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ABSTRACT 

The problem of a heated gas a t  res t  in contact with a cold wall 

has applications in shock tubes when a shock wave reflects at the end 

wall. A boundary layer a r i ses  that can be solved for constant condi- 

tions outside the boundary layer. In this paper, this condition i s  re-  

laxed and the $as is  permitted to undergo variations of pressure. 

The equation has been derived for the boundary layer under 

those conditionq, and a similarity solution was founp for isentropic 

variations of a perfect gas outside the boundary layer. This solution 

i s  only valid for a temperature of the gas much greater than the tem- 

perature of the wall, unless the latter would follow a determined vari- 

ation with time. Two cases were studied; one with thermal conduc- 

tivity of the gas proportional t s  a power of the temperature, and the 

other with condyctivity proportional to temperature. In the f i r s t  case, 

an integral method has to be used, which gives an excellent approxi- 

mation. For  the second case, the solution i s  worked out either by 

similarity p r o c ~ d u r e  s o r  by ser ies  expansions, 

Heat transfer  and temperature in the boundary layer a r e  seen 

to depend on the pressure,  which acts like a weighting factor on time. 

For  ionized gases, two cases were considered; frozen and 

equilibrium flow. Similarity solutions do not exist for  variable pres-  

sure outside the boundary layer unPes s the variations of pressure  

with time a r e  small  enough. In this case, pressure  acts again like a 

weighting factor on time, although the variations outside the boundary 

layer c a m s t  be assumed isentropic anymore. At the same time, new 

equations for the equilibrium boundary layer were derived, in which 



the excited state of ions and atoms is taken into account. 

The effect of the weighting factor of the pressure i s  applied to 

explain the experimental results obtained at the end wall of a shock 

tube, giving explanation to certain differences between experiment 

and theory. 
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PART I. 

THE TMERMAL RAYLEIGH PROBLEM 

IN PERFECT GASES 



1. Introduction 

If we have a gas initially at r e s t  and in contact with a wall, 

both a t  the same temperature, a problem of a Rayleigh type a r i ses  

when the gas i s  suddently heated. Fo r  instance, this happens a t  the 

end wall of a shock tube when the shock wave traveling along it ar- 

rives at the end wall and reflects. In this case, the, gas i s  heated 

while the walI p e p s  the ambient temperature, and a boundary layer 

ar ises  in which the thermal conductivity plays an important role. It 

i s  in that boundary layer that the transport of heat takes place, caus- 

ing the cooling of the gas. Solutions for this problem have been 

worked out [ I ,  21 for a perfect gas with different relations between 

the ther ma1 conductivity and the temperature, but maintaining the 

pressure  in the gas constant. In the f i r s t  par t  of this paper then, so- 

lutions for this case will be obtained for two different relations be- 

tween thermal conductivity and temperature ; namely, thermal conduc- 

' tivity proportional to  the temperature,and thermal conductivity pro- 

portional to apower  of the temperature. Finally, a solution in ser ies  

similar  to  the one used by Blasius and Howarth [3] will be developed. 



2. Derivation of the Equations 

We follow essentially the work of Goldsworthy [ 11, but keeping 

the pressure outside the boundary layer a function of time. We as- 

sume then that the gas, suddenly heated to a uniform temperature a t  

t = 0 ,  and the wall represent a one-dimensional problem in which 

changes occur only in the y-direction normal to the wall, represented 

by y = 0 ,  and where the gas is  indicated by y > 0 .  In that case, the 

equation for the boundary layer reduces to the energy equation with a 

van Mises type s f  transformation 

which satisfies automatically the equation s f  come rvation of mass. 

