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Abstract 

Different mathematical methods can be used for the analysis of metabolic systems 

and the subsequent engineering of metabolism. The available experimental informa- 

tion dictates the most appropriate mathematical framework for such studies. Several 

approaches for metabolic system analysis and design are developed in this thesis. It 

is shown that for several model systems, a (1og)linear model shows excellent agree- 

ment with the corresponding nonlinear model. The (1og)linear model which is de- 

veloped here describes the dynamical and steady-state responses of the logarithmic 

deviations of the metabolic variables and functions with respect to a change of the 

metabolic parameters around a corresponding reference state. The parameters of the 

(1og)linear model are quantities easily estimated from experimental and theoretical 

tools developed within metabolic control analysis (I\.ICA). A significant advantage 

of the newly developed (1og)linear model is the linearity with respect to logarithms 

which makes computational analysis easier as compared t o  the correponding nonlin- 

ear model. A second approach introduces a novel, production-oriented optirniaation 

framework. Maximizing the performance of a metabolic reaction pathway is treated as 

a mixed-integer linear programming (MILP) formulation when a (1og)linear model of 

the pathway is available and as a mixed-integer nonlinear programming (MINLP) for- 

mulation when a nonlinear model is available. The objective of the MILP and MINLP 

formulation is t o  identify changes in regulatory structure and strength, and in cellular 

content of pertinent enzymes, which should be implemented in order to optimize a 

particular metabolic process. A regulatory superstructure is proposed that contains 

all alternative regulatory structures that can be considered for a given pathway. The 

proposed approach is followed in order to  find the optimal regulatory structure for 

maximization of phenylalanine selectivity in the microbial aromatic amino acid syn- 

thesis pathway. The solution suggests that,  from the 8 feedback inhibitory loops in 

the original regulatory structure of this pathway, inactivation of at least three loops 



vili 

and overexpression of three enzymes will increase phenylalanine selectivity by 42%. 

Moreover, novel regulatory structures with only two loops, none of which exists in 

the original pathway, could result in a selectivity of up to 95%- 
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Chapter 1 Prologue 

Dealing with Metabolic Complexity 

Current knowledge of biochemical systems is composed of a vast set of data that ac- 

cumulate with an increasing rate. Advances in analytical methods and development 

of sophisticated techniques and instrumentation have provided the tools that allow 

us to know more than we can understand. However, it is well-understood that living 

orgariisms are characterized by high complexity. This complexity increases from uni- 

cellular organisms to isolated tissue cells and multicellular structures! such as tissues 

and organs. 

Recombinant DNA and genetic technology have been major advances in molecular 

biology that allow the introduction of precise changes in many aspects of cell function 

a t  the nlolecular level and thus, the engineering of metabolic activities for novel and/or 

improved functions. The application of molecular biology and engineering tools for 

the useful manipulation of cellular processes is defined as metabolic engineering. This 

is a very neat definition since it identifies the engineering virtues of the manipulation 

of metabolism: putting together the available information, employing intuition, and 

tackling the problem. However, a s  in many engineering approaches, solution of the 

problem has not been always achieved. Moreover, the discovery of some of the most 

profitable biotechnological applications was serendipitous. 

The current approaches and methodologies, while providing with the understand- 

ing of isolated cellular processes and subsystems, do not allow understanding of the 

simultaneous contributions of these subsystems to the overall cellular metabolism. I t  

is the organization of these subsystems, which are themselves relatively small but elab- 

orate networks, in large complex networks where intuition and piece-wise knowledge 

are failing as tools for rational metabolic engineering (and, similarly, for accomplish- 

ing molecular biology and molecular medicine). Moreover, the high dimensionality 
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of these networks is offering an almost infinite number of alternative approaches 

toward the achievement of a goal. Most of the metabolic networks considered for en- 

gineered manipulation are composed of enzyme-catalyzed reactions with complicated 

stoichiometry, nonlinear kinetics, and superimposed regulatory structures. These 

regulatory structures are interactions of enzymes with compounds in the reaction 

networks, which often are not reactants or products of the reaction catalyzed by the 

enzymes in question, but which modulate the catalytic activity of the enzymes. 

Unsuccessful attempts to engineer cellular metabolism by simply manipulating the 

amount of various enzymes suggest that engineering of the regulatory characteristics 

of the enzymes in a metabolic network offers a great potential for the achievement 

of desired metabolic properties. In many examples of small reaction networks with 

simple regulatory structures, changes in the regulation of one or two enzymes im- 

proved product formation significantly. In large metabolic networks the regulatory 

structures tend to  be more elaborate. Moreover, the experimental difficulties in mod- 

ifying regulatory interactions add another degree of complexity, since the common 

trial-and-error experimental approach is infeasible. 

The development of tools and frameworks that will organize the available bio- 

logical knowledge and will help in the analysis and design of metabolic networks is 

of immediate importance. These tools should be able to screen efficiently through 

an almost unlimited set of cellular modifications (realizable by genetic engineering 

technology) and report a small set of most promising options that can be further 

tested for their potential to lead to the development of new products and improved 

bioprocesses. 

In this thesis a set of mathematical and computational methods are proposed as 

tools for the accelaration of this iterative cycle of metabolic engineering. Mathe- 

matical models of the cell have been used successfully in the past for the analysis 

of cellular processes, and they have provided useful initial directions for genetic im- 

provements of the process of interest. The realization that mathematical models are 

the only way that net consequences of simultaneous, coupled, and often counteracting 

processes can be evaluated consistently and quantitatively, has led t o  the growth of 
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mathematical modeling in many biological and biotechnological areas. 

The analysis of these mathematical models has been mainly based on simulating 

consequences of genetic and environmental changes using the models as surrogate 

organisms for in silico studies, the same way the living cells would be studied in vivo 

in the laboratory. However, simulations of alternative approaches do not really ad- 

dress the problem in a systematic and consistent way. The mathematical frameworks 

presented in this thesis do not use mathematical models for simulating experiments. 

They use the models in order to  suggest experiments for the optimization of a biotech- 

nological objective without enumerating a very large set of alternative approaches. 

1.2 Mathematical and Computational Methods 

for Metabolic Analysis and Design 

Mathernatical models of different classes, with different information bases and dif- 

ferent inputs and outputs are necessary to organize and apply data on metabolic 

networks towards the ultimate goal of effective redirection of metabolism. Associated 

with each class of models are special methods of mathematical analysis and compu- 

tational algorithms. In this thesis a set of model types and mathematical methods 

is presented, focusing in particular on the influence of metabolic regulation on the 

performance of metabolism. 

Fluxes of nutrients and metabolites into and out of the cell can be estimated 

directly from measurements of the concentrations of these components in the medium. 

If we wish to  know how these external fluxes change in response to  a particular 

genetic modification or change in the cellular environment, this change can be directly 

determined. However, this tells us little about how the cell's metabolism functions, 

and provides no guidance about expected effects of other changes in fluxes. More 

insight into the workings of metabolism can be gained by analyzing external flux data 

using a stoichiometric model of the pertinent intracellular metabolic pathways. The 

metabolic stoichiometry is employed to formulate quasi-steady state mass balances on 
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metabolic intermediates. Typically this set of equations is underdetermined: there are 

more unknown fluxes than linear independent mass balances. The various approaches 

used for addressing this problem are discussed in Chapter 2, their limitations are 

illustrated using an example, and a novel approach is proposed. 

Prediction of the changes in metabolic reaction rates which will occur after a 

change in any parameter affecting the metabolism requires a kinetic representation 

relating fluxes to  metabolite concentrations and metabolic parameters. In general 

such models are not available, and the kinetic model must therefore be developed 

from measurements of reaction rates and metabolite concentrations. A variety of for- 

mulations are possible. A (1og)linear kinetic model for metabolic reaction networks 

is introduced in Chapter 3. The model does not require detailed information about 

the kinetic mechanisms of the reactions. I t  simply employs experimental knowl- 

edge about the strength of interaction of the various metabolites, substrates and 

regulators, with the rates of enzyme-catalyzed reactions of the metabolic network. 

Comparative studies between (1og)linear models and nonlinear models based on com- 

mon reaction mechanisms are presented, demonstrating the satisfactory accuracy of 

(1og)linear models in approximating the dynamic responses of metabolic networks to 

changes in metabolic parameters. 

A production-oriented optimization framework is developed in Chapter 4. The 

framework considers the optimization of the performance of a metabolic pathway 

with respect to changes in the amounts of enzymes in the pathway and in modifica- 

tions in the regulatory characteristics of those enzymes. The optimization study is 

undertaken using the kinetic description provided by the (1og)linear kinetic model, 

used in this case to  define constraints on the optimization in the form of steady- 

state mass balances of intracellular metabolites. Consideration of changes in enzyme 

regulation which abolish initially present inhibition or activation introduces binary 

decision variables into the optimization, resulting in a mixed-integer programming 

problem. Computational studies applying this optimization framework to  a proto- 

type mathematical model of bacterial aromatic amino acid production are presented. 

The results of such studies provide useful qualitative guidance for promising targets 
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for metabolic and protein engineering to achieve a preferred flux distribution. 

The experimental information used in building the (1og)linear model can be also 

used to  build approximate dynamic nonlinear models of metabolic reaction networks. 

This class of models, called S-system models, a t  steady-state provide with a linear re- 

lation between the logarithms of metabolite concentrations and the logarithms of the 

metabolic parameters. In Chapter 5, the optimization framework introduced in Chap- 

ter 4 is developed for S-system models. The computational studies for two prototype 

pathways suggest that significant improvements in the performance of metabolism 

can be achieved if, additionally to changes in the amounts of the enzymes, modi- 

fications in the regulatory characteristics are considered, especially when metabolic 

constraints are taken into account. 

The (1og)linear kinetic model introduced in Chapter 3 and the S-system models of 

Chapter 4 provide representation of a limited class of nonlinear kinetic expressions, 

hut these representations do not in general describe flux-substrate-effector-parameter 

relationships for large deviations from the reference state. Formulating more com- 

plete, more broadly valid nonlinear kinetic models for cellular processes will typically 

require more complete information which may come from a combination of more ex- 

tensive experimental studies and literature information. One of the most important 

types of mathematical analyses which can be accomplished given a general nonlinear 

kinetic model of metabolism concerns steady-state multiplicities. While (1og)linear 

and S-system models feature a unique steady state, nonlinear models can exhibit 

multiple steady states; i.e., for a given set of metabolic parameters there exist more 

than one time-invariant metabolic state. Analysis of a prototype model for the bac- 

terial glycolytic pathway, considering the simplest nonlinear kinetics, is performed in 

Chapter 6. The analysis indicates that up to  ten steady states can exist for certain 

parameter values, suggesting the complexity of metabolism and the difficulties that 

arise when nonlinear models are considered. 

The optimization framework developed in Chapter 4 is further extended in Chap- 

ter 7 for studies of nonlinear kinetic models. As is expected, use of nonlinear models 

requires a more complicated formulation of the framework and advanced algorithmic 
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procedures for the solution of the optimization problem. The prototype mathematical 

model of bacterial aromatic amino acid production is studied again as  an example, 

and the significant improvement in the objective of interest suggested by the solution 

illustrates the power of the optimization framework as a tool for rational metabolic 

engineering. 



Chapter 2 Analysis of Metabolic 

Reaction Rates 



2.1 Introduction 

Mathematical descriptions of metabolic reaction networks have been widely used for 

better understanding of metabolism. The information obtained from such mathemat- 

ical descriptions can be used to design genetically engineered organisms with desired 

properties. The basic information needed, prior to construction of any mathemat- 

ical model of metabolism, is the biochemical model of the network of interest; i.e., 

the stoichiometry of the reactions that make up the network. Determination of the 

stoichiometry of biochemical reactions has been the subject of intensive studies in bio- 

chemistry, and a s  a result the stoichiometry governing the intermediary metabolism 

of many organisms is well known (Gottschalk, 1986: Neidhardt et al, 1987; Sonenshein 

et al., 1993; Stryer, 1988; Wood, 1985). 

Once the stoichiometry of a bioreaction network is known, the equations that 

describe the mass balances for the metabolites in the network can be formulated. This 

is the first step towards a mathematical description of the metabolism. Depending 

on the available information and on the purposes of the mathematical analysis, one 

can further develop the mathematical model by obtaining information ranging from 

reaction rates in the network to the dynamic and steady-state responses of metabolite 

concentrations to manipulations of process and/or genetic parameter. 

In this chapter a study of metabolic reaction networks using metabolic flux bal- 

ancing will be presented. This technique, although it is almost twenty years old, has 

been recently revived in response to  the widening spectrum of metabolic engineering 

applications as well as to  the need for optimized growth medium formulation and 

process design (Holms et al., 1990; Varma and Palsson, 1994). However, most pub- 

lished studies of metabolic fluxes for various organisms are based upon assumptions 

that are not easily justified and the results obtained can be very sensitive to these 

assumptions. The sensitivity of the estimated metabolic fluxes to  these assumptions 

will be discussed here using the metabolic reaction. network for aerobically growing 

Bacillus subtilis as an example model. 

A new framework for the calculation of the fluxes in a given metabolic network 
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is presented. The framework minimizes the number of assumptions with respect to 

cellular energetics. This framework can be used for the formulation of mathemati- 

cal models for the design and control of bioprocesses. The formulation of the flux 

balancing problem as a constrained quadratic or linear programming problem allows 

analysis of the system of interest with respect to uncertainties in the measurements 

and to physiological limits on the bioreaction rates. 

2.2 F'rornaNet MetabolicReactiontoaNetwork 

of Metabolic Reactions 

Every living organism is composed of chemical species that mainly consist of four 

chemical elements: carbon, C, hydrogen, H, oxygen, 0, and nitrogen, N. If the el- 

emental composition of a particular strain growing under particular conditions is 

known, the ratios of subscripts in the empirical cell formula CoH,0BN6 are easily 

determined. In order to establish a unique cell forniuln and corresporiding molecular 

weight, it is convenient to employ a formula which contains one gram-atom of car- 

bon. That is, 6' can be set equal to  1, and then a,  ,B, and 6 can be calculated from 

the known relative elemental weight content of the cells. One C-mole of cells is by 

definition the quantity of cells containing one gram-atom (12.011 grams) carbon, and 

corresponds to the cell formula weight with the carbon subscript 6' set to unity. 

Next, I will consider next the aerobic growth of bacterial cells without product for- 

mation, and how this simple bioprocess can be described as a net metabolic reaction. 

The elemental mass balances will be used to derive relations among the stoichiomet- 

ric coefficients. These relations will be used to  derive relations between intracellular 

metabolic fluxes and extracellular physiological characteristics of the cells, such as O2 

uptake rate, specific growth rate, and C02 production rate. 
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2.2.1 Aerobic Growth Without Product Formation: A Net 

Reaction Rate 

During the aerobic growth of bacterial cells in the absence of product formation the 

only products of the growth reaction are cells, C02 and H 2 0  Writing the carbon 

source and nitrogen source chemical formulas as  CH,O, and HLOmNn, respectively, 

the growth reaction equation is 

Balances on the four elements in equation (2.1) provide four relationships among 

the five unknown stoichiometric coefficients a', b', c', d', and el: 

C : a 1 = l + e '  

H : a'x + c'l = cu + 2d' 

0 : a'y + 2b' + c'm = P + d'+ 2e' 

N : c l n = S  

An additional relationship can be derived by using the experimentally determined 

respiratory quotient, or RQ, for the growth reaction. The respiratory quotient is 

defined as the molar ratio of C02 formed to  0 2  consumed: 

moles C02 formed 
Respiratory Quotient = RQ = 

moles 0 2  consumed 

and for the growth reaction (2.1) it can be written: 

If the RQ is known, equations (2.2) to  (2.5) and (2.7) can be solved for the five 



unknown stoichiometric coefficients as follows: 

- x n - b l + a n + 2 y n + 2 b m - 2 / 3 n  
b' = 

( n x  - 2 n y + 4 n ) R Q  - 4 n  
b  

C' = - (2.10) 
n 
( 6 m x + 2 6 1 - 2 c u n + 2 x n - y 6 1 +  ycun-pnx)RQ-2xn-261+2cun d' = 

( n x  - 2 n y +  4 n ) R Q  - 4 n  

Using the above relations and the on-line determination of R Q ,  bioprocess control arid 

monitoring is possible. In a series of papers, Stephanopoulos and coworkers studied 

the applicability of the respiratory quotient as a measurement for on-line bioreactor 

identification and control (Grosz et al., 1984; Stephanopoulos and San, 1984). They 

found that singularities can exist in the relations used, and they derived general rules 

for identifying conditions that may cause singularities. 

The correlation of R Q  with the process yield will become clear if we notice that 

for the biomass yield on the substrate (grams biomass formed per moles substrate 

consumed) can be written as: 
M W n s  

yx/s = 
a' 

where M W ,  is the molecular weight of the cells and n, is the number of the carbon 

atoms per molecule substrate. Combined with equation (2.8) this becomes: 

( n x  - 2 n y f 4 n ) R Q  - 4 n  
YX,, = M W  n (2.14) 

S (4n-61+an+2bm-2 /3n)RQ-4n  

or in general form: 

yx/s = 
AxRQ - B z  

FRQ - 4 

It be should mentioned here that for aerobic growth on glucose as carbon source Ax 

will be always equal to Bx independent of the cellular composition. Similarly for 
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the molar yield factor of the moles of CO;, produced per mole substrate consumed, 

Yco2/s, we can derive: 

or, in general 
AcoRQ 

Y c ~ 2 ~ ~  = rRQ - 4 

The analysis will be continued for a generalized bacterium with experimentally 

determined chemical formula C H ~ N O . ~ ~ ~ ~ . ~  (MWc = 25.5) which grows on glucose 

(C6HI2o6;  n, = 6) as a carbon source and ammonia ( N H 3 )  as a nitrogen source. The 

following values can be determined for such a system: 

A,, = 1.5 

These values permit us to identify limits on the respiratory quotient to ensure that 

the yields will be positive, finite numbers: 

The problem of the sensitivity of the yields to  uncertainties in the RQ determina- 

tion becomes apparent when the scaled sensitivity of the yields is considered: 

and 
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For the values used here, the sensitivity of the yield Yxls to RQ becomes infinite as 

RQ approaches the lower limit. More detailed analysis of the sensitivity issue can be 

found elsewhere (Grosz et al., 1984). 

The expressions derived above for the rates of the reactions given by the general 

stoichiometric equation (2.1) have be used extensively for bioprocess identification 

and control (Roels, 1983), but they do not provide any information about reaction 

rates in the intracellular reaction networks. 

2.2.2 Aerobic Growth Without Product Formation: A Metabolic 

Reaction Network 

Metabolite Mass Balancing 

The stoichiometric metabolic networks that can be formulated for various organisms 

are, in general, dependent on the conditions under which the organism is growing, 

since different conditions cause expression of different enzymes and use of different 

metabolic pathways for the catabolism of external nutrients and cell growth. If we 

consider the bacterium B. subtilis, the metabolic stoichiometry is well-known and 

stoichiometric models have been formulated (Sonenshein et al., 1993). For aerobically 

growing B. subtilis, the reaction network of the central carbon pathways are presented 

in Figure 1. The experimentally determined fluxes are the specific glucose uptake rate, 

V, and the fluxes 

{K, Vk9 &, Vhr 6, q/i, Vm, Vf9 K, Va, Vb) 

from the precursor metabolites 

(GGP, F6P1 R5P, E4P, T3P, PGA, PEP9 Pyr, ACoA, OGA, OAA) 

to biosynthesis. These fluxes can be calculated by the following formula: 
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where x denotes the biomass concentration in grams per unit volume biorea.ctor, p is 

the specific growth rate of the cells, and Yp,,,,,,,, is the biosynthetic requirement of 

the corresponding precursor (moles of precursor required per gram cells produced). 

These precursor yields have been reported for E. coli (Neidhardt, 1987), B. subtilis 

(Sauer et al., 1996), and many other organisms of industrial importance, and their 

experimental estimation is a rather standard technique (Sauer et al., 1996). 

Mass balances around the various metabolites can easily be constructed. Consider, 

for example, the mass balance for G6P: 

where the subscripts correspond to the reactions as labeled in Figure 1, and the 

term p[GGP] corresponds to the effects of the dilution due to cell growth. The quasi- 

steady state assumption is the basic assumption of the metabolic flux balancing. This 

assumption is based on the fact that metabolic transients are typically rapid compared 

to cellular growth rates and changes in the environniental conditions. Based on this 

assumption, equation (2.22) becomes: 

The reaction rates Vn and V,  can be experimentally determined as follows: 

and 

where IS] is the concentration of the extracellular carbon source, which in this case 

is glucose. 

If we normalize all of the reaction rates in the network with respect to  the specific 
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uptake rate (Vn) we can write for the Equation (2.23): 

where the lower-case letters denote reaction rates normalized, with respect to V,, 

rates. In Equation (2.26) the use of the yield coefficient of the biomass on the substrate 

results from its definition: 

This yield can be estimated experimentally. The value of the term YxIs[G6P] in the 

Inass balance equation is the normalized, with respect to V,, dilution term and since 

it has a mcu smaller value with respect to the main fluxes in the pathway considered 

here, it will be omitted from the formulation of the mass balances. 

For the mass balances of the metabolites from G6P to T3P we can write: 

Here we can identify the first major problem in metabolic flux balancing. These are 

seven linear relations between the fluxes, but there are eight uknown fluxes. Therefore, 

the system is underdetermined. 

For the rest of the metabolites considered in the network we can formulate the 

following mass balance equations: 



PGA:  O =  

P E P :  0 =  

Pyr :  0  = 

ACoA: 0 = 

OGA: 0 =  

OAA:  0 =  

suc :  0 = 

Mal : 0 = 

The above equations for the metabolic fluxes in the central carbon pathways for 

aerobically growing B. subtilis introduces a problem common in the metabolic flux 

balances: the unknown reaction rates are more numerous than are the metabolites 

being balanced, i.e., the number of the equations that can be formulated is less 

than the number of the unknown fluxes. Most of the metabolic systems are likewise 

underdetermined (Bonarius et al., 1996; Sauer et al., 1996; Savinell and Palsson, 

1992a-c; Varma and Palsson, 1995). In studies that appeared before now in the 

literature, the investigators introduce a series of assumptions in order to circumvent 

this problem. Some of these will be examined here. Many research efforts have been 

devoted to the experimental determination of one or more of the unknown fluxes, so 

that these assumptions can be avoided or validated. Experimental techniques such 

as NMR, tracing of radioactive labels, and mass spectroscopy have been successfully 

used in order to define exact values or strict bounds for certain fluxes such as the flux 

from G6P to Ru5P (reaction step 1 in Figure 1) and the fluxes in the tricarboxylic 

acid cycle (TCA) (reaction steps 13 t o  16 in Figure 1) (Mancuso et al., 1994; Reitzer 

et al., 1980; Walsh and Koshland, 1984). 



Algori thmic P rocedu re  

The general procedure for estimation of the unknown fluxes will be summarized next. 

The problem will be formulated as a nonlinear programming problem which, when 

solved, will provide an estimate for the fluxes that will satisfy the mass balances with 

minimal error. This objective can be mathematically formulated by defining a new 

set of variables, r. The number of these variables will be equal to the number of the 

mass balances. For a metabolic system with n metabolites and m unknown fluxes, 

the general matrix expression for the mass balances can be written as: 

where N is the n x m  st~ichiomet~ric matrix, v is the m-dimensional vector of the 

unknown fluxes, b is the n-dimensional vector of the total sum of the known fluxes for 

each rnetabolite mass balance, and r is the n-dimensional vector of the residuals frorn 

the mass balances. The variables of the problem are the fluxes v and the residuals r. 

The objective of the problem can be mathematically formulated as follows: 

minimize r: 

with respect to the fluxes vl, . . . , v,, subject to the following constraints: 

I. Mass Balances 

The mass balance equations (2.43) will define a set of equality constraints for 

the reaction rates and the residuals. 

11. Bounds on the rates 

Many of the reaction rates in any metabolic work are reversible, i.e. they can 

proceed in both directions. However, there are reactions that are irreversible. 

Therefore, if the mass balance network is constructed in such a way that the 

irreversible reactions will be positive when they proceed only in the allowable di- 

rection, then the following inequality constraint for the reaction rate is imposed 
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for every i-th irreversible reaction step. 

The above nonlinear optimization problem can have either a unique solution or 

multiple solutions depending on the constraints. In general, when the number of 

reactions is larger than the number of mass balance equations, then multiplicities can 

occur. This is true provided that none of the inequality constraints are active, meaning 

none of the irreversible reaction rates are zero. In the general case that the rank of 

the stoichiometric matrix N ,  is smaller than its smaller dimension, or Rank(N)<m, 

the system will be called underdetermined.  In the case that m < Rank(N) < n the 

system will be called overdetermined. Due to the existence of branching pathways, 

cycles, and various interdependencies within the metabolic network, the number of 

reactions is greater than the number of metabolite mass balances in most metabolic 

systems. Therefore, in most cases, the metabolic net,work will be underdetermined. 

2.2.3 Determining the Underdetermined: Assumptions and 

Solutions 

In order to overcome the problem of the underdetermined system many applications 

of flux balancing use assumptions to make the system determined or overdetermined. 

The most common assumptions used concern: 

1. flux distribution a t  network nodes, such as the G 6 P  node, and 

2. cellular energetics (i.e., mass balances for A T P  and/or NAD(P)H) .  

Least square methods in connection with the pseudoinverse algorithm have also been 

used. These methods, although they solve the underdetermined system by minimiz- 

ing the Euclidean norm of the residual of the errors in the mass balance equations. 

However, they find from the infinite possible solutions for the fluxes the unique set 

of fluxes with the minimum Euclidian norm for the values of the fluxes (Bonarius e t  

al., 1996; Savinell and Palsson, 1992a-c; Stewart, 1973). 
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As it will be shown next, different assumptions result in different solutions for the 

fluxes. It is not clear which is the "correct" approach. A primary criterion will be 

agreement with experimental results. However, agreement with experimental results 

is not proof of the validity of the metabolic description. Further experimental data 

are required, such as enzyme assays that would validate the presence or absence of a 

reaction step, and NMR measurements that would validate the calculated values for 

the intracellular fluxes (Marx et al., 1996). However, an approach that uses the min- 

imum number of assumptions and parameters is preferable, since fewer assumptions 

lead to a less biased solution which is easier to validate experimentally. 

The G6P node 

Based on experimental data of tracing radioactive labels it had been suggested that, 

in E. coli growing aerobically on glucose, the flux from G6P to Ru5P (reaction step 

1 in Figure 1) is equal to 30% of the glucose uptake rate, V, (Gottschalk, 198G). 

Since then, many metabolic flux analyses have used the assumption that this flux is 

proportional to, usually 30% of, the glucose uptake rate. However, this assumption 

strongly biases the solution since flux distribution may be dependent on the growing 

conditions, it may vary among different organisms, and this assumption does not take 

into account the contribution of this reaction to NADPM synthesis. Therefore, this 

assumption will not be considered here. 

ATP Mass Balance 

One of the most common approaches to overcoming the problem of the underdeter- 

mined systems is to introduce an additional mass balance equation for ATP: 

where, YATP,rn is the so-called ATP maintenance yield, , Yols is the yield of oxygen 

on the substrate, and (PIO)  is the stoichiometric coefficient for the ATP production 
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via the respiratory chain (oxidative level phosphorylation). The maintenance yield 

accounts for all energy-requiring processes that are not linked to  biomass synthesis, 

such as maintenance of gradients and electrical potential, futile cycles, and turnover 

of macromolecules. Yols is primarily dependent on the substrate, and indicates how 

many oxygen molecules are required to metabolize one substrate molecule. The (PIO)  

ratio is necessary because different amounts of A T P  can be produced for each oxygen 

molecule consumed, depending on the conditions. 

However this approach introduces three very significant assumptions: 

i. A value for the (P/O) ratio is assumed; 

ii. A value for the maintenance requirement is assumed; and 

iii. Both of these values are assumed to be independent of the growth rate. 

Assigning values for two stoichiometric parameters will, as expected, bias the 

solution. Experimental methods have been proposed for the determination of these 

paramaters (van Gulik and Heijen, 1995). However, the experimental methods to 

determine these coefficients rely on an additional seriously questionable assumption 

that the values of these parameters are invariable under varying operating conditions 

such as changes in the specific growth rate (Nielsen and Villadsen, 1994). These 

assumptions fail when genetically engineered organisms are considered (Tsai et al., 

1996). In a following section the sensitivity of calculated fluxes to these assumptions 

that dominate the literature will be illustrated. 

I t  has been shown, for example, that the solution of a flux balancing problem 

for the bacterium E. coli is very sensitive to the assumed value for (P/O) and less 

sensitive to  that of the maintenance yield (Varma and Palsson, 1995). The uncertainty 

of these parameters and their dependency on growth conditions suggest that fluxes 

calculated using such assumptions should be carefully considered, and their sensitivity 

with respect to  the assumed values should be examined. 



NADPH Mass Balance 

Another approach formulates the mass balance for NADPH and assumes that the 

biosynthetic requirement for NADPH is entirely fulfilled by the NADPH production 

through reaction steps 1 (pentose phosphate pathway) and 13 (TCA cycle): 

where YNADPH is the biosynthetic requirement of NADPH (moles of NADPH required 

per gram cells produced). This approach is preferable to the previous one as it intro- 

duces only one new parameter: the biosynthetic requirement for NADPH, which can 

be readily estimated from the biomass composition. However, it is possible to over- 

or underestimate the value of this parameter, and this approach does not consider the 

reactions that could potentially exchange reducing equivalents between NADH and 

NADPH. One such reaction is the transhydrogenase-catalyzed reaction (Gottschalk, 

1986; reaction T - in Figure 1) : 

N A D H  + N A D P S  + N A D S  + N A D P H  

This possibility can be taken into account by examining the level of the objective 

function, i.e. the level of the residuals for the mass balances, both for lower and 

higher bounds on YNADPH. The former corresponds to production of NADPH from 

NABH, whereas the latter corresponds to production of NADH from NADPH. The 

"proper" YNADPH should be considered the one that results to a lower level of the 

residuals. This is essentially a parameter-fitting process, but it is preferable to  the 

balance around ATP, since it only requires the fitting of a single parameter. 

Another problem with this approach is that for low growth, YXls approaches zero 

and the equality constraint (2.47) forces the sum 2vl + v13 to  be equal to  zero. As 

neither reaction is reversible, both vl and v13 then must take zero value. This does 

not reflect the true physiological situation since, for a nongrowing cell (i.e., Yx/s = O), 

these fluxes can have nonzero values. 



Reduc ing  Equivalents Mass Balance 

Here a different approach will be introduced that considers a mass balance on reduc- 

ing equivalents (2H+). This approach considers the transfer of protons through the 

cellular membrane from intracellular NADH, NADPH, and FADH2 to the extracellu- 

lar medium and the oxygen consumption associated with that process. The extruded 

protons will enter back into the cell through translocation mechanisms. The mass 

balance for the reducing equivalents can be written as: 

where p is the stoichiometric coefficient for the FADH2 production. If we consider 

that FADH2 is exactly equivalent to NAD(P)H with respect to the numbers of pro- 

tons extruded for each of their molecules that oxidized, then, p = 1. However, this 

makes the linear constraint (2.48) linearly dependent on the rest of the mass bal- 

ance equations and the problem remains underdetermined. In formulating the mass 

balance equation (2.48) we have considered every reaction that regenerates NADPH 

from NADH and NADH from NADPH. However, since the net contribution of these 

reactions in the mass balance on reducing equivalents is zero, they do not appear in 

the final equation. Thus, no assumption for these fluxes is involved, except to con- 

sider that they do exist. Two approaches to overcome this problem can be considered 

based on an iterative scheme. 

In a first approach we will ignore the production of FADH2 via reaction step 15 

by setting p = 0. This means that the amount of oxygen considered in mass balance 

equation (2.48) for each molecule of substrate consumed, Yols, is overestimated since 

a portion of this is actually used for the oxidation of the "ignored" FADH2. Since the 

production of FADH2 is coupled to  NADH production, its maximum value is equal 

to  10% of oxygen consumption. In the first step, we can solve the problem ignoring 

FADHP production and using the experimentally determined amount of oxygen con- 

sumed. Then the calculated value for reaction step 15 will be subtracted from the 
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amount of oxygen considered, since the value for v15 is a first approximation of the 

excess oxygen that is used for oxidation of FADH2. Then we solve the problem again, 

using the "corrected" oxygen yield, and calculate a new set of fluxes. The calculated 

value for reaction step 15 will be compared with the observed oxygen yield, and, if it 

is within the experimental error the iterative procedure can stop. The last solution 

is then accepted as giving the estimated flux values. For the systems that have been 

examined until now, two iterations were sufficient for the estimated values to converge 

to a final value for v15 within the error limits for the oxygen uptake measurements. 

