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ABSTRACT

This study proposes a jet sheet as an alternative to a rigid dif-
fuser for a momentum propulsor. This appears attractive technically.
The diffuser shape can be tailored by modulating jet momentum and
angle and can be switched off in forward flight since its main function
is increasing thrust/power ratio at static speeds. Theoretical analy-
sis for a steady inviscid incompressible flow predicts impressive
thrust augmentations. Taking into account the energy required to feed
the jet sheet, it appears that in some cases propulsor thrust can be
more than doubled. It could be applied to ducted fans, jet engines
and seems particularly attractive for ejector thrust systems.

A first approach of the study of the flow is made in the planar
and axisymmetric cases by assuming that the velocity is uniform in
each section. For the planar problem a linearized solution is pre-
sented. A conformal mapping transforms it into a half-plane boundary
value problem of the Riemann-Hilbert-Poincaré type. It is solved by
combining Hilbert Transforms, asymptotic expansion and a digital
computer program. Then the nonlinear two-dimensional problem is

presented with some references to the way it could be solved.
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I. INTRODUCTION

The thrust performance of static propulsion systems is meas-
ured in terms of the thrust to power ratio (T/P), which, regardless
of the details of the particular device employed depends on the effec-
tive disc loading T/S as shown in Figure 1.

For high thrust power ratios the disc loading shoﬁld be small.
This can be achieved by expanding the stream tube by means of a rigid
diffuser shroud. As is well known, the diffuser angle is limited by
flow separation and there may be other practical difficulties of weight
and complexity. In addition, the shroud becomes a drag-producing
element when the propulsor is in flight and it would be desirable to
remove it at high speeds.

A new approach to this is to replace the solid diffuser by a
high energy air sheet--this is called the jet flap diffuser. Substantial
thrust augmentation can be achieved by this device (even taking into
account the energy required to feed the jet sheet). In addition, the
thrust can be readily modulated in direction and magnitude simply by
varying the jet flap strength or angle. Thus one has, in effect, a con-
tinuously varying diffuser of zeroc weight. An additional advahtage is
that because there is no solid wall, large diffusion rates can be
achieved without boundary layer separation. (Figure 2).

Thus the jet flap diffuser concept has important implications
for V/STOL application, both for propulsion and control. This device
has been mentioned by Société Bertin & Cie (France) which has
made an application for a U. S. patent (N. 2, 922,277). This company

plans to design a jet flap diffuser at the exit of a shrouded propeller,
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but no basic research has been done on the project. In coopefation
with Nord- Aviation they have developed a ''solid blown diffuser'' at
the exit of a shrouded propeller to prevent flow separation (Ref. 1).

In the United States Chaplin has submitted a patent appiication
(No. 2,998, 700) and has made a global momentum analysis which
gives the same results as the one presented here in Part IL 1.. Chap-
lin states that this device seems to have‘ high potential of providing
a simple and powerful technique for modulation of fluid flow within
‘or at the exit of a duct.

Hazen at Princeton University has referred to flow visualiza-
- tion tests with a jet flap diffuser on a shrouded propeller model in a
water tunnel. Some interesting phenomena were observed involving
reverse flow at the center of the slipstream, attributed to t};e wake
from the propeller centerbody, when the rate of diffusion was too
rapid.

No detailed two-dimensional theoretical analyses of the problem
are known, although Luu (Ref. 2) presents a linearized approach to the
problem using rheoelectric analog for axisymmetric and planar flows.
He considers the two cases of the ''regular blowing'' (where the jet
is tangent to the shroud at its exit) and of the ''singular blowing"'
(where there exists a finite angle between the wall of the shroud at
its exit and the jet) and solves using the analog. The results report
only the diffusion coefficient, and do not give any other details of the
flow.

It is clear that the formulation of the problem is complicated

by having a boundary of unknown shape, the jet sheet. The local
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pressure difference dictates the curvature of the sheet, while the
entire shape of the sheet in turn controls the pressure distribution,
To analyze this device the flow is assumed to be both incompressible
and irrotational, and the momentum of the jet sheet is assumed con-
stant implying that the jet is of very much higher total head tl;an the
rest of the flow and is discharged as a vanishingly thin sheet. The
assumptions pertaining to the jet sheet are discussed in detail and
substantiated by Spence (Ref. 3).

The purpose of the present investigation is first to give an
idea of the applications of such devices and their efficiency, by means
of global and momentum analysis; then to study the flow in more de-
tail using appropriate assumptions to permit more complete solutions
of the velocity distribution. Two different solutions are given, the
one-dimensional approach in which it is assumed that the v flow com-
ponents are vanishingly small (channel flow), and the linearized two-
dimensional approach in which it is assumed that both the u, v

perturbation velocities are quite small (planar Laplace flow).
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II. GLOBAL APPROACH

In this section the performance of a jet flap diffuser as a thrust
augmenting device is analyzed on the basis of global momentum con-
siderations. The results obtained are then applied to determine the
performance of shrouded propellers and ejectors equipped with jet
flap diffusers. |

1. Momentum Analysis for Planar and Axisymmetric Flows

For this approach, we start with two-dimensional flow in the
jet flap diffuser as is shown in Figure 2. The flow inside the semi-
infinite duct of width 2 is expanded to the ambient pressure P It
is assumed that the velocity profiles in the far upstream and down-
stream sections are uniform, and have magnitudes V1 and VO respec-
tively.

The curvature of the jet sheet is directly related to the pres-
sure difference across it. | The internal flow is initially at subatmos-
pheric pressure and expands or diffuses to ambient pressure.

To normalize the results, consider the following parameters,
the diffusion coefficient ¢ = D/f, whichis the ratio ofthe area ofthe main
flow in its infinite downstream section to the one of the duct, and the
external jet momentum coefficient CE = E—j—%i , which is the ratio of
the impulse in the jet sheet (which is ass?ume% to be constant along it)
to the product of the dynamic pressure of the completely diffused flow
and the characteristic diffuser width.

