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Abstract 

Development of Flexible Parylene-Based 
Microtechnologies for Retinal and Spinal 

Cord Stimulation and Recording 
Thesis by 

Damien Craig Rodger 

Doctor of Philosophy in Bioengineering 

California Institute of Technology 

 
The problems of outer retinal degeneration and spinal cord injury affect millions 

of people worldwide, often resulting in devastating blindness and para- or quadriplegia 

that strongly impair a person’s activities of daily living and impact their level of 

happiness. To help thwart the effects of these diseases, novel flexible parylene-based 

microtechnologies have been developed for functional electrical stimulation and 

recording in retinal and spinal cord prosthetics. Microelectrode arrays have been 

microfabricated according to a single-metal-layer process and a revolutionary dual-metal-

layer process that promises to meet the needs of extremely high-density stimulation 

applications. Arrays have been fabricated of thin-film platinum, electroplated platinum, 

and iridium, all on parylene substrates, some electrodes surviving for more than 430 

million pulses without failing. In addition, a new annealing and heat-molding process has 

been implemented to improve parylene to parylene adhesion and conform electrode 

arrays to approximate the curvature of canine retinas. A chronic implantation study of the 

mechanical effects of parylene-based electrode arrays on the retina over a six month 
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follow-up period has provided excellent results. Both retinal and spinal stimulation and 

recording from such arrays have been demonstrated.  

The first packaging technology for high lead-count prostheses capable of fully 

scalable interconnection of a high-density electrode array, radiofrequency telemetry coils, 

and other discrete components such as chip capacitors, with prefabricated, stand-alone 

driver circuitry is also presented, combining the best features of chip-level and wafer-

level packaging technologies. This parylene-based drop-chip technology enables 

application-specific integrated circuits (ASICs) to be directly integrated into the 

fabrication process of the other system components, such that the resulting device is 

flexible, facilitating surgical implantation. The ASIC-to-electrode interconnects are 

patterned using standard photolithography and standard microfabrication techniques, 

enabling the density of interconnects to scale to the limits of the lithographic equipment 

used to define the etch holes over the on-chip pads. Electrical test results verify the 

efficacy of this cost-effective packaging scheme, and pave the way for a monolithic 

implantable parylene-based prosthesis system, which has been designed. Surgical tests of 

monolithic geometries for all-intraocular retinal prostheses have been conducted, and an 

exciting new configuration for such a device has been discovered. 
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1 THE CLINICAL PROBLEMS OF RETINAL 
DISEASE AND SPINAL CORD INJURY 

 

 

 

 

This work is aimed toward finding bioengineered solutions to two of the most 

challenging problems in medicine: blindness due to outer retinal disease, and paralysis 

due to spinal cord damage. This dissertation will address these clinical problems as well 

as their current treatments, and use this as a stepping stone to the discussion of neural 

prosthetics. An introduction to the field of microelectromechanical systems (MEMS) 

follows, a discipline with the unique potential to serve as a bridge between engineering 

and medicine due to the unique materials used in the fabrication of MEMS devices and 

the small size of resulting devices. The benefits of the use of parylene in neural 

prosthetics, one such unique material, will then be discussed, as well as a brief exposition 

on the basics of microelectrodics. Chapter 3 discusses the fabrication, in vitro neural 

stimulation, and in vivo mechanical testing of high-density electrode arrays for retinal 

stimulation. In Chapter 4, the extension of this technology toward enabling spinal cord 

stimulation to facilitate stepping and standing in the case of spinal cord damage or 

transection is discussed, with associated in vivo testing results. Chapter 5 focuses on a 
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novel parylene-based integration technology that combines the benefits of chip-level and 

wafer-level packaging, a fabrication methodology of critical importance to the fabrication 

of complete systems capable of the high-density neural stimulation and recording, as well 

as the extension of this in the design of a monolithically fabricated stimulation system. 

The chapter ends with a discussion of implantation testing results of a novel system 

geometry for an all-intraocular retinal prosthesis. Finally, Chapter 6 concludes with some 

final thoughts and a discussion of the possible extension of these technologies to other 

applications in medicine. 

As a matter of course, it is important to note that there are animal studies 

presented and discussed within this thesis. Although always difficult to present, and even 

more difficult to have to perform, I believe these studies are a necessary consequence of 

the need and desire for my work and the work of others to ultimately benefit humanity. 

To the greatest extent possible, animals were not used until we thought that our results 

would be the most telling, and even then, with the greatest care, respect, and 

judiciousness. All animal studies presented herein were approved through all appropriate 

and required channels at the institutions at which they were performed, and were held to 

the highest ethical standards possible. All eye experiments conformed to the ARVO 

Statement on the Use of Animals in Ophthalmic and Vision Research. We are indebted to 

these and other animals for our knowledge gained, and indeed, for our very existence. 

 

1.1 Outer Retinal Disease 

In normal human vision, light enters the eye (Figure 1-1) through the transparent 

cornea, enters the pupil (whose dilation is controlled by the iris), and is focused by the 
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transparent crystalline lens. The light then traverses the vitreous cavity of the posterior 

segment, through the layers of the inner retina, where it is ultimately focused onto the 

photoreceptors of the outer retina. The light is there transduced into an electrical signal 

that is then carried through synapses and neurons (horizontal, bipolar, and amacrine) 

toward the inner retina (Figure 1-2). Along the way, the delicate, tissue paper like retina 

also performs significant visual processing tasks such as center-surround encoding and 

data compression. At the inner retina, the retinal ganglion cells receive the signal and 

send it via action potentials through their axons across the inner retina toward the optic 

nerve, along which the signal is then carried to the lateral geniculate nucleus (LGN) of 

the thalamus, and ultimately through the optic radiation (geniculo-calcarine tract)  to the 

visual cortex.  

