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ABSTRACT 

This study proposes a jet sheet a s  an alternative to a rigid dif- 

fuser for a momentum propulsor. This appears attractive technically. 

The diffuser shape can be tailored by modulating jet momenturn and 

angle and can be switched off in forward flight since its main function 

i s  increasing thrus t/power ratio a t  static speeds. Theoretical analy- 

s is  for a steady inviscid incompressible Plow predicts impressive 

thrust augmentations. Taking into account the energy required to feed 

the jet sheet, i t  appears that in some cases propulsor thrust can be 

more than doubled. It could be applied to ducted fans, jet engines 

and seems particularly attractive for ejector thrust systems, 

A f i rs t  approach of the study of the flow i s  made in the planar 

and axisymmetric cases by assuming that the velocity i s  mi form in 

each section. For the planar problem a linearized solution i s  pre-  

sented, A conformal mapping transforms i t  into a half-plane boundary 

value problem of the Riemann-Hilbert-Poincard type. It i s  solved by 

combining Hilbert Transforms, asymptotic expansion and a digital 

computer program. Then the nonlinear two- dimensional problem is  

presented with some references to the way i t  could be solved. 
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I. INTRODUCTION 

The thrust performance of static propulsion systems i s  meas- 

ured in terms of the thrust to power ratio (T/P), which, regardless 

of the details of the particular device employed depends on the effec- 

tive disc loading T/S as  shown in Figure 1. 

For high thrust power ratios the disc loading should be small. 

This can be achieved by expanding the s t ream tube by means of a rigid 

diffuser shroud. As is  well known, the diffuser angle i s  limited by 

flow separation and there may be other practical difficulties of weight 

and complexity. In addition, the shroud becomes a drag-producing 

element when the propulsor i s  in flight and i t  would be desirable to 

remove it  a t  high speeds. 

A new approach to this i s  to replace the solid diffuser by a 

, high energy a i r  sheet--this i s  called the jet flap diffuser. Substantial 

thrust augmentation can be achieved by this device (even taking into 

account the energy required to feed the jet sheet). In addition, the 

thrust can be readily modulated in direction and magnitude simply by 

varying the jet flap strength or  angle. Thus one has, in effect, a con- 

%inuousPy varying diffuser of zero weight. An additional advantage is  

that because there i s  no solid wall, large diffusion rates can be 

achieved without boundary layer separation. (Figure 2). 

Thus the jet flap diffuser concept has important implications 

for V/STOL application, both for propulsion and control. This device 

has been mentioned by Socikt6 Bertin & Gie (France) which has 

made an application for a U. S. patent (N. 2 ,  9 2 2 , 2 7 7 ) .  This company 

plans to design a jet flap diffuser at the exit of a shrouded propeller, 
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but no basic research has been done on the project. In cooperation 

with Nord-Aviation they have developed a "solid blown diffuser" a t  

the exit of a shrouded propeller to prevent flow separation (Ref. 1). 

In the United States Chaplin has submitted a patent application 

(No. 2,998, 700) and has made a global momentum analysis which 

gives the same results as  the one presented here  in P a r t  11. 1. Chap- 

lin states that this device seems to have high potential of providing 

a simple and powerful technique for modulation s f  fluid flow within 

or  at the exit s f  a duct. 

Hazen a t  Princeton University has referred to flow visualiza- 

tion tests with a jet flap diffuser on a shrouded propeller model in a 

water tunnel. Some interesting phenomena were observed involving 

reverse  flow at  the center s f  the slipstream, attributed to the wake 

from the propeller centerbody, when the rate of diffusion was too 

rapid, 

No detailed two-dimensional theoretical analyses of the problem 

a r e  known, although Euu (Ref. 2 )  presents a linearized approach to the 

problem using rheselectric analog for axisymmetric and planar flows. 

He considers the two cases of the "regular blowings' (where the jet 

is  tangent to the shroud at its exit) and of the "singular blowing" 

(where there exists a finite angle between the wall s f  the shroud at 

i ts  exit and the jet) and solves using the analog. The results report 

only the diffusion coefficient, and do not give any other details of the 

flow. 

It i s  clear that the formulation of the problem i s  complicated 

by having a boundary of unknown shape, the jet sheet. The IscalL 
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pressure  difference dictates the curvature of the sheet, while the 

entire shape of the sheet in turn controls the pressure  distribution. 

To analyze this device the flow i s  assumed to be both incompressible 

and irrotational, and the momentum of the jet sheet i s  assumed con- 

stant implying that the jet i s  of very much higher total head than the 

r e s t  of the flow and i s  discharged a s  a vanishingly thin sheet. The 

assumptions pertaining to the jet sheet a r e  discussed in detail and 

substantiated by Spence (Ref. 3). 

The purpose of the present investigation is f irst  to give an 

idea of the applications of such devices and their efficiency, by means 

of global and momentum analysis; then to study the flow in more de- 

tail using appropriate assu~mptions to permit  more complete solutions 

of the velocity distribution. Two different solutions a r e  given, the 

one-dimensional approach in which i t  i s  assumed that the v flow com- 

ponents a r e  vanishingly small (channel flow), and the linearized two- 

dimensional approach in which i t  i s  assumed that both the u, v 

perturbation velocities a r e  quite small (planar Eaplace flow). 



11. GLOBAL APPROACH 

In this section the performance of a jet flap diffuser as  a thrust 

augmenting device is  analyzed on the basis of global momentum con- 

siderations. The results obtained a r e  then applied to determine the 

performance of shrouded propellers and ejectors equipped with jet 

flap diffusers. 

1. Momentum Analysis for Planar and Axisymmetric Flows 

For  this approach, we s tar t  with two-dimensional flow in the 

jet flap diffuser as  is  shown in Figure 2. The flow inside the semi- 

infinite duct of width 21 is  expanded to the ambient p ressure  p 0' It 

i s  assumed that the velocity profiles in the far upstream and down- 

s t ream sections a r e  uniform, and have magnitudes V 1  and V  respec- 
0 

tively, 

The curvature of the jet sheet i s  directly related to the pres-  

sure difference across it. The internal flow is  initially at subatmos- 

pheric pressure  and expands or diffuses to ambient pressure.  

