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ABSTRACT 

The buckling stability analysis of long cylindrical shells with 

random imperfections subjected to axial load is  treated using two 

different approaches. The f i r s t  study i s  based on a Eyapunov method 

which enables one to establish sufficient conditions for buckling 

stability of a long cylindrical shell with axisyrnmetric random imper- 

fections. A perturbed system of equations in the neighborhood of the 

prebuckling solution i s  investigated, By reducing the problem to a 

system of integral equations, it is observed that the stability boundary 

value problem of a long shell i s  s imi lar  to that s f  a dynamical system 

with random parametric excitations, 

Initial imperfections were a s  seurmed to have Gaussian dis t r i -  

bution and an exponential cosine correlation function, The critical 

load was obtained a s  a function of the root mean square of the 

imperfections. Results obtained a r e  qualitatively similar  to those 

of Koiter for a periodic imperfection (Ref. 1). 

The second part i s  based on the approximate method of 

truncated hierarchy. The prebuckling state of equilibrium for 

asymmetric imperfections is found by a successive substitution 

technique, A homogeneous variational system of equations is se t  up 

in order to examine the existence of bifurcation in the neighborhood 

of the equilibrium state. These las t  equations involve random 

parametric terms,  The truncated hierarchy method is applied and 

characteris tic equations a r e  obtained. Various exponential cosine 



correlation functions associated with asymmetric imperfections are 

examined numerically. Qualitatively the results obtained are as 

anticipated, 
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I, INTRODUCTION 

In the las t  three decades it has been recognized that smal l  

geometr ical  imperfections a r e  the major  cause for  the reduction in 

the buckling strength of cylindrical shells,  subjected to axial loads. 

Par t icular  analytical studies of the problem, using approximate 

techniques and considering simple periodic modes of imperfections, 

have been ca r r i ed  out by Moiter (Refs. 1, 2) ,  Donne11 and Wan 

(Ref. 3) ,  Hutchinson (Ref, 4), Budiansky and Hutchinson (Ref. 5))  

Babcock and Sechler  (Ref. 6 )  and others .  Few attempts have been 

made  to study problems associated with local imperfections, almost 

periodic and stationary random imperfections, In other words, the 

studies that have been ca r r i ed  out s o  f a r  a r e  related to ideal cases 

and give qualitative insight to the problem. 

In the s e a r c h  for  a m o r e  real is t ic  description of the geometry 

of imperfections, i t  was suggested by Bolotin (Ref. 7)  that the imper- 

fection function should be considered as a random variable,  By using 

stat is t ical  techniques based on probability distributions and their 

transformations one could evaluate the probabilities for  buckling 

failure.  This outlined procedure is perhaps too general and becomes 

impract ical  a s  the number of random variables increases ,  

The f i r s t  attempt to select  a l e s s  general class  of random 

imperfections, assuming stationarity and ergodicity, has been made 

by F r a s e r  (Ref. 8) f o r  a beam on nonlinear elast ic  foundation. This 

problem was treated by means  of equivalent l inearization for  smal l  



imperfections. In a recent  work by Amazigo (Ref. 9), the problem 

of buckling of long cylindrical shel ls  under axial load has been solved 

f o r  the case  of axisymmetric  initial imperfections. The approximate 

technique of truncated h ierarchies  has  been utilized in this solution. 

In both studies,  an  exponential cosine correlat ion function for  the 

imperfections has been examined. It should be noted that the solution 

techniques in these two studies were  based on the assumptions that 

the initial imperfections were small .  

In the present  work two different techniques have been used. 

The f i r s t  par t  consists of a stability analysis which is based upon 

Lyapunovss direct  method, and has been utilized for  the axisyrnmetric 

s ta te  of imperfections. No attempt has been made to extend it  to a 

m o r e  general s ta te  s f  imperfections, although i t  is felt that this can 

a l so  b e  achieved. The analysis is based on a study by Caughey and 

Gray (Ref. 10) for  dynamical sys tems with stationary random 

parametr ic  excitations. 

