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Abstract

The flow around a sphere, moving under the influence of
gravity in a long cylinder filled with a viscous liquid, is investigated,
for the case where the inside diameter of the tube is only slightly
larger than the diameter of the sphere.

For low Reynolds numbers, an extension of the Christopher-
son and Dowson (1) theory is obtained in the form of a first order
Reynolds number correction. It is shown that the fluid exerts a
first order inertial force on the ball, tending to increase the eccen-
tricity ratio. The sideways motion of the ball due to this force has
been calculated approximately.

For very high Reynolds numbers, a potential flow solution
has been found in the form of a Fourier series., This solution also
yields a force tending to increase the eccentricitf ratio.

Experiments have been done for intermediate Reynolds
numbers. The motion of the ball appears to be unstable when the

Reynolds number exceeds a critical value (about 10).
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I. Introduction

In 1959, Christopherson and Dowson (1) considered the flow
around a heavy sphere, descending under the influence of gravity in
a vertical tube filled with a viscous fluid, the diameter of which is
only slightly bigger than the sphere diameter. It was shown that the
approximate flow equations for Re = 0 and the ratio of tube diameter
to ball diameter going to one, result in no force perpendicular to the
motion, independent of the eccentricity ratio at which the ball moves.
However, there is one eccentricity ratio (about 98%) for which the
rate of energy dissipation is maximum, and experiments performed
by Christopherson and Dowson indicate that the sphere will always
take up that eccentricity ratio, regardless of the initial c;anditions.

The work presented in this thesis is an effort to obtain a
better understanding of the flow described above, for non-zero Reyn-
olds numbers,

Experiments were done (see Chapter V) with a light sphere,

a ping-pbng ball. If the Reynolds number that characterizes the
motion exceeds a certain critical value, the motion of the sphere
appears to be unstable: the ball bounces against the tube wall during
the upward motion and obtains a rotational speed around the vertical
axis.

In order to get an idea about the character of the flow and
pressure field in the region between the cylinder wall and the sphere
at non-zero Reynolds number, a perturbation of the flow equations in
Re* was performed. This first order inertial correction yields a

force that will increase the eccentricity, but doesn't seem quite large
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enough to account for tfle Christopherson and Dowson effect. There
also is a force opposing horizontal motion of the ball, which in the
Stokes limit tends to infinity when the eccentricity ratio tends to one.
This force will make the ball stick close to the wall, once it gets
there.

Also, a potential flow solution in the region between the ball
and the cylinder wall was found, as an approximation of the flow at
very high Reynolds number. This approximation also results in a
horizontal force, tending to increase the eccentricity ratio.

All the calculations were done with the assumption of steady

flow.
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II. Low Reynolds Number Expansion

For the following analysis it is assumed that the sphere moves
vertically in the cylinder, at a certain constant eccentricity ratio.
For that steady state condition the velocity and pressure fields can
be evaluated with the eccentricity ratio as a parameter. The flow
region under consideration will be the region where the distance be-
tween cylinder and sphere is of the order of the difference in the
respective diameters.

Let the radius of the sphere be a, the radius of the cylinder

d =a+t €00’ and the eccentricity ratio e/c00 (see fig. 1).
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Essentially, a cylindrical polar coordinate system will be

used. However, for convenience of integration this coordinate sys-

tem will sometimes be slightly modified, so that }1; —g—e measures
the variance with the vertical coordinate, instead of % . The gap
width ¢, expressed in cylindrical polars will be
c=cpytecosg+a(l - Vl-zz/az)
For c to be of the order of Cppr We must require
~ 1/2
z~ Of(c ra)""]
so that to leading order in coo/a
C =cp,t € cos @+ zz/Za (1)
00 d
Furthermore, we define
o = o + e cos @ (2)
~ 2
and c=c .t z"/2a (3)

00

The radial coordinate R will be measured from the wall, In the

modified coordinate system, the expression for c will read:
¢ =cyy + e cos ¢ + a(l-cos6) (4)
and 0~0{[(c /a)l/z]
00
clearly sin 6 =1z/a (5)
2

and cos 0 =1 -—?—2 : (6)
2a



c
to leading order in 00 .

As is done by Christopherson and Dowson, the axis system
will be considered to move upward with the sphere with velocity U.

The sphere also has an angular velocity 2 as is shown in figure 1.

The boundary conditions on the velocity are

vz=—UatR=O (a)
vz.—:QacosqoatR=c (b)
vp =0atR =0 (c) (7)
vg=RacosgZatR=c (d)
v¢=0atR=OandR=c (e)

( a

Since v, in the gap region must be of order U ) in order to allow

C
00
the flux —Uﬂa'2 to pass through an area of Zwacoo, we can rewrite
7(a) as
v =0atR =0 - (7a)
C

to leading order in 00 .

Now some order of magnitude analysis can be done to obtain

the right approximation of the flow equations. As we saw, v, is of

order U _E_a__ . Then, from the continuity equation,
00
8VR o E}Vz
oR 0z
9 1 9 1
with -8-§ and EZ— 172
00 (a.coo)



, 1/2
so that VR~ O | U¢ )
€00

From the momentum equation in the R direction, one can show in
c
the usual way that p does not depend on R to leading order in —29 .

When the inertial terms in the equations are small (the condition

for which will be discussed later), % o must balance the largest

9z 82v
viscous term in the z-momentum equation, v ZZ’ so that
/ oR
3/2 '
- pUa
c
00
From the ¢ -momentum equation, with -—éaz-p ~ EE_ one then finds in the
00

same way:

r =0 [U(——a——)l/z]
4 €00

c

To leading order in 0 , the v, equation then reads

2
ov ov po v
Z z, . 9p z
PV, YRR T T T T2 (8)
oR
pu2a3/2
The order of magnitude of the inertial terms is 577 and
C005

the viscous terms have an order of magnitude of}ig?'— .

€00
The condition that the inertial terms be small compared to the viscous

term is thus expressed by

1/2 1/2
ua CO0

Re* = - <<1 (9)

One can assume a regular perturbation expansion in Re*:

fnec = fncO + fncl Founenn (10)

where fnc stands for any of the velocity components, the pressure,
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or the quantities 2 and U, and fnc,~ O[fnc, x Re*]. The zerotl

1 0

order equations then reduce to the Stokes-flow equations, with a solu-
tion for the pressure field as obtained by Christopherson and Dowson.

