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ABSTRACT 

A crack of length 2a which propagates with small, constant 

speed through a viscoelastic strip of width 2b i s  considered. The 

strip i s  strained by displacing i ts  shearfree edges, Linear theory 

is applied. The s t r e s s  on the line of crack advancement and the 

shape of the crack surface a r e  calculated for a state of plane s t ress ,  

The s t r e s s  intensity factor which i s  independent of material 

'properties i s  given a s  a function of a/b. It exhibits a maximum a t  

a/b G 0.75. For  a/b > 1.5 the s t ress  intensity factor becomes 

essentially independent of crack length. The crack surface deflection 

i s  obtained in  the form of a superposition integral and i s  a function 

of material properties and crack speed, 

The energy which is released when the crack extends a small 

distance is calculated, This crack energy depends on the crack 

speed and involves the creep function of the material. A charac- 

terist ic length enters in the course of i ts  derivation. This length 

does not appear in the case of an elastic material  and i s  considered 

a s  an additional material properw necessary to describe visco- 

elastic crack propagation, 

The energy conservation equation i s  established by consider - 
ing a small control v o l l ~ e  surrsmding the crack tip. A relationship 

, emerges from this equation which hp l i c i t ly  gives a stable crack 

speed a s  a fpunetion of applied s t r a h ,  temperahre ,  and material  

properties* m e  creep function is the eontrsllhg factor in this 

equation, 



The relevant material properties are  discussed and presented 

for a Polyurethane rubber (Solithane 113 - 5 0 / 5 0 ) .  The lower bound 

of the surface energy is  determined from fracture tests on the 

swollen material, The results of the material characterization 

a re  used to calculate the crack speed a s  a function of applied strain 

and temperature. Good agreement i s  found to exist between theory 

anci experiment. 
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I. INTRODUCTION 

Historical Background 

Hand in hand with the increasing application of polymers in 

structural design over the last  decade o r  two went a growing interest 

in the fracture process in viscoelastic materials (1 ,2 ,3 ,4 ,5) ,  Until 

then fracture mechanics was mostly concerned with brittle materials. 

Probably the most important concept put forth was Griffith's hypothe- 

s is  (6) of brittle fracture which was published in 1921. Based on the 

principle of conservation of energy i t  yields a criterion for crack 

instability, Mott (7), Berry (8) and others investigated the crack 

kinetics by including a kinetic energy term in the energy balance a s  

established by Griffith. Several values for the maximurn speed of 

crack propagation have been obtained depending on the method of ap- 

proach. Craggs (9) derived a value of 0.72 x shear wave speed for 

this limiting velocity. The absolute maximum speed of propagation 

for a cracic which moves through a non-dissipative material and which 

does not bifurcate i s  equal to the Rayleigh wave speed (1 0, 11 ). Ex- 

perimentally determined maxirnuno crack speeds however a re  often 

considerably smaller ehan the fieoretically predicted values (12), 

A simplification of the energy method a s  initiated by Griffith has been 

given by Irwin (13) and later Sanders (14) who showed that it i s  suf- 

ficient to consider only the energy exchange in the h m e d i a t e  vicinity 

of the crack tip, 

The extension of the Griffith fracture hypothesis to the rup- 

ture of rubber by Rivlh  and Thomas (1 5) can be considered the first 

naoa3or step into the field of viscoelastic fracture,. They found that 



a criterion apparently identical to the one by Griffith holds in this 

case,  too, However the tearing energy which enters in place of the 

surface energy i s  not only a measure for the energy necessary to 

create a unit of new surface but may also include the energy which 

is dissipate4 by other processes like viscous dissipation and micro- 

scopic tearing in a region surrounding the advancing crack tip. 

Greensmith and Thomas (16) later found the tearing energy to depend 

markedly on the rate of tearing. 

Theoretical investigations of the crack propagation process 

in viscoelastic materials have mostly been based on a global energy 

conservation principle in which a term characterizing viscous energy 

dissipation is included, Williams and Schaper y (1 7) derived an 

expression for the viscous dissipation on the assumption that the 

material behavior is represented by a Voigt model, A small, un- 

stable crack in the center of a large plate is predicted to grow 

exponentially with time on the basis of this calculation. A limiting 

crack velocity does not emerge from this theory, Williams (1 8) later 

investigated a spherical cavity in an  S i n i t e  viscoelastie medium 

subject to uniform tension a t  infinity. He demonstrates that for a 

step loading the creep function enters the corresponding Griffith 

formula instead of Yomgss modulus, The creep function is evaluated 

for the t ~ e  which elapsed bemeen load application and the beginning 

of fracture, 

A ltfneory of defect grow& on the basis of the theory of rate 

processes was developed by f i a u s s  (19). The typical rate dependence 

sf the ult-ate properties jin uniralljial tenehn tests is deduced from 



this theory. Similar results areobtained by Bueche and Halpin (20) 

by considering a thin filament a t  the front of the crack which is 

assumed to be in a state of uniaxial tension and to behave in the same 

manner a s  the bulk material does in this s t ress  state, 

More recently WiPlis (21) solved the dynamic problem of a 

crack travelling through an infinite standard viscoelastic solid in 

anti-plane strain. A relationship between applied force and crack 

velocity i s  derived by application of a Barenblatt type fracture 

criterion. This investigation shows that the crack motion i s  s b b i -  

lized by the presence of dissipation, The speed above which the 

stabilization occurs is very high, however. Crack propagation 

speeds which were measured in hard polymeric materials a r e  about 

an  order of magnitude smaller than predicted by this theory, The 

crack speeds in  highly viscoelastic materials which have longer 

relaxation times and exhibit a greater degree of relaxation will be 

d e n  smaller than in hard plastics. 

To the author's knowledge al l  of the theoretical considera- 

tions of the viscoelastic crack propagation process put forth so far 

deal with infinitely large bodies for which the limiting crack veloci- 

ties a r e  either unbounded o r  very high. The experimental investiga- 

tion (22) of a crack propagating longitudinally through a strip of 

viscoelastic material however shows that there a re  very small, 

stable crack speeds which cannot be predicted by existing theories, 

The speed of crack propagation depends on the strain applied to the 

s t r ip  and on the temperature. A fieoretical .investigation of the 

fracture process in a viscaelastic @trip seemed to be appropriate 



and i s  attempted in this thesis. 'The results will also be helpful in 

the understanding and interpretation of viscoelastic fracture in other 

practical geometries which give r i se  to small, stable crack speeds. 

The eis Outline 

Instead of employing a global energy conservation equation 

of the system Irwin's point of view i s  taken and a local energy balance 

around the advancing crack tip established. In doing so one equates 

the crack energy which i s  the energy released when the crack ex- ' 

tends a small distance and the energy going into the creation of new 

surface. The knowledge of the s t resses  just ahead of the crack tip 

and of the crack opening close to the tip i s  necessary for the calcu- . 

lation of the crack energy. The effect of viscous dissipation in the 

material will be reflected in the velocity dependence of the s t resses  

or  of the crack opening. 

The s t resses  and displacements on the strip centerline and 

ciose to the tip of a crack propagating with constant speed through 

a viscoelastic strip a r e  calculated in part II of this thesis. Instead 

of a strip which i s  strained by displacing i ts  edges we consider the 

for-our-purpose equivalent problem of a pressurized crack in an 

otherwise unstretched strip, The edges of the infinitely long strip 

a r e  taken to be shear free for the sake of mathematical simplicity. 

Clamped edges would be more realistic but the essential features 

of the problem remain unchanged by this simplification, 

The problem of a suddenly pressurized crack of constant 

length i s  considered first.  The correspondence prhciple  can be 

applied in this case and the solrokion to  the associated elastic 
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problem i s  found by way of the Fourier transform method suggested 

by Sneddon (23). The resulting Fredholm integral equation is solved 

numerically. The s t ress  intensity factor which is independent of 

material  properties in this geometry i s  given a s  a function of crack 

length over s t r ip  width ratio a/b. This factor grows with increasing 

crack Length and reaches a maximum a t  a/b S 0.'75, Beyond this 

point i t  decreases slightly and becomes essentially independent for 

a/b > 1.5. The shape of the crack surface a s  a function of time due 

to a step load i s  readily obtained by introducing the creep function 

and inversion of the Laplace transformation of the solution. 

The crack  opening of a propagating crack is then determined 

by superposition of solutions to step load problems with increasing 

but individually constant crack lengths. The result of this operation 

i s  a superposition integral. The same answer could have been ob- 

tained by way of the so-called extended superposition principle which 

was very recently suggested by Graham (24). F o r  a constant velocity 

crack with a/b > 1.5 the deflection close to the crack tip becomes . 

independent of crack size and hence independent of time. An ex- 

pression for the crack opening in this region i s  then obtained which 

i s  similar to the corresponding expression for an elastic material 

except that the crack speed enters a s  a parameter. The crack energy 

is thus readsy  calculated a s  in the elastic case because the Linear 

relationship between load and crack opening holds for the viscoelas- 

tic material, too. A length which is designated a s  characteristic 

length h a  enters the crack energy. In the case of an elastic material 

this length disappear@ when the rate sf change of the crack energy 
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i s  calculated. In the viscoelastic case however i t  enters along with 

the crack speed into the argument of the creep function. This 

characteristic length i s  viewed a s  an additional material property 

which i s  necessary to describe viscoelastic crack propagation. 

The expression for the crack energy i s  then substituted into 

the energy conservation equation. A simple relationship between 

crack speed, applied strain o r  load, temperature, and material 

properties emerges from this equation. The creep function is the ' 

dominating factor in this relationship. It is  not necessary to resort  

to a mechanical model for material behavior. The creep function 

can be of any experimentally determined form. 

The mate rial  properties which enter the theore tical relation- 

ships a re  presented in part I11 for a Polyurethane rubber. The trade 

name of this material i s  Solithane 113 and the particular composition 

used here i s  S o l i ~ a n e  56/56 (cf. p. 49), The typical features of 

viscoelastic materials a re  exhibited and a r e  shortly discussed 

together with the experimental methods employed for the determinay 

tion of these material properties, 

The measurement of the surface energy i s  difficult in 

strongly viscoelastic materials. Grack propagation tests with 

materials of this kind seemed to indicate that there i s  no lower 

bound for the surface energy. Im order to remove some of the un- 

certaiurties in defiuring the lower bomd of this energy use was made 

of the fact that the internal viscosity of crosslinked polynaers i s  

largely reduced in the swollen state, A short description of 'the 

swelling properties of ~o l i thane  50/50 is given together with some 



polymer network characteristics which can be calculated from 

swelling measurements. The swollen material i s  demonstrated 

to behave in a neo-Hookean manner, Crack propagation tests with 

Solithane 50/50, swollen in Toluene were carried out. A lower 

bound for the surface energy i s  seen to exist and is calculated from 

the data obtained in these tests. A more detailed mechanical 

characterization of,the material can be found in (25). 

Having determined al l  relevant material properties the 

crack propagation speed i s  calculated a s  a function of applied strain 

and temperature by application of the theoretical relationships de - 
rived in part  U. - There i s  good agreement between the theoretical 

results and the experimental data obtained by Knauss (22). The 

characteristic length yielding the best agreement was found to 

be 1 oo8 inches. The comparison between Uleory and experiment 

is the subject of part  W of &is &esis* 



If. THEORETICAL INVESTIGATION OF A CRACK 

MOVING IN A VISCOELASTIC STRIP 

The relationships between crack propagation speed, applied 

strain, o r  load, temperature, and viscoelastic material properties 

will be derived for a particular geometry. The geometry chosen i s  

an infinitely long, thin strip with a central crack of length 2a, The 

s t r ip  width i s  2b (cf. Fig. 1), The strip i s  strained by displacing i ts  

edges, and depending on the magnitude of this strain, E , the initial 
0 

crack will remain stationary o r  begin to extend. The speed with 

which the crack propagates is constant when the crack length exceeds 

a certain value beyond which the s t ress  field surrounding the crack 

tip becomes ,independent of crack size. 

The approach outlined on the following pages is not restricted 

to a strip geometry, Plates with a small central crack a r e  covered 

in the present derivation because this geometry i s  approached a s  the 

ratio of crack length to s t r ip  width becomes very small. The results 

obtained from the investigation of the simple strip geometry a r e  . 

believed to be de scriptive of viscoelastic crack propagation in general 

within the limits set  by shpliPications made in order to facilitate 

the mathematical solution of the problem. In the course of this 

development it will become apparent that very similar answers can 

be expected for other geometries and loading conditions S stresses  

and displacements close to the crack front a r e  known, 

The material properties needed in the following context a r e  

the short-time or  glassy modetlusp E , the l o n g - t k e  or rubbery 
g 

modulus, El, the creep function, D , and the time-temperature . CF 



shift factor, aT. Viscous dissipation i s  assumed to be the only i r r e -  

versible process in the material apart from the creation of new 

surface during fracture. F o r  a thorough mathematical and experi- 

mental description of viscoelastic material properties see for instance 

references (26,27,28,29) . Additional relevant material properties 

for a particular viscoelastic material a r e  also presented in part Ill 

of this thesis. 

