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ABSTRACT

The 1ift on an airfoil placed in a velocity field of pure super-
fluid has been found to vanish (i.e., to be at least two orders of mag-
nitude less than the classically expected value) for sufficiently low
flow velocities. This result indicates that superfluid helium II can
undergo pure potential flow without dissipation. The classical viscosity
boundary condition at the trailing edge (Kutta condition) Qoés not apply.
Avove a (temperature dependent) critical velocity, Llift appéars‘ How-
ever, even at the highest velocities obtained the observed lift lies
far below that expected classically. The critical velocity found from
this experiment rises near the lambda point in qualitative agreement
with comparable experiments, but fails to show agreement in certain
other respects. A "superfluid wind tunnel” capable of developing the

required flow is described.
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INTRODUCTION

A variety of experiments have shown that the flow properties
of helium II are unique. Most of these experiments may be understood
in terms of the two fluid model of helium proposed independently by
Tiszga (19) and Landau (1h4), wherein liquid helium coocled below a
transition temperature (lambda point) is considered to be composed of
two interpenetrating fluids (Appendix I). One of these, the normal
fluid, possesses the attributes of a classical viscous fluid while
the other, the superfluid, exhibits no viscosity effects whatsoever
and should be capsble of pure potential flow without dissipation.

Numerous experiments have confirmed the essential correctness
of this proposal (2),(6),(9),(10),(11),(2L). Helium below the transi-
tion  temperature (helium II) can be forced through capillaries with
an extremely small attendent pressure drop provided the velocities are
kept sufficiently low. Disks oscillated in s helium IT bath show damp-
ing due to normal fluid alone for amplitudes of oscillation below some
critical value. At larger amplitudes the flow properties of the super-
fluid deteriorate and additional damping appears. However, with the
exception of some recent experiments with rotating helium (9) no dem-
onstration has been given which shows conclusively that the viscosity
of the superfluld component is identically zero. It has only been
shown to lie below a particular limit.

Tt is therefore of considerable interest to devise an experi-
ment capable of indicating qualitatively that the viscosity vanishes

identically as distinguilshed from being immeasurably small.
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- The mechanism which provides lift on an airfoll allows such an
experiment. Circulation of fluid sbout an airfoll creates a Bernoulli
effect reduction in pressure on the upper surface over the lower sur-
face. The effect is independent of the viscosity of the wmedium and
doeg not require compressibility. However, the preseance of the circu-
lation is due directly to viscosity, the interaction occurring through
2 boundary condition known as the Kubtta condition.

In the absence of viscous effects the energy in any region
will be minimized for zero circulation. Therefore, Lift will not de-
velop sbout an airfoil. Should there be present any viscosity whatever
then dissipative forces acting et the sharp trailing edge of an airfoil
where the local velocities are highest will create circulation Of such
a magnitude as to make the trailing edge velocity vanish. The presence
of viscosity alone controls the circulatiom. Its size does not enter.
The flow pattern in the limit as viscosity approaches zero (n— 0) is
fundamentally different from that appearing for viscosity igentically
ZEYO (750),

The present experiment utilizes this fact to show that for
sufficiently low superfluid flow velocities the viscosity of super-
f£luid helium II does inm fact vanish. As the flow velocity increases
dissipative effects eventuslly appear which cause circulation and hence
1ift. The observed lift can be qualitatively understood im terms of 2
critical velocity and a modification of the classical Kutta condition.
The temperature dependence of the observed lift and critical velocity

thus far have no theoretical explamation.
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During the course of experimentation Feynman proposed that the
experiment might reveal the existence of gquantized vortex elements
proposed independently by Onsager (15) and Feynman (8). Ac investi-
gation was carried out in an unsuccessful attempt to demonstrate the
effect. Instrumental difficulties preclude a definite conclusion as

to the applicability of this theory to the present experiment.



1.1l SUPERFLUID WIND TUNNEL

a) Description

The experiment was performed in a "superfluid wind tunnel” (16)
wherein the normal fluid component of helium II could be immobilized
while a uniformrfldw of superfluid was established. This dynamically
synthesized a system at absolute zero, for the normal fluid (excita-
tions) could have no effect upon the wing assembly under investigation,

(Fig. 1) illustrates the tunnel assembly, consisting of the
thermally isolated region (R) surrounded by the vacuum jacket (V) and
closed at the top by a carborundum seal (S) and at the bottom by a
seal (S') of carborundum or other material. Heater (H) above the upper
seal provides the motive power for the tunnel by an application of the
fountain effect. The superfluid passes upward past the heater where
it is partially converted to normal fluid. A mixture in approximate
thermal equilibrium with the surrounding bath passes up tube (T) and
falls back into the main bath at level (L).

The main test section consists of & cylindrical region 3.0 cm.
in diameter and oflength 7 to 9 cm. (depending on the sizes of the upper
and lower seals). The vacuum region prevents heat currents from dis-
turbing the flow pattern within the test section. An external light
shield minimizes radistion effects. Smoothing devices consisting of
thin carborundum plugs, fine mesh screens, lengths of parallel tubes,

or some combination of these prevented flow instability. The parallel
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tubes seemed best in this respect.*

In certain experiments the test section was constricted to 1.0 cm.
by means of tapered lucite inserts. This has the effect of increasing by
a factor of nine the maximum flow velocity attainable. For ease in
mounting wing assemblies glass sleeves of 2.6 cm. inside dlameter were
occasionally used.

b) Theory of operation

If there are no heat leaks a quantity of heat (H) (cal) applied
to the heater causes the helium level above the heater to rise to a
fixed height determined by the fountain effect equation. A continuous
heat input (é) (cal/sec) creates entropy and hence normel fluid. Since
normal fluid is incapable of penetrating the carborundum it must move
upward. In terms of the fluid entropy (s) (cal/gm-deg), demsity (fD)
(gm/cc), temperature (T) (°K) and the tunnel area (Ay) (cm2), the normal

fluid particle velocity above the heater (V cm/sec) becomes

H
V % s
sThy (1)
Within the test region (R) only superfluid can be in motion,
while above the upper barrier (S) superfluid is converted to normal

fluid at such a rate that the mixture travels with composite velocity

(V) (cm/sec). The normal fluid concentration (/gn/'f» corresponds to

*  An overall check of the tunnel configuration for uniformity of flow
was carried out using water colored with ink. It was found that without
smoothing devices at the tunnel throat the flow was highly irregular,
whereas with them the flow was smooth and uniform and objects “downstream"
from the test section had no influence on the pattern at the test sec-
tion. Because of the low Reynolds number of this test this camnot be
considered a8 positive indication that the flow of helium II would also

be uniform.

]
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a temperature approximately equal to that of the surrounding bath
(slightly higher due to the fountain effect), and the two fluids must
therefore travel with identical velocities. The superfluid velocity
(vg) (cm/sec) within the test section may be related to the velocity
at the heater by momentum conservation:

/9 Vs = sV + SV =PV

so that

&

v = PPV = 7Z§§§E€_ (2)

vwhere /2 2P/ (gm/cc) represents the superfluid density. A graph
of equation 2 (fig. 2) illustrates the theoretical dependence of super-
fluid velocity upon temperature.

The temperature of the system is measured in the usual way by
means of the vapor pressure. The cryostat temperature must be main-
tained accurately constant because of the strong temperature dependence
of the superfluid velocity.

¢) Pitot tubes

If there were no sbtray heat leaks the velocity could be deter-
mined directly from the power input. In practice this method is not
gufficient for heat leaks inevitably occur. The thermal conductivity
of the glass and the carborundum are finite. Normal fluid leaking
backwards through the carborundum carries away heat. IEvaporation from
the tunnel outlet is a major source of loss. As helium pours out of
the tunnel it may establish a path to the main bath down which heat

can propagate by second sound. Film transfer introduces a further

loss.
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As the power input to the system is varied to change the velocity
the temperature of the heliuﬁ bath fluctuates, so the velocity must be
calcuiated at each point. Even with an autoﬁatic pressure controller
fluctuations are appreciable. For large power inputs the flow of super-
fluid through carborundum saturates so the temperature at the heater
riges far above that of the bath. Near the lambda point boiling at
the heater may completely obviate a calculation based upon power input.

It therefore becomes desirable to find an accurate independent
means for measuring velocity. The pitot tube (fig. 3) meets this need
for it provides a measure of velocity independent of density. Static
and dynamic pressure measuring tubes are mounted at the same level
above the heater (H), so that in reading the difference (h) in the
liquid levels frictional effects are avoided.

Assuming both superfluid and normal fluid components to con=
tribute to the pressure reduction in proportion to their demsities, the
velocity past the pitot tubes (Vp) (cm/sec) may be found from Bernoulli's
equation to be

vy = (2gh)%
where g = 980 cm/sec and (h) is the above level difference in centi-
meters.

Introducing the cross sectional area at the pitot tubes (Ap)
(cm?) the tunnel velocity becomes

vg = (P/Pg) (Ap/Ay) (2gn)2
For the tunnel used throughout most of these experiments A, = 0.0616 cm®,
2

Ay = T.07 cm® and hence
1
Vg = 0.39 (P/Pg) b2 (3)
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The validity of this application of Bernoulli's equation to helium II
was established experimentally to within about 5% by calibration based
on the filling time of a reservoir of known volume (R, fig. 3).

The mechanism by which the pitot tubes operate in helium II
has not been fully investigated. Ezperimentally the system acts as if
both superfluid and normal fluid contribute classically and additively
to the observed level difference. However, a fluid counterflow probably
exists within the pitot assembly due to heat going into evaporation
(see e) below). Such flow would be expected to cause a spurious contri-
bution to the observed level difference (h), for the heat would be car-
ried by normal fluid in the same manner as occurs in the "Rayleigh Disk"
type of counterflow tummel (16). Experimental calibration provides
adequate Jjustification for the use of pitot tubes as the basic velocity
measuring device in the present experiment for it shows that other effecis,
if they occur, are either not important or are cancelled by other effects.
A detailed investigetion of the behavior of pitot tubes in helium II
might well prove profitable.

d) Fluctuations

At high tunnel velocities rapid fluctuations are observed in
the levels read in the pitot tubes. Their amplitude increases with flow
velocity to a maximum of several millimeters at the highest velocities
obtained and for the lowest temperature of about 1.3°K. No quantitative
study was made of the temperature dependence of the fluctuations, al-
though it was observed that at higher temperatures their amplitude de-
creased. The fluctuations are probably coupled to the main test section

of the tunnel where they may be observed as instability of the systenm
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under test, although possibly other causes contribute more strongly to
these instebilities. Should the amplitudes of oscillation at the pitot
tubes correspond directly to changes in the tumnel flow they would imply
variations of up to several millimeters per second in the superfluid
flow velocity.

It was suspected that the effect might be caused by boiling on
the resistor or by helium dripping erratically from the tunnel into the
main bath thereby causing intermittant thermal contact between the bath
and the heater. Modifications of the resistor shape and of the tunnel
had negligible effect upon the noise. No method has been found to ap-
preciably change these fluctuations, which probably constitute one of
the major difficulties in the operation of the tunnel, since random
fluctuations in the orientations of the wing assemblies Limit the ease
and accuracy of measurement. These noise effects are felt to be the
prime cause of the inconclusive results of the investigation into the
quantization of 1lift (see Part III.3).

e) Heat leakage

Using the pitot tube as a standard the accuracy of velocity
computed from power input could be ascertained. In (fig. 4) we plot
the superfluid velocity computed from power input versus that found
from the pitot tubes.,” The dashed curve has been drawn with unity
slope, but with the ordinate chosen for optimal fit to the data. The
axis intersection at 0.23 cm/sec corresponds to an "excess" heat input

producing no measurable mass flow at the pitot tubes (i.e. the power

The velocity given is that possessed by the superfluid immediately
before entering the carborundum barrier.
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input necessary merely to hold the helium at a fixed height in the
reservoir, with no overflow) Data are plotted for several representa-
tive temperatures (indicated by different symbols) corresponding to a
wide range of superfluid densities. Although the heat input producing
a superfluid velocity of 0.23 cm/sec varies widely with temperature
(fig. 2), all observations lie on the dashed line. This result holds
to within an experimental error of about £ 10% over the eﬁtire tempera-
ture range investigated (1.3°K to 2.1°K).

