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Abstract

The work is divided into three independent papers:

PAPER I

Thermal evolution models are presented for Ganymede, assuming a mostly differen-
tiated initial state of a water ocean overlying a rock layer. The only heat sources are
assumed to be primordial heat (provided by accretion) and the long-lived radiogenic
heat sources in the rock component. As Ganymede cools, the ocean thins, and two
ice layers develop, one above composed of ice I, and the other below composed of
high-pressure polymorphs of ice. Subsolidus convection proceeds separately in each
ice layer, its transport of heat calculated using a simple parameterized convection
scheme and the most recent data on ice rheology. The model requires that the aver-
age entropy of the deep ice layer exceed that of the ice I layer. If the residual ocean
separating these layers becomes thin enough, then a Rayleigh-Taylor-like (“diapiric”)
instability may ensue, driven by the greater entropy of the deeper ice and merging
the two ice'mantles into a single convective layer. This instability is not predicted
by linear analysis but occurs for plausible finite amplitude perturbations associated
with large Rayleigh number convection. The resulting warm ice diapirs may lead to
a dramatic “heat pulse” at the surface and to fracturing of the lithosphere, and may
be directly or indirectly responsible for resurfacing and grooved terrain formation on
Ganymede. The timing of this event depends rather sensitively on poorly known rhe-
ological parameters but could be consistent with chronologies deduced from estimated
cratering rates. Irrespective of the occurrence or importance of the heat pulse, we find
that lithospheric fracturing requires rapid stress loading (on a timescale < 10t years).
Such a timescale can be realized by warm ice diapirism, but not directly by gradual
global expansion. In the absence of any quantitative and self-consistent model for

the resurfacing of Ganymede by liquid water, we favor resurfacing by warm ice flows,
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which we demonstrate to be physically possible, a plausible consequence of our mod-
els, compatible with existing observations, and a hypothesis testable by Galileo. We
discuss core formation as an alternative driver for resurfacing, and conclude that it
is less attractive. We also consider anew the puzzle of why Callisto differs so greatly
from Ganymede, offering several possible explanations. The models presented do not
provide a compelling explanation for all aspects of Ganymedean geological evolution,
since we have identified several potential problems, most notably the apparently ex-
tended period of grooved terrain formation (several hundred million years), which is

difficult to reconcile with the heat pulse phenomenon.

PAPER II:

The observed zonal flows of the giant planets will, if they penetrate below the vis-
ible atmosphere, interact significantly with the planetary magnetic field outside the
metalized core. The appropriate measure of this interaction is the Chandrasekhar
number ) = Z;r_/{jyiar)\ (where H = radial component of the magnetic field, v =
eddy viscosity, A = magnetic diffusivity, @™ = lengthscale on which A varies); at
depths where Q R 1 the velocity will be forced to oscillate on a small lengthscale or
decay to zero. We estimate the conductivity due to semiconduction in H, (Jupiter,
Saturn) and ionization in H,O (Uranus, Neptune) as a function of depth; the value
A =~ 10 cm?s~?! needed for Q = 1 is readily obtained well outside the metallic core
(where A ~ 102cm?s™1).

These assertions are quantified by a simple model of the equatorial zonal jet
in which the flow is assumed uniform on cylinders concentric with the spin axis, and
the viscous and magnetic torques on each cylinder are balanced. We solve this “Tay-
lor constraint” simultaneously with the dynamo equation to obtain the velocity and

magnetic field in the equatorial plane. With this model we reproduce the widely

differing jet widths of Jupiter and Saturn (though not the flow at very high or low
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1 consistent with the requirement that viscous dis-

latitudes) using v = 2500 cm?s™
sipation not exceed the specific luminosity. A model Uranian jet consistent with the
limited Voyager data can also be constructed, with appropriately smaller v, but only
if one assumes a two-layer interior. We tentatively predict a wide Neptunian jet.
For Saturn (but not Jupiter or Uranus) the model has a large magnetic Rey-
nolds number where () = 1 and hence exhibits substantial axisymmetrization of the
field in the equatorial plane. This effect may or may not persist at higher latitudes.
The one-dimensional model presented is only a first step. Variation of the velocity
and magnetic field parallel to the spin axis must be modeled in order to answer several
important questions, including: 1) What is the behavior of flows at high latitudes,
whose Taylor cylinders are interrupted by the region with @ R 17 2) To what ex-

tent is differential rotation in the envelope responsible for the spin-axisymmetry of

Saturn’s magnetic field?

PAPER III:

It is shown that the problem of two-dimensional photoclinometry (PC) — the recon-
struction of a surface z(z,y) from a brightness image B(z,y) — may be formulated in
a natural way in terms of finite elements. The resulting system of equations is under-
determined as a consequence of the lack of boundary conditions for z, but a unique
solution may be chosen by minimizing a function S expressing the “roughness” of the
surface. An efficient PC algorithm based on this formulation is presented, requiring
~ 10.66 (four-byte) memory locations and ~ 10* floating multiplications/additions
per pixel, and incorporating: 1) Minimization of the roughness by the penalty method,
which yields the smallest set of equations. 2) Iterative solution of the nonlinear equa-
tions by Newton’s method. 3) Solution of the linearized equations by an inner iterative
cycle of successive over-relaxation, which takes advantage of the extreme sparseness

of the system. 4) Multigridding, in which the solutions to the smaller problems ob-
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tained by reducing the resolution are used recursively to greatly speed convergence at
the higher resolutions, and 5) A rapid noniterative initial estimate of z obtained by
exploiting the special symmetry of the equations obtained in the first linearization.

The algorithm is extensively demonstrated on 200 by 200 pixel synthetic “im-
ages” generated from digital topographic data for northern Utah over a range of phase
angles. Rms error in the solution is ~ 22 m, out of ~ 660 m total relief. The error is
dominated by “stripes” with the same azimuth as the light source, resulting from use
of the roughness criterion in lieu of boundary conditions; the rms error along profiles
parallel to the stripes is only ~ 2-8 m, depending on the phase angle. Satisfactory
solutions are obtained even in the presence of quantization error, noise, and moderate
blur in the image.

Applications of the PC algorithm to both remote sensing and photomacrog-
raphy are sketched; a photoclinometric map of a low-relief Precambrian era fossil is
presented as an example of the latter. Prospects for dealing with photometrically in-
homogeneous surfaces, and an extension of the method to the analysis of side-looking

radar data (“radarclinometry”) are also discussed.
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That is, hot ice and wondrous strange snow.
— William Shakespeare A Midsummer Night'sDream, V, |, 59
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Abstract
Thermal evolution models are presented for Ganymede, assuming a mostly differen-
tiated initial state of a water ocean overlying a rock layer. The only heat sources are
assumed to be primordial heat (provided by accretion) and the long-lived radiogenic
heat sources in the rock component. As Ganymede cools, the ocean thins, and two
ice layers develop, one above composed of ice I, and the other below composed of
high-pressure polymorphs of ice. Subsolidus convection proceeds separately in each
ice layer, its transport of heat calculated using a simple parameterized convection
scheme and the most recent data on ice rheology. The model requires that the aver-
age entropy of the deep ice layer exceed that of the ice I layer. If the residual ocean
separating these layers becomes thin enough, then a Rayleigh-Taylor-like (“diapiric”)
instability may ensue, driven by the greater entropy of the deeper ice and merging
the two ice mantles into a single convective layer. This instability is not predicted
by linear analysis but occurs for plausible finite amplitude perturbations associated
with large Rayleigh number convection. The resulting warm ice diapirs may lead to
a dramatic “heat pulse” at the surface and to fracturing of the lithosphere, and may
be directly or indirectly responsible for resurfacing and grooved terrain formation on
Ganymede. The timing of this event depends rather sensitively on poorly known rhe-
ological parametérs but could be consistent with chronologies deduced from estimated
cratering rates. Irrespective of the occurrence or importance of the heat pulse, we find
that lithospheric fracturing requires rapid stress loading (on a timescale < 10 years).
Such a timescale can be realized by warm ice diapirism, but not directly by gradual
global expansion. In the absence of any quantitative and self-consistent model for
the resurfacing of Ganymede by liquid water, we favor resurfacing by warm ice flows,
which we demonstrate to be physically possible, a plausible consequence of our mod-

els, compatible with existing observations, and a hypothesis testable by Galileo. We
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discuss core formation as an alternative driver for resurfacing, and conclude that it
is less attractive. We also consider anew the puzzle of why Callisto differs so greatly
from Ganymede, offering several possible explanations. The models presented do not
provide a compelling explanation for all aspects of Ganymedean geological evolution,
since we have identified several potential problems, most notably the apparently ex-
tended period of grooved terrain formation (several hundred million years), which is

difficult to reconcile with the heat pulse phenomenon.

1. Introduction
Thermal evolution modeling of planets and satellites is a frustrating game because
there is usually little connection between what one can calculate and what one can
observe. Large icy satellites have proved to be no exception. The startling diversity
of geology on Ganymede revealed by the Voyagers and the puzzling dissimilarity of
Callisto have prompted many efforts to understand these bodies, but little consensus
has emerged. The field has progressed from an early elucidation of principles for
their internal structure (Huaux 1951; Lewis 1971a, b; Consolmagno and Lewis 1976)
and their solid-state convection histories (Reynolds and Cassen 1979; Parmentier and
Head 1979; Cassen et al. 1980; Thurber et al. 1980) to specific, hence questionable,
models for the resurfacing of Ganymede or the Ganymede-Callisto differences (Squyres
1980a; Schubert et al. 1981; McKinnon 1981; Shoemaker et al. 1983; Lunine and
Stevenson 1982; Friedson and Stevenson 1983). For a recent review, see Schubert
et al. (1986). From a geologic perspective, the existence of terrains with different
crater densities and varying degrees of crater degradation, presumably the result of
viscous relaxation, has led to some hope that the evolution can be reconstructed (e.g.,
Passey 1982) but uncertainties in interpretation and rheology persist.

The significance of the work presented here lies not in the presentation of

yet another parameterized thermal evolution calculation (these are all too easy to
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perform) but in the identification of several processes and principles which, although
embodied in the specific models presented here, may apply to a wide range of models
for the evolution of large icy bodies, especially Ganymede. In particular, we have
attempted (with admittedly limited success) to establish possible connections between
interior evolution and the geologic evidence for Ganymede.

As in all modeling efforts, some assumptions are necessary. The most impor-
tant of these is the assumption of a differentiated structure for Ganymede: a rock-rich
core surrounded by a water ice mantle. This assumption is not compelled by data but
strongly implied by calculations of satellite accretion (Schubert et al. 1981; Lunine
and Stevenson 1982). These calculations also motivate our assumptions that Gany-
mede was initially “hot” (most of the H,O in a liquid state) and retained only minor
amounts of molecules more volatile than H,O. (Minor quantities of water-soluble
constituents, probably dominated by NHs, nevertheless play an important role in our
modeling.) We assume, implicitly, that parameterized subsolidus convection recipes,
popularized for the icy satellites by Reynolds and Cassen (1979), provide an adequate
quantification of the thermal history. The only heat sources assumed are radiogenic
and primordial (accretional). We have also made a thorough and critical assessment
of ice rheology and utilized the most recent laboratory data. With this background,
our effort has identified and focused on the following features:

(i) The Heat Pulse. As a consequence of the H,O phase diagram, all models of
Ganymede that begin hot must develop an outer ice I layer, an underlying
water ocean, and a deeper layer of high-pressure polymorphs of ice. The two
ice layers undergo separate solid-state convection, with the average entropy of
the deeper ice layer substantially exceeding that of the ice I layer. If cooling
causes the intervening ocean to (almost) freeze, then the two layers may merge,

to form a single, nearly isentropic, convecting layer. If this merging occurs,
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(i)

(1ii)

(iv)

excess heat from the deeper layer may be released by a Rayleigh-Taylor-like
instability, causing warm ice diapirism, which helps transport a pulse of heat
to the surface. Although this instability is not predicted by linear analysis
(Bercovici et al. 1986), it is expected to happen for plausible perturbations
of a background state of finite amplitude convection. We speculate that this
overturn may be responsible, directly or indirectly, for resurfacing and grooved
terrain formation.

Rapid Fracturing. Irrespective of whether the heat pulse occurred or was
important, we find that fracturing of the Ganymedean lithosphere must have
required the rapid imposition of stress (,5, 10* year timescale), since otherwise
the ice responds primarily by creep. This argues against attributing resurfacing
to a geologically slow process such as global expansion but is consistent with
the stress history imposed by a warm ice diapiric upwelling.

The Role of Impacts. We see several important roles for large impacts. First,
we argue that stirring of silicate fines from the ocean into the ice I layer
by impact may be important in controlling the ice viscosity. Second, a very
large impact may trigger the merging of the two ice layers and allow the heat
pulse to occur when otherwise it would not, because of soluble impurities that
limit freezing of the ocean at a thickness for which spontaneous overturn is
impossible. Third, impacts may puncture the lithosphere, providing pathways
for underlying warm ice to flow onto the surface. We consider it highly probable
that the exogenic and endogenic histories of Ganymede are intimately coupled.
Resurfacing by Ice Flows. No quantitative and self-consistent model currently
exists whereby liquid water is the resurfacing agent for Ganymede. We demon-
strate that resurfacing by warm ice is physically possible, a plausible conse-

quence of our models, compatible with existing observations, and a hypothesis
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testable by Galileo.

The plan of the remainder of this paper is as follows. Section 2 contains a
detailed description of our thermal evolution model, its first three subsections devoted
to the terms of the energy balance equation: heat output from the core, sensible and
latent heat of cooling, and convective heat transport to the surface. In Section 2.4 we
outline the modifications that must be made to these terms when the liquid ocean is
gone, and in 2.5 we summarize the range of results obtained.

Section 3 addresses at some length the “heat pulse” phenomenon, with subsec-
tion 3.1 devoted to the mechanism and timing of the pulse, and 3.2 to its important
consequences for heat flow (and hence viscous degradation of impact craters) and
lithospheric stresses due to warm ice diapirism.

Criteria for extension fracturing by both global expansion and regional litho-
spheric warping are developed in Section 4; although the latter is directly applicable
to the results of Section 3.2, we present these results separately to emphasize their
independence from any assumptions about the cause of the lithospheric stress.

Evolution of the core from its gravitationally unstable initial condition is dis-
cussed in Section 5. The short timescales obtained, even under conservative assump-
tions, for most of the core differentiation, suggest that this process did not play an
important role in resurfacing.

Our discussion, Section 6, considers the plausibility of resurfacing Ganymede
with solid, rather than liquid, H,O and examines some possible mechanisms for the
formation of grooves. Explanations for the lack of resurfacing on Callisto in light
of our model are presented, and finally the possibilities for resolving some of these
difficulties are assessed.

Following the paper is an Appendix in which we consider the available con-

straints, both observational and theoretical, on the viscosity of ice in the Ganymedean
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mantle, which is the most important and ill-constrained input to our models.

2. The Thermal Model

The bulk of this paper concerns our modeliné of the thermal evolution of a Gan-
ymede-sized rock-ice body (physical properties summarized in Table I) whose outer
regions have differentiated because of strong heating during formation (Schubert et al.
1981; Lunine and Stevenson 1982) or subsequently (Friedson and Stevenson 1983).
Our model takes as its initial state a body with a liquid water ocean overlying a
silicate core comprising the rock that accreted contemporaneously with the ocean
water. An inner core of undifferentiated ice-rock mixture may also exist initially but
does not enter into the thermal history model and is in any event rapidly eliminated
by warming and differentiation of the core (see Section 5). Figure 2.1 illustrates the
model structure at a time when part of the ocean has frozen but the core is not yet

fully differentiated.

Table I. Physical Properties of Ganymede

Quantity Units Magnitude
R m 2.635 x 10°
M kg 1.490 x 1023
7 kg m—3 1944
g ms™2 1.43

The ocean will convect strongly (Lunine and Stevenson 1982) and will cool
extremely rapidly until its surface reaches the zero-pressure melting point and an
ice T crust begins to form. This first stage of cooling, lasting only ~ 10* years
(Cassen et al. 1982) was not modeled by us. In the second period, the rate of
cooling is controlled by conduction through the ice crust. To a first approximation,
the temperature drop across the crust is constant, from about 130 K determined

by thermal annealing of the regolith above (Passey and Shoemaker 1982) to the

i
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Figure 2.1. Model interior structure of Ganymede during freezing of the ocean but

before differentiation of the inner core.
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melting temperature (for a thin crust nearly the zero-pressure value) below. The
crustal thickness thus increases roughly as t'/2 and heat flow falls off as t~%/2 until
convection sets in or the radiogenic heating becomes an appreciable part of the total
heat budget. Once the ice I layer reaches a critical thickness, which depends on its
rheologic properties — typically after 5x 10 to 5x 107 years — it becomes unstable to
convection in its lower portion (the “ice I mantle”). Thus begins the third major stage
of cooling, in which heat loss is controlled by subsolidus convection, and the radiogenic
output of the core becomes increasingly important. It is with the numerical modeling
of this period, which extends to the present day, that we are primarily concerned. An
exact description of Ganymede’s thermal state in this period would involve solution
of the fluid-mechanical equations for thermal convection, including phase change and
conduction of heat, in three dimensions and as a function of time. By assuming
a parameterized form (cf. Figure 2.2) for the globally averaged Ganymedotherm,

however, we obtain a single ordinary differential equation expressing energy balance

for the body:

4rR*F = A7 R*F, + Cfi—lf-

dE
+__...

= . (2.1)

lat

3€ENns

R and F are the radius and heat flux at the surface and R, and F,, those at the

boundary of the core, and %?— and %l%

represent, respectively, the sensible heat

sens lat

released by cooling and the latent heat of freezing. The energy deposited by infalling
planetesimals is neglected in this energy budget; the cratering rate of Shoemaker and
Wolfe (1982) corresponds to a miniscule energy flux (although the flux at the earliest
times is unconstrained and could have been much larger). Similarly, tidal dissipation
is small at present and was neglected, but a large initial free eccentricity, leading to
significant dissipation in the first 10° years, cannot be ruled out (Cassen et al. 1982).
The gravitational potential energy released by differentiation was ignored as well.

Our thermal evolution scenarios constitute time histories of the Ganymedo-
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therm and the terms in the heat budget — in particular, F' — that satisfy (2.1). In

the following sections we describe the assumptions on which they are based.

2.1 Core Heat Flux

In the early stages of evolution, the heat flux from the core is determined by con-
duction. The core is initially isothermal with the ice above it, gradually warming as
radionuclides in the rock decay. Relative to its initial temperature, at time t it is

warmed by an amount

-\t
AT.= 5 3 X (@) Ala—5— (22)
where C, is the heat capacity of the core, and the sum is over radioisotopes ¢; (in
our model, the long-lived isotopes of K, Th and U) with decay constants };, radiated
power per mass of element A;, and initial abundances X; expressed as mass ratios.
The temperature of the core is elevated by AT, at depth, but it drops to that
of the overlying ice across a boundary region of width ~ 1/k.f, where x. is the thermal

diffusivity of the core rock. The concomitant flux conducted across the boundary is

2k AT,
N

where k. is the thermal conductivity of the rock. Combining (2.2) and (2.3), we

F, (2.3)

obtain:
1— - Ait
4w R’F, = 8p.R*\/Tk ¢ ZX(q,-)A(q,-)—-—————. (2.4a)

e
At

Table II gives our choices of nominal core density and inner and outer radii,
along with rock parameters based on terrestrial ultramafic rocks (Birch 1942), while
Table III gives the assumed “chondritic” abundances of “°K, #3?Th, 2*U and ?**U
(Kaula 1968) included in the model.

As the core warms, subsolidus convection will eventually become possible. To

determine the time at which this occurs, the stability of the core against convection
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Table il. Nominal Core Model

Quantity Units Magnitude

R;. m 1.305 x 108
Ob

R, m 2.06 x 10%¢
1.96 x 10%°

M, kg 9.4 x 1022

Pe kgm—3 3000

ge ms~2 1.7

k. Wm—1K-1 3.0

C. Jkg 1K™ 920

Ke m2s-1 1.1 x10°°

Q. 2.4 x10°5

Noc Pas 1.7 x 1016

A, 29.4

Toe K 2300

@ Before core differentiation.
b After core differentiation (used in thermal model).

Table l1l. Chondritic Radiosotope Abundances
Isotope | X (ppm) A (Wkg™! pure element)® XA (Wkg™! rock) X (Gy™?)
40K 845 3.70 x 108 3.13 x 10711 0.531
B2Th 0.04 3.33x 1075 1.33 x 10712 0.0499
35y 0.012 3.42 x 104 4.10 x 10712 0.972
238y 0.012 1.88 x 10~* 2.26 x 10~12 0.154
Total: 3.89 x 10~11

@ Natural isotopic abundances at 4.55 Gybp.

was calculated as part of the thermal model by evaluating the core Rayleigh number:

pcgcacATc(nct)%tY‘
kene(T(R.) + (1 — 8/2)AT,)’

Ra,(t) = (2.5)

with the dimensionless boundary-layer thickness (expressed as a fraction of the ther-

mal diffusion depth) é chosen to satisfy:

ORa,
06

= 0. (2.6)

A homologous-temperature formulation (equation A.1) was used for the silicate
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viscosity, but with viscosity parameters appropriate to olivine at a pressure of 2 GPa
(Table III). The criterion Ra, = 10° was used for the onset of convéction.

Proper treatment of the core heat flux after the onset of convection would
require a parameterized convection model for the core operating in parallel to that
for the icy shell. Such a model would, by virtue of the strong dependence of convective
flux on temperature, self-regulate. We therefore made the much simpler assumption
that the convective flux from the core is in instantaneous equilibrium with the rate

of energy release by radioactive decay:
4rREF. = ———pcR3ZX(q,)A(q,)e At (2.4b)

(One might object that a similar argument could be made for the conductive cooling of
the ice mantles , thus rendering redundant our entire modeling effort, but, unlike the
core, the mantles begin convection at a temperature well above their self-regulation
point, and their cooling is strongly buffered by the latent heat of freezing.)

A possible source of departure of the radiogenic heating rate from the conduc-
tive-convective core model is the retention of radionuclides in the ocean through either
of two mechanisms, both crucially dependent on the abundance of very small silicate
grains. First, as we show in the Appendix, grains of radius r < 100 gm may remain
suspended in the convecting ocean. Second, John Lewis (personal communication,
1983) has pointed out that potassium is readily leached from chondritic fines by liquid
water. Such oceanic radionuclides release their energy directly into the heat budget
for the icy envelope, increasing the radiogenic heating at the earliest times when the
core is conductive. Once the core is convective (which will occur later because its
rate of warming is decreased) the total radiogenic contribution to the heat budget
is equal to the equilibrium rate of energy release, independent of the distribution of
the heat sources. Because of the uncertainty in particle size distribution which must

be factored into these effects, we will present what are probably limiting cases: all
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radionuclides in the core, and 30% of the radionuclides in the ocean.

For each assumption about the distribution of the radionuclides between core
and ocean, we will present a range of thermal evolution scenarios in which their total
abundance is a multiple of the nominal value. The “shape” of the core heat output
is affected by the relative abundances of various nuclides only weakly because their
half-lives are (with the exception of **U, which makes only a minor contribution to
the total energy) long and similar. On the other hand, the range of plausible total
radionuclide abundances is both large and difficult to quantify. Our nominal model is
based on an analogy between Ganymede rock and chondritic meteorites, with a K/U
ratio of 7 x 10* (Kaula 1968). Estimates of terrestrial radionuclide abundances, in
comparison, involve substantial depletion of potassium, as well as uncertainties of a
factor of two in uranium abundance (Ganapathy and Anders 1974; Wasserburg et al.
1964). Such estimates applied to Ganymede lead to core heat fluxes of 0.5-1.2 times
the chondritic value. Although extreme potassium depletion in Ganymede is unlikely,
uncertainties in radionuclide abundances probably lead to at least +20% uncertainty
in F,.

A smaller uncertainty arises from the poorly known density of the core. Al-
though F; could range from 2500-3500 kg m~3, depending on the degree of hydration,
the constraint implied by the known mean density of Ganymede (plus the assumption
Ri. = 0, appropriate for times & 108 y) leads to only +4% variation of the factor F.R?
in (2.4a), and a +15% variation in F.R? in (2.4b).

2.2 Sensible and Latent Heat

Calculation of the heat released by cooling and by freezing is quite straightforward.
Figure 2.3 shows typical Ganymedotherms superimposed on a simplified phase dia-
gram of pure H,O based on Hobbs (1974). Clearly, if one knows the rate of cooling
daT

Jrasa function of depth (or equivalently pressure) one can find the rate of change
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of sensible heat:
gl_ll?
dt

Feore OT(P)dM
= C(P)——*——4dP, 2.7
/0 (P) ot dP (27)

where C(P) is the appropriate heat capacity for the phase occurring at pressure P

SENS

and M (P) is the mass of material lying above the pressure P, calculated assuming
hydrostatic equilibrium. Note that the integral does not extend into the core, which

was treated separately. Similarly, the rate of release of latent heat is given by:
oT dT,:\ "' dM
=S g () FE (28)

where the sum is over liquid-solid phase transitions occurring at temperatures T,,;( P)

dE
dt

lat

and having latent heats L;: at any given time, ice I and one of the dense ice phases I1I,
V, or VI. Latent heats of solid-solid phase transitions do not contribute significantly
to the heat budget, although they do cause small offsets of the convective adiabat
where it crosses boundaries between solid phases. Thermodynamic data for ice taken
from Hobbs (1974) are summarized in Tables IV and V. Heat capacities of the dense

ice phases are not well known, so that of ice I was used throughout.

Table IV. Triple Point Data for Water

Triple Point P (GPa) T (K) Lsol,-d_sol,-d/C’ (K)aL
Vap-L-| 6 x10°7 273.2
L=l 0.207 251.1 —-10.88°
L-i-v 0.346 256.1 2.05
L-V-Vi 0.626 273.3 0.48
@ Temperature offset (in direction of increasing P) of an adiabat.
b Decreases to —4.59 K at the I-fi~li! triple point.

Further simplification of equations (2.7) and (2.8) results from the fact that
in our parameterization of the Ganymedotherm, T'(P) is fully specified (for a given
surface temperature) by a single tiepoint, conveniently taken as the pressure P§ at
the boundary between the liquid water ocean and the heavy ices beneath it. (Nomen-
clature for the segments of the parameterized Ganymedotherm, and the (P, T') points

bounding them, is defined in Figure 2.2). The temperature T at the pressure Ps is
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Figure 2.2. Parameterized forms of the Ganymedotherm . A rigid conductive cap ex-
tends from the surface to (P, T}), and a thermal boundary layer from there
to (P, T,) in all cases. (a) Initial state of convection in three cells: ice | from
(P2, T3) to (Ps,T5) with lower boundary layer from there to (Ps, T4); liquid wa-
ter from (Py, Ty) to (Ps,Ts); and dense ices from there to the core. (b) After
bridging of the residual ocean. A single convective adiabat extends from (P, T3)
to the core. Offsets in the Ganymedotherm are due to the solid-solid latent

heats. T, is the temperature extrapolated to the surface on the adiabat.
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Figure 2.3. Approximate phase diagram of H,O (neglecting solute effects on the melt-
ing point) with horizontally averaged Ganymedotherms. Depth scale is approx-
imate, based on the density of liquid. Roman numerals indicate phases of ice.
Ganymedotherms correspond to times indicated on the schematic heat flux his-
tory (inset): (a) Onset of freezing of ices | and VII. (b) Onset of convection in
ice I. (c) Just before bridging of ocean. lce | is colder than ice Ill because of
boundary layer. (d) Just after bridging of ocean. Ice | is of equal entropy to and
hotter than ice lll. (e) Late stage of quasi-equilibrium with core heat output.

Ice I1 region is avoided because of large latent heat.
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Table V. Thermodynamic Properties of the Phases of Water

Phase :
Quantity Units Liquid I ] \ VI
p>  kgm=3  [1000 917 1160 1270 1310
L*  klkg™! e 284 235 277 294
C Jkg™1K-1 4180 1925 (T/250)° d d d
Tmo® K - 2732 243.6 2347 227.8
dT,,/dP¢ KGPa™1 .o —106.3 35.97 61.65 727
aT/pC KGPa=! 18.0 21.19(T/250)° d d 4
a K1 1.56 x 10~4(T'/250)°
k. WmlK-! 2.60 (250/T)°
K m2s~1 1.47 x 10-%(250/T)2¢

@ At the lower-pressure triple point; cf Table V.

b Latent heat of fusion, averaged over the pressure range of stability.

¢ One-parameter fit to variation from 130-273 K.

4 Data unavailable; ice | value used.

¢ Coefficients of approximate liquidus: T}, ~ T},0 + dT0,/dP. -

given by the phase relations, T(P) is assumed to be adiabatic in both the ocean and
the lower mantle and in the upper mantle is determined by the solid-state convection
equations discussed below. Thus, the rate of cooling everywhere, and all rates of

phase conversion, depend on the rate at which Ps changes:

dE dE dP5

(2.9)

sens lat

The function f depends on the heat capacities and latent heats, the equations of the
adiabats and phase boundaries, and the mass distribution M(P). In a preliminary
version of this work (Kirk and Stevenson 1983), the phase boundaries and adiabats of
pure H,O (Figure 2.3) and T were approiimated as linear functions of P, and L and
C for each phase were taken as constant, allowing f to be written explicitly. Here, we
retain these approximations but include the effects of solutes on the phase diagram
in an approximate way. All solid phases were assumed subject to the same pressure-

independent melting-point depression, proportional to the solute concentration:

dTy,  (M(Ps) — M(Py))i=0
ATvo = a0 b S B (2.10)
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Here M(Ps) — M(Py) is the mass of liquid water remaining, and zo is the initial
solute concentration expressed as a mole ratio. We adopt a cryoscopic constant —(%Z?;m =
116 K, the value for ice I in the presence of NHj at zero pressure (Weast 1976, p. D221)
and an initial mole fraction of dissolved nebular ammonia zg = 10~2 taken from
Lunine and Stevenson (1982). This value, based on equilibrium with a protojovian
nebula, is a rough upper limit, since some ammonia could have been lost to space
as the nebula dissipated, depending on the rapidity with which this occurred. We
have also considered the influence of salts. Assuming the core rock contains chlorine in
cosmic ratio to silicon (Anders and Ebihara 1982), all of which enters the ocean in the
form of NaCl (sodium is not limiting, and the other halogens are much less abundant),
we find that the melting point depression will be increased by about 12% over that for
ammonia alone (Weast 1976, pp. D221, D252-D253). Again, this is a lower limit, since
the core is unlikely to be completely leached. The effect of carbonates and sulfates
should be even less, in view of their limited solubilities. Given the uncertainty in
the ammonia abundance, we have not attempted to include the effects of salts or the
variation of the effect of ammonia with pressure and concentration (Johnson et al.

1985).

2.3 Surface Heat Flux
Next we turn to a consideration of the heat lost to the exterior. A parameterized
convection model was used to estimate the heat flow passing through the ice I mantle
to the surface; this region, being the coldest and most viscous, controls the rate of
heat loss from the deep interior, unless the viscosity of a high-pressure phase of ice is
enormously larger at the same homologous temperature.

The convection model used yields the approximate temperature distribution
and heat flow in the upper mantle as a function of its thickness and the temperatures

at the two boundaries. The “surface” temperature Ty was held fixed at 130 K, appro-
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priate to the boundary between insulating regolith and subjacent compact, thermally
annealed ice (Passey and Shoemaker 1982); the model results were in any case found
to be insensitive to variation of T of the order of 10 K. The bottom temperature T,
and pressure Py depend only on Ps (and the phase diagram). Between these limits
we divide the mantle into four regions, with the temperature distribution in each
approximated by a linear function of pressure. From the surface inward, these are
(Figure 2.2): an immobile cap in which heat is transported by conduction, the up-
per boundary layer of the convective region (also conductive), an adiabatic region
of vigorous convection, and a lower boundary layer (Turcotte and Oxburgh 1967).
The pressure-temperature coordinates of the three interfaces between these regions
are chosen to obey the following constraints. First, the total heat conducted through
the cap and each of the two boundary layers must be equal (ignoring the small dif-
ference due to cooling of the ice I itself). Because these regions occupy less than the
outermost 5% of the body’s radius, the flux per unit area F' may be taken as approx-
imately constant, as may the gravitational acceleration g. The variation of thermal
conductivity k with temperature is important, however. We take as an approximate

fit to data in Hobbs (1974) k1 = %ﬂ with ko = 650 W m™". Then the heat flux is:

( k_o_.p___xg In Tl) , in the lithosphere, (2.11)
P 1 T ]
e kop1g n _J:Z) in the upper boundary layer (2.12)
P, — Py T ’ ’
\ P]ZO-I-)-IS]]-"3 In (%) ) in the lower boundary layer. (2.13)

Next, the thermal gradient in the middle region is constrained to be adiabatic:

T3 -— T2 _ ClIT
P;—- P PICI’

(2.14)

where o7 is the volume coefficient of thermal expansion and Cf the heat capacity at

constant pressure of ice I. The adiabatic gradient is so much smaller than that in the
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conductive regions that its variation with temperature is unimportant; the righthand
side of (2.14) was evaluated at the fixed temperature of 250 K.
The remaining constraints involve the Rayleigh numbers in the boundary lay-

ers. The Rayleigh number in each boundary was assigned the critical value for con-

vection:
_ _ 3
Rayy = al(T> le(Pz p) = Ra", (2.15)
P1g KIN
and
_ _ 3
Ragy= = BIPa = P)7 (2.16)

pig?kim
Here «p is the thermal diffusivity and 751 is the dynamic viscosity of ice I, evaluated
at the mean temperature of the boundary layer (Booker 1976). The critical Rayleigh
number Ra* depends on the geometry of the convecting region and the viscosity
variation across it but is typically of the order of 10® (Chandrasekhar 1961; Booker
and Stengel 1978). A value of 10® was used throughout, but note that any uncertainty
in Ra* may be factored into 7, the effect of varying which we have investigated in
detail.