Consider first the two-dimensional case. Then the conserva-

tion of momentum along the ox axis, the Bernoulli and continuity

equations, give the following system of equations:



2 2, _p+2
o(py + PVy) - (py + pVY) =5V C; (1-cosa)
psVi
if CJ:B 5
54V
£ ve < g y2
Pot3Vo=Pt3 V)
G:-Y—l- :P—
V, I

Its solution gives the diffusion coefficient

o=1+ \]CJ(I-cosoz)
The total thrust of this jet flap diffuser is:

T, = pDV2 + psVi

J 0

and the total required power

=PpviyRgv3
PJ 2DV0+ 5 sVe.
*
Now for zerc blowing, one gets for the thrust: if HO =Py + %Vﬁz
% _ %l
TO = pﬂVO

and for the power required

* _p *3
Po=31Y,

Now consider the case when V0 = Vg. This could occur when

one had such a powerful blower system that it was capable of
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providing flow at a given total head regardless of the jet flow require-
ments. Then the thrustaugmentation for a constant total head [ A] Ho I8
T C
—[J = _J
(Ao = L7 ] =0t 3

Vo=Vo

This coefficient is the thrust augmentation factor attributable to the |

jet flap diffuser with no consideration given to total available power.
If one considers a power limited system and computes the aug-

mentation for a given power level Pj = PO one gets the augmentation

*
at constant total power ['A] pifV = Ve/VO:

o+ BVZ

T
[Alp = ['T”i] = 37/3
0dp=PF  [ot6V7]
0 i
where § is the ratic of the jet sheet width to half the width of the duct.
This coefficient is the thrust augmentation factor achieved by the jet

flap diffuser system when total power available is fixed.

F

3

the axisymmetrical case, which is of practical interest in
propulsion devices, the nondimensional equations and results are the
2mpL sV
same if one takes CJ = o2t V3 where s is the thickness of the ex-
ternal jet at x = 0, and o = D2/t2. So for the same performance, in
the axisymmetric case, the width of the external jet must be half that
used in the plane case. This result is important from a design point
of view as usually the actuators are axisymmetrical. Then there is no

need to have as thick a jet as in the planar case so the solid wall of the

shroud can be thinner, which may be desirable in flight from a drag

point of view.

total power = jet flap power + primary flow power
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Figure 3 shows the diffusion coefficient ¢ for different values
of CJ and a. From the previous equation, the thrust amplification
for a constant total head flow supply [A] Io is linearly dependent on
o and CJ. Thén it is noted on Figure 4 that the total thrust is sub-
stantially increased by the jet flap diffuser; this may be of the order
of 10.

Figure 5 shows the coefficient of amplification for constant
total power, for different values of CJ, a. It is noted that peak
thrust augmentation is achieved at small values of CJ. There is no
need to develop a high momentum external jet but it is advantageous
to have a thick jet as shown in Figure 6, since it is more economical
from the power point of view to achieve a given momentum level with

a jet of large mass flow and low velocity.
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2. Application to Shrouded Propeller

Interest in the shrouded propeller has been stimulated by the
need for high static thrust propulsion systems on V/STOL aircraft,
ground effect machines and other moderate speed vertical lift vehicles
with stringent space limitations. Theoretically, the presence of the
shroud substantially reduces the slipstream contraction of the conven-
tional propeller, increasing the mass flow through the propeller disc.
These effects may be increased with larger exit to propeller area
ratios. This can be obtained by adding a rigid diffuser to the shroud,
but we have observed that this solution presents a lot of disadvantages.
A better scheme is to use a jet flap diffuser (Figure 7) as shown by
the following calculations.

For a free air propeller of area S the slipstream contraction

reduces the section of the jet to S/2. Then the thrust and required

power are

T, =p5V and P \s

©

2
1

N

:E
2

vl

3
1 1

For a shrouded propeller of the same area S there is no slip-

stream contraction and
T, = pSVZ P, =Lgv
2 - P2V,

For a shrouded propeller supplied with a jet flap diffuser of

diffusion coefficient 0 we get

C C,V

_ 2 _J _ Pay3 J e
T3—pSV3 (O’+ 2) P3-—ZSV3(O’+-§—1\7—3)
Assuming that the total power used is the same, P1 = PZ = P3, figure

7 shows the order of augmentation of thrust achieved by use of the jet
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flap diffuser. These results give only some idea of the gain of thrust
which could be obtained.

No experimental data have been found on a real jet flap dif-
fuser, but one can mention the experimental results obtained by
Societes Bertin and Nord-Aviation (Ref. 1) on a shrouded propeller.
The addition of a blown diffuser of 45° (half-angle) and also the blow-
ing of the rear part of the centerbody gives at least an increase of
18% of thrust for a total given power. We observe that this figure

is in the range of what is predicted by this simple theoretical ap-

proach.
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3. Application to Ejector

The prospect of exploiting the principle of ejector thrust
augmentation has been gaining interest in the field of V/STOL air-
craft development and rocketry. For example, Reference 4 presents
the wind tunnel tests of a variable ejector nozzle with an aerodynami-
cally positioned shroud at Mach numbers from 0 to 2. 0 at simulated
power settings for supersonic cruise, subsonic cruise, reheat accel-
eration, dry acceleration and idle descent. This nozzle had typically
high efficiencies at supersonic cruise and reheat acceleration condi-
tions but rather low performance at subsonic cruise and dry accel-
eration conditions. ' Unhappily no information is given on the relative
performance of this variable ejector nozzle, as no test has been
done without this improving device.

Consider the generalized ejector configuration shown in
Figure 8 where a jet sheet of velocity ‘V’J is issued from a nozzle
and discharged into a mixing chamber formed by the shrouds. As
the jet expands to fill the mixing chamber, it entrains fluid from
the originally quiescént surroundings, thereby inducing a secondary
flow into the ejector.‘ This induced flow gives substantial thrust
augmentation. A wéy to amplify this secondary flow is to add a jet
flap diffuser at the exit of the mixing chamber. In this way major
augmentation of thrust may be achieved as is shown by the following
calculation.

For a free-air jet engine (Figure 8) the thrust and required

power are:



T

) = pSV? P =Rsvf

1 1 2

For a two-dimensional ejector the basic application of the
momentum and Bernoulli theorems gives the three following rela-

tions

2

2 _ 2
p 1 V2 = (ps-p0)£ + p(f-a) VS + paVJ

£ ~a) VS + a'\/"I =4 V2

Then it is possible to find the thrust

= pl VZ

T 2

2

for a jet engine using the same power

P,=£alv

Gy W

* (pg-p,) V]

as the free air jet engine (Pl)°
For a two-dimensional ejector using the jet flap diffuser one

gets the following fundamental equilibrium equations (Figure 8)

2 2 ~ , 2 2
@:)DV3 + ps Ve(l-cosu) = (ps-po)ﬁ +plt --a;)VS + paVJ

(t-a) Vg + aV = DV,

The assumption that at the exit of the mixing chamber the fluid pre-

sents a uniform velocity profile introduces the following equations:
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pD V2

2 2
3 + psVe(l-cosa) = (pi + pVi )M

Then defining the following parameters:

psVi
C = > External Jet Momentum Coefficient
PaVJ
o =D/1L Diffusion Coeifficient
A= afi Ejector Parameter
V2
A= Velocity Ratio
Vs

one gets the two following equations

1+02
2

el
£

(1-2A) A% + 2A = [A+ (1-An]2 (1)

1-g.2 Z
=) [A+(1-AN]" =2A C;(1-cosa) (2)

This system was solved numerically on a digital computer.

