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Abstract 

The flow around a sphere,  moving under the influence of 

gravity in a long cylinder filled with a viscous liquid, i s  investigated, 

for the case where the inside diameter of the tube i s  only slightly 

l a rge r  than the diameter of the sphere. 

For  low Reynolds numbers,  an extension of the Christopher- 

son and Dowson (1 ) theory i s  obtained in the form of a f i rs t  order  

Reynolds number correction. It i s  shown that the fluid exerts  a 

f i rs t  order  inert ial  force on the ball ,  tending to increase the eccen- 

tricity ratio. The sideways motion of the ball due to this force has 

been calculated approximately. 

For very high Reynolds numbers,  a potential flow solution 

has been found in the form of a Fourier  ser ies .  This solution also 

yields a force tending to increase the eccentricity ratio. 

Experiments have been done for intermediate Reynolds 

numbers. The motion of the ball  appears to be unstable when the 

Reynolds number exceeds a cr i t ical  value (about 10). 
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I. Lntroduc tion 

In 1959, Christopherson and Dowson (1) considered the flow 

around a heavy sphere, descending under the influence of gravity in 

a vertical tube filled with a viscous fluid, the diameter of which i s  

only slightly bigger than the sphere diameter.  It was shown that the 

approximate flow equations for Re = 0 and the ratio of tube diameter 

to ball diameter going to one, resul t  in  no force perpendicular to the 

motion, independent of the eccentricity ratio a t  which the ball  moves. 

However, there i s  one eccentricity ratio (about 98%) for which the 

ra te  of energy dissipation i s  maximum, and experiments performed 

by Christopherson and Dowson indicate that the sphere will always 

take up that eccentricity ratio,  regardless of the initial conditions. 

The work presented in this thesis i s  an effort to obtain a 

better understanding of the flow described above, for non-zero Reyn- 

olds numbers,  

Experiments were  done (see Chapter V )  with a light sphere, 

a ping-pong ball. If the Reynolds number that characterizes the 

motion exceeds a certain cr i t ical  value, the motion of the sphere 

appears to be unstable: the ball  bounces against the tube wall during 

the upward motion and obtains a rotational speed around the vertical 

axis. 

In o rder  to get an idea about the character  of the flow and 

p ressure  field in the region between the cylinder wall and the sphere 

a t  non-zero Reynolds number, a perturbation of the flow equations in 

Re::: was performed. This f i r s t  order  inertial  correction yields a 

force that will increase the eccentricity, but doesn' t s e em quite l a rge  



enough to account for the Christopherson and Dowson effect. There 

also is a force opposing horizontal motion of the ball, which in the 

Stokes limit tends to infinity when the eccentricity ratio tends to one. 

This force will make the ball stick close to the wall, once it  gets 

there, 

Also, a potential flow solution in the region between the ball 

and the cylinder wall was found, a s  an approximation of the flow at  

very high Reynolds number. This approximation also results in a 

horizontal force, tending to increase the eccentricity ratio. 

All the calculations were done with the assumption of steady 

flow, 



11. Low Reynolds Number Expansion - 

For the following analysis it  is  assumed that the sphere moves 

vertically in the cylinder, a t  a certain constant eccentricity ratio. 

For that steady state condition the velocity and pressure  fields can 

be evaluated with the eccentricity ratio as  a parameter. The flow 

region under consideration will be the region where the distance be- 

tween cylinder and sphere i s  of the order s f  the difference in the 

respective diameters. 

Let the radius s f  the sphere be a, the radius of the cylinder 

d = a + c and the eccentricity ratio e/c (see fig. 1). 00' 00 

Cyl inder  

FIG. i OEFBNlTlON OF THE COORDINATE SYSTEM 



Essentially, a cylindrical polar coordinate sys tem will be 

used. However, for convenience of integration this coordinate s ys- 

1 a 
t em will sometimes be slightly modified, so that - - 

a 88 
measures  

the variance with the vert ical  coordinate, instead of - a The gap az ' 

width c, expressed in cylindrical polar s will be 

7 c = c o o +  e c o s p t  a(1 - l - z  /a ) 

For  c to be of the o rder  of c we must  require 00' 

so that to leading order  in c /a 00 

Furthermore,  we define 

cO = coo + e c s s  p 

- 
and = t e2/2a 

The radial coordinate R will be measured f rom the wall. In the 

modified coordinate system, the expression for  c will read: 

= '-00 
+ e cos p + a( l -cos  8) 

and 8 - O [(cO0/a) 1 / 2  I 

clearly sin 8 = z/a 



Coo to leading o rder  in - a 

As i s  done by Christopherson and Dowson, the axis sys tem 

will be considered to move upward with the sphere with velocity U. 

The sphere also has an angular velocity G a s  i s  shown in figure 1. 

