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ABSTRACT

The buckling stability analysis of long cylindrical shells with
random imperfections subjected to axial load is treated using two
different approaches. The first study is based on a Lyapunov method
which enables one to establish sufficient conditions for buckling
stability of a long cylindrical shell with axisymmetric random imper-
fections. A perturbed system of equations in the neighborhood of the
prebuckling solution is investigated. By reducing the problem to a
system of integral equations, it is observed that the stability boundary
value problem of a long shell is similar to that of a dynamical system
with random parametric excitations.

Initial irﬁperfections were assumed to have Gaussian distri-
bution and an exponential cosine correlation function. The critical
load was obtained as a function of the root mean square of the
imperfections. Results obtained are qualitatively similar to those
of Koiter for a periodic imperfection (Ref. 1).

The second part is based on the approximate method of
truncated hierarchy. The prebuckling state of equilibrium for
asymmetric imperfections is found by a successive substitution
technique, A homogeneous variational system of equations is set up
in order to examine the existence of bifurcation in the neighborhood
of the equilibrium state. These last equations involve random
parametric terms'. The truncated hierarchy method is applied and

characteristic equations are obtained. Various exponential cosine



correlation functions associated with asymmetric imperfections are
examined numerically., Qualitatively the results obtained are as

anticipated,
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I. INTRODUCTION

In the last three decades it has been recognized that small
geometrical imperfections are the major cause for the reduction in
the buckling strength of cylindrical shells, subjected to axial loads.
Particular analytical studies of the problem, using approximate
techniques and considering simple periodic modes of imperfections,
have been carried out by Koiter (Refs. 1, 2), Donnell and Wan
(Ref. 3), Hutchinson (Ref. 4), Budiansky and Hutchinson (Ref. 5),
Babcock and Sechler (Ref. 6) and others. Few attempts have been
made to study problems associated with local imperfections, almost
periodic and stationary random imperfections. In other words, the
studies fhat have been carried out so far are related to ideal cases
and give qualitative insight to the problem.

In thé search for a more realistic description of the geometry
of imperfections, it was suggested by Bolotin (Ref, 7) that the imper-
fection function should be considered as a random variable. By using
statistical techniqﬁes based on probability distributions and their
transformations one could evaluate the probabilities for buckling
failure. This outlined procedure is perhaps too general and becomes
impractical as the number of random variables increases,

The first attempt to select a less general class of random
imperfections, assuming stationarity and efgodicity, has been made
by Fl;aser (Ref. 8) for a beam on nonlinear elastic foundation. This

problem was treated by means of equivalent linearization for small
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imperfections. In a recent work by Amazigo (Ref. 9), the problem
of buckling of long cylindrical shells under axial load has been solved
for the case of axisymmetric initial imperfections. The approximate
technique of truncated hierarchies has been utilized in this solution,
In both studies, an exponential cosine correlation function for the
imperfections has been exé.rnined. It should be noted that the solution
techniques in these two studies were based on the assumptions that
the initial imperfections were small.

In the present work two different techniques have been used,
The first part consists of a stability analysis which is based upon
Lyapunov's direct method, and has been utilized for the axisymmetric
state of imperfections, No attempt has been made to extend it to a
more general state of imperfections, although it is felt that this can
also be achieved. The analysis is based on a study by Caughey and
Gray (Ref. 10) for dynamical systems with stationary random
parametric excitations.

Considering the problem of long cylindrical shells, a par-
ticular class of random imperfections, which is of practical
significance, is the stationary state of imperfections with respect to
the axial variable. By expanding the imperfection function in Fourier
series in the circumferential direction, one can set up the problem
considering the Fourier coefficients as the random variables. These
coefficients are assumed to be stationary with respect to the axial
inde‘pendent variable and may be cross correlated. In addition it is
assumed that the joint probability distribution for these coefficients

is known, Further simplification is obtained by assuming that the
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random variables satisfy the ergodic property.

By considéring the perturbation equations of the prebuckling
solution it is possible to obtain a linear system of ordinary differ-
ential equations with constant and random parametric coefficients.
By disregarding the terms with parametric coefficients the system is
reduced to a stable one as long as the load is below the classical
buckling load.

When the parametric coefficients are included by reducing the
problem into a set of integral equations it was observed that, with
proper modifications, the stability analysis is similar to that of a
dynamic system’ where the axial variable replaces the time variable.
As soon as this part of the analysis is established, the application of
the Lyapunov technique becomes straightforward.

Lyapunov's method yields sufficient conditions for stability,
but it often occurs that this technique leads to extremely conservative
conditions. One of the major problems with Lyapunov's method is
that of determining the proper matrix inequalities in order to derive
sharper stability conditions. This part of the problem has been
handled with particular care, yet it is felt that this part is still open,
as in dynamical systems, to improvement.

The present method of stability has been tested numerically
for the particular case of axisymmetric random imperfections. By
considering a Gaussian distribution and an exponential cosine
corfelation function, the critical load was obtained as a function of
the root mean square of the imperfections. The curves obtained are

similar to those of Koiter for the cases where the peak of the power
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spectrum function coincides with the frequency of the critical linear
buckling mode.

Finally one should point out that the present study is perhaps
only the first step in this direction. By using the same technique,
sufficient conditions for stability of cylindrical shells, subjected to
other types of loads, as well as deterministic, almost periodic states
of imperfections, can be obtained.

The second part of the present work is based on the approx-
imate method of truncated hierarchy. A prebuckling approximate
solution is obtained by using the method of successive substitutions,
which is valid under the restriction that the root mean square of the
imperfections is small compared to the shell thickness. Once this
part of the problem is solved one can turn to the stability analysis.

In order to verify the existence of a second solution in the neighbor-
hood of the prebuckling equilibrium state, a variational homogeneous
system of equations is set up. In other words these equations will
enable one to examine the existence of bifurcation. Assuming that
the initial imperfections are small, the method of truncated hierarchy
can be applied following (Refs. 11, 12, 9). As a result one obtains a
system of integro-differential equations for the proper correlation
functions. This problem is further reduced by applying double
Fourier transforms which leads to a system of homogeneous
equations for the proper power spectrum functions. The condition
for existence of a non=-trivial solution yields the desired relation for
existence of bifurcation. Naturally the lowest load and the associated

power spectrum mode are the final results of the present problem.



“5a

Exponential cosine correlation functions are examined
numerically for combinations of asymmetric and axisymmetric modes
of imperfections. The correlation function parameters are selected
carefully in order to justify the applicability of the numerical results
obtained. This last argument naturally is based on physical intuition
rather than on experimentél evidence, In a work by Arbocz and
Babcock (Ref. 13) imperfections have been measured by electrical
means; however, the record was too short and therefore reliable
correlation funcfions could not be established. Although the measured
results are precbise and carefully obtained, the number of cross
sections of the cylinder for which imperfections were measured is
not sufficient for data reduction in order to set up numerically the
statistical properties of the imperfections. This, for the time being,
leaves only the possibility of examining known correlation functions
for testing the theory. As mentioned before, the parameters in these
functions are selected on the basis of intuition which really relies on
speculations,

It is hoped that, in the future, the present measurement
techniques will be improved considerably, and perhaps new means
for the measurement of imperfections will be found. Then the

present analysis could be utilized on the basis of more realistic

information,
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II. ALMOST SURE STABILITY OF LONG CYLINDRICAL SHELLS

WITH AXISYMMETRIC RANDOM IMPERFECTIONS

1. Preliminaries

The present study ﬁreats the stability of a boundary value
problem. In general Lyapunov's second method treats asymptotic
stability of dynamic systems, in other words it is related to initial
value problems. In order to relate the boundary value problem to an
equivalent dynamic system in a steady state response or a stationary
response in a statistical sense let us investigate the following system

of equations.,
d*X
d gL

= .Bx + F?(g)X ~e0 < E< oo (1.1)

where X is an N-column vector with the components X
i=1,2, ¢ . «; N, B is a constant N x N matrix and ¢(§) is an

N x N matrix whose nonzero elements are stochastic processes:
Fe) = [£08)] (1.2)

It is assumed that the matrix B has at least one square root A

A'A=A2=B

the eigenvalues of which are distinct and have negative real parts.