Given A, a, A, from equation (1) the diffusion coefficient is computed:

1
o =\/ Z ' p)
(1-2ANT+2A-[ A+ (1-A)N]

from equation (2) the external jet momentum coefficient is deter-

mined.

1.0.2 [A+(1-4) A2
o 2A(l-cosa)

C; = ¢

J
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Then it is possible to compute the thrust of the ejector-jet flap dif-

fuser system

T =pDV2

2
3 3+psVe

for the same total power used
I - JR
P,=5 a[VJ-i- (pg pO)VJ] +5s Ve

by the free air jet engine.

The comparison of the thrust may alsc be made for a constant
speed at the exit of the jet engine. For an unlimited jet power supply
one can get as much thrust as desired. The interaction of the sys-
tem made by an ejector and a jet flap diffuser has a favorable effect
as shown in Figure 9.

For fixed total power, this system gives significant thrust
augmentation (one can get 2. 8 times the thrust of the jet engine).
However, it is noted that this occurs for small values of CJ where
there exists 2 maximum in the curve of A versus CJ (Figures 10 and
11) as found previously in paragraph II-1.

These calculations apply also tothe axisymmetric case. The
nondimensional results and equations will be the same if one takes

the following parameters:

27pst V2
CJ = —55 for the external jet momentum coefficient
ma V
J
o = DZ/E2 for the diffusion coefficient

A = az/iz for the ejector parameter
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Then, as previously shown in Part II. 1, for the same perforrﬁance,
the width of the external jet must be half the one used in the plane
case.

Another way to derive these results is presented in Reference
5 That method has the advantage of giving the results in closed
form, but for the programming on a digital computer the one de-
scribed here is easier.

Consideration is now given to the case where the jet flap is
fed by bleeding the jet engine in the compressor stages. From Fig-

ures 8 and 12 one finds that for a planar ejector-jet flap diffuser

system
T_ =alpe+ p V2)
g-3Ps TP Yy
- 2
T'e = ps Ve

and for the jet engine alone

*2

T=paVJ

From the previous system of 6 equations one can get:

T T (1-A)-Zti ~lrar@a-ang?
2 (l-cosa) == 1+ 29 (3)
-
Al -7

The solution of equations (1) and (3) was programmed on a :
digital computer to compute the amplification of thrust due

to the use of the eiéctor-jét flap diffuser system which is
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2 2
. p(DVZ+s V. 7) T Ty 2
I-= 3 = S cosa + - [1+ A(A-4) (1~A))

T T T A(Z-—)\Z)

Figure 12 shows that substantial increases in thrust may be obtained by

the use of a jet flap diffuser. Also from the range of best efficiency
of the bleeding characteristic, it is seen that a bleeding coefficient
TZ/T = 6% gives the best results, for the specific engine perform-

ance used in the example,
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III. ANALYSIS OF THE FLOW

The previous analyses are essentially global, and details of
the slope of the jet surface, length, pressure and velocity profiles
cannot be obtained. So, in this part, some aspects of the flow field
will be theoretically presented. This physicai problem is very com-
plex, so the solution of the flow field will be done only under the
simplifying assumptions of an incompressible, inviscid flow. First
a solution is developed assuming a uniform velocity profile in each
section of the flow. Then a linearized perturbation theory in two-
dimensional flow is presented. Finally the nonlinear planar problem
is formulated although no solution is attempted.

1. Physical Problem: Qualitative Analysis of the Flow Field

Consider firstvthe real flow field. It is clear that it is com-v
plicated by having an unknown boundary: the jet sheet. In addition -
viscous effects introduce problems of turbulent entrainment of the
surrounding air, and of turbulent mixing between the inner flow and
the external jet. These phenomena present energy losses such that
the performance which has been predicted in Part II will not be so
good. A theoretical approach of these phenomena seems very diffi-
cult as it needs the solution of the unsteady Navier-Stokes equations
across a curved unknown boundary. Tests to measure the velocity
components and the Reynolds stresses across the flow would give a
first understanding of the viscous problem, to provide a basis for a
theoretical approach with suitable simplifying assumptions. No
experimental studies ha\;e yet been made. For the jet flap aerofoils,

Spence (Ref. 6 ) finds excellent agreement between linearized
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potential theory and experiment. So we assume that viscous phe-
nomena do not significantly affect the jet flap diffuser performance.

Thus in the following the flow is assumed to be both incom-
pressible and inviscid. Figure 13 shows the way the problem is
posed, considering only for the planar case the upper part of the flow
(the lower one is obtained by symmetry with respect to the plane DE),
or for the axisymmetric one the flow in a section plane.

Consider first the planar problem and assume as in Part II
that the momentum Ie in the external jet, BC, is constant. From
the Euler equations, the components of the speed u(x,y), v(x,y) are

related to the static pressure p(x, y) by

du du 1 ép
Ut Voy T T x
ov ov _ 1 op
u8x+V8y-"p8y

The internal flow is initially at subatmospheric pressure and expaﬁds
or diffuses to ambient pressure. The curvature of the jet sheet in-
duces a variation of pressure across it. At each point of the boundary
BC, these pressure forces are in equilibrium with the variation of
momentum of the internal flow. The equilibrium equations of a slice

of fluid [ x,x+dx] in the diffusing region of the flow are from an inte-

gral method

= fo (p+rpu)dy = - = Ie cosB({x) (4) along ox
Pyeo ¥ o Jc() puvdy = - =—Ie sin8(x) (5) along oy

The boundary conditions are:
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v(x,h(x)) _ dh(x)
ulx, h(x)) ~ dx

Along the jet sheet (x=0): = tan6(x)

Along the plane of symmetry DE: v(x,0) =0

From equation (3) one gets, using the first Euler equation:

h(x)
2 uau vou d
B (prou) gt e G -y Ay = - g T cosel)

which becomes by use of the continuity equation

h(x)

d
h' (x)p + pu’) gehpe) P (9], = - g5 I, coso(x)
or as p+ % (u2+v2) = H
I h'h"
s v 2.-\. r.,‘,Z d—. e s e
hx)H - £y ()b’ (x)[1+h'"]=-==1 cose(x)z———————T
o 2 dx e (I+h'2)3 2
From equation (4)
h(x ) d 0
Py=o + ph'(x) [uv] hix )+ p f (uv)dy - 35 I, sinb(x)

one gets by use of continuity and second Euler equations

2 B 4

py:O + p h' (X) [U.V] h( P[u -V ] = dX I San(x)

which becomes, using the boundary condition v(ﬁc, hx)) =h'(x)u(x, hix))
_I h'i
2 2 _ 4 X _ e
Pyoo + p[u" (M) - u(0)] = - = Le sinf(x) = —————7-—(1+h'2)3 >
Then to get the shape of the jet sheet BC one has to solve the follow-

ing system of differential equations:

h'h”
(1412 3/2

h'(x)H, - £ h'(x) v’ (b) [1+h'2] =
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H_+p [0() - 2u%(0)] = - ——————/-—Ie -
o 2 [l+h‘2]3 2

but one notes immediately that the solution of a system of two equa-
tions relating three unknown functions u(h), u(o), h(x) is impossible.
Then the problem can only be solved with the knowledge of one of

these functions.

