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ABSTRACT

The case of a wing flexible in bending and
rigid in torsion entering a vertical gust is treated
by consgideration of the corresponding two-dimensional
case; The bending stiffness of the wing 1is expressed
as a spring constant, the aerodynamic forces acting
are taken from ths two-dimengional theory of airfoilils
in non-uniform motion, and the differential equation
of motion of the wing is solved by operational methods.

Cases of sharp-edged and exponentially
graded gusts are considered, and in each case the
deflection is calculated in dimensionlegs form for
three values of a dimensionless stiffness paramater.
As a numerical example these results are put into
dimengional form for a wing whose elastic properties
are supposed to be typical of modern alrplane wings.

The results obtained for the cases considered
show only in one instance a maximum deflectlion greater
than the steady-state value. Even in the sharp-gust
case the deflection increases comparatively slowly
following the entrance of the wing into the gust. The
effects of grading the gust are to decrease slightly
the rate of deflection and to reduce the amplitude of

the oscillations produced by the gust.
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I. INTRODUCTION

The problem of the behavior of an elastic
wing during and subsequent to its entrance into a
vaertical gust has been considered by several authors
(Refs. 2, 3, 4), who have made various assumptions
regarding the properties of the wing and the nature
of the, aerodynamic forces. Thegse forces have usually
been calculated by neglecting entirely the "non-
stationary flow" effects or by including them in
certain terms and neglecting them in others. The
results have often shown that wing deflections
(and hence stresses) considerably greater than those
corresponding to steady-state values are produced by
certain combinations of gust gradient and wing elastic
properties.

The present thesis is the first step in an
attempt to determine whether thig conclusion may be
due in part to the neglection of non-gstationary effects.

For this purpose the case of a wing elastic
in bending but perfectly rigid in torsion is considered.
It 18 treated approximately by assuming two-dimensional
flow conditions at a typical section of the wing, and
by representing the elastic properties of the wing by a
vertical spring restraining the vertical motion of this

gection. The schematic setup is sketched in Fig. 1.



The aerodynamic forces are then calculated from the
theory of two-dimensional thin airfoils in non-uniform
motion, in order to take into account the "lag" in the
build-up of the 1ift due to both the gust and the
vertical motion of the wing.

IT. THE EQUATION OF WMOTION

The equation of motion for the wing section
under consideration is
mz + kz = L (1)
where m = mass of wing, including additional apparent
mass of alr, per unit span
z = upward deflection of the wing
k = gspring constant representing bending stiffness
L = instantaneous total 1ift per unit span
and where dots indicate differentliation with respect to
the time, t.
An expression has been developed in Ref. 1
for the 1ift on a rigid wing entering a vertical gust
distribution w(s) where s = Ut = distance travelled by

the wing, in half-chords:

S

Lg(S) = mwplUc fW(G) Tlf’(s - o )dor (2)

(=]

where p = air dengity
U = velocity of flight (ft./sec.) = Uc/2
U = velocity of flight in half-chords/sec.
¢ = wing chord (ft.)

a function calculated by v. Kdrman and
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Sears, gilving the 1ift on a rigid
airfoil entering a sharp-edged gust,
s being measured from the instant the
leading edge begins to enter the gust.
Since the wing 1is not rigid in the present
cage, there must be added to Lg the 11ft due to the

vertical velocity of the wing. This can be shown to be
S
. / -
Ly(s) = mpUc ;fz(ff) ®'(s - o)ae - i(s) [1 - §(O)]f (3)
: o

where [-$(s) 1s Wagner's function (see Ref. 1) which gives
the 1ift on an airfoil following a sudden change of its
angle of attack at s = O.

It 1s convenient to use s as the independent

variable in Eq. (1). Then, writing L = Lg + Ly, we have
=z _
mU%z" + kz = Lg+ Ly (4)
where the primes repregent differentiation with respect to s.