To normalize the results ,  consider the following parameters, 

the diffusion coefficient a - D/I , which is  the ratio of the a rea  of the main 

flow in its infinite downstream section to the one of the duct, and the 
7 
B 
e 

external jet momentum coefficient C = - which i s  the ratio of 
" 1 v 2  ' 

L 
the impulse in the jet sheet (which i s  assume% to be constant along i t )  

to the product of the dynamic pressure  of the completely diffused flow 

and the characteristic diffuser width. 

Consider f i rs t  the two-dimensional case. Then the conserva- 
-CI 

&ion of momentum along the ox axis, the Bernoulli and continuity 

equations, give the following s y s tern of equations : 



Its solution gives the diffusion coefficient 

The total thrust of this jet flap diffuser is: 

and the totai required power 

* 
Now for zero blowing, one gets for the thrust: i f  H0 = p 

and for the power required 

Now consider the case when V = v:. This could occur when 8 

one had such a powerful blower system that i t  was capable of 



providing flow a t  a given total head regardless of the jet flow require- 

ments. Then the thrust augmentation for a constant total head [A] is: Ho 

This coefficient i s  the thrust augmentation factor attributable to the 

jet flap diffuser with no consideration given to total available power. 

If one considers a power limited system and computes the aug- 

mentation for a given power level P = P one gets the augmentation 

* j 0  
a t  constant total power ['A] i f  V = ve/vO: 

where 6 i s  the ratio of the jet sheet width to half the width of the duct. 

This coefficient i s  the thrust augmentation factor achieved b y  the jet 

flap diffuser system when total power available is  fixed. 

For the axisymmetrica1 case: which i s  of practical interest in 

propulsion devices, the nondimensional equations and results a r e  the 
Z T p l  svg  

same i f  one takes C = where s i s  the thickness of the ex- 
J p/2a2vg 

2 2 ternal jet at x = 0, and a = D /l . So for the same performance, in 

the axisymmetric case, the width of the external jet must be half that 

used in the plane case. This result i s  important from a design point 

of view as  usually the actuators a r e  misymmetrical. Then there is  no 

need to have as  thick a jet as  in the planar case so the solid wall of the 

shroud can be thinner, which may be desirable in Right from a drag 

point s f  view. 

* 
total power = jet flap power + primary flow power 
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Figure 3 shows the diffusion coefficient o for different values 

of CJ and a. From the previous equation, the thrust amplification 

for a constant total head flow supply [A] Ho i s  linearly dependent on 

o and CJ. Then i t  i s  noted on Figure 4 that the total thrust i s  sub- 

stantially increased by the jet flap diffuser; this may be of the order 

of 10. 

Figure 5 shows the coefficient of amplification for constant 

total power, for different values of CJ, a. It i s  noted that peak 

thrust augmentation i s  achieved at small values s f  C There i s  no J ' 

need to develop a high momentum external jet but it is  advantageous 

to have a thick jet as  shown in Figure 6 ,  since it  i s  more  economical 

from the power point of view to achieve a given momentum level with 

a jet of large mass  flow and low velocity. 



2. Application to Shrouded Propeller 

Interest in the shrouded propeller has been stimulated by the 

need for high static thrust propulsion systems on V/STOL aircraft, 

ground effect machines and other moderate speed vertical lift vehicles 

with stringent space limitations. Theoretically, the presence of the 

shroud substantially reduces the slipstream contraction of the conven- 

tional propeller, increasing the mas s flow through the propeller disc. 

These effects may be increased with larger exit to propeller area 

ratios, This can be obtained by adding a rigid diffuser to the shroud, 

but we have observed that this solution presents a Pot of disadvantages. 

A better scheme is  to use a jet flap diffuser (Figure '9) as shown by 

the following calculations. 

For a free air propeller of area S the sllipstream contraction 

reduces the section of the jet to S/2. Then the thrust and required 

power a re  

- v2 
'1-z  1 and 

For a shrouded propeller of the same area S there is  no slip- 

stream contraction and 

FOB" a shrouded propeller supplied with a jet flap diffuser of 

diffusion coefficient o we get 

Assuming that the total power used is the same, PI = P2 = 5, figure 

7 shows the order of augmentation of thrust achieved by use of the jet 



-9-  

flap diffuser. These results give only some idea of the gain of thrust 

which could be obtained. 

No experimental'data have been found on a r ea l  jet flap dif- 

fuser,  but one can mention the experimental results obtained by 

Societes Bertin and Nord-Aviation (Ref. 1 )  on a shrouded propeller. 

The addition of a blown diffuser of 45' (half-angle) and also the blow- 

ing of the r ea r  par t  of the centerbody gives at feast an increase of 

18% of thrust for a total given power. We observe that this figure 

i s  in the range of what i s  predicted by this simple theoretical ap- 

proach. 
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3. Application to Ejector 

The prospect of exploiting the principle of ejector thrust 

augmentation has been gaining interest in the field of V/STOL a i r -  

craft development and rocketry. For example, Reference 4 presents 

the wind tunnel tests of a variable ejector nozzle with an aerodynami- 

cally positioned shroud a t  Mach numbers from 0 to 2. 0 at sirnulated 

power settings for supersonic cruise, subsonic cruise,  reheat accel- 

eration, dry acceleration and idle descent. This nozzle had typically 

high efficiencies at supersonic cruise and reheat acceleration condi- 

tions but rather low performance a t  subsonic cruise and dry accel- 

eration conditions. ' Unhappily no information i s  given on the relative 

performance of this variable ejector nozzle, as  no test has been 

done without this improving device. 

Consider the generalized ejector configuration shown in 

Figure 8 where a jet sheet of ve8ocity V i s  issued from a nozzle J 

and discharged into a mixing chamber formed by the shrouds. As 

the jet expands to f i l l  the mixing chamber, it  entrains fluid from 

the originally quiescent surroundings, thereby inducing a secondary 

flow into the ejector. This induced flow gives substantial thrust 

augmentation. A way to amplify this secondary flow i s  to add a jet 

flap diffuser a t  the exit of the mixing chamber. Bn this way major 

augmentation of thrust may be achieved as  i s  shown by the following 

calculation. 