Finally, the Rayleigh number of the upper boundary layer was assumed to be

a maximum with respect to its thickness:

8R(1,12
OP1 |pp,

=0. (2.17)

Physically, this means that convection cannot become any more vigorous (Ra
cannot increase) by penetrating closer to the surface. This assumption is similar in
spirit if not equivalent to that used by Reynolds and Cassen (1979). We consider it
physically more reasonable than the widely used criterion of a fixed “cut-off” visco.sity
at the base of the lithosphere (e.g., Ellsworth and Schubert (1983) for the Saturnian
satellites, and numerous papers on the terrestrial planets), which has been shown

experimentally to be invalid for large viscosity variations (Nataf and Richter 1981).
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Equations (2.11) to (2.17) must be completed by a prescription for the viscosity
in the two boundary layers. We discuss the available information about the rheology
of ice in the Appendix and conclude that the dominant mechanism of creep in the
upper boundary layer is volume diffusion of vacancies (Nabarro-Herring creep). The
resulting viscosity can be represented by a homologous-temperature formulation (A.1)
with a pre-exponential factor g dependent on the ice grain size d but not on the stress
(numerical values are given in Table VI). In the lower boundary layer TT; ~ (.96,
but the creep is enhanced by melting at grain boundaries, and hence it is reasonable
to let n = no there. We attempt in the Appendix to estimate d, and hence Lg, but
the results are at best conjectural. We will therefore present a range of models with
102 Pas < o < 10% Pas; our best estimates lie in the middle of this range.

Together with the temperature-dependent viscosity (A.l), equations (2.11) to
(2.17) completely constrain the heat flux F' and the (P,T) coordinates of the three
tiepoints on the Ganymedotherm in the ice I layer, given P; and T, corresponding
to a given value of Ps. With F' a uniquely if implicitly determined function of Ps,
equation (2.1) represents a nonlinear first-order ordinary differential equation for Ps
as a function of time. This equation was integrated numerically, equations (2.11)

through (2.17) being solved by iteration at each timestep.

2.4 Convection Across the Residual Ocean
Here, we describe only the modifications that must be made to the energy balance
equation (2.1) when the remaining liquid water ocean is sufficiently thin that it is
no longer a barrier to throughgoing solid-state convection. Details of the transition
to throughgoing convection — its time of occurrence, extreme rapidity of onset, and
consequences — will be addressed in Section 3 below.

Not all the terms in (2.1) are affected when a single solid-state convective cell

is set up. The core heat output given by (2.4) is entirely unchanged. The rates
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of release of sensible and latent heat are still formally described by (2.7) and (2.8)
but the latter is now sufficiently small to be ignored, inasmuch as the amount of
remaining liquid is small and nearly constant. The shape of the Ganymedotherm is
qualitatively different, however, changing the explicit formulation of (2.7) as well as
the parameterized convection model. The lithosphere and boundary layer beneath
it are as before, but beneath them is now a single region of solid-state convection
extending adiabatically down to the core (Reynolds et al. 1981). It is important
to note that this adiabat is not a curve of continuous thermal gradient. Because of
the latent heats of transition between solid phases, adjacent solid phases with the
same entropy must differ in temperature. The Ganymedotherm is thus offset along
the phase boundaries it crosses — in particular, the bottom of the ice I is now of
the order of 10 K warmer than the subjacent ice III. In contrast, whén convection
proceeded separately in the two layers, the adiabatic region of ice I was ~ 8 K colder
than the ice III across the boundary layer from it.

Once again, the Ganymedotherm is fully specified by a single subsurface tie-
point — conveniently chosen now as T, the temperature of the ice I adiabat ex-
trapolated to zero pressure. With this parameterization, (2.7) can be written in the

form:

dE drT,
— | =T~ (2.18)

s€Ens

The function g(T,) is obtained explicitly under the same assumptions used for equa-
tion (2.9).

As before, the bottom of the lithosphere lies at (Py,T;) and the bottom of the
boundary layer at (P,,T3). Including F, we thus have five unknowns for given Tp and
T.. They are constrained by equations (2.11),(2.12), (2.15), (2.17), and

T2 - Te _ CY‘_[T
P, B PICI’

the requirement that (P,,T:) lie on an adiabat through T..

(2.19)
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Equation (2.1) is now to be construed as an ordinary differential equation for
T, as a function of time. The initial condition on T is the requirement that the total
thermal energy of Ganymede be the same immediately before and after the transition

to through-going convection

P, P,
core dM core dM
/ O(P)Tr,(P, tyutse) 755 4P = C(PYTr.(P, tyutse) 755 P (2.20)
0 0

where £, is the time at which the transition occurs and the subscripts on T indicate
the two parameterizations of the Ganymedotherm. The gravitational potential energy
released by the redistribution of warm and cold ice, giving rise to a net warming of

the order of 0.03 K, is entirely negligible.

2.5 Results
Thermal evolution scenarios for a range of ice viscosities 7o from 10'? to 10!° Pas
are represented in Figure 2.4. We plot surface heat flux, or equivalently surface
thermal gradient, versus time for models with the nominal total radionuclide budget
under two assumptions about its distribution. The models in Figure 2.4a assume
that all radionuclides are sequestered in the core, whereas in 2.4b 30% are dissolved
or suspended in the ocean. The dotted curves indicate the radiogenic heating rate
(expressed as an equivalent heat flux over the surface area), which rises first conduc-
tively, then due to the onset of core convection in 2.4a, but is buffered by the oceanic
contribution in 2.4b to a gentle, nearly monotonic decline. We will discuss only Fig-
ure 2.4a in detail; the curves in 2.4b are similar but less complicated. The shapes of
the curves of heat flux versus time reflects the stages of evolution, and, with reference
to the schematic version (Figure 2.3, inset) and its associated Ganymedotherms, the
internal structure may be read from them. The case with 7o = 102 Pas is the most
similar to the schematic version, and may be divided into the following stages:

1) Cooling by conduction through the ice I layer, until the onset of convection

at 3.3 x 10%y (corresponding to Figure2.3b), outside the range of the plot.
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2)

4)

This early conductive phase is of course the same for all viscosities, but its
duration varies. The onset of convection in the models with 5o = 10!® and
10 Pas show clearly as breaks in the slope of the heat flux curve at 0.3 and
1.6 x 10®y, respectively. The change in slope is due to the weaker dependence
of conductive heat flux on layer thickness compared to that for conduction,
rather than to a change in the rate of freezing.

Thickening of the ice I layer with convective heat transport, until 2.3 x 10%y
(Fig. 2.3c). The subtle breaks in slope at 0.6 and 1.8 x 10%y mark the times
at which the dense ice phase freezing out at the bottom of the ocean changes.
The consequent changes in L and 9%;5”‘ cause a discontinuity in the function f
of equation (2.9), and hence in the rate of thickening.

A sudden enhancement of the heat flux at 2.3 x 10%y, which we refer to as
the “heat pulse,” due to the reorganization of convection when the ocean
becomes thin. Comparison of Figure 2.3¢c (before) and d (after) shows that
the boundary layer at the base of the ice I has been eliminated and all the
ices now lie on a single adiabat, convecting as a single cell. For given total
internal heat (equation 2.20), this arrangement leads to a warmer subsurface
and a higher heat flux. The heat pulse will be discussed in the next section,
where we will show that its onset is essentially instantaneous on the timescale
of Figure 2.4.

Decline of the heat flux towards equilibrium with the output of the core
(Fig. 2.3e). This decline in heat flux is much more rapid than that which
occurred before the heat pulse, because cooling is no longer buffered by the
freezing of the ocean.

A rapid increase in the heat flux following the onset of core convection at

1.5 x 10%y, after which both the core and surface heat fluxes are nearly in
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Figure 2.4a. Heat flux histories : surface heat flux or thermal gradient vs. time. All
heat sources in the core (note onset of core convection at ~ 1.5 x 10%y).
Solid curves: Results of thermal evolution model, labeled by no in Pas. Dot-
ted curve: Surface flux corresponding to the core flux with nominal radionuclide
abundances (Table I1l). Dashed curve: Thermal gradient inferred from degree
of viscous relaxation of craters (based on Passey 1982, Fig. 39, converted back
to a thermal gradient using his assumed ice conductivity). Stated uncertainty is

+0.5Kkm™1,
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Figure 2.4b. Heat flux histories. As in part (a), but assuming 30% of all radiogenic
heat sources to be dissolved or suspended in the ocean. Onset of core convec-

tion is suppressed.
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Figure 2.5a. Timing of heat pulse (principal contour interval 0.5 x 10%y; secondary
contour interval 0.1 x 10%y) as a function of radiogenic heating and 7o (or ice
grain size d). All radionuclides are assumed to be in the core. Heavy contour
marks the transition from an early pulse (before peak radiogenic heating) to a
late pulse (after substantial radioactive decay). Probable ranges of parameter

values are 0.8 Score heating< 1.2 and 1013 < 5y < 101 Pass.
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Figure 2.5b. Timing of heat pulse. As in part (a), but 30% of all radionuclides are
assumed to be dissolved or suspended in the ocean. Radiogenic contribution
to the heat budget (dotted curve) declines near-monotonically, broadening the

singular contour into a transition zone between early and late pulse.
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equilibrium with the decaying rate of radiogenic energy release. The heat flux
history for no = 10'® Pas is qualitatively different from that just described only
in that, because the body cools more slowly, the heat pulse is delayed until
after the rise and subsequent decline of the radiogenic heating. The response
of the surface flux to the onset of core convection is slowed dramatically by
the buffering effect of the still substantial ocean.

For 5o = 10!* Pas, the heat pulse has not yet occurred (but will do so when
the heating rate has declined sufficiently). Indeed, the rewarming due to radiogenic
heating is so great as to stop convection in the ice I layer at 1.0 x 10%y. It does not
resume until 3.4 x 10%y. . For viscosities of 10® Pas and greater, the thermal history
is purely conductive.

Figure 2.5 summarizes a wide range of thermal evolution scenarios, with con-
tours indicating the time at which the heat pulse (if any) occurs as a function of
radiogenic heating and ice viscosity. As in Figure 2.4, models in part (a) assume all
radionuclides are in the core, while those in (b) assume 30% of the total are in the
ocean. The probable ranges of core heating (£20%) and 7o (10'*-10'* Pas) occupy
the center of the figure. The location of the contours was found to be negligibly
affected by changes of the order of 10% of the less important parameters such as 7
and zg.

The heavy contour in Figure 2.5a indicates a discontinuous transition from an
early heat pulse, before the core heat output has reached its maximum value, to a
late one, after substantial radioactive decay. The abruptness of this transition results
both from the abrupt increase of radiogenic heating when the core begins to convect,
and from the requirement that the residual ocean thin to a given extent before the
heat pulse can occur. Increasing viscosity thus leads to a “’double bind”: the residual

ocean thickness is increased (temperature is increased) for any given heat flux, and



| Section 3.1 | 39 | Mechanism & Timing of the Heat Pulse |

the thermal evolution is slowed, so that the heat flux comes close to equilibrium with
the core output later and at a higher value. Placing some of the heat sources in the
ocean allows their heat to be released earlier and hence flattens the radiogenic heating
curve, broadening the transition from an early to a late heat pulse into a finite band

of viscosities.

3. The Heat Pulse

The most striking feature of the thermal evolution scenarios presented in Section 2.6
is the existence in some cases of a sudden and dramatic enhancement of surface heat
flow which we have termed the “heat pulse.” As we have indicated above, the heat
pulse is a consequence of the proposed transition from separate convection cells in
the upper and lower ice mantles to a single cell convecting across the residual liquid
layer. In this section we discuss the existence, nature, timing, and consequences of

the transition.

3.1 Mechanism and Timing of the Heat Pulse

The horizontally averaged Ganymedotherms of Figure 2.3 show evidence of the con-
vective reorganization of the heat pulse in the disappearance of boundary layer at
the base of the ice I between (c) and (d). This fact serves as a starting point for
discussion of the pulse, but to fully understand how it occurs we will have to take
into account horizontal temperature variations. Consider first for simplicity the case
(shown in Figure 2.3) of a pure H,O ocean, which — provided the radiogenic heating
is small enough — freezes completely at a well-defined time. The lower ice I boundary
layer then comes in contact with ice III. The entropy of the bulk of the ice I above
the boundary layer is much less than that of the ice III (not only is it colder, but
heat is absorbed when ice I transforms to ice III) so that one might naively expect an

overturn, bringing the suboceanic ice with its higher potential temperature upward
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to replace supraoceanic ice until a single convective adiabat is established.

Bercovici et al. (1986) have recently suggested on the basis of a linearized
stability analysis of the ice I-III system that such an overturn will not in fact occur.
They calculate the required temperature gradient for the onset of convection sepa-
rately in the ice I and III fields and compare it to that for a single cell convecting
across the phase boundary. The presence of a phase transition is known on the basis
of studies of the Earth’s mantle (Schubert and Turcotte 1971; Schubert et al. 1975)
to affect convection in three ways: through thermal buoyancy generated by the re-
lease of latent heat, by vertical migration of the phase boundary in response to this
temperature change, and by similar migration due to advection of heat along the pre-
existing thermal gradient. When %% is negative, the first effect is destabilizing, but
those involving phase boundary migration are stabilizing; for ices I and III the net
stabilizing effect offsets the advantage of a single large convective cell, and convection
first becomes possible separately in the ice I and III layers.

We argue, however, that this linearized analysis of the ice I-1II boundary is not
relevant to the problem of the heat pulse. First, the Ganymedean mantle is highly
supercritical with respect to either of the stability criteria calculated by Bercovici
et al. (1986), so that, if it can be initiated, convection in a single cell may certainly
persist. (As g is increased, the equilibrium residual ocean thickness becomes too large
to allow a heat pulse long before the linearized stability limit for a hypothetical single
convective cell is reached.) This large supercriticality also makes possible convection
through the region of adverse thermal gradient at the I-III interface. Second, we
believe that a mechanism for triggering the overturn, involving additional phases,
may exist. We outline this multistep mechanism, illustrated in Figure 3.2, below.

We believe that overturn may be initiated by the formation of ice II in the

cold descending plumes of the upper mantle and hence may depend critically on the
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horizontal temperature variations due to finite amplitude convection. The instabil-
ity we envision, with the ice II rich plumes descending through the boundary layer,
across the ocean, and on into the lower mantle (ice II is denser than ice III) is com-
plex and novel, and we have treated it only in an approximate way. Because the
background state is one of finite amplitude convection, numerical modeling would be
needed to answer conclusively whether ice II formation leads to transoceanic flow or
merely increases the vigor of convection. We have addressed only the much simpler
problem of buoyant force balance, comparing the density of a column of ice with
some initial thermal structure in which ice II is forming (possibly aided by an initial
downward displacement éz) with that of a reference column following the horizon-
tally averaged Ganymedotherm (including solute effects). A necessary condition for
instability with respect to transoceanic flow is then that the test column be heavier
than the reference column (and that this negative buoyancy increase with continued
downward flow). Whether this condition is also sufficient for instability depends on
the nature of the viscous stresses, hence the need for numerical modeling. We make
the following assumptions regarding the viscous stresses: first, if no ice II forms,
clearly the cold plume does not flow down through the ocean. Its purely thermal
buoyancy is resisted by the viscous stresses associated with ordinary convection, and
hence may be removed from consideration. Second, we suppose (optimistically) that
the much larger negative buoyancy due to phase changes cannot be supported by
ordinary convection, and hence must lead to a new, ocean-crossing flow. Under these
assumptions, given the residual ocean thickness z, (which completely specifies the
reference column structure; cf. Section 2.3), and a plume of initial temperature T,
it is straightforward to calculate the distance §z that the plume must be perturbed
downward before instability is possible.

We perform the perturbation adiabatically, offering in justification the follow-
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ing self-consistency argument. First, although we have not considered the dynamics
of the instability in detail, its rate will be determined by a balance between viscous
and buoyant forces, so we expect a timescale similar to that for a Rayleigh-Taylor

instability (Chandrasekhar 1961):

8wy

(3.1)

(or half this if the fluid on one side of the interface is inviscid), where Ap is the density
contrast and A a typical horizontal dimension of a disturbance of the boundary. For
thermal conduction to be unimportant in reducing Ap we require that 7y be less than
the conductive timescale 7. ~ j(\% (this requirement may also be expressed in terms of a
Rayleigh number for the instability). Taking Ap = 58 kg m™3, appropriate to ice I in
the ocean, and T = 230 K, we obtain the requirement that A & 1.0 (-I—OT%LQP—;E> e km.
The cold mantle plumes that will first become unstable are of similar thickness to
the lower boundary layer, ~ 2 (ngh) e km, so that loss of the dense ice II by
conductive warming is unimportant. The timescale (3.1) for the downward instability
is ~ 103y.

Figure 3.1 shows the perturbation 6z required for instaﬁlity as a function of
T, and z,; of especial interest is the contour éz = 0. A plume with given T, will
(under our assumptions about the instability process) spontaneously give rise to a
flow into the lower mantle once the residual ocean thins to this value of z,.. In the
thermal histories presented in this paper we took the crossing of this contour as the
criterion for onset of the heat pulse. The temperature of the cold plume just above
the lower boundary layer was estimated from the horizontally averaged temperatures
by comparison with numerical convection calculations by Jarvis (1984) which suggest

that over a wide range of Rayleigh numbers one has approximately:

T, o Ty — 221, 3.2
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The value of this expression depends on z, through the‘ parameterized convection
scheme outlined in Section 2.3. The dotted curves in Figure 3.1 illustrate T}(z,)
trajectories, assuming ng = 10'°, 104, and 10*3 Pas, respectively.

The possibility of an instability triggered by the finite amplitude perturbation
due to a large impact deserves comment, especially since it played a central part
in our earlier description of the heat pulse based on an erroneous analysis of the
instability of the ice I-III boundary (Kirk and Stevenson 1983). We argued on the
basis of an analysis of the viscous relaxation eigenmodes of the floating ice I layer that
relaxation of large impact craters rapidly creates substantial isostatically compensated
topography on the underside of the upper mantle, then smooths it away on a longer
timescale. Essentially the full 85% of the top-surface topography dictated by isostasy
is transferred to the bottom for craters with diameters D & 500 km, falling off to
10% for a 350km crater. Under our previous assumptions, such impact-induced
finite amplitude instability was the only way of triggering the heat pulse. We still
envision this mechanism as operating, but it will have only a small and quantitative
effect on the calculated pulse time. As Figure 3.1 indicates, for (say) 7o = 10'®*Pas
spontaneous instability occurs when z, ~ 7km; the largest plausible crater, with
D = RgGanymede, perturbs the bottom of the mantle by only 9.5km, triggering the
heat pulse if z, S 14km. In most cases, the residual ocean thins from 14 to 7km
very rapidly. The impact mechanism permits a significant hastening of the heat pulse
only for those special choices of ice viscosity and radiogenic heating that lead to a
prolonged state of quasi-equilibrium with z, in this intermediate range.

It is important to understand that the instability discussed so far leads only
to a downward flow of ice from the upper mantle as illustrated in Figure 3.2a. As
yet there is no return flow of ice made possible by instabilities in the lower mantle,

so the residual ocean is lifted from its equilibrium position. This rather remarkable
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Figure 3.1. Criterion for occurrence of the heat pulse . Solid curves are contours of
downward perturbation §z of the ice | layer (in km) required to trigger instabil-
ity by ice Il formation, as a function of cold mantle plume temperature 7}, and
residual ocean thickness z,. Bend in contours indicates formation of ice IIl (sta-
bilizing) at high T}, and low z,. Large impacts could lead to §z < 9.5 km. Dot-
ted curves are trajectories of T}, vs. 2, in the parameterized convection model,
assuming (left to right) no = 10, 1013, and 10 Pas. Time of heat pulse
in our models (Figs. 2.4, 2.5) was taken as the time of crossing the contour

bz = 0.
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Figure 3.2a. Cartoon history of the heat pulse mechanism : the onset of the pulse.
Roughly to scale (with 2 : 1 vertical exaggeration and planetary curvature re-
moved. Ellipse corresponds to a circle of 10 km radius in Ganymede.) Gap in-
dicates 90 km omitted from the column for clarity. Heavy arrows indicate con-
vective flow in the upper and lower mantles. Dashed line marks the base of the
thermal lithosphere (including boundary layer). A cold descending ice | plume
has reached the ice I-ll phase boundary, leading to instability and runaway down-

ward flow through the ocean and lower mantle.
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Figure 3.2b.  Cartoon history of the heat pulse mechanism: triggering of return flow.
After ~ 10%y the top of the ice Il is lifted to the L-I-lll triple point and con-

verts to ice | plus melt, buoyant in the ocean.
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Figure 3.2c.  Cartoon history of the heat pulse mechanism: initial warm ice diapirism.
The weight of the displaced ocean pushes the ice plus melt diapir upwards to
the base of the lithosphere in ~ 10%y. Loading and flexure of the lithosphere
causes extension fracturing at the surface. The upward flow drops the ocean

back toward its equilibrium position.
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Figure 3.2d. Cartoon history of the heat pulse mechanism: initial resurfacing. The
diapir reaches the near-surface by thermal softening in ~ 10°y and is released

onto the surface by a small impact crater.
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Figure 3.2e. Cartoon history of the heat pulse mechanism: fracture of the resurfaced
terrain by a younger diapir. Episodic diapirism, resurfacing, and fracturing con-
tinue for some time, subsiding into steady-state convection across pockets of

residual ocean.



| Section 3.1 | 55 | Mechanism & Timing of the Heat Pulse|

YRR EL YN s 2%

FLEXURE!




| Paper | 156 | Evolution and Tectonics of Ganymede|

assertion requires justification. We therefore demonstrate that melting at the base
of the ocean and freezing at its top cannot restore it to equilibrium, by comparing
the upward and downward mass fluxes. Consider first a downward-going plume of
ice of width z, with an excess density Ap. The velocity v at which it descends is
governed by a balance between viscous and buoyancy forces and hence we expect it

to be similar to that for Poiseuille flow:

Apgx?
VXU, = —E—T;—

(3.3)
Each convective cell of the upper mantle, with width of the order of X, will thus give
rise to a downward mass flux of the order of pvzX. The upward flux is limited by
the power available at the base of the ocean to drive melting. Conduction of heat
downward through the ocean is inefficient, so the melting rate reaches a maximum
when convection in the ocean ceases, and the entire heat flux F' from below is con-
verted to latent heat. If the heat of fusion is L, the upward flux (integrated over one

copvective cell) is X I2,F . Comparing the two, we find that the ocean will be lifted if:

> [ nFX \3
P L 4
i (12Apgpll> (34)

For T'= 250K, F = 20mWm™2, Ap = 58kgm™3, and X = 160km, this becomes

1/3
z 2 0.1 (Wgﬁ—g) km. As indicated above, the plumes are ~ 20 times wider

than this, and they may widen by entrainment of additional ice, so the criterion is
well satisfied.

The next stage of the heat pulse begins when, after ~ 10°y (or less if the
descending plumes entrain additional ice) the top of the lower mantle has been lifted
to the level of the liquid-ice I-ice III triple point (Figure 3.2b). The topographically
highest parts of the ice III, the warm spreading ridges, now convert to ice I (plus pos-
sibly melt) and rise buoyantly through the ocean on a Rayleigh-Taylor-like timescale.
With Ap = 140kgm™2 for ice I in liquid, n = 10 Pas, and A = 160 km (once the
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ascending ice begins to interact with the ~ 160 km thick upper mantle, the dominant
horizontal scale of overturn will be close to this value; we use it now for illustrative
purposes) this is only ~ 0.1y. The subsequent diapiric rise of the suboceanic ice is
slower, depending on its buoyancy with respect to the upper mantle due to tempera-
ture and melt content, and hence on the thermodynamic state of the ice immediately
below the ocean. We therefore discuss very briefly the nature of convection in the
lower mantle.

In the early stages of cooling, the oceanic solute concentration is low and the
ocean-mantle boundary lies only slightly below the liquidus temperature (AT, <
10K in equation 2.10). The usual thermal plumes and boundary layers are then not
possible in the lower mantle; warm ice from the core-mantle boundary layer must
encounter the liquidus and run along it as a “wet adiabat,” leading to a plume and
upper boundary layer distinguished by their melt fraction rather than temperature. A
10 K temperature drop across the lowermost boundary layer (roughly to be expected
if the viscosity of ice VI is similar to that of the other phases) leads to zz =~ 0.1 at
the top of the ice III. At an opposite extreme, if concentrations yielding AT, 220K
could be reached, both a cold boundary layer and a hot, melt-free plume could exist.
The state of affairs at the time of the heat pulse is intermediate, with AT, ~ 10K,
leading us to expect a partially molten plume, but a cold boundary layer, and the
core of the suboceanic ice (from which the diapirs will primarily be derived) with
T~ Ty,_1-m = 251K and z; = 0. This material converts to ice I plus melt at the
triple point, so that T = Ty_i_mr and 2z ~ 0.09 at the base of the diapirs. The
resultant density is greater than that of the cold upper mantle at T3 o~ 230 K, but the
weight of the displaced ocean — equivalently, buoyancy of the diapir with respect to
the liquid layer — drives the ice upward farther. If zj, were constant, the diapirs would

relax toward an equilibrium depth ':1272 ~ 70 km above the top of the displaced ocean.
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Intergranular flow reduces the melt content only in a compaction boundary layer
of negligible thickness (Richter and McKenzie 1984), but pressure-release freezing
reduces zy, by 1.8 x 1073km™?!, restoring positive buoyancy to a parcel by the time it
is ~ 30 km above the ocean. The diapir as a whole is thus positively buoyant at all
times. We model its ascent in detail in the next section; it suffices here to note that
it rises to the base of the lithosphere (Figure 3.2c) in only ~ 300y for no = 10'® Pas.
The total timescale for rise of the surface heat flux to its peak value is thus dominated
by the ~ 10°y needed to lift the residual ocean.

The upward flow of ice allows the ocean to drop towards the position dic-
tated by thermodynamic equilibrium and hence reduces the “boost” applied to the
partially molten diapir from below. We thus expect a fluid-dynamic equilibrium to
be established, with the ocean displaced just enough to drive an upward flow equal
to the downward flow in the cold plumes. With time, cooling of the lower mantle
will reduce the melt fraction in the diapirs and hence the magnitude of this required
displacement. When it reaches zero, the diapirs will be melt-free, but still at the
triple point temperature. As we show below, they will then require ~ 3000y to rise
through a 230 K mantle. This less vigorous diapirism in turn will grade imperceptibly
into ordinary convection in a single multiphase cell, with pockets of residual ocean

separated by ascending and descending plumes of ice.

3.2 Implications of the Heat Pulse

The most obvious significance of the heat pulse is that it leads to a high but rapidly
declining heat flux relatively late in Ganymede’s history, in qualitative accord with
Passey’s (1982) analysis of the cratering record. His reconstruction of the surface
thermal gradient versus time, based on the degree of viscous relaxation of craters
as a function of size and inferred age, appears in Figure 2.4. Although aspects of

Passey’s interpretation of the cratering record — for example, his assumptions about
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the rheology of ice I, the unrelaxed shape of large craters in ice, and the interaction
of a deep crater with the local temperature distribution — are admittedly problem-
atical, his finding of a late, rapid decay of the heat flow is nonetheless suggestive.
Relatively high heat fluxes can be produced at times of several x10®y by invoking a
large additional energy source such as strong tidal dissipation (Cassen et al. 1982).
For the heat flow to decline sharply at late times, however, requires that it do so
smoothly from an untenably large early value, that the energy source maintaining
the high heat flux “shut off” abruptly, or that the effective heat capacity of the body
(i.e., its rate of cooling, for a given heat flux) decrease abruptly. Just such a change
in heat capacity occurs in our model when the latent heat reser\;oir of the ocean is
used up. Indeed, the post-pulse heat flux declines somewhat faster than the 10%y
timescale estimated by Passey. The rapid onset of the heat pulse is not necessarily in
conflict with his results, since his constant high thermal gradient before ~ 6 x 10%y
is purely conjectural. The record of this period has been effectively erased, and the
strongest conclusion that can be drawn is that the period of high heat flux lasted long
enough to relax away all older craters resolvable by the Voyager cameras.

Given the large uncertainty in thermal gradient (+£0.5Kkm™!) quoted by
Passey and the aforementioned reservations about his analysis, we have not attempted
to fit his thermal history with our model. Based on our results as summarized in Fig-
ures 2.4 and 2.5, however, a scenario with ~ 0.8 times the nominal core heat output
and 7 =~ 9 x 10'2 Pas would match both the time at which Passey’s thermal gradient
declines and the quasi-steady state value to which it tends, although the peak gradient
during the heat pulse would be less than his 8 K km™". The required viscosity is close
to the threshold for transition to a much later heat pulse, and is therefore a priori
somewhat unlikely. This difficulty could in principle be surmounted by compressing

the cratering timescale, so that a given crater density corresponds to an earlier abso-
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lute time than that assumed by Shoemaker and Wolfe (1982), but the present results
hardly argue conclusively for such a change. Note, however, that even more drastic
tampering with the timescale is required if one attempts to reproduce Passey’s results
with a monotonically declining heat flux.

A much more exciting possibility (and one that is to some extent mutually
exclusive, since Passey finds evidence of the late decline of heat flux in both the
cratered and grooved terrains) is that the heat pulse is directly connected with the
formation of the grooved terrain. The diapiric rise of warm ice during the pulse could
have potentially provided both the driving force for tectonism and a source of clean,
buoyant H;O for resurfacing (cf. Figure 3.2). In the remainder of this section we
describe calculations of the ascent of warm ice diapirs, concentrating on the buoyant
loading of the lithosphere from below and the ability of the diapir to penetrate nearly
to the surface. We will derive a criterion for extensional fracturing in terms of the
instantaneous loading rate (independent of the assumed cause of loading) in Section 4,
and in Section 6 we will discuss the problem of evolving diapiric ice onto the surface
from a shallow depth.

We have investigated numerically the rise of both the earliest, most vigorous
diapirs, which are driven by the weight of the displaced residual ocean (see the pre-
vious section) and those at a later stage driven only by the thermal buoyéncy due to
their being AT =~ 20K warmer than the core of the ice I mantle. For purposes of
scaling we consider only the latter case, which is both easier to deal with and more
conservative. The maximum buoyancy force will be o ~ pga AT Z where Z = 160km
is the approximate thickness of the ice I layer. With these values o} ~ 0.6 MPa. As
we show in Section 4, tensional stresses & 3 MPa are probably required to fracture the
lithosphere; we also show that this level of horizontal stress can be achieved in a thin

lithosphere provided o} is applied quickly enough. We therefore wish to estimate the
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rates of rise and of loading of the lithosphere by a diapir. For historical reasons we
will not express the latter result directly in terms of the loading rate o} (the comma
denotes a partial derivative) but in terms of the time constant of an error function
loading history whose peak loading rate is o} ;. Writing this equivalent loading history
as oy(t) = pgaATZ%(l + erf(ht)), we seek A~ = E%;——Z;Z.

Consider a diapiric body of radius R (=~ %) and let z(t) be the instantaneous
depth of its top, while z, = % is the depth to the base of the upper boundary layer
(cf. Fig. 2.2a). As the diapir begins its ascent, z — z; > R and the flow is similar to
Stokes flow, with deformation of the isoviscous mantle occurring in a layer of thickness
~ R about the diapir. The stresses associated with this flow are comparable to the
convective stress (A.3), so that the appropriate viscosity is that for diffusion creep,
not for the nonlinear creep invoked in the lithosphere. The more viscous upper layers
do not affect the flow significantly, nor is there any load on them.

As the diapir approaches the base of the boundary layer (z—z, X R, Figure 3.2¢
and e), the Stokes-flow pressure at the boundary rises. At the same time, the nature
of the flow alters, increasing the drag and slowing the diapir. For z < z,, the top of
the diapir will be flattened, and the drag will be similar to that for pressing a flat
plate into an exponential viscosity gradient (or equivalently into an isoviscous fluid
but with an upper plate a distance ¢ = /6L away, where L is the viscosity scale
depth — the “toothpaste tube syndrome” flow of Section 5). In this limit the full
buoyancy force on the diapir is transmitted to the “upper plate”; the lithosphere is
fully loaded.