In our notation:

P, 6p§20acos¢ 12pf0 ‘
5z = Z - T3 (11)
C C

v dR (12)

where fo(ga) = 2,

O~

We will proceed to find the forms of the zgeroth order velocity

components v_ , v and v, . From the z-momentum equation and
20 Po Ro
(7a) and (7b) one obtains:

2 6f 6f
R 0 R,0
VZ =—;§ (3&20acosq) -2 ) + "C’“( P ZQOacosgD) (13)
Integration of (11) gives
Po = -12pfyg5(2, @ 6 jacosy g, (2, @ )+in() (14)
with
d 1 a
S R Yy arctg( z ) (15)
C 0 ZCO Vzcoa‘
and

dz 1 bA 3 =z, 3 la z
g, = - = — + -+t = arctg( > (16)
3 f (:3 4C0 CZ g8co € 4 ch VZcOa

From symmetry arguments one can show that in this linear case

O NV

%}po/ago = 0 at z = 0, so that the integration constant

in{p) =0 (17)



Then v follows from
0

p,azvcp op
0. 170 (18) and (7e)

BRZ a o¢
v(p =(3S20cosg0 -a;(pé -390 singogz- 6afo (zi; - (;g3 z:po>(R2—Rc)
(18)
and VR from
0
a;liio _ 8;/50 i (é B;ZO) and (7c, d)

) 28lacosg 6f0 22, 6f0 yacospy N o)
YRy T 3 Y 3" ) 2 (
C C C C

According to Christopherson and Dowson, one can express
fo and QO in terms of the eccentricity e and the difference in weight

of the fluid displaced and the sphere, m'g. One obtains:

; m'gVZCO E(@) (20)
= @
0 9ﬁp3572
and 1/2
o - em'geg -
0= 772 (
N2 mpa L
with
co?j/2 ecolo/zcosqp
Blp)= ——+ —t (22)
and
j'T coszga
L = dg (23)
1 - (1+ € cos<p)1/2
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Then, one can express the Stokes approximation of the velocity com-

ponents in the following way:

Vo =K1 OR F I @)R? (24)

Yo, =2, (2, Q)R + lz(z,go)Rz (25)
_ 2 3

VRO = h1 (z, p)R™ + hz(z,(p)R (26)

with the functions kl 2 121 2 and h1 > defined by (13) and (18) through
(23).
We are now ready to find the first order inertial corrections

fncl (10); those for the pressure and the z-velocity component follow

from:
2 .
- 0p 9 vy vy, O0vga\
L 1=p(v — 0,5 ——-—-0-> (27)
oz 8R2 z 0z RO oR
The boundary conditions on v, are:
1
v. =0atR =0 (a)
“1
(28)
vZl = Qlacoscp atR = ¢ (b)

For (23a) to be true, one must require that

C
——29- << Re* << 1

After substitution of (24), (25), (26), equation (27) reads

2
_E}pl 9 vz

1 4 3 2
9z T 8R2 = P{q4(Z,(P)R + q3(z’ (p)R +q2(Z’ @R } (29)
ok |

with q,(z, @) = h1k1+ Shrre (30)
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Bk, Ok,
432, @) =hyk; + Zhjke, + k) =+ k, (31)
3k,
au(z, @) = 2hyk, + k, == (32)

Integrating (29) twice over R, and using (28), vZ1 can be written as

follows
_ R 5 5 R 4 4 R 3 3
vZl -—3-6(R -C )q4+-—2—6(R -c )q3+—I—2-(R -c )q2+
bt %P R(R c) + 2. acosp B | (33)
Bz 1 ‘P ,
Defining
C
[ v, drR =1 (p) (34)
0 1
one can obtain an expression for T similar to the expression for
8p0
——8—5" y (11)
1 op; 62 acosg ) 121, 1 _cf_ 3 302 ) Gs)
bz 2 3 v\T "5 %770 2

To facilitate the integration of this expression, the functions

. . z
qi(z,cp) can be written in terms of Qj((p) :E

a, = -Ql(cp)f§+ 602@):{1 - 8Q3(§0)C£5- - (30)

q; = 4@1«0)? - 402(qo)?+ 16Q3(§0)fg (37)

q, =-3Q ((p) =+ 100, () —-803 -;2—7- (38)
e (m'g) o 2

Q@) = =555z cos’g (39)
O a I1
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e(m' )Zc 1/2(:
Q _ €) o0 o E 40
2@) = —=—¢ cosg E(@) | (40)
91 p a Il
Q@) = ———=¢— E (@) (41)
97 "n a

Then (35) can be written as

1 Bpl _ 691ac05(p ) 1Zfo1 1 :EQ z, .LZQ 2z,
L dz 73 3 "v\ToO~1TT T M2 T2
c c c
16 Z
+ —§Q3—C—3-) (42)

Integration of this equation however will give an integration constant
which may depend on @, fn1 (). This function can be determined by
evaluating the pressure on the top and bottom of the spheare (6 = jr_%),
and requiring that the pressure there be independent of @.

In order to accomplish that it is necessary to use the modified
coordinate system (with a8 instead of z) and the Sommerfeld trans-
formation, as was done by Christopherson and Dowson to find the
:«:eroth order pressure at § =+ /2. In the modified coordinate sys-

tem, expression (42) reads

1 op; _6ﬂlacosgo 121, 11 asino,
pa 986 - 2 T3 Tw\14 Tl ¢
c c
17 asinb 16 asin®
S e i TR 3“‘) (43)
c ‘ c
For the Sommerfeld transformation we define
C
- 1 -2 (44)
a.+c0 a

To leading order in __g_(_)_ one obtains
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¢ =a(l-n cosB) {45)

The Sommerfeld transformation defines a new angle vy

l-n2

t-ncost = Tincosy

(46)

One can use the expressions obtained with this transformation

all the way toy =+ w (corresponding to 0 = +1r/2) since, to 1ead1ng /
1/2
OO

order in cOO/a, ly

1.

This comes down to neglecting changes in the pressure field outside
1/2

the region } 9' ~0][ ] compared to changes in this region.

Then, from (46) one obtains

(1-n )1/2

dy = T+ncosy (47)
and
2.1/2 .
. _ {(1-n7) siny
sin® = l+ncosy (48)

Equation (43) transforms into

Bpl 6p§21coscu (l+ncosy ) 12pf1(1+ncosy)2

5y (1-n2)372 221 n2)57?

1 Q asmy 17 stmy 16 Q3smy (l+ncosy )

v 1+ncosy t 2~ 1 35a 52

l-n (1-n™)

(49)

which can be integrated to give
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6p§21 cos@(y+siny) Z‘Ipf1 (4yt+8nsiny+ 2n2y+nzsin2y)

'p = o
1 102377 2212572
Q Q,cosy
+ncos 17 72
s { iz (50)
4 @n T T2
16 Q (cosy+— cos2y)
+ 35 }+ fn
> (1-n%)?

The first two terms of this expression are odd in y, all the

other terms are even. Hence, to compute the pressure difference

(pl) - (pl)y-w’ only the first two terms are of importance, and

Y=-7
the same applies to the torque resulting from the viscous shear stress.