For a free-air jet engine (Figure 8)  the thrust and required 

power are:  



2 
T1 = pSV1 PI = 5 Svl 3 

For a two-dimensional ejector the basic application of the 

momentum. and Bernoulli theorems gives the three following rela- 

tions 

(I-a)  V + aVJ = P  V2 S 

Then it is  possible to find the thrust 

for a jet engine using the same power 

as  the free air jet engine (PI ). 

For a two-dimensional ejector using the jet flag diffuser one 

gets the following fundamental equi l ibr im equations (Figure 8) 

The assumption that at the exit s f  the mixing chamber the fluid pre- 

s ents a uniform velocity profile introduces &he following equations : 



DV3 = I Vi 

Then defining the following parameters : 

2 
psVe 

CJ =- 2 
External Jet Momentum Coefficient 

paVJ 

o = D/I Diffusion Coefficient 

A = a i l  Ejector Parameter 

v2 ) e =  - Velocity Ratio 
VT 

one gets the two following equations 

This system was solved numerically on a digital computer, 

Given A, a, X, from equation (1) the diffusion coefficient i s  computed: 

from equation (2) the external jet momenturm coefficient i s  deter- 

mined. 



Then i t  i s  possible to compute the thrust of the ejector- jet flap dif- 

fuser system 

for the same total power used 

by the free a i r  jet engine. 

The comparison s f  the thrust may also be made for a constant 

speed a t  the exit of the jet engine. For an unlimited jet power supply 

one can get as  much thrust a s  desired. The interaction of the sys- 

tem made by an ejector and a jet Rap diffuser has a favorable effect 

a s  shown in Figure 9. 

For fixed total power, this system gives significant thrust 

augmentation (one can get 2. 8 times the thrust s f  the jet engine). 

However, i t  i s  noted that this occurs for small values of CJ where 

there exists a maximum in the curve of A versus Gg (Figures 10 and 

B 1) as  found previously in paragraph P1[- 1 .  

These calculations apply also b the axisynmmetric case. The 

nondimensional results and equations will be the same i f  one takes 

the following parameters : 

2; 
Zaps1 Ve 

CJ = 2 2 for the external jet momentum coefficient 
na VJ 

2 2 
CJ = D / l  for the diffusion coefficient 

2 2 A = a / l  for the ejector parameter 



Then, as  previously shown in P a r t  11. 1, for the same performance, 

the width of the external jet must be half the one used in the plane 

case. 

Another way to derive these results i s  presented in Reference 

5 That method has the advantage of giving the results in closed 

form, but for the programming on a digital computer the one de- 

scribed here  i s  easier.  

Consideration i s  now given to the case where the jet flap is  

fed by bleeding the jet engine in the compressor stages. From Fig- 

ures  8 and BZ one finds that for a planar ejector-jet flap diffuser 

system 

and for the jet engine alone 

From the previous system of 6 equations one can get: 

The solution of equations (1) and (3)  was programmed on a '. ' 

digital computer to compute the amplification of thrust due 

to the use of the ejpctor-jet flap diffuser system which i s  



2 2 
p ( D V 3 f V e  ) Te 

= - - -  TJ 
cosa f - 1 f T T T 

Figure 12 shows that substantial increases in t b u s t  niay be obtained by 

the use of a jet flap diffuser. Also from the range of best efficiency 

of the bleeding characteristic, it is  seen that a bleeding coefficient 

T ~ / T  = 6% gives the best results, for the specific engine perform- 

ance used in the example. 
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111. ANALYSIS O F  THE FLOW 

The previous analyses a r e  essentially global, and details of 

the slope of the jet surface, length, pressure  and velocity profiles 

cannot be obtained. So, in this par t ,  some aspects of the flow field 

will be t h e ~ r e t i c a l l ~ ~ r e s e n t e d .  This physical problem i s  very com- 

plex, so the solution of the flow field will be done only under the 

simplifying assumptions of an incompressible, inviscid flow. Firs t  

a solution i s  developed assuming a uniform velocity profile in each 

section of the flow. Then a linearized perturbation theory in two- 

dimensional flow i s  presented. Finally the nonlinear planar problem 

i s  formulated although no solution i s  attempted. 

1. Physical Problem: Qualitative Analysis of the Plow Field 

Consider f irst  the real  flow field. It is clear that it  i s  com- 

plicated by having an unknown boundary: the jet sheet. In addition 

viscous effects introduce problems of turbulent entrainment of the 

surrounding a i r ,  and of turbulent mixing between the inner flow and 

the external jet. These phenomena present energy Posses such that 

the performance which has been predicted in Pa r t  I% will not be so 

good. A theoretical approach of these phenomena seems very diffi- 

cult as  i t  needs the solution of the unsteady Navier-Stokes equations 

across a curved unknown boundary. Tests ts  measure the velocity 

components and the Reynolds s t resses  across  the flow would give a 

f i rs t  understanding of the viscous problem, to provide a basis for a 

theor etical approach with suitable simplifying assumptions. No 

experimental studies have yet been made. For the jet flap aerofoils, 

%pence (Ref. 6 ) finds excellent agreement between linearized 
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potential theory and experiment. So we assume that viscous phe- 

nomena do not significantly affect the jet flap diffuser performance. 

Thus in the following the flow is assumed to be both incom- 

pressible and inviscid. Figure 13 shows the way the problem i s  

posed, considering only for the planar case the upper part of the flow 

(the lower one i s  obtained by symmetry with respect to the plane DE), 

or for the axisyrnmetric one the flow in a section plane. 