Considering the problem of long cylindrical shells,  a par-  

t icular c lass  of random imperfections, which is of pract ical  

significance, is the stationary s ta te  of imperfections with respect  to 

the axial variable, By expanding the imperfection function in Four ier  

se r i e s  in the circumferential  direction, one can s e t  up the problem 

considering the Four ier  coefficients as the random variables.  These 

coefficients a r e  assumed to be stationary with respect  to the axial 

independent variable and may  be  c r o s s  correlated. In addition it  is 

assumed that the joint probability distribution for  these coefficients 

is known. Fur ther  simplification is obtained by assuming that the 



random variables satisfy the ergodic property. 

By considering the perturbation equations of the prebuckling 

solution it is possible to obtain a linear system of ordinary differ- 

ential equations with constant and random parametric coefficients. 

By disregarding the terms with parametric coefficients the system is  

reduced to a stable one a s  long a s  the load is below the classical 

buckling load. 

When the parametric coefficients a r e  included by reducing the 

problem into a se t  of integral equations it  was observed that, with 

proper modifications, the stability analysis i s  s imilar  to that of a 

dynamic sys tem where the axial variable replaces the time variable, 

As soon a s  this part of the analysis i s  established, the application of 

the Lyapunov technique becomes straightforward. 

Lyapunov's method yields sufficient conditions for stability, 

but it often occurs that this technique leads to extremely conservative 

conditions. One of the major problems with Eyapunovq s method is  

that of determining the proper matr ix  inequalities in order to derive 

sharper stability conditions. This par t  of the problem has been 

handled with particular care, yet it  is felt that this part is s t i l l  open, 

a s  in dynamical systems, to improvement, 

The present method of stability has been tested numerically 

for the particular case s f  axisymmetric random imperfections, By 

considering a Gaussian distribution and an exponential cosine 

correlation function, the critical load was obtained a s  a function of 

the root mean square of the imperfections, The curves obtained a r e  

similar  to those of Koiter for the cases where the peak of the power 



spectrum function coincides with the frequency of the cr i t ica l  l inear 

buckling mode. 

Finally one should point out that the present  study is perhaps 

only the f i r s t  s tep  in this direction. By using the s a m e  technique, 

sufficient conditions for  stability of cylindrical shells,  subjected to 

other types of loads, a s  well a s  deterministic,  a lmost  periodic s ta tes  

of imperfections, can be obtained. 

The second pa r t  of the present  work i s  based on the approx- 

imate method of truncated hierarchy,  A prebuckling approximate 

solution is obtained by using the method of successive substitutions, 

which is valid under the restr ict ion that the root mean square  of the 

imperfections is smal l  compared to the shel l  thickness. Once this 

pa r t  of the problem is solved one can turn to the stability analysis. 

In order  to verify the existence of a second solution in the neighbor- 

hood of the prebuckling equilibrium state,  a variational homogeneous 

system of equations is se t  up. In other words these equations will 

enable one to examine the existence of bifurcation. Assuming that 

the initial imperfections a r e  small,  the method of truncated hierarchy 

can be applied following (Refs. 11, 12, 91, As a resul t  one obtains a 

system of integro-differential equations for  the proper correlation 

functions, This problem is further  reduced by applying double 

Four ier  t ransforms which leads to  a sys tem of homogeneous 

equations for  the proper power spectrum functions. The condition 

for  existence of a non-trivial solution yields the desired relation for 

egistence of bifurcation. Naturally the lowest load and the associated 

power spectrum mode a r e  the final resul t s  of the present  problem. 



Exponential cosine correlation functions a r e  examined 

numerically for combinations of asymmetric and axisymmetric modes 

of imperfections. The correlation function parameters a r e  selected 

carefully in order to justify the applicability of the numerical results 

obtained. This las t  argument naturally is based on physical intuition 

ra ther  than on experimental evidence. In a work by Arbocz and 

Babcock (Ref. 13) imperfections have been measured by electrical 

means  ; however, the record was too short  and therefore reliable 

correlation functions could not be established. Although the measured 

results  a r e  precise and carefully obtained, the number of cross 

sections of the cylinder for which imperfections were measured is 

not sufficient for data reduction in o rder  to se t  up numerically the 

stat is t ical  properties s f  the imperfections. This, for the time being, 

leaves only the possibility of examining known csrrelat ion functions 

for testing the theory. As mentioned before, the parameters in these 

functions a r e  selected on the basis s f  intuition which really relies on 

speculations . 
It i s  hoped that, in the future, the present measurement 

techniques will be improved considerably, and perhaps new means 

for the measurement sf imperfections will be found, Then the 

present analysis could be utilized on tihe basis  s f  more  realistic 

information. 