In order to find the quantities which a r e  of interest in this 

problem we shall f i rs t  derive the energy conservation equation for 

a moving crack. 

The explanation of fracture on the basis of the energy balance 

of a cracked body was initiated by Griffith (6). Irwin arrived a t  the 

same fracture criterion a s  Griffith via the calculation of the work 

done locally a t  the crack tip during a small increase in crack length 

(U). Later i t  was also pointed out by Sanders 04) that the energy 

balance does not have to be established globally a s  in (6) and that i t  

i s  sufficient to examine a control volume surrounding the crack tip. 

We shall now consider a cylindrical control volume, R , the 

center of which i s  located at  the crack tip. Its circPllar boundary 

i s  denoted by L, see Fig, 2 ,  Let us investigate the effects of a 

small, virtual change Aa s f  the crack tip position, The contour L 

will undergo a small distortion and the forces acting on i t  will do 

work as a consequence of the increase in crack length, This work 

is c d l e d  external work and is denoted by W, A c e r t a b  amount of 



this work i s  dissipated within the volume R. This portion of the 

energy will be called D and consists of the work Ds hecessary to 

create new surface, of the work D required to overcome viscous v 

forces within the material, and of work going into plastic defor- 

mation and other possible irreve rsible mechanisms, The motion 

of material involves kinetic energy which will be designated by K. 

The remaining energy i s  stored as  internal energy U. The whole 

process i s  assumed to take place isothermally. Taking the rates 

of change of these quantities the f i rs t  law of fiermodynamics can 

be cast into the following form 

The dot denotes differentiation with respect to time. 

Our attention i s  focused on viscoelastic materials and al l  

dissipative processes other than creation of new surface and viscous 

dissipation will be neglected. We shall furthermore restr ic t  our- 

selves to crack propagation speeds which a r e  small compared to , 

the shear wave speed based on the rubbery modulus, The kinetic 

energy term may then be neglected. An hvestigation of high speed 

viscoelastic crack propagation can be found in reference (3 0). 

The energy conservation equation i s  thus reduced to 

We shall now adopt Xrwinss point of view 0) and calculate 

the work which i s  released a& the crack tip when the crack extends 

a small* virtual distance da, This work will be called crack energy 



and will be denoted by Ec. A schematic picture of the s t resses  and 

displacements close to the crack tip i s  given in Fig. 3 .  Because of 

the symmetry of the geometry there a r e  only normal s t resses  acting 

in the plane of crack advancement, 

Let us imagine that for a small distance Aa ahead of the 

present crack tip the material i s  already physically separated but 

still  held in i ts  original position by surface tractions. Figure 3 

which shows the lower half of the crack tip illustrates this situation; 

The unbroken P& represents the original crack position, 'The sur-  

face tractions acting along the imaginary cut from a to a+ Aa a r e  

also indicated. These forces a r e  just large enough to hold the 

material together along the center line. Lf the material along A a  

is now allowed to separate, then the work done by the surface trac- 

tions in the course of this crack opening i s  given by (10, P 3 )  

a9 Aa 

AE = 2 
C w 

5 %c) u ( s - A ~ )  de . * (2.1-3) 
Y 

$=a 

A state of plane s t ress  and a linear relationship between crack 

opening u and tractions a i s  assumed to exist. The latter i s  true 
Y w 

for  an elastic material but holds also in the viscoelastic case to 

be considered here because the crack speed is going to enter a s  

a parameter only a s  we shall see later,  

There i s  no energy required to create new surface because 

we h a g i n e d  the material to be separated already, The energy 

conservation equation for the same control vo1unne R and material 

cons ide~ed previously reads now 



A comparison with equation (2.1-2) yields immediately 

This i s  a greatly simplified statement of the conservation of energy 

compared to the original form a s  given by (2 , l -  2). 

The exlergy dissipation caused by the creation of new surface 

can be easily calculated with the help of the so-called surface energy 

S which i s  the energy required to form a unit of new surface. It is 

assumed to be independent of the rate of formation and is considered 

a material constant. F o r  a crack moving with constant velocity v 

through a sheet of unit thickness one obtains then 

The factor 2 enters here because an upper and lower surface i s  

created a s  the crack extends. 

Only the normal s t resses  and the crack displacements in 

the immediate vicinity of the crack tip have to be known for the 

calculation of the crack energy Ec. Their evaluation will be the 

subject of the next few chapters. 

2,2* 

Basic Assum~t ions  

The geometry m d e r  consideration i s  shown in figure 1. The 

half crack length a(t)  is a monotonically bcreasing fmction of t h e  t, 



A state of plane s t ress  i s  assumed to exist in the s t r ip  a t  all times, 

The crack surface i s  s t ress  f ree and mathematically sharp in the 

unstrained strip. Prescribed displacements in the y-direction and 

zero shear s t r e s s  a r e  taken a s  boundary conditions on the strip 

edges y = *be The mathematics a re  considerably simplified by this 

assumption without changing the essential features of the problem 

a s  compared to the strip with clamped edges which should actually 

be examined with regard to the real  experiment. The kernel of the ' 

integral equation to be derived i s  less  complicated in our case and 

in particular does not involve any material properties a s  would be 

the case for clamped edges, The s t ress  fields surrounding the 

crack tip differ little for the two different boundary conditions a s  

can be seen from a study of (19) and (31), 

No attention will be paid to transients. The crack i s  assumed 

to propagate a t  constant speed into a viscoelastic material which is 

in a state of l o n g - t h e  e q u i l i b r i u  far  ahead of the crack, The 

uniaxial s t ress  in the mcracked strip i s  then given by the rubbery 
~ 

modulus Er  and by the strain E* on the strip. i.e., 

The applicability of linear theory i s  assumed, The 

original geometry and boundary conditions can then also be realized 

by superposition of a uniaxial tension field a and its corresponding 
0 

displacements with the s t re  sse  s and displacements obtairned by 

solving the problem of a crack under internal pressure Q~ in an 

otherwise unloaded strip, 
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Our interest i s  focused on the s t resses  and displacements in 

the crack plane in the immediate vicinity of the crack tip. These 

displacements a r e  directly given by the pressurized crack problem 

because the displacements resulting from the uniaxial tension field 

a r e  zero a t  y = 0. The s tresses  close to the crack tip have a well- 

known singularity (32,33) which i s  entirely embedded in the solution 

o i  the pressurzied crack problem. The contribution of the uniaxial 

tension field ta  these s t resses  i s  negligibly small in the immediate 

neighborhood of the crack tip, The two quantities which interest us 

can therefore be obtained from the investigation of the pressurized 

crack problem alone. 

The s t resses  in a given element of the strip increase during 

passage of the crack front of a pressurized crack. The s t resses  in 

the same element of a stretched strip with a moving unpressurized 

crack would decrease however in the process. The question then 

ar i ses  whether the amount of energy dissipated by viscous mechanisms 

in the material i s  equal in both cases, This kind of energy dissipation 

i s  governed by the rate of deformation, but these a r e  the same in 

both situations because the uniaxial tension field only contributes 

constant displacements. An arbitrary loading or  unloading history 

can be made up from a sequence of corresponding step histories 

since the laws of linear viscoelasticity a re  assumed to hold, Recog- 

nizing the equivalence of deformation rates and the validity of the 

superposition principle i t  remains to be shown that the energy dis - 
sipated by 'step loading is equal to the one dissipated by sudden 



removal of the load. Let us resort  to a mechanical model for visco- 

elastic behavior in order to be able to perform this comparison. 

We select a three -element standard viscoelastic solid (33 ) 

as a model. It a material of thie kind is exposed to a step strain E~ 

at time t = 0 o r  suddenly relieved from a strain of equal magnitude 

a t  this time the total dissipated energy per .unit volume a t  time t 2 0 

is given in either case by 

where +1 = viscosity of the dashpot element 

T = relaxation time = ?/(E~ - Er). m 

In spite of the shortcomings of mechanical models they give an ade- 

quate representation of the dissipation process in the context of this 

argument, We do not have to restrict  ourselves to mechanical 

models in any of the following computations necessary for the deter- 

mination of the crack energy. 

Because of the symmetry of the problem it  i s  sufficient to 

investigate the half str ip with appropriate bounaary conditions. The 

crack is then represented by a section of length 2a(t) on the boundary 

y = O over which the constant pressure o acts. The remaining part 
0 

of this boundary has to satisfy rthe condition of zero normal displace- 

ment and zero shear s t ress  for all values of x, The other edge a t  

y = b has to satisfy the same boundary conditions, that i s  zero normal 

displacement and zero shear s t ress ,  as would have been posed for 



the strip of width 2b. Figure 4 shows the geometry and boundary 

conditions of the half strip. 

Let ui, . . , and o.. denote the cartesian components of dis - 
*J =J 

placement, etrain, and s t ress ,  respectively, The field equations 

for the linear quasi-static problem without body forces a r e  then 

(34) - in common index notation - etrain displacement relationship 

e.. = +(ui' t u. .) 
U J 

equilibrium equation 

The constitutive equation for the material behavior is assumed to be 

given in the form of a relaxation law 

where tine f oiiowhg ciefinitions hoici: 

1 Stress  deviator o:. = 0.. - 5 6ijakk 
U '-J ' 

1 Strain deviator c~ i. = E . . - 36.. 
*J =J 3.J Ekk 

Convolution integral O*d$ =: O(t- 7% ( T ) ~ T  +O(t)$(O). 

6.. is the Kronecker delta. The material functions G1 and CZ as  
=J 

well a s  s t resses ,  strains, and displacements a r e  functions of time 

t and of the space variables in case of the latter quantities. The 

bomdary conditibons to be satisfied byi the eolution of the field equa- 

tions a r e  



on y = 0: a (x,O,t) = 0 for 1x1 < w 
XY 

a (x, 0, t )  = -go for 1x1 < a(t) 
YY 

(2.2-5) 

u (x,O,t) = 0 for 1x1 3 a(t)  
Y 

o n y =  b: o (x,b,t)  = 0 
XY ' for  1x1 c OO o 

u (x9b.t) =t Q 
Y 

The initial condition is that the strip i s  completely undisturbed a t  

times t < 0, 

A convenient method for the solution of problems in visco- 

ela,sticity i s  based on the so-called correspondence principle (34,35), 

An associated elastic problem i s  obtained by applying the Laplace 

transform to all  equations describing the viscoelastic problem, The 

time dependence is removed by this procedure and replaced by the 

transform parameter, In principle, the problem can then be solved 

by finding the solution to the associated elastic problem and inverting 

this answer back into tihe real  tirrae space, This method i s  however 

not applicable to mixed.bo&dary value problems in which the parts 

of the boundary over which specuications a r e  made change with 

time (36), The Laplace transfo~mations of the boundary conditions 

cannot be found in this case, 

In order to c i r c m v e n t  %his difficdty we shall first find the 

t h e  dependent s t resses  and displacements in the strip a s  caused 

by a step loading uo on y = Ob 1x1 < a a t  time t = 0. where the length 

a is a constant, F o r  a growing crack, ice,, a time dependent lenigtlin 

a, the s t resses  and displacement a re  then determined by superposi- 

tion of step loadings, This procedure i s  gralphically hdicated in 



Fig, 12 and i s  carried out in section 2.5, 

The Step Load Problem 

The Laplace transform method can be employed to find the 

eolution to this problem, Let us apply the Laplace transform 

to equations (2,2-2) through (2.2-6). Scaling the space variables 

x and y a t  the same time by the half crack length a, i. e, , 

X g = -  and q 6 , 
a a (2.2-7) 

results in the following Pormdatiorn of the step load problem in 

. transformed space: 

The boundary conditions a r e  

on q =  8: Z (geO$s) = 0 for / g B < : o o  
- XY aa 

0 a (1;90r~)= 
S 

for 151 t a ( Z *  2-1 1 )  
YY - 
uy(Ss 0,s) = Q for I E l > ,  a 

These a r e  the same equations as for an elasto-static problem with 



material constants 

c, 'E, and 7 a r e  the shear modulus, Young's modulus, and Poisson's 

ratio of the material in the associated elastic problem, 

Making use of (2 ,2 -  13) the compatibility equation can be de - 
rived from the definition of strain (2.2-81). It assumes the foUlowing 

form: 

The equilibrium equations (2 ,Z -9 )  can be identicauy satisfied 

by means of the Airy s t ress  function rZ! (Q q). l[n terms of this func- 

tion the s t resses  a r e  given by 

Substitution of the appropriate expre s sions into the compatibility 

equation yields a b&armonie equation for !Z 

We shall foPlow the Fourier t ~ a n s f o r m  method outlhed by Sneddon in 
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(23) for  the solution of this equation subject to the boundary condi- 

tions (2.2-1 1,12). 

