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ABSTRACT

The problem of a heated gas at rest in contact with a cold wall
has applications in shock tubes when a shock wave reflects at the end
wall. A boundary layer arises that can be solved for constant condi-
tions outside the boundary layer. In this paper, this conditivon is re~
laxed and the g}as is permitted to undergo variations Qf pressure.

The eqi}.ation has been derived for the boundatyvlayer under
those conditions, and a similarity solution was found for isentropic
variations of a perfect gas outside the boundary layer. This solution
is only valid for a temperature of the gas much greater than the tem-
perature of the wall, unless the latter would follow agdetermined vari-
ation with time. Two cases were studied; one with tﬁermal conduc-
tivity of the gas proportional to a power of the temperature, and the
other with. condgctivity proportional to te‘vmpe rature. In the first case,
an integral method has to be used, which gives an excellent approxi-
mation. For the second case, the solution is worked out either by
similarity procgdures or by series expansions.

Heat transfer and temperature in the boundary layer are seen
to depend on the pressure, which acts like a weighting factor on time.

For ionized gases, two cases were considered; frozen and
equilibrium flow. Similarity solutions do not exist for variable pres-
sure outside the boundary layer unless the variations of pressure
with time are small enough. In this case, pressure acts again like a
weighting factor on time, although the variations outside the boundary
layer cannot be assumed isentropic anymore. At the same time, new

equations for the equilibrium boundary layer were derived, in which
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the excited state of ions and atoms is taken into account.

The effect of the weighting factor of the pressure is applied to
explain the experimental results obtained at the end wall of a shock
tube, giving explanation to certain differences between experiment

and theory.



Part

L

—v-—

TABLE OF CONTENTS

Title

THE THERMAL RAYLEIGH PROBLEM IN PERFECT

GASES

1. Introduction

2. Derivation of the Equations

3. So_j_,ution for a Perfect Gas with Thermal Con-
ductivity Proportional to Temperature '

4., Solution for a Perfect Gas with Thermal Con-
ductivity Proportional to a Power of the
Temperature

5. Solution in Series for a Perfect Gas with Thermal
Conductivity Proportional to Temperature

6. Cojncluding Remarks

THE THERMAL RAYLEIGH PROBLEM IN IONIZED

GASES;

7. ' Introduction

8. Derivation of the Equations for a Gas in a

Frozen State

9. Derivation of the Equations for a Gas in an
Equilibrium State
10. Quasi~equilibrium Transfer Theory for an
Ionized Gas
11. Comparison of the Theory with Experimental
Results
References

Page

10

14

16

17

18

- 23

27

34

40



PART 1.

THE THERMAL RAYLEIGH PROBLEM

IN PERFECT GASES
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1. Introduction

If we have a gas initially at rest and in contact with a wall,
both at the same temperature, a problem of a Rayleigh type arises
when the gas is suddently heated. For instance, this _}%appens at the
end wall of a shock tube when the shock wave traveliné along it ar-
rives at the end wall and reflects. In this case, the.gas is heated
while fhe wall"}teeps the ambient temperature, and a boundary layer
arises in whic;f} the thermal conductivity plays an irf}portant role. It
is in that bounéary layer that the transport of heat Eﬁlakes place, caus-
ing the cooling of the gas. Solutions for this problérx} have been
worked out [1, 2] for a perfect gas with different relétions between
the thermal conductivity and the temperature, but maintaining the
pressure in the gas constant. In the first part of this paper then, so-
lutions for thié case will be obtained for two different relations be-
tween thermal conductivity and temperature; namely’, thermal conduc-
"tivity proportional to the temperature,a.nd thermal conductivity pro-~
portional to a power of the temperature. Finally, a solution in series

similar to the one used by Blasius and Howarth [3] will be developed.



2. Derivation of the Equations

We fc;llow essentially the work of Goldsworthy [1], but keeping
the pressure outside the boundary layer a function of time. We as-
sume then that the gas, suddenly heated to a uniform temperature at
t = 0, and the wall represent a one~-dimensional problem in which
changes occur only in the y-direction normal to the wall, represented
by y = 0, and where the gas is indicated by y > 0. In that case, the
equation for the boundary layer reduces to the energy equation with a

von Mises type of transformation

o= fpdv ) (2. 1)

0
which satisfies automatically the equation of conservation of mass.
Then the boundary layer energy equation is, for a perfect gas with

constant specific heats,

8T y-1 dP _ P k 8
=P w T o Ry () (.2)

where T is the temperature and P is the pressure at the edge of the
boundary layer and a function of time. The boundary conditions for

this equation are

y = 0: T=T_, (2. 3a)
. T Te | '
¥ o (constant) . (2. 3b)
3[-1 ::_1 .
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3. Solution for a Perfect Gas with Thermal Conductivity Proportional

to Temperature

If we assume a linear dependence between the thermal con-~
ductivity of the gas and temperature

k=kT, (3. 1)

equation (2. 2) follows the simplest form, that is

8T _y-1 dP 1 8°T |
- sl T = — e (3| 2)
Bt YP dt ch awz
Solutions of the type
T(y,t) = o(t)r[y&(t)] = oft)r(n) (3. 3)
can be found by substituting into the equation (3. 2) the expression {3.3),
: k 2
dz'r+ : ng%- sz—l,r:CIl{d'r . (3. 4)
oP§ 37 12 P dn’
A solution of thé form (3. 3) will exist if we make
Uz'r- PZY'I'r:O, (3. 5)
oPt ppgc Y
°. 2
E/ERPET) = -1, (3. 6)
which gives us finally -
1-1 t 1
- 2
T(,t) = P Y ¢ \E‘/(Zdet) (3.7)
' 0
and reduces equation (3. 4) to
. k 2
dr 1 T
n — + — 0 N (3- 8)
dn ch an
which has the solution

where A and B are éonstants to be determined‘by the boundary con=-
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ditions (2. 3), which in this particuvlar case take the form‘