 

Figure 1-1. Anatomy of the human eye. Figure courtesy of NIH Medical Arts. 
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Figure 1-2. Structure of vertebrate retina. (left) Histology and (right) graphical  
depiction. From [1]. 

 

Due to its inherent complexity, there are many opportunities for this pathway of 

information to be interrupted, often resulting in blindness (the loss of light perception). 

According to the World Health Organization, the leading causes of blindness (defined as 

a visual acuity of less than 3/60, or corresponding visual field loss to less than 10 degrees, 

in the better eye with best possible correction) are cataracts (47.8%), glaucoma (12.3%), 

uveitis (10.2%), age-related macular degeneration (AMD) (8.7%), trachoma (3.6%), 

corneal opacity (5.1%), and diabetic retinopathy (4.8%) [2]. Indeed, some of this 

blindness, such as that due to cataract, results from an interruption of passage of light as it 

enters the eye. A cataract is an opacification of the lens, often due to long-term ultraviolet 

exposure, systemic disease, or simply due to age. Some blindness, on the other hand, is 

from disease processes that primarily affect structures at the back of the eye (e.g., 

glaucoma, diabetic retinopathy, AMD). In such diseases, the passage of light or action 

potentials through the retina is blocked, or there is a problem that affects the transduction 
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of light into an electrical signal, or some other barrier to the transmission of the electrical 

signal to the visual cortex, such as optic nerve damage from glaucoma. Some blindness is 

easily preventable or treatable, for example by administration of antibiotic medication or 

antiparasitic medication in the cases of trachoma and onchocerciasis, respectively, or by 

removal of the block in the light passageway, for example by phacoemulsification and 

removal during cataract surgery. Other causes of blindness, however, are refractory to 

treatment.  

Blindness due to such outer retinal diseases as retinitis pigmentosa (RP) and 

AMD affect hundreds of thousands of people worldwide. In fact, it has been estimated by 

The Eye Diseases Prevalence Research Group and the National Eye Institute that AMD 

alone will affect three million people in the United States by the year 2020 [3]. In 

addition, the prevalence of RP has been estimated to be approximately 1 in 4000 [4]. 

Although the pathogeneses of these retinal photoreceptor diseases are, to date, not 

entirely understood, it is known that they are largely restricted to the outer retina, and that 

downstream circuitry, although it undergoes significant remodeling, is relatively spared 

[5-7]. There exist several possible approaches to thwarting the devastating effects of 

these diseases. Of these, the surgical, pharmacological, stem cell, and dietary approaches 

are promising. Laser ablation of leaky blood vessels and diets rich in antioxidants, for 

example, have been shown to slow the progress of AMD, but not to have any effect on its 

incidence. Effective pharmacologic agents, likewise, have long been elusive. Recent 

evidence has shown that stem cell therapy could also be a possibility for the treatment of 

such diseases, by possibly replacing the lost photoreceptors with stem cells capable of 

maturing into photoreceptors that then make connections with the rest of the retina [8]. 

 



 6  
 

However, such treatments, in reality, are still very far away from being used in clinical 

practice, and have a number of ethical and political barriers to their implementation. 

In need of another possible treatment for these profound retinal diseases, in 1994 

Humayun et al. reported the results of a pioneering study to electrically stimulate 

vertebrate retinas [9], a bioengineering approach that would possibly bypass the diseased 

photoreceptors in the visual pathway. In this study, bullfrog eyecups, as well as rabbit 

eyes (the rabbits were injected intravenously with sodium iodate, a chemical toxic to the 

retinal pigment epithelium and with other effects on photoreceptors), were stimulated 

with platinum electrodes. In their report, the following conclusion was made: “Surface 

electrical stimulation of the inner retina in normal eyes and in eyes with outer retinal 

degeneration can elicit a localized retinal response.” This has since had a profound impact 

on the field of ophthalmology, by dramatically throwing an engineering solution into the 

mix of possible treatments for patients with devastating blindness due to outer retinal 

disease. 

As a follow-up to this study, it was shown in 1996 by Humayun et al. that this 

seemingly simple approach of passing a carefully controlled electrical current through an 

electrode placed directly on the retinal surface to activate the still functional electrically 

excitable cells of the retina can also elicit visual percepts in humans with otherwise bare 

or no light-perception vision [10]. Perhaps even more important than the perception itself 

was the nature of the perception. Subjects did not report seeing streaks or multiple 

percepts of light simultaneously when stimulating from one electrode, as might be 

expected if the axons of the ganglion cells, as they made their way to the optic nerve in 

the nerve fiber layer, were being stimulated. Instead, they reported seeing discrete, highly 
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localized percepts that seemed to correlate very well with the location of stimulation. 

This suggested that it was not the axons that were the most electrically excitable, but 

instead the cell bodies of the several retinal ganglion cells (RGCs) or the bipolar, or even 

possibly amacrine or horizontal cells underlying the electrode.  Indeed, it has since been 

conjectured that it could even be the characteristic right-angle bend in the axon of the 

RGCs that has maximal electrical excitability [11]. No matter the case, this was the 

confirmation of the feasibility of an engineering approach to treat human blindness with a 

“retinal prosthesis.”  