The main steps by which the above problem i s  reduced to an 

integral equation a r e  now given, The Fourier transform will be 

required, It will be denoted by an aster isk and is defined a s  

and i ts  inverse a s  

Under the assumption of suitable properties of the Airy 

s t r e s s  function, 9, that i s  assuming that 9 and i ts  f i rs t  three de- 

rivatives with respect to 5 go to zero a s  I 5 1 approaches irnfinityr 

the Fourier transforms in the variable ti; of equations (2,2-15) and 

(2.2-16) a r e  easily obtained, The s t resses  a re  now given by 

and the biharmonic equation becomes 



The following expression for the displacement in the y-direction can 

be derived on account of equations (2 ,2-8 ,10,13,15)  and their Fourier 

transformations; 

The solution of equation (2,3-3) i s  

* H (a, q )  = A sinh(wq) + B cosh(wq) 

with the factors A,  B, C, D being functions of w, loading, and strip 

rreornetry alone. These four factors wsia?. no-* be determined for the - 
following boundary conditions: 

-* 
O m q = 0 :  a (w,O) = 0 

XY 

-* 
a*_. (a, 0) = -P 

Y Y  C 
for i w l  < s o  (2,306) 

b O n q  =-: -* b 
a o W 9 = 0 

Pc stands lor the Fourier cosine transformation of an arbi t rary 

pre  seure distr.i$ution p(E) which i s  an even fmction of 5 however, 

* 
Knowhg the s t ress  function (P under a e s e  conditions we can 



-* 
calculate the expression u on the s t r ip  boundary q = 0. Inversion 

Y 
of this quantity yields the normal displacement on this boundary and 

in connection with the arbitrary pressure distribution p({) one can 

derive an integral formulation of the remaining boundary conditions 

to be satisfied (2.2-11). 

Applying equations (2.3 - 2,4,5) to the boundary conditions 

(2,3-6) furnishes the following expressions for the factors A, B, C, 

and D: 

Substitution of these expressions into equation (2.3 - 5) and 
* 

subsequent employrrment of P; (a, 0) in equation (2.3 -4) yields the 
-* 

normal displacement u (a, 0) in the transformed plane. After inver- 
Y 

sion of the Fourier transformation this expression reads 

Now let 

P (w) = w [ B + m (wbla)] 1-3[ (w) 
c 

-9: 

with m ( r ) =  r i- e s W ( r )  

sinh2(r). 



and equation (2.3-9) becomes 

Inversion of the Fourier transform of the second boundary condition 

of (2.3-6) yields the traction on the boundary q .= 0 to be 

on account of (2.3 - 10'). 

A comparison of equations (2.3 -1 2) and (2.3 -1 3) with the 

corresponding boundary conditions of (2.2-11) leads to the following 

formulation: 

(w) cos(og) dw = 0 foru I S 1  a1 

00 a0 
[l+m(ob/a)lH(o) s in(og)do=+e for  151 < 1 . 

0 

All boundary conditions will be satisfied if a function W ( o )  is 

found which obeys this dual integral equation. 

The first of equations (2,3-14) is identically satisfied (23) if 

with R ( r )  a s  a new u opn function, Substitution of this expression 

into the second of equations (2.3 - 14) results in 



This i s  an Abel integral equation for R (r) if the right hand side of 

the equation is considered a h o w n  function, The solution of this 

equation i s  (37) 

where 

and where the following relationship holds bemeen the old own 

function R (r) and the new own Z(r): 

Equation (2.3 - 1 6 )  i s  a Fredholm integral equation of the second kind 

for Z(r) ,  It should be noted that none of the material properties 

enter this equation for the bomdary conditions considered in  this 

problem, 

The standard form of the  redh holm equation of the second 



According to the theory of integral equations, e. g. (371, the solution 

of this equation will be unique and continuous in  the given interval if 

the eigenvalues of the homogeneous equation a r e  not equal to the 

parameter X. In our case the parameter X i s  equal to  -1, The 

homogeneous equation cannot have negative eigenvalues if the kernel 

M(r,q) i s  positive definite (37). It can be shown that the latter i s  

the case for our kernel a s  given by (2.3-17), This proof i s  carried 

out for a very similar kernel in the appendix of reference (38). 

Solution of the Integral Equation 

A closed form solution of equation (2.3-1 6) cannot be obtained 

because of i ts  complicated kernel M(r,q). However an asymptotic 

solution can be found for  crack length over strip width ratios a/b which 

a r e  small compared to u n i t y  . The big plate geometry with a small 

central crack i s  approached in the case of very small a/b ratios. 

Apart from i ts  usefulness for this geometry the asymptotic solution 

will serve as  a cheek for the numerical solution of the integral equa- 

tion, 

The function m ( w )  approaches zero rapidly a s  w increases. 

The Be s sel  functions in the integrand of (2.3 - B 7) which now contain 

the very small parameter a/b in their a r g m e n t e  can therefore be 

approximated by their ser ies  expansion for small arguments, The 

following approximate expression i s  obtainmed for the product s f  

Beeeef functions: 



Substitution of this expression into equation (2.3-17) results in 

individual terms which can be easily integrated in closed form 

over the interval 0 G-cwC oo, The kernel is then reduced to 

The method of repeated substitutions (39) can now be applied for the 

solution of the Fredholm equation, The result of this procedure i s  

a 4 The same answer up to terms of order (s) was obtained by Lowen- 

grub (40). 

A numerical method i s  the only way in which a solution of 

equation (2.3-1 6) can be found for large a/b. The original integral 

equation is reduced to a system of algebraic equations by writing 

the integral in (2.3 -1 6 )  a s  a sum (41). The elements of this sum 

a r e  calculated by dividing the interval 0 G r d L Lato Pa segments of 

equal length Ar and then applying some integration formula to each 

segment, The trapezoidal rule was used in this case, Solution of 

the system of equations by inversion of the coefficient matrix then 

supplies the values of Z(r )  at  the points s f  subdivision, 

T h e  direct n m e r i c a l  evaluation of the kernel M(r,  q) requires 

very small steps in the integration scheme because of the sapid 



oscillations of the Bessel functions a s  their arguments get large. 

Methods with the help of which time and accuracy can be gained in 

the numerical evaluation of integrals of this kind a r e  discussed in 

(42)" In the present case the integrand was approximated for large 

arguments e, by the appropriate approximations for the Bessel 

functions and by neglecting small terms in the function wm(w). The 

integration of this approximation can be easily performed exactly 

over the interval 0 S o <r m. Rapid convergence of the numerical 

scheme is then achieved by subtracting the approximate expression 

from the original integrand and adding the integrated approximate 

expression. 

Equation (2.3-1 7) then assumes the following form: 

where A(r ,q ,o)  denotes the approximate expression for the integrand 

as w becomes large and I(r ,q) stands for the integral of this expres- 

sion, It is, in detail 

and 

The modified integrand of equation (2,3 -22) rapid9y approaches zero 

as the btegration variable increases a e r e b y  sknortenbg the nurneri- 

cal procedure, 
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The numerical solution of the integral equation was f i rs t  

carr ied out by dividing the interval 0 6 r < 1 into ten equal parts, 

In order to check the convergence of the results the number of 

divieions wae doubled, For  a/b = 8 the f i rs t  four significant digits - 
and more as the ratio of a/b becomes l e s s  than 8 - were found to 

agree in both cases. This agreement was considered good enough 

and the interval size was not further decreased. 

The results of the numerical solution a r e  graphically rep- 

resented in Fig. 5, The function Z(r )  i s  smooth and monotonically 

increasing in the interval 0 4 r 6 1. It becomes a straight line of 

slope a s  a/b approaches zero. 

As we shall see la ter ,  the behavior of s t resses  and dis- 

placements close to the crack tip is dominated by the value of the 

function Z(r)  a t  r = l c  The dependence of Z(1) on the parameter 

a/b is shown in Fig, 4 ,  Z(1) approaches the value a s  a/b 

tends towards zero. F o r  a,'% > i .5 the values of Z(1) based on the 

numerical solution of the integral equation become practically 

indistinguishable from the values given by 

In the interval 0,5 U a/b C 1 ,5  there i s  a small difference 

between the nurulerical result for Z(1) and the value a s  given by 

(2,3-23). This difference i s  too small to show up in Fig. 6 but i t  

becomes evident in  Table I which contains values for Z(1) in the 

Jinterval 0 4 a/b 6 3.0 as obtained from the numerical solution, 

f roan the a s p p t o t i c  solution (2,3 - 21) and from equation (2,3 -23). 
I 



An interesting feature of the s t ress  intensity factor and fracture c r i -  

terion in the interval 0.5 < a/b < 1.5 results from this small differ - 
ence between the actual value for Z(1) and the value given by (2.3 -23). 

The .ratio a/b was considered constant in the step load prob- 

lem and entered only a s  a parameter. In the case of a moving crack, 

however, the crack length 2a changes with time and the dependence 

of the function Z on the ratio a/b will have to be 'considered. From 

now on we shrpll therefore write ~ ( r  , a/b). 

Knowing the function Z( r ,  a/b) we can proceed to calculate 

the desired quantities in the cracked strip. 

2.4 Stress Inten actor and Fracture Criterion for a n  Elastic 

Although of no direct impact on the development of the visco- 

elastic problem, a few results which a r e  of interest with regard to 

cracked elastic strips will be derived in this section. 

Making use of equations (2.3 -1 5,17,18) and formally sub- 

stituting the appropriate expressions into the Laplace transforms 

of the displacements (2.3 -1 2) and s t resses  (2,3 -13) on the boundary 

q = 0 leads to the following equations 

a Or 
1 

ed [l+m(ob/a)] cos ( ~ 5 )  Z(r ,  a / b ) ~ ~ ( o r ) d r d w ,  

151 a 1 @ (2.4-2) 

where the htegratioa formula 



was applied in the derivation of equation (2.4-1.). 

Youngts modulus E for an elastic material i s  not a function 

of time and E(s) i s  simply replaced by El a constant, The inverse 

Laplace transforms of (2.4-1) and (2.4-2) a r e  then readily written 

down, They a r e  
3 

Material properties do not enter the equation for the s t resses  

because s f  the shear-free strip edges considered in this problem. 

The s tresses  given by (2.4-4) a re  therefore the same a s  for a visco- 

elastic strip, The displacements on the other hand involve Young's 

modulus and time will appear in the corresponding expression for a 

viscoelastic strip, Im order to make a distinction between the elastic 

case and the viscoelastic one the superscript e was added to the 

s p b o l  for the displacement. 

The results just arrived at a r e  also valid for a. crack moving 

in an elastic strip a s  long a s  i ts  speed of propagation i s  low enough 

to safely neglect inertia terms. 

The normal displa&ements ue(x, 0) of the crack surface in 
Y 



the neighborhood of the crack tip a re  shown in Fig, 7. The contours 

presented there were obtained with the aid of the function ~ ( r ,  a/b) 

and numerical integration of equation (2.4-3). The crack has a blunt 

front the radius of curvature of which increases with increasing 

crack length until i t  reaches a maximum somewhere between 

0 , s  < a/b < 1.5, Then the radius of curvature decreases slightly 

and assume s an essentially constant value for a/b > 1.5, The theo- 

retical value for the crack tip radius will be given a few pages later 

when the expression for the opening displacement close to the crack 

tip i s  derived, Figure 8 shows the normal s t resses  in the crack 

plane for two different a/b ratios. The s t r e s s  distributions differ 

but little in spite of a considerable increase in crack size. For 

a/b > 1.5 the s t ress  distribution becomes again essentially indepen- 

dent of crack length. The familiar s t ress  singularity a t  the crack 

tip is also revealed in Fig. 8, 

Let us now consider the case of small a/b ratios. Under 

these circumstances we can make use of the asymptotic expansion 

for ~ ( r  , a/b), (2.3-21). Substitution of this expression into (2.4-4) 

and htegration results in 

where use was made of the fact that m(u) i s  a rapidly decreasing 

function, The product P(u) =: u [I -k rn (u)] which assunoes the value 
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2 for  u = 0 therefore approaches rapidly P(u) = u a s  u increases. 

Employment of this asymptotic form makes the integration in closed 

form possible. 