Then the boundary layer energy equation is, for a perfect gas with 

constant specific heats, 

where T i s  the temperature and P i s  the pressure a t  the edge of the 

boundary layer and a function of time. The boundary conditions for 

this equation a re  

g = 0 :  T = T w '  

(constant) . (2.3b) 

t=O 



3. Solution for a Perfect Gas with Thermal Conductivity Proportional 

to Temperature 

Lf we assume a linear dependence between the thermal con- 

ductivity of the gas and temperature 

k = k l T ,  (3. 1) 

equation (2. 2) follows the simplest form, that is  

Solutions of the type 

can be found by substituting into the equation (3. 2) the expression (3.3), 

A solutim of the form (3. 3) will exist if we make 

which gives us finally 

and reduces equation (3.4) to 

which has the solution 

where A ;end IS are  constants to be determined by the boundary con- 



ditions (2. 3), which in this particular case take the form 
T 

q- o o :  ~ + l + l  (constant) . (3. f Ob) 

The values of T at r) = 0 and q - oo must be constant. This is  ful- 

filled in the boundary condition (3. lob) under any circumstance and in 

(3. 10a) only for the case 

A w - = constant. 
y-l 
P Y  

For. this spe cia1 relations hip with time of the temperature a t  the wall, 

the solution for the boundary layer from equations (3.7) and (3. 91, 

applying boundary conditions (3. lo), is 

From this solution we can obtain, for the case 

an approximate expression for the temperature 

which is not valid near the wall, So this solution can be used when 

Tw does not satisfy the relationship (3. 11) only if we keep away from 

the wall. 
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The heat transfer rate to the wall 

when calculated from (3. 12) is  

When the inequality (3. 13) is valid, (3. 16) reduces to 

which is  independent of the boundary condition (3. 1Oa). 



4. Solution for a Perfect Gas with Thermal Conductivity Proportional 

to a Power of the Temperature 

For a linear relationship between the thermal conductivity of 

the gas and a power of the temperature 

equation (2. 2) becomes 

and when expression (3. 3)  is substituted in (4. 2) 

A solution is obtained when we make 

which gives the temperature the expression 

y-B 
T(Jr, t) = P 7 

0 

and reduces equation (4.3) to 

An integral method introduced by Jepson [ 21 can be used to  solve (4.7) 

that gives the heat transfer rate to the wall. 'Using formulae (3. 15) 

and 44.6), this takes the form 



If we define a heat flux potential + such that 

that is, 

equation (4.8) takes the form, when we use (4.6), 

Furthermore, the integration of equation (4. 7) with respect to q from 

q = 0 to q w yields* if we impose the condition 

the following results: 
'r 

Equation (4. 7) also establishes that near the wall, where q - -- 0 , 

We then assume that between T~ and T (4.14) will give a good ap- 
00 

proximation for the relationship between and 7 , 



that substituted into expression (4. 13) yields 

where the values of T at q = 0 and q-m are  given by equations (3.10) 

and (3. 11). We finally obtain for the heat transfer rate at the wall 

from (4. 10) by substitution of (4. 16) 

- T w Te"Tw)f. V -, (4.11) 

For v = B , (4. 17) yields 

which, compared with the exact solution (3. 16), gives an e r r o r  of 13 

per cent. When the inequality (3. 1 3 )  is  vdid,  (4. 117) reduces to 

which i s  independent of the boundary condition (3. POa). 



5. Solution in Series for a Perfect Gas with Thermal Conductivity 

Proportional to Temperature 

When a linear dependence between the thermal conductikity of 

the gas and temperature was assumed, and when the temperature at  

the wall satisfied equation (3. 1 I), we obtained a solution (3.7) for the 

boundary layer in which temperature was not a function of time but of 

where 

If the temperature at  the wall does not satisfy (3. P l), a solueion in 

series similar to  the one used by Blasius and Howarth [3] could be 

worked out, but using, instead of the variable time, the new variable 

t @  , which will give a faster convergence and more accurate informa- 

A change of variables is  then done according to the transforma- 

tion (5. 1) which yields 

Equation (3.2) will be transformed by (5.3) to a new expression 

where 8 i s  a non-dimensional temperature. That is, i f  To i s  a 

reference temperature, 

8 = T/T 
0 



The pressure i s  represented then by a power serie,s 

and it i s  assumed that the temperature i s  given by the following ex- 

pression 

where 

With (5. B), the equation (5.4) for the temperature becomes 

or using (5.7), 

0 2  2 c R  o 
P P Y 0 

If we make every coefficient in (5. 10) equal to zero, we arrive at 

(5. 1 la)  