IIT. THE EQUATION OF MOTION IN OPERATIONAL FORW

The present problem is most conveniently solved
by means of Heaviside's operational methods. The notation
used here is that used by Pipes in Ref. 5, except that
the independent variable will be denoted by s instead
of t. If a function f(s) satisfies certain existence
and continuity conditions on itself and its first
derivatives, it may be represanted by the complex

integral:



a+iee®

_ 2 F(p) eP8dp
f(s) 2ni P
a-:.'oo
(5)
oQ
where F(p) = p J/ f(s) e~P8at
-0

and a is a real number great enough so that all singulari-
ties of F(p)/p occur for R(p) < a. The function F(p) is
called the dirsct Laplacian Transform or image of f(s)

and is written F(p) = f(s), after the notation of

van der Pol. A few of the more useful theorems and
transforms are given here without proof to show the

method of transformation from the ordinary differential

aquation to the operational form.

Theorem I

n-1
n . ‘K —
It g(p) = n(s), then S-0l8) = pig(p) - E g%g%gl ph -k
as™
k=0

agh

Theorem II1

It g1(p) = hy(s) and g,(p) £ hyle), then

s
%1(p1%2(p) = j[hl(u)h2(s - u)du

i
Q

Blementary Transforms

1l for s 20
If his) = 1(t) = = , then 1 = h(s)
0O for s < 0O
If h(s) = %S, then —R__ = ¢~ %S
p 4+
_ -3 o . _-ds
If n{s) = (1 - e ), then T = (1 )



Tach term of #g. (4) can now be put into
operationdform, as follows:
(1) By use of Theorem I, assuming that z(s) = O
for s £ 0, the first term can be written as
mU2z"(s) = m0®p®h(p)

where z(s) = h(p).

(11) By use of Theorems I and III, from Eq. (2),

noting that 1&'(0) = 0, Ly becomss
Lg(s) 3 mpU?(c?/2) s(p) ¢(0)

where w(s)/U 2 g(p) and T(s) = Y(p).

(1i1) By use of Theorems I and III, from Eq. (3),

noting that 2(s) = Uz'(s) 2 Uph(p),

L, becomes
L(s) % —mpT®. (o%/2)pn(p) - [1 - ¢(p)]
where &(s) £ ¢@(p).

The equation of motion then becomes

{mﬁgpg + k + ﬂ‘Dﬁe- (c®/2) p [l - 4’(pﬂ * n(p)
= npTU®%. (c®/2) alp) ¢ () (6)
or
z(s) = h(p) = % ¥ A E éé(ﬁi = ()] g(p) (7)

where A = k/mU° and B = ﬂf)Ca/Em.



The parameter A may be called the "dimensionless
stiffness", while B is twice the ratio of the ad-
ditional apparent air mass to the total mass m, and
may be considered as the reciprocal of the dimension-

less mass parameter.

Iv. APPROXIMATIONS TO THE LIFT FUNCTIONS

The solution for z(s) for various convenient
zmust functions w(s) = g(p) can now be carried out if
¢(p) and @ (p) are known. Sears (Ref. 6) gives these
operatorg in terms of certain Bessel functions which are
practically intractable in the present problem. However,
an approximation to Wagner's function 1 - & (s) has been
sugzested by Jones (Ref. 7), having a particularly

simple image:

1 - $(s) = 1 - aje - a,e

for which (8)

aip © o app
P+ X P+ Ay

1-¢@(p) = 1-

where ay = .165, a, = .335, A; = .0455, and X\, = .300.
This suggests the possibility of a similar

approximation to the Kdrman-Sears function Y (s):



W(s) 21 - bje” F1® - pye™fa®
for which (9)

1P bpp
P+rpy PHM2

Y (p) =1 -

It 1s found by trial that the following numerical values
provide the best approximation*:
by = by = 1/2, f"’l'_‘ 130, Mo =1
Using the forms of ¢ and ¢ given in Egs. (8)

and (9), Eq. (7) beconmes

-7 - b
z(s) 2 n(p) = (p+/u1 (F;/‘:fu)l plf(/f’2+f“2 2P(P+uq)

‘ (p +X1)(p +Ao)
(p*+Bp+A)(p+ M) (o +A,) - Bp*{aj(p+Ay) +an(p+Ay)

+&(p) N S 15)

If the final value of w(s) is w(oo ), the final
steady-state deflection will be z(oo) = nfan(aD)c/k
= (B/A) - w(0o0)/U. Hence Eq. (10) can be congidered as

an expression for the dimensionless deflection

z(s)//zg EL§21> = z*(s), say, which depends only on the

two dimensionlegs parameters A and B.