The reason for the correspondence of the "excess™ heat to a
fixed superfluid velocity remains unexplained. At a fixed temperature
evaporatioﬁ from the reservoir (R, fig. 3) could suffice. The approxi-
mately fixed height of the reservoir above the helium bath implies that
a temperature difference (due to fountain effect) exists between the
bath and the reservoir. This implies an excess vapor pressure above the
reservoir and an attendent evaporative heat loss.* However, the tem-
perature dependence predicted by such a model fails to agree with that
observed, so that some additional and at present unknown mechanism must
be operating.

Heat leakage through the carborundum would change the observed
slope of (fig. 4), modifying the equations of motion of the tunnel and
consequently the 1ift curves obtained with the airfoil. To make a first
order approximation to thé effect of such leakage we assume a cerbtain

temperature dependent amount of heat (H, (T)) corresponding to a fixed

¥ The vapor pressure difference between the bath and the reservoir may
be found from the vapor pressure curve for helium once the temperature
difference has been determined from the fountain effect equation. The
evaporative power loss may be expected to be proporticnal to this vapor
pressure difference.
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superfluid velocity (vl) ig lost due to heat leakage through the glass,
evaporation, film flow, etc. Of the remaining heat a major fraction (3’0)
will be used in the usual superfluid tunnel manner, and the remeining
(small) fraction ( 1- §,) will supposedly leak through the carborundum,

to produce normal fluid counterflow within (R) (fig. 1). In terms of
(¥,), the normal fluid concentration (/3n//0 = x), and the superfluid
velocity (vsp),calculated from the pltot tubes, the actual flow velocity

of superfluid becomes (Appendix V):

v, = [1—(25#EQ)X] Vep ()

and the normal fluid counter flow velocity is

[ 2o
vt (2D )] v, (5)

The reciprocal of ()/O) equals the slope of (fig. u4).

These are the superfluid velocity and the reverse normal fluid
velocity which are expected to exert forces upon apparatus placed within
the tunnel. Prom graphs similar to (fig. 4) one finds that the velocity
determined from the pitot tubes does not deviate by wore than about 10%
(appearing as deviations from unity slope) from that determined from
heat input after the additive leakage constant has been subtracted. On
this model the ratio of normal fluid velocity to superfluid velocity
reaches 2 maximum of 0.11 at x = O for a heat leakage of 10%. Thus the
superfluid velocity must at all temperatures exceed that of the normal
fluid by a factor of at least 9. Since with the test section of diameter
3.0 cm. the maximum superfluid flow velocity obtainable is 1.8 cm/sec,
the maximum normal fluid velocity cannot exceed 0.2 cm/sec, and will be

less in the low velocity range often of interest.
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It should be ewphasized that not all of the fractional leakage
is necessarily lost through the carborundum. This assumption represents
the worst case, and thus allows establishment of an upper bound on any
experimental effect which might be due to leakage of this type. The
only way in which the effect of leakage within the test section might
be greater than that predicted above would be if some competing effect
should reduce the apparent leakage. Although no mechanism capable of
accomplishing this has been suggested, the "negative 1ift" results
described in Part II.1lb suggest that other effects are present.

f) Flow within the test section

The detailed structure of the flow within the test section is
difficult to estimate. The filters at the entrance of the tunnel cou-
tribute to smoothing of the superfluid flow, as do various constrictions
which may be placed within the test section. However, the details of
the superfluid flow pattern cannot be investigated, and may be quite
uneven within the test section. The same holds true of the normal fluid
counterflow, which can be taken into account only if smooth and uniform.
Should the heat source for the counﬁerflow prove irregular, countercur-
rents would result leading to random oscillations of any assembly placed
within the tunnel.

By changing the position of airfoils within the test section
it may be demonstrated that should any appreciable steady state irregu-
larity exist it must be confined to the vicinity of the tunnel walls
(Part II.1d). The observations in the central part of the tunnel were
independent of the location of the wing assemblies with regard to the

tunnel. A counterflow sufficiently homogenecus to effect the airfoil
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equally regardless of orientation would not have been detected and would
influence the results. Since the total fractional heat leakage within
the system was only about 10% (see e) above) such effects are probably
not appreciable, but may be responsible for the reverse deflections
noted (Part II.1b).

Calculation of the superfluld velocity is based upon knowledge
of the temperature within the test section. Should an efficient thermal
barrier be inadvertantly introduced at the lower end of the test sec-
tion (S', fig. 1), the temperature within the test section would bear
no simple relation to that of the surrounding bath, and could even
rise above the lambda point. Good thermal conduction from the test
section to the surrounding bath must be provided.

g) Usefulness of the superfluid wind tunnel

The superfluid wind tunnel described in principle produces a
flow of gufe superfluld with the normal fluid completely immobilized.
This ideal behavior may be approached in practice, subject to certain
limitations. Fluctuations in the flow velocity (d above) preclude strictly
steady state measurements. Reverse heat leaskage through the tunnel
(e above) creates a counterflow of normal fluid which may cause diffi-
culty in sensitive measureménts. Hon-uniform flow within the test sec-
tion (f above) may cause high local velocities and turbulence effects
which are virtually impossible to study or eliminate, but which may
influence experiments.

If these factors are taken into account the superfluid wind

tunnel may prove a powerful tool for the investigation of the Ilow

properties of helium II.
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I.2 WING CONSTRUCTION

a) Configuration

The 1lift forces expected from wings of a size chosen to Tit
inside the wind tunnel and operating at available velocities are ex-
tremely small, making it necessary to design the apparatus to attain
an ultimate in semsitivity. This was done by utilizing torque rather
than force measurement. The 1ift due to a pair of wings mounted at
equal and opposite angles of attack created a couple which could be
converted to an angular deflection with a torsion fiber. By measuring
the deflection of the assembly with an optical system the 1ift forces
could be found. The sensitivity using the finest fibers was a torgue
of 5 @icrodyne-cm corresponding to forces of the order of 5 microdynes.

The mechanical arrangement is shown in (fig. 1), where a pair
of wings (W) are attached at opposite angles of attack to the ends of
a crossarm (A) suspended from a fiber (F). An eddy current damping
device consisting of a copper disk (D) mounted on the wing assembly
and fizxed permenent magnets (M) served to damp out oscillations. The
one millimeter square mirror (G) allowed optical angular measurements
of gystem deflections to an accuracy of one half degree.

b) Materials and assenmbly

Wings were constructed of a variety of materials in a variety
of shapes. From an experimental viewpoint the most successful config-
urations consisted of thin flat strips, for assemblies fabricated of
these possessed low moments of inertia and therefore permitted rapid
meagsurements. Other wings had large chord-to-thickness ratios in an

attempt to approximate elliptical cross sections. Materials used were
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quartz, mica, wood, pyrex, and fly wings. The fly wings came closest
to approximating the form of commercially successful wings but since
the geometry was not known it was difficult to make comparisons with
theory. The constructional details of & typical mica wing assenmbly
are shown in (fig. 5).

The wing components were immobilized in a brass Jjig during
glueing and fusing operations. Mica wings were assembled with diluted
Duco cement while the pyrex and quartz wings were fused. Duco provided
the means for attachment of the fibers.

“¢) Suspensions

Suspensions consisted usually of guartz fibers and occasionally
of phosphor bronze strips. The torsion constant for & particular wing
assenbly was chosen experimentally to give the desired angular deflec-
tion with the flow velocities available. Values used ranged from
about 101 to 10~% dyne cm/rad.

Fibers were drawn from 3 mm diameter stock, and stored in a
closed container attached to paper tabs giving the approximate torsion
constants. Accurate calibration before instaliation involved timing
the fibers as torsion pendula using a standard moment of inertia. At
liquid helium temperatures the torsipn constants of quartz fibers were
found unchanged from their values at room temperature.

d) Damping

In order to eliminate noise effects which were manifest as
random oscillations of the wing assembly, & magnetic damping device
was incorporated consisting of six Cunife magnets (M in fig. 1).

These were arranged to form six dipoles mounted rigidly inside a pyrex
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sleeve and "downstream” from the wings so the superfluid passed over
the wings hefore reaching them, thus avoiding distortion of the flow
pattern. Spacing of about one half millimeter between the disk and
magnets gave maximum damping yet avoided any possibility of rubbing
due to misalignment. The copper used in the damping disks was
selected for purity so that the resistivity dropped to a low value at
helium temperatures, assuring adequate damping.

e) Techniques

Assenbling the wings was at best tedious, but was facilitated
by a well equipped micromenipulator room. A Zeiss binocular micro-
scope with magnification variable from 10X to 00X and a calibrated
reticle was a major pilece of equipment. A special mount giving com-
plete freedom of motion in the horizontal plane allowed involved
assembly processes to be followed.

The micromenipulators consisted of Brinkman bases with micro-
meter adjustment in three perpendicular directions, upon which were
mounted Neher type arms (18) providing universal motion in preliminary
aligmment and serving to hold various probes.

A gas-oxygen or oxy-hydrogen microtorch comstructed from a
hypodermic syringe mounted on a blast furnace universal base allowed
fusing of small pieces of quartz or pyrex. Hypodermic needles pro-

ips in all sizes needed.

ot

vided
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I.3 AIR CALIBRATION TUNNEL AND NORMAL FLUTD TUNNEL

a) Air calibration

Due to wall interactions theoretical calculations of the classi-
cal 1ift expected from airfoils placed within a cylindrical tunnel such
as the superfluid wind tunnel are virtually impossible. Consequently
air calibration was employed. This calibration was accomplished by
placing the entire wing assembly within a glass sleeve of inside di-
ameter equal to that of the superfluid test tunnel and forcing air past
the assembly. The air volume flow was measured using a rotameter and
converted to flow velocity.*

The torgue was observed to depend gquadratically upon the veloc-
ity, as predicted by the classical theory. In Part III.1 it will be
shown that classgically the 1ift force and hence the torque on a given
sirfoll is related to the particular fiuid under study through a quadratic
velocity dependence and a linear density dependence. Thus the results
obtained in the air tunnel could be converted directly to those expected
from a classical fluid of density equal to that of superfluid simply
by multiplication by the density ratio, the higher density fluid ex-
erting the greater torque at a given velocity.

The accuracy of these measurements was low, so that deviations
of + 10% were easily possible in the deflection and velocity measure-

ments. Errors introduced by uncerbainties in the centering of the wing

Assuming the air flow velocity to be constant over the tunnel section.
An accurate calculation would include the velocity distribution across
the section. Comparison between the lift obtained assuming a constant
velocity distribution and the theoretical value assuming infinite aspect
ratio may be made using columns 10 and 11 of Table 1 (Part II.lc).
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in the tunnel could well have been larger and are not easily detectable.

b) Normal fluid

An independent investigation, not related to the main project,
concerned the lift exerted on a wing placed in a flow of the normal
fluid component of helium II. While there was little doubt as to the
outcome of such an experiment, it was none the less of interest to
demonstrate experimentally that the behavior of normal fluid follows
that expected classically.