(5.1 lb) 

(5. l l c )  



As boundary conditions we have 

q = O  : T = T (assumed now constant) 
w - m  . 

that can Be written alte rnatively 

7 = 0  : 0 = 0 (constant), 
W 

y-l 
q d m  : e = a  v 

(5. 1 ld)  

i f  T is  the temperature outside the boundary layer for t = 0 , that 
0 

Hn series expansions, the boundary conditions are  given from (5.7) as 

The solution for the first  approximation fO(q) i s  readily obtained 

from (5. 11a) and (5. 151, that is, from 

with boundary conditions 

The value for fo is 



and taking Tofo as a first approximation of T . 
T - T  c R '  

= e r f { ( ~ -  f-) 
t=O 2kl ( 2 ~ P d t f  

which has the same form as the solution (3. 12) for the similarity so- 

luti on. 

The heat transfer rate to the wall, 

when cdculated from (5. 19) is  

that resembles again expressibn (3.16) for the exact case. 



6 ,  Concluding Remarks 

If we solve the thermal Rayleigh problem and we keep the 

pressure outside of the boundary layer constant, the solutions 14) will 

be a function of only one variable, namely: 

This indicates that the different dependent variables in the boundary 

layer reach the same values at different times for the same q. Thus 

we have a thickness of the boundary Payer as  

If we compare with the classical Rayleigh problem, in which the den- 

sity is constant, and where the similarity variable i s  
1 

q = y/(vt)" , 

therefore, a thickness sf the boundary layer 

we see that there is  only a change in the factor of time. This i s  be- 

cause the f i rs t  i s  a thermal boundary layer, s o  its thickness depends 

on the thermal conductivity, and the second is a velocity boundary 

layer, so its thickness depends on the viscosity. The relation be- 

tween both lengths i s  the Prandtl number. 

En the thermd Rayleigh problem, if we allow the pressure to 

be a function of time, the similarity variable is 
1 
T 
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The width of the boundary layer is now 

We then arrive at the conclusion that an increasing of the pressure 

with time will result in an increase of the thickness of the boundary 

layer, and vice versa. Consequently, this will result in less or more 

heat transfer to the wall. 



PART II. 

THE THERMAL RAY LEIGH PROBLEM 

IN IONIZED GASES 
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7. Introduction 

In this section we study the same problem as in the first  part, 

but now we consider shock waves strong enough to produce ionization 

of the gas,argon, which i s  in contact with the cold wall. For constant 

conditions outside the boundary layer, catalytic wall, equal tempera- 

ture for all species, ambipolar diffusion, and omitting the plasma 

sheath a t  the wall, numerical integrations have been made of the 

boundary layer equations by Fay and Kemp [4]  for two limiting cases: 

one case in which there i s  complete thermodynamic equilibrium be- 

hind the reflected shock and within the boundary layer; and another in 

which there is  equilibrium behind the reflected shock, but no gas- 

phase recombination in the boundary layer. 

In spite of the complexity of the boundary layer equations, we 

will be able to estimate the effect s f  the variable pressure for short 

times on the heat transfer rate to the wall given in [4]. Also, a 

more formal derivation is made of the equilibrium boundary layer 

equations in which the electronic excitation of ions and atoms i s  taken 

into account. 



