Analysis and Design
of Metabolic Reaction Networks

Thesis by

Vassily Hatzimanikatis

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted 24 April, 1997)



1

© 1997
Vassily Hatzimanikatis
All Rights Reserved



1l

Acknowledgements

Trying to write down these acknowledgements, I realize that there is a big number of
people that have contributed to the completion of this work. People that shaped my
scientific profile and my personal character.

First of all, I wish to acknowledge Jay Bailey for being more than an advisor
to me. He taught me how to identify and address the important problems and his
continuous challenging and criticism of my work, along with the freedom he provided
to me, although they have been dangerously frustrating, have been the source of
inspiration and the ground for my scientific growth.

On the other hand, Chris Floudas taught me how to postulate and attack the prob-
lems. Working with Chris was not always easy. But it was educational, challenging.
and, in retrospective, joyful. Chris, thanx for everything.

I was very lucky to have Mary Lidstrom teaching me microbial physiology and
Steve Wiggins teaching me applied mathematics. They have been two of my excellent
teachers at Caltech, along with John Brady, with his i’s and j’s, and George Gavalas,
with his entropies, enthalpies, and fugacities.

Speaking about teachers, I cannot help remembering and acknowledging my un-
dergratuate advisors and teachers: Stavros Pavlou, George Papatheodorou, Alkis
Payatakes, Costas Vayenas, and Gerry Lyberatos. I am most thankful to them for
my solid educational background and their support and confidence in me.

Alex Seressiotis has been of precious help in the scientific and technical aspects
of this work, and a great activator when frustration was saturating. His regulatory
action deserves special acknowlegement.

Special, sincere thanks to Christos Frouzakis for his patience listening to my prob-
lems, for thinking about them, for making key suggestions, and for being a (Greek)
friend of rare quality.

Speaking about friends. Looking back to these past five years two names flash:



iv

Zhenya and Kelvin. Zhenya, aka Yevgeny Yurkovetsky, has been my first friend at
Caltech, and one of the best, since then. If I survived the first year at Caltech,
it is because Zhenya was around. Stoic, with his cynical humor (he prefers to call
it “Odessan”), going down the list of the violins when depression was overtaking,
taking care of me when homeworks were overloading, meditating with me over the
uncountable infinity of foliations, sharing together the Fellinian emotions. Thanx a
lot Zhenya.

Then it was Kelvin. A great friend in Caltech and in Zurich, and an excellent
scientific companion. He was my coffee-breaks relief and the Boccalino-evenings re-
laxation. Sharing our frustrations and working together on the development of the
Graphic Arts department. Being more than a friend when my father was dying and
teaching me that a green-card-holder-to-be is neither a Democrat nor a Republican
but an American. My days—and nights—in Zurich would have been unbearable
without Kelvin. All the best Kelvin, because we will never be done.

Nikos Bekiaris and Chrisa Economou have been my first and best Greek friends at
Caltech. Their help with starting my life in the States, the Greek fests we organized
together, and the nice moments we shared will be gratefully remembered.

Marcel (fratello mio), Wil (the sleepless), Marjan, Feike, Maarten and the Dutch
mafia at IBT helped me more than they can even imagine. Especially during the first
two years, when this work was still an impossible possibility.

And when the results started coming, Uwe and Wolfgang R. were there to question
them and drive me crazy. Because of them I have learned how I, a theoretical engineer,
can fruitfully interact with applied scientists - as they would like to call themselves,
and as I would like to call them. The real scientist though was sharing the same office
with me: Wolfgang K. When my programs were not running and my e-mailbox was
empty, discussing with him was pleasant, educational enrichment.

Pablo, Phil, Wilfred, and Dana have been invaluable friends and valuable groupmates—
“brother” chemical engineers in the midst of hard-core biologists.

Petra, Sigi, Becky, Kyle, Julie, and Henriette were showing their lovely faces

around thus making a significant difference.



v

Bernard Witholt, Erika and Helena were keeping the institute up and running and
they have been always of great help and provided a congenial atmosphere that made
life at IBT comfortable.

Adrianna and Conny provided me the support when I needed it and they will never
be forgotten. Bigi, Ivo, Claire, Miquel, Lisa, Jan, Michele, Marc, Nicolas, Andrew,
Roberto, Markus, Lucas, Christian, Peter: thanx a lot!

Nobody else from IBT will be forgotten, even if they have not been named here.
Everybody, in their way, made it easier or harder for me to successfully work on this
thesis.

And, of course, I have not forgotten Ellen but I want to thank her ending my
acknowlegements to IBT people remembering the way we have been ending our days
beer-washing our lab-problems and personal obsessions at the Bonnie Prince and at
the Odeon, till four in the morning. Her early departure from the Institute (leaving
engineering for science) meant loneliness to me.

In Zurich though I had my familia: Giovanna (cara sorellina mia!) and Annalaura,
who took care of me, provided me with the mostly needed family warmth, believed
in me (thanx a lot for the Verona nights, the Pisa days, and the Italian or...ms!),
and made Zurich my hometown. Giuvi and Nuccia, 7 miei pid sinceri ringraziamenti!
And of course it was Secondo, member of the family, with our long after hours wine
sessions, the spring-fests at his atelier, and his explosive creations on canvas.

Sophia and Thomas, thank you very much for your friendship, for Angelika and
Jannis, and for the Gemdiitlichkeit.

However, a significant part of this work was carried out at Princeton and a bunch
of wonderful people there ought to be acknowleged.

I must thank loannis Androulakis, my office- and housemate at Princeton for his
help, friendship, patience with me, and the great, unforgettable time we had together.
1 would also like to thank Costas Maranas for being of significant help with my work.
Ioannis and Costas have taught me the basic principle in programming: ”if it works

bi

Cordial thanks to Claire and Omar for their sincere friendship and the pleasant



vi
time we have had together.

Ioannis, Claire, Omar, Carl, Costas, and Janna made me feel nice and comfortable
in Princeton creating the environment I needed to be efficient and productive. That’s
how they have significantly contributed to this work.

Jette, Lydia, Marjan, and I were close while I was finishing writing this thesis.
Their company made the hardest part of this work a lot easier. Thank you, girls!

I will close these long acknowledgements thanking Chianti Classico, Gordon’s,
Parisienne, Red Door Café, Boccalino, Menza, Gnadinger, Spriingli, Odeon, Rosen-
garten, and Eulenspiegel for the inspiration and for being there when everything was
falling apart.

Pasadena, April 1996

PS: Financial support was generously provived by the Swiss Priority Program in

Biotechnology.



vii

Abstract

Different mathematical methods can be used for the analysis of metabolic systems
and the subsequent engineering of metabolism. The available experimental informa-
tion dictates the most appropriate mathematical framework for such studies. Several
approaches for metabolic system analysis and design are developed in this thesis. It
is shown that for several model systems, a (log)linear model shows excellent agree-
ment with the corresponding nonlinear model. The (log)linear model which is de-
veloped here describes the dynamical and steady-state responses of the logarithmic
deviations of the metabolic variables and functions with respect to a change of the
metabolic parameters around a corresponding reference state. The parameters of the
(log)linear model are quantities easily estimated from experimental and theoretical
tools developed within metabolic control analysis (MCA). A significant advantage
of the newly developed (log)linear model is the linearity with respect to logarithms
which makes computational analysis easier as compared to the correponding nonlin-
ear model. A second approach introduces a novel, production-oriented optimization
framework. Maximizing the performance of a metabolic reaction pathway is treated as
a mixed-integer linear programming (MILP) formulation when a (log)linear model of
the pathway is available and as a mixed-integer nonlinear programming (MINLP) for-
mulation when a nonlinear model is available. The objective of the MILP and MINLP
formulation is to identify changes in regulatory structure and strength, and in cellular
content of pertinent enzymes, which should be implemented in order to optimize a
particular metabolic process. A regulatory superstructure is proposed that contains
all alternative regulatory structures that can be considered for a given pathway. The
proposed approach is followed in order to find the optimal regulatory structure for
maximization of phenylalanine selectivity in the microbial aromatic amino acid syn-'
thesis pathway. The solution suggests that, from the 8 feedback inhibitory loops in

the original regulatory structure of this pathway, inactivation of at least three loops
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and overexpression of three enzymes will increase phenylalanine selectivity by 42%.
Moreover, novel regulatory structures with only two loops, none of which exists in

the original pathway, could result in a selectivity of up to 95%.
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Chapter 1 Prologue

1.1 Dealing with Metabolic Complexity

Current knowledge of biochemical systems is composed of a vast set of data that ac-
cumulate with an increasing rate. Advances in analytical methods and development
of sophisticated techniques and instrumentation have provided the tools that allow
us to know more than we can understand. However, it is well-understood that living
organisms are characterized by high complexity. This complexity increases from uni-
cellular organisms to isolated tissue cells and multicellular structures, such as tissues
and organs.

Recombinant DNA and genetic technology have been major advances in molecular
biology that allow the introduction of precise changes in many aspects of cell function
at the molecular level and thus, the engineering of metabolic activities for novel and /or
improved functions. The application of molecular biology and engineering tools for
the useful manipulation of cellular processes is defined as metabolic engineering. This
is a very neat definition since it identifies the engineering virtues of the manipulation
of metabolism: putting together the available information, employing intuition, and
tackling the problem. However, as in many engineering approaches, solution of the
problem has not been always achieved. Moreover, the discovery of some of the most
profitable biotechnological applications was serendipitous.

The current approaches and methodologies, while providing with the understand-
ing of isolated cellular processes and subsystems, do not allow understanding of the
simultaneous contributions of these subsystems to the overall cellular metabolism. It
is the organization of these subsystems, which are themselves relatively small but elab-
orate networks, in large complex networks where intuition and piece-wise knowledge
are failing as tools for rational metabolic engineering (and, similarly, for accomplish-

ing molecular biology and molecular medicine). Moreover, the high dimensionality
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of these networks is offering an almost infinite number of alternative approaches
toward the achievement of a goal. Most of the metabolic networks considered for en-
gineered manipulation are composed of enzyme-catalyzed reactions with complicated
stoichiometry, nonlinear kinetics, and superimposed regulatory structures. These
regulatory structures are interactions of enzymes with compounds in the reaction
networks, which often are not reactants or products of the reaction catalyzed by the
enzymes in question, but which modulate the catalytic activity of the enzymes.

Unsuccessful attempts to engineer cellular metabolism by simply manipulating the
amount of various enzymes suggest that engineering of the regulatory characteristics
of the enzymes in a metabolic network offers a great potential for the achievement
of desired metabolic properties. In many examples of small reaction networks with
simple regulatory structures, changes in the regulation of one or two enzymes im-
proved product formation significantly. In large metabolic networks the regulatory
structures tend to be more elaborate. Moreover, the experimental difficulties in mod-
ifying regulatory interactions add another degree of complexity, since the common
trial-and-error experimental approach is infeasible.

The development of tools and frameworks that will organize the available bio-
logical knowledge and will help in the analysis and design of metabolic networks is
of immediate importance. These tools should be able to screen efficiently through
an almost unlimited set of cellular modifications (realizable by genetic engineering
technology) and report a small set of most promising options that can be further
tested for their potential to lead to the development of new products and improved
bioprocesses.

In this thesis a set of mathematical and computational methods are proposed as
tools for the accelaration of this iterative cycle of metabolic engineering. Mathe-
matical models of the cell have been used successfully in the past for the analysis
of cellular processes, and they have provided useful initial directions for genetic im-
provements of the process of interest. The realization that mathematical models are
the only way that net consequences of simultaneous, coupled, and often counteracting

processes can be evaluated consistently and quantitatively, has led to the growth of
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mathematical modeling in many biological and biotechnological areas.

The analysis of these mathematical models has been mainly based on simulating
consequences of genetic and environmental changes using the models as surrogate
organisms for in silico studies, the same way the living cells would be studied in vivo
in the laboratory. However, simulations of alternative approaches do not really ad-
dress the problem in a systematic and consistent way. The mathematical frameworks
presented in this thesis do not use mathematical models for simulating experiments.
They use the models in order to suggest experiments for the optimization of a biotech-

nological objective without enumerating a very large set of alternative approaches.

1.2 Mathematical and Computational Methods
for Metabolic Analysis and Design

Mathematical models of different classes, with different information bases and dif-
ferent inputs and outputs are necessary to organize and apply data on metabolic
networks towards the ultimate goal of effective redirection of metabolism. Associated
with each class of models are special methods of mathematical analysis and compu-
tational algorithms. In this thesis a set of model types and mathematical methods
is presented, focusing in particular on the influence of metabolic regulation on the
performance of metabolism.

Fluxes of nutrients and metabolites into and out of the cell can be estimated
directly from measurements of the concentrations of these components in the medium.
If we wish to know how these external fluxes change in response to a particular
genetic modification or change in the cellular environment, this change can be directly
determined. However, this tells us little about how the cell’s metabolism functions,
and provides no guidance about expected effects of other changes in fluxes. More
insight into the workings of metabolism can be gained by analyzing external flux data
using a stoichiometric model of the pertinent intracellular metabolic pathways. The

metabolic stoichiometry is employed to formulate quasi-steady state mass balances on
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metabolic intermediates. Typically this set of equations is underdetermined: there are
more unknown fluxes than linear independent mass balances. The various approaches
used for addressing this problem are discussed in Chapter 2, their limitations are
illustrated using an example, and a novel approach is proposed.

Prediction of the changes in metabolic reaction rates which will occur after a
change in any parameter affecting the metabolism requires a kinetic representation
relating fluxes to metabolite concentrations and metabolic parameters. In general
such models are not available, and the kinetic model must therefore be developed
from measurements of reaction rates and metabolite concentrations. A variety of for-
mulations are possible. A (log)linear kinetic model for metabolic reaction networks
is introduced in Chapter 3. The model does not require detailed information about
the kinetic mechanisms of the reactions. It simply employs experimental knowl-
edge about the strength of interaction of the various metabolites, substrates and
regulators, with the rates of enzyme-catalyzed reactions of the metabolic network.
Comparative studies between (log)linear models and nonlinear models based on com-
mon reaction mechanisms are presented, demonstrating the satisfactory accuracy of
(log)linear models in approximating the dynamic responses of metabolic networks to
changes in metabolic parameters.

A production-oriented optimization framework is developed in Chapter 4. The
framework considers the optimization of the performance of a metabolic pathway
with respect to changes in the amounts of enzymes in the pathway and in modifica-
tions in the regulatory characteristics of those enzymes. The optimization study is
undertaken using the kinetic description provided by the (log)linear kinetic model,
used in this case to define constraints on the optimization in the form of steady-
state mass balances of intracellular metabolites. Consideration of changes in enzyme
regulation which abolish initially present inhibition or activation introduces binary
decision variables into the optimization, resulting in a mixed-integer programming
problem. Computational studies applying this optimization framework to a proto-
type mathematical model of bacterial aromatic amino acid production are presented.

The results of such studies provide useful qualitative guidance for promising targets
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for metabolic and protein engineering to achieve a preferred flux distribution.

The experimental information used in building the (log)linear model can be also
used to build approximate dynamic nonlinear models of metabolic reaction networks.
This class of models, called S-system models, at steady-state provide with a linear re-
lation between the logarithms of metabolite concentrations and the logarithms of the
metabolic parameters. In Chapter 5, the optimization framework introduced in Chap-
ter 4 is developed for S-system models. The computational studies for two prototype
pathways suggest that significant improvements in the performance of metabolism
can be achieved if, additionally to changes in the amounts of the enzymes, modi-
fications in the regulatory characteristics are considered, especially when metabolic
constraints are taken into account.

The (log)linear kinetic model introduced in Chapter 3 and the S-system models of
Chapter 4 provide representation of a limited class of nonlinear kinetic expressions,
but these representations do not in general describe flux-substrate-effector-parameter
relationships for large deviations from the reference state. Formulating more com-
plete, more broadly valid nonlinear kinetic models for cellular processes will typically
require more complete information which may come from a combination of more ex-
tensive experimental studies and literature information. One of the most important
types of mathematical analyses which can be accomplished given a general nonlinear
kinetic model of metabolism concerns steady-state multiplicities. While (log)linear
and S-system models feature a unique steady state, nonlinear models can exhibit
multiple steady states; i.e., for a given set of metabolic parameters there exist more
than one time-invariant metabolic state. Analysis of a prototype model for the bac-
terial glycolytic pathway, considering the simplest nonlinear kinetics, is performed in
Chapter 6. The analysis indicates that up to ten steady states can exist for certain
parameter values, suggesting the complexity of metabolism and the difficulties that
arise when nonlinear models are considered.

The optimization framework developed in Chapter 4 is further extended in Chap-
ter 7 for studies of nonlinear kinetic models. As is expected, use of nonlinear models

requires a more complicated formulation of the framework and advanced algorithmic
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procedures for the solution of the optimization problem. The prototype mathematical
model of bacterial aromatic amino acid production is studied again as an example,
and the significant improvement in the objective of interest suggested by the solution

illustrates the power of the optimization framework as a tool for rational metabolic

engineering.



Chapter 2 Analysis of Metabolic

Reaction Rates



2.1 Introduction

Mathematical descriptions of metabolic reaction networks have been widely used for
better understanding of metabolism. The information obtained from such mathemat-
ical descriptions can be used to design genetically engineered organisms with desired
properties. The basic information needed, prior to construction of any mathemat-
ical model of metabolism, is the biochemical model of the network of interest; i.e.,
the stoichiometry of the reactions that make up the network. Determination of the
stoichiometry of biochemical reactions has been the subject of intensive studies in bio-
chemistry, and as a result the stoichiometry governing the intermediary metabolism
of many organisms is well known (Gottschalk, 1986; Neidhardt et al, 1987; Sonenshein
et al., 1993; Stryer, 1988; Wood, 1985).

Once the stoichiometry of a bioreaction network is known, the equations that
describe the mass balances for the metabolites in the network can be formulated. This
is the first step towards a mathematical description of the metabolism. Depending
on the available information and on the purposes of the mathematical analysis, one
can further develop the mathematical model by obtaining information ranging from
reaction rates in the network to the dynamic and steady-state responses of metabolite
concentrations to manipulations of process and/or genetic parameter.

In this chapter a study of metabolic reaction networks using metabolic flux bal-
ancing will be presented. This technique, although it is almost twenty years old, has
been recently revived in response to the widening spectrum of metabolic engineering
applications as well as to the need for optimized growth medium formulation and
process design (Holms et al., 1990; Varma and Palsson, 1994). However, most pub-
lished studies of metabolic fluxes for various organisms are based upon assumptions
that are not easily justified and the results obtained can be very sensitive to these
assumptions. The sensitivity of the estimated metabolic fluxes to these assumptions
will be discussed here using the metabolic reaction network for aerobically growing
Bacillus subtilis as an example model.

A new framework for the calculation of the fluxes in a given metabolic network
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is presented. The framework minimizes the number of assumptions with respect to
cellular energetics. This framework can be used for the formulation of mathemati-
cal models for the design and control of bioprocesses. The formulation of the flux
balancing problem as a constrained quadratic or linear programming problem allows
analysis of the system of interest with respect to uncertainties in the measurements

and to physiological limits on the bioreaction rates.

2.2 From a Net Metabolic Reaction to a Network

of Metabolic Reactions

Every living organism is composed of chemical species that mainly consist of four
chemical elements: carbon, C, hydrogen, H, oxygen, O, and nitrogen, N. If the el-
emental composition of a particular strain growing under particular conditions is
known, the ratios of subscripts in the empirical cell formula CyH,OsNs are easily
determined. In order to establish a unique cell formula and corresponding molecular
weight, it is convenient to employ a formula which contains one gram-atom of car-
bon. That is, 8 can be set equal to 1, and then «a, 3, and é can be calculated from
the known relative elemental weight content of the cells. One C-mole of cells is by
definition the quantity of cells containing one gram-atom (12.011 grams) carbon, and
corresponds to the cell formula weight with the carbon subscript 8 set to unity.
Next, I will consider next the aerobic growth of bacterial cells without product for-
mation, and how this simple bioprocess can be described as a net metabolic reaction.
The elemental mass balances will be used to derive relations among the stoichiomet-
ric coeflicients. These relations will be used to derive relations between intracellular
metabolic fluxes and extracellular physiological characteristics of the cells, such as O,

uptake rate, specific growth rate, and CO; production rate.
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2.2.1 Aerobic Growth Without Product Formation: A Net

Reaction Rate
During the aerobic growth of bacterial cells in the absence of product formation the
only products of the growth reaction are cells, CO, and H,O. Writing the carbon

source and nitrogen source chemical formulas as CH,0, and H,0,,N,, respectively,

the growth reaction equation is
a’CHIOy + b,OQ + C’HIOmNn — CHa05N5 -+ d/HgO + 6’002 (21)

Balances on the four elements in equation (2.1) provide four relationships among

the five unknown stoichiometric coefficients @', ¥, ¢/, d’, and ¢

C : d=1+¢ (2.2)
H : dz+dl=a+2d (2.3)
O : dy+2V+cdm=p+d +2¢ (2.4)
N : dn=9§ (2.5)

An additional relationship can be derived by using the experimentally determined
respiratory quotient, or RQ, for the growth reaction. The respiratory quotient is

defined as the molar ratio of CO; formed to O, consumed:

moles CO, formed

Respirat tient = RQ) = 2.
espiratory Quotien ¢ moles O, consumed (2:6)
and for the growth reaction (2.1) it can be written:

eI

If the RQ is known, equations (2.2) to (2.5) and (2.7) can be solved for the five
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unknown stoichiometric coefficients as follows:
, (4n—6l+an+26m—-28n)RQ—4n

@ = (nz —2ny +4n)RQ —4n (28)

¥ - —zn—8l+an+2yn+26m—20n (2.9)
B (nz —2ny+4n)RQ —4n ’

(2.10)

9

n

(mz+26l—2an+2zn—ydél+yan—Fnz)RQ—-2zn—-24014+2an
(nz —2ny +4n)RQ — 4n

(2.11)

, _ RQ(-zn-dl+an+2yn+25m—20n) (212)
© = (nz —2ny +4n)RQ — 4n '

Using the above relations and the on-line determination of RQ, bioprocess control and
monitoring is possible. In a series of papers, Stephanopoulos and coworkers studied
the applicability of the respiratory quotient as a measurement for on-line bioreactor
identification and control (Grosz et al., 1984; Stephanopoulos and San, 1984). They
found that singularities can exist in the relations used, and they derived general rules
for identifying conditions that may cause singularities.

The correlation of RQ with the process yield will become clear if we notice that
for the biomass yield on the substrate (grams biomass formed per moles substrate

consumed) can be written as:
MW n,

al

Yxis = (2.13)

where MW, is the molecular weight of the cells and ng is the number of the carbon

atoms per molecule substrate. Combined with equation (2.8) this becomes:

(nz —2ny+4n)RQ — 4n

Yx/s = Mg 2.14
X/8 MW”(4n——(5l+an+25m—2ﬂn)RQ——4n (2.14)
or in general form:
A.RQ — B,
=2 r T 2.1
Yx/s TRO—4 (2.15)

It be should mentioned here that for aerobic growth on glucose as carbon source A,

will be always equal to B, independent of the cellular composition. Similarly for
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the molar yield factor of the moles of CO; produced per mole substrate consumed,

Yco2/s, we can derive:

RQ (—zn—-9dl+an+2yn+26m —28n)

Yoous = ns dn—-4dl+an+26m—-28n)RQ—4n (2.16)
or, in general
AR
Yco,/s = F]—%@TQZ (2.17)

The analysis will be continued for a generalized bacterium with experimentally
determined chemical formula CHyNy25005 (MW, = 25.5) which grows on glucose
(CeH1206; ns = 6) as a carbon source and ammonia (N H3) as a nitrogen source. The

following values can be determined for such a system:

A, =612
B, =612
A =15
I'=4.25

These values permit us to identify limits on the respiratory quotient to ensure that

the yields will be positive, finite numbers:

RQ>1 (2.18)

The problem of the sensitivity of the yields to uncertainties in the RQ determina-

tion becomes apparent when the scaled sensitivity of the yields is considered:

dinYx/s RQ(T'B,; — 4A4;) _ RQ (2.19)
dinRQ — (TRQ - 4)(A,RQ — B,) =~ (RQ — 1)(17TRQ — 16) '
and
dl’nYCo2/5 _ —4 -16

dinRQ TRQ—-4 17RQ-16 (2.20)
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For the values used here, the sensitivity of the yield Yx/s to RQ becomes infinite as
RQ approaches the lower limit. More detailed analysis of the sensitivity issue can be
found elsewhere (Grosz et al., 1984).
The expressions derived above for the rates of the reactions given by the general
stoichiometric equation (2.1) have be used extensively for bioprocess identification
and control (Roels, 1983), but they do not provide any information about reaction

rates in the intracellular reaction networks.

2.2.2 Aerobic Growth Without Product Formation: A Metabolic

Reaction Network

Metabolite Mass Balancing

The stoichiometric metabolic networks that can be formulated for various organisms
are, in general, dependent on the conditions under which the organism is growing,
since different conditions cause expression of different enzymes and use of different
metabolic pathways for the catabolism of external nutrients and cell growth. If we
consider the bacterium B. subtilis, the metabolic stoichiometry is well-known and
stoichiometric models have been formulated (Sonenshein et al., 1993). For aerobically
growing B. subtilis, the reaction network of the central carbon pathways are presented

in Figure 1. The experimentally determined fluxes are the specific glucose uptake rate,

V.. and the fluxes
{‘/h Vk7 ‘/_q, Vh*) ‘/j) Wy V‘m7 Vfa ‘/ev ‘/a, %}

from the precursor metabolites
{G6P, F6P, R5P, EAP, T3P, PGA, PEP, Pyr, ACoA,OGA,OAA}

to biosynthesis. These fluxes can be calculated by the following formula:

ldz
V;)recursor = ;Eyprecursor = /JJYprecursor (221)
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where z denotes the biomass concentration in grams per unit volume bioreactor, p is
the specific growth rate of the cells, and Yp,ecursor is the biosynthetic requirement of
the corresponding precursor (moles of precursor required per gram cells produced).
These precursor yields have been reported for E. coli (Neidhardt, 1987), B. subtilis
(Sauer et al., 1996), and many other organisms of industrial importance, and their
experimental estimation is a rather standard technique (Sauer et al., 1996).

Mass balances around the various metabolites can easily be constructed. Consider,

for example, the mass balance for G6P:

d[G6P]
dt

=Va = Vi= Vo=V, - u[G6P] (2.22)

where the subscripts correspond to the reactions as labeled in Figure 1, and the
term u[G6P] corresponds to the effects of the dilution due to cell growth. The quasi-
steady state assumption is the basic assumption of the metabolic flux balancing. This
assumption is based on the fact that metabolic transients are typically rapid compared
to cellular growth rates and changes in the environmental conditions. Based on this

assumption, equation (2.22) becomes:
0=V, - Vi —Vo—V, — u[G6P)] (2.23)

The reaction rates V,, and V; can be experimentally determined as follows:

1d[S]
V= -2 .
pon (2.24)
and
Vi = uYcep (2.25)

where [S] is the concentration of the extracellular carbon source, which in this case

is glucose.

If we normalize all of the reaction rates in the network with respect to the specific
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uptake rate (V,) we can write for the Equation (2.23):

0=1- V1 — Ug — YX/SYGGP — YX/S[G6P} (226)

where the lower-case letters denote reaction rates normalized, with respect to V;,
rates. In Equation (2.26) the use of the yield coefficient of the biomass on the substrate

results from its definition:

ldz

_d _k_ cd

z dt

(2.27)

This yield can be estimated experimentally. The value of the term Yx,;s[G6P] in the
mass balance equation is the normalized, with respect to V,,, dilution term and since
it has a mcu smaller value with respect to the main fluxes in the pathway considered
here, it will be omitted from the formulation of the mass balances.

For the mass balances of the metabolites from G6P to T3P we can write:

G6P: 0= 1—v —v2—Yx/sYger (2.28)
RubP: 0= v —v4—Us (2.29)
R5P: 0= wvs—vs— Yx/sYrsp (2.30)
X5P: 0= v4+v3— s (2.31)
F6P: 0= wv;—v3+vs—v7 — Yx/sYrep (2.32)
EAP: 0= w3+ v — Yx;sYgaP (2.33)
T3P: 0= -—uvz+2v; —vg— Yx/s¥Yrap (2.34)

Here we can identify the first major problem in metabolic flux balancing. These are
seven linear relations between the fluxes, but there are eight uknown fluxes. Therefore,
the system is underdetermined.

For the rest of the metabolites considered in the network we can formulate the

following mass balance equations:
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PGA: 0= ’Ug—’(}g—-YX/SYpGA 2.35

PEP: 0= '—1+’Ug~’l)10-—YX/SYpEp 2.36

Pyr: 0= 1+v0—wvy —vi2~Yx/sYpyr

bo
w
-3

N ™ TN TN
o
)
(0.¢]

ACoA: 0= vy — i3 — Yx/sYaccon
OGA: 0= w3 —vy— YxsYoca (2.39
OAA: 0= vy —viz+vie— Yx/sYoau (2.40

Suc: 0= vy —vs (241

Mal: 0= v15 —vig (2.42

The above equations for the metabolic fluxes in the central carbon pathways for
aerobically growing B. subtilis introduces a problem common in the metabolic flux
balances: the unknown reaction rates are more numerous than are the metabolites
being balanced, i.e., the number of the equations that can be formulated is less
than the number of the unknown fluxes. Most of the metabolic systems are likewise
underdetermined (Bonarius et al., 1996; Sauer et al., 1996; Savinell and Palsson,
1992a-c; Varma and Palsson, 1995). In studies that appeared before now in the
literature, the investigators introduce a series of assumptions in order to circumvent
this problem. Some of these will be examined here. Many research efforts have been
devoted to the experimental determination of one or more of the unknown fluxes, so
that these assumptions can be avoided or validated. Experimental techniques such
as NMR, tracing of radioactive labels, and mass spectroscopy have been successfully
used in order to define exact values or strict bounds for certain fluxes such as the flux
from G6P to Rub5P (reaction step 1 in Figure 1) and the fluxes in the tricarboxylic
acid cycle (TCA) (reaction steps 13 to 16 in Figure 1) (Mancuso et al., 1994; Reitzer
et al., 1980; Walsh and Koshland, 1984).
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Algorithmic Procedure

The general procedure for estimation of the unknown fluxes will be summarized next.
The problem will be formulated as a nonlinear programming problem which, when
solved, will provide an estimate for the fluxes that will satisfy the mass balances with
minimal error. This objective can be mathematically formulated by defining a new
set of variables, r. The number of these variables will be equal to the number of the
mass balances. For a metabolic system with n metabolites and m unknown fluxes,

the general matrix expression for the mass balances can be written as:
Nv+b+r=0 (2.43)

where N is the nxm stoichiometric matrix, v is the m-dimensional vector of the
unknown fluxes, b is the n-dimensional vector of the total sum of the known fluxes for
each metabolite mass balance, and r is the n-dimensional vector of the residuals from
the mass balances. The variables of the problem are the fluxes v and the residuals r.

The objective of the problem can be mathematically formulated as follows:
T
minimize » rjz- (2.44)
j=1
with respect to the fluxes vy, ..., vm, subject to the following constraints:

1. Mass Balances

The mass balance equations (2.43) will define a set of equality constraints for

the reaction rates and the residuals.

II. Bounds on the rates

Many of the reaction rates in any metabolic work are reversible, i.e. they can
proceed in both directions. However, there are reactions that are irreversible.
Therefore, if the mass balance network is constructed in such a way that the
irreversible reactions will be positive when they proceed only in the allowable di-

rection, then the following inequality constraint for the reaction rate is imposed
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for every i-th irreversible reaction step.:
v; 20 (2.45)

The above nonlinear optimization problem can have either a unique solution or
multiple solutions depending on the constraints. In general, when the number of
reactions is larger than the number of mass balance equations, then multiplicities can
occur. This is true provided that none of the inequality constraints are active, meaning
none of the irreversible reaction rates are zero. In the general case that the rank of
the stoichiometric matrix N, is smaller than its smaller dimension, or Rank(IN)<m,
the system will be called underdetermined. In the case that m < Rank(N)<n the
system will be called overdetermined. Due to the existence of branching pathways,
cycles, and various interdependencies within the metabolic network, the number of
reactions is greater than the number of metabolite mass balances in most metabolic

systems. Therefore, in most cases, the metabolic network will be underdetermined.

2.2.3 Determining the Underdetermined: Assumptions and

Solutions

In order to overcome the problem of the underdetermined system many applications
of flux balancing use assumptions to make the system determined or overdetermined.

The most common assumptions used concern:

1. flux distribution at network nodes, such as the G6P node, and

2. cellular energetics (i.e., mass balances for ATP and/or NAD(P)H).

Least square methods in connection with the pseudoinverse algorithm have also been
used. These methods, although they solve the underdetermined system by minimiz-
ing the Euclidean norm of the residual of the errors in the mass balance equations.
However, they find from the infinite possible solutions for the fluxes the unique set
of fluxes with the minimum Euclidian norm for the values of the fluxes (Bonarius et

al., 1996; Savinell and Palsson, 1992a-c; Stewart, 1973).
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As it will be shown next, different assumptions result in different solutions for the
fluxes. It is not clear which is the “correct” approach. A primary criterion will be
agreement with experimental results. However, agreement with experimental results
is not proof of the validity of the metabolic description. Further experimental data
are required, such as enzyme assays that would validate the presence or absence of a
reaction step, and NMR measurements that would validate the calculated values for
the intracellular fluxes (Marx et al., 1996). However, an approach that uses the min-
imum number of assumptions and parameters is preferable, since fewer assumptions

lead to a less biased solution which is easier to validate experimentally.

The G6P node

Based on experimental data of tracing radioactive labels it had been suggested that,
in E. coli growing aerobically on glucose, the flux from G6P to Ru5P (reaction step
1 in Figure 1) is equal to 30% of the glucose uptake rate, V, (Gottschalk, 1986).
Since then, many metabolic flux analyses have used the assumption that this flux is
proportional to, usually 30% of, the glucose uptake rate. However, this assumption
strongly biases the solution since flux distribution may be dependent on the growing
conditions, it may vary among different organisms, and this assumption does not take
into account the contribution of this reaction to NADPH synthesis. Therefore, this

assumption will not be considered here.

ATP Mass Balance

One of the most common approaches to overcoming the problem of the underdeter-

mined systems is to introduce an additional mass balance equation for ATP:

ATP: 0 = —U7 + Vg + Vg + V14 — YX/SYATP’,J
P/O
~Yrpm + ( é )YO/SYX/S (2.46)

where, Yarp, is the so-called ATP maintenance yield, , Yo/s is the yield of oxygen

on the substrate, and (P/O) is the stoichiometric coefficient for the AT P production
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via the respiratory chain (oxidative level phosphorylation). The maintenance yield
accounts for all energy-requiring processes that are not linked to biomass synthesis,
such as maintenance of gradients and electrical potential, futile cycles, and turnover
of macromolecules. Yp/s is primarily dependent on the substrate, and indicates how
many oxygen molecules are required to metabolize one substrate molecule. The (P/O)
ratio is necessary because different amounts of AT P can be produced for each oxygen
molecule consumed, depending on the conditions.

However this approach introduces three very significant assumptions:
i. A value for the (P/O) ratio is assumed;
ii. A value for the maintenance requirement is assumed; and
iii. Both of these values are assumed to be independent of the growth rate.

Assigning values for two stoichiometric parameters will, as expected, bias the
solution. Experimental methods have been proposed for the determination of these
paramaters (van Gulik and Heijen, 1995). However, the experimental methods to
determine these coefficients rely on an additional seriously questionable assumption
that the values of these parameters are invariable under varying operating conditions
such as changes in the specific growth rate (Nielsen and Villadsen, 1994). These
assumptions fail when genetically engineered organisms are considered (Tsai et al.,
1996). In a following section the sensitivity of calculated fluxes to these assumptions
that dominate the literature will be illustrated.