The experiment was performed with wing #6 (see Table 1) mounted
in a vertically oriented counterflow wind tunnel of the type used in
the first investigation of the Rayleigh disk (16). No damping was used
on the wing assembly. The torsion constant of the suspension was
1.39 millidyne-cm/rad. Since the net momentum within a counterflow
system vanishes, it follows that at sufficiently low temperatures the
kinetic energy associated with the normel fluid greatly exceeds that
associated with the superfluid (by a factor of 19 at the operating
temperature of 1.3°K where /95/79 - 0.95), thereby permitting the in-
vestigation of the effect of normal fluid alone independent of the
superfluid properties. Since at low superfluid flow velocities we
shall show that the lift exerted by superfluid falls far below that
expected classically, we are assured that the results observed are sub-
stantially due to the normal fluild.

In (fig. 6) are presented the results of the experiment. The
normal fluid velocity (Vn) is obtained from power input to the tunnel.
The solid curve represents the result of air calibration converted to

the density of normal fluid at 1.3°K (2, = 0.138 gm/cc). The
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experimental points indicate the torques exerted on the wing asseumbly
for various normal fluid flow velocitiles (vn) obtained from the power
input to the tunnel. The effect of superfluid (flowing in the opposite
direction to the normal fluid) has been neglected. Within an experi-
mental accuracy of about 10% the observations agree well with the
classical expectations. While this result was checked only at a tem=-
perature of l.3°K no reason has been suggested for expecting deviations
to occur at other temperatures.

The wide spread in the experimental points in (fig. 6) is due
to oscillations in the undamped wing assembly. Since there was no super-
fluid seal used in this wind tunnel the instability must be due to some
other factor. The amplitudes of the oscillations are roughly the same
fraction of the total deflections as observed in the superfluid wind
tunnel. This provides an indication that the instability may be due
to classical phenomena not related to superfluid flow directly. We
shall refer to this point in Part IITI.3 in analyzing the non-appearance

of quantized lift in the superfluid tunnel.



IT EXPERIMENTAL RESULTS

Introduction

Experimental runs consist of déterminations of the torque ex-
erted on wing assemblies of the type illustrated in (fig. 5) as a
fuaction of the superfluid flow velocity within the wind tunnel. Angu-
lar measurements are accomplished with an optical system capable of
resolution to within % degree. Velocities are determined to an esti-
mated accuracy of 5% (excluding leakage effects) using the pitot tube
attachment of the superfluid wind tunnel. The results are most easily
represented by graphs of the torque (U ) on a wing assembly plotted
against the superfluid velocity (v). (Note that the subscript "s"
denoting "superfluid™ has been deleted; henceforth (v) will be used to
represent superfluid %&locity.)

These graphs have been obtained for several wings at fixed
temperatures, and for a few wings as a function of temperature. In

Part II.1 we present the fixed temperature results and in Part II.Z2

the temperature dependent results.
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IT.1 FEXPERIMENTAL RESULTS - FIXED TEMPERATURE

a) High Velocity Region

For flow velocities greater than some critical velocity (vc)
the observations could in all cases be represented by the semiempiri-
cally obtained expression (to be derived in Part III.2)

T -

- a,v(v-=vc) v>v

. (8
Here the constants (a) and (vc) are to be determined experimentally.
In order to illustrate the form of the results, we present in (fig. T7)
the high velocity observations for the wing of (fig. 5) at a tempera-
ture of 1.3°K. This is wing #1 on the chart to be presented later
(Table 1). The solid line represents the best fit to equation 6. The
dashed curve represents the classically expected 1lift, as obtained from
calibration in an air tunnel, converted to the density of superfluid
helium at 1.3°K (/35 = 0.92/9 - 0.138 gm/cc). For velocities below

6 mm/sec no deflection could be noted.

Fitting of egquation 6 to the data is accomplished by drawing
visually the best straight line through a graph of (U /v) versus (v).
The uncertainty in the slope of such lines has been found to be less
than + 10% for a given run, although poor reproducibility of the data
from run to run requires assignment of an error of possibly 1_20%.
Values of (vc) obtained are in most cases valid to within better than
+ 1 mm/sec.

Data were obtained for both increasing and decreasing veloci-

ties in order to investigate the presence of hysteresis effects. No

evidence for such an effect was observed.
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b) Low velocity region

The details of the low velocity reglon were studied using much
finer suspensions. In (fig. 8) are presented the results for the wing
discussed above (wing #L of Table 1). The suspension used possessed
g gensitivity 25 times greater than that used to obtain the data of
(fig. 7). With the resolution increased to this extent a negative torque
was observed for velocities between about 2.5 and 6 mm/sec.

As the velocity increases above 6 mm/sec the torque exerted
on the wing assembly increases extremeiy rapidly. The point of axis
crossing is defined in this particular case to well within 4 0.5 mm/sec
superfluid velocity.

Hegative deflections were observed with all wings provided suf-
ficiently fine fiber suspensions were employed.

¢) Summary of data

A variety of data has been obtained for various wings. Table 1
presents this in tebular form. Data presented include the dimensions
of the wing and tunnel assemblies, the calibration data, and the results
in the superfluid tunnel. Both theoretical and experimental calibration
data are provided, and have been expressed in terms of the superfluid
density at the operating temperature. The coefficients in equation 6
are given, the point where the deflection starts negative, and the
maximum negative torque observed. Where no data are indicated none
were obtained.

d) Discussion

The accuracy of the experimental deta may be questioned primarily

with regard to duplicability. Wings with small wall clearance tended to
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SUMMARY OF FIXED TEMPERATURE DATA
(see notes on next page)

Co—1 OV 200 DO 2

Colunm 1 2 3 b 5 5
Wing Material Chord Thickness Span Spacing Attack
Number (mm) (mm) (mm)  Between Angle
Wings(mm) (degrees)
mica L.k 0.056 10 2 20
mica 1.k 0.056 10 2 L
mica ) 0.0k 2.4 0 L
mica 8.0 0.075 11 2 19.5
mica 1.75 0.051 9.5 0 3
quartz 045 0.05 L2 0 i
quartz 0.45 0.05 13 0 L
wood 2.92 0.99 10.3 0 b
Column 7 8 9 10 (a) 11 (b)
Wing Tunnel TOK /38//9 Classical Torgue Classical Torgue
Number Diameter Coefficient () Coefficient (oc ')
(mm) (Theoretical) Experimental)
1 26 1.3 0.95 260 264
2 26 1.3 0.95 h7.5 100 (c)
3 30 1.3 0.95 195 148
b 30 1.3 0.95 1550 960
5 26 1.6 0.825 45 L2
6 10 1.h 0.925 2.3 2.3
7 30 1.b 0.925 22 35 (c)
8 26 1.3 0.95 93 b3
Column 12 (a) 13 (e) 14 (f)
Wing Deflection Maximum Torgue in Helium Tunnel
Number Negative Torque

1 2.5
2 3.0
3 2.0
L -

5 4,0
6 10.0
7 3.0
8 b0

(microdyne-cm)

120
70
880

585
200
220
150

(vc)(mm/sec) (2)

50.7
22

530
0.31

T.2
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Notes to Table 1

. The theoretical classical torque coefficient (<)) is defined by

the equation T = & v2 microdyne-cm (v in mm/sec). The density
used is that of the superfluid at the operating temperature.

The experimental classical torque coefficient (oC') is defined by
the equation T = o 'v2 microdyne-cm (v in mm/sec). The density
used is that of the superfluid at the operating temperature. The
coefficients were obtained from alr calibration using the technique
described in Part I.3a.

The experimental coefficient appreciably exceeds the theoretical
coefficient. The reason for this is unknown.

The superfluid flow velocity at which observable negative deflec-
tions first appear.

The maximum negative torque observed (microdyne-cm). The velocity
corresponding to this torque is approximately the average of the
velocity given in column 12 and that given in the first column of
column 1k,

The observed torque in superfluid may be represented above a criti-
cal velocity (v.) by T°- a v(v—vc) microdyne-cm (v in mm/sec)
(see equation 6Sa
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yield results which varied widely as the orientation of the wing system
within the dewar was altered. This effect is due either to large wall
interactions or to non-uniform flow within the test section in the
‘n@ighborhood of the walls. Provided the spacing between wing tips and
wall was large in comparison to the wing chord, little difficully was
experienced along these lines. Under these circumstances the data were
reproducible to within 10% over several runs, with the equipment dis-
assembled between runs.

However, the important factors are probably not the absolute
magnitude of the numbers, but rather the approximate size of the factor
by which the observed 1ift lies below that expected classically. For
velocities below the critical velocity (Vc) the observed 1lift is zero
or negative, and hence lies arbitrarily far below the classical 1lift.
Even for velocities far above (vc) the observed lift lies gquite far
below the classical. Thus from (fig. 7), at a velocity of 12 mm/sec
the observed 1ift is less by & factor of 10 than the 1ift exerted on
the same airfoil by a classical fluid of the same density.

The mechanism of reverse leakage described in Part I.1l can
influence the results only slightly and is inadequate to explain the
reverse leakage effects. In Part I.1 it was shown that the leakage flow
velocity reaches a maximum value of about 10% of the superfluid velocity.
We can estimate the maximum contribution to the negative Lift using the
classical equationg to be developed in Part III.l. Using the normal
fluid density of 5% the negative torque on wing #1 (figs. 5 and 8) be-

comes at a superfluid flow velocity of 10 mm/sec
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T: “'(ﬁn/ﬁs)(‘)'l")g = (0.264)(0.05)(1.0)% = 0.013 millidyne~-cm
while the maximum negative torque obtained slightly exceeds 0.1 milli-
dyne-cm. In order to explain the observed negative torgque using this
model for tunnel leakage, we would require g reverse normal fluid lesk-
age velocity of about 50% of the superfluid velocity. This much leakage
cannot possibly be justified on the basis of the model presented in
Part I.l. In addition the negative deflections do not appear before
some finite velocity is reached, and do not possess the parabolic form
predicted by the model. This leads to the supposition that some sort
of nonlinear leakage effect may be playing a role. Thus far no mech-
anism has been found to explain the phenomenon.

At present no adequate explanation can be given for the negative
deflections. However, the observation that when positive deflections
do occur they occur rapidly and exceed the maximum negative deflection
within a velocity change of only about 1 mm/sec suggests that the nega~-
tive deflections are spurious and probably due to a reverse flow of
normal fluid. This flow wmust vary in some nonlinear way with the super-
fluid flow velocity. Even should we suppose that the negative deflec-
tions obscure some positive deflection at low velocities, the classi-
cally expected positive torques exceed by about two orders of magnitude
the maximum negative torgques observed.

Further, at the lowest velocities (below the velocity where
negative deflections first occur) zero torque is observed at finite
superfluid velocity. This observation, too, leads to the condition
that the classically expected torgue exceeds the observed torque by

about two orders of magniltude.
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We feel therefore that the conclusion may be inferred that 1ift
exerted on airfolls by a flow of pure superfluid lies for some velocity
range at least two orders of magnitude below the lift expected

classically.
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II1.2 TXPERIMENTAL RESULTS - TEMPERATURE EFFECTS

A Data were obtained in the superfluid wind tunnel for several
wing assemblies as a function of temperature. In obtaining such data
care was necessary to avoid effects due to placement of the wing assem-
blies in the tunnel. These effects were minimized by cross checking
points for reproducibility.

(Fig. 9) presents the critical velocity (vc) (see equation 6)
for wing #5. The critical velocity rises sharply near the lambda point
and rises shallowly at low temperature with a broad minimum at about
1.950K vhere the superfluid and normal fluid concentrations are equal.
(Fig. lO}Apresents similar data for wing #6. The rise at the low and
high ends of the temperature scale are apparent but not as pronounced.
Data with other wings showed the characteristic rise in critical vel-
ocity at the lambda point. The rise at the low temperature end was
not always pronounced.