There are now a large variety of approaches to artificial vision, each with their 

own advantages and disadvantages. There is this epiretinal approach (Figure 1-3), in 

which an electrode array is placed directly on the retina from its anterior aspect. There is 

the subretinal approach, in which an electrode or photodiode array is placed within the 

layers of the retina [12], as is also shown in Figure 1-3 (this can be further subdivided to 

the ab interno and ab externo approaches, in which an incision is made within the retina 

or within the sclera, choriocapillaris, or RPE to insert the device, respectively). There is 

also the optic nerve approach, in which electrodes are placed around the optic nerve in an 

attempt to coarsely stimulate the afferent ganglion cell axons [13]. Finally, there are also 

the cortical approaches, whether they be to the visual cortex [14] or to the lateral 

geniculate nucleus (LGN) of the thalamus [15, 16], the first stop for information from the 

retina as it enters the cortex.  Some mention should also be made of the microfluidic 

approaches to retinal stimulation, where targeted neurotransmitter delivery to the neurons 

downstream from the nonfunctional photoreceptors is the end goal [17]. Such a  
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Figure 1-3. System overview and relative locations of epiretinal and subretinal  
implants [18].  

 

microfluidic approach benefits from avoiding the use of a potentially harmful electrical 

damage the delicate retinal tissue, and it presents the possibility of enabling selective 

activation at target synapses through controlled release of different neurotransmitters. 

There are several drawbacks to such neurotransmitter-based prosthetics, however. 

Perhaps the most obvious drawback is the difficulty of renewing the neurotransmitter 

supply in a fully implanted system. Furthermore, the glutamate proposed as a likely 

neurotransmitter in these prostheses is both acutely and chronically neurotoxic [19], 

requiring a very tightly controlled delivery system. A complete discussion of the 

advantages and disadvantages of each of the different approaches is beyond the scope of 

this text, but can be found in several good review articles on visual and retinal prostheses 

[15, 18, 20], many of the main points of which are summarized in Table 1-1.  
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We believe that the most promising of these technologies, when examined in light 

of these advantages and disadvantages, is the epiretinal approach. This is due to the 

existence of well-documented techniques for gaining epiretinal access, the relatively little 

trauma associated with the epiretinal surgery when compared with the blebbing necessary 

to insert a subretinal array and the associated disruption of remaining functional 

interconnections within the retina, and the ability to assess device placement and 

functionality visually using standard ophthalmologic examination equipment (e.g., 

ophthalmoscope, optical coherence tomography (OCT)), when compared with the optic 

nerve and cortical approaches. What is perhaps most important is that, because such 

degenerative diseases occur over time, the visual cortex of these patients understands the 

retinotopic spatial map of the outside world, a map which is largely preserved throughout 

the progression of these diseases. As such, access to this map, which we believe to be 

crucially important to create functional vision, is preserved in retinal versus optic nerve 

and cortical approaches (with the likely exception of approaches to the LGN and to V1 

[21]). It is thus important to recognize that such electrical stimulation approaches largely 

rely on a relatively intact electrical pathway from the retina to the brain. In many 

congenital diseases or in cases of trauma affecting the optic nerve, this pathway does not 

exist, and such an approach is thus unlikely to have any major benefit. 

The state of the art for an epiretinal prosthesis has been the successful 

demonstration of a prototype 16-electrode device, fabricated by Second Sight Medical 

Products, Inc. (Sylmar, CA, USA) in six patients [22]. While clearly not enabling such 

activities of daily living as newspaper reading and facial recognition, previously 

completely blind subjects can, for instance, differentiate between a plate, a cup, and a 
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knife, in a high-contrast environment free from background distracters, an undeniably 

incredible feat of engineering and medicine. Furthermore, subjects have been shown to be 

able to discriminate direction of movement of parallel white bars on a black background, 

and can locate white squares within a quadrant of otherwise black space [23]. This 

implant has demonstrated the technology as well as the remarkable ability for the human 

brain to compensate for low-resolution input. Although this had previously been 

demonstrated by cochlear prostheses for patients with severe hearing impediments [24], it 

was unclear whether this plasticity would translate well to visual prostheses. In fact, 

patients have demonstrated their ability to discriminate large letters simply by 

instinctively scanning the camera mounted on their head back and forth over the image 

displayed in front of them, a sort of innate edge-detection mechanism, dramatically 

increasing the capability of the 16-electrode device on their retina.  Few scientists 

disagree, however, that increasing the number of electrodes on the implanted array will 

dramatically add to the capabilities of the prosthesis as a whole in enabling the patient to 

better carry out activities of daily living. The prototype device is hand assembled, a fact 

that limits the resolution possibilities of the device. Indeed, were it still necessary to 

interconnect integrated circuits by hand, computers would be far less useful to us as they 

are today. The need exists, then, to bring microelectronics and microfabrication 

technology to bear on the problem of retinal prosthetic devices. The race is on to build 

high-density multielectrode arrays in such a way and with such materials that the method 

is scalable to the needs of long term, high-density retinal stimulation. 
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Table 1-1. Advantages and disadvantages of different artificial vision approaches  
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1.2 Spinal Cord Injury 

Spinal cord injury (SCI) can occur through a variety of mechanisms. The primary 

reasons for this myelopathy fall into two major categories: trauma (e.g., 

automobile/motorcycle accident, sports injury such as from diving or horse riding, 

violence, fall), or disease (e.g., spina bifida or tumor). Spinal cord injuries can affect 

motor function, sensation, and autonomic functions (e.g., bladder control, breathing). 

