluated a s  

Then the solution for  the perturbation A r  in the radial distance in 

moving from 0 = to G o  = IT i s  obtained by subtracting I from 
0 2 

I le  Thus, 

Substituting for I and I from equations (4.3 1) and (4.39) and r e  - 
2 

arranging the t e r m s ,  the following solution for ~r (IT, E )  i s  obtained 

when the eccentricity of the orbit E i s  close to 1: 

As al l  the computations have been carr ied  to order  6 ,  the above ex- 

pression can be written a s  

Note that when the initial trajectory of the particle i s  parabolic, 

i .e, ,  E = 1 and 6 = 0, the solution for A r  reduces to 



Now a few numerical calculations will be ca r r ied  out to 

estimate the radial perturbation A r  in order to inspect the validity 

of the linearization process.  

Substitution for 6 from equation (4.28) in equation (4.40) 

yields 

where equation (4.18) has  been used to eliminate G and p. 
0 

Now the argument p of the Bessel function given by 

i s  very large for the whole range of perigee distances involved in 

this pr oblem. Consequently, the asymptotic expansions of both 

~ ~ ( ~ 1 2 )  and IKl(p/2) valid for arguments greater  than about 3 will 

be used in the numerical calculations here. Now the asymptotic 

expansion of K ~ ( ~ / Z )  for  large p i s  

It i s  sufficient to keep t e rms  up to order  l/p. Thus 

and 



Substitution of these in equation (4.42) yields 
1 

Here E i s  taken to be I ,  Then 

The validity of the linearization approximation depends on 

the value of A r .  In the linearization process i t  has  been assumed 

that A r  << r. As X A r  estimates the e r r o r  in drag force ,  i t  i s  a lso  
,'F 

required that XAr should be small compared to 1, 

F o r  computation purposes particles will be assumed to be 

spherical in shape and to have uniform material  density p . m 

Further ,  p i s  assumed to be equal to 1 gm/c. c .  . Let the di- 
m 

ameter  of the particles be d microns. With these assumptions 

a few calculations of A r  for  different values of diameter d and r 
P 

a r e  made. Propert ies of the atmosphere that a r e  used he re  a r e  

taken from U .  S. Standard Atmosphere, 1962 (7) .  The computed 

values of A r  and XAr a r e  shown in Table I. 

From the table we can establish the validity of linearization. 

It i s  clear  that the smaller particles have to be captured a t  higher 

altitudes than the bigger particles. The theory holds good for 

particles of 1 micron size in the regions of the atmosphere about 

225 km above the earth and thereafter.  Fo r  the larges t  particle 
- - - - - - -  
':: From equations (4 .23)  to ( 4 , 2 5 )  i t  i s  thus seen that the "small  
parame e r"  with respect to which the problem is  linearized i s  5 A K C ~ / ~  and the appropriate length used to make both A and K 
non-%imensional i s  c $ / ~  = rpo( l t ~  ). 



Altitude Scale ht 

d H = l / X  Ar X Ar A r  
z *P 

- 
(microns) (km) (km) (h) (km) 

"P 

TABLE I 

Estimation of the range of the validity of the linearization process 
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of 1000 micron size the theory i s  good for al l  regions above 100 km. 

Thus the linearized theory holds good for a l l  particles in the region 

of the atmosphere above 200-225 kms from the earth 's  surface. 

As mentioned ear l ier  in this section a se r ies  solution for  A r  

valid for 0 6 t < 1 i s  obtained. The derivation of this solution i s  

given in Appendix A. 

2, Solutions fo r  hE 

Here  two solutions, one valid for values of t close to 1 and 

another asymptotic solution valid approximately over the whole range 

of € from zero to one, a r e  derived. 

The appropriate differential equation governing the perturba- 

tion A E  of the specific total energy of the particle i s  given by equa- 

tion (3.34) a s  

and the initial condition corresponding to the unperturbed Keplerian 

-1 1 orbit i s  A E  = 0 a t  t = 0. At t = 0, el = 0 for t -C 1 andBl=cos  - 
€ 

for t > 1. 

By integrating the above equation once and using the above 

initial condition, the solution for LG i s  obtained a s  

C) 

Substituting for B o ,  vo and a from the relations (4, 1 I.), 
0 

(4.13) and (4. P9), equation (4.47) i s  written in the form 



This expression for AE i s  valid for  al l  values of eccentricity. 

Equation (4.48 ) i s  evaluated f i r s t  for  8 = IT and then the 
f 

resulting solution i s  doubled to obtain the total loss  AE in specific T 

energy for the f i r s t  pass around the earth. Thus, 

1 

By using the transformation given in equation (4.27), the above 

equation i s  written in t e rms  of the new variable s a s  

Fo r  convenience this i s  written in the form 

AET = - 2KPeP F (p, 6) (4.51) 

where F i s  defined by equation (4,36). 

The total energy loss  BET i s  now evaluated for values of E 

close to 1. When E i s  near 1, 6 = E- l / l f ~  has a value close to zero,  

i. e ,  , 6 << 1. Consequently, we expand the integrand near 6 = 0 and 

integrate t e rm  by term.  This has been car r ied  out in part  1 of this 

section and the solution for F i s  given by equation (4.38). Conse- 

quently we can write the solution for AE for  one complete pass T 

validwhen I € - 1  1 - 0 a s  



where p = Xr 
P O  

This solution for PET i s  correct  up to order O(6) and conse- 

quently gives a good estimation of the specific energy loss  for  one 

complete pass when the eccentricity of the orbit i s  close to 1. 

In order to calculate the lifetime of a particle, a solution 

for the loss  of the specific energy valid over the whole range of 

eccentricities from zero to one is required. As mentioned pre  - 

viously an asymptotic expansion of the integral for  the energy loss  

i s  obtained for  al l  0 < E f 1, In this case  the energy loss  i s  est i-  

mated for one complete orbit,  that i s ,  for  Q f  = Zn.  It is found that 

AE(27r. E) i s  equal to ZAE(T, E ) .  Also, i t  i s  pointed out that €I1 = 0 

for this case,  This says that the upper limit of the integral in 

equation (4.50) i s  exactly equal to 00. Let us now consider the inte- 

gra l  given by (4 ,361 with the upper ictegral  lizit equal to rn. Thzs 

The exponent p appearing in the integral i s  a s  before 

where X i s  the reciprocal of the scale height H and r i s  the distance 
P 

of the closest approach of the particle. 

F o r  the whole range of values of eccentricity considered, 

this exponent p = Xr i s  very large and positive. Then the major 
P 

contribution to the integral comes when the quantity l+s / l -6s  i s  
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close to zero. Consequently we can expand the integrand near 

l i  s / l -6 s  3 O and integrate t e rm by term to obtain the asymptotic 

expansion of the integral given in equation (4.53). 

Now a new variable x i s  defined in the following manner. Let 

Then d x  = d s a n d b l + 6 .  Now 
(1 - 6s) 2 

a t s = O ; x = O  

and 

2€ a t s = m ; x = -  
1 - €  

Solving equation (4= 54) for  s ,  s is obtained a s  

I t s = l *  X l f x  
6 

= -  
b ( l  -I- i ; ~ )  6 1 fli;x 

Substituting these expressions in equation (4,53) for the fumc- 

tion F we obtain 

ZE a n d 6 = -  w h e r e b =  1 - t  6 = -  * - = -  
I t €  ' b 26 

Rewriting this in a more 1+€ ' 



convenient form 

where g(x) ( 1 4 6 ~ )  3/2 1 
1 

( ~ t x ) ~  (1  t-  6 x)f 
b 

As pointed out previously, p i s  la rge  and positive and the 

major  contribution from the integral comes when x i s  nea r  zero. 

Consequently an asymptotic evaluation of this integral i s  possible. 