The boundary conditions on the velocity a r e  

v = - U a t R = O  z (a  

v = 52a cos q a t  R = c 
z (b ) 

a Since v in the gap region must  be of order  U(-) in order  to allow 
Z 

--, =oo 
the flux -unaL to pass  through an a r ea  of 2nacO0, we can rewri te  

Coo to leading order  in - . a 

Now some order  of magnitude analysis can be done to obtain 

the right approximation of the flow equations. As we saw, v i s  of 
Z 

a order  U - Then, f rom the continuity equation, 

a 1 with - - - a and - - 1 

aR "00 a z 



so that v R N  0 

From the momentum equation in the R direction, one can show in 

the usual way that p does not depend on R to leading o rder  in - . 
a 

When the inert ial  te rms in the equations a r e  smal l  (the condition 

for which will be discussed la ter ) ,  - 4 must balance the larges t  
P a2 a2v 

Z viscous t e rm  in the z-momentum equation, v- so that 
8~~ ' 

a e 
F r o m  the go-momentum equation, with - - - one then finds in the 

ap Coo 
same way: 

c 
To leading o rder  in 00 , the v equation then reads a z 

2 3/2 
The order  of magnitude of the inertial  t e rms  i s  P" a 'm and 

Ua "00 the viscous t e rms  have an order  of magnitude of % 
coo3 

The condition that the inertial  te rms be smal l  compared to the viscous 

t e rm  i s  thus expressed by 

One can assume a regular perturbation expansion in Re*: 

fnc = fnc t fncl + ..... 
0 (1 0) 

where fnc stands for any of the velocity components, the p ressure ,  
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o r  the quantities Q and U, and fnc - 0 [fnco x Re*].  The zero 
th 

1 

order equations then reduce to the Stokes-flow equations, with a solu- 

tion for the p ressure  field a s  obtained by Chris topherson and Dowson. 

In our notation: 

+ o b y n  acosrp 12pf0 - = 0 - -  a~ 
C 

2 
C 

3 (11) 

C 

where fo( rp )  = j v  dR 
zo 

(12) 
0 

th We will proceed to find the forms of the zero order velocity 

components v , v and v . From the z-momentum equation and 
=o yo Ro 

(7a) and (7b) one obtains: 

Integration of (1 1 ) g' ive s 

with 

and 

From symmetry arguments one can show that in this linear case 

i3pO/arp = 0 a t  a = 0, so that the integration constant 



Then v follows from 
Vo 

2 
- - -  - P a  vqo (18) and (7e) 

8R2 a acp 
bfo ag3 

v'p 0 6g3 afo)(R2- R c )  
-3Q0 sincpg - - - -- 

2 - a  acp a a 9  

a n d v  from 
Ro 

According to Christopherson and Dowson, one can express 

f and 52 in t e rms  of the eccentricity e and the difference in weight 0 0 

of the fluid displaced and the sphere, m'g. One obtains: 

and 
em' g c 00 

1 /2 
a0 = a 2 

3 a r l L a  

with 
3/2 

Co + 
eci0/2cosq 

E(cp) = - Tr 
I1 

and 

c s s  (p 2 
I, = s" 

-r ( l + Z  coscp) 
1/2 dV 

"00 



- 9- 

Then, one can express  the Stokes approximation of the velocity corn- 

ponents in the following way: 

with the functions kl , 2, 
l 1 , 2  

and h defined by (13) and (18) through 
1 , 2  

(23). 

We a r e  now ready to find the f i r s t  o rde r  iner t ia l  cor rec t ions  

fnc (10); those for the p r e s s u r e  and the z-velocity component follow 1 

f rom:  - 

The boundary conditions on v a r e :  
1 

For  (23a) to be  t rue,  one must  requi re  that 

C 

2 << Re* << 1 
a 

After substitution of (24), (25), (26), equation (27) r eads  

with qZ(z,  p) = 
1 1  

ak 1 
h k + k l X  



Integrating (29) twice over R, and using (28), v can be written a s  
1 

follows 

Defining 

j- v dR = f l ( cp )  z (34) 
0 1 

4'1 one can obtain an expression for - a~ similar  to the expression for 

+o - a~ , (11): 

To facilitate the integration of this expression, the functions 

z qi(z, cp ) can be written in t e rms  of Q. (cp ) - 
c 
k 

with 
2 2 

e (m'g)  C O O  2 
Ql ( 'p ) '  2 2 6 2  c o s ' p  

% P a  I1 



Then (35) can be written a s  

Integration of this equation however will give an integration constant 

which may depend on q ,  fnl (p). This function can be determined by 

'Tr evaluating the p r e s su re  on the top and bottom of the sphere (9 = t z), - 
and requiring that the p r e s su re  there be independent of p. 

