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ABSTRACT
The Keplerian motion of a single’partiéle“in a dissipating
‘medium, such as air, is analysed and a theory of micrometeorite
capture and resulting orbital lifetime is developed. The equations
of motion are derived for a planar, two-dimensional model, and
all orbital variables are assumed to be perturbed slightly from
their Keplerian values. The equations are then linearized and solved.
Then a statistical model of the interplanetary micrometeorite flux
"is developed in which the distribution of velocities at infinity relative

to the earth and masses of the particles are taken into account.

4 -pVZ
The velocity distribution is taken to be ¢(V_) = BVO;l e %, The

distribution of the masses is taken as a constant number of parti-
cle flux M(m) at infinity., Finally, this statistical model is combined
'with the theory of capture and lifetimeé to furnish a possible éxplana-

tion for the micrometeorité concentration near the earth.
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i. INTRODUCTION

The main sources of'inf'ormation concerning the existence of
irii:erplanétary particles in the vicinity of the earth prior to the advent
of rockets and satellites were: 1) scattering of sunlight by particles
in the space, i.e,, the zodiacal light measurements; 2) influx of
metedrs into the earth's atmosphere; 3) the accretion of fine parti-
cles on the surface of the earth; and 4) the sediments of particles of
extra-terrestrial origin on the ocean beds. These interplafxetary
particles are called micrometeorites (sometimes dust particles) and
are 6n,1y a few microns in size. These micr.ometeorites consist of
either stony or metallic material. The consensus of a majority of
people regarding the origin of these particles is that they are of
cometary origin,

After the coming of the space age, numerous impact meas-
urements of micrometeorites in space from rockets and satellites
have been obtained, and the measurements do confirm the existence
of these tiny particles in the interplanetary space near the earth as
well as far away from the earth. The numerous measurements from
various rockets and space vehicles are very widely scattered, and
there seems to be no proper correlation between them, However, a
definite trend has been established by these measurements, and that
is that the particle concentration in the neighborhood of the earth is
very high and it falls off smoothly to insignificant numbers far away
from the earth in interplanetary space. Whipple (1) has inferred

as early as 1960 by studying the various impact measurements
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that the particle concentration near the earth is about 10 times
that in interplanetary space. More recentiy, Alexander {2) has

concluded from the Mariner II micrometeorite impact measure-
ments that the concentration near the earth is .l04: tirmes that in
space far away from the earth. From the most recent Mariner IV
measurements, Alexander, et al. {3) state again that the new data
from Mariner IV substantiate the conclusion derived from the Mari-
ner iI flux measurements.,

Many physical mechanisms have been offered tc explain this

high concentration of interplanetary particles in the neighborhood of

the earth, Whipple (4) has discuszed a few mechanisms, One of

3

them is the capture of particies from the matter ejected during im-

LzJ *

pacts of large meteorites on the moon. He proposes that scme of

- the particles thrown up have velocities larger than the lunar escape
velocity., Consequently, these particles leave the moon and go into
terrestrial orbits. Then he considers it possible for these orbits

to converge towards the earth and thus enhance the population of
particles near the earth. However, Whipple has not offered any
guantitative basis for this hypothesis. He has also considered other
mechanisme such as gravitational concentration, electrostatic ex-
plosion of frigid particles, etc. These do not appear o account for
the observed high concentrations., Beard {5) had predicted earlier
that the concentration near the earth is abowt 10° times that in outer

space, based on a theoretical model of gravitational capture hetween

sun-earth-particle systems. This again does neot account for the

cbhserved high concentrations. Hibbs (6] has concluded, by studying
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the data of measured impacts of micrometeorites from the satellite
Explorer I, that the particles must be in closed orbits around the
earth. Consequently, he has suggested that these particles were
captured by the earth into closed orbits due to aerodynamic drag
while passing through the upper regions of the earth's atmosphere.
In this paper the supposition that large observed particle
concentrations come from closed orbits around the earth and that
they are captured by the aerodynamic drag of the atmosphere is
considered. Particles captured at certain heights from the surface
of the earth will have very long orbital lifetimes and thereby enhance
the population near the earth. Conseqﬁently, a theoretical model
for this process is set up, and a theory of the atmospheric capture
mechanism and the resulting orbital lifetime for these micrometeor~
ites is developed. This theory is based on the perturbation of a
Keplerian orbit due to the presence of aerodynamic drag. A plane,
two-dimensional problem in the ecliptic plane of the earth is con-
sidered. Here, the atmosphere is assumed to be spherical and
symmetric about the earth and non-rotating. This theory is then
combined with a statistical model of the microymeteorite flﬁx
distribution in the interplanetary space to obtain a complete mech-

anism to account for this high concentration near the earth.
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II. METHOD OF APPROACH

The problem consists of two parts. The first part deals with
the analysis of the orbital motion of a single particle in a dissipating
medium, such as air, to develop a theory for the capture mechanism
and the resulting orbital lifetime. The second part deals with the
construction of a statistical model of the micrometeorite flux dis-
tribution in the interplanetary space, which is then combined with
the first part to obtain the complete picture.

In the absence of a dissipating medium, the trajectory cof a
particle moving under the influence of a central force field is a
Keplerian conic section. The angular momentum and the total energy
of such an orbit are constants. However, when a dissipating medium
is present, the orbit of the particle is not quite Keplerian, and the
angular momentum and the total energy are not constants ény more,
Hence the presence of a dissipating medium, such as air, perturbs
the motion of the particle away from a Keplerian motion. The mag-
nitude of this perturbation is very small, The first part of the
problem investigates the effect of this perturbation on the orbital
parameters based on a Keplerian trajectory. A two-dimensional
planar problem around the earth is considered. The gravitational
field of the earth is taken as that of a point mass at the earth's
center, and the variations in the field due to the non-sphericity of
the earth are neglected. Other minor perturbing forces due to the
sun, moon , and other planets, electromagnetic effects, etc., are

neglected.
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The only major perturbing force considered in this paper is
the aerodynamic resistance due to the atmosphere surrounding the
earth. This resistance decreases very rapidly with increasing dis-
tance from the earth. Since the magnitude of the perturbing force
is quite small, mathematical perturbation techniques can be used to
analyze the problem. The rotations of the earth and the atmosphere
are neglected, It is also assumed that the atmosphere is spherically
symmetric about the earth.

The aerodynamic drag force, D, normally defined in terms

of the dimensionless drag coefficient, CD’ is written as

D:%CDAPVZ (2.1)

where A is the frontal area of the particle, p is the air density, and
V is the velocity of the particle.

The Mach number dependence of CD is neglected. As the
region of interest lies above 50 miles altitude, the Newtonian ap-
proximation for the estimation of CD is used. This approximation
says that the mean free path of the air molecules is much larger
than the characteristic length of the body and that CD is constant
with a value very close to 2. It is convenient to rewrite equation

(2.1) in the form of drag per unit mass. Consequently,

) CDA

) V% = Ko(r)V? (2.2)
Pp

5lo

2m pp

where m is the mass of the particle and pp is some reference
density (in this case, the density at perigee), o(r) is the density

ratic, and K = (CDA/Zm)pp is assumed to be a constant and has the
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dimensions of (length) .

Under the above mentioned assumptions, the equations of
motion of a particle are set up and the appropriate perturbations
are evaluated, |

Then a statistical model of the distribution of the micro-
meteorite flux in the interplanetary space is developed. Here it is
assumed that these particles in space have different masses and
velocities. These velocities are defined in terms of the relative
velocities at infinity with respect to the earth (sometimes called
the hyperbolic excess velocities). It is clear that these velocities
and masses should be considered in estimating the total flux.
Consequently, simple models of the statistical distribution of the
velocities and masses are used. Finally, the theory of captures
and the resulting lifetimes are combined with the statistical model

to obtain the overall integrated flux.

* If the charge effects on the particles are included, the basic phe-
nomenon is affected only to the extent that the value of Cp will be
different from 2. Since K is assumed to be constant, this change

in Cp requires a corresponding change in the size and mass of the
particle, '
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III. ANALYSIS OF THE MOTION OF A SINGLE PARTICLE

IN A DISSIPATING MEDIUM

1., Derivation of the Equations of Motion

Consider a particle of mass m travelling along a Keplerian
trajectory far away from the earth with an eccentricity € > 1, as
shown in Figure 1. Then its trajectory with respect to the earth
is a hyperbola‘whose asymptotes are given by *0 = c:os-1 él-. As
mentioned before, we are considering a planar problem.

Let V be the velocity of the orbiting particle. Using polar

coordinates r and 0, the velocity V is written as

d? >
Poeshuliy i 4+
dt ‘r'r 0

->
1

Do

v = (3.1)

o

where the dots denote differentiation with respect to time and i's
are unit vectors.

Then the acceleration of a particle with unit mass is given by
e 22\ 7 = woy T
= (Y~ r0 )1r+ (r6+ 2t0) ig e (3.2)

As the particle approaches closer to the earth, it begins to
experience the air drag mentioned previously. Then the particle is
acted upon by both the gravitational force and the drag force. From

Figure 1, this force is written as

F = (-mg + D sin @) i - Dcos@ig
where ¢ is the angle between the velocity vector and the 6 direction.
But from the geometry,

sin @ = ~+/V
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Figure 1. Notation showing the motion of the particle along a
hyperbolic orbit with the center E as a focus



and
cos @@ = ré/V .
Therefore, the force equation is rewritten as
> Di = rd -
F——(mg+—v—)lr'D—v—le. (3.3)

Newton's second law, for a particle with constant mass m,

gives the equation of motion as

ﬂ:-f—:-s
dt m

This leads to the following equations of motion along r and 0 direc-

tions, respectively:

¢ _yd2- 5. DE
T ~10" = - peey (3.4)
and
s Dro6 (3.5)

r6+2r9:-mv o

Also, the velocity is given by

Rt L (3.6)

Vi=#"+r
In the limiting case, when the dissipative drag force is zero,
equations (3.4) and (3.5) will be shown to reduce to the Keplerian

case. When the right hand side is zero, equation (3.5) can be writ-

ten as

%— (rzé) =0 =» rzé = constant = C . (3.7)

This shows the constancy of the angular momentum as defined by

the Keplerian motion. Writing r = 1/u, we have

. _ 1 = du _ du
r———‘;—ze—é———cde
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by using (3.7). Similarly, the second derivative of r is written as
2

w_od . o2 2d%
r—Oaé—(r)~— C™u -«—-——-—dez . (3.8)

Substituting (3.8) and (3.7) into (3.4) in the limiting case when
D=0, we get

2 g R

d o
> (3.9)

u
—s tu=
a0°

C

2

where g = (goRZ)/r2 = gOR uz. This is the Kepler equation of motion

which has the general solution of a conic section:

c? 1

g RZ 1—€cos(9—60)
o

(3.10)

Now the equations of motion given by equations (3.4) and
(3.5) are not in av convenient form to analyze the motion. By a few
manipulations, they can be put into a simpler form, as shown be-
low. Differentiation of the expression for the particle velocity given
by equation (3,6) yields

VV = 2%+ 202 + 9006 . (3.11)

Multiplying equation (3.4) by ¥ and rearranging gives

. 2
¢ 00 D ® n°2
rr:-ﬁ-{v——gr+rre . (3.12)

Substituting this expression for ¥ in equation (3.11), we get

2
o _ Di- N .-2 20 oo
VV = - —r—;]T,_ bl gr + 21'1‘9 + r e ° (3'13)

Again, multiplication of equation (3.5) by rd gives

2 20 X3 Drzéz

2r¥8“ + r706 = - mos vl (3.14)

Finally, substituting equation (3.14) into (3.13), we obtain
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DV

VV = - gl‘ - m . (3-15)

But g = (gORZ)/rZ. Therefore, equation (3.15) is rewritten as

2
2g R
d 2 0 _ 3
a <V - )— - 2Ko(r)V {(3.16)

where equation (2.2) has been substituted for D/m.

Similarly, the elimination of the last term on the right hand
side of equations (3.4) and (3.5) yields the other equation
i‘z goR2

_2—1'—:_ 5 o (3.17)
r

'f-réz—

@ l”‘=

Equations (3.16) and (3.17) are the governing differential
equations for a particle in a dissipating medium with the forces act-
ing along the velocity vector and perpendicular to it, respectively.

Now it is convenient to transform the independent variable t

to 8. This changes the dynamic problem to an orbital problem.

Therefore,

d _ 2 d

a0 - (3.18)
Then

. _ 2 d 1 .

I‘-—--l‘ec—ig' ("lj) s } (3.19)
and

2 2 dz 1 e 2.d 1 3.2t d ;1 2
r =~-06r :{07(?) - 0r a.é-(?)+ 2r~ 0 [—a—é— (-1'-2} ® (3920)

By using equations (3.18), (3.19), and (3.20), we obtain the

governing orbital equations from equations (3.16) and (3.17) as

2
a4 (yz P8\ | 2xov? (3.21)
do r - 5 :
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and
2

5 . (3.22)

a® 1., 1 _ &R
2(}‘)+'£" 4.
do r O

Also, the velocity equation is rewritten as

2
ve = p? [rz + (55) ] ) (3.23)

Then equations (3.21), (3.22), and (3.23) are the basic equations

relevant to this problem.

2., lianearization

As mentioned previously, the effect of atmospheric air drag
is quite small and the trajectory of the particle deviates slightly
from the Keplerian trajectory in vacuum. Therefore, it is reason-
able to assume that the various orbital parameters are only slightly
perturbed from their Keplerian values. As these effects are small,
the squares of these effects can be neglected. Consequently, the
various orbital quantities are written as

r = ro+ Ar + O(Arz) + oee

v

1]

V. .+ AV + ..,
o

(3.24)
0

I

6 + a0+ ...
o

where the subscript o is used to indicate the Keplerian values of the
parameters and A( ) refer to the first order perturbations.