Approximately 50% of SCIs in the United States are classified as complete [25]. This 

means that the spinal cord has lost the ability to transmit information across a segment 

within it, cutting off all functional communication from the brain to the nerves below the 

injury site and resulting in no sensation or voluntary control of motor function below the 

injury site due to lost input from the brain. This usually results in para- or quadriplegia, 

depending on the site of injury. The full American Spinal Cord Injury (ASIA) 

classification system for such injuries is given in Table 1-2, with muscle functionality 

defined according to Table 1-3. Although in most cases the cord is not completely 

transected or even cut, it is significantly damaged by interruption of blood flow supplying 

one of its segments or through spinal contusion. Even though the vertebral column 

protects the cord, when trauma is sufficient to compromise this protective cage, the 

broken vertebrae can impinge on the cord and crush or destroy the axons within it very 

quickly, with continued loss of axons over time [26]. Some estimates pin the prevalence 

of spinal cord injury in the United States at approximately 250,000 [27], with an 

incidence of approximately 10,000 to 12,000 per year [28], while others state the 

prevalence is significantly higher, at around 450,000 [25]. Approximately 55% of spinal 

cord injuries occur in young victims between 16 and 30 years of age, making it a disease 
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to bear usually for the rest of their lifetime, and more than 80% of victims are males [28]. 

In some cases of incomplete injury, function can be recovered over time [29]. However, 

in most cases, some level of impairment is permanent. It is interesting to note that even if 

a patient has a degree of impairment, such as spasticity or pain, they could still be 

classified as ASIA E (normal). 

 
Table 1-2. ASIA Impairment Scale, with muscle strength graded according to Table 1-3 
and sacral motor and sensory function assessed via rectal examination for motor function 

or sensation at the anal mucocutaneous junction 
ASIA Category Impairment Level 

A 
 

Complete: No sensory or motor function is preserved in sacral 
segments S4-S5. 
 

B Incomplete: Sensory, but not motor, function is preserved below the 
neurologic level and extends through sacral segments S4-S5. 
 

C Incomplete: Motor function is preserved below the neurologic level, 
and most key muscles below the neurologic level have muscle grade 
less than 3. 

  
D Incomplete: Motor function is preserved below the neurologic level, 

and most key muscles below the neurologic level have muscle grade 
greater than or equal to 3. 

  
E Normal: Sensory and motor functions are normal. 

 

Table 1-3. Medical Research Council (MRC) scale of 0-5 for muscle function 
Muscle Strength Definition 

5 
 

Normal power. 
 

4+ Submaximal movement against resistance. 
 

4 Moderate movement against resistance. 
  

4- Slight movement against resistance. 
  
3 Movement against gravity but not against resistance. 
  
2 Movement with gravity eliminated. 
  
1 Flicker of movement. 
  
0 No movement. 
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The complexity of the spinal cord is undeniable. In fact, despite the popular 

misconception that the spinal cord serves only as a communication conduit between the 

brain to the muscles and organs and from the skin back to the brain, it is much more 

accurate to view the spinal cord as an outcropping of the brain. While the spinal cord 

below a complete injury does indeed lose input from the motor cortex, and its ability to 

send sensations of touch to the brain is completely compromised, the spinal cord is not 

rendered useless. Even an intact cord does a lot of the primary processing and reflex 

control without any input to or from the brain.  

The spinal cord (medulla spinalis) is an organized, jellylike bundle of nervous 

tissue, with supporting blood vessels and outer protective layers called meninges. A 

section of the spinal cord (Figure 1-4) reveals a characteristic inner H-shaped region, 

called the grey matter, which contains the soma of neurons, supportive cells known as 

glial cells, as well as small unmyelinated interneurons responsible (usually) for lateral 

connections. The outside white matter, which is organized into functional tracts, contains 

axons of neurons which ascend to and descend from the brain, as well as axons 

 

 

Figure 1-4. Cross-section of the spinal cord [30]. 
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traversing laterally through their respective roots to the musculature of the limbs and 

incoming from the sensory neurons (whose cell bodies, intriguingly, are located in dorsal 

root ganglia outside of the spinal cord proper). The characteristic white color derives 

from the fatty myelin coating of the axons, which increases action potential signal 

transmission speed through the axons. Grossly, the spinal cord is housed in the protective 

vertebral canal at the dorsal aspect of the vertebral column, Figure 1-5 (adapted from 

[30]), and is located posteriorly in the human body. The spinal cord has discrete levels at 

which the dorsal and ventral roots exit and enter, called spinal levels. Embryologically, 

the spinal levels are adjacent 

to corresponding vertebrae, 

between which the axons 

contained in the dorsal and 

ventral roots, after joining to 

form spinal nerves, exit 

through intervertebral 

foramina. During growth, 

however, the vertebral 

column extends relative to 

the spinal cord. As such, the 

vertebral levels and the 

spinal levels begin to 

separate. In human adults, 

the conus medullaris, 
Figure 1-5. (left) Vertebral canal. (right top) Typical 

lumbar vertebra. (right bottom) Intervertebral foramina 
providing passage for spinal nerves.  
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corresponding to the end of the spinal cord, terminates at lumbar vertebrae L1 or L2. The 

lumbar and sacral roots continue as the cauda equina. In different mammalian species, 

this relative correspondence changes however, a similar discrepancy between spinal and 

vertebral levels exists.  