As z decreases still further, the increasing ambient viscosity slows the ascent,
until eventually softening of the surroundings by heat diffusing out of the diapir
becomes important (Morris 1982). The “toothpaste tube syndrome” has become a

“china syndrome” (albeit upside-down), stopping only when the thermal boundary
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Figure 3.3. Numerical models of rising warm ice diapirs for no = 10*®Pas and surface
thermal gradient 2 Kkm™1. Solid curves: Time for diapir to rise to given depth.
Dashed curves: Equivalent strain time A~ for loading of the lithosphere (cf.
Fig. 4.1). Right pair of curves assume constant AT = 20K between diapir and
mantle, no melt. Left pair include melt (z = 0.09 at base, decreasing upwards
because of freezing), thermal buoyancy, and the weight of a displaced residual

ocean 7 km thick. Vertical line indicates the Rayleigh-Taylor timescale (3.1).
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layer interacts with the surface, at z ~ 2km. The full diapiric load is transferred to
the overlying ice by this flow mechanism as well, so that for z < z, the lithospheric
loading increases only fractionally with time because of the increasing hydrostatic
head of the rising diapir. The maximum loading rate must occur, therefore, when
z—2y S R, and we can estimate it by using the velocity and stress gradient for Stokes

flow. In terms of the equivalent strain time

_ pgaATZ
- ﬁlaarr/arIStokesUStokes )

Bl (3.5)

Evaluating the Stokes velocity and stress gradient for an inviscid sphere (Landau
and Lifshitz 1959, pp. 63-70) of radius R = %— and density anomaly aAT in a
medium whose viscosity is determined by diffusion creep at 230 K, we obtain the

numerical result A~ ~ 900 ( ) y. Figure 3.3 shows the results of a numerical

integration of the rise of a cylindrical diapir (which has a slightly larger buoyancy)
with drag based on Stokes flow in the mantle and Morris’s (1982) calculations for a flat
plate in the lithosphere. The minimum of 27! is indeed ~ 500y for no = 1013 Pas;
it 1s achieved when z — z; ~ 0.5R. The diapir reaches this depth, which is about
50 km for a surface thermal gradient of 2 K km™!, at a few times the Rayleigh-Taylor
timescale (3.1). These values of A~! may be compared with the fracture criterion
derived in Section 4 and illustrated in Figure 4.1b. Under the fairly conservative
rheologic assumptions embodied there, fracture to a depth of ~ 1km is possible for
a thermal gradient of 2K km™!.

The time for the diapir to reach the surface is much longer, being dominated by

the time required to cross most of the boundary layer and lithosphere at the thermal

softening velocity

1
16pgaATZ [ r\3\*
&~ | ———— 3.6

where © = (T, d—fZ"(z))%l,}—;n evaluated at the diapir temperature T,. Using Ty = 250K
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and 180K as an average value for T'(z), we find U,op ~ 25 (-m—lgﬁ—s—) v km My~1.
The warm ice thus reaches the surface at a time on the order of 10y (Figure 3.2d).

Also shown in Figure 3.3 is a similar calculation of the rise of an early diapir
partially driven by a 7 km residual ocean displaced from its equilibrium position. The
base of the diapir has a melt fraction of 0.09 and a temperature of 251 K, and the total
buoyancy is calculated by keeping track of pressure-release freezing of the melt (and
its small associated temperature rise). The rise time to the base of the lithosphere
and the minimum loading timescale are both about an order of magnitude smaller
than for the thermally driven diapir, leading us to expect extension fracturing to a
depth of perhaps 2km.

The conclusion that diapiric loading can lead to fracture of the uppermost
~ 1km of lithosphere is fairly robust. Both the expected value of A~! and the value
required for fracture scale as R™2, so the poorly known quantity R does not affect
the conclusion. Dispersion hardening (or more drastic inhibition of nonlinear creep),
a surface colder than the assumed subregolith temperature of 130 K, and pre-existing
weaknesses all act to increase the expected depth of fracture. What is less clear is

the relationship between lithospheric fracturing, resurfacing, and groove formation.

We will have more to say about this in Section 6.

4. Criteria for Lithospheric Fracture

In this section we derive and present criteria for extension fracturing of Ganymede’s
icy lithosphere by both global expansion and local deformation due to buoyant loading
from below. Although second of these results applies directly to the possible warm
ice diapirism during the heat pulse described above, we present them in a separate
section to emphasize their independence from any particular assumptions about the
cause of the lithospheric deformation. We show below that (subject only to reasonable

assumptions about the rheology — plastic and brittle — of ice), for either local or
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global deformation to lead to fracture, it must take place rapidly (i.e. on a timescale
< 103-10* years). Warm ice diapirism satisfies this criterion; global expansion due to
cooling and differentiation do not.

We consider first the simpler case of global expansion. Our analysis is similar to
that of Squyres (1982) but draws on recent measurements of the rheology of ice at low
temperature by Durham et al. (1983; 1984). They obtain a brittle failure strength
in uniaxial compression of ~ 30 MPa at temperatures of 113-158 K. We therefore
adopt a uniaxial tensile strength o, = 3 MPa, based on the compressive strength
and generalized Griffith failure theory (Jaeger and Cook 1979). The macroscopically
averaged strength may of course be lower due to pre-existing fractures, but the relative
simplicity of tectonic patterns on Ganymede have been used to argue for the “healing”
of such zones of weakness (McKinnon and Parmentier 1986). The failure criterion for
extension fracturing is ogy = —(pgz+0;), where og; = 0, is the additional horizontal
stress at a depth z due to the expansion. We do not consider normal faulting, for
which larger shear and confining stresses are required. We model the Ganymedean
lithosphere as an incompressible nonlinear-viscoelastic shell surrounding an interior
whose radius R varies with time. The horizontal strain rate is then égp = €pgp =
27’%, independent of depth. For consistency with Squyres (1982), we adopt an error
function strain history: R(t) = Ro+ AR%(l +erf(ht)), with a range of time constants
h~' and a radial strain _AY{; = 3% (Squyres 1980a). Including both diffusion and
nonlinear creep, we obtain

R 2ARh —h242 (.Tgo 0'99
_ _ Ghe , 41
0 =""7RE 3G T Ty T ZA (T)(@%0)™ (4.1)

G ~ 10 GPa is the shear modulus, 7, is the volume-diffusion viscosity (see Appendix),
and we have expressed the three different creep mechanisms elucidated by Durham
et al. (1983; 1984) in the form ¢ = A(T)o™, with A calculated for the flow geom-

etry of interest here and hence differing from their uniaxial-stress parameter by a
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numerical factor. At any given temperature, one of these mechanisms will dominate
the others. Term-by-term comparisons (with " = 130K and oy, = —o, appropriate
to fracture at the surface) indicate that the elastic strain rate is unimportant for

n—1
Rt R 2]@ (igRAO_R) ~ 107%y (the Maxwell time at the elastic stress), while diffu-

< (40, AR\ [ Aop )TV
sion creep is unimportant for A1 ~ (-—%’Ea—;—) (—-ﬁ——) ~ 10'%y. In short,

the stress is always instantaneously relaxed by nonlinear creep, and we can write the

criterion for tension fracturing at a depth z directly in terms of the strain time h~1:

< 2AR
VrRoA(T(2)) (01 + pg2)™

Figure 4.1a shows the relationship between strain time, depth of failure, and sur-

h (4.2)

face thermal gradient implied by this equation. Even at the surface, ™! S 2000y
is required for failure; this value may be increased slightly by the effects of silicate
inclusions. Durham et al. (1983) report that for their lowest-temperature creep mech-
anism the peak stress attained at low strains is ~ 20% greater than the steady-state
stress at the same strain rate. The effect of dispersion hardening should be similar,
inasmuch as it operates by inhibiting recrystallization and thus extending the small-
strain regime. A strain time of ~ 5000y would then suffice for surface fracture. This
result is of course sensitive to the assumed surface temperature. The value of 130K
used was based on the assumption of an insulating regolith (Passey and Shoemaker
1982); using instead To = 110K based on solar equilibrium calculations (Squyres
1980¢) without a substantial regolith allows fracture for strain times approximately
130 times longer. Since proposed sources of global volume change such as core differ-
entiation and freezing of the ocean operate on timescales of R 108 y, the probability
of their involvement in lithospheric fracturing is remote.

This conclusion is weakened but not invalidated by a consideration of the im-
plications of the nonlinear creep relation for crater relaxation. An analysis including

the variation of viscosity with depth due to both stress and temperature in an ap-
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Figure 4.1. Depth of extension fracturing (contours in km) as a function of strain time
h~1 (strain o< erf(ht)) and surface thermal gradient for two strain geometries.
Fracture stress is 3 MPa above confining pressure and corresponding strain rate
is based on Durham et al. (1983; 198’4) and a surface temperature of 130K for
both models. (a) Global expansion of 3% in radius. (b) Lithospheric flexing by
a diapir of width 40 km, peak buoyancy 0.6 MPa. Initial fracture only, before

migration of the neutral fiber in response to weakening of the failed zone.
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proximate way (Brennen 1974) leads to the conclusion that craters larger than about
3-5 km will be substantially relaxed after 3 x 10°y at a thermal gradient of 2 K km™?,
leading us to suspect that the creep mechanisms reported by the Livermore group are
suppressed to some unknown extent in the lithosphere of Ganymede. Nonetheless, if
we assume a linear viscoelastic rheology and require the preservation of 50-100km
craters, extension fracturing by expansion on a 10%y timescale is only marginally
possible.

Let us now consider instead the stresses set up by a warm ice diapir. As we
showed in Section 3.2, the peak buoyant load is o = pga AT Z ~ 0.6 MPa, much less
than the tensile failure stress. In a thin lithosphere, however, geometric factors may
lead to horizontal stresses that are much larger. Ignoring viscous relaxation for the
moment, we illustrate this effect by the following standard result from elastic thin
plate theory (Landau and Lifshitz 1970, pp. 44-43): if a plate of thickness z, is loaded
with a sinusoidally varying stress of wavelength X, the amplitude of the surface fiber
stress will be 6 (27?‘—5;)2 times that of the load. Taking A = Z = 160 km, we find that
tensional stresses as great as ~ 25 MPa could be generated in a 10km thick elastic
lithosphere. Including isostatic compensation reduces this value to ~ 18 MPa.

Now consider a more realistic model, retaining the thin-plate approximation
but recognizing that the fiber stresses will be determined not by elasticity, but by
nonlinear creep as the plate changes shape under an increasing load. The equation of
equilibrium is

M(z,t) 2o = op(2,t) — pgd(z,1), (4.3)
where o;(2,1) is the applied load as a function of horizontal coordinate z and time ¢,

d is the plate deflection, and the comma indicates a partial derivative. The bending

moment M is given by

M(z,t) = /0 ” (%) ’ (20 — 2) dz. (4.4)
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Here, zp is the depth of the neutral fiber and the upper limit of integration has been
extended to infinity (rather than z,) without harm, since the viscosity decreases quasi-
exponentially with depth. The flow geometry differs from that for global expansion,

so the function A(T) will differ from that in equation (4.2) by a numerical factor. For

small curvatures, the fiber strain rate is é,, = —(20 — 2)d ;s and we get
M = I)(—d 4017, (4.5a)
where
L= / A(T(2)) " (20 — 2) 52 dz, (4.5b)
0

subject to the condition

L= /000 A(T(z))'%(zo - z)% dz=0. (4.5¢)

Equation (4.5c) is the requirement that the plate be under no net tension; for a given
thermal structure it determines z,. Numerical solution shows that, for a wide range
of thermal structures, the neutral fiber is 16.6 K warmer than the surface. At least
initially, the depth of the neutral fiber is an upper limit on the depth of fracture,
since for z > 2, the fiber stresses are compressive. If and when a near-surface layer
fractures, however, its contribution to both I; and I, is reduced or eliminated. The
effective top surface of the lithospheric plate now lies below 2z = 0. In consequence,
the neutral fiber must also move deeper into the planet, allowing failure to extend to
a greater depth. This additional failure may in turn be followed by further migration
of the neutral fiber, and so on, in a diminishing sequence. Substituting (4.5a) into
(4.3) we obtain
_ 0b— pgd

((d,fcrt)%),xx - "T, (46)

to be solved for d given the loading history o,. We simplify the problem by assuming
a load varying parabolically with z (and, more importantly, neglecting end effects!).

It is then consistent to let d = % since M will be constant and the entire load will be
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isostatically supported. We can thus obtain a relationship between the instantaneous
loading rate o1 and the fiber stress o,,(2). Although only the instantaneous loading
rate is important, to facilitate comparison with the global expansion case we express
the result in terms of thtle equivalent strain time h~1 = E.Q%Z;Z for an error-function

loading history with the same peak loading rate. The criterion for tension fracture

at a depth z is then
-1 < 2(z0 — z)pgaATZ
VT R?A(T(2)) (0 + pgz)™’

for z < z, and where R is the half-width of the parabolic load distribution, i.e.,

(4.7)

oy o (R?—z?). The initial depth of failure, with zo held fixed, is shown in Figure 4.1b
for a variety of thermal gradients. Progressive fracture and migration of the neutral
fiber leads to significantly different results only for A~1 < 0.1 y, the maximum depth
of failure in this regime no longer being limited by 2o for a given thermal gradient.
We present these results in terms of a thermally driven diapir (AT = 20K, R =
40km) as discussed in Section 3.2, but they may be applied to any source of local
lithospheric loading by noting that, for fracture to any given depth, the required
k=1 scales as %%. The required strain times are similar to those for global expansion
because the total strains are similar, and the strong stress-dependence of the viscosity
washes out the numerical factors due to differing geometries; as before, dispersion
hardening and lower surface temperatures may permit fracture at somewhat larger
k=1, The significant difference is that diapiric loading on such short timescales is

indeed possible.

5. Core Formation
The existence, nature, and timing of core formation in large icy satellites, especially
Ganymede, are of interest for several reasons. First, core formation might trigger

resurfacing either through global expansion (Squyres 1980a) or through core-driven
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diapiric or plume activity of water or ice (Parmentier and Head 1979; McKinnon
1981). Second, the nature and timing of core formation might affect the thermal his-
tory of the overlying ice mantle, thereby influencing the evolution scenarios discussed
in this paper. Third, the existence and nature of a core may influence a number of
potentially measurable properties of the satellite and thereby serve to discern between
competing models. Observations of gravitational moments and any magnetic field are
particularly relevant.

Despite the importance of these issues, this section is relatively brief and fol-
lows the bulk of the modeling effort in this paper. The reason is that the approximate
calculations of core formation discussed below all indicate a timescale of at most sev-
eral hundred million years for near-completion of the process. This leads us to doubt
that core formation plays a direct role in explaining the resurfacing of Ganymede.
Consequently, a lengthy and precise quantification of the models seems pointless
(even assuming it were possible!). Here, we adopt the “conservative” approach of
identifying models that prolong core formation as much as possible.

Our analysis focuses on the postaccretional state illustrated in Figure 2.1 and
characterized by a potentially unstable configuration of silicates overlying a primitive
ice-rock mixture. It is conceivable, of course, that the formation of a core occurred
contemporaneously with accretion, as seems likely for the earth (Stevenson 1981).
Although possible in principle, it is unlikely that the retention of impact energy
was sufficiently efficient (Schubert et al. 1981; Lunine and Stevenson 1982). It is
also possible that these bodies accreted heterogeneously by first growing a rock core
and then accreting ice. Although superficially attractive because of the much lower
condensation temperature of ice, heterogeneous accretion models pose unresolved
dynamic problems because the relevant dynamic timescales are much shorter than

cooling times. Our subsequent discussion assumes the “initial” state illustrated in
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Figure 2.1.

Although gravitationally unstable, a layer of silicates overlying an ice-rock mix-
ture may persist for a substantial time because both layers are cold and have high vis-
cosities. Both the rock layer and the underlying ice-rock mixture have very uncertain
rheologies. During accretion, the rock layer will accumulate at the base of the water
ocean, compacting and squeezing out most of the interstitial water by a combination
of processes, probably dominated by crushing of rock (sintering) on large lengthscales
and stress-driven chemistry (depositional closure of pores and cracks) on subgrain
lengthscales. Existing relevant laboratory data are at higher temperatures, but es-
timated activation energies suggest that cementation can occur in water-permeated
silicates on less than a geologic timescale. For example, an extrapolation of the work
of Smith and Evans (1984) on water-mediated crack healing in quartz indicates that
even at temperatures as low as 300 K, the process could occur on a timescale of 104
years at most. However, it is not clear whether significant creep can occur at these
temperatures, even in the presence of plenty of water. Indeed, enormous (and hence
unreliable) extrapolations of existing data (Jaoul et al. 1984; Blacic and Christie
1984; and other papers in the same special issue of Journal of Geophysical Research)
suggest viscosities of perhaps as great as 10 Pas at 300 K. The increased ionicity
of water with pressure may reduce this estimate. We shall adopt the conservative
hypothesis (meaning the one most likely to prolong core formation) in which the rock
layer becomes well cemented and forms a rigid “carapace” over the soft center.

With this admittedly extreme hypothesis, we are then confronted with the
problem of rupturing and disaggregating the carapace. This can be achieved by the
tensional stress that builds up as underlying ice melts, producing less dense water.
Neglecting the small thermal expansion of the rock as it heats up, we can estimate

the required melting by use of the equation for tensional stresses in a thick shell,
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R;. < r < R., subjected to an excess pressure Ap at the inner surface (Landau and
Lifshitz 1970, p. 21):
3 3

Opg = Opp = —%{R—Eﬁ: (1 + %) . (5.1)
In the thick shell limit, it is approximately valid to set Ap = K %, where K is the
bulk modulus of water, Av is the volume change of the inner core (due to partial
melting) that would occur if the entire body were hydrostatic, and v is the total inner
core volume. We adopt ogg, 044 R 0.2GPa as our criterion for carapace rupture
(suggested by the results of Blacic and Christie 1984); this leads to the requirement
%Q R 0.02, implying approximately 20% melting of the inner core, since the volume
difference between water and ice VII at 3 GPa is ~ 10% (Hobbs 1974).

Proceeding conservatively, we assume that radiogenic heating is the only avail-
able energy source for melting. Available gravitational energy is small at this depth
so a “runaway” core formation cannot occur (compare this with Friedson and Steven-
son 1983, where a runaway was possible because the differentiation was initiated at a
large radius). Tidal heating is possible but highly uncertain. Generalizing equation
(2.4), the temperature rise prior to melting is given by

e—)\.'t
i

AT() = £ 3" X (@) AW =——, (5.20)

where

C=eC.+ (1—¢€)Cice (5.20)

is the mass averaged specific heat of an ice-rock mixture, € is the mass fraction of
rock, and the other symbols have their usual meanings (Tables II-V). For ¢ = 1,
AT(t) ~ 1200¢ where t is measured in units of 10° years (assuming ¢ < 0.5). For
¢ = 0.4 (the primordial core), AT(t) ~< 280¢. If the rock layer and the primordial

core were intimately mixed, then € ~ 0.9 and AT'(¢) ~ 1000¢. A simple estimate for
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the actual temperature in the inner core, prior to any heat redistribution, is

T(r,t) = 150 + 225 ( .

2
. ) + 280¢, (5.3)
where the value at r = 0, ¢t = 0 is an estimate for the ambient formation conditions of
Ganymede (Lunine and Stevenson 1982), and the quadratic dependence on r is that

predicted by simple accretion models, assuming T'(R;., 0) = T,,, the appropriate high

pressure melting point:

T,(r) =~ 450 — 75 (};)2 (5.4)
It is found that the time of melting onset is 7,,(r) ~ 10%°y (1 — 7;-‘;:) Once
melting is initiated, the subsequent fractional melting of ice, f, is given by
~XiTm _ o=t

f(rt) = L(l ZX((I:)A ai) ‘“—T—, (5.5)

where L is the latent heat. To satisfy our rupture requirement, f % 0.2 where

| Ric r2f(r T
) = / 3rfni)dr (5.6)

Bin (B — Boin)’
and 7, (Rpin) = t. It is found that f =~ 1.5t and the rupture is initiated after
~ 1.4 x 108 years. In reality, fluid-filled cracks begin to nucleate and propagate
through the carapace at lower stress levels than the tensile failure strength (Weertman
1971; Stevenson 1982). A network of cross-cutting fissures should develop, causing
disaggregation of the rock layer.

The subsequent downward migration of rock fragments through soft (or slushy)
ice can be modeled in one of two ways. It can be treated either as a Rayleigh-
Taylor instability of an “effective medium” (a rock-rich icy layer overlying a less
rock-rich icy layer) or as a Stokes flow problem for individual rock fragments. The
former has the advantage that we need no knowledge of rock fragment sizes and is

probably closer to a realistic description. However, it offers no way of understanding
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the extrusion of ice from between rock fragments (the “toothpaste tube” problem,
discussed below). The Stokes approach is simpler and can be extended to consider
the extrusion question. Since the growth time of Rayleigh-Taylor instabilities in the
nonlinear regime is the same (to within a numerical factor) as the “Stokes time”
(the time it takes a density inhomogeneity to sink a distance equal to its own size),
we choose a Stokesian formulation for convenience. Consider a spherical density
enhancement of density p + Ap and radius R, sinking through a uniform medium of
dynamic viscosity L. If r is the distance of the blob from the center of the satellite,

then
dr _2g(r)ApR2
dt = 9n(T(r,))’

This equation can be cast in the nondimensional form

where ¢ = %EGpr is assumed, = = R’;, time is measured in units of Tgores =
icC

(5.7)

8—7‘_—%—7, no is the viscosity at the melting point, and a homologous temperature
form for viscosity is assumed (c.f. equation A.1). For ny = 10'°Pas and R = 10?km,
we find Tsiokes = 10-100 years. A number of numerical integrations of equation (5.8)
were performed, subject to equations (5.3), (5.4), and z = 1 at t = 0. In other words,
the time to rupture the carapace was neglected. In fact, the choice of initial condition
is largely irrelevant since in all calculations the sinking is initially very rapid until a
“self regulation” is reached, in which subsequent progress is mediated by the timescale
for radiogenic heating of the surrounding mixture. (Enhanced heating due to the
greater rock content of the sphere was ignored in this conservative calculation, but
see below). To be precise, %ﬁ%% tends to a constant whose value is simultaneously
consistent with equations (5.3), (5.4), and (5.8). Typically, this constant is about 1.7,
and the sinking velocity is then ~ 0.2 cm per year. This state is usually achieved at

around r ~ 0.5R,. to 0.6 R;. (at which point most of the core formation is complete,
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volumetrically speaking). It is important to realize that this asymptotic state is
highly insensitive to the rheology because it is dictated by the radiogenic heating
timescale. In fact, the result depends only on the logarithm of 7y and only linearly
on A. These models all predict that for R ~ 10%km, the time taken to go from
z=1toz <06 is 4 x 103y or less. Recalling that R should be interpreted as the
characteristic wavelength of a Rayleigh-Taylor instability, rather than the size of an
individual rock fragment, we see that the evolution is rapid.

Nevertheless, the extrusion of ice from between the infalling rock fragments
can be slower. This is of interest if it leads to the formation of liquid water at a
later stage. This is the “toothpaste tube syndrome” (the well-known inability to
extrude the last bit of toothpaste!), ameliorated in our case by the ability of the rock
to lubricate the ice by the injection of radiogenic heat. The following simple model
illustrates the basic physics.

Consider two planar rock surfaces separated by a horizontal distance § and
with vertical extent L. We assume that the intervening space is filled with ice which
is extruding upward, driven by an excess pressure gradient gAp. We also assume

d2

a continuous flow of heat into the ice from the hot rock and neglect < relative to

the extrusion timescale, where d is a characteristic rock fragment size. The resulting

Poiseuille flow is characterized by an average velocity
gApé?
12n(To + at)’

where T' = T, + ot is the ice temperature, o is a heating rate, and a continuity

D=

(5.9)

condition
d
—_— fassasd - .1
% (L&) vé (5.10)

is imposed. The resulting nondimensionalized equation has the form

dz 3 T,
=% exp{——A (—T———l)}, (5.11)

! Was this definition worth waiting for, or what?




| Section 5 {79 ] Core Formation |

where z = -o%, b is the initial spacing between the rock walls, and the unit of time
is 7, = r’%g—g. Unlike the previous problem, we are interested in the behavior as
z — 0 and no “self-regulation” is possible. In fact, T reaches T, at some finite
value of £ = z,,. Numerical integration shows that 0.005 N Tm ~ 0.01 for plausible
parameter choices (L ~ 102km, §, ~ 10km, no =~ 101 Pas). We conclude that most
of the H,O is extruded as ice; only a small amount is trapped and eventually escapes
as water. The elapsed time to reach = = z,, is ~ 7 x 108 years. This small amount
of water will not escape all the way to the surface of the satellite.

We conclude this section with a summary description of the probable sequence
of events accompanying core formation.

1) Sedimentation and cementation of rock at the base of the primordial ocean
but overlying a primordial core of ice and rock. This is contemporaneous with
accretion (¢t ~ 0).

2) Rupture of the rock carapace by the expansion induced as ice melts because of
radiogenic heating. Disaggregation of the rock layer proceeds (¢ ~ 1 x 10%y).

3) Downward migration of rock fragments, initially very rapid. On a volumetric
basis, most of the primordial core is displaced (or mixed with the downgoing
rock) before t ~ 4 x 10%y.

4) Extrusion of ice from between rock fragments is 90% complete even at 4x10%y;
only a very small amount (< 1%) is trapped for so long that it melts (¢ =
7% 10%y).

5) Sintering of the rock mass to form a coherent rock core (95% complete at
4 x 108y).

6) Subsequent expulsion of water of hydration may occur (McKinnon 1981) at
t~10%y.

7) Onset of convection in the core at t ~ 1.5 x 10°y.
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6. Discussion

Our thermal evolution models indicate that a large, initially hot and differentiated
ice-rock body will cool by subsolidus convection on a timescale of several times 10%
years. For what we argue are plausible values of ice viscosity, radiogenic heating,
and oceanic solute concentration, this cooling will reduce the thickness of the liquid
layer to the point where the upper and lower ice mantles can interact. The overturn
of the unstably thermally stratified mantles that may then take place is the most
dramatic thermal and tectonic event in the model history. We propose in the light
of our models that such an overturn took place in the evolution of Ganymede and
that it was responsible for the formation of the resurfaced terrain. Accordingly, this
final section is devoted to some of the most important questions raised by such a
scenario: How was the resurfaced terrain emplaced? What was the mechanism of
groove formation? How did Callisto escape resurfacing? At the moment we can only
speculate about the answers to these questions. We conclude with a brief listing of
the prospects for resolving some of these issues in the near future.

Emplacement of the Ganymedean resurfaced terrain in the solid state is, con-
trary to intuition, not a difficulty if we identify individual flows with the ~ 100km
sized “structural cells” of the grooved terrain (Shoemaker et al. 1982). (The global
pattern of resurfacing on a ~ 103 km scale could, in our model, plausibly be associated
with the pattern of convective spreading centers on the dense ice mantle, since, we
argue in Section 3.1, it is from their topography that the upward diapiric flow of the
heat pulse is derived.) Once the warm diapiric ice reaches the surface, the problem is
essentially one of glacier flow (Paterson 1981, pp. 85-88). The basal shear stress in an
ice slab of thickness z,, flowing down a slope s is 7, = pgsz,,, and on the isostatically
uplifted arch of lithosphere over a diapir (cf. Section 3.2) we expect the slope to be
of the order of s o~ QARI—Z ~ 4aAT =~ glo- Hence 7, ~ 4pgaAT z,,, which is even
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less than the convective and diapiric stresses (2, < Z). The appropriate viscosity
is therefore that for volume diffusion creep (see Appendix, Table VI). The horizontal

velocity profile in the slab is parabolic, and the mean velocity is

2
U= ”933:m. (6.1)

2
In the time 7, ~ %% before the basal layer cools and rigidifies significantly (cooling
of the upper layers is unimportant, as they will be “rafted” on the warmer ice below)

the flow can be extended a distance

4
T pgszh |
T > U, oy (6.2)

Choosing ¢, = 10°km and using a temperature of 250 K, we obtain a required
thickness for flooding of a structural cell of z,, ~ 1.9 (1_072%’_&3) e km. Given the
uncertainties in obtaining this figure, it is not inconsistent with Schenk and McKin-
non’s (1985) estimate of a thickness of 1.0-1.5km for the thickness of the grooved
terrain in Uruk Sulcis, based on the minimum size of dark halo craters (assumed to
have excavated subjacent ancient material).

The fact that the young terrains on Ganymede appear to have formed from
“very fluid” material (Shoemaker et al. 1982) can also be reconciled with resurfacing
by ice. Although a glacier-like flow would have a steep lobate margin during emplace-
ment, a comparison of the characteristic strain time 20 and the thermal diffusion

a2, o . > (8 1/3pgz. ..

time - indicates that a “toe” of height z < ( pg) will relax significantly before
cooling. With o = 10 Pas and T' = 250K as usual, this is ~ 100m. In addition
to such relaxation during cooling, the results of Durham et al. (1984) indicate that
even at 130K a scarp higher than ~ 500 m will viscously relax on a timescale of 10°
years, though this figure will be increased if nonlinear creep is inhibited, as appears

to be the case. The smoothness of the contacts between the ancient and resurfaced

terrains at the & 1km per line pair resolution of Voyager is therefore not surprising.
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The greatest difficulty with solid-phase resurfacing is that of evolving the warm
ice onto the surface. In contrast to the competing model of resurfacing by liquid water
(which of course runs into difficulties in making the liquid sufficiently buoyant), the
likelihood of lithospheric fracturing (Section 4) has little bearing on the eruption of
ice. That the warm ice reaches the surface ~ 10%y after the fracturing occurs is not
a problem; in this time interval, creep at 130 K will close fractures only to a depth of
about 2km. Rather, the anticipated tension fractures are too narrow to permit flows
of significant thickness to be erupted. Glacier flow and flow of ice through a tension
fracture are both special cases of Poiseuille flow, and inasmuch as the stress gradients

driving each will be similar, the surface flow will be approximately as thick as the
fracture through which it is fed. We expect fractures of width Az, ~ -aiﬁ—o—%é—sz—g
where x is their separation, probably a few times the depth of fracturing. As an
extreme case, let z; = 32,, and take % = 2Kkm™, so that zo ~ 8km; then Az; ~
60 m. Although the tension fractures thus cannot supply flows of any significant size,
they may nonetheless be of great importance in providing structural control of surface
flooding (Golombek and Allison 1981). We argue below that fracturing by diapiric
loading is also likely to be involved in groove formation.

It is possible to envision resurfacing without the eruption of clean ice, in which
the proximity of a diapir warms and softens the ice above to the point where the more
silicate-rich surface layers sink in an overturn similar to a Rayleigh-Taylor instability.
Our calculations show, however, that such an overturn is strongly suppressed both by
the proximity of a free surface and by the steep viscosity gradient, both of which force
the horizontal wavelength of greatest instability to be small. Removal of the silicate-
rich layer by subduction of slabs with a more advantageous width-to-depth ratio may

be possible, but this cannot in any case be the whole story, given the evidence that

the dark, ancient surface lies at modest depths below much of the grooved terrain
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(Schenk and McKinnon 1985).

Perhaps the most promising possibility is that the formation of impact craters
of modest size opens channels for the warm ice to reach the surface. Based on the
thickness of the softened layer above the ascending diapir, the warm ice will probably
reach a depth of ~ 2km, so that a 10 km diameter crater would suffice to remove the
overlying lithosphere. The topographic domes seen on the grooved terrain (Squyres
1980b) may be marginal cases of such impact-created channels, in which eruption
of warm ice was limited to local uplift because the diapir was at too great a depth
when the crater formed. (Subduction of limited regions of ancient terrain is another
possible mechanism for producing such a wide orifice.) If the width of the eruptive
channel greatly exceeds the depth to the diapir, the thickness, and hence areal extent,
of surface flooding will be governed by the hydrostatic head pATZ that the warm
ice can achieve (we have argued that the lithosphere is bowed up by this amount,
but once it is breached it will subside, allowing flooding). For a thermally driven
diapir at 250 K, this is only ~ 500 m but may be substantially greater for the earliest
diapirs, so that extensive flooding by this mechanism may be possible. Modeling of
the diapir-surface interaction and of the combined heat- and mass-flow problem of
eruption from a large orifice needs to be done to remove these ideas from the realm
of speculation.

We turn now to the problem of groove formation, in the restricted sense: ac-
cepting the hypothesis that grooves originated as extension fractures and/or graben,
subsequently modified by viscous relaxation and mass wasting (Squyres 1980a), what
was the source of the fracturing stress? Necking instability of a “plastic” surface layer
has also been proposed as an origin for the multiple-groove sets (Fink and Fletcher
1981) but the required discontinuity in rheology, from n <~ 10 to n & 104 in equa-

tion (A.2) (Fletcher and Hallet 1983), is difficult to justify except as a macroscopic
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consequence of the transition to brittle behavior near the surface. The requirements
for groove formation are thus the same as in the case in which fracturing is explicitly
invoked. As in Section 4, for any given flow geometry we can calculate the strain rate
required to achieve tensional failure as a function of depth.