Difficulty in obtaining this data prevents a final conclusion
as to the detailed form of the critical velocity (vc). Although the
curves appear not to be independent of wing geometry, the minimum re-
mains at about 1.95°K. Since the temperature dependence of the criti-
cal velocity offers the most obvious means of comparing this experiment
with other experiments (Part IV) additional investigations along these

lines might prove profitable.
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IIT THEORY - INTRODUCTION

The basic motivation for this experiment was an investigation
into the vanishing of viscosity within the superfluid component of
helium II. The basic two fluid model (Appendix I) predicts no inter-
action between superfluid and normal fluid for flow velocities below
many meters per second (l4). The airfoil would on this model be ex-
pected to exhibit zero 1lift up to free siream velocities of at least
several meters per second (assuming the edges of the wings to be
smoothly rounded (see Part III.2c). The observed superfluid velocities
of several cm/sec or less for the onset of Llift are in conflict with
this model. The nonappearance of 1lift for lower veleocities indicates
that in this range the two fluid model remsins valid.

Several theories may be relevant to an understanding of the
experimental results obtained. Nbge of these have thus far been
successful in providing an explanation of the observations. In this
section we analyze the behavior of airfoils in classical fluids and
then discuss several unsuccessful but interesting theoretical approaches.

In Part IITI.1l we summarize the classical results for an ellip-
tical airfoil. The Kutta-Joukowski theorem relating the circulation
about an object to the 1lift forces is presented, as are the equations
relating the local velocity about an elliptical airfell with arbitrary
circulation to the free stream velocity.

Part IIT.2 presents several medifications of the classical 1ift
laws based upon changes in the boundary conditions. One of these modi-
fications leads to the functiomal form T 2 av(v—vc) used in presenting

the experimental data, but since the coefficients predicted by the
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theory differ by a factor of up to ten from those observed, the theory
cannot be considered successful.

Part III.3 discusses the application of a quantum mechanical
analysis to the operation of the airfoil. The theory predicts that
1ift will appear in discreet steps rather than continuously, as observed.
The failure of the theory to describe the observations may be attributed
to the presence of noise. A decision as to the validity of this theory

cannot be made on the basis of this experiment.
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IIT.l BSUMMARY OF CLASSICAL LIFT THEORY

The significance of the results in the "superfluid wind tunnel”
may be assessed in the light of classical airfoil theory. We therefore
summarize the basic classical results. |

The study of forces acting on a body placed ln a moving fluid
has been of interest for many centuries. The first quantitative in-
vestigation of drag forces was a study by Alembert (1) in 1752 of the
drag on a sphere placed in a stream. His theoretical conclusion that
the drag should vanish was in direct contradiction to his experiments,
and became known as Alembert's paradox. The situation was not resolved
until it was realized much later that viscous forces, which had been
neglected in his theory, were of fundamental importance in determining
both 1ift and drag.

The first gquantitative investigation of 1ift forces was per-
formed by Newton, who "proved" by means of a momentum analysis of the
forces acting on a flat plate that flight was impossible. His argu-
ments, based on an individual particle model of air, led to a lift law
which is said to have held back the development of flight for a
century. Today this law finds application in the theory of supersonic
flight.

a) Kutta-Joukowski theorem

Full understanding of the mechanism responsible for 1ift began
with Lord Rayleigh's investigations concerning the flight of tennis
balls. The effect involved (Magnus effect) may be treated by consid-
ering the two dimensional situation where an infinite cylinder of ar-

bitrary cross section is placed perpendicular to a velocity field
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uniform at infinity. Any circulation sbout the object may be shown to
give rise to a 1lift force normal to the free stream velocity and.th@ |
cylinder axis (Kutta-Joukowski theorem) (Appendix II). The force is

Lz pvC | dynes/ unit length (7)
where 9()) is the fluid density in gm/cc, (v) the free stream velocity
in cm/sec and (C) the circulation defined by C = j£.§ldfc The path of
integration can be any clockwise route surrounding the object. For
nonviscous flow the drag force vanishes, Tegardless of the amount of
circulation (C) that may be present.

b) Effect of viscosity

A knowledge of the free stream velocity and the cilrculation is
gsufficient for determining the 1lift force on any object. However, the
magnitude of the circulation is not immediately evident. In fact, in
the absence of dissipative forces the circulation cannot change, for
no mechanism exists to change the system energy. Should a nondissipa-
tive system possess no circulation at a particular instant the circu-
lation must remain zero at any succeeding time, and therefore the
system can never show 1lift (Kelvin's circulation theoren (13)).

The part which viscosity plays in determining the fluid flow
nay be seen by looking at the hydrodynamical equations of motion. The
fundamental equatlon of hydrodynamics is the Stokes-Navier egquation
for a viscous fluid: _

P gE = SUP VIV (8)
where (p) is the pressure in dynes/cm® and (q ) the viscosity in
gm/cm—sec. The boundary conditions to be used with this equation are

the vanishing of the normal and tangential components of velocity at
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any surface. However, for zero viscosity the equation reduces to
dv _

Pat="VP
which is of lower order. Thus a perfect fluid cannot be expected to
obey all the boundary conditions of a real fluid. The boundary con-
dition of zero tangential velocity is lost, and the fluid may slide
along the walls. The flow pattern in the limit as 7*?6 may be com-
pletely different from that obtained ifv = 0. This result is in fact
observed in superfluid helium II.

The importance of viscogity in a particular situation may be
estimated by looking at the ratio of acceleration forces to viscous
Porces in equation B:

Pt ] = [evd]_,
a2 B = Re
Here (d) is some characteristic length asgsoclated with the apparatus
and the dimensionless quantity (Re), called the Reynolds number, is
the Ffundamental parameter debermining the flow character. Similar solu-
tions to geometrically simllar hydrodynamical problems are obtalned for

equal Reynolds numbers independent of the fluld involved.

c) Kutta condition

Thus far we have not specified how the circulation about & body
shall be debermined. TFor an arbitrary shepe the problem cannot be solved
theoretically. However, Kubtta and Joukowski pointed ocut independently
that for a wing with a sharp trailing edge, dissipation effects must
be maximal where the local velocities are highest and the shear forces
therefore maximum, and that this will occur at the trailing edge. The

boundary condition in such a case then requires that the local velocity
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at the trailing edge vanish. This condition, usually known as the
Kutts condition, does not depend in any way upon the magnitude of the
viscosity, but only upon its existence (fig. 1l).

d) Classical 1ift on an elliptical cylinder

We can apply the condition to a practical example, the two-
dimensional problem of a wing of elliptic cross section and infinite
gpan inclined at an angle ( b’) to a flow uniform at infinity. The
local tangential velocities with arbitrary circulation may be found

at various locations on the wing (Appendix III):

Fromt ve' = ¢/0rn) + v(1 4 w/n) sin ¥ (92)
rear v,' = ¢/(Tn) - v(1 4 w/n) sin & (9b)
top v' 2 ¢/(Ww) 4 v(1 4+ nfw) cos J (9¢)
bottom v, ' = ¢/(Mw) - v(1 4 n/w) cos ¥ (94d)

Wwhere

= free stream velocity at infinity

= major axis of the ellipse (wing chord)

= minor axis of ellipse (wing thickness)

= angle of attack ellipse makes with the free stream veloclity

Q o¢Bb =<

circulation = f?-af

Primed velocities are local while unprimed velocities are to be measured
at infinity. Thus a velocity (vf) at infinity creates a local velocity
(ve') at the front edge of the ellipse.

The Kutta condition demands that the local velocity vanish at
the trailing edge (vr‘ = 0, equation 9b). This determines the circu~
lation to be
¢ = T (ntw)v sin Y

The 1ift per unit length is found from equation 7 to be
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L = /DVC = 7T/D(n+w) (sin.&@vg dynes/unit length (10)
For a thin wing (n&w) making a small angle of attack (siny~d ) we
obtain
L = (Qﬂ‘kj)w(%/O ve) = C W(%(D‘VE) = A.f)v2 dynes/unit length  (11)
Here the classical 1lift coefficient (CL = 2T ) and the lift factor
(& = w ) have been introduced.

@) Finite wing

The discussion has thus far been confined to two dimensional
flow over a wing of infinite span. The case of & wing of finite span
is far more difficult. The 1ift distribution across the span of ex-
perimental wings approximates in most cases a parabola, with maximum
1ift at the wing center and zero lift at the tips. Any nonconstant
distribution produces a downwash velocity with an attendant induced
drag. The parabolic distribution provides the smallest induced drag
consistant with the condition of zero Llift at the wing tips. The ef-
fect upon the infinite wing equation may be expressed by introducing
an effective attack angle

¥ e = Y /(1 + 2/AR)
where the aspect ratio (AR) equals the span squared divided by the wing

area (S)(cm2). The total 1ift force (F) on the wing now becomes

- 2 1 2 ®
(1 + 2/AR) (zp o8 aynes

) Adr calibration

A finite wing placed in a wind tumnel, the dimensions of which
are comparable to those of the wing, shows a lift factor lying between
that of the infinite wing and the finite wing. In the present experi-

ments the aspect ratio was usually sufficiently large that the
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difference between these two limits was small. The résults of air cali-
bration usually fell between the limits. In any case an effective lift
factor (A') could be determined experimentally which usually satisfied
the inequality A/(lL 4 2/AR) < A' € A. The quantity (A') proves useful
in the interpretation of results (see Part IIT.2).

2) Stall point

The thin wing formula has been experimentally investigated by
Wick (20) as a function of attack angle. He finds that the classical
1ift coefficient predicts the observabions well for atltack angles below
SO, above which the wing stalls and the observed lift drops to a low
value (fig. 12). The effect may be qualitatively understood in terms
of the flow pattern. With no circulation about a symmetrical wing the
local velocity should be the same at the leading and tralling edges.
Flow studies in wind tunnels show that well below the stall angle the
flow separates from the front edge of the wing and reattaches a short
distance back. The reattachment point moves back as the attack angle
increases until eventually at the stall point reattachment fails to
oceur at all. The character of the flow changes abruptly, and the thin

wing lift formula we have discussed no longer applies.
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ITI.2 MODIFIED CLASSICAL THEORY

We summarize the basic observations on an airfoil placed in
a flow of superfluid helium II. For velocities below some (temperature
dependent) critical velocity the 1lift force exerted by the superfluid
lies at least two orders of magnitude below that exerted by a classical
fluid of the same density, and may possibly vanish. This result shows
that the circulation about the airfoil remains approximately zero, and
that the classical Kutta boundary condition of zero tangential velocity
at the trailing edge of the wing no longer applies. We may interpret
this as implying the conclusion that the viscosity term in the Stokes-
Navier equation vanishes identically, for even in the limit as the vis-
éosity approaches zero the Kutta condition would be expected to obtain.
A further implication must then be that superfluid helium is capable
of undergoing pure potential flow without dissipation.

a) Modification of the Kutta condition

When the maximum local velocity at the airfoil exceeds some
critical value (vc') corresponding to a free stream velocity (v) a
dissipative mechanism begins to operate. It is not clear what form
this mechanism should take, but in any event cirvculation appears
about the wing producing lift. Since the classical Kutta condition
assumes that dissipation is most imporitant at the tralling edge, we
suppose that also in this case dissipative effects commence there.