Now consider the system of equations



e

aLX AZX

2 -00 < E <+ 00O 1.3
with the conditions at infinity
X -» 0 as E— too (1.4)

The solution of (1.3)as ¥ -=+ 00 can be obtained from the

equation

-3%(—; AX (1.5)

Furthermore, as § — = OC) the solution can be obtained from

-2 = - AX ' (1.6)

Equations (1.5) and (1.6) can be combined to one equation as

follows
AX
— = AX 1.7
dre| t-7
The stability is defined in the sense that as % —» =% the

lateral deflection of the shell tends to zero. This is known as
asymptotic stability, and the term almost sure stability is associated
with it, One can therefore state that conditions (1.4) can be met if
and only if there is a matrix A , the eigenvalues of which have
negative real parts., This last condition together with (1.4) assures
stable solutions as €| - e , or by considering (1.7) and

selecting the proper A it assures that (1.7) is asymptotically stable,
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Turning now to (1.1) and assuming that for l-;-—' (§)= O this
system is stable, let it also be assumed that the elements of Fle)
{’i.", (g) , satisfy the following broperties,

a. The processes are continuous in -0 (¥ ¢ o©

b. The processes are strictly stationary.

c. The processes satisfy an ergodic property,
guaranteeing the equality of the averages with
respect to § and the ensemble averages.

On the basis of the assumptions with respect to A and the

boundary conditions at § = % U s one can construct a Green's

function matrix associated with {1.3) or (1,7)

G(g,ﬁ) = G(15-7) (1.8)

Equations (1.1) can therefore be converted into a system of integral

equations of the form,

X(g)= 5 A" S G(I§—"(I)E("1JX(”L)’L"’[ (1.9)

-0

By observation one realizes that equations (l1.9) can be obtained

from the system of equations

dx

X + L A" E(
T~ AXTEATFmX

(1.10)

where the positive sign in the second term, on the right hand side,
is taken as ’§ increases and the negative sign as it decreases,
Due to symmetry it will be sufficient to investigate the asymptotic

stability of (1,10) only for § - , Hence equations {(1.10) can



be reduced to the form

%: AX + F A Fe% (1.11)

where a proper condition at x,(O) = X, can be selected.
From this point, the analysis will follow Caughey and Gray
(Ref., 10). If A isa stability matrix, there exists a Hermitian

positive definite matrix Vv , such that (Ref, 14)

A*V+ VA =-1 (1.12)
where A" = 'Z‘T o

A Hermitian matrix Q) can be formed as follows
at)=4{vt[A'Fe) v+ V*"[A"E(E)JV'%} (1.13)

! -de
where V£ and \/ 4+ are positive definite Hermitian matrices
obtained as follows: Since V is a positive definite Hermitian matrix

there exists an orthogonal transformation ® such that
@®=1, @*V@:[‘ﬂ\]

V possesses a unique square root \/’k
vi=- ofu]er

also
\/'%"—‘- @[yfﬂ ®*

Now, let RQ(g)" be the norm of Q(¥) ; if E{”Q(g) "} exists

and is less than l//-‘-m , the system of equation (1.11) is almost
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surely stable in the large.

In the particular case that E(}) may be written in the form

M
F () Z G, £.(¢) (1.14)

L=l
where . are constant matrices and f£.(¥) are scalar functions
s acd

of § and M< N? , it is possible to have a sharper condition of
M -
stability, If > | M%) ax E{f;(E’} exists and is less than
Lw) :

| o then equation (1.11) is almost surely stable in the large,
M y g
where \’;[mim is the numerically largest eigenvalue of the

matrix

B,;=7‘_—[v‘i’(A" G.J) VE+ A G)VE] (1.15)

2, Basic Equations

Let a point on the cylindrical surface of radius R be
specified by its axial and circumferential coordinates X and Yy .
Due to the presence of imperfections each point is radially displaced

from the cylindrical surface by WI(X) . It is assumed that

[W(x) | <« R Wy | « |

In the absence of surface loads, the equations expressing equilibrium
in the % and Y direction for a shallow shell involve only the

membrane stress resultants Ny Ny and N,y » These
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equations are satisfied by introducing the stress function F(xy ,

Na= Fyy Ny = F,xx Ny = - Fixy

Let W({X,Y) (positive inwards) be the radial displacement of the shell.
In the case of axiéymmetric,imperfections the functions F(x,y) and

W(%,¥) satisfy the following two nonlinear equations,

2
o VA F + 3 Wik = = Wasa Wiy = Wi Wiy +(Wony) (2.1)

DVAwW - -A_—F,,x = WuxFyy + Woax Fiyy + W,yy F xx

- 2W,xy F,;ty (2‘2)

where E  is Young's modulus, V  Poisson's ratio, h  is the
shell thickness, Eh. = membrane rigidity,

3
D = —Er bending rigidity

2(1- v}
az 33- 2
V= (35 + e )

Equation {2.1) is the compatibility equation in membrane strains and

(2.2) is the radial equilibrium equation.

3, Method of Solution

Equations (2.1), {2.2) admit, for an axisymmetric imperfect
cylindrical shell under axial compression, an axisymmetric

prebuckling solution which may be written as
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Flx,9)=-% G'l'\y2+ é’(x)
W(x,y)=--‘é9’—12 + Wo(x) (3.1)

where & is the axial compressive stress. Substituting (3.1) into

(2.1) and (2.2) yields

| .
Eh ioxxxx + %w%"" =0 (3.2)

DWo,xxxx + Gdh.(\-&’,u + Wo,xx) - 'é"' @o,xx =0 (3.3)

These equations can be simplified by reducing them to a nondimen-

sional form. Let

= [ Rh _ | Rh
X=\[Z¥ £ b4 —2'7—"1
2
W= hw, Wehw §=SthR o (3.4)

¥ = \f3(1-v%) A= -g; 5, = Eh

Introducing these relations into (3.2) and (3. 3) yields

¢, W, = ©
2 111 ¥% (3.5)
Wo,gggs = Py * M Wogp= - 22 Wigy
The solution of (3.5) can be written in the form
o0
W, lg) = g G°(§-) W () dn (3.6)

- G0



-13-

o= | e mop o

where G°(§""[) and H"(E-n) are the Green's functions associated

with the homogeneous part of (3.5). These functions are

Ge) = & e-ﬂ'?'[z"__.cosbg—gasmbl?lj
, (3.7)

ey =2 o8 _pco )
H%e) =i e L bcosbe + asin blgl]

where

>=vi=M/2 b = V+3yz"

This solution remains finite as long as A< | .
Considering the case of stationary and ergodic random
imperfections with zero mean, the autocorrelation functions are

defined as follows
Rx (8) = E{VV(P"L)W("U} (3. 8)
R @) = E{WolE+ )W ()
R, ®) = Ef{Welg+pwetr)} 5.0
where E{-}(E)} is the expectation of the function # . Now

E{we(ssn) W)} = E { S X Gg) Glg) W(M+¥-8,)W(T-§,) dg dy, }

-0

Introducing the expectation operator into the double integral yields
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oo

Rw, (8) = SS G°(g) G°(8,) Rw(E-§,+5,)d¥, ¥, (3.10)

-00

This is the desired relation for the linear part of the solution.
Following Koiter (Ref, 1), the nonlinear equations (2.1),

(2.2) may admit an asymmetric solution adjacent to the symmetric

one which is specified by W (*¥) and ét(x, y) . Hence

considering

Fx,9) =-L 6hy? + $&) + $,0Y) (3.11)
W(,y) = - v-ECi-’R + Wo () + W, (x,9) (3.12)

and taking into account that the deviation from the axisymmetric
configuration is infinitesimal one may linearize the equations with

respect to Wi(%,% and @ (x,¥) . The compatibility condition

and the equilibrium equation therefore are

§ i : —

Eh V‘é + 55 Wi« :"(WOJxx"‘VV;xx) W yy (3.13)
VEW, + Gh W, -~ L = (W&

» ' b R é"” - (W,,n-ﬂ-w.,,“)é’wé- %o;xxv/bw (3.14)

Now, let

By = > @;(x) cos 2+ (3.15)
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n
w, (“:9) = Z WA(X)COS '1'2.'2
Introducing the last expressions into (3.13) and (3.14) yields

2 .2 1! 2 _
-E‘TC(%R"- B %) é‘w + 'i%—w':\.,xx: _% (Wﬁxx"'wjxx) WL!- (3.16)

3

- 2 i
D(%‘-%) W, + gkwﬁjxx’%@:t,xx =

&

= - "% [(me + Wo,xx) i:“ + éq,xx WL“J 3. 17)

As before, these equations can be reduced to a nondimensional form

using (3.4) and the relations,

W, = hw 3 =Lt6ahd ki= bm?
which is

(Jz -k )i + w

et ) gy = T, (5) W (3.18)

i 2 .