Motivated by the occurrence of grooves predominantly in the resurfaced ter-
rain, we first consider the magnitude of the thermal stresses in a layer of ice emplaced
at (say) 250 K and cooling towards a lower equilibrium temperature. Implicit in this
model is the assumption that the ice is laterally confined, i.e., that no horizontal
motion takes place. The shortening of the “natural” length of the ice due to thermal
contraction must thus be offset by viscous or elastic elongation, with an associated
tensile stress (Turcotte and Schubert 1982). The temperature of a cooling half-space
is a known function of time and depth (Carslaw and Jaeger 1959), and through it
viscosity and strain rate are also both known. A simplified estimate of the stress his-
tory ignoring elasticity led us previously to doubt the importance of thermal stresses.
Based on the instantaneous strain rate and the creep mechanisms of Durham et al.
(1983; 1984), the peak stress will exceed the tensile strength only in the uppermost
50m of a layer cooling towards 130 K. Elastic effects will, however, act to increase
the maximum stress substantially. Numerical solution of the differential equation for
stress in a nonlinear Maxwell fluid leads to the prediction of failure to a depth of 1 km
for To = 130 K. This figure depends strongly on the equilibrium surface temperature;
for a value of 110 K (plausible for clean, bright ice on which no regolith has formed)
it increases to nearly 10km. Actually, of course, failure due to thermal stresses is
limited to the thickness of the emplaced layer. Dispersion hardening may also act to
increase the suceptibility to thermal fracture. Assuming that the typical horizontal
lengthscale of deformation is three to four times the maximum depth of fracture (a

result obtained for brittle-ductile necking instability and likely to apply roughly to
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extension fracture also), we can thus reproduce the ~ 6-8 km modal groove spacing
obtained by Grimm and Squyres (1985).

Interestingly, thermal fracture to a substantial depth is also predicted for rhe-
ologies and temperatures appropriate to the Saturnian and Uranian satellites, hinting
at a possible common mechanism of formation for at least some of the groovelike fea-
tures observed on a variety of icy bodies. The rheology of NH3-2H,0 glass is highly
uncertain, but for plausible estimates (Stevenson and Lunine 1986) failure to 1km
will occur upon cooling from a magma at the eutectic temperature to ~ 85-105K,
well in excess of typical equilibrium temperatures at Saturn. Pressure-solution creep
in the presence of cryogenic pore fluids has been proposed to explain mobilization of
ice on the Uranian satellites (Stevenson and Lunine 1986). The very low viscosity ex-
pected precludes significant thermal fracture in the early stages of cooling, but upon
freezing of the pore fluid the effective viscosity must increase enormously to that of
the ice matrix. Thermal fracture of the entire emplaced region is then possible even
for a temperature drop on the order of one Kelvin.

There are nonetheless several problems with the thermal fracturing model of
groove formation. Most fundamentally, the generation of tensile stress is critically
dependent on the assumption of lateral confinement. If the ice is able to contract lat-
erally, not only will the coldest, near-surface layers shrink to maintain their “natural”
length without stress, they will subsequently be placed under compression as the ice
beneath them cools. The result is analogous to the familiar process in which glass is
tempered by quenching of the surface followed by slower cooling of the interior. In
this case extension fracturing would not be possible, though grooves could conceivably
form as compressional features if the near-surface layer were to buckle. Whether the
net stress in a cooling ice layer of realistic dimensions is tensile or compressive can

probably only be answered by numerical modeling. Second, even if thermal contrac-
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tion leads to tensile stresses, the one-dimensional stress calculation outlined above
does not indicate whether the observed morphology of multiple parallel grooves (let
alone groove pairs and single grooves) will result. Indeed, one might rather expect
the formation of a polygonal network of fractures, similar to mud cracks. A final
problem with thermal fracturing is that grooves should be equally likely to form on
all of the resurfaced areas on Ganymede, whereas some areas of young, high-albedo
terrain are observed to be smooth. We therefore turn to fracturing of the lithosphere
by diapirism in the mantle beneath.

The depth of fracturing due to diapiric loading calculated in Section 4 can
also lead to multiple grooves of roughly the observed spacing, at least provided we
invoke dispersion\ hardening to obtain zy ~ 2km. This mechanism is also apparently
more consistent with the observed morphology and distribution of the grooves. If
overturn of sufficient vigor to cause crustal fracturing persists for longer than the
~ 10%y diapiric rise time, then we can envision a sequence of events similar to that
deduced by Golombek and Allison (1981) from crosscutting relationships:

1) Rise of the earliest warm-ice diapirs to the base of the boundary layer (Fig-
ure 3.2c) results in crustal fracturing, including the formation of “primary and
secondary grooves.”

2) After ~ 10%y these diapirs reach the surface (Figure 3.2d). Resurfacing occurs,
structurally confined by the primary and secondary grooves.

3) The thin resurfaced units cool on a timescale of ~ 10°y. Away from the feeding
diapir the thermal gradient is similar to its original value. Any extension
occurring before this will be viscously relaxed.

4) Ascent of younger diapirs nearby (Figure 3.2¢) leads to fracturing of the resur-
faced units, forming multiple groove sets or “tertiary grooves.” Adjacent resur-

faced units are structurally separated by their bounding grooves, so that their
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groove sets are independent.

5) Resurfacing and fracturing continue, but once tertiary grooves form on a given
unit, subsequent episodes of diapiric loading will (usually) reactivate them
rather than create intersecting grooves. The thermal and stress history, and
hence the groove morphology, of each unit will be homogeneous but different
from that of its neighbors. |

6) The final regions to be resurfaced may escape tertiary groove formation, be-
coming smooth terrain.

In this scenario, the strong but not total correlation between grooving and
resurfacing occurs not because the resurfaced areas are intrinsically susceptible to
groove formation, but because both resurfacing and lithospheric fracturing occurred
above the regions of diapiric activity (which in turn are probably the regions above
the ascending convective plumes of the lower mantle). The expected degree of corre-
lation is unfortunately not quantifiable, so that we can only assert the plausibility of
obtaining what is actually observed on Ganymede by this means. The implication is
clear, however (for what it is worth) that the ancient surface underlying the grooved
terrain is itself grooved.

There are two other difficulties with the sequence of events just proposed.
First, although we believe that diapiric loading can produce tension fractures of up
to 2km depth, and hence tertiary groove sets with wavelengths of 6-8 km, the origin
of some of the larger primary and secondary grooves is problematic. In particular,
the morphology of groove pairs makes their interpretation as viscously relaxed graben
attractive (Squyres 1982), but graben formation requires failure at confining stresses
greater than 3o0; (Jaeger and Cook 1979), i.e., at depths greater than about 7km.
Second, while ongoing diapirism for several million years as required for our groove

formation scenario seems plausible (the lower mantle contains enough excess heat to
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supply ~ 10 diapirs), the 7 x 10®y range of crater density ages on grooved terrain
(Shoemaker and Wolfe 1982) is very difficult to explain. Qur parameterized convection
model predicts that the heat flux enhancement is over in one tenth this time for
no = 10'3Pas; any resurfacing must come to an end even more rapidly. We know
of no means for breaking up the heat pulse into episodes separated by 10® or more
years. The maximum delay results if the bidirectional flow described in Section 3.1 is
not immediately established. Alternating episodes of predominantly downward and
upward diapirism will then take place, lasting roughly the time required to transport
the mass of the residual ocean: ~ 3 x 108y, if one uses diapirs of 40 km radius. The
wide range of apparent ages of the grooved terrain is in fact a stumbling block for
any theory of the resurfacing of Ganymede. It is difficult to see how any resurfacing
process can be vigorous enough to cause crustal fracture, while lasting the better part
of a billion years.

We have offered plausibility arguments in this section for resurfacing and
groove formation on Ganymede based on the results of our thermal evolution model.
A complete understanding of the icy Galilean satellites also requires an explanation of
the absence of resurfacing on Callisto, despite its similar radius and density. The dif-
ficulty therein unfortunately lies not in proposing an explanation, but in verifying its
validity. This is as true of our model as it is in general. If we ccept for the moment
that the heat pulse phenomenon was responsible for the resurfacing of Ganymede,
there are several possible explanations for the lack of a heat pulse in Callisto. We list
them in order of what we consider to be decreasing probability.

1) Models of accretion (Schubert et al. 1981; Lunine and Stevenson 1982) suggest
that differentiation was limited to a much thinner outer region in Callisto than
in Ganymede. Subsequent differentiation due to radiogenic heating also seems

less likely in Callisto (Friedson and Stevenson 1983). If, as therefore seems
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2)

3)

likely, the base of the primordial Callistian ocean lay at a pressure of less than
0.2 GPa, only ice I would have formed upon subsequent cooling. There would
thus have been no reservoir of stored heat to supply a heat pulse once the
residual ocean became thin.

It is possible, depending on the thermal structure of the protojovian nebula,
that ammonia was able to condense at the orbit of Callisto, and was incorpo-
rated into that body in significant quantities, but not into Ganymede (Lunine
and Stevenson 1982). With a mole fraction of NHj; of the order of 1%, differ-
entiation would of necessity have been extensive, but subsequent thinning of
the ocean to the point where convective overturn would become possible would
require cooling to nearly the H,O-NHj3-2H,0 eutectic temperature. This is im-
possible if radiogenic heat is to be lost by conduction or by convection at any
plausible viscosity. Thus, if it accreted condensed ammonia hydrate, Callisto
could still have a substantial liquid ocean.

We argued in Section 2.5 that ice grain size and hence viscosity is controlled
by stirring of oceanic sediments into the crust by large impacts. Starting
from the same differentiated state, Callisto, which receives a lower impact flux
than Ganymede because of gravitational focusing, would be expected to have
a slightly more viscous ice crust. Given the sensitivity of the thermal history
to no (Figure 2.5), this difference could have substantially delayed (possibly
even prevented) the Callistian heat pulse. The lower silicate content of Callisto
(based on mean density) would, however, act to make an early heat pulse more
likely. This last possibility also predicts a differentiated Callisto, with a small
residual ocean today. |

To what extent can future work or observations be expected to clarify the issues

raised here? Certainly, it would be desirable to understand whether the proposed
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finite amplitude instability responsible for the heat pulse can occur. This would
require finite amplitude modeling of convection.

Tighter constraints on the parameters of our thermal evolution are unfortu-
nately unlikely. Although Durham et al. (1983; 1984; 1985) have immensely ex-
tended our knowledge of the rheology of ice at outer-solar-system temperatures in
recent years, measurements at the strain rates of interest as well lie beyond the limit
of human patience and would in any case almost certainly be moot. Any uncertain-
ties about the theoretical diffusion creep viscosity are overwhelmed by the strong
dependence on grain size, an unknown and planet-dependent quantity.

Beyond the Jovian system, the Voyager encounter with Triton in 1989 could
provide an additional test of our heat pulse scenario for resurfacing. Although smaller
and less silicate-rich than Ganymede, Triton may have been extensively melted by
tidal dissipation during capture by Neptune (McKinnon 1984). Its subsequent cooling
could then have resembled that of Ganymede, including the occurrence of a heat pulse.
Evidence of Tritonian resurfacing would be of great interest and would help clarify
the influence of size, heat supply, impact flux, and abundance of minor consitituents
on the thermal evolution. It is of course possible that such evidence, even if originally
present, has been buried or modified beyond recognition by the presence of volatile
species such as CHy and N, (Cruikshank et al. 1984). In particular, resurfacing by
methane may depend on the high-pressure thermodynamics of clathrate (Lunine and
Stevenson 1985).

The ability to discriminate between competing models of Ganymede’s struc-
ture and evolution will, however, be significantly increased by the Galileo mission.
Perhaps most importantly, the close flybys may allow moderately accurate measure-
ments of the gravitational moments, and hence estimation of the degree of central

condensation of the Galilean satellites (Hubbard and Anderson 1979). The relation-
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ship between differentiation and resurfacing will, we hope, be clarified; current models
range from a differentiated-but-unresurfaced Callisto (e.g., our 2) and 3) above) to an
undifferentiated-but-resurfaced Ganymede (Croft 1985), while the most widely held
view is that resurfacing is a consequence of differentiation.

Spectroscopic detection of a residual N, atmosphere by Galileo is possible and
would help set limits on the initial incorporation of ammonia in the icy satellites.
This is, of course, highly relevant to the problem of planetary nebular structure, but
if Callisto should prove to be centrally condensed, the role of ammonia in its history
will be of especial interest.

Spectral data from the Galileo NIMS instrument may help constrain the grain
size and silicate content of at least the outermost layers of the Jovian satellites,
although extrapolation to the deep interior for the purposes of estimating the mantle
viscosity will still be risky.

Galileo will, of course, make images of Ganymede and the other Jovian satel-
lites at higher resolution than those obtained by Voyager 1 and 2. Such close-up views
may shed light on the mechanisms of resurfacing and groove formation (as well as on
crater morphology and other important icy-surface phenomena), but if past experi-
ence 1s a guide, they will be complex and open to multiple interpretations, raising

more questions than they resolve.
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Appendix A: The Rheology of H,O Ice

The greatest obstacle to constructing a definitive thermal evolution scenario for Gan-
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ymede — and, for that matter, to answering many questions about outer solar system
bodies — is our incomplete knowledge of the rheology of ice. In this Appendix we at-
tempt to assess both the mechanisms of creep important to convection in Ganymede
and the values of physical parameters (notably stress and ice grain size) controlling
the resulting viscosity. The deformation behavior of water ice is complicated (see
Weertman 1973; Hooke 1981; Goodman et al. 1981; Weertman 1983; Poirier 1982
for reviews, the last with especial reference to icy satellites). It depends not only on
temperature and deviatoric stress, but also on pressure (Jones and Chen 1983), strain
history (Mellor and Cole 1983; Ashby et al. 1978), grain size and fabric (Baker 1978;
1981; Lile 1978), suspended particles (Hooke et al. 1972; Baker and Gerberich 1979;
Friedson and Stevenson 1983), dissolved impurities (Jones and Glen 1969; Goodman
et al. 1976), and of course the ice polymorph being deformed. We are concerned with
the steady-state creep at large strains of ices IIl, V, VI and in particular I, frozen
from the Ganymedean ocean. At its maximum concentration, the ocean contains per-
haps 1% NHa, leading to a maximum incorporation of 3 ppm in the ice (Hobbs 1974),
which results in an utterly negligible increase in viscosity (Jones and Glen 1969). As
we shall see below, included silicate particles affect the viscosity only by determining
the grain size of the ice. We thus concentrate first on the properties of the pure ices.

At very high shear stresses (~ 100 MPa) and homologous temperatures %— o
0.95, ice VI is perhaps 10°-10® times stiffer than ice I (Poirier et al. 1981) — a
result not widely appreciated, since the viscosity of ~ 10? Pas obtained is often
quoted without reference to the stress level; nothing is yet known about the stress-
dependence of ice VI viscosity. Only preliminary measurements of the viscosity of ice
V have been made (Durham et al. 1985), but at a strain rate of 3.5 x 10™*s~! and
temperatures of 230-250 K the viscosities obtained are very similar to those of ice I.

The viscosity of ice III has a very strong dependence on both stress and temperature
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(n = 5.5 and A = 156 in equations A.1, A.2 below) and is lower than that of ice I at
the same temperatures for stresses & 1 MPa (Durham et al. 1984; 1985). As we show
in the case of ice I below, additional deformation mechanisms may lead to much lower
viscosities at the low stresses of interest here than would be predicted on the basis of
these results. If the viscosity of ice VI remains anomalously high at low stresses of the
order of 10kPa, the ice VI mantle may form a separate convective cell. Otherwise,
the exact viscosity of the dense ices is not critical to our model. Deep in Ganymede
where they occur, the homologous temperatures are high. Ice I, on the other hand,
extends to the cold exterior, and it is the increase of its viscosity from the ocean to the
surface — by a factor of perhaps 102, dwarfing the differences between phases — that
is the “bottleneck” controlling the rate of thermal evolution. For this same reason,
we concentrate on the conditions in the upper (cold) boundary layer. Deformation in
the lower boundary layer will most probably proceed by the same mechanism(s) as in
the upper, but enhanced by partial melting along grain boundaries. For the purposes
of our thermal model, we approximate this enhancement crudely but conveniently by
using the same viscosity law (A.1) in both boundary layers, but setting —1% =1.0in
the warm layer, rather than the actual value ~ 0.96.

A variety of mechanisms contribute to the steady creep of ice I at stresses
below those that cause fracture (Goodman et al. 1981; Duval et al. 1983): diffu-
sion within grains and along grain boundaries, and dislocation glide, which may in
turn be controlled by proton rearrangement, kink nucleation, and defect formation.
Recrystallization, partial melting, and even solid-solid phase transitions (“transfor-
mational plasticity” due to the ice I-II transition has been observed by Durham et al.
1983) can further modify creep. The strong temperature dependence of most of these
mechanisms is commonly represented by an Arrhenius form 5 o« exp { (%jﬁ) },

where E* is an activation energy for the mechanism, V* is an activation volume, and



| Paper | {94  Evolution and Tectonics of Ganymede]

kp is Boltzmann’s constant. We adopt the approximately equivalent formulation in

terms of the homologous temperature 7?—, where T, is the pressure melting point

= mern{4(Z- 1)} 4

Here 7 is the viscosity extrapolated to (not evaluated at) T' = T,, and the dimen-

(Weertman 1970):

sionless constant A ~ 18-35 for a wide variety of materials and mechanisms. In both
experimental and theoretical work, additional dependences of the viscosity are com-
monly limited to proportionality of 5o to powers of the temperature, the grain size d,

and the equivalent shear stress o, = (%azfja,’-j)l/ 2

k m 1-n

@ @@ e
(where B, k,m, and n are constants depending on the mechanism), although there is
theoretical (Lile 1978) and experimental (Baker 1981) support for additional depend-
ences on fabric and on the third stress invariant. In this paper we use as reference
conditions for B the values Ty = 220K, dp = 1 mm, and oo = 1 MPa. We make the
assumption that an equilibrium grain size d is reached in the flow; as shown below
the variation of T over the course of evolution is not important in the pre-exponential
factor. Furthermore, numerical calculations (Parmentier et al. 1976) indicate, at
least for temperature-independent viscosity, that convection with a stress-dependent
viscosity (n 7# 1) obeys essentially the same Ra-heat flow relationship as convection
with an appropriately chosen Newtonian (n = 1) viscosity (equal to the viscosity
averaged with respect to the square of the strain rate). Our parameterized convection
model implicitly based on Newtonian flow, may thus be applied for creep mechanisms
with n # 1, provided 7, is chosen in an appropriate way, self-consistent with the
resulting strain rates. Qur problem is thus to choose 7 so that it will satisfy (A.2)
with the boundary-layer temperatures and stresses to which it leads in the thermal

model — and assuming the flow parameters A, B, k, m, and n appropriate to the creep
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mechanism that dominates at those temperatures and stresses. The achievement of
self-consistency is potentially complicated by uncertainties in the values of the flow
law parameters, and by the fact that grain size (and fabric) are difficult to constrain.
We used an iterative approach to obtaining self-consistent rheologic parame-
ters, first running the thermal evolution model with four sets of rheologic parameters
ranging somewhat more broadly than that in the icy satellite literature (Passey 1982;
Reynolds and Cassen 1979): A = 18 and 24 with o = 10'® and 10 Pas. We ex-
amined the convective stress, estimated from boundary layer theory (Turcotte and
Oxburgh 1967):
oe ~ 0.1a1(T3 — T2)(Ps — P2), (A.3)

and the mean temperature in the boundary layer, T = %(T 1+ T3). In all cases,
0.76 < Ti; X 0.85 and 5kPa < o, < 20kPa, with temperatures decreasing and
stresses increasing with time. These temperatures and stresses were then used to
refine the choice of rheologic parameters. They lie in the diffusion creep regime of
published deformation maps (Goodman et al. 1981), which are, however, based on
extrapolations of data at higher temperatures. We therefore compared the viscosity
for diffusion creep with the nonlinear creep mechanisms recently measured at low
temperatures (albeit relatively high stresses) by Durham et al. (1983; 1984).

Claims of the observation of diffusion creep based on stress (Bromer and
Kingery 1968) or grain-size (Baker 1978) dependence are controversial (Mellor and
Testa 1969), but it is well understood theoretically (Nabarro 1948; Herring 1950;

Coble 1963). The viscosity is Newtonian and is given by:

kpTd? 76 7

7]d f.f \ 420 { |4 + d B} 9 ( )
where §) is the atomic volume, é is the grain-boundary thickness, Dy and Dp are the
coefficients for lattice and boundary diffusion, respectively, and ¢ is an enhancement

factor, which is unity for infinitesimal strain but of order 0.4 for large strains (Raj]
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and Ashby 1971). At the temperatures of interest, volume (Nabarro-Herring) diffusion
dominates diffusion at grain boundaries for d & 10~*mm. The values of the viscosity
parameters for diffusion creep given in Table VI are based on crystallographic and

diffusivity data quoted in Goodman et al. (1981).

Table VI. Rheologic Parameters of Ice 1,°
Mechanism T/T. A B (Pas) k. m n

Volume diffusion? < 0.9 262 23x10% 1 2 1
low T 0.58-0.71 12.8 1.2 x 10%° d d 4.8
Livermorec{ med. T 0.71-0.89 269 1.4 x10% d 4 40
high T 0.89-0.93 40.1 1.5 x 101 d d 40
@ Cf. equations (A.1), (A.2).
5 Theoretical (input quantities from Goodman et al. 1981).

¢ Experimental (Durham et al. 1983; 1984).
4 Zero by assumption.

Also appearing in Table VI are parameters for three mechanisms observed in
the uniaxial compression of jacketed polycrystalline ice samples by Durham et al.
(1983; 1984). The second of these dominates the others at the temperature of the up-
per boundary layer; whether it will dominate Nabarro-Herring creep as well depends
on the relative magnitudes of no(o., d), but not on temperature, since A is nearly the
same for the two mechanisms.

Two pieces of information from our preliminary models are useful at this point.
First, at given heat flux, 0. 77(1,/ % approximately (exact proportionality follows
from boundary layer theory if n # n(T')) — a constraint added to our expression
o = No(0e, d) for the sum of the two mechanisms. Subject to this constraint, volume
diffusion will be the dominant creep mechanism for d ~ 6 mm (corresponding to
o ~ 8 x 108 Pas). Second, if 5o & 10 Pas, the Ganymedean ice I layer never
becomes convective. Thus we conclude that, if it occurs, subsolidus convection in
Ganymede will be controlled by volume diffusion creep.

Diffusion creep has very convenient theoretical properties: unlike glide creep,
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it is both Newtonian and isotropic. Isotropy leads not only to the absence of fabric
effects on viscosity, but also to the absence of dispersion hardening by suspended
particles. During glide creep, substantial local concentration of stress occurs in un-
favorably oriented ice grains, and this stress is ultimately accommodated by recrys-
tallization (Duval et al. 1983). The mechanism of dispersion hardening is believed
to be the inhibition of recrystallization by foreign particles, which “pin down” grain
boundaries. Thus diffusive flow, which is not dependent on recrystallization because
internal stresses are distributed uniformly among grains, will not suffer dispersion
hardening. (The weaker viscosity enhancement due simply to the effect of large in-
clusions as “obstacles” to the flow (Friedson and Stevenson 1983) will, of course, be
present.)

The controlling factor for the viscosity is thus the grain size, and it is here that
suspended silicates become important. Surface tension drives the growth of ice grains
even in the absence of locally concentrated stresses. Measurements of the growth rate
as a function of temperature and pressure (Azumo and Higashi 1983) indicate that
over the age of the solar system, grain sizes in excess of 1.5m could be achieved for
T R 195K in pure ice. One might expect an equilibrium diameter to be reached,
at which severe straining disrupts grains as fast as they grow, but this would not in
fact occur. Recrystallization and Nabarro-Herring creep both depend on the kinetics
of vacancy diffusion and hence have the same dependence on both grain size and
temperature. For reasonable stresses, d? can always double in a time much less than
¢~!, while é~! more than doubles because of the increasing viscosity and decreasing
vigor of convection. Grain size thus grows without limit in pure ice, up to and beyond
the point where convection becomes impossible. Even a small concentration of silicate
particles will inhibit grain boundary movement enough, however, to limit d to a value

for which convection is still possible. The remainder of this Appendix is an attempt
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to estimate the silicate-controlled ice grain size. While admittedly conjectural, and
subject to uncertainties at several key points, it nonetheless raises (and attempts to
answer) the key questions concerning d: How do inclusions control grain size? and
how (hence in what quantity) do silicates make their way into the ice I layer?

The theory of Zener (Smith 1948, but note typographic error) relates the

maximum ice grain diameter to inclusion radius r and volume fraction ¢ by

8r
d=—-—. .
35 (45)
For polydisperse inclusions one may use (A.5) with the effective radius defined by
r3dn
el = Tt (A.6)

The particle size distribution n(r) is unfortunately an unknown. We will assume a
distribution with a power law dependence typical of collisional processes: n(m)
m™1, or dn & r~*dr for rpmin <7 < Tmae. Then equation (A.6) yields

ln(rmax/rmin)
1- rmin/rmax .

(A7)

Teff = Tmin

Also, if the distribution of silicate particles originally accreted ranged from romez >
Trmaz 1O Tomin < Tmin With a total volume fraction ¢g, and if only a fraction f of the

particles at each radius between 7, and r,,; (and none outside this range) find

their way into the ice, then

¢ hl('rmax/rmin)

—_— = . A8
¢0 111(7‘0 ma:v/remin) ( )
Combining (A.6), (A.7), and (A.8), and assuming Tmez > Tmin,
8 Tmin TOmax)
do~ - In . A9
3 ¢0f (Tomn ( )

Using the assumed silicate density p. = 3000 kg m™> leads to ¢y =~ 0.36 based on

the bulk density of Ganymede. The values of rgp,ma, and rg.,i, are not critical; we
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take 10°m and 10~ m, respectively, as used in Friedson and Stevenson (1983). Then

A

Estimation of r,,;, and f depends on a consideration of how silicate material
accreted with the Ganymedean ocean can find its way into the ice mantle. Clearly, the
largest rock fragments will settle out and cannot enter the ice I layer. Mixing length
theory yields an estimate of convective velocities in the ocean of ~ 1072ms~!1 based
on typical heat fluxes (Schubert et al. 1981), so that particles with r 2 100 pum will
surely settle. The remaining material constitutes ~ 30% of the total mass of silicates,
and will remain suspended unless flocculation of clay minerals causes accumulation
into larger particles (the topography on the ice-water interfaces is quite subdued,
so that only a small fraction of the larger suspended grains will enter the turbulent
boundary layer where they can settle out). The flocculation process depends on
cationic concentrations as well as on the clay mineral species (Whitehouse et al. 1959).
At the low ionic concentrations probable in the Ganymedean ocean (~ 4 x 1073 M
if all available chloride in the suspended sediment is leached) most clays, including
montmorillonites, do not flocculate, though kaolinite may flocculate when exposed to
only 1072 M of Mg*+. Lacking knowledge of the clay mineralogy in the ocean, we will
assume tentatively that the fine silicate particles remain dispersed and in suspension.

How can suspended silicates with r < 100 pm become entrapped in the ice?
Experiment (Corte 1962) indicates that grains of this size will be pushed ahead of a
planar ice surface and excluded (even against gravity) unless the solidification front
moves faster than ~ 107" ms™!. The ice I mantle thickens by ~ 100km in 3 x 108y,

giving an interfacial velocity on the order of 101 ms™1.

Silicates will thus enter
the ice only if the interface becomes nonplanar, so that they can become physically
entrapped.

Constitutional supercooling can give rise to a highly structured freezing sur-
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face in an impure melt (Harrison and Tiller 1963), but consideration of the effects
of stirring (Burton et al. 1953) by convection indicates this will not occur in Gany-
mede. Mechanical disruption of the freezing layer can, however, lead to entrapment
of silicates. At the onset of freezing, the upper few cm of the ocean will be boiling
vigorously into near-vacuum, leading to the formation of a slush of ice fragments
known as frazil ice. As the ice thickens, boiling will cease, but the layer will continue
to be disrupted and stirred into the ocean by those impacts that completely penetrate
it. We refer to this large-scale stirring as the formation of megafrazil and estimate
that it can lead to the introduction of significant amounts of oceanwater (and, hence,
suspended silicates) into the forming ice. (The silicates contained in the impacting
bodies themselves may be neglected here because the impactor volume is a miniscule
fraction of the volume of the crater.) Our calculation is based on the cratering rates
of Shoemaker and Wolfe (1982) as a function of time ¢ (measured from 4.55 x 10%y

ago) and crater diameter D given by:

Pn D\ e
sp5m = o (B) 1o+ Rl (A9)

with v = —2.2, Do = 10km, A = In2(10%y)™!, ¢, = 1.25 x 10°y, Ro = 263(10%y)~!
(106km?)~!, and R, = 115(10%y)~*(10km?®)~1. We also assume a conductively
thickening crust with thickness Z o t/2, and assume that for any crater with D > 52
when it forms, the true crater penetrates into the ocean. If the breccia lens, which will
occupy most of the true crater, has a porosity p, a volume of oceanwater ~ {—DzZ P
will rise hydrostatically to fill the void space. Integrating over ¢ and D and comparing
the amount of oceanwater introduced to the total crustal volume yields the silicate

incorporation efficiency f:

s 9n

t 00
_ 27(Np—2 " 4D dt’ 1
f 4Z(t)/0 5Z(t,)D Z(t )paDBABt dDdt'. (A.10)

Substitution of (A.9) into (A.10) yields a result in terms of the incomplete gamma

function, but we are primarily interested in the asymptote at early times: f ~ t%°,
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falling off after 10® years because of the decaying cratering rate. By as early as 107
years each spot on the crust has been punctured an average of once; the incorporated
silicates will thus be fairly uniformly stirred after this time, leading to a uniform
viscosity.

Combining (A.8) and (A.10), with 7., = 100 um, 7pin = Tomin = 0.1 pm, we
obtain an estimate of the ice grain size and hence viscosity during conductive crustal
growth. Comparing this steadily decreasing viscosity with the threshold viscosity for
convection exhibited by the thermal model, we can estimate the time and viscosity
at which convection begins as a function of p. The asymptotic forms for p S 0.5%

are

tonset ~ 7 X 107P-0'7 ¥, (Alla)
donser ~ 0.6 p~%° mm, (A.11b)
Mo onset ™~ 9 % 1013p—0-9 Pas, (A].lC)

where p is expressed in percent. Clearly, p is not well known, but values of a few per-
cent are plausible and lead to ice viscosities in the range 1013 < 5 < 10 Pas. As we
showed in Section 2.5, this is precisely the range of viscosities for which the predicted
thermal history of Ganymede is most interesting. It should be noted, however, that
additional and potentially considerable uncertainties in the results (A.11) stem from
the facts that the cratering rate at the early times of interest (2 4.4 x 10°y ago) may
have differed greatly from the assumed rate (A.9) recorded at later times, and that

the silicate particle size distribution assumed is also conjectural.
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The nature of the world which, motionless
At core, the wheeling of the rest maintains,
Starteth from here the running of the race...

— Dante Alighieri Paradiso, XXVIIl, 106—-108
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Abstract

The observed zonal flows of the giant planets will, if they penetrate below the vis-
ible atmosphere, interact significantly with the planetary magnetic field outside the
metalized core. The appropriate measure of this interaction is the Chandrasekhar
number @ = E—g/—gyx (where H = radial component of the magnetic field, v =
eddy viscosity, A = magnetic diffusivity, a™! = lengthscale on which A varies); at
depths where @ R 1 the velocity will be forced to oscillate on a small lengthscale or
decay to zero. We estimate the conductivity due to semiconduction in H; (Jupiter,
Saturn) and ionization in HyO (Uranus, Neptune) as a function of depth; the value
A =~ 10%cm?s™?! needed for Q = 1 is readily obtained well outside the metallic core
(where A ~ 102cm?s71).

These assertions are quantified by a simple model of the equatorial zonal jet
in which the flow is assumed uniform on cylinders concentric with the spin axis, and
the viscous and magnetic torques on each cylinder are balanced. We solve this “Tay-
lor constraint” simultaneously with the dynamo equation to obtain the velocity and
magnetic field in the equatorial plane. With this model we reproduce the widely
differing jet widths of Jupiter and Saturn (though not the flow at very high or low
latitudes) using v = 2500 cm?s™!, consistent with the requirement that viscous dis-
sipation not exceed the specific luminosity. A model Uranian jet consistent with the
limited Voyager data can also be constructed, with appropriately smaller v, but only
if one assumes a two-layer interior. We tentatively predict a wide Neptunian jet.