In o rder  to accomplish that i t  i s  necessary to use  the modified 

coordinate system (with a0 instead of z )  and the Sornrnerfeld t rans-  

formation, a s  was done by Christopherson and Dowson to find the 

zeroth order  p r e s su re  a t  9 = - t a/2. In the modified coordinate sys-  

tem, expression (42) reads 

For  the Sornmerfeld transformation we define 

To leading order  in - one obtains a 



The Sommerfeld transformation defines a new angle y 

One can use the expressions obtained with this transformation 

a l l  the way to y = - t n (corresponding to 8 = - t n/Z) since, to leading - I- 

coo l / Z  
order in c OO/a, I y  I assumes the value of IT for every / e  I > 0[(-) 1. a 

This comes down to neglecting changes in the p ressure  field outside 
coo 112 

- 

the region / 0 I - 0 [ (-) ] compared to changes in this region. a 

Then, from (46) one obtains 

2 1/2 de (1-n ) - = 
dy l tncosy 

and 

2 1/2 (1-n ) siny sine = l tncosy 

Equation (43) transforms into 

6 p L ? 1 ~ ~ ~ a  (l tncosy ) 12pfl ( l tncosy)  2 - - -  * 2 3/2 - 2 2 5/2 
t 

(1-n ) a (1-n ) 

- 1 Qlasiny t -  Q2siny 16 Q3siny ( l tncosy ) 
( l tncosy 7 2 35a 2 2 

t -  1 
1 -n (1-n ) 

(49 

which can be integrated to give 
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2 2 

6p,4 cosrp(yt siny) 3pf (4yt8nsinyt2n ytn  sin2y) 
- 1 

P1 - 2 3 2  2 2 5/2 T 
- 

a (1-n ) 

l tncos  Q2cosy 
ln(*+f 2 i- 

1-n 

The f i rs t  two terms of this expression a r e  odd in y, all  the 

other terms a r e  even. Hence, to compute the pressure  difference 

(PI ly =- a - (pl ) y = n 9  
only the f i rs t  two terms a r e  of importance, and 

the same applies to the torque resulting from the viscous shear s t ress .  

Using those two terms then, one can proceed to compute the values of 

Ql and U1, similar to the way in which ~ h r i s t o ~ h e r s o n  and Dowson 

computed Go and Uo. This determines f l  in such a way that the con- 

tribution to the pressure  from the f irst  two terms is  independent of 

q at y = + r e  - 

Therefore, fn ( ) i s  determined by the condition that the , V  
par t  of pl even in y, be also independent of q at y = t r. Hence - 

Defining the part  of p that i s  even in y as  P1, we then obtain 1 

=:{A 2 n l n  l tncosy 1 -n ) t+h2-+-t  cos 4- 1 
l -n 

Clearly, only this par t  of the pressure  will contribute to any force 

perpendicular to the velocity U. Such a force will be expressed by  



and will be destabilizing (increasing the eccentricity rat io)  i f  F > 0. 

Now 

and the integration l imits  on y a r e  - n  and n. 

It i s  not possible to perform the y integration analytically, 

but to get an idea about the magnitude of the force, we can transform 

expression (52) back to the z-variable and integrate over z in the 

1 /2 region of interest ,  say for z from - (cO0a) to (c00a)1/2. The Sorn- 

merfeld transformation formula (46) can be written a s  

"00 Furthermore,  to leading order  in - a ' 

Then 

I tncosy  - a - - 
1 -n 2c 

Coo 
cos t 1  

ncosyt1-t- O(-) 
--4 = 3 a 



and 

n n 2 2-n 
c o s y t l t  - (cos2y-1) = 2 cos y t cosy t - 4 2 

1 2 2  - -  Coo - 2n (n cos yt2ncosytltO(-)) a 

s o  that 

n cosyt  1+ -q (cos2y-1) 
1 a 

2 
- 

2 2 
- - -  

2n c2 
(1-n ) 

Expression (52) then t ransforms into 

to leading o r d e r  in c OO/a, and 

Still,  the q integration cannot be done analytically, except 

asymptotically, for e/cO0 << 1. We will proceed to  evaluate F. for 
1 

that case ,  to leading o r d e r  in e/c 
0 0' 

Straightforward manipulation shows that 

cos 40 2 
1, = f e 1/2 d q  = 7f 4- o [ e / c O 0 l  

- n  ( 1 +  -cosq)  
Coo 



When one computes F. to leading order in e/cO0. clearly only the 
1 

las t  two te rms  in the right-hand side of (59) will contribute. Pe r -  

forming the <p integration, one finds 

or: 

t 
2 1 4 G  a 
35 (T)'/2 00 arctg 

to leading order in e/cO0. 

One can conclude that for small e/co0 the force due to the 

f i rs t  order inertial effects will always tend to increase the eccen- 

tricity ratio. 



For e/cO0 of order  one, the integration has been performed 

numerically, and the results  a r e  listed below. 

2 3 
p(m'g) C O O  - 

or :  F. = 
1 2 2 4 F 

971 y a 

For  a = 2, coo = 0. 1: 



- 
The computed values of F a r e  plotted in graph 1. 

One can express the order of magnitude of F in terms of 

p, p, U, coo and a. The balance of buoyancy and pressure  forces 

requires that 

From expression (33 )  for vZ one can also obtain the f irst  
1 

order inertial correction of the viscous shear force on the sphere, 

and its component Fv perpendicular to the velocity U. Only the par t  

of avz / a ~  that i s  odd in z will contribute to Fv and after differen- 
1 

tiating (33 )  with respect to R and substituting (36) ,  (37 )  and (38 )  Fv 



will be expressed a s  

(70) 

F v  will tend to increase 1 e I i f  positive. However, i t  can readily be 

shown that 

so  that to leading order  in c /a the sign of the p r e s su re  force Fi 00 

determines the question of whether the f i rs t  order  inert ial  forces 

ac t  to increase o r  to decrease  / e 1. 