It has been shown, for example, that the solution of a flux balancing problem
for the bacterium FE. coli is very sensitive to the assumed value for (P/O) and less
sensitive to that of the maintenance yield (Varma and Palsson, 1995). The uncertainty
of these parameters and their dependency on growth conditions suggest that fluxes
calculated using such assumptions should be carefully considered, and their sensitivity

with respect to the assumed values should be examined.
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NADPH Mass Balance

Another approach formulates the mass balance for NADPH and assumes that the
biosynthetic requirement for NADPH is entirely fulfilled by the NADPH production
through reaction steps 1 (pentose phosphate pathway) and 13 (TCA cycle):

2u1 +v13 = Yx/sYNaDPH (2.47)

where Yy appy is the biosynthetic requirement of NADPH (moles of NADPH required
per gram cells produced). This approach is preferable to the previous one as it intro-
duces only one new parameter: the biosynthetic requirement for NADPH, which can
be readily estimated from the biomass composition. However, it is possible to over-
or underestimate the value of this parameter, and this approach does not consider the
reactions that could potentially exchange reducing equivalents between NADH and
NADPH. One such reaction is the transhydrogenase-catalyzed reaction (Gottschalk,
1986; reaction T in Figure 1) :

NADH + NADP* = NAD* + NADPH

This possibility can be taken into account by examining the level of the objective
function, i.e. the level of the residuals for the mass balances, both for lower and
higher bounds on Yyappy. The former corresponds to production of NADPH from
NADH, whereas the latter corresponds to production of NADH from NADPH. The
“proper” Ynappr should be considered the one that results to a lower level of the
residuals. This is essentially a parameter-fitting process, but it is preferable to the
balance around ATP, since it only requires the fitting of a single parameter.
Another problem with this approach is that for low growth, Yx,s approaches zero
and the equality constraint (2.47) forces the sum 2v; + v;3 to be equal to zero. As
neither reaction is reversible, both v; and v;3 then must take zero value. This does
not reflect the true physiological situation since, for a nongrowing cell (i.e., Yx/s = 0),

these fluxes can have nonzero values.
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Reducing Equivalents Mass Balance

Here a different approach will be introduced that considers a mass balance on reduc-
ing equivalents (2H*). This approach considers the transfer of protons through the
cellular membrane from intracellular NADH, NADPH, and FADH; to the extracellu-
lar medium and the oxygen consumption associated with that process. The extruded
protons will enter back into the cell through translocation mechanisms. The mass

balance for the reducing equivalents can be written as:

0 = 2v; +vg+vio+ Vi3 +vig + pUss

+v16 — 2Yo0/5Yx/s — Yxys(Ynapu + YnappH) (2.48)

where p 1s the stoichiometric coefficient for the FADH, production. If we consider
that FADH,; is exactly equivalent to NAD(P)H with respect to the numbers of pro-
tons extruded for each of their molecules that oxidized, then, p = 1. However, this
makes the linear constraint (2.48) linearly dependent on the rest of the mass bal-
ance equations and the problem remains underdetermined. In formulating the mass
balance equation (2.48) we have considered every reaction that regenerates NADPH
from NADH and NADH from NADPH. However, since the net contribution of these
reactions in the mass balance on reducing equivalents is zero, they do not appear in
the final equation. Thus, no assumption for these fluxes is involved, except to con-
sider that they do exist. Two approaches to overcome this problem can be considered
based on an iterative scheme.

In a first approach we will ignore the production of FADH, via reaction step 15
by setting p = 0. This means that the amount of oxygen considered in mass balance
equation (2.48) for each molecule of substrate consumed, Yp,s, is overestimated since
a portion of this is actually used for the oxidation of the “ignored” FADH,. Since the
production of FADH, is coupled to NADH production, its maximum value is equal
to 10% of oxygen consumption. In the first step, we can solve the problem ignoring
FADH, production and using the experimentally determined amount of oxygen con-

sumed. Then the calculated value for reaction step 15 will be subtracted from the
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amount of oxygen considered, since the value for vi5 is a first approximation of the
excess oxygen that is used for oxidation of FADH,. Then we solve the problem again,
using the “corrected” oxygen yield, and calculate a new set of fluxes. The calculated
value for reaction step 15 will be compared with the observed oxygen yield, and, if it
is within the experimental error the iterative procedure can stop. The last solution
is then accepted as giving the estimated flux values. For the systems that have been
examined until now, two iterations were sufficient for the estimated values to converge
to a final value for v;5 within the error limits for the oxygen uptake measurements.

In a second approach we can assume p = (0.5. This value comes from an analysis
of the relative reducing power of NADH and FADH,. For every molecule of NADH
that is oxidized through the respiratory chain, is assumed there are four protons
extruded, whereas, for every molecule of FADH, that is oxidized through the respi-
ratory chain, only two protons are extruded (Gottschalk, 1986). The number of the
protons extruded depends on the terminal oxidase of the respiratory chain and it is
different between various organisms and growth conditions. However, we assume this
assumption here as a first approximation. Therefore, from the proton mass balance
we see that two FADH; molecules are equivalent to one NADH molecule. However,
this approach essentially assumes that for every two molecules of FADH, that are
oxidized, one molecule of O, is consumed. The validity of this assumption can be
examined by comparing the estimated value of v;5 with the value of Yy/s. If half
of the value of vys is greater than the experimental error of Yp,s then it should be

“corrected” as described in the previous paragraph.

Least Squares Method and the Minimum Norm Condition

In many cases in which the system is underdetermined, the pseudoinverse of the stoi-
chiometric matrix has been used to estimate the fluxes (Savinel and Pallson, 1992a-c).
The pseudoinverse algorithm solves the system by minimizing the sum of the squares
of the residuals of the mass balances. In other words, it minimizes the same objective
function as the one suggested for the general algorithmic procedure (Equation (2.44)).

However, among the multiple possible solutions due to the underdetermined nature
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of the system, the pseudoinverse chooses the one with the minimum Euclidean norm
of the reaction rates.

This last condition is a purely mathematical criterion, and it is reasonable in the
absence of additional consideration. However, it has recently been proposed that
Darwin’s principle of evolution by natural selection suggests that there are optimal
regimes of operation along metabolic pathways in a biological system (Torres, 1991).
Torres (1991) suggested that one should characterize “fitness” in thermodynamic
terms, since a fundamental tendency of nonequilibrium systems towards stationary
states of maximal organization and minimal dissipation constitutes a potentially solid
bridge between thermodynamics and Darwin’s principle. Therefore, he proposed some
thermodynamic criteria for optimality: maximal efficiency, maximal power, minimal
rate of entropy production, and minimal loss of available energy.

Here I will consider the last two criteria. According to the theory of nonequilibrium

thermodynamics (Prigogine, 1961) for the rate of entropy production we can write:

as 1
J_..
and for the energy dissipation function, W:
U=> A (2.50)
j=1

where A; is the affinity of reaction step j defined as:

Aj == v (2.51)
k

where k covers the range of species that participate in the reaction step j, vy is
the stoichiometric coefficient of the k-th species and is positive for the products and
negative for the reactants, and py is the chemical potential of species k.

In order to find the functional dependency of v; on the corresponding affinity we
will use the same procedure followed by Torres (1991). He chose the rate expressions

introduced and used within Biochemical Systems Theory (Savageau, 1976) (see also
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further discussion in Chapter 5 for details on this theory) which employ a power-law

representation:
. hy
v =k [J2fm — K, [[ 2.7 (2.52)
ir ip

where z;, and z;, are the concentrations of the reactants and the products, respec-
tively, and k;, k,, g;, and h;, are phenomenological parameters that generalize the
kinetic constants and the stoichiometric coefficients of the reactants (subscript r) and
the products (subscript p).

Torres went on to conjecture that the kinetic orders g;, and h;, reduce to the
absolute values of the corresponding stoichiometric coeflicients | v, | when enzyme
concentrations go to zero, and he proposed that they can be approximated by the

following equations:

gi, ~ b I V. I (253)

and

hiy = b | v, | (2.54)

where b depends on the enzyme concentrations and goes to unity as they approach

zero. After these assumptions, v; can be written in the form:

Vj = Umy (1 — exp (ﬂ_%}jﬂl)) (2.55)

with vy = kj, T1;, :z:f:*, which is the maximum forward rate, and A;:

The subscript e denotes the equilibrium value of the corresponding concentration.

A; = RT

Torres applied this theoretical development to study the efficiency of glycolysis as

described by a single reaction for anaerobic glycolysis:

glucose + 2ADP + 2P* = 2lactate + 2AT P (2.56)
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and for the aerobic case:

605 + glucose + 36ADP + 36P* = 6CO, + 6Hy + 36ATP (2.57)

In both cases his results were very close to the experimental observations.
In a subsequent paper Angulo-Brown et al. (1995) studied Torres’ suggestion
for thermodynamic optimization criteria in biochemical reactions. They assumed,

following Prigogine’s (1961) suggestion, that for most of the biological reactions
| A; | /RT <<'1

This allowed them to use the approximation

to simplify the rate expression (2.55) to:

bA,; bA,

Note that these approximations hold only if b is not a large parameter.
Angulo-Brown et al. (1995) used this approximation to study the same systems

that Torres studied. They arrived at similar results, suggesting that approximation

(2.58) is valid.

Using approximation (2.58), for the entropy production (2.49) we can write :

dt = "T“ Z Aj’l)mj —R‘T (259)

This implies that minimization of entropy production is equivalent to minimization

of the sum of the square of the affinities over all of the m reaction steps:

DA
j=1
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The least squares approach that solves the flux balance problem by choosing the
minimum Euclidean norm of the fluxes seems to be consistent with the above thermo-
dynamic considerations. If for every flux we can use the approximate rate expression
(2.58), then for the Euclidean norm of the fluxes we can write:
m m b2 A2
| v [lo= ;vﬁ = Jva;j TiTe (2.60)

-1

Therefore, selecting the solution for the fluxes with the minimum Euclidean norm
is equivalent to choosing the solution with the minimum sum of the squares of the
affinities, and thus the one that corresponds to the minimum entropy production rate.

The only problem with this approach appears to be the correct choice of the
fluxes that should be taken into account in the calculation of the entropy production
rate. This approach should also be examined with respect to each of the thermody-
namic criteria that have been suggested. Moreover, the application of this approach
should take into account the bounds imposed by the irreversibility of certain reactions.
This cannot be implemented using the pseudoinverse algorithms. The possibility of
connecting the minimum Euclidean norm criterion with thermodynamic criteria and

evolutionary objectives suggests that this approach is worth further investigation.

2.3 Example

We will study here the metabolic fluxes in glucose-limited cultures of aerobically
growing B. subtilis. The metabolic network that will be used (Figure 1), based on
the available biochemical and biological knowledge, has been presented in Section
2.2.2. The assumptions concerning ATP, NADPH, and reducing equivalents will be
examined. I will evaluate the three approaches discussed above by comparing the
estimated from the flux analysis value of the CO; production rate with the exper-
imentally determined value. In general, a separate mass balance for CO, can be
included in the mass balances. This mass balance equation does not affect the rank

of the stoichiometric matrix since it is linearly dependent on mass balances already
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present in the network. We will consider as experimental data the value of RQ as it
is determined from the net reaction (2.1) and equation (2.15) for the “generalized”

bacterium composition. The equation that will be considered is:

Yx/s — 153
17y s — 2448

RQexp =16 (261)

where Yx/s is expressed in grams of cell dry weight per moles glucose consumed. The
RQ calculated from equation (2.61) will be compared with the RQ) estimated from

the flux analysis:

U1 — U + Uiz + i3 + Ve — Yx/sYco,

Yoys

RQcatc = (2.62)

where Yg0, is the yield of CO; from biosynthesis.

The specific precursor, cofactor, and CO, requirements for B. subtilis have recently
been determined experimentally (Sauer et al., 1996). The experimental data that
will be used in this example are from Sauer et al. (1996) for aerobically growing B.
subtilis in a chemostat and they include the dilution rate (which is equal to the specific
growth rate), specific uptake rate (specific glucose consumption) and specific oxygen
consumption rate. From parameter fitting of the experimental data the following
relations have been determined for the two physiological parameters, Yx,s and Yp,s,

as functions of the dilution rate (D):

D

Yy = = .
x/s = 1000572 +12.3D (2.63)
and
3+ 26.15D
Yoss = 0.45 + 12.3D (2.64)

2.3.1 ATP Mass Balance

I first examined the system by utilizing the ATP mass balance. However, it was

impossible to find any set of values for the parameters Y4rp, and the (P/O) ratio that
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could be kept constant and still result in low values for the residuals over the whole
range of dilution rates considered. This clearly suggests that one or both of these
parameters are changing as the dilution rate (specific growth rate) changes. Previous
experimental studies support the concept that Y4rpn, is an increasing function of the
specific growth rate (Nielsen at al., 1991; Nielsen and Villadsen, 1994). Moreover,
(P/O) ration is also function of the specific growth and the operating conditions
(Senior, 1988; Nielsen and Villadsen, 1994). Therefore, without considering functional
dependence of Yarp, and the (P/O) ratio on the specific growth, we cannot estimate

metabolic fluxes using the ATP mass balance as a constraint.

2.3.2 NADPH Mass Balance

I next considered various assumptions on the NADPH mass balance; i.e., the estima-
tion of the fAluxes using the NADPH mass balance equation (2.47). I also considered
two cases: in the first the mass balance for the CO, was taken into account and
the calculated RQ (2.62) was compared with the experimental value from equations
(2.61) and (2.63). In the second case the mass balance for the CO; was also consid-
ered and the experimental specific production rate of CO, was estimated from the

RQezp (2.61). The mass balance equation for the CO; is:

0= — vy +vi2 + V13 + Vg — Yx/sYco, — RQcacYoss — Tco, (2.65)

where 7¢g, is the residual variable.
The analysis considered three different physiological scenarios. It was considered

that the sum:

2vy + vz = ¢uYNaDPH (2.66)

fulfils the biosynthetic requirements for NADPH exactly (¢ = 1), or that it fulfils
80% (¢ = 0.8) or 120% (¢ = 1.2)of the same requirement. In the latter two cases it

was assumed that there are reactions to exchange the required reducing equivalents

between NADPH and NADH.
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The results of the analysis without considering the CO; mass balance are presented
in Figure 2. The calculated value for the R(Q) is very different from the experimental
one suggesting that calculations based on these assumptions are not suitable. More-
over, most of the fluxes vary in a non-monotonic way as the dilution rate incereases
(Figures 2.C, 2.D, and 2.E). The trend of the fluxes changes when the flux from G6P
to Ru5P (v;) changes from zero to a positive value. This physiologically unexplain-
able behavior of the system further suggests that this approach has some inherent
deficiencies. Flux v; is also very sensitive to the assumed value of ¢ in Equation
(2.66). Depending on the value assumed, the onset of flux from G6P to RubP is
estimated at different dilution rates. The most dramatic effects are observed for the
assumption that ¢ = 0.8 of the biosythetic requirements for NADPH.

In a second study the mass balance for CO, (2.65) was also included in solving
for the fluxes. In this case, the solution was better with respect to R values. This
was expected since the mass balance for CO, constrained the CO, production and
consumption fluxes. The changes in the fluxes were monotonic over the whole range
of the dilution rates. The sensitivity of v; with respect to the assumed value of ¢
was significantly reduced. Moreover, the calculated net ATP production from sub-
strate level phosphorylation (Figure 3.F) was clearly dependent on this assumption,
as expected, since the assumption concerns cell energetics. Notice that in the first
solution (Figure 2.F) it is not clear how the assumption for the value of ¢ influences
the calculated net ATP production rate.

The two solutions obtained here, one without and one with the additional con-
straint of the CO, mass balance, are compared in Figure 4 under the assumption that
¢ = 1. Although for dilution rates higher than 0.2h~! both solutions follow the same
trend, the qualitative difference between the two solutions is significant. For a 20%
difference in the RQ values, a difference of up to 50% is observed for some of the
fluxes.

The above analysis leads to two important conclusions. First, the constraint of
the CO mass balance should be always considered. Second, the approach that con-

siders the NAD P H mass balance (2.47) should be used only for obtaining qualitative
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conclusions (i.e., conclusions regarding relative values and trends of the fluxes) about
the metabolic system. The sensitivity of the solution to the assumption for the value

of ¢ should be examined before any final conclusion can be made.

2.3.3 Reducing Equivalents Mass Balance

The approach studied next was the one that considers the mass balance of the reducing
equivalents from NADH and NADPH (equation (2.48)). Two different studies were
again performed: one without and one with the constraint of the CO, mass balance.
The results are presented in Figure 5. The oxygen uptake rate used for the mass
balance equation (2.48) as a first estimate was the same as the experimental one.
This first solution suggested that the value of the flux v;5 was approximately 15%
of twice the value of the oxygen uptake rate. The problem was solved again using a
value for the oxygen uptake rate of 85% of the experimentally determined one. This
second solution gave again a value for the v;5 that was approximately 15% of twice
the value of the experimentally determined oxygen uptake rate over the whole range
of the dilution rates. Therefore, the iteration stopped and the “corrected” value for
the oxygen uptake was used in both cases (without and with the constraint for the
CO3 mass balance).

Even in the absence of the constraint of the CO, mass balance, the estimated
RQ is very close to the experimental value (Figure 5.A). This is in contrast to the
previous approaches with which, even when the constraint for the CO, mass balance
included, the estimated R(Q) was significantly different from the experimental value
(Figure 3.A). In general, both cases were found to be in excellent agreement with
each other (Figures 5.C-5.F). However, the flux v; was estimated to be zero over the
whole range of the dilution rates when the constraint for the CO, mass balance was
not included, but it had a positive value when the CO; mass balance was considered.
This difference strongly suggests that CO, mass balance should be included in any
flux analysis. The value for v; in this second case was found to be approximately equal

to 0.1 over the whole range of dilution rates (Figure 5.B), a value that is very close
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to the biosynthetic requirements for R5P and E4P. Therefore, it appears that the
the R5P and E4P required for biosynthesis are coming from G6P via reaction step
1. However, this solution is qualitatively very different from the one found with the
approach using the NADPH mass balance. There, for low dilution rates v; was zero
below a certain value for the dilution rate, and above that it increased monotonically
up to 0.25. The fact that no assumption concerning the value of ¢ in the sum (2.66)
was made in this last approach suggests that this last result is more reliable.

In order to evaluate this approach with respect to the previous one, the ratio:

2’01 + V13 i

LY NADPH

was calculated based on the estimated fluxes. A value for this ratio had been assumed
and used as the sum (2.66) constraint in the previous approach. The calculated
ratio is presented in Figure 6. For low dilution rates the ratio is higher than one
suggesting that an excess of NADPH is produced. This is probably recycled back to
NADH. However, for dilution rates higher than 0.15h~, this ratio is lower than unity
suggesting that the NADPH produced does not fulfill the biosynthetic requirements
and that the additional amount needed is provided from the excess NADH produced.
Interestingly enough, when this ratio is equal to or higher than 0.8, the value for the
flux v, is positive, while the previous approach suggested that, as this ratio decreases,
flux v; becomes zero.

The Euclidean norm of the estimated fluxes was also calculated for every case in
the two approaches (Figures 2.D, 3.D, 4.D, and 5.D). It appears that the last ap-
proach has the lowest norm, especially when the constraint of the CO, mass balance
is included, forcing the fluxes considered to produce the minimum amount of en-
tropy. If our thermodynamic suggestion is right, then the last approach also satisfies
also the thermodynamic optimality criteria. However, the main uncertainty of this
thermodynamic consideration still holds; i.e., the question of which fluxes should be
considered in calculating the Euclidean norm. Another interesting difference between

the FEuclidean norms of the fluxes estimated from the two approaches is their trend
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with respect to dilution rates. In the first approach the norm decreases with increas-
ing dilution rate (Figures 2.D and 3.D), whereas, in the last approach, the norm
increases with increasing dilution rates. In general, the latter is more reasonable,
since for increasing dilution rates the specific growth rate, the specific glucose and
oxygen uptake rates all increase, indicating that the biocatalytic machinery of the
cell should operate at higher rates.

Similar results were also obtained when the stoichiometric coefficient p for reaction
15 was considered (see equation (2.48)). The oxygen uptake rate used in the mass
balance was “corrected” following the same procedure as in the last approach. For a
value of p equal to 0.5 the oxygen uptake rate was reduced by 7%. That corresponds
closely to the 16% correction for the last approach when p was equal to zero.

In conclusion, this last approach is more attractive since it requires the fewest
assumptions. No assumption has been made with respect to energetics of the cell.
The correction of the oxygen uptake rate used in the mass balance equation (2.48)
was not based on a parameter-fitting approach but simply on the consistency of the

value of one flux, v;5, with respect to the corrected value of the oxygen uptake rate.

2.4 Conclusions

Metabolic flux analysis has enjoyed a lot of attention over the last five years. Various
metabolic systems have been analyzed, and useful insights resulted from those analy-
ses. However, because most metabolic systems are underdetermined (more metabolic
reactions than metabolic species), various assumptions have been used to make the
systems determined, and little attention has been paid on the effects of these assump-
tions to the final conclusions.

In this chapter flux analyses for the bacterium B. subtilis were performed. A
systematic algorithmic procedure was proposed that can take metabolic constraints
into account. Some of the commonly used assumptions were considered and the effects
of these assumptions on the resulting estimated fluxes have been studied. Two main

conclusions were drawn for aerobically grown bacterial systems:
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1. Any flux analysis that employs assumptions about cell energetics should be
considered as a qualitative description of the trends of the fluxes under different
growing conditions. A sensitivity analysis of the results with respect to the

assumptions should always be performed.

2. The mass balance of CO, should be included in the analysis even though it is not
linearly independent from the rest of the mass balances. It appears to improve
the estimation of the fluxes by making the system less sensitive to assumptions

and by integrating additional experimental information with the analysis.

A novel procedure for flux analysis has been suggested and applied to the example
metabolic system. This procedure does not employ any assumptions regarding the
energetics of the cell and therefore does not bias the results. Application of the pro-
cedure to the example system and comparison of the results with those of approaches
that use assumptions regarding cell energetics have shown that this approach is more
advantageous.

It has been suggested that the common approach of minimizing the Euclidean
norm of the fluxes as an additional criterion for choosing an estimate for the metabolic
fluxes from an infinite number of possible solutions when the metabolic system is un-
derdetermined is related to thermodynamic optimality criteria based on the evolution
theory. However, further investigation is required before a definite connection between
these criteria and flux analysis is asserted.

Finally, it should be stressed that flux analysis is a mathematical modeling method
that integrates the available biochemical knowledge in order to provide further insight
on the behavior of biological systems. It provides an estimate for the values of the
metabolic fluxes and can be used to compare relative changes in the fluxes under dif-
ferent conditions that do not significantly influence the stoichiometry of the metabolic
networks, such as different growth rates or changes in enzyme amounts arising from
mutation or genetic engineering. As with every mathematical method used in biotech-
nology, it should be used in an iterative way: the initial information it provides based

on preliminary experimental data will suggest the next experimental approach. The
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results of this new experiment will be used for a second mathematical analysis or
even for possible reformulations of the stoichiometric model, that will again suggest

the next experimental approach.
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14_SucCoA  NADH

ATP

Figure 2.1: The reaction network of the central carbon pathways for aerobic growth
without product formation of B. subtilis considered in the analysis. The metabolites
for which the mass balances were used are underlined. Shaded arrows indicate fluxes
to biosynthesis. Double-underlined numbers indicate irreversible reaction steps.
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Figure 2.2: Flux analysis results for various dilution rates without considering the
CO; mass balance and under the assumption that 2v; + vi3 = ¢uYnappu, where:
dotted line (¢ = 0.8), dashed line (¢ = 1), and dashed-dotted line (¢ = 1.2). Solid
line in A for the experimental value of RQ. A: The experimental value for RQ and
the value based on the estimated fluxes, B: Estimated values for reaction step 1, C:
Estimated values for reaction steps 7 and 10, D: The Euclidean norm of the estimated
fluxes, E: Estimated values for reaction step 15, and F: Estimated values for net ATP
production.
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Figure 2.3: Flux analysis results for various dilution rates including the CO, mass
balance and under the assumption that 2v; + vy3 = ¢uYnappr, where: dotted line
(¢ = 0.8), dashed line (¢ = 1), and dashed-dotted line (¢ = 1.2). Solid line in
A for the experimental value of RQ. A: The experimental value for RQ and the
value based on the estimated fluxes, B: Estimated values for reaction step 1, C:
Estimated values for reaction steps 7 and 10, D: The Euclidean norm of the estimated
fluxes, E: Estimated values for reaction step 15, and F: Estimated values for net ATP
production.
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Figure 2.4: Flux analysis results comparison for various dilution rates under the
assumption that 2v; + viz = pYnapps, including the CO, mass balance (solid line)
and without considering the CO; mass balance (dashed line). Dotted line in A for the
experimental value of RQ). A: The experimental value for RQ and the value based on
the estimated fluxes, B: Estimated values for reaction step 1, C: Estimated values for
reaction steps 7 and 10, D: The Euclidean norm of the estimated fluxes, E: Estimated
values for reaction step 15, and F: Estimated values for net ATP production.
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Figure 2.5: Flux analysis results comparison for various dilution rates without con-
sidering FADH; in the mass balance for the reducing equivalents and for “corrected”
value for the oxygen uptake rate including the CO, mass balance (solid line) and
without considering the CO; mass balance (dashed line). Dotted line in A for the
experimental value of RQ. A: The experimental value for RQ and the value based on
the estimated fluxes, B: Estimated values for reaction step 1, C: Estimated values for
reaction steps 7 and 10, D: The Euclidean norm of the estimated fluxes, E: Estimated
values for reaction step 15, and F: Estimated values for net ATP production.
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Chapter 3 Effects of Spatiotemporal
Variations on Metabolic Control:

Approximate Analysis Using (Log)Linear
Kinetic Models
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3.1 Introduction

The analysis and study of the responses of metabolic systems to process and to ge-
netic manipulations have been the primary focus of numerous experimental and the-
oretical studies (Cornish-Bowden and Cardenas, 1990; Bailey, 1991; Stephanopou-
los and Vallino, 1991; Fell, 1992). The theoretical studies have mostly focused on
the development of quantitative descriptions of metabolism and to associated theory
and analytical frameworks. Metabolic control analysis (MCA), a sensitivity analysis
framework, is perhaps the most developed of these methods for the quantitative de-
scription of metabolism and microbial physiology (Kacser and Burns, 1973; Heinrich
and Rapoport, 1974; Kell and Westerhoff, 1986; Schlosser and Bailey, 1990; Cornish-
Bowden and Cérdenas, 1990; Rutgers et al., 1991; Fell, 1992; Brown, 1992; Schlosser
et al., 1993). Accordingly, several experimental methodologies have been developed
to allow determination of quantitative indices which are defined by MCA, such as
control coeflicients and elasticities. The description of metabolic systems by MCA
data is commonly used because rarely is sufficient information available to formulate a
nonlinear mathematical description based on detailed enzyme kinetics. Furthermore,
when such a nonlinear model is available, it can be linearized and well-studied within
the same MCA framework.

One of the basic assumptions embedded in MCA is that the metabolic system
under study is at steady-state. Every parameter of the system (for example, enzyme
expression levels, external substrate concentrations and independent effector concen-
trations or activities) is assumed to remain time-invariant. However, this assumption
is not valid when spatiotemporal variations in the parameters occur. Such spatiotem-
poral variations can arise, for example, in bioreactors when mixing is nonideal, a
situation common in large-scale systems. Circulation of cells through spatially inho-
mogeneous fields of dissolved oxygen and substrate concentration, pH, temperature,
and hydrodynamic conditions drives unsteady-state responses in metabolism which
have profound effects on scale-up nad large-scale bioreactor prerformance. These

phenomena have been modelled for bioreactors and the effects of nonideal mixing on
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the metabolism and growth of microorganisms have also been studied. Spatiotem-
poral variations in the parameters or inputs of a system are known to result in a
performance quantitatively and qualitatively different from the performance of the
system with space- and time-invariant parameters (Bailey, 1974, 1977). For example,
it has been recently reported that control coefficients for cells growing in a nonideally
mixed bioreactor are different from the control coefficients calculated for the ideal
well-mixed case.

In this chapter we develop a (log)linear kinetic model of metabolic systems based
on MCA data. This model can be used to simulate dynamic responses of the system
with spatiotemporal variations in its parameters. Interconnection of MCA with alter-
native modeling frameworks allows dynamic response analysis. An important prior
formulation of metabolic kinetics is the S-system representation developed within the
biochemical systems theory (BST). However the S-system representation is a nonlin-
ear system and BST explicitly employ MCA parameters. The major advantages of the
(log)linear model presented in this chapter are the linearity (in terms of logarithms)
of the model and the specification of the system dynamics using the same parameters
as employed in MCA. Exploiting the linear nature of the model, we present a simple
procedure for the identification of the effects of the period and the waveform of a pe-
riodic spatiotemporal variation of the parameters on the average metabolic functions

and their control coeflicients.

3.2 Mathematical Description of Metabolic Re-

action Networks

3.2.1 Development of a (Log)Linear Kinetic Model

Consider a metabolic system consisting of n metabolites and m enzymatically-catalyzed
reactions. We are interested in studying how modifications of the expression levels and
of the properties of the enzymes that catalyze these reactions affect the time response

characteristics of metabolic functions of the system, such as metabolite concentra-
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tions, fluxes, and the specific growth rate. The mass balances on the metabolites of
the system may be written as:

& — t(v(xp), %) @)

where x is the n-dimensional metabolite concentration vector, f is a function deter-
mined by the mass balances, v is the m-dimensional reaction rate vector, and p is
the s-dimensional manipulated parameter vector (e.g., extracellular substrate concen-
tration). In addition to metabolite reaction rates, the mass balance equations also
include terms that account for other processes by which concentrations of metabo-
lites change (such as the dilution brought about by increases in the biomass volume
(Fredrickson, 1976) and transport through the cell wall envelope).

If we consider temporal variations in the parameters then p will be a function of
space coordinates and time. In many systems with spatial gradients (for example,
a bioreactor with internal fluid circulation, or a plug-flow bioreactor), description
of system changes in space can be transformed into a description in terms of a cir-
culation or residence time, again resulting in ordinary differential equations in the
form of Equation (3.1). Here the temporal dependence of the parameters is indicated
explicitly:

dx
= = £(v(x;p(0)), % B(0), ) (32)
In addition, consider the r-dimensional vector of metabolic outputs, h, which we

can be written in general:

h = h(v(x; p(t)),x; p(t), 1) (3.3)

In equation (4.2) h is a function of the rates of interest, of the metabolite concentra-
tion, and of the parameters. Let x, be a steady state — or one of the steady states in
the case of steady state multiplicity — that corresponds to the given parameter vector

Po, and let x, be nonzero with positive elements. Linearization around this steady



o1

state results in the linear system:

dx—-x,) oOf of
T T ao (X - xo) + 5= (p - po) (3'4)
dt ox XoPo op XorPeo
for the mass balances, and
oh oh
h = h(vo(xo; po)» Xo; Pos 0) + 5" (X - xo) + 5_ (p(t) - po) (35)
X Xo,Po,0 P X0,Po,0

for the metabolic outputs.
If we define the matrices X, and P, to be diagonal matrices with diagonal elements
Xojii = Lo and Py 5 = po, respectively, then, we can write:

dx—x%,) . Of B of

X! =
° dt ° Ox

for the linear system.
Now it is useful to define new variables which are the logarithmic deviations of

the systems state variables and parameters:

Ti
z;=In (;{:) (3.7)

[P -
& (po,z) (3:8)

Given the above definitions we further observe that:

and

of . .

a_‘ XO — af Xo = afz mo,j — in (39)
X |y, po O(x — x,) XouPo O(z; — o) Xo.Po 0z; Xo.Po

of A ‘

vt PO — 5f Po :> af’l, pa,j — 8f2 (3'10)

Py, po (P — Po)ly, p, 0P = Poi) lxops O lx, po

A key approximation used in the development of (log)linear models is the following

Taylor expansion of the logarithm about a reference value at y,, which, to first-order
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terms, is::
In(y) = In(y,) + 2= = In (g) > 97 B (3.11)
o Yo Yo
Finally, by defining
fi
P = 3.12
9= (3.12)

we can write the linearized system for the logarithmic deviations, noting that [z,, q,] =
[0,0]:
dz _ Og
dt Oz

0
z—%——g

34 q (3.13)

0,0

0,0
Similarly, by linearizing equation (4.2) around the same steady state and by defin-
ing

wy = ln(hl/hl,o) (3.14)

we can write the following linear equation for the logarithmic deviations of the

metabolic outputs:
ow

ow N
[ Z P
0,0 9q

T 9z

w

q (3.15)
0,0

In order to describe the dependence of the metabolic system explicitly on the reac-

tion rates and on the rest of the metabolic processes the following final representation
is adopted:
dz
= = NE€z + Kz + Nllq + Aq (3.16)
w = Efz + Hz + Ellq + Oq (3.17)
where, z, q, and w, are the logarithmic deviations of the metabolite concentrations,

the enzyme levels, and the metabolic outputs, respectively:

z = In(z;/x;,)
@k = In(pi/pr.o)
wp = ln(h[/hl’o)
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and N, B, K, A, H, ©, £, and II, are matrices, defined as:

v',o afl — ’U',o 8h
N = {ny; | nyy =~ (““) b E={&4 &= EJI_ (_671) 1,
XoPo 0 7/ %o,Po

Tio \ OV;

o 6 i o 6 1
K= fre mp = 202 (OB} y Ao e =22 (80)
8$Uk Xo,Po Xo0,Po

Zio Tio apk
Tio 8]1[) Pko (ahl)
H= i i = — | = y @ = {8 , 9’ = 2 —_— ,
{m | m, hio (&Ci xo,po} {01 | Ouk hiy \ Opr xo’po}
E={e;|eji= 22 0y Vo, TL={m | my = ke ov; ¥3.18)
7.1 1 €4, Vs 8(1’:1 ope ) I I Vj,0 apk Xo,Po
At steady-state, the solution of (3.16) and (3.17) yields:
w = Cq (319)
where
C=—(BE+H)(NE+K)H(NIT+A)+EIL+ O (3.20)
with

Pko [ dhy
C = foeed . e
{Cl'k | hio (dpk)po}

The mathematical description presented above depends explicitly on the same
information as that employed within the framework of metabolic control analysis
(MCA) (Reder, 1988; Schlosser and Bailey, 1990). Matrices £ and II are the elasticity
matrices with respect to metabolites and to parameters, respectively. The matrix C is
the control coefficient matrix of the metabolic functions h with respect to parameters
p-

We should notice here that the final representation (equations (3.16) and (3.17))
allows the explicit description of the system with quantities that are characteristic
of each enzyme. Therefore, we could study the effects of modifications of the cat-
alytic properties of enzyme i with respect to its substrate (or regulatory effector)

j, by changing the value of the corresponding elasticity €;;. Henceforth the above



54
description of metabolic systems will be called a (log)linear metabolic model.

The (log)linear metabolic model is an approximate linear description of nonlinear
models for metabolic systems that shares common properties with the approximate
nonlinear S-system representation. While they both give the same steady-state so-
lution and they have the same local stability characteristics at the reference steady
states, their dynamic responses are in general different, and the S-system dynamic rep-
resentation is nonlinear, and therefore they can be solved only numerically, whereas,
the (log)linear models are linear and thus, as it will be shown in the following section,
they can be analytically integrated. With respect to their parameters, the (log)linear
model uses explicitly, the same parameters as used in MCA, while S-system models

use different parameters, which can be derived from MCA parameters.

3.2.2 Analytical Solution of the (Log)Linear Model

A crucial advantage of the (log)linear model is the linearity of its unsteady-state
equations which allows relatively straightforward analysis. In particular, the solution

of equation (3.16) may be written explicitly (Seinfeld and Lapidus, 1974):

t .
2(t) = eMNE+R)t=to) ;4 e(N£+rc)(t—r)(NH + A)g(r)dr (3.21)

to

where

zo, = 2(t,)

The time dependence of the logarithmic deviations of the metabolic outputs can then

be calculated directly from equations (3.17) and (3.21)

w(t) = (BE +H)(eNEHR~to)g, 4 / " eNEYO=) (NTT + A)q(r)dr) + (1T + ©)q(t)

- (3.22)
Numerical calculation of the integral in equations (3.21) and (3.22) is simple and
rapid.