For Saturn (but not Jupiter or Uranus) the model has a large magnetic Rey-
nolds number where () = 1 and hence exhibits substantial axisymmetrization of the
field in the equatorial plane. This effect may or may not persist at higher latitudes.

The one-dimensional model presented is only a first step. Variation of the velocity

and magnetic field parallel to the spin axis must be modeled in order to answer several
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important questions, including: 1) What is the behavior of flows at high latitudes,
whose Taylor cylinders are interrupted by the region with @ 217 2) To what ex-
tent is differential rotation in the envelope responsible for the spin-axisymmetry of

Saturn’s magnetic field?

1. Introduction
In Earth and other terrestrial planets, we are accustomed to a clear delineation be-
tween the highly conducting, low viscosity region (the core) in which hydromagnetics
are important and an outer very poorly conducting, high viscosity region (the mantle)
in which hydromagnetics are unimportant. Nobody seriously advocates important hy-
dromagnetic effects in plate tectonics, oceanography or lower atmosphere motions. In
the Sun and many other stars, we are equally accustomed to the idea that hydromag-
netic effects can be important in the observable atmosphere (e.g., in sunspots). The
giant planets do not easily conform to either of these limits. There is little doubt
that Jupiter and Saturn possess highly conducting metallic hydrogen cores (Steven-
son 1982), but there is also the likelihood that molecular hydrogen regions only a
small distance (few thousand kilometers) below the atmosphere are sufficiently con-
ducting to have significant hydromagnetic effects. The central question is this: To
what extent are the observed atmospheric flows (the zonal winds) affected by or even
determined by the planetary magnetic field? We offer here only a partial and qualified
answer to this question, but an interesting answer nonetheless because it suggests a
connection between surficial winds, deep-seated flows, and the planetary dynamo.
The ideas are not entirely new. Hide (1965) suggested that the field of Jupiter
may be generated near the surface, and Smoluchowski (1972; 1975) pointed out the
likely semiconducting properties of impure or even pure molecular hydrogen at high
pressure and temperature. An attempt has even been made to determine the depth

of the field-generating region in Jupiter (Hide and Malin 1979), but the data are
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Figure 1.1. Schematic view of deep zonal flow in Jupiter and Saturn . The surface flow
extends into the interior on concentric Taylor cylinders but is excluded from a

magnetically interacting region at depth.
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insufficient for a convincing result. On the other hand, many workers have assumed
that the entire region external to the metallic hydrogen cores of Jupiter and Saturn
can be treated as an insulating fluid (i.e., using the Navier-Stokes equation without the
Lorentz force). Busse (1976; 1983) proposed that the surficial structure of clouds or
winds may be directly matched to the columnar convective cells expected deep within
rapidly rotating, adiabatic fluid planets. Ingersoll and coworkers, motivated largely by
a perceived difficulty in explaining the winds by thin shell meteorology, have pursued
the related idea that the observed winds are the surface expression of zonal flows on
cylindrical surfaces (Smith et al. 1982; Ingersoll and Pollard 1982; Ingersoll and Miller
1986). This is illustrated in Figure 1.1. The arguments against confining the winds
to a thin shell have become less compelling because of the possibly large role of latent
heat effects in the fluid motions (Allison and Stone 1983; Conrath and Gierasch 1984).
Although no fully quantitative dynamic theory exists, deep-seated zonal flows still
remain an attractive hypothesis because these planets have bottomless atmospheres
and very stable wind patterns. Ironically, the work reported here provides support for
moderately deep-seated flows, yet invalidates the original views of Busse and Ingersoll,
who envisaged columnar or cylindrical flows that completely filled the region external
to the metallic hydrogen core.

Our basic ideas are these: A deep zonal flow has a differential rotation that
leads to a generation of toroidal field Hy ~ R, H,, where H, is the imposed radial
field, R, ~ 3’% is the magnetic Reynolds number, v a characteristic azimuthal flow
velocity, £ some lengthscale (ill-defined, as yet), and A is the magnetic diffusivity.
Even for a conductivity tens orders of magnitude less than that of copper at room
temperature, A >~ 10'2cm?s™!, R,, ~ 1 for v ~ 10%ems~11 (typical of Jupiter and
Saturn) and £ ~ 108 cm. The toroidal field has an associated poloidal current which,

when crossed with the radial field, yields a Lorentz force with an azimuthal compo-
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2
nent ~ —Z—TT—%L per unit mass (p is the fluid density). Since there cannot be a net
azimuthal torque on a cylinder of fluid in steady flow (Taylor 1963), this force must

be balanced by a “viscous” force ~ -’?—21-)-, where v is the kinematic eddy viscosity. It

follows that we require % ~ 1. This dimensionless number was first introduced
by Chandrasekhar (1965) although for different reasons. As we go down into the
planet, the conductivity increases and A decreases, so this requirement translates into
a progressively smaller £. In effect, the zonal flow is forced to have large shears. Our
thesis is that this requirement imposed by the Chandrasekhar number implies a rapid
drop-off in the zonal flow and thereby limits the width of the equatorial jet in giant
planets. To put it another way, if these planets did not have magnetic fields, then
the observed equatorial jet would extend to much higher latitudes, corresponding to
deeper flows. Some aspects of this model were independently developed (but not
quantified) by Drobyshevskii (1979a;b). Here, we attempt a quantitative model.
Clearly, the biggest uncertainties lie in the diffusivities A and v, which could
range over many orders of magnitude. The value of A is computed in Section 2,
using semiquantitative theories of liquid semiconductors, published band structure
calculations of molecular hydrogen, experimental results for the conductivity of water,
and published temperature-density structures of giant planets. The value of ¥ might
seem to be much more uncertain because it is not likely to be the very small intrinsic
fluid value (~ 102 cm?s™!) but is a crude representation of the nonlinear effects of the
flow. However, it is bounded above by the requirements of the first and second laws

2
of thermodynamics: the local viscous dissipation ~ v (%) should not greatly exceed

the total planetary thermal energy loss per unit mass (=~ 10~ %ergg='s™! in Jupiter

< -
and Saturn), so v ~ 102cm?s™2.

In fact, careful scaling arguments (Ingersoll and
Pollard 1982) give a value of this order. A Chandrasekhar number of order unity then

typically corresponds to the level in the planet at which A ~ 10!°cm?s™1. Qur thesis
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is that the spin-aligned cylinder circumscribing the sphere on which this conductivity
is obtained must intercept the planetary surface at the latitude corresponding to
the outer extremities of the equatorial zonal jet. In this way, we can reproduce the
observed widths of the jets on Jupiter, Saturn, and possibly Uranus. In Section 3, we
develop the mathematical theory to support the above heuristic arguments, showing
how the Taylor constraint leads to the identification of a Chandrasekhar number.
The model is applied to Jupiter and Saturn in Section 4 and to Uranus and Neptune
in Section 5. We end in Section 6 with some comments on limitations and possible

future work.

2. The Magnetic Diffusivity

In hydromagnetics, it is conventional to characterize the electrical conductivity, o,

C2

in terms of the magnetic diffusivity A = I

where ¢ is the speed of light and o
is in e.s.u. units (s™'). A resistivity of 1 g€l cm is equivalent to A = (-2—7-?-0-) cm?s7L.
Typical values of A are 10?10 cm?s™* (good metals), 106 cm®s™! (good electrolytes),
and ~ 10'2cm?s™?! for pure or nearly pure germ‘anium at 500 K. Molecular H, is
effectively an insulator at low pressure (band gap E, ~ 10eV), but this gap is believed
to diminish progressively as the pressure increases. Although diamond cells (without
a hydrogen sample) have now achieved in excess of 4 Mbar (Xu et al. 1986; Goettel
et al. 1986) and quantitative experiments on Hy at ~ 1.5 Mbar have been reported
(Mao et al. 1985), there are no data on the band gap, except for the inference that
the band gap is still finite at the highest pressures attained. The much discussed and
anticipated transition to monatomic (alkali metal) hydrogen, conventionally called
“metallic hydrogen,” probably occurs at much higher pressures still (perhaps ~ 3-
4 Mbar; see Ross 1985; Min et al. 1986) but has no bearing on the issues addressed
in this paper.

We rely here on theoretical calculations for the band gap in crystalline H,
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(Friedli and Ashcroft 1977; Min et al. 1986). These results can be well represented

by the empirical formula:

1

2 2 Po\?®
E, =32.5p%(z + ez*) eV, where = >) 1 (2.1)

and p is the density in gcm™3, po is the density at band closure (0.81 g cm™2 for Friedli
and Ashcroft, 0.90 gcm™2 for Min et al.), ¢ = 0.3 for Friedli and Ashcroft and 0.2
for Min et al. Although there are differences between the two results, they are most
striking near band closure, a high pressure region that does not interest us. A more
serious concern is the use of a crystalline calculation to describe a liquid; evidence
for liquid semiconductors suggests that the appropriate band gap or mobility gap is
probably slightly smaller. Our calculation may therefore be conservative.

In a semiconductor, the fractional occupancy of current carrying states is pro-
portional to exp (-g{%) , where k is Boltzmann’s constant and T is the temperature.

The factor of two in the denominator of the exponent is an unavoidable consequence

of the law of mass action. It follows that, in general,

E
A= /\gexp(iﬁ ,

(2.2)
where A can be a function of density and temperature. Smoluchowski (1975) chose
to use the standard crystalline semiconductor result (e.g., Ashcroft and Mermin 1976)
in which A &x T%? with no density dependence. We shall adopt the semiempirical
results of the theory of Mott (1971) for liquid semiconductors, according to which
Ao = 10° cm?s™1, roughly independent of temperature. The two approaches disagree
by an order of magnitude or less at the densities and temperatures of interest. In the
low density limit, A should eventually approach the prediction of dilute gas theory
(Chapman and Cowling 1952), which we estimate to be ~ 10%p/3 (-I-Q;-;—K) cm? é‘l,

where p is in gcm™3. We do not use this result, but its approximate consistency with

our adopted value of 10°cm?s™! indicates no serious extrapolation difficulties.
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Figure 2.1. Magnetic diffusivity of the Jovian and Saturnian envelopes . The pressure-
induced semiconductivity of pure H, was calculated according to equations (2.1)

and (2.2); the shaded region indicates the uncertainty due to the input data.
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The temperature and density profiles within Jupiter and Saturn are obtained
from published interior models which differ little in the range of interest (Stevenson
and Salpeter 1976; Hubbard and Horedt 1983; Hubbard and Stevenson 1984). At
a given fraction of the outer radius, Saturn is much colder than Jupiter, mainly
because it has a lower gravitational acceleration but partly because it has a lower
specific entropy (i.e., colder atmosphere). However, they are both adiabatic planets,
so that the resulting functional dependence of A on fractional planetary radius is the
same for the two planets, except for a scale factor.

This is exhibited in Figure 2.1, based on calculations using equations (2.1),
(2.2), and the planetary models. The shaded region is an attempt to indicate the
combined uncertainties of all the inputs but does not include systematic errors (e.g.,
the possibility that the mobility gap is systematically smaller than E, as given by
eqn. 2.1).

It is also possible that Figure 2.1 systematically overestimates the true value of
A because of impurities mixed with the hydrogen. However, we doubt that atoms with
small ionization energies, such as sodium, are present in a chemically unbound form
(as assumed by Smoluchowski 1972). In order of decreasing abundance (approximate
mole fractions in brackets), the impurities are expected to be He (0.1), H,O (~
107%), CH4 (~ 1073), NH; (~ 107%), Ne (~ 10~%), silicate and iron particles (~
107*-1075). None of these appear likely to overwhelm the conductivity at T ~
3000 K (where A ~ 10'°cm?s~?), the region of most importance for our hydromagnetic
effects. Accordingly, we use the results for pure H,.

Our approach to the crude estimates for Uranus and Neptune is different and
more closely tied to the data. The conductivity of the envelopes of these planets

[4

is controlled by the “ice” component, specifically H,O (shockwave experiments sug-
y p )

gest that NHj3 has about an order of magnitude lower conductivity under similar
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conditions; Ross et al. 1981) — regardless of one’s assumptions about the internal
structure. At T' < 2000K, the “gas” layer of three-layer models (Hubbard and Mac-
Farlane 1980) is too cold to be significantly conductive according to equations (2.1)
and (2.2), and Lorentz forces first become important in the “ice” layer. On the other
hand, unpublished two-layer models by one of us suggest an ice to gas ratio of ~ 2.5 : 1
in the envelope, and under these circumstances the icy component will dominate the
conductivity at any given depth. Accordingly, we compute the conductivity of H,0
using Holtzapfel’s (1969) fit to static and shock wave data at temperatures up to
1000°C and pressures to 100 kbar. We account for the probable suppression of ioniza-
tion by dissolved hydrogen-helium in the two-layer model crudely but conveniently,
by adopting a magnetic diffusivity an order of magnitude greater than that of pure

water.

3. The Taylor Constraint

A complete dynamical model of giant planet envelopes that includes hydromagnetic
effects is obviously beyond the scope of this paper. We instead present a simple
one-dimensional model illustrating the effect of inward-increasing conductivity on a
deep-seated pattern of differential rotation.

The main assumptions made are, first, that the mean flow is zonal and de-
pends only on cylindrical radius (u = v(s)és in the (s, d,z) cylindrical coordinates
of Figure 3.1), as guaranteed by the Taylor-Proudman theorem for an inviscid, isen-
tropic, nonconducting medium; second, that the effects of turbulence and convection
may be parameterized by a constant eddy viscosity (of either sign as yet); third, that
magnetic forces can be expanded about the equatorial plane z = 0 (where, for given
s, the conductivity is greatest); and, finally, that the magnetic diffusivity varies ex-
ponentially with depth: A = Agexp(av/s2 + 22). (In applying our model to the giant

planets we will linearize the theoretical prediction for In A about a point near where
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Figure 3.1. The Taylor constraint (equation 3.1) is a balance between the integrated
viscous and magnetic torques on a cylindrical surface (Taylor column) C(s) in a
differentially rotating planet. The balance is illustrated for a positive eddy vis-
cosity, giving a monotonic zonal velocity v(s). The (s, ¢, z) cylindrical coordi-
nates are replaced with local (z,y, z) Cartesian coordinates for the actual calcu-

lations.
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v—0.)
For such a system in differential rotation on cylinders, the Taylor constraint
(Moffatt 1978) states that the sum of magnetic and viscous torques on a cylindrical

surface C(s) vanishes:

f (W + 1/V2u> cé4s’dpdz =0, (3.1)
C(s) 47I'p

where we write the eddy viscosity as +v with » > 0. Local variations of the magnetic
torque from its mean value on C(s) will be balanced by pressure gradients which do
not enter our analysis.

The Taylor constraint must be supplemented by the dynamo equation for the

evolution of the magnetic field, in steady state:

%%:—Vx()\VxH)-{—Vx(uxH):O. (3.2)

We will also use the solenoidal character of H:
V-H=0. (3.3)

Rather than simplifying equation (3.1) by forinally expanding H about z = 0,

we present here a much simpler derivation in Cartesian coordinates, appropriate to the

d

equatorial plane far from the rotation axis, and with 55 = 0. The essential features

of the problem are more clearly exhibited, and we readily obtain an analytic solution

-1
STBF;\ with that obtained by expansion in cylindrical

agreeing to lowest order in
coordinates — provided we measure the velocity in the latter case with respect to
solid-body rotation.

In (z,y, z) coordinates with aa_z- = 0 the vector equations (3.2) and (3.3) hold,
but the equivalent of the Taylor constraint is a force balance on a plane of constant

xT:

f (LV—%EI%-X——I:I— + uV2u> <é,dy =0, (3.4)



I Section 3 [131] The Taylor Constraint |

where the integral in y is over one cycle of the periodic function H. The vertical
integral is obviated by the assumption 58? = 0; in applying the solution we will
assume that the viscous force is constant, while the Lorentz term varies on a given
cylinder C(s) in proportion to . The result is merely to multiply the first term of
equation (3.4) by a weakly varying function §(s) = \/;v_—m?_sr)" since the integral

over exponentially varying s is readily performed.

The Lorentz term in the Taylor constraint may be expanded:

(V x H) x H), = (V x H),H, — (V x H),H,

_ (0H, 0H, oH,
= ( % 5 )Hz— 5 e (3.5)

The term involving H, is a total differential in y and hence does not contribute to the

integral (3.4). The first term may be rewritten by integrating the dynamo equation

(3.2) to give
uxH
A

where ¢(z,y) is an arbitrary function of integration (fortunately not appearing in the

VxH= +V¢, (3.6)

z-component of the equation, in which we are interested). These results may be used

to simplify the Taylor constraint to yield (with u = v(z)é,):

d? (H)%6 _
[EE T 47rpy)\(a:)] v=_0. | (3.7)

As usual, the upper sign corresponds to a positive eddy viscosity, and the root mean
squared value of H, is (H,) = (%zyﬂ) 1/2. Writing H = H(z)e'*¥+ complex
conjugate, with complex H(z), we have (H,) = \/p|H,| (p = 1ifk=0,p =1
otherwise). In cylindrical coordinates H ox e™#+c.c., so we identify k = -:S"—l, with S a
typical cylindrical ‘radius and m = 0, 1 the harmonics of greatest interest.

With the above assumptions about u and H, and A = Age®*, the components

of the dynamo equation become:

2
[/\ (;—2- — kz) - ikv} H,=0, (3.8a)
T
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d? d 9 . dv
[/\ (ZZ—:;; + aa—; -— k )] Hy = [zka)\ -— ZZ—;] Hx, (38b)
A ——d2+ L _p) ik H,=0. (3.8¢)
dz?  “dz ey .

It may occur (e.g., in the case of Saturn and Uranus) that multiple harmonic compo-
nents H,,, of the magnetic field with differing wavenumbers k,, are important. Each
component, of course, satisfies the linear dynamo equation individually, but all must
be included in the Taylor constraint. Because the integral in equation (3.4) is over a
whole number of periods of each component, cross-terms of the form (V x H),, x H,,,/
vanish for m # m’, and we can replace (H;)? by > (H,)? in equation (3.7).

We nondimensionalize equations (3.7) andm(3.8a) in terms of { = a(z — zo),
hy = E—”Ifo@ (where Hy = :}LIEO(Hz>), and u = & (where w = a lim v or w =

=00
lim %, whichever is finite). The boundary conditions as { — oo are thus h, = 1
(the phase of h, is arbitrary) and v = 1 or Du = 1 where D = gf There are
then three dimensionless parameters in the problem: K = ;’i— (€ 1 by assumption),

2
the Chandrasekhar number Q = Hod cf. Chandrasekhar 1965) and the
dmprva’(zo)

magnetic Reynolds number R,, = —+—. The Chandrasekhar number expresses

RYED)
the importance of magnetic forces in determining v, and because of the variation of A
we can always choose zg sufficiently deep that @ = 1 there. The magnetic Reynolds
number, on the other hand, expresses the importance of v in modifying the magnetic
field. Once we have chosen z¢, R,, = %, which may be of any magnitude. (In
the case of multiple field harmonics of ccgmparable strength, we make the obvious
generalization of HE to 3 HZ, in these formulae.) Note that Hp and w are not
predicted by the model l;nut must be given as boundary conditions. Prediction of
these quantities would require descriptions, respectively, of the regenerative dynamo,
and of the nonlinear interaction between convection and the zonal mean flow in the

nonmagnetohydrodynamic limit (for which no satisfactory theory currently exists).

The appropriate nondimensionalization of the remaining field components is
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hy = % and h, = —H%%, with boundary conditions h, = 0 (no external

[ ge el

“toroidal” field) and h, =1 as { — oo. The full set of nondimensional equations (for

D?>» KD) is:

(D?*F e"£|h$|2) u=0, (3.9q)

(D2 — iKRme_fu) hy =0, (3.9b)
(D? + D) by = (—e™¢Du) h, (3.9¢)

(D*+ D —iKRpe)u=0, (3.94)

In the limit KR, = 0, the above equations decouple and an analytic solution
may be obtained. Equations (3.9b,d) reduce to D?h, = (D?+D)h, =0soh, = h, =1
(we exclude a solution A, < e~¢ due to “leakage” of currents from the dynamo region

at great depth; its amplitude should be small). Equation (3.9a) thus becomes:

(D*Fef)u=0, (3.10)
or
2
C2%+C%$C2u =0, where ¢ =2e¢2 (3.11)

The solutions are u = Co(v/F1¢) (Abramowitz and Stegun 1965), where Cp is any
Hankel or Bessel function of order zero.

Converting to real argument and applying the boundary conditions (including
u < 00 as £ — —oo, which excludes the solution proportional to Io(z) for +v) we find

three possible cases, illustrated in Figure 3.2 (solid curves):
2Ko(2e~¢/?), for +v, Du(o0) =1, (3.12a)
u(€) = { Jo(2e7¢/?), for —v, wu(o0) =1, (3.12b)
cdo(2e74/%) — nY(2¢7¢/%),  for —v, Du(co) = 1, (3.12¢)

where c is an arbitrary constant (¢ = 0 is illustrated). We refer to these solutions

generically as u = cFo(2¢7/?). The exclusion of the fourth possibility (which has
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Figure 3.2. Dimensionless solutions for the zonal velocity . For KR,,, = 0 (solid curves)
three analytic solutions (equations 3.12) are shown: for positive eddy viscosity
one monotonic solution 2Ko(¢) where { = 2¢=¢/2, and for negative viscosity two
oscillatory solutions Jo({) and —7Y¥y(¢). For KR,, = 10 (dotted curves) three
numerical solutions are shown, similar in character but displaced to the right

because of the inward amplification of the magnetic field &,.
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Figure 3.3. Dimensionless solutions for the magnetic field , corresponding to the J,
analytic and Jo-like velocity solutions of Figure 3.2. For KR,, = 0 (solid curves)
the “radial” field h, and “vertical” field h, are unaffected by the motion but a
substantial “toroidal” field h, is induced. For KR,, = 10 (dotted curve) A,
is inward-amplified and h, inward-attentuated. These field components can be

thought of as the first term in an expansion about the equatorial plane.
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Du(oo) = 0) means that the condition of zero viscous stress at the exterior cannot be
met for a positive eddy viscosity. For +v, a flux of energy and momentum from the
outside is required to sustain the motion against viscous and Ohmic losses. In con-
trast, —v permits “viscous” extraction of convective energy to balance Ohmic losses
so that an energy/momentum input is not needed (though it can be accommodated).
Indeed, the simplest description of the energy supply needed for the solution (3.12a)
is a region (outside the portion of the planet modeled) of negative eddy viscosity. For
these reasons we consider the torque-free solution (3.12b) to be the one of greatest
relevance and importance.

To complete the solution when K R,,, = 0, we note that equation (3.9¢), (D*+
D)h, = e~*Du, may be integrated twice (again, we exclude an exponentially decaying

“leakage” field by choosing the constant ug = 0 below) to give

hy(€) = /{ " (u(E) = uo) de”

2e—¢/2
5 [ o

= ce /2 F;(2e72). (3.13)

Figure 3.3 illustrates the three field components for the velocity solution u = Jo(().
From our solutions, one can calculate the Ohmic dissipation per unit vol-
. 2 .
ume Eopmic = —},—<(-4£7F—V X H)> and viscous dissipation (or energy release E.;,. =
2
+pv (%) , averaged over one period in y. Defining P = prw? and making use of
Q =1, we find
2
3

Eohmic= P (26—5/25-7:0(26’5/2)) (3.14a)

and
2
bl

Buige = %P (262 L Fy(26740%) (3.148)

illustrated in Figure 3.4 for the 2K, and Jg solutions. For +v, both functions are pos-

itive and decay double-exponentially as ¢ — oo; we find f_oooo EOhm;c dz' ~ 0.9980 -g
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and f_moo E'm-sc dz' ~ (az — 2.1450) g as ¢ — —oo. For —v, however, E'Ohmic and

FE.isc are oscillatory functions of opposite sign, and both diverge like e=**/2. Clearly,
the assumption of constant eddy viscosity must break down at some depth where the
mean flow attempts to extract more energy from convective eddies than is actually
available.

For KR,, # 0, the coupled equations (3.9) must be solved numerically; but
as Figure 3.2 shows, the character of the velocity solutions is not changed: for +v
there is a single “Kj-like” monotonic solution with Du(co) = 1; for —v there are both
“Jo-like” (u(oc0) = 1) and “Yop-like” (Du(oo) = 1) oscillatory solutions. Figure 3.3 il-
lustrates the behavior of the magnetic field for the torque-free “Jy-like” case (the other
cases are qualitatively similar). We see that |h,| is inward-amplified to an asymptote
which appears linear in §; in fact, as £ = —o0, D|h,| =~ /KR,(0.1¢( —In/2KR,,),
so that |h;| is quadratic in ¢ (the asymptotic form of the phase of h, may also be ob-
tained but we do not discuss it here). Dimensionally, this implies that d—z-l%”l is fixed
(for given v, w, etc.) and the external field value Hy depends exponentially on éjﬂfafc—”l
at given depth in the interior. This constitutes a boundary condition on the deep-
seated region of dynamo action in striking contrast to the conventional % =0 (to
the approximation D? > K D) in the absence of a conductivity gradient. A similar
result is to be expected for the fully three-dimensional problem.

The “toroidal” field h, differs qualitatively from that for K R,, = 0 only in that
(for the case of —v) |h,| oscillates between positive bounds as £ — —oo rather than
between zero and a diverging upper bound. In particular, the period of oscillation
still decreases so rapidly as { — —oo that Eonmic and Eyige diverge.

Unlike h,, h, is inward-attenuated, reaching a lirnit of —\/T{%?r: as £ — —oo for
large K R,,. This may, however, be a consequence of our assumption 5% = 0 rather

than a reflection of the actual behavior of the field in three dimensions.
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Figure 3.4. Dimensionless viscous and Ohmic dissipation (solid and dotted curves, re-
spectively) for two cases with KR,, = 0. For positive viscosity (velocity solution
u = 2K,(() in Figure 3.2) both terms are positive and vanish as £ — —oo. For
negative viscosity (u = Jo({)) they are of opposite sign and divergent; “viscous”

liberation of convective energy replenishes Ohmic losses. Similar behavior occurs

for finite KR,,.
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Table 1. Parameters for Equatorial Jet Models

Jupiter Saturn Uranus
Quantity Units Jo-like  Kg-like Jo-like Ko-like Jo-like Kp-like
R, km 71398 60330 25440
€ 0.0637 0.102 0.024
8, north 15.0 37.2 cee
vsouth 16.0 40.0 22
w 10-4s1 1.5 0.71 0.66
0, ° 15.6 15.7 37.2 36.4 22 a
A9 e 1.0 1.7 1.8
So/Re 0.9687 0.8282 0.8247 0.9354 0.9350
om=0° G 0.057 0.0531 0.0510 0.111
om=1 G 0.568 0.569 0.0048 0.0046 0.175
pe gem™3 0.0787 0.0794 0.141 0.140 0.481
v cm?s™? 2500 2500 494 507
Ade 10%cm?s™l| 28.8 29.2 3.03 2.60 7.41 7.25
ol km 206 298 1400 1320 383
K1 233 231 35.5 38.1 61.8
R,.° 4.62 4.66 457 474 13.1 134
KR,° 0.0198 0.0201 12.9 12.4 0.213 0.216

If not shown, value is the same as for the Jp-like model.
Variation of 6§, corresponding to a change in A of v/10.

IS ¥

Extrapolated to @ = 1 with constant «.

Evaluated at v = 0 location where model (Ho, a, K constant) is fitted to planet.

Values for Jupiter, Saturn are at the upper limit of uncertainty (cf. Figure 2.1).

4. Application to Jupiter and Saturn

To apply the dimensional form of the model described in the last section to the

equatorial jet of the giant planets, we use the eddy viscosity v as a parameter to fit

the observed jet width, then show that the required viscosity is consistent with the

upper limit derived by Ingersoll and Pollard (1982). Of the remaining quantities,

obtained from experiment or theory and listed in Table I, a few deserve comment

here.

Zonal velocity profiles based on Voyager imagery (Smith et al. 1979; 1982) were

used to determine the jet width 6, and shear amplitude w. Both for the observations

and the Jy-like models, 6,was defined as the lowest latitude at which v = 0 (or an
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average of the values in the two hemispheres if they differ). For the Kjy-like models,
in which v — 0 only asymptotically, 8, was defined by constructing a tangent to the
dimensionless velocity u({) at v = 0.5 and finding its zero crossing &, then mapping
this location onto the surface of the planet in the usual way. With this definition
0,(v) is very nearly the same for both types of model when v is small. The distance
from @ = 1 to the zero crossing (or extrapolated zero crossing) of v is a function
of KR, and can be substantial: up to several times a~!. Thus, even to calculate a
simple width parameter for the jet we must solve the differential equations (3.9) in
addition to finding the location s¢ at which @) = 1. The shear amplitude was taken as
dv

w = ==| , a good approximation since the dimensionless shear Du ~ 1 near u = 0.
ds 9

The magnetic field strengths in Table I are rms radial fields in the equatorial
plane at the locations where v = 0, computed from the multipole expansions of

Smith et al. (1976, model P11 3I2E) and Connerney et al. (1984, models Z3, P11A as

4
corrected in note in proof) according to the formulae Hy pm=o = % (—}:E-"“) 99, Hom=1 =

3
% (—Rgﬁ) V(91)? + (h1)?). The m = 1 value for Saturn is in fact a crude upper limit

based on a dipole tilt of 1°; the nonaxisymmetry of Saturn’s external magnetic field
now appears to lie below the threshold of detectability. For both planets, the larger
field component is uncertain to ~ £10% and the smaller to ~ +100%. In applying
our models, we can ignore the Jovian m = 0 field, which contributes ~ 1% of the
total Lorentz force, whereas for Saturn both field components may be dynamically
important, since the nonaxisymmetric term is inward-amplified.

The magnetic diffusivity A was discussed at length above. The density p as
a function of depth was estimated using a constant gravitational acceleration and
a polytropic equation of state for cosmic-composition gas (Stevenson 1982) in the
equation of hydrostatic equilibrium.

Figure 4.1 shows the dependence of jet width on eddy viscosity obtained with
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Figure 4.1. Width of the equatorial jet versus eddy viscosity for Jo-like (upper of
each pair of curves) and Ky-like models, with effect of :5db variation of A (cf.
Fig. 2.1) indicated by shading. Vertical bars represent Voyager observations for
two hemispheres, plotted at the upper limit v = 2500 cm?s~! based on available

convective energy. Circles represent the models of Table | and Figures 4.2-4.5.
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Figure 4.2. Equatorial jet models for Jupiter . Best-fit models with negative (solid
curve) and positive (dashed curve) viscosity are plotted along with Voyager
data. Attention should be restricted to the regions near the zeros of velocity;
the model does not describe the behavior of “broken” Taylor columns at high
latitudes or the complex nonmagnetic effects responsible for the fine structure of

the jet.
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Figure 4.3. Equatorial jet models for Saturn . See previous figure caption.
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Figure 4.4. Magnetic field model for Jupiter . Radial (H,) and toroidal (H,) fields in
the equatorial plane corresponding to the Jo-like velocity solution in Figure 4.2
are shown. H, is near-constant because of the small magnetic Reynolds number

(geometric attenuation has not been included).
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Figure 4.5. Magnetic field model for Saturn . See previous figure caption. The non-
axisymmetric radial field (solid curve) is small in the exterior but strongly
inward-amplified; the axisymmetric (dotted curve) field is constant, neglecting
geometric attenuation. Each radial component induces a toroidal component

(note different scales) of the same azimuthal wavenumber m.
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these assumptions, and in particular the best-fit models whose parameters appear in
Table I. We see that with the nominal magnetic diffusivity, 8, = 15°5 is obtained for
Jupiter with v only slightly in excess of the Ingersoll and Pollard (1982) limit based
on the convective energy available for dissipation. For Saturn, 8, = 38°6 cannot quite
be attained (essentially because of the decrease of a with depth), but for reasonable
v, 0, is only a few degrees smaller. An increase of A by 10'/2 to the upper limit of
our estimated uncertainty (indicated by shading) allows us to fit the equatorial jets
of both planets with v ~ 2500 cm?s™.

Figures 4.2 and 4.3 illustrate Jy-like and Kjp-like models of the zonal velocity
v(f) computed with v = 2500cm?s™! and X increased to the limit of uncertainty,
superimposed on the Voyager data (Smith et al. 1979, 1982). Attention should be
restricted to |§| ~ 0, since the models describe neither the possibility of “broken”
Taylor columns at higher latitudes nor the complex interaction between convection
and differential rotation that leads to the fine structure at lower latitudes. With
these restrictions we see that the data do not discriminate between the two classes of
model (e.g., the oscillatory behavior of the Jy-like solution does not account for the
existence of jets at |f] > 6,). The presence of a“shoulder” in the observed velocity
profile (at v ~ 40 ms~! for Jupiter and v ~ 80 ms™! for Saturn) similar to that in the
Jo-like model is, however, intriguing. The strongest conclusion that can be drawn is
that the physical mechanism responsible for the shoulder operates on a lengthscale
comparable to ¢! in each planet (« differs more than fourfold in the two cases), since
when we adjust the model shear w to the data, the shoulder velocity is reproduced
as well.