(%‘g‘i - h'z)_w - 4’;§§ +2 AW = ~[r,'(§)¢*§'"2(§)w] (3.19)
where

r.(§) = hz(woi-w),;g ) rqz(f) = hzﬁ,f}

Now, let
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$= % Ws Xy
2 2
(fé__i__kz)x,-.—. Xy | (%I_kz)xzs X4

equations (3.18) and (3.14) yield
X|“ = kzx' + X3

k%, + X4

x
»
il

Xg = k%4 = 22(R%% + x) + k2o + X3 = [(8) X, + Myle) Xz

where prime denotes differentiation with respect to § .

In matrix notation (3.20) may be written as

X" = A%X + Fle) X

where
k* o ! o
o k2 o !
A =
o k2 k* -
k2 -2 k2 ] lk2-2)
L. _

(3.20)

(3.21)

(3.22)
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o} o] (o] o] o] 0 0 0
o fo) fe) o ] o 0 (o]
F(¢)= - (g) + T (8)
o I o) o) o o o o
- | o] o] (o] -l
_ | © o 9]
(3.23)
~ -1
and X‘
X2
x =
Ay
X4

Constructing a transformation matrix P such that

PIAZP = AN = Fij

2 2
where 4\ is a diagonal matrix containing the eigenvalues of A )

one can find the matrix A
A= PAPT (3.24)

where

A = E%J omnd ‘Re{‘i;,} < O
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4. Derivation of Stability Condition

For the following analysis, the autocorrelation function

RW (e) will be assumed as an exponential cosine function
Rafs) = K? ¢/ wsoy | (4.1)

and W($) will be assumed to have a Gaussian distribution.
Obviously K represents the root mean square of the imperfections,

For a function f(*) with Gaussian distribution

E {Ife0]} =-\/;,-7=_-[R£(°)]i (4.2)

In the case of the cylindrical shell,

H“(E)l [k [R(w,*w)m] | (4.3)

and
r
9} =\Z & [Ru.0)] (4.4)
where
R @ = SS &) &) Res (5,- 5,) 48,98,
oo

(4.5)

~ el
Q)= = |[2-2% 21+ 2
(¢) [ — cosbg + == Sim big|
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and

Rw©) = SS G%e,) G°(5,) Ra (5,-5,) dy, d,

-0

After rather cumbersome integra.tiohs

[(b+6)K + (b-6)N]} -

= Latgt ___L_ ate)(K+N) - |
R, (0) = *)k {{V/’_‘T( N ) T

L [o- ) (ML) + (are)(ken)] -~ (oo ic)+ (b-O)LeN]]

|
i+

"ﬁ"

+{ JT-,-—)_ [(b+6)K-(b—.9)Nl - JT-H-FT (a-pﬁ)(N-K)} o

o{ !j)\ l(b*a)(M-K)-(b—O)(L-N)] -

{_17' [(-€)(L-M)+(eve) (k- N)J}

+_;_{ [ 2a%+ b* j b }e
27> (Qz*b’) 1+ a?2+p4

«{ﬁ[—(o.-e)(M+L)+(a*a)(m~)] + = (b4 o)(m-K) + (b-9)(L-N) |

L b _ _ g .
?{JI—A a?+p? JTT-‘;ra(a%b*)}

. Jn— [(b+8)(M-K)+ (b-0)(L-N)] - J-—_- [(ﬁ-a)(M+L)+(°~*é)(K+~)]}}

(4.6)
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and

Rt 0) = TR {{\;—%?_.S-(m*e)(mblh -‘;—i&[(w O)K + (b- a)N}} .

| \}%’-’3{ [e-e)Mei) +arexkeN)] + \‘;;;;‘. (b)) +6-8)(L+ N)}}
HAZ [ k- OIN] + 22 (arev-i}-

{122 [broxu-0- b-eXLoN)] + H22 (e e k-N]}

[}

+ﬁ‘{ 1-2>» 20*+b? +2> b
[ a@®+b9) ¥ iz ar+b?

{ f_[ (a.-s)(M+L)+(a+e)(K+~)]- Fﬁ'ﬁ[(b 8)(M- K)+(b-e)(L-~)]}

- 2
+1{F2) b I+ 22 b

ZUES ek T [Tan aledvB)

[(b+8)M-K)+ (b-0) L~ N)] + 122 [le~a)MeL)+lave) K+N)]}}

1% %

(4.7)
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where

= ’ = I
K (oe+£)2+ (b +0)2 M= (o-€)2 + (b+ 6)2

: - |
(o+8)2+ (b-0)2 sy

To complete the stability analysis established in Section 1, one has to

find the Hermitian matrix V such that
A'V + VA = -~ I

where A  is formulated as shown in (3.24). Then one has to find the

transformation matrix @ such that

0*@=1 @*Ve- D»J

where [4; are the eigenvalues of V . Let G, and G, be the

following matrices

O o s} 0 4] o o] o
o] o o o) o o o o
Gg - 622 (4' 8)
o] ¢ o] o] O e} Lo} O
! o] o 0 o - o O
. - l e

Then,
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=4[vE AG)*VE + VE(AT G, VT ] (4.9)
and
By= V(A Vi VE(AG) V] o
Let M be the eigenvalues of B, and MY the eigenvalues of

B, - The stability condition for the cylindrical shell will then be

l"'l ~ax E{ln(f)l} 'Vl.mm,- {”_'z(fo)l} 4/}&‘«.«; (4.11)

Now from (4.3), (4.4), (4.6) and (4.7), it is easily seen that

E{irel} = ok

and

Eflnwl}=

where € and Cg are constants.

Introducing these relations into (4.11) yields

i |

K < — =
!”l.("mas C! + l”l}nlmx C, JMmax

(4.12)

This is the desired stability condition.
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5. Numerical Example

In order to evaluate the stability boundary determined in
equation (4.12) a specific numerical example has been carried out,
The following parameters were used in the calculation,

800

R/ =
v = 0.3
£ = 0.2
e =1.0

The data (€,8) for the correlation function of the initial imperfections
were selected so that the peak of the power spectrum would be in the
neighborhood of the peak of the response kernel for W(g) . This
will assure consi(éleration of the most critical situation. The

numerical evaluation determines the following relation.

. i |
O oGy + 1P lma Ca o

§O) =

The shell will remain stable as long as X() < 5() .

The calculation was carried out varying the wave number k
in the vicinity of g"—’ Ji . The stability boundary obtained is
shown in Figure 2; This result is similar qualitatively to the deter-
ministic cases associated with sinusoidal imperfections.

It should be pointed out that the imperfections at particular

points might be higher than K by a factor of 10 or more.
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6. Concluding Remarks

The stability condition is only a sufficient criteria for the
stability of the shell. The buckling problem is still open for sharper
conditions, nevertheless the present condition does not require any
further assumptions with respect to A or the power spectrum
functions of the initial imperfections,

It should be pointed out that, for certain particular cases,

a sharper stability condition can be obtained by means of other
techniques. For example, where the load is close to the linear
critical one and the power spectrum function of the imperfections
varies slowly in the vicinity of the axisymmetrical response
function, the tase can be solved in a simplified manner, considering
a narrow band filter technique. The stability condition obtained will

be sharper than that obtained by Lyapunov's method,
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III. APPROXIMATE STABILITY ANALYSIS OF LONG CYLINDRICAL

SHELLS WITH ASYMMETRIC RANDOM IMPERFECTIONS

1. Prebuckling Equilibrium with Asymmetric Imperfections

This part of the work is based on the approximate method of
truncated hierarchies which has been used before for the axisym-
metric case by Amazigo (Ref. 9). No attempt will be made to study
the validity of this technique, however comparisons between results
obtained by truncated hierarchies and those obtained by other
approximate techniques, such as perturbation techniques for
particular cases, are in good numerical agreement. In order to
assure justification for adopting the truncated hierarchy method as
used in the following, one should assume that the root mean square
of the imperfectiions is small compared to the shell thickness. The
last assumption seems to be rather restrictive, nevertheless the
cases which fall into this class are of great practical significance.