With these assumptions, the equations of motion (3.21) and
(3.22), together with (3.23), are linearized, Now the linearized

differential operators are
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deo d dGO d

de ~ do da_ ~ d(@ _+a8) do
o o o

;. qee) _a
"\ a8/ am

o
2 (3.25)
d” _ (;_dee) d |f _dae) 4
2 de de de de
d6 o o o o}
=(1 ) sze> a® _(1 ] dAG) d“r0 a
d@o deZ deo ae 2 deo
o o
a? daa a®>  a%m 4
=—3 235 z 2 da_ - (3.26)
de o do da o
o o o
Now
1.1 _1 ] - Ay -1 _ar
r r tAr T T ) T r 2
o o r
(8]
and
Ve = (V. +av)e = V24 2V av .
o o o
For the Keplerian case we have, from equation (3.21),
g RZ
—i—(vz - z-—‘l——L 0. (3.27)
de \ O r , \ I/
o o)

Using these relations, the linearized form of equation (3.21) is

given by
d gOR2 KGOVO?’
g5 \V,aV + —— ar) = - ——— « (3.28)
o T, 60

where o = o(r ).
o o

The Keplerian form of equation (3.22) is

2
2 g R
£l B
de o o r 0 C
o) o0 o

where p = gORZ is the gravitational constant of the earth and C0 =
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2. . . .
rOBO is the angular momentum constant. With these relations, the

linearized form of (3. 22) is

2 2
%%Ar”a’g‘“}?%&*[é‘z ('52“”"1"2""%&-]“
r_  do o T o) de o) T CTr
o] o] O o] (s} O O
2
2 dA6 d 1,d7°a8
=t a8 "a_ F) =z - (3.30)
o o o dbé

and the linearized form of (3.23) is

dr
T

- 52
Vo iV =9, [ro“ Y3 a o db
o o o
At this stage, it is useful to obtain the linearized form of the
The total energy per

specific total energy of the orbiting particle.

unit mass is written as

2
g R
E=4ve--2 (3.32)
Writing this in difference form, we obtain
g R%
AE = VAV + =5— Ar (3.33)
o rZ

O
But this is the same expression given inside the brackets in equation

Consequently, we obtain a first order differential equation

(3.28).
for AE from equation (3. 28) as »
3
daE _ KOoVo
= . (3.34)
de :
o 6

o]
Then the perturbed quantities Ar, A6, AE, and AV can be determined

by solving the linearized equations (3.28), (3.30), (3.31), and (3. 34).
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IV. SOLUTIONS

1. Solution for Ar

The differential equation for the radial perturbation Ar is ob-
tained from equations (3.28), (3.30), and (3.31). If the initial condi-
tions are known, then equation (3.28) can be directly integrated. For
hyperbolic orbits, i.e., € > 1, the initial point is given by QO =0, =

1
-1 ei . For all other cases, i.e., € £ 1, the apogee point of the

cos
particle, for which GO = 0, is chosen as the initial point. As the
problem concerns the perturbation of the Keplerian orbit, the initial

conditions for the perturbed quantities are matched to the Keplerian

values at the initial point, t = 0. Hence the initial conditions are

_ dar _ _ dag _ _
Ar—a—e——Ae———de =0 att—Q,
o o
and att = 0,
fore>1, Go=61=cos-1-é-s
(4.1)
fore <1, @ =6, =0,
o 1

Substitution of equation (3.31) into (3.28) and an integration

with the initial conditions given by (4.1) yields

dr 90 o V3
ég [roAr+ o dar , .2 dA6:|+ J% Ar = -K§ a_a 4¢ .,
r

do de o do s
o o o 5 Ga
1
Solving for dAG/deo, this is rewritten as

2 0 3

Kr oo V

dag _ d 1,dar (1 9 _ o) o a
de ~ de (‘E“) do T+ 2) Ar 5" ‘S‘ S de . (4.2)

o o o o o C C 0
o o © a

When this is differentiated once with respect to 60, it gives



2 2 2
478 d 1, dar d 1,d Aar 1 \dar d ;1
- ydxe. 42, -(JL+--—) - S
a6 2 deZ r d@o deo o deZ CZ e do de r
o o) o
2Kr dro eo Gava3 Krg GOVS
2 de S‘ * de - 2 . . (40 3) .
C o} 5] C 8]
o 61 a o} o

Substitution of equations (4.2) and (4. 3) into (3.30) to elimi-
nate the first and the second derivatives of AQ yields the following

equation for Ar:

2
2 2
1 d 1 -!d Ar d 1 d 1 d 1
"’2’+<de (‘r')) > 2qe R e )z )
T o "o doe o o “o do o)
o) o o
-_.‘i_.(_l_)..l.._Jr_H_ __7:___£1_(..L dAr
de ‘r T 2 r de T de
o o Co o o "o
- -~ « 2
J8 e o () 2 (L e )|
de T T CTr o "o o) o C
o o o o o
0 3 2 3
| ZKrO N 2Kro dro a (_1_) o O-avc.‘ W+ Kro d (_L) O‘OVO
- 2 2 d6 deé ‘r e 2 do ‘r '
C C o o o 0 C o o 0
o o 61 a o o
{4.4)

By using the Keplerian equation (3.29), equation (4.4) is
further simplified.

Now the Keplerian equation for the velocity is

dr 2 2
2 _ g2 1.2 o) a2t 2 4(d 1
et Faftet@e) ] e
o o "o
or ‘
2 2
\'
1 [ d 1 o)
— ._.__..(___):l —_ . (4.6)
r2‘ deo r CZ
o) o

Finally, using equation (4.6) together with equation (3.29), the
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differential equation (4. 4) for the radial perturbation Ar is reduced to

the simple form

2 2 3 5]
VO dZ AT N Vo _ 2Kr 2 (° GGV o
2 e - 7 % — d
C doe C C 0
o) o] o o 61 a
2 3
. Kro d (__]:..) GOVO
CZ dGO ro é
o o

It is found that the coefficient of the first derivative dAr/dGo col-
lapses to zero and both dz/(def)) Ar and Ar have the same coefficient

VOZ/CCZJ . Finally, we have

3 0 3
2 A% dr 2Kr o OV
dA§+Ar=_K(___9.)a.é_9 o - 20 ( © %40 . (4.7)
de ) o © ¢~ ¢ )
(e} O o el o

Because of the simple form of equation (4.7), its solution, satisfy-
ing the initial conditions, is immediately written as:

o
Ar(ﬁo) = 5‘ sin(@o-—ﬁ) G(e)de (4.8)

!

where G{0), representing the forcing function, is equal to

Vo dro ZKrg E)o GGVS
ae) = -x(22 ) 52 0, - — f 0 (4.9)
o °© o} 61 a

However, G(0) has to be expressed explicitly in terms of the orbital
parameters before the integral can be evaluated.
Now, for a Keplerian trajectory, the position of the particle

is given by the orbital equation
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Sy
s T p(l—ecoseo) (4.10)
where p =g RZ, C = rzé , and € is the eccentricity of the orbit.
o o oo

From equation (4.10), i'o is obtained by differentiating it

with respect to time. Differentiating (4. 10) once, we get

cZ .
i'o = - € sineoeo s
p(l-€cosB )
o
but
. Co _E_Z_ 2
90=-—-2- = S(I-ECOSGO) . (4.11)
T G
o o)
Hence
L) : - -E:c_— -
o C smGO . (4.12)

From these two relations, the velocity of the orbiting particle is

obtained in the form

v2 o324 220% =32 4c b =P (1+¢%-2¢cos0 ). (4.13)
o} o o 0 o 0 0 CZ' o)
o
Also,
dro C§65in60
- . s (4.14)
deo p(l-ECOSGO)Z

Now we will investigate the model for the air density.
As stated previously, the atmosphere is assumed to be spher-
ically symmetric and non-rotating. It is also assumed that
the density does not vary with time and it depends only on the
radial distance r from the center of the earth. As the scale height

H is small compared to the perigee distance rp, the flat earth hydro-
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static equilibrium equation for the variation of the pressure with the

ala

altitude is written as

P
- = -gp (4.15)
where g is the local gravitational acceleration.

Assuming that the atmosphere follows the perfect gas law,

P = p/\)T, equation (4.15) is written as

aP__ g8 p
dr R

Since the region of discussion involved is confined to a few

(4.16)

scale heights about the perigee ‘distance, the variation in the gravi-
tational acceleration is neglected and g is assumed to be constant
in the above analysis., Equation (4.16) can now be integrated if it
is assumed that the temperature distribution at the orbital altitudes
is isothermal., Consequently, using the above assumptions, inte-

gration of equation (4. 16) yields

-Nzr-r_)
...1_3?_ = ..g_. = o-(ro) = e P (4.17)
P

" It will be shown that this is a very good approximation to the
spherical earth pressure distribution.
The hydrostatic equilibrium equation for a spherical earth is

L (4rr®P)ar = -gpdrrdr
or

dP, 2

& Tr T ee

but = P/gp << 1 in general. Hence the hydrostatic equilibrium for
a spierlcal earth can be approximated to equation (4. 15):

dP _
ar T ee
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where A= g/RT = constant = 1/H., H is defined as the scale height.
The subscript p denotes the reference condition at the perigee
point rp. At the perigee point ro = rp, 60 = w. Hence, from equa-
tion (4. 10), rp is given as

CZ
ro= o, (4.18)
p  w(lte)

Therefore, the density distribution given by equation (4.17) is written

in the form )\CZ ,
At T T (1—6coseo)
ofr )=0(8 )=e P.e . (4.19)

However, T, is not defined for values of 90 between zero and
-11

cos * = for hyperbolic trajectories. Consequently, we set

1

-11
0(60) =90 for OSGO < 61 =cos "o . (4.20)

Substituting the relations (4.10), (4.11), (4.13), together‘with

(4.14), in equation (4.9), the forcing function G(GO) is written as

4 2 3
KCO (1+e€ -ZECOSGO)
G(o ) = € sin® « 0 (0 )
o} .2 o o)
© (1-€ coseo)
4 ' ]
_ 2Kco 1 S’O (1+62—260056)3/2 o (0)d6
uz (L-€ coseo)3 5 (1-€ c:osie)2
1 (4.21)

Hence the solution for Ar is

i
ef che (1+€2-2€coseo)3
Ar(Gf) =5 sm(Sf-—Go) > V2 s1n6000(9 )

4 N (1-6c0580 o
1
3
4 6 =
_ ZKCO 1 50 (1+Ez—2€cos}')2 o(y)dy deo. (4.22)
p.z _ (1—6(:0360)3 5 (l—ecosyl)2

1
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where ef is some final value of 60.

This representation for Ar is valid for all values of eccen-
tricity starting from zero. However, the evaluation of the integral
is not easy for all values of €, Consequently, the integral is first
evaluated for values of € near 1 in a closed form. Then a long,
cumbersome series solution valid for 0< € < 1 is also obtained.

Let us now consider the first case when € ~ 1. Now, G(BO)

is written as

G(BO) = Gl(eo) - Gz(eo) 9
where
1
che (1+62—26c0560)?’
G0 ) = — ‘ sinb_o(6_) (4.23)
n (1—6coseo)
and
2kc? %, . 2 3
+eé.
G2(90)= 2o 1 35' (1+e~-2€cos?) ofy)dy. (4.24)
n (l1-€cos® )7 & (l-ecosy)
0 91
Then
Gf Gf
Ar(ef) = ‘ge sm(Gf-GO)Gl(GO)dGO-S; sm(ef-OO)G(eo)deo. (4.25)
1 1

This integral for the perturbation in the radial distance r will be

evaluated for Gf = w, Therefore, equation (4.25) is written as
T T

S' sin@oGl(Go)del - S" sineoGZ(eo)dGO
o

1 0

Ar(w, €)

i1
—

¥
ot

- L (4. 26)
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It is convenient to change the independent variable GO to a

new variable s given by the following transformation

1, .2
< = tan eo/z. (4.27)
Then
_ ds 1
O,=-7T" 1% -
sa

Also, at 60 = 61, 1/6 = cosG1 = (s—l)/(1+s).

Solving for s,

1+e _ 1
€-1

s = _—6"3

Now,
i
. _ 28?2
smeo = 373
- 1-6s
l-ecoseo = (1+e€) ( 1+S)
and
2 2 1+625
i+e” - 2600560 = (1+€) ( TFs )
and
_ €-1
ES————lJrE . | (4.28)

Let us consider the integral defined by Il. Substitution of the above
relations and (4. 19) yields for I1 the following expression:

1+s
aKc? Ar, L/® 204620)3 L M)
11 :__2.(_.__?_ € e §_z.__.6._.)_4__ (1+s)2 e ds . (4.29a)
po(1te 0 1-6s
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Even in this form this integral is very complicated. Some
simplification is necessary to evaluate it. Since we are interested
in the solution for € ~ 1, it is recognized that 6, as defined by
(4.28), goes to zero as € 1. Therefore, the integrand is expanded
in terms of 6 for 6<< 1. Terms of order 6% and higher are ne-

glected. Thus we have

(1+6%)2=1+2%6%+...