Using those two terms then, one can proceed to compute the values of
Ql and Ul’ similar to the way in which Christopherson and Dowson

computed 2, and U This determines £, in such a way that the con-

0 0
tribution to the pressure from the first two terms is independent of
@aty=+mw.

Therefore, fnl (p) is determined by the condition that the

part of p; even in y, be also independent of ¢ at y =+ w. Hence

Q 1.=
_ph17 B2 e 7
fn, (@) {7 .2t 353 <3 22} (51)
-n (1-n")

Defining the part of that is even in v as P., we then obtain
g P Py Y 1

Q.a
)1 1 ltncosy, , 17 cosy+1l
P V{H N =
-n
16 cosy+ 1 + %(COSZY-I)
+ Q (52)
35a 3 2.2

(1-n")
Clearly, only this part of the pressure will contribute to any force

perpendicular to the velocity U. Such a force will be expressed by
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7r/2 0

and will be destabilizing (increasing the eccentricity ratio) if F > 0.

/2 2T .
F = f{Plcosq)ad(p} cosfado (53)

Now
(l-nz)l/z(cosy+n)

cosfde = >
(l1+ncosy)

dy

and the integration limits on y are -7 and 7.

It is not possible to perform the y integration analytically,
but to get an idea about the magnitude of the force, we can transform
expression (52) back to the z-variable and integrate over z in thé
region of interest, say for z from -(cooa

merfeld transformation formula (46) can be written as

172 (cooa)l/z. The Som-

l-n2
l+ncosy

C
=< - (54)

c
Furthermore, to leading order in g )

l-n™ = {55)
Then

1+ncosx - _2«'11; ' (56)

I-n

€00
cosytl _ ncosy+1+0(—~—a )
2 2
l-n len

or

cosX+l

l-n

(57)

oflw
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and
n n 2 2-n
cosytl+ = (cos2y-1) =5 cos"y + cosy + ——
4 2 2
=L (nzcos2 +2ncosy+1+0(coo))
Z2n v a
so that
n
cosyt+l+ Z(cosZy-l) 1 i_z_ 58)
(l_nZ)Z 2n CZ
Expression (52) then transforms into
Y Lty <) 4 2L + 3 0. 2
Py v{l‘}Ql "G+ 7R, R 550, Cz} (59)
to leading order in c:oo/ay and
1/2
2) 2T
F.~2 | nglcosgpad(pg dz (60)
0 0

Still, the @ integration cannot be done analytically, except
asymptotically, for e/cOO << 1. We will proceed to evaluate Fi for
that case, to leading order in e/coo.

Straightforward manipulation shows that

T 2
f coS @ r7z 49 =7+ Ofe/cq,] - (61)
- cosq) :
Coo
Q, = 0[(e/cyq)] (62)
] 00

q L2 3

2 e(m'g) Cop COSQ

2 {1+ 0le/eqq] (63)
9n poa(cpote /Za) .
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(m'g)2c005(1+7 Ce cosgp-Z-————-—E—Z——-—-‘-— cosy)
00 O+z /2a

= S f1+0le/eqq)
— = 1+Ole/c }
c 97T4H236(COO+ 2 /22)2 00

(64)

When one computes Fi to leading order in e/coo, clearly only the
last two terms in the right-hand side of (59) will contribute. Per-

forming the ¢ integration, one finds

F.=2£&
14

A 3 a
e(m’g) ey, {17 (¢9o?) dz
1

2 5 2 7f P2
97" a” p 0

1/2
g (cp0?)

~l6c 002 ' :
00 dz
35 f — 23 } (65)

or:

2 3 ‘
e(m‘g) COO [232 a 1/2
F.=p \

i 97r2a5p2 315 €00

214NZ

* 35 (c

a )1/2 kg b )] (66)
00 N2

to leading order in e/coo.
One can conclude that for small e/COO the force due to the
first order inertial effects will always tend to increase the eccen-

tricity ratio.
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For e/cOO of order one, the integration has been performed

numerically, and the results are listed below.

1
2
p(m'g)zc 3 (COOa) 27 (e/c )2
F = 0, | - 1 _7roo” o
2 2 4 14 2
971 n a 0 0 I1 00
2
z 3
+ cos @ t
Zac00>
3/2
(1+ Ce cosq) /
/ (1 + L cosgo> { 00 + OIO
L 17 % %00 €00 ” 1
7 Il ZZ
1+ cosg +
00 2acgy )
2 (1+ < cosgo)’j/2 < cosQ
e €00 €00
1+ cosy + cos@ ydg | dz
c T I
+ 8 00 1
35 ( o ZZ )2
1l + — cos @ + 53—
€00 Zacoo
2 3
P(m’g) COO ~
or: Fy = —o——7
97 u a
For a =2, o0 = 0.1:
e/coo B e/cOO
0.10 0. 086 0.91
0. 20 0.174 0.92
0. 30 0.263 0.93
0. 40 0, 354 0. 94
0.50 0. 447 0. 95
0.60 0. 540 0. 96
0.70 0.629 0.97
0.80 0. 705 0.98
0. 90 0. 744 0. 99

oopp‘ooooo

€
1+__.._ S +
——cosQ

L]

. 744
. 741
. 137
. 731
. 722

709
691

.663
.617

(67)

(68)
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~

e/coo I

0. 991 0.610
0. 992 0.603
0.993 0. 595
0.994 0. 588
0. 995 0. 582
0. 996 0.563
0. 997 0. 548
0.998 0. 529
0.999 0.503

The computed values of F are plotted in graph 1.

One can express the order of magnitude of F in terms of

p, p, U, €00 and a. The balance of buoyancy and pressure forces

requires that

SO

2
m'g =O[p0a ] '

, 2 7
@EJ%Z =c)|:U is]

€00
2 ¢ ; /
_ m' 00 1/2
Fi-C)[ékﬁrg) :;Z-(cooa) ]
3/2
F, =0 [puzaz(-cf‘—) ] (69)
00

From expression (33) for v, one can also obtain the first
1

order inertial correction of the viscous shear force on the sphere,

and its component Fv perpendicular to the velocity U. Only the part

of avz /OR that is odd in z will contribute to Fv and after differen-

tiating (33) with respect to R and substituting (36), (37) and (38) F
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will be expressed as

1
+(COOa)2 2 BVZ
Z
Fv = f N MR cos@adyp 3 dz
_(Cooa)z 0
i
(cgpa)® 2w (Q
=2 Lyl 2 2 6 2 z

y g g(zo 2+ 308 ¢ 15 N3 3)c0s0rdelg dz

(70)
FV will tend to increase I e l if positive. However, it can readily be

shown that
F c 1 :
00,2
+ =0 [(——) ] (71)

so that to leading order in coo/a the sign of the pressure force Fi
determines the question of whether the first order inertial forces

act to increase or to decrease ! e ]
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III. Approximate Sideways Motion of the Ball Under Influence of the

Inertial Force

If at any time during the vertical motion the ball takes up an
eccentric position in the tube, the inertial force Fi’ calculated in
Chapter 1I, will act to accelerate the ball in a horizontal direction,
such that the eccentricity ratio is increased. If u is the horizontal
velocity of the ball obtained by the action of Fi’ there will be a force
Fp, opposing the horizontal motion which for small enough u will be
linear in u. The condition to be satisfied for Fp to be linear in u is
that the leading order equations governing the flow be the Stokes
equationé. In that case Fp can be obtained from the pressure field

around the ball caused by pure horizontal motion of the ball (figure 2).