This i s  done by expanding the expression for  g(x) in (4.58 ) near 

x = 0 in a power s e r i e s ,  and integrating t e rm  by t e rm  using Wat- 
,- 

son's Lemm-a, N e a r  x = O the power s e r i e s  expansions of the 

following functions a r e  

and hence the expansion for  g(x) near x = 0 i s  given by 

where a - 1-8ct3eL 
1=4E(1+E) 
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Under this approximation the integral for the total energy loss AE 

for one complete orbit takes the form 

This i s  evaluated by using Watson's Lemma. Integrating 

term by term from zero to infinity, the asymptotic expansion of the 

integral for  AE(2n, E) i s  obtained in t e r m s  of the powers of l/p a s  

This i s  valid for al l  O <  E 6 1 .  However i t  i s  pointed out that; 

this solution for the perturbation in specific total energy given by 

equation (4.62) i s  not good for values of E very close to zero. This 

expansion breaks down when E = 0. 
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V. MECHANISM F O R  THE CAPTURE OF A 

PARTICLE BY THE EARTH 

Consider a particle to be orbiting around the sun. Let i ts  

velocity relative to the velocity of earth,  which i s  also orbiting 

around the sun, be Vm. V is  also called the hyperbolic excess 
m 

velocity o r  velocity at  infinity with respect to earth,  F o r  simplicity, 

this particle i s  assumed to be travelling in the same direction a s  

the earth. However, the mechanism holds for particles moving in 

both directions. When the particle begins to feel the gravitational 

pull of i ts  big neighbour, the earth,  i ts  t rajectory s tar ts  to get per-  

turbed. Then i t  begins to move along a hyperbolic trajectory with 

respect to earth. If there i s  no dissipating medium near the planet 

of attraction it will merely be deflected by the planet and will move 

back into another trajectory around the sun. If there is  a dissipat- 

ing medium then the particle will lose some of i t s  total energy 

=hence it can ei'e'ner be captured by the earth o r  escape back to 

infinity depending on the energy loss. Thus in a dissipating medium 

around a planet a mechanism for capture can be established by 

studying the loss in the total energy of the particle during the f i r s t  

pass around the earth. - 

Let the initial energy of the incoming particle before encount- 

ering the dissipating medium be E per unit mass .  Other perturbing 
0 

forces due to sun, moon, etc. a r e  neglected a s  they a r e  small 

compared to the drag effect of the medium. The particle i s  t ravel-  

ling along a hyperbolic trajectory with the earth a s  one focus, Its 

eccentricity then i s  E > 1. 
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The total specific energy of a n  orbiting particle in general  

i s  given by 

where a i s  the semi-major  axis of the orbit ,  F o r  a hyperbolic 

t rajectory,  according to Kepler' s planetary laws, "a" i s  negative 

and hence the energy of the system i s  positive. 

Now from the propert ies  of a Keplerian orbi t  the relation 

(4.10) for  the radial  distance r,written a s  a function of C p, 8 and 
0' 

E can be expressed a s  a function of a ,  6 and E .  Thus 

when O 0  = n, we obtain the relation between the perigee distance r 
p 9  

the semi-major  axis  a and the eccentricity E a s  

Since a i s  negative for  a hyperbolic t rajectory with E > 1,  

it i s  noted that r i s  always positive. 
P 

Eliminating a between equations (5.3) and (5. l ) ,  the specific 

total energy of the orbi t  i s  written in the form - 

As the a i r  density decreases  rapidly with increasing altitude 

above the ea r th ,  part icles  with highly eccentric orbi ts  a r e  most  

affected by drag within a small  section of the orbi ts  when they a r e  

closest  to the ear th ,  i , e , ,  most  of the energy loss  takes place near  



-39-  

the perigee point. Because of this drag effect the total energy of 

the particle i s  reduced after  the f i r s t  pass around the perigee, 

Suppose this new total energy i s  still positive, Then i t s  eccentricity 

i s  greater  than 1. Hence the particle escapes hack to infinity. If, 

on the other hand, the energy loss i s  such that the new total energy 

becomes negative, then Kepler 's laws say the particle has a bounded 

orbit and hence i s  captured by the earth, Therefore the condition 

for capture of the particle i s  that its total energy af ter  the f i r s t  

complete pass around the perigee must be negative. 

Now le t  E be the total energy of the particle after  the f i r s t  

pass around the earth. Then the criterion for capture to occur i s  

In order  to evaluate this condition equations (4.52) o r  (4.62) 

can be used. However i t  i s  found that it i s  more  convenient to use 

the result of eqiiation (4.52 ). Thus recalling equation (4,52 j ,  we 

have 

Substituting for  6 from equation (4.28), the above expression for 

AET takes the form 

As pointed out previously, the argument p appearing in the 

Bessel functions KO and K1 i s  very  large and hence the asymptotic 

expansions for K ~ ( ~ / Z )  and K (p/2) a r e  used to simplify the expres - 
sion for the total energy loss  A E T  in equation (5.6). The asymptotic 
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expansions of K ~ ( ~ / Z )  and K ~ ( ~ / Z )  a r e  given by equations (4.44) in 

section 4. Only t e r m s  of O(l /p)  a r e  used. Consequently, the sub- 

stitution of equations (4.44) in equation (5.6) yields the following 

simple expression for  AE T o  

Substituting equation (5.7) fo r  A E  and equation (5.4) for  E T 0 

in equation (5.5) the cr i te r ion  for  the capture of a particle i s  written 

with p = 'Ar = r /H 
P P 

Finally, solving this for  € a s  a function of r and K ,  the 
P 

cri ter ion for  the capture of a part icle  i s  obtained a s  

As al l  part icles  orbiting with E < 1 have bound orbi ts  around 

the earth,  the above condition i s  rewritten a s  

This  says that a part icle  having a m a s s  m will be captured 

by the earth a t  a given perigee distance r i f  the value of i t s  initial 
P 

eccentricity E. satisfies the inequality given by equation (5.9). 



-41 - 
It i s  more  convenient to use the relative velocity V of the 

00 

particle instead of the eccentricity 6 in studying the capture mech- 

anism. Now the energy integral for a Keplerian motion gives the 

following relation 

Since Vm is  defined a s  the velocity of the particle a t  infinity 

with respect to the earth,  V can be obtained by letting r *a in 
00 

equation (5,lO). Thus 

Then by using equation (5.4) the desired relation between V and E 
00 

for a given r i s  obtained from (5. 11) a s  
P 

1 - 
But !P/r l 2  i s  defined a s  the circular  velocity at the perigee alti- 

P 
tude. 

Then solving for E 

Now subtracting 1 from the expression in equation (5-9)  we obtain 



Finally substituting equation (5. 14) in (5. 15), the required 

capture cr i ter ion in t e rms  of the velocity a t  infinity is written a s  

This relation says that a particle having a given mass  m will he 

captured by the earth a t  a given perigee distance r if V of the 
P ' 00 

particle satisfies the capture condition given by (5.16) for these 

values of r and m. Then the particle will have a bound elliptic 
P 

orbit  around the earth. 
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VI. LIFETIME CALCULATIONS 

After the particle has been captured by the earth,  i t  becomes 

a natural satellite moving along a very  highly eccentric orbit. As 

mentioned previously, the particle suffers an energy loss due to 

aerodynamic drag a s  i t  passes through the perigee region of the 

orbit. This causes the particles to undergo a drop in height at  i t s  

next apogee, Due to the exponential nature of the density distribu- 

tion in the atmosphere, the particle suffers very little o r  zero drag 

near the apogee region and consequently there i s  negligible loss in 

height a t  the next perigee point. Thus it  can be said that the particle 

suffers a continuous apogee loss  while suffering zero o r  very little 

perigee loss ,  i. e. , perigee location remains almost constant a s  i t  

orbits around the earth, 

This explanation holds good for a l l  orbits that a r e  not circu- 

lar ;  however for near circular  orbits this breaks down and the 

estimation of lifetime becomes inaccurate according to the theory, 

But by this time the lifetime i s  almost zero. Hence the e r r o r  in 

the estimation of lifetime is  negligible. Thus, the highly eccentric 

orbit of the particle decays into a near circular  orbit after a certain 

number of orbits with negligible loss  in r . Then the orbital life- 
P 

time i s  defined a s  the number No of orbits required to circularise 

a given eccentric orbit into an orbit with E N O e  The orbital lifetime 

N i s  derived in the following way, 
0 

The perturbation AE per one revolution can be expressed in 

t e rms  of the perturbation Aa of the semi-major axis a. The relation 

between a and E given in equation (5-1)  i s  differentiated once and 
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written in the difference form a s  