 In patients with spinal cord injury, there are several approaches to rehabilitation. 

The foot-drop stimulator, wherein stimulation of the peroneal nerve affects localized 

contraction of ankle dorsiflexors to counteract the problem of foot drag, has been widely 

studied [31] with mixed results [32-34]. Other functional movements requiring much 

more coordinated musculature responses are far more difficult with implantable 

peripheral nerve or muscle stimulators because of the need to control timing as well as 

pulse amplitudes of likely a large number of electrodes in rapid succession. Skin surface 

electrodes such as those in the ParaStep system [35, 36] suffer from these problems as 

well as the problem that many muscle groups are difficult to target from this more remote 

location. In addition, because in complete SCIs the voluntary input from the motor cortex 

to initiate such movements is lost, an accessory mechanism for determining the desired 

motion is warranted. This may require recording electrode arrays in the motor cortex as 

another component of this system, as well as possible electrical stimulatory feedback (in 

addition to the visual feedback already present). Any such system, then, is likely to be 

quite complex and difficult to implement in practice. 

The need exists, then, for another approach to elicit such coordinated activity. It 

has been shown that stepping [37] and full weight-bearing standing [38] can be improved 

even in complete spinal felines through treadmill training, and de Leon et al. have shown 

that this locomotion improvement is retained for a period of months [39]. Recently it has 
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been demonstrated that the same applies to SCI in humans [40]. This is not altogether 

surprising, given that the spinal cord has been shown to have a great deal of plasticity in 

infants as well as adults [41, 42]. Much recent attention has been focused on the concept 

of motor primitives [43-46] as at least a partial basis for this ability to stand and locomote 

in such cases. In theory, proprioceptive feedback from the limbs (which is still intact), 

such as a treadmill pulling the limbs and feet backwards, can generate a reflex arc, in 

most cases mediated by interneurons in the grey matter of the spinal cord [47], that, 

despite lack of cortical control, can activate coordinated bilateral and rhythmic motion in 

the limbs by the resultant activation of motor primitives (groups of associated neurons in 

the cord) and motor output from the ventral horns. This feedback activation and resultant 

rhythmic output has been show to improve with such training as well as with 

pharmacology [48]. Some have explored intraspinal stimulation as a mechanism for 

activating such “movement synergy” circuits, with evidence showing that as few as four 

microelectrodes implanted intraspinally, two on each side of the cord [49], can generate 

locomotor-like stepping despite an initial supposition that far more would be required 

[50]. However, these studies have been largely hindered by problems of short durability. 

Usually, within three or four weeks of implantation, signal-to-noise ratios in such 

penetrating microwire arrays when used for recording fall to limits where they are no 

longer useful. “Countermeasures” are taken to prevent such problems, such as using dabs 

of glue, microsuturing, and cling-film [34] to hold arrays in place. Up to seven weeks of 

data were taken by Utah multielectrode arrays [34], but electrodes tended to record from 

different units over time and there was fallout, indicating possible movement of the array 

as well as such problems as tissue encapsulation and gliosis. However, it has been shown 

 



 18  
 

that epidural or subdural (meningial layers are diagrammed in Figure 1-6 [30]) 

stimulation of the spinal cord can also provide useful benefits in both felines [51] as well 

as humans [52] with complete lesions, especially when used in combination with 

pharmacological intervention and/or locomotor training [53]. This approach potentially 

avoids the many problems associated with penetrating electrode arrays such as 

encapsulation as well as tissue 

damage that may abolish useful 

connections upon implantation. In 

such a paradigm, it is likely possible 

to modulate the neurosensory or 

descending voluntary input to the 

spinal cord by tonic, subthreshold 

stimulation, as has also been shown in 

incomplete injuries with intraspinal 

electrodes [54]. Arguments to the 

contrary are that spatial resolution 

may be limited in such an approach 

[49, 55] and that it is difficult to 

replicate placement of electrodes from 

trial to trial. However, this typically 

assumes the use of more traditional 

fine-wire microelectrodes rather than 

a flexible, conformal multielectrode Figure 1-6. Meninges of the spinal cord. 
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array with extremely precise placement and relationship of the electrodes on the array to 

one another and ultimately to the spinal cord due to the microfabrication technology 

utilized in their production. Such an array technology is the focus of this dissertation. We 

propose a system, which eventually will be completely implantable, that is capable of 

stimulating the dorsum of the spinal cord in such a manner that modulation of the sensory 

input to the cord, interneruonal activity within, and even motor output from the cord, is 

possible. Tonic, subthreshold stimulation, applied at precise times and precise locations 

along the spinal cord, would likely help sustain or stop locomotor activity with the kind 

of coordination and rhythmicity already discussed. Perhaps in combination with both 

locomotor and standing training as well as appropriate pharmacological administration 

(e.g., quipazine), it is possible that such an array would give those with both complete 

and incomplete spinal injury the ability to stand and walk once again. In order to provide 

appropriate proprioceptive input in the case of complete SCI, it would likely be possible 

to provide an accessory device or muscle stimulator to initiate this type of activity. 