*'It will be seen that the approximate form of W(s) does
not have a vertical tangent at s = 0 as does the exact
Karman-Sears function. This is not expected to have a
great effect on the accuracy of the results obtained.

- 10 -



V. EVALUATION OF THE OPERATOR

The operator h(p) in Eg. (10) can be evaluated
according to the following reasoning: It can be shown

(Ref. 5) that for operators of the type under con-

gideration
Qoo
ps ps
2(s) = ‘2‘L fg—ilip—l dp = z (Residuss of 2oblP)y (17
ni o p
a~-: oo

Hence, assuming that g(p) is given in convenient form, the
evaluation of h(p) in Bg. (10) depends only on the deter-
mination of the zeros of the denominator. These occur

when p = ‘f*l’ - Mo, and the four roots of
p4+dp3+[3p2+h’p+§ =0
where ({ = /\1+>\2+B(l-al-a2)=.3455+B/2

A+ BA(L - ap) + BAo(L - ag) + Ay Ap

- ®
"

A + .2807B + .01365

¥ = BXy Ay + A(Ng + Ay) = LO1365B + .34554
§ = AX1>\2 = 013654

VI. SCOPE OF THE PRESENT INVESTIGATION

The deflection, in dimensionless form, is

calculated here for two zust profiles:
_ O for s< O
(1) sharp-edged gust: w(s)/U = 1{s) = {
1 for s 20

for which g(p) = 1

- 11 -



0 for s < O

(11) graded gust: w(s)/U = j
1 -¢e™25 for g 20

for which g(p) = a/(p + a)

The value taken here for a is 0.75, which corresponds to
the gust profile drawn in Fig. 3. This 1s a gust which
reaches 90% of its final strength about 3 half-chords
from its edge.

For these two cases the calculations of z¥(a)
have been carried out for B = 2/7 and A = .3380, .084%5,
and .03%375. The results are plotted in Figs. 2 and 3.

As a numerical example, the following
properties have been assumed for the wing:

c =7.5 fte.

m 0.7354 slugs/ft. span

k

622.5 1bs./ft./ft. span

These values (to which the value B = 2/7 corresponds)
have been taken from a thesis by A. €. Lombard, Jr., and
are supposed to represent typical values for modern

+

alrplane wing constructilon. Using these numerical
values the dimensionless curves of Figs. 2 and 3 have

b

®

en replotted in Figs. 4 and 5.

Lombard expresses the same values as follows:

(wing mass) = 6,0 at sea level
(additional apparent air mass) L oen neve

natural frequency in bending = Vk/(wing massi = 10n

- 12 -



The analytic expressions for the results
are ziven, together with some of the detalled cal-

culations, in Section VIII of this thesis.

VII. DISCUSSICH AND CONCLUSIONS

In Figs. 2 and 3 it is seen that the effect
of increasing the dimensionless stiffness 1is to increase

the rate of the dimensionless deflection and to increase

[

the tendency of the wing to oscillate. In the case
A = .3380 and the sharp-edged gust, the oscillation
carrles the deflection beyond the steady-state
asymptotic value.

The effact of even as slight a grading of the
gust as employed here is seen to be great. The de-
flections increase more slowly and the amplitudes of
the oscillations are diminished. It seems probable
that further grading of the zust profile would cause
the oscillations to disappear almost entirely, thus
eliminating any possibility of extremely large
deflections.

When the curves are plotted in dimensional
form for the numerical example considered (Figs. 4 and
5), it is seen that the rates of deflection ares actually
not much different for the various flying speeds and
that what appeared to be the most dangerous case
(A = .3380 in Pig. 2) actually corresponds to the lowest

speed of flight and hence 1is not critical. In fact,

- 13 -



the deflection curves for this wing are generally of
a favorable character, and it seems that calculation
of gust load factors by the usual methods should bsg
qulte conservative.