Consider first the planar problem and assume as in Part  I1 

that the momentum i in the external jet, BC, is  constant, From 
43 

the Euler equations, the components of the speed u(x, y), v(x, y) a re  

related to the static pressure g(x, y) by 

The internal flow is initially at subatmospheric pressure and expands 

om: diffuses to ambient pressure. The curvature of the jet sheet in- 

duces a variation of pressure across it. At each point of the boundary 

BC, these pressure forces a re  in equilibrium with the variation of 

momentum of the internal flow. The equilibrium equations of a slice 

of fluid [ x, x t w  in the diffusing region of the flow a re  from an inte- 

gral method 

h(x) 2 S (p+pu )dy = - -  
dx  

Ie c o s ~ ( x )  (4) along otx 
8 

dx 

d -9 f'x'puvdy - - Ie sin8(x) (5) along oy py=* + 

0 
- - d x  

The bousldar y conditions are: 



Along the jet sheet (xPO): V(X'h(x))  =%= tane(x) 
u(x,htx)) dx 

Along the plane of symmetry DE: v(x,o) = 0 

From equation (3)  one gets, using the first Euler equation: 

which becomes by use of the continuity equation 

From equation (4) 

one gets by use of continuity and second EuSer equations 

which becomes , using the bsundar y condition v (x, h(x)) = hg (x)u(x, h(x)) 

2 2 d -1 h f S  
+ p [U (h) - u (o)] = - - I sine(x) = e 

P =o dx e 2 3/2 (l+hf ) 

Then to get the shape of the jet sheet BC one has to solve the follow- 

ing system of differential equations: 

I h'hS' 
ht (x)H* - $ hf (x) uZ(h) [ l+hf2]  = e 

2 3/2 [a+nP1 1 



2 3 2 I h" 
HO t p [U (h) - ~u (o)] = - e 

2 3/2 
[ l t h '  ] 

but one notes immediately that the solution of a system of two equa- 

tions relating three unknown functions u(h), u(o), h(x) i s  impossible. 

Then the problem can only be solved with the knowledge of one of 

these functions. 

Combining these two relations one gets 

V 
0 

v 
8 one notes that i f  - = - = 

~ ( 0 )  u(h) 
P , h' = 0 which corresponds to the 

infinite downstream part of the flow. Also, i f  u(o) = u(h1, 

Thus the assumption that the horizontal component s f  the velocity is  

the same at the boundary of the jet sheet and on the center line i s  

equivalent to the one that the slope of the jet sheet is very small 

(h" << 1). In such a case this component will not be very different 

from the downs tream velocity V This as sumption i s  considered in 
0' 

the following paragraph where in each section the velocity profile is  

assumed to be uniform. 



2 .  One-Dimensional Planar and Axisyrnrnetric Analysis 

In this paragraph one considers the one-dimensional flow in 

a jet flap diffuser. This means that the velocity profile in each sec- 

tion i s  as sumed uniform, so that the vertical component of the velocity 

i s  small and neglected. 

In the planar case the longitudinal equilibrium equation of a 

slice of fluid [x, xtdx] in the diffusing region is: 

d 2 d cos $(x) 
- - [h(x) (p(x)+pu (x))I = - I e  dx 

Its integration using the boundary condition that i f  x * CJO 8 = 0 u = Vo 

2 2 
P = Po = o h = D and' the Bernoulli relation: p(x) C f u (x) = 5 Vo gives: 

I 
e which can be written in nsndimensionaP form as C - j - e , z ,  ' 

2 0 

and h s ( x ) = t a n B , c s s @ =  B 

i f  H is considered as  a function of x/l. 

eP 
2 

(H + - - 20 - CJ) 2 
I4 - cJ2 Then Hs = 2 (H t o /H - 20 - CJ) 2 

and it i s  possible to integrate the differential equation 



with the boundary condition H = 1 i f  X = 0 

The shape of the jet sheet and the pressure  distribution, obtained 

w d e r  such assarmptions, a r e  presented on Figure P7where it  i s  

compared with the one obtained from the two-dimensional 

potential analysis which will be presented in the following part. 

Let us now consider the axisymmetric flow under the same 

assumptions. The longitudinal equilibrium equation of a slice of 

fluid [x, x t h ]  in the diffusing region is: 

d - 2 2 (9 , a h (x) (p(x) t pu (x)) = - - H cos$(x) dx e 

which, integrated once, becomes: 

a s  i f x - m  h(x) = D  p = p o  = 0 u = 

Using the axisymmetric parameters defined previously one can find 

i f  



2 2 
and p ( x ) t f u  ( x ) = 5 v o ,  H 2 U = a, cos 8 = 

1 

d Z  

Then one has to integrate the following differential equation 

with the boundary value. H = l i f  X = 0. This integration could be 

done numerically. 



3. Two -Dimensional Potential Analysis 

A. Physical Problem 

To solve the details of the flow the planar problem was posed 

a s  in Figure 13. One considers only the upper par t  of the flow, the 

lower one i s  obtained by symmetry with respect to the plane DE. 

The flow of constant velocity V1 in the infinite upstream sec- 

tion of the canal i s  expanded downstream to the ambient p ressure  p 
0 

and a constant speed Vo. At the exit of the canal a thin high velocity 

jet s f  constant momentum i s  blown at  an angle a .  kn this point B, a 

vertical component of the velocity i s  created at the upper boundary 

of the main flow, The jump of p ressure  across the jet sheet BC de- 

creases a s  its radius of curvature increases. The static pressure  of 

the main flow finally becomes ambient at downstream infinity. 

The jet sheet represents an unknown boundary of the flow: 

here  we have the situation that the shape s f  the boundary dictates the 

pressure  while the pressure  dictates the shape s f  the boundary, a 

typical source of an integral equation. 

kn the following, the external jet i s  assumed to be thin so the 

gradient of pressure  across i t  can be written 
9 

where R represents the local radius of curvature. 

A standard linearization and normalization gives 



If y/b represents the analytic function of x/f for the boundary BC: 

The pressure  equilibrium across the external jet is :  

P-Po c = - -  2 - 2  -2 - 1-0 ( ( l t u )  t v )= 
P e v2 

2 0 

The kinematic condition between the internal flow and the ex- 

ternal jet is:  

Then the linearization gives the boundary condition across  BC 

The problem then reduces to f i nd i~g  the harmonic functions u and v, 
in the domain ABCDE, which satisfy the foQlowing boundary conditions: 

Along AE3 and DEY = O 

Along B@ 

- - 
Along EA u = v = O  

- - 
Along DC u = - a d C J 2  v = O  

Two ways of solving the problem a r e  indicated: (Figure 1111, 

i) Since 0-1 << P << 1 i t  may be assumed that the line BC i s  

not very different from the straight line BC' , so that and v may be 

evaluated along the slit AIBC'DE. 



ii) To consider the domain ABCDE in the 4-9 plane and to 

write the boundary conditions in terms of $ = - and T = L .  
l V l  lV1 

In this case, the condition along BC becomes: 