However, this approach leverages the innate activity and processing power present in the 

spinal cord to its greatest extent and likely obviates the need for a stimulation control 

system of great complexity in order to bring about coordinated muscle activity, as is 

necessary for a peripheral muscle or motor neuron control system. Such electrical 

stimulation may also, as has been hypothesized in the case of subthreshold retinal 

stimulation systems as well, have the capability of promoting axon regrowth [56, 57] and 

facilitating plastic changes in the cord. Such an array would likely need to be 

conformable to the cord, and would need to be implanted in relatively close apposition to 

it, either epidurally (from which location the electrical field would need to penetrate 
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several meningeal layers) or subdurally, such that it is closer to the surface of the cord. In 

the ideal case, the array would be flexible enough to move with the cord during motion 

and bending such that functional targets are the same in any position. In addition, it 

should be the case that such an array can also record from the cord so as to recognize 

returning action potentials from the dorsal root and modulate this input accordingly. This 

approach, then, requires a high-density array with many electrode sites from which to 

choose during training and daily activity, as well as the ability to both record from and 

stimulate the cord, something which current arrays, such as those for pain management, 

simply can not do because they are too bulky, inflexible, and of too low a density (up to 

16 electrodes).  

 

1.3 Conclusions 

The problems of outer retinal degeneration and spinal cord injury have been 

discussed, with a focus on the target populations for electrical intervention. It is clear that 

technologies prototyping such electrical stimulation and recording strategies are still in 

their infancy, largely because of questions surrounding material choice and the lack of 

fabrication know-how. This dissertation centers on parylene-based technologies as a 

promising approach to fabrication of multielectrode arrays and systems capable of such 

stimulation. Before delving into the crux of the fabrication discussion, it is important to 

discuss microelectromechanical systems technology, with a focus on parylene, as well as 

the guiding principles behind microelectrodes, topics that the next chapter is devoted to. 
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2 MICROELECTROMECHANICAL SYSTEMS, 
PARYLENE, AND MICROELECTRODES  

 

 

 

 

2.1 Introduction to Microelectromechanical Systems 

The field of microelectromechanical systems, or MEMS, had its real beginnings 

at the same time that the first point-contact transistor was demonstrated, in December of 

1947, by the harbingers of the information age, William Shockley, John Bardeen and 

Walter Brattain. Kilby’s demonstration of an integrated circuit (IC) for Texas 

Instruments’ head brass on September 12, 1958 was the birth of semiconductor ICs. Their 

combined efforts began a race that continues today, to make transistors smaller, faster, 

better, and cheaper than those before them. 

At the same time that this investigation of such circuits began, people started 

asking why other technologies were not being miniaturized as well. Indeed, Richard 

Feynman, in his seminal talk on December 29, 1959, stated “There’s plenty of room at 

the bottom.” His charge to the audience was to think about how to scale down cars, 

motors, and encyclopedias to sizes never previously conceived of. MEMS, as a field, was 

born. 
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MEMS technology has been lucky to benefit from the significant and dramatic 

advances in the semiconductor industry, in which chip complexity is growing according 

to Moore’s law [58]. In many cases, processing equipment and techniques for MEMS are 

largely borrowed and adapted from the IC world. But the fields are in fact quite disparate. 

As the name implies, MEMS is devoted the fabrication of small systems capable of 

mechanically and electrically interacting with the analog, physical world, as opposed to 

the digital world mastered by the traditional semiconductor industry. Incredible ingenuity 

has gone into making such devices as the micromotor [59] and the accelerometer [60], as 

well into developing new processing technologies, such as deep reactive-ion etching [61], 

and materials unique to this field. Perhaps most importantly, because of the analog nature 

of these systems and their extremely small size, MEMS are capable of interfacing at the 

cellular level both in vitro [62] and in the human body, in the specialized field known as 

bioMEMS. 

On a very basic level, MEMS devices are fabricated, usually many 

simultaneously, according to two major paradigms [63, 64], as shown in Figure 2-1. The 

first is bulk micromachining, in which materials are removed from a substrate, such as a 

silicon wafer, to define structures of interest (top-down processing). Classic examples of 

such devices are those fabricated according to the single-crystal reactive etching and 

metallization (SCREAM) process (Figure 2-2), a single-mask fabrication process capable 

of fabrication of devices from accelerometers [60] to transmission lines and phase shifters 

[65] (Figure 2-3) in bulk silicon. General bulk micromachining techniques include 

isotropic wet etching of silicon dioxide with hydrofluoric acid, anisotropic deep reactive- 
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Figure 2-1. Typical cross-sectional views of bulk-micromachined and surface-
micromachined devices.  

 

 

Figure 2-2. Single-mask SCREAM process for bulk micromachining. 
 

 

Figure 2-3. Microfabricated SCREAM millimeter wave phase shifter [65]. 
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ion etching of silicon, and associated masking processes with wet oxidation or 

photoresist. 