11. ALMOST SURE STABILITY OF LONG CYLINDRICAL SHELLS 

WITH AXISYMMETRIC RANDOM IMPERFECTIONS 

1. Prel iminaries 

The present study treats  the stability of a boundary value 

problem. In general Lyapunovls second method treats  asymptotic 

stability of dynamic systems, in other words it is related to initial 

value problems. In order to relate the boundary value problem to an 

equivalent dynamic sys tern in a steady state response or  a stationary 

response in a statistical sense Pet us investigate the following system 

of equations. 

where % i s  an N-column vector with the components x. x 9  - 
i = 1 2 N Itj i s  a constant N x N matr ix  and FQsj i s  an 

N x N matr ix  whose nonzero elements a r e  stochastic processes: 

It is assumed that the matr ix  8 has a t  least  one square root A , 

the eig,envaPues of which a r e  distinct and have negative real  parts. 

Now consider the system of equations 



with the conditions a t  infinity 

The solution of (1.3) as 5 -r + as can be obtained from the 

equation 

Furthermore, as  5 - -og the solution can be obtained from 

Equations (1.5) and (1.4) can be combined to one equation a s  

follows 

The stability is defined in the sense that as  3 -9 the 

lateral  deflection of the shell tends to zero. This is  known as  

asymptotic stability, and the term almost sure  stability is associated 

with it, One can therefore state that conditions (1.4) can be met i f  

and only if there is  a matrix P% , the eigenvalues of which have 

negative real  parts,  This last  condition together with (1.4) assures 

stable solutions a s  1% o r  by considering (1.7) and 

selecting the proper A i t  assures  'that (]I. 7 )  i s  asymptotically stable. 



Turning now to (1.1) and assuming that for (3) = 0 this 

system i s  stable, let it also be assumed that the elements of hf) , 
fi* ( l)  , satisfy the following properties, 

a. The processes a r e  continuous in -00 ( 5 00 

be The processes a r e  strictly stationary, 

c, The processes satisfy an ergodic property, 

guaranteeing the equality of the averages with 

respect to 5 and the ensemble averages, 

On the basis of the assumptions with respect to A and the 

boundary conditions at  5 = 4 48 , one can construct a Green's 

function matrix associated with (1.3) o r  (1.7) 

Equations ( 1 , l )  can therefore be converted into a system of integral 

equations of the form, 

By observation one realizes that equations (1.9) can be obtained 

from the system of equations 

where the p ~ s i t i v e ~ s i g n  in the second term, on the right hand side, 

i s  taken a s  5 increases and the negative sign as  it  decreases. 

Due to symmetry it  will be sufficient to investigate the asymptotic 

stability of (1.10) only for 3 Hence equations (9,10) can 



be reduced to the form 

where a proper condition a t  X,(o) = & can be selected. 

From this point, the analysis will follow Caughey and Gray 

(Ref. 10). If A is  a stability matrix, there exists a Hermitian 

positive definite matrix V , such that (Ref. 14) 

where A* = A' 
0 

A Hermitian matrix Q(x) can be formed as  follows 

where vi and v-t a r e  positive definite Hermitian matrices 

obtained as  follows : Since is a positive definite Hermitian matrix 

there exists an orthogonal transformation @ such that 

V possesses aunique square root ~f 

also 

Now, let I Q(g)II be the norm of Q(F) ; if E 

and is less than l/p the system of equation ( 1 ,  H 1 ) is  almost 



surely stable in the large. 
- 

In the particular case that Fkx) may be written in the form 

where Gi a r e  constant matrices and fi(r) a r e  scalar  functions 

of and M < N~ , i t  is possible to have a sharper condition of 

M 
stability. If I fP'I, E{fJT;) 1 exists and is  less  than 

&-I 

/ then equation (1.11) is almost surely stable in the large, 

where ( q")I, is  the numerically largest  eigenvalue of the 

matrix 

2, Basic Equations 

Let a point on the cylindrical surface of radius R be 

specified by its axial and circumferential coordinates x and 'j 

Due to the presence of imperfections each point is radially displaced 

from the cylindrical surface by Q(%) It is assumed that 

In the absence of surface loads, the equations expressing equilibrium 

in the x and y direction for a shallow shell involve only the 

membrane s t r e s s  resultants Nx , Ny and Nxy ,, These 



equations a r e  satisfied by introducing the s t ress  function f= (%,YJ , 

F L Y  Ny = 5 x a  NEY = - F;xy 

Let W(X,Y) (positive inwards) be the radial displacement of the shell. 