It is  customasy to. characterize the s t re  s s singularity by 

means s f  a s t r e s s  intensity factor. We shall use a nondiarrensisnal 

s t ress  intensity factor Kn which is defined a s  follows: 

If the limiting process i s  carried out for a ( x ,  0) one obtains 
W 

The f i r s t  term of this ser ies  corresponds to Inglis's solution for 

the infinitely large plate with crack (32). The f i rs t  two te rms were 

also obtained by h a u s s  ( S i j  by a different method. 

In order to get the s t ress  intensity factor for ratios of a/b 

greater than that covered by the asymptotic expansion we have to 

resort  to the numerical solution for the function ~ ( r , a / b )  a s  depicted 

in Fig. 5. Let us subdivide the interval 0 < r G 1 in to N equal parts 

a s  indicated in Fig. 90 Depending on the number of divisions the 

fu'nction Z can be arbitrarily well approximated by a straight line 

over each subdivision, that is 

~ , ( r ,  a/b) = A n (a/b) -I- B (a/b)r for rnml 4 r 4 r n  n, 



where 

and the subscript n indicates the nth subdivision. 

The integral over r appearing in equation (2.4-4) can now be 

represented"~ the sum of integrals over each subdivision, The 

result of this procedure is 

I 
~ ( r  , a/b)Jo(or)dr = (An+Bnr)Jo(~r)dr 

Q n=l r n-l 

where the infinite ser ies  enters because of 

Substituting (2,4-8) into equation (2.4-4) and performing the 

w integration wifi  the help of the same asymptotic behavior of 

u[l+m(u) ] for large u as discussed previously results in 



(2.409) 

The f i rs t  term of this series tends towards infinity a s  x- a and 

n = N. All other terms remain finite under al l  conditions because 

x/a 3 1 and rn =S 1. 

The s t ress  intensity factor is easily obtained from (2.4-9j by 

application of definition (2.4 - 6 ) .  

it i s  seen that the behavior of the stresses t~ the -immediate vicbity 

of the crack tip is  characterized by the value of the function Z(r,a/b) 

a t  r = 1, If one substitutes the asymptotic expansion for Z (2.3-21) 

into (2.4-10) there results the s tress  intensity factor obtained from 

the asymptotic expansion by different means (2.4-7), 

The stress  htensity factor for arbitrary values of a/b i s  

ploeed in Fig, 18 together with i ts values a s  given by the expansion 

for small a/b ratios and a s  given by the Inglis solution. It is seen 

that the asymptotic expansion for ~ ~ ( a / b )  holds up to a/b E 0.35 

whereas the bnglis solution is only applicable up to  a/b "= 0.1. 



An interesting feature revealed by Fig, 11 is the maximurn 

of the s t ress  concentration factor at  a/b r 0.75, At this point Kn 

i s  about 1.5% higher than the constant value it assumes a s  a/b -+we 

The consequence of thisl behavior with regard to crack propagation 

i s  discussed la ter  in connection with the fracture criterion, For  

a / b  > 1.5 the s t r e s s  intensity becomes practically constant and 

assumes the value 

%is result agrees with the value obtained for a semi-infinite crack 

by means of an energy consideration a s  described in reference (43). 

Failure Ci-iierion 

The crack displacements close to the tip a r e  found in a way 

similar to the one which was taken to determine the normal s t resses  

in this region, In this case, however, it suffices to  approxha te  

Z(r,a/b) by a straight l h e  segmezt close to r = 1 because the w e -  

gration which i s  to be carried out, see (2,4-3), ranges over the 

h t e r v a l  x/a G r S 1 where (1 -x/a) c< 1. The result of this operation 

is 

X for (1 - ,) << 1 (2!@ 4-1 l )  

Based on this eqiation the radius of curvature pe at  the crack tip 



Knowing the s t resses  and displacements close to the crack tip 

we can now proceed to determine the crack energy. Substitution of 

(2.4-11) and of the s t resses  a:: fowld with the aid of (2.4-10) into 

equation (2.1 -3) yields 

.where Aa denotes a small virtual crack advancement, 

A stationary crack becomes unstable when the energy re -  

leased during a small increase in crack length Aa as given by the 

crack energy i s  greater than the energy necessary to create the 

new surface. This condition i s  expressed by equation (2.1 -5). 

However dealing with a virtual crack motion w e  replace the time 

derivative by the derivatjive with respect ts a, The instability 

esndition thus reads 

With AD,=2SAa and equation (2.4-13) one obtains 

The critical load a t  which the crack becomes theoretically unstable 

is thus given by 
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This i s  the equivalent of the Griffith criterion which also gives the 

critical load for an infinitely large plate with crack under uniaxial 

tension ( 6 ) .  For  that case one substitutes the value for the s t ress  

intensity factor a s  a/b+ 0 and 

- - 
'o cr i t ,  

which i s ,  a s  expected, the Griffith criterion for an infinitely large 

plate with pressurized crack of length 2a under plane s t ress  condi- 

tions (44), 

Figure 11 depicts the critical load a s  a function of a/b. Note 

the steep slope of this curve a s  a/b approaches zero, The conse- 

quence of this behavior is  a very high acceleration rate for an 

unstable crack with an initial length such that a/b < 0.1, 

The small m i n i m u  in the critical load a t  a/b S 0.75 reflects 

the maximum in the s t ress  intensity factor a t  this point. This mini- 

mum means that a crack with an initial vaiue of a r b  in the neighbor- 

hood of a/b = 0.75 could extend a short distance and then come to 

res t  again if the critical load a. crit for the particular initial crack 
0 

length was carefully approached, that i s  i f  

(T < 0- < o crit.min, o crit.  B 

The upper bound of this inequality is given by the essentially constant 

critical load for a/b > 11,5, No experimental dataare available against 

which this particular conclusion could be checked. 

The other consequence of the minimum in the critical load 

with respect to a crack with initial length such that 



a/b C 0.75 i s  a deceleration of the crack after passage of the mini- 

mum. This deceleration period will las t  until the crack length i s  

large enough, i, e. , a/b > 1.5, to have the critical load remain 

constant with increasing crack eize, Thie result agrees well with 

an experimental crack acceleration history presented in Fig. 11 of 

reference (19, This curve shows a velocity maximum for a crack 

length which corresponds to roughly a/b = 1, This particular 

behavior was a s  yet unexplained. 

The expressions fbr the s t ress  intensity factor a s  derived 

in the las t  chapter for an elastic strip a re  directly applicable to a 

viscoelastic strip subject to the same boundary conditions. The 

displacements however will become functions of time which enter 

through the time dependent material properties, 

Crack TiD Dis~lacements  

The Laplace transform of the normal displacements of the 

crack surface is given by equation (2.4-1) for a step load oo applied 

a t  time t = 0 and for constant crack length 2a. The inversion of 

this expression i s  easily accomplished by introduction of the creep 

function Dcr(t). The Laplace transforms of the creep function, of 

the relaxation function Erel(t)@ and of the time dependent Young's 

modulus a r e  related as follows: 



The equation for the crack displacements in x, y, t-space then be- 

comes 

The superscript v was introduced to distinguish this result from 

the corresponding expression for an elastic strip. E i s  a con- 

stant and stands for the Young's modulus of the material for which 

the elastic displacements ue were calculated. It is seen that the 
Y 

time dependence of the displacements i s  completely contained in 

the creep function Dc,(t) which is found by inversion of (2.5-1). 
- - 

The determination of this function will be discussed in part  UB of 

this thesis, 

The response to an extending crack can be made up from 

a sequence of step 'loadings. F o r  instance, a t  time t = to a boundary 

segment of length 2a = 2ao i s  loaded. A short time later a t  

t = tl Z to the segments a. b la1 3 al a r e  loaded stepwise, etc. 

This scheme i s  illustrated in Fig, 12. By virtue of the f i r s t  of 

equations (2.5-2) one .i;hus obtains the following ser ies  for an 

extendhg crack with a -- a(t): 



where the additional superscript p was introduced in order to indi- 

cate that we a re  now dealing with the response to a propagating 

crack. The sum in this equation is replaced by an integral if the 

number of steps i s  imagined to approach infinity whereby the time 

difference between consecutive loadings tends towards zero,  i. e. , 

'j, " ti..l 4 0 ,  Assuming the crack to have zero length a t  time t = 0 

equation (2,5-4) then reduces to the following convolution integral: 

The elastic displacement ue'becomes a function of time through the 
Y 

crack length 2a(t), 

Partial  differentiation yields the time derivative of the elastic 

displacement to be 



Differentiating equation (2.4-3) with respect to the half crack length 

a and using integration by parts leads to the following expression: 

, l - 1:1<< 1 . (2.5-7) 

The function ~ ( r , a / b )  and i ts  derivatives with respect to r o r  a a r e  

al l  well behaved and the integrals in equation (2.5-7) give r i se  to 

finite te rms for a l lvalues of 0 S x / a  4 1 and Q S r B 1. With re-  

spect to the determination of the crack energy we a r e  only interested 
t 

in the displacements in the immediate vicinity of the crack tip where 

1 - 1 e 1 The terms given a s  integrals in equation (2.5-7) 
i 

become negligibly small compared to the f i r s t  term in this case. 

We thus obtain for 1 - If 1 << 1 

P a/b) 

or  by virtue of (2.4-1 0) 

Combinkg this expression with equation (2 5- 6) and substituting 

into the second of eqbations (2 .5 -5 )  results in 



X for 1 - ( ~ ~ 1  << 1 4 ( 2 . 5 - 9 )  

Restricting our selve e to cracks with constant speed of propagation 

v we have 

W i t h  the constant velocity assumption and the change in variable 

equation (2,509) can be simplified to the following form: 

for 1 - 151 << 1 (2, 5-1 0) 
t 

where a = v t stands for the crack length a t  t h e  t, The lower limit t 
X x appears because dP = 0 for t 6 ; . 

Y- 
The s t ress  intensity factor Kn changes only little with r be- 

l i - 1  << 1 and x <! <at. For  at/b > 1.5 it becomes essen- 
a+ 

L 

tially hdependent of crack length, see Fig, l B e  Eiruaithg our 

consideration to cracks for which at/b > 1 5 we can thus write 

and equation (2.5- 1 0) redcbce s to 



I 

for 1 -  I$I<<l . (2.5-11) 
t 

The displacements in the neighborhood of the crack tip a s  a 

function of crack propagation speed a r e  shown in Fig. 13. The creep 

function employed in this numerical evaluation of equation (2.5-5) is 

discussed in part  111 of this thesis. The contours shown in Fig, 13 

give the impression that the crack tip becomes sharp when the crack 

propagation speed i s  different from zero. The very tip is, however, 

still  blunt. But i ts  radius of curvature is considerably smaller than 

in the zero velocity case because of the generally large difference in 

the order of magnitude between the glassy modulus and rubbery 

modulus. F o r  the material on which Fig. 13 i s  based the ratio be - 
2 tween these two moduli i s  1 .5  x 10 . The change in curvature 

associated with this change in material properties can be calcu- 

4 lated with the help of equation (2.4-1 2); i t  amounts to roughly 2 x 1 0 . 

The two quantities which a re  necessary for  the calculation 

of the crack energy of a crack propagating in a viscoelastic strip 

a r e  now avalilable. Let us assurne that the creep function i s  given 

in te rms of a retardation s p e c t r m  k( t ) ,  that is (26) 

Substitution h t o  equation .(2,5-Ill) leads to 



The order of integration may be interchanged, the inner integral can 

then be evaluated r e  stilting in 
v 

a -x 

a m [-2 *] 
t uVP(x, 0 , ~ )  = 2uOK(6) L(7) 

Y I - ~ T  Er 0 V= 0 

(2,5-14) 

where (1;Z;vtl) = 1 x 3 x 5  ...,.( 2v-1) x ( Z v t l ) .  

Substituting equation (2.5-14) and the s t resses  close to the crack tip 

a s  characterized by the s t ress  intensity factor (2,4-10) into equation 

(2.1 -3 yields 

The order of integration can again be interchanged and the inner . 

integral be evaluated, One thus arrives a t  

As far  a s  the energy balance s f  a moving crack is concerned we a r e  

only interested in the rate of change of the crack energy. Mi& the 

approximation 
' aaEV" 

AEVPE c 
c - BAa Aa 

and for constant crack speed v one obtains 



where the infinite ser ies  in (2.5-1 6) has been summed out after dif- 

ferentiation. The bracketed term in (2.5-17) ie the value of the 

Aa creep function at time t = - The rate of change of the crack v e  

energy can thus be written a s  

2 2 273 Aa k v p = - Z V K  c a bv- D (.-----) n o T c r v a  T 

The temperature dependence of the creep function was additionally 

introduced in this equation. Dcr is now the creep function a t  absolute 

temperature T = ~ 7 3 ~ ~  and aT i s  the time-temperature shift factor 

with respect to this temperature (45). The factor enters on the 

assumption that the temperature dependence of the modulus a s  pre- 

dicted by the classi~a.1 theory of rubber elasticity is also applicable 

for the creep f.iztioii. 