For the time-dependent metabolite concentrations and metabolic outputs, we sim-
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ply calculate the inverse transformations of the equations (3.7) and (3.14):
z;(t) = :z:o,,'ez“(t) (3.23)

and

hi(t) = ho e ® (3.24)

which can also be written as

RS e

To & Po,j
where
n
o = (O & + M) (3.26)
i=1
and
o= Guma + 6i5) (3.27)
=1

Equations (3.21)-(3.27) account for the time dependence of metabolites and metabolic
outputs based on MCA data and thus substantially extend the scope of applications
of MCA data.

3.3 Accuracy of the (Log)Linear Metabolic Model

In this section three examples will be presented in which the dynamic responses of
small metabolic pathways are described using alternative modeling representations.
The following examples should be considered as illustrations of how accurately the
(log)linear model can describe metabolic systems, but they are not presented for a
strict quantitative comparison. The good agreement between the (log)linear model
and the full nonlinear model available for these examples will suggest that, in the
absence of a nonlinear model and when MCA data can be experimentaly determined
or estimated, the (log)linear model can be used as a good first approximation for

analysis of the dynamic response characteristics of metabolic systems.
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3.3.1 Linear Pathway

The pathway considered in this example is a simple linear pathway (Figure 1).
Michaelis-Menten kinetics were considered for every reaction rate and the parameters
used are presented in Appendix A. The (log)linear model parameters were derived as
described above. We studied the dynamic responses of the flux through step 4, to the
final product P, for step changes (Figure 2.A) and for sinusoidal variation (Figures
2.B, 2.C, and 2.D) of the input flux, v,.

As shown in Figures 2.A and B, the time response characteristics of the flux
through the pathway are in very good agreement between the original nonlinear model
and the approximate (log)linear model. The final steady-state differences for step re-
sponses (Figure 2.A) are the differences between the MCA calculations of new steady
states and steady states of the original system. The question of the sensitivity of a
system either to changes in its parameters of to fluctuations of the concentrations
of cellular metabolites has been addressed and studied using the simple linearized
model of the system; i.e., the system described by equations (3.4) and (3.5) (Kahn
and Westerhoff, 1993). However, the (log)linear model is in much better agreement

ith the original system model than is a simple linear molel, especially with respect
to response to periodic inputs (Figure 2.B, 2.C and 2.D). The time response charac-
teristics of the concentrations of the metabolites were also found to be in excellent
agreement (results not shown). Extensive analysis for different parameters showed
that the (log)linear model can perform very satisfactory in approximating the linear

pathway with reactions which follow nonlinear kinetics (results not shown).

3.3.2 Branched Pathway

The branched pathway depicted in Figure 3 was also considered. A regulatory struc-
ture, typical for branched pathways, was included (see the dashed arrows in Figure 3).
The kinetics assumed for the pathway are presented in Appendix A.IIL. It is interest-
ing to notice that the regulatory structure introduces nonlinearitie;s which make the

model more complicated than the one for the linear pathway. The metabolic output
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considered in the simulation studies is the ratio of the flux through step 2 divided by

the sum of the fluxes through steps 2 and 3:

U2
R =
Vo + Vs

(3.28)

The dynamic responses of the ratio for step changes and for sinusoidal variation of
the input flux, v,, are presented in Figures 4.A and 4.B, respectively.

The agreement between the (log)linear model and the nonlinear model is very
good, especially if we consider the complexity arising from the branching of the input
flux and from the regulatory coupling. The differences between steady states, espe-
cially for large input changes, are indicative of the limits of MCA for calculating new

steady states after large parameter changes.

3.3.3 Glycolytic Pathway

As a last example, the glycolytic pathway from yeast (Figure 6) was studied. The
kinetics of the enzymes of the pathway are known to exhibit strong nonlinearities (see
Appendix A.III for the kinetics considered). The flux to ethanol was the metabolic
output considered, and responses of this flux to changes in glucose uptake rate were
studied as in the previous examples. The simulation results, presented in Figures 7.A
and 7.B, illustrate the excellent agreement between the nonlinear and the (log)linear
models. As we can see from the kinetics in Appendix A.III, the nonlinearities are
among the most complicated in enzyme kinetics, and the agreement between the
two models is still excellent. Moreover, the (log)linear model is able to describe the
overshooting (undershooting) initial response of the flux, as presented in Figure 7.C.

In conclusion, the (log)linear model is an attractive representation of metabolic
pathways since it can be easily constructed directly from MCA data, it has an analyt-
ical solution which makes computation easier, and it can describe quite accurately the
dynamic response characteristics of the pathways. Moreover, the analytical solution
of the (log)linear model allows the derivation of indices such as the regulatory strength

and the homeostatic strength (Kahn and Westerhoff, 1993) by simple manipulations
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of equations (3.21)-(3.25).

3.4 Averaged Metabolic Functions and Control
Coefficients for Periodic Parameter Variations

Suppose that h, is the metabolic output corresponding to the steady state with

parameters p,. If the parameters change with time in a periodic fashion, with period

T, ie.
p(t) = plt +T) (3.20)

the metabolite concentrations and the metabolic outputs will usually, after some time,

closely approximate periodic functions with the same period:

x(t) = x(t + T) (3.30)

and

h(t) = h(t + T) (3.31)

Suppose that p also varies with time so that its average value, P, is the same as
Po:
P=DPo (332)

Then, if the metabolic system is nonlinear, the time-average value of the output
_ 1 rsnT
R /n _ h(r)dr (3.33)
will, in general, be different from h,:
h, #h, (3.34)

Extensive theoretical, computational, and experimental studies showing this have

appeared in the chemical reaction engineering literature (Douglas, 1967; Bailey and
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Horn, 1971; Bailey, 1974, 1977; Guardabassi, 1974; Lyberatos and Svoronos, 1987).
This implies that, if some parameter, say p;, of the metabolic system varies peri-

odically with time with mean equal to its reference steady-state value:

1 DT
Por =P =7 /n  m(ndr (3.35)

the effect of another parameter, say p,, on the time-average metabolic outputs will, in
general, be different from the effect of that parameter on the steady-state metabolic
outputs. Stated in terms of control coefficients, this means that the average output

control coefficient (AOCC), defined as:

Fi _ Poz Al

= 3.36
P2 hy dp (3.36)

are, in a system subjected to time-periodic inputs, different from the corresponding
steady state control coeflicients ng,

When we study metabolic systems subject to periodic variation of their parame-
ters, many questions arise: How does the average metabolic function of interest de-
pend on the period and the waveform of the variation? What is the optimal variation
pattern? How are the responses to genetic manipulations of time-invariant param-
eters affected by the time variation of another parameter? The (log)linear model
developed above can be used to find an approximate answer to these questions.

Equation (3.36) can be derived by differentiation of equation (3.33) with respect
to po:

CE — po_,.? T {Z 6hl(T) 8131'(7') + 8}11(7)} dr (337)

P2 ElT 0 8@- 8p2 Bpg

which after rearrangement becomes:

= 1 /T Zo; Oy (T) [ Po2 Oxi(T) Do,2 Ohy ()
hy . Zoi T il = .
Crs T /0 [Z h, Oz; (%,i Opa2 + h, Ops ar (3.38)

%

The first and third underlined terms in Equation (3.38) can be approximated using

equations (3.21)-(3.27) of the (log)linear model. The second underlined term can be
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approximated from the concentration control coefficient with respect to p, by differ-
entiation of z(t) (Equation (3.21)) and, as shown in Appendix B, it is time-invariant
and equal to the concentration control coefficient of the time-invariant steady-state,
regardless of the periodic input.

Lyberatos and Svoronos (1987) developed a method for the study and optimiza-
tion of pulsed periodically forced (Figure 7) linear systems. Their method has been
shown to be very useful for the study of forced chemical reaction systems and the
estimation of the optimum period and waveform of forcing (Hatzimanikatis et al.,
1993). Their method seems to be appropriate for the study of metabolic systems
since the (log)linear model developed in the previous section has been shown to cap-
ture many of the most important dynamic and steady-state response characteristics

of the nonlinear metabolic model.

3.4.1 Mathematical Framework

We will consider again a metabolic system consisting of n metabolites, x, m enzy-
matically catalyzed reactions, v and s parameters, p. One of the parameters, py, is

varying in a pulsed periodic mode (Figure 7):

] te[iT,(j + e)T]

p=cLy teli+aT,(+1)T]

p(t) =7 + i=0,1,2,... (3.39)

The magnitude of p is set at €§/(e — 1) so that the p; average is 7y, i.e.

1 /T _ 0eT 1-6T
T/o pi(r)dT =P, + T +p( T) =7 (3.40)

Treating p;(t) as piecewise constant, system (3.16) can be written as

iz | NE+K)z + (NIL+A)q@) teliT,(j+oT)

az _ i=0,1,2,...
dt (NE+K)z + (NII+A)a(p) te(+eT,(G+1DT)

(3.41)
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where q(4) and q(p) are the same as in system (3.16) with their first elements
In(6/p,1) and In(p/p,1), respectively.

Integrating equation (3.41) we can find that the periodic solution is

exp((NE + K)(t — 5T))z°

—[I — ezp((NE + K)(t — 5T)))(NE + K)"1(NII + A)q(é)

o(0) = t € [§T,(j + €)T] (3.42)
ezp((NE + K)(t — (j + €)T))z

—[I—ezp((NE + K)(t — (j + ¢)T))|(NE + K)~H (NI + A)q(p)

telG+aT, G+ DT

where

R = exp((NE +K)(1 —¢)T)
D = exp((NE€ + K)eT)

2° = —[I - RD]"!
{[R - RD|(NE + K)'q(d) + [I - R|(NE + K)"'a(p)}

z¢ = —[I — DR]™!
{[D - DR|(NE + K)~'q(p) + [I - D](NE + K)~'q(d)}
and I is the unitary n x n matrix.
Equation (3.42) enables the simple computation of the periodic solution using
simple matrix calculations. The computed periodic solution can be used in order to

integrate the nonlinear expression for the metabolic output (3.25), and calculate its

average value:

Bin n Ok s Bij
7o Dot T[4 k(1) P\
hl B T /0 (pol) H ( Tok ) H (po,j) ar

=2

Lot (T (_P_)ﬂ“ i (mk(f))alk i (l’z‘..)ﬂ” dr
T eT poyl k=1 mo,k j=2 poyj

As expected, the average value of every metabolic function depends on ¢ and 4,

(3.43)



62
i.e. on the profile of the variation, on the period, T, of the variation, and on the value
of the parameters p;, if a time-invariant change in any of them is considered also.
Equations (3.42) and (3.43) provide a fast and simple method to analyze and, when
possible, design the spatiotemporal variation profiles of the operating parameters.
The analytical expression for h; (equation (3.43)) can be used in order to calculate
the control coefficient of h; with respect to any of the parameters p; according to

Equation (3.38):

po,r@ _ ho,l /(1~6)T< Ky )6” n (-Tk('r)>alkﬁ (pj )ﬁlm (251 (T)dT
R dp, . R Jo Pou Tok =5 \ Do '

k=1 1=
(3.44)
Bn Qi s Bim
il lin) HED) G
+= - o (T)dT
T Ja-T \ Po,1 kl;[l Tok ]I:I2 Poj in(7)
where
— é Zok Ty
Gir(7) g:_;alk (——-——xk (T)> Cok + Bir (3.45)

where CJ* is the concentration control coefficient of the metabolite z; with respect
to parameter p,, as it has been determined at steady-state and for p; = p, 1, and it

appears from the approximation

d(zi(t)/zok) - dz(t)
d(pr/Po,sr) dg,

in Equation (3.38) discussed above. Moreover, as shown in the Appendix B:

dzk(t)
dg,

=C Vit
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for any periodic input. Therefore, equation (3.44) can be written as:

Do,r dEl _

El dpr

hot (1—€)T( p) )ﬁll n (zk(7)>alk s <pj );Blm ( n ( Tok ) )
o — 2L a E ) o 4 G, | dr
T Jo Po,1 k=1 \ Tok JI,—:[Z Po,;j ,?::2 “\awlr)) b

ﬂll n Ak s ﬂlm n
e ) LD LG (S () o)
12 o : C* + By, | dr
T Ja-eT (poyl =1 \ Zok ]IzIQ Do.j k§2 t CL';C(T) pr !

(3.46)

3.4.2 Quasi-Steady-State Approximation: a Limiting Case

The Quasi-Steady-State Approximation (QSSA) considers the average performance
of the metabolic system when the characteristic time scale for changes of the varying
parameter (typically the period T, or some quantity scaled by T') is much greater
than 77'%* the mazimum characteristic response time of the system (Bailey, 1974).
For the (log)linear model (3.16), %% is the inverse of the minimum eigenvalue of
the matrix N& + K. Any further increase in the period in this range will not change
the average performance of the metabolic system significantly. For pulsed periodic

parameter variations the QSSA condition may be stated in the form
min{(1 — e)T,eT} > 7% (3.47)

In quasi-steady state operation, for the time period equal to (1 — €)7T the system

will be during most of this time interval very near the steady-state for p; = ¢ at which

L
(2)-(5)"
Zok Po,1

and for most of a time period equal to €T" the system will be near the steady-state
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Tk
(2)-(5)"
Lo,k Do1

Therefore, time-trajectories of the metabolite concentrations may be well approxi-

for p; = p at which

mated by:

c
@i)ijquy%ﬁ

(mk)= (3.48)
Tok o
\G&)“wy%wgt<u+nT

po,l

and the corresponding time-average value of the metabolic function is

8§ 8
B 5 \But > ayCpF ) B+ awCpf| & Bim
N P N 1T
Do, Do, =2 \Po,j
(3.49)
For p; = p,; and from the definition of the control coefficient
Ol = B+ ayCLE
P = Pu + kz o Cp,y
=1
we have L L
! !
_ 5 \“m P\ s,
hi = ho € + hoy(1 —€) =h; +h (3.50)
po,l po,l

This last equation shows that knowledge of the control coefficient of the metabolic
function with respect to the varying parameter, p;, determined at p; = p, 1, can pro-
vide us with a first prediction about the improvement or the deterioration of the
metabolic function for different waveforms. We should also notice that the experi-
mental determination of the control coefliecient, Cgf, is relatively simple by measur-
ing the metabolic function at different values of p;, which is usually a manipulated
environmental condition, such as nutrient concentration or dissolved oxygen.

Similarly, we can find an analytical expression for the control coefficient, CII} Tl, for

the limiting case of the QSSA:
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Por Al
71—! dp,
h
Cpy Bi ch
hol (5>pls(pj>m = Do,1 P1
=€l — o (‘“) Cok + DBir | dT
hy Po1 ]1;12 Po,j kzz:g o P (3.51)
h h
C 1 ﬂl C l
hoj (p>pls<pj> & (pm) Py
+==(1—¢ ay | — Cok + B | dr
hy ( ) Po,1 g Do,j 122 l P ” l
For p; = p,; and after the proper rearrangements we obtain
- 058 | 1 Psp
hy %
cht = ¢l J_._di_ht.f_‘:_ (3.52)
he +hY!
where
= ~ D 0113111
25 = Zauc ( (:5’1> -1 C;Tk +/Blr
k=2
and

ch
5P = par) | oo
= Z o || — - o+ B
k=2 p

L

As equation (3.52) suggests, the control coefficient, C;} Tl, for the limiting case of
the QSSA, can be experimentally determined for various waveforms by performing a
steady-state MCA at different values of p;. Given this information, we can estimate

the effects of periodic variation of p; on the resulting time-average control coefficients.

3.4.3 Example

The glycolytic system studied in Section 2 will be analyzed here with respect to the
effects of time-variation of glucose uptake on the ethanol production rate and its

control coefficients. Such a variation can be the result of variation in the external
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glucose concentration, or temperature (Ribeiro et al., 1994). In what follows we will
use the (log)linear representation of the glycolytic pathway, derived around the steady
state given at Appendix A.IIl. The specific production rate of ethanol at the reference
steady-state is

JEtOH = 37.61mM/LCeumz'n

and its (steady-state) control coefficients with respect to glucose uptake, phospho-

fructokinase, pyruvate kinase, and ATPase are
[CYin» Cilir Conier Cidpase) = [0.6762,0.3184, 0, 0.0455)

The specific glucose uptake rate was assumed to vary in a pulsed periodic fashion.
The effects of the period and the waveform of the variation on the average value
of the specific rate of ethanol production are presented in Figure 9.A and 9.B. The
average specific rate of ethanol production decreases monotonically as the period of
the variation decreases, independently of the waveform as described by different values
in 6 and e. Moreover, as 6 and/or € increase, the average specific rate decreases. In
general, any periodic variation on the glucose uptake will probably result in lower
ethanol production rates.

The variation of the glucose uptake also has a dramatic effect on the average-flux
control coeflicients. Figures 10.A.I to 10.C.II illustrate the significance of this effect.
Several conclusions can be drawn from these figures. First, the differences between
invariant control coefficients and average-flux control coefficients can be orders of
magnitude. Second, they are not necessarily monotonic functions of the period. On
the contrary, as we can see from the control coefficient with respect to ATPase (Figure
10.C.I and 10.C.II), for high periods of variation the average-flux control coefficient
is higher than for low periods. However, there exists a range of period for which the
average-flux control coefficient is much lower than both the extreme values. As e and ¢
increase, the AFCC’s for high and low period also increase, and the difference between
them is also increasing. The most interesting effect is observed in Figure 10.C.II,

where the AFCC can be either positive or negative, depending on the period, and on
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the waveform parameters € and §. This observation is particularly significant because
it implies that decisions taken at a certain stage of a scale-up process, with respéct to
which enzyme in a pathway should be genetically manipulated, could have no effect
or even be counterproductive. This example analysis illustrates the importance of
the consideration of spatiotemporal variations and the usefulness of methods that
can estimate the effects of such variations.

As it has been shown in the branched pathway example, changes in the regulation
of the pathway can alter its dynamic response characteristics. Therefore, it is expected
that, by altering the regulation in the glycolytic pathway, the dependence of the
AFCC’s and the average ethanol production, will also be altered. Such analysis
suggests genetic engineering approaches for the solution to the problem of performance
deterioration under parameter variations. Moreover, useful conclusion with respect
to the evolutionary design of pathways can be drawn if we consider that most of the

microorganisms have been evolved to survive in a varying environment.

3.5 Concluding Remarks

Rigorous, general relationships between properties of nonlinear systems and properties
of simple models used to approximate them are very rarely available. Nevertheless,
the introduction of approximations to facilitate analysis and design of nonlinear sys-
tems is a widely used engineering method. Clearly, to preserve the greatest possible
correspondence between results obtained by analysis of the approximate model and
result from the original nonlinear system, one seeks approximate models which mimic
closely the original nonlinear system (recognizing that again, general characterization
of the extent, or quality, of such mimicry is typically not possible).

We have undertaken the formulation of (log)linear models in this spirit. The com-
parisons between responses of models of this class, and the exact responses of the
nonlinear systems they are intended to approximate presented here for several differ-
ent examples of significant complexity suggest engineering utility of our approach.

As an illustration of applications which can be effectively developed with such
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an approximate linear representation in hand, the effects of periodic variations in a
system parameter on metabolic outputs and their sensitivities have been examined.
Here we have shown how indications of spatiotemporal parametric fluctuation effects
on fluxes and sensitivities can be obtained based on steady-state experimental data.
Our analytical results substantially extend and generalize the important observation
from numerical simulations that average control coefficients can shift significantlly in
response to spatiotemporal fluctuations in a large-scale bioreactors. Further applica-
tions of (log)linear models for other purposes in metabolic analysis and design will

be presented in future publications.
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3.7 Appendices

APPENDIX A

In this appendix the kinetics used for the nonlinear models in the examples of
Section 3 will be presented. The parameters of the corresponding (log)linear models,

i.e. the elasticities, can be derived from this information following standard definitions

(REFS).

APPENDIX A.I
Linear Pathway

The linear pathway considered is presented in Figure 1. The input flux, v,, was
the manipulated variable. The kinetics used are the following (numbered according

to the numbering of the steps in Figure 1):

931
V) =L
17 %0.3333 + 5,
Vy = ——-———-———82
27 71 0.6667 + 55
53
=15—3
v 0.6429 + 53
Sy
Vg

= 13—
0.1875 + s4

For the reference steady state we set
Vo = 1
and for the steady state metabolite concentrations we had
[s1, 82, 83, 84] = [0.3333,0.9524, 1.2858, 0.6250]

APPENDIX A.IlI
Branched Pathway

The branched pathway considered and the regulatory structure around it is pre-

sented in Figure 3. The input flux was again the manipulated variable. The kinetic
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expressions used for the reaction rates numbered according to Figure 3.

Sy

= 10—
v = 105333

S2

vy = 4.1667

0.6667 | 1+ —Z5 | + 5,
)

Vg = 7.5 52

0.6429 | 1 + 5 S

___._A...gs_ +S2 1_*_._._.._‘;83_..
S8 5(14 32
7(1+1.5) 3 <+1.5>

For the reference steady state we set
Vo= 3
and for the steady state metabolite concentrations we had

[51, 82, 83, 54] = [0.1429,0.2425, 0.0393,0.4001]

APPENDIX A.III
Yeast Glycolytic Pathway

The kinetics for the yeast glycolytic pathway have been taken from Schlosser et
al. (REFS).

Vin = Vj, — 0.5([G6P] — 2.7)

-1
S 68.5( 0.00062 0.11 0.1 ] n 1)

[G[ATE] * [G7] T [aTP

and

()t )
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where the concentration of UDPG was fixed at [UDPG]=0.7 mM.

where

and

VGAPD =

where

where

and

with

and

[F6P]|ATP|R
R? + L,L2T?

VprKg = 5283

R =1+ [F6P] + 16.67[ATP] + 166.7[F6 P|[ATP]

T = 1+ 0.0005[F6P] + 16.67[AT P] + 0.0083[F6 P]|AT P

_ 1+0.76|AMP)
1+ 40[AMP]

Lo — e(4.17pH—20.42) — 1658

0025 1 .
49‘9<1+0 0 0.18S ( 0.0025

(G3P] + [NAD] 1+ M[GSP] (1+3333{NADH]))>—

S =1+ 0.9091[AM P) + 0.6667[ADP] + 0.4]AT P]

[PEP|[ADP] (RpkK; + 0.2Lo pic L3 Trk)

= G68.8
oPK (Rbk + Lopx L Thy) (1 + 10(H-802))

Rpk =1+ K;[PEP] + 0.2[ADP] + 0.02K,[PEP][ADP]
Tpx = 1+ 0.02[PEP] + 0.2[ADP] + 0.004[P EP][ADP]

Ky = 17.92 + 10PH-4.907)

Lo‘pK = ab — a2

a=1.713 + 10PH—6.306)

0.1192 + 10PH-7-089)
"~ 11.83+ 1.61pH — 8.722/pH
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vgoL = 15“-*[-1%—}3]“—
24 + [FdP)

The equilibrium step, G6P = F6P, was described by [F6P] = 0.3[G6P], and
the equilibrium step G3P =& FdP, was described by [G3P] = 0.01[FdP]. For the
adenylate kinase (AK) an equilibrium constant g4x = 1 was considered and the total
adenylate pool, [AN] = [AT P]+[ADP]+[AM P], was treated as fixed parameters at a
value [AN] = 2.8 mM. The ratio [NADH|/[NAD"] and the sum [NADH|+[NAD7]
were also treated as fixed at values 0.03 and 2.5 mM, respectively.

The intracellular pH was assumed to be a function of [ATP], and the following

relationship was used:

pH = 7.11+ 0.113([ATP) + [ATP],)

where [ATP], = 0.967 mM.

APPENDIX B

In this appendix we will show that for the special case of pulsed periodic variation

of a parameter, the derivative

d(ze(t)/Tok)
d(pr/Po,r)

which can be approximated by the X concentration control coefficient and is inde-

pendent of time
d(.’l)k(t)/dfo,k) _ dzk(t)
d(pr/Po,r) dg,

If we differentiate z(t), as it is given by equation (3.21) we obtain:

=Co Wt (3.53)

-‘%Zé—t) = e(N5+K>(t"t°>% + /  (NE+R)(t=7) (NII + A)e,dr (3.54)
T qr to

where
dq(6) _ da(p) _

= do = (3.55)
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is a vector of size equal to the size of q and with zero elements except the r-th element
which is equal to one.

For the periodic solution of z(t) we will have
z(to) = z(to + T)

where T is the period of variation of the varying parameter g; (j # 7). From Equation

(3.21) we have for the periodic solution

to+T
2(to+T) = eMNETRTg(1) eMNE+R)Co+T=7) (NI + A)q(7)dT =
to
tot+T
(I_e(N£+IC)T)—1/ eNETK) o+ T=7) (NTT + A)q(r)dr  (3.56)

to

z(t,)

from which, by differentiation with respect to g,, we can calculate the term dz,/dg,

in the Equation (3.54):

dz(to) _ [I - e<N8+'C>T}‘1 / s eMNEHE) o+ T=7) (NI + A)e,dr (3.57)
dqr p . T

o

For the two integrals in Equations (3.54) and (3.57) we can solve analytically:

t
/ eMNEHOE) (NTT + Ae,dr = — [T — eNEHN] (NE 4 K) 7 (NTI + A)e,
12
(3.58)

and

to+T
/ e(N£+IC)(ta+T—T)(NH + A)erd'r S [I _ €(N£+’C)T] (Ng + ’C)—I(NH + A)er
to
(3.59)
Substituting the integral from Equation (3.59) into Equation (3.57) we obtain

dz(t,)

= —[1— ™EOT] T [ - (NEHOT] (NE + )7L (NTL+ A)e,
= —(NE&+K) NI + Ae, (3.60)

Finally, from equations (3.60), (3.58), (3.54) the expression for dz(t)/dg, can be



77

written as:
dz(t)

dg,

= —(NE + K)"}(NII + A)e, (3.61)

which, by definition, is the vector of the metabolites concentration control coefficients

with respect to parameter ¢,, and is independent of time and of the varied parameter.



3.8 Figures

78



79

Figure 3.1: Linear pathway.
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Figure 3.2: Dynamic responses of the flux through the linear pathway. Solid lines
correspond to the nonlinear model and dashed lines correspond to the (log)linear
model. A. Responses to step changes of the input flux. I: +20%; II: +10%; III: -10%;

IV: -20%. B. Responses to sinusoidal variation of the input flux: v, = 1 -0.2sin (%)
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Figure 3.3: Branched pathay. Solid arrows indicate reaction steps. Dashed arrows
indicate activation (plus sign) or inhibition (minus sign).
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Figure 3.4: Dynamic responses of the ratio of fluxes through the branched pathway.
Solid lines correspond to the nonlinear model and dashed lines correspond to the
(log)linear model. A. Responses to step changes of the input flux. I +20%; II:
+10%; III: -10%; IV: -20%. B. Responses to sinusoidal variation of the input flux:
Vo = 3(1 + 0.2sin (nt)).
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Figure 3.5: Anaerobic fermentation pathway of the yeast Saccharomyces cerevisiae
under nitrogen starvation, with glucose as the sole carbon source. Enzyme/pathway
steps: in, glucose uptake; HK, hexokinase; K1, equilibrium step; PFK, phosphofruc-
tokinase; GAPD, glyceraldehyde 3-phopshate dehydrogenase; K2, equilibrium step;
PYK, pyruvate kinase; GRO, glycerol production; POL, polysaccharide production;
ATPase, net ATP consumption; AK, adenylate kinase. Solid arrows indicate reac-
tion steps, dashed arrows indicate activation and dotted arrows indicate inhibition.



84

42.0

37.0

32.0 t = 42.0
39.5

37.0

34.5

Y 1 n i I i 2 i A 32.0
0.0 1.0 2.0 3.0 4.0 5.0

time

Figure 3.6: Dynamic responses of the ethanol specific production rate of the yeast
glycolytic pathway. Solid lines correspond to the nonlinear model and dashed lines
correspond to the (log)linear model. A & C. Responses to step changes of the glucose
uptake. I: +20%; II: +10%; III: -10%; IV: -20%. B. Responses to sinusoidal variation
of the input flux: v, = 27.3(1 + 0.2sin (2~t)).
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Figure 3.7: Pulsed periodic variation of parameter p;.
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Figure 3.8: The percentage difference of the average ethanol specific production rate,

ie. JEtofjf — JBi0H ref as a function of the period, T, of the pulsed variation of the
EtOHref

glucose uptake rate. I: ¢ = 0.5, § = 0.1 (solid line) and § = 0.2 (dashed line). II:
0 = 0.2, € = 0.5 (dashed line) and € = 0.8 (dashed—dotted line).
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Figure 3.9: The control coefficients of the average ethanol specific production rate,
J eton, with respect to: A. phosphofructokinase, B. pyruvate kinase, and C. ATPase,
as functions of the period, T, of the pulsed variation of the glucose uptake rate. Solid

lines: € = 0.5 and § = 0.1. Dashed lines: ¢ = 0.5 and § = 0.2. Dashed—dotted lines:
€=0.8and é = 0.2.
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Chapter 4 Analysis and Design of
Metabolic Reaction Networks via

Mixed-Integer Linear Optimization
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4.1 Introduction

Improvements in the product yield, rate of production, and final product concen-
tration are common goals in achieving more efficient and cost-effective bioprocesses.
These improvements can be achieved by two main approaches: genetics and process.
Process improvements involve the adjustment of the environment of the organisms
and the optimization of parallel and downstream processes in order to achieve the best
possible performance. Genetic improvements are based on the use of organisms with
altered DNA such that their functional characteristics are enhanced. Traditionally,
the latter approach has been based on the introduction of random changes in the DNA
of a population of organisms and the subsequent selection of an improved organism
from the resulting heterogeneous population. However, recent advances in recom-
binant DNA technology make targeted modifications in the DNA of an industrial
microorganism possible. Moreover, recombinant DNA methods enable the introduc-
tion into an organism of DNA fragments from other organisms with the possibility of
creating hybrid metabolic networks combining features from metabolic networks in
different organisms.

All the major cellular pathways are subject to a collection of natural independent
control loops with different signals and different loci of action (Sanwal et al. 1971;
Savageau, 1976; Stephanopoulos and Vallino, 1991). These mechanisms of metabolic
regulation operate at essentially two different levels. Genetic-level controls regulate
the expression of genes, thereby determining which enzymes are present and in what
quantity. Protein-level controls regulate the activity of particular enzymes, and other
proteins, in the cell. With respect to protein-level controls, each enzyme can be
classified as having no such control, or as having activity modulation by one or more
particular metabolites in the cell.

The metabolic control structures in a native, wild-type organism have evolved
through natural selection and are therefore configured to maximize the probability
of survival of the species, at least insofar as evolution has progressed. While explicit

formulation of the objective function for natural metabolism is nontrivial, prior in-
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vestigators have proposed maximization of growth rates or most efficient utilization
of cellular energetic and chemical resources as the objective function for evolution of
natural metabolism (Savageau, 1976; Ramkrishna, 1983; Heinrich et al., 1987; Marr,
1991; Schuster and Heinrich, 1991). However, in chemical and pharmaceutical manu-
facturing that utilize cultivated microorganisms, it is desirable to identify a different
configuration of fluxes which directs raw materials to products efficiently at high
rates and in the presence of high concentrations of product. A production-oriented
evolution is needed to achieve these goals.

Through currently available genetic engineering technology, it is possible to modify
both genetic and protein-level regulation. Thus, the amount of a particular enzyme
which is expressed under a particular process condition can be altered by changing
the genetic information of the organism. Similarly, by changing the gene which codes
for a particular enzyme, the response of that enzyme to metabolites which influence
its activity can be altered.

Prior research and industrial practice have clearly shown that very large increases
in process performance can be realized by genetic modifications of metabolic control
systems (Bailey, 1991; Katsumata and Ikeda, 1993). Past improvements in the per-
formance of a process by modification of the control structures were mainly based
on trial and error methods and on well-understood, relatively simple pathways. As
the complexity of a set of pathways of interest increases, intuitive and trial and er-
ror methods are increasingly ineffective. Modifying the regulatory characteristics of
an enzyme is presently a much more difficult experimental challenge than changing
the ammount of enzyme present in the cell. Therefore, guidance as to what changes
in regulation might be of greatest benefit to improve the network is important. To
this end, a systematic, multilevel, multiparametric methodology for evolving effective
control structures is needed.

In an attempt to achieve a quantitative understanding and rational metabolic en-
gineering of biochemical reaction pathways, mathematical descriptions of metabolic
systems have been developed in many cases and the expected responses of pathways

to changes at individual reactions or within certain pathway segments have been cal-
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culated. A population of living cells is an extremely complex system, so complicated
that some people doubt the possibility of a credible mathematical description, and
therefore of quantitative engineering design, of any of its attributes. Two different
bodies of experience contradict this view. First, several complex biological phenom-
ena have been well described by mathematical models which are based on the essential
molecular mechanism. Examples include regulated gene expression (Lee and Bailey,
1984b,c), replication of DNA (Lee and Bailey, 1984a), growth of bacterial cells (Shuler
and Domach, 1983), animal cell cycle regulation (Hatzimanikatis et al., 1995), and
receptor trafficking (Starbuck and Lauffenberger, 1992). Second, design and control
of most industrial chemical processes, ranging from catalytic cracking to olefin poly-
merization are based upon mathematical models which are known to be only crude
approximations of physical reality. Most chemical engineering applications involve
partially understood, approximately described complex physical systems. Useful en-
gineering has been achieved in many facets of chemical engineering endeavor in spite
of this. There is no reason to expect a different outcome in the engineering of com-
plicated, imperfectly known cellular processes.

The modeling approaches previously used can be classified into two kinds: linear
and nonlinear. Linear models can be accessed through analysis of input-output re-
lations and certain stimulus-response experiments by applying advanced regression
analysis (Schlosser et al., 1993) or other experimental methods developed within and
around the metabolic control analysis (MCA) framework (Kacser and Burns, 1973;
Heinrich and Rapoport, 1974; Cornish-Bowden and Cardenas, 1990; Fell, 1992). Non-
linear models, on the other hand, can be constructed when detailed kinetic expressions
for each step in the reaction pathway are known or can be estimated (Joshi and Pals-
son, 1989; Gallazo and Bailey, 1990). Because of the greater data requirements for
nonlinear model formulation and validation linear (or log-linear, see below) models
will often be the only practically accessible description.

Using the available mathematical description of a biochemical system, various
analytical and computational techniques can be used for analysis and optimization

of the system. Optimization techniques have been used in the analysis of biochemi-
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cal systems using mainly stoichiometry information and metabolic requirements for
growth (Majewski and Domach, 1990; Stephanopoulos and Vallino, 1991; Varma and
Palsson, 1994). These approaches do not require kinetic data; therefore, they cannot
be used in order to quantify the effects of genetic modifications of enzyme levels and
of regulatory structures. Optimization of metabolic pathways on the basis of a ki-
netic model developed using experimental data represented mathematically using the
S-system formalism of biochemical systems theory (BST) has been presented using
linear programming (Voit, 1992; Regan et al., 1993). These studies provide informa-
tion only about optimum manipulation of the external inputs to the system (such
as independent effectors and external substrates) and do not address the problem of
optimizing the regulatory structure of the metabolic network.

The aim of this work is to provide a mathematical framework for determining
changes in regulatory structure and strength which should be considered to optimize
a particular metabolic process. A mixed-integer linear programming (MILP) formula-
tion is proposed for the general case of linear model optimization. The solution of the
MILP formulation provides information on which enzymes should be present at dif-
ferent levels, the extent of such changes needed, and the accompanying modifications
in the regulatory structure that will optimize the process.