T
n - 0 . TW = —_._T“: , (3. loa.)
pY
T |
n-oo: T ——-—:91— (constant) . (3. 10b)
Y
P £=0

The values of T at =0 and m - oo must be constant. This is ful-
filled in the boundary condition (3. 10b) under any circumstance and in

(3. 10a) only for the case

T
Wi = constant. (3. 11)

Xt
pY

For this special relationship with time of the temperature at the wall,
the solution for the boundary layer from equations (3. 7) and (3. 9),
applying boundary conditions (3. 10), is

T-T c. R

—_—w p U }

T erf {( A T - . (3. 12)
e w 1

(Zb’rpdt )E |

From this solution we can obtain, for the case

(S

T >T |, (3. 13)
e w
an approximate expression for the temperature
' CPR‘% 0 :

T = T, erf{(ZkI) : } (3. 14)

t i

\ 2

(2 f Pdt )

0

which is not iralid near the wall. So this solution can be used when
TW does not satisfy the relationship (3..11) only if we keep away from

the wall.
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The heat transfer rate to the wall

— - aT
% = o = (x -5}—,)1?0 ' (3. 15)
when calculated from (Z;}. 12) is
t z
(det)
-0 e 'kl % »
Ww P < (R ) (3. 16)

When the inequality (3.13) is valid, (3. 16) reduces to

t %
( f Pdt) 1
0 _ k) @

Y 1% (3. 17)

¢

e

which is independent of the boundary condition (3. 10a).
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4. Solution for a Perfect Gas with Thermal Conductivity Proportional

to a Power of the Temperature

For a linear relationship between the thermal conductivity of

the gas and a power of the temperature

k = le\’ , (4. 1)

equation (2, 2) becomes

8T _y-1dP . _ v-1
Bt CyP at T T CPRW(T a7) (4.2)
and when expression (3. 3) is substituted in (4. 2)
g £ dr P y-1
T+ n T =
opgz v-1 ngZ v-1"14dn " Ppgz v-1 vy
d v-1dr
k(o ) (43)
P
A solutién is obtained when we make
o P y-1
=0 , (4. 4)
opgz v-1 PPE,Z v-1 vy
: 1 (4
—_—— = - . 5)
2 1 ?
EPE%YT .
which gives the temperature the expression
y-1 y
T(y,t) = P Y ¢ —— (4. 6)
’ Y1) 7z
2P Y at
0
and reduces equation (4. 3) to
k
dr 1 v=1dr
g toR 3 ( ) = (4. 7)

An integral method introduced by Jepson [2] can be used to solve (4.7)
that gives the heat transfer rate to the wall. Using formulae (3. 15)

and (4. 6), this takes the form



2y-1
k. TV lp ¥
G = T P (&) (4.8)
F(=YL+1) |z M
J p Y dt
0

If we define a heat flux potential ¢ such that

d¢ _ _y-1ldr
o - T ar (4. 9)
that is,
LAY SO
¢ - cl)w = ——\-)-—-—-—. s (4. 10)

equation (4. 8) takes the form, when we use (4. 6),

L pUT VD

@) -

(4. 11)

_ 1
o £ (24n) |3
R.ZtYP Y 4

. 0

Furthermore, the integration of equation (4. 7) with respect to 11 from
n=0tomn-oo yields, if we impose the condition

. dr
7 [s & a‘ﬁ' 0 3 » (4- 12)

the following results:

T
R ~®
d¢y _ °p
D - £ fnd'r . @13
T
w
Equation (4. 7) also establishes that near the wall, where n~0,

d d d
@ =0 . 2= (a%)w . (4. 14)

We then assume that between T and T o (4. 14) will give a good ap~-

proximation for the relationship between 1 and 7,



¢$-9 = (51—‘2) N, (4. 15a)
w

_ W
= (*
v dni
that substituted into expression (4. 13) yields
vil v+l 1

{c R 7T -7 T =T . \12
where the values of T at =0 and 1f~oo are given by equations (3,10)

2 ’ i
Qe -T2 LAY (4. 16)

and (3.11). We finally obtain for the heat transfer rate at the wall

from (4. 10) by substitution of (4. 16)
1

t /1~y

j‘P( ) )dt : vil o vtl

0 . k C kl T T v T Tw

T [ (v 1)+1] ) ZR ( v(v+1) -~ T —5— )} . (4.17)

For v =1, (4.17) yields
t 1
2
(J"Pdt)
0 _ y_ 1§
quiTe-Tws - (y-l T) ’ (4. 18)

which, compared with the exact solution (3. 16}, gives an error of 13

per cent, When the 1nequahty (3. 13) is valid, (4.17) reduces to
F
K, TV %

1
jp
- y 1
q“’ [3——(\:~1)+1] = (12 5w (4. 19)
. P Z'Y

which is independent of the boundary condition (3. 10a).
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5. Solution in Series for a Perfect Gas with Thermal Conductivity