Equation (2,5-18) gives the crack energy a s  a function of 

material properties expressed by the creep function, a s  a function 

of crack propagation speed, temperature, and applied load. The 

length Aa i s  some kind of characteristic length a possible physical 

bterpreltation of which will be discussed in part IV of this thesis, 

It will be viewed a s  an additional material property necessary to 

characterize crack propagation in a viscoelastic material. 



2 , 6 ,  Relationships between Crack Propagation Speed, Load, Tem- 

perature, and Material Properties 

The energy conservation equation (2.1-5) has to be satisfied 

for  a propagating crack. The rate of change of energy dissipated by 

the creation of new surface i s  given by equation (2.1 -6). Substituting 

this expression and the one for the crack energy as given by (2,5018) 

into equation i(2. 1 -5) results in 

TEiis equation has two solutions: 

1. The trivial solution v = 0. 

2. A velocity which i s  given implicitly by the condition 

The fracture criterion based on the rubbery modulus E = ]./Elr of r 

the material i s  given by 

In order to allow the crack to propagate the applied load oo has to 

be greater than oo crit The case oo = o . corresponds to an 
c9 o crit.  

unstable equilibrium statec Let us write 

where n > 1. 
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The factor n will be called load factor, Equation (2,6-2) reduces to 

the following form by virtue of this factor 

The load a. which has to be applied in order to enable the crack to 

propagate with constant speed v i s  given by this equation provided 

all  the material  properties entering it and e q u a t i ~ n  (2.6-3) a re  

known. 

Let us now consider two different loads oO1 and oOZ which 

a r e  applied at equal temperatures, The relation between .these loads, 

respectively strains,  and the corresponding propagation speeds is 

easily derived from (2,6-51, it reads 

A similar relationship between strains and temperatures can be de- 

rived for  a fixed crack propagation speed, The following equation 

holds in this case: 

where 

T D (A) 
E02 G02 Tl 1 c r v a  ---- = - ---. = T1 

"01 T D (A, 2 cr v a T Z  

the elastic modulusl ,is assumed to be 

0 

directly 
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the absolute temperature (46). 

The validity of these surprisingly simple relationships will 

be tested in part IV of this report. Experimental data will be com- 

pared to the predictions made on the basis of these equations and 

of the material properties for a particular polymer which will, be 

presented in part IU. 
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111. MECHANICAL CHARACTERIZATION OF SOLITHANE 50/50 

The experimental determination of the mate rial  properties 

entering the relationships derived in part I1 will be described subse- 

quently for a Polyurethane elastomer of the type used a s  a solid 

propellant binder. This material i s  commercially produced by the 

Thiokol Chemical Corporation and car r ies  the trade name Solithane 

1 i3.  A so-called Urethane Resin and Catalyst (manufacturer's desig- 
L 

nation) a re  the two components from which Solithane 113 can be rela- 

tively easily produced in the laboratory. Chemically the "Resin" is 

a trifunctional isocyanate which is the product of a reaction between 

Castor Oil and Tolylenediisocyanate (TDI). The "Re sin" is liquid and 

chemically stable a t  room temperature. Urethane crosslinks a re  

then introduced between the "Resin" chains by adding the 'tCatalyst" 

and curing the mixture a t  an elevated temperature. The "Gatalyst" 

i s  a trio1 and consists essentially of Castor Oil. The "Resin- 

Catalyst" ----- mixture flows easily and can be cast into molds without 

great difficulty. The "Catalyst" used for the production of Solithane 

113 i s  Thiokol Urethane Resin Catalyst 6 1  13 -300 and the "Resin" i s  

Thiokol Solithane 113 Urethane Resin. The curing temperature is 

1 6 5 O ~ ,  

For  the purpose of this investigation the material was cast  

into 12" x 12" sheets of 1/10" o r  1/32" thickness. Ferroplates, 

which a r e  normally used for the production of glossy photographic 

prints, served as mold surfaces and assured a high surface quality. 

The sheets were stored in a dry box after completion of the curing 

process of 1 $j hours a t  16i0c. Specimens with the desired 
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dimensions a r e  easily cut from the sheets with the aid of a razor  

blade o r  similar tool, More information on the chemical aspects 

, and the synthesis of Polyurethanes can be found in reference (47). 

A detailed description of the manufacturing facility in the GALCIT 

laboratory is given in (48). 

Solithane i s  one of the contenders in a program conducted 

for  the purpose of selecting a suitable standard viscoelastic material 

which would facilitate the compilation of experimental data and 

. would provide a common test  material for theoretical results in 

the field (49,50). One of the advantages of Solithane i s  that the 

material  properties can be changed over a wide range by varying 

the "Resin" to "Catalyst" ratio (25). The composition used for 

the present work i s  equivoluminal, that i s  equal volumes of "Resin" 

and "Catalyst" go $into the final product, and will be designated 

a s  Solithane 50/50, Great care  was taken in the production s f  the 

material in order to minimize the variation of material properties 

from batch to batch, A certain amount of scatter is ,  however, 

unavoidable and a quick mechanical characterization of each batch 

was carried out. The real  and imaginary part of the shear modulus 

were calculated for this purpose from the time record of f ree 

torsional oscillations a s  measured with the help of a torsion pendu- 

lum (49), A deviation of ~ 5 %  from the mean was considered per- 

missible and all  other batches were discarded, 

All the experiments to be described on the following pages 

were performed in a standard h s t r o n  testing mechine. This 

machine has conetant extension rates ranging f rorn 0; 02 to 20.0 
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in/rnin and an automatic load and extension recorder built: in, Tests 

a t  different temperatures were run with the aid of a temperature 

chamber which enclosed the test  section of the Instron tester.  

3.1. Uniaxial Stress -Strain Behavior 

Some of the typical features of viscoelastic materials a re  

exhibited in simple uniaxial tension tests. The classical theory of 

rubber elasticity predicts the following relation between s t ress  

and extension ratio (46) 

where C = temperature dependent material  constant 

X = extension ratio = 1 + E.  

Equation (3.1-1 ) i s  based on the statistical f ieory of polymer net- 

works and the following main assumptions a r e  made in the course 

of i t s  derivation: 

a. The chain length distribution i s  Gaussian, 

b. the chains a r e  completely flexible, there a re  no chain 

entanglements, loose ends, etc. , 

c.  the internal energy does not change during the defor- 

mation, that i s  the network elasticity is entirely an 

entropy effect 

d, the deformation i s  affine, 

The above s t re  s s  -strain relationship for uniaxial tension corresponds 

to a stored energy function which involves only the f i r s t  strain invar- 

iant* ia e ,  , 



where , 

A material with this strain energy function i s  called a neo-Hookean 

material. 

The response of most elastomers is not adequately described 

by equation (3.1-1) however. Mooney (51) and Rivlin (52) improved 

the agreement with experimental data by including the second 

strain invariant in the simple s t  possible way. The s t rain energy 

function reads in this case 

= c (I - 3) + Cz (I2 - 3) w2 . 1  1 

where 

This equation characterizes a so-called Mooney-Rivlin material. ' 

The s tress-s t rain law for uniaxial tension of a material of this kind 

becomes 

The two constants Cl and C can be easily determined by repre- 2 

senting experimental data in the form of a Mooney -Wivlh plot, The 

quantity o/(h-he2) i s  plotted versus l / X  in this case and a straight 

line results if the materia3 obeys equation (3,1-4). The constants 
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a re  then readily calculated from the values a t  which the straight line 

intersects the normals on 1/X = 0 and 1/X = 1. 

The Mooney-Rivlin plot i s  a convenient method of represent- 

ing s t ress  -strain data for elastomers because deviations from any 

of the two simple constitutive equations just discussed become 

immediately apparent. 

The uniaxial tension tests  with Solithane 50/50 were per- 

formed on ring specimens with an inner diameter of ca. 0.65", an 

outer diameter of ca, 0.75", and with a thickness of 0.1 ". These 

specimens were cut from 0.1" thick sheets with the aid of a special 

rotating cutting tool. The surfaces cut with this tool were not of . , 

the same high quality a s  the surfaces of the cast  sheet but visual 

inspection of each specimen guaranteed a good degree of uniformity 

and helped to single out faulty speckhens before the test  was run. 

The dhens ions  of each ring were also measured with an optical 

comparator and the ring cross-section was calculated from the re-  

sults of these measurements. 

During a test  a ring was stretched by two pins of 0.4" 

diameter which were separated a t  a constant rate. These pins were 

greased with Vaseline in order to lower the friction between the 

specimen and the pin during extension. It was found by Smith (53) 

that there i s  good agreement with stress-strain curves obtahed 
\ 

from experiments with conventional dog-bone shaped specimens if 

the strain in the ring s p e c k e n  i s  based on the inner diameter of 

the -stretched ring. That i s  



where A l  = distance the pin traveled 

Di 
= inner diameter of the ring specimen. 

The s t r e s s  i s  calculated by dividing the force exerted on the pins by 

twice the cross-sectional a rea  of the undeformed ring, 

The results of these measurements for Solithane 50/50 a r e  

presented in Figs. 14, 15 and 16 for three different temperatures 

and ten differebt strain rates ranging o v e r 3 d e c a d e s , It is 

seen that for a temperature of 4 0 O ~  (cf. Fig. 14) the material 

behaves very much like a neo-Hookean material. There do not 

seem to be any strong rate effects present because the data for a l l  

tested strain rates fall very close to a horizontal straight line. 

Only for small strains i s  there a considerable deviation which i s  

partly blamed on some initial slack in the recording mechanism, 

however. 

As the temperature decreases we find a marked increase 

in the s t resses  prior to failure, cf. Fig. 15 for a temperature of 

2 0 O ~ .  This upswing i s  most for the highest strain 

rates,  Rate effects obviously come into play a t  this temperature. 

Up to strains of about 100% the material response i s  still  close to 

being neo-Hookean for a l l  strain rates tested. 

Figure 16 shows the Mooney-Rivlin plot for a temperature 

of - 5 ° ~ .  The strain rate with which the test  i s  run i s  an important 

factor a t  this temperature and shape and position of the individual 

curve depend on it, Only the lowest strajn rates yield a response 
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which resembles neo-Hookean behavior up to strains of roughly 100%. 

A threefold to fourfold increase in the s t ress  i s  observed beyond 

- 1 this point until failure occurs. For  strain rates of 0.9 min and 

greater the curves exhibit a constant slope up to about 3070 strain 

and more a s  the strain rate increases. This section of the s t ress-  

strain curve could therefore be represented by a Mooney-Rivlin 

equation with rate dependent constants. For  strains greater than 

ca. 6570 the s t resses  increase sharply again and reach values a t  

failure which a r e  several t imes larger than the s t resses  a t  strains 

smaller than 6570 o. 

The graphs which were just briefly discussed show that the 

material cannot be represented by one of the classical constitutive 

equations over the whole range of temperatures and strain rates 

considered here. The increasing importance of rate effects a s  the 

temperature decreases i s  evident by comparison of Figs, 14, 15  

and 16. 

3,2, Uniaxial Failure Data 

The failure data to be discussed in this section were obtained 

from uniaxial tension tests on ring specimens a s  they were described 

in the previous section, Stresses and strains at  failure were calcu- 

lated in the same manner a s  employed there, Because of the 

statistical nature of the failure process several tests were run 

for each temperature and s t r a h  rake and the data points shown 

in the graphs of this section represent the average value of four 

or  more individual tests, . 



Figures 17 and 18 give, respectively, the failure strain and 

failure s t r e s s  at  temperatures ranging from -1 2. 5OC to C40. OOC 

a s  a function of strain rate. Both strain and s t r e s s  a t  failure in- 

crease considerably a s  the temperature decreases. The effect of 

the strain rate on the failure strain i s  strongest for temperatures 

above OOC. On the other hand, the failure s t ress  i s  more affected 

by the strain rate if the temperatures a r e  less  than 20°C. 

The master  curve for the failure strain a s  shown in Fig. 19 

results from shifting the curves of Fig. 17 along the abscissa until 

a single continuous curve is obtained, The amount by which each 

curve has to be shifted with respect to the curve for the reference 

temperature determines the shift factor aT which will be discussed 

in more detail in section 3,4. 