Considering again the nondimensional equations of an

imperfect cylindrical shell subjected to axial load,
VAP +wigy = ¥ (Wgg Womn + Wiqm W,y =2 Wogm Vf':m)

VW -, gp + 20 Wy = 29{(¢, gy Won + By q Wyg ‘Q‘P,gqﬁ:ﬂ)

(1.1)

where
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= 2*
Vi v

W(E,m) = W(E,M) + W(E,m)
W(g,m) = W(E, ) + 2W(E,")
Consider a solution of equation (1.1) of the form

¢(§)‘1) - ‘E(gt")) + ﬂ(giﬂ)

(1.2)
wig, ) = Welg,q) + Wiz

The functions 4{(!,'1) and Wo(¥,%) satisfy the following system of

linear equations

74?0 + W":H =0

(1.3)
ViWe - &, gp + 2AWeygg = - 22 g

the solutions of which are

o>

Wo(E,1) = ﬁ 3(§,m,) W(E-3,, -1,) 45,4

=00

¢.(%, ) = XX l’u(§”"[') w(s-5, - 41.,) J'gﬂ Jﬁls

(1.4)



o

We(¥,7) = SS*(M,) Wg-5,) -7 ) dg ey,

-0
a

Wo(¥, 1) = SS{(E.,’L)W(E‘E.; 1-,) 43, 49,

-00

where the double Fourier tranéfbrms of g(g,nl) R !\-(‘§;’VL) , ;(E,"[)
and {(%,7) are

2 (2™ p?) %

G(“) B}z (dz+f,z)4 - 2 X2 (d.“—e—!’a’ 24 o4
e ﬁ)= 22t
) (%4 p2) ¢ - 2act? (o2 (52)2 + of4
(1.5)
2, @2)4
F (o) B)= 2B e o

(dﬂ._*_ P’L)4— - 2)@0("(0(’”" ral)?. + A4

and
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(a2 s p1)* - 2 o2+ PP 4 4

F, (°‘) ﬁ) =2 (q,+ﬁg)4 - Zhdz(d’“" F‘;)z + o4

One realizes that these transfer functions exist for all [% .

as long as X<l and, in particular, for p=o ,

2x ot
o4 ~2rx2 4 |

G(d)o) =

_ 2
H()0) = ot -~ Zhed? 4+ |

(1.6)
A4+ |

A4 - 22Xt 4 |

F(O()O) =

and

ad - ra? 4 |
ol ,0)y = 2
F.(et,0) A~ Zaof 7]

Introducing (1.2) into (1.1) and neglecting higher order terms
in - 47, (E,"'[) and w,(gj‘vz) as well as multiplications of sub-zero

and sub=one terms lead to the equations

A A
VA + Wi gg = - ¥ (We,gg Wo,gp + Werqy Woypg (1.7)

" 2Wa3q Wo,x9)
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VAW, = B,ee *2AW, g0 = 2)/»(4»,,,3\7\?,,,” ¥ ¢°;11W°'5!

) 2‘#‘:!’1 w°)§’l)
At this point consider the following useful identity

Pey ‘?’:’M"' 591 hse " 2Py eq
(1.8)

= U"},"m);g} + ("%ﬁ),ﬂ""(”‘kﬂ),s'g

= (VRanhss +(Thse)gn -2(9 hgq)req

The solution of (1.7) can be formally written in the form

¢(§"l Y‘S‘X 2;"(?)1) o,§§(§ 551 '1) °wm(§ 5, 1)
+ q’os “j‘)'(g.ffli!- 1!) WI’J}}(g‘E’) '7..1,) - 2*@,}1(?5) "",t) W’(E-}l} ’,-“L)]
- kz(?u ) ’i,} [wo,fi(f’ }, 3} ")‘ ’ln) VG‘) '1’1 (}-'EEJ 1-’1')

"'w")'?“l(f'fn») ""1’) Q”i}f(}'}u ‘?" "7.) B
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- 2w‘1§'l (3'!':’1'1,)@(3'}:, ’l"h)] } d‘;l A’l;

[+ ~]

i) = (g ma) Faset-n )T s,

-0

(1.9)

+ 4,qq (-8, 1-1,) Worg5 (8-3,57-1,)

- 260,57 (53, 1-1,) W (3°5,,11,)|
-3 )W, 35 (&= %5 -1, ) Worpy (8- 515 71
$ Wo (85, 9-1) Wo, 35 (5-%,5 1= 1,)
-2 w,-,,”(g- %, 1-1) Werg9 (3-5, 1—1,)]} 4y, 4,

where the double Fourier transforms of k;(i,q) P kg_(};'q) 9

4,(3,1) and %,(§,7) are

Hi(ep) = (*+p2) 4 = 2ro02 (a2 p2)+
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(24 p2)% - 25 o

Hz (°" p) = (dz+ﬁz)4 - Q)o(z(a(’-pﬁ;’)z-f— o4
(1.10)
) _ (x2+ p2)*
G, (o) B) (%24 B2)4 - Z (ki P+ ot
2
G,,_(o(,[’)) = =

(ot+p2)4 — Drot2(ef2 +f)2 + ok

From the expressions for H, (%, p) and G, (e, p) one can observe
that, for ﬁ,ao , these expressions have a singularity at A=o .
A question arises as to the existence of the formal solutions set up
in {1.9). The answer to this question lies in {1.8). This nonlinear
differential operation enables one to utilize only second derivatives

of h(g,1) and g,(5,7) in the following fashion

Sg h(s,, %) Uygy (3-8, 1-1) 45 4, = ggkjss(ﬁrﬂ,)U(E'i,’l“l.)‘*‘f.“‘?.
~co ~00

oo
oo

SSh,(g‘,"L') U,vm (% "%, "!"1,) “lgn"h!‘ = Sykl 'M@uqg)u(f'glﬂ"l,)dgadm

P =00
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0o

SS k(f,)"‘h) U;ﬂ (‘S'E:) ‘1.'114)‘('3. OL‘L, = SS L\/,g-»l(}”"t.) U(E-Su 1-‘1‘)&"(1.

- -Co

Hence, the use of only second derivatives of the transfer functions

will remove the singularities at =0 and =0 .
This completes the solution to the second order of approx-

imation. A higher order of approximation can be achieved by

proceeding further with the successive substitutions, which will not

be sought here.

2. Variational Equations and Stability Analysis

With the assumption that a solution of equations (1.1) can be
found to a satisfactory order of approximation, one can consider the
stability problem by seeking the possibility of admittance of a second
solution. In other words, a variational equation will be set up in the
neighborhood of the existing soluﬁon to verify the existence of
bifurcation.

Returning to equations (1.1) and, assuming that they admit a
- second solution specified by “'('i,‘]) and W(},‘Vl_) , the deviation of
which from the basic solution is small, one may linearize the
equations with respect to Ww(%,4) and Y(§,%) . The compatibility

equation and equilibrium equation therefore take the form
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VAP gy = - 2y (Wyggtyqm + Wyqn gy -2Wpy Uy )

(2.1)
ViU - q;ﬁ-c-z).u §¥ = 2)*(4’.;; ;11"'4’11 Wg =29 pq Lixn

+Wy g Wn + W, 1 Yigp - 2Wyg1 Yen)

where W = W +W, and $=¢, + 9

Substituting equations (1.5) and (1.9) into (2.1) yields

VAP + W g-zr{ W W "(5,71,) W(3-%,, 7-7,) 43 o7,

o0

*ypg S‘S}-»G”m)\ﬁ(g-g, , n-"l,) olg, o7,

0

-2 u"f'lg& ‘f:io(gnyl:) w(s- 5, "l'"‘-.) ds, &1,

-0o

+ ar{ Xg g [onn® )G51) + Lpsln) g (5,,1,)- 2B D)

-00

é%a

a["\:,(jxy 1§ (8, 1,)+ K G, 1) {"(},,15) -2h! 1) £15, 1) ]

"é’[u”ﬂ@) v])%:(&; 115)-0— u’)'ﬁ 2{(5) 1)~ 2“}3 1(?1 7)3{(3.,’1')] °
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4, W 9 )+ £, 1,) § (80 )- 24"(s,, )8 (5, ]}

'W(¥-%"%, y 11, 1) W(%-%,-5, 217" ") 45, 411 J}‘JLJSSJL}}

(2.2)
and
V- Yy rarthgy = 2 {u"l’l SS hg,m) ®(E-5,, 1-1,) 45,47,
o0
+ W% gg"\:’(fu"[!)w(g'&; ’1'4[')0‘{, d"li
Yo