In a second approach we can assume p = 0.5. This value comes from an analysis 

of the relative reducing power of NADH and FADH2. For every molecule of NADH 

that is oxidized through the respiratory chain, is assumed there are four protons 

extruded, whereas, for every molecule of FADH2 that is oxidized through the respi- 

ratory chain, only two protons are extruded (Gottschalk, 1986). The number of the 

protons extruded depends on the terminal oxidase of the respiratory chain and it is 

different between various organisms and growth conditions. However, we assume this 

assumption here as a first approximation. Therefore, from the proton mass balance 

we see that two FADH2 molecules are equivalent to  one NADH molecule. However, 

this approach essentially assumes that for every two molecules of FADH2 that are 

oxidized, one molecule of 0 2  is consumed. The validity of this assumption can be 

examined by comparing the estimated value of v15 with the value of Yols. If half 

of the value of vl:, is greater than the experimental error of Yols then it should be 

"corrected" as described in the previous paragraph. 

Least Squares Method and the Minimum Norm Condition 

In many cases in which the system is underdetermined, the pseudoinverse of the stoi- 

chiometric matrix has been used to estimate the fluxes (Savinel and Pallson, 1992a-c). 

The pseudoinverse algorithm solves the system by minimizing the sum of the squares 

of the residuals of the mass balances. In other words, it minimizes the same objective 

function as the one suggested for the general algorithmic procedure (Equation (2.44)). 

However, among the multiple possible solutions due to the underdetermined nature 
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of the system, the pseudoinverse chooses the one with the minimum Euclidean norm 

of the reaction rates. 

This last condition is a purely mathematical criterion, and it is reasonable in the 

absence of additional consideration. However, it has recently been proposed that 

Darwin's principle of evolution by natural selection suggests that  there are optimal 

regimes of operation along metabolic pathways in a biological system (Torres, 1991). 

Torres (1991) suggested that one should characterize "fitness" in thermodynamic 

terms, since a fundamental tendency of nonequilibrium systems towards stationary 

states of maximal organization and minimal dissipation constitutes a potentially solid 

bridge between thermodynamics and Darwin's principle. Therefore, he proposed some 

thermodynamic criteria for optimality: maxima1 efficiency, maximal power, minimal 

rate of entropy production, and minimal loss of available energy. 

Here I will consider the last two criteria. According to the theory of nonequilibrium 

thermodynamics (Prigogine, 1961) for the rate of entropy production we can write: 

and for the energy dissipation function, Xi?: 

Xi? = C ~ j v j  

where Aj  is the afinity of reaction step j defined as: 

where k covers the range of species that participate in the reaction step j ,  u k  is 

the stoichiometric coefficient of the k-th species and is positive for the products and 

negative for the reactants, and is the chemical potential of species k. 

In order to find the functional dependency of vj  on the corresponding affinity we 

will use the same procedure followed by Torres (1991). He chose the rate expressions 

introduced and used within Biochemical Systems Theory (Savageau, 1976) (see also 



further discussion in Chapter 5 for details on this theory) which employ a power-law 

representation: 

where xi, and xi, are the concentrations of the reactants and the products, respec- 

tively, and k,, kp, gi, and hip are phenomenologicall parameters that generalize the 

kinetic constants and the stoichiometric coefficients of the reactants (subscript r) and 

the products (subscript p) . 

Torres went on to conjecture that the kinetic orders gi, and hip reduce to the 

absolute values of the corresponding stoichiometric coefficients I v, I when enzyme 

concentrations go to zero, and he proposed that they can be approximated by the 

following equations: 

gi, % b 1 vip I (2.53) 

and 

where b depends on the enzyme concentrations and goes to unity as they approach 

zero. After these assumptions, vj can be written in the form: 

with v, = k,, ni, x::', which is the maximum forward rate, and Aj 

The subscript e denotes the equilibrium value of the corresponding concentration. 

Torres applied this theoretical development to study the efficiency of glycolysis as 

described by a single reaction for anaerobic glycolysis: 

glucose + 2ADP + 2Pf + 2lactate + 2ATP (2.56) 



and for the aerobic case: 

GO2 + glucose + 3GADP + 3GP+ + GC02 + GH2 + 3GATP (2.57) 

In both cases his results were very close to the experimental observations. 

In a subsequent paper Angulo-Brown et al. (1995) studied Torres9 suggestion 

for thermodynamic optimization criteria in biochemical reactions. They assumed, 

following Prigogine's (1961) suggestion, that for most of the biological reactions 

This allowed them to  use the approximation 

to simplify the rate expression (2.55) to: 

Note that these approximations hold only if b is not a large parameter. 

Angulo-Brown et al. (1995) used this approximation to study the same systems 

that Torres studied. They arrived at similar results, suggesting that approximation 

(2.58) is valid. 

Using approximation (2.58)' for the entropy production (2.49) we can write : 

This implies that minimization of entropy production is equivalent to  minimization 

of the sum of the square of the affinities over all of the m reaction steps: 
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The least squares approach that solves the flux balance problem by choosing the 

minimum Euclidean norm of the fluxes seerns to be consistent with the above thermo- 

dynamic considerations. If for every flux we can use the approximate rate expression 

(2.58), then for the Euclidean norm of the fluxes we can write: 

Therefore, selecting the solution for the fluxes with the minimum Euclidean norm 

is equivalent to choosing the solution with the minimum sum of the squares of the 

affinities, and thus the one that corresponds to the minimum entropy production rate. 

The only problem with this approach appears to be the correct choice of the 

fluxes that should be taken into account in the calculation of the entropy production 

rate. This approach should also be examined with respect to each of the thermody- 

namic criteria that have been suggested. Moreover, the application of this approach 

should take into account the bounds imposed by the irreversibility of certain reactions. 

This cannot be implemented using the pseudoinverse algorithms. The possibility of 

connecting the minimum Euclidean norm criterion with thermodynamic criteria and 

evolutionary objectives suggests that this approach is worth further investigation. 

2.3 Example 

We will study here the metabolic fluxes in glucose-limited cultures of aerobically 

growing B. subtilis. The metabolic network that will be used (Figure I),  based on 

the available biochemical and biological knowledge, has been presented in Section 

2.2.2. The assumptions concerning ATP, NADPH, and reducing equivalents will be 

examined. I will evaluate the three approaches discussed above by comparing the 

estimated from the flux analysis value of the C02  production rate with the exper- 

imentally determined value. In general, a separate mass balance for C 0 2  can be 

included in the mass balances. This mass balance equation does not affect the rank 

of the stoichiometric matrix since it is linearly dependent on mass balances already 
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present in the network. We will consider as experimental data the value of RQ as it 

is determined from the net reaction (2.1) and equation (2.15) for the "generalized" 

bacterium composition. The equation that will be considered is: 

where Yxls is expressed in grams of cell dry weight per moles glucose consumed. The 

RQ calculated from equation (2.61) will be compared with the RQ estimated from 

the flux analysis: 

where Yco2 is the yield of C02  from biosynthesis. 

The specific precursor, cofactor, and C 0 2  requirements for B. subtilis have recently 

been determined experimentally (Sauer et al., 1996). The experimental data that 

will be used in this example are from Sauer et al. (1996) for aerobically growing B. 

subtilis in a chemostat and they include the dilution rate (which is equal to the specific 

growth rate), specific uptake rate (specific glucose consumption) and specific oxygen 

consumption rate. From parameter fitting of the experimental data the following 

relations have been determined for the two physiological parameters, Yxls and YOIS, 

as functions of the dilution rate (D): 

and 

2.3.1 ATP Mass Balance 

I first examined the system by utilizing the ATP mass balance. However, it was 

impossible to  find any set of values for the parameters YATP,m and the (PIO)  ratio that 
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could be kept constant and still result in low values for the residuals over the whole 

range of dilution rates considered. This clearly suggests that one or both of these 

parameters are changing as the dilution rate (specific growth rate) changes. Previous 

experimental studies support the concept that YATP,m is an increasing function of the 

specific growth rate (Nielsen at al., 1991; Nielsen and Villadsen, 1994). Moreover, 

(P/O)  ration is also function of the specific growth and the operating conditions 

(Senior, 1988; Nielsen and Villadsen, 1994). Therefore, without considering functional 

dependence of YATP,m and the (P/O)  ratio on the specific growth, we cannot estimate 

metabolic Auxes using the ATP mass balance as a constraint. 

2.3.2 NADPH Mass Balance 

I next considered various assumptions on the NADPH mass balance; i.e., the estima- 

tion of the fluxes using the NADPH mass balance equation (2.47). I also considered 

two cases: in the first the mass balance for the COz was taken into account arid 

the calculated RQ (2.62) was compared with the experimental value from equations 

(2.61) and (2.63). In the second case the mass balance for the COz was also consid- 

ered and the experimental specific production rate of C 0 2  was estimated from the 

RQ,,, (2.61). The mass balance equation for the 6 0 2  is: 

where rco, is the residual variable. 

The analysis considered three different physiological scenarios. I t  was considered 

that the sum: 

2 v i  $- 2113 = ~ I L ~ N A D P H  (2.66) 

fulfils the biosynthetic requirements for NADPH exactly (4 = I), or that it fulfils 

80% (4 = 0.8) or 120% (4 = 1.2)of the same requirement. In the latter two cases it 

was assumed that  there are reactions to  exchange the required reducing equivalents 

between NADPH and NADH. 
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The results of the analysis without considering the COz mass balance are presented 

in Figure 2. The calculated value for the RQ is very different from the experimental 

one suggesting that calculations based on these assumptions are not suitable. More- 

over, most of the fluxes vary in a non-monotonic way as the dilution rate incereases 

(Figures 2.C, 2.D, and 2.E). The trend of the fluxes changes when the flux from GGP 

to Ru5P  (vl) changes from zero to a positive value. This physiologically unexplain- 

able behavior of the system further suggests that this approach has some inherent 

deficiencies. Flux vl is also very sensitive to the assumed value of 4 in Equation 

(2.66). Depending on the value assumed, the onset of flux from GGP to Ru5P is 

estimated a t  different dilution rates. The most dramatic effects are observed for the 

assumption that 4 = 0.8 of the biosythetic requirements for NADPH. 

In a second study the mass balance for C 0 2  (2.65) was also included in solving 

for the fluxes. In this case, the solution was better with respect to RQ values. This 

was expected since the mass balance for C 0 2  constrained the C o n  production and 

consumption fluxes. The changes in the fluxes were monotonic over the whole range 

of the dilution rates. The sensitivity of vl with respect to the assumed value of 4 
was significantly reduced. Moreover, the calculated net ATP production from sub- 

strate level phosphorylation (Figure 3.F) was clearly dependent on this assumption, 

as expected, since the assumption concerns cell energetics. Notice that in the first 

solution (Figure 2.F) it is not clear how the assumption for the value of 4 influences 

the calculated net ATP production rate. 

The two solutions obtained here, one without and one with the additional con- 

straint of the COz mass balance, are compared in Figure 4 under the assumption that 

4 = 1. Although for dilution rates higher than 0.2h-I both solutions follow the same 

trend, the qualitative difference between the two solutions is significant. For a 20% 

difference in the RQ values, a difference of up to 50% is observed for some of the 

fluxes . 

The above analysis leads to  two important conclusions. First, the constraint of 

the COz mass balance should be always considered. Second, the approach that con- 

siders the NADPH mass balance (2.47) should be used only for obtaining qualitative 
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conclusions (i.e., conclusions regarding relative values and trends of the fluxes) about 

the metabolic system. The sensitivity of the solution to the assumption for the value 

of 4 should be examined before any final conclusion can be made. 

2.3.3 Reducing Equivalents Mass Balance 

The approach studied next was the one that considers the mass balance of the reducing 

equivalents from N A D H  and N A D P H  (equation (2.48)). Two different studies were 

again performed: one without and one with the constraint of the C 0 2  mass balance. 

The results are presented in Figure 5. The oxygen uptake rate used for the mass 

balance equation (2.48) as a first estimate was the same as the experimental one. 

This first solution suggested that the value of the flux v l j  was approximately 15% 

of twice the value of the oxygen uptake rate. The problem was solved again using a 

value for the oxygen uptake rate of 85% of the experimentally determined one. This 

second solution gave again a value for the v15 that was approximately 15% of twice 

the value of the experimentally determined oxygen uptake rate over the whole range 

of the dilution rates. Therefore, the iteration stopped and the "corrected" value for 

the oxygen uptake was used in both cases (without and with the constraint for the 

C 0 2  mass balance). 

Even in the absence of the constraint of the C 0 2  mass balance, the estimated 

RQ is very close to the experimental value (Figure 5.A). This is in contrast to the 

previous approaches with which, even when the constraint for the C 0 2  mass balance 

included, the estimated RQ was significantly different from the experimental value 

(Figure 3.A). In general, both cases were found to  be in excellent agreement with 

each other (Figures 5.C-5.F). However, the flux vl was estimated to be zero over the 

whole range of the dilution rates when the constraint for the C02 mass balance was 

not included, but it had a positive value when the C02 mass balance was considered. 

This difference strongly suggests that C 0 2  mass balance should be included in any 

flux analysis. The value for vl in this second case was found to be approximately equal 

to  0.1 over the whole range of dilution rates (Figure 5.B), a value that is very close 
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to  the biosynthetic requirements for R 5 P  and E 4 P .  Therefore, it appears that the 

the R 5 P  and E 4 P  required for biosynthesis are coming from GGP via reaction step 

1. However, this solution is qualitatively very different from the one found with the 

approach using the NADPH mass balance. There, for low dilution rates vl was zero 

below a certain value for the dilution rate, and above that it increased monotonically 

up to  0.25. The fact that no assumption concerning the value of 4 in the sum (2.66) 

was made in this last approach suggests that this last result is more reliable. 

In order to evaluate this approach with respect to the previous one, the ratio: 

was calculated based on the estimated fluxes. A value for this ratio had been assumed 

and used as the sum (2.66) constraint in the previous approach. The calculated 

ratio is presented in Figure 6. For low dilution rates the ratio is higher than one 

suggesting that an excess of NADPH is produced. This is probably recycled back to 

NADH. However, for dilution rates higher than 0.15h-' , this ratio is lower than unity 

suggesting that the NADPH produced does not fulfill the biosynthetic requirements 

and that the additional amount needed is provided from the excess NADH produced. 

Interestingly enough, when this ratio is equal to or higher than 0.8, the value for the 

flux vl is positive, while the previous approach suggested that,  as this ratio decreases, 

flux vl becomes zero. 

The Euclidean norm of the estimated fluxes was also calculated for every case in 

the two approaches (Figures 2.D, 3.D, 4.D, and 5.D). I t  appears that the last ap- 

proach has the lowest norm, especially when the constraint of the COz mass balance 

is included, forcing the fluxes considered to  produce the minimum amount of en- 

tropy. If our thermodynamic suggestion is right, then the last approach also satisfies 

also the thermodynamic optimality criteria. However, the main uncertainty of this 

thermodynamic consideration still holds; i.e., the question of which fluxes should be 

considered in calculating the Euclidean norm. Another interesting difference between 

the Euclidean norms of the fluxes estimated from the two approaches is their trend 
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with respect to  dilution rates. In the first approach the norm decreases with increas- 

ing dilution rate (Figures 2.D and 3.D), whereas, in the last approach, the norm 

increases with increasing dilution rates. In general, the latter is more reasonable, 

since for increasing dilution rates the specific growth rate, the specific glucose and 

oxygen uptake rates all increase, indicating that the biocatalytic machinery of the 

cell should operate at higher rates. 

Similar results were also obtained when the stoichiometric coefficient p for reaction 

15 was considered (see equation (2.48)). The oxygen uptake rate used in the mass 

balance was "corrected" following the same procedure as in the last approach. For a 

value of p equal to 0.5 the oxygen uptake rate was reduced by 7%. That corresponds 

closely to the 16% correction for the last approach when p was equal to zero. 

In conclusion, this last approach is more attractive since it requires the fewest 

assumptions. No assumption has been made with respect to  energetics of the cell. 

The correction of the oxygen uptake rate used in the mass balance equation (2.48) 

was not based on a parameter-fitting approach but simply on the consistency of the 

value of one flux, vl5, with respect to the corrected value of the oxygen uptake rate. 

Metabolic flux analysis has enjoyed a lot of attention over the last five years. Various 

metabolic systems have been analyzed, and useful insights resulted from those analy- 

ses. However, because most metabolic systems are underdetermined (more metabolic 

reactions than metabolic species), various assumptions have been used to make the 

systems determined, and little attention has been paid on the effects of these assump- 

tions to the final conclusions. 

In this chapter flux analyses for the bacterium B. subtilis were performed. A 

systematic algorithmic procedure was proposed that can take metabolic constraints 

into account. Some of the commonly used assumptions were considered and the effects 

of these assumptions on the resulting estimated fluxes have been studied. Two main 

conclusions were drawn for aerobically grown bacterial systems: 
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1. Any flux analysis that employs assumptions about cell energetics should be 

considered as a qualitative description of the trends of the fluxes under different 

growing conditions. A sensitivity analysis of the results with respect to the 

assumptions should always be performed. 

2. The mass balance of COz should be included in the analysis even though it is not 

linearly independent from the rest of the mass balances. I t  appears to  improve 

the estimation of the fluxes by making the system less sensitive to  assumptions 

and by integrating additional experimental information with the analysis. 

A novel procedure for flux analysis has been suggested and applied to the exarnple 

metabolic system. This procedure does not employ any assumptions regarding the 

energetics of the cell and therefore does not bias the results. Application of the pro- 

cedure to the example system and comparison of the results with those of approaches 

that use assumptions regarding cell energetics have shown that this approach is more 

advantageous. 

It has been suggested that the common approach of minimizing the Euclidean 

norm of the fluxes as an additional criterion for choosing an estimate for the metabolic 

fluxes from an infinite number of possible solutions when the metabolic system is un- 

derdetermined is related to thermodynamic optimality criteria based on the evolution 

theory. However, further investigation is required before a definite connection between 

these criteria and flux analysis is asserted. 

Finally, it should be stressed that flux analysis is a mathematical modeling method 

that integrates the available biochemical knowledge in order to  provide further insight 

on the behavior of biological systems. I t  provides an estimate for the values of the 

metabolic fluxes and can be used to  compare relative changes in the fluxes under dif- 

ferent conditions that do not significantly influence the stoichiometry of the metabolic 

networks, such as different growth rates or changes in enzyme amounts arising from 

mutation or genetic engineering. As with every mathematical method used in biotech- 

nology, it should be used in an iterative way: the initial information it provides based 

on preliminary experimental data will suggest the next experimental approach. The 
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results of this new experiment will be used for a second mathematical analysis or 

even for possible reformulations of the stoichiometric model, that will again suggest 

the next experimental approach. 



36 

2.5 References 

Aiba, S., Matsuoka, M. 1979. Identification of a Metabolic Model: Citrate Pro- 

duction from Glucose by Candida lipolytica. Biotechnol. Bioeng. 21: 1373-1386. 

Angulo-Brown, F., Santillgn, M., Calleja-Quevedo, E. 1995. Thermodynamic Op- 

timality in Some Biological Reactions. Nuovo Cimento D 17: 87-90. 

Bailey, J. E., Ollis, D. F. 1986. Biochemical Engineering Fundamentals. 2nd ed., 

McGraw-Hill, New York. 

Bonarius, H. P. J., Hatzimanikatis, V., Meesters, K. P. H., de Gooijer, C. D., 

Schmid, G., Tramper, J .  1996. Metabolic Flux Analysis of Hybridoma Cells in Dif- 

ferent Culture Media Using Mass Balances. Biotechnol. Bioeng . In press. 

Gottschalk, G. 1986. Bacterial Metabolism. 2nd edition, Springer-Verlag, New 

York. 

Grosz, R., Stephanopoulos, G., San, K.-Y. 1984. Studies on On-Line Bioreac- 

tor Identification. 111. Sensitivity Problems with Respiratory and Heat Evolution 

Measurements. Biotechnol. Bioeng. 26: 1198-1208. 

Holms, W. H. 1986. The central metabolic pathways of Escherichia coli: Rela- 

tionship Between Flux and Control at  a Branch Point, Effeciency of Conversion to 

Biomass, and Excretion of Acetate. Curr. Topics Cell. Reg. 28: 69-105. 

Holms, W. H., Hamilton, I. D., Mousdale, D. 1990. Application of Flux Analysis 

to Increase Productivity of Fermentation Processes, pp. 1057-1062. In: C. Chris- 

tiansen, L. Munck, and J .  Villadsen (eds.), 5th European Congress on Biotechnology, 

Copenhagen, Proceedings Vol. 2. Munksgaard, Copenhagen. 

Madron, F. 1979. Material Balance Calculations of Fermentation Processes. Biotech- 

nol. Bioeng. 21, 1487-1490. 

Mancuso, A., Sharfstein, S. T., Tucker, S. N., Clark, D, S., Blanch, H. W. 1994. 

Examination of Primary Metabolic Pathways in Murine Hybridoma with Carbon-13 

Nuclear Magnetic Resonance Spectroscopy. Biotechnol. Bioeng. 44: 563-585. 

Marx, A., de Graff, A. A., Wiechert, W., Eggeling, L., Sahm, H. 1996. Determi- 

nation of the Fluxes in the Central Metabolism of Corynebacterium glutamicum by 



3 7 

Nuclear Resonance Spectroscopy Combined with Metabolic Balancing. Biotechnol. 

Bioeng. 49: 111-129. 

Neidhardt, F. C., Ingraham, J .  L., Low, K. B., Magasanik, B., Schaechter, M., 

Umbarger, H. E. 1987. Escherichia coli and Salmonella typhimurium: Cellular and 

Molecular Biology, vols 1 and 2. American Society for Microbiology, Washington, 

D.C. 

Nielsen, J., Villadsen, J .  1994. Bioreaction Engineering Principles. Plenum Press, 

New York. 

Nielsen, J. ,  Nikolajsen, K., and Villadsen, J .  1991. Structured Modeling of a Mi- 

crobial System 11. Experimental Verification of a Structured Lactic Acid Fermentation 

Model. Biotechnol. Bioeng. 38: 11-23. 

Noorman, H. J. ,  Heijnen, J .  J . ,  Luyben, K. Ch. A. M. 1991. Linear Relations in 

fvlicrobial Reaction Systems: A General Overview of Their Origin, Form, arid Use. 

Biotechnol. Bioeng. 383303-618. 

Papoutsakis, E. T. 1984. Equations and Calculations for Fermentations of Butyric 

Acid Bacteria. Biotechnol. Bioeng. 26: 174-187. 

Prigogine, I. 1961. Thermodynamics of Irreversible Processes, John Wiley & 

Sons, New York. 

Reitzer, L. J., Wice, B. M., Kennel, D. 1980. The Pentose Cycle. J .  Biol. Chem. 

255: 5616-5262. 

Roels, J. A. 1983. Energetics and Kinetics in Biotechnology. Elsevier Biomedical 

Press, Amsterdam. 

Sauer, U., Hatzimanikatis, V., Hohmann, P., Manneberg, M., van Loon, A. P. G. 

M., Bailey, J .  E. 1996. Determination of Physiological Parameters and Analysis of 

Metabolic Fluxes in Wild-Type and Riboflavin-Producing Bacillus subtilis. Submit- 

ted for publication. 

Savageau, M. A. 1976. Biochemical Systems Analysis: A Study of Function and 

Design in Molecular Biology. Addison-Wesley, Reading, MA. 

Savinell, J .  M., Palsson, B. 0. 1992a. Network Analysis of Intermediary Metabolism 

Using Linear Optimization. 11. Interpretation of Hybridoma Cell Metabolism. J.  



38 

Theor. Biol. 154: 455-473. 

Savinell, J .  M., Palsson, B. 0 .  199213. Optimal Selection of Metabolic Fluxes for 

In  vivo Measurement. I. Development of Mathematical Methods. J .  Theor. Biol. 

155: 201-214. 

Savinell, J .  M., Palsson, B. 0. 1992c. Optimal Selection of Metabolic Fluxes 

for I n  vivo Measurement. II. Application to Escherichia coli and Hybridoma Cell 

Metabolism. J. Theor. Biol. 155: 215-242. 

Senior, A. E. 1988. ATP Synthesis by Oxidative Phosphorylation. Physiol. Rev. 

68: 177-231. 

Sonenshein, A. L., Hoch, J. A., Losick, R. 1993. Bacillus subtilis and Other 

Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. Ameri- 

can Society for Microbiology, Washington, D.C. 

Stephanopoulos, G., San, K.-Y. 1984. Studies on On-Line Bioreactor Identifica- 

tion. I. Theory. Biotechnol. Bioeng. 26: 1176-1188. 

Stephanopoulos, G., Vallino, J .  J .  1991. Network Rigidity and Metabolic Engi- 

neering in Metabolite Overproduction. Science: 1675-1681. 

Stewart, G. W. 1973. Introduction to Matrix Computations. Academic Press, 

San Diego. 

Stryer, L. 1988. Biochemistry. 3rd edition. W. H. Freeman, New York. 

Torres, J.-L. 1991. Natural Selection and Thermodynamic Optimality. Nuovo 

Cirnento D 13: 177-185. 

Tsai, P. S., Hatzimanikatis, V., Bailey, J .  E. 1996. Effect of Vitroescilla Hemoglobin 

Dosage on Microaerobic Escherichia coli Carbon and Energy Metabolism. Biotechnol. 

Bioeng. 49: 139-150. 

van Gulik, W. M., Heijnen, J. J. 1995. A Metabolic Network Stoichiometry Anal- 

ysis of Microbial Growth and Product Formation. Biotechnol. Bioeng. 48: 681-698. 

Varma, A., Palsson, B. 0. 1994. Metabolic Flux Balancing: Basic Concepts, 

Scientific and Practical Use. Bio/Technology 12: 994-998. 

Varma, A., Palsson, B. 0 .  1995. Parametric Sensitivity of Stoichiometric Flux Bal- 

ance Models Applied to Wild-Type Escherichia coli Metabolism. Biotechnol. Bioeng. 



39 

45: 69-79. 

Walsh, I(. , Koshland, Jr., D. E. 1984. Determination of Flux Through the Branch 

Point of Two Metabolic Cycles. J .  Biol. Chem. 257: 1189-1195. 

Wood, T. 1985. The Pentose Phosphate Pathway. Academic, Orlando, FL. 



2.6 Figures 



i 

NADFH 

1 

T, 1 

'l ICTT < N A D m  
b a 

'"Vrn*M, 1: - 
" " U  

NADH -A6 
u 

FADM, f 
ATP 

Figure 2.1: The reaction network of the central carbon pathways for aerobic growth 
without product formation of B. subtilis considered in the analysis. The metabolites 
for which the mass balances were used are underlined. Shaded arrows indicate fluxes 
to biosynthesis. Double-underlined numbers indicate irreversible reaction steps. 
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Figure 2.2: Flux analysis results for various dilution rates without considering the 
COz mass balance and under the assumption that 2vl + vl3 = 4pYNADPH, where: 
dotted line (4 = 0.8), dashed line (4 = l ) ,  and dashed-dotted line (4  = 1.2). Solid 
line in A for the experimental value of RQ. A: The experimental value for RQ and 
the value based on the estimated fluxes, B: Estimated values for reaction step 1, C: 
Estimated values for reaction steps 7 and 10, D: The Euclidean norm of the estimated 
fluxes, E: Estimated values for reaction step 15, and F: Estimated values for net ATP 
production. 



Figure 2.3: Flux analysis results for various dilution rates including the C02 mass 
balance and under the assumption that 2vl + 013 = 4pYNADPH, where: dotted line 
( 4  = 0.8), dashed line (4 = I),  and dashed-dotted line (4 = 1.2). Solid line in 
A for the experimental value of RQ. A: The experimental value for RQ and the 
value based on the estimated fluxes, B: Estimated values for reaction step 1, C: 
Estimated values for reaction steps 7 and 10, D: The Euclidean norm of the estimated 
fluxes, E: Estimated values for reaction step 15, and F: Estimated values for net ATP 
production. 



Figure 2.4: Flux analysis results comparison for various dilution rates under the 
assumption that 2vl -t- v13 = pYNADPH, including the C02 mass balance (solid line) 
and without considering the C02 mass balance (dashed line). Dotted line in A for the 
experimental value of RQ. A: The experimental value for RQ and the value based on 
the estimated fluxes, B: Estimated values for reaction step 1, C: Estimated values for 
reaction steps 7 and 10, D: The Euclidean norm of the estimated fluxes, E: Estimated 
values for reaction step 15, and F: Estimated values for net ATP production. 



Figure 2.5: Flux analysis results comparison for various dilution rates without con- 
sidering FADH2 in the mass balance for the reducing equivalents and for "corrected" 
value for the oxygen uptake rate including the C02 mass balance (solid line) and 
without considering the C02 mass balance (dashed line). Dotted line in A for the 
experimental value of RQ. A: The experimental value for RQ and the value based on 
the estimated fluxes, B: Estimated values for reaction step 1, C: Estimated values for 
reaction steps 7 and 10, D: The Euclidean norm of the estimated fluxes, E: Estimated 
values for reaction step 15, and F: Estimated values for net ATP production. 



Figure 2.6: The values of the ratio ( ~ v ~ + v ~ ~ ) / ( ~ Y ~ ~ ~ ~ ~ )  for various dilution rates, as 
it was estimated from the analysis without considering FADH2 in the mass balance 
for the reducing equivalents and for "corrected9' value for the oxygen uptake rate 
without (dashed line) and with (solid line) the constraint for the C02 mass balance. 



Chapter 3 Effects of Spatioternporal 

Variations on Metabolic Control: 

Approximate Analysis Using (Log)Linear 

Kinetic Models 



3.1 Introduction 

The analysis and study of the responses of metabolic systems to process arid to ge- 

netic manipulations have been the primary focus of numerous experimental and the- 

oretical studies (Cornish-Bowden and CBrdenas, 1990; Bailey, 1991; Stephanopou- 

10s and Vallino, 1991; Fell, 1992). The theoretical studies have mostly focused on 

the development of quantitative descriptions of metabolism and to associated theory 

and analytical frameworks. Metabolic control analysis (MCA), a sensitivity analysis 

framework, is perhaps the most developed of these methods for the quantitative de- 

scription of metabolism and microbial physiology (Kacser and Burns, 1973; Heinrich 

and Rapoport, 1974; Kell and Westerhoff, 1986; Schlosser and Bailey, 1990; Cornish- 

Bowden and CBrdenas, 1990; Rutgers et al., 1991; Fell, 1992; Brown, 1992; Schlosser 

et al., 1993). Accordingly, several experimental methodologies have been developed 

to allow determination of quantitative indices which are defined by MCA, such as 

control coefficients and elasticities. The description of metabolic systems by MCA 

data is commonly used because rarely is sufficient information available to forrnulate a 

nonlinear mathematical description based on detailed enzyme kinetics. Furthermore, 

when such a nonlinear model is available, it can be linearized and well-studied within 

the same MCA framework. 

One of the basic assumptions embedded in MCA is that the metabolic system 

under study is at steady-state. Every parameter of the system (for example, enzyme 

expression levels, external substrate concentrations and independent effector concen- 

trations or activities) is assumed to remain time-invariant. However, this assumption 

is not valid when spatiotemporal variations in the parameters occur. Such spatiotem- 

poral variations can arise, for example, in bioreactors when mixing is nonideal, a 

situation common in large-scale systems. Circulation of cells through spatially inho- 

mogeneous fields of dissolved oxygen and substrate concentration, pH, temperature, 

and hydrodynamic conditions drives unsteady-state responses in metabolism which 

have profound effects on scale-up nad large-scale bioreactor prerformance. These 

phenomena have been modelled for bioreactors and the effects of nonideal mixing on 
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the metabolism and growth of microorganisms have also been studied. Spatiotem- 

poral variations in the parameters or inputs of a system are known to result in a 

performance quantitatively and qualitatively different from the performance of the 

system with space- and time-invariant parameters (Bailey, 1974, 1977). For example, 

it has been recently reported that control coefficients for cells growing in a nonideally 

mixed bioreactor are different from the control coefficients calculated for the ideal 

well-mixed case. 

In this chapter we develop a (1og)linear kinet ic  model  of metabolic systems based 

on MCA data. This model can be used to simulate dynamic  responses of the system 

with spatiotemporal variations in its parameters. Interconnection of MCA with alter- 

native modeling frameworks allows dynamic response analysis. An important prior 

formulation of metabolic kinetics is the S-system representation developed within the 

biochemical systems theory (BST). However the S-system representation is a nonlin- 

ear system and BST explicitly employ MCA parameters. The major advantages of the 

(1og)linear model presented in this chapter are the linearity (in terms of logarithms) 

of the model and the specification of the system dynamics using the same parameters 

as employed in MCA. Exploiting the linear nature of the model, we present a simple 

procedure for the identification of the effects of the period and the waveform of a pe- 

riodic spatiotemporal variation of the parameters on the average metabolic functions 

and their control coefficients. 

3.2 Mathematical Description of Metabolic Re- 

action Networks 

3.2.1 Development of a (Log)Linear Kinetic Model 

Consider a metabolic system consisting of n metabolites and m enzymatically-catalyzed 

reactions. We are interested in studying how modifications of the expression levels and 

of the properties of the enzymes that catalyze these reactions affect the time response 

characteristics of metabolic functions of the system, such as metabolite concentra- 
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tions, fluxes, and the specific growth rate. The mass balances on the metabolites of 

the system may be written as: 

where x is the n-dimensional metabolite concentration vector, f is a function deter- 

mined by the mass balances, v is the rn-dimensional reaction rate vector, and p is 

the s-dimensional manipulated parameter vector (e.g., extracellular substrate concen- 

tration). In addition to metabolite reaction rates, the mass balance equations also 

include terms that account for other processes by which concentrations of metabo- 

lites change (such as the dilution brought about by increases in the biomass volume 

(Fredrickson, 1976) and transport through the cell wall envelope). 