It i s  seen from Fig. 19 that the failure strain conforms 

well with the time -temperature shift principle, Other investigators 

noted already that the s t ress  a t  failure cannot be shifted a s  well 

into a single master curve ( 54). The same observation i s  made for 

Solithane 50/50. Figure 20 shows eke s t ress  a t  failure shifted by 

the same amounts a s  were necessary to produce a best fit  master 

curve for the failure strain, It can be seen that there i s  good agree - 
ment a t  low strain rates but a considerable difference exists between 

the shifted curves for various temperatures a t  high strain rates. 

The so-called failure envelope, that i s  a plot of s t ress  a t  

failure versus strain a t  failure, i s  shown in Fig, 21. Smith sug- 

gested that this envelope is a unique property of a viscoelastic 

material  on the basis that i t  i s  independent of the deformation 



history ( 5 ). Although it  has been demonstrated that the failure 

envelope i s  not entirely independent of the loading history (55) a 

plot of this kind minimizes the influence of strain history. The 

failure envelope for Solithane 5 0 / 5 0  has the typical form for elasto- 

mers .  The strain rate of a constant temperature tes t  increases 

in counterclockwise direction. The failure strain goes through a 

maximum of 225% a s  the test  temperature decreases, 

3 .3 ,  Relaxation Data and Creep Function 

The c'reep function Dcr(t) plays an important role in visco- 

elastic crack propagation a s  the relationships derived in part U[ 

show, Equatior, ( 2 . 5 4  ) relatza the Laplace i~ansfsrrns of the 

relaxation modulus Erel(t) and of the creep function. The basis 

of this relationship is a s t r e s s -e t r ak  law f a r  uniaxial tension of 

the following type 

If a step strain of magnitude eo i a  applied a t  time t = 0 ,  equation 

(3.3-1) reduces to 

A s s m b g  the relaxation modulus to be known an .integral equation 

for the creep f a c t i o n  is readily obtained by jcnvershn of khe Laplace 



transform of equation (2.5 - 1 ). This integral equation reads 

On the basis of equation ( 3 . 3  -3)  the relaxation modulus can 

be relatively- easily determined experimentally although a true step 

strain history cannot be realized in an actual experiment. In our 

case ring specimens were stretched to roughly 5% strain a t  a 

constant rate of strain instead. The r ise  time necessary to reach 

this strain level was on the order of half a second. A period of 

5 times the rise time was allowed to pass by before data were taken, 

The strain in the ring was calculated from an accurate measurement 

of the pin displacement by means of a cathetometer. The load which 

acted on the pins stretching the ring was recorded as  a function of 

time. The s t ress  i s  based on the cross-section of the unstretched 

ring, Knowing the time dependent uniaxial s t ress  in the specimen 

the relaxation modulus i s  immediately given by ( 3 . 3  -3 ) .  

Relaxation curves for several temperatures a re  presented 

in Fig. 22 as  a function of time, The time scale spans roughly 3 

decades which i s  about all that can be covered without making the 

experiment too time consuming. The full relaxation curve can be 

obtained from the individual curves of Fig. 22 by application of the 

time-temperature shift principle ( 5 6 ) .  Rather than employ the shift 

factor aT a s  determined by the superposition of failure data we shall 

shift the individual relaxation curves such a s  to produce a best fit 

master relaxation curve and later compare the shift factors obtained 

by the reduction of these two dsferent sets of data. 



The master curve for the relaxation modulus i s  given in Fig, 

0 
23 fo r  a reference temperature of 0 C. The data superpose well 

into a single curve. The large difference in the order of magnitude 

between the glassy and rubbery modulus should bet noted. At a 

temperature of OOC the material reaches i ts  long time equilibrium 

state essentially within a tenth of a minute. An increase in tem- 

perature reduces the relaxation time drastically a s  a look a t  the 

time -temperature shift factor, aT, tells (cf, section 3.4 

below). 

Having determined the relaxation modulus experimentally 

we can find the creep function by numerically solving the integral 

equation ( 3 . 3  -4). The method employed in this case i s  due to 

Hopkins and Hamming (57). The result of this calculation i s  shown 

in Fig. 24. For  a comparison the function 1 / ~ , , ~ ( t )  i s  included in 

this graph. The two curves have practically the same shape, They 

agree compieteiy at iong and short times and differ by a t  most 

half a time decade a t  intermediate times. 

3.4. 

It was observed by several investigators that the curves 

representing a certain time dependent response of a viscoelastic 

material a s  measured at  various temperatures could be superposed 

into a single master curve by introducing a reduced time scale, 

see references (58,59,60) among sthers.  As we saw from the 

presentation of failure data and relaxation data this so-called time - 
temperature superposition principle is also well observed in the 



case of Solithane 50/50, The shift factor i s  denoted by aT and a 

reduced time tred i s  defined by it in the following manner 

where a; stands for the real  time, The shift factor is always given 

with respect to a reference temperature a t  which it assumes the 

value 0. In the present investigation the reference temperature is 

chosen to be Tref = 273O~. The shift factor i s  positive for temper- 

atures smaller than Tref,and vice versa.  

The shift factor for Solithane 50150 is shown in Fig. 25. 

Very good agreement between the values obtained by shifting differ- 

ent sets of experimental data exists, The shift factors for swollen 

Solithane 50/50 a r e  of no interest in the context of this section and 

will be interpreted later. 

Williams, Landel, and F e r r y  found that the shift factor for 

a great number of polymers i s  given by the following semi-empirical 

equation (45) ' 

where the temperature T i s  expressed in degrees centigrade and 

where Ts i s  a temperature arbitrarily fixed to be 50°C above the 

glass transition temperature T 
g * 

It i s  seen from Figo 25 that in the temperature range from 

-15OG to t25OG the experimental data for Solithane 50150 a r e  well 

described by the WLF-equation with Ts = 32OC, The latter corres-  

ponds to a glass transition temperature of T = -1 which i s  in l3 



very good agreement with the dilatometrically determined value of 

- 1 8 . 5 ° ~  for Solithane 50/50 (61). 

3.5 Swellipg Properties 

The volume of crosslinked polymers i s  considerably in- 
I 

creased if the material i s  submerged in a suitable solvent. The 

structure o r  mechanical integrity of the material remains unharmed 

in the process, Only the sol, that i s ,  uncrosslinked polymer chains 

contained in the material, will be largely dissolved under the 

influence of the solvent (62). The study of swelling properties 

of polymers and of their mechanical behavior in this state allows 

conclusions on their molecular structure and the calculation of net- 

work characteristics. The effect on the mechanical behavior i s  

mainly a great reduction o r  even elimination of the rate dependence 

of the material response, The reduced internal viscosity is the 

motivation for our investigation of the properties of swollen Soli- 

thane 50/50, 

The f i r s t  'step in an experimental program of this kind i s  

the selection of a suitable swelling agent. The equilibrium swelling 

properties of a substance a re  characterized by i ts  solubility 

parameter 6 which i s  the square root of the cohesive energy density 

(CED). The latter i s  defined a s  the energy required to separate 

all the molecules of a substance from each other and i s  given by 

the ratio of the molar heat of vaporization over the molar volume. 

The solvents listed in Table %I were selected as swelling agents 

for equilibrium swelling a p e r h e n t s  with Solithane 50/50, AU of 
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these solvents were poorly hydzogen bonded and together they span 

a wide range of solubility parameters a s  can be seen from Table 11, 

Small rectangular specimens were cut out of a sheet of cast 

Solithane 50/50. Their dimensions were roughly 3/4I1x 1 /4" x 1 /3 2". 

Each specimen's length and weight were carefully measured with a 

travelling microscope and laboratory scale, respectively . The 

samples were then put in Petr i  dishes containing a particular solvent 

and the length of each specimen was measured a t  increasing time 

intervals. This measurement was again carried out with the help 

of a travelling microscope and the specimen remained submerged 

in the process. The experiment was performed a t  room temperature 

of about 2 3 O ~ .  Figure 26 gives the results of these measurements 

where the volume swelling ratio for two different swelling times i s  

plotted versus the solubility parameter of the solvents. 

The typical swelling behavior with a maximum of the volume 

increase for a particular solubility parameter i s  exhibited in this 

figure. On the basis of these results i t  was concluded that the solu- 

bility parameter for Solithane 50/50 i s  6 = 9,5 This value 

i s  slightly less  than the value of 6 = 10,0 which i s  reported in 

"Polymer Handbook" (63) for a Polyurethane rubber s f  u 

composition. 

Another distinct maxirnum was found to exist in a prelimi- 

nary test  in which there was no attention paid to the nature of the 

solvents used a s  swelling agents. This m a x h u m  was located a t  

6 = 12.1 and the solvent was dimethylforrnamide, a moderately 

hydrogen bonded solvent, It seemed the maxianurn was shifted 



towards higher values of the so1,ubility parameter for  this kind of 

solvent. Not enough data for the swelling rat io in moderately, o r  

strongly hydrogen bonded solvents were collected, however, to 

confirm this observation. 

The t ime required to reach equilibrium conditions depends 

. of course on the volume of the dry specimen V , *on the swelling 
0 

agent, and on the temperature.  For  a volume of To = 0.0068 in 
3 

the equilibrium swelling t ime was l e s s  than 45 h r s ,  a t  23OC for  

all solvents employed here .  Only one hour was necessary for  

Toluene which has  a low viscosity compared to other solvents, 

The dynamic viscosity of Toluene i s  0.583 c P  a t  2 0 O ~  and 0.316 

On the basis  of this  experiment Toluene was chosen for the 

further mechanical characterization of Solithane 50/50 in the 

swollen state,  Toluene has a solubility parameter of 6 = 8.9 which 

i s  close enough to the same parameter i o r  Soiithane 50150 to ensure 

a high degree of swelling without making the swollen material  too 

difficult to handle a s  is the case at maximum swelling. The re la-  

tively low viscosity of Toluene i s  also a point in i t s  favor particu- 

l a r ly  with regard to crack propagation tests ,  Fur thermore i t  has  

manageable hazardous properties in the temperature range of 

interest  here', that i s  in the range from -5O@ to 50°C. Toluene 

has a boiling point of 1 1 0 .  ~ O C ,  a flash point of 4. s°C, and an 

autoignition temperature of 5 5 ~ ~ ~  (64). 

After completion of the swelling measurements the samples 

were put in a vacuum vesse l  and dried at 5 0 O ~  for  several  days. 
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This time was considered long enough to be sure that all  solvent 

res ts  had evaporated from the samples. They were then weighed 

- again and the sum of their weights was compared to the total weight 

before swelling. This way the sol-fraction in Solithane 50/50 was 

found to be 3.4 weight percent, 

From the equilibrium swelling ratio and sol content together 

with the number of elastically effective network chains, which will 

be determined in the next section, we can calculate the polymer- 

solvent interaction parameter p. This parameter is a measure of 

the energy difference between a solvent molecule immersed in the 

pure polymer and one which i s  surrounded by other solvent mole- 

cules of the same kind (65). We employ the modified Flory-Rehner 

equation for this calculation, which reads (66) 

where v2 = polymer volume fraction in the swollen sample, 

V = molar volume of the swelling agent a t  test  temperature, 

g = volurne fraction of gel rubber 1.0; 

p = polymer - solvent interaction parameter, 

v'  = elastically effective network chains in moles per unit e 

volume of unswollen polymer. 

Inserting the known quantities into this equation yields for  the 

polymer -solvent interaction parameter of the SoliLhane 50150- 

Toluene combination the value y = 8.453. 
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3,6. 

Solithane 50/50 becomes very brittle when swollen in Toluene 

and has to be handled with great care. Another experimental diffi- 

culty a r i ses  from the fact that Toluene evaporates rapidly from the 

surface of a swollen sample leading to the development of surface 

cracks within a short time after the sample i s  removed from the 

solvent bath. In order to circumvent these problems a tank device 

(cf, Fig. 27) was designed in which experiments on swollen speci- 

mens could be run while the specimen i s  completely submerged 

during the test,  

The device consists of a tank the bottom of which i s  bolted 

onto the cross-head of the Hnstron testing machine. Front and rear  

walls of this tank a re  made of glass in order to be able to make 

photographical observations. Inside the tank i s  mounted a spring 

loaded, stainless steel jaw which holds the lower end of the speci- 

men, The upper end of the specimen i s  held by a similar jaw which 

i s  free to move vertically on ball bearings which a re  guided by two 

stainless steel rods which a r e  part of the tank structure, The 

position of the ball bearings i s  adjustable and parallelism of the 

. jaws can be easily obtained by proper adjustment. The latter i s  

important for the performance of crack propagation experiments 

in s t r ip  specimens which can be accommodated in the jaws up to 

a length of 6"'. The top jaw i s  comected to the h s t r o n  load cell, 

The arrangement just described allows the bui l t -b  load and dis- 

placement recordirng mechanisms and various cross-head speeds 

of the h s t r o n  tester to be used for experiments in tl-ie swollen state, 



About three gallons of Toluene a re  required to f i l l  the tank, 

The temperature of the Toluene can be easily changed within a cer -  

tain range by installation of copper coils through which a cooled o r  

heated mixture of water and Ethyleneglycol i s  pumped. This way the 

temperature can be varied from ca. -5Oc to + 5 0 " ~  and can be kept 

constant within *lOc at  any desired level in this range. 