Combining these two relations one gets

2H_+ 8 [(1-h'%)u?h) - 3u?(0)] = 0

) o
3 A
(uﬂﬂ)
v VO
one notes that if o = = 1,h' = 0 which corresponds to the
u(o) u(h)

infinite downstream part of the flow. Also, if u(o) = u(h),

uth) _ u(o) _ 2
vV
o o

Vo Vo VYzm?
Thus the assumption that the horizontal component of the velocity is
the same at the boundary of the jet sheet and on the center line is
equivalent to the one that the slope of the jet sheet is very small
(h'2 << 1). In such a case this component will not be very different
from the downstream velocity Vo' This assumption is considered in

the following paragraph where in each section the velocity profile is

assumed to be uniform.
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2. One-Dimensional Planar and Axisymmetric Analysis

In this paragraph one considers the one-dimensional flow in
a jet flap diffuser. This means that the velocity profile in each sec-
tion is assumed uniform, so that the vertical component of the velocity

is small and neglected.

In the planar case the longitudinal equilibrium equation of a

slice of fluid [x,x+dx] in the diffusing region is:
d 2 d
L [he) ) + pul(x))] = -1, 408 0C)

Its integration using the boundary condition that if x—~00 6 =0 u=V
P=p, =0 h = D and the Bernoulli relation: p(x) + % uz(x) = % Vi gives:
2 2 '

h(x) (p(x) + p u ' (x)) - pD VO = Ie {1-cosb6(x))

. . . . . e
which can be written in nondimensional form as Cj. = ————e

o =D/, Hx) =28 8&) g

and h'(x) = tanB, cos 6 =

2
H(1+9.2)_ 2°'=CJ( -...__1__.)
H "1-1—1‘2

if H is considered as a function of x/1.

2
m+ _20-C)%-c.?
Then H' = H J J

(H + GZ/H-ZG-C

7)

and it is possible to integrate the differential equation
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2
g_

% )dH

H(C+20-H +
= dX

(0-H) VH +0%-20H-2C |H

with the boundary condition H=1 if X = 0

C.0o
_ 2 2 J o-1 |
X = \IZCJ-(G-I) - \IZCJH- (@—H) + 5 log Py

JCJ 2
-L (2C,H-(0-H?) + o + H

C
J z
J—Zf& (ZCJ.-(O'-].) ) + o+ 1

The shape of the jet sheet and the pressure distribution, obtained
under such assumptions, are presented on Figurel7where it is
compared with the one obtained from the two-dimensional
potential analysis which will be presented in the following part.

Let us now consider the axisymmetric flow under the same
assumptions. The longitudinal equilibrium equation of a slice of

fluid [x,x+dx] in the diffusing region is:
d .2 2 d
=7 h™"(x) (px) + pu~(x)) = - = Ie cosfB(x)

which, integrated once, becomes:

mh?x) plx) + p v (x)) - WszVi =1I_ (1-coso)

asifx —oo hx)=D »p =P, =0 u=Vo.
Using the axisymmetric parameters defined previously one can find

if



2 I
D h e u(x)
o=—, H=-, C_= , U= R
EZ [] J JQZ%VZ VO
o
==
X =1

2
and  px) +£2’-u (x) =A‘21v0

2

H2(1+2—4)-20=CJ(1- 1
H

Then one has to integrate the following differential equation

2
R At Vio-r2)% - 20 H°
C H- (H -0)

with the boundary value. H =1 if X = 0. This integration could be

done numerically,
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3. Two-Dimensional Potential Analysis

A. Physical Problem

To solve the details of the flow the planar problem was posed
as in Figure 13. One considers only the upper part of the flow, the
lower one is obtained by symmetry with respect to the plane DE.

The flow of constant velocity Vl in the infinite upstream sec-
tion of the canal is expanded downstream to the ambient pressure P,
and a constant speed Vo. At the exit of the canal a thin high velocity
jet of constant momentum is blown at an angle a. In this point B, a
vertical component of the velocity is created at the upper boundary
of the main flow. The jump of pressure across the jet sheet BC de-
creases as its radius of curvature increases. The static pressure of
the main flow finally becomes ambient at downstream infinity.

The jet sheet represents an unknown boundary of the flow:
here we have the situation that the shape of the boundary dictates the
pressure while the pressure dictates the shape of the boundary, a
typical source of an integral equation.

In the following, the external jet is assumed to be thin so the
gradient of pressure across it can be written

2
_ psVe

P-Py, ™R

where R represents the local radius of curvature.

A standard linearization and normalization gives

u

G:——-_]_(E,<<1)
v, o]

A— V

V=~V.—<<1

i
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G-1~a\/CJ72 <<1

If y/1 represents the analytic function of x/f for the boundary BC:

The pressure equilibrium across the external jet is:
2

C d y/4
PP, 2 -2 -2 J dx/f2
C = =1-0" ((1+u)” + v)= :
P P VZ (1+ di‘;lzﬁ?z
2 o dx /4

The kinematic condition between the internal flow and the ex-
ternal jet is:

v _ dy/

1+ 4x/

Then the linearization gives the boundary condition across BC
C J—
- _ _J _dv
u=-aNCy/2 - 5 T3

The problem then reduces to finding the harmonic functions u and v,

in the domain ABCDE, which satisfy the following boundary conditions:

Along AB and DE v

H]
o

C f—
- _ J dv
Along BC u=-q \,CJ7 -5 Ix/i
Along EA u=v=0
Along DC u=-a \/CJ72 v=0

Two ways of solving the problem are indicated: (Figure 14).

i) Since 0-1 << 1 v << 1 it may be assumed that the line BC is
not very different from the straight line BC', so that u and v may be

evaluated along the slit ABC'DE.
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ii) To consider the domain ABCDE in the ¢-{ plane and to
write the boundary conditions in terms of ¢ = ——-d—’-— and {§ = —L
] V1 [AY
In this case, the condition along BC becomes:

o

u = —G.\JCJ;Z - —2—

1%

It is interesting to note that these two ways of considering the physical

problem give the same mathematical problem, Thus
w,6/t, y/b) =, @,9)
v.x/t, y/t) =V, .®,9)

if x/t = g/t =F *

B. Conformal Mapping - Asymptotic Expansions of v as X— 0 and

X —~1

To find u and v it is more convenient to map the slit ABCDE

into the upper half-plane [Z] (Figure 15) by use of the relationship
z/l =x/1 +ivy/l =--jfr10gZ+'1
N 1 .

or F=¢+iy =—-7710gZ+1

This results in the existence of two singular points, one at C(X = 0),
the other at B (X = 1).