If we consider temporal variations in the parameters then p will be a function of 

space coordinates and time. In many systems with spatiai gradients (for example, 

a bioreactor with internal fluid circulation, or a plug-flow bioreactor), description 

of system changes in space can be transformed into a description in terms of a cir- 

culation or residence time, again resulting in ordinary differential equations in the 

form of Equation (3.1). Here the temporal dependence of the parameters is indicated 

explicitly: 

In addition, consider the r-dimensional vector of metabolic outputs, h, which we 

can be written in general: 

In equation (4.2) h is a function of the rates of interest, of the metabolite concentra- 

tion, and of the parameters. Let x, be a steady state - or one of the steady states in 

the case of steady state multiplicity - that corresponds to the given parameter vector 

pol and let x, be nonzero with positive elements. Linearization around this steady 
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state results in the linear system: 

for the mass balances, and 

for the metabolic outputs. 

If we define the matrices X o  and Po to be diagonal matrices with diagonal elements 

Xo,ii = x o,z . and Po,ii = po,i, respectively, then, we can write: 

for the linear system. 

Now it is useful to define new variables which are the logarithmic deviations of 

the systems state variables and parameters: 

and 

Given the above definitions we further observe that: 

A key approximation used in the development of (1og)linear models is the following 

Taylor expansion of the logarithm about a reference value at yo, which, to first-order 
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terms, is:: 

Finally, by defining 
C 

we can write the linearized system for the logarithmic deviations, noting that [zo, qo] = 

Similarly, by linearizing equation (4.2) around the same steady state and by defin- 

ing 

wt = In(htlh1,o) 

we can write the following linear equation for the logarithmic deviations of the 

metabolic outputs: 
dw dw 

In order to describe the dependence of the metabolic system explicitly on the reac- 

tion rates and on the rest of the metabolic processes the following final representation 

is adopted: 
dz 
- = N E z + I C z + N l 3 q + A q  
dt 

where, z,  q, and w, are the logarithmic deviations of the metabolite concentrations, 

the enzyme levels, and the metabolic outputs, respectively: 
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and N, E, IC, A, H, 63, El and II, are matrices, defined as: 

At steady-state, the solution of (3.16) and (3.17) yields: 

where 

with 

The mathematical description presented above depends explicitly on the same 

information as that employed within the framework of metabolic control analysis 

(MCA) (Reder, 1988; Schlosser and Bailey, 1990). Matrices I and II are the elasticity 

matrices with respect to  metabolites and to parameters, respectively. The matrix C is 

the control coefficient matrix of the metabolic functions h with respect to parameters 

P. 

We should notice here that the final representation (equations (3.16) and (3.17)) 

allows the explicit description of the system with quantities that are characteristic 

of each enzyme. Therefore, we could study the effects of modifications of the cat- 

alytic properties of enzyme i with respect to its substrate (or regulatory effector) 

j ,  by changing the value of the corresponding elasticity cij. Henceforth the above 
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description of metabolic systems will be called a (1og)linear metabolic model. 

The (1og)linear metabolic model is an approximate linear description of nonlinear 

models for metabolic systems that shares common properties with the approximate 

nonlinear S-system representation. While they both give the same steady-state so- 

lution and they have the same local stability characteristics at the reference steady 

states, their dynamic responses are in general different, and the S-system dynamic rep- 

resentation is nonlinear, and therefore they can be solved only numerically, whereas, 

the (1og)linear models are linear and thus, as it will be shown in the following section, 

they can be analytically integrated. With respect to their parameters, the (1og)linear 

model uses explicitly, the same parameters as used in MCA, while S-system models 

use different parameters, which can be derived from MCA parameters. 

3.2.2 Analytical Solution of the (Log)Linear Model 

A crucial advantage of the (1og)linear model is the linearity of its unsteady-state 

equations which allows relatively straightforward analysis. In particular, the solution 

of equation (3.16) may be written explicitly (Seinfeld and Lapidus, 1974): 

where 

The time dependence of the logarithmic deviations of the metabolic outputs can then 

be calculated directly from equations (3.17) and (3.21) 

w (t) = (EE + 3-I) ( e  ( N E + K ) ( ~ - ~ o ) ~ ~  + e(NE+K)(t-T) (NI I  + A)q(r)dr)  + (Ell + O)q(t )  

(3.22) 

Numerical calculation of the integral in equations (3.21) and (3.22) is simple and 

rapid. 

For the time-dependent metabolite concentrations and metabolic outputs, we sim- 
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ply calculate the inverse transformations of the equations (3.7) and (3.14) : 

and 

which can also be written as 

where 

arrd 
n 

Plj = ((C Eii*ii + 0 i j )  
i=l 

Equations (3.21)-(3.27) account for the time dependence of metabolites and metabolic 

outputs based on MCA data and thus substantially extend the scope of applications 

of MCA data. 

3.3 Accuracy of the (Log)Linear Metabolic Model 

In this section three examples will be presented in which the dynamic responses of 

small metabolic pathways are described using alternative modeling representations. 

The following examples should be considered as illustrations of how accurately the 

(1og)linear model can describe metabolic systems, but they are not presented for a 

strict quantitative comparison. The good agreement between the (1og)linear model 

and the full nonlinear model available for these examples will suggest that,  in the 

absence of a nonlinear model and when MCA data can be experimentaly determined 

or estimated, the (1og)linear model can be used as a good first approximation for 

analysis of the dynamic response characteristics of metabolic systems. 



3.3.1 Linear Pathway 

The pathway considered in this example is a simple linear pathway (Figure 1). 

Michaelis-Menten kinetics were considered for every reaction rate and the parameters 

used are presented in Appendix A. The (1og)linear model parameters were derived as 

described above. We studied the dynamic responses of the flux through step 4, to the 

final product P, for step changes (Figure 2.A) and for sinusoidal variation (Figures 

2.B, 2.C, and 2.D) of the input flux, v,. 

As shown in Figures 2.A and B, the time response characteristics of the flux 

through the pathway are in very good agreement between the original nonlinear model 

and the approximate (1og)linear model. The final steady-state differences for step re- 

sponses (Figure 2.A) are the differences between the MCA calculations of new steady 

states and steady states of the original system. The question of the sensitivity of a 

system either to changes in its parameters of to fluctuations of the concentrations 

of cellular metabolites has been addressed and studied using the simple linearized 

model of the system; i.e., the system described by equations (3.4) and (3.5) (Kahn 

and Westerhoff, 1993). However, the (1og)linear model is in much better agreement 

with the original system model than is a simple linear molel, especially with respect 

to response to periodic inputs (Figure 2.B, 2.C and 2.D). The time response charac- 

teristics of the concentrations of the metabolites were also found to be in excellent 

agreement (results not shown). Extensive analysis for different parameters showed 

that the (1og)linear model can perform very satisfactory in approximating the linear 

pathway with reactions which follow nonlinear kinetics (results not shown). 

3.3.2 Branched Pathway 

The branched pathway depicted in Figure 3 was also considered. A regulatory struc- 

ture, typical for branched pathways, was included (see the dashed arrows in Figure 3). 

The kinetics assumed for the pathway are presented in Appendix A.11. I t  is interest- 

ing to notice that the regulatory structure introduces nonlinearities which make the 

model more complicated than the one for the linear pathway. The metabolic output 
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considered in the simulation studies is the ratio of the flux through step 2 divided by 

the sum of the fluxes through steps 2 and 3: 

The dynamic responses of the ratio for step changes and for sinusoidal variation of 

the input flux, v,, are presented in Figures 4.A and 4.B, respectively. 

The agreement between the (1og)linear model and the nonlinear model is very 

good, especially if we consider the complexity arising from the branching of the input 

flux and from the regulatory coupling. The differences between steady states, espe- 

cially for large input changes, are indicative of the limits of MCA for calculating new 

steady states after large parameter changes. 

3.3.3 Glycolytic Pathway 

As a last example, the glycolytic pathway from yeast (Figure 6) was studied. The 

kinetics of the enzymes of the pathway are known to exhibit strong nonlinearities (see 

Appendix AX1  for the kinetics considered). The flux to ethanol was the metabolic 

output considered, and responses of this flux to changes in glucose uptake rate were 

studied as in the previous examples. The simulation results, presented in Figures 7.A 

and 7.B, illustrate the excellent agreement between the nonlinear and the (1og)linear 

models. As we can see from the kinetics in Appendix A.111, the nonlinearities are 

among the most complicated in enzyme kinetics, and the agreement between the 

two models is still excellent. Moreover, the (1og)linear model is able to describe the 

overshooting (undershooting) initial response of the flux, as presented in Figure 7.C. 

In conclusion, the (1og)linear model is an attractive representation of metabolic 

pathways since it can be easily constructed directly from MCA data, it has an analyt- 

ical solution which makes computation easier, and it can describe quite accurately the 

dynamic response characteristics of the pathways. Moreover, the analytical solution 

of the (1og)linear model allows the derivation of indices such as the regulatory strength 

and the homeostatic strength (Kahn and Westerhoff, 1993) by simple manipulations 



of equations (3.21)- (3.25). 

3.4 Averaged Metabolic Functions and Control 

Coefficients for Periodic Parameter Variations 

Suppose that ho is the metabolic output corresponding to  the steady state with 

parameters po. If the parameters change with time in a periodic fashion, with period 

T, i.e.: 

~ ( t )  = ~ ( t  $- T )  (3.29) 

the metabolite concentrations and the metabolic outputs will usually, after some time, 

closely approximate periodic functions with the same period: 

and 

Suppose that p also varies with time so that its average value, p, is the same as 

Po: 
- 
P = Po (3.32) 

Then, if the metabolic system is nonlinear, the time-average value of the output 

will, in general, be diflerent from ho: 

Extensive theoretical, computational, and experimental studies showing this have 

appeared in the chemical reaction engineering literature (Douglas, 1967; Bailey and 
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Horn, 1971; Bailey, 1974, 1977; Guardabassi, 1974; Lyberatos and Svoronos, 1987). 

This implies that, if some parameter, say pl,  of the metabolic system varies peri- 

odically with time with mean equal to its reference steady-state value: 

the effect of another parameter, say pp, on the time-average metabolic outputs will, in 

general, be diflerent from the effect of that parameter on the steady-state metabolic 

outputs. Stated in terms of control coefficients, this means that the average output 

control coefficient (AOCC) , defined as: 

are, in a system subjected to  time-periodic inputs, different from the corresponding 

steady state control coefficients Ci;. 

When we study metabolic systems subject to periodic variation of their parame- 

ters, many questions arise: How does the average metabolic function of interest de- 

pend on the period and the waveform of the variation? What is the optimal variation 

pattern? How are the responses to genetic manipulations of time-invariant param- 

eters affected by the time variation of another parameter? The (1og)linear model 

developed above can be used to find an approximate answer to these questions. 

Equation (3.36) can be derived by differentiation of equation (3.33) with respect 

which after rearrangement becomes: 

The first and third underlined terms in Equation (3.38) can be approximated using 

equations (3.2 1)-(3.27) of the (1og)linear model. The second underlined term can be 
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approximated from the concentration control coefficient with respect to p2 by differ- 

entiation of z(t) (Equation (3.21)) and, as shown in Appendix B, it is time-invariant 

and equal to the concentration control coefficient of the time-invariant steady-state, 

regardless of the periodic input. 

Lyberatos and Svoronos (1987) developed a method for the study and optimiza- 

tion of pulsed periodically forced (Figure 7) linear systems. Their method has been 

shown to be very useful for the study of forced chemical reaction systems and the 

estimation of the optimum period and waveform of forcing (Hatzimanikatis et al., 

1993). Their method seems to be appropriate for the study of metabolic systems 

since the (1og)linear model developed in the previous section has been shown to cap- 

ture many of the most important dynamic and steady-state response characteristics 

of the nonlinear metabolic model. 

3.4.1 Mathematical Framework 

We will consider again a metabolic system consistirig of n metabolites, x, m enzy- 

matically catalyzed reactions, v and s parameters, p. One of the parameters, p l ,  is 

varying in a pulsed periodic mode (Figure 7): 

The magnitude of p is set a t  d / ( c  - 1) so that the p, average is jS1,  i.e. 

Treating pl (t) as piecewise constant, system (3.16) can be written as 

dz (NE+IC)z + ( N n + A ) q ( 6 )  t E [ jT , ( j  +€)TI 
j = 0 , 1 , 2 ,  . . .  

dt (NE + IC)z + ( N n  + A)q(p) t E [ ( j  + c)T, ( j  + 1)Tj 
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where q(6) and q(p) are the same as in system (3.16) with their first elements 

L T L ( ~ / ~ , , ~ )  and ln(p/po,l), respectively. 

Integrating equation (3.41) we can find that the periodic solution is 

where 

z0 = -[I - RDJ-' 

{[R - RD](NE + K)-'q(6) + [I - R](NE + K)-lq(p)) 

Z' = -[I - DRJ-' 

{[D - D R ] ( N E  + K)-'q(p) + [I - D](NE + K)-'q(6)) 

and I is the unitary n x n matrix. 

Equation (3.42) enables the simple computation of the periodic solution using 

simple matrix calculations. The computed periodic solution can be used in order to 

integrate the nonlinear expression for the metabolic output (3.25), and calculate its 

average value: 

As expected, the average value of every metabolic function depends on E and 6, 
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i.e. on the profile of the variation, on the period, T, of the variation, and on the value 

of the parameters pj,  if a time-invariant change in any of them is considered also. 

Equations (3.42) and (3.43) provide a fast and simple method to  analyze and, when 

possible, design the spatiotemporal variation profiles of the operating parameters. 

The analytical expression for El (equation (3.43)) can be used in order to  calculate 

the control coefficient of EL with respect to  any of the parameters p, according to 

Equation (3.38): 

where 

where C;: is the concentration control coefficient of the metabolite x k  with respect 

to parameter p,, as it has been determined a t  steady-state and for pl = po,l ,  and it 

appears from the approximation 

in Equation (3.38) discussed above. Moreover, as shown in the Appendix B: 
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for any periodic input. Therefore, equation (3.44) can be written as: 

3.4.2 Quasi-Steady-State Approximation: a Limiting Case 

The Quasi-Steady-State Approximation (QSSA) considers the average performance 

of the metabolic system when the characteristic time scale for changes of the varying 

parameter (typically the period T, or some quantity scaled by T) is much greater 

than 7-,"a" the maximum characteristic response time of the system (Bailey, 1974). 

For the (1og)linear model (3.16), 7-,"a" is the inverse of the minimum eigenvalue of 

the matrix N& + K .  Any further increase in the period in this range will not change 

the average performance of the metabolic system significantly. For pulsed periodic 

parameter variations the QSSA condition may be stated in the form 

In quasi-steady state operation, for the time period equal to (1 - E)T the system 

will be during most of this time interval very near the steady-state for pl = 6 a t  which 

and for most of a time period equal to  ET the system will be near the steady-state 



for pl = p at  which 

Therefore, time-trajectories of the metabolite concentrations may be well approxi- 

mated by: 

(&)'" jT 5 i < ( j  - i ) i  

(5) = ( 
(&)"."f ( j  - €)T 5 i < ( j  + 1)T 

and the corresponding time-average value of the metabolic function is 

For pj = p0 j  and from the definition of the control coefficient 

we have 

This last equation shows that knowledge of the control coefficient of the metabolic 

function with respect to the varying parameter, pl ,  determined at  pl = po, l ,  can pro- 

vide us with a first prediction about the improvement or the deterioration of the 

metabolic function for different waveforms. We should also notice that the experi- 
h mental determination of the control coeffiecient, Cpl, is relatively simple by measur- 

ing the metabolic function at  different values of p l ,  which is usually a manipulated 

environmental condition, such as nutrient concentration or dissolved oxygen. 
- 

Similarly, we can find an analytical expression for the control coefficient, c:!, for 

the limiting case of the QSSA: 



Po,, dhl ---- - = - 
hl dpr 

For pj = pOlj and after the proper rearrangements we obtain 

where 

and 

- 
As equation (3 .52)  suggests, the control coefficient, c$, for the limiting case of 

the QSSA, can be experimentally determined for various waveforms by performing a 

steady-state MCA at  different values of pl . Given this information, we can estimate 

the effects of periodic variation of p, on the resulting time-average control coefficients. 

3.4.3 Example 

The glycolytic system studied in Section 2 will be analyzed here with respect to the 

effects of time-variation of glucose uptake on the ethanol production rate and its 

control coefficients. Such a variation can be the result of variation in the external 
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glucose concentration, or temperature (Ribeiro et al., 1994). In what follows we will 

use the (1og)linear representation of the glycolytic pathway, derived around the steady 

state given a t  Appendix A.111. The specific production rate of ethanol at  the reference 

steady-state is 

JEtoH = 37.61mM/L,,umin 

and its (steady-state) control coefficients with respect to glucose uptake, phospho- 

fructokinase, pyruvate kinase, and ATPase are 

The specific glucose uptake rate was assumed to vary in a pulsed periodic fashion. 

The effects of the period and the waveform of the variation on the average value 

of the specific rate of ethanol production are presented in Figure 9.A and 9.B. The 

average specific rate of ethanol production decreases monotonically as the period of 

the variation decreases, independently of the waveform as described by different values 

in 6 and E .  Moreover, as 6 and/or E increase, the average specific rate decreases. In 

general, any periodic variation on the glucose uptake will probably result in lower 

ethanol production rates. 

The variation of the glucose uptake also has a dramatic effect on the average-flux 

control coefficients. Figures 10.A.I to 10.C.11 illustrate the significance of this effect. 

Several conclusions can be drawn from these figures. First, the differences between 

invariant control coefficients and average-flux control coefficients can be orders of 

magnitude. Second, they are not necessarily monotonic functions of the period. On 

the contrary, as we can see from the control coefficient with respect to ATPase (Figure 

10.C.I and lO.C.II), for high periods of variation the average-flux control coefficient 

is higher than for low periods. However, there exists a range of period for which the 

average-flux control coefficient is much lower than both the extreme values. As E and S 

increase, the AFCC7s for high and low period also increase, and the difference between 

them is also increasing. The most interesting effect is observed in Figure 10.C.11, 

where the AFCC can be either positive or negative, depending on the period, and on 
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the waveform parameters E and 6.  This observation is particularly significant because 

it implies that decisions taken a t  a certain stage of a scale-up process, with respect to 

which enzyme in a pathway should be genetically manipulated, could have no effect 

or even be counterproductive. This example analysis illustrates the importance of 

the consideration of spatiotemporal variations and the usefulness of methods that 

can estimate the effects of such variations. 

As it has been shown in the branched pathway example, changes in the regulation 

of the pathway can alter its dynamic response characteristics. Therefore, it is expected 

that, by altering the regulation in the glycolytic pathway, the dependence of the 

AFCC's and the average ethanol production, will also be altered. Such analysis 

suggests genetic engineering approaches for the solution to the problem of performance 

deterioration under parameter variations. Moreover, useful conclusion with respect 

to the evolutionary design of pathways can be drawn if we consider that most of the 

microorganisms have been evolved to survive in a varying environment. 

Concluding Remarks 

Rigorous, general relationships between properties of nonlinear systems and properties 

of simple models used to  approximate them are very rarely available. Nevertheless, 

the introduction of approximations to  facilitate analysis and design of nonlinear sys- 

tems is a widely used engineering method. Clearly, to preserve the greatest possible 

correspondence between results obtained by analysis of the approximate model and 

result from the original nonlinear system, one seeks approximate models which mimic 

closely the original nonlinear system (recognizing that again, general characterization 

of the extent, or quality, of such mimicry is typically not possible). 

We have undertaken the formulation of (1og)linear models in this spirit. The com- 

parisons between responses of models of this class, and the exact responses of the 

nonlinear systems they are intended to approximate presented here for several differ- 

ent examples of significant complexity suggest engineering utility of our approach. 

As an illustration of applications which can be effectively developed with such 
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an approximate linear representation in hand, the effects of periodic variations in a 

system parameter on metabolic outputs and their sensitivities have been examined. 

Here we have shown how indications of spatiotemporal parametric fluctuation effects 

on fluxes and sensitivities can be obtained based on steady-state experimental data. 

Our analytical results substantially extend and generalize the important observation 

from numerical simulations that average control coefficients can shift significantlly in 

response to spatiotemporal fluctuations in a large-scale bioreactors. Further applica- 

tions of (1og)linear models for other purposes in metabolic analysis and design will 

be presented in future publications. 
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3.7 Appendices 

A P P E N D I X  A 

In this appendix the kinetics used for the nonlinear models in the examples of 

Section 3 will be presented. The parameters of the corresponding (1og)linear models, 

i.e. the elasticities, can be derived from this information following standard definitions 

(REFS) .  

A P P E N D I X  A.1 

Linear Pathway 

The linear pathway considered is presented in Figure 1. The input flux, v,, was 

the manipulated variable. The kinetics used are the following (numbered according 

to the numbering of the steps in Figure 1): 

For the reference steady state we set 

and for the steady state metabolite concentrations we had 

APPENDIX A.11 

Branched Pathway 

The branched pathway considered and the regulatory structure around it is pre- 

sented in Figure 3. The input flux was again the manipulated variable. The kinetic 



7 3  

expressions used for the reaction rates numbered according to Figure 3 .  

v3 = 7 .5  s 2  

) + s 2  + s4 ) 
3.5 (1 + 6)  

For the reference steady state we set 

and for the steady state metabolite concentrations we had 

[sl, SZ, ss, s4] = [0.1429,0.2425,0.0393,0.4001] 

A P P E N D I X  A.111 

Yeast Glycolyt ie Pathway 

The kinetics for the yeast glycolytic pathway have been taken from Schlosser et 

al. (REFS) .  

and 
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where the concentration of UDPG was fixed at  [UDPG]=0.7 mM 

V P F K  = 5283 
[F6 PI [AT PI R 
R2 + LoL2T2 

where 

R = 1 + [FGP] + 16.67[ATP] + 166.7[F6P][ATP] 

and 
L - e(4.17pH-20.42) - 

o - 1658 

where 

S = 1 + 0.9091[AMP] + 0.6667[ADP] + 0.4[ATP] 

where 

RPK = 1 -t KI[PEP] + 0.2[ADP] + 0.02KI[PEP][ADP] 

and 

with 

and 



The equilibrium step, G6P r? F 6 P ,  was described by [F6P]  = 0.3[G6P], and 

the equilibrium step G3P  + F d P ,  was described by [G3P] = O.Ol[FdP]. For the 

adenylate kinase (AK) an equilibrium constant ~ A K  = 1 was considered and the total 

adenylate pool, [AN] = [AT P] + [AD P] + [AM PI, was treated as fixed parameters a t  a 

value [AN] = 2.8 mM. The ratio [NADH]/[NAD+] and the sum [NADH] + [NAD'] 

were also treated as fixed at  values 0.03 and 2.5 mM, respectively. 

The intracellular pH was assumed to be a function of [ATP], and the following 

relationship was used: 

p H  = 7.11 + 0.113([ATP] + [ATP],) 

where [ATP], = 0.967 mM 

APPENDIX B 

In this appendix we will show that for the special case of pulsed periodic variation 

of a parameter, the derivative 
d(xk(t)/xo,k) 

d(~T/~O,T) 

which can be approximated by the X; concentration control coefficient and is inde- 

pendent of time 
k o k  M-- dzk(t) - Cp"," vt 

~ ( P T  /PO,,) dqT 

If we differentiate z(t),  as it is given by equation (3.21) we obtain: 

where 
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is a vector of size equal to the size of q and with zero elements except the r-th element 

which is equal to  one. 

For the periodic solution of z ( t )  we will have 

where T is the period of variation of the varying parameter qj ( j  # r ) .  From Equation 

(3.21) we have for the periodic solution 

to+T 
e( to + T )  = e(NE+K)Tz(to) + / e ( N E + K ) ( t ~ + T - ~ )  ( N I I  + A ) ~ ( T ) ~ T  =+ 

t o  

~ ( t , )  = ( I - e  (NE+K)T)-I f t T  e(NE+K)(to+T-i) (NIT 3- A ) q ( r ) d r  (3.56) 

from which? by differentiation with respect to q,, we can calculate the term dz,/dq, 

in the Equation (3.54): 

For the two integrals in Equations (3.54) and (3.57) we can solve analytically: 

and 

( N E + K ) ( L O + T - T ) ( ~ I I  + A)e ,d i  = - [I  - e(N"K)T NNE + IC)-'(NII + A ) e ,  I( 
(3.59) 

Substituting the integral from Equation (3.59) into Equation (3.57) we obtain 

Finally, from equations (3.60), (3.58), (3.54) the expression for dz(t) /dqT can be 
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written as: 

which, by definition, is the vector of the metabolites concentration control coefficients 

with respect to  parameter q,, and is independent of time and of the varied parameter. 



3.8 Figures 



Figure 3 .l: Linear pathway. 
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Figure 3.2: Dynamic responses of the flux through the linear pathway. Solid lines 
correspond to the nonlinear model and dashed lines correspond to the (1og)linear 
model. A. Responses to step changes of the input flux. I: +20%; 11: +lo%; 111: -10%; 
IV: -20%. B. Responses to sinusoidal variation of the input flux: v, = 1 - 0.2sin - . (9 



Figure 3.3: Branched pathay. Solid arrows indicate reaction steps. Dashed arrows 
indicate activation (plus sign) or inhibition (minus sign). 
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Figure 3.4: Dynamic responses of the ratio of fluxes through the branched pathway. 
Solid lines correspond to the nonlinear model and dashed lines correspond to the 
(1og)linear model. A. Responses to step changes of the input flux. I: +20%; 11: 
+lo%; 111: -10%; IV: -20%. B. Responses to sinusoidal variation of the input flux: 
v, = 3(1 + 0.2sin (rt)). 
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Figure 3.5: Anaerobic fermentation pathway of the yeast Saccharomyces cerevisiae 
under nitrogen starvation, with glucose as the sole carbon source. Enzyme/pathway 
steps: in, glucose uptake; HK, hexokinase; K1, equilibrium step; PFK, phosphofruc- 
tokinase; GAPD, glyceraldehyde 3-phopshate dehydrogenase; K2, equilibrium step; 
PYK, pyruvate kinase; GRO, glycerol production; POL, polysaccharide production; 
ATPase, net ATP consumption; AK, adenylate kinase. Solid arrows indicate reac- 
tion steps, dashed arrows indicate activation and dotted arrows indicate inhibition. 
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Figure 3.6: Dynamic responses of the ethanol specific production rate of the yeast 
glycolytic pathway. Solid lines correspond to the nonlinear model and dashed lines 
correspond to the (1og)linear model. A & C. Responses to step changes of the glucose 
uptake. I: +20%; 11: +lo%; 111: -10%; IV: -20%. B. Responses to sinusoidal variation 
of the input flux: v, = 27.3(1+ 0.2sin (27rt)). 
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Figure 3.7: Pulsed periodic variation of parameter p l .  



Figure - 3.8: The percentage difference of the average ethanol specific production rate, 
T T 

i.e. JEtO;  - JEt0H7ref  as a function of the period, T ,  of the pulsed variation of the 
EtOH,re f 

glucose uptake rate. I: s = 0.5, 6 = 0.1 (solid line) and 6 = 0.2 (dashed line). 11: 
6 = 0.2, E = 0.5 (dashed line) and E = 0.8 (dashed-dotted line). 
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Figure 3.9: The control coefficients of the average ethanol specific production rate, - 
JEtoHl  with respect to: A. phosphofructokinase, B. pyruvate kinase, and C. ATPase, 
as functions of the period, T, of the pulsed variation of the glucose uptake rate. Solid 
lines: E. = 0.5 and 6 = 0.1. Dashed lines: E. = 0.5 and 6 = 0.2. Dashed-dotted lines: 
E = 0.8 and 6 = 0.2. 



Chapter 4 Analysis and Design of 

Metabolic Reaction Networks via 

Mixed-Integer Linear Optimization 



4.1 Introduction 

Improvements in the product yield, rate of production, and final product concen- 

tration are common goals in achieving more efficient and cost-effective bioprocesses. 

These improvements can be achieved by two main approaches: genetics and process. 

Process improvements involve the adjustment of the environment of the organisms 

and the optimization of parallel and downstream processes in order to achieve the best 

possible performance. Genetic improvements are based on the use of organisms with 

altered DNA such that their functional characteristics are enhanced. Traditionally, 

the latter approach has been based on the introduction of random changes in the DNA 

of a population of organisms and the subsequent selection of an improved organism 

from the resulting heterogeneous population. However, recent advances in recom- 

binant DNA technology make targeted modifications in the DNA of an industrial 

nlicroorganism possible. Moreover, recombinant DNA methods enable the introduc- 

tion into an organism of DNA fragments from other organisms with the possibility of 

creating hybrid metabolic networks combining features from metabolic networks in 

different organisms. 

All the major cellular pathways are subject to a collection of natural independent 

control loops with different signals and different loci of action (Sanwal et al. 1971; 

Savageau, 1976; Stephanopoulos and Vallino, 1991). These mechanisms of metabolic 

regulation operate at  essentially two different levels. Genetic-level controls regulate 

the expression of genes, thereby determining which enzymes are present and in what 

quantity. Protein-level controls regulate the activity of particular enzymes, and other 

proteins, in the cell. With respect to protein-level controls, each enzyme can be 

classified as having no such control, or as having activity modulation by one or more 

particular metabolites in the cell. 

The metabolic control structures in a native, wild-type organism have evolved 

through natural selection and are therefore configured to  maximize the probability 

of survival of the species, at least insofar as evolution has progressed. While explicit 

formulation of the objective function for natural metabolism is nontrivial, prior in- 
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vestigators have proposed maximization of growth rates or most efficient utilization 

of cellular energetic and chemical resources as the objective function for evolution of 

natural metabolism (Savageau, 1976; Ramkrishna, 1983; Heinrich et al., 1987; Marr, 

1991; Schuster and Heinrich, 1991). However, in chemical and pharmaceutical manu- 

facturing that utilize cultivated microorganisms, it is desirable to identify a different 

configuration of fluxes which directs raw materials to products efficiently a t  high 

rates and in the presence of high concentrations of product. A production-oriented 

evolution is needed to achieve these goals. 

Through currently available genetic engineering technology, it is possible to modify 

both genetic and protein-level regulation. Thus, the amount of a particular enzyme 

which is expressed under a particular process condition can be altered by changing 

the genetic information of the organism. Similarly, by changing the gene which codes 

for a particular enzyme, the response of that enzyme to metabolites which influence 

its activity can be altered. 

Prior research and industrial practice have clearly shown that very large increases 

in process performance can be realized by genetic modifications of metabolic control 

systems (Bailey, 1991; Katsumata and Ikeda, 1993). Past improvements in the per- 

formance of a process by modification of the control structures were mainly based 

on trial and error methods and on well-understood, relatively simple pathways. As 

the complexity of a set of pathways of interest increases, intuitive and trial and er- 

ror methods are increasingly ineffective. Modifying the regulatory characteristics of 

an enzyme is presently a much more difficult experimental challenge than changing 

the ammount of enzyme present in the cell. Therefore, guidance as to  what changes 

in regulation might be of greatest benefit to improve the network is important. To 

this end, a systematic, multilevel, mult iparametric methodology for evolving effective 

control structures is needed. 

In an attempt to  achieve a quantitative understanding and rational metabolic en- 

gineering of biochemical reaction pathways, mathematical descriptions of metabolic 

systems have been developed in many cases and the expected responses of pathways 

to  changes at individual reactions or within certain pathway segments have been cal- 
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culated. A population of living cells is an extremely complex system, so complicated 

that some people doubt the possibility of a credible mathematical description, and 

therefore of quantitative engineering design! of any of its attributes. Two different 

bodies of experience contradict this view. First, several complex biological phenom- 

ena have been well described by mathematical models which are based on the essential 

molecular mechanism. Examples include regulated gene expression (Lee and Bailey, 

1984b,c), replication of DNA (Lee and Bailey, 1984a), growth of bacterial cells (Shuler 

and Dornach, 1983), animal cell cycle regulation (Hatzimanikatis et al., 1995), and 

receptor trafficking (Starbuck and Lauffenberger, 1992). Second, design and control 

of most industrial chemical processes, ranging from catalytic cracking to olefin poly- 

merization are based upon mathematical models which are known to be only crude 

approximations of physical reality. Most chemical engineering applications involve 

partially understood, approximately described complex physical systems. Useful en- 

gineering has been achieved in many facets of chemical engineering endeavor in spite 

of this. There is no reason to expect a different outcome in the engineering of com- 

plicated, imperfectly known cellular processes. 

The modeling approaches previously used can be classified into two kinds: linear 

and nonlinear. Linear models can be accessed through analysis of input-output re- 

lations and certain stimulus-response experiments by applying advanced regression 

analysis (Schlosser et al., 1993) or other experimental methods developed within and 

around the metabolic control analysis (MCA) framework (Kacser and Burns, 1973; 

Heinrich and Rapoport, 1974; Cornish-Bowden and Cardenas, 1990; Fell, 1992). Non- 

linear models, on the other hand, can be constructed when detailed kinetic expressions 

for each step in the reaction pathway are known or can be estimated (Joshi and Pals- 

son, 1989; Gallazo and Bailey, 1990). Because of the greater data requirements for 

nonlinear model formulation and validation linear (or log-linear, see below) models 

will often be the only practically accessible description. 