Cylinder

FIG. 2 SIDEWAYS MOTION OF THE SPHERE
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The boundary conditions on the velocity are

VR = ucosq at R =c (a)
(72)
VR T 0 at R =0 (b)
v _=using at R =c (a)
@ (73)
v = 0 atR=0 (b)
'
vz=0atR=candR=0 - (74)

where the flow region under consideration is again
i
z = O[(cooa)a]

The typical Reynolds number of this motion is
2

BVZ 0 v,
Re =O[v ] /0[v ]
z 0% BRZ
VZCOO?’/2
or Re = O[‘—‘T"_‘]
vaz2

From the continuity equation it will be shown that

1
2
szo[ual]

€00°
so that
uc
00
Re = >
1
uc Ulc,qa)?
If Re = v0°<<1 and Re* = —-—%« 1

Fp will be linear in u and can be calculated from the Stokes equations
with boundary conditions as stated above, since the Strouhal number

of the motion is of the same order as the Reynolds number.
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To leading order in coo/a, the flow equations then are

8VR 1 ov BVZ
R "3 ap 0w 0 (75)
82v
%%P_ L) (76)
4 9R
2
o v :
Sp _ . (77)
0z 2
oR
2
o v
_@ _ R
=W (78)
R 8R2

with boundary conditions (72) through (74).
1

With R = Ofc z = O[(COOa)E] and the boundary conditions

OO] ’

(72) on v one obtains easily from (75)

R’
P

v, = o[ual] (79)
0

Then, from (77) it follows that

1
'Cl.a,'Z
gg - o[t‘——7—C - 2] (80)

and from (87)

u
%BR = O[J*——Z] (81)
€00

Hence the pressure does not depend on R to leading order in coo/a.
The leading order term of p will depend on ¢ at z = 0, but must be
independent of ¢ at the top and bottom of the sphere and must conse-
quently be a function of both z and ¢. With 8/890 of order e/cOO, it

can then be shown from (80) that
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1 u
00 .
and the @-momentum equation (76) then gives

V(P = Ofu] (83)

To leading order in coo/a, the continuity equation (75) reduces

to

ov ov
R n A

58 T Bz - 0 (84)

which can be integrated over R from R = 0 to R = ¢ to yield

c BVZ
_({‘ 55 dR = -ucosg (85)

using (72).
Physically, the integrated form of the continuity equation has
the following significance: consider a volume element extending from

the ball to the tubewall, with width adgp and height dz (figure 3)

Fluid flux

Cylinder
wall

dz
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When the ball moves closer to the wall, fluid has to be spilled out of
ov c ov

@ 00 z]
o a 0z

will be spilled in the z direction, to leading order in coo/a.

the contracting volume, and since —;— = Q[ all the fluid
Equation (77) can now readily be integrated to give = Using

the boundary conditions, (74):

v, =7 32 R%-Re) (86)

Substituting this in (85) and again using the fact that v, = 6atR =c,

one obtains after performing the integration

1 9 3,
= % @R %) = ucosy (87)
or
op _ l‘ZHucost
5z = 3 (88)
C

To find the integration constant C(@) that results from inte-
grating (88) over z, one has to use the same method as employed for
integration of equation (42) (see Chapter II). In spherical coordi-

nates, (88) reads

1 op 12uucosg asind
a0 - 3 ' (89)

and using the Sommerfeld transformation as defined in (44) through

(46)

dp _ 12pucosg siny(l+ncosy)
dy a (1-n2)2

(90)

which can be integrated to give
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cosy+ —2— cosly

+ Clp) (91)
(1-n%)? v

-12pucosg |
a

'p:

Obviously p is an even function of y, and the integration con-
stant C(p) is determined by the condition that p does not depend on ¢

aty =+ 7. Hence

=~ 1
12pucos 4
Clp) = Ha Q . >
(I-n"7)
so that
n
_ -12pucosg (cosy+1) + i (cos2y-1)
a (l_nZ)Z
and using expression (58)
_ -bupuacos@ _ -buyuacosg °  _ -bpuacosy (92)
P= 2 B 2 -

C Z

(COO + 53 + ecosga)2 (C. T ecosp)

to leading order in coo/a.
The force résulting from this pressure distribution will ap-

proximately be

1
(ego)® 4 ,

F =-6pua2 f f ~cos @de 5 dz

p i - (c + ecos@)

(cooa) . -
or’ (Cooa’)a :
2 dz [ cos2 do

F =-12pua f oy f eQD 5 (93)

P 2 ¢ -7 (1+ = cosq)

c

The @ integration can be performed to give
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ig
T cosZQ EZ - (~ % sin 7% eZ eZ
- c - —= -
S o 240 = —Z——>7=7 . - e+ (225 -1D
-7 (1+ = cosg) e (l-e /?: ) 1+ —cosg@ c c -1

C C

with

1
1-2.2
D= 2 arctg ( C) tg—(g
2 1+8 2
1- =5 c
c
or 22
fw cosz(pd(p EZ : -:37 :l
=275+ 7372 (94)
-7 (1+ = ccsq))Z e2 e2 3/2
< (1-=3) |
C
and 1
(cgo2)

2 1 2 1 1
F =-247rpua/ N :ldz (95)
P Lz 27 2 1- e2/22)3/2
0

The z-integration cannot be performed analytically, but one can get

the order of magnitude of Fp by setting c = <o0°

Then:
2 2
. _24ma®/? | 00 . (5. Soo 1 (96)
P 3/2 2 T2 (1 2/ 2)372
€00 e c - e /cgo

Fp is negative, and hence opposing the sideways motion for

all e/coo,
5/2
_ =12mpua _

e.g. Fp = ———1“‘—3—’7—2—— for e/COO =0

€00

and Fp tends to -oo when e/cOO tends to one, and one can write
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5/2