Proportional to Temperature

When a linear dependence between the thermal conducti'vity of
the gas and temperature was assumed, and when the temperature at
the wall satisfied equation (3. 11), we obtained a solution ‘(3. 7) for the

boundary layer in which temperature was not a function of time but of
t

t' = J‘p dt , (5. 1)
0
where

_ P(t) _ P(t) : |
- —PT-(T) - ?';—' . . (50 2)

If the temperature at the wall does not satisfy (3. 11), a solution in
series similar to the one used by Blasius and Howarth [3] could be
worked oﬁt, but using, instead of the variable time, the new variable
t' , which will give a faster convergence and more accurate informa-
tion. |

A change of variables is then done according to the transforma-

tion (5. 1) which yields

(%)\lr = plgmr) (5. 3a)
9 9 o
(W){; = (W);' . (5. 3b)

Equation (3. 2) will be transformed by (5. 3) to a new expression
L0 Kifo

ot! R 2
°pT o ayc Y

2
979 y=1dP , _
- i e =0, (5. 4)

where @ is a non-dimensional temperature. That is, if To is a

reference temperature, o
& = T/T . (5. 5)



The pressure is represented then by a power series
2

p = 1 + a-lt' + azt' + o0 ’ (5. 6)

and it is assumed that the temperature is given by the following ex-
pression

0= £(n, t') = £_(n)+a £ (' + (a6, (n) +aEy  (m}er?

+ {ayfn+aaf, +at (M2 +o.. , (5.7)

where ‘
" (Zt‘li)%E i tw 3 ' o
(2‘}"pdt)’2
0

With (5. 8), the equation (5. 4) for the temperature becomes

k. P

ot m ., of 1% 8% 1 y-1dp, _
-p-é-ﬁ—Zt"i'pa—t'i-‘E-p—R—p—————- a%f—o (5.9)

or using (5 7),
n klpo
P 1t 14t -
{-012 f}t,+{(f+f)+f 2

P
+{-(f’+f') s, - —-R;(f"+f") - XL, }a

" u_!"l }
(f1+f0) v fo al+

k, P
N f'+f' Dig + 28 1 o £14£1 +... = 0.(5. 10
- 1 #1720 w 1) -5 ayt'+ees = 0.(5.10)

If we make every coefficient in (5. 10) equal to zero, we arrive at

] 1" 0 o _ )
nf_ CPR fo =0, ‘ (5. 11a)
kP -1 ;
nfy +— £} - 2, = -zXTfO, - (5. 11b)
P
k.P

I

Ny + =12 Y - 45, -41;—% , (5. 11¢c)



k.P
1" 0 .y - - !"1 v
As boundary conditions we have
n=0 : ‘ T = Tw (assumed now constant) (5. 12a)
T
T e :
n- o —=7 - | =<3 {(constant) , (5. 12b)
pY P t=0
that can be written alternatively
n=0 : p = BW {constant) , (5. 13a)
, y-1 : ;
N~ : 8=p ¥ , (5. 13b)

if 'I‘0 is the temperature outside the boundary layer for t = 0, that

is _ '

T = (T)) . ' (5. 14)
o e’ 0

In series expansions, the boundary conditions are given from (5. 7)as

n = 0 . (f)nzo = ew 2 ’ (50 153-)
, y-1 |
2, Yy -1
n=o s ()= (4atHa '+ ) ¥ = 1+lrha1t' + ... (5.15b)

The solution for the first approximation fo(n) is readily obtained

from (5. 11a) and (5. 15), that is, from
' 2

df,o kIP0 d fo
! + = 0 (5. 16)
dn ch dnz ‘
with boundary conditions
n=0: €) =9, (5. 17a)
n=0 ‘
n~e : () =1, (5. 17b)
n= oo

The value for fo is



olo™ Tw _ y
——t— = erf{( ) } (5. 18)
o Tw
(szdQ
and taking Tofo as a first approximation of T,

T-T

(r—r-)'—‘—f”f- - ext { (- ) -———L——} (5. 19)

“t=0 (2det)

which has the same form as the solution (3. 12) for the similarity so-

lution.

The heat tra.n_sfer rate to the wall,

q, = (-q)n=o = (k%%ﬁ=0 s (5. 20)

when calculated from (5. 19) is
i t -1_
: 2
(j' Pdt )
M K

o = _ 1
Qe T P[(T) T T (R;J-Lr'?r"
©t=0

\,l\)'b-‘
-

. (5. 21)

that resembles again expressibn (3. 16) for the exact case.



6. Concluding Remarks

If we solve the thermal Rayleigh problem and we keep the
pressure outside of the boundary layer constant, the solutions [4] will

be a function of only one variable, namely:
1

C —
S0 ] d 6
= \#px Py - (6- 1)
o © 0

This indicates that the different dependent variables in the boundary
layer reach the same values at different times for the same M. Thus

we have a thickness of the boundary ila‘yer as
kt \2
& ~ 2 . (6. 2)

o
If we compare with the classical Rayleigh problem, in which the den~
sity is constant, and where the similarity vaLriable is

n = Y/(vt)% , (6.3)
therefore, a thickness of the boundary layer

5~ ()2, (6. 4)
we see that there is only a change in the factor of time. This is be-
cause the first is a thermal boundary layer, so its thickness depends
on the thermal conductivity, and the second is a velocity boundary
layer, so its thickness depends on the viscosity. The relation be=-
tween both lengths is the Prandtl number.