Aa 
2 a 

from which Aa i s  given by 

Substituting for  AE from equation (4.62) the change in ha for  one 

revolution i s  obtained from (6.2) a s  

This  relation is  valid over most  of the range of € except 

near E - 0. Now the value of Aa given in equation (6,3) i s  for one 

revolution, i, e. , fo r  hn = 1, Consequently equation (6.3) can be 

written a s  

Now using total differentials for  &/An the above expression 

i s  rewritten a s  

Therefore 

Finally expanding the denominator for  large  p, this i s  

written in the following form 



We define the number of orbits a particle makes in dropping 

from a .  to a a s  N given by 
1 f 

N = - f i  dn 

af 

where a .  and af a r e  the initial and final values of a. Consequently 
1 

integration of equation (6.5) yields 

Here p and K appear a s  parameters.  Before the orbital life i s  

determined from the above integral, the integrand has to be ex-  

pressed in t e rms  of the semi-major axis a ,  i ,e . ,  the eccentricity 

E: has to be expressed explicitly in teems of a. 

The relation between a and E a s  given by (5.3) i s  

Solving for E 

a - r  
E = a 

Hence 

and 



Substituting these expressions in equation (6.7) the integral 

for  N takes the form 

I - 
a 2 
i 

2 
(a - r  ) 3r  -2a(2a-r  ) 

N = L ( ~ ) ~ J  2K ZIT ~ - E S T ~  a / I - I - - = =  1 (6 .10~~)  
(2a-r  ) 8p ( a - r  ) 2a-r ) 

af P 
P P 

This can be integrated if the following transformation i s  used. Let  

where t+ i s  the new variable. r i s  assumed constant in the analysis 
P 

a s  mentioned ea r l i e r ,  Thus 

2 
da = r tan+ sec  +d+ 

P 

Using this transformation the integral for  N in equation 

(6, lob) i s  t ransformed into the following fo rm 



This expression i s  in a more  convenient form for  integration. 

This  i s  evaluated by using Dwight's integral tables,  a s  

1 

N = -  ($1' [JS tanh -' * - sin$] 
ZKr 

P fi 

But sin+ is given by (6.11) a s  

Finally af ter  substituting equation (6.14) in (6.13) the total number 

of orbi ts  a particle makes in a given interval %to  a i s  written a s  
, f 

1 

N = -  (&)'](I. - -) 3 [tanh - 1 qi - tanh -1 qf] 
Kr 

P 8~ 

a - r  
where q Z  - -A 

2a-r  
P 

By using iquations (6.8) and (6.9a) q i s  written a s  

a - r  
2- P - & q =- - - 

Za-r I t  & 
P 

By substituting fo r  q from (6.16) in (6.15), N i s  expressed explicitly 

a s  a function of E . Thus 



where subscripts i and f r e fe r  to initial and final values, 

This  i s  the number of orbi ts  a particle makes in decaying 

from an orbi t  of eccentricity E to a final orbi t  of eccentricity E f .  
i 

As mentioned previously, the orbital l ifetime No i s  defined a s  the 

number of orbi ts  the particle makes while i t s  eccentricity decays 

to zero ,  i. e. , No = N(ef = 0). 

By setting ef  = 0 in equation (6.17) the orbital lifetime i s  

obtained a s  

It has  already been noted in  pa r t  1 of section IV that the use-  

fulness of the solution for the energy perturbation A E  i s  not good 

when & has  a value very  close to zero. The same  inaccuracy i s  

car r ied  over into the derivation of N (Auxiliary calculations 
0 

near & "I: 0 showed the e r r o r  in the estimation of N to be about 157'0.) 
0 

Since we a r e  looking for  a few o rde r s  of magnitude estimation of 

the flux concentration this e r r o r  i s  considered to be insignificant, 

Finally, when the part icles  a r e  captured their eccentricities 
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a r e  very  close to one. Therefore we will se t  e i  = 1 in the estimation 

of the total orbital lifetime a s  i t  i s  counted from the time the part i-  

cles a r e  captured. This only causes an insignificant e r r o r  in N . 
0 

Hence the total orbital lifetime i s  
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VII. CONSTRUCTION OF STATISTICAL MODEL 

OF MICROMETEORITE DISTRIBUTION 

So f a r  in this analysis,  the motion of a single particle in a 

dissipating medium has been considered where f i e  particle i s  a s -  

sumed to be obeying Kepler 's planetary laws a t  every instant. A 

theory for  the capture mechanism and the resulting orbital lifetime 

has been developed from the solutions for the perturbation AE of 

the specific total energy of the particle. 

Now a statistical model of the particle flux distribution in 

the interplanetary space i s  developed. h this model an observer 

located on a sphere of radius r > R counts the number of particles ob 

crossing this sphere from both sides. 

Let us consider a swarm of particles orbiting around the 

sun at ea r th ' s  distance f rom the sun. These particles a r e  assumed 

to have a mass  distribution a s  well a s  a velocity distribution. 

Since these particles a r e  orbiting a t  the ear th ' s  distance, an ob- 

server  on the earth will see particles moving al l  around him, With 

such a picture in mind, le t  us observe the behavior of a single par-  

ticle orbiting around the sun. As long a s  this particle does not feel 

the gravitational attraction of the earth i ts  orbit will be unperturbed. 

Perturbations due to other planets, etc. ,  a r e  neglected here. When 

the particle feels the gravitational pull of the earth,  i ts  orbit i s  

perturbed and i t s  motion becomes hyperbolic with respect to the 

earth, Let  us attach a plane perpendicular to the direction of motion 

of this particle and position this plane a t  the place where the parti- 

cle begins to feel  the gravitational pull of the earth,  It will be 
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located a t  an  infinite distance from the earth. Also it serves a s  a 

reference plane that divides the two body motion, i. e. , sun-particle 

motion, from the three body motion, i. e. , sun-particle -earth 

motion, Once the particle pierces this plane, it i s  dominated by 

the ear th ' s  gravitational pull. 

It i s  clear  from this description of the particle motion that 

there exists such planes for  all the different particles orbiting a t  

ea r th ' s  distance from the sun. The implication he re  is  that every 

particle has  i t s  own plane a t  infinite distance from the earth which 

separates i t  from the region in which the gravitational pull of the 

earth i s  present. 

However for thz constrilctioii of the pre  sexit statistical model, 

these various planes a r e  superimposed upon each other to obtain a 

single representative plane a t  an infinite distance from the earth. 

This superposition simplifies the construction of the model. P a r -  

ticles crossing this plane feel  the presence of the earth,  otherwise 

their orbits a r e  unperturbed by the earth,  This i s  shown in figure 2. 

This plane i s  designated the "fj-plane." Distance along 

this plane i s  measured in t e rms  of fj .  After the particles pierce 

this plane they will move along hyperbolic trajectories with respect 

to earth. 

Let the relative velocity of the particles with respect  to 

earth be Vm for all  the particles beyond the $-plane. We will 

now t race  the path of a particle after i t  has  pierced the $-plane a t  

a given f j .  The particle comes under the gravitational pull of the 

earth and hence approaches the earth along a hyperbolic trajectory. 



Figure 2. Diagram showing "'f-plane" 
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The distance of closest approach r to the earth depends on the 
P 

initial angular momentum and velocity Vw. Now from the con- 

stancy of the angular momentum we have 

where V i s  the velocity of the particle a t  perigee. And the energy 
P 

integral gives the relation 

which for r = r gives 
P 

Eliminating V between ( 7 . 3 )  and ( 7 , 2 ) ,  and solving for 6 
P 

gives 

This distance f i s  called the impact parameter ,  Equation 

(7.4) says that all  particles having impact parameters l e s s  than o r  

equal to 5 fo r  a given Vm will intersect the sphere of radius r 
P * 

Now let  M(m) be the number of particles with mass  between 

m and m + dm in the interplanetary space streaming through a unit 

a r ea  per unit time. Then M(m)dm represents the differential flux 

of micrometeorites with masses  between rn and rnfdm. 