As shown by the global equilibrium equations, the analytic
equation y/f (x/¢) of the jet sheet BC presents a horizontal asymptote

as x/{ — oo (or § = ) sc an asymptotic expansion around C is

v/t =0 - B o@ﬂ—)2 (A > 0)

>kThese symbols are only used here and are defined in the Notation.
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then

3
- _dy/t _ A 1
vVEaxa St (X/£)2+O(x7ﬂ)

and it gives, in the mapped plane A, as X — 0

= An® dv 2An°
ve 50, gx - T -3 7t
(LogX) X(logX)
_ ACJW3 au 3ACJ7r3
u=-a \‘CJ; —-—-———-—————3-—“—0,’\/CJ72,-&-—= _——___4._>+m
(LogX) X(LogX)

One notes the following results which agree with the global one:

— A 1 3 /
as v = + Of Yy ifx/f — oo

00
the integral f vdx /! which represents the diffusion coefficient o is
o

convergent
as —déi% = - ;—2;‘3—)—2- , the pressure coefficient
&v 2AC;y .
Cp = CJ /1 = - y )3 then the integrals
0o 00 00
{) c, dx /1 gna -fo c, dy/1 =-fo vC, dx /1

which represent the components along o0y and 6x of the force acted
by the inner flow upon the jet sheet are convergent.

In B, v = o the function u(X) can be found by the Hilbert Trans-

form as X—1

-
— . 1 v(E)d
u(X) = lim =

X1 7"£ X-
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Let us take b such that ifb < £ € 1 a-¢ € v(£) € a, as the function

v(£) is continuous on [0, 1]

b — 1 —
=y L pv(E)E 1 ¢ v(£)dE
then  w@) = [ et o] wr
As one considers the limit as X— 1 the first integral is non-singular,

If Iis its value, as X — 1 u(X) is bounded by:

1
i+ 222 f dé sE(X)sﬂ‘lf dé
T b X-E T bX—E
or

a-€ X-1 — a X-1
I+~—;’—r——log X-b! € u(X) < I-; log !—X—_-]—Dj

Then taking the limit X—1 ¢ — 0 one notes that u(X) is unbounded as

- -%— log IX-I I So from the boundary condition
7C . X =
TUX) = —J dv
u(X) = -a Cy 2 +— ax

one obtains by integrating the asymptotic behavior of

d 2a a 2
dv - . 2% yog [X-1 +-——\/-—

: 2 2
V(X)=a(1-3é)+ LS z“ [X+§—+...+-}—<—+,.]
J mch72 wCJ/Z

One notes on Figure 16 that the infinite behavior of the slope of the

function v(X) is hardly perceptible. This is also shown by Lissaman

in the jet flap problem (Reference 7).
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C. Method of Solution: Mathematical Problem
Writing U =% v =% it is necessary to evaluate these har-

monic functions in the upper half-plane [Z] subject to the following

conditions:

Along ABand DE V =0

In E and A U=0

InD U = J72

Along CB, U and V are related by

7C . X

= NC T2+ —— &Y
- CJ.Z-%- > X

In the vicinity of B(X < 1)

2 2
Vorlle gkt L pog x4 =2 [Xzz.%+]
J W\/CJJZ 'n'CJ. 2 n
In the vicinity of G(X> 0) V ~ ——=— . In this form this is a

(LogX)
boundary value problem of the Riemann-Hilbert-Poincaré type.

To obtain a numerical solution two domains (0,a) and (b, 1) in
which V is defined by its asymptotic expansions are considered. In
the domain [a,b] the function V is defined by N straight-line segments
{Figures 15, 16) using a method developed by Lissaman ’(Referf-
ences 7 and 8). The function V therefore depends on N parameters.

The value of U, computed by the Hilbert Transform

U(X) f V(g

at the midpoint of each straight-line segment is substituted into the
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boundary condition expressed at these points, Thus one obtains N

equations of the forfn

1
U(a+(2p+1)b 2, =l7r | V(£) g%a ' 7
(o) a+(2‘p+1)m—-§
7C \'2 -V
= -NT7Z + 2 J (a+(2p+1)§1:1a) Pgla) 2
N

with N unknowns being the left extremity of the N straight-line seg-
ments which defines V(§).

The integral on the left-hand side was split into the following

parts:
1 veat __‘gfa Log a,* at
T a+(2p+1)%%i—§ T % Tog &/ a.+(2p+1 -
. b-a
at i =
N V., .-V,
s L f V.+ it 3 (E-a- "(i-1 )'b-a) dé
T, . b-a i b-a b-a
i=la+t+ ,(1—1)""1-\?— N +(2‘p+1)w-§
r
1 2 n
+if (1—3é)+ L Log £ + 22 §+§'—2+.“+;§-2—+. dt
o g aNC/z - mC L 2 n a+(zp+1——- -&

The first integral was computed numerically by a Simpson subroutine.
The last one was computed by the same method; a subprogram using
expansion of analytically computable integrals was also used. The
influence of the values a’&and b, of the accuracy in the computation of
the integrals, and of the different methods used was checked. The
only point to note is that "a" must be less than e_3~ 0. 05. For this
value, the function

a2

=

V(E) =V, (o
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presents an inflection point.

The numerical method used here converges fast; a difference
of less than 0. 08 in the‘ values of V is found when N varies from 3 to
15. A numerical convergence analysis of this scheme is presented
in the appendix.

The shape of the jet sheet was obtained by numerical integra-
tion of

1

- V(E)dE
piered [ VL

and the velocity U along the boundary by

\€aj ‘lﬂ'

Fveat
3 X-E

In the case where the problem is considered in the ¢-y plane

the coordinates along the jet sheet are given by integrating numeri-

cally:
ax/t=- — 25— &
r((1+u)"+v)
v dX
dy/t =- ——=5— %
a((1+u) +v ")

No sensible differences are found in the results given by considering

the problem in the physical plane or in the -y one.

D. Results: Comparison Between One-Dimensional and Planar Theory

The linear two-dimensional solution (Figure 17) shows the
characteristics of the flow to exhibit appreciable variation only in a
small region near the exit of the duct, the pressures on the upper and

lower boundary of the internal flow being the same at more than half a
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width of the duct upstream, and at more than one width downstream
from the exit plane. The flow diffuses quickly, developing half of its
final increase of width in nearly one radius. On the upper boundary,
ABC, a significant variation with respect to x in static pressure
occurs at the exit of the duct.