In the thermal Rayleigh problem, if we allow the pressure to

be a function of time, the similaritylvariable is

c z
Po
n=(—— pdy . ' (6. 5)
o .
Zpoko fp dt
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The width of the boundary layer is now
t 1

ko jpdt

s ~| =2 — | . (6. 6)
Po P,
We then arrive at the conclusion that an increasing of the pressure
with time will result in an increase of the thickness of the boundary

layer, and vice versa. Consequently, this will result in less or more

heat transfer to the wall.
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PART 1L

THE THERMAL RAYLEIGH PROBLEM
IN IONIZED GASES
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7. Introduction

In this section we study the same problem as in the first part,
but now we consider shock waves strong enough to produce ionization
of the gas,argon, which is in contact with the cold walle For constant
conditions outside the boundary layer, catalytic wall, equal tempera=-
ture for all species, ambipolar diffusion, and omitting the plasma
sheath at the wall, numerical ’integrations have been made of the
boundary layer equations by Fay and Kemp [4] for two limiting cases:
one case in which there is complete thermodynamic equilibrium be-
hind the reflected shock and within the boundary layer; and another in
which there is equilibrium behind the reflected shock, but no gas-
phase recombination in the boundary layer.

In spite of the complexity of the boundary layer equations, we
will be able to estimate the effect of the \;;ariable pressure for short
timés on the heat transfer rate to the wall given in [4]. Also, a
more formal derivation is made of the ‘equilibr_iurn boundary layer
equations in which the electronic excitation of ions and atoms is taken

into account.



-]18-

8. Derivation of the Equations for a Gas in Frozen State

Following Fay and Kemp, but keeping the pressure outside the
boundary layer a function of time, we examine an ionized gas with an
equilibrium free stream and a non-gas-phase recombination boundary
layer. We assume again that the gas, suddenly heated to a uniform
temperature at t = 0, and the wall represent a one-dimensional prob-
lem in which changes occur only in the y~direction normal to the wall,
represented by y = 0, and where the gas is indicated by y >0, If v
and Vi represent respectively the mean mass velocity and the diffu-
sion velocity for the ith species; the boundary layer equations [4] are

then for a frozen gas

9p

_8_t'L+ o lviV,) = 0, (8. 1a)
9T , 9Ty _ 8T , dP
pe, (E +v 8y) Ty (k ) Zp,V.c b, 5t (8. 1b)

where P is the pressure at the edge of the boundary layer and a func-
tion of time. 'Equation (8. la) represents conservation of mass and

can be reduced to [4]

AP/C osN _ .
( L, '5‘17) =0, (8. 2)
Py
where
s = a/ao . . {8.3)
and o is the degree of ionization of the gas,
ky = 5.8% 107 /% cal/em sec °K (8. 4)
is the thermal conductivity of argon [4],
- =0, 16 g
L, = LIIT (8. 5)

is the Lewis number for T in degrees Kelvin, and
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1
2

c Ty |
Vo= (p:f ) ﬁ)dy, (8. 6)

° o

indicating by the subscript o reference quantities. Equation (8. 1b),

representing conservation of energy, is likewise reduced to [ 4]

c k,plc CP
p_86 1 dP _ 8 kp 96 A" "p A 9s 98
c_ o8t c_ pT_dt tv(kp W)+kp/c Lo ao&@y oy’
o oo oo p P
o o o o
(8.7)
where .
8 = T/To . : (8. 8)
It is convenient to define a non-dimensional pressure
P = P/Po s (8.9)

and to choose the reference quantities T6 and Po as the temperature

and pressure at the edge of the boundary layer for t = 0, that is,

PO = P(0), (8. 10a)
T, = (Te)t=0 . : (8. 10b)

With these definitions and the expression for the density

PrnA

p =
(1+cx.os ) nTOG

(8. 11)

with m, representing the mass of the argon atom, we can write
P Pom A P m

P = P (Tfa s)nT 0 =P(1+aos)AT g PPy - (8.12)
(o] (o] 74,0 (e} KO r

where

PomA

Ppr = (1+a057nT09" (8. 13)

would be the density if the pressure outside the boundary layer didn't
change. The equations for the frozen boundary layer are then, from

(8. 2) and (8. 7) with (8. 12),



AP /c
- P oy (__T_Ek - A aw 0, (8.14a)
32_99 (1+C(. s)ub lé}_’_ ~(kpr 39)
<, ot mpc, P dt P 5y k_p 9y
o o . k /C c
APy Pa  9s 00 . .
P LA %% ay By (8140)
oPo’%p o
Solutions are tried of the form
s = s[y&(t)] = s(n) , (8. 15a)
6 = B[yE(t)] = 6(n) , (8. 15b)
that, substituted into (8. 14), give
n = ._____ﬂ’___t | (8. 16)

( 2 (‘j‘p dt)%

and reduce the equations of the boundary layer to

p/c

%(k—ﬂ—x Adn)+ =0 (8.17a)

c_ _
& "rde)( AP’°LPA¢§_=~».2.9_-
dn \k_p kp/c Ac odn/dn ~
Po Po :
(1ta_s)nd® -
= - ° P . (8. 17b)
m,cC 2.2
Ap, pPE