Using the available mathematical description of a biochemical system, various 

analytical and computational techniques can be used for analysis and optimization 

of the system. Optimization techniques have been used in the analysis of biochemi- 
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cal systems using mainly stoichiometry information and metabolic requirements for 

growth (Majewski and Domach, 1990; Stephanopoulos and Vallino, 1991; Varma and 

Palsson, 1994). These approaches do not require kinetic data; therefore, they cannot 

be used in order to quantify the effects of genetic modifications of enzyme levels and 

of regulatory structures. Optimization of metabolic pathways on the basis of a ki- 

netic model developed using experimental data represented mathematically using the 

S-system formalism of biochemical systems theory (BST) has been presented using 

linear programming (Voit, 1992; Regan et al., 1993). These studies provide informa- 

tion only about optimum manipulation of the external inputs to the system (such 

as independent effectors and external substrates) and do not address the problem of 

optimizing the regulatory structure of the metabolic network. 

The aim of this work is to provide a mathematical framework for determining 

changes in regulatory structure and strength which should be considered to optimize 

a particular metabolic process. A mixed-integer linear programming (MILP) formula- 

tion is proposed for the general case of linear model optimization. The solution of the 

MILP formulation provides information on which enzymes should be present at  dif- 

ferent levels, the extent of such changes needed, and the accompanying modifications 

in the regulatory structure that will optimize the process. 

Any mathematical description of cellular processes is an approximation, and, ge- 

netic manipulation of the cell may cause secondary responses which were not con- 

sidered in the mathematical (or the conceptual) model. Therefore, the output which 

the metabolic engineer seeks, and all that can be expected, from such optimization 

calculations are reasonable suggestions for changes in the metabolic network which 

might give useful improvements in cellular performance. Strategic quidance, not fine 

quantitative rules, is the intended outcome of these type of calculations. A large 

body of prior experience with engineering of other complex chemical systems clearly 

indicates the value of such an approach, even when models are crude approximations, 

relative to completely ad hoc approaches which are, of course, necessarily based on 

more crude mental optimization of much more crude mental models. 
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4.2 Problem Statement 

In this chapter we address the following general problem: 

A mathematical description of a metabolic pathway with a postulated number of 

regulatory loops is  given. These regulatory loops are classified as either activation 

(increase the activity of regulatory enzyme) or inhibition (decrease the activity of 

the regulatory enzyme) loops. The objective is to determine (i)  which of the regula- 

tory loops should be retained, and (ii) the number, type, and level of manipulation 

of amounts of enzymes, i n  order to optimize a certain function of the outputs of 

the metabolic pathway (e.g., production of primary or secondary metabolites, growth, 

selectiuitg, etc.). 

Many metabolic pathways are common to  many organisms. However, enzymes 

that catalyze the same reaction in different organisms are not necessarily the same 

in their catalytic and regulatory properties. As discussed in the introduction, recom- 

binant DNA methods enable the introduction into an organism of the DNA from 

other organisms with the possibility then of combining regulatory features from the 

nietabolic pathways present in these different organisms. Moreover, protein engineer- 

ing methods allow modifications of the properties of natural enzymes and design of 

enzymes with novel regulatory characteristics. Therefore, the possible number of reg- 

ulatory loops for a certain pathway in an organism ranges from the number of the 

existing loops to this number plus the number of additional, different regulatory loops 

which can be introduced into the same pathway by genetic engineering. 

Most generally, we can consider a regulatory superstmcture in which every metabo- 

lite in the system can potentially regulate any enzyme in that system. The math- 

ematical formulation of such a general regulatory superstructure leads to a large 

combinatorial problem. Its solution will provide the maximum or minimum perfor- 

mance achievable for a given system, and thus provide valuable insight for protein 

and metabolic engineering. This problem addresses the question of how regulation 

and catalyst levels should be chosen de vove in order to maximize the performance of 

the metabolic network. 
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4.3 Mathematical Description of Metabolic Re- 

action Networks 

We consider here a linear model description for metabolic systems. This is the most 

common situation because of limitations in the available information for most systems. 

Furthermore, when a nonlinear model is available, it can be linearized and studied 

within the same framework. In what follows we describe the linearization procedure 

in a way similar to  that presented by Reder (1988). 

Consider a metabolic system consisting of n metabolites and m enzymatically- 

catalyzed reactions. We are interested in studying how modifications of the expres- 

sion levels and of the properties of the enzymes that catalyze these reactions affect 

metabolic functions of the system, such as metabolite concentrations, fluxes, and 

specific growth rate. The mass balances on the metabolites of the system may be 

written: 

where x is the n-dimensional metabolite concentration vector, f is a function deter- 

mined by the mass balances, v is the m-dimensional reaction rate vector, and p is 

the s-dimensional manipulated parameter vector (e.g., enzyme concentrations). In 

addition to metabolite reaction rates, the mass balance equations also include terms 

that account for other processes by which concentrations of metabolites change (such 

as the dilution brought about by increases in the biomass volume (Fredrickson, 1976) 

and transport through the cell wall envelope). 

In addition, consider the r-dimensional vector of metabolic outputs, h, for which 

we have: 

h = h(v(x; P), x; P) (4.2) 

In equation (4.2) h is a function of the rates of interest, of the metabolite concen- 

tration, and of the parameters. Linearization of equations (3.2) and (3.3) around a 

steady-state, (x,, p,) results in the following linear system for the logarithmic devia- 
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tions (see Appendix A for explanation of the transformation) 

where, z, q, and w ,  are the logarithmic deviations of the metabolite concentrations, 

the enzyme levels, and the metabolic outputs, respectively: 

and N, 8, K, A, H, O ,  I ,  and Tli, are matrices, defined as: 

Here the subscript o indicates the reference steady-state about which the approximate 

model is developed. Thus, the right-hand side of equation (4.1) is zero when evaluated 

a t  (x,, po), and ho denotes the value of h at (xo, p,). 

It should be noted that a mathematical description linear in logarithms of the 

system variables is in fact a nonlinear (power law) representation, a functionality 

well suited to  approximating closely the nonsingular rational polynomial kinetic ex- 

pressions typical of metabolic processes. The quality of this form of approximate 

representation of metabolic kinetics were considered in detail in Chapter 3. Here the 

nature of this approximation will be tested for one of the examples presented by cal- 
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culating the consequences for the original nonlinear model (equations (4.1) and (4.2)) 

of the optimization strategy determined using the log-linear approximate model of 

equations (4.3) and (4.4). 

At steady-state, solution of (4.3) and (4.4) yields: 

where 

with 

The mathematical description presented above depends on the same informatiorl 

as that employed within the framework of metabolic control analysis (MCA) (Reder, 

1988; Schlosser and Bailey, 1990). Matrices E and II are the elasticity matrices 

with respect to metabolites and to parameters, respectively. The matrix @ is the 

control coefficient matrix of the metabolic functions h with respect to parameters p. 

Experimental determination of the parameters for this linear system has been the 

subject of several studies (Fell, 1992; Cornish-Bowden and Cardenas, 1990; Schlosser 

and Bailey, 1990) and in many cases it is the only available description of a metabolic 

system. 

4.4 Analysis and Synthesis Problems 

The regulatory structure of a metabolic network is typically deduced from experi- 

mental analysis of the integrated system or from the reported kinetic properties of 

the enzymes involved in the pathway. In this case the matrix I can be written as a 

sum of two matrices: 

& = E S  + I' (4.7) 
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where the elements in matrix E S  correspond to  the substrate elasticities of the en- 

zymes, that is, the sensitivities of enzyme activities with respect to their substrates, 

and the elements of matrix ET correspond to the regulatory elasticities of the enzymes, 

that is, the sensitivities of enzyme activities with respect to regulatory metabolites. 

In this representation, the substrates themselves can also be considered as regulatory 

metabolites (in cases such as substrate inhibition): 

( xis is a substrate for reaction 3) 

and 

I xi, is a regulator for reaction j )  

Changes of the elements in matrix ET from non-zero values to zero or vice-versa 

correspond to modifications in the regulatory structure of the system. In this study, 

which emphasizes the role of control structure, we define the analysis problem in the 

context of a given control structure, which we reasonably assume can be modified 

only by deleting certain control interactions: 

Which of the existent regulatory loops should be inactivated, and what associated 

changes should be made i n  the manipulated variables je.g., enzyme expression levels, 

environmental conditions, eflectors external to the system), i n  order to optimize the 

performance of the metabolic network? 

The synthesis problem considers the possibility of postulating a regulatory su- 

perstructure and addressing the problem of selecting among alternative regulatory 

structures for each enzyme. The regulatory superstructure embeds a set of alter- 

native regulatory elasticities for each enzyme that correspond to different kinds of 

regulation by each metabolite. In particular, the synthesis problem addresses the 

following question: 

What kind of regulation (i.e., activation or inhibition, by which metabolite and of 

what strength) should be assigned to  each enzyme in the network, and what associated 

changes should be made in the manipulated parameters (e.g., enzyme expression levels, 

environmental conditions, eflectors external to  the system), in order to optimize the 

performance of the metabolic network? 
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The analysis and synthesis problems include discrete decisions concerning the reg- 

ulatory elasticities of the system. Inactivation or activation of a regulatory loop is 

equivalent to  elimination or introduction of non-zero terms in the IT matrix. More- 

over, the synthesis problem will typically be subject to some constraints such as the 

possible number of regulatory actions on each enzyme and the requirement that an 

enzyme cannot be activated and inhibited by the same metabolite. 

On the other hand the continuously adjustable manipulated parameters can po- 

tentially be subject to discrete constraints, such as the maximum number of these 

parameters that we can manipulate simultaneously. 

The mixed discrete and continuous nature of the problem and the linear descrip- 

tion of the system lead to the formulation of the analysis and synthesis problems as 

MILP problems, solutions of which provide the optimal regulatory structure and the 

optimal parameter configuration of a metabolic reaction network. 

4.5 Mat hematical Formulation 

The mathematical formulation for the synthesis problem as a MILP problem is pre- 

sented in this section. To derive the mathematical formulation the following index 

sets and variables are introduced to characterize the postulated regulatory superstruc- 

ture. The metabolites will be denoted by the index set I = {i), the reaction rates by 

the index set J = ( j ) ,  the manipulated parameters by the index set K = ( k ) ,  and 

the metabolic outputs by the index set L = { I ) .  The following sets will be defined 

to  establish the connections of the sets of metabolites with the reaction rates in the 

network: 

I: = {i, ( is E I is a substrate for reaction j ,  j E J) 

I! = {i, I i, E I is a regulator for reaction j, j E J) 

The sets M+ = {m+) and M- = (m-) denote the indices for the activation and 

the inhibition elasticities, respectively, that can be applied to  each enzyme by each 

metabolite. The regulatory elasticities of the postulated regulatory superstructure 

will be denoted as emji, ,  where m belongs t o  the index set M = M$ U M-. Therefore, 
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ernji, will denote the regulatory elasticity of reaction j with respect to metabolite i 

and can be positive (for activation) or negative (for inhibition) with a fixed magnitude 

for each rn. 

The continuous variables of the model are the logarithmic deviations of the metabo- 

lite concentrations, zi, the logarithmic deviations of the manipulated variables, qk, the 

logarithmic deviations of the metabolic outputs, wl, and the reaction rates, vj. 

A binary variable, ymji,, is associated with each regulatory elasticity, ernji, If 

a regulatory loop with an elasticity, Emji, ,  is active in the network, ymjip is set to 

1, otherwise it is zero. A binary variable, dk, is associated with each manipulated 

variable, qk. The introduction of these variables serves as a control on the number 

of the manipulated parameters that are allowed to vary. In many cases, practical 

experimental limitations allow only a limited number of simultaneous manipulations 

of enzyme activities. 

The linearization procedure described earlier transforms the rate expressions, vj, 

and metabolic output functions, hl, to the following form: 

and 

The second and third terms on the right-hand side of equation (4.8) correspond to  

the dependence of the rates on the metabolites, and the fourth term corresponds to 

the dependence on the manipulated parameters. The first and the second terms in 

equation (4.9) correspond to the first term in equation (4.4) and the third, fourth, 

and fifth terms correspond to  the second, third, and fourth terms in equation (4.4), 

respectively. 

The presence of binary variables in the formulation of the problem introduces 
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bilinear products of continuous and binary variables in equations (4.8) and (4.9) 

which make the problem nonlinear. In order to circumvent these nonlinearities we 

follow the modeling approach applied in Psarris and Floudas (1990) using the idea 

proposed by Petersen (1971) and extended by Glover (1975). This is also discussed 

in chapter 7 of the book by Floudas (1995). 

The basic idea is to introduce new continuous variables for each bilinear product: 

and 

gk = dkqk 'dk 

and to  introduce additional constraints, for each (m,  j ,  i,) and each k ,  which are 

described in Section 5.2. 

4.5.1 The Objective Function 

The process of interest which we optimize (maximize or minimize) can be any of 

the metabolic outputs or combination of them. Note that using equation (4.9) we 

can treat metabolite concentrations and rates as metabolic outputs. Therefore, in the 

case of having a single metabolic function wl as objective we can express the objective 

function as: 

Coupling between the various processes in the cell is sometimes a limitation in 

the performance of a pathway, even when classical metabolic engineering techniques 

are applied. However, we can study within the present framework the following 

questions: If and how can we decouple the pathway of interest from other cellular 
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processes by manipulating the regulatory structure of the pathway? If possible, how 

can this decoupling be achieved? The objective function that corresponds to this 

question will be formulated and a corresponding solution approach will be discussed 

in Section 6. 

4.5.2 Constraints 

The metabolic optimization problem is typically subject to  one or more of the follow- 

ing types of constraints: 

(i) Mass balance for each metabolite i 

Equation (4.3) is the set of mass balance equations for the metabolites. Therefore, 

a t  steady-state, the left-hand side of equation (4.3) is set to zero, and, for each 

metabolite xi, we have a constraint of the form: 

where the first two terms correspond to the first term in the right-hand side of equation 

(4.3), and the third, fourth, and fifth terms correspond to the second, third, and fourth 

terms in the right-hand side of equation (4.3), respectively. 

(ii) Bounds on  metabolites, manipulated variables, rates, and metabolic outputs 

In modeling metabolic pathways it is extremely difficult to describe all relevant 

processes completely. Metabolic engineering of the pathway of interest will result in 

changes in metabolite concentrations, metabolic outputs of the pathway, and reac- 

tion rates. These changes will propagate into the rest of the cellular processes with 

unpredictable and, in many cases, undesirable effects. 

The concentrations of metabolites should neither exceed toxicity levels nor be very 

low because it is possible to  induce responses, such as stringent responses, that will 

alter qualitatively cellular activities that are not included in the model. Changes in 

the manipulated variables can have similar effects. Overexpression of enzymes can 

influence growth, and an excess of external substrate can result in toxic by-product 
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synthesis. Therefore, variables should be constrained within the bounds determined 

by their physiological ranges for the pathway of interest and by the available biological 

knowledge. 

z f < z , ~ z ~  i € I  (4.14) 

Note that variables zi and q1; are the logarithmic deviations of the concentrations, xi, 

and the logarithmic deviations of the parameters, pk, respectively, from the steady- 

state value around which the linear model has been constructed. As a result, their 

lower bounds can take negative values. 

The reaction rates of the pathway cannot be increased infinitely, and zero values 

for the fluxes are not physiologically acceptable in general. The minimum lower bound 

for a rate will be zero only if the metabolites produced by the corresponding reaction 

are provided externally. Reaction rate expressions, vj, and metabolic outputs of the 

system, wl, will generally be constrained within physiological bounds depending on 

the system under study. Therefore, the bounds of these variables will be of the form: 

The variables wl represent the logarithmic deviations of the metabolic outputs and, 

therefore, their lower bounds can be negative. 

(iii) Constraints for the umji, variables 

The variables represented by umji, are connected with the continuous variables, 

zi,, and the binary variables, ymji,., via the following conditions: 



Note that the above constraints are linear in zi, and ymji, It is interesting to 

examine the effect of these constraints. 

If ymji, = 1, then they become: 

and the first two constraints imply that u,ji, = zi, while the second two constraints 

simply provide bounds. 

If ymji, = 0, then we have 

and the second two constraints imply that umjil. = 0, while the first two constraints 

L are relaxed since zi, - z: < 0 and zi, - zi, 2 0. 

Similarly, for each of the gk variables we have the following four inequality linear 

constraints: 

Qk - 4:(1 - dk) 5 Sr; < QI; - 4:(1 - dk) k K (4.20) 

for which a similar analysis holds. 

(iv) Logical constraints 

There are constraints based on the binary variables which are associated with 

the existence or nonexistence of various regulatory loops and the activation or de- 

activation of different continuously adjustable manipulated variables. An important 

logical constraint is one that forbids activation and inhibition of an enzyme by the 

same metabolite. Moreover, when we consider alternative loops with the same type 

of action (inhibition or activation) at different levels (e.g. low inhibition, high inhi- 

bition), only one of the values should be considered. These constraints appear in the 



formulation for each ( j ,  i,): 

m + € M +  m- E M -  

The maximum number of the regulatory actions for each enzyme, / 1 ,  and 

the maximum number of enzymes that each metabolite regulates, I Jkax 1 ,  will, in 

general, impose one additional constraint for each j  and one for each i: 

and 

C C Ymji, I 1 J 1 iT E I!, 
m E M  j E J  

The simultaneous manipulation of the variables q k  will be subject to the following 

constraint: 

where I Kmax I is the maximum number of the manipulated variables that can be 

modified simultaneously. This constraint arises from practical and physiological lim- 

itations; and I Kma, I varies from system to system. 

Integer cuts are also introduced such that by solving the proposed mathematical 

model in an iterative way we can exclude all the previous solutions so that we can 

calculate the next best solution. In this case, when we solve for the n-th best solution 

we have to  include n - 1 constraints of the form: 
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where 1 Bi / is the cardinality of the set Bi (i.e. the number of the elements in the 

set,) . 

The proposed mathematical formulation involves continuous and binary variables. 

The problem, in its initial formulation, features bilinearities as products of continu- 

ous and binary variables. By introducing a new continuous variable and four linear 

inequality constraints for each bilinear term, the final formulation involves only linear 

terms and, therefore, becomes a MILP formulation. The solution of the MILP will 

provide the desired optimal regulatory structure. Because of its linear nature, the 

problem is convex and a global solution is guaranteed. The model allows constraint 

flexibility in relation with the physical system it describes and is designed to en- 

conlpass feasible manipulations within the set of current methods for metabolic and 

protein engineering. 

4.6 Computational Studies 

The proposed approach will be illustrated using the aromatic amino acid biosynthetic 

network in bacteria as an example system. Four specific problems will be postulated 

and solved with the proposed mixed integer linear optimization framework. The 

pathway and the original regulatory structure are presented in Fig. 1. The pathway 

has 8 regulatory loops all of which are feedback inhibitory loops, In order to derive a 

linear model for the pathway we started from the nonlinear model for this presented 

by Schlosser and Bailey (1990). The nonlinear model and the parameters for the 

linear model are presented in Appendix B. 

In the following examples, the following bounds on the logarithmic deviations of 

the metabolite concentrations were imposed: 

which implies that we allow the concentrations of the metabolites to vary between 

13.5% and 639% of the reference steady state. These wide bounds might allow con- 
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centrations that can be toxic to the organism or that induce stress responses that 

will affect other cellular activities. We use such wide bounds in the interest of ex- 

ploring the structure of this example and the characteristics of its optimal solution. 

If needed to  accomodate physiological limitations, tighter constraints on metabolite 

concentrations can certainly be considered within this formalism. 

The only physiological constraint which will be introduced constrains the specific 

growth rate, p,  to  its reference steady value: 

The only consideration in the model used in this example for the effects of manipu- 

lation of the aromatic amino acid biosynthesis network on the rest of the organism's 

metabolism is the dependence of the specific growth rate on the aromatic amino 

acid concentration levels (see Appendix R) .  By imposing the above constraint we 

essentially constrain the solutions to the ones that are consistent with other requisite 

coupled metabolic activities of the cell. 

The first example deals with the modification of the existing regulatory and ac- 

tivity structure. The second, the third, and the fourth examples assume that the 

metabolic pathway has no regulation a t  the outset, and consider what regulatory 

connections, with what strength, should be introduced so as to  optimize the objec- 

tive. 

The procedure for solving the examples, equally applicable to  any other metabolic 

network optimization problem of the class formulated earlier, was implemented using 

the high-level modeling language GAMS (general algebraic modeling system), into 

an algorithmic procedure named METAOPT (METAbolic network OPTimization). 

The procedure accepts the mathematical model and the postulated regulatory super- 

structure as a set of matrices and is interfaced with CPLEX, a mixed-integer linear 

programming solver. At each solution, the optimal regulatory structure is used to  

form an integer cut constraint, and the problem is solved again for the next best 

structure. This way a sequence of several solutions is generated. The following com- 
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putational studies were run on a HP/730 workstation with a Unix-based operating 

system. 

4.6.1 Problem 1 

The question addressed in the first problem can be stated as follows: 

Which of the existing regulatory loops should be inactivated and what should be 

the associated changes i n  the enzyme expression levels to maximize the phenylalanine 

selectivity? 

The phenylalanine selectivity is defined here as the rate of phenylalanine produc- 

tion divided by the overall rate of all aromatic amino acids (phenylalanine, tyrosine, 

and tryptophan) production: 

The initial number of the regulatory loops is equal to eight, which can be either 

active or inactive and in any possible combination. Therefore, there are 28 = 256 al- 

ternative regulatory structures. The six enzymes of the pathway are the continuously 

adjustable variables for which we set the bounds: 

The zero value for the lower bound means that enzyme downregulation is not feasible. 

On the other hand, the value ln (2)  for the upper bound allows enzyme overexpression 

up to twice the level of the reference state. In practice, overexpression of an enzyme 

can result in higher levels, but, since we study a linear model for which the enzyme 

levels are the inputs, we do not permit large deviations in the input values so as better 

to  stay within range in which the linear model is a good approximation to  the original 

nonlinear model. Only the six enzymes are considered as the continuously adjustable 

inputs, and the concentrations of the precursors (metabolites feeding into the reaction 

network considered here) remain constant at their reference values. Therefore, the 
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following constraints are needed to inactivate changes in the precursors: 

The objective function to be maximized is the ratio of the phenylalanine produc- 

tion rate divided by the overall rate of the aromatic amino acids production. Equation 

(4.29) in linearized form is written as in equation (4.4): 

where 

and ?is,,, and OSph, are zero vectors. The selectivity for the reference state is: 

No improvement in this value could be achieved only by enzyme overexperession, 

without having an effect on the growth rate. 

The MILP optimization model discussed in section 5 was solved and four alterna- 

tive regulatory structures were identified corresponding to the optimal value for the 

phenylalanine selectivity. The problem consisted of 65 variables (48 continuous, 17 

binary) and 94 equations and the first optimal solution was found within 0.26 CPU 

s. The structures are presented in Figure 2 (cases a-d) and the value of the objective 

function for all four solutions is: 

The overexpressed enzyme levels and metabolite concentration levels associated with 

each regulatory structure are presented in Table 1. The concentration of the metabo- 

lites are the same for all four solutions. The results suggest that the optimal selec- 

tivity can be achieved by inactivation of a t  least four regulatory connections (vl by 
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DAHP, v3 by TYR, v4 by PHE, and v~ by TRP) and that three enzymes should be 

overexpressed, specifically the enzymes that catalyze reactions 1, 3 and 4. 

Four more alternative regulatory structures correspond to a value of 0.601315 for 

the selectivity. These structures are also presented in Figure 2 (cases e-h) and the 

associated enzyme and metabolite levels are presented in Table 2. Again, the three 

enzymes that should be overexpressed correspond to reactions 1, 3, and 4. However, 

the minimum number of the regulatory loops that should be inactivated is three (vl by 

DAHP, v3 by TYR, and v4 by PHE). Case ( f )  among these results is attractive since 

implementing it requires less effort than other solutions presented from the genetic 

arid protein engineering point of view. 

Examination of the eight regulatory structures indicates that the phenylalanine 

selectivity can be significantly improved, while maintaining constant specific growth 

rat,e, by inactivating a t  least three regulatory structures and overexpressing three 

enzymes. While inactivation of the inhibition of v4 by PHE is quite obvious, the rest 

of the manipulations, all considered subject to the constraint on the growth rate, 

cannot be easily anticipated a przorz. 

In this problem which begins with a specified nonlinear model including enzyme 

regulation, the metabolic design strategy determined by the MILP optimization of 

an approximate log-linear model can be tested using the original nonlinear metabolic 

model. Such calculations for the strategies designated a-d give Sphe = 0.66730, and 

Sphe = 0.86544 for the strategies designated e-h. These selectivities substantially 

exceed that for the reference state, indicating that, as desired, the approach described 

here provides useful guidance towards effective metabolic design. I t  should be noted 

that the full nonlinear model, when subjected to the modifications computed using 

the log-linear model, no longer displays all the properties of the log-linear model. In 

particular, all of the constraints imposed are no longer exactly satisfied. For example, 

specific growth rate is decreased somewhat when these strategies are applied to  the 

original nonlinear model. The changes observed are well within an acceptable range 

from a biological and process point of view. The purpose of this work is to  provide 

reasonable guidance for starting optimization of a metabolic system. Efforts to seek 
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an optimum for a real system will always require further experimental refinement. 

4.6.2 Problem 2 

In this problem the aromatic amino acid pathway is considered without any regulatory 

connections, and we postulate a regulatory superstructure such that any of the first 

six reactions can be inhibited by any of the six metabolites with an inhibition strength 

of -0.75 or -0.075. We allow only two regulatory connections for each enzyme and 

we allow three enzyme level manipulations. The questions addressed in this problem 

are the following: 

In  order to maximize the phenylalanine selectivity: 

(2) which pair of metabolites should inhibit each reaction? 

(ii)  what are their inhibition strengths? 

(iii) which three enzymes should be overexpressed? 

and 

(iv) what should be their expression levels? 

The use of discrete values for the level of the inhibition allows preservation of 

system linearity and provides qualitative information about the order of magnitude 

of the regulatory loop strength. This problem can provide us with information about 

the maximum selectivity which can be achieved for this model. 

In the formulation of the problem two regulatory elasticity matrices are intro- 

duced: 

ET = { ~ ~ j ~ ,  = -0.75 1 1 < j 5 6 and 1 5 i, 5 6 )  

E,' = { ~ ~ j i ,  = -0.075 1 1 5 j 5 6 and 1 < i, 5 6 )  

The problem was solved with the same bounds on the continuous variables. Moreover, 

we introduced three additional logical constraints. The first one takes the form: 

m + E  MS, m- E M - ,  j E J, i, E I! 
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and allows for only one level of inhibition chosen from the two different orders of 

magnitude allowed. The second one is 

and allows for only two regulatory connections for each enzyme. The third one is 

and allows any of the six enzymes to  be regulated by any of the six metabolites. 

Under these constraints the number of the alternative regulatory structures we can 

build around the pathway for this problem are 247. 

The resulting mathematical formulation accounts for 193 variables (112 contin- 

uous, 81 binary) and 393 constraints. The problem was solved and the optimal 

solution, Sphe,opt, found in 19.56 CPU s, was 1.05938. This value is greater than the 

actual upper bound for the phenylalanine selectivity (4.29), because we used as ob- 

jective function the logarithmic selectivity (4.32) which is a linearized approximation 

of equation (4.29), and it is not subject to any upper bound. On the other hand, 

the value for the optimal selectivity is 0.818672, if the calculated from the solution 

linearized rate expressions used in equation (4.29). This solution suggests that, for 

the parameters chosen for the system and with an optimized regulatory structure, we 

can increase the selectivity up to 95% by simply manipulating only three enzymes 

without affecting the specific growth rate. 

The problem has multiple regulatory structures that result in the same optimal 

objective value. However, we are interested in the structures that achieve the optimal 

performance but have the minimum number of regulatory loops since the creation of 

these loops is very difficult. Therefore we formulate a new objective function: 
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with the additional equality constraint: 

where wphe = 0.908115 

The solution to  this problem resulted in only four alternative regulatory struc- 

tures presented in Figure 3; the corresponding values for the continuous variables are 

presented in Table 3. The minimum number of loops is equal to two, the elasticity for 

each loop is -0.75, and the three enzymes that must be manipulated are the enzymes 

that catalyze reactions 1, 4, and 6. Moreover, we observe that the regulatory metabo- 

lites are only two, CHR and PHE, and the enzymes that should be regulated are the 

ones that catalyze reactions 5 and 6. The number of different structures is equal to 

the number of all possible combinations of two reactions regulated by two metabo- 

lites, with only one regulatory connection allowed for each reaction. Therefore, the 

solution suggests that the enzymes that catalyze reactions 5 and 6 in the pathway 

should be engineered, if possible, so that both will be inhibited by either CHR and 

PHE. Once this regulatory structure has been succesfully realized, the enzymes that 

catalyze reactions 1, 4, and 6 should be cloned and overexpressed simultaneously. 

4.6.3 Problem 3 

This problem is the same a s  the previous one except that we would like to design a 

regulatory structure for which only enzyme activation is allowed. We consider again 

that any of the first six reactions can be activated by any of the six metabolites with 

strength 0.75 or 0.075, and only two regulatory connections for every enzyme and 

three enzyme manipulations are allowed. The questions addressed are: 

In  order to maximize the phenylalanine selectivity: 

( i )  which pair of metabolites should activate each reaction? 

(ii) what are their activation strengths? 

(iii) which three enzymes should be overexpressed? 

(iv) what should their expression levels be? 
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The mathematical formulation is the same as for problem 2 except that the elas- 

ticity matrices are: 

ET = { ~ l j i ,  = 0.75 1 1 5 j < 6 and 1 < i, < 6) 

E,' = {EZj i ,  =: 0.075 1 1 < j < 6 and 1 < i, 5 6 )  

The size of this problem is the same as the size of the previous problem, and it 

consists of 393 constraints and 193 variables (112 continuous, 81 binary). The optimal 

solution to this problem was found, within 249 CPU s, to be 1.05938 which is the 

same as before. The value for the optimal selectivity, calculated from the ratio of the 

linearized rate expressions was again 0.818672, and multiple regulatory structures 

were found to correspond to the optimal value. Therefore, we solved the problem 

with the objective function (4.36) and the additional equality constraint (4.37). 

The minimum number of regulatory activation loops that correspond to the opti- 

mal selectivity is equal to 3, and 37 alternative regulatory structures were identified. 

The regulatory elasticities for every structure were equal to 0.75. Analysis of the 

alternative structures indicates that the enzymes that catalyze reactions 4, 5, and 6, 

should be activated (this is true in all 37 cases) and that these steps should be the 

target of any attempt to engineer the regulatory features of the pathway. Moreover, 

out of the 60 possible combinations only 12 combinations of enzyme levels should be 

manipulated. These combinations and the number of the number of the alternative 

regulatory structures for each combination are presented in Table 4. In Figure 4 the 

structures that correspond to  the manipulation of enzyme levels for reactions 1, 2, 

and 4, are presented, and the associated changes in the expression levels and the 

metabolite concentrations are given in Table 5. 

4.6.4 Problem 4 

This last problem is a combination of Problems 2 and 3 and is formulated as follows: 
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To maximize the phenylalanine selectivity: 

(2) which pair of metabolites should regulate each reaction? 

(ii) what should be the type of regulation (i.e. activation or inhibition)? 

(iii) what is the strength of the regulation? 

(iv) which three enzymes should be ouerexpressed? 

(v) what should their expression levels be? 

We have four elasticity matrices: 

El  = {€lji, =: -0.75 11 < j  < 6 and 1 < i, < 6) 

E2T = {6zjir = -0.075 1 1 < j < 6 and 1 < i, < 6) 

f,' = {€jji, = 0.75 1 1 < j < 6 and 1 < i, < 6) 

f,' =: {€dji, = 0.075 1 1 < j < 6 and 1 < i, <_ 6) 

and the rest of the constraints and the bounds are the same as in the two previous 

problems. The number of alternative regulatory structures are 259. The problem 

featured 681 constraints and 337 variables (184 continuous, 153 binary), and the first 

optimal solution was found in 156 CPU s. 

As before, the value for the optimal selectivity was equal to 1.05938, and the ratio 

of the linearized rates was 0.818672 again. This optimal value corresponds to multiple 

regulatory structures and combinations for enzyme manipulations. Therefore, we 

solved the problem again in order to find the minimum number of the regulatory 

loops that correspond to  this optimal value. 

The minimum number of loops was 2, the regulatory elasticities were 0.75 and 

-0.75 for the activation and the inhibition loops respectively, and the number of 

structures with only two regulatory loops was 10. As expected, the four structures 

found in Problem 2 are also included in this set of structures. In Figure 5 the six 

new regulatory structures are depicted, and in Table 6 the corresponding values of 

the expression level of the enzymes are presented. 

In all of the optimal regulatory structures involving activation and inhibition we 



115 

observe three main characteristics: 

(i) Only the enzymes that catalyze reactions 5 and 6 are regulated; 

(ii) The enzyme that catalyze reaction 5 is always inhibited and the enzyme that 

catalyzes reaction 6 is always activated; 

(iii) DAHP, TRP, and TYR act as activators, and CHR and PHE act as inhibitors. 