As circulation appears the local trailing edge velocity will be reduced.
It evidently cannot drop below (vc') since in that case the dissipa-
tion mechanism would become inoperative, thus precluding further

circulation. The first possibility for a 1lift law is embodied in the
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assumption that the local trailing edge velocity must be maintained
at the threshold value (vc') if the free stream velocity exceeds (vc).
Setiing vr' = —vc' in eguation 9b we find the circulation about
an infinite elliptical wing of thickness (n) and chord (w) to be:
C=z7n [(Hw/n) v sind - vc‘] v (12)
so that the 1ift (equation 7) for the present case becomes, usingvnow
the superfluid density ( PS),
L= Psvc = TTn/osv [ (L#v/n) v sin -vc'] (13)
We can relate the local critical velocity (v, ') to the free stream
velocity (v.):

- - ve! -
Ve (1+w/n) sind (1)

Then, in the limit n&w and sin Y~ , the lift reduces to:
L= 211’5/(%%;) Psvg(l-vc/v) v >V,

It proves convenilent to express this gquantity in the modified

forms:
L= WCL(% psvz)(l-vc/v) v 2V,
- Lclassical(l_vc/v) veve (15)
and
L= APSV(V—VC) v>ve (16)

In the preceding we have used the 1ift factor A = (Ena/)(%-w), the
classical 1ift coefficient CL -3 Bl s and the classical 1lift
Lolagsical = Cy, w3 Psvg)(see Part III.1ld). Equations 15 and 16 rep-
resent modifications of the Kutta boundary condition in which the

local trailing edge velocity may never exceed the threshold value (vc').
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Qualitatively equation 16 may be understood by considering the
local trailing edge velocity as composed of the difference between s
contribution proportional to the free stream velocity alone (pure
potential flow) and a contribution proportional to the circulation
velocity. By setting the circulation velocity (and hence the circu-
lation) proportional to the difference between the free stream velocity
and the critical velocity, we in effect require the local velocity at
the trailing edge of the wing to remein constant (and unequal to ZETO0 ) o
Since the Kutta-Joukowski theorem (equation 7) places lift proportional
to the product of the free stream velocity times the circulation, we
obtain (in contrast to the classical case) a lift proportional to the
@roduct.of the free stream velocity times the difference between the
free stream and critical velocities.

As might be expected, this result approaches the classical ex-
pression in the high velocity limit (the second term in parentheses in
equation 15 becomes negligible). A modification of equation 16, with
(A) replaced by a new parameter (m), becomes the fundamental equation
for expressing the experimental results.

b) Analysis of data using the modified Kutta condition

The experimental results may be analyzed in terms of this modi-
fication of the Kutta condition. In so doing we emphasize the quali-
tative arguments leading to equation 16 and treat the equation as a
semi-empirical functional form derived for describing the experimental
results. The parameters (A) and (v.) are now determined experimentally.

To emphasize this point we replace (A) by an entirely new parameter (m),

and write
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Lobserved - mP SV(V"VC) V2, (17)
where (m) and (v_) are to be chosen for optimal fit to the data. At
any fixed temperature,(m) and (Vc) nmay be determined by plotting
(Lobserved/(/:gv) versus (v)). In all cases the observations lie
closély on a straight line, from which (m) may be directly obtained
as the slope and (vc) as the axis intersection. In order to connect
this analysis to the representation of the experimental data of Part IT.1,
%e must relate the 1lift per unit length on an airfoll to the torque on
the wing assembly. The total 1ift force on the airfoil is obtained by
multiplying equation 17 by the wing span (r ). Multiplication by the
mean spacing (r') of the wing center from the pivot point yields the
torque on the system. In the experiments performed (r') was approxi-
mately half of (r). The torque then becomes

T = mo, v(v—vc)rr'/~—%m/osr2 v(v-vc) (17a)
Comparison of equations 6 and 1Ta shows that m—vea[/gsrg‘ Thus the
1ift factor (m) may ﬁ@ determined from the data of Table 1.

Comparison of this theory with experiment may be accomplished
by comparing the experimental Lift factor (m) with the classical lift
factor (A') determined by air calibration and discussed in sechtion III.2.
This is equivalent to comparing columns (1h) and (11) of Table 1. The
theory predicts the ratio of these factors to equal unity for each wing.
Observed values vary from 0.135 (wing #6) to 0.56 (wing #4). As the
prediction of this quantity constitutes a crucial test for the theory

we must conclude that the theory as presented here proves inadegquate

to deal with the experimental results.
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c¢) Estimate of local critical velocities

The local velocity at which dissipative effects begin to appear
can be estimated in terms of the free streanm velocity by assuming the
wing to be elliptical in cross section and using eguation Ob with the
circulétion set equal to zeroc. The local velocity at the trailing edge
is given by v.' = v(1 + w/n) (sin ) for a wing of chord (w) and thick-
ness (n).

For example, if we assume wing #2 (Table 1) to be elliptical in
cross section the local trailing edge velocity exceeds the free stream
velocity by a factor of about 1.8. The free stream critical velocity
(vc) of 6.5 mm/sec then implies a maximum local velocity at the trailing
edge of 1.17 mm/sece This figure certainly has Little significance as
the wing is far from elliptical.

Pogsibly the maximum local velocity occurs in some region other
than the trailing edge such as at the wing top. The local wing top
velocity without circulation, v,*' = (1 + n/w) cos ¥v (equation 9c)
exceeds that at the trailing edge if tanX‘<: (n/w), i.e., for small
attack angles or thick wings. This situation occurs in some of the
wings investigeted under the assumption that they are truely elliptical

with major axis (w) and mincr axis (n). In practice the trailing edges
tended to be quite sharp, so we suppose in deriving all equations that
dissipation always begins to appear first at the trailing edge.

o

d) Correspondence principle

The preceding formulation, which has been found to represent
the experimental results semi-empirically (Part II), was based on the

assumption of a fixed local critical velocity (vc’) above which
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superfluid flow breaks down. Clearly this regquirement could constitute
an over-restriction, and a2 more generalized approach may prove appro-
priate. For thils purpose an attempt has been made to apply a corres-
pondence principle to the problem.

Correspondence principles which have been proposed are often
of the form

vayl/s = constant (18)
where (v,) and (y) represent respectively a velocity and a distance
related to the experiment. The constant may be a function of tempera-
ture, and (s) (usually an integer) is predicted by the particular theory.
In order to apply such & principle to the present experiment we suppose
that the local critical velocity need no longer remain constant (equal
to the threshold value (vc')) but must be related by the principle to
some suitable distance associated with the experiment.

For a free stream velocity (vc) greater than the local critical
velocity (vb’) the circulation must, as before, increase so long as
dissipative forces continue to act. As a result the stagnation point,
located on top of the airfoil in the absence of circulation (fig. 11),
moves closer to the trailing edge. There 1s thus created a variable
distance between the stagnation point and the trailing edge which is
related to the circulation and hence to the local trailing edge velocity.
This distance and velocity might reasonably enter into the correspondence
principle. The circulation camnot as before be proportional to (v-vc),
but rather must be adjusted to satisfy the functional relationship
specified by the correspondence principle between the tralling edge

velocity and the location of the stagnation point.
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This analysis when applied to the Kutta-Joukowski theorem
(equation 7) leads to a new form for the Llift law (Appendix IV) which
may be expressed in a manner analogous to equation 15 as a modification
to the classical lift law:

L= Lclassical L- (VC/V)S/(S+1) VA‘;ivc (19)
L=0 - VL Vg
The velocity and distance introduced in equation 18 have been eliminated
from this equation by expressing the result in terms of the experimen-
tally observable free stream critical velocity (vc) (the velocity cor-
responding to the onset of 1ift). Eguation 19 vanishes at v = Ve and
approaches the classical 1imit at high velocities.
In the limit as s—=osthe correspondence principle (equation 18)

reduces to v, = consbant, and equation 19 simplifies to the special case

a
presented in part a) (equation 15)above. Setting s = 2 we obtain the
1ift law implied by a correspondence principle proposed by Dash (4) and
others (6), while with s = 1 we find the 1lift law implied by Feynman's

correspondence principle (8) (Appendix 1).

e) Analysis of data using the correspondence principle

Data may be analyzed using the lift law derived from the cor-
respondence principles in much the same manner as for the law derived
from the modified Kutta condition (b) above. Eguation 19 may be
written with adjustable parameters (ms) and (vc) as

L= ugp g v2(L -(vg/v)*/(5%1)) vyve (19)
where (mg) denotes a parameter (ml) for s = 1 and a parameter (mz) for
s = 2. The values of (ms) and (vc) are chosen to obtain the best fit

to the experimental data.
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The form of equation 19a does not lend itself to the simple
curve fitting process in section b) above., Fortunately another ap-
proach may be used. Within the velocity range 1.5 vc<:vu<3vc the ratio
of the lift laws implied by the correspondence principles for s I 1 and
g = 2 to the law obtained by the modification of the Kutta condition
are constant to within about 6%. For the entire range vc<:v<:3vc, the
experimental data are inadequate for distinguishing between the shapes
of the three lift curves.

It may be shown (Appendix IV) that for s = 2, (equation 19/

equation 15)(S = (1-(vc/v)2/3)/(1~vc/v) = 0.7% > 0.0k; and that for

= 2)
s = 1, (equation 19/equation 15)<s = 1) = (1~(vc/v)l/2)/(l-vc/v) p
0.59 * 0.04 so long as L5V, V<3V,

Therefore, once a value for (m) has been obtained using equation

15, the values of (ml) and (mg) to be used in equation 19a follow

immediately:

= (1/6.7h)m = 1.35 m s z2

o
mp = (1/0.59)m = 1.70 m s =1
By means of this device the 1lift laws derived from the correspondence
principles may be fitted to the experimental data without further com=
putation. The same value of (v,) applies in all cases.

Using the conclusions arrived at'in.b) above, we find that the
quantity (mg) varied from 18% (wing #6) to 75% (wing #4) of the value
predicted by the theory, while (ml) varies from 23% to 95% of the pre-
dicted value,

Since the theory purports to predict the constants (ml) and

(mz) in terms of the gystem geomebry, and the observed values fail by
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a large margin to agree with the calculated values, we must conclude
that although this theory is more satisfactory than that of section
&) above it too proves inadequate.

f) Conclusions

The discussions of this section are not adequate to describe
the results experimentally obtained. Consequently they must be con-
sidered as purely heuristic, finding what usefulness they may possess
in their ability to Justify a convenient means for representing the
experimental results. There has appeared no useage of the quantum
mechanical aspects of helium, except through the recognition of the
two fluid model. The failure of more sophisticated analyses to describe
the observations provides Jjustificationfor the inclusion of this approach.
In the followiﬁg’sectisn we discuss one promising gquarntum mechanical

analysis.of the experiment.
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ITT.3 QUANTUM MECHANICAL THEORY AND THE NONAPPEARANCE OF VORTEX LINES

The basic motivation for this experiment may be found in the
two fluid model of helium II. As originally envisaged by Professor
Pellam, an investigation into the 1lift forces exerted on an airfoil
placed in a flow of pure superfluid helium could provide powerful evi-
dence for the identical vanishing of viscosity within the superfluid
component. This proposal was advanced prior to the existence of
Feynman's detailed quantum mechanical theory of the rotation of
helium II (8).

Early in the investigation, after the original apparatus had
been assembled, Professor Peynman made two quantum mechanical analyses
of the experiment, leading to predictions for the behavior of the ap-
paratus. The first of these suggested that the 1ift observed should
follow the classical behavior for an airfoll in a viscous fluid of high
Reynolds number. The experimental data of Part II show that this does
not occur, but rather the 1ift lies orders of magnitude below that
expected classically.

After it had been established experimentally that superfluild
exerted zero 1ift at small flow velocities followed by positive 1ift
at higher velocities, it was proposed by Feynman that in the range where
1ift appeared, it should develop in discontinuous quantized steps. In
this section we discuss the theory behind such a proposal and the factors
which may have been responsible for the failure of the effect to appear.

a) Predicted results

Onsager (15) and Feynman (8) have independently proposed the

existence of quantized vortex elemernts within helium II. Feynman has
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suggested that the experiment might reveal the existence of discrete,
quantized circulation about an airfoil placed in a flow of pure super-
fluid. He proposed that the circulation (C) might appear in integral
multiples of the ratio of Planck's csnstanf (h) to the mass of the
helium atom (m). Thus C = j(ﬁ~d1': 27 (k /u)n where (n) is an integer
and (£ ) is Planck's constant divided by (27r) (Appendix I, equation 24).
The 1ift per unit length on an airfoil then becomes (using the Kutta-
Joukowski theorem (Part III.1l, equation 7)) L :/DVC = ETT(%/m)/anﬂ
dynes/cm, independent of the wing span and attack angle.