It i s  interesting to note that these two ways of considering the physical 

problem give the same mathematical problem, Thus 

B. Conformal Mapping - Asyraptotic Expansions of 7 a s  X-. 8 and 

X 4 1  

To find \n and 7 i t  i s  more  convenient to map the slit ABCDE 

into the upper - - half-plane [ Z  ] (Figure 1/51 by use of the relationship 

1 
z /1  = x/l + i y/l = - I ,  log Z + i 

This results in the existence of two singular points, one at C(X = O), 

the other at B (X = 1)- 

As shown b y  the global equilibrium equations, the analytic 

equation y/1 (x/l ) of the jet sheet BC presents a horizontal asymptote 

as  x/l m (or ';b -. w) s o  an as  ymptotic expansion around C i s  

A ? ( A >  0) Y/f = ~ - q - + O ( q -  

* 
These s ymbols a r e  only used here  and a r e  defined in the Notation. 
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then 

and i t  gives, in the mapped plane A, as  X - 0 

- An 2 d; 
2 

v = " 0 ,  - = -  'AT -+as 
( ~ O g x ) ~  dX ~ ( 1 0 ~ ~ ) ~  

ACJr 3 3ACJ7r 3 - 
u =  -a d q p  - dii + - a d V , =  = -+as 

( L O P X ) ~  x(LOgx)* 

One notes the following results which agree with the global owe: 

m - 
the integral I vdx/l which represents the diffusion coefficient o i s  

0 

convergent 

d? the pressure  coefficient = -  0 2  

d; - ZAGJ 
CP = 'J dx/l - - (x/l )3 then the integrals 

80 

l m C  dx/l and -J Cp dy/l = - J*VC dull  
o * o O P  

which represent the components along and of the force acted 

b y  the inner flow upon the jet sheet a r e  convergent. 

En B, 7 = a the function G(x) can be found by the Hilbert Trans- 

form as  X- l 
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Let us take b such that i f  b 4 E C 1 a-E 4 ' t ; (g )  4 a, as the function 
- 
v(5) i s  continuous on [o, 11 

lim E + O 

5 - 4  

- 1 - 
then 1 j! ;(5)d5 .F*n[ 1 v($)dE 

0 

As one considers the limit as X-P 1 the first integral i s  non- singular. 

If I. i s  its value, as X -P 4. ;(XI is  bounded by: 

X- 1 a X- 1 
l + ' F l o g  " 1 ( X  C I .  - log 

1p X b  

Then taking the limit X-P B e- +- O one notes that G(x) is  unbounded as  

a - - log I X- l I. So from the boundary condition r 

one obtains by integrating the asymptotic behavior s f  

- 
dv - - - -  2a Log jx-ll + - 

nX 

One notes on Figure 16 that the infinite behavior of the slope of the 

function ;(X) i s  k d l y  perceptible. This i s  also shown by Lis samani 

in &he jet flap problem (Reference 7). 



C. Method of Solution: Mathematical Problem 

u v 
Writing U = - V = - i t  i s  necessary to evaluate these har-  

a a 

monic functions in the upper half-plane [ z ]  subject to the following 

conditions : 

Along AB and D E  V = O 

In E and A U = O  

I n D  U = - 4 7  

Along CB, U and V a r e  related by 

In the vicinity s f  B (X S 1) 

Hm the vicinity of C ( X 3  0) V - B 
2 ' In this form this i s  a 

(J-JogX) 
bowndar y value problem of the Wiemann-Hilbert- PoincarQ type. 

To obtain a numerical soEution two domains (0, a )  and (b, P ) in 

which V is  defined by its asymptotic expansions a r e  considered. In 

the domain [a, b]  the function V i s  defined by N straight-line segments 

(Figures 15, 16) using a method developed by kissaman (Refer- 

ences 7 and 8 ). The function V therefore depends on N parameters. 

The value of U, computed by the Hilbert Transform 

at  the midpoint of each straight-line segment i s  substituted into the 



boundary condition expressed a t  these points. Thus one obtains N 

equations of the form 

b-a 
u(at(Zptl)ZN) = v(5) d5 

A b-a o a t  (2pt 1 )2r - 5 

A C ~  = -  4 7  t i -  (at(2pt1)2F) b-a 

with N unknowns being the left extremity of the N straight-line seg- 

ments which defines V(5). 

The integral on the left-hand side was split into the following 

parts: 

V (5)dS =-  V1 LO a ,  d$ 
2 

b-a b-a 
o a t ( 2 p t l ) m  -5  o a t ( Z p t l ) m - ~  

d5 
b-a a t  (2pt l )K - 5 

I 

d5 

n b-a a t  (2p+l)- - 5 2N 

The first  integral was computed numerically by a Simpson subroutine. 

The las t  one was computed by the same method; a subprogram using 

expansion of analytically computable integrals was also used. The 

influence s f  the values a' and b, of the accuracy in the computation of 

the integrals, and of the different methods used was checked. The 

only point to note i s  that "a" must be l e s s  than em3- 0. 05. For this 

value, the function 
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presents an inflection point. 

The numerical method used here  converges fast; a difference 

of l ess  than 0. 08 in the values of V i s  found when N varies from 3 to 

15. Anumerical  convergence analysis of this scheme is presented 

in the appendix. 

The shape of the jet sheet was obtained by numerical integra- 

tion of 

and the velocity U along the boundary by 

h the case where the problem is considered in the $-$ plane 

the coordinakes along the jet sheet a r e  given by integrating numeri- 

cally: 

No sensible differences a r e  forand in the results given by considering 

the problem in the physical plane or in the a-+ one. 

D. Results: Comparison Between One-Dimensional and Planar Theory 

The linear two-dimensional solution (Figure 4 7)  shows the 

characteristics of the flow to exhibit appreciable variation only in a 

small region near the exit of the duct, the pressures  oar the upper and 

lower boundary s f  tlie internal flow being the same at  more than half a 
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width of the duct upstream, and a t  more  than one width downstream 

from the exit plane. The flow diffuses quickly, developing half of i ts  

final increase of width in nearly one radius. On the upper boundary, 

ABC, a significant variation with respect to x in static p ressure  

occurs a t  the exit of the duct. 