, _ =24mpua
F, = ——CJ‘—3—7—2— A, (e/chq) | (97)

00

The inertial force was found in Chapter II to be

P(m'g) chy” ~
F, = 51 F(e/c
97 u a

OO)

where F represents an integral over z and ¢, and has the dimension
of length. According to Christopherson and Dowson, one can express

m'g/p in terms of the vertical velocity U:

: 2.1/2

m'g U97r a 1
= 8
N PN %)
00 —t =
c
ool
with I1 as defined in (23) and
71' .
e 5/2
I, = f (1 + ——cosp) dg (99)
-7 00
Now define
2
Ae/c,. )= —E 1 (100)
1 00 (C a)z I 2
00 2. e 7w
=+
™ ¢ 2I
0071
then Fi can be written as
2 2.17/2
_97 pU a
) 372 4i(8/¢gp) (101)

€00
The equation for the horizontal motion of the ball under the

action of Fi and Fp will then be
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or
2 2.7/2 5/2
du _97° pU a 24muua
00 00 -

Since A, and Ap are nonlinear functions of e, and u = de/dt,
equation (102) is in fact a nonlinear second order differential equation
in e(t), which cannot be solved exactly. However, it is possible to
get the order of magnitude of u by solving (102) as if Ai and Ap were
constants. The solution of the then resulting linear equation can

easily be found to be

A, 2 A 5/2
u :_.l 2_7T .E.U_E'. l-exp - P 2477}"'3' t (103)
A 48 T m, 3/2
P €00

if the ball is assumed to be at rest at t = 0.

When the value of e/cOO tends to one, the value of Ai remains
rather small (about 0.1), but as we saw the value of Ap will tend to
infinity. It follows that the horizontal velocity of the ball will tend
to zero when the eccentricity ratio tends to unity, which means that
the ball will be virtually locked in place close to the wall.

To find the order of magnitude of time t needed for the ball

to travel horizontally over a distance of order Cogs One can take
A 9x PU%qg

the order of magnitude of u to be X 748 m Typical values of
P ‘

Ai and Ap can be taken as

A, =0,06 and A =1
1 P

(approximate values at e/\:o0 = 0.5). Sot follows from
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¢ x 0,04 29 =00
p, a
or
€00 25
£~ ; (104)

In that time, the ball travels vertically over a distance s

C

_25v "00

s U a

If s/a is of order unity, one can conclude that the ball reaches
the wall while it travels vertically over a distance of order a, and
then stays close to the wall by virtue of an infinite Stokes drag force

in a horizontal direction. However
= 2 LY ‘ (105)

is of order 50 for most of the experiments performed by Christopher-
" son and Dowson.

When the Reynolds number increases, the character of the
flow will change, but it seems reasonable to assume that the inertial
force keeps growing till it reaches the potential flow limit, and that
s/a decreases when Re* increases. At the value of Re* where in
the experiments the ball starts bouncing against the tube wall, the
Reynolds number is too high to make s/a from expression (105) a
fair measure of the distance travelled in a vertical direction during
the time needed for the ball to travel a distance of order €00 in a

horizontal direction. There is a Reynolds number associated with

s/a, namely
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Ua a3 . pewl )3/2

€00 €00
but its values at the stage where experimentally the bouncing insta-

bility occurs are spread over a range of 102.
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IV. Potential Flow Solution

If the Reynolds number as defined in Chapter II is very high
one can assume that the vorticity of the flow is confined in boundary
layers on the sphere and cylinder wall, thin compared to the gap
width., In that case, the main flow in the gap region may be consid-
ered to be potential flow, and the pressure distribution around the
sphere can be derived from the potential flow solution.

The condition for potential flow is that the boundary layer

thickness & is small compared to <o0° So

5 . hd << 1

1
00 U(acoo)a

C

or
: 1
2
-%?1 > > (—é-z-‘—-) (106)
00
The problem then reduces to
2

Ve =0 (107)
where

v=Y¢ (108)

with the boundary condition

0at R

©-
=)
I
0
N
7]
0
0

or

<

-
i
o
&
~
1
)

(109)
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From the continuity equation (107) it follows that

_Biz_ and .?EB_
oz oR

are of the same order. Hence, like in the low Reynolds-number case

1
a 2
¢ =0[<I> ( )] (110)
z R €00
However, to satisfy irrotationality we must have

P2 _ 2

3R ~ Bz (111)

or

Cg0.2
¢z=o@R<a)]
C

unless (j)z is not a function of R to first order in (—{—9—), in which case
‘ c
(111) can be satisfied by the next term in an expansion in

00
5 for (j)z.
Hence, restricting the analysis to the terms of leading order in

coo/a, like in the low Reynolds number case,
9 -
3R (@) =0 (112)

must be satisfied by a valid solution of the potential equation.

We will now proceed to find such a solution, in the form of a
Fourier series, the coefficients of which are series as well. The
boundary conditions (109) are clearly satisfied by a ''similarity

solution'':

=R
¢R“c

N

¢ (113)
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Now (112) and (113) imply

d ,ca _ca ca _
_é'R'(’sz'd)R)“ﬁi(pRR'Rmzz ¢g =0 (114)

The potential equation (107) reads

1
2 ¢<p(p+¢zz=

1
.S t ——
PrRR "I® PR (@-R)

or to leading order in coo/a

1 -
¢)RR+¢ZZ+?_~¢¢¢ =0 (115)

From (113), (114), (115) one then finds

1 ca c

_ﬁ¢z+-f{-z_¢zz+Rza ¢gpg0=0 (116)

The angular velocity component ¢g0 must be symmetrical and
periodical in ¢, so that one can write (pqa in the form of a Fourier

sinus series

[0.0]
9y = ), (R, z) sinng (117)
n=l

and consequently

[0.8]
¢ =- ), 8,(R2) 22 4 g (R, 2). (118)
n=1

Substituting (118) into (116) one obtains

2
(- i %, cosng | Bgo + (ctecosp)a oi o8, cosng
R 0z n 0z Rz - 9 2 n
=1 n=1 z
Bzg ~ w
0 +
+ 8Z2 )+ < g;:sgp g, ncosng = 0 (119)

n=1
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It is now clear that the last term in (119) is of order coo/a

times the other terms and hence can be neglected. With
cos@cosng =%{cos(n+l)go + cos(n-l)(p}
Equation (119) then reads
Oi agn cosngpJr _ j_a_ Oi n cosng +
0z z
n=1 n=1 8z
2 2
~_ 0g 9 g
a 0 a n 1
+ E—Z— 5 - %— z ) fz-ﬁ{cos(n+l)(p + cos(n-l)(p} +
Jz dz
2
9°g
ea 0 _
+ - 5— Cos@ = 0 (120)
0z