111. Approximate Sideways Motion of the Ball Under Influence of the 

Inertial  Force 

If a t  any time during the vertical motion the ball takes up an 

eccentric position in the tube, the inert ial  force F calculated in i' 

Chapter 11, will act  to accelerate the ball in a horizontal direction, 

such that the eccentricity ratio i s  increased. If u i s  the horizontal 

velocity of the ball obtained by the action of F there will be a force 
i' 

F opposing the horizontal rno tion which for  smal l  enough u will be 
P ' 

l inear in u. The condition to be satisfied for F to be l inear  in u i s  
P 

that the leading order  equations governing the flow be the Stokes 

equations. In that case F can be obtained f rom the p r e s su re  field 
P 

around the ball  caused by pure  horizontal motion of the ball (figure 2). 

I 

Q 
Cylinder 

FIG. 2 S I D E W A Y S  M O T I O N  O F  THE SPHERE 
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The boundary conditions on the velocity a r e  

where the flow region under consideration i s  again 

The typical Reynolds number of this motion i s  

F rom the continuity equation i t  will be shown that 

so  that 

F will be l inear  in u and can be calculated f rom the Stokes equations 
P 

with boundary conditions a s  stated above, since the Strouhal number 

of the motion i s  of the same  order  a s  the Reynolds number. 



To leading order in cO0/a. the flow equations then a r e  

with boundary conditions (72) through (74). 
1 

With R = 0[cO0]  , z = ~ [ ( c ~ ~ a ) ~ ]  and the boundary conditions 

(72) on v one obtains easily from (75) R' 

Then, f rom (77) i t  follows that 

and f rom (87) 

Hence the p r e s su re  does not depend on R to leading order in cO0/a. 

The leading order t e r m  of p will depend on q at  z = 0, but must be 

independent of cp a t  the top and bottom of the sphere and must conse- 

quently be  a function of both z and q. With 8/ap of order  e/cO0. i t  

can then be shown from (80) that 



and the p-momentum equation (76) then gives 

v = 0 [u]  
<P 

(8 3 ) 

To leading order  in c OO/a, the continuity equation (75) reduces 

which can be  integrated over R f rom R = 0 to R = c to yield 

using (72). 

Physically, the integrated form of the continuity equation has 

the following significance: consider a volume element extending f rom 

the ball  to the tubewall, with width adp and height dz (figure 3)  

A 
Fluid f lux 



When the ball moves closer  to the wall, fluid has to be spilled out of 
av Coo avz 

the contracting volume, and since 1 . 2  = 0[- -1 al l  the fluid 
a a 9  a a~ 

will be spilled in the z direction, to leading o rder  in c /a. 00 

Equation (77) can now readily be integrated to give v Using z' 

the boundary conditions, (74): 

Substituting this in (85) and again using the fact that vZ = 0 at  R = c, 

one obtains after performing the integration 

To find the integration constant C (q )  that resul ts  f rom inte- 

grating (88) over z ,  one has to use the same method a s  employed for 

integration of equation (42) (see Chapter 11). In spherical coordi- 

nates,  (88) reads 

and using the Somrnerfeld transformation a s  defined in (44) through 

(46 1 

which can be integrated to give 



cosyt 'I cos2y 
-12pucos(p 4 

P = a 2 2 + C ( C ~ )  
(1-n 

Obviously p i s  an even function of y, and the integration con- 

stant C ( q )  i s  determined by the condition that p does not depend on p 

a t  y = + T. Hence - 
n .  

so  that 

and using expression (58) 

-6puacoscp - - -bPuacoscp - - -6puacosq 
P = 2 2 2 (92) 

C z + - + ecosp) 
2 (Ic t ecosq)  

('00 2a 

to leading order in cO0/a. 

The force resulting from this p ressure  distribution will ap- 

proximately be 1 

cos2<pdq - 
( C  + ecosq) 

2 

cos cp dql 2 
F = - l ~ ~ u a ~  

[li j P -2 e c - n  ( I t  5 C O S ~ )  
2 

The cp integration can be performed to give 



2 -2 
cos cp c e 

2 e 2 s" e 2 d v  = 2 2 t ( 1 -  7}9t(2--1)D 
e2(1-e 6 ) -2 

-7r (1t coscp) C C 
i 

-7r 

with 1 
e 2 

D =- arctg [(GI tg :] 
,Kg 1 t, 

C 

C 

The z-integration cannot be performed analytically, but one can get 
- 

the order of magnitude of F by setting c = coo. 
P 

Then: 