A graph of lift force versus velocity for an airfoil placed in
a flow of pure superfluid helium II should then consist of & straight
line section for each {n), where each segment projects through the
origin. There exists at present no way to estimate the factors which
determine (n), nor for what velocity range a given value of (n) might
obtain. However, observations would not be expected to lie in regions
corresponding to non-integral values for (n) unless it should occur
that circulation does not appear about the entire wing simultaneously
(see d) below).

b) Experimental details

Apvproximately one year was spent in an unrewarded effort to
detect this effect. By choosing an airfcil which exhibited zero 1ift
up to a reasconably high velocity, and using a sufficiently fine fiber
suspension, the apparatus was rendered capable of detecting changes
in lift corresponding to the appearance of Just one unit of circulation.
Thus in (fig. 8) the torque expected from the presence of one unit of

circulation about each wing would be described by the line
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0.013 v millidyne, which passes through “T” I 0.08 millidynes at a
velocity of 6 mm/sec, and should be easily observable. The resolution
of the apparatus was such that at a velocity of 6 mm/sec & change in
torgue corresponding to the appearance of only one tenth of a unit of
circulation could be observed. Experimental observations showed the
onget of 1ift to be in all cases continuous (i.e., not describable by
integral values of (n)). There was no evidence whatever for discrete
changes in the observed 1ift, as predicted by the theory, nor was there
any evidence for hysteresis, which would be expected 1f a line of cir-
culation could remain attachad to the wing assembly as the superfluid
velocity was reduced.

-

The failure of digcrete changes in 1ift to eppear cannot be con-

s o

strued as a conclusive demonstration o

the inapplicability of the vor-

iy
t

tex theory to the present experiment. BExperimentally observed insta-
bility of the wing assemblies within the test sections proved a major
obstacle to an unequivocal conclusion. For an undawmped wing assembly
irremoveble rendom oscillations were of the same order of magnitude as
the changes 1n 1ift expected. In all cases these oscilllations had a
characteristic freguency roughly egual to that of the undawped wing
asgenbly, and amplitudes corresponding to changes in (n) of from one
to ten or more unite (the amplitude of the oscillations increased with

of the average time spent by the

o}

superfluid velocity). Investigation
wing assembly at a given deflection (for fixed superfluid velocity)
demonstrated there was no observeble tendency toward stability at par-

ticular anzles as might be expected should the circulation have a

preference for specific values. That these oscillations are probably
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due to non-guantum-mechanical irregularities in the fluid flow or to
instability of the wing assemblies and are not an intrinsic feature of
superfluid is evidenced by their appearance in a wind tunnel utilizing
the ncrmal fluid cémponent of helium II (Part I.3). That the amplitudes
of the oscillations are of the same order of magnitude as the gquantiza-
tion effects under study is probavly fortuitous.

For experimental purposes a damping device (Part I.2) served
virtually to eliminate observation of these effects. However the mech-
anism responsible for the oscillations remains present, and could well
cause the quantized circulation elements to atiach and detach from the
wing et random, or to attach to only a part of the wing. Such behavior
could lead to an averaging process which would obscure the discrete
changes predicted by the theory.

Should the guantized c¢irculation lines for some reason fail to
attach to the entire wing, the magnitude of the jumps would be unknown.
Conceivably the lines are intrinsically unstable on a large airfoil,
and the nolse effects within the apparatus do not constitute the prin-
ciple difficulty. However, the reduction of the nolse must constitute
the first step in further work on the problem.

It should be emphasized that the original motivation for con-
structing the apparatus was the possibility of observing pure potential
flow without dissipation. This result was rather strikingly implied by
the observations (evidenced by the data of fig. 7). The investigation
of quantization represents an attempt to ellicit performance from the

apparatus for which it was not originmally designed.
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c) Theory

The expectation of the appearance of such quantized 1lift effects
may be understood in terms of the Bose-Einstein statistics obeyed by
He& nuclei. Feynman has shown (8) that a wave function capable of des-
cribing the excitation spectrum of helium II is curl free. That is,
it is incapable of supporting circulation (Appendix I). Thus helium II
placed in a situation where forced to undergo circulation must do so
in a menner unlike that of any other fluid.

Circulation instead of being continuously distributed through-
out the ligquid must, in order that the liquid possess minimum energy,
be concentrated in highly localized regions. In a state of rotation
helium IT should coumbain excitation lines or vortex limes about which
circulation exists, and between which lie circulation free regions.
Because the wave function must be single valued the magnitude of cir-
culation about each vortex line must be gquantized in units of (h/m)g

In a multiply connected region the situation may be somewhat
different, for circulation can exist within the total region while each
local region remains circulation free. The requirement of single-valued-
ness for the wave function remains, so even in a macroscoOpic multiply
connected region circulation would be expected to be guantized. Thus
a macroscopic mass of helium IT would be enabled to move in an ordered
fashion, and Planck's constant would be exhibited on a macroscopic scale.

d) Shortcomings of the theory

There exist no predictions as to the stability of such config-
urations. It is not implausible that only in an extremely smooth flow

situation could a given value of circulation obtain for long pericds
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of time. Thus an experiment capable of detection of the effect might
require extreme uniformity of flow and lack of vibration. The noise
and oscillation effects within the present experiment suggest that the
difficulties encountered may stem from this cause.

Further, the theory fails to predict whether circulation prefers
to lie along the path of an object (along the span of an airfoil) or
might réther detach at some intermediary point and move intc the main
fluid flow. Thus a demonstration of the proposed discrete steps would
provide powerful evidence for the validity of the concept of circulation
quanﬁizatien, but their nonappearance may indicate only that the appara-
tus is insufficiently stable.

e) Discussion

In the light of this theory there are a number of difficulties
which arise in the interpretation of the data. For example with wing #1
virtually no lift force is observed for velocities below § mm/sec (fige 7)o
At this velocity about 120 lines would have to be present to yield the
classically expected lift. There existe at present no explanation for
the failure of circulation to develop at such high velocitiesg, even
though this would appear energetically desirable. Within experimental
accuracy no hysteresis effects have been ovserved whatever. Even should
lines form on only a part of an alirfoil so that the lmps would be im-
meagurably small, it would be plausible to suppose that hysteresis ef-
fects might appear as the velocity is increased and decreased. The
only present suggestion for the failure of hysteresis to occur is based
upon the large amounts of noise in the apparatus, due probably to ir-
regular flow, which could cause circulation to appear and disappear

rapidly.
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The observed lift shows no tendency to approach the classical
value over the range of velocities investigated. The torques observed
are less than those expected classically by at least two orders of
magnitude for the lowest velocities, and by a smaller but appreciable
amount at higher velocities. Feynman has considered the possibility
that the observed lift may be due to a mechanism entirely divorced from
circul&tion. The similarity between the results displayed in (fig. 7)
and classical results in media of high viscosity led him to notice that
in some sense superfluid helium might be behaving in this experiment
as though it possessed an extremely great viscosity. The failure of
the airfoil to develop appreciable 1ift up to quite high velocities of
flow and the fallure to approach the classical value possibly consti-

tute the greatest challenge to theory offered by the experiment.
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IV COMPARISON WITH OTHER EXPERIMENTS

The present experiment demonstrates that the lift exerted by
the superfluid component of helium II lies (for the range of velocities
investigated) far below that expected classically. At low velocities
the observed lift has been shown to be at least two orders of magnitude
below the classical value. When lift first occurs, it sets in with ex-
treme rapidity. These results suggest that circulation may be completely
absent at low flow velocities, and the flow observed be pure potential
flow without dissipation. This result agrees with several previous
experimentis.

Kapitza (11) in 1941 performed an experiment wherein he investi-
gated the reaction forces of helium Jets upon flat plates immersed in
helium II. He discovered that the reaction force exerted by normal fluid
far exceeded that of superfluid, showing that dissipetive effects within
noyrmal fluid greatly exceed those within superfluid. His experiment
demongtrated only a difference effect and failed to indicate that the
superfluid flow was indeed dissipation free.

A recent experiment by Hall (9) has demonstrated the possibllity
of persistent currents of helium II analogous to persistent currents in
superconductors. By measuring the angular momentum contained in a system
of rotating Andronikashvili type disks he was able to show the existence
of stored angular momentum for times long compared to the relaxation
time of the normal fluid. Persistent gurrents lasting as long as
twenty minutee were cobtained.

Hollis-Hallett (10) has measured chaerges in period and damping

decrement as the amplitude of vscillation of disks suspended from torsion
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fivers in helium II baths is increased. He finds that above some criti-
cal amplitude the damping decrement undergoes a discrete change in slope -
The maximum peripheral velccity of the disk corresponding to the ampli-
tude where nonlinearity first appears might be related to & local criti-
cal velocity. Such an snalysis of the experiments has been attempted

by Dash (4). However, Dash's interpretation of the data as implying a
critical velocity may be gquestioned, for this analysis 1s not consistent
with Hollis-Hallett's data for varicus sizes of disks. It is at least |
certain that some type of nonlinearity exists which may be related to

a local velocity.

A variety of capillary flow experiments have indicated the ex-
istence of pure potential flow. Those of Winkel et al. (21) are repre-
sentative. Measurement of flow resistance as helium IT is pressed
through fine capillaries indicates small resistance to flow at low
velocities, with a discrete onset of high resistance at some critical
velocity. The critical velocity may be related to the capillary di-
mentions by & correspondence principle of the type used in Part III1.2,
i.e., the product of the critical velocity times a characteristic dimen-
sion raised to some power is constant. The order of magnitude of the
critical velocity obtalned from such experiments would not be expected
necessarily to correspond to that found in the present experiment.
However, the temperature dependence of the critical velocity might be
comparable.

In (fig. 13) we plot & critical velocity obtained in the present
experiment (data of fig.10) versus temperature. Also presented are the

results of Hollis-Hallett (10) as given by Dash (4) and some representative
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results of Winkel (21). The dats have been normalized %o agree at T =
1.409K for comparison purposes. This was done since the numerical value
of the velocities 1s felt to be not so significant as the temperature
dependence.

The behavior in the neighborhood of the lambda point constitutes
the most striking aspect of (fig. 13), for the critical velocity ob-
tained in the oscillating disk experiment and in the present experiment
rises near the lambda point, whereas that obtained from capillaries
falls. This phenomenon suggests some basic difference between experi-
merts perforued in open vessels and those pérfarmed in enclosed regions.

There exists no theoretical reason for this behavior.
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YV CONCLUSIONS

For sufficiently low velocities an airfoil placed in a flow of
pure superfluid helium II fails to develop lift, i.e., the classical
1ift expected exceeds the observed 1ift by at least two orders of mag-
nitude. This indicates that the viscosity of the superfluid component
vanishes identically. The flow obtained is probably pure potential
flow without dissipation.