The comparison with the uniform velocity profile theory does 

not show significant differences. For the case CJ = 5, a = 1 (lo, pre-  

sented on Figure 17, the variations of the jet profile a r e  unnoticeable; 

very small differences appear in the pressure  existing on the center 

line. The most important difference is  shown in the pressure  along 

the boundary ABC. From the linearization the pressure  i s  unbounded 

in B; on the other hand, for the uniform velocity profile theory, there 

i s  no variation of pressure  in the duct. As a matter of interest, 

neither of these results is  correct  near B, since, a s  i s  well known, 

corner flow requires a full non-linear solution for uniform validity. 

From $his analysis the performance of the jet fiap diffuser 

i s  found assuming a constant external jet sheet momentum, Details 

s f  the external jet shape, pressure  and velocity profiles a r e  found 

assuming both the above and that the internal flow i s  one-dimensional 

or a linearized planqr flow. It seems probable that the exact solution 

may lie between these two cases, The effect of the constant jet mo- 

mentum assumption could be determined by a nonlinear analysis for 

a jet of finite thickness, This i s  a very complex problem and only 

&he outline of a. possible approach i s  presented, 



4. Non- Linear Two- Dimensional Problem 

A. Formulation of the Problem 

One considers a jet of total head He issuing at the exit of a 

two-dimensional channel a t  an angle a ;  the channel contains a uniform 

flow of lower head Ho and discharges into a constant p ressure  region 

(Figure 1 8). Introduce the complex velocity potential 

which has been non- dimensionalized with respect to the voBumetric 

flow rate per unit width of the canal. DVo. If the complex space 

coordinate z = x t iy i s  non-dimensionalized with respect to D V /ve 
0 

inside the jet and with respect to D in the internal flow, the complex 

velocity may be written 

N N 1U 

where u, v and q have been non-dimensionalized with respect to V 
0 

o r  V depending on whether internal flow or  jet velocities a r e  being e 

considered. 
N 

The flow region in the z plane i s  mapped into the w-plane as  

shown in Figure 19. The vortex sheet along BE requires that two 
- - 

velocity potentials be used: Oi, Oe. Since the locations of the stream- 

lines BE and CD in the physical plane a r e  not known a priori ,  i t  i s  
N 

convenient to formulate this problem in the w-plane. For this pur- 

pose define the B o g a r i t h  of the complex velocity by 
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The real and imaginary parts of I?(;) satisfy the Cauchy-Riernann 

equations and are  harmonic functions in each region. Thus 

aQ - a 8 and - m - - 
8s a? 

the infinite upstream and d~wnst ream section one requires 

that the flow is  andeflected and uniform in each region: 

M M 

for J i -m a,($,, "1 4 0. oigi, Ti) --. 0 

- 
for 69< $: < B  

A 

N N N N 

for 3, - m $ 9  4 + ee(4,, 9,) + 0 

- e, V 
~ C D  e for B < $ < 1 + ---- 

e 
DV8 

Along G F  and AB the deflection is fixed. Thus oi(Ji. 0)  = 0 and 
w M 

1 )  = 0 if -a,< 4 .  40. For later use these equations will be ex- 
P 

pressed in terms of 8.. Both may be written in the form 
1 



4 

where the gradient i s  with respect to (7 q.)  and t i s  a unit vector i' 1 

tangent to AB or  GF. Using the Cauchy-Riemann equations 

* 
where is  the normal vector associated with t one gets: 

aQi 
- - (a;, O) = o along GF 

aQi w N 

and - ( 1  = 0 i f  -a C $ 8 0  along AB 
aT i i 

Along CD and BE the static pressure  must be continuous. The 

fixed outside pressure  along CD requires that the speed just outside 

the jet f s cons&ant, and its value must be V Therefore 
e* 

and along BE 

AI N 

where p($, 6 )  i s  the static p ressure  in the Ruid and q.  and 7 corres-  
B e 

pond to the same physical point in the z plane, F rom Bernoulli's 

equations along BE 

which, applied a& an infinite distance downstream becomes: 



U 

As Q = Log q one gets: 

1 - a e -  Also across BE the curvature - - - - ae 
R as q q  where s repre- 

sents the a rc  length along the streamline BE must be continuous. Then 

Now we consider the exit BC of the external jet; some assump- 

tions have to be made as a boundary condition along this line i s  

required to solve the problem. So one may consider as shown om 

Figure 18 that BC i s  a vertical piece of straight Pine along which the 

deflection of the velocity i s  fixed and equal to a .  It is  sure that such 

a flow is  impossible to set up experimentally, but, as  the external jet 

is thir; in comparison the internal one, one may exyect that the 

phenomena in this r ~ g i o n  will be globally represented. Then along B 6  

W U N 

We = q e  cosa el y 

N w 

or Ce - l = cotga $e 

IV w 

and the line B 6  is represented in the 4-Q plane by a piece of straight 

line of slope " a (see the dashed line on Figure 19). Z - 
Along B@ the deflection is fixed. Thus 



N c.l 

Oe(ae,T) = a for + - 1 = cotgaee 

---C 

Writing this relation in the form 7 .(70= 0 and using the Cauchy- 
4 . -  ----C - 

Riemann equations t . V0 = n . VQ one gets as  previously shown 

aQe "e N N -cosa - t sin a 7 = 0 for +,-I = cotgae, 
J a+ 

Then an infinite velocity point must be placed a t  point 53 in the 

6;. plane to insure the turning of the flow through an angle a. This 
1 

r equir e s 

Ln the following we give an outline of an approach to the solu- 

tion of the non-linear problem. It i s  believed that these boundary 

conditions a r e  sufficient to determine the two functions k .  (G.) and 
1 1  

re($ ). However, the non-linear boundary conditions which must be 
e 

applied along BE makes an exact treatment intractable, But, in 

most practical situations, solutions a r e  required when the total head 

of the jet is  much larger than the one of the internal stream. h 
H e these cases asymptotic soPutions can be found for - 
H - 00. o 

43. Approximate Method of Solution for the Non-linear Two- 

dimens ional P r  oblem 

]in the following one indicates the application of a perturbation 

method to this problem. Such a method i s  presented by Ackerberg 

and Pal  for the solution of the injection of a two-dimensional jet into 

a uniform s t ream (References 9 and 10). 



Four regions of the flow a r e  considered as  shown on Figure 20: 

Region I, where the outer solution in the jet may be derived. There it  
8 
00 i s  expected that - < <l and that the variations along the jet in the Re 

a 
outer region will be much smaller  than those across it  - a << 7 . 