Any mathematical description of cellular processes is an approximation, and, ge-
netic manipulation of the cell may cause secondary responses which were not con-
sidered in the mathematical (or the conceptual) model. Therefore, the output which
the metabolic engineer seeks, and all that can be expected, from such optimization
calculations are reasonable suggestions for changes in the metabolic network which
might give useful improvements in cellular performance. Strategic quidance, not fine
quantitative rules, is the intended outcome of these type of calculations. A large
body of prior experience with engineering of other complex chemical systems clearly
indicates the value of such an approach, even when models are crude approximations,
relative to completely ad hoc approaches which are, of course, necessarily based on

more crude mental optimization of much more crude mental models.
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4.2 Problem Statement

In this chapter we address the following general problem:

A mathematical description of a metabolic pathway with a postulated number of
requlatory loops is given. These regulatory loops are classified as either activation
(increase the activity of requlatory enzyme) or inhibition (decrease the activity of
the regulatory enzyme) loops. The objective is to determine (i) which of the regula-
tory loops should be retained, and (ii) the number, type, and level of manipulation
of amounts of enzymes, in order to optimize a certain function of the outputs of
the metabolic pathway (e.g., production of primary or secondary metabolites, growth,
selectivity, etc.).

Many metabolic pathways are common to many organisms. However, enzymes
that catalyze the same reaction in different organisms are not necessarily the same
in their catalytic and regulatory properties. As discussed in the introduction, recom-
binant DNA methods enable the introduction into an organism of the DNA from
other organisms with the possibility then of combining regulatory features from the
metabolic pathways present in these different organisms. Moreover, protein engineer-
ing methods allow modifications of the properties of natural enzymes and design of
enzymes with novel regulatory characteristics. Therefore, the possible number of reg-
ulatory loops for a certain pathwéy in an organism ranges from the number of the
existing loops to this number plus the number of additional, different regulatory loops
which can be introduced into the same pathway by genetic engineering.

Most generally, we can consider a regulatory superstructure in which every metabo-
lite in the system can potentially regulate any enzyme in that system. The math-
ematical formulation of such a general regulatory superstructure leads to a large
combinatorial problem. Its solution will provide the maximum or minimum perfor-
mance achievable for a given system, and thus provide valuable insight for protein
and metabolic engineering. This problem addresses the question of how regulation

and catalyst levels should be chosen de vove in order to maximize the performance of

the metabolic network.
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4.3 Mathematical Description of Metabolic Re-

action Networks

We consider here a linear model description for metabolic systems. This is the most
common situation because of limitations in the available information for most systems.
Furthermore, when a nonlinear model is available, it can be linearized and studied
within the same framework. In what follows we describe the linearization procedure
in a way similar to that presented by Reder (1988).

Consider a metabolic system consisting of n metabolites and m enzymatically-
catalyzed reactions. We are interested in studying how modifications of the expres-
sion levels and of the properties of the enzymes that catalyze these reactions affect
metabolic functions of the system, such as metabolite concentrations, fluxes, and
specific growth rate. The mass balances on the metabolites of the system may be

written:
dx

5 = fv(xip), x;p) (4.1)
where x is the n-dimensional metabolite concentration vector, f is a function deter-
mined by the mass balances, v is the m-dimensional reaction rate vector, and p is
the s-dimensional manipulated parameter vector (e.g., enzyme concentrations). In
addition to metabolite reaction rates, the mass balance equations also include terms
that account for other processes by which concentrations of metabolites change (such
as the dilution brought about by increases in the biomass volume (Fredrickson, 1976)
and transport through the cell wall envelope).

In addition, consider the r-dimensional vector of metabolic outputs, h, for which

we have:

h =h(v(x;p),x;p) (4.2)

In equation (4.2) h is a function of the rates of interest, of the metabolite concen-
tration, and of the parameters. Linearization of equations (3.2) and (3.3) around a

steady-state, (X,, p,) results in the following linear system for the logarithmic devia-
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tions (see Appendix A for explanation of the transformation):

dz

s =Nz + Kz + NIlq+ Aq (4.3)

w=Efz+ Hz + Ellq + Oq (4.4)

where, z, q, and w, are the logarithmic deviations of the metabolite concentrations,

the enzyme levels, and the metabolic outputs, respectively:

2 = ln($1/$zo)
@k = In(pe/pr.o)
w; = ln(hl/h[’o)

and N, B, K, A, H, ©, £, and II, are matrices, defined as:

vio [ Ofi — Vio [ Oh
N = {n;; | ny; = - (6_1;) b, E={4 14, =2 <——l) }
37 X6,Po Xo0yPo

Ten hio \ Ov;
= (= (%)xmw} BERSUNEISS = (%)xoypo},
ot (52), ) e e (1))

Here the subscript o indicates the reference steady-state about which the approximate
model is developed. Thus, the right-hand side of equation (4.1) is zero when evaluated
at (X, Po), and h, denotes the value of h at (x,, p,).

It should be noted that a mathematical description linear in logarithms of the
system variables is in fact a nonlinear (power law) representation, a functionality
well suited to approximating closely the nonsingular rational polynomial kinetic ex-
* pressions typical of metabolic processes. The quality of this form of approximate
representation of metabolic kinetics were considered in detail in Chapter 3. Here the

nature of this approximation will be tested for one of the examples presented by cal-
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culating the consequences for the original nonlinear model (equations (4.1) and (4.2))
of the optimization strategy determined using the log-linear approximate model of
equations (4.3) and (4.4).
At steady-state, solution of (4.3) and (4.4) yields:

where

C=—(BE+H)(NE+K)YNII+A)+EIT+ O (4.6)

with

ko [ dw
C={q|ar= Pl (——) }
wlyo dpk Xo,Po

The mathematical description presented above depends on the same information
as that employed within the framework of metabolic control analysis (MCA) (Reder,
1988; Schlosser and Bailey, 1990). Matrices £ and II are the elasticity matrices
with respect to metabolites and to parameters, respectively. The matrix C is the
control coeflicient matrix of the metabolic functions h with respect to parameters p.
Experimental determination of the parameters for this linear system has been the
subject of several studies (Fell, 1992; Cornish-Bowden and Cardenas, 1990; Schlosser

and Bailey, 1990) and in many cases it is the only available description of a metabolic

system.

4.4 Analysis and Synthesis Problems

The regulatory structure of a metabolic network is typically deduced from experi-
mental analysis of the integrated system or from the reported kinetic properties of
the enzymes involved in the pathway. In this case the matrix £ can be written as a

sum of two matrices:

E=E +& (4.7)
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where the elements in matrix £°% correspond to the substrate elasticities of the en-
zymes, that is, the sensitivities of enzyme activities with respect to their substrates,
and the elements of matrix £ correspond to the regulatory elasticities of the enzymes,
that is, the sensitivities of enzyme activities with respect to regulatory metabolites.
In this representation, the substrates themselves can also be considered as regulatory

metabolites (in cases such as substrate inhibition):

Tiso [ OV . o
&8 = {ej;, = =2 2 | z;, is a substrate for reaction j}
Uj’o amis Xo,Po

and
ij
6.’137;1,

Ti0
Sr Ty
{Ej,ir P . (

) | z;. is a regulator for reaction j}

Yo Xo0,Po

Changes of the elements in matrix £" from non-zero values to zero or vice-versa
correspond to modifications in the regulatory structure of the system. In this study,
which emphasizes the role of control structure, we define the analysis problem in the
context of a given control structure, which we reasonably assume can be modified
only by deleting certain control interactions:

Which of the existent regulatory loops should be inactivated, and what associated
changes should be made in the manipulated variables (e.g., enzyme expression levels,
environmental conditions, effectors external to the system), in order to optimize the
performance of the metabolic network?

The synthesis problem considers the possibility of postulating a requlatory su-
perstructure and addressing the problem of selecting among alternative regulatory
structures for each enzyme. The regulatory superstructure embeds a set of alter-
native regulatory elasticities for each enzyme that correspond to different kinds of
regulation by each metabolite. In particular, the synthesis problem addresses the
following question:

What kind of regulation (i.e., activation or inhibition, by which metabolite and of
what strength) should be assigned to each enzyme in the network, and what associated
changes should be made in the manipulated parameters (e.g., enzyme expression levels,
environmental conditions, effectors external to the system), in order to optimize the

performance of the metabolic network?
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The analysis and synthesis problems include discrete decisions concerning the reg-
ulatory elasticities of the system. Inactivation or activation of a regulatory loop is
equivalent to elimination or introduction of non-zero terms in the £™ matrix. More-
over, the synthesis problem will typically be subject to some constraints such as the
possible number of regulatory actions on each enzyme and the requirement that an
enzyme cannot be activated and inhibited by the same metabolite.

On the other hand the continuously adjustable manipulated parameters can po-
tentially be subject to discrete constraints, such as the maximum number of these
parameters that we can manipulate simultaneously.

The mixed discrete and continuous nature of the problem and the linear descrip-
tion of the system lead to the formulation of the analysis and synthesis problems as
MILP problems, solutions of which provide the optimal regulatory structure and the

optimal parameter configuration of a metabolic reaction network.

4.5 Mathematical Formulation

The mathematical formulation for the synthesis problem as a MILP problem is pre-
sented in this section. To derive the mathematical formulation the following index
sets and variables are introduced to characterize the postulated regulatory superstruc-
ture. The metabolites will be denoted by the index set I = {i}, the reaction rates by
the index set J = {j}, the manipulated parameters by the index set K = {k}, and
the metabolic outputs by the index set L = {l}. The following sets will be defined
to establish the connections of the sets of metabolites with the reaction rates in the
network:

I7 = {is | is € I is a substrate for reaction j, j € J}

Ii = {i, | i, € I is a regulator for reaction j, j € J}

The sets M+ = {m*} and M~ = {m~} denote the indices for the activation and
the inhibition elasticities, respectively, that can be applied to each enzyme by each
metabolite. The regulatory elasticities of the postulated regulatory superstructure

will be denoted as €p,;,, where m belongs to the index set M = M+t UM™. Therefore,
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€mji, Will denote the regulatory elasticity of reaction j with respect to metabolite %
and can be positive (for activation) or negative (for inhibition) with a fixed magnitude
for each m.

The continuous variables of the model are the logarithmic deviations of the metabo-
lite concentrations, z;, the logarithmic deviations of the manipulated variables, g, the
logarithmic deviations of the metabolic outputs, w;, and the reaction rates, v;.

A binary variable, ym;,, is associated with each regulatory elasticity, €n;;,. If
a regulatory loop with an elasticity, €mj;,, is active in the network, yp,;;, is set to
1, otherwise it is zero. A binary variable, dy, is associated with each manipulated
variable, ¢;. The introduction of these variables serves as a control on the number
of the manipulated parameters that are allowed to vary. In many cases, practical
experimental limitations allow only a limited number of simultaneous manipulations
of enzyme activities.

The linearization procedure described earlier transforms the rate expressions, v},

and metabolic output functions, h;, to the following form:

v = Vio(l+ D0 iz + D D € YmginZin + D Tindids) (4.8)

isel] meM i,.erd keK

and

wp = ln(hl/hl,o) = }: Z fljfjiszis + Z Z Z fljernjirymjirzir

i€J el meM jeJ ; ey
+D iz + YD &imikdige + > Oidigr (4.9)
iel keK jeJ kek

The second and third terms on the right-hand side of equation (4.8) correspond to
the dependence of the rates on the metabolites, and the fourth term corresponds to
the dependence on the manipulated parameters. The first and the second terms in
equation (4.9) correspond to the first term in equation (4.4) and the third, fourth,
and fifth terms correspond to the second, third, and fourth terms in equation (4.4),

respectively.

The presence of binary variables in the formulation of the problem introduces
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bilinear products of continuous and binary variables in equations (4.8) and (4.9)
which make the problem nonlinear. In order to circumvent these nonlinearities we
follow the modeling approach applied in Psarris and Floudas (1990) using the idea
proposed by Petersen (1971) and extended by Glover (1975). This is also discussed
in chapter 7 of the book by Floudas (1995).

The basic idea is to introduce new continuous variables for each bilinear product:

Umjir = YmjirZir V(mvj7 7'7‘) (410)

and

gk = diqr VK (4.11)

and to introduce additional constraints, for each (m,j,i,) and each k, which are

described in Section 5.2.

4.5.1 The Objective Function

The process of interest which we optimize (maximize or minimize) can be any of
the metabolic outputs or combination of them. Note that using equation (4.9) we
can treat metabolite concentrations and rates as metabolic outputs. Therefore, in the

case of having a single metabolic function w; as objective we can express the objective

function as:

foi = 2 D0 &zt D D D &jmgi, Umgir

jedJ ‘I:sEIg meM jEJireL.Z
+ Z")lizi + E Z £ TkGk + Z O1.drqx (4.12)
i€l keK jeJ keK

Coupling between the various processes in the cell is sometimes a limitation in
the performance of a pathway, even when classical metabolic engineering techniques
are applied. However, we can study within the present framework the following

questions: If and how can we decouple the pathway of interest from other cellular
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processes by manipulating the regulatory structure of the pathway? If possible, how
can this decoupling be achieved? The objective function that corresponds to this
question will be formulated and a corresponding solution approach will be discussed

in Section 6.

4.5.2 Constraints

The metabolic optimization problem is typically subject to one or more of the follow-
ing types of constraints:

(i) Mass balance for each metabolite ¢

Equation (4.3) is the set of mass balance equations for the metabolites. Therefore,
at steady-state, the left-hand side of equation (4.3) is set to zero, and, for each

metabolite z;, we have a constraint of the form:

YD Mzt Y Y Y Nij€jinUmygip+ 9 K 2+ D MijTikGe+ ¥ Aigr = 0
i€d ierl meM jEJ ; i el jeJ kekK keK
(4.13)

where the first two terms correspond to the first term in the right-hand side of equation
(4.3), and the third, fourth, and fifth terms correspond to the second, third, and fourth
terms in the right-hand side of equation (4.3), respectively.

(ii) Bounds on metabolites, manipulated variables, rates, and metabolic outputs

In modeling metabolic pathways it is extremely difficult to describe all relevant
processes completely. Metabolic engineering of the pathway of interest will result in
changes in metabolite concentrations, metabolic outputs of the pathway, and reac-
tion rates. These changes will propagate into the rest of the cellular processes with
unpredictable and, in many cases, undesirable effects.

The concentrations of metabolites should neither exceed toxicity levels nor be very
low because it is possible to induce responses, such as stringent responses, that will
alter qualitatively cellular activities that are not included in the model. Changes in

the manipulated variables can have similar effects. Overexpression of enzymes can

influence growth, and an excess of external substrate can result in toxic by-product
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synthesis. Therefore, variables should be constrained within the bounds determined
by their physiological ranges for the pathway of interest and by the available biological
knowledge.

k<<l odiel (4.14)
% <qg<qp keK (4.15)

Note that variables z; and gx are the logarithmic deviations of the concentrations, z;,
and the logarithmic deviations of the parameters, py, respectively, from the steady-
state value around which the linear model has been constructed. As a result, their
lower bounds can take negative values.

The reaction rates of the pathway cannot be increased infinitely, and zero values
for the fluxes are not physiologically acceptable in general. The minimum lower bound
for a rate will be zero only if the metabolites produced by the corresponding reaction
are provided externally. Reaction rate expressions, v;, and metabolic outputs of the
system, w;, will generally be constrained within physiological bounds depending on

the system under study. Therefore, the bounds of these variables will be of the form:
vy <v; <o) jeld (4.16)

wf <wy <wf €L (4.17)

The variables w; represent the logarithmic deviations of the metabolic outputs and,
therefore, their lower bounds can be negative.

(iii) Constraints for the Umj;, variables

The variables represented by u,j;. are connected with the continuous variables,

2;,, and the binary variables, ¥, via the following conditions:

2, = 20 (1 = Ymgi,) < Ui, < 2ip — 20 (1 — Y, (4.18)
i.€ll, jeJ meM

Z{:ymﬁ, < Umji, S zi’{ymji, (4.19)
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ir€ll,jeJ meM

Note that the above constraints are linear in z;. and ym;;,. It is interesting to
examine the effect of these constraints.

If ymii, = 1, then they become:
Jir

Zip < Umji, < 24,

L U
Zin < Umgjir < Zi,

and the first two constraints imply that wm;;, = 2, while the second two constraints

simply provide bounds.

If Ymji, = 0, then we have

U L
Zip — 2 S Ui, < Zi, — 2
r T

0 < Upmys, <0

and the second two constraints imply that w,,;, = 0, while the first two constraints
are relaxed since z;, — zg <0 and z;, — z{; > 0.

Similarly, for each of the g, variables we have the following four inequality linear
constraints:

G—q(l—de) <gr<aqu—qr(l—di) ke K (4.20)
grdr g <qfdy ke K (4.21)

for which a similar analysis holds.

(iv) Logical constraints

There are constraints based on the binary variables which are associated with
the existence or nonexistence of various regulatory loops and the activation or de-
activation of different continuously adjustable manipulated variables. An important
logical constraint is one that forbids activation and inhibition of an enzyme by the
same metabolite. Moreover, when we consider alternative loops with the same type
of action (inhibition or activation) at different levels (e.g. low inhibition, high inhi-

bition), only one of the values should be considered. These constraints appear in the
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formulation for each (j,14,):

S Ymtiet D Ymgi <1 V(i) (4.22)

mteM+ m~eM~

mteMt,mmeM ,jed i,ell

The maximum number of the regulatory actions for each enzyme, | I7 . |, and
the maximum number of enzymes that each metabolite regulates, | Jir |, will, in
general, impose one additional constraint for each j and one for each i:

Z Z ymjir S [ Ig,maz l ] € J (423)
meM iré['ij
and
Z Zymjir < | Jfr:az l ir € IzJT (424)
meM jeJ

The simultaneous manipulation of the variables g, will be subject to the following

constraint:

> di < | Kingz | (4.25)

keK
where | K4, | is the maximum number of the manipulated variables that can be
modified simultaneously. This constraint arises from practical and physiological lim-
itations; and | K,q, | varies from system to system.
Integer cuts are also introduced such that by solving the proposed mathematical
model in an iterative way we can exclude all the previous solutions so that we can
calculate the next best solution. In this case, when we solve for the n-th best solution

we have to include n — 1 constraints of the form:

Su— > < |Bi|-1 (4.26)

1€B; i€ENB;
B, ={i|y; =1}
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where | B; | is the cardinality of the set B; (i.e. the number of the elements in the
set).

The proposed mathematical formulation involves continuous and binary variables.
The problem, in its initial formulation, features bilinearities as products of continu-
ous and binary variables. By introducing a new continuous variable and four linear
inequality constraints for each bilinear term, the final formulation involves only linear
terms and, therefore, becomes a MILP formulation. The solution of the MILP will
provide the desired optimal regulatory structure. Because of its linear nature, the
problem is convex and a global solution is guaranteed. The model allows constraint
flexibility in relation with the physical system it describes and is designed to en-
compass feasible manipulations within the set of current methods for metabolic and

protein engineering.

4.6 Computational Studies

The proposed approach will be illustrated using the aromatic amino acid biosynthetic
network in bacteria as an example system. Four specific problems will be postulated
and solved with the proposed mixed integer linear optimization framework. The
pathway and the original regulatory structure are presented in Fig. 1. The pathway
has 8 regulatory loops all of which are feedback inhibitory loops. In order to derive a
linear model for the pathway we started from the nonlinear model for this presented
by Schlosser and Bailey (1990). The nonlinear model and the parameters for the
linear model are presented in Appendix B.

In the following examples, the following bounds on the logarithmic deviations of .

the metabolite concentrations were imposed:
-2< <2 (4.27)

which implies that we allow the concentrations of the metabolites to vary between

13.5% and 639% of the reference steady state. These wide bounds might allow con-
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centrations that can be toxic to the organism or that induce stress responses that
will affect other cellular activities. We use such wide bounds in the interest of ex-
ploring the structure of this example and the characteristics of its optimal solution.
If needed to accomodate physiological limitations, tighter constraints on metabolite
concentrations can certainly be considered within this formalism.
The only physiological constraint which will be introduced constrains the specific

growth rate, u, to its reference steady value:
w, =0 (4.28)

The only consideration in the model used in this example for the effects of manipu-
lation of the aromatic amino acid biosynthesis network on the rest of the organism’s
metabolism is the dependence of the specific growth rate on the aromatic amino
acid concentration levels (see Appendix B). By imposing the above constraint we
essentially constrain the solutions to the ones that are consistent with other requisite
coupled metabolic activities of the cell.

The first example deals with the modification of the existing regulatory and ac-
tivity structure. The second, the third, and the fourth examples assume that the
metabolic pathway has no regulation at the outset, and consider what regulatory
connections, with what strength, should be introduced so as to optimize the objec-
tive.

The procedure for solving the examples, equally applicable to any other metabolic
network optimization problem of the class formulated earlier, was implemented using
the high-level modeling language GAMS (general algebraic modeling system), into
an algorithmic procedure named METAOPT (METAbolic network OPTimization).
The procedure accepts the mathematical model and the postulated regulatory super-
structure as a set of matrices and is interfaced with CPLEX, a mixed-integer linear
programming solver. At each solution, the optimal regulatory structure is used to
form an integer cut constraint, and the problem is solved again for the next best

structure. This way a sequence of several solutions is generated. The following com-
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putational studies were run on a HP/730 workstation with a Unix-based operating

system.

4.6.1 Problem 1

The question addressed in the first problem can be stated as follows:

Which of the existing regulatory loops should be inactivated and what should be
the associated changes in the enzyme ezpression levels to mazimize the phenylalanine
selectivity?

The phenylalanine selectivity is defined here as the rate of phenylalanine produc-
tion divided by the overall rate of all aromatic amino acids (phenylalanine, tyrosine,

and tryptophan) production:

V4

Sphe = =t
phe Vg + U5 + Us

(4.29)

The initial number of the regulatory loops is equal to eight, which can be either
active or inactive and in any possible combination. Therefore, there are 28 = 256 al-
ternative regulatory structures. The six enzymes of the pathway are the continuously

adjustable variables for which we set the bounds:
0<qg<In?2) k=1,...,6 (4.30)

The zero value for the lower bound means that enzyme downregulation is not feasible.
On the other hand, the value In(2) for the upper bound allows enzyme overexpression
up to twice the level of the reference state. In practice, overexpression of an enzyme
can result in higher levels, but, since we study a linear model for which the enzyme
levels are the inputs, we do not permit large deviations in the input values so as better
to stay within range in which the linear model is a good approximation to the original
nonlinear model. Only the six enzymes are considered as the continuously adjustable
inputs, and the concentrations of the precursors (metabolites feeding into the reaction

network considered here) remain constant at their reference values. Therefore, the
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following constraints are needed to inactivate changes in the precursors:
dp=0 k=17,8,9 (4.31)

The objective function to be maximized is the ratio of the phenylalanine produc-
tion rate divided by the overall rate of the aromatic amino acids production. Equation

(4.29) in linearized form is written as in equation (4.4):

S —_ —
ws,,, = In (-——‘;he"’pt> = Zs,,. 62+ Hs,, 2 + Es,,. 1a + @Spheq (4.32)
phe,o

where

s, = [0, 0, 0, 0.572665, —0.439811, —0.132855)

and Hs ,, and Og, are zero vectors. The selectivity for the reference state is:
Sphe,o = 0.427335.

No improvement in this value could be achieved only by enzyme overexperession,
without having an effect on the growth rate.

The MILP optimization model discussed in section 5 was solved and four alterna-
tive regulatory structures were identified corresponding to the optimal value for the
phenylalanine selectivity. The problem consisted of 65 variables (48 continuous, 17
binary) and 94 equations and the first optimal solution was found within 0.26 CPU
s. The structures are presented in Figure 2 (cases a-d) and the value of the objective

function for all four solutions is:
Sphe,opt = 0.605883

The overexpressed enzyme levels and metabolite concentration levels associated with
each regulatory structure are presented in Table 1. The concentration of the metabo-
lites are the same for all four solutions. The results suggest that the optimal selec-

tivity can be achieved by inactivation of at least four regulatory connections (v; by
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DAHP, vz by TYR, vy by PHE, and vs by TRP) and that three enzymes should be
overexpressed, specifically the enzymes that catalyze reactions 1, 3 and 4.

Four more alternative regulatory structures correspond to a value of 0.601315 for
the selectivity. These structures are also presented in Figure 2 (cases e-h) and the
associated enzyme and metabolite levels are presented in Table 2. Again, the three
enzymes that should be overexpressed correspond to reactions 1, 3, and 4. However,
the minimum number of the regulatory loops that should be inactivated is three (v, by
DAHP, v3 by TYR, and vy by PHE). Case (f) among these results is attractive since
implementing it requires less effort than other solutions presented from the genetic
and protein engineering point of view.

Examination of the eight regulatory structures indicates that the phenylalanine
selectivity can be significantly improved, while maintaining constant specific growth
rate, by inactivating at least three regulatory structures and overexpressing three
enzymes. While inactivation of the inhibition of v4 by PHE is quite obvious, the rest
of the manipulations, all considered subject to the constraint on the growth rate,
cannot be easily anticipated a priori.

In this problem which begins with a specified nonlinear model including enzyme
regulation, the metabolic design strategy determined by the MILP optimization of
an approximate log-linear model can be tested using the original nonlinear metabolic
model. Such calculations for the strategies designated a-d give Sppe = 0.66730, and
Sphe = 0.86544 for the strategies designated e-h. These selectivities substantially
exceed that for the reference state, indicating that, as desired, the approach described
here provides useful guidance towards effective metabolic design. It should be noted
that the full nonlinear model, when subjected to the modifications computed using
the log-linear model, no longer displays all the properties of the log-linear model. In
particular, all of the constraints imposed are no longer exactly satisfied. For example,
specific growth rate is decreased somewhat when these strategies are applied to the
original nonlinear model. The changes observed are well within an acceptable range
from a biological and process point of view. The purpose of this work is to provide

reasonable guidance for starting optimization of a metabolic system. Efforts to seek
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an optimum for a real system will always require further experimental refinement.

4.6.2 Problem 2

In this problem the aromatic amino acid pathway is considered without any regulatory
connections, and we postulate a regulatory superstructure such that any of the first
six reactions can be inhibited by any of the six metabolites with an inhibition strength
of —0.75 or ~0.075. We allow only two regulatory connections for each enzyme and
we allow three enzyme level manipulations. The questions addressed in this problem
are the following:

In order to mazimize the phenylalanine selectivity:

(i) which pair of metabolites should inhibit each reaction?
(ii) what are their inhibition strengths?

(71i) which three enzymes should be overexpressed?

and

(tv) what should be their expression levels?

The use of discrete values for the level of the inhibition allows preservation of
system linearity and provides qualitative information about the order of magnitude
of the regulatory loop strength. This problem can provide us with information about
the maximum selectivity which can be achieved for this model.

In the formulation of the problem two regulatory elasticity matrices are intro-

duced:

£} = {ezji, = —0.075|1<j <6 and 1< i, <6}

The problem was solved with the same bounds on the continuous variables. Moreover,

we introduced three additional logical constraints. The first one takes the form:

E Ym+ji, T Z Ym-ji, < 1 (4.33)

mteMt m-eM-

mteMt, m~eM,jeJ i,€ll
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and allows for only one level of inhibition chosen from the two different orders of

magnitude allowed. The second one is

DD Ymii, $2 (4.34)

and allows for only two regulatory connections for each enzyme. The third one is

S Ymgi, <6 ir € Ifr (4.35)
meM jeJ

and allows any of the six enzymes to be regulated by any of the six metabolites.
Under these constraints the number of the alternative regulatory structures we can
build around the pathway for this problem are 2%7.

The resulting mathematical formulation accounts for 193 variables (112 contin-
uous, 81 binary) and 393 constraints. The problem was solved and the optimal
solution, Sphe,opt, found in 19.56 CPU s, was 1.05938. This value is greater than the
actual upper bound for the phenylalanine selectivity (4.29), because we used as ob-
jective function the logarithmic selectivity (4.32) which is a linearized approximation
of equation (4.29), and it is not subject to any upper bound. On the other hand,
the value for the optimal selectivity is 0.818672, if the calculated from the solution
linearized rate expressions used in equation (4.29). This solution suggests that, for
the parameters chosen for the system and with an optimized regulatory structure, we
can increase the selectivity up to 95% by simply manipulating only three enzymes
without affecting the specific growth rate.

The problem has multiple regulatory structures that result in the same optimal
objective value. However, we are interested in the structures that achieve the optimal
performance but have the minimum number of regulatory loops since the creation of

these loops is very difficult. Therefore we formulate a new objective function:

min 55 Y Y (4.36)

r
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with the additional equality constraint:

S.
Wphe = N Zphe.opt (4.37)
Sphe,o

where wppe = 0.908115

The solution to this problem resulted in only four alternative regulatory struc-
tures presented in Figure 3; the corresponding values for the continuous variables are
presented in Table 3. The minimum number of loops is equal to two, the elasticity for
each loop is —0.75, and the three enzymes that must be manipulated are the enzymes
that catalyze reactions 1, 4, and 6. Moreover, we observe that the regulatory metabo-
lites are only two, CHR and PHE, and the enzymes that should be regulated are the
ones that catalyze reactions 5 and 6. The number of different structures is equal to
the number of all possible combinations of two reactions regulated by two metabo-
lites, with only one regulatory connection allowed for each reaction. Therefore, the
solution suggests that the enzymes that catalyze reactions 5 and 6 in the pathway
should be engineered, if possible, so that both will be inhibited by either CHR and
PHE. Once this regulatory structure has been succesfully realized, the enzymes that

catalyze reactions 1, 4, and 6 should be cloned and overexpressed simultaneously.

4.6.3 Problem 3

This problem is the same as the previous one except that we would like to design a
regulatory structure for which only enzyme activation is allowed. We consider again
that any of the first six reactions can be activated by any of the six metabolites with
strength 0.75 or 0.075, and only two regulatory connections for every enzyme and
three enzyme manipulations are allowed. The questions addressed are:

In order to mazimize the phenylalanine selectivity:
(1) which pair of metabolites should activate each reaction?
(ii) what are their activation strengths?
(iii) which three enzymes should be overezpressed?

(tv) what should their expression levels be?
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The mathematical formulation is the same as for problem 2 except that the elas-

ticity matrices are:
E ={ei, =075|1<j <6 and 1<, <6}

E3 ={e2j:, =0.075|1<j <6 and 1 <i, <6}

The size of this problem is the same as the size of the previous problem, and it
consists of 393 constraints and 193 variables (112 continuous, 81 binary). The optimal
solution to this problem was found, within 249 CPU s, to be 1.05938 which is the
same as before. The value for the optimal selectivity, calculated from the ratio of the
linearized rate expressions was again 0.818672, and multiple regulatory structures
were found to correspond to the optimal value. Therefore, we solved the problem
with the objective function (4.36) and the additional equality constraint (4.37).

The minimum number of regulatory activation loops that correspond to the opti-
mal selectivity is equal to 3, and 37 alternative regulatory structures were identified.
The regulatory elasticities for every structure were equal to 0.75. Analysis of the
alternative structures indicates that the enzymes that catalyze reactions 4, 5, and 6,
should be activated (this is true in all 37 cases) and that these steps should be the
target of any attempt to engineer the regulatory features of the pathway. Moreover,
out of the 60 possible combinations only 12 combinations of enzyme levels should be
manipulated. These combinations and the number of the number of the alternative
regulatory structures for each combination are presented in Table 4. In Figure 4 the
structures that correspond to the manipulation of enzyme levels for reactions 1, 2,
and 4, are presented, and the associated changes in the expression levels and the

metabolite concentrations are given in Table 5.

4.6.4 Problem J

This last problem is a combination of Problems 2 and 3 and is formulated as follows:
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To mazimize the phenylalanine selectivity:
(i) which pair of metabolites should regulate each reaction?
(11) what should be the type of regulation (i.e. activation or inhibition)?
(111) what is the strength of the regulation?
(iv) which three enzymes should be overezpressed?
(v) what should their expression levels be?

We have four elasticity matrices:
El ={eyi, =075 |1<j <6 and 1<4, <6}

&) = {egji, = —0.075 |1 <7 <6 and 1< i, <6}
&7 = {ei, =0.75|1<j <6 and 1< 4, <6}
E7 = {e4ji, = 0.075 |1 < j <6 and 1< i, <6}

and the rest of the constraints and the bounds are the same as in the two previous
problems. The number of alternative regulatory structures are 2%°. The problem
featured 681 constraints and 337 variables (184 continuous, 153 binary), and the first
optimal solution was found in 156 CPU s.

As before, the value for the optimal selectivity was equal to 1.05938, and the ratio
of the linearized rates was 0.818672 again. This optimal value corresponds to multiple
regulatory structures and combinations for enzyme manipulations. Therefore, we
solved the problem again in order to find the minimum number of the regulatory
loops that correspond to this optimal value.

The minimum number of loops was 2, the regulatory elasticities were 0.75 and
—0.75 for the activation and the inhibition loops respectively, and the number of
structures with only two regulatory loops was 10. As expected, the four structures
found in Problem 2 are also included in this set of structures. In Figure 5 the six
new regulatory structures are depicted, and in Table 6 the corresponding values of
the expression level of the enzymes are presented.

In all of the optimal regulatory structures involving activation and inhibition we
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observe three main characteristics:

(i) Only the enzymes that catalyze reactions 5 and 6 are regulated;

(ii) The enzyme that catalyze reaction 5 is always inhibited and the enzyme that

catalyzes reaction 6 is always activated;

(iii) DAHP, TRP, and TYR act as activators, and CHR and PHE act as inhibitors.
These observations clearly suggest that, if possible, the enzyme that catalyzes

reaction 5 should be designed so that it is inhibited by CHR or PHE, and the enzyme

for reaction 6 should be designed so that it is activated by DAHP or TRP or TYR.

Moreover, if modification in the regulatory structure is accompanied by overexpression

of the enzymes for reactions 1, 4, and 6, any combination of the just listed regulatory

patterns will be successful, except for DAHP-activated reaction 6. If, on the other

hand, the enzymes for reactions 1, 2, and 4 are overexpressed, the regulatory structure

should be designed so that reaction 6 will always be activated by DAHP.

4.7 Discussion

Linear models have been used within MCA in order to characterize and identify the
enzymes that limit the performance of metabolic pathways. Such linear models can
provide, for each metabolic function, its control coefficients, defined as the fractional
changes of the metabolic function expected for a unit fractional change in the amount
of each enzyme or external effector participating in a given pathway. Experimental,
theoretical, and computational analyses have shown that the existence of a single
enzyme which limits a metabolic process should not be presumed, and overexpression
of a limiting enzyme results in a shift of the limitation to other steps in the pathway.
Many of these studies have attributed these responses to the coupling between differ-
ent pathways through regulatory connections and the fact that they share metabolites
(Kacser and Burns, 1973; Savageau, 1976; Cornish-Bowden and Cardenas, 1990; Bai-
ley, 1991).

One effective way to manipulate metabolic pathways is to implement pathways

that are desensitized and decoupled from other cellular activities, and limited by
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a minimum number of enzymes. These objectives can be formulated and studied
following the approach described above.

If in equations (4.3) and (4.4) we set a manipulated variable, g, equal to one and
the rest of the manipulated variables equal to zero, the metabolic functions, w, will
be equal to the control coefficients of these functions with respect to this manipulated
variable. Then, the problem of adjusting the control coefficients close to a desired

value, wy, can be written as:
min(w — w;)T (w — wy) (4.38)

subject to the same constraints introduced in the above Mathematical Formulation.
In the special case that w; = 0, we study the problem of decoupling functions w
from other cellular processes for which g; is an output. This problem is nonlinear
in the objective function and combines both discrete and continuous variables and
as a result can be formulated as a Mixed-Integer Nonlinear Programming (MINLP)
problem. An optimization framework that can address the analysis and synthesis
problem of metabolic pathways for nonlinear models is presently being developed.
The results presented above for the analysis and synthesis of the regulatory struc-
ture of the aromatic amino acid pathway do not take into account the stability and the
dynamic characteristics of the network with alternative regulatory structures. Even
if a system is stable, obtaining desirable transient responses associated with changes
in the manipulated variables and the dynamic responses to fluctuations in the pa-
rameters of the system, have been proposed as criteria for optimization of metabolic
processes (Torres, 1994). The approach introduced in this work cannot explicitly
formulate objectives associated with such dynamic characteristics, but can allow the
generation of a sequence of optimal alternative regulatory structures which can be

reordered based on their dynamic performance using simulation analysis and process

control tools.
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4.8 Conclusions

In this chapter we present a novel approach to the analysis and synthesis of metabolic
pathways. The problem of designing the regulatory structures built around a given
metabolic reaction network was formulated as a MILP optimization problem. A
synthesis approach has been proposed which assumes that the metabolic pathway of
interest has no regulation, and considers which regulatory structure optimizes the
objective. Assuming that a linear model for the pathway of interest is given, integer
variables were introduced to denote the existence or non-existence of the postulated
regulatory loops.