Upon detailed examination of the zerc lift region a slight ap-
parently negative 1ift can be detected which has not been quantitatively
accounted for bul which may possibly be attributed to reverse leakage
of normal fluid within the aspparatus. At higher veloclities positive
1ift appears. The results in the high velocity range can be descrived
by an eguation of the form L = m/cgv(v»vc) where (L) is the observed

)

11ft/unit length on the wing system, (m) is a temperature and geomenyy

\.;

£ .

lependent parameter, and (VC) is the velocity at which Lift first ap-

p)

i

tation of (m) with temperature has not been investigated.
The variation of (vc) with temperature has no theoretical explanation.
The critical velocity increases at both the low bemperature limit and
near the lambda point, having a minimum at about 1.95°K where the super

fluid and normal fluld densitites are spproximately equal. The rise

near the lambda point agrees guallbatively with the results of oscil-

al results. The low temperature resgulis disagree

with both oscillating disk and capillary data.
The “superfluid wind tumnel™ used in the experiment provides a
separated velocity field wherein the normal fluid component of helium II

is immobilized while the superfluld component can flow. It offers a
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unique tool for the investigation of a variety of classical hydrodynawmi-
cal results for perfect fluids. The low velocity outcome of these ex-
periments is not in doubt, for the wing experiments are aboubt as strin-
gent demonstrations of the nonexistence of viscosity as can be found.
Still, direct verification would be satisfying. At higher velocities when
pure potential flow breaks down anomalous results must certainly appear.
These may serve to enlighten the subject of break-down phenomens.

The investigation of drag on a sphere placed in pure potential
flow has been suggested as a possible experiment along these lines. Be-
cause the geomeltry can be accurately controlled, it should be possible
to characterize explicitly the conditions for the onset of dissipation.
Classically drag depends upon the Beynolds number of the flow. In super-
fluid some correspondence. principle might replace the Reynolds number as
a means of comparing similar experiments.

Classically a cylinder placed in a uniform flow sheds alternating
vortices at a characteristic rate. The frequency (f) may be found (13)
to be f = (v/a) (function of Re) for a cylinder of radius (a) in a stream
of undisturbed velccity(v). Classically the function of Reynolds num-
ber is determined experimentally and known as the Strouhal number. The
vortices show up as pressure fluctuations which could be detected by a
sultable sensing device such as a capacitance or crystal microphone.

The general subject of breakdown of superfluid flow in macro-
scopic regions would appear to be fruitful. The fundamental qualitative
differences between capillary results and those in open regions should

be investigated and clarified.
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APPENDIX I

SUMMARY OF HELIUM THEORY AND THE TWO FLUID MODEL

More than a quarter century elapsed between Kemerlingh Onnes'
liquifaction of helium and the first realization that quantum mechani-
cal effects were intimately connected with the phenomena observed.
Classical concepts proved inadequate to explain the phenomena observed.
The first such suggestion was by Simon (17) in 1934. He proposed a
modification of Trouton's rule which states that the latent heat of
vaporization (L) (cal/mole) divided by the condensation temperature (T)
is comstant and equal to 22 calories/mole-degrees This rule was known
to work well for heavy gases but to break down badly for the light
gases. Simon's proposal was that the low latent heat of the light gases
might be caused by a large zero point energy. He therefore modified
Trouton's rule to include a zero point term (Eo)

(L-Ey)/T = comst = 21 cal/mole deg
The zero point energy of helium is then found to be 64 cal/mole using
the observed latent heat of 22 cal/mole. This very high zero point
energy was suggested as an explanation for the low density of liquid
helium (0.145 gm/cc) as well as its failure to solidify’under its own
Vapor pressure.

a) Bose-Einstein condensation

Following suggestions of this nature F. London proposed in
1938 that the properties of helium might be connected with the sta-
tistics of the nuclei. An ideal Bose-Einstein gas was known to con-

dense in momentum space rather than position space in such a way
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that a finite fraction of the atoms are in the ground state at temp-
eratures below some transition temperature.

Starting from the Boge-BEinstein distribution law and conser-
vation of the total number of particles, one replaces the discrete
distribution by & continuous distribution with the ground state
treated separately. It then turns out that the total aumber of parti-
cles are divided between the ground state and the excited states accord-
ing to

W= (e - 1) e m2/20)32 (5 () fr /2(0)) (20)
where the first term on the right represents the number of atoms in

the ground state and the second is the number in the excited state.

Here (o€ ) is a parameter,

R Qi~ﬁf:}i£__.
Falc) " (s) o/emp(ywc)-l

and fj(s) is the gamma function. (T.) is the critical temperature

¢ - mk 5.618 v

_2mh?e ( N )2/3 (21)

For large (N) the character of the solutions to eguation 20
changes sharply as one goes from T > T, to T« TC, For T <1TC there
exists a solution for (e¢) of order (1/N). The number of atoms in
the ground state becomes approximately

Np ~ lfoc ~ H(l-(T/TC)3/2) T < T,

N, ~ 0 T>T,
Numerical evaluation of equation 21 for the critical temperature gives
T . = 3.13%K, not too far from the cbserved transition temperature (lambda

¢
point) of 2,1860K However, the number of atoms in the ground state is
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experimentally observed to vary as (T/Tc)s‘6 rather than (T/Tc)3/2 as
predicted by equation 20. The specific heat variation and form of the
lambda transition are also incorrectly predicted. Despite these dif-
ficulties the guantitative agreement of the transition temperature lead
t0 the conviction that this mechanism was basically the one involved,
and that deviations were probably due to small effects which could be
included at a later time. The most important single prediction of this
model was the failure of He3 to become a superfluid. Inclusion of sta-
tistics must be an essential festure of any theory of helium.

b) Excitation spectrum

The most recent theories do include the statistics, either
explicitly or implicitly. In order to fit the experimental data on
specific heats and second sound velocity Landau (1l4) proposed that
helium consists of a ground state of ideal fluid which flows friction-
lessly and through which move excitations of two types. At 10& temp-
eratures longitudinal phonons of energy E = pc, where (c) is the first
sound velocity, are excited, leading to a Debye (73) contribution to
the specific heat. At higher temperatures more complicated excitations
called rotons sre excited, which are separated by an energy g£ap, a),
from the phonons and which move with momentum (p)and effective mass ().
Their spectrum is given in the neighborhood of the gap by

E(p) = A+ (p-py)%/2m (22)
The specific heat and velocity of second sound can be calculated in
terms of this energy spectrum. Values of the parameters chosen to

obtain the best fit to the experimental data are (5):
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po/# = 2.03 A7%
Ak = 9.6%
¢ = 240 meters/sec

where (k) is Boltzmann's consbtant.

The energy spectrum has recently been measured using neutron
diffraction techniques, and is found to yield a value A /k ~8.6° X
for the energy gap. The discrepancy may arise from treating the rotons
ag independent, and failing to include roton-roton interaction terms
near the lambda point where the roton density is high.

The spectrum hes also been computed from first principles by
Feynman (8). He shcws that rotons may be considered as made up of
"smoke rings” consisting of a small number of atoms. The wave function
for rotons is to first order of the form

¥z S eiER (23)
where (q7) is the ground state wave function for helium. Using e modi-
fication of this wave function which includes a backflow term Cohen (3)
has obtained an energy gap [&/k = 11‘51:0.60K, which is extremely close
agreement for a variational calculation in such a complicated situatien
a8s exists in helium II.

For helium in macroscopic motion the wave function is modified

and becomes
Yoz o1 s(Ry) p
where the flow velocity is given by the gradient of the phase
¥ = /m \7s(R)

The flow described by this wave function is irrotational since the curl



of the velocity vanishes. However, for & wultiply connected region the
curl need not vanish. The only requirement is that the wave function
be single valued. This requirement implies that for a path around some
kind of hole the circulation may be quantized in units of (h/m) (8):

j{‘ﬁ*df = 2+ /m)n = 27 (1.5 x 10‘h)n cn® /sec (2k4)
vhere (n) is an integer.

The fact that the product of a velocity times a distance is
constant leads Feynman to suggest his correspondence principle that in
any experiment involving superfluid flow the product of some character-
istic length with some velocity will be invariant. This principle ex-
plains the lowesttemperature results of Hollis-Hallett's oscillating
disk experiments. It also leads to & predicted 1ift law in the present
experiments. |

¢) Two fluid model

A phenomenclogical model for liguid helium II which contains
features of the London model was proposed by Tisza (19). It is based
upon a division of helium below the laﬁbda point into two components,
superfluid and normal fluid. The superfluid is identified with the
ground state atoms of the London model while the normel fluid is iden-
tified with the atoms in excited sbates. The ground state helium is
considered to possess no viscosity and to carry no entropy, so that
all the observed viscosity and entropy effects are due to normal fluid
alone.

This model is formelized by specifying & superfluld density
(/CDS) which moves with a velocity (vg), and a normal fluid with density

(/4Dn) moving with velocity (vn). The sum of the separate densities



6

is the observed demsity of helium (3 + A2 =2). The kinetic energy

associated with the superfluid component is %/ﬁstsg and with the nor-

2

mal component %/Jv, .

The relative densities of superfluid and normal fluid vary
with the temperature so that at the lambda point there exists only
normal fluid and at absolute zero only superfluid. The entropy (s)
is assumed to be carried entirely by the normal fluid and may be related
to the value at the lambda point (s/x) by (s/s)\) = (/DHA/Q).

Using this model Tisza predicted the existence of thermal waves,
or second sound. Erroneous extrapolation of the above assumed varia-
tion of entropy with superfluid denslity to absolute zero led him to
predict the vanishing of second sound velocity at absolute zero in
contradiction to Landau's prediction (14) (later confirmed experimen-
tally) that it should approach the limiting value (c/3%) where (¢) is
the velocity of ordinary sound.

The two fluid model may be derived (6), (8) using the Bose-
Einstein distribution. If there exist excitations in a moving fluid,
the energy required for excitetion formation may be found by consider-
ing moving and stationary coordinate systems. If the fluid velocity
relative to the walls is (v), the excitation energy (E) in the test
system is given by (6) '

E = E(p) + pv (25)
where E(p) is the energy measured by an observer in the moving system.
If the excitations drift with momentum.(§), the average momentum car-
ried by the excitations,-(i;», may be found from the distribution

function n(E) = [éxp(E/kT)-l] -1 using the modified energy spectrum
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(equation 25). Thus

_ P a’p (26)
<P>"/ exp(1/kT)(E(p)-p-v)  (27Hh)3

Expanding to first order in (v) this may be written in the form

<§>=pnv, with (ﬁn) given by

- 2 3
) = (1/3kT) exp(E(p) /kT) p=dp
2 a0 [ [exp(2() k1) - 1] 2 (2TH)3 (27)

This value of (/Sh) iz in agreement with values determined from other
considerations, and with experiments predicated upon the two fluid
model. The superfluid density may then be defined by/ADS = /:)'/Cjn,

By considering the motion of the excitations the complete two
fluid model may be worked out in terms of first order expansions of the
distribution functions. At high velocities second order terms would
be expected to become important and the normal fluid density would then
become a function of velocity. In practice the two fluid model deteri-
orates at velocities well below those predicted from this analysis.

The fundamental point is that the two fluid model does not
possess any obvious physical interpretation. It is a useful tool de-
rived-from an approximation to the distribution function. Despite
this it has proved extremely powerful for explaining the results of
a large variety of experiments as well as for predicting the results
of proposed experiments. It now forms such a basic part of the working
theory of liquid helium that the usual procedure in explaining new
effects is to attempt to add new terms to the two fluid equations of
motion, rather than propose new models. It proves completely adequate

for understanding the low velocity results of the present experiment,
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APPENDIX II

KUTTA - JOUKOWSKI THEOREM

We assume the two dimensionasl complex potential function
w(z) = @ + 1¥ to be given, where z = x + iy, (¥ ) is the potential

function, and (‘f’) is the stream function. The velocities in the

. dx _ oV _dz_aw
-dt-b)( andv-dt-s-y
respectively. The Cauchy-Riemarnn equations

{x) and (y) directions are given by u

- 3
el I ——ce BT G s

0y and 29 W
3% 73 ) 3%

are satisfied automatically and hence

dw P, ?_V_/—-Q,_L//-ﬂ —u -1
oz C % TS Y 2D ao

The pressure may be found at any point from Bernoulli's equation
pP=H- %/C>(u2 +v2)

where (H) is a constant. The density will be taken to be constant.