F is  negative, and hence opposing the sideways motion for 
P 

and F tends to - m  when e/cO0 tends to one, and one can write 
P 



The inert ial  force  was found in  Chapter 11 to be 

. - 
where F represents  an integral over z and q ,  and has the dimension 

of length. According to Christopherson and Dowson, one can express 

m'g/p in t e r m s  of the vert ical  velocity U: 

with I1 

Now 

"oo'l 

a s  defined in ( 2 3 )  and 

define 

Aite/coo) 

then Fi can be written a s  

The equation for the horizontal motion of the ball  under the 

action of Fi and F will then be 
P 



Since A. and A a r e  nonlinear functions of e ,  and u = de/dt, 
1 P 

equation (102) i s  in fact a nonlinear second order  differential equation 

in e( t) ,  which cannot be solved exactly, However, i t  i s  possible to 

get the order  of magnitude of u by solving (102) a s  i f  Ai and A were  
P 

constants. The solution of the then resulting linear equation can 

easily be found to be 

A. I 9n p ~ 2 a  l l  (- 5 24nPa5/' t )  u =-  
A 4 8  p 

- exp 

mb 
3/2 

'13 

i f  the ball i s  assumed to be a t  r e s t  a t  t = 0. 

When the value of e/cO0 tends to one, the value of A. remains 
1 

ra ther  smal l  (about 0. I ) ,  but a s  we saw the value of A will tend to 
P 

infinity. It follows that the horizontal velocity of the ball will tend 

to zero  when the eccentricity ratio tends to unity, which means that 

the ball will be virtually locked in place close to the wall. 

To find the o rder  of magnitude of time t needed for the ball  

to t ravel  horizontally over a distance of order  coo, one can take 

Ai 9a P U ~ C ~ ~  the o rder  of magnitude of u to be - - 
A 48 

. Typical values of 
TJ P 
.. 

A. and A can be taken a s  
1 P 

Ai = 0.06 and A = 1 
P 

(approximate values at e/cO0 = 0. 5). So t follows f rom 



In that t ime, the ball travels vertically over a distance s 

If s/a i s  of order  unity, one can conclude that the ball reaches 

the wall while i t  travels vertically over a distance of order  a ,  and 

then stays close to the wall by virtue of an infinite Stokes drag force 

in a horizontal direction. However 

i s  of order  50 for most  of the experiments performed by Christopher- 

son and Dowson. 

When the Reynolds number increases,  the character  of the 

flow will change, but i t  seems reasonable to assume that the inert ial  

force keeps growing till i t  reaches the potential flow limit,  and that 

s/a decreases when Re* increases. At the value of Re* where in 

the experiments the ball s t a r t s  bouncing against the tube wall, the 

Reynolds number i s  too high to make s/a f rom expression (105) a 

fair  measure  of the distance travelled in a vertical direction during 

the time needed for the ball to travel a distance of order  c in a 00 

horizontal direction. There  i s  a Reynolds number associated with 

s/a, namely 



but its values at the stage where experimentally the bouncing insta- 

2 bility occurs a r e  spread over a range of 10  



IV. Potential Flow Solution 

If the Reynolds number a s  defined in Chapter I1 i s  very high 

one can assume that the vorticity of the flow i s  confined in boundary 

layers  on the sphere and cylinder wall, thin compared to the gap 

width. In that case,  the main flow in the gap region may be consid- 

e red  to be potential flow, and the p ressure  distribution around the 

sphere can b e  derived from the potential flow solution. 

The condition for potential flow i s  that the boundary layer  

thickness 6 i s  small  compared to coo. So 

The problem then reduces to 

where 

with the boundary condition 
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F r o m  the continuity equation (107) it follows that 

a@ z - a@ R and - a~ aR 

a r e  of the same order .  Hence, like in the low Reynolds-number case  

However, to satisfy irrotationality we must have 

Coo unless @ z  i s  not a function of R to f i r s t  order  in (-), in which case  a 

(1 11) can b e  satisfied by the next t e r m  in an expansion in - a for  @ z .  

Hence, restr ict ing the analysis to the terms of leading order  in 

cOO/a9 like in the low Reynolds number case,  

must  be satisfied by a valid solution of the potential equation. 

We will now proceed to find such a solution, in the fo rm of a 

Fourier  se r i es ,  the coefficients of which a r e  se r i es  a s  well. The 

boundary conditions (1 09) a r e  clearly satisfied by a " similari ty 

solution' ' : 
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Now (1 12) and (1 13) imply 

The potential equation (1 07) reads 

o r  to leading order in c /a 00 

From (1 13) ,  (1 14), (1 15) one then finds 

The angular velocity component must be symmetrical and 
P 

periodical in 9, so that one can wri te  @ in the form of a Fourier 
q 

sinus ser ies  

Qq 
= g n ( ~ ,  z )  sinnp 

n=l  

and consequently 

Substituting (1 18) into (1 14) one obtains 

H 

cosnq + 3) + (c t  ecosq )a 
R n a2 R Z  

N 

c4e cos q 
R za g ncosnq = 0 

a z n 
n= l 



It i s  now clear  that the l a s t  t e rm  in (119) i s  of order  cO0/a 

times the other t e rms  and hence can be neglected. With 

cosqcosnq = cos(n+ 1 )q + cos(n-1)cp 
2 

Equation (1 19) then reads  
-3 

ea a2 g 0 t-- 
2 

cosq = 0 
z a2 

Equating the coefficients of cosncp to zero we obtain for n = 0 

- '80 + -  I ca "go ea 
a2g 

- 0 
az z 2 - 2 2 2 -  a z az 

and the general equation, for n > 1 

The conditions under which this system i s  to be solved a r e :  