[

(1-65)"% =1+ 465 + 106%s% + ...

and

1+s
-)\rp(T—_—é—g) ~)\rp(1+s)

e = e [l-krn6s(1+s) taeo] o

Consequently, after expansion, equation (4.29a) reduces to the form

4KC4 1/8 bs
_ o 2 2, P
Il =3 € Vs(lts) [1+(4-p)és-6ps™+O(6 Yle ds (4.29b)
po(1+e) 0
\C?2
o

where P=E )\I‘p = m N
It is pointed out here that the upper limit of the integral 1/6

is very large for small 6 and goes to infinity as 6 - 0. Also, in this
analysis, the exponent p is very large and positive, and hence the
main contribution to the integral comes when s =~ 0, Therefore, the
upper limit in the above integral is taken to be oo in all the following
integrals. This corresponds to the asymptotic expansion of the
integral using Watson's lemma. With these arguments, a function

T(p) is defined as



o) -ps
T (p) ES Vvs(l+s) e ds . (4.30a)
0

Then the integral given by (4.29b) takes the form

41{03 G2
1) = B € T~(4p)6-—~—-6 2. (4. 30Db)
B(1+€) dp dp

Now it is observed that T(p) is the Laplace transform of the function
L S :
f(s) = s?(1+s)?. Hence, from the tables, T(p) is given by

T(p) = 7}; eP/2 K, (p/2)

where Kl(p/Z) is the modified Bessel function of the second kind.

Now

1(p/2)
%g= . (215 ep/ZKl(p/Z)) = (;1; % p/Z —_— —%ep/ZKo(p/Z)

Combining and substituting these relations in the expression (4. 30b)

for Il’ we get

4 X

KC "¢ p/z

= ° £ - L
I, = TR §6Ko(p/2) + [2 45(1 p)} Kl(p/2)§ . (4.31)

Let us now consider the integral defined by IZ. It is given by

4 w 0
2KC sin® do o 2 3/2
- o o O (l1+e"~-2€cos?)
I = zSﬂ 3[§ > o(v)dv}. (4.32)
(l—Ecoseo) (1-ecos?)

V)
el 91

Integration of equation (4.32) by parts yields the following expres-

sion for IZ:
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3 a2
o) 1

KRG .'p S‘-T (1+62~2€c0590)2 "W T-€cos@
I —
91

e © 40
(1—6@0590)2 o

3 ACZ
o) 1

KC )\rP‘STvr(l-PeZ—-ZecosGo)z " T T-€cos®
e1

o
(1-6(10560)4 © deo. (4. 33)

Now if F(p,€) is defined as

3
= p(lt+e€)
T (1+€2—2€cos€)0)2 l-€cosb
PWp,€)=‘§

e © ae (4.34)

2
el (l-ecoseo)

where ()\Ci)/p = p(l+e), then the last integral on the right hand side

L

of equation (4.33) can be expressed as the second derivative of F

with respect to p. With this definition, the integral IZ is written as
KC4 P

2
L= -—2 -2 Z{F-i%}. (4. 35)
po€e  (lte) dp

it

This integral is now evaluated in the same way as Tl. Using
the transformation given in equation (4.27) for the new independent

variable, s, the integral for F in equation (4.34) is written as

3
~ 1/8 = 1+s
2,2 -plias)
F :(1+e)5/ ds (1+6 sé o 1768 (4.36)
o Vs(l+s) {1-6s)

For 6 << 1, this reduces to the following form after expansion of the

integrand for small 6. Thus,

1/6
- ds 2, -ps
F = (lte)e PS/ ——— (1 + (2-p)6s - 6ps“)e o
Vvs(l+s)
0

Using the same argument as before, we set the upper limit of the
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above integral equal to infinity. Again, a new function S is defined as

o8]
1

S = S —— . e P% g4, (4.36a)
0 Vvs(l+s)

Then F is written in the form

2
F = (1+€)e-p{S—-(2—p) 5 - 6p iﬁ} i (4.37)
P dpz

Here, S(p) is again identified as the Laplace transform of the func-

tion f(s) = 1/¥s(l+s). From tables, this is evaluated as
s = P2 K _(p/2)

where Ko(p/Z) is the modified Bessel function of the second kind.

Now 9 - 1P/2 K (5/2)-K,(p/2)}
2 K. (p/2)
d’s _ 1 P/Z .___1._....____
and ——""dpz = ée {Ko(p/Z) = Kl(P/Z) + P } °

Substitution of the above expressions for S, dS/dp, and dZS/dp2

in equation (4.37) yields the following expression for F:

b

i} (142~e)e—p/2 {2(1_6)K0(p/2)+6K1(p/2)} . (4.38)

Differentiation of equation (4.38) twice with respect to p yields the

following relations

26K,(p/2)
%: ) (126) e-p/2 {(2_5)[Ko(p/2)+K1(P/2)] +———%———}
and
2 _ oK (P/Z)
AF L ) P/2 {(26) [, (/20K (p/2)] + —2—

dp

+2 (1+ £2)

P P ’
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Substituting this value of the second derivative of F into equation

(4.35), the integral I2 is evaluated as

ke

6K (p/2)
L= 2 oP/2) (2 36)[K (p/2)-K (p/2)] - —2m
2 45(1+e)§¢2 © ! P
K. (p/2)
-2(1 + _i)é) ._l_p__._ (4.39)

Then the solution for the perturbation Ar in the radial distance in
moving from 60 = 61 to 90 = 7w is obtained by subtracting 12 from

I Thus,

10

Ar{m,€) = I1 - I2

Substituting for Il and 12 from equations (4.31) and (4.39) and re-
arranging the terms, the following solution for Ar(m,€) is obtained

when the eccentricity of the orbit € is close to 1:

4
-KCO /2
ar(m, €)= —5—— P §<2-36>[K1<p/2)—K0(p/2)]
4p"€e (1+e€) {
5% 1

- 5 ey Li1-3€) ((Ko(p/2> + -;-f—Kl(p/Z)) —2(1+5e)K1(p/2>]§

Ag all the computations have been carried to order &, the above ex- 4

pression can be written as
—KC4- ep/2
ar(mye) = —52——{(2-36)[K, (0/2)-K, (/2] +O (67)} (4.40)
4p €(1+€)

Note that when the initial trajectory of the particle is parabolic,

ie€os € = 1 and &6 = 0, the solution for Ar reduces to
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KC
e, 1) = - — <P/2 [K,(6/2) - K, (p/2)] (4. 41)
I

Now a few numerical calculations will be carried out to
estimate the radial perturbation Ar in order to inspect the validity
of the linearization process.

Substitution for 6§ from equation (4. 28) in equation (4. 40)
yields

Ar(m,€) = - (..54:65_) Krg eP/2 {Kl(p/Z) - Ko(p/Z)} (4. 42)

where equation (4. 18) has been used to eliminate CO and .

Now the argument p of the Bessel function given by
= Ar
P

is very large for the whole range of perigee distances involved in
this problem. Consequently, the asymptotic expansions of both
Ko(p/Z) and Kl(p/Z) valid for arguments greater than about 3 will
be used in the numerical calculations here. Now the asymptotic
expansion of Kn(p/Z) for large p is

2

i 2 2
~ (M2 o~P/2 4n“-1 _ (4n°-1)(4n°-9) .. g
Kn(p/2) B e g“ TTdp 21 (4p)2 tooo( (4.43)

It is sufficient to keep terms up to order 1/p. Thus
+ -p/2 1 1
KO(P/Z) = ('“'/P)2 = {1 " ip + O(—= —--} (4. 44a)

and

b4

i -
K,(p/2) = (n/p)? e g/Z {1 + -4% ¥ 0(-13%) ---} (4. 44b)
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Substitution of these in equation (4. 42) yields
2 1

2

A _ 5-¢ KrE T
r(w,e)——(—-4-é~) 5 (5) (4. 45)

Here € is taken to be 1. Then
Kr2

1
Ar(m, 1) = - ———I;P— ('n"/p)2 (4.46)

The validity of the linearization approximation depends on
the value of Ar. In the linearization process it has been assumed
that Ar << r. As AAr estimates the error in drag force, it is also
required that AAr should be small compared to 1.9‘<

For computation purposes particles will be assumed to be
spherical in shape and to have uniform material density Pm®
Further, P is assumed to be equal to 1 gm/c.c. . Let the di-
ameter of the particles be d microns. With these assumptions
a few calculations of Ar for different values of diameter d and r
are made. Properties of the atmosphere that are used here are
taken from U. S. Standard Atmosphere, 1962 (7). The computed
values of Ar and AAr are shown in Table I.

From the table we can establish the validity of linearization.
It is clear that the smaller particles have to be captured at higher
altitudes than the bigger particles. The theory holds good for
particles of 1 micron size in the regions of the atmosphere about
225 km above the earth and thereaf;ter. For the largest particle

* From equations (4.23) to (4.25) it is thus seen that the "small
parameter" with respect to which the problem is linearized is
NKC%/u2 and the appropriate length used to make both A and K
non-dimensional is Co/p = rpo(1+e).



-30-

Altitude Scale ht
d z Tp H=1/\ Ar AAT 5‘;—
(microns) (km) (km) (km) (km) P
1 175 6553 38.497 -35,18 -0,9138 ~0,00537
200 6578 43,62 -20.607 -0.,4724 -0,00313
225 6603 47.876 =~12.614 -0,2635 -0,00191
10 ' 125 6503 14,019 -14.345 -1.0232 -0,0022
150 6528 29.462 -~ 6.305 -0,2140 -0,00097
100 100 6478 6.362 -17.075 -2,6839 -0,00263
125 6503 14.019 - 1.435 -0,1023 -0,00022
1000 75 6453 5.998 -135,96 -22.66 -0,0210

100 6478 6.362 - 1.7075 -0.2684 -0,000263

TABLE I

Estimation of the range of the validity of the linearization process
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of 1000 micron size the theory is good for all regions above 100 km.
Thus the linearized theory holds good for all particles in the region
of the atmosphere above 200-225 kms from the earth's surface.

As mentioned earlier in this section a series solution for Ar
valid for 0 < €< 1 is obtained. The derivation of this solution is

given in Appendix A.

2. Solutions for AE

Here two solutions, one valid for values of € close to 1 and
another asymptotic solution valid approximately over the whole range
of € from zero to one, are derived.

The appropriate differential equation governing the perturba-
tion AE of the specific total energy of the particle is given by equa-
tion (3. 34) as

d KO_ovo
deo AE = - 20O (3.34)

and the initial condition corresponding to the unperturbed Keplerian
orbitis AE=0att=0. Att=0, 81 = 0 for € €1 and Glzcos-l—é-
for e > 1.

By integrating the above equation once and using the above
initial condition, the solution for AE is obtained as

fo~v3
o

e}

3]
AE(Sf) = -KS‘ 5 dBO (4.47)

91 e}
Substituting for éo’ v and o from the relations (4.11),

(4.13) and (4.19), equation (4.47) is written in the form
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3 N
0 2 . —
f (l+e —ZECOSOO) 1-'(;'cos6O
AE(ef) = -Kpe 54 5= e de (4.48)
o
9 (1-€ cosf )
1 o

This expression for AE is valid for all values of eccentricity.
Equation (4.48) is evaluated first for Gf = 7 and then the
resulting solution is doubled to obtain the total loss AET in specific

energy for the first pass around the earth. Thus,
3 Xcg/p

(1+62—2€cos90)2 " 1-€cosb

AE_ ., = -Zerp e © dBO (4.49)

T

v 2
(1—ecoseo)

By using the transformation given in equation (4.27), the above
equation is written in terms of the new variable s as

1+s 3
e 1-6s (1+525)2

V{Its)s  (1-8s)°

AE_ = -2Kp(l+e) eP

ds (4.50)

For convenience this is written in the form

AE. = -2KpeP F(p, 6) (4.51)

where F is defined by equation (4.36).

The total energy loss AET is now evaluated for values of €
close to 1. When € is near 1,’ & = €- 1/1+€ has a value close to zero,
i.e., §<< 1. Consequently, we expand the integrand near §~0 and
integrate term by term. This has been carried out in part 1 of this
section and the solution for F is given by equation (4.38). Conse-
quently we can write the solution for AET for one complete pas‘s

valid when le-11 ~ 0 as
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AE = -(1+e)erP/2 {2(1-8)K_(p/2)+ 8K, (p/2)} (4.52)

where p = Ar_.

This solution for AET is correct up to order O(§) and conse-
quently gives a good estimation of the specific energy loss for one
complete pass when the eccentricity of the orbit is close to 1.

In order to calculate the lifetime of a particle, a solution
for the loss of the specific energy valid over the whole range of
eccentricities from zero to one is required., As meﬁtioned pre-
viously an asymptotic expansion of the integral for the energy loss
is obtained for all 0 < € < 1, In this case the energy loss is esti-
mated for one complete orbit, that is, for Elf = 2. It is found that
AE(2w,€) is equal to 2AE(m,€). Also, it is pointed out that 61 =0
for this case. This says that the upper limit of the integral in
equation (4.50) is exactly equal to ©, Let us now consider the inte-

gral given by (4. 36) with the upper integral limit equal toc ©, Thus
1+
° _p(l-ZS 2 3/2
F=(1+e)5 c (1t5 s)z
; o vs(l+s) (1-6s8)

ds (4.53)

The exponent p appearing in the integral is as before

A2

= o
P - Mp
where A is the reciprocal of the scale height H and rp is the distance
of the closest approach of the particle,
For the whole range of values of eccentricity considered,
this exponent p = X{rp is very large and positive, Then the major

contribution to the integral comes when the quantity 1+s/1-6s is
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close to zero. Consequently we can expand the integrand near
1+s/1-8s ~ 0 and integrate term by term to obtain the asymptotic

expansion of the integral given in equation (4.53).

Now a new variable x is defined in the following manner. Let

_ 14+ s
1+ x= 1 | (4.54)
Thendxz—-—b——————-ds and b= 1+ §, Now
p
{1-8s)

at s =0;x=20

and
2€

at 8 = o0} X = ——
@5 X = T7¢€

Solving equation (4.54) for s, s is obtained as

s =——-—’55-——- (4.55)
b(l+-6x)
l1+s=1+ E— = 1+>§
b(]. +—BX) 1+—.5X
2 %% 1+ 6x
Lros=1¥ e "8
bX

_ ox _ 1
1-08s =1 -9y75sx BT
b

Substituting these expressions in equation (4.53) for the func-

tion Fwe obtain

2¢
= =p(l+x) 3/2 <
F = “’ff)g € e dx (I* %) —r (4.56)
bz xz  (1+x)°  (L+gx)?