2 2
Bgo ca 3 gO ea 9 g1 _
== == =0 (121)
0z Z 2 2z
oz dz
For n=
2 2 2
%) Ta 98] o 3%a 98 1.[Za 28
B2tz L2 =% 72 "4=|7z 2z (122}
oz c 0z c )
and the general equation, for n > 1
2 2 2
Sgn+__8g __e]ca n agn—l ca n 8gn+1
dz Z E)ZZ ol K0 2(n - 1) azz z 2{n+l) 8ZZ
(123)

The conditions under which this system is to be solved are:

(I)Z # function (R)

2n
‘s ~ 2
(b) the flux condition 6[ (pzcad(p =~ Ura (124)
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(c) qb(p:Oife:O, 50

(125)

gn=01fe=0fora11n21

The equations (121) through (123) form a system of an infinite

number of equations with an infinite number of unknown functions g,

The system can be solved, as will be demonstrated, under the assump-

tion that
e
g =O[ g, _ ] (126)
n €00 n-1

Condition (125) implies that g, must be the particular solution

of (122), and g, the particular solution of (123) for n> 1, so that

=0}
€n = O[COO (8n-1 gn+l)]

for n 2 1. Hence the assumption (126) is consistent with the system.

For e = 0, the full solution can simply be obtained from equation (121),

which then reads

g ~, 98
e . (127)
z z 0z

The meaning of the second index in g0 0 will become clear later.

Writing (127) as

2 2
0 gO,O/8Z - -z/a
9 0z - 2
g9, o/ cogtz /22
it is clear that
og
8OZ,O - Az - % (128)
+z°/2a c
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where the constant A is to be evaluated from the flux condition (124).
For non-zero eccentricity one has to solve the complete sys-
tem (121) through (123). For small values of e/coo, one can find a

first approximation of 8g1/8z, by substituting (128) into (122):
2

og 98
1,0 c 1,0 _ -eA

5z Tz T2 - =2 (129)

0z c
the particular solution of which is easily found to be

og
1,0 _ eA

5o = —;C—z- | (130)

The first correction of Bgo/az can then be obtained from (121), after

substitution of (130):
2

%0,1, %a P80,1 _ cfa (131)
0z z 8z2 ;3

Again BgO, 1/E?z = 0 for e = 0, so 3g, ’ 1/8z must be the particular

solution of (131):

%p.1 %A
9z - 223

(132)

In the same way one can continue to compute the first and
next approximations of g, and the forms that one obtains suggest

a general solution of the form:

og 00 0g (o0}

n _ n,f _ A e

22 = LT Lk, 5 6 (133}
£=0 § = C

The validity of this expression can easily be shown by induction from
equations (121) through (123), and in doing so one obtains recursive

relations for the constants kn Q:
b4
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| 1

ko g =2K1,0-1 (134)

Kk, =k Ly (135)
1,0 =%0,0 ~2%2,0-1

ko= "0 K LS (136)

n, = Z@-1) “n-1,2 ~Z(nFl) “n+l,2-1

forn>1

Using (118) and (133), one then can write the z-component of

the velocity as

. o nt24 o 21
¢Z=_Z[C_°%£<£z ;knzé(—f}) §]+Zk0£§(f—> (137)
n=1l 2=0 T e \c £=0 ' ¢

For such a solution to exist, kn 2 must be bounded for either one of

7

the indices n,{ tending to infinity while the other one is fixed, since
e/z < 1. The details of the convergence of the series in the right
hand side of (137) are given in the Appendix.

's known from (134)

Finally, with k 1, and all other kn

0,0 - N
through (136), A can be determined by the flux condition (124).

Straightforward integration of ¢z. ca gives

_ -Ua 1
A= = 57 (138)
=)

OZIO

k -
0,2 =~

£=0 C

- The pressure distribution can then be obtained from Bernoulli's

equation

ov
g% = v z (139)

z 0z

1
P
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ov ov c ov

. R vQ Z 00 .. z
since VR SR and 3 ———ago are of order times vz 57
2
PV,
So pt5— = const

along streamlines and since all streamlines come from the undis-

turbed, @ independent region, one can define

pVZ
p = —t (140)

with v, as in (137).

The resulting force on the sphere can be approximated as

before _21_
(cOOa) 27
F :/ N 3’/' pcosp ad(ps dz (141)
5 .
- Cooa) 0

How many terms one wants to keep in v, depends on the value of
e/c00 and on the required accuracy. For instance if e/c00<< 1 and
one wants F to leading order in e/cOO, one easily obtains from the

general formulae

v = -I~Ja y £ U cos@ (142)
z ~ ~
2c c 2c¢
2 2 2 2
-pU U
P = £~2a + P ~§' ecosgo (143)
8c
and
o pU%%re |17 172 3z 172 1
= + arctg —
7] 3% _ 5/2 ' 4 572 7z
00 €00

(144)
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V. Experimental Work

a) Apparatus

The apparatus used for the experimental work consisted of a
long glass tube, vertically mounted in a f}*ame, in such a way that it
could be turned 180° about a horizontal axis.

Three different tubes were used, two of \x;'hich (tubes number
I and 1I) were standard tubes with an unknown tolerance on the inside
diameter. Tube number IIl was a precision bore tube, with a maxi-
mum tolerance of 0.1% on the inside diameter. The values of length
and average inside diameter of the tubes are listed in Table VL

A number of ping-pong balls were used as spheres. The
sphericity of the balls was crudely checked with a micrometer and
only those with a deviation of sphericity of less than 3% were used.
Balls number 4 and 5, used in the precision bore tube, had a devia-
tion of sphericity of less than 0.5%. The values of the diameters of
the balls are listed in Table VIL

To change the upward velocity of the balls in the tube without
having to change the viscosity of the fluid, the weight of some of the
balls was increased by inserting solder wire through a little hole in
the ball side , which was then sealéd, This of course changes the
inertial moments of the balls, but the flow in the gap region and the
forces acting on the ball will still be the same.

When a ping-po‘ng ball remains for some time in the fluid,
the material of the ball side will absorb some of the fluid. The in-
crease of weight caused by this effect during the time needed to run

the experiment at a certain weight of the ball appears to be negligible,
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even more so when the weight is already increased by the inserted
solder wire. However, in the experiments with the precision bore
tube, the clearance ratio c/a was very small and the motion seemed
almost critical® already with an unweighted ball. Therefore, the
effect of fluid absorption could be used to increase the weight of the
ball and decrease its upward velocity slightly. After every meas-
urement, the ball was left in the tube and the experiment was repeated
after some time. The absorption of fluid did not appear to have a
measurable effect on the sphere radius a.