The approach, implemented in METAOPT, was applied to the study of the aro-
matic amino acid pathway in bacteria. The solution allows the identification of the
regulatory structures and the associated changes in the enzyme levels that result in
an optimal phenylalanine selectivity. Multiple regulatory structures were found to
correspond to optimal solutions. The consistent patterns identified within these solu-
tions helped in the postulation of design principles that were effective when applied
to the full nonlinear model on which the first example is based. For the other exam-
ples, in which new patterns of enzyme regulation were considered as options, there is
not a unique transformation from the log-linear model used here to a corresponding
nonlinear model. The implications of this will be examined in the future employing

the MINLP framework now being developed.
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4.10 Appendices

APPENDIX A

In this appendix the logaritmic transformation used for the linear description of
metabolic systems will be presented in detail. Consider the nonlinear dynamical

system:
dx

— = f(x;p)
where x is the n-dimensional independent variable vector and p is the s-dimensional
parameter vector. Let x, be a steady state, or one of the steady states in case of
steady state multiplicity, that corresponds to the parameter vector values p,, and
with nonzero, positive elements. Linearization around this steady state will result in

the linear system:

dx —x,) Of

oL
dt C0x XX°+6p

(p - po)

Xo0,Po

XosPo

If we define the matrices X, and P, to be the diagonal matrices with diagonal elements

Xojii = Toy and P, = Py, respectively. Then, for the linear system we can write:

d(x —x,) of
dt ¢ Ox

XX Hx — X,) + X;‘léf;

X——l
o ap

PoP;_l(p - po)

Xo,Pao

Xo,Pe

In the above equation we can redefine the following vectors for the scaled variables

and parameters:

i — ZTos4

z=X M x—%X,) =z = —=
:Eo,i

_ Di — Po,i

a=P i (p-po) = ¢ = —2
po,i

Given the above definitions we can also observe that:

ot R of,
x| T oy X

Xo,Po Xo,Po

_0f;
o 6‘zj

Lo,j

O(z; — Zo,;)

Xo,Po Xo,Po
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of p of

of . _Of
op 3(p — po) -

P,= Of;
Xo0,Po aq]

Xo,Po 0(p; — Poj)

Po,j

Xo0,Po Xo0,Po

On the other hand, for any logarithmic function of variable y we can write for up to

first-order approximation the Taylor series around a reference value, y,:

In(y) = In(y,) + Y ; Yo o in (—yy—) =¥ %

Therefore, for the scaled variables, z, and the scaled parameters, q, we can write:

Z;
Z; = In
Lo

and

Finally, by defining

we can write the linearized system for the logarithmic deviations, noting that [z,,q,] =

[0, 0]:
dt 0z, 9dg.0
In the equation (4.3) for example
o8 =NE+K
AP
and
% =NII+ A
94l

APPENDIX B
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The rate expressions for the aromatic amino acid pathway are taken from Schlosser
and Bailey (1990). Here we consider only the aromatic amino acid biosynthesis reac-
tions as an isolated, model subsystem of overall metabolism. In particular the glucose
catabolic reactions considered by Schlosser and Bailey (1990) are not included here.
The parameter values used for the dissociation constants are the same as in Schlosser
and Bailey (1990) where the references for the estimation of these parameters can be
found. The values for vjmqc have been adjusted to give steady-state values sim-
ilar to those found in bacterial cells for [G6P] = 0.8 mM, [PEP] = 0.1 mM,
[ATP] = 2.5 mM, [ADP] = 04271 mM, and [AMP] = 0.0729 mM. The rate

expressions for the 6 enzymatically catalyzed reactions in the pathway are:

0.79 N 0.2 L oo
1+ [PHE]/53 ' 1+ [TYR]/40 ' 1+ [TRP]/16

U1 = Um,1
17700002 0.006 01
HP])+ — +1
([PEP] [Gop] [PEP]) (1+S0DAHP]) + 7oy +

- [DAH P)[PEP][ATP)
2= 29 T [DAHP]) (0.00867 + [PEP]) (0.9281 + [ATP])

[CHR]
2+ [CHR])(1+ [PHE]/50) (1 + [TY R]/40)

Uz = Um,S(

[PH P]
1+ [PHP))(1+ [PHE]/50)

Vs = Um4 (

_ . [pHP]
' = T [PHP)

) [G6P|[CHR][ATP]
Yo = "8 11269 + [GOP]) (2 + [CHP])(0.9821 + [ATP])(1 + [TRP]/16)

where:

VI = (710, 22, 474, 64, 10.5, 28]

We also have 3 expressions that account for the incorporation of the amino acids

into biomass:
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v] = 54p, vy =131y, v3= 1764
and 6 expressions that account for the dilution brought about by increases in the

biomass:
vy = u[DAHP), wvj=plCHR|, wvg= p[PHP]

vy = u[PHE], wvg=p[TYR], wvy=p[TRP]

The growth function, y, used is:

— 0.014 Y[PHE|[TY R)[TRP][PEP)
H= Y025+ Y)Y(I8 + [PHE))(13 + [TRY])(5 + [TRP])(0.005923 + [PEP])

where

v — . [ATP]+05[ADP)
~ [ATP]+ |[ADP] + [AMP]

The mass balance equations for each of the metabolites in the aromatic amino

acid pathway is given by

DAHP: 0= v —v; — v
CHR: 0= vy—v3— v — g
PHP: 0= wv3—v4—vs— g
PHE: 0= v;—uvy—14
TYR: 0= wvs—vp— v
TRP: 0= wvg—v]— vy

The stable stady-state at which the linear model was constructed is:
xT = [3.41404, 30.3097, 0.609277, 263.660, 321.496, 82.6866]

and the values for the rates at these values are:

vl =[ 9.340355 9.310362 7.843243 3.862561 3.975329]
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v;T={ 1.200839 0.474409 1.150880 1.546221 0.029994
0.266281 0.005353 2.316340 2.824449 0.726430]

For the matrix N in equation (4.1) we have

[ 2.735867 —2.727082

0 0 0 0
0 0.307175 —0.258770 0 0 ~0.039619
N 0 0 12.873042 —6.339585 —6.524671 0
0 0 0 0.014650 0 0
0 0 0 0 0.012365 0
0 0 0 0 0 0.014523
The elasticity matrices at the steady-state are:
[0 0 0 00 0]
0.369410 0 0O 000
oo _ 0 0061901 0 00 0
0 0 0.621397 0 0 0
0 0 0.621397 0 0 0
|0 0061901 0 00 0]
and
[ —0.899843 0 0 —0.705837 —0.126183 —0.008709 |
0 00 0 0 0
o 0 0 0 —0.840591 —0.889349 0
0 0 0 —0.840501 0 0
0 00 0 0 0
0 00 0 0 —0.837871 |
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For the matrix K in equation (4.3) we have:

[ —0.008785 0 0 —0.000561 —0.000341 —0.000501 |
0 —0.008785 0 —0.000561 -0.000341 —0.000501
= 0 0 —-0.008785 —0.000561 —0.000341 —0.000501
0 0 0 —0.009721 —0.000569 —0.000835
0 0 0 —0.000790 —0.009266 —0.000705
I 0 0 0 —0.000928 —0.000564 —0.009613 |

We consider the enzymes of the first six reactions as the manipulated variables.
Moreover, the three precursor metabolites are also treated as manipulated variables.

Therefore, we can write for the manipulated variables the vector:

pT - ['Um,l, 'Um,27 vm,B; Um,zl» vm,57 Um,ﬁ» {GGP]; [PEP]» {ATP}}

and for the matrices IT and A we have:

1 000 0 0 0046747 0905114 0
0. 10000 0 0079740 0.270733
q_ |001000 0 0 0
.00100 0 0 0
.00010 0 0 0
(0.0000 10613340 0 0270733 |
(000000 0 —0.000491 —0.001119 |
000000 0 —0.000491 —0.001119
A_ |0 000000 ~0.000491 0001119
0000000 —0.000819 —0.001865
000000 0 —0.000691 —0.001574
0000000 —0000812 —0.001849 |

The parameters in equation (4.9) that correspond to specific growth rate are:



H, = [0, 0, 0, 0.063907, 0.038864, 0.057021]

©,=10,0,0,0,0, 0, 0, 0.055918, 0.127322]
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q;

H

i || casesa-d || casea | caseb | casec | cased
1| -0.28302 || 0.13926 | 0.21329 | 0.13837 | 0.21418
2 -1.0 0.0 0.0 0.0 0.0
3| -0.67889 || 0.36149 | 0.36149 | 0.36149 | 0.36149
4 0.45238 || 0.69315 | 0.69315 | 0.69315 | 0.69315
51 -0.59375 0.0 0.0 0.0 0.0
6 || -0.10233 0.0 0.0 0.0 0.0

Table 4.1: The values for the continuous variables z and q for the first four best
solutions of Problem 1.
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|

Z;

qi

|

7 || cases a-d || casee | casef | caseg | caseh
1 -0.31840 || 0.17594 | 0.09728 | 0.09766 | 0.17631
2 -1.0 0.0 0.0 0.0 0.0
3| -0.71270 | 0.31102 | 0.31102 | 0.31102 | 0.31102
4| 0.41735 || 0.69315 | 0.69315 | 0.69315 | 0.69315
5 || -0.62333 0.0 0.0 0.0 0.0
6 || -0.04290 0.0 0.0 0.0 0.0

Table 4.2: The values for the continuous variables z and q for the second four best
solutions of Problem 1.
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case a case b case ¢ case d

2 ‘ 4q; < l g Z; [ g Z; [ 4
0.08347 | 0.03100 || 0.08302 | 0.03083 || 0.08346 | 0.03100 || 0.08302 | 0.03083
1.34812 0.0 || 1.34606 0.0 || 1.34811 0.0 || 1.34606 0.0
0.66751 0.0 || 0.48125 0.0 }| 0.66751 0.0 || 0.48125 0.0
1.50038 | 0.48497 || 1.50038 | 0.60071 || 1.50038 | 0.48497 || 1.50038 | 0.60071

-1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0

-1.0 | 0.43690 -1.0 ] 0.32129 -1.0 | 0.32270 -1.0 | 0.43703

OO ] W DO ] s

Table 4.3: The values for the continuous variables z and q for the second four best
solutions of Problem 2.
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Overexpressed

enzymes 1,24134,6 145|146 1,25] 1,26
Number

of solutions 6 6 5 4 3 3
Overexpressed

enzymes 1561234236356 34,5]1,23
Number

of solutions 3 3 1 1 1 1

Table 4.4: The number of alternative regulatory structures for each of the 12 combi-
nations of enzyme overexpression from Problem 3.
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case a case b case ¢
i Z | z | g z |
1] -0.91840 | 0.02832 || -0.91830 | 0.02823 || -0.18806 | 0.02872
21 1.35478 | 0.37064 || 1.35368 | 0.37051 || 1.33065 | 0.09889
31 1.27053 0.0 || 1.17193 0.0 || -0.91641 0.0
4 )| 1.50038 | 0.11026 || 1.50038 | 0.17153 | 1.50038 | 0.34393
5 -1.0 0.0 -1.0 0.0 -1.0 0.0
6 -1.0 0.0 -1.0 0.0 -1.0 0.0
case d case e case f
( z | Zi | Zi |
1 -0.18806 | 0.02873 || -0.91677 | 0.02674 || -0.91677 | 0.02674
2 || 1.33066 | 0.09889 || 1.33506 | 0.36844 || 1.33504 | 0.36844
31 -0.91641 0.0 || -0.51808 0.0 || -0.51808 0.0
4 | 1.50038 | 0.47122 || 1.50038 | 0.09641 || 1.50038 | 0.22042
5 -1.0 0.0 -1.0 0.0 -1.0 0.0
6 -1.0 0.0 -1.0 0.0 -1.0 0.0

Table 4.5: The values of the continuous variables z and q for six solutions of Problem
3 (cases a-f from Figure 4).
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case a case b case C
( z | @ z | z | @
1 || 0.08302 | 0.030832 || 0.08346 | 0.03100 || 0.08346 | 0.03100
2 |l 1.34606 0.0} 1.34811 0.0 || 1.34811 0.0
31 0.48125 0.0 || 0.66751 0.0 || 0.66751 0.0
4 | 1.50038 | 0.60071 || 1.50038 | 0.48497 || 1.50038 | 0.48497
5 -1.0 0.0 -1.0 0.0 -1.0 0.0
6 -1.0| 0.06174 -1.0 { 0.06161 -1.0 | 0.06161
case d case € case f
( z | o z | z | g
1| 0.08302 | 0.03083 || -0.91785 | 0.02779 || -0.91768 | 0.02672
2 || 1.34606 0.0 1.34811 | 0.36989 || 1.34607 | 0.36967
31 0.48125 0.0 | 0.66751 0.0 || 0.48127 0.0
4 1 1.50038 | 0.60071 || 1.50038 | 0.48497 || 1.50038 | 0.60070
5 -1.0 0.0 -1.0 0.0 -1.0 0.0
6 -1.0 | 0.06174 -1.0 0.0 -1.0 0.0

Table 4.6: The values of the continuous variables z and q for six solutions of Problem
4 (cases a-f from Figure 5).

4.12 Figures
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Figure 4.1: The aromatic amino acid synthesis pathway. Solid arrows indicate re-
actions and dashed arrows indicate feedback inhibition loops. Chemical species:
G6P = glucose-6-phosphate; PEP = phosphoenolpyruvate; ATP = adenosine triphos-
phate; ADP = adenosine diphosphate; DAHP = 3-deoxy-D-arabino-heptulosonate-7-
phosphate; CHR = chorismate; PHP = prephenate; PHE = phenylalanine; TYR =
tyrosine; TRP = tryptophan.
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Chapter 5 Optimization of Regulatory
Architectures in Metabolic Reaction

Networks
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5.1 Introduction

In chemical and pharmaceutical manufacturing that utilize cultivated organisms, im-
provements in the product yield, rate of production, and final product concentration
can be achieved by two main approaches: genetics and process. The former ap-
proach is based on targeted modifications in the DNA of an industrial microorganism
aiming at a configuration of metabolic fluxes that will direct raw materials to prod-
ucts efficiently at high rates and in the presence of high concentrations of product.
These modifications in the DNA, enabled by recombinant DNA technology, range
from overexpression of a single homologous enzyme of a pathway, to introduction
into an organism of genes from other organisms with the possibility of creating hy-
brid metabolic pathways combining features from metabolic pathways in different
organisms (Bailey, 1990; Zhang et al., 1995).

Almost every metabolic reaction network is subject to a regulatory architecture
built around it, which regulates the amount of the enzymes present in the network
and/or the catalytic properties of the enzymes (Sanwal et al., 1971; Stephanopoulos
and Vallino, 1991). Significant improvements in the performance of bioprocesses
have been realized by genetic modifications of regulatory structures (Bailey, 1990;
Katsumata and Ikeda, 1993). These improvements were mainly based on trial and
error methods applied to well-understood, relatively simple pathways. However, as
the complexity of a set of pathways of interest increases, intuitive and trial and
error methods are increasingly ineffective. As a result, a systematic methodology for
effective targeted modifications of regulatory structures is needed.

The mathematical description of metabolic systems has been used successfully in
the description, analysis and engineering of complex biochemical systems (Cornish-
Bowden and Cérdenas, 1990; Gallazo and Bailey, 1990; Hatzimanikatis et al., 1995;
Joshi and Palsson, 1989; Lee and Bailey, 1984; Savageau, 1976; Shuler and Domach,
1983). The modeling approaches previously used can be classified into two kinds:
linear and nonlinear. Linear models can be accessed through analysis of input-output

relations and certain stimulus-response experiments by applying advanced regression
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analysis (Schlosser et al., 1993) or other experimental methods developed within
and around the metabolic control analysis (MCA) framework (Cornish-Bowden and
Cérdenas, 1990; Fell, 1992; Heinrich and Rapoport, 1974; Kacser and Burns, 1973;
Reder, 1988; Schlosser and Bailey, 1990). Nonlinear models, on the other hand, can
be constructed when detailed kinetic expressions for each step in the reaction pathway
are known or can be estimated (Gallazo and Bailey, 1990; Hatzimanikatis et al., 1995;
Joshi and Palsson, 1989; Shuler and Domach, 1983; Starbuck and Lauffenburger,
1992).

The S-system representation developed within biochemical systems theory (BST)
(Savageau, 1969a,b, 1970, 1972, 1976; Savageau et al., 1987) allows the description
of biochemical systems by nonlinear models of a power-law form. There are three
main features that make this modeling approach attractive. First, the steady-state
equations that describe the mass balances of the system become linear following
a logarithmic transformation, and thus linear algebra methods can be épplied for
analysis of the system. Second, the parameters required to set up the nonlinear
equations can be estimated from relatively simple experiments (Savageau, 1992), or
they can be derived by appropriate manipulations of MCA data (Savageau et al., 1987;
see the Consistency checks below). Third, prior studies have shown S-system models
to be very accurate over a wide range of variations in metabolite concentrations,
enzyme levels and operating and physiological conditions (Shiraishi and Savageau,
1992; Voit and Savageau, 1987).

The linear nature of the S-system representation, after the logarithmic transfor-
mation, has been exploited for the steady-state optimization of biochemical systems
using linear programming methods (Regan et al., 1993; Voit, 1992). These studies
provide information only about optimum manipulation of external inputs (such as in-
dependent effectors and external substrates) or enzyme levels and do not address the
problem of optimizing the regulatory structure of the metabolic network. Recently,
a mixed-integer linear programming (MILP) framework has been developed that ad-
dresses this problem when a (log)linear model, based on MCA data, is considered as

the available description of the network (Hatzimanikatis et al., 1995).
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In this chapter, we present a MILP formulation for the general optimization of
biochemical systems represented as S-systems. The approch provides information on
which enzymes should be present at different levels, the extent of such changes needed,
and the accompanying modifications in the regulatory structure that will optimize the
metabolic function of interest. Three examples illustrate the multitude of questions
that can be addressed within this framework and how one can apply the method and

postulate the appropriate constraints depending on the questions addressed.

5.2 Mathematical Framework

5.2.1 Mathematical Modeling of Biochemical Systems

Consider a metabolic system consisting of N metabolites and S manipulated (exter-
nal) parameters. For every metabolite in the system we can write the general form

in S-system representation:

dX;
dt

= V' (X1, Xa, .., Xy P Py oo Ps) = Vi (X1, Xa, .., Xwi Py Py, Ps)
(5.1)
t=12,...,.N

where V;* and V,” are net or aggregate rate laws desribing the processes that in-
crease and decrease, respectively, the concentration of the metabolite 7, and they are

described by the following power-law form:

N S
Vit = o ] X2 T PP (5.2)
j=1 I=1
and
N S
Vi =41 x5 [1 P (53)
j=1 I=1

where X; (j = 1,..., N) is the concentration of the metabolite j,and P, (I = 1,...,5)

is the level of the manipulated parameter I. The rate constants a; and [3; are nonneg-
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ative, and the kinetic orders gi;, aq, hi; and by, defined as:

= KV
1Y Vi+ an
L X0V
VT X;
ag = B oV
il V¢‘+ 6.Pl

1AL
by = ———7

Vi OR

are real. Each of the metabolites and the parameters that has an effect on any of
the aggregate processes is associated with a nonzero kinetic order. Moreover, if a
metabolite acts on a process as a substrate or activator, the corresponding kinetic
order is positive; if it acts as inhibitor, the corresponding kinetic order is negative. The
same applies to the kinetic orders of the manipulated parameters: a parameter which
acts as activator (inhibitor) is associated with a positive (negative) kinetic order. Prior
investigators of the BST and the S-system representation have extensively discussed
the physical meaning and methods for experimental estimation of the parameters
used in S-systems (Savageau, 1972, 1976).

Having constructed the S-system representation for the system of interest, the

steady-state can be found after the appropriate logarithmic transformation:
y = -L'Mq+L™'d (5.4)
where y is a N-dimensional vector with elements:
y; = In(X;) (5.5)
q is a S-dimensional vector with elements:

q = In(P) (5.6)
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d is a N-dimensional vector with elements:

L is a (N x N) matrix with elements:

Li; = gij — hyj (5.8)
and M is a (N x M) matrix with elements:

Mi = ay ~ by (5.9)

However, when we describe or observe a biological system, there might be some
metabolic outputs (i.e., ¢;) that are functions of the concentration of the metabolites
and the parameters of the system. The i-th element of a set of K metabolic outputs

can be also described by power-law functions:
n S
¢di=wl[XP TP i=12... K (5.10)

j=1 =1

where +; is real and f;; and ¢y, defined as

_ X, 04
fii; = Eﬁ‘;
_ PRio¢:
Cr = E”a?l

are also real. If we want to study how changes in the catalytic and regulatory char-
acteristics of certain enzymes will affect the performance of the pathway under con-
sideration we should examine how the performance depends on the kinetic orders as
they quantify the affinity of the various enzymes for their substrates and their mod-
ulators. When a process V; is inhibited by metabolite X, then the corresponding
kinetic order, g;;, will have a negative real finite value. By setting this kinetic order

equal to zero we can simulate and observe how the system would respond if we had



147
inactivated the inhibition of the process V;*.

Changes in the kinetic orders of the metabolites alter the elements of matrix L in
equations (5.4) and (5.8). These changes determine the output values in a nonlinear
fashion due to the inversion of matrix L in equation (5.4). Consequently, examination
of the local sensitivity of the outputs with respect to kinetic orders assumes small
changes in these parameters. On the contrary, any attempt to modify the affinity of
an enzyme for its substrates and modulators will result in finite changes, often orders
of magnitude different from the wild-type affinities. As a result, there is a need for a
systematic framework that can optimize the regulatory structures selecting between
alternative structures with kinetic orders that may differ from each other in order of

magnitude.

5.2.2 Mixed-Integer Linear Optimization

The optimization of metabolic pathways by manipulation of the independent system
parameters can be performed using linear programming methods as has been pre-
sented in previous studies (Regan, 1993; Voit, 1992). The framework developed in
those studies did not address the problem of optimizing the regulatory structure of
the metabolic network. The optimization of the regulatory structure involves discrete
decisions concerning the regulatory loops that should be inactivated or the regulatory
loops that should be introduced in the pathway (Hatzimanikatis et al., 1995).

A number of algorithms and methods, developed in applied mathematics, exist
that allow the optimization of linear and nonlinear mathematical models that include
continuous and integer variables (Floudas, 1995; Luenberger, 1984; Nemhauser and
Wolsey, 1988; Winston, 1995). The application of these methods requires formulation
of the problem in a way that can be efficiently solved by the existing methods. In
this section we will present the formulation of the problem of optimizing regulatory
structures as a mixed-integer linear programming problem. The formulation will
exploit the linearity of the steady-state equations of the S-system representation, as

well as some additional simple transformations that will allow the introduction of



148
integer variables in a linear form. The mathematical formulation will be presented
via the first example used by Voit (Voit, 1992).

Consider the simple linear pathway with two dependent metabolites, X; and X,
with the second acting as inhibitor on the first reaction of the pathway (Figure 1).
Four manipulated (external) variables are considered: the amount of the enzymes,
P,, P, and P, that catalyze the three reactions, and the amount of the effector, P,
that activates the first and the second reactions of the pathway.

The S-system representation of the pathway is

dXx

—dtl = a X§R PP PR — By XM Py P (5.11)
UX2 X Pgm P _ 5 X ] s 5.12
dt QA ™y 242773 (5.12)

With the parameter values taken by Voit (Voit, 1992), the system becomes:

ax,

— = X;1P P! — 002X P, P} (5.13)
X
%’% = 0.02X5P,P? — 2X,P; (5.14)

We address the following questions:
In order to maximize the concentration of metabolite 2, X,:

(i) which one of the manipulated parameters should be changed and what should
be the level of the manipulated parameter?

and
(ii) should the feedback inhibition loop be inactivated?

The above questions are subject to the following constraints:

1. The system is at steady-state;
2. X5 < 500;
3. V35 < 10; and

4. For the three enzymes only overexpression is considered, thatis P, > 1 (I =

1,2,3,4).
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In the above constraints the subscript “ss” denotes the steady-state value of the corre-
sponding variable. In general, metabolites, manipulated variables, reaction rates, and
metabolic functions should be constrainted within bounds determined by their phys-
iological ranges for the pathway of interest and by the available biological knowledge
(Hatzimanikatis et al., 1995; Voit, 1992).

We can introduce a set of new variables:
g +q=In(P) [=123/4 (5.15)

where ¢/ denotes the logarithm of the reference value of the parameter [, and g
denotes the logarithm of the factor by which the reference value is multiplied to give

the value P,. In the example studied here
g =1In(l) =0

and

q = ln(l) = 0.

The questions addressed above involve two discrete decisions. The first one con-
cerns the manipulated parameters (i.e., enzyme expression levels and external effector
concentration level) that should be changed. It is a discrete decision since the answer
should provide the one parameter that should be changed while the rest will be fixed
to their reference value. The second discrete decision concerns the regulatory loop.
Inactivation (or activation) of the feedback inhibition loop is equivalent to zeroing (or
not) the non-zero (negative) kinetic order of V;* with respect to X3, gia.

Such discrete decisions can be modeled by binary variables, that is, variables that
can be zero or one, only. For the first discrete decision, we will introduce a set of

binary variables, w;, for which we will have:

ql’ + wiq = ln(Pl) (l =1,2,3, 4) (5,16)
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If w; equals zero, we do not allow changes in the corresponding manipulated parame-
ter, P}, since from equation (5.16) we have that In(P)) = ¢} always. If w; equals one,
then (5.16) reduces to (5.15).

Moreover, by introducing the constraint:
wy +wp+ws+wy =1 (5.17)

we allow only one manipulated parameter to change since (5.17) should always hold.
The second discrete decision concerns the rate law V;*, in which we introduce the

binary variable 275 in the exponent of X:
V= (Xfl?- ‘ 912) P,P? (5.18)

If 215 equals zero, Vi does not depend on X, any more and, thus, we have modeled
the inactivation of the feedback inhibition loop. If z1; equals one, then (5.18) reduces

to

Vit = X{* PP}

which is same as in equations (5.11) and (5.13).
At steady-state and after applying the logarithmic transformations the optimiza-

tion problem can be mathematically formulated as follows:

mazimize(ys) (5.19)

subject to

Mass balances

05+ z12 Yo+ ga+twe-qe—q —wi -1 = In(1/0.02) (5.20)

0.5y1 —y2+ o + w2 - g2 +2q5 + 2wy - gy — g5 —w3 - g3 = In(2/0.02) (5.21)
Bound on X,

y1 < In(500) (5.22)
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Bound on Vy
Bound on enzyme level
P > 1 (5.24)
P > 1 (5.25)
P > 1 (5.26)
Mazimum number of parameter manipulations
Wi + We + W3 + Wy < 1 (527)
Yo, 4 unrestricted
where
y; (i =1,2) and ¢ (I =1,...,4) are real continuous variables,
g/ (I=1,...,4) are real parameters, and
zi2 and w; (I = 1,...,4) are binary variables, i.e. they can take the values 0 or 1.

If wy, wo and ws are equal to zero, wy is equal to one, and zj; is equal to 1, then
the problem is the same as the one considered by Voit (Voit, 1992). Therefore, by
solving the problem twice, once for z;5 equal to one and once for z;5 equal to zero
we consider the case of maximization of X, with and without feedback regulation,
respectively. However, we also want to find which of the four parameters can be
more efficient in the presence or absence of regulation. In order to find the answer
to the question we should solve the problem 2* = 16 times. In general, if we had a
pathway with m parameters and n regulatory loops the answer to the same questions
would require the enumeration of 2(™*" solutions and the search among them for the
best one. Therefore, the problem requires a computational method that will solve
the problem efficiently and will ensure the global optimality of the desired solution.
As mentioned above such methods exist for certain classes of problems that have

discrete and continuous variables that participate either linearly or nonlinearly. In
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order to apply these methods the problem is formulated in a mixed-integer linear
form for which there are efficient and robust algorithms and software. The linear form
implies that every continuous and binary variable will appear linearly in the objective
function and in the constraints. Note that in the model (5.19)-(5.27), there are some
bilinear products of continuous and binary variables, such as (w;-¢;, [ = 1,2,3,4) and
(z12 * y2), that introduce nonlinearities. These nonlinearities can be removed by the
appropriate transformations (Floudas, 1995; Hatzimanikatis et al., 1995). We will
introduce a set of continuous variables, t; (I = 1,2, 3,4) and s;,, that will replace the
bilinear products:

tl:wl'QI; l:1a27374

and

S12 = 212 " Y2

For each of the new continuous variables we will include four linear constraints that
will guarantee consistency between the bilinear product and the corresponding con-
tinuous variables. After the introduction of these new continuous variables and the
linear constraints the problem can be formullated in the following mixed-integer linear

form:

mazimize(ys) (5.28)

subject to

Mass balances

0.5y +s12+ gy +ta—¢q) —t; = In(1/0.02) (5.29)

05y —y2+ g5 +ta+2q; + 2ty — g5 — t3 = In(2/0.02) (5.30)
Bound on X;

yi < In(500) (5.31)
Bound on V}

—S12 + q{ + tl + QQZ + 2t4

IA

In(10) (5.32)

Bound on enzyme level
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P > 1 (5.33)
P > 1 (5.34)
P, > 1 (5.35)

Linear transformation for z;2

Yo — S12+Uszi2 = Yy (5.36)
y2— sz tysze < oY (5.37)
z12yy —s12 < 0 (5.38)
S12 — znyéj < 0 (5-39)
Linear transformation for w; (i=1,...,4)
G —ti+wg > g 5.40

IN
Lo
s

g —t; + winU

wigl — t;

IA
(o)
s e e
oo .
W
[N]
N N N N

t; — wig”

IA
o

Mazimum number of parameter manipulation

wy+we+ws+wyg <1 (5.44)
where
v (1=1,2), s12, g and t; ({ =1,...,4) are real continuous variables,
g (I=1,...,4) are real parameters,
z12 and wy (I = 1,...,4) are binary variables, i.e. they can take the values 0 or 1,
and

the superscripts U and L, in equations (5.36)-(5.43), denote the upper and lower

bound, respectively, of the corresponding variables.

Equations (5.36)-(5.43) transform the bilinear terms of the initial formulation into

linear inequality constraints. It is interesting to examine the effect of these constraints.
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Let’s consider equations (5.36)-(5.39). If 2, = 1, then (5.36) and (5.37) become

Y2 < 512 S Yo

and (5.38) and (5.39) become

U
yE < 519 < 9

and the first two constraints imply that s;» = y, while the second two constraints

simply provide bounds. If z;, = 0, then we have from (5.36) and (5.37)
v2—yy <sp<y—yy
and from (5.38) and (5.39) we have
0<512<0

and the second two constraints imply that s;o = 0, while the first two constraints are
relaxed since (y, — ¥¥) < 0 and (y» — y%) > 0. A similar analysis holds for every set
of inequalities that transform bilinear products of continuous and binary variables.
The problem described by equations (5.19)-(5.44) was solved using the high-level
modeling language GAMS (General Algebraic Modeling System), which is interfaced
with CPLEX, a mixed-integer linear programming solver. The only feasible optimal

solution found was the same as the one reported by Voit:

X1 =100
Xy=5
P=1 1=1,23
P4=5\/§

The only way to increase the concentration of X, is by the increase of P; in the
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presence of the feedback regulatory loop. Every other parameter manipulation in the
presence or after inactivation of the feedback loop cannot increase X, concentration
without violating the inequality constraints.

Although the pathway is a simple linear pathway with three reactions, the result,
that within the bounds considered there is only one way to optimize the objective
even though changes in the regulation are considered, is not obvious, as it strongly
depends on the numerical values of the various parameters and on the bounds of the
various variables. The solution could have been identified by exhaustive enumeration
of the alternative regulatory structures and the allowable manipulated parameters.
However, such an approach is limited by the size of the pathway (i.e., the number of
reactions and metabolites) and the questions we address, when they consider a large
number of alternative regulatory structures and enzyme manipulation policies. In
the following section, the same linear pathway is considered, while a superstructure

of alternative regulatory structures is introduced.

5.2.3 Regulatory Superstructure

For every metabolic pathway we can consider a regulatory superstructure in which
every metabolite in the pathway can potentially regulate any enzyme. Any attempt
to optimize a certain metabolic function by genetic or protein engineering modifica-
tions of enzyme regulation would address the issue concerning the regulatory loops in
this superstructure that could enhance the effects of enzyme expression level manip-
ulations. Its mathematical formulation leads to a large combinatorial problem. Its
solution will provide the best performance achievable for a given system, and thus
provide valuable constructive insight for protein and metabolic engineering.

A regulatory superstructure can be also postulated as a combination of every
regulatory characteristic found in nature for every enzyme in the pathway. The choice
of the optimum combination of regulatory characteristics will essentially suggest for
the appropriate combination of enzymes from different organisms that catalyze the

same reaction but which have different regulatory characteristics.
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As an illustration for the postulation and the analysis of the regulatory super-
structure we will consider the same example presented in Section 2.2. We will con-
sider that every reaction can be modulated by any of the two metabolites, X; and
Xs, which will either inhibit or activate a reaction. This consideration results in
the postulation of 12 regulatory loops (Figure 2). Moreover, for each loop we will
consider N,.;, = 6 alternative levels of regulatory strength and type of regulation:
{-0.5,0.5,-0.1,0.1,—-0.01,0.01}. We will allow only two regulatory loops active in
the pathway. The questions we will address are the following:

In order to mazimize the concentration of X,:
(1) which two regulatory loops should be active?
(1i) what should be the type of regulation (i.e., activation or inhibition) ?
(1ii) what should be the strength of the requlation ?
(iv) which one of the manipulated parameters should be changed ?
and
(v) what should the level of the manipulated parameter be ?
The above questions are subject to the same constraints as before:
1. The system is at steady-state;
2. X1 <500

3. V34 <10; and

4. For the three enzymes only overexpression is considered, that is P, > 1 (I =

1,2,3,4), and up to 10 times their reference value.