_ 2¢ 6 _ 1l-¢ _€-1 ces ..
where b = iFe ' B = ¢ d6———-——1+e. Rewriting this in a more
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convenient form

2¢/1-¢ 4
F =(”_f) e P e P* &% o(x) (4.57)
b2 o x?
3/2
where g(x) = (1+6x) T 2 3 (4.58)
{1+x)2 (1+_l; x)*?

As pointed out previously, p is large and positive and the
major contribution from the integral comes when x is near zero.
Consequently an asymptotic evaluation of this integral is possible.
This is done by expanding the expression for g(x) in (4.59) near
x = 0 in a power series, and integrating term by term using Wat-
son's Lemma. Near x = 0 the power series expansions of the

following functions are

3/2

1

-2
(1+x) o 1—%x+%x2-l_5gx3+ -

1

- 2 3

5 2 b 36 2 567 3
(1+EX) :’.1“2—bX+§;-2*X ~—E;§X [

and hence the expansion for g(x) near x = 0 is given by

glx) 1+ ax+ ax’ + a x>+ oxh (4.59)
where a. = 1-86+3EZ
17~ e (1+e)
a, z-———z-l———z{s-we + 50e + 1663 - 5e4} (4.60)
32e¢ 7 (1+e) :
ag = i —3 {5—22€+ 23¢2 -3663-27764—2265+966}
1287 (1+¢€) J
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Under this approximation the integral for the total energy loss AE

for one complete orbit takes the form

2(1e)kp LE/1E 4
AE(2m,€) = —— S‘ e P¥

b

S

{H a1x+a2x2+a3x3+0(x4)+ -- —}

[P
o]
NN[»—-‘

(4.61)
This is evaluated by using Watson's Lemma. Integrating
term by term from zero to infinity, the asymptotic expansion of the

integral for AE(2w,€) is obtained in terms of the powers of 1/p as

T 1 a, 3a2 15a3 1

AE (2w,e) = -2Kp(l+e) (=1 + 5=+ —2 F —Z 4 O (=)
pb 2p 2 3 4

_ 4p 8p P

(4.62)

This is valid for all 0< € <1. However it is pointed out that
this solution for the perturbation in specific total energy given by
equation (4.62) is not good for values of € very close to zero. This

expansion breaks down when € = G,
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V. MECHANISM FOR THE CAPTURE OF A

PARTICLE BY THE EARTH

Consider a particle to be orbiting around the sun. ILet its
velocity relative to the velocity of earth, which is also orbiting
around the sun, be Voo' Voo is also called the hyperbolic excess
velocity or velocity at infinity with respect to earth. For simplicity,
this particle is assumed to be 'travelling in the same direction as
the earth. However, the mechanism holds for particles moving in
Both directions. When the particle begins to feel the gravitational
pull of its big neighbour, the earth, its trajectory starts to get per-
turbed. Then it begins to move along a hyperbolic trajectory with
respect to earth. If there is no dissipating medium near the planet
of attraction it will merely be deflected by the planet and will move
back into another trajectory around the sun. If there is a dissipat-
ing medium then the particle will lose some of its total energy
whence it can either be captured by the earth or escape back to
infinity depending on the energy loss. Thus in a dissipating medium
around a planet a mechanism for capture can be established by

studying the loss in the total energy of the particle during the first

pass around the earth.

Let the initial energy of the incoming particle before encount-
ering the dissipating medium be EO per unit mass. Other perturbing
forces due to sun, moon, etc., are neglected as they are small
compared to the drag effect of the medium. The particle is travel-
ling along a hyperbolic trajectory with the earth as one focus. Its

eccentricity then is € > 1.
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The total specific energy of an orbiting particle in general

is given by

_ 2
E = -—at‘- (5.1)

where a is the semi-major axi‘s of the orbit. For a hyperbolic
trajectory, according to Kepler's planetary laws, "a" is negative
and hence the energy of the system is positive.

Now from the properties of a Keplerian orbit the relation
(4.10) for the radial distance r)written as a function of Co’ iy, 6 and
€ can be expressed as a function of a, 6 and €., Thus

_a(l-€%

To = T1-tcos@_) (5.2)

when 60 = m, we obtain the relation between the perigee distance rp,

the semi-major axis a and the eccentricity € as

rp=a(1—6) {5,3)

Since a is negative for a hyperbolic trajectory with € > 1,

it is noted that rp is always positive.

Eliminating a between equations (5.3) and (5.1), the specific

total energy of the orbit is written in the form

_ _ B
Eo..-—z%_—z};(e-l) (5.4)

As the air density decreases rapidly with increasing altitude
above the earth, particles with highly eccentric orbits are most

affected by drag within a small section of the orbits when they are

closest to the earth, i.e., most of the energy loss takes place near
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the perigee point. Because of this drag effect the total energy of
the particle is reduced after the first pass around the perigee.
Suppose this new total energy is still positive. Then its eccentricity
is greater than 1. Hence the particle escapes back to infinity. If,
on the other hand, the energy loss is such that the new total energy
becomes negative, then Kepler's laws say the particle has a bounded
orbit and hence is captured by the earth. Therefore the condition
for capture of the particle is that its total energy after the first
complete pass around the perigee must be negative.

Now let E be the total energy of the particle after the first

pass around the earth. Then the criterion for capture to occur is
= <
E = E0 + AET 0 (5.5)

In order to evaluate this condition equations (4.52) or (4.62)
can be used. However it is found that it is more convenient to use
the result of equation (4.52 ). Thus recalling equatibn {4.52), we
have |

AEL, = _(1+.5)erp/2 {2(1- 8K (p/2) + 6K1(p/2)}

Substituting for 6 from equation (4. 28), the above expression for

AET takes the form

2By = -KueP/? Lak (6/2) + (e - 1) K, (p/2)} (5.6)

As pointed out previously, the argument p appearing in the
Bessel functions KO and Kl is very large and hence the asymptotic
expansions for Ko(p/Z) and Kl(p/Z) are used to simplify the expres-

sion for the total energy loss AET in equation (5.6). The asymptotic
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expansions of Ko(p/Z) and Kl(p/Z) are given by equations (4.44) in
section 4. Only terms of O(1/p) are used. Consequently, the sub-
stitution of equations (4.44) in equation (5. 6) yields the following

simple expression for AET.

o

AE[ = -Kp (-g—) [3+¢€ - 7415 (7-3€)] (5.7)

Substituting equation (5.7) for AET and equation (5.4) for EO
in equation (5.5) the critei‘ion for the capture of a particle is written

as

[

Mzer.;) SK @) [3te -415- (7-3¢)] <0 (5.8)

ithp= Ar =r /H
with P p = Tp/

Finally, solving this for € as a function of rp and K, the
criterion for the capture of a particle is obtained as

24K()%[12x_-7H]
€ < s P

1
2-K(&)2 [4r +3H
<p) [ b ]

As all particles orbiting with € < 1 have bound orbits around

the earth, the above condition is rewritten as

i

2+K [12r -TH]
1<e¢< P (5.9)
2- K [4r +3H]

This says that a particle having a mass m will be captured
by the earth at a given perigee distance rp if the value of its initial

eccentricity € satisfies the inequality given by equation (5.9).
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It is more convenient to use the relative velocity VOo of the
particle instead of the eccentricity € in studying the capture mech-
anism. Now the energy integral for a Keplerian motion gives the

following relation

VZ-%:E:——Z-%- (5.10)

e

Since Voo is defined as the velocity of the particle at infinity
with respect to the earth, Voo can be obtained by letting r > in

equation (5.10). Thus
Ve (r= )= - b=y 2 | (5.11).

Then by using equation (5.4) the desired relation between Voo and €

for a given rp is obtained from (5.11) as

2
VOD = (e - 1) (5.12)
1 ,
But (M/rp)2 is defined as the circular velocity at the perigee alti-
tude.
2o ov2
= VC (5.13)
P p

Then solving for €

Voi Voir
€ -] = > = P (5.14:)
v n
C
P

Now subtracting 1 from the expression in equation (5.9) we obtain




or

4K(E) (4r - H)
0< e-1< P . P (5.15)
2-K(&)2(4r_+3H)
p p

Finally substituting equation (5.14) in (5,15), the required

capture criterion in terms of the velocity at infinity is written as
1

4K (I3 (4r -H
osvois s (P)(TP ) , (5.16)
HESY .
rP[Z—FK(§)2(4rp+3H)]

This relation says that a particle having a given mass m will be
captured by the earth at a given perigee distance r_, if VOO of the
particle satisfies the capture condition given by (5.16) for these
values of rp and m. Then the particle will have a bound elliptic

orbit around the earth.
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VIi. LIFETIME CALCULATIONS

After the particle has been captured by the earth, it becomes
a natural satellite moving along a very highly eccentric orbit. As
mentioned previously, the particle suffers an energy loss due to
aerodynamic drag as it passes through the perigee region of the
orbit. This causes the particles to undergo a drop in height at its
next apogee. Due to the exponential nature of the density distribu-
tion in the atmosphere, the particle suffers very little or zero drag
near the apogee region and consequently there is negligible loss in
height at the next perigee point. Thus it can be said that the particle
suffers a continuous apogee loss while suffering zero or very little
perigee loss, i.e., perigee lpcation remains almost constant as it
orbits around the earth.

This explanation holds good for all orbits that are not circu-
lar; however for near circular orbits this breaks down and the
estimation of lifetime becomes inaccurate according to the theory.
But by this time the lifetime is almost zero. Hence the error in
the estimation of lifetime is negligible. Thus, the highly eccentric
orbit of the particle decays into a near circular orbit after a certain
number of orbits with negligible loss in rp. Then the orbital life-
time is defined as the number NO of orbits required to circularise
a given eccentric orbit into an orbit with € 0. The orbital lifetime
N0 is derived in the following way.

The perturbation AE per one revolution can be expressed in
terms of the perturbation Aa of the semi~-major axis a., The relation

between a and E given in equation (5.1) is differentiated once and
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written in the difference form as

aE = s pa (6.1)
2a

from which Aa is given by

Aa__Z::— AE (6.2)

Substituting for AE from equation (4.62) the change in Aa for one

revolution is obtained from (6.2) as

1

2
ra(2m,€) = -4Ka (1+e)[ﬂ(§;€)] {1 +§%§)— + 0(;12)} (6. 3)

This relation is valid over most of the range of € except
near € ~ 0, Now the value of Aa given in equation (6. 3) is for one
revolution, i.e., for An = 1, Consequently equation (6.3) can be

written as

[
]!—l

2
ra 1+€,2 2 [ 1-8€+3¢ 1 ]
£ - axara GO @ |14 GRS o)

Now using total differentials for ba/An the above expression

is rewritten as

1
2
da _ 1+e 1-8e+3e¢ _
Therefore
i 1
1 1 2 2€,2 da
dn = - —5— == ) ()
45°x (1F€) w0 lre 14_1-86+362 B
8e(1+e )p

Finally expanding the denominator for large p, this is

written in the following form



-45-

1 1 )
dn = - L () €7 1 - 1‘8”3’62+ ——-Yda  (6.5)
R 2w T 032 ge(1relp .

We define the number of orbits a particle makes in dropping

from a; toagas N given by

i
N=- | an (6.6)
2
where a, and a; are the initial and final values of a. Consequently

integration of equation (6.5) yields

L a y 3/2
1A 1/3 2
_1 py2(tdaf e 1-8¢+3¢€
N =-g &7 S‘ :27 ( ife ) {:1 T Be(lfe)p :l (6.7)
o

Here p and K appear as parameters. Before the orbital life is
determined from the above integral, the integrand has to be ex-
pressed in terms of the semi-major axis a, i.e., the eccentricity
€ has to be expressed explicitly in terms of a.

The relation between a and € as given‘ by (5.3) is
r =af(l-¢
p (1-€)

Solving for €

a-r
¢=—2 (6.8)
Hence
2a-1
1+e = —E-"'E (6-93«)

and
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2

1 - 86+ 3 2

[Srp - Za(2a~rp)] (6.9b)

=

2
a

Substituting these expressions in equation (6,7) the integral

for N takes the form

1
% &5 (a~1 ).2 ( 3r2—2a(2a—r )
N—__l_(_R_) S‘_‘_i_% 1__1__ P R (6.10a)
- 2K ‘2w a (2 2 8p (a-r_)(2a-r_) Ve
¢ a-r_) p P

or

e

L 24 (a-1_)
N =L (_p_,zg da
(

2K ‘2 2a-r )3 2 a
a
{
1 a. 2
= 3r~-2a(2a-r_)
1 P 2 ’ P P da 0
a (a—rp) (Za-rp)

This can be integrated if the following transformation is used. Let

Sl Y=+ fan
2{a-r_)=r_tan ¢
p p

——
o~
°
(]
et

~——

where { is the new variable. rp is assumed constant in the analysis

as mentioned earlier. Thus
2
da = rp tanyi sec dy

Using this transformation the integral for N in equation

(6. 10b) is transformed into the following form

N = .L(E)% _1_§ sin” ycos ydy
p Z—Sinzq,l

(B)%S‘ 3—(1+secz¢)sec2¢ ay .

p (1+sec2¢)sec3np (6.12)
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This expression is in a more convenient form for integration.