These observations clearly suggest that,  if possible, the enzyme that catalyzes 

reaction 5 should be designed so that it is inhibited by CHR or PHE, and the enzyme 

for reaction 6 should be designed so that it is activated by DAHP or TRP  or TYR. 

Moreover, if modification in the regulatory structure is accompanied by overexpression 

of the enzymes for reactions 1, 4, and 6, any combination of the just listed regulatory 

patterns will be successful, except for DAHP-activated reaction 6. If, on the other 

hand, the enzymes for reactions 1 , 2 ,  and 4 are overexpressed, the regulatory structure 

should be designed so that reaction 6 will always be activated by DAHP. 

Discussion 

Linear models have been used within MCA in order to characterize and identify the 

enzymes that limit the performance of metabolic pathways. Such linear models can 

provide, for each metabolic function, its control coefficients, defined as the fractional 

changes of the metabolic function expected for a unit fractional change in the amount 

of each enzyme or external effector participating in a given pathway. Experimental, 

theoretical, and computational analyses have shown that the existence of a single 

enzyme which limits a metabolic process should not be presumed, and overexpression 

of a limiting enzyme results in a shift of the limitation to  other steps in the pathway. 

Many of these studies have attributed these responses to the coupling between differ- 

ent pathways through regulatory connections and the fact that they share metabolites 

(Kacser and Burns, 1973; Savageau, 1976; Cornish-Bowden and Cardenas, 1990; Bai- 

ley, 1991). 

One effective way to manipulate metabolic pathways is to implement pathways 

that are desensitized and decoupled from other cellular activities, and limited by 
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a minimum number of enzymes. These objectives can be formulated and studied 

following the approach described above. 

If in equations (4.3) and (4.4) we set a manipulated variable, ql;, equal to one and 

the rest of the manipulated variables equal to zero, the metabolic functions, w ,  will 

be equal to  the control coefficients of these functions with respect to this manipulated 

variable. Then, the problem of adjusting the control coefficients close to a desired 

value, w f ,  can be written as: 

subject to the same constraints introduced in the above Mathematical Formulation. 

In the special case that wf = 0, we study the problem of decoupling functions w 

from other cellular processes for which ql; is an output. This problem is nonlinear 

in the objective function and combines both discrete and continuous variables and 

as a result can be formulated as a Mixed-Integer Nonlinear Programming (MINLP) 

problem. An optimization framework that can address the analysis and synthesis 

problem of metabolic pathways for nonlinear models is presently being developed. 

The results presented above for the analysis and synthesis of the regulatory struc- 

ture of the aromatic amino acid pathway do not take into account the stability and the 

dynamic characteristics of the network with alternative regulatory structures. Even 

if a system is stable, obtaining desirable transient responses associated with changes 

in the manipulated variables and the dynamic responses to fluctuations in the pa- 

rameters of the system, have been proposed as criteria for optimization of metabolic 

processes (Torres, 1994). The approach introduced in this work cannot explicitly 

formulate objectives associated with such dynamic characteristics, but can allow the 

generation of a sequence of optimal alternative regulatory structures which can be 

reordered based on their dynamic performance using simulation analysis and process 

control tools. 



4.8 Conclusions 

In this chapter we present a novel approach to the analysis and synthesis of metabolic 

pathways. The problem of designing the regulatory structures built around a given 

metabolic reaction network was formulated as a MILP optimization problem. A 

synthesis approach has been proposed which assumes that the metabolic pathway of 

interest has no regulation, and considers which regulatory structure optimizes the 

objective. Assuming that a linear model for the pathway of interest is given, integer 

variables were introduced to denote the existence or non-existence of the postulated 

regulatory loops. 

The approach, implemented in METAOPT, was applied t o  the study of the aro- 

matic amino acid pathway in bacteria. The solution allows the identification of the 

regulatory structures and the associated changes in the enzyme levels that result in 

an optimal phenylalanine selectivity. Multiple regulatory structures were found to 

corresporld to optimal solutions. The consistent patterns identified within these solu- 

tions helped in the postulation of design principles that were effective when applied 

to  the full nonlinear model on which the first example is based. For the other exam- 

ples, in which new patterns of enzyme regulation were considered as options, there is 

not a unique transformation from the log-linear model used here to a corresponding 

nonlinear model. The implications of this will be examined in the future employing 

the MINLP framework now being developed. 
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4.10 Appendices 

APPENDIX A 

In this appendix the logaritmic transformation used for the linear description of 

metabolic systems will be presented in detail. Consider the nonlinear dynamical 

system: 
dx - = f (x; p) 
d t  

where x is the n-dimensional independent variable vector and p is the s-dimensional 

parameter vector. Let x, be a steady state, or one of the steady states in case of 

steady state multiplicity, that corresponds to  the parameter vector values p,, and 

with nonzero, positive elements. Linearization around this steady state will result in 

the linear system: 

- 
d t  dix - xO)  - El (X - x,) + - 

ax X0,Po 
(P-Po) 

ap x0.p. 

If tve define the matrices X, and Po to be the diagonal matrices with diagonal elements 

Xo,iz = x0,i and Po,ii = p,,i, respectively. Then, for the linear system we can write: 

In the above equation we can redefine the following vectors for the scaled variables 

and parameters: 
xi - xo,i z = Xo1(x - x,) s j  Zi = 

X0,z  

Given the above definitions we can also observe that: 



On the other hand, for any logarithmic function of variable y we can write for up to 

first-order approximation the Taylor series around a reference value, yo: 

Therefore, for the scaled variables, z ,  and the scaled parameters, q, we can write: 

and 

Finally, by defining 

we can write the linearized system for the logarithmic deviations, noting that [z,, q,] = 

In the equation (4.3) for example 

and 

APPENDIX B 
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The rate expressions for the aromatic amino acid pathway are taken from Schlosser 

and Bailey (1990). Here we consider only the aromatic amino acid biosynthesis reac- 

tions as an isolated, model subsystem of overall metabolism. In particular the glucose 

catabolic reactions considered by Schlosser and Bailey (1990) are not included here. 

The parameter values used for the dissociation constants are the same as in Schlosser 

and Bailey (1990) where the references for the estimation of these parameters can be 

found. The values for vjtm,, have been adjusted to give steady-state values sim- 

ilar to those found in bacterial cells for [G6P]  = 0.8 mM,  [ P E P ]  = 0.1 mM,  

[ A T P ]  = 2.5 mM,  [ A D P ]  = 0.4271 mM,  and [ A M P ]  = 0.0729 mM. The rate 

expressions for the 6 enzymatically catalyzed reactions in the pathway are: 

[ D A H P ] [ P E P ]  [ A T P ]  
2'2 = v m , 2  ( 2  + [ D A H P ] )  (0.00867 + [ P E P ] )  (0.9281 + [ATP]) 

2'4 = v , , 4  
[ P H P I  

( 1  + [ P H P ] )  ( 1  + [ P H E ] / 5 0 )  

[G6P]  [ C H R ]  [ A T P ]  
216 = um,6  (1.269 + [G6P] ) (2  + [CHP])(0.9821+ [ A T P ] ) ( l  + [ T R P ] / 1 6 )  

where: 

V: = 1710, 22, 474, 64,  10.5, 281 

We also have 3 expressions that account for the incorporation of the amino acids 

into biomass: 
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vi = 541.1, v; = 131p, vi = 176p 

and 6 expressions that account for the dilution brought about by increases in the 

biomass: 

The growth function, p, used is: 

acid pathway is given by 

p = 0.014 
Y[PHE][TYR][TRP]*PEP- 

(0.25 + Y)(18 + [PHE])(13 + [TRY])(5 + 
where 

DAHP: O =  vl -v2 -v( ,  

C H R :  O =  v ~ - ~ ~ - v ( ; - v ~  

P H P :  O =  ~ 3 - ~ 4 - v : , - v ;  

P H E :  O =  v ~ - v ~ - v ~  

I I T Y R :  O =  v ~ - v ~ - v ~  

T R P :  O =  v ~ - v ~ - v ~  

:TRP])(0.005923 + [PEP])  

Y = 
[ATP- 

[ATP] + 

The stable stady-state a t  which the linear model was constructed is: 

+ 0.5[ADP] 
ADP] + [AAdP]' 

and the values for the rates at these values are: 

The mass balance equations for each of the metabolites in the aromatic amino 



For the matrix N in equation (4.1) we have 

The elasticity matrices a t  the steady-state are: 

and 
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For the matrix K: in equation (4.3) we have: 

We consider the enzymes of the first six reactions as the manipulated variables. 

Moreover, the three precursor metabolites are also treated as manipulated variables. 

Therefore, we can write for the manipulated variables the vector: 

and for the matrices I'I and A we have: 

The parameters in equation (4.9) that correspond to specific growth rate are: 



74, = [0, 0, 0, 0.063907, 0.038864, 0.057021] 

0, = 10, 0, 0, 0, 0, 0, 0, 0.055918, 0.1273221 



4.11 Tables 



Table 4.1: The values for the continuous variables z and q for the first four best 
solutions of Problem 1. 

i 
1 
2 
3 
4 
5 
6 

cases a-d 
-0.28302 

-1.0 
-0.67889 
0.45238 

-0.59375 
-0.10233 

case a 
0.13926 

0.0 
0.36149 
0.69315 

0.0 
0.0 

case b 
0.21329 

0.0 
0.36149 
0.69315 

0.0 
0.0 

case c 
0.13837 

0.0 
0.36149 
0.69315 

0.0 
0.0 

case d 
0.21418 

0.0 
0.36149 
0.69315 

0.0 
0.0 



Table 4.2: The values for the continuous variables z and q for the second four best 
solutions of Problem 1. 

i 
1 
2 
3 
4 
5 
6 

zz 

cases a-d 
-0.31840 

-1.0 
-0.71270 
0.41735 

-0.62333 
-0.04290 

Qi 

case e 
0.17594 

0.0 
0.31102 
0.69315 

0.0 
0.0 

case f 
0.09728 

0.0 
0.31102 
0.69315 

0.0 
0.0 

case g 
0.09766 

0.0 
0.31102 
0.69315 

0.0 
0.0 

case h 
0.17631 

0.0 
0.31102 
0.69315 

0.0 
0.0 



Table 4.3: The values for the continuous variables z and q for the second four best 
solutions of Problem 2. 

z 

1 
2 
3 
4 
5 
6 

case a case b 

zi 
0.08347 
1.34812 
0.66751 
1.50038 

-1.0 
-1.0 

zi 
0.08302 
1.34606 
0.48125 
1.50038 

-1.0 
-1.0 

qi 
0.03100 

0.0 
0.0 

0.48497 
0.0 

0.43690 

qi 
0.03083 

0.0 
0.0 

0.60071 
0.0 

0.32129 

case c 

zi 
0.08346 
1.34811 
0.66751 
1.50038 

-1.0 
-1.0 

case d 

qi 
0.03100 

0.0 
0.0 

0.48497 
0.0 

0.32270 

zi 
0.08302 
1.34606 
0.48125 
1.50038 

-1.0 
-1.0 

qi 
0.03083 

0.0 
0.0 

0.60071 
0.0 

0.43703 



Table 4.4: The number of alternative regulatory structures for each of the 12 combi- 

Overexpressed 
enzymes 
Number 
of solutions 

Overexpressed 
enzymes 
Number 
of solutions 

nations of enzyme overexpression from Problem 3. 

1,2,4 

6 

1,5,6 

3 

3,4,6 

6 

2,3,4 

3 

1,4,5 

5 

2,3,6 

1 

1,2,6 

3 

1,2,3 

1 

1,4,6 

4 

3,5,6 

1 

1,2,5 

3 

3,4,5 

1 



case a 

Table 4.5: The values of the continuous variables z and q for six solutions of Probleni 
3 (cases a-f from Figure 4). 

2 
3 
4 
5 
6 

U case b case c 

1.35478 
1.27053 
1.50038 

-1.0 
-1.0 

0.37064 
0.0 

0.11026 
0.0 
0.0 

case d 

1.35368 
1.17193 
1.50038 

-1.0 
-1.0 

case e case f 

0.37051 
0.0 

0.17153 
0.0 
0.0 

1.33065 
-0.91641 
1.50038 

-1.0 
-1.0 

I 

0.09889 
0.0 

0.34393 
0.0 
0.0 J 



I I I  case a I I case b I I case c I I 

Table 4.6: The values of the continuous variables z and q for six solutions of Problem 
4 (cases a-f from Figure 5 ) .  

4.12 Figures 

L 

i 

1 
2 
3 
4 
5 
6 

i 

1 
2 
3 
4 
5 
6 

zi 
0.08302 
1.34606 
0.48125 
1.50038 

-1.0 
-1.0 

42 
0.030832 

0.0 
0.0 

0.60071 
0.0 

0.06174 

zi 
0.08346 
1.34811 
0.66751 
1.50038 

-1.0 
-1.0 

4i 
0.03100 

0.0 
0.0 

0.48497 
0.0 

0.06161 

case d 
zi 

0.08302 
1.34606 
0.48125 
1.50038 

-1.0 
-1.0 

zi 
0.08346 
1.34811 
0.66751 
1.50038 

-1.0 
-1.0 

42 
0.03083 

0.0 
0.0 

0.60071 
0.0 

0.06174 

case e 

qi 
0.03100 

0.0 
0.0 

0.48497 
0.0 

0.06161 

zi 
-0.91785 
1.34811 
0.66751 
1.50038 

-1.0 
-1.0 

case f 
'?2 

0.02779 
0.36989 

0.0 
0.48497 

0.0 
0.0 

zi 
-0.91768 
1.34607 
0.48127 
1.50038 

-1.0 
-1.0 

qi 
0.02672 
0.36967 

0.0 
0.60070 

0.0 
0.0 
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Figure 4.1: The aromatic amino acid synthesis pathway. Solid arrows indicate re- 
actions and dashed arrows indicate feedback inhibition loops. Chemical species: 
GGP = glucose-6-phosphate; PEP = phosphoenolpyruvate; ATP = adenosine triphos- 
phate; ADP = adenosine diphosphate; DAHP = 3-deoxy-D-arabino-heptulosonate-7- 
phosphate; CHR = chorismate; PHP = prephenate; PHE = phenylalanine; TYR = 

tyrosine; TRP = tryptophan. 



Figure 4.2: The eight best solutions from problem 1. Solid arrows indicate reactions, 
dashed arrows indicate inhibitory loops, and thick solid arrows indicate enzyme over- 
expression for the respective reaction. In solutions b-h the reaction numbering has 
been omitted for clarity. 
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Figure 4.3: The four best solution from problem 2. Solid, dashed, and thick arrows 
as in Figure 2. In solutions b-d the reaction numbering has been omitted for clarity. 
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Figure 4.4: Twelve of the 37 best solutions from problem 3. Solid and thick arrows 
as in Figure 2. Dashed arrows indicate activation. In solutions b-1 the reaction 
numbering has been omitted. (Figure continuous on the next page). 
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Figure 4.4 (continued) 
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Figure 4.5: The six best solutions from problem 4 that feature activation and inhibi- 
tion. Solid and thick arrows as in Figure 2. Dashed arrows indicate regulation, (+) 
indicates activation and (-) inhibition. 



Chapter 5 Optimization of Regulatory 

Architectures in Metabolic Reaction 

Networks 



5.1 Introduction 

In chemical and pharmaceutical manufacturing that utilize cultivated organisms, im- 

provements in the product yield, rate of production, and final product concentration 

can be achieved by two main approaches: genetics and process. The former ap- 

proach is based on targeted modifications in the DNA of an industrial microorganism 

aiming a t  a configuration of metabolic fluxes that will direct raw materials to prod- 

ucts efficiently at high rates and in the presence of high concentrations of product. 

These modifications in the DNA, enabled by recombinant DNA technology, range 

from overexpression of a single homologous enzyme of a pathway, to introduction 

into an organism of genes from other organisms with the possibility of creating hy- 

brid metabolic pathways combining features from metabolic pathways in different 

organisms (Bailey, 1990; Zhang et al., 1995). 

Almost every metabolic reaction network is subject to a regulatory architecture 

built around it, which regulates the amount of the enzymes present in the network 

and/or the catalytic properties of the enzymes (Sanwal et al., 1971; Stephanopoulos 

and Vallino, 1991). Significant improvements in the performance of bioprocesses 

have been realized by genetic modifications of regulatory structures (Bailey, 1990; 

Matsumata and Ikeda, 1993). These improvements were mainly based on trial and 

error methods applied to  well-understood, relatively simple pathways. However, as 

the complexity of a set of pathways of interest increases, intuitive and trial and 

error methods are increasingly ineffective. As a result, a systematic methodology for 

effective targeted modifications of regulatory structures is needed. 

The mathematical description of metabolic systems has been used successfully in 

the description, analysis and engineering of complex biochemical systems (Cornish- 

Bowden and CBrdenas, 1990; Gallazo and Bailey, 1990; Hatzimanikatis et al., 1995; 

Joshi and Palsson, 1989; Lee and Bailey, 1984; Savageau, 1976; Shuler and Domach, 

1983). The modeling approaches previously used can be classified into two kinds: 

linear and nonlinear. Linear models can be accessed through analysis of input-output 

relations and certain stimulus-response experiments by applying advanced regression 
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analysis (Schlosser et al., 1993) or other experimental methods developed within 

and around the metabolic control analysis (MCA) framework (Cornish-Bowden and 

CArdenas, 1990; Fell, 1992; Heinrich and Rapoport, 1974; Kacser and Burns, 1973; 

Reder, 1988; Schlosser and Bailey, 1990). Nonlinear models, on the other hand, can 

be constructed when detailed kinetic expressions for each step in the reaction pathway 

are known or can be estimated (Gallazo and Bailey, 1990; Hatzimanikatis et al., 1995; 

Joshi and Palsson, 1989; Shuler and Domach, 1983; Starbuck and Lauffenburger, 

1992). 

The S-system representation developed within biochemical systems theory (BST) 

(Savageau, 1969a,b, 1970, 1972, 1976; Savageau et al., 1987) allows the description 

of biochemical systems by nonlinear models of a power-law form. There are three 

main features that make this modeling approach attractive. First, the steady-state 

equations that describe the mass balances of the system become linear following 

a logarithmic transformation, and thus linear algebra methods can be applied for 

analysis of the system. Second, the parameters required to set up the nonlinear 

equations can be estimated from relatively simple experiments (Savageau, 1992), or 

they can be derived by appropriate manipulations of MCA data (Savageau et al., 1987; 

see the Consistency checks below). Third, prior studies have shown S-system models 

to be very accurate over a wide range of variations in metabolite concentrations, 

enzyme levels and operating and physiological conditions (Shiraishi and Savageau, 

1992; Voit and Savageau, 1987). 

The linear nature of the S-system representation, after the logarithmic transfor- 

mation, has been exploited for the steady-state optimization of biochemical systems 

using linear programming methods (Regan et al., 1993; Voit, 1992). These studies 

provide information only about optimum manipulation of external inputs (such as in- 

dependent effectors and external substrates) or enzyme levels and do not address the 

problem of optimizing the regulatory structure of the metabolic network. Recently, 

a mixed-integer linear programming (MILP) framework has been developed that ad- 

dresses this problem when a (1og)linear model, based on MCA data, is considered as 

the available description of the network (Hatzimanikatis et al., 1995). 



144 

In this chapter, we present a MILP formulation for the general optimization of 

biochemical systems represented as S-systems. The approch provides information on 

which enzymes should be present a t  different levels, the extent of such changes needed, 

and the accompanying modifications in the regulatory structure that will optimize the 

metabolic function of interest. Three examples illustrate the multitude of questions 

that can be addressed within this framework and how one can apply the method and 

postulate the appropriate constraints depending on the questions addressed. 

5.2 Mathematical Framework 

5.2.1 Mathematical Modeling of Biochemical Systems 

Consider a metabolic system consisting of N metabolites and S manipulated (exter- 

nal) parameters. For every metabolite in the system we can write the general form 

in S-system representation: 

where V,+ and V,- are net or aggregate rate laws desribing the processes that in- 

crease and decrease, respectively, the concentration of the metabolite i, and they are 

described by the following power-law form: 

and 

j=l 1=1 

where X j  ( j  = 1, .  . . , AT) is the concentration of the metabolite j ,  and PL (1 = 1, . . . , S )  

is the level of the manipulated parameter I .  The rate constants cui and Pi are nonneg- 
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ative, and the k ine t ic  orders g i j ,  ail, hij and bill defined as: 

x, av,+ 
9. .  23 = -- v,+ ax, 

x, av,- h..  = ---- 
23 v,- ax, 

are real. Each of the metabolites and the parameters that has an effect on any of 

the aggregate processes is associated with a nonzero kinetic order. Moreover, if a 

rnetabolite acts on a process as a substrate or activator, the corresponding kinetic 

order is positive; if it acts as inhibitor, the corresponding kinetic order is negative. The 

same applies to the kinetic orders of the manipulated parameters: a parameter which 

acts as activator (inhibitor) is associated with a positive (negative) kinetic order. Prior 

investigators of the BST and the S-syst,em representation have extensively discussed 

the physical meaning and methods for experimental estimation of the parameters 

used in S-systems (Savageau, 1972, 1975). 

Having constructed the S-system representation for the system of interest, the 

steady-state can be found after the appropriate logarithmic transformation: 

where y is a N-dimensional vector with elements: 

q is a S-dimensional vector with elements: 
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d is a N-dimensional vector with elements: 

L is a ( N  x N )  matrix with elements: 

and M is a ( N  x M )  matrix with elements: 

However, when we describe or observe a biological system, there might be some 

metabolic outputs (i.e., di) that are functions of the concentration of the metabolites 

and the parameters of the system. The i-th element of a set of K metabolic outputs 

can be also described by power-law functions: 

where yi is real and fij and Q, defined as  

are also real. If we want to  study how changes in the catalytic and regulatory char- 

acteristics of certain enzymes will affect the performance of the pathway under con- 

sideration we should examine how the performance depends on the kinetic orders as 

they quantify the affinity of the various enzymes for their substrates and their mod- 

ulators. When a process V,+ is inhibited by metabolite Xi, then the corresponding 

kinetic order, gijl will have a negative real finite value. By setting this kinetic order 

equal to  zero we can simulate and observe how the system would respond if we had 
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inactivated the inhibition of the process x+. 
Changes in the kinetic orders of the metabolites alter the elements of matrix L in 

equations (5.4) and (5.8). These changes determine the output values in a nonlinear 

fashion due to  the inversion of matrix L in equation (5.4). Consequently, examination 

of the local sensitivity of the outputs with respect to kinetic orders assumes small 

changes in these parameters. On the contrary, any attempt to modify the affinity of 

an enzyme for its substrates and modulators will result in finite changes, often orders 

of magnitude different from the wild-type affinities. As a result, there is a need for a 

systematic framework that can optimize the regulatory structures selecting between 

alternative structures with kinetic orders that may differ from each other in order of 

magnitude. 

5.2.2 Mixed-Integer Linear Optimization 

The optimization of metabolic pathways by manipulation of the independent system 

parameters can be performed using linear programming methods as has been pre- 

sented in previous studies (Regan, 1993; Voit, 1992). The framework developed in 

those studies did not address the problem of optimizing the regulatory structure of 

the metabolic network. The optimization of the regulatory structure involves discrete 

decisions concerning the regulatory loops that should be inactivated or the regulatory 

loops that should be introduced in the pathway (Hatzimanikatis et al., 1995). 

A number of algorithms and methods, developed in applied mathematics, exist 

that allow the optimization of linear and nonlinear mathematical models that include 

continuous and integer variables (Floudas, 1995; Luenberger, 1984; Nemhauser and 

Wolsey, 1988; Winston, 1995). The application of these methods requires formulation 

of the problem in a way that can be efficiently solved by the existing methods. In 

this section we will present the formulation of the problem of optimizing regulatory 

structures as a mixed-integer linear programming problem. The formulation will 

exploit the linearity of the steady-state equations of the S-system representation, as 

well as some additional simple transformations that will allow the introduction of 
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integer variables in a linear form. The mathematical formulation will be presented 

via the first example used by Voit (Voit, 1992). 

Consider the simple linear pathway with two dependent metabolites, X1 and X2, 

with the second acting as inhibitor on the first reaction of the pathway (Figure 1). 

Four manipulated (external) variables are considered: the amount of the enzymes, 

Pl, P2 and P3, that catalyze the three reactions, and the amount of the effector, P4, 

that activates the first and the second reactions of the pathway. 

The S-system representation of the pathway is 

With the parameter values taken by Voit (Voit, 1992), the system becomes: 

We address the following questions: 

In  order to maximize the concentration of metabolite 2, X2: 

( i )  which one of the manipulated parameters should be changed and what should 

be the level of the manipulated parameter? 

and 

(ii) should the feedback inhibition loop be inactivated? 

The above questions are subject to the following constraints: 

1. The system is at steady-state; 

3. V,,,, 5 10; and 

4. For the three enzymes only overexpression is considered, that is Pl > I (1 = 

11 2,3,4). 
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In the above constraints the subscript "ss" denotes the steady-state value of the corre- 

sponding variable. In general, metabolites, manipulated variables, reaction rates, and 

metabolic functions should be constrainted within bounds determined by their phys- 

iological ranges for the pathway of interest and by the available biological knowledge 

(Hatzimanikatis et al., 1995; Voit, 1992). 

We can introduce a set of new variables: 

where q[ denotes the logarithm of the reference value of the parameter I ,  and ql 

denotes the logarithm of the factor by which the reference value is multiplied to  give 

the value f i .  In the example studied here 

arid 

The questions addressed above involve two discrete decisions. The first one con- 

cerns the manipulated parameters (i.e., enzyme expression levels and external effector 

concentration level) that should be changed. It is a discrete decision since the answer 

should provide the one parameter that should be changed while the rest will be fixed 

to their reference value. The second discrete decision concerns the regulatory loop. 

Inactivation (or activation) of the feedback inhibition loop is equivalent to  zeroing (or 

not) the non-zero (negative) kinetic order of with respect to X2, 912. 

Such discrete decisions can be modeled by binary variables, that is, variables that 

can be zero or one, only. For the first discrete decision, we will introduce a set of 

binary variables, wl, for which we will have: 
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If wl equals zero, we do not allow changes in the corresponding manipulated parame- 

ter, 4, since from equation (5.16) we have that l n ( P l )  = q; always. If wl equals one, 

then (5.16) reduces to  (5.15). 

Moreover, by introducing the constraint: 

we allow only one manipulated parameter to  change since (5.17) should always hold. 

The second discrete decision concerns the rate law V:, in which we introduce the 

binary variable 212 in the exponent of X 2 :  

If z12 equals zero, V;f does not depend on X2 any more and, thus, we have modeled 

the inactivation of the feedback inhibition loop. If z12 equals one, then (5.18) reduces 

to  

v,S = x;12 Pl P,' 

which is same as in equations (5.11) and (5.13).  

At steady-state and after applying the logarithmic transformations the optimiza- 

tion problem can be mathematically formulated as follows: 

subject to 

Mass balances 

0 . 5 ~ 1  z12 . Y2 + q; + W2 42 - Q; - wl - q1 = l ~ t (1 /0 .02 )  (5.20) 

0 . 5 ~ 1  - Y2 + q; + W2 - 42 + 2qi + 2w4 '44 - q3f - w3 q3 = ln(2/0.02)  (5.21) 

Bound o n  X 1  

yl <_ ln(500) (5.22) 



Bound on Vl 

-212 . Y2 + qi + W I  - ql f 2qi + 2w4 . q4 5 ln(10) (5.23) 

Bound on enzyme level 

PI 2 1 (5.24) 

p2 2 1 (5.25) 

p3 > 1 (5.26) 

Maximum number of parameter manipulations 

W I +  wz + ~j + ~4 < 1 (5.27) 

Y2 Q4 unrestricted 

where 

yi (i = 1 ,2 )  arid ql (I = 1,. . . , 4 )  are real continuous variables, 

qf ( I  = 1, . . . , 4 )  are real parameters, and 

212 and wl (1 = 1, . . . , 4 )  are binary variables, i.e. they can take the values 0 or 1. 

If wl,  wa and w3 are equal to zero, w4 is equal to one, and 212 is equal to 1, then 

the problem is the same as the one considered by Voit (Voit, 1992). Therefore, by 

solving the problem twice, once for zlz equal to one and once for z12 equal to zero 

we consider the case of maximization of X2 with and without feedback regulation, 

respectively. However, we also want to find which of the four parameters can be 

more efficient in the presence or absence of regulation. In order to  find the answer 

to  the question we should solve the problem 24 = 16 times. In general, if we had a 

pathway with m parameters and n regulatory loops the answer to the same questions 

would require the enumeration of 2(mtn) solutions and the search among them for the 

best one. Therefore, the problem requires a computational method that will solve 

the problem efficiently and will ensure the global optimality of the desired solution. 

As mentioned above such methods exist for certain classes of problems that have 

discrete and continuous variables that participate either linearly or nonlinearly. In 
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order to apply these methods the problem is formulated in a mixed-integer linear 

form for which there are efficient and robust algorithms and software. The linear form 

implies that every continuous and binary variable will appear linearly in the objective 

function and in the constraints. Note that in the model (5.19)-(5.27), there are some 

bilinear products of continuous and binary variables, such as (wl - ql, 1 = 1,2,3,4) and 

(z12 . p2), that introduce nonlinearities. These nonlinearities can be removed by the 

appropriate transformations (Floudas, 1995; Hatzimanikatis et al., 1995). We will 

introduce a set of continuous variables, t l  (1 = 1,2 ,3 ,4)  and s12, that will replace the 

bilinear products: 

tl = wl . q1; 1 = 1 ,2 ,3 ,4  

and 

For each of the new continuous variables we will include four linear constraints that 

will guarantee consistency between the bilinear product and the corresponding con- 

tinuous variables. After the introduction of these new continuous variables and the 

linear constraints the problem can be formullated in the following mixed-integer linear 

form: 

maximize (y2) (5.28) 

subject to 

Mass balances 

0 . 5 ~ 1  + slz + q,' + t2 - qi - tl = ln(1/0.02) (5.29) 

0 . 5 ~ 1  - y2 + qi + t2 + 2qi 4- 2t4 - qi - t3 = ln(2/0.02) (5.30) 

Bound on X1 

Y l  5 14500) (5.31) 

Bound on Vl 

-512 + qr + t l  + 2qi + 2t4 5 ln(10) (5.32) 

Bound on enzyme level 



p 1  

p 2  

p 3  

Linear transformation for z 1 2  

Y 2  - s 1 2  + ~ 2 L ~ 1 2  

Y 2  - s 1 2  + yZUz12 

2 1 2 ~ 2 L  - 5 1 2  

U 
S l 2  - Z12Y2 

Linear transformation for wi 

qi - ti + wiq: 

Qi - ti + wiqr 

wiq; - ti 

U ti - wiqi 

Maximum number of parameter manipulation 

where 

Yi (i = 1,2),  5 1 2 ,  ql and tl ( 1  = 1, . . . ,4) are real continuous variables, 

q[ (1 = 1, . . . , 4 )  are real parameters, 

2 1 2  and wl ( I  = 1, .  . . ,4 )  are binary variables, i.e. they can take the values 0 or 1, 

and 

the superscripts U and L, in equations (5.36)-(5.43), denote the upper and lower 

bound, respectively, of the corresponding variables. 

Equations (5.36)-(5.43) transform the bilinear terms of the initial formulation into 

linear inequality constraints. It is interesting to examine the effect of these constraints. 
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Let's consider equations (5.36)-(5.39). If 212 = 1,  then (5.36) and (5.37) become 

and (5.38) and (5.39) become 

L < s 2 < y 2 "  Y 2 -  1 -  

and the first two constraints imply that sl2 = yz while the second two constraints 

simply provide bounds. If z12 = 0, then we have from (5.36) and (5.37) 

and from (5.38) and (5.39) we have 

and the second two constraints imply that slz = 0, while the first two constraints are 

relaxed since ( y2  - y:) < 0 and ( y2  - yi) 2 0. A similar analysis holds for every set 

of inequalities that transform bilinear products of continuous and binary variables. 

The problem described by equations (5.19)-(5.44) was solved using the high-level 

modeling language CAMS (General Algebraic Modeling System), which is interfaced 

with CPLEX, a mixed-integer linear programming solver. The only feasible optimal 

solution found was the same as the one reported by Volt: 

The only way to  increase the concentration of X 2  is by the increase of P4 in the 
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presence of the feedback regulatory loop. Every other parameter manipulation in the 

presence or after inactivation of the feedback loop cannot increase X2 concentration 

without violating the inequality constraints. 

Although the pathway is a simple linear pathway with three reactions, the result, 

that within the bounds considered there is only one way to  optimize the objective 

even though changes in the regulation are considered, is not obvious, as it strongly 

depends on the numerical values of the various parameters and on the bounds of the 

various variables. The solution could have been identified by exhaustive enumeration 

of the alternative regulatory structures and the allowable manipulated parameters. 

However, such an approach is limited by the size of the pathway (i.e., the number of 

reactions and metabolites) and the questions we address, when they consider a large 

number of alternative regulatory structures and enzyme manipulation policies. In 

the following section, the same linear pathway is considered, while a superstructure 

of alternative regulatory structures is introduced. 