We will introduce the binary variables z;;, and the parameters €;;m,, with
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and V¢, is the number of the alternative strength and types of regulation for each
regulatory loop in the superstructure, and N,,, and N, are the numbers of the
reactions and metabolites, respectively, in the metabolic network. In this example,
we have Nyeg = 6, Npzn = 3, and Ny,ee = 2, and for the binary variables z;;,, and the

parameters €;;, we have:

e z; and z;; equal to 1, if reaction ¢ is inhibited with strength €;;; = —0.5 or

activated with strength €;;, = 0.5, respectively, from metabolite j;

e 23 and z;;4 equal to 1, if reaction ¢ is inhibited with strength €;;3 = —0.1 or

activated with strength €;;4 = 0.1, respectively, from metabolite j;

e 25 and ze equal to 1, if reaction ¢ is inhibited with strength €;;5 = —0.01 or

activated with strength €;;6 = 0.01, respectively, from metabolite j;

An important constraint, when formulating regulatory superstructures, is the one
that forbids activation and inhibition of an enzyme by the same metabolite since in
the S-system representation they are indistinguishable. The S-system representation

of the pathway, including the regulatory superstructure, is:

X0 T [T XPmm ppr — 0.02x0° [T T X5 HmREE (5.5
@ — ILIIX 1Py —0.02x7° I T X 2Py (5.45)
me==] j=1 m=1 j=1
dX. SIS 6 2 .
—2 = 002xP* [T TT X7 PP — 2, [T T X" Py (5.46)
m=1j=1 m=1 j=1

We can introduce four sets of variables: y;, (g5, g;), and t;, the same as before, and
Smji = Zmji€mji¥i- These variables will be used in the description of the steady-
state equations after the logarithmic transformation. Similarly, we can write for the

optimization problem the following mathematical formulation:

mazimize(ys) (5.47)
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subject to
Mass balances
6 2 6 2
- Z Zsljm+0.5y1+ Z ZSQjm—q; -1 +q;+t2
m=1 j=1 m==1 j=1
6 2 6 2
0.5y + Z Z S2jm — Y2 — Z Z $3jm
m=1 j=1 m=1 j=1

+q§+t2+2q£+2t4—q§—t3
Bound on X,
Y1
Bound on V}
—S12+ g7 + t1 + 2¢ + 2t4
Bound on enzyme level
P
P,
Py
Linear transformation for zijm
(1=1,2,3jij=12,m=1,...,6)

. L U
€ijm¥Y; — Sijm + mm(yj €ijms Y; €ijm)zijm

L U
€ijmYj — Sijm + MAT(Y} €sjm, Yj €ijm ) Zijm

Zz‘jmmin(yfﬁijm, ?/JU €ijm) = Sijm
Sijm — zijmmaa:(yfeijm, yJU €ijm)
Linear transformation for w,
@ — t +wigl
q —t + wigl

wigl — 4

IA

IA

v

v

v

v

IA

tA

A

IN IV

IN

In (1/0.02) (5.48)

In(2/0.02) (5.49)

In(500) (5.50)
In(10) (5.51)
1 (5.52)
1 (5.53)
1 (5.54)

min(yffijm, y]l‘jeijm)
(5.55)

L U
maz(y; €ijm, Yy €ijm)

(5.56)
0 (5.57)
0 (5.58)
(=1,...,4)
q (5.59)
q (5.60)

0 (5.61)
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tl - wlqu S 0 (562)
Mazimum number of parameter manipulation
wy +wy +Fwz+wy, < 1 (563)

Two regulatory loops active

6 2 2
D 2D tmi = 2 (5.64)

m=1j=1i=1

One value of strength for each loop

(i:172’3;j:1’2)

6
Z Zijm
m=1

IA
jun—

(5.65)

y; (1=1,2),85 1=1,23,7=1,2), g and ¢, ({ = 1,...,4) are real continuous

variables,

g, q and ¢f (I=1,...,85),yY and yF (j = 1,2) are real parameters,

z; (1=1,2,3;j=1,2)and w; (l =1,...,85) are binary variables, i.e. they can take

the values 0 or 1, and

the superscripts U and L, in equations (5.55)-(5.62), denote the upper and lower

bound, respectively, of the corresponding variables.

Equations (5.47)-(5.65) consist the mathematical formulation of the regulatory
superstructure problem as a MILP problem. Equations (5.63), (5.64), and (5.65), are
the logical constraints which allow us to define our policies with respect to the maxi-
mum number of the metabolic parameters that can be manipulated and the number
of “the active regulatory loops. Consider, for example, a network of N, metabo-
lites, N,z reactions, and N,., loops of alternative strength and type of regulation.
One constraint that can arise during the study of the network is the maximum num-
ber of regulatory loops, Ny, on each enzyme. This physiological constraint can be

mathematically formulated as follows:

N”'eg Nmet
Z Zmji < Nloop for each j= 1,... )ern (566)

m=1 i=1
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Another type of question that could be addressed within the same framework con-
cerns the choice between two or more enzymes from different organisms. Consider
for example that the reaction number 4 in the pathway we study is regulated from
metabolites 2 and 3 with regulatory strengths ez and €143, respectively. However,
there are two other organisms with the same enzyme but with different regulatory
properties: one without any regulation, and one that is regulated by metabolites 1
and 6 with regulatory strengths e;4; and €446, respectively. In this case we can for-
mulate a constraint that will not allow more than two of the loops to be present

simultaneously:

2242 + 2143 + 2141 + 2446 < 2 (5.67)

and two constraints that will guarantee the existence of both loops of the same reg-

ulated enzyme or the introduction of the nonregulated enzyme:

242 — 2143 = 0 (5.68)

and

2141 — Z4a6 = 0 (5.69)

Therefore, the formulation of the appropriate constraints for the binary variables
allows the known regulatory features of alternative enzymes to be incorporated ex-
plicitly and unambiguously within the MILP framework.

The optimization problem described by equations (5.47)-(5.65) was solved as be-
fore and the best solutions found for the regulatory structure presented in Figure 3.A
with continuous variable values:

X1=500
Xo =125
P=1 1=1,3,4

P, =2.236
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Vi

I
[Ty

and:

z311 = 2321 = 1

The objective function is strikingly increased from 5 to 125 with respect to the optimal
solution of the first study. The manipulated parameter that should change is different
and the upper bound for X; is the limiting factor.

In order to find the second best solution we can solve the problem again including

an additjonal constraint that will exclude the previous solution:

6 3 2

6 3
22131 + 22130 — Z zzzmﬁ < Z Z

m=1 j=1 i=1 m=1j=14

Zhgi — 1 (5.70)

2
=1

where z),;; denotes the binary variable solution of the first problem. The ability to

formulate such constraints within the the MILP formulation allows the generation of
alternative solutions in a declining, with respect to objective, order, providing with

insight and alternative suggestions.

Solving the problem again and including constraint (5.70), we found the second

best solution with continuous variables:
Xl = 500

X, =11138
P=1 i=234
P =10
Vi =10

and

Z311 = 2912 = 1

and the optimal regulatory structure is presented in Figure 3.B.
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The third best can be found by solving again the original problem including equa-

tion (5.70) and the following equation that will exclude the second best solution:

6 3 2
22131 + 22221 - E Zzzmﬂ < Z Zzzrzn]z 1 (571)

m=1 j=11i=1 m=1j=11=1

Following this iterative approach we can obtain a sequence of high performance
solutions to the problem. These solutions can be later evaluated with respect to their
stability and their dynamic characteristics which are of significant importance for the
performance of a pathway (Savageau, 1976; Torres, 1994; Voit, 1992) as well as with
respect to the effort required for experimental implementation.

The vast improvement of the objective function when alternative regulatory struc-
tures were considered, demonstrates the effect of the regulation on the performance of
metabolic patwhays. Similar impressive results of modifications of metabolic regula-
tion have been reported in the literature. However, in the examples presented above
and in the most of the sucessful experimental approaches, the pathways considered
were relatively small, in terms of metabolites and enzymes, and stoichiometrically
simple, such as linear and branched pathays, with a small number of regulatory
loops. In Section 3 we will study a pathway with 10 regulatory loops and 6 manip-
ulated variables under constraints, illustrating the efficiency of the MILP framework
for patwhay with increased complexity.

Before we continue with the last example we will consider the linear transforma-
tions that correlate changes in the catalytic and regulatory properties characteristics
of individual enzymes with changes in the kinetic orders of the aggreate rate laws of
the S-system representation. These transformations are necessary for the consistency

of the representation of the system under the changes.

5.2.4 Consistency Checks

The aggregation employed within S-systems results in kinetic orders that, although
appearing to be independent from each other, are essentially dependent. The following

example is taken from Savageau et al. (1987). Figure 4 represents a simplified model
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of a branched biosynthetic pathway. For the mass balances of the three independent

metabolites of the pathway we can write:

7
%)% = Vo -V, (5.72)
R A
The equations that describe this system in BST are:
P = X§UXPXS - B X,
DL = aXPXg — pXi (5.73)
e A R

As was pointed out by Savageau et al. (1992), the stoichiometry of the system leads

to a correlation between the kinetic orders:

Voo Vio
h = : . 5.74
11 V1,og21 + ‘/1’0931 ( )
Voo
h = : 5.75
12 Vl,og22 ( )
Vio
h = - 5.76
13 V1,0933 ( )

In the above equations g;; is essentially equal to the so-called elasticity of enzyme

7 with respect to metabolite j:
X, 0V;
om L 5.77
€ 7 ‘/J 8 Xz ( )
Elasticities have been used as a measure of the effects of metabolites on individual en-
zymes (Fell, 1992; Kacser and Burns, 1973). Equations (5.74)-(5.76) show that, when
we consider changes in the catalytic or regulatory properties of an enzyme, the kinetic

orders of the S-system representation should change in a consistent way. Therefore,

we will present next a linear transformation from elasticities to kinetic orders that
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can be used within the MILP framework presented to guarantee consistency during
the search for the optimal regulatory structure.

Consider a pathway consisting of Np,e; metabolites, N;,, individual reaction steps,
and S manipulated parameters. Other processes by which concentrations of metabo-
lites change (such as dilution brought about by increases in the biomass volume
(Fredrickson, 1976) and transport through the cell envelope) will not be considered

here. The mass balances of the metabolites of the system may be written:

dx

== Nv(x,p) (5.78)

where N is the N x M stoichiometric matrix, v is the M-dimensional reaction rate
vector, x is the N-dimensional metabolite concentration vector, and p is the S-
dimensional manipulated parameter vector (e.g., enzyme concentrations). In addi-

tion, consider the r-dimensional vector of metabolic outputs, ¢, for which we have:

¢ = ¢(v(x,p), %, p) (5.79)

For the mass balance of metabolite ¢ we will have, from equation (5.78):

X m
T Z N5 Vj (580)

which in S-system representation will be written as:

dXi + P T + e —
- =V -V = > onfv; = ngv; (5.81)
j=1 j=1
where the superscripts “+” and “-” indicate the positive and the negative, respec-

tively, elements of the i-th row of the stoichiometric matrix. For the kinetic orders

we have by definition:

X; ovF

9ii V+ a
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o .t (&i)

Vj,0 81?1

7=1 Zni-].cvk‘,o
k=1
m
U.
= > | 22— (5.85)
k=1

Similarly for the kinetic orders of the i-th output function we will have (from

(5.10)):
_ v V0 O0; mj'o.a.l)i E-Z_o%
i ‘; «qbwavl) (”l»o ‘9%')) " (cbi,o 3:6j)
— - () a¢z ‘ 'Ij,o%
- Z—; (<¢7’0 8'0() ) * (¢i,o 61}]) (586)
and

C

&

- a0 (525) os1

We observe that any change in the properties of individual enzymes has an effect
on more than one kinetic order. When we study the effects of regulatory structures on
the performance of a system, which is mathematically represented as an S-system, we
should employ the above relations in order to be consistent. Therefore for the mass

balance of the i-th metabolite at steady-state and after the logarithmic transformation

we will have:

F

Nmet et Nr:tn Nreg
Z (gzt - htt ?,/t + Z(azl - ll - o Z4mgt €mgt Ui
t=1 j=1 m=l Z n k,vk o

Il

Nmet Nr:r:n N"‘eg S ﬁ
+ Z Z Z T Zmjt * €mjt Yt | T Z(ail —bw-q = In (—Z)

t=1 j=1 m=1 ankvk’o I=1
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where N4, defined as before, is the number of alternative values for the regulatory
loops; these values can be positive (for activation) or negative (for inhibition). The
first two terms on the left hand side of equation (5.88) correspond to the kinetic
orders of the original system. The binary variable z,;; in the third and forth terms
determines the modifications of the elasticities and, consequently, the modifications
of the kinetic orders of the original system. For example, when 2935 is equal to one,
then the elasticity of enzyme 3 with respect to metabolite 5 is reduced by an amount
equal to eg35. The binary variable w; in the fifth term of the left hand side controls
which manipulated parameter will change, as it has been discussed above.

For the i¢-th output we will similarly have:

Nmet S

In(y;) + Z Jitye + Z caqy
t=1

I=1

Nmet Nrgn Nreg Vio 8¢z S
3T S (B et Y = o) (589)

t=1 j=1 m=1 l=1

Finally, for every binary value, when formulating the problem as an MILP prob-
lem, we should apply the transformations introduced earlier, and include four inequal-

ity constraints, as has been illustrated with the previous examples.

5.3 Example

As an example we will study a similar problem to that examined by Voit as Example

2.

Yield Optimization in XMP and GMP Production

A simplified form of the pathway is shown in Figure 5. Discussion and references
on the biochemical characteristics of the pathway can be found in Voit’s paper. The

S-system representation of the pathway is:

— 900){3—0.5‘X'Ii—().S1)1 _ 1OX;).SX{O.lX:;-O.2X4—O.2P20.6P:§).4 (590)
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%% — 7.34X§)'308X{O'062X‘;0'162XZO'IP§'37P§)'245P§)'385
438X 42X 09 X 703 po4 pos (5.91)
El_;% — 2.71X§'409X§0'387P£'455 _ 0.036X?'14X§)'43X4~O'014Pg?'ZS (592)
_da‘)%i — 13.03X§'041X;O’339Pé)'405 . 0.143X§0'026X2'46P£'26 (593)
P=1 i=1,...,6 (5.94)

The kinetic orders were calculated from the rates and their elasticities with respect
to their substrates and modulators, as they were qualitatively set to values presented
in the Appendix, and by using the linear transformations presented in the previous
section. The parameters P; — Ps represent the concentration of the enzymes that
catalyze the corresponding reactions.

The objective of the optimization is to maximize the steady-state concentration

of metabolite X,. The problem is subject to the following constraints:

e the concentration of the metabolites X, X5, and X3, should not deviate more

than £10% from their reference steady-state values;

e the concentration of the enzymes cannot increase or decrease beyond certain

limits.

The mathematical formulation of the optimization problem is presented in the Ap-
pendix.

Let’s consider first the following question:

Which one of the enzymes should be manipulated, within +10% of its reference
value, in order to mazimize X4 ?

The answer to this question can be found by solving six times the optimization
problem using a linear programming algorithm. However, if we use the MILP formu-
lation of the problem presented in the Appendix, by including two additional con-

straints, we can found the answer by solving the MILP problem once. The additional
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two constraints are on the binary variables:

wy + Wy + w3z + Wy + ws +we =1 (595)

and

213 + 214 + 221 + 292 + 203 + 224 + 234 + 243 + 253 + 264 = 10 (5.96)

where constraint (5.95) allows changes on the levels of only one of the enzymes, and
constraint (5.96) does not allow any modification of the regulatory structure.
Similarly, the question:
Which two of the enzymes should be manipulated, within +10% of their reference
value, in order to mazimize X4 ?

can be answer by changing constraint (5.95) to:

w1+w2+w3+w4+w5+w5=2 (597)

Following this procedure we addressed this question considering three, four, five,
and six enzymes to change simultaneously. The optimal values for the objective
function, the enzymes that should be changed, and the level of their change, are
presented in Table I. One of the important conclusions that can be drawn from this
Table is the one concerning the “controling enzymes”. Enzyme 6 appears to have
the highest effect on the concentration of X,. It is interesting to note, however, that
when this is the only manipulated enzyme, the optimum solution does not involve
the maximal allowed increase in FPs. Only when another activity is changed does
Ps increase to its upper limit at the optimal solution. Moreover, there are only
three enzymes (i.e., enzymes 1, 6, and 4) that significantly influence X, concentratio
(within the bounds of the expression levels and of the concentration of the other
metabolites), since simultaneous manipulation of four or more enzymes does not
improve the concentration of X4 much.

One could argue that this information might be obtained by examining the con-

centration control coeflicents. In Table II the concentration control coefficients for
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the four metabolites with respect to the six enzymes are presented. Although the
indication for which single enzyme should be manipulated from the maximum Xj,-
concentration control coeflicient is consistent with the optimization calculation result,
there is (of course) no indication from the concentration control coefficient that an
optimal increase in FPs exists. Furthermore, the two enzymes that should be manip-
ulated, according to the control coefficient values in Table II, are enzymes 4 and 6,
which is not the case. This is due to the existence of constraints on metabolites and
other physiological parameters and indicates the necessity of the MILP framework
when constraints on metabolic functions are considered.

If we consider the same optimization problem and allow the enzyme changes be-
tween 20% and 500% of their reference value, the results are quite different (Table
IIT). The optimal value of the concentration of X, can be achieved in two different
ways when one and two enzyme manipulations are considered. The value for the
objective function when we change one enzyme is the same as before because the lim-
iting factor is in both cases the concentration of metabolite X, which in both cases
is equal to the higher value allowed.

When two enzymes are changed in this second case we have two possible solutions,
and the corresponding objective value is almost equal to the objective value found
in the previous case (Table I) for the manipulation of three enzymes. Moreover, the
combination of the enzymes for two and three enzyme manipulations are different for
the two cases, that is, they depend on the bounds for the enzyme expression levels.
This difference clearly arises from the nonlinear nature of the original system, as well
as on the constrained character of the problem.

The maximum concentration of X, that can be achieved by changes in the six of
the enzymes is 240.5% of the reference value. If we consider changes in the regulatory
structure, by inactivating any or some of the existent loops, we might achieve an even
higher value for the objective. Solving the MILP problem by allowing also changes in
the binary values z;;, we can find the maximum that can be achieved by both enzyme
manipulation and regulatory structure modifications, within the constraints and for

the given kinetic properties of the system as they are quantified by the elasticities
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of the substrates and the modulators. The solution can be found by changing the

constraint (5.96) to:

213 + 214 + 231 + 299 -+ Zo3 + 294 -+ Z34 -+ Z43 + 253 + Zg4 S 10 (598)

which allows changes in the regulatory structure. The maximum concentration of X,
was found to be equal to 55015.6, or, 11414% of the reference value, and multiple
alternative combinations of regulatory structures and enzyme manipulations were
found to correspond to this optimal value.

In modifying regulatory structures it is reasonable to look for the minimum num-
ber of loops that should be inactivated since experimental modifications of the regu-
latory characteristics of an enzyme are much more difficult to achieve than changing
the amount of the enzyme. The MILP framework allowed us to find among the alter-
native optimal regulatory structures the one with the maximum number of regulatory
loops active by reformulating the optimization problem. The objective function was

the number of the regulatory loops and the objective was the maximization of this

number:

maximize(213 + 214 + 291 + 29 + Zog + Zoqa + 234 + 243 + 253 + 264) (599)

subject to the equality constraint:

ys = 55015.6 (5.100)

The maximum number of regulatory loops that can remain active in the reaction
network is equal to 5. The optimal regulatory structure is presented in Figure 6 and
the levels of metabolites and enzymes are presented in Table IV.

In any attempt to modify the regulatory structure of a reaction network we are
interested in identifying the first regulatory loop that we should try to inactivate.

This question can be formulated mathematically by the formulation presented in the
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Appendix, including the constraint:

Z13+ 214 + 201 + Zo2 + 293 + 224 + 234 + 243 + 253 + 24 = 1 (5.101)

The solution of this problem suggests two optimal modifications that result in
a concentration for X, equal to 386.6% the reference value. The regulatory loops
that should be inactivated are the feedback loops on enzyme 2 by metabolite 3 and
by metabolite 4, referred as solution A and B in Table V, where the corresponding
changes in enzymes and concentrations are presented.

Many similar questions can be addressed and answered using the MILP framework
presented above and applied here to this example. A study of the values of the
metabolites and the enzyme levels, as well as of any metabolic function of the network,
at the optimal steady-states can provide metabolic engineer with useful insight prior
to any attempt to manipulate enzyme levels and regulatory architectures of metabolic

reaction pathways.

5.4 Concluding Remarks

The framework developed in this chapter considers the optimization of bioprocesses
that can be described by an S-system representation. The novelty of the approach
lies in its ability to find the optimal regulatory structure with respect to a metabolic
function of a biochemical reaction network. The transformation of the nonlinear S-
system representation of biochemical systems into linear systems and the introduction
of binary variables and a set of key transformations allowed this problem in optimal
manipulation of a biochemical system to be formulated as a MILP problem.

The examples presented illustrate the ability of the formulation to address vari-
ous problems concerning analysis and understanding of metabolic pathways and, more
important, problems concerning optimal combinations of regulatory structures. The
postulation of a regulatory superstructure around a metabolic pathway, and the for-

mulation of appropriate constraints allow design of regulatory architectures that can
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optimize an objective. Although not pursued in this work, this approach can also be
applied to suggest possible evolutionary criteria that gave rise to natural regulatory
structures (Heinrich et al., 1987; Majewski and Domach, 1990; Marr, 1991; Schuster
and Heinrich, 1991).

A similar formulation for linear models has been also developed (Hatzimanikatis
et al., 1995), as well as for nonlinear models that are described by enzyme kinetic
models based on rate laws of a generalized Michaelis-Menten type (Hatzimanikatis et
al., manuscript in preparation). The formulation of a system described by nonlinear
models includes nonlinear constraints and objective functions that are more difficult
to solve, and the global optimality of the solution is not guaranteed. However, ev-
ery kinetic description of metabolic systems can be transformed into an approximate
S-system representation. Then, this MILP formulation can be applied to the trans-
formed systems to suggest promising strategies for achieving a metabolic engineering
objective.

The transfer of enzymes between different organisms, as well as protein engineering
of homologous enzymes, can result in pathways with altered regulatory and catalytic
properties. The corresponding changes in the catalytic properties can be mathemati-
cally formulated and studied within the MILP framework presented here. The linear
transformations presented above that correlate elasticities of individual enzymes with
kinetic orders, should always be applied when changes in the catalytic and regula-
tory properties of the enzymes are considered in order to preserve consistency in the
change of the parameters and to avoid erroneous results.

The formulation of constraints that exclude previous solutions enables the gener-
ation of a series of solutions in a hierarchical order, with respect to the value of the
objective function. These solutions can be analyzed with respect to their dynamic or
other metabolic characteristics, and the ones that satisfy the set of desired criteria

can be chosen for experimental implementation.
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5.6 Appendix

In this appendix the elasticities and the steady-state values of the metabolite con-
centrations and the reaction rates of the XMP and GMP production pathway will be
given and the mathematical formulation of the optimization problem will be analyt-
ically presented.

The steady-state value of the concentration of the four metabolites of the pathway
is:

{X1, X, X5, X,} = {5.42,213,2417, 482}

and the corresponding steady-state values of the reaction rates are:

{‘/1) %? ‘/37 ‘/4) ‘/57 ‘/6? ‘/7‘) ‘/87 ‘/91 ‘/10} =
{0.83,0.5,0.33,0.52,0.54,0.81, 0.86, 1.48,0.65, 1.19}

The elasticities of the system can be partitioned into two groups: the elasticities
of the enzymes with respect to their substrates and the elasticities of the enzymes
with respect to their modulators.

For the elasticities with respect to substrates we have:

{621, €31, €33, €44, €52, 5627573,684} =

{0.3,0.5,0.25,0.061,0.9,0.1,0.5,0.6}

and for the elasticities with respect to modulators we have:

{613, €14, €21, €22, €23, €24, €34, €43, €53, 664} =

{-0.5,-0.5,0.2,-0.167, 0.5, —0.3, —0.05, —0.1, —0.85, —0.833}
For the elasticities with respect to paramaters we have:

m=1 (=1,...,1061=1,...,6)
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The optimization problem is mathematically formulated as follows:

mazimize (y,) (5.102)

Mass Balances
—0.5y1 + 0.1y2 — 0.3ys — 0.3ys — S13 — S14 + 0.659; + 0.6599
+0.6523 + 0.6834 + 0.4s34 +¢t; — 0.6t, — 0.4t3 = —4.4998
(5.103)
0.308y; — 0.482y, + 0.177y3 + 0.4yy — 0.37s9; — 0.3752,
—0.37s93 — 0.37524 — 0.245534 — 0.385543 + 0.4553
+0.6564 + 0.37t2 + 0.245¢3 + 0.385t, — 0.4t5 — 0.6t = 1.7863 (5.104)

~0.14y; + 0.409y; — 0.817y; — 0.014y,

—0.459853 4+ 0.287s34 — 0.28t3 + 0.455t5 = —4.3212
(5.105)
0.041y, + 0.026y3 — 0.799y4 — 0.405s64
+0.26543 — 0.26t4 + 0.405t = —4.5122
(5.106)
Bounds on X; =123
In(4.9) >y > In(6.0) (5.107)
In(192) >y, > In(234) (5.108)
In(2176) >y3 > In(2660) (5.109)
Bounds on P, I=1,...,6
In(P) =P > In(PY) (5.110)

where P and PV are the lower and upper bounds, respectively, of the I-th enzyme
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expression level. For each of the variables s;; and ¢; we need four inequality constraints

similar to equations (5.36)-(5.39) and (5.40)-(5.43):

Linear transformation for s;; (5.111)
(17.7) = {(1’ S)v (1? 4)’ (27 1)’ (2’ 2)’ (2> 3),
(2,4),(3,:4),(4,3),(5,3),(6,4)}
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Linear transformation for w; (i=1,...,6)
q—t+wlin(PF) > In(Ph) (5.116)
q—t+win(PY) < In(PY) (5.117)

wiln(PF) -t < 0 (5.118)
ti—win(P’) < 0 (5.119)

where

and

vy =In(X]) j=1,...,4

and the superscripts U and L denote the upper and lower bound, respectively, of the
corresponding variables. The elasticities used in equations (5.112)-(5.115

In equations (5.102)-(5.119) above
y (1=1,...,4),

gandt; (I=1,...,6) and
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{813, 514, 821, S22, S23, 524, 534, 543, 553, 564}
are real continuous variables,

¢, PV,and Pt (1=1,...,6),

vV and yF (j =1,...,4), and

{613, €14, €21, €22, €23, €24, €34, €43, €53, 664}
are real parameters, and

{213, Z14, 221, 222, 223, 224y £34, 243, £53, 264} and

are binary variables, i.e. they can take the values 0 or 1,
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5.7 Tables
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L X [ A B B [AB] B | X [ X [X]

103.84 100 100 | 100 | 100 | 100 | 109.17 | 98.62 90 95.14
104.84 | 105.68 | 100 | 100 | 100|100 | 110 110 96.92 | 96.92
107.83 || 106.24 | 100 | 100 | 90 {100} 110 110 90.11 | 93.49
108.25 110 | 110| 100 | 90 | 100 | 110 | 103.75| 94.97 | 96.96
108.78 110 }110| 100 | 90 | 90 110 | 106.31 | 105.27 | 95.89
108.82 110 | 110 94.94 | 90 | 90 110 110 | 105.27 | 97.04

Table 5.1: The values for the objective function, enzyme expression levels and the
concentrations of the metabolites when one, two, three, four, five, and six enzymes
change simultaneously, within +10% of their reference value and without any mod-
ifications in the regulatory strucure. Bold type, underlined numbers indicate the
changes in the enzyme levels.



184

] Cpl j=1,...4 l=1,...6 |
L 1A | B [ B | A | B [ R |
X, [ 1.9993 | -1.3427 | -0.6569 | 0.1005 | -0.2313 | -0.1564
X, || 1.5040 | 0.0005 | -0.0030 | 0.7687 | -0.9773 | -1.1981
X3 || 04119 | 0.2305 | -0.2318 | 0.3620 | 0.1065 | -0.5657
X, | 0.0906 | 0.0075 | -0.0077 | -0.2742 | -0.0467 | 0.4270

Table 5.2: The concentration control coefficients for the four metabolites with respect
to the six enzymes.



185

I X | P | Ph| P Py Py P | X [X] X5 ]
103.84 100 100 100 100 100 109.17 | 98.62 | 90 | 95.14
103.84 100 100 100 87.18 100 10 98.62 | 90 | 95.14
107.95 100 100 100 100 90.68 | 118.21 | 99.62 | 90 90
107.95 100 100 100 76.97 | 90.68 100 99.62 | 90 90
226.45 || 351.22 | 500 100 100 100 500 90 110 | 107.79
232.64 || 352.93 | 500 100 90.80 100 500 110 | 90 | 94.68
24047 || 372.65 | 500 | 116.08 | 81.61 100 500 110 | 90 90
240.47 500 500 | 242.17 | 81.61 | 157.38 500 110 | 90 90

Table 5.3: The values for the objective function, enzyme expression levels and the
concentrations of the metabolites when one, two, three, four, five, and six enzymes
change simultaneously, between £20% and £500% of their reference value and with-
out any modifications in the regulatory strucure. Bold type, underlined numbers
indicate the changes in the enzyme levels.



Lifti2] 3 [ 4 5 6 ]
P, || 500 [ 500 | 69.53 | 500 | 64.70 | 34948
X, 110 90 | 90 | 11414

Table 5.4: The optimal values for the objective function, enzyme expression levels
and the concentrations of the metabolites when six enzymes change simultaneously,
between £20% and £500% of their reference value and modifications in the regulatory
structure are considered. The corresponding optimal regulatory structure is presented
in Figure 6.
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| | Solution A || SolutionB |
Lel A | X% | A | X |
11l 479.83 110 460.97 90

2 189.43 | 110 38.88 110
3 20 110 20 110
4 20 386.57 20 386.57
5| 39.87 37.48

6 500 500 90

Table 5.5: The optimal values for the objective function, enzyme expression levels
and the concentrations of the metabolites when six enzymes change simultaneously,
between £20% and £500% of their reference value and inactivation of only one reg-
ulatory loop is considered.
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5.8 Figures
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Figure 5.2: Linear pathway with regulatory superstructure around it. Dashed lines
denote inhibition and dashed-dotted lines denote activation. Three different levels of
strength are considered for each regulatory loop.
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Figure 5.3: The first two optimal regulatory structures for the linear pathway. A.
Both regulatory loops correspond to inhibition with strength -0.5. B. Dashed line
denotes inhibition with strength -0.5 and dashed-dotted line denotes activation with
strength 0.5.
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Figure 5.4: Branched biosynthetic pathway.
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Figure 5.5: Xanthine monophosphate (XMP) and guanosine monophosphate (GMP)
sythesis pathway. Solid lines denote reaction steps, dotted lines denote dependency
on the corresponding parameters (F)), dashed lines denote inhibition, and dashed-
dotted lines denote activation. Numbers in circles identify the reaction steps as they
are referenced in the text.
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Figure 5.6: The changes in regulatory structure and in enzyme expression levels
of the XMP and GMP synthesis pathway which maximize XMP and GMP (X,)
concentration. Signs in circles next to the dotted lines indicated increase (+) or
decrease (—) in the expression level of the corresponding enzymes (P,).
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Chapter 6 Multiple Steady States in
Metabolic Reaction Networks
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6.1 Introduction

Discovery and technological development in several different fields of study have em-
powered the recent emergence of metabolic engineering, a powerful strategy for devel-
opment of improved industrial organism. The interplay between increased definition
of cellular phenomena at the molecular level and chemical reaction engineering pro-
vides the basic frameworks for analysis of cell function and underlies algorithms for
qualitative guidance of metabolic design.

Because addressing the entire network of catalytic reactions and regulatory in-
teractions at the level of the entire cell exceeds current knowledge, generally a sub-
system of this network is selected for study. The mathematical descriptions of such
sub-systems in steady state and for in transient conditions generally lead to coupled
non-linear equations due to stoichiometric coupling among the reactions and kinetic
nonlinearities for individual catalytic steps. Based upon studies of substantially sim-
pler synthetic catalytic networks, generations of chemical reaction engineers have
articulated the possibilities for steady-state multiplicity, limit-cycle oscillations, and
more complex dynamic phenomena in non-linear chemical reaction system (Aris and
Amundson, 1958; Burns et al, 1973; Uppal et al, 1974; Balakotaiah and Luss, 1983;
Lyberatos et al., 1985; Kevrekidis et al., 1986; Farr and Aris, 1986; Aris and Cicarelli,
1995). This analysis has been built upon an expanding set of mathematical theory
and efficient computational tools.

Prior investigations of steady-state multiplicity in man-made catalytic networks
indicate several important motivations for characterizing steady-state multiplicity in
metabolic systems. First, the possibility of steady-state multiplicity implies a com-
plication in operating protocol since the steady state achieved can depend on earlier
process history. Second, the existence of multiple steady states, when explored ex-
perimentally, can provide the engineer with important information about the system,
including its governing equations and important parameters. Moreover, in a biological
context, steady-state multiplicity can, in its most rudimentary form of two possible

steady states, provide a biochemical mechanism for binary information storage, as
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noticed in several previous investigations (Burns et al., 1973; Kauffman, 1993).

If a biological system can operate in multiple steady states, it can, for a given
configuration of protein activities, access different time-variant functional states, a
capability which could be important from an evolutionary view point (Kauffman,
1993). In biotechnological applications, where cellular processes are manipulated by
reconfiguration of protein activities, appearance of multiple steady states could lead
to undesirable situations for bioprocess operation.

In spite of the technological and scientific significance of steady-state multiplicity
in metabolic reaction systems, this phenomenon has been far less thoroughly inves-
tigated in biological context than in man-made catalytic process (Sel’kov and Betz,
1973; Heinrich et al., 1977; Markus and Hess, 1984, 1990. Here a rudimentary de-
scription of glycolysis, a process by which a carbon source is digested by a cell, is
formulated based upon pathways pertinent to bacteria. Considering rate expressions
of minimal complexity, which do not include some important coupling and nonlin-
earity present in bacterial glycolysis, we demonstrate that, for certain values of the

system parameters, as many as ten steady states can be achieved.

6.2 A Kinetic Mcodel for a Glycolysis Prototype

The glycolysis pathway for bacterial cells such as Escherichia coli and Bacillus subtilis
is presented in Figure 1 (Gottschalk, 1986). Although at first glance it appears to
be a simple linear sequence of reactions, inspection of the stoichiometry of glycolysis
reveals some interesting complications. These arise from participation of ATP and
ADP in several reactions and from the involvement of PEP, an intermediate late in
the pathway, in the first reaction. Moreover, the regulatory architecture enveloping
this reaction network, which does not appear in the Figure 1, and which modulates
the catalytic activities of certain reactions by compounds which are neither reactants
(substrates) nor products of those reactions, introduces further complex coupling.
Furthermore, if the organism in which this pathway operates is growing, then some of

the metabolites are used for synthesis of new biomass and, additionally, the intracel-
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lular concentration of every metabolite is affected due to the increasing cell volume

(Fredrickson, 1976).

In this study we consider a glycolysis prototype; that is, a simpler reaction net-
work that preserves the stoichiometric characteristics of the original pathway. The
prototype used here is presented in Figure 2. It can be easily deduced, by comparing
Figure 2 with Figure 1, that G corresponds to the pool of G6P and F6P, F corre-
sponds to FdP, E corresponds to PEP, T corresponds to ATP, D to ADP, and M to
AMP, and S and P correspond to extrecellular glucose and to pyruvate, respectively.
The reactions from FdP to PEP, which are reversible, are lumped in reaction step 3

in Figure 2 for which, after the lumping, we have the following stoichiometry:
F+2D=2E+2T

Reaction step 5 corresponds to the reversible reaction catalyzed by adenylate kinase

(AK in Figure 1) and has the following stoichiometry:
T+M=2D
The rest of the reaction steps are irreversible and have the following stoichiometries:
1:E+S—>G+P

2:G4+T->sF+D
4: FE+D—>T4+P
6:D—T

and

7:T—D

The last two reactions, 6 and 7, describe the production and consumption, respec-

tively, of energy by cellular processes other than glycolysis. Reactions 8 and 9 corre-
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spond to degradation (AS in Figure 1) and to synthesis (AD in Figure 1), respectively,

of the adenylate nucleotides via M.

6.3 The Mathematical Model

Assuming negligible concentration gradients within the bacterial cell volume, unsteady-

state mass balances on the components of the prototype pathway may be written as

follows:
%Ct;—} = Wi — Vo — pY¥s — ulG] (6.1)
d|\F
-% = Vo= V5" + Vi — pu¥p — p[F) (6.2)
d
dE] 2Vy —2Vy" — Vi = Vi — p¥p — plE] (6.3)
dt
%:tﬂ = —Vp+2Vyt =2V + Vi = Vit + Vi + Vo — Vi — pYr — plT]  (6.4)
d
_.[&Itl] = Vo —2V5 +2Vy =V +2Vi — 2V — Vo + Vs — uYp — u[D] (6.5)
d[M
—[d-t-—] = V" + V5 = Va+ Vo — pYa — p[M] (6.6)

where the terms pY; correspond to the usage of metabolite j for biosynthetic require-
ments and the last term in every mass balance, i.e. u[j], represent dilution caused by

increase in cell volume, V,, at a specific rate:

dinV,
= 6.7
p=— (6.7)
The superscripts “+” and “-” denote the forward and backward direction, respec-

tively, of the reversible reactions in Figure 2 as they have been conventionally assigned.