This is evaluated by using Dwight's integral tables, as

1
1 2 -1 sin .
N = == () | V2 tanh sing siny
2Kz w [ V2 ]

1
1 1 21 3 -1 sin{ .3 .
e = () [_._ tanh - sin”y - smkp] (6.13)
8Krp p T V3 N

But siny is given by (6.11) as

siny

"
ot
o
=)

£
0
0
]

=

i

(6.14)

1
5
A ‘
o
]
H
He]
\/Nl'-‘

Finally after substituting equation (6.14) in (6.13) the total number

of orbits a particle makes in a given interval a; to a, is written as

f
1
-1 p 2 3 -1 -1
N = Krp (2,”) g(l - -8—5) [tanh q; - tanh qf]
1
= (l - ZE) [qi - qf]
1 3 3
+E’§[qi = qf]% (6.,15)
2 a-r
where q = P

By using equations (6.8) and (6.9a) q is written as

2_ 2T, ¢
- Za-rp T Ite (6.16)

q

By substituting for q from (6.16) in (6.15), N is expressed explicitly

as a function of € » Thus



1 1 1
-1 p 3 -1, € 2 -1, € 2]
N(Ef) - Krp (2.1'1') g(l - 8P) [tanh (ﬂ?)l ~-tanh e f

-

1 € € \?
- (1 - Zi)_) [(Ijrtg)i - (I;é—);}

3/2 3/2
1 € €
* 2p [(He )i B (1+€ )f } § (6.17)

where subscripts i and f refer to initial and final values.

This is the number of orbits a particle makes in decaying
from an orbit of eccentricity €; to a final orbit of eccentricity L
As mentioned previously, the orbital lifetime NO is defined as the

number of orbits the particle makes while its eccentricity decays

to zero, i.e., N_ = N(e

o 0.

f =
By setting €= 0 in equation (6.17) the orbital lifetime is

obtained as

1 L
_ 1 2 3 -1, € ,?
N, = g 29 § (1 - g5) tanh™ (e
1 3/2
1 € 2.1 1
- - gp) e g e } (6.18)

It has already been noted in part l of section IV that the use-
fulness of the solution for the energy perturbation AE is not good
when € has a value very close to zero., The same inaccuracy is
carried over into the derivation of No o (Auxiliary calculations
near € =~ 0 showed the error in the estimation of No to be about 15%.)
Since we are looking for a few orders of magnitude estimation of
the flux concentration this error is considered té be insignificant,

Finally, when the particles are captured their eccentricities
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are very close to one, Therefore we will set €, = lin ‘ghe estimation
of the total orbital lifetime as it is counted from the tirhe the parti-
cles are captured. This only causes an insignificant error in NO.

Hence the total orbital lifetime is

1

_ 2 0.09216 | _ )
N, = R () [o. 1743 + T] =N (r_m) (6.19)
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VII, CONSTRUCTION OF STATISTICAL MODEIL

OF MICROMETEORITE DISTRIBUTION

So far in this analysis, the motion of a single particle in a
dissipating medium has been considered where the particle is as-
sumed to be obeying Kepler's planetary laws at every instant, A
theory for the capture mechanism and the resulting orbital lifetime
has been developed from the solutions for the perturbation AE of
the specific total energy of the particle.

Now a statistical model of the particle flux distribution in
the interplanetary space is developed. In this model an observer
located on a sphere of radius rob> R counts the number of particles
crossing this sphere from both sides.,

Let us consider a swarm of particles orbiting around the
sun at earth's distance from the sun. These particles are assumed
to have a mass distribution as well as a velocity distribution.

Since these particles are orbiting at the earth's distance, an ob-
server on the earth will see particles moving all around him., With
such a picture in mind, let us observe the behavior of a single par-
ticle orbiting around the sun.‘ As long as this particle does not feel
the gravitational attraction of the earth its orbit will be unperturbed.
Perturbations due to other planets, etc., are neglected here., When
the particle feels the gravitational pull of the earth, its orbit is
perturbed and its motion becomes hyperbolic with respect to the
earth. Let us attach a plane perpendicular to the direction of motion
of this particle and position this plane at the place where the parti-

cle begins to feel the gravitational pull of the earth. It will be
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located at an infinite distance from the earth. Also it serves as a
reference plane that divides the two body motion, i.e.,, sun-particle
motion, from the three body motion, i.e., sun-particle~earth
motion. Once the particle pierces this plane, it is dominated by
the earth's gravitational pull.

It is clear from this description of the particle motion that
there exists such planes for all the different particles orbiting at
earth's distance from the sun. The implication here is that every
particle has its own plane at infinite distance from the earth which
separates it from the region in which the gravitational pull of the
earth is present.,

However for the comnstruction of the present statistical model,
these various planes are superimposed upon each other to obtain a
single representative plane at an infinite distance from the earth.
This superposition simplifies the construction of the model. Par-
ticles crossing this plane feel the presence of the earth, otherwise
their orbits are unperturbed by the earth. This is shown in figure 2,

This plane is designated the '""§-plane,.,'' Distance along
this plane is measured in terms of §{. After the particles pierce
this plane they will move along hyperbolic trajectories with respect
to earth.

Liet the relative velocity of the particles with respect to
earth be VOO for all the particles beyond the §-plane, We will
now trace the path of a particle after it has pierced the §-plane at
a given §. The particle comes under the gravitational pull of the

earth and hence approaches the earth along a hyperbolic trajectory.




wbh 2w

- & - Plane
Plane at Infinity

Figure 2, Diagram showing ''§~-plane!!
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The distance of closest approach rp to the earth depends on the
initial angular momentum and velocity Voo' ‘Now from the con-

stancy of the angular momentum we have

EV. _=r V (7.1)

where Vp is the velocity of the particle at perigee., And the energy

integral gives the relation
ve= 2k, y2 (7.2)
r oo
which for r = rp gives

VZ:_Z_E."’VZ
P r Q0

703
p T, (7.3)

Eliminating Vp between (7.3) and (7.2), and solving for §

gives
£ = (1+———1“i—2 5} (7.4)
\ rpVOO"/ P

This distance § is called the impact parameter. Equation
(7.4) says that all particles having impact parameters less than or
equal to £ for a given VOo will intersect the sphere of radius r_.

Now let M(m) be the number of particles with mass between
m and m + dm in the interplanetary space streaming through a unit
area per unit time., Then M(m)dm represents the differential flux
of micrometeorites with masses between m and m+dm.

From zodiacal light measurements and other observations

a general model for the interplanetary particle flux distribution
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has been established by various investigators in this field. This is

represented in the following form
M(m)dm = 'Clm—y dm (7.5)

where C1 and y are constants. These constants have not been
clearly established. Various authors have suggested different
values for Cl and y.

However, it has been established that M increases with
decreasing mass of the particle. It is clear that the exponent y
must have a value greater than 1 in order that the cumulative mass
distribution is finite. This differential distribution function M(m)
is independent of the radial distance r and also the impact parame-
ter £. It is a measure of the constant flux distribution far away
in the interplanetary space.

Now consider the following picture of the model shown in
figure 3. The §-plane is divided into annular regions as shown.
Particles are assumed to be streaming through these annular zones.
The sizes of these zones are given by gR, «‘E,D, «f,G and §. For a
given Voo’ ER is determined by the radius of the earth, gD is cal~
culated from the perigee radius corresponding to the capture of a
particle of a given mass m and gG is finally determined by the
radius of the observer sphere. § corresponds to impact parame-
ters of particles that are greater than f_E,G or §D depending on the
radius of the observer sphere. Particles with § > §G > §D or
£ > gD > {E,G are not seen by the observer and hence are not counted,

Now «‘;R is determined by substituting rp = R in equation (7.4). Thus
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& - Plane
' Observer
Earth Sphere
rp(m, Vo)

Figure 3. Diagram of counting zones for gG > &5
shown in cross section
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1

£ =R (1-+—§&—>§ S (7.6)
R RVZ

(o o]

éR corresponds to that impact parameter where particles

with £ <£, impact directly on the earth,
R 3

Now an observer sitting on the sphere of radius r p, counts

1

' the particle flux crossing the sphere as described below,

All particles having impact parameters § < ER collide with
the earth directly and are destroyed. Hence the observer sees
these pa:éticles only once as they pass by him to collide with the

earth. Therefore the total flux he counts for particles with gng

is given by

e R 2 2
Ni.{ = > M(m) = > R > M(m) (7.7)
4rr 4r RV
ob ob o

Here Top is the radius of the observer sphere,
Thus the quantity in the square brackets represents the
fraction of the particles that strike the earth for a given Voo’ We

, N!
therefore define a flux multiplier MR = Np (Voo) which represents

the fraction he counts.

§D is the impact parameter that corresponds to a given
perigee distance rp at Which a particle of mass m and velocity Voo
is captured, As explained before capture‘ is the result of energy
loss due to the presence of the aerodynamic drag. ‘Hence QD is
determined from the criterion for capture given in section 5. This
criterion given in equation (5, 16) estimates the maximum perigee

distance rp at which an incoming ‘particlé of mass m and velocity
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Voo is captured by the earth. Therefore gD is calculated by choosing

a given Voo and m and calculating the corresponding perigee distance

P

in equation (7.4). Consequently, for a given sized particle éD takes

r (m,Voo) from equation (5.16) and then substituting this rp and Voo

the value

[

Epy = T m, V) {Hr (m,\?)vz} (7.8)
p oo’ oo

All particles with this mass m and velocity Voo will be cap-
tured by the earth as natural satellites of the earth if their impact
parameters have values between &Rs £ < gD,

Now these captured particles have certain orbital lifetimes
N0 as derived in section 6. This number No varies inversely with
the perigee distance and density at perigee as observed from equa-
tion (6.19). Since the density Py increases exponentially with
~decreasing rp, the lifetime No decreases with decreasing r_. But
rp is a function of § as shown in equation (7.4) varying directly with
£. Hénce, for a particle with an impact parameter £ close to éR,
NO is very small and for a particle with £ near ED, N0 is large.
Therefore it is observed that NO is a function of £ for a captured
particle.

Consider one such captured particle. Its impact parameter
is gR < £ < £, Then our observer sitting on the observer sphere
of radius b counts the particle twice per one orbit as it goes into
the sphere on one side and comes out on the other side. But the

particle makes No(é) orbits, Therefore the total number of times
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that the observer counts this particle is ZNO(E). Then the total
flux for all particles is the integral of NQ(E,) over all §£. Therefore
the total flux designated Nf) for gR <E < gD is
2 x 2tM D
N = £X ST N_(£) £d§ (7.9)
D 2 o)
4ﬂrob :
R
The limits of integration £ and §D are calculated from
equations (7.6) and (7.8) for each Voo' In terms of the flux multi-

plier, this is written as

N_=D 1 ngN (€) £dg (7.10)
D M rgb : o °
R
Now {?,G is directly related to T o It can either be greater
than éD or less than {":‘D depending on the value of r _, of the observer
sphere. Thus we have two possible cases.
Case 1: §G > &D
In this case the observer counts some more particles as the
observer radius b is bigger than capture radius r_. Particles
with impact parameters &D £§ < E’G are perturbed by the earth and
hence pass around the earth along a hyperbolic trajectory. Then
the observer sees these particles passing thréugh the sphere on
one side and going out to infinity on the other side. Thus he counts
thesé particles twice. Therefore the total flux designated N, for

G
all particles with §D <¢ < E,G is given by

2xTM .2 L2
4ﬁr0b
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where
N z
G = Top (1 +”‘“§"’"> (7.12)

In terms of the flux multiplier NG’ it is

Nl

G_ 1 2 .2

M z (&g~ &p) (7.13)
2r

ob

All the other particles with § > Z—,G are not counted in the
analysis as the observer does not see them piercing the observer
sphere. Consequently, the flux of all particles with a given Voo

and m integrated over all § when §G > gD is

v A [ 1
Nl-NR+ND+NG

or in terms of the flux multiplier N1 this is

| £
N D
N o=oLa b Ye2 0y U7 N (g)easrace
'R Jg

\.,
o
~J
Yt
1
=

1 2 o
4r
ob R

Case 2: §G< gD

In this case the observer sphere radius T b is smaller than
the drag capture radius rp(m’voo)° The observer will not see the
captured particles lying in the annular zone for §G< £ < §D till their
perigee distance reduces to a value smaller than the observer
radius rope This will occur only after the particles have achieved
a near circular orbit. But in the present analysis it is assumed
that the perigee position remains approximately constant. Conse-

quently the observer will not count the particles that are captured
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outside of C—,G. However, calculations have shown that this affects
only the smaller sized particles, The implication here is that the
basic model is unaltered.

Consequently Case 1, where gG > gD, is chosen for compu-
tation in order to include particles of the smaller 1 micron size in
the overall picture.

Now all the fluxes given by equations (7.7), (7.9) and (7.11)
are divided by 4Trr2b. Consequently, they give the values of the
flux averaged over the observer sphere. The flux multiplier given
by equation (7.14) evstimates the average fraction of particles,
with a given initial velocity Voo’ crossing an arbitrarily oriented
counter of unit area located on the observer sphere of radius Tob
in unit time.

Equation (7. 14) representing the total spatial flux multiplier
N1 is a function of VOo and m. In order to obtain the total integrated
flux distribution, N1 has to be integrated over both Voo and m.,
However, in this paper only the velocity integfation is performed,
thereby giving a differential flux distribution of masses between

m and m + dm.
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VIII. COMPUTATION OF MICROMETEORITE DISTRIBUTIONS

The differential flux distribution is computed by integrating
the statistical model developed in the last section first over the

impact parameter § and then over the velocity Voo°

1. Integration over the Impact Parameter §

Now from equation (7.14) we have for the flux multiplier

gD
N1 = ._._1_2__- {gé + 2 (gé-gé)+ 4 No(g)gdg} (8.1)
4r
Ob gR
with
2 2 2
R VoiR
2 2 2
£5 = r“(V_,m) (1 + i )
D p @ Voirp(m,Voo)
and

66 = T o (1 g 1}
Voorob

Both ER and §G are directly determined once V, is fixed. But the
estimation of «‘;D is a little complicated. First we have to determine
the maximum capture perigee distance rp at which a particle with a
given VOO and m is captured. This is done by using the capture cri-
terion given by relation‘(Se 16). Then this s together with the
velocity Voo is used to determine gD. Once §D is calculated for a

given Voo’ then the first two terms on the right hand side of equation

(8.1) are determined., However, the evaluation of the integral in the
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last term of the right hand side is still complicated.