5.2.3 Regulatory Superstructure 

For every metabolic pathway we can consider a regulatory superstructure in which 

every metabolite in the pathway can potentially regulate any enzyme. Any attempt 

to optimize a certain metabolic function by genetic or protein engineering modifica- 

tions of enzyme regulation would address the issue concerning the regulatory loops in 

this superstructure that could enhance the effects of enzyme expression level manip- 

ulations. Its mathematical formulation leads to a large combinatorial problem. Its 

solution will provide the best performance achievable for a given system, and thus 

provide valuable constructive insight for protein and metabolic engineering. 

A regulatory superstructure can be also postulated as a combination of every 

regulatory characteristic found in nature for every enzyme in the pathway. The choice 

of the optimum combination of regulatory characteristics will essentially suggest for 

the appropriate combination of enzymes from different organisms that catalyze the 

same reaction but which have different regulatory characteristics. 
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As an illustration for the postulation and the analysis of the regulatory super- 

structure we will consider the same example presented in Section 2.2. We will con- 

sider that every reaction can be modulated by any of the two metabolites, XI arid 

X2, which will either inhibit or activate a reaction. This consideration results in 

the postulation of 12 regulatory loops (Figure 2). Moreover, for each loop we will 

consider NTeg = 6 alternative levels of regulatory strength and type of regulation: 

{-0.5,0.5, -0.1,0.1, -0.01,O.Ol). We will allow only two regulatory loops active in 

the pathway. The questions we will address are the following: 

I n  order to maximize the concentration of X2: 

(i) which two regulatory loops should be active? 

( i i )  what should be the type of regulation (i.e., activation or inhibition) ? 

(iii) what should be the strength of the regulation ? 

(iu) which one of the manipulated parameters should be changed ? 

and 

(v )  what should the level of the manipulated parameter be ? 

The above questions are subject to the same constraints as  before: 

1. The system is a t  steady-state; 

3. V,,,, 5 10; and 

4. For the three enzymes only overexpression is considered, that is 8 2 1 ( 1  = 

1,2,3,4), and up to  10 times their reference value. 

We will introduce the binary variables zijm and the parameters E i j m l  with 



and NTeg is the number of the alternative strength and types of regulation for each 

regulatory loop in the superstructure, and N,,, and Nmet are the numbers of the 

reactions and metabolites, respectively, in the metabolic network. In this example, 

we have NTeg = 6, N,,, = 3, and Nmet = 2, and for the binary variables zijm and the 

parameters Eijm we have: 

zijl and zij2 equal to 1, if reaction i is inhibited with strength ~ i j l  = -0.5 or 

activated with strength ~i j2  = 0.5, respectively, from metabolite j ;  

zij3 and zij4 equal to 1, if reaction i is inhibited with strength ~ i j ~  = -0.1 or 

activated with strength eij4 = 0.1, respectively, from metabolite j ;  

a zi j j  and zij6 equal to 1, if reaction i is inhibited with strength ~ i j ~  = -0.01 or 

activated with strength E i j ~  = 0.01, respectively, from metabolite j ;  

An important constraint, when formulating regulatory superstructures, is the one 

that forbids activation and inhibition of an enzyme by the same metabolite since in 

the S-system representation they are indistinguishable. The S-system representation 

of the pathway, including the regulatory superstructure, is: 

We can introduce four sets of variables: yi, (qjr, q j ) ,  and t l ,  the same as before, and 

smji = z m j i  These variables will be used in the description of the steady- 

state equations after the logarithmic transformation. Similarly, we can write for the 

optimization problem the following mathematical formulation: 



subject to 

Mass balances 
6 2 

Bound on  X 1  

Yl I ln(500)  (5.50) 

Bound on Vl 

Bound on  enzyme level 

Linear transformation for Z i j m  

L L EijmYj -S i j rn+ma~(Y~e i j rn , yy&i jm)+i jm I max(Y j  &ijm,~:&ijrn) 

(5.56) 

L z i jmmin(yj  eijm, yy;~ t~~, )  - s ,  m . 5 0 (5.57) 

L 
S i j m  - zi jmmax(yj  eijm, yY&ijrn) < 0 (5.58) 

Linear transformation for wl (1 = 1, . . . ,  4) 



Maximum number of parameter manipulation 

Two regulatory loops active 
6 2 2  

C C C z m j i  = 2 
m=l j=l i=l 

One value of strength for each loop 

y, ( j  = 1,2),  sij (i = 1,2,3;  j = 1,2) , qt and tl (1 = 1, . . . , 4 )  are real continuous 

variables, 

q;, qy and qlL (1 = 1, . . . , S), and y: ( j  = 1,2) are real parameters, 

zij (i = 1,2,3;  j = 1,2) and wl (1 = 1,. . . , S) are binary variables, i.e. they can take 

the values 0 or 1, and 

the superscripts U and L, in equations (5.55)-(5.62), denote the upper and lower 

bound, respectively, of the corresponding variables. 

Equations (5.47)-(5.65) consist the mathematical formulation of the regulatory 

superstructure problem as a MILP problem. Equations (5.63), (5.64), and (5.65), are 

the logical constraints which allow us to define our policies with respect to the maxi- 

mum number of the metabolic parameters that can be manipulated and the number 

of the active regulatory loops. Consider, for example, a network of he, metabo- 

lites, N,,, reactions, and Nreg loops of alternative strength and type of regulation. 

One constraint that can arise during the study of the network is the maximum num- 

ber of regulatory loops, Nl,,, on each enzyme. This physiological constraint can be 

mathematically formulated as follows: 

Nre9 Nmet 
C C zmji 5 NImp for each j = 1, . . . , N,,, 
m=l i=l 
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Another type of question that could be addressed within the same framework con- 

cerns the choice between two or more enzymes from different organisms. Consider 

for example that the reaction number 4 in the pathway we study is regulated from 

metabolites 2 and 3 with regulatory strengths €242 and €143, respectively. However, 

there are two other organisms with the same enzyme but with different regulatory 

properties: one without any regulation, and one that is regulated by metabolites 1 

and 6 with regulatory strengths €141 and €446, respectively. In this case we can for- 

mulate a constraint that will not allow more than two of the loops to be present 

simultaneously: 

2242 + 2143 f 2141 + 2446 < 2 (5.67) 

and two constraints that will guarantee the existence of both loops of the same reg- 

ulated enzyme or the introduction of the nonregulated enzyme: 

and 

2141 - 2446 = 0 

Therefore, the formulation of the appropriate constraints for the binary variables 

allows the known regulatory features of alternative enzymes to be incorporated ex- 

plicitly and unambiguously within the MILP framework. 

The optimization problem described by equations (5.47)-(5.65) was solved as be- 

fore and the best solutions found for the regulatory structure presented in Figure 3.A 

with continuous variable values: 

X1 = 500 



and: 

The objective function is strikingly increased from 5 to  125 with respect to the optimal 

solution of the first study. The manipulated parameter that should change is different 

and the upper bound for X1 is the limiting factor. 

In order to find the second best solution we can solve the problem again including 

an additional constraint that will exclude the previous solution: 

where zL j ,  denotes the binary variable solution of the first problem. The ability to 

forrrlulate such constraints within the the MTLP formulation allows the generation of 

alternative solutions in a declining, with respect to objective, order, providing with 

insight and alternative suggestions. 

Solving the problem again and including constraint (5.70), we found the second 

best solution with continuous variables: 

and 

and the optimal regulatory structure is presented in Figure 3.B. 
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The third best can be found by solving again the original problem including equa- 

tion (5.70) and the following equation that will exclude the second best solution: 

Following this iterative approach we can obtain a sequence of high performance 

solutions to  the problem. These solutions can be later evaluated with respect to their 

stability and their dynamic characteristics which are of significant importance for the 

performance of a pathway (Savageau, 1976; Torres, 1994; Voit, 1992) as well as with 

respect to the effort required for experimental implementation. 

The vast improvement of the objective function when alternative regulatory struc- 

tures were considered, demonstrates the effect of the regulation on the performance of 

metabolic patwhays. Similar impressive results of modifications of metabolic regula- 

tion have been reported in the literature. However, in the examples presented above 

and in the most of the sucessful experimental approaches, the pathways considered 

were relatively small, in terms of metabolites and enzymes, and stoichiometrically 

simple, such as linear and branched pathays, with a small number of regulatory 

loops. In Section 3 we will study a pathway with 10 regulatory loops and 6 manip- 

ulated variables under constraints, illustrating the efficiency of the MILP framework 

for patwhay with increased complexity. 

Before we continue with the last example we will consider the linear transforma- 

tions that correlate changes in the catalytic and regulatory properties characteristics 

of individual enzymes with changes in the kinetic orders of the aggreate rate laws of 

the S-system representation. These transformations are necessary for the consistency 

of the representation of the system under the changes. 

5.2.4 Consistency Checks 

The aggregation employed within S-systems results in kinetic orders that ,  although 

appearing to be independent from each other, are essentially dependent. The following 

example is taken from Savageau et al. (1987). Figure 4 represents a simplified model 
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of a branched biosynthetic pathway. For the mass balances of the three independent 

metabolites of the pathway we can write: 

The equations that describe this system in BST are: 

As was pointed out by Savageau et al. (1992), the stoichiometry of the system leads 

to a correlation between the kinetic orders: 

In the above equations gij is essentially equal to the so-called elasticity of enzyme 

i with respect to metabolite j :  
xi av, 

E . .  = -- " dXi 

Elasticities have been used as a measure of the effects of metabolites on individual en- 

zymes (Fell, 1992; Kacser and Burns, 1973). Equations (5.74)-(5.76) show that,  when 

we consider changes in the catalytic or regulatory properties of an enzyme, the kinetic 

orders of the S-system representation should change in a consistent way. Therefore, 

we will present next a linear transformation from elasticities to kinetic orders that 
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can be used within the MILP framework presented to  guarantee consistency during 

the search for the optimal regulatory structure. 

Consider a pathway consisting of Nmet metabolites, NTzn individual reaction steps, 

and S manipulated parameters. Other processes by which concentrations of metabo- 

lites change (such as dilution brought about by increases in the biomass volume 

(Fredrickson, 1976) and transport through the cell envelope) will not be considered 

here. The mass balances of the metabolites of the system may be written: 

where N is the N x M stoichiometric matrix, v is the nil-dimensional reaction rate 

vector, x is the N-dimensional metabolite concentration vector, and p is the S- 

dimensional manipulated parameter vector (e.g., enzyme concentrations). In addi- 

tion, consider the r-dimensional vector of metabolic outputs, 4, for which we have: 

For the mass balance of metabolite i we will have, from equation (5.78): 

which in S-system representation will be written as: 

where the superscripts "+" and "-" indicate the positive and the negative, respec- 

tively, elements of the i-th row of the stoichiometric matrix. For the kinetic orders 

we have by definition: 



and 

xi ax- h . . = - --- 
zJ v,- ax, 



Similarly for the kinetic orders of the i-th output function we will have (from 

(5.10)): 

and 

We observe that any change in the properties of individual enzymes has an effect 

on more than one kinetic order. When we study the effects of regulatory structures on 

the performance of a system, which is mathematically represented as an S-system, we 

should employ the above relations in order to  be consistent. Therefore for the mass 

balance of the i-th metabolite at steady-state and after the logarithmic transformation 

we will have: 



where NTeg, defined as before, is the number of alternative values for the regulatory 

loops; these values can be positive (for activation) or negative (for inhibition). The 

first two terms on the left hand side of equation (5.88) correspond to the kinetic 

orders of the original system. The binary variable zmjt in the third and forth terms 

determines the modifications of the elasticities and, consequently, the modifications 

of the kinetic orders of the original system. For example, when 2235  is equal to one, 

then the elasticity of enzyme 3 with respect to metabolite 5 is reduced by an amount 

equal to ~ ~ 3 5 .  The binary variable wl in the fifth term of the left hand side controls 

which manipulated parameter will change, as it has been discussed above. 

For the i-th output we will similarly have: 

Finally, for every binary value, when formulating the problem as an MILP prob- 

lem, we should apply the transformations introduced earlier, and include four inequal- 

ity constraints, as has been illustrated with the previous examples. 

5.3 Example 

As an example we will study a similar problem to  that examined by Voit as Example 

2. 

Yield Optimization in XMP and GMP Production 

A simplified form of the pathway is shown in Figure 5. Discussion and references 

on the biochemical characteristics of the pathway can be found in Voit's paper. The 

S-system representation of the pathway is: 



The kinetic orders were calculated from the rates and their elasticities with respect 

to their substrates and modulators, as they were qualitatively set to values presented 

in the Appendix, and by using the linear transformations presented in the previous 

section. The parameters Pl - P6 represent the concentration of the enzymes that 

catalyze the corresponding reactions. 

The objective of the optimization is to maximize the steady-state concentration 

of metabolite X4. The problem is subject to the following constraints: 

the concentration of the metabolites X1, X 2 ,  and X3? should not deviate more 

than I t lo% from their reference steady-state values; 

the concentration of the enzymes cannot increase or decrease beyond certain 

limits. 

The mathematical formulation of the optimization problem is presented in the Ap- 

pendix. 

Let's consider first the following question: 

Which one of the enzymes should be manipulated, within f 10% of its reference 

value, i n  order to maximize X4 ? 

The answer to  this question can be found by solving six times the optimization 

problem using a linear programming algorithm. However, if we use the MILP formu- 

lation of the problem presented in the Appendix, by including two additional con- 

straints, we can found the answer by solving the MILP problem once. The additional 
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two constraints are on the binary variables: 

and 

213 + 214 + z21 + 222 + 223 + 224 f 234 $. 243 + 253 f 264 = 10 (5.96) 

where constraint (5.95) allows changes on the levels of only one of the enzymes, and 

constraint (5.96) does not allow any modification of the regulatory structure. 

Similarly, the question: 

Which two of the enzymes should be manipulated, within &lo% of their reference 

value, i n  order to maximize X 4  ? 

can be answer by changing constraint (5.95) to: 

Following this procedure we addressed this question considering three, four, five, 

and six enzymes to  change simultaneously. The optimal values for the objective 

function, the enzymes that should be changed, and the level of their change, are 

presented in Table I. One of the important conclusions that can be drawn from this 

Table is the one concerning the "controling enzymes". Enzyme 6 appears to have 

the highest effect on the concentration of X4. It is interesting to note, however, that 

when this is the only manipulated enzyme, the optimum solution does not involve 

the maximal allowed increase in P6. Only when another activity is changed does 

P6 increase t o  its upper limit a t  the optimal solution. Moreover, there are only 

three enzymes (i.e., enzymes 1, 6, and 4) that significantly influence X4 concentratio 

(within the bounds of the expression levels and of the concentration of the other 

metabolites), since simultaneous manipulation of four or more enzymes does not 

improve the concentration of X4 much. 

One could argue that this information might be obtained-by examining the con- 

centration control coefficents. In Table I1 the concentration control coefficients for 
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the four metabolites with respect to  the six enzymes are presented. Although the 

indication for which single enzyme should be manipulated from the maximum Xq- 

concentration control coefficient is consistent with the optimization calculation result, 

there is (of course) no indication from the concentration control coefficient that an 

optimal increase in P6 exists. Furthermore, the two enzymes that should be manip- 

ulated, according t o  the control coefficient values in Table 11, are enzymes 4 and 6, 

which is not the case. This is due to the existence of constraints on metabolites and 

other physiological parameters and indicates the necessity of the MILP framework 

when constraints on metabolic functions are considered. 

If we consider the same optimization problem and allow the enzyme changes be- 

tween 20% and 500% of their reference value, the results are quite different (Table 

111). The optimal value of the concentration of X4 can be achieved in two different 

ways when one and two enzyme manipulations are considered. The value for the 

objective function when we change one enzyme is the same as before because the lim- 

iting factor is in both cases the concentration of metabolite X 2  which in both cases 

is equal to the higher value allowed. 

When two enzymes are changed in this second case we have two possible solutions, 

and the corresponding objective value is almost equal to the objective value found 

in the previous case (Table I) for the manipulation of three enzymes. Moreover, the 

combination of the enzymes for two and three enzyme manipulations are different for 

the two cases, that is, they depend on the bounds for the enzyme expression levels. 

This difference clearly arises from the nonlinear nature of the original system, as well 

as on the constrained character of the problem. 

The maximum concentration- of X4 that can be achieved by changes in the six of 

the enzymes is 240.5% of the reference value. If we consider changes in the regulatory 

structure, by inactivating any or some of the existent loops, we might achieve an even 

higher value for the objective. Solving the MILP problem by allowing also changes in 

the binary values zij, we can find the maximum that can be achieved by both enzyme 

manipulation and regulatory structure modifications, within the constraints and for 

the given kinetic properties of the system as they are quantified by the elasticities 
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of the substrates and the modulators. The solution can be found by changing the 

constraint (5.96) to: 

which allows changes in the regulatory structure. The maximum concentration of X4 

was found to  be equal to 55015.6, or, 11414% of the reference value, and multiple 

alternative combinations of regulatory structures and enzyme manipulations were 

found to correspond to  this optimal value. 

In modifying regulatory structures it is reasonable to look for the minimum num- 

ber of loops that should be inactivated since experimental modifications of the regu- 

latory characteristics of an enzyme are much more difficult to achieve than changing 

the amount of the enzyme. The MILP framework allowed us to find among the alter- 

native optimal regulatory structures the one with the maximum number of regulatory 

loops active by reformulating the optimization problem. The objective function was 

the number of the regulatory loops and the objective was the maximization of this 

number: 

subject t o  the equality constraint: 

The maximum number of regulatory loops that can remain active in the reaction 

network is equal to 5. The optimal regulatory structure is presented in Figure 6 and 

the levels of metabolites and enzymes are presented in Table IV. 

In any attempt to  modify the regulatory structure of a reaction network we are 

interested in identifying the first regulatory loop that we should try to inactivate. 

This question can be formulated mathematically by the formulation presented in the 
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Appendix, including the constraint: 

The solution of this problem suggests two optimal modifications that result in 

a concentration for X4 equal to  386.6% the reference value. The regulatory loops 

that should be inactivated are the feedback loops on enzyme 2 by metabolite 3 and 

by metabolite 4, referred as solution A and B in Table V, where the corresponding 

changes in enzymes and concentrations are presented. 

Many similar questions can be addressed and answered using the MILP framework 

presented above and applied here to  this example. A study of the values of the 

metabolites and the enzyme levels, as well as of any metabolic function of the network, 

a t  the optimal steady-states can provide metaboiic engineer with useful insight prior 

to any attempt to manipulate enzyme levels and regulatory architectures of metabolic 

reaction pathways. 

Concluding Remarks 

The framework developed in this chapter considers the optimization of bioprocesses 

that can be described by an S-system representation. The novelty of the approach 

lies in its ability t o  find the optimal regulatory structure with respect to a metabolic 

function of a biochemical reaction network. The transformation of the nonlinear S- 

system representation of biochemical systems into linear systems and the introduction 

of binary variables and a set of key transformations allowed this problem in optimal 

manipulation of a biochemical system to be formulated as a MILP problem. 

The examples presented illustrate the ability of the formulation to address vari- 

ous problems concerning analysis and understanding of metabolic pathways and, more 

important, problems concerning optimal combinations of regulatory structures. The 

postulation of a regulatory superstructure around a metabolic pathway, and the for- 

mulation of appropriate constraints allow design of regulatory architectures that can 
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optimize an objective. Although not pursued in this work, this approach can also be 

applied to suggest possible evolutionary criteria that gave rise to natural regulatory 

structures (Heinrich et al., 1987; Majewski and Domach, 1990; Marr, 1991; Schuster 

and Heinrich, 1991). 

A similar formulation for linear models has been also developed (Hatzimanikatis 

et al., 1995), as well as for nonlinear models that are described by enzyme kinetic 

models based on rate laws of a generalized Michaelis-Menten type (Hatzimanikatis et 

al., manuscript in   reparation). The formulation of a system described by nonlinear 

models includes nonlinear constraints and objective functions that are more difficult 

to solve, and the global optimality of the solution is not guaranteed. However, ev- 

ery kinetic description of metabolic systems can be transformed into an approximate 

S-system representation. Then, this MILP formulation can be applied to  the trans- 

formed systems to suggest promising strategies for achieving a metabolic engineering 

objective. 

The transfer of enzymes between different organisms, as well as protein engineering 

of homologous enzymes, can result in pathways with altered regulatory and catalytic 

properties. The corresponding changes in the catalytic properties can be mathemati- 

cally formulated and studied within the MILP framework presented here. The linear 

transformations presented above that correlate elasticities of individual enzymes with 

kinetic orders, should always be applied when changes in the catalytic and regula- 

tory properties of the enzymes are considered in order to preserve consistency in the 

change of the parameters and to  avoid erroneous results. 

The formulation of constraints that exclude previous solutions enables the gener- 

ation of a series of solutions in a hierarchical order, with respect to the value of the 

objective function. These solutions can be analyzed with respect to their dynamic or 

other metabolic characteristics, and the ones that satisfy the set of desired criteria 

can be chosen for experimental implementation. 
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5.6 Appendix 

In this appendix the elasticities and the steady-state values of the metabolite con- 

centrations and the reaction rates of the XMP and GMP production pathway will be 

given and the mathematical formulation of the optimization problem will be analyt- 

ically presented. 

The steady-state value of the concentration of the four metabolites of the pathway 

is : 

{Xi, X2, X3, X4) = {5.42,213,2417,482) 

and the corresponding steady-state values of the reaction rates are: 

The elasticities of the system can be partitioned into two groups: the elasticities 

of the enzymes with respect to their substrates and the elasticities of the enzymes 

with respect to their modulators. 

For the elasticities with respect to substrates we have: 

and for the elasticities with respect to modulators we have: 

For the elasticities with respect to  paramaters we have: 
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The optimization problem is mathematically formulated as follows: 

maximize ( y 4 )  

Mass Balances 

- 0 . 5 ~ 1  4- 0.132 - 0.333 - 0.334 - S l 3  - sl4 4- 0.6~21 + 0 . 6 ~ 2 ~  

+0.6s23 + 0.6534 + 0.4~34 + tl  - 0.6t2 - 0.4t3 = -4.4998 

(5.103) 

0 .308~1 - 0 .482~2  + 0 . 1 7 7 ~ ~  + 0 . 4 ~ ~  - 0 ~ 3 7 ~ 2 ~  - 0 . 3 7 ~ ~ ~  

-0.37~23 - 0.37~24 - 0 . 2 4 5 ~ ~ ~  - 0.385~43 + 0.45'53 

4-0.6~64 4- O.37t2 f 0.24553 4- 0.38554 - 0.4t5 - 0.6t6 = 1.7863 (5.104) 

--O.l$yl + 0 . 4 0 9 ~ ~  - 0 . 8 1 ' 7 ~ ~  - 0 . 0 1 4 ~ ~ ~  

- 0 . 4 5 5 ~ ~ ~  + 0 . 2 8 7 ~ 3 ~  - 0.28t3 + 0.455t5 = -4.3212 

(5.105) 

0 . 0 4 1 ~ ~  + 0.026~3 - 0 . 7 9 9 ~ ~  - 0 . 4 0 5 ~ ~ 4  

+0.26sq3 - 0.2624 + 0.405t6 = -4.5122 

(5.106) 

Bounds on  X j  j = l , 2 , 3  

En(4.9) > yl 2: ln(6.0) (5.107) 

ln(192) 2 y2 2 ln(234) (5.108) 

ln(2176) 2 y3 > ln(2660) (5.109) 

Bounds on Pl 1 = 1, ..., 6 

l n ( q L )  2 Pt > En(e") (5.110) 

where 4' and are the lower and upper bounds, respectively, of the 1-th enzyme 
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expression level. For each of the variables S i j  and t l  we need four inequality constraints 

similar to equations (5.36)-(5.39) and (5.40)-(5.43): 

Linear transformation for si j  

( i d  = {(I9 31, ( 1 ,  4 ) ,  ( 2 ,  11, ( 2 , 2 ) ,  ( 2 , 3 ) ,  

( 2 , 4 ) ,  ( 3 ,  411 ( 4 , 3 ) ,  ( S 1  3 ) ,  ( 6 , 4 ) )  

L L 
€,yj - S i j  + m i n ( y j  €q, y y € i j ) ~ j i  2 m i n ( y j  C i j l  yy€i j )  

(5.112) 

L u z i jm in (y j  cij, yj c i j )  - s . .  22  

L 
S i j  - z i jmax(y i  y, Y y e i j )  

Linear transformation for U J L  

ql - tl + w l l n ( e L )  

ql - tl + w l l n ( ~ I " )  

wlln(?p) - tl 

ti - w l l n ( e u )  

where 

L E y j  = l n ( X j )  j =  1 , . . . , 4  

and 

u v 
yj  = En(Xj ) j = 1 , .  . . , 4  

and the superscripts U and L denote the upper and lower bound, respectively, of the 

corresponding variables. The elasticities used in equations (5.112)-(5.115 

In equations (5.102)-(5.119) above 

ql and tl (1 = 1 , .  . . , 6 )  and 



are real continuous variables, 

qr ,  cu, and PF (1 = 1 , .  . . ,6) ,  

yy and yf ( j  = 1,. . . ,4),  and 

(€13 €14 1 €21 1 €22 1 €23 d 2 4  $34 $ 4 3 d 5 3  1 €64) 

are real parameters, and 

are binary variables, i.e. they can take the values 0 or 1, 



5.7 Tables 



Table 5.1: The values for the objective function, enzyme expression levels and the 
concentrations of the metabolites when one, two, three, four, five, and six enzymes 
change simultaneously, within f 10% of their reference value and without any mod- 
ifications in the regulatory strucure. Bold type, underlined numbers indicate the 
changes in the enzyme levels. 



Table 5.2: The concentration control coefficients for the four metabolites with respect 
to the six enzymes. 



Table 5.3: The values for the objective function, enzyme expression levels and the 
concentrations of the metabolites when one, two, three, four, five, and six enzymes 
change simultaneously, between f 20% and f500% of their reference value and with- 
out any modifications in the regulatory strucure. Bold type, underlined numbers 
indicate the changes in the enzyme levels. 



Table 5.4: The optimal values for the objective function, enzyme expression levels 
and the concentrations of the metabolites when six enzymes change simultaneously, 
between f 20% and f 500% of their reference value and modifications in the regulatory 
structure are considered. The corresponding optimal regulatory structure is presented 
in Figure 6. 



Table 5.5: The optimal values for the objective function, enzyme expression levels 
and the concentrations of the metabolites when six enzymes change simultaneously, 
between &20% and &500% of their reference value and inactivation of only one reg- 
ulatory loop is considered. 

- 

1 
i 

1 

I Solution A 

Pi 
479.83 

Solution B 

Xi 
110 

Pi 
460.97 

Xi 
90 



5.8 Figures 



Figure 5.1: Linear pathway wih feedback inhibition. 



Figure 5.2: Linear pathway with regulatory superstructure around it. Dashed lines 
denote inhibition and dashed-dotted lines denote activation. Three different levels of 
strength are considered for each regulatory loop. 



Figure 5.3: The first two optimal regulatory structures for the linear pathway. A. 
Both regulatory loops correspond to inhibition with strength -0.5. B. Dashed line 
denotes inhibition with strength -0.5 and dashed-dotted line denotes activation with 
strength 0.5. 



Figure 5.4: Branched biosynt hetic pathway. 



Figure 5.5: Xanthine monophosphate (XMP) and guanosine monophosphate (GMP) 
sythesis pathway. Solid lines denote reaction steps, dotted lines denote dependency 
on the corresponding parameters ( f i ) ,  dashed lines denote inhibition, and dashed- 
dotted lines denote activation. Numbers in circles identify the reaction steps as they 
are referenced in the text. 



Figure 5.6: The changes in regulatory structure and in enzyme expression levels 
of the XMP and GMP synthesis pathway which maximize XMP and GMP (X4) 
concentration. Signs in circles next to the dotted lines indicated increase (+) or 
decrease (-) in the expression level of the corresponding enzymes (q). 



Chapter 6 Multiple Steady States in 

Metabolic Reaction Networks 



6.1 Introduction 

Discovery and technological development in several different fields of study have em- 

powered the recent emergence of metabolic engineering, a powerful strategy for devel- 

opment of improved industrial organism. The interplay between increased definition 

of cellular phenomena at  the molecular level and chemical reaction engineering pro- 

vides the basic frameworks for analysis of cell function and underlies algorithms for 

qualitative guidance of metabolic design. 

Because addressing the entire network of catalytic reactions and regulatory in- 

teractions at  the level of the entire cell exceeds current knowledge, generally a sub- 

system of this network is selected for study. The mathematical descriptions of such 

sub-systems in steady state and for in transient conditions generally lead to coupled 

non-linear equations due to stoichiometric coupling among the reactions and kinetic 

nonlinearities for individual catalytic steps. Based 1-apon studies of substantially sim- 

pler synthetic catalytic networks, generations of chemical reaction engineers have 

articulated the possibilities for steady-state multiplicity, limit-cycle oscillations, and 

more complex dynamic phenomena in non-linear chemical reaction system (Aris and 

Amundson, 1958; Burns et  al, 1973; Uppal e t  al, 1974; Balakotaiah and Luss, 1983; 

iyberatos et  al., 1985; Kevrekidis et al., 1986; Farr and Aris, 1986; Aris and Cicarelli, 

1995). This analysis has been built upon an expanding set of mathematical theory 

and efficient computational tools. 

Prior investigations of steady-state multiplicity in man-made catalytic networks 

indicate several important motivations for characterizing steady-state multiplicity in 

metabolic systems. First, the possibility of steady-state multiplicity implies a com- 

plication in operating protocol since the steady state achieved can depend on earlier 

process history. Second, the existence of multiple steady states, when explored ex- 

perimentally, can provide the engineer with important information about the system, 

including its governing equations and important parameters. Moreover, in a biological 

context, steady-state multiplicity can, in its most rudimentary form of two possible 

steady states, provide a biochemical mechanism for binary information storage, as 
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noticed in several previous investigations (Burns et al., 1973; Kauffman, 1993). 

If a biological system can operate in multiple steady states, it can, for a given 

configuration of protein activities, access different time-variant functional states, a 

capability which could be important from an evolutionary view point (Kauffman, 

1993). In biotechnological applications, where cellular processes are manipulated by 

reconfiguration of protein activities, appearance of multiple steady states could lead 

to undesirable situations for bioprocess operation. 

In spite of the technological and scientific significance of steady-state multiplicity 

in metabolic reaction systems, this phenomenon has been far less thoroughly inves- 

tigated in biological context than in man-made catalytic process (Sel'kov and Betz, 

1973; Heinrich et al., 1977; Markus and Hess, 1984, 1990. Here a rudimentary de- 

scription of glycolysis, a process by which a carbon source is digested by a cell, is 

formulated based upon pathways pertinent to bacteria. Considering rate expressions 

of minimal complexity, which do not include some important coupling and nonlin- 

earity present in bacterial glycolysis, we demonstrate that, for certain values of the 

system parameters, as many as ten steady states can be achieved. 

A Kinetic Model for a Glycolysis Prototype 

The glycolysis pathway for bacterial cells such as Escherichia coli and Bacillus subtilis 

is presented in Figure 1 (Gottschalk, 1986). Although at  first glance it appears to  

be a simple linear sequence of reactions, inspection of the stoichiometry of glycolysis 

reveals some interesting complications. These arise from participation of ATP and 

ADP in several reactions and from the involvement of PEP, an intermediate late in 

the pathway, in the first reaction. Moreover, the regulatory architecture enveloping 

this reaction network, which does not appear in the Figure 1, and which modulates 

the catalytic activities of certain reactions by compounds which are neither reactants 

(substrates) nor products of those reactions, introduces further complex coupling. 

Furthermore, if the organism in which this pathway operates is growing, then some of 

the metabolites are used for synthesis of new biomass and, additionally, the intracel- 
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lular concentration of every metabolite is affected due to the increasing cell volume 

(Fredrickson, 1976). 

In this study we consider a glycolysis prototype; that is, a simpler reaction net- 

work that preserves the stoichiometric characteristics of the original pathway. The 

prototype used here is presented in Figure 2. It can be easily deduced, by comparing 

Figure 2 with Figure 1, that G corresponds to the pool of G6P and F6P, F corre- 

sponds to FdP, E corresponds to PEP, T corresponds to  ATP, D to ADP, and M to 

AMP, and S and P correspond to  extrecellular glucose and to pyruvate, respectively. 

The reactions from FdP to PEP, which are reversible, are lumped in reaction step 3 

in Figure 2 for which, after the lumping, we have the following stoichiometry: 

Reaction step 5 corresponds to the reversible reaction catalyzed by adenylate kinase 

(AK in Figure 1) and has the following stoichiometry: 

The rest of the reaction steps are irreversible and have the following stoichiometries: 

and 

7 : T + D  

The last two reactions, 6 and 7, describe the production and consumption, respec- 

tively, of energy by cellular processes other than glycolysis. Reactions 8 and 9 corre- 
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spond to degradation (AS in Figure 1) and to synthesis (AD in Figure I ) ,  respectively, 

of the adenylate nucleotides via M. 