The comparison with the uniform velocity profile theory does
not show significant differences. For the case CJ =5, a=10°, pre-
sented on Figure 17, the variations of the jet profile are unnoticeable;
very small differences appear in the pressure existing on the center
line. The most important difference is shown in the pressure along
the boundary ABC. From the linearization the pressure is unbounded
in B; on the other hand, for the uniform velocity profile theory, there
is no variation of pressure in the duct. As a matter of interest,
n‘ei{:her of these results is correct near B, since, as is well known,
corner flow requires a full non-linear solution for uniform validity.

From this analysis the performance of the jet flap diffuser
is found assuming a constant external jet sheet rﬁomentuma Details
of the external jet shape, prés sure and velocity profiles are found
assuming both the above and that the internal flow is one-dimensional
or a linearized planar flow. It seems probable that the exact solution
may lie between these two cases. The effect of the constant jet mo-
mentum assumption could be determined by a nonlinear analysis for
a jet of finite thickness. This is a very complex problem and only

the outline of a possible approach is presented,
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4. Non-Linear Two-Dimensional Problem

A. Formulation of the Problem

One considers a jet of total head He issuing at the exit of a
two-dimensional channel at an angle a; the channel contains a uniform
flow of lower head H and discharges into a constant pressure region.

(Figure 18). Introduce the complex velocity potential
w(z) =6+ iy

which has been non-dimensionalized with respect to the volumetric
flow rate per unit width of the canal DV . If the complex space
coordinate z = x + iy is non-dimensionalized with respect to D Vo/Ve
inside the jet and with respect to D in the internal flow, the complex

velocity may be written

1

~ .~ ~_ie
=u-1v=qe

Q-a‘Q-t
w il

where U, v and a have been non-dimensionalized with respect to V0
or Ve depending on whether internal flow or jet velocities are being
considered.

The flow region in the z plane is mapped into the v;—plane as
shown in Figure 19. The vortex sheet along BE requires that two
velocity potentials be used: 51, (hi)'eﬂ Since the locations of the stream-
lines BE and CD in the physical plane are not known a priori, it is
convenient to formulate this problem in the v?r-plane. For this pur-

pose define the logarithm of the complex velocity by

I'(w) = Log(dw/dz) = Q(@, )-i6(3, )
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The real and imaginary parts of T'(w) satisfy the Cauchy-Riemann

equations and are harmonic functions in each region. Thus

o _ 00
8% 3y
ana 22 - 29
Iy a¢
v2Q = 0
V%9 = 0
if 2 = 0%/00 2% + 0% /63

In the infinite upstream and downstream section one requires

that the flow is undeflected and uniform in each region:
for §;—o0  0Q,@.7,) 0, 0,4,,%,) 0

for OSC}). <1

for %i—*-m Q.(a.,q;i)'_’LngV— » 0.( .,E.)—*@

Along GF and AB the deflection is fixed. Thus ei(%i, 0) = 0 and
Gi@i’ 1) = 0 if —oos:ﬁi <0. For later use these equations will be ex-

pressed in terms of Qi' Both may be written in the form

T Ve =0
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where the gradient is with respect to (‘7’1’ :l;i) and t is a unit vector
tangent to AB or GF., Using the Cauchy-Riemann equations

-— —

t-Vo=n-VQ

— .
where n is the normal vector associated with t one gets:

— (¢.,0) =0 along GF
~ i
8,
aQi - -
and — (d).l, 1) =0 if -0 < d)i <0 along AB
o,
i

Along CD and BE the static pressure must be continuous. The
fixed outside pressure along CD requires that the speed just outside
the jet is constant, and its value must be Ve' Therefore

‘V‘ .

8
~ 0w e, _ ~
Qe((i)e,1+———-———DV0 }=0 forC< d)e<oo

and along BE
Pi((ﬁi, 1‘) :Pe(¢es 1+) fOT d)is d)e = 0

where p@,qT) is the static pressure in the fluid and Ei and ae corres-
pond to the same physical point in the z plane. From Bernoulli's
equations along BE

qu@, 1-) -p qi(&e, 1+) = 2(H_-H )

which, applied at an infinite distance downstream becomes:

2
(H H)/P-Vz—l z‘?—
o el 2 o~ _VZ
O
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As Q = Log a one gets:

~ ~ 2
20,6,,1-) V2 20 @10 VE
e -—'—23 :1..--—2
v v
(o] (o]

1 _06 _ 98
Also across BE the curvature ' "5s - 4 56 where s repre-

sents the arc length along the streamline BE must be continuous. Then

Vo eQI(d)l’ 1") 831 - 'Ve eQe(‘be’ 1+) 8fe
8, 8,

Now we consider the exit BC of the external jet; some assump-
tions have to be made as a boundary condition along this line is
required to solve the problem. So one may consider as shown on
Figure 18 that BC is a vertical piece of straight line along which the
deflection of the velocity is fixed and equal to a. It is sure that such
a flow is impossible to set up experimentally, but, as the external jet
is thin in comparison with the internal one, one may expect that the

phenomena in this region will be globally represented. Then along BC
d&)‘e =ae sina d ;r
d:j:e :ae cosa d ;r

or me - 1 = cotga $e

and the line BC is represented in the a-m plane by a piece of straight

line of slope g - a (see the dashed line on Figure 19).

Along BC the deflection is fixed., Thus
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ee@e,@ =a fory-1-= cotgaae

Writing this relation in the form t - Vo= 0 and using the Cauchy-

Riemann equations t-V0 =n . VQ one gets as previously shown

8Q_ 0 N N
-cosa — + sina —— =0 for y_-1 = cotga¢
3¢e 59 e e

Then an infinite velocity point must be placed at point B in the

‘;i plane to insure the turning of the flow through an angle a. This

requires
~ 04 s d ~
AW, -— Log w. as !W‘. ! -0
rl( 1)~ i g 1 1

In the following we give an outline of an approach to the solu-
tion of the non-linear problem. It is believed that these boundary
conditions are sufficient to determine the two functions Ti(\;r.) and
I‘e(VNVe). However, the non-linear boundary conditions which must be
applied along BE makes an exact treatment intractable. But, in
most practical situations, solutions are required when the total head
of the jet is much larger than the one of the internal stream. In

H

these cases asymptotic solutions can be found for == —= co.