F rom zodiacal light measurements and other observations 

a general model fo r  the interplanetary particle flux distribution 
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has  been established by various investigators in this field. This i s  

represented in the following form 

where C and y a r e  constants. These constants have not been 1 

clearly established. Various authors have suggested different 

values for C and y. 

However, it has been established that M increases with 

decreasing mass  of the particle, It i s  clear  that the exponent y 

must  have a value greater  than 1 in order that the cumulative mass  

distribution i s  finite. This differential distribution function M(m) 

i s  independent of the radial. distance r and also the impact parame- 

t e r  5. It i s  a measure of the constant flux distribution fa r  away 

in the interplanetary space, 

Now consider the following picture of the model shown in 

figure 3.  The 5-plane is  divided into annular regions a s  shown. 

Part icles a r e  assumed to be streaming through these annular zones. 

The sizes of these zones a r e  given by 5 R *  ED'  E G  and 5. Fo r  a 

given V 
00' 

ER i s  determined by the radius of the earth,  E D  i s  cal- 

culated from the perigee radius corresponding to the capture of a 

particle of a given mass  m and 5 i s  finally determined by the G 

radius of the observer sphere. c corresponds to impact parame- 

t e r s  of particles that a r e  greater  than 4; o r  ED depending on the 

radius of the observer sphere. Part icles with 5 > cG > ED o r  

5 > ED > cG a r e  not seen by the observer and hence a r e  not counted. 

Now ER i s  determined by substituting r = R in equation (7.4). Thus 
P 



Figure 3. Diagram of counting zones for 5 
shown in c ros s  section G' 



cR corresponds to that impact parameter  where particles 

with 6 .-1 cR impact directly on the earth,  

Now an observer sitting on the sphere of radius rob counts 
I 

the particle flux crossing the sphere a s  described below. 

All particles having impact parameters 5 -( E R  collide with 

the earth directly and a r e  destroyed. Hence the observer sees  

these particles only once a s  they pass  by him to collide with the 

earth. Therefore the tptal flux he counts for particles with 6 6 g R  

i s  given by 

Here rob i s  the radius of the observer sphere. 

Thus the quantity in the square brackets represents the 

fraction of the particles that s tr ike the earth for  a given V We 
N ' ooa 

3 N (V ) which represents therefore define a flux multiplier - 
M R oo 

the fraction he counts. 

ED i s  the impact parameter  that corresponds to a given 

perigee distance r a t  which a particle of mass  m and velocity Voo 
P 

i s  captured, As explained before capture i s  the result  of energy 

loss  due to the presence of the aerodynamic drag. Hence ED i s  

determined from the cri terion for capture given in section 5. This 

criterion given in equation (5.16) estimates the maximum perigee 

distance r a t  which an  incoming particle of mass  m and velocity 
P 
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V i s  captured by the ear th .  Therefore  5 i s  calculated by choosing 
CO D 

a given Vw and m and calculating the corresponding perigee distance 

r ( m ,  V ) f rom equation (5. 16) and then substituting this  r and Vw 
P w P 

in  equation (7.4). Consequently, f o r  a given s ized  par t ic le  cD takes  

the value 

All par t ic les  with th is  m a s s  m and velocity Vm will be cap-  

tu red  by the ear th  a s  na tura l  satel l i tes  of the ear th  if the i r  impact  

p a r a m e t e r s  have values between 5 < 5 -C g D e  R' 

Now these  captured par t ic les  have cer ta in  orbi ta l  l i fe t imes 

N a s  der ived in  section 6. This  number N v a r i e s  inversely with 
0 0 

the perigee distance and density at per igee as observed f rom equa- 

tion (6. 19). Since the  density p i nc reases  exponentially with 
P 

decreasing r , the l ifetime N dec reases  with decreasing r But 
P 0 P * 

r i s  a function of 6 a s  shown in equation (7.4) varying direct ly  with 
P 

Hence, fo r  a part ic le  with a n  impact pa ramete r  { c lose  to 5 R '  

N i s  v e r y  sma l l  and f o r  a par t ic le  with 5 nea r  gD, N is la rge .  
0 0 

Therefore  it i s  observed that No i s  a function of { f o r  a captured 

part ic le .  

Consider one such captured part ic le .  I ts  impact  parameter  

i s  eR < 5 < ED. Then our  observer  sitting on the obse rve r  sphere  

of radius  r counts the par t ic le  twice pe r  one orb i t  a s  it goes into 
ob 

the sphere  on one s ide and comes  out on the other  side. But the 

par t ic le  makes  No({) orb i t s .  Therefore the total  number of t imes  



that the observer counts this particle i s  2N0(5). Then the total 

flux for  al l  particles i s  the integral of No(5) over al l  5 .  Therefore 

the total flux designated NA for ER 6 6 4 E D  i s  
t 

The limits of integration 5 and pD a r e  calculated from R 

equations (7.6) and (7.8) for  each Vm. In t e rms  of the flux multi- 

plier,  this i s  written a s  

Now E G  i s  directly related to r 
ob" It can either be greater  

than tD o r  l e s s  than gD depending on the value of r of the observer ob 

sphere. Thus we have two possible cases.  

Case 1: cG > cD 
In this case  the observer counts some more  particles a s  the 

observer radius r i s  bigger than capture radius r Part icles ob P ' 

with impact parameters  ED S 5 G E G  a r e  perturbed by the earth and 

hence pass around the earth along a hyperbolic trajectory. Then 

the observer sees  these particles passing through the sphere on 

one side and going out to infinity on the other side, Thus he counts 

these particles twice. Therefore the total flux designated N f  for  
G 

all  particles with eD 4 6 S gG i s  given by 
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where 

In t e rms  of the flux multiplier N it  i s  G ' 

All the other particles with 5 > 5 a r e  not counted in the G 

analysis a s  the observer does not see  them piercing the observer 

sphere. Consequently, the flux of a l l  particles with a given V 
a3 

and m integrated over all  5 when cG > ED i s  

o r  in terms of the flux multiplier N this i s  1 

Case 2: 5, < cD 
In this case the observer sphere radius r i s  smaller  than ob 

the drag capture radius r (m,V ) The observer will not see the 
P a3 

captured particles lying in the annular zone for 5 < 5 < ED t i l l  their G 

perigee distance reduces to a value smaller  than the observer 

radius r obO This will occur only after  the particles have achieved 

a near circular  orbit. But in the present analysis it  i s  assumed 

that the perigee position remains approximately constant, Conse- 

quently the observer will not count the particles that a r e  captured 
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outside of CG. However, calculations have shown that this affects 

only the smaller sized particles. The implication here  i s  that the 

basic model i s  unaltered. 

Consequently Case 1, where E, > C,,, i s  chosen for  compu- 

tation in order to include particles of the smaller 1 micron size is 

the overall picture, 

Now all  the fluxes given by equations (7.7), (7.9) and (7.11) 

a r e  divided by 4.rrr Consequently, they give the values of the ob" 

flux averaged over the observer sphere. The flux multiplier given 

by equation (7.14) estimates the average fraction of particles, 

with a given initial velocity Vm, crossing an arbitrari ly oriented 

counter of unit a rea  located on the observer sphere of radius r ob 

in unit time. 

Equation (7. 14) representing the total spatial flux multiplier 

N1 i s  a function of Vm and m. In order to obtain the total integrated 

flux d i s t r ibu t i~n ,  N has to be integrated over both V and m e  1 00 

However, in this paper only the velocity integration i s  performed, 

thereby giving a differential flux distribution of masses  between 

m a n d m  + dm. 
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VIII. COMPUTATION OF MICROMETEORITE DISTRIBUTIONS 

The differential flux distribution is  computed by integrating 

the statistical model developed in the l as t  section f i r s t  over the 

impact parameter  6 and then over the velocity V 
w 

1. Integration over the Impact Parameter  5 

Now from equation (7, 14) we have for the flux multiplier 

with 

and 

Both ER and E, a r e  directly determined once Vw i s  fixed. But the G 

estimation of ED i s  a little complicated. F i r s t  we have to determine 

the maximum capture perigee distance r a t  which a particle with a 
P 

given V and m is  captured, This i s  done by using the capture c r i -  w 

terion given by relation (5.16). Then this r together with the 
P 

velocity Vm i s  used to determine ED. Once ED i s  calculated for  a 

given V then the f i r s t  two t e rms  on the right hand side of equation 
OD' 

(8.1) a r e  determined. However, the evaluation of the integral in the 



las t  t e rm  of the right hand side i s  still complicated. 