6.3 The Mathematical Model 

Assuming negligible concentration gradients within the bacterial cell volume, unsteady- 

state mass balances on the components of the prototype pathway may be written as 

follows: 

where the terms pY, correspond to the usage of metabolite j  for biosynthetic require- 

ments and the last term in every mass balance, i.e. &] ,  represent dilution caused by 

increase in cell volume, V,, at  a specific rate: 

The superscripts "+" and "-" denote the forward and backward direction, respec- 

tively, of the reversible reactions in Figure 2 as they have been conventionally assigned. 

Two assumptions that are usually invoked about glycolysis by both modelers and 

biochemists are the following ones concerning the characteristic times of individ- 

ual reaction steps (Reich, 1974; Heinrich, 1977; Gottschalk, 1985; Liao et al., 1988; 

Fothergill-Gilmore and Michels, 1993): 

A.1 Reactions steps 3 and 5 in the prototype model (Figure 2), and the corre- 
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sponding reactions in Figure 1, are very "fast" with respect to the rest of the 

reactions; i.e., the metabolites that participate in these reactions as reactants 

and products are very close to  thermodynamic equilibrium. 

A.11 The reactions that degrade and synthesize adenylates (V8 and V9, respectively), 

are very "slow" with respect to the rest of the reactions. 

This last assumption can be mathematically described by the following equality: 

which means that the net synthesis rate of the adenylate nucleotides via AMP (M) is 

equal to their dilution caused by cell volume increase. 

Consideration of the above assumptions allows us to rewrite the mass balance 

equations as: 

where 

and from assumptions A.I and A.11 the following equlibrium and conservation rela- 

tions hold: 

[El [TI 
qt = [F] [Dl 



and 

IT1 + [Dl + [MI = IAI 

where [A] is the concentration of the adenylate nucleotides which, after the assump- 

tion A.11, can be considered time-invariant. Equations (6.12) through (6.17) permit 

calculation of the concentrations of the prototype metabolites D, E, F, G ,  M, and 

T in terms of [PI], [P2], and [PSI. In order to  further simplify our analysis we will 

assume that 

A.III There is no metabolic regulation of the activities of the various enzymes of the 

pathway. 

Based on this assumption we will use the simplest possible enzymatic rate expressions 

to  describe the kinetics of the enzyme-catalyzed reactions: 

Vl = Vm.1 
[El 

KI,E + [El 

where Vmj is the maximum rate for reaction j, and Ig, , j  is the dissociation constant 

of the enzyme that catalyzes reaction step j for the metabolite i. Parameter Vmtl is 

also a function of external glucose concentration which in the following analysis will 

be fixed and considered as time-invariant. Notice also that V2 and V4 follow the Hill 

rate expression; i.e., sigmoidal kinetics, with a Hill coefficient equal t o  two, since it 

has been shown that the enzymes that catalyze these reactions (phosphofructokinase 

and pyruvate kinase, respectively) are composed of identical monomers, or identical 

pairs of monomers, and such enzymes typically follow Hill-type kinetics. 

As was mentioned above the participation of T and D in several reactions, and the 
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effects of cell growth complicate the behavior of the system as described by equations 

(6.9)- (6.11). Therefore, we will further assume that: 

A.IV The concentrations of T and D saturate the enzymes that catalyze reactions 2 

and 4; i.e., KT,2 << [TI and KD,* << [Dl; and 

A.V The cells are not growing: p = 0. 

Under these assumptions we can write the following dimensionless mass balance equa- 

tions: 

where for the dimensionless concentrations we have: 

For the equilibrium and conservation relations (6.15), (6.16), and (6.17) and the 

dimensionless rates expressions, we have: 



where the dimensionless parameters introduced above are defined as: 

Equations (6.23)-(6.34j describe the mathematical model of the simple glycolytic 

prototype presented in Figure 2, under the assumptions A.1-A.V. The assumptions 

used are not many and they do not interfere with the objectives of this analysis. 

Many of them are based on experimental studies (A.1 and M I ) ,  and they can be 

implemented experimentally easily (A.V). Moreover, metabolic engineering allows the 

consideration of a glycolytic pathway without metabolic regulation (A.111). Study of 

the prototype model in the absence of regulation will allow us to better understand the 

function of the existent regulatory structures by observing the changes in the system 

due to the introduction of the regulatory interactions. Previously studied prototypies, 

although they have been constructed based on more assumptions and simplifications 

were able to capture some of the qualitative features of glycolysis, such as oscillatory 

behavior and chaos (Higgins, 1967; Sel'kov and Betz, 197'3; Heinrich et al., 1977). 

However, the insight they provided was limited, because of the assumptions and their 

general character since they did not describe glycolysis from any particular organism. 

Analysis of the glycolysis prototype will be performed next in order to identify if 

there can exist values for the kinetic parameters, realizable by natural mutations or 

genetic engineering, that could possibly result in multiple steady states and, thus, in 
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more than one phenotypes from a given genotype. 

6.4 Steady-State Multiplicities 

Previous models of glycolysis in various cells, such as yeast and erythrocytes and 

experimental data suggest that glycolysis can exhibit multiple steady-states (I-Iein- 

rich et al., 1977; Liao et al., 1988; Joshi and Palsson, 1989). We will study the 

glycolytic prototype described by equations (6.23)-(6.29) in order to find necessary 

parameter value combinations for steady-state multiplicities to be observed, under 

the assumptions A.1-A.V, and the rate laws assumed (Equations (6.30)-(6.34)). 

The steady-states are found by solving (6.23)-(6.25) for d./ri/dr = 0 (i = 1,2,3). 

At any steady-state, after rearrangement of the equations, we have: 

The function $2(#3) appearing in Equation (6.38) is obtained by solution of the 

equilibrium equation (6.28) and the conservation equation (6.29), which yields: 

Equation (6.36) can be solved explicitly for c .  The solutions will be the intersec- 

tions of the curves for the rate laws for vl(e) and ~ ~ ( 6 ) .  The relationship between 

these two functions depends on the parameters a and 6' in the formula for v4 (Equa- 

tion (6.32)) with possible cases schematically illustrated in Figure 3. The dashed 

lines correspond to  different possible cases for v4, and can intersect (or not) the solid 

line which corresponds to vl. There are five qualitatively different ways that vl can 

be related to v4. If v4 follows kinetics that result in line I, then the system has two 

steady-state solutions, one zero and one nonzero. It is easy to see that this can occur 
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only when Vmrl < Vm,4, or when a < 1. As a diminishes and attains a = 1, then 

the ul and v4 functions approach the same asymptote as E -+ oo (line I1 in Figure 3) 

and we have just lost the case with two solutions. a = 1 is a bifurcation point, since 

for a > 1 there is only one solution with zero value (line V in Figure 3)- However, 

depending on the value of 0, when a is less than one, we can move from a unique 

solution to three solutions (line 111) through a bifurcation represented by line IV in 

Figure 3. The bifurcation diagram for the rate laws used is presented in Figure 4. 

The 8 - a! paramater space is divided by lines I1 and IV in to three regions which 

correspond to a different number of steady states. For values of a and 0 in region I 

u4 follows kinetics that result in line I in Figure 3, and, therefore, two steady-state 

solutions exist. For values of a and 0 in regions III and V v4 follows kinetics that re- 

sult in lines I11 and V, respectively, in Figure 3, and, thus, three and one steady-state 

solutions exist for parameter values in regions I11 and V, respectively. 

The above conclusions are independent of the details of the kinetics. The only 

requirement for the possibility of three steady states under some conditions is that u4 

follows sigmoidal kinetics. The qualitative results are also independent of the value 

of the Hill coefficient. A higher value for the Hill coefficient will only increase area I11 

in the bifurcation diagram (Figure 3) favoring multiplicity of steady states for a < 1. 

Solution of equation (6.37) provides a sufficient condition between a and P so that 

for every E there is a solution for a satisfying equation (6.37): 

In general, it is possible that solutions to equation (6.37) can exist even if inequality 

(6.40) does not hold, but the existence of a a value satisfying equation (6.37) depends 

on the relative values of the other parameters involved; i.e., 0 and q. 

In the case of three E values satisfying equation (6.36), one of them will always be 

zero, and the corresponding solution of equation (6.37) is a = 0. This solution will be 

called v-zero solution since, at this solution, the reaction rates vl, va and v4 will be 

equal to zero. The other two nonzero E solutions of equation (6.36), and associated 
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solutions of equations (6.37) and (6.38), when they exist, will be positive and will be 

called v-positive solutions. 

Equation (6.38) provides the steady-state relation of 43 with E and a satisfying 

equations (6.36) and (6.37). We consider next parameter values for which nonegative 

solutions of equation (6.38) exist. 

For any allowed (i.e., nonengative) 6 ,  v4 is nonegative. Therefore, a sufficient 

condition for an allowed solution of equation (6.38) to exist is, for some 43 values 

between zero and one, 

This condition is sufficient since, if it is satisfied, then there exist combinations of 

@ and w that could satisfy equation (6.38). It  should be noted here that f (43) is 

a measure of the energetic state of the cells since it expresses the net AT? (q!9) 

consumption rate. 

From equation (6.39) we have 42 = 0 at 43 = 0 and at  43 = I. Therefore 

and 

and given the fact that f is a continuous function and that the maximum value of 

the left hand side of equation (6.38) is 2, then a necessary condition for the existence 

of at  least one nonegative value of b3 satisfying (6.38) is: 

Numerical calculation of f (4,) for various combinations of values of the kinetic 

parameters @, J ,  w ,  and X revealed that f (4,) can have any of the qualitative forms 

indicated by the curves in Figure 6. For certain combinations of the kinetic parame- 
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ters, f possesses a local maximum with positive value for values of 4 3  between 0 and 

1 (lines 111, IV, V, and VI in Figure 6). Therefore, we could find a combination of 

values for the parameters $ and w such that 2v4(c) would be lower than this local 

maximum. As a result a horizontal line, positioned a t  an ordinate value Zv4(c), will 

intersect these f loci at three points resulting in three or one values of $3 which satisfy 

equation (6.38) (lines I and VIII). 

If there are three solutions of equations (6.36) and (6.37) for c and y, then there 

could exist one solution $3 to equation (6.38) for each of them (line I), or one solution 

for the v-positive solutions and two solutions for the v-zero solution (line VIII), or 

three solutions for each of the v-positive solutions and one for the v-zero solution (line 

11), or three for the v-positive solutions and three, or four, for the v-zero solution (lines 

V and VI, respectively). 

The lines 11, IV and VIII correspond to limiting cases. Line I1 illustrates the 

transition from one solution of 4 3  to three possible solutions for each of the v-positive 

cases. This transition can be observed when there exists a concentration 4: for which 

the following equalities hold: 

and 

Line IV corresponds to the transition from one solution for the v-zero case to 

three (line V) or four possible solutions (line VI), while three solutions for the v- 

positive case are still possible. Such a transition can be observed when there exists a 

concentration 4 a t  which: 

These last equalities (6.47) hold also for line VII which illustrates the transition from 

three possible solutions for every v-positive case and three or four solutions for the 

v-zero case, to  one solution for any of the two cases. The difference between these two 

transitions is that a t  the corresponding 4: line I1 goes through a local minimum (i.e. 
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(d2 f /d43)dg < O),  and line VII goes through a local maxi~num (i.e. (d2 f /d43)&; > 0). 

Considering the above conditions and following an approach similar to the one 

introduced by Regenass and Aris (1965) we can find in the parameter space regions 

for which multiplicities can arise. These regions will identify necessary sets of values 

for the kinetics parameters for the number of the solutions to possibly exceed the 

number of the solutions allowed by equation (6.36). 

Although function f depends on five parameters, i.e. $, I ,  w, A,  and q,, the 

conditions postulated above depend on four essential parameters: 

By fixing two of them, and q,, a two-parameter bifurcation diagram can be con- 

structed (Figure 7). The numbers in the regions and on the bifurcation lines corre- 

spond to the multiplicity possibilities which are illustrated in Figure 6 and have been 

described above. Assuming that three solutions for a and E exist then for the overall 

system we will have: 

SS.1 Three steady-states for region I; 

SS.11 Seven steady-states for region 111; 

SS.111 Nine or ten steady-states for region V-VI; and 

SS.IV Four steady-states for region VIII, 

The special nonlinear character of function f arises from the nonlinear dependece 

of 4 2  on 43, as described by equation (6.39). The equilibrium constant, q,, is the 

only parameter appearing in equation (6.39) to have an effect on the value of 4 2  for a 

given value of 43. In order to understand better the dependency of 4 2  on 43 and q,, 

$2 as a function of 43 is plotted in Figure 5 for different values of q,. As we can see (62 

is not a monotonic function of 43; it increases monotically as $9 increases from zero, 

it goes through a maximum and it decreases monotonically as 43 approaches one, 

which is the maximum value for 43. The maximum value of d2 and the corresponding 

value for 43 are functions of q,. Solution of the equation (d42/d#3) = 0 provides the 
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maximun value of 4 2 ,  c $ ~ , ~ ~ ~ ,  and the corresponding value of 43, 43,max, as functions 

of q,: 

42,max = fi (6.48) 
& + 2  

and 

which at this value is equal to 

Figure 5 further suggests that q, has an important effect on the distribution of 

the various forms of the adenylate nucleotides (+i). For 

$2 will always be higher than 41, which implies that for low values of q,, ATP ($3) and 

AMP (dl) will be the main components of the adenylate nucleotide pool, over a wide 

range of ATP concentration (b3), whereas, for high values of q,, ATP ($3) and ADP 

(d2) will be the main components of the adenylate nucleotide pool.The dependency of 

42,max and 43,rnaX on q, indicates that q, could be an important bifurcation parameter. 

The effects of the value of J and q, have been further examined and the results are 

presented in Figure 8. For a given value of J ,  the area of the regions of multiplicity 

depend on the value of q,. In general, as q, increases, the area of the multiplicity 

regions in the ln(6) -ln(X) parameter space is decreasing in size. Whereas, for a 

given value of q,, the area of these regions increase as J increases. The bifurcation 

lines 11, IV, and VII, which define the multiplicity regions, have different sensitivities 

with respect to  q,. As q, increases, line I1 moves upwards until a critical value of q, 

beyond which it moves downwards as q, increases. This critical value appears to be 

dependent on the value of c. On the other hand, lines IV and VII move monotonically 

upwards as qa increases with a rate that depends on the value of <. All three, for 

fixed J, lines respond to  changes in q, without changing significantly their slopes in 

the In(&) -ln(X) parameter space, which implies that q, does not affect the (scaled) 

sensitivity of these bifurcation lines with respect t o  6 and A. 
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This analysis has been based on some assumptions that concern the kinetics of the 

reactions (A.111 and A.IV). The above results provide us with the necessary insight 

to the system regarding the important bifurcation parameters with respect to which 

further computational analysis can be conducted, since relaxation of the assumptions 

will result in a nonlinear system that can be analyzed only computationally. 

6.5 Discussion 

Construction of a prototype model for bacterial glycolysis presented in this chapter 

using certain simplifying assumptions and the simplest possible kinetics for the en- 

zymes. Analysis of the number of the possible steady states with respect to the values 

of the kinetic parameters was performed suggesting that up to ten steady states are 

possible. Parent models, which features higher complexity due to elaborate kinetics 

of the enzymes and regulatory interactions will have different mu!tiplicitjj charaeter- 

istics which cannot be predicted based on the above analysis. Moreover, these models 

can be analyzed only computationally. However, the prototype model and the above 

results can serve as a starting point for further analysis of more complicated models. 

From the above analysis, it can be concluded multiple steady states may arise in 

bacterial glycolysis because of three main stoichiometric and kinetic characteristics 

of the system: (i) the dependency of glucose uptake (vl) on PEP concentration ( E ) ,  

(ii) the energetic state of the cell, as it is expressed by the relative magnitude of the 

corresponding kinetic parameters ($, w ,  A, and c), and (iii) the reactions that result 

in the relationships between the three components of the adenylate nucleotides (ATP 

(43), ADP (44, and AMP (41)). 

The analysis of glycolysis in living organisms can be analyzed by constructing 

prototype mathematical models. However, these prototype models are complex and 

the postulation of certain assumptions is required so that the complexity of the models 

will be reduced without losing the essential characteristics of the system. The method 

presented above for bacterial glycolysis can be also applied for the glycolysis in other 

organisms, such as yeast and mammalian cells, that have different stoichiometry and 
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regulation. The choice of the assumptions have been shown to  be an important step 

in the analysis of such prototypes. 

The bifurcation diagram presented in Figure 4 suggests that overexpression of 

the enzyme that catalyzes the reaction 1 beyond a critical value for which VmY1 > 

Vm,4 will result in a unique steady state for the system with a value for all of the 

concentrations equal to zero. This suggestion implies that in an experiment that such 

an overexpression will be achieved it will not be observed since the cells that will 

express Vm,l > Vm,4 will not be able to survive and only the ones with VmY1 < Vm,4 

will survive and be observed. This result though holds under the assumptions made. 

Qualitative similar results, i.e. maximum overexpression level that can be achieved, 

will be also obtained when the assumptions are removed. Similar information can 

obtained by studying the bifurcation diagrams in Figure 8. 

The stability of the steady-states is another important problem that has not been 

addressed in the present study and is currently under investigation. The number of the 

rrlultiple steady-states and the existence of the metabolite pools, .ir,, do not allow the 

postulation of simple rules for stability analysis. M~reover, the existence of steady 

states with zero concentrations, which imply cell death, introduce questions like: 

What is the stability of the steady states at  which one of the metabolite concentrations 

is zero? If they are stable, what is their basin of attraction? How do the regulatory 

structures affect their stability? 

From a metabolic engineering point of view, the models and their analyses are 

more effective when one tries to  identify wide parameter-value regions over which 

steady-state multiplicities are possible, since this could be an experimentally feasi- 

ble scenario. On the other hand, multiplicity phenomena occuring over a narrow 

parameter-value range while mathematically interesting, have little chance to be im- 

plemented or observed. Given these complexities, mathematical models and analysis 

can provide imperative guidance for rational metabolic engineering. 
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Figure 6.1: The glycolysis pathway in bacterial cells. Abbreviations: GGP: glucose 
6-phosphate; FGP: fructose 6-phosphate; FdP: fructose 1,G-diphospate; DAHP: di- 
hydroxyacetone phosphate; GA3P: glyceraldehyde 3-phosphate; DPG : dipsphoglyc- 
erate; 3PG: 3-phosphoglycerate; 2PG: 2-phosphoglycerate; PEP: phosphoenolpyru- 
vate; Pyr: pyruvate; ATP: adenosine triphosphate; ADP: adenosine diphosphate; 
AMP: adenosine monophosphate; P T S :  phosphotransferase system; P G I :  phospho- 
clucose isomerase; P F K :  phosphofructokinase; ALD: aldolase; T P I :  triosephosphate 
isomerase; G A P D :  glyceraldehyde phosphate dehydrogenase; D P G K :  diphospho- 
glycerate kinase; P G M :  phosphoglycerate mutase; ENO: enolase; PYK: pyruvate 
kinase; AK: adenylate kinase; ATPase: ATPase; ATS: ATP synthesis; AD:  adeny- 
late degredation; AS: adenylate synthesis. Bold-face abbreviations indicate enzymes 
and reaction steps. 



Figure 6.2: The glycolysis prototype pathway. 



Figure 6.3: Qualitative graph of the dependency of vl (solid line) and u4 (dashed line) 
on E for different combiantions of the parameters cr and 6. 



Figure 6.4: The multiplicity regions in the a-6 parameter space. The latin numbers 
correspond to the scenarios shown in Figure 3. In region I two steady states are 
possible, in region I11 three steady states are possible, and in region V only steady 
state is possible. 



Figure 6.5: The dependency of (convex lines) and $2 (concave lines) on $3 for 
different values of q, : 0.01 (solid line), 0.1 (dotted line), 1 (dashed lines), 10 (long- 
dashed lines), and 100 (dashed-dotted line). 



Figure 6.6: Qualitative diagram of the dependency of f ( $ 3 )  on 4 3  for different values 
of the kinetic parameters $, w, A, and J. 



Figure 6.7: The multiplicity regions in the 6-X parameter space for q, = 1 and J = 1. 
The latin numbers correspond to the scenarios shown in Figure 6. In the parameter- 
value regions I, 111, V-VI, and VIII, three, seven, nine or ten, and four steady states 
possibly exist for the system. 



Figure 6.8: The multiplicity regions in the 6-X parameter space for different values 
of q, and c. Numbers on the arrows are the values considered for q,; A: < = 0.01, B: 
E = 0.1, C: c = 1. 



Chapter 7 Analysis and Design of 

Metabolic Reaction Networks via 

Mixed-Integer Nonlinear Optimization 



7.1 Introduction 

The nonlinearity of the kinetics of the enzymes in metabolic pathways introduce 

complexities such as multiple steady-states, as was presented in the previous chapter. 

Therefore, the analysis and the design of the regulatory structures in a metabolic 

reaction network is even more difficult when a nonlinear description of the pathway is 

available. An optimization framework for nonlinear descriptions of metabolic systems 

is required.. In this chapter, such a framework will be presented. 

The nonlinearity of the system and the discrete nature of the decisions concerning 

the regulatory structures leads to the formulation of this optimization problem as a 

mixed-integer nonlinear programming (MINLP) problem. These types of problems 

are very common in chemical engineering, and methods have been developed for 

their solution (Floudas, 1995). However, the success of these methods depends on 

the formulation of the problem, and this is the challenge in chemical engineering 

modeling and optimization. Similarly, the formulat.ion of the optimization of the 

regulatory structure as an MINLP problem is a challenging, novel problem since the 

models for metabolic systems are not similar to any of the chemical process problems 

previously studied as MINLP problems. 

Problem S taternent and Formulation 

7.2.1 Problem Statement 

The general problem we address in this chapter is the same as in the previous chapter 

on optimization of regulatory structures: 

A mathematical description of a metabolic pathway with a postulated number of 

regulatory loops is given. These regulatory loops are classified as either activation 

(increase the activity of the regulatory enzyme) or inhibition (decrease the activity of 

the regulatory enzyme) loops. The objective is to determine ( i )  which of the regula- 

tory loops should be retained, and (ii) the number, type, and level of manipulation 

of amounts of enzymes, in order to  optimize a certain function of the outputs of 
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the metabolic pathway (e.g., production of primary or  secondary metabolites, growth, 

selectivity, etc.). 

As discussed before, enzymes that catalyze the same reaction in different organ- 

isms are not necessarily the same in their catalytic and regulatory properties. More- 

over, these enzymes very often follow different mechanisms. Therefore, in considering 

the introduction of different regulatory properties in a metabolic pathway, the dif- 

ferent mechanisms should be taken into account. Introduction in an organism of a 

heterologous enzyme, which might follow a different mechanism, can change the reg- 

ulatory structure of the metabolic network. This difference can result in changes in 

the performance of the overall pathway. 

A regulatory superstructure can be again considered for the nonlinear description 

of metabolic pathways. The dimensionality of the large combinatorial problem that 

results from this consideration increases significantly if we take into account the ex- 

istence of alternative mechanisms for the regulation of the enzymes. The importance 

of such considerations is becoming clear if we consider changes in other metabolic 

parameters such as enzyme and external substrate levels, since it should be expected 

that different regulatory mechanisms will result in different responses to changes in 

these parameters. 

7.2.2 Mathematical Ilescription of Metabolic Reaction Net- 

works 

As has been presented in the previous chapters, metabolic networks can be math- 

ematically modeled using (1og)linear models, S-system models or nonlinear models. 

(Log)linear and S-system models have been studied in previous chapters. In this 

chapter we will additionally consider nonlinear models. If we consider a metabolic 

system consisting of n metabolites and m enzymatically-catalyzed reactions, the mass 

balances on the metabolites of the system may be written: 
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where x is the n-dimensional metabolite concentration vector, f is a function deter- 

mined by the mass balances, v is the m-dimensional reaction rate vector, and p is the 

s-dimensional manipulated parameter vector (e.g., enzyme concentrations). Terms 

that account for other processes by which concentrations of metabolites change (such 

as the dilution brought about by increases in the biomass volume (Fredrickson, 1976) 

and transport through the cell wall envelope) are also included in the mass balance. 

The kinetic expressions for the reaction rates, v, depend on the molecular mech- 

anism that they follow and are different between different reaction steps and even 

for the same reactions in different organisms. In Appendix A.1, some characterestic 

rate expressions are presented. One can observe the variety of alternative kinetic 

expressions and their nonlinearity. 

The optimization problem can also be nonlinear even if the available mathematical 

description of the metabolic system is based on the (1og)linear model or the S-system 

model. Nonlinearity of the problem can arise in the objective function and/or the 

constraints. For example, in optimizing the selectivity of the phenylalanine, as con- 

sidered as an example in the MILP case, the objective function concerning selectivity 

can be described as the nonlinear ratio of the (1og)linear rate expressions instead of 

the linearized expression used in that previous case. 

7.2.3 Analysis Problem 

If we consider the existence of a regulatory structure around a metabolic reaction 

network, the kinetics of the enzymes depend on the molecular mechanism by which 

regulatory metabolites act on the enzymes. In Appendix A.11 some of the common 

regulatory mechanisms are considered and the corresponding rate expressions are 

presented. 

The analysis problem is defined here as before: 

Which of the existent regulatory loops should be inactivated, and what associated 

changes should be made in the manipulated variables (e.g., enzyme expression levels, 

environmental conditions, ejjrectors external to the system), in order to optimize the 
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performance of the metabolic network? 

In the formulation of the MILP problem, modifications in the regulatory structure 

were represented by changes in the elements of the regulatory elasticity matrix, E T ,  

from non-zero values to zero and vice-versa. For nonlinear kinetic models, a differerent 

consideration is introduced and is illustrated next. 

Illustration 

We will consider first the case of the unireactant reaction: 

that is competitively inhibited by the metabolite I. The corresponding rate expression 

(Appendix A.11) can be written as: 

According to  the molecular mechanism when the values of the Ks and Ki increase 

the affinity of the enzyme for the substrate, S ,  and the inhibitor, I, respectively, 

decreases. Therefore, elimination of the inhibitory action of I on the enzyme can be 

modeled by assuming: 

or, equivalently: 

Kt-' + 0 

and the rate expression (7.2) will be written as: 

Similarly, eliminating of the action of activators can be modeled by assuming that 

the dissociation constants corresponding t o  activators take infinitely high values. For 
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example, in the rate expression for the nonessential activation: 

by setting 

the enzyme becomes insensitive to activator, and the corresponding rate expression 

is the same as in equation (7.3). 

In general, any regulatory loop can be inactivated by considering that the corre- 

sponding dissociation constants assume such values that,  a t  the molecular level, the 

regulator cannot bind to enzyme, and, in the rate expression, the dependency on the 

concentration of the regulator is removed. 

7.2.4 Synthesis Problem 

The synthesis problem and the concept of the regulatory superstructure that have been 

introduced in previous chapters can be also considered in the nonlinear problem. The 

synthesis problem is defined again as: 

What kind of regulation (i.e., activation or inhibition, by which metabolite and of 

what strength) should be assigned to each enzyme i n  the network, and what associated 

changes should be made in the manipulated parameters (e.g., enzyme expression levels, 

environmental conditions, eflectors external to the system), in order to optimize the 

performance of the metabolic network? 

The modeling of the regulatory superstructure is more complicated for nonlinear 

models. As mentioned above, an additional characteristic that should be taken into 

account is the possibility of different mechanisms for the same regulatory loop. The 

modeling of the regulatory superstructure will be illustrated next. 



I l lustrat ion 

We will consider first that the simple unireactant reaction initially is not subject 

to  any regulation. The corresponding reaction rate will be described by equation 

(7.3). In postulating a regulatory superstructure around this enzyme, we can consider 

the existence of two potential inhibitors, Il and 12, and two potential activators, 

Al and A2. Moreover, for each of the regulators we will consider two alternative 

regulatory mechanisms: competitive and noncompetitive inhibition for the inhibitors, 

and ordered and random essential activation for the activators. These lead to the 

following general rate expression: 

where the superscrpipts "NC" and "C" denote the dissociation constant for noncom- 

petitive and competitive inhibition, respectively, and the subscripts " R  and "0" 

denote random and ordered essential activation, respectively. 

The superstructure postulated for this enzyme considers 2' = 256 alternative 

regulatory structures if a minimum of zero loops is allowable and a maximum of 

eight (i.e., all the regulatory loops active). However, a regulator will not act on 

the same enzyme with two different mechanisms. Therefore, 25 = 32 alternative 

regulatory structures should be considered. Even in the case that only one or none 

loop is allowed, the 9 alternative regulatory structures is a significant number for one 

enzyme, four regulators, and two alternative mechanisms for each loop, since, in a 

metabolic network, the same considerations for each enzyme and the possibility of 

each metabolite in the network to regulate any of the enzymes, by any type of action 

and mechanism, leads to a huge number of alternative regulatory structures. 

If we consider here the simplest case, that allows only one or no regulatory loop, we 

will have to  consider accordingly values for the dissociation constants of the regulatory 
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mechanisms. In the case that none of the loops is active we have: 

and 

In the case that we consider that Il is the only regulator, then we have: 

and 

and 

Similarly, the rest of the regulatory structures can be modeled based on the assump- 

tions about the structure and equation (7.4). 

The regulatory loops can also be different with respect to the value of the disso- 

ciation constants corresponding to  each loop. In general, protein engineering of the 

binding sites for the regulators will result in values for the dissociation constants that 

will be orders of magnitude different between each other. Therefore, the same regula- 

tory action, by the same regulator, following the same mechanism, can be considered 

with two, or more, different values for the dissociation constants. These considera- 

tions can be modeled as  alternative regulatory structures, and, thus, the size of the 

regulatory superstructure can increase significantly. 

7.3 Mathemat ical Formulation 

In order to set up the mathematical formulation for the MINLP problem, the following 

index sets and variables are introduced to characterize the regulatory superstructure 
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(in general similar to those used in the MILP problem). The metabolites will be 

denoted by the index set I = {i), the reaction rates by the index set J = { j ) !  the 

manipulated parameters by the index set K = ( k ) ,  the metabolic outputs by the 

index set L = { I ) ,  and the following sets will be defined to establish the connections 

of the sets of metabolites with the reaction rates in the network: 

I! = {is 1 is E I is a substrate for reaction j, j E J) 

I: = {i, I i, f I is a regulator for reaction j, j E J) 

As before the sets M+ = {m+) and M- = {m-) denote the indices for the 

activating and the inhibitory action, respectively, that can be applied to each enzyme 

by each metabolite, where as the set MO = {mO) denotes the indices for the catalytic 

action of each enzyme on its substrates. With each index m that belongs in the index 

set M = M+ U hl- U M O ,  there is a regulatory or catalytic mechanism associated. If 

the mathematical description of the metabolic system is a (1og)linear or an S-system 

model, these sets denote the indices for the activation and the inhibition elasticities, 

respectively, as presented previously. Two index sets that are also needed are a set for 

the number of parameters associated with each regulatory mechanism and a set for 

the number of parameters associated with the substrate binding and transformation 

catalyzed by each enzyme: 

CYir = {c, I c, is parameter for the regulatory mechanism m 

by which reaction j is regulated by metabolite i,) 

and 

CFjis = {c, ( c, is a parameter for the catalytic mechanism rn 

by which reaction j is transforming metabolite is) 

In the case in which we consider alternative values for the parameters of a certain 

regulatory loop and mechanism or of a catalytic mechanism, we could treat the pa- 

rameters with different values as independent parameters and we should introduce 



the expanded index set: 

~r~~~~~ = {g, I g, is an alternative value for the parameter c, 

of the regulatory mechanism m by which reaction j 

is regulated by metabolite i,) 

and 

~ r j ~ ~ ~ ~  = {g, I g, is an alternative value for the parameter c, 

of the catalytic mechanism m by which reaction j 

is transforming metabolite is) 

The parameters associated with the regulatory mechanisms of the postulated reg- 

ulatory superstructure will be denoted as K&jircr,r, where rn belongs to the index set 

Mr = A[+ U M-. The parameters associated with the catalytic mechanism of the 

enzyme (substate binding and transformation) will be denoted as KLjiScsgs, where m 

belongs to the set Ad0. 

The continuous variables of the nonlinear model are the metabolite concentrations, 

xi, the manipulated variables, pk, the metabolic outouts, hl, and the reaction rates, 

vj . 

A binary variable, .y,jircrg,, is associated with each parameter, K&jipcpgr, of the 

regulatory mechanisms. If a regulatory loop, for which metabolite i, is regulating 

reaction j following mechanism m that is described by c, parameters with values g,, 

is active in the network, y,jircrg, is set to 1; otherwise it is zero. In order to control 

the number of manipulated variables that are allowed to  vary, similar to  the MILP 

problem, a binary variable, dk, is associated with each manipulated variable, pk. 

7.3.1 Reaction Rates and Metabolic Outputs 

The postulation of the regulatory superstructure and the introduction of the pa- 

rameters and variables presented above should be incorporated in the mathematical 
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description of the reaction rates. If we consider a unireactant reaction j in a metabolic 

network we can postulate a regulatory superstructure: 

Every metabolite in the metabolic network can be a competitive inhibitor or an 

random essential activator of the enzyme catalyzing reaction j and the parameters for 

the catalytic and regulatory mechanism can have g, and g,, respectively, number of 

alternative values. 