(a)  Q z  # function (R)  

2~ - 
(b) the flux condition $J Zcadq = - Una 

2 

0 



(c)  $p = 0 i f  e = 0 ,  so 

g n 
= 0 if e = 0 for all n 2 1 (125) 

The equations (121) through (123) form a system of an infinite 

number of equations with an infinite number of unknown functions g n ' 

The ,system can be solved, as  will be demonstrated, under the assump- 

tion that 

Condition (125) implies that g l  must be the particular solution 

of (122), and gn the particular solution of (123) for n >  1, so that 

for n 3 1. Hence the assumption (126) is  consistent with the system. 

For e = 0, the full soPution can simply be obtained from equation (1 21 ), 

which then reads 
CI 

The meaning of the second index in g will become clear later.  
0 ,  0 

Writing (127) as  

i t  i s  clear that 



where the constant A i s  to be evaluated from the flux condition (124). 

For non-zero eccentricity one has to solve the complete sys-  

tem (121) through (123). For small  values of e/coOy one can find a 

f i r s t  approximation of agl/azy by substituting (1 28) into (1 22): 
-% 

the particular solution of which i s  easily found to be 

The f irst  correction of agO/az can then be obtained from (121), after 

substitution of (1 30): 

Again ag /az = 0 for e = 0, so ag /az must  be the particular 
0, 1 091 

solution of (1 31 ): 

In the same way one can continue to compute the f irst  and 

next approximations of gn, and the forms that one obtains suggest 

a general solution of the form: 

The validity of this expression can easily be shown by induction from 

equations (121) through (123), and in doing so one obtains recursive 

relations for the constants kn, : 



Using (1 18) and (1 33), one then can wri te  the z-  component of 

the velocity a s  

For  such a solution to exist, k must be bounded for either one of 
n, 1 

the indices n, 1 tending to infinity while the other one i s  fixed, since 

e/G < 1. The details of the convergence of the se r i es  in  the right 

hand side of (1 37) a r e  given in the Appendix. 

Finally, with k = 1, and a l l  other k ' s known f rom (1 34) 
0 ,  8 n, 1 

through (1 36), A can be determined by the flux condition (124). 
N 

Straightforward integration of Q, ca gives 

The p r e s su re  distribution can then be obtained f rom Bernoulli 's 

equation 



since v a V ~  and 9- a avz coo a r e  of order  - R ~ R  aV a z a~ ' 
t imes v - 

along streamlines and since a l l  s t reamlines come f rom the undis- 

turbed, 9 independent region, one can define 

with vz a s  in ( 1  37) .  

The resulting force on the sphere can be approximated a s  

before 1 

(cOOa)" 27 

= ) ] PCOSP ad. I dz (141) 

- 
How many t e rms  one wants to keep in v depends on the value of z 

e/cO0 and on the required accuracy. For  instance i f  e/c << 1 and 
00 

one wants F to leading order  in e/cO0, one easily obtains from the 

general formulae 

and 

F = 4 arc tg  - 
00 42 I 



V. Experimental Work 

a )  Apparatus 

The apparatus used for the experimental work consisted of a 

long glass tube, vertically mounted in a frame, in such a way that i t  

could be turned 180' about a horizontal axis. 

Three different tubes were used, two of which (tubes number 

I and 11) were standard tubes with an unknown tolerance on the inside 

diameter. Tube number I11 was a precision bore tube, with a maxi- 

mum tolerance of 0. 170 on the inside diameter. The values of length 

and average inside diameter of the tubes a r e  listed in Table VI. 

A number of ping-pong balls were used as  spheres. The 

sphericity of the balls was crudely checked with a micrometer and 

only those with a deviation of sphericity of less  than 3% were used. 

Balls number 4 and 5, used in the precision bore tube, had a devia- 

tion of sphericity of l ess  than 0. 5%. The values of the diameters of 

the balls a r e  listed in Table VII. 

To change the upward velocity of the balls in the tube without 

having to change the viscosity of the fluid, the weight of some of the 

balls was increased by inserting solder wire through a little hole in 

the ball side , which was then sealed. This of course changes the 

inertial moments of the balls, but the flow in the gap region and the 

forces acting on the ball will still  be the same. 

When a ping-pong ball remains for some time in the fluid, 

the material of the ball side will absorb some of the fluid. The in- 

cr.ease of weight caused by this effect during the time needed to run 

the experiment a t  a certain weight of the ball appears to be negligible, 
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even more so  when the weight i s  already increased by the inserted 

solder wire. However, in the experiments with the precision bore 

tube, the clearance ratio c/a was very small and the motion seemed 

almost critical* already with an unweighted ball. Therefore, the 

effect of fluid absorption could be used to increase the weight of the 

ball ,and decrease its upward velocity slightly. After every meas - 
urement, the ball was left in the tube and the experiment was repeated 

after some time, The absorption of fluid did not appear to have a 

measurable effect on the sphere radius a. 