Uniaxial Stre s s  -Strain Behavior 

We noted already in section 3.1 that the material response of 

Solithane 50/50 cannot be described adequately by the neo-Hookean 

or  Mooney-Rivlin constitutive equation if  the test temperature i s  about 

equal to o r  l e s s  than 20O~.  The experiments on which Figs. 14, 15 

and 16 a re  based were repeated for swollen Solithane 50/50. Ring 

specimens a r e  not suitable under these conditions and dogbone 

shaped specimens were used instead. These specimens were punched 

out of cast sheets of 1/32'' thickness. The cross-sectional a rea  of 

these specimens was 0.35" x 0.044" in the swollen state and their 

effective length was experimentally determined and theoretically 

estinnated to be 2.59'" Punched out specimens gave the best 

surface smoothness compared to other techniques like milling o r  

cutting. The surface quality of the surfaces produced by the punch 

was however not nearly a s  high a s  the quality of cast surfaces and 

every specimen was visually inspected to sor t  out faulty pieces with 

obvious surface defects. 

The tests  were run in the device just described a t  tempera- 

tures of 4 2 ' ~ ~  19O C, 4'6, and - 2 ' ~ .  The strain varied from 

0.0077 to 7.7 mipel* Figs. 28-31 contain thk result? of these tests in 



the form of Mooney-Rivlin plots. Conside ring an experimental 

accuracy of about *49'0, which can be mainly contributed to friction 

in the ball bearings guiding the upper jaw, one sees  that the uniaxial 

s t r e s s  -strain behavior of ewollen Solithane 50/50 i s  in good agree - 
ment with. classical rubber theory. In other words the swollen 

material behaves neo-Hookean up to failure for all strain rates and 

temperatures investigated here. No reasonable explanation can be 

offered for the tendency of some data points, particularly a t  high 

strain rates,  to fall considerably below the best f i t  straight line 

a t  small strains, that i s  for l /h close to unity, However i t  i s  be- 

lieved that this effect is caused partly by some initial slack in the 

. recording mechanism which becomes noticeable a t  high extension 

rates,  

The remarkable feature of the behavior of swollen Solithane 

50/50 under uniaxial tension a s  compared to the dry material i s  the 

fact that i t  is completely independent of the strain rate although the 

latter i s  changed by up to three decades, The data scatter does not'  

exhibit any particular trend except for the already mentioned devia- 

tion at small strains. This result allows the conclusion that rate 

dependent friction forces in the material a r e  largely removed by 

swelling. It also seems that the large discrepancy between classi- 

cal theory and real  response a t  temperatures equal to and less  than 

2 0 O ~  i s  due to the presence of rate dependent mechanisms in the 

material for  which there i s  no allowance made by this theory, This 

disagreement i s  hence not caused by some inherent defect of the 

classical tfieory sf  rubber elasticity* 



The coefficient C1 appearing in equation (3.1-1) is given by 

classical theory (46,65 ) to be 

where T = absolute temperature, 

R = universal gas constant, 

v' = number of elastically effective network chains in e 

moles per unit volume of unswollen material, 

v2 = volume fraction of polymer in the swollen state. 

According to equation (3.6-1 ) the coefficient C1 i s  directly propor - 
tional to the absolute temperature. The following values for the 

quotient C ~ / T  were calculated from the data presented in  Figs. 

The factor C1 increases slightly more with increasing temperature 

than is predicted by the classical theory. Compared to the tempera- 

ture dependence of the response of unswsllen So1ia;hane the agreement 

is very good, however, 

Assuming a value .of 0.25 p s i P ~  for c ~ / T .  which corres-  

ponds roughly to a temperature of 23OC and a Young' s modulus for  



small strains of 444 psi, one can calculate the numbdr of elastically 

effective network chains from equation (3.6- 1 ), This calculation 

-4 
yields v b  = 5.78 x 10 moles per milliliter of unswollen Solithane 

Failure Data 

A collection of average strains a t  failure of swollen Solithane 

50/50 under uniaxial tension i s  given in Fig, 32. The strain i s  based 

on the dimensions of the unswollen, unstretched specimen in this case 

in order to make the comparison with similar data in the unswollen 

state easier. Each point in this plot represents the average of three 

o r  more tests. The dataare rather widely scattered and only a slight 

trend towards higher failure strains can be detected a s  the strain 

rate increases in spite of the change of the latter by a factor of 1000, 

This behavior i s  the same for the three temperatures for which 

failure data were collected and underlines the practically complete 

absence of rate effects in the swolien state which was already ob- 

served in the s t ress-s t rain relationship, A comparison of Fig. 32 + 

with Fig, 17 again reveals the striking difference between swollen 

and dry Solithane 50/50 with respect to the rate dependence, 

Figure 33 i s  a plot of the s t ress  a t  failure versus X - x-' 

a t  failure, The data points a re  in this case closely and evenly scat- 

tered around a straight line with a slope of 137 psi. The slope i s  

equal to 2Cl and the reference temperature i s  T = ~ 7 3 ~ ~ .  The 

quotient C1 /T a s  calculated from this plot i s  hence cl /T = 0.2507 

p s i P ~  which i s  in good agreement with the value a s  obtained previ- 

ously from s t re s s  - s t r a h  curves, This figure c o d i r m s  the statement 



which was already made a t  an earlier point that swollen Solithane 

50/50 behaves up to failure like a neo-Hookean material. 

3.7 Crack Propagation and Surface Energy 

The fracture criterion (2.6-3) establishes a relationship be- 

tween the surface energy S and basic material parameters which can 

be directly determined by experiment. The important factor in this 

equation i s  the critieal load a o r  critical strain E o cr i t  , respec- o c r i t  

tively. In order to measure either of these two values accurately 

the load factor n,  cf, section 2.6, should be unity, The initial crack 

becomes theoretically unstable a t  this point and begins to propagate. 

For  materials without substantial dissipation the point of instability 

i s  easily recognized in an experiment because the crack extends 
t 

rapidly once i t  becomes unstable, For  highly viscoelastic materials 

on the other hand the speeds of crack propagation, can be extremely 

low and the minimum s t ress  o r  strain necessary to make the transi- 

tion from a stable to an  unstable crack possible is difficult to define. 

Figure 37,which shows crack propagation speeds for Solithane 50/50 

in a narrow strip a s  a function of applied gross strain E ~ ,  illustrates 

this situation. Imagine the solid curves to be erased in this plot. 

One i s  then tempted to draw straight lines through the experimental 

data, From these straight lines one then concludes that even 

smaller rates of propagation could be obtained if one could muster 

enough patience upon lowering the strain further, There thus appears 

to be no obvious lower bound for the critical strain. 

In order to take same of the uncertaixrty out of the experi- 

mental determhation of dhe surface energy of a highly viscoelastic 



material  use was made of the fact that the internal viscosity of the 

material i s  largely removed in the swollen state (cf. section 3.6). 

The material behaves like a brittle material under these conditions 

and the point of crack instability is  better defined. The energy S 

which i s  reqhired to break the bonds penetratljlg a unit a rea  is as -  

sumed to be unaffected by the presence of the swelling agent, The 

only difference i s  then a reduction in  the number of bonds per unit 

a r e a  which i s  caused by swelling the material. 

The geometry which was chosen for  the experimental deter- 

mination of the surface energy under these conditians was a narrow 

s t r ip  of 5 1/2" length, 1" width, and 0.045" thickness in  the swollen 

state. A crack of 1 length was cut along the center line at one of 

the narrow edges of the strip, The ratio of crack length to strip 

width i s  large enough so that the s t ress  field around the crack tip 

i s  equal to that of an inilfnitely long strip witJl semi-infinite crack 

(19). The specimens were prepared completely in the dry  state and 

then put in a Toluene bath for a day or  longer before the tests were 

run in the device described above. The test  consisted of displacing 

the str ip  edges with a constant rate until the initial crack became 

unstable. Load and displacement were measured in the process 

with the help of the built-ljl h s t r o n  recorders. 

The point s f  crack instabsity manifested itself a s  a sharp 

break in the load-displacement curve. There was no ambiguity in 
I 

the defhition of this point on the graph, The displacement; of the 

strip edge was on the order of only 0.02" and an jindependent meae- 

urement of &is quantidy warsl carried out as a cheek on the lastron 



measurement and on the parallelity of the two jaws, The displace- 

ments a t  both ends of the jaws were measured with the aid of two 

linearly variable transformers. There was consistent agreement 

between al l  values for the displacement. 

Solithane 113 i s  a very transparent material and especially 

in the swollen state i t  can hardly be distinguished from the Toluene 

surrounding it. Polarized light was therefore used to make the crack 

tip visible. Only one fringe formed a t  this point because of the low 

overall strain level and because of the small, sheet thickness, This 

was no disadvantage, however, because the fringe was only used to 

mark  the position of the crack tip. The time history of this position 

was recorded on film by means of a Magnifax high speed motion 

picture camera with a maximum frame rate of about 3200 frames/sec. 

The filrn speed could be accurately determined with the help of tinning 

marks on the film and the crack propagation speed was readily cal- 

culated from the howledge of crack tip position and elapsed time, 

After the crack passed through an acceleration stage of 

varying length it propagated at  constant speed until i t  came into the 

vicinity of the opposite specimen edge, The length of the accelera- 

tion period depended on the test  temperature and the strain a t  which 

the crack became unstable, Inzcreashg tem$eratures or strains 

shortened the acceleration time which was about 400 msec long for 

a temperature of ~ O C  and a strain of 2.15%. F o r  the highest test 

temperature of 4 2 O ~  the acceleration period was extremely short 

and hardly recognizable. 



In Fig. 34 the gross strain eo  on the strip i s  shown in relation 

to the constant crack propagation speed v a t  the end of the accelera- 

tion period. A comparison of this plot with Fig. 37 which contains 

corresponding data for unswollen Solithane 50/50 shows that the speed 

of propagation i s  orders  of magnitude higher in the swollen material , 

and a lower bound of the critical gross strain E o  crit, will therefore 

be easier to define. 

The curves drawn through the isothermal data points of Fig. 

34 have the same shape and can be superposed by shifting them along 

the abscissa. The shift factor resulting from this operation is 

plotted in Fig. 25, It is orders  of magnitude smaller f ian  the shift 
* 

factor for the dry material, 

F o r  the calculation of the surface energy S via the fracture 

criterion (2,6-3) we a re  interested in the lowest strain which has to 

be put on a strip specimen in order to make an initial crack unstable. 