Two assumptions that are usually invoked about glycolysis by both modelers and
biochemists are the following ones concerning the characteristic times of individ-
ual reaction steps (Reich, 1974; Heinrich, 1977; Gottschalk, 1985; Liao et al., 1988;
Fothergill-Gilmore and Michels, 1993):

A.I Reactions steps 3 and 5 in the prototype model (Figure 2), and the corre-
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sponding reactions in Figure 1, are very “fast” with respect to the rest of the
reactions; i.e., the metabolites that participate in these reactions as reactants

and products are very close to thermodynamic equilibrium.

A.II The reactions that degrade and synthesize adenylates (V3 and Vg, respectively),

are very “slow” with respect to the rest of the reactions.

This last assumption can be mathematically described by the following equality:
Vs — Vo = u([T] + [D] + [M]) (6.8)

which means that the net synthesis rate of the adenylate nucleotides via AMP (M) is
equal to their dilution caused by cell volume increase.
Consideration of the above assumptions allows us to rewrite the mass balance

equations as:

d| P,

e T (6.9)

d| P,

B Vot Vit Vo Vi i - P (6.10)

d| P

AP vy Vi ¥, — P (6.11)

where

P = G (6.12)
P, = 2F+2T+D (6.13)
P, = 2F+E (6.14)

and from assumptions A.I and A.II the following equlibrium and conservation rela-

tions hold:

(6.15)

(6.16)



and

[T) + [D] + [M] = [A] (6.17)

where [A] is the concentration of the adenylate nucleotides which, after the assump-
tion A.II can be considered time-invariant. Equations (6.12) through (6.17) permit
calculation of the concentrations of the prototype metabolites D, E, F, G, M, and
T in terms of [Py], [P2], and [P3]. In order to further simplify our analysis we will

assurne that

A_.TIT There is no metabolic regulation of the activities of the various enzymes of the

pathway.

Based on this assumption we will use the simplest possible enzymatic rate expressions

to describe the kinetics of the enzyme-catalyzed reactions:

i = Vm,l?{—;%l—@ (6.18)
v = Vs (i ) (2 o) (019
o = Vo (i ) (st o7) (020
Ve = Vmﬁ}{% (6.21)
Vi = Vm,vf{-n—j[g—m (6.22)

where V,,, ; is the maximum rate for reaction j, and K ; is the dissociation constant
of the enzyme that catalyzes reaction step j for the metabolite . Parameter V., is
also a function of external glucose concentration which in the following analysis will
be fixed and considered as time-invariant. Notice also that V5 and Vj follow the Hill
rate expression; i.e., sigmoidal kinetics, with a Hill coefficient equal to two, since it
has been shown that the enzymes that catalyze these reactions (phosphofructokinase
and pyruvate kinase, respectively) are composed of identical monomers, or identical
pairs of monomers, and such enzymes typically follow Hill-type kinetics.

As was mentioned above the participation of T and D in several reactions, and the
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effects of cell growth complicate the behavior of the system as described by equations

(6.9)-(6.11). Therefore, we will further assume that:

A.IV The concentrations of T and D saturate the enzymes that catalyze reactions 2

and 4; ie., K72 < [T] and Kp 4 < [D]; and

A.V The cells are not growing: u = 0.

Under these assumptions we can write the following dimensionless mass balance equa-

tions:

dm

"a‘:rl = VU — V2 (623)
d

a2 _ Vg + Vg + Vg — U7 (6.24)
dr

dm

_(—1?3 = 2?)2 — Uy — U4 (625)

where for the dimensionless concentrations we have:

T =7 To=20+2pp3+ pps 73 =20 +¢

@ i\
Kg, Kg, Kga
_ [T _ D] _ M]
¢3 = A b2 A o)) Al
-5 =K 629

For the equilibrium and conservation relations (6.15), (6.16), and (6.17) and the

dimensionless rates expressions, we have:

_ 2¢2
q = %753% (6.27)
¢
“= Gt (6:28)
3+ d2+ =1 (6.29)
v = — (6.30)

1+e



Y
= 6.31
= b (6:31)
2
€
V4 92 n 62 (632)
P2
Vs = 6.33
e (633)
®3
= 6.34
Ur w X n ¢3 ( )
where the dimensionless parameters introduced above are defined as:
=7 B=Vua/Vm:i 1= Koa/Ke
Ej1
O = Vm,4/Vm,1 9 = KE,4/KE,1 1/) = vas/mel (635)

§ = Kpg/|A] w = Vin7/Vim1 A= Kr7/[A]

Equations (6.23)-(6.34) describe the mathematical model of the simple glycolytic
prototype presented in Figure 2, under the assumptions A.I-A.V. The assumptions
used are not many and they do not interfere with the objectives of this analysis.
Many of them are based on experimental studies (A.I and A.II), and they can be
implemented experimentally easily (A.V). Moreover, metabolic engineering allows the
consideration of a glycolytic pathway without metabolic regulation (A.III). Study of
the prototype model in the absence of regulation will allow us to better understand the
function of the existent regulatory structures by observing the changes in the system
due to the introduction of the regulatory interactions. Previously studied prototypies,
although they have been constructed based on more assumptions and simplifications
were able to capture some of the qualitative features of glycolysis, such as oscillatory
behavior and chaos (Higgins, 1967; Sel’kov and Betz, 1973; Heinrich et al., 1977).
However, the insight they provided was limited, because of the assumptions and their
general character since they did not describe glycolysis from any particular organism.

Analysis of the glycolysis prototype will be performed next in order to identify if
there can exist values for the kinetic parameters, realizable by natural mutations or

genetic engineering, that could possibly result in multiple steady states and, thus, in
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more than one phenotypes from a given genotype.

6.4 Steady-State Multiplicities

Previous models of glycolysis in various cells, such as yeast and erythrocytes and
experimental data suggest that glycolysis can exhibit multiple steady-states (Hein-
rich et al., 1977; Liao et al., 1988; Joshi and Palsson, 1989). We will study the
glycolytic prototype described by equations (6.23)-(6.29) in order to find necessary
parameter value combinations for steady-state multiplicities to be observed, under
the assumptions A.I-A.V, and the rate laws assumed (Equations (6.30)-(6.34)).

The steady-states are found by solving (6.23)-(6.25) for dm;/dr = 0 (i = 1,2,3).

At any steady-state, after rearrangement of the equations, we have:

U1 (6) = ’U4(6) (636)
va(o) = wy(e) (6.37)
2ug(e) = vr(d3) — ve(d2(¢h3)) (6.38)

The function ¢,(¢ps) appearing in Equation (6.38) is obtained by solution of the

equilibrium equation (6.28) and the conservation equation (6.29), which yields:

1 1
¢2 = "'Z'Qad)B + 'é’\/r((h - 4)Qa¢§ + 4Qa¢3 (639)

Equation (6.36) can be solved explicitly for e. The solutions will be the intersec-
tions of the curves for the rate laws for v;(e) and vs(e). The relationship between
these two functions depends on the parameters a and 6 in the formula for v, (Equa-
tion (6.32)) with possible cases schematically illustrated in Figure 3. The dashed
lines correspond to different possible cases for vy, and can intersect (or not) the solid
line which corresponds to v;. There are five qualitatively different ways that v; can
be related to vy. If v4 follows kinetics that result in line I, then the system has two

steady-state solutions, one zero and one nonzero. It is easy to see that this can occur
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only when V5,1 < Vi,4, or when a < 1. As « diminishes and attains a = 1, then
the v; and v4 functions approach the same asymptote as € — oo (line II in Figure 3)
and we have just lost the case with two solutions. a = 1 is a bifurcation point, since
for @ > 1 there is only one solution with zero value (line V in Figure 3). However,
depending on the value of 6, when « is less than one, we can move from a unique
solution to three solutions (line III) through a bifurcation represented by line IV in
Figure 3. The bifurcation diagram for the rate laws used is presented in Figure 4.
The 6 — o paramater space is divided by lines II and IV in to three regions which
correspond to a different number of steady states. For values of o and 6 in region I
vq follows kinetics that result in line I in Figure 3, and, therefore, two steady-state
solutions exist. For values of o and 6 in regions III and V v, follows kinetics that re-
sult in lines III and V, respectively, in Figure 3, and, thus, three and one steady-state
solutions exist for parameter values in regions III and V, respectively.

'The above conclusions are independent of the details of the kinetics. The only
requirement for the possibility of three steady states under some conditions is that vy
follows sigmoidal kinetics. The qualitative results are also independent of the value
of the Hill coefficient. A higher value for the Hill coefficient will only increase area III
in the bifurcation diagram (Figure 3) favoring multiplicity of steady states for a < 1.

Solution of equation (6.37) provides a sufficient condition between a and 3 so that

for every € there is a solution for o satisfying equation (6.37):

B2a (6.40)

In general, it is possible that solutions to equation (6.37) can exist even if inequality
(6.40) does not hold, but the existence of a ¢ value satisfying equation (6.37) depends
on the relative values of the other parameters involved; i.e., 8 and 7.

In the case of three € values satisfying equation (6.36), one of them will always be
zero, and the corresponding solution of equation (6.37) is ¢ = 0. This solution will be
called v-zero solution since, at this solution, the reaction rates v;, v, and v, will be

equal to zero. The other two nonzero € solutions of equation (6.36), and associated
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solutions of equations (6.37) and (6.38), when they exist, will be positive and will be
called v-positive solutions.

Equation (6.38) provides the steady-state relation of ¢3 with € and o satisfying
equations (6.36) and (6.37). We consider next parameter values for which nonegative
solutions of equation (6.38) exist.

For any allowed (i.e., nonengative) €, v, is nonegative. Therefore, a sufficient
condition for an allowed solution of equation (6.38) to exist is, for some ¢3 values

between zero and one,

f(¢3) = vr(¢3) — ve(¢2(¢3)) > 0 (6.41)

This condition is sufficient since, if it is satisfied, then there exist combinations of
¥ and w that could satisfy equation (6.38). It should be noted here that f(¢3) is
a measure of the energetic state of the cells since it expresses the net ATP (¢3)
consumption rate.

From equation (6.39) we have ¢y = 0 at ¢3 = 0 and at ¢; = 1. Therefore

floy=0 (6.42)
and
Q) = “x% (6.43)

and given the fact that f is a continuous function and that the maximum value of
the left hand side of equation (6.38) is 2, then a necessary condition for the existence

of at least one nonegative value of ¢; satisfying (6.38) is:

2< —_ (6.44)

Numerical calculation of f(¢3) for various combinations of values of the kinetic
parameters v, §, w, and A revealed that f(¢3) can have any of the qualitative forms

indicated by the curves in Figure 6. For certain combinations of the kinetic parame-
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ters, f possesses a local maximum with positive value for values of ¢3 between 0 and
1 (lines III, TV, V, and VI in Figure 6). Therefore, we could find a combination of
values for the parameters ¥ and w such that 2vs(e) would be lower than this local
maximum. As a result a horizontal line, positioned at an ordinate value 2v4(e), will
intersect these f loci at three points resulting in three or one values of ¢3 which satisfy
equation (6.38) (lines I and VIII).

If there are three solutions of equations (6.36) and (6.37) for € and ~, then there
could exist one solution ¢3 to equation (6.38) for each of them (line I), or one solution
for the v-positive solutions and two solutions for the v-zero solution (line VIII), or
three solutions for each of the v-positive solutions and one for the v-zero solution (line
II), or three for the v-positive solutions and three, or four, for the v-zero solution (lines
V and VI, respectively).

The lihes 11, IV and VIII correspond to limiting cases. Line II illustrates the
transition from one solution of ¢3 to three possible solutions for each of the v-positive

_cases. This transition can be observed when there exists a concentration ¢3 for which

the following equalities hold:

df

— =0 6.45

il (6.45)
and

d*f

—=| =0 6.46

Line IV corresponds to the transition from one solution for the v-zero case to
three (line V) or four possible solutions (line VI), while three solutions for the v-
positive case are still possible. Such a transition can be observed when there exists a

concentration ¢§ at which:
df
d¢3 3

These last equalities (6.47) hold also for line VII which illustrates the transition from

= f(¢5) =0 (6.47)

three possible solutions for every v-positive case and three or four solutions for the
v-zero case, to one solution for any of the two cases. The difference between these two

transitions is that at the corresponding ¢4 line II goes through a local minimum (i.e.
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(d*f/d¢s)gg < 0), and line VII goes through a local maximum (i.e. (dzf/d¢3)¢g > 0).

Considering the above conditions and following an approach similar to the one
introduced by Regenass and Aris (1965) we can find in the parameter space regions
for which multiplicities can arise. These regions will identify necessary sets of values
for the kinetics parameters for the number of the solutions to possibly exceed the
number of the solutions allowed by equation (6.36).

Although function f depends on five parameters, i.e. 7, &, w, A, and ¢,, the

conditions postulated above depend on four essential parameters:
€, X qs,and § = {‘Z-

By fixing two of them, £ and gq,, a two-parameter bifurcation diagram can be con-
structed (Figure 7). The numbers in the regions and on the bifurcation lines corre-
spond to the multiplicity possibilities which are illustrated in Figure 6 and have been
described above. Assuming that three solutions for o and ¢ exist then for the overall

system we will have:

SS.I Three steady-states for region I;

SS.II Seven steady-states for region III;
SS.III Nine or ten steady-states for region V-VI; and
SS.IV Four steady-states for region VIII.

The special nonlinear character of function f arises from the nonlinear dependece
of ¢, on ¢3, as described by equation (6.39). The equilibrium constant, g¢,, is the
only parameter appearing in equation (6.39) to have an effect on the value of ¢, for a
given value of ¢3. In order to understand better the dependency of ¢; on ¢3 and q,,
@2 as a function of ¢3 is plotted in Figure 5 for different values of g,. As we can see ¢,
is not a monotonic function of ¢3; it increases monotically as ¢3 increases from zero,
it goes through a maximum and it decreases monotonically as ¢; approaches one,
which is the maximum value for ¢3. The maximum value of ¢, and the corresponding

value for ¢3 are functions of g,. Solution of the equation (d¢s/d¢3) = 0 provides the
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maximun value of @2, @2 maz, and the corresponding value of ¢3, @3 maz, as functions

of q,:
vV 4a
mazr — 6.48
and

1(4-2yG
®3,maz = 5 (-Zj'q—;—) (6.49)

which at this value is equal to ¢;.
Figure 5 further suggests that g, has an important effect on the distribution of

the various forms of the adenylate nucleotides (¢;). For

¢3>1/(2¢. +1)

¢, will always be higher than ¢,, which implies that for low values of ¢,, ATP (¢3) and
AMP (¢1) will be the main components of the adenylate nucleotide pool, over a wide
raﬁge of ATP concentration (¢3), whereas, for high values of ¢,, ATP (¢3) and ADP
(¢2) will be the main components of the adenylate nucleotide pool.The dependency of
®2 maz and @3 maz ON ¢, indicates that g, could be an important bifurcation parameter.

The effects of the value of € and ¢, have been further examined and the results are
presented in Figure 8. For a given value of £, the area of the regions of multiplicity
depend on the value of ¢,. In general, as g, increases, the area of the multiplicity
regions in the [n(é)—In()\) parameter space is decreasing in size. Whereas, for a
given value of ¢4, the area of these regions increase as £ increases. The bifurcation
lines II, IV, and VII, which define the multiplicity regions, have different sensitivities
with respect to g,. As g, increases, line II moves upwards until a critical value of g,
beyond which it moves downwards as g, increases. This critical value appears to be
dependent on the value of £. On the other hand, lines IV and VII move monotonically
upwards as ¢, increases with a rate that depends on the value of £. All three, for
fixed &, lines respond to changes in g, without changing significantly their slopes in
the In(6)—In()\) parameter space, which implies that g, does not affect the (scaled)

sensitivity of these bifurcation lines with respect to § and A.
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This analysis has been based on some assumptions that concern the kinetics of the
reactions (A.IIl and A.IV). The above results provide us with the necessary insight
to the system regarding the important bifurcation parameters with respect to which
further computational analysis can be conducted, since relaxation of the assumptions

will result in a nonlinear system that can be analyzed only computationally.

6.5 Discussion

Construction of a prototype model for bacterial glycolysis presented in this chapter
using certain simplifying assumptions and the simplest possible kinetics for the en-
zymes. Analysis of the number of the possible steady states with respect to the values
of the kinetic parameters was performed suggesting that up to ten steady states are
possible. Parent models, which features higher complexity due to elaborate kinetics
of the enzymes and regulatory interactions will have different multiplicity character-
istics which cannot be predicted based on the above analysis. Moreover, these models
can be analyzed only computationally. However, the prototype model and the above
results can serve as a starting point for further analysis of more complicated models.

From the above analysis, it can be concluded multiple steady states may arise in
bacterial glycolysis because of three main stoichiometric and kinetic characteristics
of the system: (i) the dependency of glucose uptake (v;) on PEP concentration (e),
(ii) the energetic state of the cell, as it is expressed by the relative magnitude of the
corresponding kinetic parameters (1, w, A, and £), and (iii) the reactions that result
in the relationships between the three components of the adenylate nucleotides (ATP
(¢3), ADP (¢2), and AMP (¢,)).

The analysis of glycolysis in living organisms can be analyzed by constructing
prototype mathematical models. However, these prototype models are complex and
the postulation of certain assumptions is required so that the complexity of the models
will be reduced without losing the essential characteristics of the system. The method
presented above for bacterial glycolysis can be also applied for the glycolysis in other

organisms, such as yeast and mammalian cells, that have different stoichiometry and
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regulation. The choice of the assumptions have been shown to be an important step
in the analysis of such prototypes.

The bifurcation diagram presented in Figure 4 suggests that overexpression of
the enzyme that catalyzes the reaction 1 beyond a critical value for which V,; >
Vin,a will result in a unique steady state for the system with a value for all of the
concentrations equal to zero. This suggestion implies that in an experiment that such
an overexpression will be achieved it will not be observed since the cells that will
express Vi,1 > Vi, 4 will not be able to survive and only the ones with Vi, < Vi, 4
will survive and be observed. This result though holds under the assumptions made.
Qualitative similar results, i.e. maximum overexpression level that can be achieved,
will be also obtained when the assumptions are removed. Similar information can
obtained by studying the bifurcation diagrams in Figure 8.

The stability of the steady-states is another important problem that has not been
addressed in the present study and is currently under investigation. The number of the
multiple steady-states and the existence of the metabolite pools, 7;, do not allow the
postulation of simple rules for stability analysis. Moreover, the existence of steady
states with zero concentrations, which imply cell death, introduce questions like:
What is the stability of the steady states at which one of the metabolite concentrations
is zero? If they are stable, what is their basin of attraction? How do the regulatory
structures affect their stability?

From a metabolic engineering point of view, the models and their analyses are
more effective when one tries to identify wide parameter-value regions over which
steady-state multiplicities are possible, since this could be an experimentally feasi-
ble scenario. On the other hand, multiplicity phenomena occuring over a narrow
parameter-value range while mathematically interesting, have little chance to be im-
plemented or observed. Given these compléxities, mathematical models and analysis

can provide imperative guidance for rational metabolic engineering.
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6.7 Figures
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Figure 6.1: The glycolysis pathway in bacterial cells. Abbreviations: G6P: glucose
6-phosphate; F6P: fructose 6-phosphate; FdP: fructose 1,6-diphospate; DAHP: di-
hydroxyacetone phosphate; GA3P: glyceraldehyde 3-phosphate; DPG: dipsphoglyc-
erate; 3PG: 3-phosphoglycerate; 2PG: 2-phosphoglycerate; PEP: phosphoenolpyru-
vate; Pyr: pyruvate; ATP: adenosine triphosphate; ADP: adenosine diphosphate;
AMP: adenosine monophosphate; PTS: phosphotransferase system; PGI: phospho-
clucose isomerase; PFK: phosphofructokinase; ALD: aldolase; TPI: triosephosphate
isomerase; GAPD: glyceraldehyde phosphate dehydrogenase; DPGK: diphospho-
glycerate kinase; PGM: phosphoglycerate mutase; ENO: enolase; PYK: pyruvate
kinase; AK: adenylate kinase; ATPase: ATPase; ATS: ATP synthesis; AD: adeny-
late degredation; AS: adenylate synthesis. Bold-face abbreviations indicate enzymes
and reaction steps.
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Figure 6.2: The glycolysis prototype pathway.
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Figure 6.3: Qualitative graph of the dependency of v; (solid line) and v4 (dashed line)
on ¢ for different combiantions of the parameters « and 6.
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Figure 6.4: The multiplicity regions in the a—6 parameter space. The latin numbers
correspond to the scenarios shown in Figure 3. In region I two steady states are
possible, in region III three steady states are possible, and in region V only steady
state is possible.
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Figure 6.5: The dependency of ¢; (convex lines) and ¢, (concave lines) on ¢; for
different values of g, : 0.01 (solid line), 0.1 (dotted line), 1 (dashed lines), 10 (long-
dashed lines), and 100 (dashed-dotted line).
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Figure 6.6: Qualitative diagram of the dependency of f(#3) on ¢3 for different values
of the kinetic parameters v, w, A, and £.
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Figure 6.7: The multiplicity regions in the 6—\ parameter space for g, =1 and £ = 1.
The latin numbers correspond to the scenarios shown in Figure 6. In the parameter-
value regions I, III, V-VI, and VIII, three, seven, nine or ten, and four steady states
possibly exist for the system.
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Figure 6.8: The multiplicity regions in the § — A parameter space for different values
of g, and £. Numbers on the arrows are the values considered for g,; A: £ = 0.01, B:
£=01,C:€=1
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Chapter 7 Analysis and Design of
Metabolic Reaction Networks via

Mixed-Integer Nonlinear Optimization
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7.1 Introduction

The nonlinearity of the kinetics of the enzymes in metabolic pathways introduce
complexities such as multiple steady-states, as was presented in the previous chapter.
Therefore, the analysis and the design of the regulatory structures in a metabolic
reaction network is even more difficult when a nonlinear description of the pathway is
available. An optimization framework for nonlinear descriptions of metabolic systems
is required.. In this chapter, such a framework will be presented.

The nonlinearity of the system and the discrete nature of the decisions concerning
the regulatory structures leads to the formulation of this optimization problem as a
mixed-integer nonlinear programming (MINLP) problem. These types of problems
are very common in chemical engineering, and methods have been developed for
their solution (Floudas, 1995). However, the success of these methods depends on
the formulation of the problem, and this is the challenge in chemical engineering
modeling and optimization. Similarly, the formulation of the optimization of the
regulatory structure as an MINLP problem is a challenging, novel problem since the
models for metabolic systems are not similar to any of the chemical process problems

previously studied as MINLP problems.

7.2 Problem Statement and Formulation

7.2.1 Problem Statement

The general problem we address in this chapter is the same as in the previous chapter
on optimization of regulatory structures:

A mathematical description of a metabolic pathway with a postulated number of
regulatory loops is given. These requlatory loops are classified as either activation
(increase the activity of the regulatory enzyme) or inhibition (decrease the activity of
the regulatory enzyme) loops. The objective is to determine (i) which of the regula-
tory loops should be retained, and (ii) the number, type, and level of manipulation

of amounts of enzymes, in order to optimize a certain function of the outputs of
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the metabolic pathway (e.g., production of primary or secondary metabolites, growth,
selectivity, etc.).

As discussed before, enzymes that catalyze the same reaction in different organ-
isms are not necessarily the same in their catalytic and regulatory properties. More-
over, these enzymes very often follow different mechanisms. Therefore, in considering
the introduction of different regulatory properties in a metabolic pathway, the dif-
ferent mechanisms should be taken into account. Introduction in an organism of a
heterologous enzyme, which might follow a different mechanism, can change the reg-
ulatory structure of the metabolic network. This difference can result in changes in
the performance of the overall pathway.

A regulatory superstructure can be again considered for the nonlinear description
of metabolic pathways. The dimensionality of the large combinatorial problem that
results from this consideration increases significantly if we take into account the ex-
istence of alternative mechanisms for the regulation of the enzymes. The importance
of such considerations is becoming clear if we consider changes in other metabolic
parameters such as enzyme and external substrate levels, since it should be expected
that different regulatory mechanisms will result in different responses to changes in

these parameters.

7.2.2 Mathematical Description of Metabolic Reaction Net-

works

As has been presented in the previous chapters, metabolic networks can be math-
ematically modeled using (log)linear models, S-system models or nonlinear models.
(Log)linear and S-system models have been studied in previous chapters. In this
chapter we will additionally consider nonlinear models. If we consider a metabolic
system consisting of n metabolites and m enzymatically-catalyzed reactions, the mass
balances on the metabolites of the system may be written:

X — f(v(;p), %) (1.)
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where x is the n-dimensional metabolite concentration vector, f is a function deter-
mined by the mass balances, v is the m-dimensional reaction rate vector, and p is the
s-dimensional manipulated parameter vector (e.g., enzyme concentrations). Terms
that account for other processes by which concentrations of metabolites change (such
as the dilution brought about by increases in the biomass volume (Fredrickson, 1976)
and transport through the cell wall envelope) are also included in the mass balance.

The kinetic expressions for the reaction rates, v, depend on the molecular mech-
anism that they follow and are different between different reaction steps and even
for the same reactions in different organisms. In Appendix A.l, some characterestic
rate expressions are presented. One can observe the variety of alternative kinetic
expressions and their nonlinearity.

The optimization problem can also be nonlinear even if the available mathematical
description of the metabolic system is based on the (log)linear model or the S-system
model. Nonlinearity of the problem can arise in the objective function and/or the
constraints. For example, in optimizing the selectivity of the phenylalanine, as con-
sidered as an example in the MILP case, the objective function concerning selectivity
can be described as the nonlinear ratio of the (log)linear rate expressions instead of

the linearized expression used in that previous case.

7.2.3 Analysis Problem

If we consider the existence of a regulatory structure around a metabolic reaction
network, the kinetics of the enzymes depend on the molecular mechanism by which
regulatory metabolites act on the enzymes. In Appendix A.Il some of the common
regulatory mechanisms are considered and the corresponding rate expressions are
presented.

The analysis problem is defined here as before:

Which of the ezistent requlatory loops should be inactivated, and what associated
changes should be made in the manipulated variables (e.g., enzyme expression levels,

environmental conditions, effectors external to the system), in order to optimize the
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performance of the metabolic network?
In the formulation of the MILP problem, modifications in the regulatory structure
were represented by changes in the elements of the regulatory elasticity matrix, £7,
from non-zero values to zero and vice-versa. For nonlinear kinetic models, a differerent

consideration is introduced and is illustrated next.

Illustration

We will consider first the case of the unireactant reaction:
S—P

that is competitively inhibited by the metabolite /. The corresponding rate expression

(Appendix A.Il) can be written as:

5]
K, (1 + %) + [5]

V= Unp

(7.2)

According to the molecular mechanism when the values of the Kg and K; increase
the affinity of the enzyme for the substrate, S, and the inhibitor, I, respectively,
decreases. Therefore, elimination of the inhibitory action of I on the enzyme can be

modeled by assuming;:

Ki - 00
or, equivalently:
K71 —0

and the rate expression (7.2) will be written as:

- 5]
V= Umm (7'3)

Similarly, eliminating of the action of activators can be modeled by assuming that

the dissociation constants corresponding to activators take infinitely high values. For



228

example, in the rate expression for the nonessential activation:

BlA

— 1+04 A [S]

- 4] 4]

1+aK 1+ —
A Ks g——[—‘?* +[S]

1+ 4

QKA

by setting
Ki'=0

the enzyme becomes insensitive to activator, and the corresponding rate expression
is the same as in equation (7.3).

In general, any regulatory loop can be inactivated by considering that the corre-
sponding dissociation constants assume such values that, at the molecular level, the
regulator cannot bind to enzyme, and, in the rate expression, the dependency on the

concentration of the regulator is removed.

7.2.4 Synthesis Problem

The synthesis problem and the concept of the regulatory superstructure that have been
introduced in previous chapters can be also considered in the nonlinear problem. The
synthesis problem is defined again as:

What kind of regulation (i.e., activation or inhibition, by which metabolite and of
what strength) should be assigned to each enzyme in the network, and what associated
changes should be made in the manipulated parameters (e.g., enzyme ezpression levels,
environmental conditions, effectors external to the system), in order to optimize the
performance of the metabolic network?

The modeling of the regulatory superstructure is more complicated for nonlinear
models. As mentioned above, an additional characteristic that should be taken into
account is the possibility of different mechanisms for the same regulatory loop. The

modeling of the regulatory superstructure will be illustrated next.
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THustration

We will consider first that the simple unireactant reaction initially is not subject
to any regulation. The corresponding reaction rate will be described by equation
(7.3). In postulating a regulatory superstructure around this enzyme, we can consider
the existence of two potential inhibitors, I; and I, and two potential activators,
A; and A;. Moreover, for each of the regulators we will consider two alternative
regulatory mechanisms: competitive and noncompetitive inhibition for the inhibitors,
and ordered and random essential activation for the activators. These lead to the

following general rate expression:

1 1
I I, K2 KE
1+ J“N]C' + Al A2
Km Ki,2 L+ Al + {
) | 5 Km \
Ksi1l 1
%*m*m Tl )

where the superscrpipts “NC” and “C” denote the dissociation constant for noncom-

(5]

V= Up

(7.4)

petitive and competitive inhibition, respectively, and the subscripts “R” and “O”
denote random and ordered essential activation, respectively.

The superstructure postulated for this enzyme considers 28 = 256 alternative
regulatory structures if a minimum of zero loops is allowable and a maximum of
eight (i.e., all the regulatory loops active). However, a regulator will not act on
the same enzyme with two different mechanisms. Therefore, 2° = 32 alternative
regulatory structures should be considered. Even in the case that only one or none
loop is allowed, the 9 alternative regulatory structures is a significant number for one
enzyme, four regulators, and two alternative mechanisms for each loop, since, in a
metabolic network, the same considerations for each enzyme and the possibility of
each metabolite in the network to regulate any of the enzymes, by any type of action
and mechanism, leads to a huge number of alternative regulatory structures.

If we consider here the simplest case, that allows only one or no regulatory loop, we

will have to consider accordingly values for the dissociation constants of the regulatory
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mechanisms. In the case that none of the loops is active we have:

1 1 1 1

m = = = O
C C uc uc
Ky K K K5

and

R _ R _ O _ 170 __
KA,I"KA,2’”KA,1_KA,2"O

In the case that we consider that I; is the only regulator, then we have:

1
# 0
and
11 1 —0
KGRI TRE
and

R _ R _ 17O __ 17O __
KA,I_KA,Q—'KA,I_‘AAJ”'O

Similarly, the rest of the regulatory structures can be modeled based on the assump-
tions about the structure and equation (7.4).

The regulatory loops can also be different with respect to the value of the disso-
ciation constants corresponding to each loop. In general, protein engineering of the
binding sites for the regulators will result in values for the dissociation constants that
will be orders of magnitude different between each other. Therefore, the same regula-
tory action, by the same regulator, following the same mechanism, can be considered
with two, or more, different values for the dissociation constants. These considera-
tions can be modeled as alternative regulatory structures, and, thus, the size of the

regulatory superstructure can increase significantly.

7.3 Mathematical Formulation

In order to set up the mathematical formulation for the MINLP problem, the following

index sets and variables are introduced to characterize the regulatory superstructure
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(in general similar to those used in the MILP problem). The metabolites will be
denoted by the index set I = {i}, the reaction rates by the index set J = {j}, the
manipulated parameters by the index set K = {k}, the metabolic outputs by the
index set L = {I}, and the following sets will be defined to establish the connections
of the sets of metabolites with the reaction rates in the network:

I7 = {i, | is € I is a substrate for reaction j, j € J}

IJ = {i, | i, € I is a regulator for reaction j, j € J}

As before the sets M+ = {m*} and M~ = {m~} denote the indices for the
activating and the inhibitory action, respectively, that can be applied to each enzyme
by each metabolite, where as the set M® = {m°} denotes the indices for the catalytic
action of each enzyme on its substrates. With each index m that belongs in the index
set M = M* UM~ UMP, there is a regulatory or catalytic mechanism associated. If
the mathematical description of the metabolic system is a (log)linear or an S-system
model, these sets denote the indices for the activation and the inhibition elasticities,
respectively, as presented previously. Two index sets that are also needed are a set for
the number of parameters associated with each regulatory mechanism and a set for
the number of parameters associated with the substrate binding and transformation

catalyzed by each enzyme:

CMir = {c, | ¢, is parameter for the regulatory mechanism m

by which reaction j is regulated by metabolite i, }

and

C7* = {c, | cs is a parameter for the catalytic mechanism m

by which reaction j is transforming metabolite s}

In the case in which we consider alternative values for the parameters of a certain
regulatory loop and mechanism or of a catalytic mechanism, we could treat the pa-

rameters with different values as independent parameters and we should introduce
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the expanded index set:

Gmiter = {g, | g, is an alternative value for the parameter c,
of the regulatory mechanism m by which reaction j
is regulated by metabolite i, }
and
GM's¢s = {g, | gs is an alternative value for the parameter ¢,

of the catalytic mechanism m by which reaction j

is transforming metabolite i}

The parameters associated with the regulatory mechanisms of the postulated reg-

ulatory superstructure will be denoted as K7, . where m belongs to the index set

JirCrgr
M™ = M+ U M~. The parameters associated with the catalytic mechanism of the
enzyme (substate binding and transformation) will be denoted as K7, . . , where m
belongs to the set M°.

The continuous variables of the nonlinear model are the metabolite concentrations,
x;, the manipulated variables, py, the metabolic outouts, h;, and the reaction rates,
v;.

A binary variable, Ymji,c,g,, i associated with each parameter, K

mjirCrgr ?

of the
regulatory mechanisms. If a regulatory loop, for which metabolite ¢, is regulating
reaction j following mechanism m that is described by ¢, parameters with values g,,
is active in the network, Ymgji,c,q, i set to 1; otherwise it is zero. In order to control
the number of manipulated variables that are allowed to vary, similar to the MILP

problem, a binary variable, dy, is associated with each manipulated variable, py.

7.3.1 Reaction Rates and Metabolic Outputs

The postulation of the regulatory superstructure and the introduction of the pa-

rameters and variables presented above should be incorporated in the mathematical
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description of the reaction rates. If we consider a unireactant reaction j in a metabolic
network we can postulate a regulatory superstructure:
Every metabolite in the metabolic network can be a competitive inhibitor or an
random essential activator of the enzyme catalyzing reaction j and the parameters for
the catalytic and Tequlatory mechanism can have gs and g., respectively, number of

alternative values.

For this regulatory superstructure the rate expression for reaction j can be written

in the following form:

1
(Do + Prdi)Ts, 7

m* jircrgr
1+ Z Z ym+jircrgr

ir€li greGriiTer t

r

x.
5 ir
Z ymoji‘schsKmojiscsgs 1 + Z Z ym'jircrgr K'r + mis

gs€Gytses ireld greGrITer m” jircrgr

(7.5)
The manipulated parameter, p, with a reference value, py o, in this illustration corre-
sponds to the v, parameter and it is proportional to the amount of the enzyme that
catalyzes reaction j. The binary variable, di, associated with it will determine if it
can be changed from the reference value. The term in the parenthesis in the nomina-
tor corresponds to random essential activation, and the term in the parenthesis in the
denominator corresponds to competitive inhibition. It should be mentioned that the
regulatory superstructure, and the binary variables and the parameters associated
with it, will appear only in the rate expressions.