H
o]

B. Approximate Method of Solution for the Non-linear Two-

dimensional Problem

In the following one indicates the application of a perturbation
method to this problem. Such a method is presented by Ackerberg
and Pal for the solution of the injection of a two-dimensional jet into

a uniform stream (References 9 and 10).
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Four regions of the flow are considered as shown on Figure 20:

Region I, where the outer solution in the jet may be derived. There it
s
is expected that —RO% < <1 and that the variations along the jet in the

outer region will be much smaller than those across it B << ——?—:— .
' o9 Oy
This behavior may be taken into account by altering the sale of ©

Ee: $e = -}—{—9 Ee, which will remain of O(l) in the outer region. The
e
thin jet approximation results formally by seeking solutions of the

form

H H

3.0~ =2Q 4.0 _0
Qe(d)es q"e) He Qe(d)e’ \Pe) + O(He)
0.6 b )~8 (6,0 )+ 0()

where the symbol © is used to denote the asymptotic nature of these
H

solutions when —H—q - 0,
e

Substituting in the Cauchy Riemann relations between Q and 6
and in the boundary conditions across the relevant part of CD and BE,
it is possible to fi;l{d_ the functions ée and 5elby equating the coefficient
of each power of ﬁg .

Region II, \vfhere the outer solution in the internal stream may
be derived. The velocity potential in the outer part of the internal
flow which borders the region of the thin jet approximation must be

scaled differently from the potential in the jet. As q = 99 far down-
P J 9s

stream along BE where

q (9, 14) =V

ql(d)l’ 1') = VO
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one obtains, equating differential arc-length along each side and inte-
grating

~
(b ~
.

i ¢

e

0o

Then the velocity potential and the stream function are scaled in the

outer region of the internal flow by:

% =7 %
(o
and qu = "v—;- 4‘1 for Osti <l

The outer expansion is assumed to be of the form
Q, 6,7, ~0Q,6,4,)+0q)

0; (45, 0;) ~ 0,(6,,0,) + O(1)

where Qi and Gi satisfy the Cauchy-Riemann equations with respect to

the variables &., b.. Then a lying the boundary conditions across BE
i Yi PP y

one can relate the functions Qi’ ei, Qe’ Ge and one gets along BE dis-

tinct relations between Qe and ee for the jet and between éi and éi for

the internal flow.

Region III, where the inner solution in the jet may be derived.
Near the jet opening an inner solution is necessary to satisfy the

boundary condition along BC. One expects that !\;e-i l = O(1) in the
H
region. As one takes the limit as T—I—q — 0 one expects:
e
~ — g% o - =
0 (6,0 )~a + T 0X(é_,b,) + O(He)when |w -i| =0(1)

~
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as though Ve/V0 — o so that the jet would maintain constant o and the
inner flow diverge at a constant rate, giving:
H -~ o~ H
Qe ¥ )~ 7> Qe*@d . b,) + Ol
e e

This limit can be also considered as if the internal flow energy ap-
proached zero.

The functions Qe* and Oe* are related by the Cauchy-Riemann
equations and they must satisfy the boundary conditions along BC, CD
and BE. This is done by expanding Qe and 6e for ;ﬁ — 0 and equating
the coefficient ofgﬁ . Finally one requires that theeinner solution for
Ee - 00 must mergeewith the outer one for (;e — 0 to appropriate

orders. This is the usual matching procedure for singular pertur-

bation problems (Referencesll and 12).

To solve for Q: it will be useful to map the strip BCDE in the
potential plane into the upper half of the further auxiliary plane (Z)
using the Schwartz-Christoffel transformation. At the same time one
considers the s plane (s = 0 + in) (Figure 21) in which the function Qr
is easily found from the boundary conditions.

Region IV, where the inner solution in the internal flow may
be derived. The motion appears as a corner flow. An expansion
which contains the basic corner flow and which merges with f‘i(‘:vi)
to two terms when i\‘ifli — 0 is assumed to be of the form

~ ; . H H
I, (w)~ - % Log(¥,)ta__ + -I-i Ty (w§)+0(-§9)

for lwz‘l = O(1)
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where a relation between \’i/i and W;k has to be found. This is done by
equating differential arc length along BE. Then a simple potential
problem may be formulated for e;‘((b’f, Lpi*) in the W;k plane. The func-
tion 92‘ is harmonic and it has to satisfy the following boundary condi-
tions:
along AG, AB, and GFE the deflection is zero

along BE the deflection must match with the one found for

the inner jet solution.
H
One notes that when HE ~ 0 a solution of the non-linear two-

dimensional problem may be fiund by using different expansions of
harmonic functions satisfying the proper boundary conditions in the
four regions described previously. But here one more difficulty
occurs: it is a fact that the diffusion ratio is unknown and that it is
a function of the total head of the jet and the internal flow and to the
ratio of the thickness of the jet at its exit to the width of the canal.
Thus the value of Qi along AG is unknown. An iterative procedure
could possibly be set up, where for an assumed diffusion ratio the

- problem is solved, and from the solution the diffusion coefficient is

computed so that a new condition is given. This is then iterated to

match. Such a solution seems very complicated, and no attempt to

set it up has been made.
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IVv. SUMMARY AND CONCLUSIONS

The jet flap diffuser seems to be a useful device for increasing
the thrust of an actuator of given geometry. Theory predicts large
performance gains. It may well have some interesting application in
cases where it is impossible to employ a solid diffuser, or when the
propulsion system is capable of providing extra power.

Applied to an ordinary jet when power is limited substantial
thrust augmentation can be achieved only in a certain range of the
parameters: momentum coefficient and thickness ratio of the external
jet. Good results are obtained by adding a jet flap diffuser to a
shrouded propeller; the range of their values agree with the few ex-
perimental results found. Its application to a thrust ejector may be
shown to enhance the total ejector thrust considerably; very favorable
performances result when the jet flap diffuser is fed by bleeding the
jet engine in the compressor stages.

These analyses are essentially global and can only predict the
total performance of the jet flap diffuser. To get details of the slope
of the jet sheet, length, pressure and velocity profiles, the flow field
is theoretically studied under the assumption of an incompressible,
inviscid fluid.

The problem is very complex by having an unknown boundary:
the jet sheet and some assumptions have to be made. First the jet
sheet is assumed to be thin and to contain constant momentum. Under
the hypothesis of a uniform velocity profile in each section of the

internal flow the two-dimensional and axisymmetric solutions are

derived.
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Also a linearized study is developed and the resulting Riemann-~
Hilbert-Poincar€ type problem is solved numerically. This analysis
shows that the flow is almost one-dimensional with two-dimensional
variation only in a small region near the exit of the channel. The
internal flow diffuses quickly, acquiring half of its final increase of
width in nearly one scale length. A significant variation with respect
to x in static pressure occurs at the exit of the canal, although the
internal pressure variation with respect to y is small. The mathe-
matical process employed herein converges fast.

For the case where the thin jet approximation is not valid, the
non-lihear two-dimensional problem is formulated. The method to
solve it by a variational process is presented when the total head of
the jéﬁ: is very much higher than the one of the internal flow. Its solu~
tion requires an iterative process and seems to be very complex.