Surface micromachining, in general, is where materials are added to the top 

surface of the substrate (bottom-up processing). Such processes include sacrificial layers 

to help define the shape of structures, and the substrate mainly serves as a carrier only, 

and hence can usually be of any material (silicon wafers usually used, however, due to 

compatibility with alignment and processing equipment, cleanliness, and cost 

considerations). Surface-micromachining processes lend themselves to the fabrication of 

microfluidic devices, such as that shown in Figure 2-4 [66]. Materials commonly used in 

surface micromachining include plasma-enhanced chemical vapor deposition (PECVD) 

oxide or nitride, polysilicon, and polymers. Polymers typically used in such devices 

include polyimide, silicone, and parylene. While seemingly the two paradigms are 

dichotomous, in many cases, a combination of bulk and surface micromachining is used. 

   

Micro Channel

Parylene
Membrane Cap Collapsed Sub-Chamber

Fig.5 Process flow Silicon

Forward

 

Figure 2-4. In-line micro checkvalve fabricated by surface micromachining. 
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The most crucial step in both of these paradigms to achieve resolutions high 

enough for device miniaturization is photolithography. The devices are patterned using 

photodefinable compounds, known as photoresists, and an ultraviolet light source with 

high-precision optics, as shown in Figure 2-5, allowing for high throughput. Indeed, such 

devices are typically fabricated in a cleanroom to ensure dust does not affect the 

photolithography process, first and foremost. By combining steps of material deposition, 

photolithography, material etching/removal, and any necessary cleaning steps, two-

dimensional masks can be used to extrude and fabricate complex devices in three 

dimensions. 

Most of the devices presented in this dissertation are fabricated according to the 

surface-micromachining paradigm, in that the silicon wafer is used mainly to hold the 

devices and move devices from one machine to another. However, our devices are 

typically completely removed from this substrate, and none of the silicon is used as part 

of the final device. Silicon, although an excellent material from a mechanical and 

electrical point of view, is generally not accepted as a biocompatible material (this, 

 

 

Figure 2-5. Steps involved in photolithography. Figure courtesy of Dr. Angela Tooker. 
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however, is a constant subject of debate and contention in the bioMEMS community), 

and is not flexible enough for our arrays. Any silicon components, such as microchips, 

would likely be covered with parylene prior to incorporation in our biodevices. 

 

2.2 Introduction to Parylene 

Parylene is the trade name for a family of semicrystalline thermoplastic polymers 

known as the poly(para-xylylenes) (PPX). These were discovered in 1947 by Michael 

Szwarc in Manchester, England [67]. It was originally deposited in an investigation of 

aliphatic carbon-hydrogen bonds where the carbon was attached directly to a benzene 

ring, by heating toluenes and ortho-, meta- and para-xylenes to very high temperatures 

and looking for degradation products [68]. The very first parylene film deposited, then, 

was parylene N (with no substitutions on the benzene ring), and was temporarily known 

as a Szwarcite snakeskin. This deposition process, however, had the disadvantage that 

gaseous by-products were an inherent part of the method. William Gorham, an employee 

at Union Carbide, soon thereafter devised an alternate method of parylene deposition that 

involved the pyrolysis of a dimerized form of the material, di-para-xylylene, or [2.2] 

paracyclophane. It was largely unknown at the time how to make this dimer in large 

amounts as it had only been isolated as an impurity in Szwarc’s method. However, in 

1951 Donald Cram reported a method for making this material in bulk. On February 17, 

1965, Union Carbide announced the availability of parylene films and the new vacuum 

deposition method, known as the Gorham process. There were over 20 types of parylene 

actually developed, but only three were considered commercially viable: these were 
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Figure 2-6. The three originally commercialized parylene variants.  
 
 
parylene N (no chlorines on the benzene ring), parylene C (one chlorine on the benzene 

ring), and parylene D (with two chlorines on the benzene ring) (Figure 2-6). However, a 

new fluorinated version of parylene, parylene HT, has recently become commercially 

available, and can be deposited in a new system available in our cleanroom. 

In the Gorham vapor-deposition process [69] (diagrammed in Figure 2-7), which 

takes place at vacuum (~25-35 mT, to increase mean free path to the substrate), a charge 

of parylene dimer is placed in a vaporizer furnace. The dimer evaporates at 

approximately 130 to 150 °C, and then passes through a very high temperature pyrolysis 

(~650 to 750 °C) furnace, where the molecule is split into monomers. The 

 

 

Figure 2-7. (center) Gorham process for parylene deposition. (left) Chemical structures 
at corresponding points. (right) PDS 2010 Labcoater System. 
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monomers enter a chamber that is held at room temperature, and polymerize on all 

exposed surfaces in the chamber conformally and without pinholes. Residual monomer is 

collected on a cold trap. Different variants of parylene require varying process conditions, 

but the method remains essentially the same. The existing variants of parylene have 

varying properties as well as uses. These are summarized in Table 2-1 (where these are 

compared with poly(dimethylsiloxane) (PDMS), a commonly used spin-on silicone with 

similar applications as parylene) and Table 2-2. To summarize, parylene N is primarily 

used as a dielectric and when lubricity and crevice penetration is important. Parylene C is 

an ISO 10993, United States Pharmacopeia (USP) Class VI material (the highest 

biocompatibility rating for plastics in the United States) and has excellent water barrier 

properties. In addition, it has a very large elongation to break. Parylene D has now been 

largely replaced by parylene HT [70], but is used when mechanical strength is of primary 

concern. Parylene HT has extremely low coefficients of static and kinetic friction, 

excellent thermal stability and good water barrier properties, high ultraviolet stability, 

and is also ISO 10993 biocompatible [70-72]. The possible uses of the main parylene 

variants for biological applications are summarized in Table 2-3. Finally, very recently, 