Let us now define the integral in equation (8.1) as
gD
T,= 4§ No(g) gdg (8.2)
gR

Now equation (6.19) is rewritten in the form

1
_0.1743 , 'p \? [ 0.1322H]
No(rp"m) T A pr (Z‘ITH) 1+——}—-—— (8.3)
c A 1"p"p
where A .‘—:—-—]—?—- =-I—<—
1 2 p
P
Substitution for No from (8.3) in (8.2) yields
T - 0.6972 D eae (rE )% 1+0.1322H] (8.4)
17 A, p r ‘'2mH T °
1 p P p -
er

In order to evaluate Tl’ the integrand in (8. 4) has to be
expressed explicitly as a function of £&. The relation between §

and rp is given by (7.4). Solving for rp we get

W vo‘i 2\2 |
= 5 <1+ K > -1f = x (8 (8.5)
[0 0]

Since the density pp and the scale height H are implicit functions of
rp, they cannot be expressed as explicit functions of £, However
both pp and H are tabulated for a wide range of values of r_. Con-
sequently we have turned to numerical integration for the evaluation
of the function Tl' Simpson's rule is used in the numerical inte-
gration.

It is observed that the computation becomes very involved

if the integral in equation (8.4) is numerically integrated in terms
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of the impact parameter £. This is because the tabulated values of
P and H are expressed in terms of rP at some convenient intervals,
Then for every value §, rp as calculated from (8.5) can be different
from those for which pp and H are tabulated. This leads to interpo-
lation. This is easily overcome by using rp as the variable of inte-

gration instead of £, Thus rewriting equation (7. 4)

2pr

§2= 21+ 2t 5 | = r2+—————-EZ (8.6)
P r V Py
p oo (o)

Differentiation of eqaation (8.6) yields the necessary relation be-

tween the differentials d§ and drp. Thus

2
26dt = 2r_dr_+ 2B dr
bdE = 2rp drp + "5 9%

fe's)
Therefore
dg = {1+ - — d 8.7
o= (10 ), o, o
o p

and (8.8)

£ = gD ; rp = I‘p(m,Voo) at capture,

Substitution of (8.7) and (8.8) in (8.4) yields the following integral

for T1

iy

-1 p. r_ 3 dr
_ 2.7815x 10 c [ py? B .0.1322H p
L R (R A REE

1 R rpvoo p p

(8.9)
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This is simplified further if rp is replaced by the variable z

given by the following relation

(8,10)

where R is the earth's radius.

Here z is the height above the earth's surface at which the perigee

point of the particle is located.

Whenr =R; z=0andr_=r (m,V_ ) at capture; z =2z .
p p P - c

c
Then
7 1
-1 cCr_ 3 \
T = 2:7815x 10 S‘ 2 1+ “ | 4 0.1322H} dz
1 A H T T
1 0 p P
(8.11)
-1 c
= 2- 7815 x 10 S T_(z)dz (8.11a)
0
and hence the ﬂux multiplier over all § is given by
N, = ]+ +2 P
1 % \ ) L b\l 2, )
(I)
P 2
c V' r
o p,
- T 0.1322H\ a
2.7815 x 1071 (S(2)° {1+ |1 + & 1322H} dz
+ x H - T o
r V p jo)
1 0 p oo
(8.12)

Equation (8.11) is first integrated numerically according to

Simpson's Rule and then the flux multiplier is evaluated from (8.12)

The Simpson's Rule is given by
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Xn
S‘ f(x)dx = 5X3~ (5 + 4f

X
O

+ Zfz + - +2fn +4f +£n) (8.13)

1 -2 n-1

and X =X + nAx and n is even, with

fn =f(x,); ox= X=X = Xy =Xy = ---

The integrand in equation (8.11) is a smooth function. Therefore n
is chosen to be 10 for all integrations. The evaluation of Nl is as
follows,

First a particle of given size and mass is chosen. Then for
this particle a capture perigee distance rp is chosen. Using the cap-
ture criterion given in section 5 the initial Voo necessary for this
particle to be captured at this rp is computed. With these values of
m, Voo and rp the integral given in (8.11) is evaluated numerically.
All values of pp and H are taken from U. S. Standard Atmosphere
1962 (7). Then N1 is computed from (8.12).

Again another rp is chosen for the same particle. And a new
Voo is computed from the capture criterion. Another value of N1 is
computed for this new Voo and so on. Thus evaluations of the flux
distribution over a wide range of values of the velocity Voo from zero
to about 25 km/sec are carried out.

Also this computation scheme has been used.to calculate the
flux for four different values of the radius of the observer sphere
ranging from 7500 km to 25,000 km.

‘In all the computations the particles are assumed to be spher-

ical in shape and their material density P to be 1 gm/c.c. as before.

A sample calculation of the flux multiplier N1 for a particle,
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10 microns in diameter, is shown below., Now
S Cp s
T 2m 2

!
P

A

for a spherical particle. Here P is the density of the particle and
d is the diameter. The value of the drag coefficient CD’ as men-
tioned previously, is very nearly equal to 2. Consequently, it is
taken as 2 in the computations. Then

2

- -4 (km)
Al =1.5x 10 Rg

for our test particle,

Now the capture perigee is chosen to be z. = 700 km. Hence
r =R+ z = 6378 + 700 = 7078 km. The radius of the earth is taken
as R = 6378 km. At this altitude pp = 1,537 x 10—4 kgm / (km)3 and

H=97.435 km. Now

K=A.p
l"’p

Hence

n

K = 2.3055 x 10°0 /km

r 1
p = ﬁp-= 72.6433 and p? = 8,5231.

Substituting all these values in (5.16), the velocity Voo necessary

for the capture of the particle is calculated to be

v @ (r ,m)=1.5234x 10"
o p

2

or
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V_(r_,m)=0,1234 km/sec
co - p

This says that a spherical particle 10 microns in diameter
and 1 gm/c.c. density orbiting around the sun with relative velocity
Voo = 0,1234 km/sec will be captured by the earth as a natural satel-
lite of the earth when its perigee distance is less than or equal to
700 km above the earth surface,

Then with these values of K, VOo and z_» the flux of particles
originating from the capture mechanism is calculated from the inte-
gral for T, given by equation (8.11).

The following Table II illustrates this integration. Using

Simpson's Rule of integration,

700

S‘ T dz = 139x 7.9577 x 10° = 1.85679 x 1019

0
Therefore

. 700
r _2.7815x107h
1 Kl o
0
= 3.4431 x 1013

And

gé = 33,3814 x 1010

£2 = 37,0456 x 1017

The observer sphere radius is chosen to be r_, = 7500 ki for this

ob

test case.




(km)

70
140
210
280
350
420
490
560
630

700

r
P

P

(km) kgm/(km)>

6378
6448
6518
6588
6658
6728
6798
6868
6938
7008

7078

1.225x107

8.7535x10%

3,3940

2.558%10 1

5.315%10 %

1.465x10" 2

4.816x107°

1.801x10° >

7.464x10'4

3.3o4x10'4

1.537x10" %

-68-

r
H:Ux-ﬁzmp

H

(km) = p
8.4345 756,180
6.5733 980,9380
23,257 280,2597
45,315 145,.3823
55.859 119.1929
65.028 103,.4631
73.613 92.3478
81.324 84,4523
87.433 79.3522
92,786 75.5286
97.435 72.6433

TABLE II

ot

r. 2
B

2

1
:p2
27,4987
31.3199

16.7408

12.0574

10.9176
10,1717
9.6098
9.1898
8.9080
8,6907

8.5231

Sample calculation for flux multiplier N1

T
O

9.2131x10‘5

1.4525
1.9812x104
1.8743x105
8.0837x10

2.7044x10

o o~ O

7.6934x10

1.9476x10"

4.5097x10"

9.8408x10"
2.0543x10°



-69-

2

10
gG

= 39,2658 x 10

From (8.12) the total flux of particles with velocities Voo = 0,1234

km/sec is calculated to be

1

N, = 1.5471 x 10° M (10p)

or the flux multiplier

5

N)
N, ==L =1,5471x 10 (8.14)

1~ M

Similar calculations for this 10 microns particle for various
capture perigee distances are carried out. Calculations are also
made for three other particle sizes with diameters equal to 1 mi-
cron, 100 microns and 1000 microns and the four different observer
sphere radii mentioned previously. The results of these computa-
tions are plotted in figures 5-8 in terms of the flux multiplier N1
and Voo on a log-log plot, These curves show that the flux multiplier
decreases monotonically with increasing Voo' It is. observed that
this number goes to infinity like Vo:l as Voo =+ 0. This can be ex-
plained in the following manner.

From the capture mechanism in section 5, the relation

between Voo and rp for a given particle is written in the form
1

4“A1Pp(1’1:}-{-)z (4r_ - H)

vZis 2 . | (8,15)
e[z a0 @7 (e + om0 |
pr
P
with K=Ap =D
! TP T Zm Pp



-70-

For large rp this is written as
1

3

4PAP(E§~) 4r
2 1"p r P
V© o< P
o <

[\

TH
rp[ - Alpp(T) °4rp]

e

as r >> H,
p

As rp grows very large pp -0 exponentially. Consequently

as pP = 0 we have

=

2 wH, 2
VOO < SMlpp(—;;) (8. 16)

Thus the density p_ behaves like V 2 as p “*vO.
P o P

Let us now examine the function T, defined by equation (8.11)
£

as Voo = 0. For very large rp this can be written as
L

V7
-1 c r 2
~ 2.7815 x 10 0 dz
T, = ( A }5 <1+ 2>(H) o

1

0 1.pvoo P
Then as 'v’oo—" 0 this reduces to
Z 1
c r 5
1 2 d
Ty~ § 5 (F) o (8.17)

0 r V pp

p o

Substitution for the density from (8.16) in (8, 17) yields the following

expression of T. as Voo - 0, i.e.,

1
Z
T~§C 1 dz
1 ) - v 2 V‘Z
p o o)
o 1 S‘dz
~ 2 | &2
\) p
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Hence
1 B -
L N .ﬂ
Tl.... i n R asg V 0
o0

Therefore the singularity in the flux concentration arises
from the fact that density pp behaves like Vog as pp -0, This in

turn gives rise to the four zeros in Voo observed in the figures,

2. Integration over Velocity Distribution

It is observed that the interplanetary particles have a distri-
bution of velocities Voo' Consequently the computation of the total
flux of particles must take this velocity distribution into considera-

tion, Hence we define the total flux over the velocities as N.!

F
[00]
| I— 1
N = MS Ny @V ) dv_ (8. 18)
0
or
Ny, S0
Np = 5+ = 5 N, @(V_)dv_ (8.19)
0

where NF is the flux multiplier and ga(VOO) represents the velocity
distribution in the interplanetary space. Henceforth NF will be
studied in all the analysis.,

Now the form of the distribution function gD(VOO) is not known,
However a simple model for the distribution function, based on
physical explanations consistent with the observed behaviour of par-
ticles, is assumed.

Let us now consider a particle orbiting around the sun along

some Keplerian trajectory in the same plane as the earth's orbital
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plane. This is shown in figure 4,

Now from Kepler's planetary laws objects with the same en-
ergy and orbital elements cannot exist as separate orbiting particles
in the solar system. Ior only such objects the relative velocity Voo
between them is zero. Then this says that, at the earth's distance
from the sun, particles with relative velocity Voo = 0 with respect
to the earth cannot exist in the solar system. All such particles
will have been captured by the earth. Consequently it is concluded
that the velocity distribution defined by gD(VOO) must go to zero as

V__goes to zero. Hence
oel
@(V_ =0)=¢(0)=0 (8.20)

It is also known from the observed meteor velocities that
meteors with very large Voo are very few in the solar system.
Thus it is expected that gD(VOO) will go to zero as Voo»oo., Conse-

quently it is concluded that

gD(VOO—*oo) =0 (8.21)

Using these above-mentioned arguments a simple model for
the velocity distribution function is written in the following form:

-5V2

a O
@(V_)=BV_ e (8.22)

where a and B are positive constants.
This model of the distribution function behaves like the tail
end of a Gaussian distribution function as VOo - oo and goes to zero

as some power a of Voo as VOO—> 0. It is a simple function with two




3=

Particle

Figure 4. Schematic showing the orbits of the earth and particles
around the sun
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parameters a and B. The constants; a and B are evaluated in the
following way.

In part 1 of this section, it has been pointed out that the flux
multiplier N,(V_,m) has a singularity of the type Voo—4 when V__
goes to zero. But the observational data from various measurements
give a finite flux concentration in the vicinity of the earth. Conse-
quently we require that the value of the exponent a iﬁ equation (8.22)
be greater than 3 in order that the integral (8.19) be finite.