While these theories probably require modification to account
for turbulent entrainment and other real effects, they represent a
first step in understanding the operation of the jet flap diffuser, so

that its potential may be developed to produce a practical device.
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APPENDIX
This is concerned with the truncation error of the numerical
scheme used to solve the two-dimensional linear problem. For this
problem one has to solve the following integro-differential equation:

1
C 7C
L(V(X)):%S‘ _V_g__).éii +Y=2 -2 x3¥ - o

o

(=R

by using the numerical scheme

2
1 vLoa

dg
1 I(L )
Lp(Vi(X)) =< =
o a+(2‘p+1)—2—:N— -E
V. .-V
itl 1 b-a
N ati b-a (V + Hoa (§-a-(1-1)—-ﬁ—— )dg
N Paiind
¢ L 2, g N
T b-a
i=l a+(i_1)b-—a a.+(2‘p+l)w - g
2 n
i 1 2 3 g
1 (1- )+ Log§+—2~—(§+—+ +———+)
L1 3¢, wCy/2 1°Cy\” 2% nt /.
”% a+(2p+1)%'§- - £
C wC v -V
J J b-a ptl p
+ > -3 <a+(2p+l) 2N> [y
| S

Then the truncation error is defined for a sufficiently smooth function

f(x) which satisfies the two asymptotic expansions for X = 0 and 1.
7 (£(X)) = L, (£(X_)) - L{(f(X
) = Ly (X)) - LE(X))

This expression may be divided in four terms



-46 -

: 2
. |2 [f1<§gga> ; f(&)]d&
P )

o  at(zptl)p- &

f,, -1,
[ 2 (a6 ——2E—
- )h a+(2p+1)—2—-§

1 1 2 2, L& }d
1— L s . .o "‘f
; [( o e ol e AR A BT C

3 1 n
3 ex) =L
P T % at(2ptl) 3 - &
e £ -f
THE) = - T (at@pt]) ) (R £ (ar(2pr1) B)

where h = pi\:]—?’? , fi is the value of the function f(§) at the point § =a+t(i-1)h

and

T EX) =i+ 7l i3yt
P p e Tp

One gets for 7;(:{(}()) as f(X) has the same behavior as V(X)

around X =0

f(X) = fl {———&—Iﬁgg;) + fi‘/(LogX}3 where f’{‘ is a bounded constant
a Ef*[ a
S Serery Sl A lryrec ] Ry vrpe:
PTomzptl)3 o (Log)” 7(2ptl)3 (Loga)

For the second term using Taylor expansions for fi+1 and f(§):

2
£, =f +hi+
1 1

3
1 57 & +Oh7)

2
f(8) = £, + (6-p) £+ &B £+ 0(8-p)°

where B = at+(i-1)h i=1, ... s N

If y=at@ptl) 3 p=0, ..... , N-1
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one gets for the first term approximation of 1'2

2
(-13— ~h(y-p)- (v-B)(y-B-h)Log 1+ 3 y))

On {a,b] {''(X) is bounded, let F'' be the maximum of this second

derivative on [a,b]. A bound for the absolute value of 'r; will be

FH
|7§ .x>)]s~~-—-—J Z%i—-hty B)-(v-pNv- ﬁ-h)Logil t 35 Ii

Then the following cases have to be considered:

Y = h then the logarithm is positive and less than ——
B~ P

B Yy’
the result is negative and a bound for the absolute value is b__%
5 .
B-v = - % then the logarithm is null and also the absolute

value.

B-v < - %13— then the logarithm is negative, the result is nega-

tive and an expansion for it is:

_ .h3 s h3 hn . hn
2! - 3! _ ™ s s s e = -2 - - .
v-p)  3tlr-p) (n-1)! r-p)™ %l y-pI= 72
n n-2 n-2
the term of this series is- h =3 (nI;l) as h -5 S (%)
v-p) (v-g)

it is convergent and its limit has the form -Mh2 where M is a positive

constant. Then the truncation error term is of order h.

(R
l'ri (£(X)) I < KEZ‘"h where K is a {finite constant.
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For 'r; (£(X)) let us 1ook for an error estimate in the asymp-
totic expansion of f(X) on[b,1]. From the derivation of this expansion

(see paragraph IIlL. 3. B) one notes that the error in the expansion is of

2¢
1r2C
of V(x) on [b,1] . A bound for this integral is

the order

1
‘& %&_ Log I%—:—%' for b€ X< 1 where ¢ is the variation

1-b
2¢ (1-b) Log ——
225 f Log |———§:éld§s 5 2
7. C.b X 7 C.b
J “ J
Let us now find a maximum for ¢
2 n
€ =mp— - —— Logb-—t— (bt 2 +... + 2 1 )
3C 2 2 2
J 7 IC 7 C 2 n
N 5
2
2 n 2
b b T
as b+-—27-+ ..... +—-fz=‘ ng—
n
£ € - Loghb
2
Then

-(1-b)Logb Logf52) 1

(-r;(f(xn[s ( dé [

“ i ©
- [C"‘? b at(2ptl)z - &
N -

2(1-b)*Logb Log(lé-b;)

4 3
T bhl’CJ
8

If 1-b = n<<l, 'r; is of the order

or  |r2x))| <



-49-
3
',,-13) (f(x))|‘~ K! ﬂ_ﬁh‘lg_".l_

4

For 'rp (£(X)) one can expand fp+1 and fp around the point

Y = a+(2p+1)-1-21- using the Taylor series:

f‘i 3 f"‘
) h . n2 pri/z2 . n3 fone 4
1 "5t T2t Q) B T ) S of)
h nz iz b3 e 4
st =zt Q) 57— - G 3y Ol

On [a,b] f'''(X) is bounded; let F''' be the maximum of this third
derivative on [a,b]. The truncation error 'r4 is then bounded by
4 mCy

| h
{ 3\ € —— 96 A
p EEN| s == [F] 5

|
!
and the truncation error for this numerical scheme has the order

3
Ofr_(£(X))) = max of O(—2—, h, 12081,
P ‘ h(Loga)

Then the numerical scheme Lh[ +] is consistent with the integro-

differential equation L [-] and has at least an order of accuracy 1.
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FIGURE 1: THRUST PERFORMANCE OF STATIC PROPULSION SYSTEM
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FIGURE 7: COMPARISON OF JET FLAP
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FIGURE 10: COMPARISON OF JET FLAP DIFFUSER/EJECTOR
WITH JET ENGINE (FIXED POWER)
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FIGURE 20: REGIONS OF THE NON-LINEAR PROBLEM
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FIGURE 21: AUXILIARY PLANES FOR THE NON-LINEAR PROBLEM