4 e 
This behavior may be taken into account by altering the szale of 

- A Ho - 
9,: m e  = Oe, which will remain of O(1) in the outer region. The 

e 
thin jet approximation results formally by seeking solutions of the 

form 

where the syPnbol i s  used to denote the asymptotic nature of these - - 
H 

8 solutions when - 0. H 
e 

Substituting in the Gauchy Riemann relations between Q and 6 

and in the boundary conditions across the relevant par t  s f  CD and BE, 

i t  i s  possible to find the functions Qe and B by equating the coefficient 
H '  e 
0 of each poyer  of - . I3 e 

Region XI, where the outer solution in the internal s t ream may 

be derived. The velocity potential in the outer par t  of the internal 

flow which borders the region of the thin jet approximation must be 

a4 scaled differently from the potential inn the jet. As q = - far  down- 
as 

s t r  earn along BE where 



one obtains, equating differential arc-length along each side and inte- 

grating 

Then the velocity potential and the stream function a re  scaled in the 

outer region of the internal flow by: 

The outer expansion is assumed to be of the form 

N H H  
A A A  

ei (d,, +i) - e,(m,, +i) + 0 0 )  

where Q. and 8. satisfy the Gauchy-Riemann equations with respect to 
1 B 

A A 

the variables Oi9 +I~. Then applying the boundary conditions across BE 
& * A  .II 

one can relate the functions Q Qi, Qe, and one gets along B E  dis- 
i' e 

A .. 
tinct relations between Q and CI for the jet and between 6. and 6 .  for e e B 3. 

the internal flow. 

Region 111, where the inner solution in the jet may be derived. 

Near the jet opening an inner solution is necessary to satisfy the 
N 

boundary condition along BC. One expects that lw -i I = 0(1) in the 
ea e 
.k.k 

8 region. As one takes the Sirnit as - - 0 one expects: H 
", - H 

0 " #  

" H 
0 - 

$,(be, - a + $:(me, gel + o(~i-1 when I w , - ~  ( = o(1) 
e e 



a s  though ve/vo 4- a, so that the jet would maintain constant a and the 

inner flow diverge a t  a constant rate,  giving: 

This limit can be also considered as  i f  the internal flow energy ap- 

proached zero. 

The functions Qe* and 0e* a r e  related by the Cauchy-Riemann 

equations and they must satisfy the boundary conditions along BC, CD 
Ta 
PL 

8 
and BE. This i s  done by expanding Qe and 8e for - - 0 and equating 

P-I- 
H e 

0 the coefficient of - . Finally one requires that the inner solution for H 
U 

e A 

$e 4-03 must merge with the outer one for $ -. 0 to appropriate e 

orders. This i s  the usual matching procedure for singular pertur-  

bation problems (References ll and 12 ), 
* 

To solve for Qi it  will be useful to map the str ip BCDE in the 

potential plane into the upper half of the further auuriliar y plane (Z 

using the Schwartz-Christoffel transformation. At the same time one 

9 
considers the s plane (s = a + iq) (Figure 21) in which the function Ql 

i s  easily found from the boundary conditions. 

Region IV, where the inner solution in the internal flow may 

be derived. The motion appears as  a corner flow. An expansion 
C- 6 

which contains the basic corner flow and which merges with r i (w.  ) 
P 

to two terms when 19. ) 0 i s  assumed to be of the form 
1 

for 1w;I = 0(1) 
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where a relation between iKi and wf has to be found. This i s  done by 

equating differential a rc  length along BE. Then a simple potential 

* 
problem may be formulated for B:(my,+y) in the wi plane. The func- 

tion B* i s  harmonic and it has to satisfy the following boundary condi- 
1 

tions : 

along AG, AB, and GFE the deflection i s  zero 

along BE the deflection must match with the one found for 

the inner jet solution. 
H o One notes that when - -+ 0 a solution of the non-linear two- H e 

dimensional problem may be found by using different expansions of 

harmonic functions satisfying the proper boundary conditions in the 

four regions described previously. But here one more difficulty 

occurs: it i s  a fact that the diffusion ratio is  unknown and that it i s  

a function of the total head of the jet and the internal flow and to the 

ratio of the thickness of the jet at its exit to &he width of the canal. 

- 'r'hus the value of Q. along AG is -mknowz. h iterative procedure 
1 

could possibly be set up, where for an assumed diffusion ratio the 

problem is  solved, and from the solution the diffusion coefficient is  

computed so that a new condition i s  given. This i s  then iterated to 

match. Such a solution seems very compPicated, and no attempt to 

set it up has been made. 
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IV. SUMMARY AND CONCLUSIONS 

The jet flap diffuser seems to be a useful device for increasing 

the thrust of an actuator of given geometry. Theory predicts large 

performance gains. It may we91 have some interesting application in 

cases where it  i s  impossible to employ a solid diffuser, o r  when the 

propulsion system i s  capable of providing extra power. 

Applied to an ordinary jet when power i s  limited substantial 

thrust augmentation can be achieved only in a certain range of the 

parameters: momentum coefficient and thickness ratio of the external 

jet. Good results a r e  obtained by adding a jet flap diffuser to a 

shrouded propeller; the range of their values agree with the few ex- 

perimental results found. Its application to a thrust ejector may be 

shown to enhance the total ejector thrust considerably; very favorable 

performances result when the jet flap diffuser i s  fed by bleeding the 

jet engine in the compressor stages. 

These analyses a r e  es sentialiy giobal and can only predict the 

total performance of the jet flap diffuser. To get details of the slope 

of the jet sheet, length, pressure  and velocity profiles, the flow field 

i s  theoretically studied under the a s  sumption of an incornpr es sible, 

invi s c id fluid. 

The problem is very complex by having an unknown boundary: 

the jet sheet and some assumptions have to be made. F i r s t  the jet 

sheet i s  assumed to be thin and to contain constant momentum, Under 

the hypothesis of a uniform velocity profile in each section s f  the 

internal flow the two-dimensional. and axisyrnmetric solutions a r e  

derived. 
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Also a linearized study i s  developed and the resulting Riemann- 

Hilbert-PoincarB type problem is  solved numerically. This analysis 

shows that the flow is almos t one-dimensional with two-dimensional 

variation only in a small region near the exit of the channel. The 

internal flow diffuses quickly, acquiring half of its final increase of 

width in nearly one scale length. A significant variation with respect 

to x in static pressure occurs at  the exit of the canal, although the 

internal pressure variation with respect to y i s  small. The mathe- 

matical process employed herein converges fast. 