The metabolic outputs can be written in a similar form since they will be, in gen-
eral, functions of the metabolites of the system and of the reaction rates. Therefore,
the mathematical description of the metabolic outputs as a function of the parame-
ters and the variables associated with the regulatory structure does not require any
special formulation.

The bilinear products of continuous and binary variables introduced in equation

(7.5) require, as in the MILP problem, the introduction of new continuous variables
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for each bilinear product:

u"g'ln"jircrgr = Ym=jircrgr Lir ‘v’(m“ H jv 7:7‘7 Cr, gr) (76)
ufn“’jirc'rgr = ymzfrcrgr v(m+7 j? iT'? Cf‘) g‘l‘) (77)
ir
and
U§ = pro+ dipe  Vk (7.8)

and the introduction of the corresponding constraints that will be described later. The

kinetic expression (7.5) can now be written in terms of the new continuous variables:

d 1

uk Oxis
, y T
1 + Z Z um+jircrngm+jirCrgr
irell greGrIirer

), = : (7.9)
KS 1 um”jércrgr
Z ymojiscsgs mOjiscsgs + Z Z KT _ .. + Tis
gsec?jiscs iréli QTEG:-njircr M JirCrgr

However, there is one more bilinear product of continuous and binary variables ap-

pearing in the denominator of the above kinetic expression:

Y
ymojisngsum-jircrgr (710)

We can define two more new continuous variables:

Y
u? _ .
u;nojiscsgs —_ 1+ Z Z T;l JirCrgr (711)

erLJ- greG:"jif‘Cr m—jirCrg‘r

and

Y —_— .. /
umojiscsgs - ymoﬂscsgsumoﬁscsgs (712)

and then the kinetic expression (7.5) can be written in terms of continuous variables



235

only:

1

d
uk Omis
1 Yy T
1+ Z Z Unnt jiycrge Ko jivcegs
ir€l] greGPIiTer

s Y .
Zﬂ mojiscsgsumojiscsgs + T4,
gseGZ”“s Cs

’Uj’:

(7.13)

In general, when regulation acts by modification of the K., . . parameters, bilinear

products of the form (7.10) will appear in the kinetic expressions, and introduction

’
mOjiscsgs

Y

of the continuous variables u and u; o,
J1sCs8s

is required.

7.3.2 The Objective Function

The objective function can be formulated based on the process to be optimized. The
objective function can be any metabolic output or combination of the reaction rates
and the metabolite concentrations. Since the mathematical description of the system
is nonlinear, the objective function will, in general, be a nonlinear function.
However, as discussed before, when the available mathematical description is a
(log)linear or an S-system model, the objective function can be any nonlinear function
of the reaction rates and the metabolites, as estimated using either models. The
mathematical formulation will be the same as for the MILP problem. However,
the algorithmic procedure that will be followed will be the same as for the MINLP

problem. An example of this type of study is the adjustment of the control coefficients,

as discussed earlier.

7.3.3 Constraints

The metabolic optimization problem is also subject to the same type of constraints

as in the MILP case:
(i) Mass balance for each metabolite i

At steady state, the left-hand side of the mass balance equation (7.1) is set to
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zero, and, for each metabolite z;, we have a nonlinear constraint of the form:
f(v(x,u’,u?; K", K®), x, u’, u}; K", K®) = 0 (7.14)

(it) Bounds on metabolites, manipulated variables, rates, metabolic outputs, and
continuous variables

The significance of the postulation of bounds on metabolites, manipulated vari-
ables, rates, and metabolic outputs, has been discussed earlier. The four types of
variables of the MINLP problem should again be constrained within bounds deter-
mined by their physiological ranges for the pathway of interest and by the available

biological knowledge. Therefore, we will have bounds for the metabolite concentra-

tions:

gf <z <2V iel (7.15)
for the manipulated variables:

pi<p<pl keK (7.16)
for the reaction rates:

v <v; <o) jed (7.17)
and the for metabolic outputs:

h<h<h! lelL (7.18)

In general, manipulated variables, reaction rates, and metabolic outputs can take
negative values. However, the metabolite concentrations should always be constrained
to be non-negative.

The new continuous variables that were introduced for the bilinear products of
continuous and binary variables should also be bounded. The proper definition of
bounds for every continuous variable is crucial for the performance of the algorithmic

procedure that will be used to solve the MINLP problem. Examination of equations
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(7.8), (7.7), (7.8), (7.11), and (7.12), that define the continuous variables allows the

definition of the bounds for these variables:

0<u! <zV (7.19)

— Ym”jirergy —

mTEMTj€ S, ir €17, ¢ € OFTIT, g, € G

1
Yy
0= tnsjivers, < 5T (7.20)
m* € M*;jeJ i €I, ¢ € CIT, g, € G I
Pro + PF S Ut < pro+pY (7.21)
ke K

2V

1= u/m"jischs S |1+ Z Z '—T—lr——* (7.22)
ireli greGmiirer m= jirCrgr
mle M>m-eM~;jeJ i € I, ¢, € CM7ir g e GMTiirer

2V

O '<_ uijnojiscsgs S 1 + Z Z —_f“i'”— (723)

ir€li greGmiirer T M jircrgr
mle M%m~e M~;j€ J, 4, € I, ¢, € CPVI g e G sirer

The last two equations for the bounds, (7.22) and (7.23), are specific to the illustration
presented above (equations (7.5)) in which a competitive inhibition was considered.
In general, different mechanisms might require introduction of different continuous
variables and, consequently, different bounds.

(iii) Constraints for the u variables

The variables that were introduced for the bilinear products of continuous and
binary variables are connected with the continuous and binary variables via the fol-

lowing constraints:

: y
a. Variables U= jircrgr

.'L'i’_ - zg(]’ - ym-jircrg,‘) S ufn—jircrgr S m’ir - "Ef:-(]‘ - ym—j'ircrgr) (724)
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m- € M_’] € J, 7:1' € I.,‘z, cr € C1'(n_jiT7 ar & G;n—jircr

L U
zi,ym"jircrgr S ui/n”jira-gr S xirym"jircrgr (725>
m-eM jed i, €], ¢, € CMIT g, € GM Ier

3 y
b. Variables u ... .

1 1 1 1
-l: - ::L_-;L:(l - ym+jir€rgr) S u‘l:l’Jn_jirCrgr -<-— ;: - Eg(l - ym+j7;rCTgT) (726)

mte Mt jed i, €I, ¢, € CIT g, € Gmitrer

1 1
Yy
.’EU ym'*ji,-crgr _<_ um"’jircrgr S 71 ym+jir6rgr (727)
ir ir

m+ € M+’j € ']’ iT € Ig’ cr € C;n+jir’ gr € G:n+jirCT

c. Variables ug

P — P + (P + Pro)di < uf < py — pE + (pF + pro)di (7.28)
ke K

di(pro + 1) < uf < di(pro + PY) (7.29)
ke K

. y
d. Variables Urmoiiscogs

As mentioned before, these variables are specific to the illustration presented in

which competitive inhibition was considered.

QIU
/ — S — y Y /
umcjiscsgs 1 + Z Z T (1 ymOJlsngs) —<— umojircrgr S umojiscsgs
ir€ll greGriirer T M jirCrgr

(7.30)
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mle Mm-e M j€J, i, €, ¢, € CMIT g € G Jirtr

U
€T:
0 S uzT!n-jirCrgr S 1 + Z Z K"' = ymojiscsgs (731)

ir€ll greGMirer M jircrgr
m-eM ;j5€J, i, €Il ¢, € CIT g, € GM Iurer

Y

The bounds for the variables u, o, .

(equation (7.23)) were used in the above

constraints.

(iv) Logical constraints

Introduction of constraints on the binary variables are needed in order to model
the existence or nonexistence of various regulatory loops and the activation or deac-
tivation of different continuously adjustable manipulated variables.

An important logical constraint that almost always should be included is one
that does not allow activation and inhibition of an enzyme by the same metabolite.
Moreover, for each parameter of a postulated regulatory mechanism, only one value
should be considered. In general, each metabolite, when it acts as regulator on an
enzyme, should be considered to do so by only one mechanism. Therefore, the number
of regulatory mechanisms for each regulator should also be constrained to one. These

constraints appear in the formulation for each (j,1,):

Z Z Z ym+jircr9r + Z Z Z ym"jircrgr _<_ 1

mteM+ Crec;nﬂircr greG;nJrjircr m-eM- creCm T direr gTEG:’l“jirCr

V(j,ir, Cs) (7-32)

mteMt;m-eM;j€J, i, €I,
o € {CTITUCIITY, g, € (G U G}
The parameters associated with the catalytic mechanism can take different values

but only one value for each parameter must be allowed. The corresponding constraint

can be formulated for each (m?, 7,1, cs):

Z ym"jiscsgs = 1 (mo? j’ 7:57 Cs) (733)

gs EGTﬁs cs
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mle M%jed isell c € C;”ojis

Two additional constraints will constrain the maximum number of regulatory
actions for each enzyme, | I, .. |, and the maximum number of enzymes that a

metabolite regulates, | J=

.z |, and can be formulated, respectively, as:

z Z Ymjircrgr S} I'}j,maz I (734)

mE{M"’UM‘} trejzr

j€J ¢ € {CrITUCTTITY, g € (G UG}

and as:

Z Zymjircrgr S] J:r:,aa; l (735)

me{M+UM~-}jeJ

ir € I, ¢; € {CTIT UMY, g € {G e U Gt}

Similar to the MILP problem, the simultaneous manipulation of the variables g

will be subject to the following constraint:

Z dk S I Kmar I (736)
ke K

where | Ki4: | is the maximum number of the manipulated variables that can be
modified simultaneously. This constraint arises from practical and physiological lim-
itations, and | K,z | varies from system to system.

Finally, integer cuts should be also introduced here so that we can exclude all the
previous optimal solutions found for the system. Because of the nonlinearity of the
model, the previously found solutions are not necessarily better than the one that
could be identified next. Therefore, these integer cuts can help appreciably in finding
a better solution. In this case, when we solve for the n-th best solution we have to

include n — 1 constraints of the form:

Dvi— Y vu<|Bi|-1 (7.37)

i€B; 1€eNB;

Bi={i|y =1}
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where | B; | is the cardinality of the set B; (i.e. the number of the elements in the
set).

The above mathematical formulation of the problem of optimal regulatory struc-
ture for a metabolic network involves continuous and binary variables and features
nonlinearities in the mathematical description of the kinetic expressions and the
metabolic outputs. Therefore, it is an MINLP formulation, and the algorithmic pro-

cedure that can be followed for its solution will be presented next.

7.4 Algorithmic Procedure

Many problems in chemical process engineering involve integer or discrete variables
in addition to the continuous variables. The mathematical models used to describe
and study these problems are also nonlinear problems. These classes of optimization
problems are Mixed-Integer Nonlinear Programming (MINLP) problems. The diffi-
culties encountered in solving these problems are associated with the combinatorial
domain of the discrete variables and the nonlinearity of the continuous domain.

As the number of integer variables increase, the problem becomes a large combi-
natorial problem and computational problems arise (Nemhauser and Wolsey, 1988).
At the same time, the nonlinear problem is in general nonconvex, which implies the
potential existence of multiple local solutions, while the determination of the global
optimal solution is a computationally hard problem and there is no theoretical devel-
opment that will identify a solution as global.

The numerous significant problems that can be studied within the MINLP frame-
work has led to intensive research. Several algorithms have been proposed, their
convergence properties have been investigated, and they have been successfully used
in many applications. Some of the most commonly used, in chronological order of

development, are the following:

1. Generalized Benders Decomposition, GBD, (Geoffrion, 1972; Paules and Floudas,
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1989; Floudas et al., 1989);

2. Branch and Bound, BB, (Beale, 1977; Gupta, 1980; Ostrovsky et al., 1990;
Borchers and Mitchell, 1991);

3. Outer Approximation, OA, (Duran and Grossmann, 1986);
4. Feasibility Approach, FA, (Mawenngkang and Murtagh, 1986);

5. Outer Approximation with Equality Relaxation, OA/ER, (Kocis and Gross-
mann, 1987);

6. Outer Approximation with Equality Relaxation and Augmented Penalty,
OA/ER/AP, (Viswanathan and Grossmann, 1990);

7. Generalized Cross Decomposition, GCD, (Holmberg, 1990)
8. Generalized Outer Approximation, GOA, (Fletcher and Leyffer, 1994);

In our studies we will apply the Generalized Benders Decomposition, GBD, al-

gorithm which will be presented in the following section.

7.4.1 (Generalized Benders Decomposition, GBD

In this section the GBD algorithm will be presented. In order to simplify the no-
tation, the variables, the functions, and the indices that will be used in this section
will be independent from the previously used notation and will be defined in the text
below.

The general MINLP formulation can be stated as:

mip f (x,y) (7.38)
st. h(x,y) =0
g(x,y) <0
X eXCR"

y €{0,1}
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where x is a vector of n continuous variables (e.g., metabolite concentrations, reaction
rates), and y is a vector of ¢ binary (0-1) variables (e.g., existence of a regulatory loop
(y; = 1) or non-existence (y; = 0); h(x,y)=0 denote the m equality constraints (e.g.,
mass balance equations); g(x,y) < 0 are the p inequality constraints (e.g., bounds
for the metabolite concentrations and the reaction rates, logical constraints); f(x,y)
is the objective function (e.g., growth rate, production rate of a product).

The basic idea in GBD is the generation, at each iteration, of an upper bound and
a lower bound on the sought solution of the MINLP model. The upper bound results
from the primal problem, while the lower bound results from the master problem.
The primal problem corresponds to problem (7.38) with fixed y-variables (i.e. it is
in the x-space only), and its solution provides information about the upper bound
and the Langrange multipliers associated with the equality and the inequality con-
straints. The master problem is derived via nonlinear duality theory, makes use of
the Langange multipliers obtained in the primal problem, and its solution provides
information about the lower bound, as well as the next set of fixed y-variables to
be used subsequently in the primal problem. As the iterations proceed, it is shown
that the sequence of updated upper bounds is non-increasing, the sequence of the
lower bounds is non-decreasing, and that the sequences converge in a finite number

of iterations. The steps followed in the GBD algorithm will be presented next in
detail.

The GBD Algorithm: Feasible NLP Subproblems

The GBD algorithm under the assumption of feasible NLP subproblems can be stated

as follows:

Step 1. Select an initial assignment for the projected binary variables to be used
in the first NLP subproblem, y!. Set the iteration counter & = 1. Initialize the upper
bound Zy = +o0.

Step 2. Solve the y* parameterized NLP subproblem Sggp*

Z(y*) = min C(x,y*)
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subject to

h(x,y*) =0
k
g(x,y) <0
xeX

The solution of problem Sgpp” gives Z(y*),x*,n* and AF. Here, n* are the Lan-
gange multipliers for the constraints of the form g(x,yk), and A* are the Langrange

multipliers for constraints of the form h(x, yk). Update the current upper bound
Zy = min{ Zy, Zy(y")}

If Zy = Zy(y*, set y* = y* and x* = x¥).

Step 3. Formulate the pseudointeger master problem Mggpp”

k .
Zyr = min
M= HBD

subject to
pep > L(x*,y,n*, XF) k=1,...k
£(y)
yey
psp € R
where

L(xF,y,n*, M%) = C(x%,y) + (1F)T - g(x",y) + (AF)T - h(x",y)

and 7" denotes the transpose of the corresponding vectors of the Langrange multipliers.
Step 4. Solve the master problem MgBD*. The solution of this problem gives

Z}f,f and y**+i. If Z}\“J = Zy then stop; the solution is Zy, y*, x*. Otherwise, set

k =k + 1 and return to Step 2.
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The GBD Algorithm: Infeasible NLP Subproblems

If the initial integer guess or a proposal returned from the master problem generates
an infeasible NLP subproblem, the procedure is as follows. Replace the infeasible

NLP problem with the problem:
Z(y*) = min o
subject to
h(x,y*) =0
k
gx,y)<0
x€X
a € R

where « is a scalar variable that will minimize the infeasibilities. Define a new Lan-

grangian function at the optimal solution to this problem
L'(x*,y,n*, M) = C(xb,y) + () - g(x",y) + (AT - h(x",y)
Proceed from Step 3 and include the constraint
L'(xF,y,n", AF) <0

The GBD Algorithm: The Integer Cuts

The form of the integer cuts included in the MINLP master problems to prevent a

binary combination that has already been tried, from being proposed again is:

Zyj"' Z y; <l Q| -1

jeQ JENQ

Qef{y;=1} NQe{y;=0}



246
where | Q | is the cardinality of the set of activated binary variables Q.

These integer cuts are different than the ones introduced as logical constraints.
The integer cuts here are included and updated after each iteration of the algorithm.
The previously introduced integer cuts are included after the algorithm has converged
to an optimal solution and updated for every optimal solution that has been found

in order to prevent a binary combination to be found again as optimal solution.

7.4.2 Initialization Schemes

Nonlinear programming (NLP) problems may involve nonconvexities which imply
difficulties with determining the global optimal solution. Hence the performance of
conventional algorithms for NLP problems is highly dependent on the starting point
provided for the algorithm, and they often fail to determine even a feasible solution.
Recent advances in applied mathematics and computer sciences allowed the develop-
ment of approaches for global optimization for problems that feature certain types
of nonlinearities, such as polynomial functions (Pardalos and Rosen, 1986; Zilinskas,
1986; Torn and Zilinskas, 1987; Floudas et al., 1989; Floudas and Visweswaran, 1990),
and there is no approach for global optimization of MINLP problems.

Metabolic network optimization problems, due to the nonlinearity of the kinetic
models for metabolic kinetics and of the objective functions, cannot be solved with any
of the proposed global optimization approaches. The mixed-integer nonlinear nature
of the problems complicates further the search for optimal solutions. Because of the
combinatorial character of the problem, as shown for the MILP problem, existence of
multiple global optima is also possible. However, clever initialization schemes for the
MINLP algorithm can significantly improve the performance of the NLP solver and
aid in determining a large number of local optima.

For the metabolic reaction networks, as shown before, there are two alternative
modeling frameworks that approximate the nonlinear models very accurately: the
(log)linear model and the S-system representation. Therefore, having a nonlinear

model for a metabolic network, we could construct the corresponding (log)linear and
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S-system models. These models could be studied using the MILP framework and the
suggested solutions could be used as starting points for the MINLP algorithm.
Consider that, in a given reaction network, the enzyme levels are the manipulated
variables. Every reaction rate is proportional to enzyme levels and depends on the

set of metabolites, x, and the binary variables for the regulatory structure, y":

vj = Um,j(d;)o(x,¥") (7.39)

where vp, ; (y;’l) is the parameter corresponding to the enzyme level, and d; is the
binary variable which determines if changes in that enzyme level are allowed (d; = 1)
or not (d; = 0). In order to ensure that the initial point will be a feasible point the
following procedure is proposed:

Step 1. Construct the approximate model around the reference steady state
and solve the MILP problem. The solution will provide a set of optimal regula-
tory structures, y7, and the corresponding manipulated variables that are allowed
to be changed, d, where the subscript L indicates that the vector is a solution of
the MILP problem. A set of continuous variables will also correspond to each op-
timal regulatory structure. These continuous variables will include the metabolite
concentrations, xy, and the reaction rates, vr.

Step 2. From the first regulatory structure in the solution set and for every
reaction, v, in the nonlinear model, use as initial values for metabolite concentrations,

reaction rates, and binary variables the corresponding values from the MILP solution:

1 _ 1 _ T 1 _ ,,7
XNL = XL, VN = VL, (YNL) =YL

Calculate the initial values of the manipulated variables that have been suggested

from the MILP solution to change from Equation (7.39):

vL

Um,j = —__—_—(}S(XL,yZ) (740)

For every manipulated variable that has not been proposed to change in the solution(s)
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to the MILP problem, keep it fixed. This will probably result in infeasibilities for the
mass balances.

Step 3. Solve the NLP problem minimizing the infeasibilities of the mass balances,
similar to the infeasible NLP subproblems in the GBD algorithm. If solution results
in a feasible NLP; i.e., the mass balances are exactly satisfied, then solve the MINLP
using the GBD algorithm presented above. If the solution results in an infeasible
NLP; i.e., the infeasibilities have been minimized but the mass balances are not
exactly satisfied, discard the suggested MILP solution and proceed to the next one.

The above initialization scheme can significantly enhance the search for local op-
tima in the MINLP problem. The possibility of exploiting both the (log)linear and the
S-system modeling approaches can, in general, provide different suggestions, increases

the number of initial binary variable combinations and continuous variables.

7.5 Computational Study

The synthesis problem will be illustrated using again the aromatic amino acid biosyn-
thetic pathway in bacteria. The pathway has eight regulatory loops, all of which are
feedback inhibitory loops. The nonlinear model is presented in the Appendix A.IIL
The question addressed was the same as in the first of the MILP problems:
Which of the existing loops should be inactivated and what should be the associated
changes in the enzyme expression levels to mazrimize the phenylalanine selectivity ¢
The upper bounds considered for the concentrations of the intermediate metabolite
DAHP, CHR, and PHP were 1000 mM, whereas the concentrations of the amino
acids PHE, TYR, and TRP, were left unbounded. The specific growth rate, u, was
constrained within +£10% its reference value. This constraint allows solutions that
will not have a strong effect on the rest of the metabolic activities. The levels of the
six enzymes in the pathway were constrained between their reference value and twice
the level of the reference value since great overexpression is practically feasible. The
number of the simultaneously overexpressed enzymes was constrained to four.

The MINLP optimization problem was solved by using the GBD algorithm and
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initial points proposed by the MILP problem. The regulatory structure of the best
solution is presented in Figure 1 (case a) and the corresponding value of the pheny-
lalanine selectivity is

Sphe.opt, = 0.903621

which is 111% higher than the value for the reference state

Spheo = 0.427335

This solution features five regulatory loops and three overexpressed enzymes. The
metabolite concentration levels and the overexpressed enzyme levels associated with
the solution are presented in Table I. The specific growth rate was decreased by 8.94%,
and none of the constrained intermediates reached the allowable upper bound.

A second solution with significantly improved selectivity

Sphe,opt2 = 0.897813

was also found. This value for the selectivity is 110% higher than the value for the
reference state. The solution, presented in Figure 1 (case b) features four regulatory
loops and four overexpressed enzymes. The metabolite concentration levels and the
overexpressed enzyme levels associated with the solution are presented in Table I,
and the corresponding specific growth rate is again decreased by 8.94%. Although
the two solutions are very similar with respect to the phenylalanine selectivity and
the effect on the specific growth rate, the first solution is more attractive since it
suggests the minimum number of the regulatory loops that should be inactivated and
the minimum number of the enzymes that should be overexpressed.

More solutions with similarly high improvements of the objective function were
also found when the constraints for the specific growth rate and the concentration of
DAHP were relaxed. The solutions found with a significant decrease of the specific
growth rate contained fewer regulatory loops suggesting that the multiple regulatory

loops present in the original system minimize the effects of the perturbations in the
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pathway on the rest of the cellular metabolism.

The solutions found with significantly high DAHP concentration suggested in-
activation of the feedback inhibitory loop from DAHP on the first reaction that is
responsible for its formation. This pattern is a strong indication that the functionality

of this loop is the regulation of the concentration levels of DAHP.

7.6 Linear vs. Nonlinear Framework

The solutions found using the nonlinear framework are different from the solutions
proposed from the linear framework (Problem 1 in the MILP chapter). However, the
regulatory structures in cases ¢ and f from the linear framework (Problem 1) have
many common characteristics with the MINLP solution and the enzymes that cat-
alyze reaction steps 3 and 4 should be overexpressed, according to both frameworks.
Moreover, the relative overexpression levels of the two enzymes are the same for the
two frameworks; i.e., the enzyme that catalyze reaction step 4 should be overexpressed
to the maximum allowable level whereas the enzyme that catalyzes reaction step 3
should be overexpressed only up to 20%, according to the nonlinear model, and up
to 40%, according to the linear model.

The MINLP problem is computationally more complex than the MILP one. How-
ever, the solutions from the nonlinear model are more reliable since the description
of the system is based on the molecular mechanisms of enzyme catalysis, and, al-
though it is still an approximation of the physical system, it is a more complete, more
globally accurate one. The coupling of the frameworks by using the linear frame-
work for obtaining initial points for the nonlinear framework improves significantly

the performance of the MINLP algorithmic procedure.
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APPENDIX A1

The number of the reactants in a metabolic reaction varies from one to three,
though most of the them are bireactant; i.e., the reaction involves two metabolites as
substrates (reactants). Rate expressions are given here for some of the most common

cases (Segel, 1975):

1. Unireactant Enzymes

These enzymes catalyze the reaction:
S—P

The three most common rate expressions used, depending on the molecular

mechanism, are:

(a) Michaelis-Menten kinetics:

(b) Henri-Michaelis-Menten kinetics:

T

(c) Hill kinetics
51"

UK+ ST

2. Bireactant Enzymes

These enzymes catalyze the reaction:

A+B—->P+Q
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The three most common rate expressions used, depending on the molecular

mechanism, are:

(a) Random Bireactant System:

[A](B]
aKsKp + aKs[B] + aKg[A] + [A][B]

V= Up,

(b) Ordered Bireactant System:

[Al(B]
KaKp + KplA] + [A][B]

V= Un

(c) Ordered Bi Bi System (Theorell-Chance):

ww@ﬂﬂ*gﬂ@>

Keq

V=

II

where

0 KnglP] | 11Ky (0]
K, Keg

Ui Kmg [A][P ] r K, [Bl[Q] +Uf[P][Q]
Kquza qu Keq

0 = 0KiwKng + 0 KnglAl + 0 K, [B] +

+u,[A][B] +

3. Terreactant Enzymes These enzymes catalyze the reaction:

A+B+C—-P+Q+R

The most common rate expression used is of the form:

[A][B][C]
KmaBl[Cl + Kmp [Cl[A] + Kmc[A][B] + [A][B][C]

V= Up,
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APPENDIX A.I1

The kinetic expressions of enzymes that are subject to regulation depend on the
molecular mechanism of the reaction and of the action of the regulator. The regulators
are characterized, depending on the effect they have on the reaction rate, as inhibitors,
if their concentration increase decreases the reaction rate, or as activators, if their
concentration increase increases the reaction rate. The rate expression of some of the

most common regulatory systems will be presented here (Segel, 1975):

1. Unireactant enzymes

As mentioned before, these enzymes catalyze the reaction

S— P

and the most common types of regulation are:

(a) Competitive Inhibition:

where [ is the inhibitor.

(b) Noncompetitive Inhibition:

(5]

K, (1+ ) + 151 (1+ 1)

V= Up

where [ is the inhibitor.

(c) Uncompetitive Inhibition:

where I is the inhibitor.
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(d) Nonessential Activation:

A
_ 1+ 8 A [S]
o= [4] [4]
1+5—I€:— 1+‘E"
AT K ——ﬁ— + [9]
° 1+ 4
aKA

where A is the activator.

(e) Nonessential Activation in the presence of an inhibitor:

QP N
K, K; + (8] K;
1+ —~———-——-———-{I] < 1+ ——-'—--————-[I]
) I

where the binding of the activator, A, reverses the inhibitory action of a

pure noncompetitive inhibitor, I.
(f) Essential Activation:

In essential activation, the activator site must be filled before any catalytic
activity is possible. Depending on the order of binding the expressions for

the kinetic rates have any of the following forms:

i. Ordered: a molecule of the activator A binds randomly before the

substrate S:

1S
Ks (1 + {%‘]*) + 5]

ii. Ordered: Substrate S binds first, then a molecule of the activator A

V=1

binds randomly:
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[A] [S]

K, K
(K + [5})[—5— +[5]

V= U,

iii. Random binding of the substrate S and the activator A:

T (KA[ﬁ] [Al) (Ks[i] [51)

(g) Competitive Inhibition by two different nonexclusive inhibitors:

. )
v*mK4uﬁQ+%¥%)uﬂ

where I and X are the two competitive inhibitors.

(h) Inhibition by one competitive and one noncompetitive inhibitor:

o= [S]
Ks(1+%+%)+[5}(1+$%)

where I is the competive, and X is the noncompetitive, with respect to S,

inhibitor.

In an analogous way similar rate expressions can be derived for any rate expression.
There are two main ways a regulator can affect a reaction rate: either by modification

of the dissociation constants, i.e. Kg’s, or by modification of the catalytic activities,

l.e. vy,’s.
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7.8 Appendices

APPENDIX A.III

The rate expressions for the aromatic amino acid pathway are taken from Schlosser
and Bailey (1990). The parameter values used for the dissociation constants are the
same as in Schlosser and Bailey (1990) where the references for the estimation of these
parameters can be found. The values for the v; mq, have been adjusted to give steady-
state values similar to those found in bacterial cells for [G6P] = 0.8 mM, [PEP] =
0.1 mM, [ATP] = 2.5 mM, [ADP] = 0.4271 mM, and [AMP] = 0.0729 mM. The

rate expressions for the 15 reactions in the pathway are:

[G6P)PEP] (60 +??>HE]) (406 ngYR > (1512?1%1219 )
(0.1 + [G6P)) [o.ooa (1 [DAHP ]> [PE‘P}]

U1 = Um,1

0.02

[DAH P)[PEP|[ATP]
(2+ [DAHP}) (0.00867 + [PEP]) (0.9281 + [ATP))

V2 = Ump2

B [CHR)

U3 = Um,3 (2+ [CHR]) (1 + [PHE]/50) (1 + [TY R}/40)
~ [PHP)

U= I T PHP)) (1 + [PHE]/50)
~ [PHP)

Vs = vm,Sm

- (G6P)[CHR][ATP]

“m8 11269 + [G6P))(2 + [CHP))(0.9821 + [ATP])(1 + [T RP]/16)

vy = 54p, wvg =131y, v =176u

vio = u[DAHP], vy, = pu[CHR], wva = pu[PHP]
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vz = p[PHE), w4 =p[TYR], w5 =p[TRP)], where:

VT = (710, 22, 474, 64, 10.5, 28]

The growth function, g, used is:
0014 Y[PHE][TYR|[TRP|[PEP)]
=Pt 025 + Y)I8 + [PHE) (13 + [TRY))(5 + [TRPI)(0.005923 + [PEPT)

where

v —  [ATP]+05[ADP]
~ [ATP]+ [ADP| +[AMP]

The mass balance equations for each of the metabolites in the aromatic amino

acid pathway is given by

DAHP: 0= vy —vy— vy
CHR: 0= wy—v3—vs— U1
PHP: 0= wv3—vuq4— Vs — V19
PHE: 0= vy —vg— i3
TYR: 0= vs—vg— s
TRP: 0= wvg—v7— Uss

For the stoichiometric matrix we have

1-10 0 0 0 0 0 0 -1 0 0 0 0 0]
o1 -10 0 -10 0 0 010 0 0 0
y_ |00 1 -1-10 0 0 0 0 0 -10 00
o0 0 1 0 0 0 0 -10 0 0 -1 0 0
o0 0 0 1 0 0 -10 0 0 0 0 -1 0
00 0 0 0 1 -1 0 0 0 0 0 0 0 —1]

The stable steady-state at which the linear model was constructed is:

xI = [3.311539, 24.06868, 0.6025115, 262.6012, 318.8831, 81.84384]
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and the values for the rates at these values are:

vl = 9.340355 9.310362 7.843243 3.862561 3.975329
1.200839 0.474409 1.150880 1.546221 0.029994
0.266281 0.005353 2.316340 2.824449 0.726430]
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1 case a I case b |
Z; Vm,i Z; Vm,i
853.316 710.0 13.3259 | 1276.16
0.590432 44.0 | 0.200516 | 43.2071
0.262508 | 574.608 || 0.214807 948.0
3150.81 128.0 2653.19 128.0
141.903 10.5 101.082 10.5
27.9298 28.0 35.9307 28.0

Sy O R W DN |

Table 7.1: The metabolite concentration levels and the enzyme levels for the two op-
timal solutions of the MINLP problem. The subscript ¢ denotes the corresponding re-
action steps for the V;,, variables, and for the metabolite concentrations: z; =[DAHP],
1, =[CHR}, z3 =[PHP], z, =[PHE], z5 =[TYR], ¢ =[TRP].
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7.9 Figures
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Figure 7.1: The two optimal solutions of the MINLP problem. Solid arrows indicate
enzyme overexpression for the respective reaction, dotted arrows indicate reactions
with enzyme levels at the reference state, and dashed arrows indicate inhibitory loops.
In solution b the reaction numbering has been omitted for clarity.
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Chapter 8 Epilogue
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8.1 Future Prospects

Metabolism is an extremely complicated, multicomponent system. In addition to
numerous different chemical reactions and intermolecular interactions, many coupled
through common reactants, metabolism is complicated by an overlay of multiple con-
trol systems operating at both genetic and protein levels. There is an intercalated
hierarchy of increasingly sophisticated mathematical tools and of increasingly detailed
experimental bases for analyzing and manipulating metabolism. Three new develop-
ments in mathematical methods and applications were presented in this thesis: a
framework for estimating intracellular metabolic reaction rates, a (log)linear kinetic
model for approximating responses of metabolism to changes in their parameters,
and an optimization framework for the analysis and design of regulatory structures
in metabolic reaction networks. As with every novel method, these developments
presented introduce numerous new topics for further investigation.

Experimental data used in metabolic flux analysis are subject to errors that
propagate in the estimation of the reaction rates. Moreover, advanced experimen-
tal techniques using isotopically labelled substrates (such as '*C-labelled substrates
with products analyzed by NMR) are available for reducing the number of the un-
known intracellular reaction rates. Further development of the metabolic flux analysis
framework should include an error analysis and should consider the formulation of
constraints for the additional experimental information. The construction of growth
and product formation models for bioprocess control and optimization based on the
results of this type of analysis should also be investigated. These models could be
used for determining process operations to achieve an optimal pattern of intracellular
metabolic reaction rates.

Detailed and reliable nonlinear mathematical models of single cells have been
developed for various organisms. However, because of their size and complexity, they
cannot be used for bioprocess control and optimization. The (log)linear modeling
framework could be used in order to transform these models into simpler mathematical

structures. Detailed analysis of the agreement between the nonlinear models and their
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(log)linear representations can be performed in order to examine the performance
of the (log)linear models. If the (log)linear representations are found to be good
approximations of the nonlinear models, they would be excellent tools for studying
the effects of genetic manipulations on bioprocess performance, since the information
about molecular level regulatory interactions will be explicitly preserved in the values
of the corresponding elasticities.

One of the most important problems in constructing any kind of kinetic models of
metabolism is the uncertainty of the kinetic parameters. The experimental methods
used to estimate their values is already subject to error. Moreover, the intracellular
conditions will never be exactly known and will always be subject to fluctuations.
Therefore, the optimization framework should be further developed in order to take
into account these uncertainties for both (log)linear and nonlinear kinetic models.
While the methods presented here provide with good qualitative guidance, consid-
eration of the uncertainties could further limit the presently proposed approaches,
since strategies that are optimal in the presence of uncertainties will be the primary
candidates for experimental implementation.

One of the important issues that this thesis has not addressed is the stability of
the metabolic steady states. Simulation studies of various metabolic networks has
suggested that their steady-state stability characteristics is strongly influenced by
the regulatory structures. Moreover, in metabolic networks with complex regulatory
structures, I have observed that some of the regulatory loops regulate the dynamic
characteristics of the network whereas some others have no effect on the dynam-
ics of the network but regulate the level of various metabolic parameters, such as
steady-state metabolite concentrations and reaction rates. The development of the
(log)linear model allows the application of linear robust control methods for the anal-
ysis of the regulatory structures with respect to their effect on the stability of the
metabolic network. Prior investigations have shown that tools such as p-analysis can
be successfully applied in metabolic systems.

Biology and biotechnology can only profit from integration of mathematical meth-

ods to advanced tools for experimental analysis. This is emphasized when one consid-
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ers the methods presented in this thesis and the above suggestions for their develop-
ment and applications. What is needed in order for mathematical approaches to the
increasingly complex biotechnological problems to be more successful and instructive,
is wise and imaginative perception and formulation of critical questions and problems,
taking into account the highest level of mathematical and computational tools which

exist (or can be developed).