8. Derivation of the Equations for a Gas in Frozen State 

Following Fay and Kemp, but keeping the pressure outside the 

boundary layer a function of time, ,we examine an ionized gas with an 

equilibrium free stream and a non-gas -phase recombination boundary 

layer. We assume again that the gas, suddenly heated to a uniform 

temperature at  t = 0 ,  and the wall represent a one-dimensional prob- 

lem in which changes occur only in the y-direction normal to the wall, 

represented by y = 0 , and where the gas i s  indicated by y > 0. If v 

and Vi represent respectively the mean mass velocity and the diffu- 

sion velocity for the ith species, the boundary layer equations [4] are  

then for a frozen gas 

(8. l a )  

BT aT a aT + d~ pc (- t v - )  = , ( k g ) - Z p . V . c  - - 
P 9t 9~ 1 1 pi ay dt 

(8. lb) 

where P is the pressure at  the edge s f  the boundary layer and a f&c- 

tion of time. Equation (8. Pa) represents conservation of mass and 

can be reduced to  [43 

where 

s = a/ao 

and u is  the degree of ionization of the gass 

k~ = 5.8 T3'4 cal/cm sec OK 

is  the thermal conductivity of argon [4], 

i s  the Lewis number for T in degrees Kelvin, and 



indicating by the subscript o reference quantities. Equation (8. lb), 

representing conservation of energy, is  likewise reduced to  [ 4) 

(8.7) 
where 

8 = T / T ~  (8.8) 

It i s  convenient to define a non-dimensional pressure 

p = PIPo,  (8. 9 )  

and to  choose the reference quantities To and Po as the temperature 

and pressure at  the edge of the boundary layer for t = O , that is ,  

P = P(O), 
0 

(8. 10a) 

With these definitions and the expression for the density 

with mA representing the mass of the argon atom, we can write 

where 

would be the density if the pressure outside the boundary layer didn't 

change. The equations for the frozen boundary layer a re  then, from 

(8. 2) and (8,9) with (8. 12), 



Solutions are tried of the form 

that, substituted into (8. 141, give 

and reduce the equations of the boundary layer to 

The boundary conditions are given by 

y = O :  T = T (constant), a =  0 ,  (8. P8a) 
W 

which, in our case, become 

q = O :  8 = Bw (constant) , s = O . (8. 19a) 



assuming a catalytic wall. 

Solutions of type (8. 15) are  then invalidated by the last  term of 

equation (8.17b), which depends on time. However, looking at equa- 

tion (8;14b), we can see that this term is negligible for the case 

which corresponds to short periods of time. Solutions of type (8. 15) 

are  then possible if  the temperature and degree of ionization outside 

the boundary layer have a much slower variation with time than the 

pressure, and we can assume for the range of values of time for 

which (8.20) applies that temperature and degree of ionization outside 

the boundary layer remain constant and equal to the initial value. In 

this case, however, the gas outside would not be isentropic. In these 

circumstances, equations (8. 17) become 

which a re  equivalent to the ones with outside pressure constant and 

solved by Fay and Kemp [4]. The influence of the variation of pres- 

sure with time appears in the variable q s as  we can see in equation 

(8. 16). This influence will be explicit when we calculate the heat 

transfer rate 'to the wall, 



which only differs on the left hand side with the result of reference 

14) by the correction factor 



9. Derivation of the Equations for a Gas in Equilibrium State 

The boundary layer equations at  the end wall for an equilibrium 

gas [4] a re  

(9. l a )  

which represent respectively conservation of mass and conservation 

of energy. They are  reduced [4] to 

where %0 is  the ionization energy per unit mass of atoms. 

By the considerations made in (8. 12)  w e  can write (9. 2) alter- 

natively 
\ c 

For equilibrium, a is  related to 0 .through the Saha equation, 

where QeGi i s  the electronic partition function of species i , and hp 

is PPanckes constant, so  9 a / 8 $  can be related to 8 0 / 8 *  . If excitation 

above the ground level is  ignored in (9.41, 



and substituting 

we arrive at 

aa - 2 5 a(1-a ) 
TT - ar(etc (9.7a) 