For the case where the thin jet approximation i s  not valid, the 

non-linear two-dimensional problem is  formulated. The method to 

solve it by a variational process is  presented when the total head of 

the jet is  very much higher than the one of the internal flow. Its solu- 

tion requires an iterative process and seems to be very complex. 

While these theories probably require modification to account 

for turbulent entrainment and other real effects, they represent P 

first step in understanding the operation of the jet flap diffuser, so 

that its potential may be developed to produce a prackical device. 
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APPENDIX 

This is  concerned with the truncation e r ro r  of the numerical 

scheme used to solve the two-dimensional linear problem. For this 

problem one has to solve the following integro-differential equation: 

by using the numerical scheme 

P 
Lh(vi(x)) = ; b-a 

0 
at (2ptn)  - - 2N 

b-a b-a 
a+i - ($-a- (i- 1 ) 

a g k  N 
b-a a t (2p+l)-  - $ ZN 

$-a 
+(z~p+a) - Vpt i -Vp 

2 2N b-a 
\N) 

Then the truncation e r ro r  i s  defined for a sufficiently smooth function 

f(x) which satisfies the two asymptotic expansions for X = 0 and 1 .  

This expression may be divided in four terms 



B Loget- 2 t t - t .  f f crr2c n '" 2 I b 
h a t ( 2 p t l )  - 6 

b-a where h = - N fi i s  the value of the function f ( f )  a t  the point 5 =a+ (i-l)h 

and 

9 3 4 
7 (f(X))  = 7 + r 2  + 7 + 7 
P P P P P  

B One gets for 7 (f(X)) a s  f (X)  has the same behavior a s  V(X) 
P 

around X = O 

Lo a 
2  3 f (X)  = -$ [J) + f ? / ( ~ o ~ ~ )  where P i s a bounded constant "1 [LogX 1 - 

For the second te rm using Taylor expansions for ffil and f($): 

h2 3 
'it I = $ 4 -  h r: t - r:' + O(h 1 

-i 21  1 

where f3 = at(i-1)h i = B p  . . . l o 9  N 

If h 
y = a t ( 2 ~ + l ) ~  p = 0, . . . . . , N-l 
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one gets for the first term approximation of s 
2 
P 

2 1 N f'l a t h  
7 (f(X))= - Z ZJ ce- em-  54- p) de 

P 1 a 2'-5 

On [a, b] f '  ' (X) is  bounded, let F' be the maximum of this second 

2 
derivative on [a, b ] . A bound for the absolute value of 7 will be n 

Then the following eases have to be considered: 

b h 
p-y 3 2 then the logarithm i s  positive and less than - 

p-Y ' 
the result i s  negative and a bound for the absolute value i s  - h2 

2 * 

p- 'y - then the logarithm i s  null and also the absolute "'2 
value. 

p-y 4 - 2 then the logarithm i s  negative, the result i s  nega- 2 

tive and an expansion for it is: 

hn 2 "-2 "- B the term of this series is- 
( V - p ) n - ~  'T) a' (Y - (# - 2 (3) 

1 

it i s  convergent and i ts  limit has the. form -a6 where M is a positive 

constant. Then the truncation error  term is of order h. 

KFv'h where K i s  a finite constant. 
P 



3 
For r (f(X)) let us look for an error  estimate in the asymp- 

P 
totic expansion of f(X) on[b, 11 . From the derivation of this expansion 

(see paragraph 111. 3. B) one notes that the error  in the expansion i s  of 

the order E- 1 7 Log 1- ( for b < X < 1 where & i s  the variation 
n C T  

of V(x)  on [b, 17,. A bound for this integral i s  

Let us now find a maximum for E 

Log b - 
T@ 

E 4 - ------ Log b *G 

2 H -b Z(1-b) Logb L o g b  ) 
or  17; ( ~ ( x I I I  

3 Pf 1-b = q < < l ,  T i s  of'the order 
I? 



4 For T (f(X)) one can expand f and f around the point 
P P+ 1 P 
h y = a t ( 2 ~ t 1 ) ~  using the Taylor series: 

- On [a, b] f" ' (X) is  bounded; let Fs"  be the maximum of this third 

derivative on [a, b]  . The truncation er ror  T~ is  then bounded by 
P 

and the truncation error  for this numerical scheme has the order 

Then the numerical scheme L ~ [  ] i s  consistent with the integro- 

differential equation L [ a ]  and has at least an order s f  accuracy 1. 



FIGURE 1: THRUST PERmRMAMCE OF STATIC: PROPULSION SYSTEM 





FIGURE 3: DIFFUSION COEFFIGlENT 
FOR PLANlsLR 16lND B X B Y  TR%C FmW 
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FIGURE 4: AMPEIFXCATlON FOR GIVEN TOTAL HEAg FLOW 
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FIGURE 7: COMPARISON OF JET FLAP 
DIFFUSER WITH CBWENTIONAL ACTUATOR SYSTEM 
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FIGURE 8: COMPARISON OF JET FLAP DIFFUSER 
WITH EJECTOR SYSTEM 
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FIGURE 9: C O W M I S O N  O F  YET FLAP DIFFWER/EJ]ECTOR 
WITH JET EMGENE (FI[;XED JET SPEED)  
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FIGURE 10: COMPARISON O F  J E T  FLAP DIFFUSER/EJECTOR 
WITH JET ENGINE (FIXED POWER) 

2 Dimensions d = 1/20 ' 

Axisymrnetric 6 = 1/40 
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FIGURE 11: COMPARISON O F  JET F L A P  DIFFUSER/EJECTOR 
WITH EJECTOR (FIXED POWER) 
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FIGURE 12: PERFORMANCE O F  JET FLAP 
DIFFUSER ON SPECIFIC JET ENGINE 

















FIGURE 20: REGIONS O F  THE NON-LINEAR PROBLEM 
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FIGURE 21: AUXILIARY PLANE5 FOR THE NON-LINEAR PROBLEM 
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