The boundary conditions are given by
y=0: T=T_ (constant), a =0, (8. 18a)
y - oo: T—?Te, : , (8. 18b)
which, in our case, become
n=0: 6 =0, (constant), s=0, (8. 19a)
n~o: 8=90_, | © (8.19b)
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assuming a catalytic wall.,
Solutions of type (8. 15) are then invalidated by the last term of
equation (8. 17b), which depends on time. However, looking at equa-

tion (8.14b), we can see that this term is negligible for the case
tdp

which corresponds to short perio&s of time. Solutions of type (8. 15)
are then possible if the temperature and degree of 'iopiza’cion outside
the boundary layer have a much slower variation with time than the
pressure, and We can assume for the range of values of time for
which (8. 20) applies that temperature and degree of ionization outside
the boundary layer remain constant and equal to the initial value. In
this case; however, the gas outside would not be iséntropic, In these

circumstances, equations (8. 17) become

. k /c .

d APy ds ds _ .-

@ (Kop e, “an )t Nam < O (8. 21a)
: o ‘
" kp c k,p /c Cp

d r df p APr A _ ds.d®

d_n'(kp )+(n +kp/c Lot % anlan = 0

Po Po Po (8;21b)

which are equivalent to the ones with outside pressure constant and
solved by Fé,y and Kemp [4]. The influence of the variation of pres-
sure with time appears in the variable n, as we can see in equation
(8.16). This influence will be explicit when we calculate the heat

transfer rate to the wall,
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([raf

W
c_ kp 1% ‘ L c o
P, O kp. g KaPr Pp by’ \da
—2t | Tolkp-antre o Al )| o (822
ofo oo p Py © n=0

which only differs on the left hand side with the result of reference

[4] by the correction factor

t 1
(‘.rpdt)z
= 2

(o4
p(t)%

£ . , (8. 23)



9. Derivation of the E(iuations for a Gas in Equilibrium State

The boundary layer equations at the end wall for an equilibrium

gas [4] are
9p , dpv = A
L ) (9. 1a)
) | ,
p8h+pvah -§-—(qy)+dt, (9. 1b)

which represent respectively conserva.tion of mass and conservation

of energy. They are reduced [4] to

p
cAa( hT) Tpdt =
P,

‘a%‘kig ﬂhko (e+ T) | 9. 2)

o . s e , .
where h1 is the ionization energy per unit mass of atoms.

By the considerations made in (8. 12) we can write (9. 2) alter~

natively
c
PA_Q ). (Lalxe LdP
c ot T ACp p dt
o Po
ko kpp. P
9 | 'r 08 A'r YA ( )
+ 8+ . 9.3
- Pay |k p, BV K e, c, A (9. 3)

For equilibrium, @ is related to 0 through the Saha equation,
Qet ) Lo -1/2
m eXP(m / nT)] )
(9.4)

-S/Z(ZWm )-3/2

3
o= [I+Php(uT) E

where Qe‘(,i is the electronic partition function of species i, and hP
is Planck's constant, so 8a/8y can be related to 88/8y . If excitation

above the ground level is ignored in (9. 4),



o
9a _ 1 3| 5 , -2 o T
ﬁ -zd, -Z—T—e-( "1)"' 2 2(“ "1) [] (9. 5)
o uTOG
and substituting
m
A _ 5 1
= =3z (9. 6)
Pa
we arrive at ' o
3 _ 5 afl-a”) 1
—é—T -Z-—ez}——(e""ﬁ—“ s (9.73)
Pa © :
: o A
da 1 3a7%1 :
-z TPF (9. 7o)
B .y 3u88 _ sall-al) (g, " yos ©.7¢)
v~ “odTd 4 2 c_ T v :
® Py ©
We call o
5 a(l-a) hI
s =2 $0) gy L ) (9. 8)
8% °y /c Pp ©

and substitute (9. 7c) into (9. 3), arriving finally [4] at

P : kp k
CA&( T) (1+ac)u6;dP a?y[ rae(HLAkS)}
0

(9.9

The values of the enthalpy and the constant-pressure specific heat of

all particles,

h = cpT + u,hI . (9. 10a)
= i4+a) . 10b
5 chA( ) {9 )
are used to show that
‘p ‘p h° o
A o h B A I oa
c ( T ) —5_ c (e+c T /ot ° (9. 11)
Po Py ©

The local qua_s:.-ethbnum rate of ionization can be estimated from
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(9. 7a) and (9. 7b)

-2 .
o aaae 8adP 5 (la.) I 1 3a -1 dP
Bt 30 Bt P At ~ 4 2 @" T -z i F . 612)

that substituted [4] into (9. 11) and (9. 9) yields
o

c h :
2 08 _|(lta)u8 . A( Q1 w2y 1P _
c— (1+8) ¢ [mAc 8+ To) 7 (1-a7) p dt
o - Py po PA
kp '
9
“pr[k p" aq?(l-E- 1f‘s] . (9..13)
Solutions of the form
8 =00y, &(t)] = 8(n) (9. 14)
are tried, that when substituted into (9. 13) give
= —t (9. 15)
2
Cfre)
a.nd reduce the equation of the boundary layer to
kp -k c
af*r ap “a B (14520 -
dn[kp dn(1+LA k S):]-F-'nc (1+8) g =
o' o : Po
(1+c,)n9 A o P
e (e ) (1-0%)| —5— - (9. 16)
pl?
The boundary conditions are given by
y=0 : , T=T, (constant) , (9. 17a)
y—-o : T-*Te, : ‘ (9. 17b)
which in our case becomes
n=0 : 8= Gw {constant) , ; (9. 18a)
n-o : 6=0 , _ (9. 18b)