~2ygn [ [R(3,, ) W(s-5,, mom, ) dg o,

+ \V”ﬁ S\X‘F'(sum) WCE’E,, }z'%l) o(-g' A‘I'

- &0

[+ -]

g (s, s, ) 45 4,

=00

oo

- 241 SS»‘"(E.,"I.)W(S-E,, 1-7,) 48541, +
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8

oD

SS{["L"”[(!N) L:'l(snm) * “'Ss(f:’l)mfu ") = 2y (8,1) RI(S‘,"I,)

-Q0

W{S’SS

§—

* $ 08,13 ) + Y 5190610 - 28 (5G]
R, 1) £708, 1) + A7 G, 1) (5,1~ 2K 6,0,) £+18,1,)]
= H[wr990E, DRLE, 1) + Loss (5, 1) Wo(5,7,)-2hsa(s, DRL(E,1)
+ a5 32E,1) *ss(3,1) 7050 1) ~ 2BV -
(10108 Gu,1) #47C T 00126 6,0 6,0} -

P W358, 1-0-0) WS- 50 %, 1000 ) ABdy, *:M,dsf‘v}}

(2.3)
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where prime denotes differentiation with respect to the first
argument in the function and dot denotes differentiation with respect
to the second argument in the function,

Let the following correlation functions now be defined
Ruls,t) = E{“(E"?ﬂl*‘c) w(¥,) }
Rolr,v) = E{Wlrer, qee) w(s,m)}
Rup(r, 0= E{wle+r,1+7) y(5,m)}
Ryulp,0) = E{¥(s+5, 1+2) w(y, )}

(2.4)

and

Ru(£,%5 mis) = E{w(5+8,1+5) uls, 1) Wz o, 1+ 5)}
Ra(s05 sy = E{W(Een Ae2) L5, ) B3, m05)}

Rulfyvs por5) =E { W(§r8,700) wl5,) By, 145) }
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Raa(603005) = E{Wlyre, 105) w(s,1) W(s54,15) |

(2.5)
where the double integrals associated with the expectation are taken
over the repeated variables,

At this point one should also consider the proper approx -
imation for truncation in the technique to be used. The correlation

discard approximation in the process of closing the hierarchy in a

typical case is
E{W(5pt 1 5) B3 0,1 5) 500, 05) s, )}
= E{R o, 1r5) F(gomn, qes)} Efulsom, qe5)us, )

= Rg (m-pr, 5-38,) Rulptx,)
(2.6)
Although approximations of this kind have been applied in
different physical problems, their validity has not been established.

Nevertheless, for the case of buckling one can find in the work of

Amazigo (Ref. 9) a comparison between truncated hierarchies and
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perturbation solutions in simple deterministic buckling problems.
For reasonably small imperfections the agreement between the two
techniques is good and therefore this technique will be adopted for
the problem of shells for the case of small imperfections as
compared to the shell thickness,

Equations (2.2) and (2, 3) can be written for the point
($+%,1m+7) , in which case all differentiations are applied with
respect to the proper arguments. Doing so, and multiplying equation
(2.2) (written for the point (¥+¥§, 14-7\) ) by ¥(%,v) , taking the

expectation of the result and using the correlation discard approx-

imation yields the following equation

[+
V‘R'}’(?;i) +'Ruq:,g§(§,"’!) = ’zf { S‘{f"(guna) RlZ,SS(gas 3 g_g;) ;L-"Ll)l

@0 5=

4060, %) Ryl 95, )| ;Zf'zf.ﬂ.)ﬂu,,.s(mssf-g,ﬁ-m)‘ﬂ } oAz dy,
. mE *

N
Yﬁ ji Ryu§ )18, 1) + RewlE 1), (5,) -2 RyulE, DG 5,

(R0 W) )+ KT S, 1) 2 G )6 1) -
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- IRy (E,7) 90 (5, 1)+ Ruyp(B7) 3 @, m,) - 2Run(E 1), (8, 1))
1608 7 81) * £T5,1)9 (6, 1,) ~ 265 1) 3"(5,%))} '
¢ Ri‘v (E;".g;.i; "l;""ta.) "Lgt ’Lm ‘ngol’"lz J'Es dﬁl: }

(2.7)
Considering equation (2.2) again at the point (§+§ ) ‘Vl"”l) .
multiplying by @ (¥,M) and taking the expectation of the resulting

equation yields

oo

T Ryu(®, )+ Ru3e (§,7) = - 2¢ { SS{#"(M.) Rings (6,5 5 §+%,71)

-0

5=

+ £7C8, M) Ryl 75 843, FM,)’ :gz{ (81 Ruyps(5 5 §+§.,i+~z.)] J4sdt

2 s
g =

]
8

+9)

L/-"'"\g

|

o

{n::(fmg:‘(s.,m) + RA(E, )37 (5,1)-2RUEA) 36,0

ey
s

4
8

-
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[R50, 0500+ K 0, ) 61085, -2 (5, 1) 4 )]
-H[REE, 1) 30 (3, )+ RUE, D) 8 (3, 1)-2RUGE ) 35,1) ] -
Y SA RO NER S ORNE AR TRCRN 3"(&,»1»)]} ‘

- ’Rw (Ea- E; ] ns’ ”l,,) J'gl Aﬂq J'gz A"\z_ 4-;, J;‘l; ;

{2.8)

The same procedure as described for equation (2.2) will be
followed for equation (2.3), considering correlation discard approx-

imation, the following two equations will result

V4Ru(g "l)-‘R\yu,, ’§,ﬂ)+2)\?\&,i} = ZY {SS{H'(§|,“L)R‘"SS(§'§3E-E"i-""‘)L:%

+k(§va%)pﬂ;ﬂ/(ﬁ'ﬂ"1)§ 5,1 "b)‘ Qh(glﬁa)R"gﬂs(/"g )§ S - "11)} ; +
[J.':
S=4
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405, 1) Ra 555,33 35, % W F Ryl Ee T 4‘)\ §

- 2£7(%, ) Ry, ux (53 % E,,"L”l,)l }”‘W“’(,
s='7t

[~ -4

]

[~ -]

ﬂ Ru(i,ﬁ)h'(i.,"l,*RG A (e,,1,)- 2 RECE, )Ry (5, ,)

L—-——"‘ﬂa

%

-

+ Ryu(€,) 9" (8 1) * Ry (E,7) 9,7 (5, 7) 2Re(8, ‘z)g,"(sr.m.ﬂ‘

R0, 14 ) +RC )4, 1) -2k (8 ) (8 0]

—%: [R;: (g )i) NH(&,,”(,) + 'R:\' (E)q) k;(E»,"lJ‘Z wa(fs;l«)k'{(&)’ln)

+Ru(®9)g; (§.,~1,)+Rw(m 95 (5,1) - 2Ry, 1) 4781 e
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5'052,) 97 (6,19 + (80, ) 3" (80 ) ~ 26 (55,7 3(8:,7% 1}

* R (%,- K, ,"Ls‘"lz)dg’ a('l' ds, d, A%, dn, }

(2.9)

and

V4Ruyp (§,7) - Re33 (8, L)+ DRuy, 338, 7)=

¥ { gg{hﬂ(g! ) %i) ’RuaSS(i) 53 g- En‘ 'FL-”I") lg: '71

-5

+ k”(fl,"l,)’kuw/(/“ "5 ’E“E,j A-,) ‘ %

- 2h R (555, )
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+{‘"(§H"lt)w22,!s(§) 5 58-%, "1"‘1»)‘

P

5=7

""FTE.,"L,) Ru,,&p(/»“;;l. ) £-%,, 1- "ll) Lu‘-"_g

’2:‘"(3‘,'1‘) Rgz,ﬂg (ﬁ’ S; §- §l ) "_"’ "ll)l/""g

5=

(2

+ 2y S

8

[[{[Rz 2, 0Rts, 0+ R, KT8, 1) 2R 50K, 1)

8(.——"'}

+Ry (8,4)3"(s,%,) + R(3,7)97(s,) - 2R"(5,7)3/"(s, 1)
'[K'(S;, 10470, 1)+ B, 15 - 2h"(3, , W (s, '4,)]
- [Rug(§, )3 (5, 1,) + Rlew (B, TR 5,)-2RE (3, DR G51)

+RS (%) 9Em) + Re(E,1)4,G,1) 2R4(E,7)9"(51)] -
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* ["?" (%2,7,) 3Gyt £ (82 ") 3“ (3, J"ls) -2 ﬁ"(fu*lx) 7(s, "L)]}'

Ra(8-%,, 1 ) Ay, 41, oy, 4, dBdy }

(2.10)

To obtain the expressions for 'R“(i,ﬁ M4, 5) ,
Ry (3,15 4, 5) v Ra(¥,%5 4, 5) and R (¥,%; m %)
one has to multiply equations (2.2) and (2.3) written out at the point
(3+%, 1+ 7) , by U(s, )W (¥+a, 1+5) , take the
expectation with respect to ¥ and M , use the correlation
discard approximation and neglect higher order terms. This will give

results in the form of the following equations

V4Ru(§,;l )/“,S) - Rﬁ‘)%i(g )"!3/"35)4’

+27\'Ru,§§ (g y 7 y M 5) =

=+

2y SS{ RGNS, 1)+ RUE, AR Ts,1) - 2RUE, DK, 1)+

- Qb
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+Reu (%,%) £'(5,, 1)+ Ryul®, DF 6,1 - 2RYul(€, D)4 (s, "l.)} .