For the sake of completeness, we show in Figures 4.4 and 4.5 the model ra-
dial and azimuthal magnetic field components in the equatorial plane. An oscillatory

toroidal field of substantial strength is indicated for both pianets. The Jovian mag-
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netic Reynolds number is small (KR,, ~ 0.02), so that the radial field is almost
constant (geometric attenuation is neglected). In contrast, the much weaker.field
on Saturn results in KR,, ~ 12. The axisymmetric radial field is unaffected, but
the m =1 field is substantially enhanced in the interior, at least in the equatorial
plane. We will return in the concluding section of this paper to the intriguing ques-
tion of whether a similar shielding effect operating at higher latitudes as well may be
responsible for the high degree of axisymmetry of the externally measured field.

To restate the important points of this section, the model of Section 3 repro-
duces the widths of the equatorial jets of Jupiter and Saturn for choices of the eddy
viscosity v that are similar in magnitude and roughly in keeping with the constraint
imposed by available convective energy (especially if the assumed magnetic diffusiv-
ity is increased within the limits of uncertainty). A large magnetic Reynolds number
KR,,, and hence modification of the poloidal magnetic field, is indicated for Saturn

but not for Jupiter.

5. Uranus and Neptune

Much less is known about these planets than about Jupiter and Saturn, but, as inf
dicated in Section 2, the presence of abundant water in their envelopes may lead to
substantial electrical conductivity. We show that Voyager 2 observations at Uranus
are consistent with our equatorial jet model for a plausibly small choice of eddy vis-
cosity, provided one assumes a two-layer internal structure, and make the qualitative
prediction of a wide equatorial jet on Neptune.

No equatorial jet has been directly observed on Uranus. Nonetheless, based
on the success of our model in reproducing the width of the Jovian and Saturnian
jets, even though it does not describe the ”broken” Taylor columns that must exist at
16| > 0,,, we make the case that parameters extrapolated from slightly higher latitudes

may be used to characterize a possible Uranian equatorial jet. The Voyager 2 images
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(Smith et al. 1986) reveal seven cloud features at latitudes from —25° to —70°, with
rotation periods well described by the relation 7 — 7 = 0.081(6 + 22°) + 0.000455(6 +
22°)2 hours, where 7y = 17.24 hours is the rotation period of the magnetic field. Three
of these clouds lie between —25° and —27°, where possible thermal wind corrections
to their velocity are small (Hanel et al. 1986), lending confidence to the extrapolation
to 8, = 22°, with w = —6.6 X 107°s7! (i.e., a retrograde equatorial jet).

The Uranian magnetic field is unusual. We estimate significant Hp for both
m = 0 and 1 based on the best fit offset, tilted dipole (OTD) field model of Ness
et al. (1986). The OTD parameters were first converted to planetocentric multipole
moments according to the formulae of Smith et al. (1976, p. 799), then expressed as
Hy as in Section 4.

We assume a two-layer model of the interior of Uranus. The “gas” layer of
three-layer models is too cold to be conductive (cf. Section 2), so that the minimum
hydromagnetically determined jet width occurs at @ > 1 at the top of the “ice”
layer; for published models (Hubbard and MacFarlane 1980) this leads to 8, =~ 45°,
inconsistent with the Voyager data. We therefore model only the two-layer case in de-
tail, converting the pressure-temperature dependence of H,O conductivity (Holtzapfel
1969) to depth dependence via the best-fit polytropic equation of state of Hubbard
(1984) plus an approximate adiabatic temperature distribution, both in reasonable
agreement with detailed models. As noted in Section 2, we adopt a ten-fold suppres-
sion of the H,O conductivity by dissolved hydrogen-helium.

With these assumptions, we obtain the 8,(v) curves shown in Figure 4.1. The
inferred width of 22° is obtained with an eddy viscosity of ~ 500 cm?s~?, substantially
less than the value used for Jupiter and Saturn. This is in keeping with the limit
on v imposed by the availability of convective energy to be dissipated, since a rough

upper limit on the internal heat flux of Uranus is an order of magnitude less than
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that of Saturn (Hubbard 1984). The magnetic Reynolds number obtained, KR,, =~
0.2, is small, so that no axisymmetrization of the external field by the differentially
rotating envelope is to be expected. This difference from Saturn results from the
large inclination and offset of the Uranian dipole, which greatly increase 2 HE,
despite the comparable total magnetic moments of the two planets. Note tzat our
estimates of v and K R,, for Uranus are in some sense upper limits, since the Voyager
observations only constrain the width of the equatorial jet to be S 920,

Even less can be said about Neptune than about Uranus, but several factors
point to a relatively wide Neptunian jet. First, Neptune is roughly similar to Uranus
in temperature and in density (hence, presumably composition), leading us to expect
a similar conductivity structure in the two planets. Second, the measurably greater
internal heat flux of Neptune (Hubbard 1984) leads to a correspondingly higher limit
on the eddy viscosity. Finally, though the total moments of the Uranian and Neptu-
nian magnetic fields might naively be expected to be similar (Hill and Michel 1975),
the relevant magnetic field measure Hy could be much less if Neptune does not share
Uranus’ high magnetic inclination and offset, which may be a consequence of its large

obliquity (Stevenson, in preparation). The latter two effects both work to locate the

@ = 1 surface deeper in the planet and hence to broaden the predicted equatorial jet.

6. Discussion

The one-dimensional hydromagnetic model presented in the previous sections may
be considered a success within the limits of its intended applicability: for plausible
values of the diffusivities A and v it reproduces the observed widths of the equatorial
jets of three very different planets. As such it lends credence both to the hypothesis
of (fairly) deep zonal flows and to the asserted importance of hydromagnetic effects
outside the cores of the giant planets. Should one wish, however, to look beyond this

single-parameter description to the details of the zonal flow, a number of problems
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arise that need clarification. Most are attributable (directly or indirectly) to the fact
that the model is in essence an expansion about the equatorial plane on an assumed
perfectly rigid Taylor column. Subsidiary problems arise from condensing all the
physics of turbulent flow into the single parameter v.

An example of the latter class of problems is the failure of our model to du-
plicate the structure of the zonal velocity profile at the lowest latitudes. Inasmuch
as the flow there is purely hydrodynamic, rather than hydromagnetic, the problem
is far outside the scope of this paper and we will say no more on the subject. The
breakdown of the model at high latitudes, on the other hand, is both crucial and
instructive. Starting with ideally coherent Taylor cylinders, we predict that at high
latitudes the zonal wind will either vanish or oscillate on an ever-decreasing length-
scale, far shorter than that which is observed. (The latter case, for negative eddy
viscosity, also leads to diverging dissipation. This flaw can be removed by making v
a decreasing function of the shear %g—, such that v - (%)2 is bounded, but the prob-
lem of too rapid oscillation remains.) We conclude from this that Taylor cylinders
reaching the surface at high latitude must be “broken,” either trivially in the shallow
atmosphere or at depth. In addition, in order for our model to work as well as it does
at predicting the jet width 8, this breaking must first occur at or slightly above that
latitude. Our experience with the present model suggests that the flow is hydrody-
namic and independent of axial coordinate z outside a roughly spherical surface on
which @) = 1, and hydromagnetic, z-dependent, and possibly much slower inside that
surface. The two-dimensional (if we assume H o e™¢+c.c.) problem of matching the
inner flow to the outer remains as a challenging unsolved problem. A boundary layer
analysis (i.e., neglecting horizontal derivatives) indicates that differential rotation on
lengthscale > o™ ~ 103 km could penetrate to the metallic core. Unfortunately, the

observed jets on Jupiter and Saturn have widths comparable to a~!, making their
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analysis more difficult.

Knowledge of the dynamics of interrupted Taylor columns is also needed to
answer the questions: What is the appropriate measure Hy of the non;x,xisymmetric
field to use in the equatorial jet model when K R,, is large? As a corollary, can the
near spin-axisymmetry of Saturn’s magnetic field be attributed to the zonal flow? For
Jupiter and Uranus, this question does not arise. It is self-consistent to assume that
the nonaxisymmetric field in the equatorial plane is unattenuated (hence given by the
appropriate multipole component of the external field) since this leads to a flow model
with KR, <~ 1 at the @ =1 level. The situation for Saturn is more puzzling, since
the radial field in the equatorial plane is strongly outward-attenuated by the magnetic
skin effect. Two limiting possibilities suggest themselves, with Hy ranging from zero
to the external multipole value. We describe these extreme cases, without being able
to choose between them or their intermediates. (Fortunately, in Saturn Hy -0 is large
enough that the predicted value of 8,(v) is affected only slightly by this uncertainty.)
First, if the flow at high latitudes does not share the axisymmetrizing property of
the equatorial jet, the observed Y] (tilted dipole) component of the external field
connects (via high latitudes) to the interior. In the equatorial plane H, is then small
in the interior and smaller still outside; we should assume Hp =1 ~ 0 in our model.

It is possible, on the other hand, that the magnetic field in the deep interior
of Saturn is less axisymmetric than the external field would suggest. In the absence
of an understanding of the two-dimensional hydromagnetic problem, the following
conceptual model is instructive. Project the Voyager zonal Wind profile along spin-
axis concentric cylinders to the depth where @) = 1 and calculate K R,, as a function
of latitude on this surface. Now idealize the attenuation process as follows: for some
(scalar) quantity ¢ with Y’} angular dependence inside @ = 1, let its value outside ) =

1 be undiminished where K R,, exceeds some threshold KR}, but be attenuated to
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zero locally if KR,, > KR},. Expanding the exterior function in spherical harmonics
then yields an overall attenuation factor for the ¥} component of ¢ from interior to
exterior. Numerically, one obtains tenfold attenuation for KR}, ~ 1.6, a reasonable
threshold based on our experience in the equatorial plane. This would seem to say
that deep inside Saturn (but outside the dynamo region) the tilt of the dipole field
could be O(10°), comparable to that of Jupiter (and Earth). Though satisfying
to the extent that the intrinsic axisymmetry of the Saturnian dynamo need not be
exceptional, this result is puzzling. Why would Jupiter and Saturn, with apparently
similar fields below @) = 1, experience such different amounts of axisymmetrization?
A partial answer is that (based on our model) the shielding effect of the zonal flow
leads to large field gradients as well as large fields in the interior. If the preceding
arguments are correct, then the Saturnian dynamo is unexceptional in its dipole tilt
— but exceptional in the richness of its higher multipole spectrum (corresponding to
strong radial gradients of H). One wonders what has been gained.

It should be clear by now that the present work calls out for an investigation of
the hydromagnetic flow of a planetary envelope in two dimensions. The encouraging
results of our simple model, meanwhile, will be subject to further testing and refine-
ment by the Voyager 2 encounter with Neptune in 1989 (which will, we hope, increase
our collection of equatorial jets by 33%) and by direct observation of band-gap closure

in hydrogen at high pressure.
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Measure your mind’s height by the shade it casts.
— Robert Browning, Paracelsus



| 167 |

A Fast Finite-Element Algorithm for Two-Dimensional Photoclinometry
R. L. KIRK

Division of Geological and Planetary Sciences
California Institute of Technology
Pasadena, California 91125



| Paper Il | l 168 | Two-Dimensional Photoclinometry

Abstract

It is shown that the problem of two-dimensional photoclinometry (PC) — the recon-
struction of a surface z(z,y) from a brightness image B(z,y) — may be formulated in
a natural way in terms of finite elements. The resulting system of equations is under-
determined as a consequence of the lack of boundary conditions for z, but a unique
solution may be chosen by minimizing a function S expressing the “roughness” of the
surface. An efficient PC algorithm based on this formulation is presented, requiring
~ 10.66 (four-byte) memory locations and ~ 10* floating multiplications/additions
per pixel, and incorporating: 1) Minimization of the roughness by the penalty method,
which yields the smallest set of equations. 2) Iterative solution of the nonlinear equa-
tions by Newton’s method. 3) Solution of the linearized equations by an inner iterative
cycle of successive over-relaxation, which takes advantage of the extreme sparseness
of the system. 4) Multigridding, in which the solutions to the smaller problems ob-
tained by reducing the resolution are used recursively to greatly speed convergence at
the higher resolutions, and 5) A rapid noniterative initial estimate of z obtained by
exploiting the special symmetry of the equations obtained in the first linearization.

The algorithm is extensively démonstrated on 200 by 200 pixel synthetic “im-
ages” generated from digital topographic data for northern Utah over a range of phase
angles. Rms error in the solution is ~ 22 m, out of ~ 660 m total relief. The error is
dominated by “stripes” with the same azimuth as the light source, resulting from use
of the roughness criterion in lieu of boundary conditions; the rms error along profiles
parallel to the stripes is only ~ 2-8m, depending on the phase angle. Satisfactory
solutions are obtained even in the presence of quantization error, noise, and moderate
blur in the image.

Applications of the PC algorithm to both remote sensing and photomacrog-

raphy are sketched; a photoclinometric map of a low-relief Precambrian era fossil is
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presented as an example of the latter. Prospects for dealing with photometrically in-
homogeneous surfaces, and an extension of the method to the analysis of side-looking

radar data (“radarclinometry”) are also discussed.

1. Introduction

Photoclinometry (PC) is “shape from shading” in the broadest sense: the recovery of
geometric information about a surface from photometric data. It is of potential utility
whenever photogrammetric methods (i.e., stereo) cannot be used to obtain depth
information. Such cases include remote sensing by flyby spacecraft, which image
their target only once, by orbiting spacecraft whose orbital geometry constrains them
always to view a particular region from the same angle, and even by fixed Earth-
based telescopes in the case of the Moon. Surfaces with bland, gentle slopes pose
problems for stereometry because of the difficulty of identifying corresponding points
in the two images. Finally, stereo methods are difficult or impossible to use on very
small regions, because of the restriction imposed on oblique viewing by depth of field.
Of these (potential) applications, that to planetary remote sensing has the longest
history. PC was first used to estimate the slopes of mare ridges on the Moon over
35 years ago (van Diggelen 1951) and has received sporadic but recurring interest
ever since (Bonner 1960; Watson 1968; Bonner and Schmall 1973; Davis and McEwen
1984; Wilson et al. 1985), with applications to the Moon (Dale 1962; Wilhelms 1963;
McCauley 1965; Rindfleisch 1965; 1966; Lucchitta and Gambell 1969; Rowan et al.
1971; Tyler et al. 1971), Mercury (Hapke et al. 1975; Mouginis-Mark and Wilson
1981), Mars (Davis et al. 1982; Davis and Soderblom 1982; 1984; Howard et al.
1982; McEwen 1985), icy satellites (Squyres 1981; Passey and Shoemaker 1982), and
even lo (Moore et al. 1985). Surprisingly, only one author in the remote sensing
community (Wildey 1975) has attempted the solution of the full two-dimensional

problem of reconstructing a surface z(z,y) from a single image. His algorithm is
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general in its applicability and exhibits some of the ideas presented here, but is
mathematically somewhat cumbersome and not efficient enough to be practical (the
image on which it was demonstrated comprised 25 by 35 pixels). Influenced by the
peculiar photometric properties of the lunar surface (and perhaps at least initially by
the lack of computational power), other workers have concentrated on the estimation
of one component of surface slope at a point and integration of this slope component
along a line to yield a profile of the surface.

The two-dimensional approach to photoclinometry presented here, in contrast,
originated in the context of small-scale topography. It was initially envisioned as a
tool for the enhancement of photomacrographs of fossils from the Ediacaran period,
roughly 670-550 Mybp. The Ediacaran fauna are a unique and enigmatic group of
soft-bodied organisms, commonly preserved as very low-relief fossils on the bedding
surfaces of fine sand- and siltstones (Glaessner 1961). In part because of this, their
relationship to later metazoan life is controversial (Lewin 1984). It would therefore
be of great interest to be able to apply image-enhancement techniques to the fossils
(Kirschvink et al. 1982). The most obvious such techniques are matched filtration
(to suppress the high spatial-frequency “grain” of the rock relative to the features of
the fossil) and “stacking” of multiple fossils (to average the grain away). Reflection
indicates that these techniques should properly be applied to the topography, rather
than to the image!. In the case of matched filtration, the topographic signature of
the grain has the desirable property of stationarity (statisitical uniformity over the
field) whereas its signature in the shaded image it does not. The grains on large-
scale slopes away from the light have a greater brightness contrast than those on

slopes toward the light. In the case of stacking, adding images would be unlikely

! Note, however, that the optimal finished product is likely to be a pseudoimage computed
from the “enhanced” topography. Greyscale representations of the altitude map turn out
to be difficult to interpret visually.
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to produce a meaningful result, unless one could ensure that the surface properties
and illumination were the same for each. For stacking topography we require only (!)
that the morphology of the specimens be close to identical and that they be properly
aligned. Algorithms were therefore developed first, for “photometric stereo” (analysis
using the redundant information in two images with different illumination geometries)
and ultimately for true two-dimensional PC from a single image. An example of an
Ediacaran fossil image will be presented in Section 3.

It is instructive to consider the problems inherent in the zero- or one-dimen-
sional approach to PC before passing on to the two-dimensional problem, which will
be seen in the general case to be conceptually simpler (though of course more taxing
computationally in proportion to the greater quantity of data to be dealt with).

Under given illumination and viewing geometry, the photometric function of
a surface expresses the dependence of reflected intensity (“brightness”) on the orien-
tation of the surface. This orientation must be specified by two quantities, whether
they are taken as two components of the unit normal vector to the surface, gradients
in two specified directions, strike and dip, or even more arcane combinations such as
the coordinates (in some map projection) of the point on a unit sphere that would
have the same orientation. Measurement of the brightness at a point provides only
a single constraint on these quantities, and in general neither can be determined in-
dividually; the zero-dimensional PC problem is severely underdetermined. For the
lunar surface, however, it has been shown (Hapke 1963; 1966) that the brightness is
independent of the gradient perpendicular to the plane containing the light source,
surface point, and observer (the phase plane). The observed brightness may thus be
inverted to yield the slope in the phase plane, and these slopes integrated to give
a profile of the surface-phase plane intersection (Watson 1968; Bonner and Schmall

1973; Mouginis-Mark and Wilson, 1981). Because the transverse slope is unknown,



| Paper Il ‘ [172] Two-Dimensional Photoclinometry |

these profiles cannot in general be assembled into a full representation of the surface.

Bodies other than the Moon (except perhaps for Mercury) do not share its
convenient photometric property?, and the success of one-dimensional PC on them
depends on additional information. Profiles may be made only if the strike is known
a priori by symmetry, as on the diameter of a crater (Passey and Shoemaker 1982;
Davis and Soderblom 1984), or if it may be estimated by inspection (Howard et al.
1982). These methods of course require close supervision by a human operator whose
built in “photoclinometry software” enables him or her to look at the image and
determine the strike, the computer then taking responsibility for the dip. Moreover,
they are necessarily tied to the content of the specific image to which they are being
applied.

Wildey (1975) was the first and so far the only author to realize the advantages
to be gained by taking a two-dimensional approach to the PC problem from the start.
In this approach, the computer is provided at the start with the single most important
fact that enables the human to interpret the image: the knowledge that this is a
picture of a continuous surface. The “shape” we seek to extract from shading is now
a single quantity, the surface altitude z(z,y), rather than two independent gradients,
and the problem of calculating it from the observed brightness B(z,y) is properly
determined, at least in the case of an infinitely large image. (Alternatively, we can
view the problem as that of determining the gradients f = g—;— and g = g—g— as before,
but with the additional requirement that they form a total differential: %} = g%)
Since the information is specified in terms of the surface derivatives, however, we

should not be surprised that information about the boundary conditions is needed

2 Note, however, that the phase plane must be a plane of symmetry for the brightness, slopes
to either side having the same effect. Thus for given in-plane slope, b is an extremum for
zero slope normal to the phase plane. It follows that if the typical slopes in the transverse
direction are small, the brightness will be independent of this slope component to first order,
for any photometric function.
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to complete the problem properly. Provided one uses an imaging system with a
sufficiently wide total field of view, the needed boundary information is available at
the edges of objects and sometimes at cusps on the surface, and indeed there exists
a modest amount of litera,turé in the discipline of computer vision (e.g., Ikeuchi and
Horn 1981; Brown 1984) on the application of this information (the description of
surface orientation in terms of position on the unit sphere, mentioned above, is useful
in this context because unlike the gradients, these coordinates are nonsingular at
the limb). Unfortunately, in remote sensing (and also in photomacrography) one
is frequently interested in images that do not contain the limb, and hence for which
boundary information is not available. In this situation one must substitute an ad hoc
constraint which one hopes is “harmless,” bearing in mind that the problem is at any
rate almost fully determined. As we shall see, this hope is at least partially fulfilled.
In the following sections I describe the PC algorithm, demonstrate its properties on
a case where the actual topography is known, and finally discuss problems that could

impede its application (with sketches of some possible solutions), and generalizations

of the method.

2. The Photoclinometfy Algorithm

In practice, of course, one obtains an finite array of discrete brightness measurements
(pixel values), each averaged over the instantaneous field of view or “footprint” of the
imaging system. If the pattern of sensitivity of the system is described by the kernel

K(z,y), we have for an M by N image M N integral equations of the form:

Be—-_..—//K(m——fe,y—ye)b(az(g:y),6z(ag;’y))dxdy, e=1,2,...,MN, (21)

These are the fundamental equations of two-dimensional photoclinometry. Here and
below it is convenient to choose coordinates with the observer looking down along

the z axis, rotated so the source of illumination lies in the (z, z) plane, and with the
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Figure 2.1. Coordinate system for photoclinometry . Cartesian coordinates are cho-
sen with the observer looking down the z axis and the light source in the (z, z)
plane. Unit vector 7 points toward the light source, € toward the observer, and
71, normal to the surface at the point (z,y, z). Then the photometric function b
expresses the brightness in terms of the incidence angle 6 = #i - %, the emission
angle ¢ = fi - €, and the phase angle g = 7 - €. The task of two-dimensional
photoclinometry is to find the surface z(z,y) whose normal vector is consistent

with the observed brightness at every point.
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interpixel spacing chosen as the unit of distance. In these equations b(%, %) is the
photometric function written in terms of the surface gradients at the point (z,y), and
B¢ is the brightness measurement of pixel e, which is centered on (Z¢,%°). The PC
algorithm places no restrictions on the functional form of b(%, g—;—)s

To obtain a solution to the equations (2.1) we must discretize the altitude
function z(z,y), in such a way that we can calculate the gradients in terms of the
discrete z values. At the very least (if the footprint K is very narrow, say) we need the
derivatives at the centroid (Z°,¥°) of each pixel. Whether we formulate the problem
in terms of finite elements or finite differences, we will need an array of M +1 by N+1
to calculate derivatives (differences) at M by N points. The system of equations will
be underdetermined, though by a relative amount that becomes small as M and N
become large. The origin of the indeterminacy (the need for boundary conditions) is
manifest in the way the altitude array “sticks out” beyond the edges of the image.

Lacking boundary conditions, we must further constrain the problem in some
ad hoc way. In accordance with Occam’s razor, the most natural constraint one can
envision is a requirement that the surface be no more “rough” than is required by the
data:

65 =0, (2.2)

for some roughness function .S, subject to (2.1). (The § notation indicates that S is to
be made stationary, i.e., its derivatives with respect to the adjustable parameters are
to be set to zero.) This is most emphatically not to suggest that natural surfaces obey
some kind of minimum-roughness criterion; in fact, they often have fractal properties

(Mandelbrot 1982). We merely seek not to add any roughness of nonphysical origin

3 For simplicity, in this paper I treat the function b as independent of position. Generalization
to a photometric function that varies in a known way, e.g., because of variation of the phase
angle over the field of view, is straightforward. I discuss the case of a surface with nonuniform
reflectivity below and argue that in some cases it may be possible to create an “albedo-
corrected” image using multispectral data. Photoclinometry could then be performed on
this image under the assumption of spatially invariant b.
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to the topography in our solution.
The precise definition of “roughness” turns out to be unimportant. Three

possibilities are:

( / (z — Z)*dz dy, the rms altitude, (2.3a)

S = //\/H 3(z-—Z)> (( Z)> dz dy, the area, or  (2.3b)

// —(c(z = Z) + e ) In(c(z — Z) + ') dz dy, the entropy. (2.3¢)

Here Z(z,y) is a reference surface such as the mean plane*. The first criterion has
the advantage of being simplest; the second is only slightly more difficult to evaluate,
is perhaps more elegant, and was used by Wildey (1975). In Appendix A I give the

explicit form of the roughness criteria in terms of finite elements.

2.1 Finite Elements

The PC problem as formulated above is one of the constrained minimization of an
integral functional. It is therefore ideally suited to solution by the method of finite el-
ements (FE), which deals with systems of simultaneous integral equations (Zinkiewicz
1977; Stasa 1985). Since FE is best known as a method of solving differential equa-
tions, a brief outline of its operation is instructive. It may be divided into the following
conceptual steps:

1) Cast the problem in an integral form. For differential equations one either sets
various integrals over the residual to zero (the method of weighted residuals)
or attempts to find an equivalent variational form of the problem. In the latter
case the set of simultaneous equations is obtained by setting the derivatives

of the functional to zero. The PC problem is already in integral form; indeed,

Strictly speaking, the integration should be over dX dY, where the coordinates are chosen
so Z is parallel to the (X,Y) plane. The given expressions are approximations accurate to
O(tan(©;)tan(0,)), where ©; is a typical angle between the normal to Z and the z axis,
and O, is a typical slope of the surface with respect to Z.
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Figure 2.2. Finite element mesh for photoclinometry . The M by N image is divided
into square elements as shown, each identified with a pixel, and numbered se-
quentially from 1 to M N. Each element has four nodes, one at each corner;
adjacent elements share nodes. The altitude in the interior of each element is
obtained by bilinear interpolation between the values at the four nodes. Nodes

are numbered sequentially from 1 to (M + 1)(N + 1).
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3)

4)

of the functional to zero. The PC problem is already in integral form; indeed,
Wildey (1975) used the calculus of variations to convert it to a differential
equation, which he then solved using finite differences!

Divide the domain of solution into elements, i.e., choose a set of small regions
of simple shape that cover the domain exactly once. For the PC problem, we
choose an array of square elements, each centered on (and identified with) a
pixel of the image.

Specifiy an interpolation scheme. In each element choose a set of nodes at
which the discrete values of the desired quantities will be specified, and a
method of interpolating the quantities between these nodes that satisfies the
differentiability requirements of the problem. Nodes on the boﬁndary between
elements are shared and must have the same values in each (this assures that
the different interpolations in neighboring elements match at the boundary).
For the PC problem, we use four-node square elements with a node at each
corner (cf. Figure 2.2). The altitude is then bilinearly interpolated within
each element.

Evaluate the integrals in terms of the nodal values. The integral over each
element may be performed separately, and the results “assembled.” For lin-
ear problems and simple interpolation schemes, the element integrals may be
performed explicitly; otherwise, it is necessary to choose a numerical scheme
(e.g., Gauss quadrature) to convert the integral to a sum.

Solve the resulting system of algebraic equations. This may be far from trivial,
if the problem is nonlinear or very large (PC is both).

Obtain the desired output quantities. The nodal values may suffice; otherwise
values at points inside the elements may be obtained using the interpolation

scheme specified previously. For the PC problem it is convenient to interpolate
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to get an M by N array of altitudes evaluated at the pixel centers.

Once the mesh of elements has been chosen, steps 4) through 6) may be carried
out entirely by computer.

Although an arbitrary “footprint” in the PC problem may be handled by
numerical quadrature, in this paper it is convenient to specialize to the case where
K(z,y) is narrow, and only one element contributes to each pixel. Then the further
choice of one-point Gauss quadrature leads to a great simplification of the integrals

(2.1). Requiring that K be normalized so its integral is unity, we can write

/ K(z =%y — 7% ( )az(’” y))d dy ~b(az aZ)_M. (2.4)

?

The right-hand side depends only on the nodal altitudes in the element e. It is
convenient to adopt vector notation: let {z} be a column vector of length (M +
1)(N + 1) containing the nodal altitudes, { B} be a vector of length M N containing
the observed brightnesses, and {b} the corresponding estimates based on {z}. This
single-index numbering scheme may be maintained in parallel with the more familiar
two-index scheme. Conceptually, this is a matter of lexicographic ordering (Andrews
and Hunt 1977, p. 40). In a FORTRAN implementation of the algorithm we use the
EQUIVALENCE statement to identify a one-dimensional vector with a two-dimensional
array. If we number the nodes and elements in the order shown in Figure 2.2, and
express the paired indices in the order (column, row) appropriate to a discretized
(z,y) coordinate system, then the mesh is said to be row scanned. The vector will
consist of the rows of the array, one after another. In vector notation the PC problem

may be formulated as follows:

8 .
{a{z}} =0,  subject to  {b({z})} = {B}. (2.5)
s

The potentially confusing notation { 3 {z}} simply means the column vector whose

tth entry is gzﬁ
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2.2 Penalty Method Minimization

The way in which the constraints are imposed on the extremization problem (2.5)
is important to the efficiency of the resulting algorithm. An exact solution té the
constrained minimization could be obtained by the introduction of MN Lagrange

multipliers A¢, one for each element:

6(5+NUBY- 1)) =0, (2:6)

where () = {A}7 is a row vector and the minimization is to be performed by varying
both the nodal z; values and the A®. Not only does this method nearly double the
number of equations and unknowns, but it involves a mix of element quantities and
nodal quantities, making efficient ordering of the equations difficult.

Instead, we use an approximate method of doing the minimization known as

the penalty method (Albert 1972):

6(S+SUB) = (BB} - {81)) =0. (2.7)

This equation superficially resembles (2.6) but there is a crucial difference: here
« is an arbitrary large (O(10%)) constant known as the penalty number, and the
minimization is done only with respect to the z;. Dividing through by «, and making

the extremization explicit, we obtain the (nonlinear) matrix equation:

o(b) | . . . 9be
Here, [5{(;%} is an (M + 1)(N + 1) by MN matrix with (¢,e)th entry oz We
begin to see how the penalty method works: we take the M N brightness constraints
{B} — {b} = 0 and combine them linearly according to the matrix [BQ%H to get
(M +1)(N +1) equations. Conveniently, this particular choice of combinations will,

upon linearization, yield a symmetric matrix equation. The system is singular, so we

add in a small amount % of the (M + 1)(N + 1) equations implied by the roughness
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criterion. A tradeoff is available: as ¢ is increased, the brightness constraints are
more precisely satisfied but the system moves toward singularity, whereas when « is
~ decreased, the set of equations becomes better conditioned but accuracy is lost.

An additional desirable property of the penalty method is the fact that we are
minimizing the norm of {B} — {b}, rather than directly setting it to zero. Thus, if
the brightness constraints are inconsistent (due to the presence of noise, or to albedo
variations in violation of the assumption of uniformity, say), the method will fail
gracefully. A smooth solution will be chosen that reproduces the observed brightnesses

as nearly as possible.

2.3 Newton-Raphson Iteration

We now have the PC problem in a concise form: “invert equation (2.8).” Unfortu-
nately, although this equation involves a matrix multiplication, both the matrix and
vectors depend nonlinearly on {z}, so the solution is more than a matter of linear
algebra. We must iterate for the solution using the Newton-Raphson method (New-
ton’s point-slope root finding algorithm generalized to a system of equations). The

k + 1st approximation to {z} is obtained by solving:
[K¥{AazF} = {EF}, (2.9a)
for {Az*} and forming
{1} = {2*} + {AZF), (2.9b)

where

= [6{f;as<z>] |at3) [5] (299

is the Hessian matrix, and

wy=-2 {75 [ 2w - (2.94)

o

is the gradient of the function being minimized, both evaluated at {z} = {z*}. A

second derivative term Y [5{—2%%%;)_] (B¢—b°) has been omitted from [K] (Press et al.
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1986, p. 523). When {B} — {b} ~ 0, this term merely contributes a small amount of
noise to the equations, decreasing their stability. Clearly, use of the modified Hessian
matrix does not affect the property {Az} — 0 as {E} — 0 that assures that we

obtain the correct solution. I will discuss the problem of obtaining an initial estimate

{z°} below.

2.4 Successive Over-Relaxation
Efficient solution of (2.9a) requires that we exploit to the fullest degree possible the
special properties of the Hessian matrix [K]: though large, it is symmetric, banded,
and highly sparse in an orderly way. The (4, j) component connects node ¢ to node
J in terms of the derivatives of S and b, each of which may be divided into a sum
over contributions from the various elements. Thus, K;; # 0 only if there exist one or
more elements containing both nodes ¢ and j. In the numbering system of Figure 2.2,
node ¢ connects to itself and to its eight nearest neighbors t — M —2,i— M —1, i —m,
t—1,i4+1,¢4m, ¢+ M+1, and i + M + 2. (For nodes at the edge of the mesh,
some of these points may not exist.) |

Even taking advantage of the fact that [K] is symmetric with half-bandwidth
M +3, a direct solution of equation (2.9a) will require ~ M3N multiplications (opera-
tion counts will be given only to leading order) for matrix factorization, and ~ 2M2N
more for forward reduction/back substitution at each step of the Newton-Raphson
method. Storage will be dominated by the ~ M2N locations needed for the matrix
because the sparsity is destroyed. With M, N O(10?), the problem is obviously too
large to be tractable.