The fluids used in the tube were mixtures of various amounts 

of glycerine with water. The viscosity of each mixture was deter- 

mined with a precision viscometer of the falling ball type, accurate 

up to 1 %. The specific gravity of each mixture was measured with 

a pycnometer and a precision balance. The balance was also used 

to determine the weight of the spheres for every run, except in the 

case of the experiment in the precision bore tube. 

b )  The process and the observed phenomena 

The lower end of the tube was closed with a rubber plug and 

the tube was filled with fluid. The viscosity and specific gravity of 

the fluid were determined beforehand. Then the sphere was inserted 

a t  the upper end of the tube, which was then closed and the tube was 

turned around. Intervals of 5 crn had been marked on the tube wall, 

so that the ascent velocity could be measured. 

In the experiments with tubes I and 11, the tube was turned 

* 
See paragraph b. 



three more times at each weight of the ball, so that an average over 

four measurements could be taken. After that the ball was taken out 

again, more solder wire was inserted, and the experiment was re-  

peated. 

For the experiment with the precision bore tube, only two 

measurements at a time were done, to make the time, needed for 

the measurements at a certain weight and hence the variance in 
4 

weight smaller.  The ball was now left in the tube, and the experi- 

ment was repeated after roughly half an hour. 

When the Reynolds number was higher than a critical value 

( ~ e : ~ ) ,  the ball obtained a spin velocity about the vertical axis, 

the direction of which appeared to be random. Also, it bounced 

from wall to wall during the motion. The spin velocity was measured 

by timing a certain number of complete rotations of the ball, and the 

bouncing frequency by timing a certain number of times that the ball 

* * 
bounces off the same side of the tubewall. When Re < Re the 

c r  

motion appears to be smooth. Both the spin and the bouncing dis- 

appear, and the ball goes up in a straight line. 

When the Reynolds number i s  very high, o r  the ball very 

light, the bouncing frequency i s  too high to be measured. In the 

tables of measurements in paragraph c of this chapter one can see 

that the bouncing frequency for balls 2 and 3 could only be measured 

when the weight of the ball was roughly over 20 grams. For balls 

4 and 5, in the precision bore tube, the bouncing frequency was too 

high to be measured all the way to the critical Reynolds number, 

* 
where the bouncing disappeared. With R:" tending towards Re 

c r  



from above the bouncing frequency decreases ,  to go to zero  ra ther  

* * 
suddenly when Re 4 Recr. The spin velocity f i rs t  becomes very  

e r ra t i c  in magnitude, sometimes even reversing i ts  direction during 

the upward motion. It disappears completely with the bouncing, for 

In al l  cases  where there i s  spin, the spin velocity seems to 

increase when the ball  bounces against the tubewall, and to decrease  

again in between walls. However, due to the method of measuring 

the spin velocity, this observation could not be  established as  a fact. 

A possible explanation of this behavior i s  that the ball rolls 

over the wall a s  i t  were,  while i t  bounces off the wall, which will be 

t rue  i f  the direction bf approach does not coincide with the "direc- 

tion" of the eccentricity (p = a in figure I ) ,  see  figure 4. 

FIG. 4 
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It i s  clear  that t1.c- rnagnila~de of such a spin-torque will depend 

on the velocity of the ba1.i in the z 0 plane and on the angle a between 

the direction of approach and = x .  Since the velocity in the horizon- 

tal  plane depends on the vertical velocity U, this interpretation i s  

consistent with the decrease  in S2 with U on the average. 

The occurrence of the bouncing instability a t  a certain value 

of ~ e *  can probably be explained by the fact that the inert ial  force a s  

computed in Chapter 11, has to grow a s  a function of ~ e * ,  the effective 

Reynolds number in the gap region. At the critical value of ~ e * ,  this 

inert ial  force gives enough momentum to the ball to make i t  bounce 

against the wall before it i s  brought to r e s t  by the force, opposing 

the horizontal motion. 

The experiments, due to the lack of accuracy resulting f rom 

their simplicity have to be  considered a s  qualitative rather  than quan- 

titative. However, they show that a t  an ' ' intermkdiate' ' Reynolds 

number, where theoretical analysis would involve the full nonlinear 

Navier-Stokes equations, an  instability of the described nature se t s  in 

Finally, we have to point out that in the experiments I through 

111, the freedom of spin about a horizontal axis was suppressed by the 

presence of a weight (the solder wire)  inside the ball. But the ex- 

pe-riments IV and V, in which spherical symmetry was preserved,  

suggest that this i s  not a very important factor for the occurrence 

of the instability. 
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c)  Data 

In the following tables, the weight of the ball is  listed together 

with the average values of the upward velocity V ,  the spin about the 

vert ical  axis and the bouncing frequency f a t  that weight. Also 
b 

which tube and ball were  used for the specific experiment i s  indicated, 

and the values of the viscosity v and density p of the fluid used. 