The fluids used in the tube were mixtures of various amounts
of glycerine with water, The viscosity of each mixture was deter-
mined with a precision viscometer of the falling ball type, accurate
up to 1%. The specific gravity of each mixture was measured with
a pycnometer and a precision balance. The balance was also used
to determine the weight of the spheres for every run, except in the
case of the experiment in the precision bo’re tube.

b) The process and the observed phenomena

The lower end of the tube was closed with a rubber plug and
the tube was filled with fluid. The viscosity and specific gravity of
the fluid were determined beforehand. Then the sphere was inserted
at the upper end of the tube, which was then closed and the tube was
turned around. Intervals of 5 cm had been marked on the tube wall,
so that the ascent velocity could be measured.

In the experiments with tubes I and II, the tube was turned

*See paragraph b.
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three more times at each weight of the ball, so that an average over
four measurements could be taken. After that the ball was taken out
again, more solder wire was inserted, and the experiment was re-
peated.

For the experiment with the precision bore tube, only two
measurements at a time were done, to make the time, needed for
the measurements at a certain weight and hence the variance in
weight smaller. The ball was now left in the tube, and the exper.i—
ment was repeated after roughly half an hour.

When the Reynolds number was higher than a critical value
(Reir), the ball obtained a spin velocity about the vertical axis,
the direction of which appeared to be random. Also, it bounced
from wall to wall during the motion. The spin velocity was measured
by timing a certain number of complete rotations of the ball, and the
bouncing frequency by timing a certain number of times that the ball
bounces off the same side of the tubewall. When Re*< Reir the
motion appears to be smooth. Both the spin and the bouncing dis-
appear, and the ball goes up in a straight line.

When the Reynolds number is very high, or the ball very
light, the bouncing frequency is too high to be measured. In the
tables of measurements ‘in paragraph c of this chapter one can see
that the bouncing frequency for balls 2 and 3 could only be measured
when the weight of the ball was roughly over 20 grams. For balls
4 and 5, in the precision bore tube, the bouncing frequency was too
high to be measured all the way to the critical Reynoids number,

ou, sk
where the bouncing disappeared. With Re* tending towards Recr
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from above the bouncing frequency decreases, to go to zero rather
} % .
suddenly when Re < Recr' The spin velocity first becomes very
erratic in magnitude, sometimes even reversing its direction during
the upward motion. It disappears completely with the bouncing, for
% *
Re < Re _.
cr

In all cases where there is spin, the spin velocity seems to
increase when the ball bounces against the tubewall, and to decrease
again in between walls. However, due to the method of measuring
the spin velocity, this observation could not be established as a fact.

A possible explanation of this behavior is that the ball rolls
over the wall as it were, while it bounces off the wall, which will be
true if the direction of approach does not coincide with the ''direc-

tion'' of the eccentricity (¢ = 7 in figure 1), see figure 4.

FIG. 4
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It is clear that the magnitude of such a spin-torque will depend
on the velocity of the ball in the z = 0 plane and on the angle a between
the direction of approach and ¢ = 7. Since the velocity in the horizon-
tal plane depends on the vertical velocity U, this interpretation is
consistent with the decrease in § with U on the average.

The occurrence of the bouncing instability at a certain value
of Re* can probably be explained by the fact that the inertial force as
computed in Chapter II, has to grow as a function of Re*, the effective
Reynolds number in the gap region. At the critical value of Re*, this
inertial force gives enough momentum to the ball to make it bounce
against the wall before it is brought to rest by the force, opposing
the horizontal motion.

The experiments, due to the lack of accuracy resulting from
their simplicity have to be considered as 'qualitative rather than quan-
titative. However, they show that at an "'intermediate'' Reynolds
number, where theoretical analysis would involve the full nonlinear
Navier-Stokes equations, an instability of the described nature sets in.

Finally, we have to point out that in the experiments I through
III, the freedom of spin about a horizontal axis was suppressed by the
presence of a weight (the solder wire) inside the ball. But the ex-
periments IV and V, in which spherical symmetry was preserved,
suggest that this is not a very important factor for the occurrenée

of the instability.



~-44-
c) Data
In the following tables, the weight of the ball is listed together
with the average values of the upward velocity V, the spin about the
vertical axis 2 and the bouncing frequency fb at that weight. Also

which tube and ball were used for the specific experiment is indicated,

and the values of the viscosity v and density p of the fluid used.

I Tubel, balll, v =2.1 x10™% cmz/sec, p=1.12 gm/cm3

my_,; (gm) U(cm/sec) R (rad/sec) fb(#/sec) coo/a =8.5%
27.190 2. 04 0. 50 1.55  cyp =0.16 cm
28.176 1.71 0. 31 1.22
28.765 1.56 0.12 0. 90
28. 972 1. 45 0.28* 0. 81
29. 157 1. 35 0.29 0.77
29. 384 1. 17 0.29 0.67
29. 544 1. 06 0. 26 0.62
29. 645 0. 975 0.24 0.58
29. 747 0. 862 0.18 0.53
29. 807 0. 819 0.17 0.51
29. 897 o 0.725 0.15 0. 48
29. 956 0. 640 0.11 0. 44
30. 008 0.610 0.11 0. 42
30. 081 0. 492 0 0. 00

Rather erratic, deviation from average value above 15%
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cmz/sec; p=1.162 gm/cm3

fb(#/sec) Coo? = 10%

Ped et el e b e fed e e el e NN
e + & e« e s« & e e e e e a

€00

=0.19 cm

II Tube II, ball 2; v =4,35x 10—2
my ., (gm) U(cm/sec) Q(rad/sec)
. 2.490 5. 45 2. 31
2.795 5. 42 2.29
3.413 5.50 1,77
4, 356 5. 43 2,02
5. 309 5. 33 2.00
6. 577 5.13 1. 84
8.138 4. 91 1.65
9.715 4.76 1,67
11,288 4, 65 1. 31
13.197 4.53 1.15
15. 090 4,21 0. 87
16. 972 3. 96 0. 60
18. 874 3.65 0. 41%
20.761 3. 37 0.25
22. 665 3. 04 0.14
24,590 2.71 0. 33
26. 448 2. 36 0.17
27.166 2.14 0.25
27.792 1.98 0.17
28. 230 1,84 0.14
28.588 1.63 0. 043
28, 872 1.59 0. 027
29,324 1.44 0.0
29.633 1.34 0.028
29.912 1.24 0.0
30,180 0. 94 0.0
30. 288 0. 82 0.0
*Spin becomes very erratic; deviation of 20% and more from average
value
*

%
For higher velocities, fb too high to be accurately measurable
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III Tube II, ball 3; v = 4.35-10"2 ¢cm%/sec; p = 1.162 gm/cm>
Mha11 v f2 5 /2 = 6%
2. 326 5.78 2.49 - COO=O.18 cm
3.094 5. 57 2. 48 -