*Ra(§-%-4, A-m,-5)dy, 44,

(2.11)

o0

V4R2‘ (g,;l i/“')S) + Ru,g; (g, | 3/";5) =-2) SS{';“(EU":)R:(?);')*

'§'"(§1 ) ’),) ’Rl!. g, V‘) - 2"'"(3) m) R‘.(?)ﬁ )} RW(?' fl'f/‘;‘l ';i"”‘l' 3) ”Lfl d”'l,

(2.12)

VAR(,45 2,8) - Reg g (5,75 208 + 2R, 55 (3,75 p,8) =

-]

- gg { Ry (B, )R (5,71) + R (8,7 W51, )- 2 R (5,DR(5, 1) +

e -4
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HRG(E,A) £, 1)+ RYED £, 1) — 2RG BA) £, |

* RW(?"E"/"'} ;l"m' 3) "Lgl dm

(2.13)
and
vt Ru(§,% 3/‘)5)"‘&2,%(5:%3/‘:9 = -2y XS {4"“!)"")“:\!’(?1';‘)

4708, 1,)RUp(5,7) - 2(5,,1) RE(E, ’4)} 'RW(E-E;yu, 7-m,- 5) 4§, A,

(2.14)
Formal solution of equations (2.11), (2.12), (2.13) and (2.14)
yields ‘
RaB,5 9 = 20 { () () {900, [RG%, A0 W0

+RU(E- 8, A=) K (8, 1) - ZRE(E-¥,, 71, ) W (3,,71,)

+ﬁ;%;“(§-§33 ;"ﬂs))(“(gsﬂz) ¥ RE*P“ § §s,"| "a)*‘ §u"]z)
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- 2Ryu(§- 5, A-1,) ;'.(fz,"h)] B 31(35;’15)[123- (8-%,,7-1,) $"(%,7)

*RE-5,, A0m) £7(5,, 1) - 2R"(§-y,, i—ﬂ,)i"(fzm,,)]-
"R (E-%a- Sty A-,-y-5) A8 dg oy,
(2.15)

w oo

¢
Ria (88, ,3) = 2¥ 3& S

[ S

{ 9.(?,,1)fRCy(E-ss,”'z-ﬂ;)l»"(sl,*),)+ﬂ"(§-s,im,)li'(s:,m) |
“2RUp(E- 5, TR Ga,) + RS (£-5,,7-1) £(5,,%)

Ry (85, T, 1) - 2RS4 (5. q,) |

= 5, )[Ry (8- 5, 1-1) £, )+ RaylE-5,)30) £ 50,)

fe /o . =
= 2 'Ru-'l/ (g" gs 3 :’1 “4;)".(33, 4’;)] } RW (f- ga.-.gs'?") ;, - ",z— 'qj' S)‘gqux‘(g;‘b’i
(2.16)
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oo

Ru(iﬂj/“:S) = 23"&& SS S,)'f),) R“'(f ~§5,9- '43),"’ 51»'}1)+R“ & !.;‘1-"),)‘» (S,"’),)

-2 Rt(i'gs, ﬁ'ﬂ;)“.(gx,ﬂ,) + 'R‘:P"—(i' L ;ﬁ’ﬂ;) )(‘"(ra') 'qz)
+ R(E5,, B)F (5,m,) - 2 R (55, 5§ (5,)]
- hz(g”"‘s) ['R'; (E" SL) ﬁ’ﬂ;) ‘;"( 31) 'qn.) + R’L(g..;” i'ﬂi){"(sﬂ")’-)

-2R% (¥-5,, -1, )f “'(?a,q,)]} Re (85,8, 41, 7- 55 5) g, 4, dg,

(2.17)
/‘;3)3 2y S Sg "H(?s,”'lg) 'Kw{'(g 55,7 ﬂ,)k(iu"),_)-ﬁ'?gq;(E EM"' ‘L)k, Gnm)

- 2Ry (85, - (80,) + Ry (3%, 7-4,) h'(5.,7,)
RUS-5,, A=) b (5,,1,) -2 RY (35, 71-1) K (5., 1,)]
- b5, [Raig (B-5,, 7 1) £ "(52,9,) + Rl (B-5,, A £ (5,%,)

- Z'Rt,l.'\? (?'i,, ;, '45)’; '.(gz, "3)} } RWG’ 5{&/‘ 3 "'-1"’1; ']{S) 4 EL‘L,L. d'gi 4 1’3

(2.18)
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Upon proper differentiation of expressions (2.15), (2.16),
(2.17) and (2.18), setting up the necessary arguments and introducing

into equations (2.7), (2.8), (2.9) and (2.10) one obtains

VR (5.7) + Ruy,gs(§:%) =
=-4 \733 &jg {{ [#'0501)9; (5, #4 15,128, 1) 26108, 1)3)" (55, 7,)]
(R (-5, 34 K(3, 1) + Ry (-5, 7- 1)K (5,9
“2Ry(8-5,, -1, )R (%, m,) + Ry (§-%, , 3-1) £, 1)
Ry(3-%s, M) () -2 Ry (3-5,,7-1) (5, /)J]

-1, m) 3, () + £7(5,1)3 (5, 1) - 2616, 1) 3 (5,00

OXR:‘P(E‘EH7)‘4)5);“(3;,")1) + R‘Lq’(g’gni)"’)&) 4-.@1)”1) -
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-2RUy (§-5,, F-,) £(5, )] } R (8-5.7 %, 1o ")
‘ +{ LR 1) £ (300 ) *+ R (8, M) (3 1) - 2R (8,75 (55, 1) ]
JRE(EA) 9 (5,,1) + Rl (8,7) 4r°(8,1) = 2Ry (€,7)91(5, )]
4[R5, )37 (5,) + 470857, 3“(5;‘,'4,)—21 5,1,) 85, )]
R (5,718 (5,1) + RIy(EA)%(5,9,) - 2R (5,7) 31 (5, ]}

* Ra (S,- 5, q,-"lz)}. 0‘§| d‘ﬂ( d.ga. A‘qz OLES d"li

(2.19)
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V4 Ruy(§,4) = Ry, 50(E,3) + 22 Ruy,£5(5,7) =

- gg g& ﬁ {{l h(6,1) 3 (5ym,)+ W8, 7) 90 (8,7 )~ 2R (5, 1) 3 (51

-0

+£“(§.m.)h:'(s.,m,)+( (5, (38,75)- 2605, 1) by (3,1
(R (B3, 5-m,) W'(5m,) + Ry (B3, , F-m) k(5 1)
- 2RY (-5, 7-4) W5, 1)+ Ry (5-5,, A-)"(5,7,)
FRHEs, Ao £ m)- 2R (85, 7-4) £ (5, )]
-[h'(5, 1) 95°(5,9,) + W15,1)3, (5, 1,) ~2h'(5,1) 32 (5,1
+£8, 0k (50,1 + 78, 1) (8,1 - 24105, %) R (8,9,)]

(R (85, 3-9,) £, + RA(E-5, A=) £ (5,m)-



-52-~

- 2Rup(§-%, , A-) 4" (5, m)]} R (875735, - mny)
+ {[h"(s,,n,)f"( 5,) + W08, 40 £108,7) -2 R (8, 1) £°(5, 1) |-
o[Riy (8,7) R (5,1 + Uy (5, (3, 1,) - 2REV(E, ) b (3,1)
Ry (i,?\)g."(s.,n.) * RE (1) 3775,%) -2 (5. 7) 91 5, 2]
- (48, 1) 3705, 1)+ ) 36,0 - 267Gy 3 (5,1) ]
[ Ry (&, h(5, 1) +RI(E, Dby (5,1) 2Ry (8,7) hi(5,%)
+ Ry (§,2)9,"(5,1)+ Re (5,7) 3,7(5,1,) - 2Ry (£:7) 2;'(% »]}