Let us now define the integral in equation (8. 1) a s  
e 

Now equation (6,19) i s  rewritten in  the form 

Substitution for  No f rom (8.3) in (8.2) yields 

In order  to evaluate T the integrand in (8.4) has to be 1 

expressed explicitly a s  a function of 5. The relation between 

and r i s  given by (7.4). Solving for  r we get 
P P 

Since the density p and the scale height H a r e  implicit functions of 
P 

r they cannot be expressed a s  explicit functions of 5. However 
P ' 

both p and H a r e  tabulated for a wide range of values of r . Con- 
P P 

sequently we have turned to numerical integration for the evaluation 

of the function T Sirnpson's rule i s  used in the numerical inte- 

gration. 

It i s  observed that the computation becomes very involved 

if the integral in equation (8.4) is numerically integrated in t e rms  
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of the impact parameter 6. This i s  because the tabulated values of 

"P 
and H a r e  expressed in t e rms  of r a t  some convenient intervals. 

P 
Then for every value 5 ,  r a s  calculated from (8.5) can be different 

P 
f r o m  those for which p and H a r e  tabulated. This leads to interpo - 

P 
lation. This i s  easily overcome by using r a s  the variable of inte- 

P 
grat ion instead of 5. Thus rewriting equation (7.4) 

Differentiation of equation (8-6) yields the necessary relation be- 

tween the differentials de and dr  Thus 
Po 

2545 = 2r d r  + % dr  
P P TI. P 

Therefore 

Limits of integration a r e  easily determined. When 

5 - 5 , ;  r = R  
P 

and 

5 = E D  ; r = r ( m , V  ) at  capture. 
P P CX, 

Substitution of ( 8 . 7 )  and (8,8) in (8.4) yields the following integral 

for  T I  
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This is simplified further if r is  replaced by the variable z 
P 

given by the following relation 

where R is  the ear th ' s  radius. 

Here z i s  the height above the earth 's  surface a t  which the perigee 

point of the particle i s  located. 

- 
When r = R; z = 0 and r = r (m ,  V ) at  capture; z = z . 

P PC CO C 

Then 

and hence the flux multiplier over all  i s  given by 

Equation (8. 11) i s  f i r s t  integrated numerically according to 

Simpson's Rule and then the flux multiplier i s  evaluated from (8.12). 

The Simpson's Rule i s  given by 



and xn = xo t nAx and n i s  even, with 

f = ( X  ; Ilx = x -x = x2 - - 
n 1 0  X1 - - - -  

The integrand in equation (8.11) i s  a smooth function. Therefore n 

i s  chosen to be 10 for  all  integrations. The evaluation of N1 i s  a s  

follows * 

F i r s t  a particle of given size and mass  i s  chosen. Then for 

this particle a capture perigee distance r i s  chosen. Using the cap- 
P 

ture criterion given in section 5 the initial V necessary for this 
00 

particle to be captured a t  this r i s  computed. With these values of 
P 

m ,  V and r the integral given in (8.11) i s  evaluated numerically. 
00 P 

All values of p and H a r e  taken from U. S, Standard Atmosphere 
P 

1962 (7). Then N1 i s  computed from (8.12). 

Again another r i s  chosen for the same particle, And a new 
P 

V is  computed from the capture criterion. Another value of N i s  
CX, 1 

computed for this new V and so on, Thus evaluations of the flux 
00 

distribution over a wide range of values of the velocity V from zero 
00 

to about 25 km/sec a r e  carr ied  out. 

Also this computation scheme has  been used.to calculate the 

flux for four different values of the radius of the observer sphere 

ramging from 7500 km to 25,000 km. 

In all  the computations the particles a r e  assumed to be spher- 

ical in shape and their material  density p to be 1 gm/c, c. a s  before, m 

A sample calculation of the flux multiplier N for a particle, 1 
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10 microns in diameter ,  i s  shown below. Now 

for a spherical  particle,  Here p is the density of the particle and m 

d i s  the diameter.  The value of the drag coefficient CD, a s  men- 

tioned previously, i s  ve ry  nearly equal to 2. Consequently, it i s  

taken a s  2 in the computations. Then 

-4  (km) 
2 

A 1 = 1 . 5 x 1 0  - 
kg 

for our tes t  particle.  

Now the capture perigee i s  chosen to be z = 700 km. Hence c 

r = R t zc = 6378 t 700 = 7078 km. The radius of the earth i s  taken 
P 

-4  3 a s R r 6 3 7 8 k m .  A t th i s a l t i t ude  p = 1 . 5 3 7 ~  10 k g m / ( k m )  and 
P 

H = 97.435 km. Now 

Hence 

r p = g =  1 

72,6433 and pZ = 8.5231. 

Substituting a l l  these values in (5. 16), the velocity Vm necessary 

for the capture of the particle i s  calculated to  be 



This says that a spherical particle 10 microns in diameter 

and 1 gm/c. c. density orbiting around the sun with relative velocity 

V = 0,1234 krn/sec will be captured by the earth a s  a natural satel- w 

lite of the earth when i t s  perigee distance i s  l e s s  than o r  equal to 

700 km above the earth surface. 

Then with these values of K ,  Vw and zc ,  the flux of particles 

originating from the capture mechanism is  calculated from the inte- 

g ra l  for T given by equation (8.1 1). 1 

The following Table 11 illustrates this integration. Using 

Simpson's Rule of integration, 

Therefore 

And 

The observer sphere radius i s  chosen to be r = 7500 krn for this ob 

test  case. 



TABLE I1 

Sample calculation for flux multiplier NI 



From (8. 12) the total flux of particles with velocities V = 0.1234 
a3 

km/sec is  cdculated to be 

o r  the flux multiplier 
1 

Similar calculations for this 10 microns particle for various 

capture perigee distances a r e  carr ied  out. Calculations a r e  also 

made for  three other particle sizes with diameters equal to 1 mi-  

cron, 100 microns and 1000 microns and the four different observer 

sphere radii mentioned previously. The results of these computa- 

tions a r e  plotted in figures 5-8 in t e rms  of the flux multiplier N 
1 

and V ~ i i  a ?=g =?=g plot. These curves show that the f l l ~ ~  multiplier 
CX) 

decreases monotonically with increasing V . It i s  observed that 
a3 

-4 this number goes to infinity like V a s  Vm + 0. 
CO 

This can be ex- 

plained in the following manner. 

From the capture mechanism in section 5, the relation 

between Va3 and r for  a given particle i s  written in the form 
P 

with K = A p  =- I p 2m 'p 
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F o r  l a r g e  r this  is wri t ten a s  
P 

A s  r grows v e r y  l a r g e  p 4 0  exponentially, Consequently 
P P 

2 
Thus the density p behaves l ike Vw as p + 0.  

P P 
Le t  us  now examine the function T ,  defined by equation (8.11) 

I 

as V&, + 0. F o r  v e r y  l a rge  r this  can  be wr i t ten  a s  
P 

Then a s  V + O this  reduces  to w 

Substitution f o r  the density f r o m  (8.16) in (8.17) yields the following 

expression of T a s  Vw * 0 ,  i. e e  , 1 
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Hence 

Therefore the singularity in the flux concentration a r i s e s  

from the fact that density p behaves like V: a s  p - 0 .  This in 
P P 

turn gives r i s e  to the four zeros in V observed in the figures. 
00 

2 .  Integration over Velocity Distribution 

It i s  observed that the interplanetary part icles have a dis t r i -  

bution of velocities Vm. Consequently the computation of the total 

flux of particles must  take this velocity distribution into considera- 

tion. Hence we define the total flux over the velocities a s  N& 

N; = M J  N; cp(VCX)) dV CX) 

where NF i s  the flux multiplier and p(V,) represents the velocity 

distribution in the interplanetary space. Henceforth NF will be 

studied in al l  the analysis. 