Qualitative argument shows that an appropriate value for q is
4. Now the orbit of a particle in space is described completely by the
following six elements a, €, i, t, wand €. These elements are the
semi-major axis, the eccentricity, the inclination of the orbital plane,
the epoch that fixes the position of the particle in its orbit relative to
some time scale, the orientation of the orbit in its plane and the
angle of the ascending node measured from the vernal equinox re-
spectively. However w and 2 correspond to the orientation of the
orbit in its plane and the orientation of the plane, If now a = ag
while the other elements have the same values as those of the earth,
then the relative velocity VOO = 0, Againif e = €, with the other ele-
ments the same V00 will again be zero. Similarly Voo will be equal
to zero when i or t of the particle is equal to igporty with the other
elements the same. When € = €5 with all other elements being
the same the concept of w vanishes and similarly for i = iE the
concept of € vanishes, Hence w and £2 do not contribute to zeros
of Voo when the other elements are the same. Thus there are four

zeros corresponding to Voo = 0 whenever a, €, i and t agree with
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those of the earth. From this simple argumenf, an appropriate value
for a seems to be 4. Due to the lack of more detailed knowledge
about the distribution function at this time a is chosen to equal 4,
Thus

s P

oV )=BV_-e @ (8.23)

In this form, ga(VOO) is a simple function with a single parame-

ter B. Differentiating ¢ with respect to Voo and setting the derivative

equal to zero, gives the value of V, for which @ has its maximum.
max
This gives V, as
BIVES Yoornax
v: =2 (8.24)
o B
max

Opik (8), from the study of the minimum size of the spherules
collected from the sea beds, has remarked that the geocentric ve-
locities of the micrometeorites are only slightly larger than the
terrestrial escape velocity. In fact he concludes that the smaller
particles have velocities between 11.1 and 12.2 km/sec which gives
an upper limit for Voo as 5.1 km/sec. This implies that these small
particles in the solar system have near circular orbits with their
heliocentric velocities differing very little from that of the earth.
This is not unexpected since the Poynting-Robertson effect acts on
these small particles with eccentric orbits and circularises their
orbits. The smaller the particle the more severe the effect. How-
ever there is a limit to the size which can exist in the solar system.
This limit is obtained by equating the gravitational pull of the sun

to the radiation pressure, This is given by Beard (9) as
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* _ 0,600

d = microns

Pm
with P in gms/c.c..

For our particles this limit is about 0,6 microns, It is clear
from this that particles of about 1 micron size have a smaller popu-
lation as they are being blown away from the sun., Thus it is con-
cluded from the above arguments that § can have a value greater

than or equal to 1/3. Therefore
B> 1/3 (8.25)

for which V__ at peak of @(V_)=2.5 km/sec. B =1/3 corres-
ponds to the xa}fllest value that is consistent with the conclusions
reached by Opik and others in this field. Most of the computations
are made with § = 1/3. However, co;mpu.tations for g > 1/3 will be

discussed later. Now the constant B in equation (8. 2'3) is determined

by the normalization
oo
S‘ cp(VOO) dVOo =1
0
or
o]
-BV
BS‘V4e ® gV =1
0 oo
0

The evaluation of this integral yields

5

3

B =3B _ (8. 26)
3V

Finally the distribution function go(Voo) is completely determined as
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5
2 2
2 -pV
v )=28_yv% " @ (8.27)
(P (o8 3\/'1_—1_‘ (o8}

This representation fof go(VOO) is used in the integration of
equation (8.19) to evaluate the flux multiplier over all the velocities,
Again numerical integration using Simpson's Rule is carried out for
different particle sizes and observer radii. These results are
plotted on a log-log scale in figure 9 as a function of particle size,
This number NF represents the differential flux multiplier measured
by an arbitrarily oriented stationary counter of unit area in unit
time located on the observer sphere,

The flux multiplier due to a purely gravitational concentra-
tion can easily be calculated from equation (7.14) by letting the mass
m > . Whenm — oo,ED - ER, Thus

N g=—5 {zg’é-sé} (8.28)

4rob

Substitution for SG and SR from (7.12) and(7.6) in (8.28) yields

N, (Vom) = 5 - 5 (B—) + (2 - 2-) —L (8.29)
ob ob 2r .V
ob oo

Integrating N1 over the velocity distribution function yields

G

o0
NFGZS N, @ (V) av_
0
1 1R 28w, R, (8. 30)
2 4 Tob 3 r b Tob

For § = 1/3, this takes the value
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Npge=1/31=4 - LR o R - (8.31)
FG 2 4 Tob 9rob Tob .
This is the asymptotic value of the flux multiplier NF as the mass
of the particle goes to infinity. This is shown in figure 9,
All the above-mentioned calculations can be extended for
larger particles. However, a calculation of the total flux multiplier
NF for a 1 cm diameter pa:rticle shows that for  larger particles

NF approaches NFG'very rapidly.
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IX. RESULTS AND DISCUSSIONS

In this work, a theory of atmospheric capture of microme-
teorites and the resulting orbital lifetimes has been developed. At
the same time a statistical model of the micrometeorite flux in the
interplanetary space has been derived. Then this has been com-
bined with the capture theory to obtain a consistent picture of the
flux distribution in the neighborhood of the earth.

The results of the computations are plotted in figure 9, In
this plot the ordinate represents the differential flux multiplier and
the abscissa represents the mass of the particle in terms of the
diameter. This can be done without any difficulty as the particles
have been assumed to be spherical with constant mass density.

It is observed in figure 9 that the computed values of the
flux multiplier lie on a straight line in this range of particle sizes.
Consequently, the functional relation between the flux multiplier and

the size of the particle can be expressed in the form

N I : :
NF =3 " Bld (9.1)

where d is in centimeters.,

Now four of the curves shown in figure 9 correspond to the
four different values of the observer radius, namely 7500 km,
10000 km, 15000 km and 25000 km. These curves show that the
flux multiplier decreases as the observer radius increases. This
confirms the reduction of the observed particle concentration as the

observer recedes from the earth.
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Constants Bl and k are easily determined from the figure,

They are given in Table III below.

TABLE TII

T op k) B By k
7.5 x 10° 1/3. 7.701 0.04615
1.0 x 10% 1/3 6.64 -0.03273
1.5 x 104 1/3 5.225 -0.01734
2.5 % 10% 1/3 3,556 -0.01155
7.5 x 10° 2 99, 04 ~0.1044

The exponent k in equation (9.1) is found to be negative.
Consequently the flux multiplier increases with decreasing particle
size or mass, This implies that smaller sized particles are more
affected by this mechanism than the larger ones, But it is noted
that the magnitude of k is quite small and it cannot possibly account
for the 4 orders of magnitude difference between the concentration
near the vicinity of the earth and that in the interplanetary space.
It is felt that the reason for this small value of the flux multiplier
is due to the very sméll value of 1/3 chosen for the parameter §.
This smallest value has been chosen so that it is consistent with the
conclusions reached by Opik and others. But p could have larger
values. Then a larger value of B implies that the orbiting particles
with this value of B have more circular orbits than previously as-
sumed. Such an assumption of large B is not very inconsistent,

Consequently, a value of B = 2 has been used in the computation of
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the flux multiplier. This value of 2 for B corresponds to Voo =1
km/sec at which (p(VOO) has a maximum. The flux multiplier cor-
responding to B = 2 has been calculated and is plotted in figure 9.
This new calculation shows that the value of the flux multiplier is
increased by about 20 times for the smaller particles over that for
B =1/3. This leads to the conclusion that the flux multiplier is quite
sensitive to the value of 3. Exponent k for this case is evaluated
from the curve and is found to be increased by about 3 times.
Alexander (2, 3) infers that smaller particles have orbits that are
more circular than the larger ones. This is not very unexpected
as the Poynting-Robertson effect is more severe for smaller parti-
cles. This says that the smaller particles have more circular
orbits. Then the implication here is that smaller particles have
smaller relative velocities than the larger ones which in turn im-
plies that B is larger for smaller particles. This leads to a con-
clusion that the value of B may depend on the mass of the particle.
Then it is not too unreasonable for B to be as large as 10, which
corresponds to Voo ~0,5 km/sec at the peak of velocity distri-
bution function, Argzi{ue of 10 for B ‘increases‘ the flux multiplier
by about 3 orders of magnitude which then brings it near the num-
bers that Alexander predicted from the Mariner II measurements,
Thus the analysis offers an explanation for the micrometeorite con-
centrations near the earth, when the parameter B has a value of
about 10 that is consistent with the above-mentioned discussions.
However, it must be pointed out that the velocity distribution has

been assumed by using consistent physical arguments.
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Because of the present day technological advances in space
exploration, the velocity distribution in the interplanetary space can
be measured. This could be done by sending space probes containing
microphone detectors through the interplanetary space. These de-
tectors should be of large dimensions and be capable of detecting
different sizes of masses and energies. Then these measurements
could be used to determine the velocity distribution empirically and
compare with the assumed velocity distribution mentioned above
and also provide some data regarding the nature and dependence of

the parameter B on the mass of the particle.
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Figure 6., Flux Multiplier Nl vs. Relative Velocity Voo
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APPENDIX A

DERIVATION OF SERIES SOLUTION FOR Ar FOR 0 <€ € < 1

It is found more convenient to use the eccentric anomaly E
instead of the true anomaly @ in the derivation of the series solution
for Ar, The relation between E and @ valid for all values of 0 £ €<1
is shown in figure A,

From the geometry of the figure o

r COS8 (A, la)
and |
2.4 ’ :
r sin @ = a(l-€7)? sinE {(A.1b)

i
2

where (1—62) is the scaling factor between a circle and an ellipse.

Squaring and adding these two relations, we get
r = a(l + € cosE) , (A, 2)

Now the relation between @ and E is obtained by eliminating r from

equations (A.1l) and (A, 2). Thus
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2,1_
sin (1-€7)? sinkE

i

ltecosk
cosf = f__LC_Q_?E.
ltecosk
2
Y
l—e»cos@ T l+ecosk

2 _ 2. {1-ecosE
1+'€ -2€cos0 = (l-¢ )(m)

and

2y
dp = {1=¢ )

el 4dE
1+€ cosk d

Using these relations between 6 and E in equation (4.22), the
olution for the perturbation Ar for one orbit, valid for all values of
eccentricity 0 <€ < 1, takes the form

21

1 L
Ar{2w,€)= -Kazgeg(l-e cosE)2({1+€ cosE)asinZEadE
0
2 E .
C (‘ /
-2\) (1+€ cosE)sinEdE ‘) (1-€ cosa)

1~ Ecosa sda
T¥€cosa Gcoso. g
0 0

After integration by parts, equation (A.3) takes the form
2m

_ 2 l-€coskE .2
AI‘(ZT\',E) = -Ka §€§ (1+€COSE)<m> sin " EodE
0

]

[\

(4}

1 l-€cosE
— 1+€) Sv(]. ECOSE) (-m> gdE
21T

1 2 l-€cosE
- § (1te cosE)™(1-€ ;osE)<m>
0 .

[

adE%

(A, 4)
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Then combining all these three integrals, we get
1

2( & 3
- 15 € E
0

[e 2 in2E(1+€ cosE)+(1-€ cosE)(1+€ )%

-(l1-€ecosE)(1 +€cosE)2] dE}

Rearranging

[

2m
Ar(2w,€e) = ~v2(1+€ )Kazg (l-cosE)(—ll-{_—g——g-g-Z%) o(E)YdE  (A.5)
0

The density distribution is given by

Mr_-r)
g(E)=e l'p :
Aa(l-€)-a(l+ecosE)]
= e
-ha€ (1+coskE)
=e
Consequently
-t(ltcosE)
g(E) =€ (A.6)

where { = Aa€

Therefore

2T
2 -t [1+ecoszE-(l+€ )cosE] -{cosk
e

Ar(2mw,€) = -2(1+te)Ka"e 5 dE
0 (l—E

7.1

cos“E)z
(A7)

where the integrand in equation (A.5) is multiplied and divided by

1
(1-€cosE)2, Now it is convenient to have the upper limit of
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integration of equation (A.7) as ©/2 instead of 2r., Hence rewriting

the above equation between the limits zero and w/2, we have

/2 . .
_ .2 {sinE  -{sinE
ar = -a(+e)ka’e C| | me&( te Edg

0 y‘% l-—EZSinZE
/2  amE C,sinE ~{sinE
(1+€) S‘ - dE
%{1 -€ sm E
(A.8)

tlsinE
The exponential function e can be expanded in terms

of the modified Bessel's function of the first kind (the details of this
expansion are derived in Appendix B.1). Hence the square brackets

containing the exponential terms in equation (A.8) are written in

the form
{sinE -{sinE «©
e +e =21 (L) + 425 (-1)® L, (L) cos2nE
o n=1 2n
and
{sink -(,;inE n
e -e =-4 2 (-1)" 1, (L)sin(2n-1) E

(A.9)

After the substitution of (A.9) in (A.8), the solution for Ar takes

the form
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Ar(2w,€)
/2 >
-8(1+e€) Ka e gg 1+esm E) TdE[ Z( 1 2 () cosZnE]
O (1 e %sin’E)2 3
(e 0]
+16(1+€)°Ka’e Z’S —8 L DL, (U)sin(zn-1)EdE

(1- e sin E)a n=1
(A.10)
Now these integrals are evaluated from the table of integrals given
on page 115 of reference 10, The results are derived in terms of
an infinite series of the complete elliptic functions of the first kind
Kn(e) of order n. Kn(e ) is defined as

/2

K_(€) sy Cgsznf‘ dE
0 (1-€ “sin"E)

(A.11)

n § [T(‘H‘%)]Z E2,v

v=n (l)-n)! (vtn)!

= (-1)

n:U, 1, Z,noo

With this definition of Kn(e), the solution for Ar(2w,€) given in equa-~

tion (A.10) is written in the form

Ar(2mw,e) = Ara

-4Ka2{[(z+e)K (€)-€K ()] 1_ (1)

i

+ i}l:( PR (e) [(2+e)I, (L)+(1+e)T, ()]
-2 C1PKjle) [ep (Lraire)t,, (L]
[igee)
—e 2 (- n+l(e)}‘.2n(?;)}~(1+e)e 13 (A.12)

Note that the solution (A.12) for Ar is the perturbation Ara in the
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apogee distance for one complete orbit. The perturbation Ar_ of the
perigee distance can be similarly obtained by evaluating the integrals
from m to 3w. Then from the known solutions for Ara and Ar_other
perturbations such as Aa, A€ ‘can be determined.