For this regulatory superstructure the rate expression for reaction j can be written 

in the following form: 

(7 .5)  

The manipulated parameter, p k ,  with a reference value, pk,,, in this illustration corre- 

sponds to the v, parameter and it is proportional to the amount of the enzyme that 

catalyzes reaction j. The binary variable, d k ,  associated with it will determine if it 

can be changed from the reference value. The term in the parenthesis in the nomina- 

tor corresponds to random essential activation, and the term in the parenthesis in the 

denominator corresponds to competitive inhibition. It should be mentioned that the 

regulatory superstructure, and the binary variables and the parameters associated 

with it, will appear only in the rate expressions. 

The metabolic outputs can be written in a similar form since they will be, in gen- 

eral, functions of the metabolites of the system and of the reaction rates. Therefore, 

the mathematical description of the metabolic outputs as a function of the parame- 

ters and the variables associated with the regulatory structure does not require any 

special formulation. 

The bilinear products of continuous and binary variables introduced in equation 

(7.5) require, as in the MILP problem, the introduction of new continuous variables 



for each bilinear product: 

- ~ k -  jircTgT - Ym- j i r c r g r X i r  v ( m -  , j ,  '&, G , gT)  

and 

and the introduction of the corresponding constraints that will be described later. The 

kinetic expression (7.5)  can now be written in terms of the new continuous variables: 

However, there is one more bilinear product of continuous and binary variables ap- 

pearing in the denominator of the above kinetic expression: 

We can define two more new continuous variables: 

and 

- I 
~ ~ ~ j i , c , g ,  - Y m o j i s c s g s U m o j i s c s g s  

and then the kinetic expression (7.5) can be written in terms of continuous variables 



only: 

- - 
g s E ~ ~ j ' ~ c ~  

In general, when regulation acts by modification of the K ~ O j i s c s g s  parameters, bilinear 

products of the form (7.10) will appear in the kinetic expressions, and introduction 

of the continuous variables u~~~~~~~~~ and u~oj i sCsgs  is required. 

7.3.2 The Objective Function 

The objective function can be formulated based on the process to be optimized. The 

objective function can be any metabolic output or combination of the reaction rates 

and the metabolite concentrations. Since the mathematical description of the system 

is nonlinear, the objective function will, in general, be a nonlinear function. 

However, as discussed before, when the available mathematical description is a 

(1og)linear or an S-system model, the objective function can be any nonlinear function 

of the reaction rates and the metabolites, as estimated using either models. The 

mathematical formulation will be the same as for the MIEP problem. However, 

the algorithmic procedure that will be followed will be the same as for the MINLP 

problem. An example of this type of study is the adjustment of the control coefficients, 

as discussed earlier. 

7.3.3 Constraints 

The metabolic optimization problem is also subject to the same type of constraints 

as in the MILP case: 

( i )  Mass balance for each metabolite i 

At steady state, the left-hand side of the mass balance equation (7.1) is set to  
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zero, and, for each metabolite xi, we have a nonlinear constraint of the form: 

(ii) Bounds on  metabolites, manipulated variables, rates, metabolic outputs, and 

continuous variables 

The significance of the postulation of bounds on metabolites, manipulated vari- 

ables, rates, and metabolic outputs, has been discussed earlier. The four types of 

variables of the MINLP problem should again be constrained within bounds deter- 

mined by their physiological ranges for the pathway of interest and by the available 

biological knowledge. Therefore, we will have bounds for the metabolite concentra- 

tions: 

x"xi<xy ~ E I  (7.15) 

for the manlpulated variables: 

for the reaction rates: 

v L < v . < v " j  3 - - 1 -  3 J 

and the for metabolic outputs: 

In general, manipulated variables, reaction rates, and metabolic outputs can take 

negative values. However, the metabolite concentrations should always be constrained 

to  be non-negative. 

The new continuous variables that were introduced for the bilinear products of 

continuous and binary variables should also be bounded. The proper definition of 

bounds for every continuous variable is crucial for the performance of the algorithmic 

procedure that will be used to solve the MINLP problem. Examination of equations 
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(7.6), (7.7), (7.8), (7.11), and (7.12), that define the continuous variables allows the 

definition of the bounds for these variables: 

The last two equations for the bounds, (7.22) and (7.23), are specific to the illustration 

presented above (equations (7.5)) in which a competitive inhibition was considered. 

In general, different mechanisms might require introduction of different continuous 

variables and, consequently, different bounds. 

(iii) Constraints for the u variables 

The variables that were introduced for the bilinear products of continuous and 

binary variables are connected with the continuous and binary variables via the fol- 

lowing constraints: 

a. Variables uk- jircrgr 

U L 
- ' 2 .  - ~ r n - j i r c ~ g , )  5 u:- ji,,,gr < Xi, - Xi,(l - Ym- ji,cg,) (7.24) 



L U 
xi,Ym'm-jircrgr 5 2~:- jirc,g, < Xi,Ym- jircrgr 

m- E M - ;  j E J, i, E I:, cr E C r - j i ~ ,  E G F - ~ G C P  

b. Variables uk+ jircrgr 

1 1 1 1 --- 
L - + c  5 j r g  5 - - ( 1  - + j r C r r )  (7.26) 

Xi, Xi, u 
Xi, Xi, 

m' f M+; j E J,  i, E I:, cT E C?*~ZT, gT E ~ ~ + 3 i ~ c ~  

1 - 1 
U ym+jiTcrgr 5 u:+jircrg,. 5 7 Y m + j i r c r g ,  

Xir Xi, 

rn' E M'; j E J,  2,  E I:, C, E ~ ~ ? j i r ,  g,  ~ y + j i r c ,  

c. Variables u$ 

U U L 
P k  - Pi. + (pi. + ~i . , o )d i .  < u: < pi. - pk + ( p i  + ~ n , ~ ) d k  (7.28) 

d. Variables u~~~~~~~~~ 

As mentioned before, these variables are specific to the illustration presented in 

which competitive inhibition was considered. 



m- E M-;  j E J ,  i, E I;?', c, E Cr-j ir ,  g, E G?-jirc?- 

The bounds for the variables u~.jiscsgs (equation (7.23)) were used in the above 

constraints. 

(iu) Logical constraints 

Introduction of constraints on the binary variables are needed in order to model 

the existence or nonexistence of various regulatory loops and the activation or deac- 

tivation of different continuously adjustable manipulated variables. 

An important logical constraint that almost always should be included is one 

that does not allow activation and inhibition of an enzyme by the same metabolite. 

Moreover, for each parameter of a postulated regulatory mechanism, only one value 

should be considered. In general, each metabolite, when it acts as regulator on an 

enzyme, should be considered to do so by only one mechanism. Therefore, the number 

of regulatory mechanisms for each regulator should also be constrained to one. These 

constraints appear in the formulation for each (j, i,): 

The parameters associated with the catalytic mechanism can take different values 

but only one value for each parameter must be allowed. The corresponding constraint 

can be formulated for each (mO, j, is, c,): 



Two additional constraints will constrain the maximum number of regulatory 

actions for each enzyme, I 1, and the maximum number of enzymes that a 

metabolite regulates, I Jk,, 1 ,  and can be formulated, respectively, as: 

and as: 

Similar to the MILP problem, the simultaneous manipulation of the variables q k  

will be subject to the following constraint: 

where ( Kmaz ( is the maximum number of the manipulated variables that can be 

modified simultaneously. This constraint arises from practical and physiological lim- 

itations, and I Kma, I varies from system to system. 

Finally, integer cuts should be also introduced here so that we can exclude all the 

previous optimal solutions found for the system. Because of the nonlinearity of the 

model, the previously found solutions are not necessarily better than the one that 

could be identified next. Therefore, these integer cuts can help appreciably in finding 

a better solution. In this case, when we solve for the n-th best solution we have t o  

include n - 1 constraints of the form: 



where I Bi I is the cardinality of the set Bi (i.e. the number of the elements in the 

set). 

The above mathematical formulation of the problem of optimal regulatory struc- 

ture for a metabolic network involves continuous and binary variables and features 

nonlinearities in the mathematical description of the kinetic expressions and the 

metabolic outputs. Therefore, it is an MINLP formulation, and the algorithmic pro- 

cedure that can be followed for its solution will be presented next. 

Algorithmic Procedure 

Many problems in chemical process engineering involve integer or discrete variables 

in addition to the continuous variables. The mathematical models used to describe 

and study these problems are also nonlinear problems. These classes of optimization 

problems are Mixed-Integer Nonlinear Programming (MINLP) problems. The diffi- 

culties encountered in solving these problems are associated with the combinatorial 

domain of the discrete variables and the nonlinearity of the continuous domain. 

As the number of integer variables increase, the problem becomes a large combi- 

natorial problem and computational problems arise (Nemhauser and Wolsey, 1988). 

At the same time, the nonlinear problem is in general nonconvex, which implies the 

potential existence of multiple local solutions, while the determination of the global 

optimal solution is a computationally hard problem and there is no theoretical devel- 

opment that will identify a solution as global. 

The numerous significant problems that can be studied within the MINLP frame- 

work has led to  intensive research. Several algorithms have been proposed, their 

convergence properties have been investigated, and they have been successfully used 

in many applications. Some of the most commonly used, in chronological order of 

development, are the following: 

1. Generalized Benders Decomposition, GBD, (Geoffrion, 1972; Paules and Floudas, 
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1989; Floudas et al., 1989); 

2. Branch and Bound, BB, (Beale, 1977; Gupta, 1980; Ostrovsky et al., 1990; 

Borchers and Mitchell, 1991); 

3. Outer Approximation, OA,  (Duran and Grossmann, 1986); 

4. Feasibility Approach, FA, (Mawenngkang and Murtagh, 1986); 

5. Outer Approximation with Equality Relaxation, 0 A / E R ,  (Kocis and Gross- 

mann, 1987); 

6. Outer Approximation with Equality Relaxation and Augmented Penalty, 

O A / E R /  A P ,  (Viswanathan and Grossmann, 1990); 

7. Generalized Cross Decomposition, G C D ,  (Holmberg, 1990) 

8. Generalized Outer Approximation, G O A ,  (Fletcher and Leyffer, 1994); 

In our studies we will apply the Generalized Benders Decomposition, G B D ,  al- 

gorithm which will be presented in the following section. 

7.4J Generalized Benders Decomposition, GBD 

In this section the G B D  algorithm will be presented. In order to simplify the no- 

tation, the variables, the functions, and the indices that will be used in this section 

will be independent from the previously used notation and will be defined in the text 

below. 

The general MINLP formulation can be stated as: 
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where x is a vector of n continuous variables (e.g., metabolite concentrations, reaction 

rates), and y is a vector of q binary (0-1) variables (e.g., existence of a regulatory loop 

(yi = 1) or non-existence (yi = 0); h(x,y)=O denote the rn equality constraints (e.g., 

mass balance equations); g(x,  y )  5 0 are the p inequality constraints (e.g., bounds 

for the metabolite concentrations and the reaction rates, logical constraints); f (x, y )  

is the objective function (e.g., growth rate, production rate of a product). 

The basic idea in G B D  is the generation, a t  each iteration, of an upper bound and 

a lower bound on the sought solution of the MINLP model. The upper bound results 

from the primal problem, while the lower bound results from the master  problem. 

The primal problem corresponds to problem (7.38) with fixed y-variables (i.e. it is 

in the x-space only), and its solution provides information about the upper bound 

and the Langrange multipliers associated with the equality and the inequality con- 

straints. The master problem is derived via nonlinear duality theory, makes use of 

the Eangange multipliers obtained in the primal problem, and its solution provides 

information about the lower bound, as well as the next set of fixed y-variables to 

be used subsequently in the primal problem. As the iterations proceed, it is shown 

that the sequence of updated upper bounds is non-increasing, the sequence of the 

lower bounds is non-decreasing, and that the sequences converge in a finite number 

of iterations. The steps followed in the G B D  algorithm will be presented next in 

detail. 

T h e  GBD Algori thm: Feasible NLP Subproblems 

The GBD algorithm under the assumption of feasible NLP subproblems can be stated 

as follows. 

Step 1. Select an initial assignment for the projected binary variables to be used 

in the first NLP subproblem, y'. Set the iteration counter k = 1. Initialize the upper 

bound Zu = +w. 

Step 2. Solve the yk parameterized NLP subproblem sGBDk 

z ( ~ ~ )  = min C(x, yk) 
X 



subject to 

The solution of problem sGBDk gives Z(yk) ,xk,qk and Xk. Here, qk are the Lan- 

gange multipliers for the constraints of the form g(x,  yk) ,  and Xk are the Langrange 

multipliers for constraints of the form h(x,  yk) .  Update the current upper bound 

If ZU = z U ( y k ,  set y* = y h n d  x* = xk). 

Step 3. Formulate the pseudointeger master problem M~~~~ 

subject to 

where 

L(X" y ,  qk, Xk) = c ( x k ,  y )  + (qk)T - g(xkl Y) + (Xk)T a h(xk, Y)  

and T denotes the transpose of the corresponding vectors of the Langrange multipliers. 

Step 4. Solve the master problem M~BD'".  The solution of this problem gives 

Z& and yk++'. If Z& = Zu then stop; the solution is Zu, y*, x*. Otherwise, set 

k = k + 1 and return to Step 2. 
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The GBD Algorithm: Infeasible NLP Subproblems 

If the initial integer guess or a proposal returned from the master problem generates 

an infeasible NLP subproblem, the procedure is as follows. Replace the infeasible 

NLP problem with the problem: 

2 ( y k )  = min a 
Q 

subject to 

where a is a scalar variable that will minimize the infeasibilities. Define a new Lan- 

grangian function at  the optimal solution to this problem 

Proceed from Step 3 and include the constraint 

The GBD Algorithm: The Integer Cuts 

The form of the integer cuts included in the MINLP master problems to  prevent a 

binary combination that has already been tried, from being proposed again is: 
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where 1 Q I is the cardinality of the set of activated binary variables Q. 

These integer cuts are different than the ones introduced as logical constraints. 

The integer cuts here are included and updated after each iteration of the algorithm. 

The previously introduced integer cuts are included after the algorithm has converged 

to  an optimal solution and updated for every optimal solution that has been found 

in order to prevent a binary combination to be found again as optimal solution. 

7.4.2 Initialization Schemes 

Nonlinear programming (NLP) problems may involve nonconvexities which imply 

difficulties with determining the global optimal solution. Hence the performance of 

conventional algorithms for NLP problems is highly dependent on the starting point 

provided for the algorithm, and they often fail to determine even a feasible solution. 

Recent advances in applied mathematics and computer sciences allowed the develop- 

ment of approaches for global optimization for problems that feature certain types 

of nonlinearities, such as polynomial functions (Pardalos and Rosen, 1986; Zilinskas, 

1986; Torn and Zilinskas, 1987; Floudas et al., 1989; Floudas and Visweswaran, 1990), 

and there is no approach for global optimization of MINLP problems. 

Metabolic network optimization problems, due to the nonlinearity of the kinetic 

models for metabolic kinetics and of the objective functions, cannot be solved with any 

of the proposed global optimization approaches. The mixed-integer nonlinear nature 

of the problems complicates further the search for optimal solutions. Because of the 

combinatorial character of the problem, as shown for the MILP problem, existence of 

multiple global optima is also possible. However, clever initialization schemes for the 

MINLP algorithm can significantly improve the performance of the NLP solver and 

aid in determining a large number of local optima. 

For the metabolic reaction networks, as shown before, there are two alternative 

modeling frameworks that approximate the nonlinear models very accurately: the 

(1og)linear model and the S-system representation. Therefore, having a nonlinear 

model for a metabolic network, we could construct the corresponding (1og)linear and 
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S-system models. These models could be studied using the MILP framework and the 

suggested solutions could be used as starting points for the MINLP algorithm. 

Consider that,  in a given reaction network, the enzyme levels are the manipulated 

variables. Every reaction rate is proportional to  enzyme levels and depends on the 

set of metabolites, x, and the binary variables for the regulatory structure, yr:  

where v,,~(~:) is the parameter corresponding to the enzyme level, and dj  is the 

binary variable which determines if changes in that enzyme level are allowed (dj = 1) 

or not (dj = 0). In order to  ensure that the initial point will be a feasible point the 

following procedure is proposed: 

S tep  1. Construct the approximate model around the reference steady state 

and solve the MILP problem. The solution will provide a set of optimal regula- 

tory structures, y;, and the corresponding manipulated variables that are allowed 

to be changed, dL, where the subscript L indicates that the vector is a solution of 

the MILP problem. A set of continuous variables will also correspond to each op- 

timal regulatory structure. These continuous variables will include the metabolite 

concentrations, XL, and the reaction rates, VL. 

S tep  2. From the first regulatory structure in the solution set and for every 

reaction, vj, in the nonlinear model, use as initial values for metabolite concentrations, 

reaction rates, and binary variables the corresponding values from the MILP solution: 

Calculate the initial values of the manipulated variables that have been suggested 

from the MILP solution to change from Equation (7.39): 

For every manipulated variable that has not been proposed to change in the solution(s) 
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to the MILP problem, keep it fixed. This will probably result in infeasibilities for the 

mass balances. 

Step 3. Solve the NLP problem minimizing the infeasibilities of the mass balances, 

similar to the infeasible NLP subproblems in the GBD algorithm. If solution results 

in a feasible NLP; i.e., the mass balances are exactly satisfied, then solve the MINLP 

using the GBD algorithm presented above. If the solution results in an infeasible 

NLP; i.e., the infeasibilities have been minimized but the mass balances are not 

exactly satisfied, discard the suggested MILP solution and proceed to  the next one. 

The above initialization scheme can significantly enhance the search for local op- 

tima in the MINLP problem. The possibility of exploiting both the (1og)linear and the 

S-system modeling approaches can, in general, provide different suggestions, increases 

the number of initial binary variable combinations and continuous variables. 

Computational Study 

The synthesis problem will be illustrated using again the aromatic amino acid biosyn- 

thetic pathway in bacteria. The pathway has eight regulatory loops, all of which are 

feedback inhibitory loops. The nonlinear model is presented in the Appendix A.111. 

The question addressed was the same as in the first of the MILP problems: 

Which of the existing loops should be inactivated and what should be the associated 

changes in the enzyme expression levels to maximize the phenylalanine selectivity 2 

The upper bounds considered for the concentrations of the intermediate metabolite 

DAHP, CHR, and PHP were 1000 mM, whereas the concentrations of the amino 

acids PHE, TYR, and TRP, were left unbounded. The specific growth rate, p, was 

constrained within f 10% its reference value. This constraint allows solutions that 

will not have a strong effect on the rest of the metabolic activities. The levels of the 

six enzymes in the pathway were constrained between their reference value and twice 

the level of the reference value since great overexpression is practically feasible. The 

number of the simultaneously overexpressed enzymes was constrained to four. 

The MINLP optimization problem was solved by using the GBD algorithm and 
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initial points proposed by the MILP problem. The regulatory structure of the best 

solution is presented in Figure 1 (case a) and the corresponding value of the pheny- 

lalanine selectivity is 

Sphe,,t, = 0.903621 

which is 111% higher than the value for the reference state 

This solution features five regulatory loops and three overexpressed enzymes. The 

metabolite concentration levels and the overexpressed enzyme levels associated with 

the solution are presented in Table I. The specific growth rate was decreased by 8.94%, 

and none of the constrained intermediates reached the allowable upper bound. 

A second solution with significantly improved selectivity 

was also found. This value for the selectivity is 110% higher than the value for the 

reference state. The solution, presented in Figure 1 (case b) features four regulatory 

loops and four overexpressed enzymes. The metabolite concentration levels and the 

overexpressed enzyme levels associated with the solution are presented in Table I, 

and the corresponding specific growth rate is again decreased by 8.94%. Although 

the two solutions are very similar with respect to the phenylalanine selectivity and 

the effect on the specific growth rate, the first solution is more attractive since it 

suggests the minimum number of the regulatory loops that should be inactivated and 

the minimum number of the enzymes that should be overexpressed. 

More solutions with similarly high improvements of the objective function were 

also found when the constraints for the specific growth rate and the concentration of 

DAHP were relaxed. The solutions found with a significant decrease of the specific 

growth rate contained fewer regulatory loops suggesting that the multiple regulatory 

loops present in the original system minimize the effects of the perturbations in the 
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pathway on the rest of the cellular metabolism. 

The solutions found with significantly high DAHP concentration suggested in- 

activation of the feedback inhibitory loop from DAHP on the first reaction that is 

responsible for its formation. This pattern is a strong indication that the functionality 

of this loop is the regulation of the concentration levels of DAHP. 

7.6 Linear vs. Nonlinear F'rarnework 

The solutions found using the nonlinear framework are different from the solutions 

proposed from the linear framework (Problem 1 in the MILP chapter). However, the 

regulatory structures in cases c and f from the linear framework (Problem 1) have 

many common characteristics with the MINLP solution and the enzymes that cat- 

alyze reaction steps 3 and 4 should be overexpressed, according to both frameworks. 

Moreover, the relative overexpression levels of the two enzymes are the same for the 

two frameworks; i.e., the enzyme that catalyze reaction step 4 should be overexpressed 

to the maximum allowable level whereas the enzyme that catalyzes reaction step 3 

should be overexpressed only up to 20%, according to  the nonlinear model, and up 

to  40%, according to the linear model. 

The MINLP problem is computationally more complex than the MILP one. How- 

ever, the solutions from the nonlinear model are more reliable since the description 

of the system is based on the molecular mechanisms of enzyme catalysis, and, al- 

though it is still an approximation of the physical system, it is a niore complete, more 

globally accurate one. The coupling of the frameworks by using the linear frame- 

work for obtaining initial points for the nonlinear framework improves significantly 

the performance of the MINLP algorithmic procedure. 



251 

7.7 References 

Floudas, C.A., "Nonlinear and Mixed Integer Optimization: Fundamentals and 

Applications," Oxford University Press, New York (1995). 

Floudas, C. A., A. Aggarwal, and A. R. Ciric, "Global Optimum Search for Non- 

convex NLP and MINLP Problems." Computers chem. Engng 13, 1117 (1989). 

Floudas, C. A. and V. Visweswaran, "A Global Optimization Algorithm (GOP) 

for Certain Classes of Nonconvex NLPs - I. Theory." Computers chem. Engng 14, 

1397 (1990). 

Pardalos, P. and J. B. Rosen, Constrained Global Optimization: Algorithms and 

Applications. SIAM Rev. 28, 367 (1986). 

Savageau, M. A., "Biochemical Systems Analysis: A Study of Function and Design 

in Molecular Biology," Reading, MA, Addison-Wesley (1976). 

Schlosser, P. M., and J. E. Bailey, "An Integrated Modelling-Experimental Strat- 

egy for the Analysis of Metabolic Pathways," Math. Biosci., 100,  87-1 14 (1990). 

Segel, I. H., "Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and 

Steady-State Enzyme Systems," John Wiley & Sons, New York (1975). 

Torn, A. and A. Zilinskas, "Global Optimization." Lecture Notes in Computer 

Science, 350. Springer-Verlag, New York (1987). 

Zilinskas A., Global Optimiation-Axiomatics of Statistical Models, Algorithms and 

Their Applications, Moklas, Vilnius (1986) 



252 

APPENDIX A.1 

The number of the reactants in a metabolic reaction varies from one to three, 

though most of the them are bireactant; i.e., the reaction involves two metabolites as 

substrates (reactants). Rate expressions are given here for some of the most common 

cases (Segel, 1975): 

1. Unireactant Enzymes 

These enzymes catalyze the reaction: 

The three most common rate expressions used, depending on the molecular 

mechanism. are: 

(a) Michaelis-Menten kinetics: 

V = urn [SI 
Km + [S] 

(b) Henri-Michaelis-Menten kinetics: 

(c) Hill kinetics 

2. Bireactant Enzymes 

These enzymes catalyze the reaction: 
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The three most common rate expressions used, depending on the molecular 

mechanism, are: 

(a) Random Bireactant System: 

V = Vm 
(A1 IBI 

CYKAKB + CYKA[B] + ~ K B [ A ]  + [A][B] 

(b) Ordered Bireactant System: 

(c) Ordered Bi Bi System (Theorell-C hance) : 

where 

= vTKia KmB + ~r KmB [A] + ~r Km, [B] + vjKm, (PI + vjKmp [ Q I  
Keq Keg 

+v,[A]EB] + v f  Kmq LA] [PI + vr Km, IBI IQI + v f  [PI [QI 
Keq Kia Kiq Keq 

3. Terreactant Enzymes These enzymes catalyze the reaction: 

The most common rate expression used is of the form: 
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APPENDIX A.11 

The kinetic expressions of enzymes that are subject to regulation depend on the 

molecular mechanism of the reaction and of the action of the regulator. The regulators 

are characterized, depending on the effect they have on the reaction rate, as inhibitors, 

if their concentration increase decreases the reaction rate, or as activators, if their 

concentration increase increases the reaction rate. The rate expression of some of the 

most common regulatory systems will be presented here (Segel, 1975): 

1. Unireactant enzymes 

As mentioned before, these enzymes catalyze the reaction 

and the most common types of regulation are: 

(a) Competitive Inhibition: 

where I is the inhibitor. 

(b) Noncompetitive Inhibition: 

where I is the inhibitor. 

(c) Uncompetitive Inhibition: 

where I is the inhibitor 



(d) Nonessential Activation: 

where A is the activator 

(e) Nonessential Activation in the presence of an inhibitor: 

where the binding of the activator, A, reverses the inhibitory action of a 

pure noncompetitive inhibitor, I. 

(f) Essential Activation: 

In essential activation, the activator site must be filled before any catalytic 

activity is possible. Depending on the order of binding the expressions for 

the kinetic rates have any of the following forms: 

i. Ordered: a molecule of the activator A binds randomly before the 

substrate S: 

ii. Ordered: Substrate S binds first, then a molecule of the activator A 

binds randomly: 



[A1 v = urn- IS1 
KA (Ks + IS])$ [A1 + [S] 

iii. Random binding of the substrate S and the activator A: 

(g) Competitive Inhibition by two different nonexclusive inhibitors: 

where I and X are the two competitive inhibitors. 

(h) Inhibition by one competitive and one noncompetitive inhibitor: 

where I is the competive, and X is the noncompetitive, with respect to S, 

inhibitor. 

In an analogous way similar rate expressions can be derived for any rate expression. 

There are two main ways a regulator can affect a reaction rate: either by modification 

of the dissociation constants, i.e. Ks's, or by modification of the catalytic activities, 

i.e. urn's. 
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7.8 Appendices 

APPENDIX A.111 

The rate expressions for the aromatic amino acid pathway are taken from Schlosser 

and Bailey (1990). The parameter values used for the dissociation constants are the 

same as in Schlosser and Bailey (1990) where the references for the estimation of these 

parameters can be found. The values for the vj,,,, have been adjusted to give steady- 

state values similar to those found in bacterial cells for [GCP] = 0.8 m M ,  [ P E P ]  = 

0.1 m M ,  [ATP]  = 2.5 m M ,  [ADP]  = 0.4271 m M ,  and [ A M P ]  = 0.0729 mb1. The 

rat'e expressions for the 15 reactions in the pathway are: 

211 = um,1 
[G6P1[PEP1 ('*[) (*]) (1512 

(0.1 + [GCP]) b.006 (1  + I D A H P I )  0.02 + [ P E P ] ]  

[DAH P]  [ P E P ]  [ATP]  
v'2 = um,2 

( 2  + [ D A H P ] )  (0.00867 + [ P E P ] )  (0.9281 + [ A T P ] )  

[G6P] [CH R] [ATP]  
v6 = um,6 

(1.269 + [G6P])(2 + [CHP])(0.9821+ [ A T P ] ) ( l  + [TRP] /16 )  
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v13 = p[PHE],  v14 = p[TYR],  vl5 = ~ [ T R P ]  , where: 

The growth function, p,  used is: - 
Y [PHE]  [TYR]  [TRPI-PEP' 

= 0'014 (0.25 + Y)(18 + (PHE])(13 + (TRY]) (5  + : ~ ~ ~ : ) ( 0 . 0 0 5 9 2 3  + [ P E P ] )  
where 

The mass balance equations for each of the metabolites in the aromatic amino 

Y =  [ATP' 
IATP] + 

acid pathway is given by 

+ 0.5[ADPJ 
ADP] + A AMP^ 

DAHP : 0 = vl - ~2 - vlo 

C H R  : 0 = ~2 - ~3 - -a l l  

PHP : 0 = U S  - v4 - vs - v l . ~  

P H E :  O =  ~ 4 - ~ 9 - ~ l 3  

T Y R :  O =  v5 -v s - v l4  

T R P :  O =  VG - - ~ 7 - ~ l 5  

For the stoichiometric matrix we have 

The stable steady-state a t  which the linear model was constructed is: 
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and the values for the rates a t  these values are: 



II case a I I case b 

Table 7.1: The metabolite concentration levels and the enzyme levels for the two op- 
timal solutions of the MINLP problem. The subscript i denotes the corresponding re- 
action steps for the V, variables, and for the metabolite concentrations: XI =[DAHP], 
x2 =[CHR], x3 =[PHP], ~4 =[PHE], 2 5  =[TYR], ~6 =[TRP]. 



7.9 Figures 



Figure 7.1: The two optimal solutions of the MINLP problem. Solid arrows indicate 
enzyme overexpression for the respective reaction, dotted arrows indicate reactions 
with enzyme levels at the reference state, and dashed arrows indicate inhibitory loops. 
In solution b the reaction numbering has been omitted for clarity. 
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Chapter 8 Epilogue 
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8.1 Future Prospects 

Metabolism is an extremely complicated, multicomponent system. In addition to 

numerous different chemical reactions and intermolecular interactions, many coupled 

through common reactants, metabolism is complicated by an overlay of multiple con- 

trol systems operating a t  both genetic and protein levels. There is an intercalated 

hierarchy of increasingly sophisticated mathematical tools and of increasingly detailed 

experimental bases for analyzing and manipulating metabolism. Three new develop- 

ments in mathematical methods and applications were presented in this thesis: a 

framework for estimating intracellular metabolic reaction rates, a (1og)linear kinetic 

model for approximating responses of metabolism to changes in their parameters, 

and an optimization framework for the analysis and design of regulatory structures 

in metabolic reaction networks. As with every novel method, these developments 

presented introduce numerous new topics for further investigation. 

Experimental data used in metabolic flux analysis are subject to errors that 

propagate in the estimation of the reaction rates. Moreover, advanced experimen- 

tal techniques using isotopically labelled substrates (such as 13C-labelled substrates 

with products analyzed by NMR) are available for reducing the number of the un- 

known intracellular reaction rates. Further development of the metabolic flux analysis 

framework should include an error analysis and should consider the formulation of 

constraints for the additional experimental information. The construction of growth 

and product formation models for bioprocess control and optimization based on the 

results of this type of analysis should also be investigated. These models could be 

used for determining process operations to achieve an optimal pattern of intracellular 

metabolic reaction rates. 

Detailed and reliable nonlinear mathematical models of single cells have been 

developed for various organisms. However, because of their size and complexity, they 

cannot be used for bioprocess control and optimization. The (1og)linear modeling 

framework could be used in order to transform these models into simpler mathematical 

structures. Detailed analysis of the agreement between the nonlinear models and their 
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(1og)linear representations can be performed in order to examine the performance 

of the (1og)linear models. If the (1og)linear representations are found to be good 

approximations of the nonlinear models, they would be excellent tools for studying 

the effects of genetic manipulations on bioprocess performance, since the information 

about molecular level regulatory interactions will be explicitly preserved in the values 

of the corresponding elasticities. 

One of the most important problems in constructing any kind of kinetic models of 

metabolism is the uncertainty of the kinetic parameters. The experimental methods 

used to estimate their values is already subject to error. Moreover, the intracellular 

conditions will never be exactly known and will always be subject to fluctuations. 

Therefore, the optimization framework should be further developed in order to take 

into account these uncertainties for both (1og)linear and nonlinear kinetic models. 

While the methods presented here provide with good qualitative guidance, consid- 

eration of the uncertainties could further limit the presently proposed approaches, 

since strategies that are optimal in the presence of uncertainties will be the primary 

candidates for experimental implementation. 

One of the important issues that this thesis has not addressed is the stability of 

the metabolic steady states. Simulation studies of various metabolic networks has 

suggested that their steady-state stability characteristics is strongly influenced by 

the regulatory structures. Moreover, in metabolic networks with complex regulatory 

structures, I have observed that some of the regulatory loops regulate the dynamic 

characteristics of the network whereas some others have no effect on the dynam- 

ics of the network but regulate the level of various metabolic parameters, such as 

steady-state metabolite concentrations and reaction rates. The development of the 

(1og)linear model allows the application of linear robust control methods for the anal- 

ysis of the regulatory structures with respect to their effect on the stability of the 

metabolic network. Prior investigations have shown that tools such as p-analysis can 

be successfully applied in metabolic systems. 

Biology and biotechnology can only profit from integration of mathematical meth- 

ods to advanced tools for experimental analysis. This is emphasized when one consid- 
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ers the methods presented in this thesis and the above suggestions for their develop- 

ment and applications. What is needed in order for mathematical approaches to the 

increasingly complex biotechnological problems to be more successful and instructive, 

is wise and imaginative perception and formulation of critical questions and problems, 

taking into account the highest level of mathematical and computational tools which 

exist (or can be developed). 