Now the form of the distribution function v(V,) i s  not known. 

However a simple model for the distribution function, based on 

physical explanations consistent with the observed behaviour of par-  

ticles, i s  assumed. 

Let  us now consider a particle orbiting around the sun along 

some Keplerian trajectory in the same plane a s  the ear th ' s  orbital 
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plane. This i s  shown in figure 4, 

Now from Kepler 's planetary laws objects with the same en- 

ergy and orbital elements cannot exist a s  separate orbiting particles 

in the solar system. F o r  only such objects the relative velocity Vm 

between them i s  zero. Then this says that, a t  the ea r th ' s  distance 

from the sun, particles with relative velocity V = 0 with respect 
00 

to the earth cannot exist in the solar system. All such particles 

will have been captured by the earth. Consequently it  is concluded 

that the velocity distribution defined by p(V,) must  go to zero  a s  

V goes to zero. Hence 
CX) 

It i s  also known from the observed meteor velocities that 

meteors with very large V a r e  very few in the solar system. 
00 

Thus i t  i s  expected that p(Vm) will go to zero a s  V +-me Conse- 
m 

quently it  i s  concluded that 

Using these above -mentioned arguments a simple model for 

the velocity distribution function is  written in the following form: 
3 

where a and p a r e  positive constants. 

This model of the distribution function behaves like the tail  

end of a Gaussian distribution function a s  V + oo and goes to zero 
00 

a s  some power a of V a s  Vm+ 0. It i s  a simple function with two 
00 



Sun 

article 

Figure 4. Schematic showing the orbits of the earth and parptic~es 
around the sun 



parameters a and p. The constants a and p a r e  evaluated in the 

following way. 

In part  1 of this section, it  has been pointed out that the flux 

-4  multiplier N1(Vm,m) has  a singularity of the type V when Vm 
00 

goes to zero. But the observational data from various measurements 

give a finite flux concentration in the vicinity of the earth. Conse- 

quently we require that the value of the exponent a, in equation (8 .22)  

be greater  than 3 in o rder  that the integral (8. 19) be finite. 

Qualitative argument shows that an appropriate value for a is  

4. Now the orbit of a particle in space i s  described completely by the 

following six elements a ,  E ,  i, t ,  w and S2. These elements a r e  the 

semi-major axis ,  the eccentricity, the inclination of the orbital plane, 

the epoch that fixes the position of the particle in i t s  orbit relative to 

some time scale, the orientation of the orbit in i t s  plane and the 

angle of the ascending node measured from the vernal equinox r e -  

spectivet-ePy. However w and $2 correspond to the orientation of the 

orbit in i ts  plane and the orientation of the plane. If now a = "E 

while the other elements have the same values a s  those of the earth,  

then the relative velocity V = 0 .  Again if E = e E  with the other ele- 
00 

ments the same Vm will again be zero. Similarly V will be equal 
00 

to zero when i o r  t of the particle i s  equal to iE o r  tE with the other 

elements the same. When E = e E  with all  other elements being 

the same the concept of o vanishes and similarly for i = iE the 

concept of Q vanishes, Hence w and S2 do not contribute to zeros 

of Vm when the other elements a r e  the same. Thus there a r e  four 

zeros corresponding to V = O whenever a ,  E , i and t agree with 
a3 



those of the earth. From this simple argument, an appropriate value 

for a seems to be 4. Due to the lack of more  detailed knowledge 

about the distribution function a t  this time a i s  chosen to equal 4. 

Thus 
n 

In this form, q?(Va3) is a simple function with a single parame- 

t e r  p. Differentiating 9 with respect  to Vm and setting the derivative 

equal to zero,  gives the value of V, for  which q? has  its maximum. 
max 

This gives V a s  
ax 

v2 - 2 - - 
a3 

max P 

Opik (8), from the study of the minimum size of the spherules 

collected from the sea  beds, has remarked that the geocentric ve- 

locities of the micrometeorites a r e  only slightly larger  than the 

t e r res t r i a l  escape velocity ID fact he concludes that the s,-aller 

particles have velocities between 11.1 and 12.2 km/sec which gives 

an upper limit for Vm a s  5.1 km/sec. This implies that these small 

particles in the solar system have near circular  orbits  with their 

heliocentric velocities differing very little from that of the earth. 

This i s  not unexpected since the Poynting-Robertson effect acts  on 

these small particles with eccentric orbits and circularises their 

orbits, The smaller the particle the more  severe the effect. How- 

ever there i s  a limit to the size which can exist in the solar system. 

This limit i s  obtained by equating the gravitational pull of tame sun 

to the radiation pressure.  This i s  given by Beard (9) a s  



" 0. 600 dl' = - microns 
pm 

with pm in gms/c.c.. 

F o r  our particles this limit i s  about 0,6 microns. It i s  clear 

from this that particles of about 1 micron size have a smaller  popu- 

lation a s  they a r e  being blown away from the sun. Thus it i s  con- 

cluded from the above arguments that @ can have a v d u e  greater  

than o r  equal to 1/3. Therefore 

for  which Vm a t  peak of p(Vm)" 2.5 km/sec. @ = 1/3 cor res -  
max 

ponds to the smallest value that i s  consistent with the conclusions 

reached by Opik and others in this field. Most of the computations 

a r e  made with (3 = 1/3, However, computations for f3 > 1/3 will be 

discussed la ter ,  Now the constant B in equation (8.23) is determined 

by the nor-malization 

The evaluation of this integral yields - 

Finally the distribution function cp(Vm) i s  completely determined a s  



This representation for p ( V  ) i s  used in the integration of 
03 

equation (8. 19) to evaluate the flux multiplier over al l  the velocities. 

Again numerical integration using Simpson's Rule i s  carr ied  out for 

different particle sizes and observer radii. These results  a r e  

plotted on a log-log scale in figure 9 a s  a function of particle size, 

This number NF represents the differential flux multiplier measured 

by an arbitrari ly oriented stationary counter of unit a r ea  in unit 

t ime located on the observer sphere. 

The flux multiplier due to a purely gravitational concentra- 

tion can easily be calculated from equation (7. 14) by letting the mass  

rn'co. Whenmtoo lFD + c R *  Thus 

Substitution for E G  and E R  from (7.12) and (7.6) in (8.28) yields 

7 

Integrating N over the velocity distribution function yields 
1G 

For  p = 1/3, this takes the value 



This i s  the asymptotic value of the flux multiplier N a s  the mass  F 

of the particle goes to infinity. This i s  shown in figure 9. 

All the above-mentioned calculations can be extended for 

larger  particles. However, a calculation of the total flux multiplier 

N for a 1 cm diameter particle shows that for larger  particles F 

NF approaches N very rapidly. FG 



IX. RESULTS AND DISCUSSIONS 

In this work, a theory of atmospheric capture of microme- 

teorites and the resulting orbital lifetimes has been developed. At 

the same time a statistical model of the micrometeorite flux in the 

interplanetary space has been derived. Then this has  been com- 

bined with the capture theory to obtain a consistent picture of the 

flux distribution in the neighborhood of the earth, 

The results  of the computations a r e  plotted in figure 9 ,  In 

this plot the ordinate represents the differential flux multiplier and 

the abscissa represents the mass  of the particle in t e rms  of the 

diameter. This can be done without any difficulty a s  the particles 

have been assumed to be spherical with constant m a s s  density. 

It i s  observed in figure 9 that the computed values of the 

flux multiplier l ie  on a straight line in this range of particle sizes.  