There exist a number of methods for solving sparse systems of equations which
leave the zero elements of the matrix unfilled-in. These methods also have in common
the property of being iterative, that is, of requiring an indeterminate number of

repeated steps to attain a result with a specified accuracy. For such a method to
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be practical in terms of computation as well as storage, the number of iterations
actually required must not be too large. One extremely powerful such technique, the
incomplete Cholesky-conjugate gradient method, or ICCG (Meijerink and van der
Vorst 1977; Kershaw 1978) was applied to the PC problem without complete success.
In this method, the usual Cholesky decomposition form of Gaussian elimination is
carried out on the matrix [K], except that whenever this algorithm would make
a previously zero element nonzero, the zero element is left unchanged. The result
is an approximate factorization [L][U] ~ [K] in which [L] and [U] have the same
sparsity as [K] ([U] = [L]7 for a symmetric matrix). This factorization does not lead
directly to a solution, but the facts that ([L][U])™! is trivially computed and that
([LIIU]DYK] is nearly the identity matrix can be exploited to greatly increase the
efficiency of the iterative conjugate method due to Hestenes and Stiefel (1952). The
ICCG method works very well for many problems, including the initial linearization
of the PC equations about the plane z = 0. Its weakness is that pivoting cannot
be incorporated into the incomplete factorization process. There exist ad hoc fixes
which allow one to proceed despite bad pivots, but if such pivots are too numerous
the subsequent conjugate gradient iteration will not succeed. This turns out to be
the case for the subsequent iterations of the PC equations. Bad pivots are inevitably
encountered, and the iteration process diverges, adding increasing amounts of high
frequency “checkerboard” noise to the solution.

The method of successive over-relaxation (SOR) was found to be much better
suited to the PC problem. In contrast to factorization, SOR is based on an additive
decomposition [K] = [L] + [D] + [U] where [D] is a diagonal matrix, [L] is lower-
triangular with zeroes on the diagonal, and [U] is upper-triangular (Ortega 1970; Press
et al. 1986, pp. 652-659). Since the elements of the matrices in the decomposition

are the same as those of [K], no additional memory locations are required. We start
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with {Az*°} = 0 and iterate, solving
(L4 + DY) {AA#} = {B*) - [KH{AM), (2.10a)
and forming

{AZFH1} = {AZH) 4 w{AAZM. (2.100)

The quantity w is known as the relaxation parameter; strictly speaking, we are over-
relaxing only for w > 1. When w = 1 the method is known as Gauss-Seidel iteration.
The PC algorithm utilizes Chebysheff acceleration (Press et al. 1986, p. 658), in which
w = 1 immediately after each linearization, gradually increasing to its (empirically
determined) optimum value. At the beginning of each Newton-Raphson step ~ 5M N
multiplications are needed to form [K]{Az} for the right-hand side. Then another
~ SMN multiplies are needed to do the forward reduction to get each increment
{AAz}. The method will thus be faster than factorization if less than ~ M?/5
iterations are needed (though it will always use less memory).

Unfortunately, it is possible to show that O(M?) iterations are needed to
achieve convergence of the Newton-Raphson method. We can make this result intu-
itive by considering how the forward reduction process used to solve (2.10a) works.
We sweep through the mesh, considering each node 7 in turn. The value that satisfies
the ith equation is chosen, and the appropriate multiples of it are subtracted from all
succeeding equations. Each AAz! thus takes into account the recent changes at all
previous nodes, but (since the above-diagonal terms have been set to zero) not the
possible effects due to increments at nodes yet to be considered. There is information
about these “downstream” nodes in the right-hand side, but since the matrix [K]
connects only neighboring nodes, AAz! knows about {AAz""'} only at its nearest
neighbors, {AAz~?} two elements away, and so on. Information about the solution
propagates diffusively, and it is thus not surprising that O(M?) steps are required for

global convergence on a mesh of width M.
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The successive over-relaxation method attempts to achieve convergence in
fewer steps by exaggerating the correction at each step by a factor w. This over-
correction can be thought of as the addition of a kind of “inertia” to the system,
allowing the “wavelike” propagation of information. Hence it is not surprising that
one can show that, for simple problems (e.g., Poisson’s equation) with the correct
choice of w, convergence takes only O(M) iterations. This is a substantial improve-
ment over the Gauss-Seidel method, but still impractically slow for reasonable sized
images. Furthermore, the optimal value of w for a complicated problem such as

photoclinometry can be estimated only by trial and error.

2.5 Multigridding

A powerful method of accelerating convergence known as multigridding (Brandt 1977)
was incorporated in the PC algorithm presented here. The success of multigridding
is based on the fact that (as shown above) SOR (or Gauss-Seidel) iteration rapidly
eliminates local errors in the solution but is slow to correct errors involving nodes
many elements apart. Complimentary corrections may thus be obtained by solving
the equivalent problem on a coarser mesh. If the mesh spacing is doubled, not only
does information propagate twice as far per SOR iteration, but each iteration requires
only one quarter as much computation; the long-wavelength components of the solu-
tion are thus obtained very efficiently. Error will be introduced by interpolating the
coarse-mesh correction onto the fine mesh, but this will be local and hence rapidly
eliminated by iteration at the higher resolution. Of course, the method may be ap-
plied recursively, with a quarter-resolution mesh used to provide corrections to the
half-resolution mesh, and so on. If necessary, the solution on the coarsest mesh may
be obtained by noniterative means. In any event, the total work can be shown to be

O(MN), i.e., the number of iterations per element needed at all resolutions does not

depend on M or N.
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To implement the multigrid algorithm we need to know how to pass from
one resolution to another, and when to do so. Brandt (1977) considers problems
of the form LU = F (plus boundary conditions), where L is a possibly nonlinear
differential operator acting on U, and we want to model this system discretely as
Lu = f. He concludes “Full efficiency of the multigrid algorithm is obtained for
stopping parameters that do not depend on the geometry and the mesh size, and
which may change over a wide range, provided the correct forms of the stopping
criteria are used and some basic rules of interpolation are observed.” Those criteria
and rules may be summarized as follows:

1) The coarse mesh should always have half the resolution of the fine mesh. This
is near optimal, and the standardization is worthwhile.

2) Decrease resolution when convergence is “slow,” i.e., when the norm of the
residual is more than some fraction 7 of its value at the previous iteration. For
simple problems an optimal value of 7 may be derived, but any value 5 < 0.9
was found to be acceptable. On the coarsest mesh, of course, iteration is cheap
and this criterion may be ignored.

3) Decrease resolution by injecting the solution u, and the error in the right-hand
side f — Lu rather than f itself. This assures that the correction to u on the
coarse grid is an approximation to what is needed on the fine grid. By injection
is meant interpolation or simply copying of the nodal values if the nodes of
the coarse mesh are a subset of the nodes of the finer mesh.

4) Increase resolution when the residual on the coarse mesh is less than some
fraction 6 of the previous residual on the fine mesh (or is limited by the at-
tainable accuracy. If this latter obtains at the highest resolution we are done.)
Again, the optimal é may be estimated for simple problems but it is not crit-

ical; 0.001 < 6 < 0.5 was found to slow the algorithm by less than 20% from
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the optimum.

5) Increase resolution by interpolating the changes to u made on the coarse mesh
and adding them to the fine mesh solution. This assures that the short-
wavelength part of the solution obtained previously is not thrown away. The
order of interpolation should be equal to or greater than the order of the
differential equation.

Note that the regridding process effectively includes a linearization of the prob-
lem (the value of { B}—{b} injected from the higher resolution is used at all subsequent
iterations on the coarser mesh). It thus does not in general suffice to pass through
each mesh size once; the algorithm “wanders” up and down in resolution until the
desired accuracy is achieved.

These rules were applied somewhat loosely to the PC problem. As shown
in Figure 2.3, the coarse mesh was laid out with each element occupying the space
of four elements of the next finer mesh. On decreasing resolution the z values at
the corner of the big element were simply copied (injected) from the corresponding
nodes on the fine mesh. Corrections to the altitudes on the fine mesh were obtained
by bilinear interpolation of the changes made during iteration on the coarse mesh?®.
The Euclidean norm of the residual vector {E} (eq. 2.9d) was used in the stopping
criteria, subject to being overruled by the user’s judgement.

Injection of the brightness information is less straightforward. The constrained
minimization equation (2.8) is not in the form Lu = f, but the underdetermined
brightness problem {b({z})} = {B} on which it is based is. To choose {B} on the
coarse mesh so that {£}°°°"*¢ equals the injection of {E} /"¢, we would have to solve

a large system of equations [ g {z}] {B}¢*"s¢ = ... which is exactly the kind of

5 Actually, the altitudes were halved on injection, and doubled on interpolation, so that on
each mesh z was measured in units of the node spacing. The same functional form of b
could then be used at all resolutions.
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Figure 2.3. Coarse and fine meshes for multigridding . The fine mesh of Figure 2.2 is
shown dashed with the new, half-resolution mesh superimposed. The old nodal
values are “injected,” i.e., those occurring at nodes of the new mesh are simply
copied to it. The new brightness is chosen so that the error in its estimate is
injected. After iteration at low resolution, any changes in the nodal altitudes will

be interpolated so that they can be applied at all nodes of the fine mesh.
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thing we are attempting to avoid doing. We therefore take the simpler approach of
choosing {B}°*™*¢ so that ({B} — {b})°°*"*® is the injection of ({B} — {b})*"¢. The

consequences of this approximation will become apparent in Section 3.

2.6 The Initial Estimate

So far nothing has been said about the altitude estimate {z°} with which to begin
the iteration cycle (2.10). The limiting behavior of the Newton-Raphson method can
depend on the initial guess in a remarkably complex way (Peitgen and Richter 1986),
but experience shows that a reasonable solution to the PC problem can often be
obtained starting with {2°} = {Z}, where {Z} is the mean plane approximating the
surface of the object in the field of view. If the surface is approximately perpendicular
to the line of sight, however, the remarkable properties of the PC equations linearized
about {2z} = 0 make possible a noniterative solution for {z°} which is an excellent
approximation to the true {z}. Not only is the number of subseqﬁent iterations
required greatly reduced, but the iteration process is more stable in the presence of
noise.

Consider a Maclaurin series expansion for the brightnesses:

(B = (b({=))} = bo{1} + [g%‘-)l]

where by is the brightness of a level surface, {1} a vector of M N ones, and [4] =

Eel

a flat surface. The first two terms of (2.11), taken as an equation for the initial

{2+, (2.11)

the (M + 1)(N + 1) by M N matrix of partial derivatives evaluated for
0

approximation to the altitudes, form an underdetermined system. It is a standard
result of linear algebra, however (Pratt 1978), that the solution to this equation with

minimum norm |{z}| is the pseudoinverse (PI), {#}, which obeys

{2} = [A]"{8}, (2.12a)

where
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[ANLAI{8} = (1B} = bo{1}). (2.120)

Solution for {£} turns out to be simple, and {2} is the desired {2°}, provided we take
the rms altitude (2.3a) as our roughness function, with {Z} = 0. This formulation
is not useful for subsequent iterations because 1) the special properties of the matrix
are lost, and 2) we would obtain a minimum-norm increment to {z}, rather than an
increment to the minimum-norm solution for {z}. |

To see why (2.12) is easy to solve, we must look at the structure of [A], and for
this it is convenient to introduce a local numbering of the nodes in a given element
(cf. Appendix A). Returning to the definition of [A] above, we see that its (e, 1)
entry %g—j relates node i to element e, and is zero if 7 is not one of the four nodes
in e. Furthermore, since the linearization was done about a uniform flat surface, the
nonzero values can depend only on the local index (1 = upper right .. .4 = lower left),
and not on e. Now, we have chosen the (z, z) plane to be the phase plané, SO _8(828%
evaluated for a level surface must vanish; b is symmetric in % The final simplification
comes from the expression for the in-phase-plane slope at the center of the element:

% = 2(—2§ + 25 + 25 — 25), using the local numbering and expressing z in units of

: : . 0b _ _9b _ _9b _ 0b _ 1 db =
pixel widths. Thus we obtain 928 = "0 = TOZE = 9= T3 CEED = .

Rewriting the previous equations in the form:

{2} = [A]"{B}, (2.13q)
where

g isy = 1AL (2.13)

we obtain matrices [A] = %[A] and [A][A]T that are independent of the photometric
function chosen as well as of position e within the image. Figure 2.4a shows the
weights by which [A] relates an element to its four nodes; since all are +1, the

calculation of (2.13a) requires no storage and no multiplications, only additions and
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Figure 2.4. Matrices used in the initial estimate of z by SSIPSF-PI. (a) The entries of
[A] relate an element e (shown) to the nodes at its corners by &1 as shown. (b)
The entries of [A][A]T relate an element e (in center) to itself and its neighbor

elements by a sum over entries of [A] for nodes held in common.
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subtractions. The weights by which [A][A]” relates an element to its neighbors (by
a sum over the entries of [A] for nodes they have in common) appear in Figure 2.4b.
Inspection shows that the matrix is separable into operations on neighboring rows

and operations on columns. Mathematically, it is expressible as an open product

[A[A" = [R]® [C], (2.14a)
where i )
2 -1 0
-1 2 -1
[R] = - 2 "1 (2.14b)
|0 -1 2]

is a tridiagonal Toeplitz matrix operating on each row, and

"2 +1 0
+1 2 41
1 2 1
(] = o2 (2.140)
0 +1 2

is another such matrix operating on columns. It follows that the inverse of the matrix

may also be so decomposed (Pratt 1978):
-1
(laA™) =R e e (2.15)

These tridiagonal matrices are readily factored in advance, and the solution to (2.13b)
may be obtained by doing forward reduction and back substitution first on each row,
then on each column. Approximately 2M multiplications per row and 2N per column,
or a total of ~ 4 per pixel, are required.

In the jargon of image processing, the matrix [A][A]7 expresses a separable,
spatially invariant point-spread-function (SSIPSF) operating on the brightness image
(Andrews and Hunt 1977, p. 70). I therefore refer to the pseudoinverse solution by
the abbreviation SSIPSF-PI.
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3. Demonstration of the Algorithm

In testing the PC algorithm, it is desirable to work with a dataset for which the
true topography is known, so that the error in the result may be calculated. At
the same time, because we are testing an ad hoc roughness criterion, it is important
that the data have the roughness properties of a real geologic surface. Testing of
the algorithm on images with a wide range of illumination geometries, photometric
functions, signal to noise ratio, etc. is also desirable. To fulfill all of these objectives,
a series of pseudoimages were generated from actual digitized topography.

Figure 3.1 shows the region chosen for study: a 60 by 60 km square area in the
Wasatch mountains in northern Utah. A portion of the National Digital Topographic
Dataset covering the northern third of Utah was obtained from L. A. Soderblom at
the U. S. Geological Survey. The raw data are in the form of elevations, rounded to
the nearest foot (but largely binned at intervals of ~ 170 feet), on a mesh of spacing
150 m. To smooth out the artificial “cliffs” at the edges of the 170-foot plateaus, the
data were convolved six times with a Laplacian filter. Alternating data points in the
study area were split between two meshes of 300 m spacing: one, 201 by 201, to serve
as nodal values from which to compute the brightnesses of an array of 200 by 200
elements, and the second, 200 by 200, to serve as the reference to which to compare the
PC elevations in the center of each element. (An rms error of ~ 1.2 m was found when
the larger dataset was interpolated to the centers of the elements without doing PC
and compared with the smaller set.) Finally, the elevations were rescaled in terms of
the width of the elements and the mean altitude was subtracted, since PC is incapable
of determining absolute elevation. Figure 3.2a shows the topographic dataset for the
study area in greyscale form, with brightness corresponding to elevation.

A series of pseudoimages were created from the resulting nodal elevations by

- calculating the orientation at the center of each element by bilinear interpolation and
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Figure 3.1. Study area for PC algorithm . Digital topographic data for a 60 km square
area (stippled) in northern Utah were used to generate pseudoimages for inver-

sion by the PC algorithm.
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Figure 3.2. Study area topography and pseudoimage . (a) Greyscale representation of
digital topography for the study area (Figure 3.1). Darkest tone corresponds to
an elevation of 1800 m, brightest to 2400 m. (b) Pseudoimage created from data
in (a), asssuming a uniform Lambert scattering surface, illuminated from the

right with a phase angle ¢ = 45°. Image is contrast-enhanced; actual contrast is

~ 4.4%.
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assuming a Minnaert photometric function:

b= F(g)(cos 8)*®)(cos ¢)¥-1 (3.1a)

= F(g)(f - )*O(n . g)k@)-1, (3.1)

Refer to Figure 2.1 for the definitions of the incidence angle 6, emission angle ¢,
phase angle g, and the various unit vectors. This form of the photometric function
was chosen because of its simplicity and because of its applicability to bright, icy
planetary surfaces such as the polar regions of Mars and the satellites of the outer
planets (Veverka 1973) and to bright coatings such as colloidal MgO that can be
generated in the laboratory. I give results here only for ¥ = 1, known as Lambert
scattering; the behavior of the photometric function for £ # 1 is not very different
qualitatively. Appendix A gives the details of how (3.1) was computed in terms of the
nodal elevations — both in making the pseudoimage and during the PC algorithm.

Preliminary experimentation indicated that a relaxation parameter w ~ 1.5
was close to optimal (at least in the early stages of iteration), and that it was sat-
isfactory to do SOR iteration until JTAL%T:-[ < 0.1. (For the first linearization at a
given resolution convergence was faster and a cutoff of 0.2 was used.) The multigrid
stopping parameters  ~ 0.8 and § ~ 0.3 were also used throughout. Other param-
eters were varied about a “nominal” case using the area roughness criterion, with a
penalty number o = 10* on an image of a Lambert surface (k = 1) at a phase angle
of g = 45°, with no quantization, noise, or blur. Figure 3.2b shows the shaded image
for this nominal case. Note that it has been contrast stretched; the rms dispersion in
brightness as a fraction of the mean is only ~ 4.4%.

I will display the output of the PC algorithm for the nominal case in a variety
of forms. The four panels of Figure 3.3 are greyscale representations of the initial
SSIPSF-PI altitude estimate, the error in this estimate, the final estimate after 96

iterations, and the error in the latter. The same mapping between elevation and
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brightnesé as in Figure 3.2a has been used in all four panels. The most obvious
property of the residuals is the organization of most of the the error into “stripes”
parallel to the phase plane. It is also apparent that the SSIPSF-PI estimate is lower
(darker) in the west than it ought to be; this is a consequence of using a linear
approximation to the photometric function. The final estimate shows much less of
this bias. Close examination reveals a smaller component of error correlated with the
curvature of the topography, i.e., tracing out the ridges and valleys.

We can get a better idea of the magnitude of the residual from the perspective
plots, Figure 3.4. The exact topography of the study area is shown in 3.4a, while
parts b and ¢ show respectively the error in the SSIPSF-PI estimate and in the final
estimate. The view is from the southeast at an elevation of 45°, and the vertical
exaggeration is 25 : 1 in all cases. The final error is modest in comparison with
the scale of the topography, and the error within any given row is so small as to
be essentially invisible. These assertions are quantified by the histograms of the
distribution of altitudes in Figure 3.5. The first three panels of this figure correspond
to the three parts of Figure 3.4, while the fourth shows the distribution of residuals
within rows of the final estimate (note that the scales in each panel are different).
The rms error in the final estimate is 22.3m (4.4 m within rows), compared with
a total range of elevation of over 600m. A final look at the residuals is provided in
Figure 3.6. Estimates of the one-dimensional power spectral density of the ensemble of
rows (3.6a) and of columns (3.6b) are presented. Once again, the three curves in each
panel correspond from top to bottom to the topography (Figure 3.4a), the error in the
SSIPSF-PI estimate (3.4b), and the final error (3.4c). The increase in signal to noise
ratio is dramatic for the rows, especially at intermediate frequencies. The error in the
column direction is affected much less by iteration except at frequencies & 0.5km™1,

This is, however, where the SNR was initially lowest (< 1 above ~ 0.8 km™1).
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Figure 3.3a, b. SSIPSF-PI estimate of topography and residual . Correspondence be-
tween elevation and brightness in all panels is the same as in Figure 3.2a. (a)
Greyscale representation of SSIPSF-PI estimate of topography. (b) Difference
between SSIPSF-PI estimate and true topography. Note striping, low elevations

(dark) on left side of region.
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Figure 3.3c, d. Final PC estimate of topography and residual . (c) Estimated topogra-
phy after 96 iterations with multigridding. (d) Difference between final estimate
and true topography. Striping is reduced but still present; nonstripelike errors are

greatly reduced.



L Section 3

X Ckm)d

60

,ﬁ i
X (kml




| Paper Ili | 208 | Two-Dimensional Photoclinometry

Figure 3.4. Perspective plots of topography and residuals . All plots are viewed from
the southeast (lower left) corner at an elevation of 45° and have a vertical ex-
aggeration of 25 : 1. (a) Exact topography (compare Figure 3.2a). (b) Error in
SSIPSF-PI estimate (Figure 3.3b). (c) Error in final estimate (Figure 3.3d).
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Figure 3.5. Histograms of topography and residuals . Note differing horizontal and ver-
tical scales. (a) Distribution of elevations in exact topography. (b) Distribution
of residuals to SSIPSF-PI estimate of topography. (c) Distributioﬁ of residuals
to final estimate of topography. (d) Distribution of residuals within individual

rows of the final estimate, with the mean of each row corrected.
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Figure 3.6. Power spectra of topography and residuals . One-dimensional power spec-
tral densities estimated using Hanning-windowed periodograms. (a) Spectra of
ensemble of rows: from top to bottom, exact topography, residual to SSIPSF-
Pl estimate, residual to final estimate. (b) As in part (a), but for ensemble of

columns. Signal to noise ratio is lower because of row striping.
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Figure 3.7a. Error in PC equations versus iteration number . Nominal case with Lam-
bert surface, g = 45°, o = 10% area penalty. Solid curve is norm of gradi-
ent vector {E} (cf. equation 2.9d). Size of dots indicates resolution of mesh
(largest dots for full resolution). Dotted curve shows norm of brightness esti-

mate error {B} — {b}.



| Section 3 | 215 | Demonstration of the Algorithm |
- TTTTT 7 lﬁThTT L LLLLE N B LLLLR R B (0]

o

0 &

|
50
ITERATION

'lllllll | o

|llllll Lok

.

(] ¢ @
'o ‘0 ‘s
= e -



| Paper Il | 216 | Two-Dimensional Photoclinometry

Figure 3.7b. Error in PC Equations versus computational effort . Solid curve is the
same as in part (a), but plotted against the number of operations (additions
and multiplications) per pixel. Dashed curve shows the result of 20 iterations

without remeshing.
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Before we compare the performance of the algorithm for various other param-
eter choices, it is of interest to watch it at work on the nominal case. The solid
curve in Figure 3.7a shows the norm of the gradient (cf. equation 2.9d), the quan-
tity we are actually driving toward zero. The dotted curve shows the rms value of
{B} — {b} (normalized so by = 1), which is what we would Iike to have vanish. It-
eration on the different-size meshes is indicated by the size of the dots (largest for
full resolution, smallest for one-sixteenth resolution). We clearly see the “diminishing
returns” in decrease of the error per iteration that drives us to use the multigrid
technique. Substantial error is introduced at each change of resolution, but it is local
and is rapidly smoothed away. At first, the value at which the error levels off on
succeeding meshes decreases rapidly, but when we compare iterations 54-72 to 33-48
it is clear that no further progress is being made. The formal stopping criteria were
therefore abandoned at this point and the resolution was gradually increased to the
full. The reason for this limit to the decrease in the error is our incorrect method
of choosing {B} when decreasing the resolution. We choose {B} so that {B} — {b}
is injected, rather than the true right-hand side {E}. We are thus not quite solving
the “corresponding” problem at all resolutions. Eventually, the error introduced by
this approximation becomes larger than the improvement available from the coarser
mesh, and multigridding is no longer helpful.

Pigure 3.7a is potentially misleading, to the extent that the iterations on the
coarse meshes are given equal prominence to those on the finer. Figure 3.7b shows
the rms gradient as a function of the number of operations performed per pixel. (In
contrast to the multiplication-counts for the solution of linear equations given above,
the quantity plotted here includes all additions, multiplications, and higher operations
done in preparing as well as solving the linearized PC equations at their correct

relative importance in terms of time. It is thus an estimate of the actual computational
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effort expended.) Clearly, very little time is spent working on the coarser meshes.
For purposes of comparison, the dashed curve indicates the reduction in the rms
gradient to be obtained for the same amount of effort without multigridding. The
final rms gradient is about thrice as great (and the long-wavelength components are
particularly large); the rms altitude residual is 35.7 m, 27.8 m within rows. It is also
worth noting that the residual is reduced to nearly its “final” value after the first
remeshing sequence: after ~ 4500 operations per pixel it is only 5% larger than when
iteration was terminated after ~ 7300 operations per pixel (55% larger within rows).

The behavior of the PC algorithm for a variety of other cases is summarized
in Table I in terms of the rms altitude residuals. Qualitatively, the residuals and
the behavior under iteration are similar to the nominal case. I briefly summarize
the results in the table. (The “final” errors given are somewhat subjective, since
judgement must be exercised as to when iteration is no longer fruitful, but the amount
of computational effort expended in each case was similar.) First and most generally,
the error is always dominated by “stripes” along the row (phase plane) direction, and
the minimum amplitude to which the stripes can be reduced by iteration is nearly
invariant for a given choice of roughness criterion. The area criterion is nonetheless to
be preferred, as it leads to slightly less severe striping, and is computationally more
efficient than the entropy criterion as well. Evidently, the striping is an unavoidable
characteristic of the “smoothest” solution compared to that which obeys the proper
boundary conditions. It is not a consequence of slower convergence of the algorithm
for between-rows variations than for variations within each row, as was reported in an
earlier abstract (Kirk 1984). This conclusion is supported by tests of the algorithm
on images generated from multiples of the Utah topography (with the residuals of
course calculated with respect to the scaled elevations). The total rms error (i.e., the

striping) scales linearly with the amplitude of the topography; it is intrinsic to the
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Table I. Performance of the Photoclinometry Algorithm

—RMS Error inAltitude Estimate (m)—
Rougness —SSIPSF — PI*— Final
g (°) a Criterion Total Rows® Total Rows’
45 104 Area 43.7 37.5 22.3 4.44
45¢ 104 Area 43.7 37.5 35.7 27.8
45¢ 104 Area 14.8 9.59 11.3 1.50
45 104 Area 43.7 37.5 22.3 4.44
45¢ 104 Area 150. 143. 47.0 17.0
45 104 RMS = 43.7 37.5 34.2 26.8
45 104 Area 43.7 37.5 22.3 4.44
45 10  Entropy’ 43.7 37.5 33.8 26.2
45 10° Area 437 37.5 22.6 7.65
45 104 Area 43.7 37.5 22.3 4.44
45 10° Area 43.7 37.5 22.9 4.09
30 10* Area 69.2 65.5 22.5 7.90
45 10* Area 43.7 37.5 22.3 4.44
45 104 Area 31.0 21.4 22.4 3.15
45 10¢ Area 24.4 9.74 22.4 2.30
45 104 Area 43.7 37.5 22.3 4.44
459 10 Area 43.6 37.4 22.8 4.49
45" 104 Area 45.5 40.0 24.1 8.80
45 10* Area 43.7 37.5 22.4 6.53
457 10¢ Area 43.8 37.7 25.3 12.0

@ Initial estimate for photometric function linearized about z = 0.

5 Mean elevation of each row corrected to indicate errors in individual row profiles.

€ Same computational effort, without multigridding.

Amplitude of topography reduced to half its normal value before image generation.
Amplitude of topography increased to twice its normal value.

Entropy coefficient ¢ = 1 x 103 m~1. (cf. equation 2.3c).

Quantized at 1/128 of mean brightness.

h Quantized and Gaussian noise with o = 1/128 of mean brightness added.

i Quantized and coherent noise with amplitude 1/128 of mean brightness, A = 3km added.
J Image blurred by convolution with 3 by 3 boxcar.

Q - o R

solution toward which iteration is converging.

The error within rows is largely a consequence of imperfect convergence to
the solution of the nonlinear PC equations. It should therefore vanish (rélative to
the total topography) in the limit of small amplitude and decreasing departure from

linearity. As the table shows, the within-rows residual indeed scales nearly as the
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square of the topography. It is also understandably more sensitive to the parameters
of the algorithm than is the striping. Increasing o to 10° does not decrease the
row residual substantially, but decreasing it to 10 increases it. The value o = 10*
was thus adopted for the remaining tests. Perhaps the most interesting quantity
to vary is the phés‘e angle (Figure 3.8). As usual, this has no effect on the final
rms error, but both the error in the SSIPSF-PI estimate and the within-rows final
error decrease with increasing g. This is in all probability due to the increasing
image contrast: when the strength of brightness variation increases and the rms
value of {B} — {b} is held roughly constant, the error in {z} will decrease. The rms
variation in brightness across the shaded image (normalized to by = 1) is also shown
in Figure 3.8, and follows the same cot ¢ trend as the altitude residuals, supporting
this explanation. The algorithm was also tried for ¢ = 15°, but no solution was

obtained because of unavoidable divergence of the SOR iteration. Divergence was

!AAzk+1|
|AAZF|
and the ratio of the maximum nodal AAz® to the rms value. The latter was of use

detected to by examining both (the rate of decrease of the rms increment)
in detecting some cases in which subsequent examination showed that the solution
diverged only in a localized region of the image.

Next, the sensitivity of the PC altitude estimate to noise, in particular quanti-
zation error, is examined. From Figure 3.8 we see that the rms width of the brightness
distribution at g = 45° is only ~ 4.4% of the mean brightness. The typical accuracy
to which the PC solution leads to the observed brightnesses is ~ 0.02%. Quantization
is thus a potentially serious concern, since an eight-bit digital image exposed so that
by corresponds to half scale cannot resolve brightness differences X 0.8% of the mean.
Nonetheless, as the table indicates, such an image can be successfully inverted and the
rms residual is no larger than in the unquantized case! The only difficulty encountered

is that the SSIPSF-PI solution contains noise at extremely high spatial frequencies,



| Paper il 222 Two-Dimensional Photoclinometry|

Figure 3.8. Residual to topography versus phase angle . Triangles: rms residual to
SSIPSF-Pl estimate. Squares: residual to final estimate, dominated by stripes
dictated by smoothness criterion. Circles: residual to final estimate, within
rows, dependent on phase angle through image contrast. Open ci.rcles: in-
verse measure of image contrast, by/op, where by =brightness of mean plane,
OB :-;standard deviation of brightness distribution. Dotted line is the fit o5/by =

0.0015 + 0.0437 tan g.
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Figure 3.9a, b. Spriggina image and greyscale topography . Fossil Spriggina from the
Ediacaran Pound Quartzite, South Australia. Approximate scale is indicated..
(a) Portion of a photomacrograph of an MgQO coated latex replica; of the fossil,
obtained with the PFUEI charge-coupled device camera. (b) Greyscale represen-

tation of PC reconstructed topography from the image in (a).
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Figure 3.9c. Perspective plot of Spriggina topography . View is from the lower right at

an elevation of 45°, with a vertical exaggeration of 2 : 1.
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which can cause SOR to diverge. Smoothing the SSIPSF-PI estimate with one pass
of a 3 by 3 boxcar filter before iteration prevents this problem. When Gaussian noise
with a standard deviation of b,/128 is added to the image before quantization, two
passes of the boxcar are necessary, but iteration is straightforward thereafter.

Contamination of the image with coherent noise results in coherent noise in
the solution but does not make iteration more difficult. Unless the noise wavevector
is almost perpendicular to the phase plane, the result is roughly the addition of the
corresponding coherent noise (i.e., the sinusoidal surface whose image would be the
noise in the data) to the reconstructed topography. In this case one can show that
the relation between the amplitude Ab of noise in the brightness and the amplitude
Az of the elevation error is approximately:

A sec ¢ cot gAb
z N — ,
27 /1 — (sec @ cot gAb)?

(3.2)

where X is the wavelength and ¢ is the angle from the phase plane to the wavevector
(the direction of maximum slope) of the noise. The case indicated in the table, for a
(quantized) image plus noise with Ab = b,/128, A = 10 pixels (3km), and ¢ = 45°,
fulfills this expectation. Clearly, coherent noise is a serious potential concern, since it
is common in digital images and even moderate amounts may lead to large errors in
z if X\ or secp are large. Coherent noise is often extremely difficult to eradicate from
an image (if it is not exactly harmonic), but fortunately is relatively easy to detect.

As a last test case, an unquantized test image was degraded by convolution
with a 3 by 3 boxcar before PC inversion. The final rms residual increases only slightly,
but the within-rows residual is trebled (even with respect to a smoothed version of
the reference topography). The severity of the error due to blur will in general
depend not only on the degree of blurring but on the spatial-frequency spectrum of
the topography.