The solution for ar given by equation (A.12) holds good for
all values of € between zero and one. However the actual evaluation
becomes very cumbersome for large values of € as Kn(e) converges
very slowly, Ate =1, Kn = co. It is felt that a solution for Kn(e)
near € equal to 1 would reduce the computational work for large
values of €. Consequently solutions of Kn(e) near € ~ 1 are deter-
mined,

Now Kn(e) satisfies the following differential equation as a
function of €. (The details of this derivation are given in Appendix

B.2.) It is given by

2

€2 (1-€2)K'" + € (1-3¢2)K' - (e2+4n2)K_ = 0 (A.13)
n i} n

" where the primes denote differentiation with respect to €. As we
are interested in the solution of Kn for € close to 1, a new indepen-

dent variable m is introduced with the relation

and
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Hence in the new variable n, equation (A.13) takes the form

2 dZKn 2, 9K, 4n®
n(1-n") > + (1-37 )*a"”"“ﬂ(1+ 2) K =0 (A, 15)
dn 1 1-m

Now by defining a new function Wn(n) related to Kn(e) by
oD
K, (€)= (1-17) W_(n) (A.16)
equation (A, 15) is further simplified. Then the function Wn satisfies

the following differential equation

n(L-n®)W2 + [1-(3+4n)n”] W) - (1420°)W = 0 (A.17)

Further simplification is made by using a new independent

variable z given by the relation

z = n° (A.18)

This simplification is such that the reduced differential equation
becomes a hypergeometric equation for which the general solution

can be immediately written down. This hypergeometric equation is

I+2n 2
z(l-z)W;;+ (1—2(1~l’n)z)Wr'1 - | > ) Wn =0 (A.19)

One of the solutions is given by F(a,b, y;z) where

v=1

ot B+ 1=2(tl) Li2 (A 20)
1420, 2 é = a=p=5—

ap = (522)

Therefore
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fes) 2
2s+2n-1)
W, ___F(1+2n l+2n . z) S 142 [(2s+2n-1)] 5

2 ' 2 1 225(al )2
(A.21)
and the second solution is given by
oo
W, =W, logz+2az® | (A.22)

1

where

q = [(2s+2n-1)!] 2 (2 i (1-2n)
- _ L]
s 225 (s!)Z a1 £ (20+2n-1)
Then the required solution for our problem is given by

W =A W, _+B_ W
n n n n

1 2n

fos)
=A W.+B (W 10gz+2azS o
n In "n In 1 8

Transforming this solution back to 1 coordinates we get

i (0.0
- y Z2s
Wn(n) = (A +B logn)W, (n"HB_ ? b_n

(A.23)
whereb_=a /2.
S s

Then the solution for Kn(e), when € is close to 1, is

_ 2" 1+2n 14+2n . 2)
Kn(e) = (1-7n") {(An+Bn10gﬂ)F (—"z’— » T3 1: 7

o (2s+2n-1n2[ & 1-2 2
+BZ(ZS 2n-1)! Z ~2an T'[S (A.24)

D 225(41)%  \yo; £(24+2n-1)

Now the constants An and Bn are evaluated by computing the

following integral
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/2
K =S cosZ2nt a6
n
0

Vi-¢ Zsinzg

as € approaches 1. (The details are given in Appendix B.3,) There-

fore we have

A= (-1)" log4 - 2y¢i(n;v)

n
where Y (n;v) = 2, 55— and $(0;v) = 0
V=0 n-2v-1
(A.25)
and ‘
_ nt+l
B_ = (-1)

Substitution of equation (A.24) together with (A, 25) in the
solution (A.12) for Ara reduces the computational work for large

values of the eccentricity near 1,
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APPENDIX B

1. Expansion of the Exponential Functions ei§s1ne in a Series of a

Modified Bessel Functions

it 1
>z --)
The exponential function ez Z can be expanded in a series

of Bessel functions (see, for example, Watson (17)) as

L.l o

e 2" = a0 (it) | (B.1)
-0 D

Now put z = e1§0=> —;— = e—1g0. Using the definition of modified

Bessel function In(é) = i—an(iQ), the above series expansion is

written in the form

14

> (_Z - —;— _ -z.ssin(p
e = e
CD -
= 2 PP 1 (1)
=00
’ [0 0]
=1_(1) + ‘143 e ()P 1 (2)
+ 22T ()
a) : - .
= 1,00 + 2 (@71 () [P+ (1))
Therefore
e—ésin(p

= IO(C,) - 2 sing Il(g,) -2 cosZgDIZ(l_Z,)
+2 sin 3QDI3(§,) + 2 cos4¢I4(§)—Zsin5g015(§)

. = 2 cosbg 16(1;) + ---
0

1

I(L)+ 2 ? (-1)"sin(2n-1)¢ I, (L)

(0.8]
+ 2“};, (-1)%cos2ng I, (t) (B.2)
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Now let z = -e'? — —;— = ™Y, With this relation for z, equa-

tion (B.1) yields

i, 1
eT(Z_E) - et’,sin(p
= 3 (-1 E)™ L (L)
~00
[ee] . [89) .
=T8T L0 20 (07T 1 ()
m .
=100+ 2 (<07 L (L) ePPr(-1)Re TP
1
Therefore
el;singo -

IO(?;) + 2 sing@ Il(C,) - 2 cos 2¢Q IZ(T,)
- 2 sin3¢@ 13(7,) + 2 cos 4@ 14(Z_,)+2 sin 5¢ 15(?;)
- 2 cos 6@ Ié(g) + -

(e 6]
1(0) -2 2 (-1 sin(2n-1)9 I, (0)

i]

[0.0]
+2 22 (-1)" cos2ng I, (1) (B.3)
1

il el
From these two expressions for e tsing the following rela-

tions

e(,sin(p + e—l”,singa {sing _e—gsingo

and e

are evaluated. They are

. ; o0
82;311190 4 e-i_,s:mgO _ 210(2) +4 Q. (-1)ncos.2ng0 Izn(é)
and 2 l o

{sing = _~Using _ IRt : _
e e = -4 21:( 1) sin(2n-1)g Izn_l(?;)
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These are the relations used in equations (A.9).

2. Derivation of the Differential Equation Satisfied by Kn(e)

Consider the following functions

2
Fn(€,¢) :\S? wd(p

A
0
and
P
En(e,go) = y A« cos2nede
0

tolb

where A= (l—ezsinzgo)

Note that when ¢ = /2; Fn(e,n/Z)E K (€)

n
Now
an sinch
e = S‘ € 3 cos 2nede (B.5)
A
But AZ =1 =~ ezsin2¢
Solving for sin2<p
2
sinzqa = 1-% (B.5a)
€

Substituting this in (B.5), an/de is written as

an _ 1 cosZng d 1 cosang d
de T € 3 ¢ % A ¢
¥
:_L S cosang do - _n (B.6)
€ A3 € _

Let us now consider the derivative of the following function
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eZ d ([ cos2ngsingcose
de A

-2ne Zsinanasingoco S¢
A

4 . 2 2
€ cosZngsin @cos ¢

2
€ cosZng
R e S | 3
Py

A coszgo - sin2'<p)+

- Znezsinzncpsin(pcosc,o n coschp(ez-ZEZsin2<p+€4sin4go)
A A
2
-2n€ sinZngsingcosy

cosan 2. .2 4 . 4 2
= A + 3 ?[1-2€“sin“pte “sin " @-1+€]

~-2n€ Zsinchpsingpcosgo n cosZng
A
A

1—62

It

where nz

Therefore

2 d (COSanosincpcosgo)

€ de A
2 —2n€2 inZ2ngsi s
= AcosZng - ﬂ--c:osano 52 PONPCOSYP (B.7a)
A3 A
Integrating (B,.7a), we get
e2 COSZn(pZJ.ngDCOS(p =F - nZS‘ eosZg)ngg do
n A
+ Z2nsinZng < A - ékan_n
And solving for the integral on the right hand side
1125 08209 g4 = (1-4n%)E_ + 2nsinZngA
A n
2 .
_ € cosZngsingcosg (B.7b)

A

Substituting (B.7b) in (B.6), dF_/de is written in the form

dF ¥

C]‘En - 12 (1-4n2)E + 2n Sin2n¢'A——€—COSZH¢COS(PSIH(p _?n_

A
€n T oen n®




~104-

or

dF
B ._1'_2. [(1—4112

de en

- 2n o _ € cosZnecosgsing
)En | Fn] T A sinZne nz ~

Solving this for En’ we have

(1-4 2)E = n? Ei]—zl—-k F j- 2nAsin2n
noE, TN de " n meng
Ezcosz:n singcos
+ ‘i"¢ 4 (B. 8a)
Now let us evaluate the derivative dEn/de.
dEn - V Esinzqocoschpdcp
de A
-1 2, cos2neg
- = —e— ‘g‘(l - A ) A d(P
where equation (B.5a) is used. This is written as
dEn 1
de 3 (En—Fn)
Solving for Fn,
dEn
Fn = En - € dE (Be 8b)

As we are interested in the evaluation of Kn(e) we set ¢ = w/2. Con-

sequently
2 2 dKn
(1-4n )En =n (e de + Kn) (B.9a)
and
dEn
Kn=En" € de ‘ (Bogb)
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Differentiation of equation (B.9a) once yields

2
dE dK dK d K\
2 n o e n 21, n o, . n
(1-4n") e = - 2€ (Ede 4Kn)+n (2 ae € 2}
de
or
2
> dEn 2 d Kn > dKn
(1-4n )—'a—e—' =1 € dez + 2(1-2¢ )"a—é“' -ZEKD (B.10)

Eliminating both En and dEn/de in equation (B.9b) by substituting
(B.9a) and (B.10), the governing differential equation for Kn is ob-

tained:

’ 2
> d"K dK

2 n 2 n 2 2 _
€ (1-6 ) > + 6(1—36 )-—&"é—' - (E +4n )Kn-— 0

de

where- | (B.11)
/2 | : ‘
K (€) = cosZng de :
n 2 . 2 i
0 (1-€“sin"¢)2

This is the equation given in (A,.13).

3. Evaluation of the Constants A and B in the Solution of K_(€)

Let us consider the behavior of Kn(e) near € ~1.
/2

2Zng
K _(€) = 5 cos de
n (1—Ezsin2‘g0)'é‘

Let 62 = l—nz and assume that n is very small; with this value for

62, Kn takes the form
/2
K = coslng
s

dg (B.12)

0 ycosZ @+ nzsinzgo

This integral blows up as n ™ 0. Therefore this integral will be
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split into two parts as shown

™ v
2-¢ z
Kn:‘g‘ ( )d(p'*“g‘ ( )dgﬂ
0 ™
—2-"0.

where a is very small

=1, + L

1 2
Since 7 is very near zero, L1 is written as
>-a
L. = S' cosan:
1 cosy
0
Now put ¢ = % -9 in LZ“ Then L‘2 takes the form

A m
L =§ cosZn(-Z— )
0

\/s'inze + n 2cosze

But cosZn(—g- -0) = cosnwcos2nb

(-1)* as 60

¢

R

e

sin26

nzcosze nz—nzsinze =7n -1 ©

and

sinze + nzcosze = 6262 + nz

Therefore

(B.13)
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o3

L=S‘—-—-—§—_—l-)————-de

2
0 Vn2+elo?

a
n
(-1) log (€ © +\ n2+ 5292)
€
0
_ (-1)> lo (16+Vn2+a262
as 1 > 0.this reduces to
. n 2a
lim L2 = (-1)" log o ‘ (B.14)
n=>0
€~1
Now let us integrate L,
LA
L _S‘ cos2ng a
17 cose @
0
L X sin(2n-2v -1)(3 - a) 1+sin(Z-a)
= Z + (-1)™10 2
v=0 (Zn-2v -1) g
cos(-—z--a)
But sin(2n-2v ~1) (_'rzr_ - a)
= sin{[(n-v)n - —%] - (2n-2v —1)a}
= sin [2(n-v)-1] E cos (2n-2v -1)a
~-cos(2n-2v - 1)-—2—81n(2n 2v-=-l)a
= cos(2n-2v -1)a[sin(n-v )Tvcos FZ— -cos{n-v)mw sin %—]
~sin(2n-2v -1)a[cos(n-v) m cos —g—+ sin{n-v)w sin%]

= «cos{n=-v)w cos(2n-2v -1)a

= ~cosnwcosvwcos(2n-2v ~1)a

o~ - (_1)n+v as a-=0
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Also
. T
1+ 3”‘('2‘ -a) ~ 1 + cosa
cos(lr——a) sina
2
z}_ as a0
a
Consequently,
+1
(- " n 2
Z (Zn-2v-1) *(-1)" log T
Therefore
n-l (--1)n+l n n 2a
+ (- £ - “a
L, +L, 1?;‘0 Gaozvoy T (71 leg 5+ (-1)7 log
n-1 nt+l
_ n 5 (-1)
= (-1)" log = + ‘Eo(zn-Zv 1 (B.15)

These are the values reached by K_(€) as € —1; that is, the

n
constants A _and B _in A + B_logmn must have these values as € ~1,
n n n n °
n - 0. Hence
ntl

_ 4 (-1)
A+ B, logn = (-1)° 10%"”- Z | TIm=2veT)

Therefore
n n-1 (_1)n+l
An= (0 log 4+ 2 2, 5oy
and
n _ I+n
B_=-(-1)" = (-1)

Let
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n-1 (_l)n
Y(nsv) = VEO Zn-2v -1

with Y(0;v) =0
Then

An = (-1)" log4 - 2¢ (n;v)
and (B.16)
1+n

B_=(-1)

These are the values of An and Bn given in (A, 25) which are required

for the solution of Kn(e) in (A, 24) for values of € near 1.