Consequently, the functional relation between the flux multiplier and 

the size of the particle can be expressed in the form 

where d i s  in centimeters,  

Now four of the curves shown in figure 9 correspond to the 

four different values of the observer radius, namely 7500 krn, 

10000 km, 15000 km and 25000 km. These curves show that the 

flux multiplier decreases a s  the observer radius increases,  This 

confirms the reduction of the observed particle concentration a s  the 

observer recedes from the earth, 
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Constants B and k a r e  easily determined from the figure. 
1 

They a r e  given in Table I11 below, 

TABLE 111 

The exponent k in equation (9 ,  1) i s  found to be negative. 

Consequently the flux multiplier increases with decreasing particle 

size o r  mass .  This implies that smaller  sized particles a r e  more  

affected by this mechanism than the l a rger  ones. But it i s  noted 

that the magnitude of k i s  quite small  and it  cannot possibly account 

for the 4 orders  of magnitude difference between the concentration 

near the vicinity of the earth and that in the interplanetary space. 

It i s  felt that the reason for this small  value of the flux multiplier 

is due to the very small  value of 1/3 chosen for the parameter @. 

This smallest value has  been chosen so that it i s  consistent with the 

conclusions reached by Opik and others,  But @ could have larger  

values. Then a larger  value of @ implies that the orbiting particles 

with this value of p have more  circular  orbits than previously a s -  

sumed. Such an assumption of large  @ i s  not very inconsistent. 

Consequently, a value of P = 2 has  been used in the computation of 
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the flux multiplier. This value of 2 for  p corresponds to V = I 
00 

km/sec a t  which rp(V,) has a maximum. The flux multiplier cor -  

responding to p = 2 has been calculated and i s  plotted in figure 9. 

This new calculation shows that the value of the flux multiplier is 

increased by about 20 t imes for  the smaller  particles over that for  

p = 1/3. This leads to the conclusion that the flux multiplier i s  quite 

sensitive to the value of p. Exponent k for  this case  i s  evaluated 

from the curve and i s  found to be increased by about 3 t imes. 

Alexander ( 2 , 3 )  infers that smaller  particles have orbits that a r e  

more  circular  than the larger  ones. This i s  not very unexpected 

a s  the Poynting-Robertson effect i s  more  severe for smaller  parti- 

cles. This says that the smaller  particles have more  circular 

orbits. Then the implication here  i s  that smaller  particles have 

smaller relative velocities than the l a rger  ones which in turn im-  

plies that p i s  larger  for  smaller  particles. This leads to a con- 

clusion that the value crf p may depend =n t h e  rr,ass of &:: par t i c le .  

Then it  i s  not too unreasonable for P to be a s  large a s  10 ,  which 

corresponds to V 
M 

a 0 .  5 km/sec a t  the peak of velocity distr i-  
max 

bution function. A value of 10  for p increases the flux multiplier 

by about 3 orders  of magnitude which then brings it  near the num- 

ber s that Alexander predicted from the Mariner I1 measurements. 

Thus the analysis offers an explanation for  the micrometeorite con- 

centrations near the earth,  when the parameter p has a value of 

about 1 0  that i s  consistent with the above-mentioned discussions, 

However, i t  must be pointed out tihat the velocity distribution has  

been assumed by using consistent physical arguments. 
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Because of the present day technological advances in space 

exploration, the velocity distribution in the interplanetary space can 

be measured. This could be done by sending space probes containing 

microphone detectors through the interplanetary space. These de- 

tectors should be of large dimensions and be capable of detecting 

different s izes of masses  and energies. Then these measurements 

could be used to determine the velocity distribution empirically and 

compare with the assumed velocity distribution mentioned above 

and also provide some data regarding the nature and dependence of 

the parameter p on the mass  of the particle, 
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Figure 5. Flux Multiplier  Nl v s .  Relat ive  Velocity Vm 



Figure  6.  Flux M u l t i p l i e r  Nl vs. R e l a t i v e  Ve loc i ty  Vm 
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APPENDZX A 

DERIVATION OF SERGES SOLUTION FOR A r  FOR 0 6 € < 1 

I t  is found more convenient to use the eccentric anomaly E 

instead of the true anomaly Q in the derivation of the ser ies  solution 

for A r .  The relation between E and B valid for all values of 0 4 E< 1 

is shown in figure A. 

From the geometry of the figure 

and 

r cos !3 = a(€ C ccsE) 

2 + r s i n e  = a(1-E ) sinE 

(A, !a) 

(A. lb)  

2 A where ( 1 - E  ) 2  is the scaling factor between a circle and an ellipse. 

Squaring and adding these two relations, we get 

Now the relation between e and E i s  obtained by eliminating 9: from 

equations (A, 1) and (A, 2) , Thus 



C O S ~  = E + cosE 
I+ ~ c o s E  

and 

do = 
l t ~  cosE 

Using these relations between 6 and E in equation (4,221, the 

solution for the perturbation hr for one orbit,  valid for all values ef 

eccentricity 0 G E < 1,  takes the form 

2n E 1 - 

S 0 S -2 (I+€ cosE)sinEdE (14  cosa) 

0 

After integration by par ts ,  equation (A. 3) takes the form 



Then combining a l l  these three integrals,  we get 

Rear ranging 

The density distribution i s  given by 

Consequently 

where 5 ' ha€ 

Therefore 

where the integrand in equation (A. 5) i s  multiplied and divided by 
1 

(1 -6 c o s ~ ) ~ .  Now it i s  convenient to have the upper limit of 
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integration of equation (A. 7 )  a s  n/2 instead of 2n. Hence rewriting 

the above equation between the l imi ts  zero and n/2, we have 

*SsinE 
The exponential function e can be expanded in t e rms  

of the modified Besse l ' s  function of the f i r s t  kind (the details of this 

expansion a r e  derived in Appendix B. 1 j. Hence the square brackets  

containing the exponential t e r m s  in  equation (A. 8) a r e  written in 

the form 

and 

(A. 9 )  

After the substitution of (A,9) in (A.8), the solution for A r  takes 

the form 



(A. 10) 

Now these integrals a r e  evaluated from the table of integrals given 

on page 115 of reference 10. The results  a r e  derived in t e rms  of 

an infinite se r ies  of the complete elliptic functions of the f i r s t  kind 

K ( E )  of order n. K,(E ) i s  defined a s  n 

(A. 11) 

With this definition of Kn(&), the solution for nr(Zn, t ) given in equa- 

tion (A.10) i s  written in the form 

[(2te)Ko ( e ) - E K ~ ( E ) ]  I* (5)  

+ 2 C ( - 1 ) " ~  (t [ (2 t€) Izn  t i ) + (  1-k~ n 

- C ( - 1 ) " ~ ~ -  l ( t )  [ E I ~ ~ ( G ) ~ ~ ( ~ + E ) I ~ ~ -  1(5)] 
1.03 

- e C ( - l ) n ~ n + l ( ~ ~ ~ Z n ( ~ j  
1 

(A. 12) 

Note that the solution (A. 12) for Ar i s  the perturbation Ara in the 



apogee distance for one complete orbit. The perturbation A r  of the 
P 

perigee distance can be similarly obtained by evaluating the integrals 

from IT to 37r. Then from the known solutions for  A r  and A r  other 
a P 

perturbations such a s  Aa, A€ can be determined. 

The solution f o r  A r a  given by equation (A, 12) holds good for  

al l  values of E between ze ro  and one. However the actual evaluation 

becomes ve ry  cumbersome for la rge  values of E a s  K ( E )  converges n 

very slowly. At E = 1, K = m. It i s  felt  that a solution for  K,(E) n 

near  E equal to 1 would reduce the computational work for large 

values of E . Consequently solutions of K,(E) near  E - 1 a r e  deter-  

mined. 