In the case of axisymmetric imperfections the functions F(x,)r) and 

W(%,Y) satisfy the following two nonlinear equations, 

where is Young's modulus, V Poissons s ratio, k is the 

shell1 thickness, E k = membrane rigidity, 

~ r p 3  
= a( , -J)  

= bending rigidity 

Equation 42,1) i s  the compatibility equation in membrane strains and 

(2,2) i s  the radial equilibrium equation. 

3.  Method of Solution 

Equations (2. l ), (2.2) admit, for an axisymmetrie: imperfect 

cylindrical shell under axial compression, an axisynnmetric 

prebuckling solution which may be written as 



where 8* is the, axial compressive s t ress .  Substituting (3.1 ) into 

(2.1 ) and (2.2)  yields 

These  equations can be simplified by reducing them to a nondirnen- 

sional form, Let 

Introducing these relations into ( 3 , 2 )  and ( 3 . 3 )  yields 

The solution of (3. 5) can be written in the form 



where Go ( 5- 7) and He( 5 -?) a r e  the Green's functions associated 

with the homogeneous part  of (3.5). These functions a r e  

where 

This solution remains finite a s  long as  6 1 

Considering the case of stationary and ergodic random 

imperfections with zero mean, the autocorrelation functions a r e  

defined a s  follows 

is the expectation of the function f Now 

Introducing the expec tatisn operator into the double integral yields 



This i s  the desired relation for the linear part of the solution. 

Following Koiter (Ref. 1 ), the nonlinear equations (2.1 ), 

(2.2) may admit an asymmetric solution adjacent to the symmetric 

one which is specified by W,(X~Y) and ( E , ( x ~ ~ )  . Hence 

considering 

and taking into account that the deviation from the axisymmetric 

configuration is  infinitesimal one may linearize the equations with 

respect to WI ('1 91 and 9, (% , Y )  The compatibility condition 

and the e q u i l i b r i w  equation therefore a r e  

Now, let 



Introducing the last  expressions into ( 3 . 1 3 )  and ( 3 . 1 4 )  yields 

As before, these equations can be reduced to a nondirnensional form 

using ( 3 , 4 )  and the relations, 

which is 

where 

I-', (5 1 9 

Now, let 



equations ( 3 . 1  8) and (3.14) yield 

g,'' = g ~ ,  + x3 

= k2x2 + X, 

X; = k2x3 - ( h ' ~ ~ +  x4) + 1 ; ~ )  x2  

where prime denotes differentiation with respect to 5 
In matrix notation (3,201 may be wr i t ten  as 

where 





4 .  Derivation of Stability Condition 

For  the following analysis, the autocorrelation function 

a, (XI will be assumed as  an exponential cosine function 

R = K z  e-'Ml &so5 (4.1) 

and fie) will be assumed to have a Gaussian distribution. 

Obviously K represents the root mean square of the imperfections. 

For  a function f with Gaussian distribution 

In the case of the cylindrical shell, 

and 

where 



and 
00 

After rather cumbersome integrations 



and 



where 

To complete the stability analysis established in Section 1, one has to 

find the Hermitian matrix V such that 

A * V + V A =  -1 

where A is  formulated as  shown in (3.24), Then one has to.find the 

transformation matrix @ such that 

where/(*; a re  the eigenvalues of V Let G, and C1 be the 

following matrices 

Then, 



and 

Let qy' be the eigenvalues of Bl and qy the eigenvalues of 
A+ 

Ba The stability condition for the cylindrical shell will then be 

Now from (4.3), (4.41, (4,6) and (4. 7)# it is easily seen that 

and 

where Go and $Ite a r e  constants. 

Introducing these relations into (4. B 1) yields 

This is the desired stability condition, 



5. Numerical Example 

In order to evaluate the stability boundary determined in 

equation (4.12) a specific numerical example has been carried out. 

The following parameters were used in the calculation, 

%/h = 800 

Lp = 0.3 

= 0.2 

8 = 1.0 

The data (&,@) for the correlation function of the initial imperfections 

were selected s o  that the peak of the power spectrum. would be in the 

neighborhood of the peak of the response kernel for We&) This 

will assure  consideration of the most  cri t ical  situation, The 

numerical evaluation determines the following relation. 