I conclude this section with an application of the PC algorithm to a real image.
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Although the metric accuracy of the result cannot be ascertained, it is nonetheless
of interest because it demonstrates the ability of the algorithm to function on a real
dataset with unknown normalization, substantial noise, and much larger slopes than
the Utah topography. It also shows that PC is useful for photomacrography as well
as for remote sensing.

Figure 3.9a shows the fossil organism Spriggina, from the Pound Quartzite of
South Australia. The figure is a 200 by 200 pixel subarray extracted from an 800
by 800 pixel digital image obtained with the PFUEI charge-coupled-device camera at
Caltech. To create a surface with a known photometric function, a high-resolution
latex replica of the fossil was exposed to MgO smoke until uniformly coated; this
preparation is, to excellent approximation, a Lambert scatterer. A bare filament desk
lamp bulb some four meters from the replica was used to provide nearly point-source
illumination at a phase angle of 45°. The dark current value (based on a masked
region) was subtracted from the raw image data, and the result ratioed to an image
of a blank field.

The resulting flat-fielded image was convolved three times with a 3 by 3 boxcar
filter to reduce the highly visible noise, and alternate samples extracted from a 400
by 400 region to reduce the dataset to tractable size. The PC algorithm was applied
to the resulting image, using the area roughness criterion and a penalty number of
10* as usual. The method used to normalize the image, based on the estimated
orientation of the mean plane, is described in Appendix A. As with the artificially
noisy pseudoimages, there was a tendency for the SOR iteration to become divergent
at the highest resolutions and in the earliest linearizations. Progress could nonetheless
be made by discarding {Az} whenever divergence occurred, smoothing {z} with a 3
by 3 boxcar, and then relinearizing.

Figure 3.9b is a greyscale representation of the PC altitude estimate obtained
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after ~ 6800 operations per pixel, and Figure 3.9¢ shows the same data in perspective
plot form, with a vertical exaggeration of 2 : 1. The ~ 0.9 mm relief obtained for the

fossil is in good agreement with direct inspection of the replica.

4. Discussion
The previous section indicates the power of the finite element PC algorithm. At an
expenditure of < 10% operations per pixel, it can yield two-dimensional topographic
information about surfaces of realistic complexity to an accuracy of ~ 20% (rms error
over rms topography) even in the presence of substantial noise. The error within
profiles aligned with the direction of illumination is much lower: ~ 2-7%, depending
on the phase angle. This within-rows error may, in fact, be of interest in real problems.
If it can be determined that the image contains a level or near-level region, then
adjustments of the profiles made so that they match there can be extended to the rest
of the dataset. (This is a kind of ex post facto application of a boundary condition
to the topography; given the nonlinearity of the problem, it cannot be expected
to yield a completely accurate result, but it can help substantially.) Moreover, for
some purposes, such as the estimation of the fractal dimension of a fracture surface
(Mandelbrot et al. 1984), the desired product may be an ensemble of profiles rather
than a two-dimensional surface. This information could be obtained much more
rapidly and for many more profiles by photoclinometry than by cutting and measuring
the sample.

On the basis of the tests carried out, it is unlikely that the two-dimensional
PC algorithm could be completely automated. Judgement on the part of the operator
was required to decide when iteration at reduced resolution was no longer fruitful;
strict application of the stopping criteria of Brandt (1976) would lead the algorithm
into an endless loop between the lowest and next-lowest resolution. As argued above,

this failure of the stopping criteria (which have been automated for other problems)
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is almost certainly a consequence of the simplified but incorrect scheme used to inject
the brightness measurements onto the coarser mesh. Additionally, the operator must
be alert for divergence of SOR iteration and either attempt to treat it by smoothing
away the erroneous high-frequency components of the topography, or decide to aban-
don the inversion. No foolproof test to distinguish treatable from fatal divergence
was discovered. The requirement for supervision should not be seen as a critical
shortcoming of the method, however. Both photogrammetry and existing photocli-
nometric methods (e.g., Davis and Soderblom 1982; 1984; Howard et al. 1982) also
require supervision, and they produce only separated tiepoints and one-dimensional
profiles, respectively, rather than topography over the entire image field.
Application of any photoclinometric method to real remote-sensing data will
be subject to several potential problems that are not present in the analysis of pseu-
doimages and laboratory-scale data. I will briefly discuss some of these and in some
cases will suggest remedies. First, we may not know the proper photometric function
to use. I argue that knowledge of the albedo, along with knowledge of the image
system calibration, is not strictly necessary for successful PC. The self-normalization
algorithm presented in Appendix A has been shown to estimate the overall normal-
ization very well, by requiring that the reconstructed surface have the correct average
orientation. Variation in the form of the photometric function is potentially more
serious. Howard et al. (1982) have investigated the Minnaert photometric function
(3.1) in some detail, finding that misestimation of the overall brightness normaliza-
tion leads to large errors in estimated slope, but that variation of the exponent k
has a much smaller effect. Davis and Soderblom (1984) find that a Lommel-Seeliger
Lambert photometric function is less sensitive to misestimation of its photometric
parameter than the Minnaert function. Recent work by Wilson et al. (1985) suggests

that for Hapke’s (1984) photometric function, the only parameter with a significant
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effect is the rms slope (at unresolved lengthscales) T. Other forms of the photo-
metric function have yet to be examined. For all these photometric functions there
is the hope that spatially averaged observations at a variety of geometries will suf-
fice to constrain the parameters needed for interpretation of the resolved brightness
variations.

A related and potentially much more serious concern is the effect of atmo-
spheric scattering. This may be very complex, but heuristically the two main effects
will be attenuation of the light transmitted to and then from the surface, and scat-
tering from the atmosphere into the camera lens. We thus have a more-or-less linear
transformation of the brightness b’ o~ be~7(secf+secé) L g . where 7 is the normal opti-
cal depth and bg;yy, is the brightness (appropriately normalized) of the light scattered
from the atmosphere. Clearly, if either quantity is large, disaster may ensue. To the
extent that the photometric function is linearizable, the offset leads to a net tilt of
the recovered surface topography towards the light source, and the attenuation to a
reduction of the amplitude calculated. If we use the self-normalization technique, the
entire expression will be further multiplied by a factor less than unity, so that the net
tilt is removed but the topography is even more de-emphasized. Of course, there will
also be nonlinear effects leading to a distortion of the recovered surface.

The only viable solutions to the atmospheric scattering problem are: restrict
one’s attention to planets without atmospheres, or attempt to model the atmospheric
effects and hence remove them. Such modeling can vary enormously in sophistication,
from locating a “black” region in the image (a shadow or low-reflectivity surface such
as a body of water) and identifying its brightness as bym, to a full radiative-transfer
calculation at each point in the image, taking into account multiple scattering, dif-
fuse illumination of the surface by the sky, and so on. In the absence of additional

information, all such models require the enabling assumption that the atmospheric
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properties are uniform (so that scattering depends on position at most in a known
way, through the varying illumination geometry). Ken Herkenhoff (personal commu-
nication, 1986) is currently working on a radiative-transfer model of the atmosphere
in the Martian polar regions near the terminator. In the near future this model will
be used to conduct a photoclinometric investigation of the topography of the polar
layered terrain. Where possible, comparison will be made with photogrammetric data
to assess the accuracy of the result.

The most formidable obstacle to practical photoclinometry is almost certainly
the possibility of spatially varying surface photometric properties, in particular the
albedo. Again, we have several choices: give up and apply PC only to bodies cer-
tified to be bland (if such can be found), use more than one image and solve for
both the albedos and the altitudes, or attempt to model the albedo variations. The
second technique goes by the rather unfortunate name of “photometric stereo.” A
finite element algorithm for photometric stereo could be constructed as a relatively
straightforward generalization of the PC code. It should be emphasized that, despite
its requiring two images, photometric stereo may still have substantial advantages over
genuine photogrammetric stereo. As mentioned before, stereo yields only point mea-
surements of the elevation, and these may be few if the images are bland and hard
to cross-correlate. Photometric stereo would yield a two-dimensional topographic
dataset plus a map of the surface albedo. Also, overlapping images may be easier to
obtain with different illumination geometries than with different observation geome-
tries, especially from sun-synchronous satellites. Although the look angle and time
of day at which a region is imaged are fixed, the azimuth of solar illumination will
vary with the seasons (R. J. P. Lyon, personal communication, 1985). Comparison
of images made at different times of the year could give a topographic solution of

better quality than could be obtained for a uniform surface from one image. Each
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image constrains the surface in the cross-phase-plane direction to which the other is
least sensitive. Another interesting prospect for photometric stereo is to use a third
image (or assume the albedo distribution is known) to obtain an overdetermined set
of equations for the elevations. The artificial roughness criterion would not be needed,
and data of very high accuracy might be produced this way.

Short of writing a new program to do photometric stereo, there are several
possible ways of attempting to correct the image to what it would have been for a
uniform albedo surface, before applying the existing PC algorithm. The assumption
of a uniform surface within the PC program need not be changed. (Were the form of
the photometric function to vary spatially to a significant extent, this precorrection
technique would not be feasible.)

The simplest way to attempt correction of the brightnesses, which should
nonetheless be taken seriously, is ad libitum by a photogeologist working interactively
with the PC program. The human would examine both the image and the previous
PC altitude estimates and attempt to identify geologically plausible albedo units,
adjusting their relative albedos to produce the most reasonable revised altitudes. As
a concrete example, a systematic slope in crater floors away from the light source
could be corrected by positing that the craters are filled with a low-albedo unit
and rescaling the input brightnesses upward. This technique has been used with
some success by Mouginis-Mark and Wilson (1981) for Mercury. Automation of the
heuristics for albedo-unit selection is a more speculative possibility (Bruce Murray,
personal communication, 1986).

In some cases, it may be possible to extract the needed albedo information
from a multispectral dataset. Eliason et al. (1981) report the separation of Landsat
data into spectral-albedo images normalized to a level surface and a “topographic

modulation” image, which is precisely the kind of albedo normalized image we require.
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Their method involved the examination of statistics for the ratios of the images in
different spectral bands. A finite number of clusters of pixels with similar ratios were
identified as discrete surface units, and then each pixel was assumed to be paved with
the unit it most closely resembled. To the extent that the photometric function can
be linearized, the mean brightness of all the pixels in any given unit (for each spectral
band) is an estimate of the brightness of a level surface covered with that unit. Then
the level-surface spectral albedo maps may be constructed by replacing the actual
brightnesses of each pixel with the level-surface (mean) brightnesses of the unit to
which it belongs. The topographic modulation is given by the ratio of the pixel’s
actual brightness to that for a level surface.

A more sophisticated variant of this method due to Greg Ojakangas (unpub-
lished) allows each pixel to contain an unresolved mixture of several units. In his
method, the statistics of band ratios are examined and a set of end member units
identified such that the color ratios of every pixel can ‘be expressed as an area-weighted
average of the color ratios of the end members. (All pixels must have colors lying be-
tween those of the end members, in order that none of the areas be negative.) Each
pixel is then considered in turn. Given n spectral bands with distinct properties,
there are n 4+ 1 equations of constraint: n brightnesses, plus the requirement that the
partial areas of all end members in a given pixel sum to the total pixel area. We can
therefore invert the system of linear equations to find the relative proportions of n
different end member units, plus the topographic modulation by which their level-
surface brightnesses must be multiplied. The key difficulty here is the selection of
appropriate end members. For a meaningful solution to be obtained, the number of
end members must not exceed the number of spectral channels in the imaging sytem
(and may have to be less, if some of the spectral bands are redundant). At the same

time, however, the set of end members must adequately describe the full range of
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surface colors encountered, or nonphysical negative areas will result. It is thus advis-
able to break up large images into a number of relatively small regions, with only a
few distinct surface units in each. Despite these caveats, when a suitable set of end
members can be chosen, the linear inverse method produces impressive results.

Finally, the inclusion of a priori topographic information in the PC algorithm
may turn out to be extremely helpful, particularly in modeling out atmospheric effects
and (low spatial frequency) albedo variations. Because the PC problem has been
formulated as the constrained minimization of the roughness function, the addition
of further constraints is trivial. Furthermore, in the penalty method formulation it is
straightforward weight each constraint according to its importance. The most useful
constraints would undoubtedly be benchmarks: points where the elevation is known
as a result of sterometry, radar altimetry, or whatever means. “By eye” estimates of
the local topographic strike in some elements could also be incorporated. Appendix
A includes a discussion of one way in which these constraints could be implemented
in the finite element algorithm. Here I consider their potential utility.

A priori information would, by itself, contribute to the accuracy of the PC
algorithm, but its utility might be limited by the resolution at which it was avail-
able. As an extreme case, a closely spaced set of benchmarks (such as an altimetry
track) spanning the image could be used to suppress the phase plane striping effect.
A smaller number of data points would be correspondingly less effective. If one is
interested in modeling atmospheric or albedo effects, on the other hand, even a small
number of benchmarks could be very useful. Consider the simple atmospheric scatter-
ing model b’ o~ be~T(secttsecd) 1 p . discussed above. The PC algorithm may readily
be extended to adjust the parameters 7 and b, along with the nodal altitudes, but
in the absence of other constraints the results would be disastrous. The roughness

would be minimized by an unphysical solution with {2} — 0, 7 — —oo. This cor-
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responds to a nearly flat surface whose miniscule brightness variations are amplified
to the observed values by the atmosphere! Introduction of two or more benchmarks
(only the differences between altitudes are significant in PC) in this situation provides
information about the actual amplitude of the topography, and should enable a mean-
ingful solution. A spatially varying atmosphere model may likewise be constrained,
provided benchmarks are available with a fine enough spacing and a broad enough
coverage. Similar considerations hold for models of spatially varying albedo (though
the albedo is less likely than the atmospere to be fit by a slowly varying function).
In the absence of a priori constraints, minimizing the rougness will drive as much of
the brightness variation as possible into the albedo. Addition of benchmarks would
help ensure the correct scale of topography.

I conclude this paper with a brief description of the generalization of the two-
dimensional finite element method to the analysis of topography from side-looking
radar (SLAR) images, known as radarclinometry®. This name was proposed by
Wildey (1984) to emphasize that, like photoclinometry, the method derives shape
information from satisfying a set of “brightness” measurements, not from the intrin-
sic range-finding property of radar. Radarclinometry (henceforth RC) is of interest
for a number of reasons. First, all SLAR images are subject to geometric distortion
due to the way they are formed (explained below) which makes geologic interpretation
difficult. Thus, a technique that takes a single SLAR image and provides even an
approximate rectification of the geometry is of practical use. Second, RC may be al-
most the only means of obtaining topographic information from proposed missions to
Venus and Titan. The Magellan spacecraft to Venus will carry a synthetic aperture
radar capable of high resolution, but not a radar altimeter. Although overlapping

radar images can be combined to yield stereo information, identifying corresponding

6 A radarclinometry algorithm could also be applied to side-looking sonar without further
modification, though its utility in this context is somewhat dubious.
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Figure 4.1. Coordinate system for radarclinometry . Cylindrical coordinates are cen-
tered on the flight track of the radar, with the azimuth = along the track, slant
range s measured obliquely to a point on the surface, and elevation angle 6 up
from the nadir. A cartesian coordinate system with 2 axis parallel to that above
is centered in the mean plane a distance h belgw the flight track. The task of
two-dimensional radarclinometry is to find the surface 0(s, z) whose normal vec-
tor 7 is consistent with the observed radar brightness at every point (s, z), then

to transform this description of the surface to one in terms of y(z, 2).
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surface features is if anything more difficult than for visible images (Wildey 1986b).
Furthermore, the baseline Magellan mission allows only for the surface of Venus to be
imaged once. RC is thus an attractive way of obtaining topographic data for Venus
at much higher resolution than did Pioneer Venus. It is even more attractive for use
with the proposed Titan Imaging Radar on the Cassini mission. Although Cassini
will orbit Saturn, it will encounter Titan only in a finite number of rapid fly-bys.
Opportunities for stereo SLAR imaging will thus be extremely limited, and a radar
altimiter (if one is included) will yield only a series of one-dimensional profiles of the
body.

SLAR differs radically from imaging at visible wavelengths in its geometry
(Figure 4.1), a difference that affects most aspects of radarclinometry. The method
is monostatic, i.e., the illumination comes from the location of the detector. There is
thus only one ray vector i, and one photometric angle ¢ = i - i, where 71 is the unit
normal to the surface. The photometric function b(¢) is thus somewhat simplified.
More importantly, although a combination of doppler and time information is used
to determine the azimuth coordinate z of features measured along the flight track,
location in the transverse direction is determined from the delay required for return
of an echo. The corresponding coordinate is thus the slant range s. Thus the better
a region of the surface approximates a wavefront of constant s, the more compressed
its echo will be in time, and hence the more compressed it will appear on the SLAR
image. This is the characteristic distortion of SLAR, with slopes toward the radar
foreshortened, and those facing away stretched out. If we can determine the cartesian
(z,y, z) coordinates of each point (s, z) in the image, we can make both a topographic
dataset y(z, z) and a geometrically corrected image b(z, z).

Despite his success with the PC problem, the main worker in the field, Wildey

(1984, 1986a), abandoned the two-dimensional approach for radarclinometry in favor
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of the older technique of integration along one-dimensional profiles. He requires that
the user determine the direction of strike at the first pixel and then propagates this
quantity by making an assumption about the second derivatives of the surface known
as “local cylindricity.” The path integral approach would appear to be necessitated
by the fact that at each pixel we must iterate the values of both z and y in order to
satisfy the brightness constraint on the orientation at fixed slant range s. The surface
y(z, 2) is thus defined implicitly, rather than explicitly, by the RC equations.

I show in Appendix B how this apparent difficulty may be removed, and the
two-dimensional nature of the problem exploited as in photoclinometry. As in photo-
clinometry, boundary conditions are formally required but not available, so a rough-
ness criterion must be used. The trick is to work in the cylindrical coordinate system
imposed by the radar process, solving for a surface described in the form 6(s, 2),
where @ is the elevation angle. Global solution is possible because s appears only
explicitly in the equations. Once the surface is known in cylindrical coordinates, it
is straightforward to transform to the desired cartesian coordinates. The only draw-
backs to this formulation are that the descriptions of the surface orientation # and its
derivatives are quite complex, that the area roughness function cannot be imposed
precisely, and that the finite element approximation to 6(s,z) does not represent a
level surface well when the mesh is coarse. Other potential problems are the presence
of noise (coherent and speckle) in synthetic aperture radar images, and the need for
at least relative radiometric calibration between pixels of an image. None of these
should prove an insurmountable obstacle to the implementation of two-dimensional

RC in the near future.
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Appendix A: Explicit Forms of the Photometric Function and Roughness
I derive the explicit forms of the Minnaert photometric function (3.1), and the con-
tribution of an element to each of the three roughness criteria (2.3), in terms of the
nodal altitudes. For convenience, I restate the continuous versions of the functions

here:
b= F(g)(cos 6)*(cos ¢)*)? (Ala)
= F(g)(A - )* (A - &)*0), (A.15)

where the unit vectors 7 normal to the surface, ¢ toward the source of illumination,
and é toward the observer, along with the angles ¢, 8, and g are defined in Figure 2.1,

and

( //(z — Z)*dz dy, the rms altitude{A.2q)

//\/1+ Z_Z)) ( o )) do dy, the area, or  (A.2)

/ —(c(z — Z) + e V) In(c(z — Z) + e7') dz dy, the entropy. (A.2¢)

N
I

where Z is a reference surface for the topography z. Adopting the local numbering

of the nodes in an element e shown in Figure A.1, we seek b°(2§, 25, 25, 2§) such that

the brightness constraints can be written b = B®. The area criterion of roughness

(A.2b) involves the derivatives of z, so for it we also seek a division according to

elements S¢(z¢, 25, 25, 25) such that S = 3 §°. From the explicit representations, we
e

can calculate the first derivatives of b° and the first and second derivatives of S¢.
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These quantities may then be assembled (summed) into the locations in the matrix
equation (2.9) corresponding to the global numbering of the nodes.

The rms-altitude and entropy roughness criteria do not involve the derivatives
of z, so it is more convenient to write them as a sum over (globally numbered) nodes
S = 32 Si(#); clearly, the functional form S; is exactly that given above. This
is a de;)a,rture from the strict finite element formulation, but it is justified by the
simplification to which it leads and by the fact that the method is not sensitive to
the exact nature of S.

Having chosen a one-point Gauss quadrature scheme (cf. equation 2.4), we
approximate the integrals over the element implicit in ¢ and 5S¢ by the value of the

integrand at the center. Defining:

and analogously,
Ay = (25— Z3) — (21— Z3), Dy = (25— 2Z3) — (25 — Z), (A.4)

we write the derivatives at the central point given by bilinear interpolation. It is

convenient to work in the rotated (21, z2, z) coordinate system defined in Figure A.1.

Then
82 —-Al 02 AZ
= = —= Ab
3:101 \/é- ’ 63:2 2 ( )
and
8(:5—Z)= —-A}  9(z-2) 29_’2 (A.6)

6131 \/5 ’ a$2 \/.2-

2 2 2 2
Realizing that (82;1Z> +(32;2Z) z(az;Z) +(3?;Z)

is an invariant, we can immediately write the element contribution to (A.2b):

S = 715\/2+A;2+A'22. (A7)



l Paper 1] l 244 I Two-Dimensional Photoclinometry

Figure A.1. Local node numbering convention . For the purpose of calculating element
contributions to S and b, it is convenient to renumber the four nodes in a given
element as shown. Rotated coordinate system (zy,z,z) simplifies the form of

the functions.
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To eliminate unnecessary arithmetic in the PC algorithm, the factor of 715 was omit-
ted from the definition of S¢. The derivatives of S® with respect to the nodal altitudes
may be obtained by the chain rule from the two first derivatives and three second
derivatives with respect to the Al

This leaves the brightness. Defining unit vectors £;, #,, 2, we obtain for the
unit normal to the surface
—(0z/ 0z1)2; — (0z] Oz2)22 + 2

V(02 021)? + (8z] Bz3)? + 1

_ Az — Agiy + V2

VAT 4+ AL 4+2

Since we observe along the z axis, and the light source is in the (z, z) plane at a phase

n =

(A.8)

angle g, we have é = % and 7 = (sin g + cos g%) = (71; sin g(£y — Z2) + cos gz). The

photometric function may now be written as:

' k k-1
¥ = F(g) 1 2cosg+ (A1 + Ay)sing V2
T\ V2 2+ A+ A] 2+AI+A7)

Again, the work done in the PC algorithm was reduced by defining b° to be this

quantity, divided by the constant factor E% The observed brightnesses were of
course rescaled in advance by the same amount. When the image is photometrically
calibrated and one knows the surface albedo (e.g., for a pseudoimage), this rescal-
ing is straightforward. Tests showed that it could also be estimated accurately by a
simple iterative technique exploiting the relatively weak dependence of b on the trans-
verse gradient % We make the assumption that, for the purpose of determining the
normalization 3 such that B® = 8B¢, where the B¢ are the raw data, we can approx-
imate %j— o~ %—5— within the photometric function. The equation be(%, %—5—) = BB*
may be inverted for each pixel to yield %?; ~ b~1(ABs; %5—) The derivative of the

gradient with respect to 8 may also be obtained. Then we use Newton’s method to

solve the equation ]WlN ;b—l(ﬂﬁ?; %5—) = %—% for 8. That is, we require that the
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normalization lead to the correct in-phase-plane gradient, averaged over the image.
In practice, two or three iterations suffice to converge to an approximate 8 accurate
to better than 0.2%.

To conclude this section, I show how two classes of a priori constraint, bench-
marks and strike estimates, may be included in the finite element PC algorithm.The
formulation of the PC problem as a constrained minimization carried out by the
penalty method makes the introduction of additional constraints of variable weight

entirely straightforward. Equation (2.7) may be generalized to read:

5(25 +5((B) - (B)(UB) - b))+
> (e, ym) - Cm)2+Z—sm (2n,9a) = ) =0, (4.10)

m

where the first sum is over benchmarks of elevation (,, located at coordinates (z, ym),
and the second is over points (z,,y,) where the strike is estimated a priori to be ¢y,
compared to the modeled value ¢. The w,, and w, are the weights with which these
constraints are to be applied.

The functions z(z,y) and ¢(z,y) needed to evaluate equation (A.10) for any
choice of tiepoints may be obtained using the interpolating functions chosen for the
finite element scheme. A great simplification is possible, however, if we restrict our
attention to benchmarks located exactly at nodes, and strike estimates in the centers
of elements. Use of the constraints during iteration on the coarser meshes is thereby
precluded, but I argue that this is not a drawback. Strike estimates in particular,
and to a lesser extent benchmarks, probably refer to the finest scale features in the
image, and thus ought not to be utilized during iteration at low resolution. (If these
constraints are being used to facilitate fitting atmospheric or albedo parameters, such
parameters can be held fixed except when working on the finest mesh).

With this in mind, let us define {(} as the vector whose ith entry is the

benchmark altitude ¢ located at node 7, and [K;] as the diagonal matrix whose (z,1)
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entry is the weight w to be attributed to this benchmark; if there is no datum for
node ¢, let Ky = (; = 0. Similarly, let ¢° be the a priori strike angle at the center
of element e, measured anticlockwise from the positive & axis. The corresponding
weight, w®, vanishes if ¢° is unknown. The equation (2.9) for a Newton-Raphson step

then becomes:

(14 + 1] + (K51) {24} = {BE} + (B} + (B, (4.110)

where

{B}} = - [K1)({=") - {z0}) (A.110)
[Kf] = [6 Ze w* Sal?zg(jﬁa(ée),—g) — 906):| : (A.llc)
(B} =— {3 > w" Sma(?z(;ve, V) — @e)} (A.11d)

and, in terms of the finite element representation,

: _ Aqcos(p® — £) — Aysin(p® — Z))?
sin?($(z®, y¢) — ¢°) = (4 4 A (Alle
(67 - ) 2 (A11e)

The function sin*(¢—¢) was chosen to be positive semidefinite, vanishing when ¢ = ¢,
and dependent only on the orientation, not the magnitude, of the local surface gradi-
ent. A case can be made that if the magnitude of the gradient is small, the orientation
is less likely to be significant. Omission of the normalization in the denominator of
equation (A.lle) would result in an appropriate slope-dependent weighting of the

strike constraint (as well as simplifying the computation).

Appendix B: Finite-Element Formulation of Radarclinometry

Leaving aside such “practical” problems as radiometric calibration (Wildey 1984) and
coherent noise, radarclinometry differs from photoclinometry in its unusual geometry
(Figure 4.1). The radar unit moves along a more-or-less linear flight track above the
surface of a planet, and constructs an “image” of brightness B as a function of slant

range s (related to echo delay by the speed of light ¢) and azimuth z (decoded from
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time and doppler-shift information). The brightness of the reflected radiation from a
point on the surface depends on the single angle ¢ = # - i. The brightness function
b(¢) may be assumed known for the purposes of formulating our algorithm.

We establish cartesian coordinates, in which we wish to describe the scattering
surface; keeping the z axis parallel to the flight path, we make the y axis vertical.
If the flight path is a distance h above the (z,z) plane, which is assumed to be the

mean plane of the ground, the two coordinate systems are related by:
z=gsinf, y=h—scosb, (B.1)

and

5= VT, a=ta.n-l( z ) (B.2)

h—y
By analogy with the PC problem, which can be written schematically

Find z(z,y), such that b(7(z,y)) = B(z,y); (B.3)
we might naively attempt to formulate the RC problem as:
Find y(=z,2), such that b(n(z,2) - #(z,y)) = B(s(z,y), 2). (B.4)

Unfortunately, y appears implicitly in this problem, and a solution is not forthcoming.

The way out is to formulate the problem instead as:
Find 6(s,2), such that b(f(s, 2) - i(s)) = B(s, 2). (B.5)

This is an explicit equation for 6(s,z), and hence may be solved as was the PC
problem. Of course, the RC problem is underdetermined for exactly the like reason
as photoclinometry, so we must apply a roughness criterion to winnow the multiplicity
of solutions. Once we have the solution, we may express it in more conventional form

y(z,z) by means of the transformation (B.1).
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We pay the price for this approach in the following ways: 1) Calculation of
- ¢ from the “surface” (s, z) is more involved than calculating # - 2 in the PC
problem. This is not, however, a fundamental obstacle. 2) The roughness criterion
cannot (in practice) be applied precisely. An approximation equivalent to the use of
dz dy instead of dX dY in equation (A.2b) must be made. 3) As the mesh becomes
large, the finite element interpolation fails to represent the mean plane of the ground
well, since the linear interpolation # = a + bs describes a segment of an Archimedean
spiral. Nonetheless, let us proceed.

We divide the (s, z) “plane” into rectangular elements, and adopt the usual

local numbering in each. Define

[

S

[ 8 )

(s5+55), Ast=sf—ss, | (B.6)

and

€

¢ =

D] =

(5 +725), Azt =zf—z, (B.7)

We will also need the three combinations of the nodal angles:

0¢

1 1 3 1
JOTHOHO5405), Ay = S(65-05-05+05), Ay = (05+05-05-05). (B.5)

It is convenient to choose elements of width Az® = 1, and with As® such that if the ele-

_ Oz

ment lay in the mean plane, it would have unit cartesian depth: Az§ = s As® o~
— y=0
Se

\/——S;f——’;;ASB = 1.

To evaluate the brightness function and roughness criterion, we want to express
the cartesian components of the unit normal 7, and its derivatives in terms of the
finite element approximation. Then the brightness and roughness derivatives may be

obtained using the chain rule. We start with

1 Oy
Mt Oujoa) k Gyjoe T Ve

no = —Ng sin§+ny cos 0. (B.9)
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The brightness is a function only of ng, the component of 7 toward the radar, while
it is n, that will appear in the area roughness criterion. Using the chain rule, we

express the cartesian derivatives as:

Oy _ 3sin0(86/0s) — cos @
8z~ Scos0(00/0s) +sin 6’

(B.10a)

and
Oy _ 5(00/0z)
8z 5cos0(90/Ds) +sinf’

(B.10)

The finite element approximations for the derivatives of § at the center of the

element are:

00 o 90
D _Ia,. Z_Aa, :
s 30 5 (B.11)
where the denominator Az has dropped out, and we have o = '.§AA$0 ~ _'-'5-2 , a
s 52 _ h2
known quantity. In terms of these approximations, we get:
Qg _ osinfA; — cos 0 (B.12a)
0z ocosfA, + sin8’ '
and
Oy 38s (B.12b)
0z ocosfA;+sinb
Hence, it follows after some labor that
no = & (B.13a)
V14 (0A)? + (3A,)?
for the component of the normal vector appearing in the brightness, and
dAycosf +sind (B.13b)

Ny = — .
V14 (0A1)? + (3A)?
These equations are somewhat surprising; the former is entirely independent of 8,
. on, |00 1 = . : . . .
~ i th
while clearly G‘_nﬁgﬁ_l = — Ajtanf is a small quantity (and will appear in the
roughness criterion multiplied by %7) We are thus in the fortunate position of being
able to neglect derivatives with respect to 6. As in the case of PC, the brightness and

roughness will have only two independent first derivatives and three second deriva-

tives. (These derivatives will be more expensive to compute, however, since they
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require the evaluation of trigonometric functions.) Calculation of the partial deriva-
tives of the unit normal is left as an exercise for the committee.

We next need to address the problem of applying the roughness criterion in
radarclinometry. The rms z and entropy criteria can be approximated by sums over
nodes as in PC; it is only the area criterion that appears problematic. The difficulty

1

is that the quantity i is not precisely the soap-film area of the element of surface,

but the ratio of this area to its projection on the (z,z) plane. In the PC problem
1

we minimized the sum over elements of the equivalent component -
4

, and this was
what was desired if the reference surface was z = 0, since the area of each element
in that plane was unity. When an oblique reference surface was chosen, we ought to
minimize -ﬁlI per unit area in the oblique reference plane, n, being the component
of # perpendicular to that plane. Instead we approximated n, and integrated over
the plane z = 0.

In the case of radarclinometry, the problem is more severe. Were we to mini-
mize Y, -nl—z we would, in fact, be minimizing the soap-film area per unit area in the
(s,2) :pla,ne,” i.e., driving the surface towards tangency with the line of sight. The
correct modification is to minimize () é—%é&—ﬁ) /(3 AzeAy®). Unfortunately, the
necessary normalization in the denomienator 3r/na,kes tfle contribution at each element
depend on all the nodes. The sparsity and bandedness on which practical computation
depend are destroyed.

An approximate solution, in the spirit of that offered for the PC problem, is
to substitute Az§ for Az® in the above criterion. Since Az§ does not depend on
the nodal 6;, the normalization in the denominator is a constant and does not enter
into the minimization. The roughness criterion will now be over- or under-vigorously

applied to a given element accordingly as it tilts away from or toward the radar

( %%3 > 1 or < 1.). Having already assumed small slopes in several places, we should
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not be overly worried by this.
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