the degree of ionization being given by the Saha equation.
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Solutioné of type (9. 14) are then invalidated by the last term of
equation (9. 16), which depends on time, and by the pressure factor
appearing in the Saha equation (9. 4). But, again,‘ when (8. 20) applies
and the temperature outside the boundary layer has a much slower
variation with time than the pressure, a solution of type (9.14) is pos-
si.ble. In this event, we will not have an isentropic flow. A further
approximation is done if we keep the pressure in (9 4) equal to the
initial pressure, This will give a ‘10 per cent error in the degree of
ionization for our variations of pressure. In these circumstances,

equation (9. 16) becomes

kp k c R
Ser @ an, 29 en k1452 -
an [ko"o I (1+LA = s>] + :, (148) g7 = 0, (9. 19)

o
which is again equivalent to the one with constant pressure and solved
by Fay and Kemp [4]. The variation of pressure appears when we

calculate the heat transfer rate to the wall

e 4

(det> ¢ kp L

2 k ' k, .

0 [pooo] [prde A :!

= T |—— 2 (1+L, =2 s ,» (9. 20)
p(t)% 2t olk P, dn( Ak n=0

which only differs on the left hand side with the result of [4] by the

: qp“f |

p (t)2

9,

correction factor

¢



10. Quasi-equilibrium Transfer Theory for an Ionized Gas

In the paper by Fay and Kemp [4], equations for the equilibri-
um boundary layer were derived without much consideration for the
formality of the approach. Here, we derive the equations following a
rigorous method using kin‘etic/ theory concepts, as a natural extension
" of Lighthill's paper [5] for a dissociating gas. Along this develop~-
ment we can é;ee the meaning of the different approximations made by
Fay and Kempr, as well as the limitations that these ;é.pproximations
impose. We consider then a fluid composed of atoms, ions, and elec-
trons, w_ifh masses m, , m;, and mp respectively. Due to the
small mass of electrons we can write "

g
™A

We again assume ambipolar diffusion and consequently that the num-

< =
<<1, m, =my. (10. 1)

ber density of ions and electrons is the same. That is,

f,v.dv f v
‘ -1 =1 : E—E YE
<Y-I> = <Y-E> = ’ (10. 2a)
J‘fldvl j.fEdvE
n; = j‘f dv = np = ffEdKE . (10. 2b)

The mass velocity of the gas will then be
g

mp J‘ Yafadvat mx f Yyhdvytmy | vpipdvy

v =
Aff dv ffdv +mEjf

that, because of (10. 1) and (10. 2) becomes

-.r fdv jfdv
~AA T (10. 4)

’ (10. 3)
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Due to the ambipolar diffusion, the diffusion velocity of ions and

electrons will be equal, that is,
Va =C¥a> Y = Vp = (ypd-v (10. 5)
For monatomic gases, with electronic excitation, we still have

spherical symmetry for atoms and ions, and the Boltzmann equation

still applies [6]; that is,

Sf{’ 8fL - BfL 8fL aefL
% P Vax e FVay By tVes B S BT (10.6)

for atoms, ions, and electrons. From (10, 6) the continuity equation

for the gas is readily obtained [57,
‘ 9(pv.)

%p i

at T Bx.l

= 0 , (10.7)

as well as the equation of momentum,

), (pv.vi+p..) = 0 (10. 8)
Bt ijpij Pyl =% g

where

Pij = Pa Lyp-v)> +p; Ly vy +pp Clygv)y « (10.9)

The equation of energy will be likewise

2
a[P(u'*%'Vi )] 9 L 2 ‘ .
5t tax; Lpvjlutav ) tpvitq] = 0, (10. 10)
where

pu = ppup * oyt Ppup - (10. 11)

CELD o
Y © - ’ - (10.12)

)

indicating by E L the total energy of the particle of species 4. In the

case of the electron, it will consist of translational energy. In the



case of atoms, it will consist of translational and excitation energies;
and in the case of ions, of translational, excitation, and ionization

energies. That is,

EA = %mA(XA - !)2 + ep (10. 13a)
E; = gm/(v; - x}z te +1, (10. 13b)
EE = %mE(XE - X)Z s (10. 13C)

the excitation energy, represented by e, . Therefore,
q=34pp <y, -v) iy, -v)D + pp <)y =) Y # pp (lrpv) Py g-vID 1 +
nA<eA(XA-Y-)> + nI<(I+eI)(y_I-X)>\ . (10. 14)
In these cix;cumstances, a mechanical pressure and a translational
temperature can be defined and related in the following way:
P = 30pA<lvp-0)®> + p<ly)®D + ppdlug-v)?> T = nuT . (10.15)
Further simplifications are possible if we take iﬁto account,
as pointed out by Fay [7], that the electrons make no contribution to
the viscosity because of their extremely small mass. Thus,. ‘the mo-
mentum flow in equation (10. 9) will depend only on the translational
motion of the atoms and ions. We assume, then, that the results of
kinetic theory for a binary mixture of atoms and ions applies and ex-

presses pij as

dv, a_"i 2 9%
pij = Pﬁij-u('g')z;-axi)+3'urxl:6ij 9 (10.16)

where 61j is 1 when i =j and 0 otherwise. Here, u is the viscosity
of the binary mixture.
Following now Lighthill [5], we assume in the quasi-equilibri-

um theory of the gaseous transport properties, that deviations from
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thermodynamic equilibrium are small enough to neglect the square of
such deviations. So we can use equilibrium relations in the equation
(10. 14), which is already an effect of the deviation from equilibrium.
But it could not be done in (10, 15) with the méchanipa.l pPressure, be-
cause this is not an effect of deviations from equilibrium. The values
ep and e, are then substituted by their expressions in thermodyna.m_ic
equilibrium, as can be found in [8] and [9],

ep = eA(T) ) e = eI(T) . (10. 17)