The shell will remain stable a s  long as 4 5h1  

The calculation was carried out varying the wave number k 
in the vicinity of k= The stability boundary obtained is  

shown in Figure 2 ,  This result is similar  qualitatively to the deter- 

ministic cases associated with sinusoidal imperfections. 

It should be pointed out that the imperfections a t  particular 

points might be higher than by a factor of P O  o r  more,  



6. Concluding Remarks  

The stability condition is only a sufficient c r i t e r i a  fo r  the 

stability of the shell. The buckling problem is s t i l l  open fo r  sharper  

conditions, nevertheless the present  condition does not require any 

further assumptions with respect  to > or  the power spectrum 

functions of the initial imperfections. 

It should be pointed out that, for  certain particular cases,  

a sharper  stability condition can be obtained by means of other 

techniques. F o r  example, where the load is close to the l inear  

cr i t ical  one and the power spectrum function of the imperfections 

var ies  slowly in the vicinity of the axisymmetrica? respolgse 

function, the Case can be solved in a simplified manner,  considering 

a narrow band f i l ter  technique. The stability condition obtained will 

be sharper  than that obtained by Lyapunsvf s method, 



III. APPROXIMATE STABILITY ANALYSIS OF LONG CYLINDRICAL 

SHELLS WITH ASYMMETRIC RANDOM IMPERFECTIONS 

1. Prebuckling Equilibrium with Asymmetric Imperfections 

This part  of the work is  based on the approximate method of 

truncated hierarchies which has been used before for the axis yrn-  

metric case by Amazigo (Ref. 9). No attempt will be made to study 

the validity of this technique, however comparisons between results 

obtained by truncated hierarchies and those obtained by other 

approximate techniques, such as  perturbation techniques for  

particular cases, are in good numerical agreement. In order to 

assure  justification for adopting the truncated hierarchy method as  

used in the following, one should assume that the root mean square 

of the imperfections is  smal l  compared to the shell thickness. The 

last  assumption seems to be rather restrictive, nevertheless the 

cases which fall  into this class a r e  of great  practical significance, 

Considering again the nondimens ionall equations of an 

imperfect cylindrical shell subjected to axial load, 

where 



Consider a solution of equation ( 3 . 1 )  of the form 

The functions t(f ,?) and W$, 7) satisfy the following system of 

l inear  equatians 

the solutions of which a r e  



where the double Fourier  transforms of 

and $l(x,y) a r e  



One realizes that these transfer functions exist for al l  , 

as long as  A I and, in particular, for = o 

and 

Introducing (1.2) into (1.1) and neglecting higher order terms 

in . 4t ( ~ ~ 7 )  and WI ($, 7) a s  well a s  multiplications of sub-zero 

and sub-one terms lead to the equations 



At this point consider the following useful identity 

The solution of ( I , ? )  can be formally written in the form 

sCs 



- 1 w,,~ tr- r, , 1-13 Q,I, c s - 3 , ~ -  .zd d ~ ,  

where the double Fourier transforms of 3 kg(fJ7) . 
"$tcJ~ 7) a n d  2%(3,7)  are 



From the expressions for Hl(d,p) and C2(r(,II) one can observe 

that, for e= 0 these expressions have a singularity a t  0(=0 ,, 

A question a r i ses  a s  to the existence of the formal solutions set  up 

in f 1.9). The answer to this question lies in (1.8)- This nonlinear 

differential operation enables one to utilize only second derivatives 

Irl(~Il) and 3111J7) in the following fashion 



Hence, the use of only second derivatives of the transfer  functions 

will remove the singularities a t  p =O and d m  o . 
This completes the solution to the second order of approx- 

imation. A higher order of approximation can be achieved by 

proceeding further with the successive substitutions, which will not 

be sought here. 

2 .  Variational Equations and Stability Analysis 

With the assumption that a solution of equations (1.1) can be 

found to a satisfactory order of approximation, one can consider the 

stability problem by seeking the possibility of admittance of a second 

solution. In other words, a variational equation will be se t  up in the 

neighborhood of the existing solution to verify the existence of 

bifurcation. 