We eliminated one of the reasons which complicated the definition of 

a lower bound of this critical strain by swelling the material, There 

is however another factor which causes some variation in the magni- 

tude of the experimentally determined strain a t  the point of ins tabil- 

ity. This variation i s  caused by the uncertain microscopical shape 

* The fact that the shift factor does not vanish completely in the 
swollen state indicates that the internal viscosity i s  not entirely 
removed by swelling, The great difference in the value for the 
shjft factor in  the swollen and dry material, however, versiies 
f i e  large reduction in internal viscosity which was already con- 
cluded from ~ e h e r  e x p e r b e n a l  data (cf, section 3 . 6 ) .  
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of the crack tip, The fracture criterion (2.6-3) was derived for a 

mathematically sharp crack which can be only approximately realized 

by cutting the material  with a tool of finite dimensions, The actual 

s t ress  intensity factor i s  therefore smaller than the theoretically 

calculated value and the critical strain i s  in turn higher than in the 

ideal case, Apart from possible defects which were already in the 

material o r  which were introduced by cutting the material  the critical 

strain for an ideal crack i s  thus given by the lower bound of the 

critical strains measured in'a ser ies  of experiments, 

A collection of gross strains eo on the strip a s  measured a t  

the point of instability i s  given in Fig, 35. The tests were run at 

different temperatures and strain rates  and a slight tendency towards 

higher E~ with increasing strain rate i s  apparent in this figure. The 

temperature on the other hand does not seem to have any effect on 

Discarding the very lowe st  recorded strains a s  possibly 

caused by faulty specimens we place the lower bound a t  E~ crit - - 
8.0175. A large number of points falls right on this mark o r  only 

slightly above it,  Knowing the s t ress  -strain relationship which i s  

independent of time for the swollen material we can calculate the 

critical load from this information and obtain the surface energy via 

the fracture criterion, 

The fracture criterion a s  given by equation (2 ,6-3)  was 

derived by considering a s t r ip  with shearfree edges. However in 

order to adjust a i s  criterion to the clamped edges of the experi- 

mental geometry we o d y  have to b s e ~ t  the proper value for the 



s t ress  intensity factor. It can be easily shown (43) that the s t ress  

intensity factor for a semi-infinite crack in a strip with clamped 

edges differs only by a factor of (1-v2) from the intensity factor for 

a s t r ip  with the same dimensions but shearfree edges. F o r  a tem- 

perature of 2 7 3 O ~  the fracture criterion for our experimental 

situation then reads 

The material behavio= of a neo-Hookean material under 

uniaxial s t r e s s  i s  adequately described for small strains by a Young1 s 

modulus which i s  equal to E = 6 C1. In the case of swollen Solithane 

50/50 we thus find E = 402 psi  for  OOC. The strip width is 2b = 1" 

and Poisson's ratio i s  assumed to be v = 0.5. * 

Substituting all  h o w n  quantities we can solve equation (3.7 -1) 

for  S. The result i s  S = 2.31 x lbs per inch of the swollen 

' The assumption of incompressibility in the swollen state i s  not 
a s  poor a s  i t  appears to be at  f i rs t  sight. Classical rubber theory ' 

(46) shows that a strained body can actually absorb more liquid 
than the unstrained body a t  the same temperature. The diffusion 
process involved in reaching a new swelling equilibrium requires 
however considerably more time than the 20 sec which were neces- 
sary to stretch the strip up to the point of crack instability. In order 
to check this behavior swollen dogbone shaped specimens were held 
a t  a constant strain of ca. 3% and the decrease in the load required 
to maintain this strain was observed, The time which elapsed until 
a new equilibrium state was reached.amd the amount of s t ress  re-  
laxation were essentially independent of temperature, This behavior 
was attributed to a slow increase in volume due to additional swellkg 
in the strained state, About 30 minutes were necessary to reach 
the new swelling e q u i l i b r i a  although the volume of the dogbone 
shaped specimen was only about 2570 of the volunrse s f  the str ip  speci- 
men used for crack propagation tests. 
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material. Taking the linear swelling ratio of 1.39 for the Solithane 

50/50-~oluene combination into account we obtain the following value 

for the surface energy of dry Solithane 50/50 

This value i s  about an order of magnitude larger  than the value for 

glass, Criffith (6) reports for the latter an extrapolated value of 

0.31 x 1 0-2 lbs/in a t  room temperature. 

All material  properties entering the relationships derived in 

par$ LE a r e  now determined except for the characteristic length Aa.  

Since we a r e  not absolutely sure about the physical interpretation of 

this length (cf, part IV) we have no other choice but to wait until 

theory and experiment a r e  to be compared and then find the value of 

ha which gjivee the best agreement, This comparison is the subject 

of part  IV, 



IV. COMPARISON BETWEEN THEORY AND EXPERIMENT 

Experimental Data 

Knauss (22, 67) measured equilibrium crack propagation 

speeds for  ~o l i thane  50 /50  in  strip specimens, The latter had a 

thickness of 0.1 ", a width of 1 3/8" , and a length of about 1 8". An 

initial crack of ca, 1 1/2" was cut along the strip center line a t  one 

of the narrow edges. The s t ress  field around the crack tip was 

thus ensured to be essentially independent of the crack length and 

a constant rate of crack extension could be expected a s  soon a s  the 

gross  strain eo  applied on the specimen was greater than the critical 

strain. The strain E was reached in an almost stepwise manner 
0 

within 15 msec and was held constant thereafter. The stable speed 

of crack propagation for a particular eo  was unaffected by the 

strain history leading to e0 a s  the results of similar experiments 

with a small, constant strain rate for E .<: E have shown, The ex- 
0 

perimental data shown in Fig, 37 a re  the result of these measure- 

ments and were taken from references (22, 67). This graph gives . 

the stable speed of crack propagation v a s  a function of applied 

strain eo and of the test  temperature T. 

Without any theory available a t  the time when these tests 

were performed t h e !  e x p e r h e n t d  results seemed to suggest that 

there is a power law relationship betwreen veloci$r and gross  strah, 



where k = Boltemam's constant 
A 

E = a characteristic energy 

m = a dimensionless number Y 0,3, 

Although this empirical relationship' yields a good agreement with 

the experimental data we shall see that it may not be the correct  

theoretical interpretation of these measurements, 

The change of speed of propagation v over several decades 

depending on the magnitude of the applied strain should be noted. 

&SO, fie sLmllar shape of *.,e curves which could be dravm through 

isothermal data points suggests the applicability of the tirne- 

temperature superposition principle. The shift factor aT a s  ob- 

tained by shifting these curves in the familiar way into a single 

master  curve i s  plotted in Fig. 25. It i s  seen that it conforms 

well with the shift factors determined by superposing other ex- 

p e r h e n t a l  data. 

Equation ( 2 . 6 - 2 )  which was derived in part  I1 of this thesis 

gives the speed of crack propagation implicitly a s  a function of the 

gross strain E, = o o / ~ +  and of the material properties. This rela- 

tion was derived for a strip with shearfree edges but it is assumed 

to hold in the case of clamped strip edges a s  well .if ehe appropriate 

value for the s t r e s s  intensity factor Kn is inserted. For an M W t e l y  



long, clamped s tr ip  containing a semi-infinite crack the s t r e s s  inten- 

sity factor i s  (24) Kn = I As mentioned previously the 

experimental crack length over strip width ratio was chosen large 

enough to make the stress field around the crack tip essentially equal 

to tihe one around the tip of a semi-infinite crack, cf, reference (231, 

Equation (2,6-2) modified for our experimental situation thus reads 

The two equations, (2,6-6) and (2.6-7), a r e  unaffected by the change 

from shearfree to clamped edges because they do not involve the 
i 

s t ress  intensity factor, 

We recall  that equation (4-2) i s  the energy conservation equa- 

tion (2'1-5) for  our particular geometry, The two sides of this 

equation, that i s  the rate of change of the crack energy 6 and the c 
e 

rate of change of the surface energy Ds, a r e  plotted in Fig. 36 for 

Solithane 50/50 a s  a fmction of crack speed v and load factor n. 

This plot i s  valid for a temperature of 2 7 3 O ~  but similar plots for 
' 

other temperatures a r e  readily obtained by application of the time- 

temperature superposition principle. 

The material  properties of Solithane 50/50 as discussed in 

part  3CU: were used for the calculation of the curves in Fig, 36. The 

characteristic lengWl Aa was taken to  be equal to l o m 8  inches. This 

value yields the best agreement between theoretical prediction and 

e x p e r h e n b l  s e s d t  a s  we shall soon see. The order of magnitude 

of &e characteristic lemgeE8, seems to be too smaU to be acceptable 



for a continuum theory, Instead of trying to give this length some 

direct physical meaning it might therefore be more correct  to inter- 

pret  it in connection with some wave speed c of the material. A 

characteristic time tchar = ba/c would then have to be considered . 
a s  the new material  property, Possibly &a has to be ihntesgseted a s  

the thickness of a BiPament a t  the crack tip which i s  essentially under 

uniaxial tension and which breaks abruptly once a certain critical 

condition i s  reached, On a microscopic scale the crack would then 

have to be pictured a s  propagating -in a stepwise m a m e r  from fila- 

ment to filament each of which is stretched with a rate which is 

directly proportional to the macroscopic rate s f  crack propagation, 

The idea that there i s  a region of constant tensile s t ress  at the very 

crack tip has already been suggested by Williams, Blatz, and 

Schapery and a theory of crack propagation in  a Vsigt solid has 

been worked out on this hypothesis (68). Bueche and Halpin (20) 

.-&: UdL=d --- the same idea to develop a rnolec~liilr' a&eiiry for the tensile 

strength of elastomers, They make f i e  statement that this filament 
6 

i s  very thin and measures perhaps 1 to l 00 A, The value of Aa = 

2.5  falls right into the range suggested by them intmtively. In the 

course of development of the Buecche -HaPph theory the t h i c h e  s s  of 

this filament i s  absorbed in some other constant which i s  determirned 

by findhg the value which gives the best agreeme& beMeen theory 

and e q e r h e w t ,  

%he rate of change s f  the surface energy is represented by 

the solid lhe sf constant slope in Figo 36, The broken curves depict 

the ;ate of change of the ciack energy for varicus load factors a. 
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The non-trivial solution of the energy conservation equation which 

yields the stable crack propagation speed for a certain load factor is 

given by the intersection of the solid line with the appropriate broken 

curve. This graph illustrates how strongly the speed of propagation 

depends on the load factor, that i s  on the applied strain E~ in our case. 

An increase of the latter by a factor of ten involves a theoretical 

5 change in crack speed by a factor of about 10 . It i s  also seen f ia t  

the two curves become tangent a s  the load factor approaches n = 1. 

They do not intersect for n < 1,  in other words the crack i s  stable 

under these circumstances and does not propagate at  all. As the load 

factor becomes large the two curves become tangent again. For  load 

factors greater than the value corresponding to this situation the crack 

propagates theoretically in a material with Young's moduPus equal to 

E The creep behavior of the material i s  of no importance any more 
g " 

in this case and the crack will accelerate up to a velocity a t  which 

inertia effects control the crack propagation process. 

Instead of the graphical solution just discussed we can solve 

equation (4-2) directly for the strain E~ if the velocity v i s  given. 

Equilibrium crack propagation speeds calculated in this manner a r e  

shown in Pig. 37  a s  a function of applied strain and temperature, 

The temperatures range from OOC to 5 0 O ~  and the corresponding 

experimental datamehcluded in this plot, The agreement between 

theoretical and experhePleal results i s  very good except for the 

lowest temperature. The value of the creep function a t  very short 

times i s  b p o r t a n t  in this case which in turn i s  dependent on the 

relaxation moddus for very short times, The latter i s  dSficcerlt.to 



determine accurately by experiment, however, and the greater dis- 

agreement between crack propagation theory and experiment might 

be attributed to this difficulty, 

Figure 38 contains the same experimental data in the form 

of a master curve a t  temperature T = ~ 7 3 ~ ~ .  This data reduction 

i s  readily accomplished by application of equation (2.6-7). This 

graph shows very good agreement between experimental evidence 

and theoretical expectation over the whole range of crack velocities 

of about 6 decades. 

The agreement between theory and experinnen: i s  surprisingly 

good considering the fact that the derivation of the theoretical rela- 

tionships was based on the linear theory of elasticity and that the 

problem was idealized to be two-dimensional. 

Gonclusions 

The important points may now be summarized a s  follows: 

I r  The relationships given in section 2.6  describe the typical 

features of slow, stable crack propagation in a strip of visco- 

elas tic material, 

2. Except for  the so-called characteristic length Aa al l  material 

properties en+ ring /these relationships a r e  obtained from 

tests other than crack propagation tests. 

3. An addi~omal  material property which i s  called characteris tic 

leng& Aa i s  necessary to describe the crack propagation pro- 

cess  in  a time dependem& material, This length may be inter- 

preted as the &hichess of a filament which is essentially in a 
[ 

state of uiasrjial tension at the tip of &he crack, 



4, The creep function (i.e, , the viscous energy dissipation in the 

material) controls the crack propagation speed in a viscoelastic 

material. 

5, The applicability of the time-temperature superposition prin- 

ciple to viscoelastic crack propagation data is theoretically 

and experimentally verified, The shift factor i s  the same a s  

the shift factor for other time dependent material responses, 

6 ,  The shorter the relaxation process i s  in a material the higher the 

crack propagation speed has to be in order to be affected by 

the time dependent material properties . Materials which do 

not exhibit any measurable rate dependence at  normal labora- 

tory loading rates may have an extremely short relaxation 

time, which i s  brought out only a t  high crack speeds with cor- 

respondingly high loading rates at the crack kip, Viscous dis- 

sipation may then come into play and cause a lixniting crack 

velociw which is smaller &an the one vvhich could be expected 

if inertia forces alone controUed the process, 
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Table I 

Numerical 
Solution 

Asymptotic 
Solution 

Eq, (2.3-21) 



Name 

n-pentane 

n-hexane 

n-heptane 

Methylcyclohexane 

Cycll-lohexane 

Carbontetrachloride 

Toluene 

Benzene 

Chlorobenzene 

o-dichlorobensene 

l -bromonaphtalhe 

Methylcello solve 

Acetronitrile 

Nitrome*ane 

Table I1 

.Solubility parameter 

Ref. (63) 

cal/cm 3 

7.0 

7e3 
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