Equation (10, 14) becomes now ’
4= $pp {lrg P wa 00> # oy ly) > + ppllogy) vg-v)> 1+
+ nAeA(T)<ZA-X> + nI[eI(T)+I](y_I—X> . (10, 18)

Since we are assuming ambipolar diffusion, the results of kinetic
theory [6] are applied for atoms diffusing through pairs of ions and
electrons. If D is the binary diffusion coefficient, we can write

-D [a(g a,)+a a.(l-on)l aT]
i

Va, V1L T o=

’ (10.19)

where Ly is the thermal diffusion factor. On the other hand, equa-
tion (10. 5) says
| vV, -V, =0, | (10. 20)

A, 1
i i
s0 we can get
_ =D 8(1 -a) 1 8T
VAi *1a [ axl + o Q.(l a)-'-f-é-}—(-:- ] 3 (10. 218.)
- D98(1l-a) - oT v ,
vyt 3 (A 4 g, a(1-0) % T %% 1. (10. 21b)

Similarly, the same kinetic theory [6] for ambipolar diffusion will

lead us to
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%[PA’((-‘-’-A'Y-)Z(XAi'Xi» + 91<(-‘51’-‘1)2(111’-‘-’-i)> + pE<(zE-y_)2(y_Ei-g_i))] =

= -k _g_'_l‘_ +—- nT(n .+nIVIi)+ % (nA,-I'nI)Tu.Ta(l-a)(VAi-VI ) . (10,22)

i
With (10, 21) and (10, 22), the equation (10. 18) becomes
qi = -k-5—+ (nptn )DL 2= g a(1-a) L glj[el(mu-eA(T)-nTaT] .
(10, 23)
If, in this expression, we assume for a the value in function of P and
T that corresponds to the thermodynamic equilibrium, we will have,
as we said before, an error of the second order. That expression is

given by the Saha equation (9. 4), that we write now as

[1+PF (T)J'% , (10. 2V4)
where
. Qel
F(T) = hg( KT)-BIZ(Z‘WME)_SIZ b-gméezg exp (mAhIO/ ){,T). (10. 25)
' 1

P = Plt) , (10. 26)

as happens in the thermal boundary layer that we are studying, then

Bx, = " E% gT 5%, (10.27)
1 1

and equation (10. 23) becomes

q, = - {k- (nytnID[3a® S5+ 0 afl-a)h Te(THi-e , (T)-xTap 1} I .
| ‘ (10. 28)

Defining now the enthalpy as
h = u+;1;;m‘, {10. 29)

and calling
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ko = ke(ny+n D[4’ S+ o a(l-on)-,l-l-,] [e(T)HI-e,(T)- xTa

T TJ , (10.30)
equation (10, 10) becomes, for the case of the end wall,
2
Dh DP T} 4 ov
p-D——t-- -g—{k Y +§u('§}';’ ° (10.31).

We can now replaée the temperature in the fhird term of (10, 31) by its
value in thermodynamic equilibrium, because it will produce only an
error of a second order; that is,

h = h(P,T) , (10, 32)
and because P remains constant th‘r;)ugh the boundary layer [2], it

can be written
' oT

9y

31- oh (10. 33)

p y

Furthermore, the dissipative term is neglected in the thermal bound-
ary layer [2], so we get finally for (10.31)
dh 1dP

'ﬁ--;ﬁf = W(OTW)' R , {10. 34)
where
Vo= j[p dy (10. 35)
0
and
“p
cT = kT s (10, 36)

which is called the effective Prandtl number. When P is independent

%}l = 5- (G , (10. 37)

where now we can use for p the equilibrium value

p = p(P,h,a), (10, 38)
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where @ is given in function of the pressure and enthalpy by the Saha
equation, since that gives only a second order error in (10.37). This
equation is similar to the one obtained in (4], equation (9.9), for
dp/dt = 0 . | (10, 39)
However, we have considered in this case electronic excitation, as
we can see in (10. 30), and our approximations have been analyzed in

a consistent way.
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11. Comparison of the Theory with the Experimental Results

Goldsworthy [1] has solved in his paper the boundary layer
problem at the end wall of the shock tube after a shock is reflected
from the face of the wall. It is assumed, in this problem, that there
is a constant pressure across the bbunda.ry layer and it is equal to the
Rankine~Hugoniot value, that is

P(t) = P(0) = Po’ (11. 1)

and also the thermal conductivity is proportional to the temperature,

k = kT . (11. 2)

The complete problem for the gas and the wall is then worked out, as-
suming that at the face of the wall the témpe rature and the flux of heat
are continuous. This temperature at the face of the wall has the con-

stant value
mT - T

1
Two= —_T%O?{__ ’ (11.3)

where Teo is the temperature outside of the boundary layer, that is,
the Rankine-Hugoniot value, and hence constant; T 1 is the initial

temperature at the wall, and m is given by

k. P

- X 1" o .
m = 5 (11. 4)
vy-1 k p c

representing the thermal conductivity, density, and specific heat of
the wall by kw, P and o’ respectively. |
Formula (3. 17) for the heat transfer can then be applied to

this case, namely:
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(jpa;