The circulation about a wing is found by considering an arbi-
trary region surrounding it, and integrating:
j{% dz =/(u - iv)(ax + idy) = f(uéx + vdy) + if(udy -~ vdx) = ¢ (28)
where f (udx 4+ vdy) = f veas
and f(udy - vdx) =/F-d§ = /\ = 0, the volume outflow.

C, the circulation

The volume outflow vanishes since there are no sources or sinks.

We expand %} as a power series about infinity

aw b ]
PGl - § e e ® 60
az tztet

where (-a) is the velocity vector at infinity
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a < -v e“iJ/
if the flow approaches the wing at an angle (3/).

B is a pure imaginary number since by Cauchy's theorem and equation 28

fg}idz:ENib:C
dz

50
b = ¢c/eTi
Writing an expression analogous to equation 28 for the momentum
outflow we may equate the forée transmitted across the boundary of the

region to the rate of change of momentum in the region. Then

Fg - J//ﬁdy - J‘;ﬁu(udy - vdx) = O
and
Fy —‘J/’pdx -J/CEDV(udy -vdx) - 0
S0
F_ - iFy = -“/fﬁp(dy - idx) -J/C}D(u - iv)(udy - vdx)
=1 P/(uE - v2 - 2iuv)(idx - dy)
However
%% Zu - iv
S0

- iF = 1lp3 awy2
F 1Fy = Efjlbf(-(dz) az

Now expand (%g)g and use Cauchy's theorem

dwy\o _ o . 2ab b2 - 2ac
(dz) Zat 4 T e 3 $ oo

F, - iFy z %—Pi ]((%‘;-)2 dz = %Fi (2ab)(2mWi) = -/)Cvieia/
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The magnitude of the 1lift force is
L =,ovC
and the direction is normal to the velocity at infinity. The drag

force therefore vanishes.
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APPENDIX iII

FLOW ABOUT AN ELLIPTIC CYLINDER WITH ARBITRARY CIRCULATION

Consider an ellipse of major axis (w) and minor axis (n),
making an angle of attaék (¥) with a fluid flowing uniformly with
velocity (v) at infinity. We use the elliptic cylindrical coordinates

x = %a cosh « cos 6

y = %a sinh v sin @
The loci 4= constant are ellipses of major axis (a cosh A4 ) and
minor axis (a sinh ).

Let we M4 160 = cash"l(Bz/a) and define the complex poten-

tial (Y/). The velocity may be found at any point:

— ¥
""V%’[ Rﬂ * 35 )
= (mnhﬁ/u + 81n2@)2 5 €6 jo

where (e‘a;u) and (e 5 ) are unit vectors in the () and (&) directions.
The uniform flow approaching the ellipse at angle (‘X ) is given by

Wz v(zcos) + ysin y) = ;i (coshucosf cosd + sinhumsinBsing’)

To this can be added any solutions which vanish at infinity, such as
e”“cos® and e” sin@ , so that

¥ o= %Y' (cosh«cosB cos Y + sinhusin®siny + Ae*“cos® + Be>“sind )
The boundary condition to be applied is the vanishing of the normal
gradient of (¥) at_« AU e

Then d oY _
Ea(C- N
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and
0 = cos O (sinh u, cosy - re~*0) 4 sin® (cosh M, sind” - Be>“o)
Equate terms separately to zero to find (A) and (B).

A=z’ sinh u, cos ¥

B

1]

& cosh e, sin ¢
Now add a circulation term (C/2T)6 so Y = ‘7‘”0 + (¢/2m )8 . The
tangential velocity (vp) at the surface of the ellipse (M= _«,) is
Vp = v(sinh2u, + sinEQ)“’?}?‘ {{z/av)(c/e‘rr) (29)

- qosX sin@ (cosh4y + sinhuy) + sind cos® (sinh/ue + coshyﬁo)]
Substitution for the major axis w = a cosh 44, and for the minor axis
n = a sinh M, allows this to be written

Vi = (n? 4+ (w2-n2)sin?O )=5 (¢c/ir4v(win) sin( ¥ -0 ))

which may be evaluated at O = 0, T , T/2, and 37 /2 (front, rear,
top, and bottom respectively) to yield equationsQa-9d.

To show thet this circulation is the same as that used in
equation 7 (C = f vedf ) we evaluate / VT"d,? . Let 4~>==, Then the
elliptical coordinates approach polar coordinates.

r = (4 32)% — (a/2)(/2)
tanP = y/x —> tan B
Equation 29 becomes (dropping the subscript on ( /40)}

Vip = (4/a)e~™ {(C/ETT) + (av/h) e sin( Yy -6 )]

z=(c/2mrr) - v sin(§ -@)

Then
27

/ngj: /OvTrd(P

The second term vanishes upon integration. The term involving (C) becomes

ﬁC/ETf r) rap =¢C
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APPENDIX IV .
APPLICATION OF CORRESPONDENCE PRINCIPLES TO WINGS
Consider the vicinity of the trailing edge of a two dimensional
wing of arbitrary cross section. We define the quantities:

stagnation point with no circulation

stagnation point with the Kutta condition satisfied

a coordinate which moves from (b) to (a)

meximum value of (y). y=y. at position (a)

free stream velocity at infinity

local velocity at (y) corresponding to (v) (with no

circulation)

w' local velocity at (y) corresponding to (a) circulation (C')
about the wing and v = O

v.' maximum local velocity when superfluid flow breaks down

(this occurs at position b)

v, free stream velocity corresponding to (v.*)

¢ classical circulation with Kutta condition satisfied

Lelassical = /JVC

As the circulation velocity (w') varies from zero to (v') the stagna-

o

-

ddd g oD

tion point moves linearly along the surface from (a) to (b) (fig. 14).
Then

¥/¥g = 1 - wt/v (30)
The local velocity at (y) is (v' - w')
The correspondence principles require that the product éf a character-~
istic velocity times a distance raised to some power be constant
(eguation 17). We choose as a velocity the local velocity (vt') at
point (b) and as a distance the distance (y) between (b), the stagna-
tion point with the Kutta condition satisfied, and (y), the stagnation
point with circulation (C!') present (fig. 14). The correspondence prin-
ciple then becomes

vy yl/s = (v' -~ w') yl/s = constant

The constant mey be evaluvated from the conditions when superfluid flow
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¥

b

FIGURE FOR THE APPLICATION/ OF THE COR-
RESPONDENCE PRINCIPLE Vy"® =CONSTANT
TO THE LIFT ON AN AIRFOIL

FIGURE 14
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first breaks down
V! yél/s = constant
50
(v = w') = v, (ya/3) /8
Using equation 30 we find
(vt = w') = ve! (L = w‘/v‘)'l/s |
from which
wtzyt [1- (vc-/V:)S/(S+l)]

Since the classical circulation is proportional to (v?'),
¢ = const (v')., The new circulation is proportional to (w') with the
same constant: C' = comst (w').

Also (vc‘/v’) = (vc/v). Therefore the expected 1lift becomes

L = pVC’ = (Dvc(w'/v‘) :/_Dvc [l - (vc/v)s/($+l):‘
or

L = Lelassical [l - (Vc/v)s/(s+l)] (31)

If we now define g = v/vC and P = L/Lclassical’ we may write

equation 31 in dimensionless form
Pg = g2 [l - (l/g)g/(s“l)J g>1

As g=> o0, P> gg(l - 1/g) which is the simple modification of the
Kutta condition proposed in Part VI. The form of the law for s = 1 and
s = 2 does not differ appreciably from this. (Fig. 15) shows (P_ /B, )
for s = 1l and s = 2. For L.5< g< 3, Pl/Po‘ = .59 to within 5% while

Pp/B, = .74 to within 5.5%.
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APPENDIX V

EFFECT OF LEAKAGE

We show how leakage through the carborundum barrier of the
superfluid wind tunnel creates a counterflow of normal fluid and
an increase of superfluid flow. These contributions modify the
1ift equations for an airfoil.

a) Effect of leakage on tunnel

Let the total heat input be (é) and the tunnel area one
square centimeter. A certain amount éc (T) of heat is lost through
evaporation, etc. This has been experimentally observed to corres-
pond to a fixed superfluid flow velocity (vy) (v; = .23 cm/sec in
the tunnel used) (fig. 4). Then H, (T) = vc/g/DSST) where v, does
not depend on temperature. The remaining heat input Hy = H - Hc (T)
is divided between a f:actien (3ﬁo) used in the normal wind btunnel
manner and a fraction ki - & o) lost by reverse leakage through the
carborundum.

This fraction appears as an extra heat source in the tunnel.
Should the tumnel entrance (8%, fig. 1) be thermally blocked the tem-
perature in the test section must rise. We assume (S°') not to form
a thermal barrier.

The tumnel velocity calculated from the pitot tube level
difference (vsp) will be based only on the heat (J/Qﬁl):

Vep * Vol /PseT (32)

The leakage heat (1 - 3’0)Hl creates a counterflow of normal fluid

(vp) in the tunnel
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a = (1= ¥R /Pt = (-7 )y (/P (33)
and an ettendant excess flow of superfluid (VSI) found by momentum
congervation

/s Vs T /~n ¥n
so

Vg1 = (/Qn//gs)vn = (/jné/g) (L - bjo)/a/g) Vsp (34)
The total superfluid velocity in the tunnel is
Vs IVep t Ve T [1+ (/) (- a/o)/a/o)] Vsp (35)
replacing (/DH//D) by (x) and (/33//3) by (1-x) in equations 33 and 35
yields equations 4 and 5 of the text.
The value of () ,) may be found from curves similar to (fig. 4).
The tunnel velocity of superfluld based on power input alone (VH)
vy = H//SgsT
must be modified by subtraction of the heat lost by evaporation, ete.,
H, (T). The corrected tunnel velocity (ch) then becomes
Ve = B//P,8T - v, = H//jssT - HC(T)//stf = Hlf/cgsT
The slope of (fig. 4) would then be
ch/vsp = l/d/o (36)

'b) Effect of leakage on the lift laws.

We use the notation of Parts IV and VI. The normal fluid coun-
terflow will give a contribution (Ln) to the lift, but in a direction
opposite to that of the superfluid

Ly = Ae//"711 ¥n
The superfluid gives a contribution (Ls)
Lg = m ve(vg = v,) (37)



The final 1ift is
L = Lg -Ln=mﬁ'svse-m/)s Vg vc-A‘ﬂnvng

Using équations 33 and 35 to express (vg) and (vn) in terms of the
superfluid velocity measured at the pitot tubes (vsp), we find

. g Y 2 2 |
L= vap {[m(L—x)(l-rx F)E = A y© x(1-x) ]vsp - m(l-x)(l«rx()’)vc}; (38)
which is still of the form of eguation 37 but with new parameters. Here
we use the abbreviation ¥z (1 - ,)/d 5. For low velocities a para-
bolic negative 1ift would be expected from the normal fluid leskage.
The effective critical velocity (vee) (value of Vgp 8t axis crossing)
must be computed at each temperature, Any expected temperature varis-
tion of (m) or (v,) may be included. However, even assuming (m) and
(vc) constant the temperature variation of equation 38 is complicated.
In the limit as x> of [)s /3~>1) the leakage contribution vanishes and

L—> m/)s Vsp(vsp - vc)
Vee —> Ve

In the limit as z— 1( Fs/ﬁ"’ 0), (assuming ¥<< 1)
v
L—> m/)s(la» J)2 vsp(vsg— *'1%7) = (mﬁs/()'oe)"sp(vsp‘ CYOVC)

vceﬁé VC/(]'*X ) = a/O VC

For (&) of the order of one tenth the influence of leakage could not

bhe detected with the available experimental accuracy.
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