. RW(§;‘ 5, 13-"%) } ds, "("zc dfzdnz 45, d/"-’

(2.20)
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4 - s =
v Rvﬂ(f;"’l) + ’R‘*)?i(bn’):

=-4y? SS

(
{50,009 (5 575,130 28 G )3 50

Zeo

 Yaguet s
-8

[R5, 7-m) R(5,, 1) + RE(E5,, oty b (5, 1,)
~TR (8-5, 7o) (5, ,) + Reu($-%, 7004 "(5,,4,)
Ry (88, ) (85, 1) 2 Ry (-5, 7- 4)£(5,1,)]
-[#‘(s.ﬂ.)g;‘(g.,n;)+4"(s.,~1.)2;'(s,m5)-Qi"&m)sl‘(ws)]'
} [RE(E-5,, A, £ (5ay) + R (F- %4, =) (510

QQ'R‘t(f'SS)ﬁ'ﬂs)‘;'U(Sﬁlﬂl)j} Rw (E!"Ez"gsp"ls‘”‘lz'qa +
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[N 1065 )+ R 55,9 - 2T £, 1) -
JRI(E,7)37(5,m) + RE(E,7)377(5, 1) - 2 RE(EA) " (5,0
l - (47, 1) FE) 4 )8 5m) - 24" (5,1) 8 (5]
-['Ri'é,ﬁ)%f(&,m) +RL(E,7) 95 (5,,m) - 2RE(3,9) 94 (5, ”h)]}'
Rt (5=, s s) } olg, dv, dg,d, 4% d,

(2.21)

and
V4R (%,7) — Ryw, ik (%,7) + QYR“-:'?-E' (%)ﬂ)z

00

\

+ LM%, ,'4,) HT(?;,"?;)"’ &"(E,m) "a(gs, "1;) - Q,C"(§,, 1) h,h&,ﬂ,)]'

SX {{ [h"(s.,").) 97" (%,,)+ W (8,103, (3,%)- 2 h6,1)9"6,,0)

o
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REGE- 5, A=) K (8, 1) + RE(5-5,7-1,) K (5, 7)

- zm"(}s,, - g) b (8 1) + Ry (€55, 7-4,) £" (8, 7)

+ Ry (§- 5, , F-7) £ (5, 1,)- Zﬂv'iv(? 5, ﬁ-m)f"(!a,m)]
‘[h"(ﬁj,ﬂ.) % (%,15)+ W(8,7)92(8, %) - 2h"(5,71)9,(5,%)
+4 "(s.‘{,vn.) o (5,75)+ £, )R (5, 4) - 2£7(5,9,) hl’(s,,m)}
[RE(E-5, -6, 1) + R (E- 55, A=) (50 )

-2RU(E-%, , A1) §°(8, )]} R (80505, A 0,)

{708, MR8 1)+ £205, )R (541 - 265, 4) W&, 1)
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R (8, K (g,m) + REE, M) R, 1) - 2RE(E,A) R (5,m,)

* Ry (8, %) 9)'(5,m) + Ry (8,7) 97(5,7)- 284 (8,9) 3" (3,7 ]
-[£"(e,7,)97 (55,7, )+» £(5,7) 9"(8,715) - 25 (5,7 315, 7))
[RiL(8,7) bl (5,) * RI(8,7) by (5,1)- 2RE (5, 7) by (8,7)

* Ry (8,7) 905,71) + Roe (8,7) 3, (5., 1.)- 2Reul £,7) 91 (5,1)] }

¢ Rw (g;—gg} ']3-",2)} dgi dﬂg dfa 4111 dgg Ang

(2.22)

One can observe that the four equations obtained consist of
two identical sets of equations for different sets of correlation
functions. It will therefore be sufficient to concentrate in the

following analysis on one set of equations, namely (2.21) and (2.22).
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Upon applying double Fourier transform using proper

convolution relations, the following equations are obtained

(22+p?) z Syuls B) -~ *Sule,p) = - Sule,p) L, m)- Syu(“) B) L, (+,p)

(2.23)
[(om.ﬁz)'l —2)«1] Su(s,p) + o2Syu(a,p) =

= Su(e, ) Igt,8) + Syul,p) I,(4,B)

where

Su (e, B) = gg Ru(‘é,"]) e -a.(ats-t-ﬁ"l)dgd,yl

-
(2.24)

o0

Syu(o,B)= Sg Rya(s, 1) €405 PPdgay

- OB

and

Ie(d’ p) = T.;.t;

XX‘dﬁ»-o«. R)* F (s ) [H(o, B) G, (-0t p-pay)

-on

+F ety ) Hy (oot B-) | Salet, p)clahdp,
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12(“)ﬁ) = (dFl °"l[‘3)4 Fa(“‘)ﬁ)

2l
Dty |

' Gl (d'dl) r’—ﬁl) SW(dt, P.) A dﬁ,

(2.25)

oD

Ly(o,p) = SS(«a. dP')4{[Ha(°":f’) Fie, 0] G (et-ot, o)

+2F (el py) {H(d‘) Po) + AF (et ﬁi)] Hi(ot-«, ﬁv'l")} Sglotpy) dotdf,

Equations (2.23) are a system of linear homogeneous equations
in Su(dj ﬁ) and Oyu(®, f'a) for all (o(, ﬁ) . A necessary condition
for the existence of a non-trivial solution for these functions is the

vanishing of the determinant of coefficients. One therefore obtains,

(di'a' ﬁa)?, 23l + = TP - Iz(d) f)

ol4

+ (d?:;)z [Il(“) p) + 7‘12("‘1!%)] + @;‘@2 [IA";P) 1<, fs)-If(o\jpj

(2.26)



«-59.
Equation (2.26) is an implicit relation between A& , &
and B . Naturally the lowest value of 2 is to be sought,
Formally,by minimizing A with respéct to o and @, will
result two more relations which will uniquely determine the minimum
value of XA  as well as the corresponding o and [ at which
it will occur,

Since I,(%,8) L(«4,p) and I, B) involve > in
an implicit form in a rather complex fashion, the treatment of the
solution from here on will be numerical rather than proceeding with
cumbersome analytical relations. Finally one should point out that
by minimizing }\ with respect to o and f | , oOne commits
himself to a particular solution of the variational equation repre-
sented by a double simple harmonical mode. Since the variational
equations are introduced in order to investigate the existence of a
second solution in the nebighborhood of a given solution, and since
one is concerned with double continuous spectrums, it is possible to

choose any arbitrary non-trivial spectrum mode. Naturally the

double periodic spectrum modes are associated with the lowest value

of A .,

3. Particular Cases

Prior to considering numerical examples of particular cases,
one should investigate the power spectrum function Se (dj f&) of
the imperfections. This function is dependent on the two arguments

A and ‘3 which can be either discrete or continuous.
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Considering first the argument [3 , representing a circular
modified frequency in the circumferential direction, it is obvious

that this variable is discrete, and can only be of the form

For m >» |, B can be considered as a continuous
variable for all practical numerical computations, this will be
followed only by insignificant numerical errors, The axially
symmetric mode of imperfections is naturally the case of f=0

Hence, since any general state of imperfections can be

expanded in Fourier series in the circumferential direction in the

form
W5, M) = ) W) Aim [ + Su(3)]
" (3.1)
where
Y, = My

m;‘:o’"Q)““

v =/ hAYRY

and, since the concept of correlation function can be utilized not
only with stationary random functions but also with periodic functions,

it will be useful to examine the correlation function in the case of.

the function (3.1)



L [~ [+
R (m5) = 4m Lim ' S Z Z Was(5) Won (5 4+ 10) Sin [V + Sule]]
L

© SN [ (N+5) + S0 (3 +/¢)] dg "("l

- ze»»v --..-‘ - vy Y { 2 - -
T e 2L {W‘(E) Wo(§+p) + 5 E Wau () Woy (5 + 1)«
-L .