2 2 I Tube I, ball 1, v = 2. 1 x10- cm /sec, p = 1. 12 gm/cm 
3 

m ball (gm) ~ ( c m / s e c )  a ( rad / sec )  fb(#/sec) cO0/a = 8.5% 

27.190 2. 04 0. 50 1.55 = 0.16 c m  

28. 176 1. 71 0. 31 1.22 

28.765 1. 56 0.12 * 0. 90 

28. 972 1.45 0.28 * 0. 81 

* 
Rather er ra t ic ,  deviation from average value above 15% 



2 I1 Tube 11, ball 2; v = 4.  35 x 1 cm /sec; p = 1. 162 g n / c m  
3 

*:Spin becomes very errat ic;  deviation of 20% and more from average 
value 

** 
For higher velocities, f too high to be accurately measurable b 



2 2 I11 Tube 11, ball  3; v = 4. 35.10- cm /set; p = 1. 162 gm/cm 3 



Tube I11 

Measurements  in the prec is ion  tube; 

2 2 3. IV: B a l l 4 ,  v = 1 . 2 8 x  10- c m  /sec; p = 1 . 0 7 8 g m / c m ,  

= 0.024 c m  c /a = L37o 
00 

wobble d isappears  a t  U = 0. 54 cm/sec  

2 3 V: B a l l 5 ,  v = 0 . 8 1 x 1 0 ~ 2 c m / s e c , p = l . 0 3 5 g m / c m ; c / a =  

coo = 0.018 c m  cO0/a = 0.95% 

wobble d isappears  a t  U = 0.29 cm/sec  

VI: Tube no. 

VII: Ball  no. 

Cri t ical  Reynolds numbers  
% 

Experiment  # 
Recr  

I 12. 9 

I1 11, 3 

The experimental  data  a r e  plotted in graph  2, givingS2 and f a s  a b 
-3. 

function of ReT. 



ADD endix 

The convergence of the potential flow solution 

Consider k to be an element of a two-dimensional matrix 
n,Q 

with n denoting the row number, and 1 the column number. Repeated 

executing of relation (136) then gives a relation for element k in 
n,Q 

terms of the f i rs t  (nt 1) elements in the preceding column: 

k n-2,Qi-1 - -  n - l k  2n n , l  I+(--)- n k  
2 n t l  n t l , l  

- l 2  n 
- (- 2)  ; ;1~ n - 2 , ~ + 1  (2)' n + (- -) - 

2 n n , Q  n k  2 n t l  n t1 , I  

and after j steps 

+ ----  1 2  
n k  ( -  2)  kn, Q + ( -  -) - 2 n t l  n t 1 , Q  

Let  n- j = 1 and use (1 34) and (1 35) combined: 

to obtain from (I) 

for n 2 l  and all  I .  



To evaluate k for n 3 1, (1 3 5 )  and (1 3 6 )  can be written a s  
n, 0 

Then k 
1 , o  

= 1 (see (128))and (IV) can be written a s  

- 1 3  n 
kn, 0 - (- 2)  n-j, O 

With expressions (1 34), (11) and (V)  one can then evaluate al l  

the matrix elements k column by  column. n , l  

E* g., 

nt  l 
or k - 

n, 1 
- - ) n(n-t-2) for n 3 1 

nt  IL n t l  n- jt 2 n 1 jt1 
Next k 

n, 2 - - 1 j ( j t2)  
j= l  

j 

Bkt (m+l )-Bk+l (0) 
Now 2 jk = 

j =1 kt1  



s t  Where Bkt i s  the Bernoulli polynomial of k t  1 order ,  

k t  1 i 
Bk+l(x)  = 1 b k + l , i x  (VIII), with b = .1 

i=O m ,  m 

Fo r  k = 1 one obtains 

and hence 

The expressions (V), (VI) and (IX) suggest a general form 

for k 
n, I 

(X)  

Expression (X) can be shown to be valid by induction; substitute (X) 

into (11) to find 



Using (VII) one obtains 

1 
n-1+2(I+1) 

- B1+1("t2)-BItl(0) 
k n , ~ + l  - ( - z )  A [/lti&ai , i1-t 1 t 1 t 

t (nt  1 )a 191j 

L t l  
Only the Bernoulli polynomial of order  I t  1 will give a n term. 

Since b I t l , l t l  = 1, one finds 

1 n -1 t2 (Q t1 )  
-- LnIt l t a  I 

k n , ~ t l  = (- Z) ( I t l ) !  i i - l , l  Kt -I----- I t l , t i - 1  I + a  

(XI) 

where the aI + , ' s  can be  found by evaluation of the Bernoulli poly- 

nomials, and consequently (X) i s  true. 

Clearly, for fixed I and large  enough n 

which tends to zero  for n tending to infinity. 

The convergence for I tending to infinity and fixed n i s  harder  

to prove since one must  evaluate a l l  the a ' s ,  for which i t  i s  neces - 
S 9 j  

s a r y  to know the values of the coefficients of the Bernoulli polynomials 

bi, j a  
A general form for b i s  not known. However, i f  we assume 

i ,  j 

that none of the a . ' s  grow faster  than I ! , kn, I i s  bounded for I tend- 
1 7  J 

ing'to infinity and n fixed, and the se r i es  in the right hand side of 

(1 37)  is convergent. 
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