Returning to equations (1. P ) and, assuming that they admit a 

second solution specified by " ( 3 , ~  ) and 9 (5)  r) . the deviation of 

which from the basic solution is  small, one may linearize the 

equations with respect to M t $ l q )  and ?(Spy) ., The compatibility 

equation and equilibrium equation therefore take the form 



c - . -  
where w = W I + W l  and +=+,,++, * 

Substituting equations (1.5) and (1.9) into (2.1) yields 



and 





where prime denotes differentiation with respect to the f i r s t  

argurnent in the function and dot denotes differentiation with respect 

to the second .argument in the function. 

Let the following correlation functions now be defined 

and 



where the double integrals associated with the expectation a r e  taken 

over the repeated variables. 

At this point one should also consider the proper approx- 

imation for truncation in the technique to be used. The correlation 

discard approximation in the process of closing the hierarchy in a 

typical case i s  

"(Y+PJ 'I+ 5 )  E~I+P# r q.5,) ~ ( ' S + / U . ~ J  %IT,) ul1~1)  

Although approximations of this kind have been applied in 

different physical problems, their validity has not been established, 

Nevertheless, for the case of buckling one can find in the work of 

Arnazigs (Ref. 9) a comparison between truncated hierarchies and 



perturbation solutions in s imple determinist ic  buckling problems. 

F o r  reasonably smal l  imperfections the agreement  between the two 

techniques is good and therefore this technique will be adopted fo r  

the problem of shel ls  for  the case  of smal l  imperfections a s  

compared to the shel l  thickness. 

Equations ( 2 , 2 )  and (2 .3 )  can be written for  the point 

( r * g  ,*r+ ?) , in which case  a l l  differentiations a r e  applied with 

respect  to the proper  arguments.  Doing so, and multiplying equation 

(2 .2 )  (written for  the point ( ' 1 ' 3 ,  q*?) ) by q(3, 7) , taking the 

expectation of the resul t  and using the correlat ion discard approx- 

imation yields the folPowing equation 



(2.7) 

Considering equation (2.2) again a t  the point (5+5 1 9'3) 

multiplying by ~ ( 1  J Y) and taking the expectation of the resulting 

equation yields 



The same procedure a s  described for equation ( 2 , 2 )  w i l l  be 

followed for equation (2.31, considering correlation discard approx- 

imation, the following two equations will result 





and 

v4RaY(i, 1) - %v;s~  ( f i ~ ) + z ~ ~ ~ j f ( f j  





To obtain the expressions for  all(% q ;,acr, 5 )  

a ,  (31q; P,  31 % ( j A j r + , ~ >  and R ~ ( S I ~ > P I S )  
one has to multiply equations ( 2 , Z )  and ( 2 , 3 )  written out at  the point 

r-59%) ~ e q )  by u ( ~ ~ r l ) a ( 8 + / ~ ~  " 1 5 )  take the 

expectation with respect to 3 and , use the correlation 

discard approximation and neglect higher order terms,  This will give 

results in the form of the following equations 





* - -  i 4 -q,- s, 4, d?, 

and 

(2.14) 

Formal  solution s f  equations (2,11), (Z.P2), (2,131 and (2. P 4) 

yields 







Upon p r o p e r  di f ferent ia t ion of exp re s s ions  (2.15), (2.16). 

(2.17) and (2.18), se t t ing  u p  the n e c e s s a r y  a rgumen t s  and introducing 

into equations (2.7), (2.8), (2.9) and (2,lO) one obta ins  











and 

v 4 a , ( j , ~ )  - P T ~ I ~ P ( % ~ ~ )  +2raajrs:(f ,+I)= 



+ 4 't(51j9,) K; y%,q%)+ -Feo(tt jq@)h:(tsj Q?*) - 2 J # * ( ~ # J  vt9 Q v  (53,qa) 

+ a:'($- r,, ?-q,)j"(z,,~) 

RG 3%- 5, "I,- 9,) 



One can observe that the four equations obtained consist of 

two identical s e t s  of equations for different se ts  of correlation 

funetions. It will therefore be sdf ic ient  to concentrate in the 

following analysis on one se t  of equations, namely (2.2 1 ) and (2.22), 



Upon applying double Fourier  transform using proper 

convolution relations, the following equations a r e  obtained 

where 

and 



Equations (2.23) a r e  a sys  tern of linear homogeneous equations 

in SU(&JP) and Sy.u(a,~) for all (dl p) A necessary condition 

for the existence of a non-trivial soliution fo r  these functions i s  the 

vanishing of the determinant ,of coefficients. One therefore obtains, 



Equation (2.26) i s  an implicit relation between )r , o( 

and [.1 . Naturally the lowest value of 3 i s  to be sought. 