Mz

P

; s Cosg [v.&g < s.,,(g-g-/,c) - sa(’g)] } d§
= Ra, (1) +Z Ra, (m:8) (3.2)

ey
The last expression leads to some interesting conclusions; for cases
where the phase Sw(¥) is constant (independent of ¥ ), the

correlation function ‘an(/w, 3) takes the particular form

Ram(p18) =4 E'g{ Win () Wou (54,4 } os V%
(3.3)

which physically means that there are no "torsional imperfections'
present in the shell. On the other hand, for the more general case
where the phase S« is a function of ¥ , '"torsional imper-
fecﬁons” are present in the shell and the correlation function

Ra (/u, %) - takes a more complicated form.

In the following analysis it is assumed that Sw is
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independent of § . Furthermore, exponential cosine correlation
functions for  Wa(¥) are examined numerically, The last
functions are often used in control systems, and seem to be acceptable
for stationary states of random imperfections (Ref. 8, 9). However,
the selection of parameters in this particular correlation function is
of major significance, since imperfections may occur in a certain
range of frequencies, Particular attention should be paid to those
modes of the power spectrum which are most effective in reducing
the buckling strength yet remain reasonably practical,

Since, in the following the power spectrum Sw(«,p) will

be needed, one should note that the double Fourier transform of

expression (3.2) for constant Se yields

5a (a,8) = 20 Sa @ I® +4 5 50 (0 d(B1-v) }

mu
(3.4)

where Swﬂ(d) sy, M =0,1,2,... is the Fourier transform of
the correlation function

Wn(/"‘) = Eg{wm(’g) WM(B“’/")} n=0,,2..-
which in the following analysis will be taken in the form

Ra (p) = Kb e 8 cop,
Wy /" n /“ (3.5)

The corresponding power spectrum SW“(O() will therefore be
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2 K2 g, (? + Ex + 62)

(3.6)
ot + 2(ek-00) o? + (£ +62)2

Sq.(x) =

Typical power spectrum curves are presented in Figure 1.
At this point let us turn to particular cases -

(i) Axisymmetric Imperfections

First, considering the case of axisymmetric imperfections

for which

Sa(e,B) = 2 Sa () O (@) (3.7)

Upcn introducing this power spectrum into (2.25) one obtains

I («.p) = 2F o Y ot P, [ M) 6, (e, )

+ Flet,0)Hy (oh-et, f)] S, (o) et

(o, 8) = 2 ot (ot P22 Gl Bl s

© (3.8}

I (p) = %—’4 p g {[H¥ety0)- F2,0)] G, (ch-ot, ) +
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+ 2F (2,0)[H(et0) + AF(%1,0)] H, (oi-ot,p) Sz, (o) d o,

Introducing these expressions into (2.26) yields the final desired form
for the characteristic equation, in the axisymmetric case. A com-
parison between the equation obtained and the one obtained by
Amazigo (Ref. 9) reveals a slight difference. However, a numerical
comparison between the results obtained from the two equations is
almost in perfect agreement.

The integrals were evaluated numerically by means of
Simpson's quadrature which has the feature of selecting the proper
size of integration subintervals according to the desired number of
significant figures., Minimization of » as & and B vary
continuously has been carried out numerically, With the assumption
that the number of waves in the circumferential direction is large
enough to justify continuous variation of ﬁ s which not always was
the case, the final minimum values have been obtained.

From the expression for the power spectrum (3.6) one
realizes that, for the axisymmetric case, the mode shape of g:i’:,(d)
is dependent on two parameters, namely, & , 8 . The case
€,= © and ©Ee=li is the deterministic case of a simple
periodic imperfection. The present analysis has been examined
numerically, in addition to the deterministic case, for & =! and
various €z between © .and | . These results are presented

in Figure 3. In the particular case of axisymmetric random
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imperfections it was expected that the characteristic equation will be
reduced to the one obtained in (Ref. 9). It turned out that a slightly
different characteristic equation was obtained. Nevertheless,
applying the present numerical integration technique for the integral
terms in both cases revealed that quantitatively the results obtained
from both characteristic equations were identical. Howevér, these
numerical results were not in agreement with those obtained in

(Ref. 9). As explained in this reference the integrals have been
evaluated numerically using calculus of residues. Since this
technique has not been given in detail, it was impossible to investigate
further the cause for the discrepancy and no further comments can be

made,

(ii) Asymmetric Imperfections

Another case of practical significance is the one where, in
addition to the axisymmetric mode of random imperfection, an

asymmetric mode of random imperfection is present. Let the power

spectrum for this case be
Salonp) = 2 [ B () 3p) + - Bg @) 3(pI-k)] (3.9

Introducing this power spectruin into (2.25) yields

-]

Lyp = I°(,p) + _231;:; g {(olk-d.p)4 F(at, k)

-00

ooty peR)H(e, )+ H oot PRI F( ] +



+( ok + ot p)4 Fleti, k) [G (-, p+) H(, k)

+ Hi(et-oti, p+k) F(a(,,k)]} S o) 44,

L(ap) = Li(e,p) + . Swpﬁ(o«.,k)[(aa-d.f,rq(d-d,) a-k)

+ak+ o) Gy(ot-1, o+ k)] S (o) dat,

(3.10)

-0

" Ia(‘* p) = Is (et F‘)"‘ S {dk °‘|B)4 Hz(d k)- FH(k) h] Gilers i)
+ 2F (o, k) [H(ot, k) + A F(oR) T Hy (o4, p-k) }
+(otk+4, ﬁ)‘{[Hz(d:,h) = F2(ey k) | Gy(ol-o, p+k)

+ 2, R)[ M, R) + 3 Flete )T (ko M}} Bt
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For the case where the instability occurs at p-—-k
L) = I k) + 28 (7L by Hea, ) [ o )
+ (i +a)* Glot-at, 2k) ] + F2(et, k)[H, (-2, 0) (oy- o) *

+ (o(‘+o()4.H,(o<.-A,2}z)]} ‘SW'(A,) dd,

xk

I,(4,k) = L (2,k) + G “(oh,k) [(-2)* Gy(oty-at, )

+(°‘l'°’°‘)4Ga(°l“"(; Qh):! éﬁe("‘e) dd,

(3.11)

L k) = I3(a,k) + £ K X { [, k)- Fete R)][(e4-)* G (e-a,0)

=00

+ (o +0t)* G, (04 -ot, 2k) | + F (ot k) [H(t k) + AF (et )] -

. [(da-'d )4 H, (- ofyo) + (et +ek)* H(d,-az,qk)” éw,(“v) de, .
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Introducing expressions (3.8) properly into (3.11) and the resulting
expressions into (2.26) yields the final desired form for the charac-
teristic equation for this particular asymmetric case, where the
instability mode occurs at (%:‘z . A » in this case is
minimized with reéspect to o

The integrals (3,10) or (3.11) were also evaluated numer-
ically using Simpson's rule. Minimization of A has been
carried out numerically, The various results are presented in
Figures 4 and 5. The family of curves obtained are qualitatively as
anticipated. Quantitatively these results are valid for small imper-
fections which, in most practical applications, are‘ the case. As the
imperfections become in magnitude of the order of the shell thickness
the present approach is no longer valid and other techniques will have
to be sought. This is naturally coupled also into questions of validity
of the equations of the shell and remains for future investigations.

Perhaps of all known techniques for stability analysis it seems
that the Lyapunov approach is the most powerful tool for establishing
sufficient conditions to such questions. This will involve the appli~

cation of the theory of functionals.
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4, Concluding Remarks

The method 6f truncated hierarchy proved to be a powerful
tool in the stability analysis of the cylindrical shell with small
imperfections. Although this technique is limited to a narrow class
of imperfections, it is this class which is of major concern in
engineering applications, Any attempt to adopt this technique for
moderate imperfeptions will be followed by cumbersome computations
associated with higher hierarchies, Perhaps a more difficult task
would be to justify the results obtained. This naturally suggests the
examination of other techniques which are not based on a direct
solution of the equations, yet rather investigate the properties of the
solutions. As pointed out before, the Lyapunov analysis is one way
to approach this problem.

In conclusion, the analysis presented in Part III and in
particular the characteristic equation obtained, are sufficient to
establish the buckling load in practical applications for cylindrical
shells with stationary random imperfections. The particular
numerical cases considered in this work are only the first step in
investigating numerically the nature of the problem where a more
complicated state of imperfections is concerned. Finally the present
study can easily be extended to the buckling problem where, in

" addition to axial load, the shell is internally pressurized.
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