3,726 5.58 2.24 -

5. 632 5. 40 2. 02 -

6. 580 5.22 1. 80 -

7. 842 5. 17 1.79 -

9. 422 5. 00 1.61 -

11. 010 4,84 1,55 -

12.593 4. 66 1.15 -

14. 486 4. 47 1.03 -

16. 383 4.18 0.70 -

18. 299 3.94 0.53" -
20.222 3.50 0. 37 -
22.111 3. 21 0. 24 2.23
24. 356 2.68 0.12 1. 84

26. 325 2,33 0.16 1. 56
27. 057 2.04 0.13 1. 49

27.612 1. 82 0.093 1. 35

28. 200 1. 81 0.10 1.30
28. 606 1.75 0. 094 1.26
28. 989 1. 60 0. 043 1.18
29.273 1. 46 0. 00 1.14
29.791 1.12 0.083 1. 05

30. 066 1.03 0. 081 0.939

30. 370 0. 853 0. 00 0. 893

30. 431 0.775 0. 00 0.0
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Tube III

Measurements in the precision tube;

2 cmz/sec; p=1.078 gm/cm3;

o0 = 0.024 cm coo/a =13%

wobble disappears at U = 0. 54 cm/sec

IV: Ball4, v =1.28x% 10"

V:  Ball 5, v = 0.8l x 10"% cm?/sec, p = 1. 035 gm/cm>; c/a =

oo = 0 018 cm coo/a = 0. 95%
wobble disappears at U = 0.29 cm/sec
Vi: Tube no. d
I 2. 05
I 2.075
II1 1. 907
VII: Ball no. a
1. 890
2 1. 886
3 1.894
4 1.883
5 1.889
Critical Reynolds numbers
Experiment # Reir
I 12.9
I 11.3
111 10.1
v 9.0
v 6.6

The experimental data are plotted in graph 2, giving and fb as a

function of Re*.
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Appendix

The convergence of the potential flow solution

Consider kn 2 to be an element of a two-dimensional matrix

with n denoting the row number, and £ the column number. Repeated

executing of relation (136) then gives a relation for element kn in

4
terms of the first (nt1) elements in the preceding column:

ko, 241 = Z@-1) Fn-1,0-1 " Z@rD) Sal 2

(- iy n [-(m-1) n-1 ] 1, n
= 3) 50 [zm-z) kn-2,041 = Zn En, o) T k

2)n+l nt+l, 4
2 2
_ 1 n -1.4n 1, n
=032 53k TR kgt D T R
and after j steps
- lygn 1g_n_
kn,fz+1 =(-3) n-j kn-j,£+1 t-3) n-ji2 kn-j+2,£

lj'1 n
t 3 5573 Rasjes, s

1.2 l, n
oo gkt R T R @

Let n-j =1 and use (134) and (135) combined:

1 1
ki,041 251,80 “3K2, 041
to obtain from (I)
Rl ntl l1<1-j+2n
Kpogv1 50020 okt L3 Sk (I1)

for n>1 and all ¢.
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To evaluate kn 0 for n=1, (135) and (136) can be written as

kl, 0= kO, 0 (I11)
Kk .l n g | (IV)
n,0 " "2 n-1 "n-1,0
Then kl 0= 1 (see (128))and (IV) can be written as
1J n
km, 0" (- _2_) n-j kn-J, 0
_ 1.n-1 K
=(-3) nk
" _ ] n-1
or n, 0 - (“ 'Z) n . (V)

With expressions (134), (II) and (V) one can then evaluate all

the matrix elements kn T column by column.

E. g.,
+1 ntl n-j+2 j-1
_, 1" 1,074 137
kn’ 1~ (" _2’") nkl, 0 +JZI ("' "2_) '3 (" 'Z) J
1 n+1 1 n+l
= (- E) n+ (- 2—) (ntl)n
1 nt+1l
or kn,l =(-3) n+t2) for n=>1 (VI)
1 ntl nitl 1 n-jt+2 n 1 i+l
Next k 2 = (- E) nkl,l + (- -2—) 7(" ‘2—) j(j+2)
i=1
1 n+3 p.nt3 ntl
=3n(-3)  +(-3) 2n(ntl) + njzl j
m B (m+1)_Bk+l(O)

Now 'Zl s ookl — (VD) (see [2])
J:
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Where B

Kk 1 is the Bernoulli polynomial of k+1°t order,
k+1 ;
Biy1 &) = iZO By, i * (VII), withb_ =1

For k = 1 one obtains

nt+l _ B (n+2)—B2(0)

By _ (ntl)(n+2)
L 1= 2 = 2
j=1
and hence
1 n+3 nf 2
k5= (-3 —Z-{n ¥ 7n+ 12} (IX)

The expressions (V), (VI) and (IX) suggest a general form
for kn, s

n-1+24 2 7.1

= (- L n L-i
kn,l = (- 3) 7 {n + a, | n +——5-+a£’in +-«—+a£’£}

(X)
Expression (X) can be shown to be valid by induction; substitute (X)

into (II) to find

, o+l 120y 1
kpge1 =3 nl-3) +17'—:1+ a,i( "
i=1
ntl n-j+2 j-1+24 :
1L a 1 J £-i
+JZ:;1 {(“ 2) j (" 2 ll (J +"'"+a'£,i3 +"—+a‘£,£)}

ntl

A A i
+Zl(3 tomemtay L T deaoot a ﬂ):]
J= 9 H
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Using (VII) one obtains

. iy l)n-1+2(lz+l)£_ L { . . B£+1(n+2)'B£+1(O) R
n,£+1 7' 2 2! i; £,i £+1
ra, Bp0r2-B,O) By_i1®2)-By 41, 00)
’ /] T %, 1 -i+1
+ (n+1)a£ ,l]
Only the Bernoulli polynomial of order £+1 will give a nﬂJr1 term.
Since b£+1,1+1 = 1, one finds
n,f+1 2 @+1)n £+1,1 £+1,2+1
(XI)
where the a1 i's can be found by evaluation of the Bernoulli poly-
nomials, and consequently (X) is true.
Clearly, for fixed £ and large enoughn
1 n-1+24 nl+1 .
kn,l < (- -7:) VI *n (X11)

which tends to zero for n tending to infinity.
The convergence for { tending to infinity and fixed n is harder
to prove since one must evaluate all the a, j'

sary to know the values of the coefficients of the Bernoulli polynomials

s, for which it is neces-

bi i A general form for bi j is not known. However, if we assume

that none of the a, J.‘s grow faster than 2!, k_, is bounded for £ tend-

ing to infinity and n fixed, and the series in the right hand side of

(137) is convergent,
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