Formally,by minimiz ing  with r e s p e c t  to o( and f4 , w i l l  

result two more  relations which will uniquely determine the minimum 

value of a s  well a s  the corresponding d. and P at which 

i t  will occur. 

Since 1, 4 )  , I&(&) P) and Is(&, P) involve h in 

an  implicit fo rm in a rather complex fashion, the treatment of the 

solution from here  on will be numerical rather than proceeding with 

cumbersome analytical relations. Finally one should point out that 

by minimizing with respect to d and P one commits 

himself to a particular solution of the variational equation repre-  

sented by a double simple harmonica1 mode, Since the variational 

equations a r e  introduced in order to investigate the existence of a 

second solution in the neighborhood of a given solution, and since 

one is concerned with double continuous spectrums, it  is possible to 

choose any arbi t rary  non-trivial spectrum mode. Naturally the 

double periodic spectrum modes a r e  associated with the lowest value 

of $B * 

3.  Particular Cases 

Pr io r  to considering numerical examples of particular eases, 

one should investigate the power spectrum function SG (dl P) of 

the imperfections. This function i s  dependent on the two arguments 

d and p which can be either discrete o r  continuous. 
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Considering f i r s t  the argument [j , representing a circular  

modified frequency in the circumferential direction, it  is obvious 

that this variable is  discrete, and can only be of the form 

For 2) 1 ,  p can be considered as  a continuous 

variable for all practical numerical computations, this will be 

followed only by insignificant numerical e r ro r s .  The axially 

symmetric mode of imperfections is  naturally the case of k s o  * 

Hence, since any general s tate of imperfections can be 

expanded in Fourier  se r ies  in the circumferential direction in the 

form 

where 

and, since the concept of correlation function can be utilized not 

only with s tatisnary random fmctions but also with periodic fpmc tions, 

it  will be useful to examine the correlation fmction in the case of 

the function ( 3 .  B ) 



The last expression leads to some interesting conclusions; for cases 

where the phase Sm(8) is  constant (independent of 3 ), the 

correlationfunction Rse(p,s) takes the particular form 

which physically means that these a r e  no "torsional imperfections" 

present in the shell. On the other hand, for the more  general case 

where the phase 5% is  a function of $ , sttorsional imper- 

fectionss' a r e  present in the shell and the correlation function 

Rg (.u) 3 )  takes a more complicated form. 

In the following analysis it is assumed that Sre i s  



independent of 5 . Furthermore,  exponential cosine correlation 

functions for k ( 8 )  a r e  examined numerically. The las t  

functions a r e  often used in control systems, and seem to be acceptable 

for stationary states of random imperfections (Ref. 8, 9). However, 

the selection of parameters in this particular correlation function i s  

of major significance, since imperfections may occur in a certain 

range of frequencies. Part icular  attention should be paid to those 

modes of the power spectrum which a r e  most  effective in reducing 

the buckling strength yet remain reasonably practical. 

Since, in the following the power spectrum 5% (d, (3) will 

be needed, one should note that the double Fourier  transform of 

expression (39 2 ) for constant 9, yields 

where S4(d) m = 0, I ,  I J  .- . i s  the Fourier  transform of 

the correlation function 

which in the following analysis will be taken in the form 

The corresponding power spectrum SRB(o() will therefore be 



Typical power spectrum curves a r e  presented in Figure 1 .  

At this point let us turn to particular cases * 

f i l  Axisvmmetric Imperfections 

Firs t ,  considering the case of axisymmetric imperfections 

for which 

Upon introducing this power spectrum into (2.25) one obtains 



Introducing these expressions into (2.26) yields the final desired form 

for the characterist ic  equation, in the axisymmetric case. A com- 

parison between the equation obtained and the one obtained by 

Amazigo (Ref, 9) reveals a slight difference. However, a numerical 

comparison between the results obtained from the two equations is  

almost in perfect agreement. 