PT v o w  - - K ( E )  satisfies the following differential equation as a 
n 

function of E . (The details of this derivation a r e  given in Appendix 

B,2 . )  It i s  given by 

2 2 2 2 
E' (1-E )K; t E ( 1 - 3 ~  )Kt - ( E  t 4 n  )Kn = 0 n (A. 13) 

where the p r imes  denote differentiation with respect  to E .  As we 

a r e  interested in the solution of K for  & close to 1, a new indepen- 
n 

dent variable q i s  introduced with the relation 

Then this gives 

(A. 14) 

and 
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Hence in the new variable '1, equation (A. 13) takes the form 

Now by defining a new function W,(q) related to Kx1(c ) by 

2 "  
K n ( d  = (1-'1 ) Wn(q) (A. 16) 

equation (A. 15) i s  further  simplified. Then the function Wn satisfies 

the following differential equation 

2 2  2  
q(1-q )W" + [ l - (3 t4n)q  ] WA - (1tZn )Wn = 0 

'1 
(A. 17) 

Fur ther  simplification i s  made by using a new independent 

variable z given by the relation 

(A, 18) 

This simplification i s  such that the reduced differential equation 

becomes a hypergeometric equation for  which the general  solution 

can be immediately written down. This hypergeometric equation i s  

3 

One of the solutions i s  given by F(  a, b, y;z) where 

(A. 19) 

(A. 2 0 )  

Therefore 



(A. 21) 

and the second solution is given by 

(A. 22) 

where 

Then the required solution for  our problem i s  given by 

Transforming this solution back to q coordinates we get 

where bs = as/2. 

Then the solution for  Kn(e). when E i s  close to 1, i s  

03 

+ B  C (2st2n- l)! P -2n 
12s (A. 24) 

I 2ZS(s!)2 P ( 2 ~ + 2 n -  1) 

Now the constants A and Bn a r e  evaluated by computing the n 

following integral 



a s  E approaches 1.  (The details a r e  given in Appendix B. 3. ) There-  

fore we have 

(A. 25) 

and 

B = ( - p + l  
n 

Substitution of equation (A, 24) together with (A. 25) in the 

solution (A.12) for  A r  reduces the computational work for  large a 

values of the eccentricity near  1. 



APPENDIX B 

Modified Bes se l  Functions 
i5 1  
T(z -;I 

The exponential function e can be expanded in a se r ies  

of Bessel functions (see,  for  example, Watson ( 1 7 ) )  a s  

iq 1 Now put z = e = e i  Using the definition of modified 

Bessel function I (5) = i 'n~n( i5) ,  the above se r ies  expansion i s  n 

written in the form 

Therefore 

+ 2  sin 3p13(5) + 2 c o s 4 p 1 4 - 2 s i n 5 1 5 ( 5 )  
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ip 1 - Now le t  s = -e +, ; = -e ip. With this relation for  z, equa- 

tion (B. l )  yields 

Therefore 

5sinp e = 10(5) + 2 s i np  11(5) - 2 cos 2 p  12(5) 

- 2 s in39 13(5) + 2 cos 4 p  Iq(S)+2 s in  5 p  15(5) 

.t5 s i np  
F rom these two expressions for  e the following re la -  

t ions 

Gsinp + e -%sinp  and e Ssinp - i s i n p  
e - e 

are evaluated. They a r e  

03 

e 5sinp t e-5sinp = 21 (5) t 4 C (- l )ncosznp ~ ~ ~ ( 5 )  
0 1 

and 00 ( B e  4) 
e Ssinp -5sinp - - e - -4 C ( - l )ns in(2n- l )q  12,-1(5) 

1 



These a r e  the relations used in equations (A.9). 

2. Derivation of the Differential Equation Satisfied by K ( E )  n 

Consider the following functions 

and 

1 2 2 -  
where A = (1 - E  s in c p ) 2  

Note that when 9 = n/2; F n ( e  , IT/Z)  E Kn(€) 

Now 

dF n 
2 

sin cp - = dE 
cos 2ncpdy.3 

A 

2 2 2 
But A = I - €  s i n 9  

2 
Solving for s in cp 

2 1 -A 
2 

s in cp = - 
E 

2 

Substituting this in (B. 5) ,  dFn/de i s  written a s  

(B. 5a) 

Let us now consider the derivative of the following function 



2 
E cos2nq 2 2 

4 2 2 
+ E cos2nqsin qcos q 

A 
(cos q - sin q ) +  

a3 
2 2 2 2 4 4  

- - - 2ne sin nqsinqcosq + c o s ~ n ~ ( ~ ~ - Z E  sin q t t  sin q) 
A h3 

2 
- - - 2 n ~  sin2nqsinqcosq cos2nq 2 2 4 4  2 

A + ,T [1-2s s in q+E sin 9-1-k~ ] 

2 where q = 1 - c 2 

Therefore 

Integrating (Be 7a), we get 

And solving for  the integral on the right hand side 

Substituting (B. 7b) in (B. 6) ,  d ~ ~ / d ~  i s  written in the form 



Solving this for  En,  we have 

Now le t  us  evaluate the derivative d ~ ~ / d ~ .  

where equation (B. 5a) i s  used. This i s  written a s  

Solving for Fn, 

(B. 8a) 

As we a r e  interested in the evaluation of K,(E) we set  rp = ~ / 2 .  Con- 

sequently 

and 



Differentiation of equation (B. 9a) once yields 
7 

Eliminating both En and d ~ ~ / d e  in equation (B. 9b) by substituting 

(Be 9a) and (B.10), the governing differential equation for  K i s  ob- n 

tained: 

where - 

This i s  the equation given in (A. 13). 

3. Evaluation of the Constants An and Bn in the Solution of Kn(e) 

Let  us consider the behavior of Kn(€)  near E -1. 

Tr / 2  

2 Let E 2  = 1-13 and assume that q i s  ve ry  small; with this value for  

E'. Kn takes the form 

This  integral blows up a s  q " 0, Therefore this integral will be 



split into two parts  a s  shown 

where a is  very small 

Since q i s  very near zero,  L i s  written a s  1 

cos2nq 
cosy dqo 

0 

TT 
Now put q = - - 8 in L2. Then L2  takes the form 2 

TT 
cosZn(- - 9) 

L2 
2 

2 2 2 o d s i n  e t  'l cos e 

But cos2n($ -8) = cosnncosZn8 

N (-l)n a s  8 + 0 

2 sin 0 8 

2 2 2 2 2  2 2 2  q cos 8 = q -q sin 8 = q -q 8 

and 

(B. 13) 

2 2 2 2 2 
sin 8 t q  cos 8 = E  8 f q  

2 

Therefore 



as * O.this reduces to 

n 2a 
lim L2  = (-1) log - 

rl 
(B. 14) 

Now let  us integrate L 
n' 

1 

But sin(2n-2v -1) (1 - a )  
2 

Tr 
[ (n-V)IT - -1 - (2n-2v -1)a 2 

Tr = sin [2(n-v)-I] - cos (2n-2v -1)a 2 
TT 

-cos(2n-2v -1) - sin(2n-2v -1)a 
2 

Tr TT = cos(2n-2v -l)a[sin(n-v )~rcos  - -cos(n-v )n sin -1 2 2 
Tr Tr 

-sin(2n-2v -l)a[cos(n-v ) ~r cos - + sin(n-v )i-r sin-] 2 2 

= -cos(n-v )IT cos(2n-2v -1)a 



Also 

7F 1 -k sin(- -a) 2 1 t cosa 
TT 

- sina cos (--a) 2 

Cons equently , 

Therefore 

n-1 
2 n 2a - +  t (- l)n log a + (-1) log -. 

L l + L ~  = C ( ~ n - 2 v - I , )  v =o '1 

(B. 15) 

These a r e  the values reached by K,(E) a s  E + 1: that i s ,  the 

constants A and B in A t Bn log? must have these values as E n n n 

q -t 8, Hence 

n-1 

An 4- Bn log? = (-1)" log 4 4- 2 C (-1)"+l 
? =0 (2n-2v -1) 

Therefore 

n-1 
A = (-1)" log 4 c 2 C (-l)"+l 

n v =o 2n-2v -I 

and 

n l t n  B = -(-I) = (-1) 
12 

Let 



with +(O;v ) = 0 

Then 

A = ( - l )" log4 - 29 ( n ; v )  n 

and 

B = ( - I )  l+n 
n 

These a r e  the values of A and B given in (A, 25) which a r e  required n n 

for the solution of K,(E) in (A. 24) for values of E near 1. 