0 

We call 
2 5 a(1-a ) s = -  (0 + %" i 

c T (9.8) 
eZc / C  

IP PA PA " 

and substitute ( 9 . 7 ~ )  into (9. 31, arriving finally [43 at 

The values of the enthalpy and the constant-pressure specific heat of 

all particles , 

are used to show that 

The local quasi-equilibrium rate of ionization can be estimated from 
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(9- 7a) and (9.7b) 

that substituted [4 ]  into (9. 11) and (9. 9) yields 

Solutions of the form 

a r e  tried, that when substituted into (9. 13) give 

and reduce the equation of the boundary layer to 

The boundary conditions a r e  given by 

y = O  : T = Tw (constant) (9. 17a) 

which in our ease becomes 

0 = 9 (constant) q = s  : 
W 

(9. 18a) 

q + O D  : e = e e  (9. 18b) 

the degree of ionization being given by the SaRa equation. 



Solutions of type (9. 14) are  then invalidated by the last term of 

equation (9.16), which depends on time, and by the pressure factor 

appearing in the Saha equation (9.4). But, again, when (8. 20) applies 

and the temperature outside the boundary layer has a much slower 

variation with time than the pressure, a solution of type (9. 14) i s  pos- 

sible. In this event, we will not have an isentropic flow. A further 

approximation is done if  we keep the pressure in (9.4) equal to the 

initial pressure. This will give a 10 per  cent e r r o r  in the degree of 

ionization for our variations of pressure. In these circumstances, 

equation (9. 16) becomes 

which is again equivalent to the one with constant pressure and solved 

by Fay and Keqnp [4]. The variation of pressure appears when we 

calculate the heat transfer rate to the wall 

which only differs on the left hand side with the result of [4] by the 

correction factor 



10. Quasi-equilibrium Transfer Theory for an Ionized Gas 

In the paper by Fay and Kemp [4], equations for the equilibri- 

um boundary layer were derived without much consideration for the 

formality of the approach. Here, we derive the equations following a 

rigorous method using kinetic theory concepts, as  a natural extension 

of Lighthill's paper 15) for a dissociating gas. Along this develop- 

ment we can qiee the meaning of the different approximations made by 

Fay and Kemp, as  well as the limitations that these approximations 

impose. We consider then a fluid composed of atoms, ions, and elec- 

trons, with masses mA , mI , and mE , respectively. Due to the 

small mass of electrons we can write ' 

We, again as sume ambipolar diffusion and cons eqqently that the num- 

ber  density of ions and electrons i s  the same. That is, 

The mass velocity of the gas will then be 

that, because of (10. 1) and (10. 2) becomes 
n n 



Due to the ambipolar diffusion, the diffusion velocity of ions and 

electrons will be equal, that is, 

v, = < v  > - v  = VI = <xl>- . -A - (10. 5) 

For  monatomic gases, with electronic excitation, we still have 

spherical symmetry for atoms and ions, and the Boltzmann equation 

" 
still applies [6]; that is, 

for atoms, ions, and electrons. From (10.6) the continuity equation 

for the gas is  readily obtained [5], 

as well a s  the equation of momentum, 
1 < 

where 

The equation sf energy will be likewise 

2 
aCp(u+bi 11 8 2 

%t + i~;: [pv.(u+&i 3 )+p. 1J .v. 1 + q.] 3 = 0 9 

J 
whe re 

indicating by E the total energy of the particle of species 4 .  In the 4 
case of the electron, it will consist of translational energy. h the 



case of atoms, it will consist of translational and excitation energies; 

and in the case of ions, of translational, excitation, and ionization 

energies. That is, 

the excitation energy, represented by e 
4 * 

Therefore, 

1 2 2 2 -v)> 1 + -v) (vA-x)) + p I < ( x I - ~ )  (xI-1) ) + pE <(xE-x) (xE - g =  r[pA<(xA - - 

In these circumstances, a mechanical pressure and a translational 

temperature can be defined and related in the following way: 

Further simplifications are  possible if we take into account, 

as pointed out by Fay [7],  that the electrons make no contribution to 

the viscosity because of their extremely small mass. Thus, the mo- 

mentum flow in equation (10. 9) will depend only on the translational 

motion of the atoms and ions. We assume, then, that the results of 

kinetic theory for a binary mixture sf atoms and ions applies and ex- 

presses p as i j  

where 'ij 
is  1 when i = j and 0 otherwise. Here, y is the viscosity 

sf the binary mixture. 