1 k.
- (t)? - 1Y |
YW~ FT— = Yo o1 - (FTw) (L3
e T (P )z
eo’ o
that gives for 4o the final value of
i
kl G Teo(Pc)z
Ao = ._Y._Y_l a —{t_)%_—- . (11.6)

We have assumed in using (11. 5) that

T,of/Teg << 1 | (11.7)

or, what is equivalent,
m << 1 , . (11.8)
since in formula (11. 3)

T, << T__ . | (11.9)

1 eo
A first order correction for the heat transfer would be desir-
able, and it can be obtained by using the first order correction for
the pressure;, given by Goldsworthy as
P T

= 1 1 V1) 11,10
5 = -BM)(1-7— )17, (11.10)
(o] eo

in which the notation of Baganoff [ 10] has been used, and where B(Ms)
is a weak function of the incident-shock Mach number Ms and the ra-

tio of specific heats y. For monatomic gases

0.928 < B(Ms) <1, (11.11)
On the other hand,
| T, << T » (11, 12)
and finally
v = (11, 13)
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where
_ 2 2
Teo = (y k/ﬂCppa )o , (11. 14)
where the subscript indicates that the quantities are the ideal values
in the reflected region. The constant given by (11. 14) is approxi-

mately equal to the collision time in that region, which stands at the

‘edge of the boundary layer. With these values, equation (11, 10) be-~

come
=2 T % ’ 2 ‘
= = - (2 ) , (11, 15)
o
which is only valid for
t > 7 ’ (11, 16)
eo

the range for which the boundary layer theory is valid.
The first order perturbation for the temperature due to this

correction of the pressure can be obtained by the isentropic relation-

ship
ooyt
T
PyY _ e
(=) ===, (11. 17)
o eo
and if we keep only first order perturbations, . «
1.2
T 3 .
- _y-1 eo :
T, Teo<1 Lv =2)) . (11.18)

Substituting (11. 15) and (11. 18) into (3. 17), and keeping only first

order terms, we get
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k, & PT
s G -
(det)a
' 0
k. L '212'

G e G el g (e

ER E( (::°> = ("'°) +(5)) -

(t)'

T L
= q,, (1 -15—1—(739-)2) , : (11.19)

which gives the first order correction for the heat transfer to the wall.

We can see from (11. 19) that the pressure perturbation does not give
any contribution to the heat transfer by itself, but only through the
corresponding perturbation of the temperature,

The temperature at the face of the wall Two was given by
equation (11, 3) and its value is determined by the heat transfer Qo *
Its value is constant due to the t-% variation of Qo with time. Now
it is possible to deduce the first order c.orrection to the temperature
Two from (11.19). We consider then a semi-inﬁnite solid at zero
temperature, which gets a flux of heat at the face per unit time and

unit area equal to

‘ i
2z 1

(.Y..__ ___l..)aT (P )z -2

Yy ¥ eo

leH

q‘;v = -qwo'yv_(_t—_

(11. 20)

: ¥
The temperature at the face of the wall is then

P
See page 57, reference 11.



t
~ 1 j‘ dr
T! = — ' (t-T) . (11, 21)
w (p.c k w)%oqw. :'z!:

www

However, the value (11.20) for q:v is not integrable, so we assume
that during a time 0 <t < t, the heat transfer q:v is zero, that is, for
the time in which the bounda.fy layer approximation is not valid. The

heat transfer perturbation is now

ol

k, & 1 (r )2
U = - (l;—l_ _1?1')2"[|eo(:po)z :0 u(t-t ) (11.22)

where u(t-to) is the unit step function, defined as

i

u(t-to) 0 if t-to <0 , (11, 23a)

u(t-to) 1 if t-to >0 . \ (11, 23b)

Expression (11. 22) substituted into {11, an) gives, for the perturbation

wall temperature:

1 L 3
1 2 1 -2
' o= (2L -1—{-1-)2 ool (Teo)zl <1 *0-%) )
Y w ( k = t g _L °
p. € )2 2
w W W 1 - ( __©
. t
(11, 24)
Because this value for the temperature is only valid for
£ >> Teo * | ' | (11, 25)
and also because we want to have
t > to " (11, 26)
we can make
to = Teo ? (11, 27)
and then to assume in (11, 24)
t = t/'r'eo >>1 . | (11, 28)
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In these circumstances,

pd
2

1y
— log( Lot ) ) log (£)2 (11. 29)
(t)z 1—(1 T (t)z

and finally we get

N

o1 ko g 2T (P ~vg
o= (LY eool”  10g(¥)? (11.30)

T 21
(pwcwkww)a (t)2

The total temperature at the face of the wall is then given by
1

- _. '2' ~ 1
T =T +T' = mTeo Tl ( 1) o o log(t)?
= = o s
w wo w 14 m (p c kww)a 1)z
(11.31)
valid for
T>> 1, (11.32)

which can be compared with experimental results obtained at the end
wall of the shock tube. With result (11.31) a jump in the temperature
at the end wall is not necessary, and a transition terr'lperature appears
until the asymptotic constant value is reached.

If we cc{mpa.re the temperature perturbation (11.31) with the
pressure perturbation (11. 1‘5), we can assert that the pressure reach-
es ‘the asymptotic constant value faster than the tempefé.ture, -since
the ?-% correction for the first goes to zero faster than the A‘E-% log(a%

correction for the second. This is in agreement with experimental

observations.
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