The accuracy of the numerical resgsults for
z(s) presented here and in Section VIII is believed to
be about ¥5% or 6% of the asymptotic value z(%®). Hence
the values for z(s) near s = O are not dependable, and
have been omitted from the plotted curves.

It is intended that further calculations
shall be carried out in order to extend the method to

more values of the parameters.

- 14 -



VIII. CALCULATIONS

1. Sharp Gust: g(p) =1, B 2/7 = .2856

(s) = p¥(p)=a LB+ .130)(p+1)- p(2p+1.130)/2](p+ .0455)(p+ .300)
' (p+.130)(p+1){p* +&p> + o2 +¥p +§)

i

- - - (12)
la. A = .3380:

H

3455 + B/2 = (3455 4+ L1428 = ,4883
A+ .2807B + .01%55 = .3380 + .0802 + .01%65 = .4318

X >» R
i

i

.01365B + .3455A = ,00%90 + .11678 = ,1207
$ = 013654 = .0045
The real roots are found by Horner's method, and are found to be
p1 = ~.0455, Py = =.278
{The first of these provides a factor which cancels the factor
(p + .0455) in the numerator above.) The other two roots ars
found from the remaining quadratic factor; they are

Ps 4 = -.08615 t .600 1

The residues are now calculated by the formula

* D
Ry = lim {(p + py) E“Lgl§—~ §

Pp=—D1

¥
where h (p) 1s the operator in Eq. (12). For example,
. ¥ oPS
R, = 1llm (p - .278) ~—LEL-“
. P
p“‘) "'t2?8

K .130 - .278)(3 = .278) + .278(1.130 - .556)] (.300 - .278)¢=-273s

= P38 130 .278)(1 - -278)(--278 + 08165+ «5001)( 276+ 'ngffi;;§9931>

. (—0278>
The other residues are calculated in a similar manner. . The
residues at the two complex poles combine to give a sinusoidal

term., The final result for this case is found to be

- 15 -



2¥(s) = 1 - .0171e7 72788 _ ,533%¢--130s . ,1371¢-9

- 498500828 gin(34.4g + 38°)
1b. A = .0845:

® = .4827, P = .1784, ¥ = .0332, § = .00116

pl = -0044, ‘0235, --101 t 03171

-.1305 _ - .Okks

2¥(s) = 1 - .65%99 .04226”5 - 04726 - 00652358

-.5798¢" 1018 8in(18.16s + 25.3°)

H
Q
o

= e 0375:
4886, = .1315, ¥ = .0169, & = .00051

33
1

Py = -.0424, ~.1885, -.1285 * ,21801

2X(s) = 1 - 11096704248 4 2110071998 | 1,1032¢7 1308

~ 020078 - 5723671998 gin(12.5¢ - 2.91°)
2. Graded Gust: gl{p) = 0.75/(p + 0.75), B = 2/7 = .2856
* . ¥ 7
z*(s) = h {(p) = [h*(p} of En. (12)} . T*f C??g (13)

The results for these cases are obtained from those of la,b,c
above by multiplying each residue by the factor 9.75/(py + 0.75)
and adding a term corresponding to the residue at p = -0.75.

Trie resuits are as followg:

2a. A = ,3330:

=02788 _ 55106771308 4 4113673 - 75146708

8) = 1 - .0272e
- 0730079828 gin(B4.4s5 - 4.1°)

2b. A = .0845:

Z*(S) = 1 - .79189"'-1305 + -12556-8 - -05018“.0448 _ 009959-'2358

-.265467°79% - 2809671918 5in(18.15s - 0.8°)

2c. A = 0375:

Z*(q:) - l - .11768-104245 + .28226—.1898 - 1033536..'.1"7)09

+ .050067% - .00018e7° 758 - .3284e7+127851n(12,58 - 22.3°)
- 1R .
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