Following now Eighthill [ 5 ] ,  we assume in the quasi-equilibri- 

urn theory of the gaseous transport properties, that deviations from 



thermodynamic equilibrium are  small enough to neglect the square of 

such deviations. So we can use equilibrium relations in the equation 

(10. 14), which is already an effect of the deviation from equilibrium. 

But i t  could not be done in (10.15) with the mechanical pressure, be- 

cause this is not an effect of deviations from equilibrium. The values 

eA and el a re  then substituted by their expressions in thermodynamic 

equilibrium, as  can be found in [8] and [ 9 ]  , 

Equation (10.14) becomes now 

Since we are  assuming ambipolar diffusion, the results of kinetic 

theory [ 6 ]  a re  applied for atoms diffusing through pairs of ions and 

electrons. If D i s  the binary diffusion coefficient, we can write 

- P 8T -D ~ ~ ( ' - ~ ) + a  ~ ( I - D ) ~ ~ ]  9 VA.-VI - ex. T 
1 i x 

where aT i s  the thermal diffusion factor. On the other hand, equa- 

tion (10. 5) says 

so  we can get 

Similarly, the same kinetic theory [ 6 ]  for ambipolar diffusion will 



With (10. 21) and (10. 22), the equation (10.18) becomes 

If, in this expression, we assume for a the value in function of P and 

T that corresponds to the thermodynamic equilibrium, we will have, 

as we said before, an e r r o r  of the second order. That expression i s  

given by the Saha equation (9.4), that we write now as 

a = C P  F(T ) ] - * ,  (10. 24) 

whe re 

P = P(t )  , (10. 26) 

as  happens in the thermal boundary layer that we are  studying, then 

and equation (10.23) becomes 

Defining now f i e  enthalpy as 
D 

and calling 



equation (10. 10) becomes, for the case of the end wall, - 

We can now replace the temperature in the third term of (10.3 1) by its 

value in thermodynamic equilibrium, because it will produce only an 

e r ro r  of a second order; that is, 

and because P remains constant through the boundary layer 123, i t  

can be written 

Furthermore, the dissipative term is neglected in the thermal bound- 

ary layer [2], s o  we get finally for (PO. 31) 

where 

and 

which i s  called the effective Prandtl number. When P i s  independent 

of time, 

where now we can use for p the equilibrium value 

~ r ,  = p(P,h,a) ,  (10.38) 
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where a is  given in function of the pressure and enthalpy by the Saha 

equation, since that gives only a second order e r ro r  in (10.37). This 

equation is similar to the one obtained in [4], equation (9.9), for 

dp/dt = 0 . (10.39) 

However, we have considered in this case electronic excitation, as 

we can see in (10.30), and our approximations have been analyzed in 

a consistent way. 



11. Comparison of the Theory with the Experimental Results 

Goldsworthy [ 1 ] has solved in his paper the boundary layer 

problem a t  the end wall of the shock tube after a shock is reflected 

from the face of the wall. It i s  assumed, in this problem, that there 

i s  a constant pressure  across the boundary layer and it i s  equal to the 

Rankine -Hugoniot value, that is  

P(t) = P(0) = Po ' (11. l )  

and also the thermal conductivity i s  proportional to the temperature, 

The complete problem for the gas and the wall i s  then worked out, as-  

suming that at the face of the wall the temperature and the flux of heat 

a r e  continuous. This temperature a t  the face of the wall has the con- 

s tant value 

where Te0 is the temperature outside of the boundary layer, that is, 

the Rankine -HugonioL value, and hence constant; T1 i s  the initial 

te mpermture a t  the wall, and m is  given by 

representing the thernial conductivity, density, and specific heat of 

the wall by kw, pw, and c respectively. w S  

parmula (3. 17) for  the heat transfer can then be applied to  

this case, namely: 



that gives for Qwo the final value of 

W e  have assumed in using (1 1. 5) that 

or, what is  equivalent, 

m <<' B , 

since in formula (1 1. 3) 