The integrals were evaluated numerically by means of 

Simpson's quadrature which has the feature of selecting the proper 

size of integration subintervaPs according to the desired number of 

significant figures. Minimization of h as  o( and f3 vary 

continuously has been carried out numerically, With the assumption 

that the number of waves in the circumferential direction i s  large 

enough to justify continuous variation of f% , which not always was 

the case, the final minimum values have been obtained. 

From the expression for the power spectrum (3.6) one 
- 

realizes that, for the axisymmetric case, the mode shape of Sse(d) 

i s  dependent on two parameters,  namely, 1, Qe, The case 

1E,= 0 and is  the deterministic case of a simple 

periodic imperfection. The present analysis has been examined 

numerically, in addition to the deterministic case, for Qe 1 and 

various & between O and ii These results a r e  presented 

in Figure 3, In the particular case of axisymmetriuz random 
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imperfections i t  was expected that the characteristic equation w i l l  be 

reduced to the one obtained in (Ref. 9). It turned out that a slightly 

different characteristic equation was obtained. Nevertheless, 

applying the present numerical integration technique for the integral 

terms in both cases revealed that quantitatively the results obtained 

from both characteristic equations were identical. However, these 

numerical results were not in agreement with those obtained in 

(Ref. 9). As explained in this reference the integrals have been 

evaluated numerically using calculus of residues. Since this 

technique has not been given in detail, i t  was impossible to investigate 

further the cause for the discrepancy and no further comments can be 

made, 

(ii) Asymmetric Imperfections 

Another case of practical significance is  the one where, in 

addition to the axisymmetric mode of random imperfection, an 

asymmetric mode of random imperfection i s  present, Let the power 

spectrum for this case be 

Introducing this power spectrum into (2,251 yields 

I, (.c, p, = I; (6% p) + - a"" 
a9p 
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For the case where the instability occurs at /3sh 



Introducing expressions (3.8) properly into (3.11) and the resulting 

expressions into (2.26) yields the final desired form for  the charac- 

ter is t ic  equation for  this particular asymmetr ic  case,  where the 

instability mode occurs  a t  p = k . A , in this case  is 

minimized with respect  to d . 
The integrals (3.10) o r  (3.11) were a l so  evaluated nurner- 

ically using Simpson's rule. Minimization of h has been 

car r ied  out numerically,  The various resul ts  a r e  presented in 

Figures 4 and 5. The family of curves obtained a r e  qualitatively a s  

anticipated. Quantitatively these resul ts  a r e  valid for smal l  imper - 
fections which, in most  pract ical  applications, a r e  the case. As the 

imperfections become in magnitude of the o rde r  of the shell  thickness 

the present approach is no longer valid and other techniques will have 

to be sought, This is naturally coupled a lso  into questions of validity 

of the equations s f  the shel l  and remains for  future investigations. 

Perhaps s f  a l l  known techniques f o r  stability analysis i t  s eems  

that the Lyapunov approach is the most  powerful tool for  establishing 

sufficient conditions to such questions, This will involve the appli- 

cation of the theory of functionals. 
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4. Concluding Remarks 

The method of truncated hierarchy proved to be a powerful 

tool in the stability analysis of the cylindrical shell with smal l  

imperfections. Although this technique is limited to a narrow class 

of imperfections, i t  i s  this class which is of major concern in 

engineering applications. Any attempt to adopt this technique for 

moderate imperfections will be followed by cumber some computations 

associated with higher hierarchies. Perhaps a more  difficult task 

would be to justify the results  obtained. This naturally suggests the 

examination of other techniques which a r e  not based on a direct 

s ~ l u t i o n  of the eqaations, yet rather investigate the properties of the 

solutions. As pointed out before, the kyapunov analysis i s  one way 

to approach this problem. 

In conclusion, the analysis presented in Pa r t  111 and in 

particular the characteristic equation obtained, a r e  sufficient to 

establish the buckling load in practical applications for  cylindrical 

shells with stationary random imperfections. The particular 

numerical cases considered in this work a r e  only the f i r s t  step in 

investigating numerically the nature of the problem where a more 

complicated state of imperfections i s  concerned, Finally the present 

study can easily be extended to the buckling problem where, in 

. addition to axial load, the shell i s  internally pressurized. 
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FIG. I T Y P I C A L  POWER SPECTRUM CURVES 









FIG. 5 BUCKLING STRENGTH DEPENDENCE FOR BIFFE RENT K ,  