T 1 < C T  . eo 

A first  order correction for the heat transfer would be desir- 

able, and i t  can be obtained by using the first  order correction for 

the pressure, given by Goldsworthy as  

in which the notation of Baganoff [ P O ]  has been used, and where B(M ) 
S 

i s  a weak function of the incident-shock Mach number M and the ra- s 

tio of specific heats y e  For monatomic gases 

0.928 c B(Ms) 1 . 
On the other hand, 

and finally 



where 

where the subscript indicates that the quantities a re  the ideal values 

in the reflected region, The constant given by (11. 14) i s  approxi- 

mately equal to the collision time in that region, which stands at  the 

edge of the boundary layer. With these values, equation (1  1. 10) be- 

come 

which is only valid for 

e >> T eo ' (11. 16) 

the range for  which the boundary layer theory i s  valid, 

The f i rs t  order perturbation for the temperature due to this 

correction of the pressure can be obtained by the isentropic relation- 

s hip 
y-l 

IF 
e 

T (1 1. 17) 
o eo 

and if we keep only first  order perturbations, 
t 

Substituting (11. 15) and (1 1. 18) into (3. 171, and keeping only f i rs t  

order terms, we get 



which gives the first  order correction for the heat transfer to the w d l .  

We can see from (11. 19) that the pressure perturbation does not give 

any contribution to the heat transfer by itself, but only through the 

corresponding perturbation of the temperature. 

The temperature at  the face of the wall T was given by 
WO 

equation (1 1. 3 )  and its value is  determined by the heat transfer 
1 

%o 

Its value i s  constant due to the tmf variation of qwO with time. Now 

it  is possible to deduce the first  order correction to the temperature 

T from(lP.19). Weconsiderthenasemi-infinitesolidatzero 
W8 

temperature, which gets a flux of heat at the face per unit time and 

unit area equal to 

9: 
The temperature at the face 0g the wall is then 

- --- - - .- - - - - - -- * 
See page 57, reference 1 P ,  



However, the value (1 1. 20) for % is  not integrable, s o  we assume 

that during a time 0 < t < t the heat transfer q& i s  zero, that is, for 
0 

the time in which the boundary layer approximation i s  not valid. The 

heat transfer perturbation i s  now 

where u(t-to) i s  the unit step function, defined as  

u(t-to) = 0 if t-to < 0 t (11, 23a) 

Expression (11. 22) substituted into (11. 21) gives, for the perturbation 

wall temperature : 

Because this value for the temperature i s  only valid for 

t > > T  * eo 
(11. 25) 

and also because we want to have 

we can make 

acnd then to assume in (18. 24) 



In these circumstances, 

and finally we get 

The total temperature at the face of the wall is  then given by 
P 

k 1 

T w = T  + T L =  * o T  - y e o  10 (T)Z 
WO l t m  I - 9 c k n)+ (?)f (pw w w 

valid for 

which can be compared with experimental results obtained a t  the end 

wall of the shock tube. With result (11. 3 1 )  a jump in the temperature 
, 

at the end wall is  not necessary* and a transition temperature appears 

until the asymptotic constant value is  reached. 

Ef we compare the temperature perturbation (1 1.3 1) with the 

pressure perturbation (1 1. 15), we can asser t  that the pressure reach- 

es  the asymptotic constant value faster than the temperature, since 
I 1 1 

the ?-' correction for the first  goes to zero faster than the 2-+ log(qT 

correction for the second, This is in agreement with experimental 

observations. 
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