Kishimoto Sangyo Co., Ltd. in Japan has devised additional parylenes in which amino 

groups have been added to the benzene rings (Figure 2-8). The amino group may add 

even more improved biostability, but could also generate bioactivity that may or may not 

be beneficial to device functionality. We have preliminarily tested these amino parylenes 

have found them to be compatible with standard parylene processing technology, such as 

oxygen plasma reactive-ion etching (RIE), in our cleanroom, but they will not be 

explored further in this thesis.  
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Table 2-1. Properties of parylene N, C, D, HT and PDMS [73, 74] (courtesy of Dr. 
Siyang Zheng) 

Property Parylene N Parylene C Parylene D Parylene HT PDMS [74] 
Dielectric Strength 
(V/mil), 1 mil film 

7,000 5,600 5,500 5,400 610 [75] 
(1 mm film) 

      
Dielectric Constant 
60 Hz 
1 kHz 
1 MHz 

 
2.65 
2.65 
2.65 

 
3.15 
3.10 
2.95 

 
2.84 
2.82 
2.80 

 
2.21 
2.20 
2.17 

 

2.3-2.8 

 
Young’s Modulus (psi) 350,000 400,000 380,000 -- 52 – 126  
      
Index of Refraction 1.661 1.639 1.669 -- 1.4  
      
Yield Strength (psi) 6,100 8,000 9,000 -- 325  
      
Elongation to Break (%) 20-250 200 10 -- 210 – 310 

[75] 
      
Coefficient of Friction 
Static 
Dynamic 

 
0.25 
0.25 

 
0.29 
0.29 

 
0.33 
0.31 

 
0.145 
0.130 

 
-- 

0.43-0.51 
[76] 

      
Density (g/cm3) 1.10-1.12 1.289 1.418 -- 9.7*10-4  
      
Melting Point (°C) 420 290 380 >450 -49.9 – 40 
      
Thermal Conductivity at 
25 °C  
(10-4 cal/(cm*s*°C)) 

3.0 2.0 -- -- 3.6  

      
Water Absorption (% 
after 24 hours)  

< 0.1 < 0.06 < 0.1 < 0.01 --  
(depends on cure 

conditions)
      
Specific Heat at 20 °C  
(cal/g*°C) 

0.20 0.17 -- -- 0.35  

 

The advantages of using parylene, and, more specifically, parylene C, as the 

structural material for neuroprostheses, when compared with technologies based on the 

use of other materials such as PDMS, polyimide [77] and silicon [78], include parylene’s 

pinhole-free conformality due to its unique room-temperature chemical vapor deposition 

process, its low water permeability, its chronic implantability and its high flexibility and  
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Table 2-2. Relative properties of different parylene variants (adapted from [70]) 
Property  Parylene N  Parylene C Parylene HT 

Crevice Penetration Better Good Best 

Hardness Better Good Best 

Coefficients of Friction Better Good Best 

Elongation to Break Middle Best Least 

Moisture Resistance Better Best Good 

Dielectric Strength Best Better Good 

Dielectric Constant Lower Low Lowest 

Dissipation Factor Lower Low Lowest 

Thermal Stability Moderate Moderate Excellent 

Gas Permeability Better Best Good 

Chemical Resistance Excellent Excellent Excellent 

Thickness Control Excellent Excellent Excellent 

Coating Speed Medium High Low 

 
mechanical strength (Young’s modulus ~4 GPa).  The Young’s moduli of two other 

commonly used materials for neuroprostheses, PDMS and polyimide 2611, are graphed 

alongside that of parylene C in Figure 2-9. PDMS arrays have been handled by surgeons 

in our vivarium, and these are often as reported as too floppy and difficult to handle due 

in part to the low Young’s modulus, hence requiring very large thicknesses to handle 

appropriately. In addition, polyimide 2611 (often chosen because its water permeability is 

lower than that of other polyimides) has a Young’s modulus larger than that of parylene 

C. It has been suggested that polyimide arrays often are too rigid and can damage the 

retina. In addition, they tear quite easily. Parylene C handles very well under surgical 

manipulation, and, as we will show, behaves very well when implanted. In addition, the 

thickness of parylene films is determined by the mass of dimer placed in the vaporizer. 

As such, thicknesses can be very thin or very thick, and thicknesses are very repeatable 

and well controlled, more so than spin-on coatings, especially when deposited over step 

junctions. Parylene thickness can be controlled so as to match the rigidity to the 
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application of interest, more easily than most other materials. Since parylene is deposited 

at room temperature (we have verified this using Temp-Plate irreversible temperature 

recorders traceable to NIST (Wahl Instruments, Inc., Asheville, NC, USA)), the coating 

process is post-IC compatible. Parylene C is also optically transparent, enabling the 

anatomy to be seen through the cable and the array during ophthalmic surgery, post-

implantation examination, and follow-up. While many groups use parylene C as a coating 

 

Table 2-3. Parylene coating functions for selected medical applications  
(adapted from [70]) 

Property  Parylene N  Parylene C Parylene HT 
Catheter mandrels Lubricity -- High temperature 

stability 
    

Endoscopic devices Dielectric, lubricity -- -- 
    

Animal RFID -- Water barrier -- 
    

Pulse generators/ 
Electronic circuits 

-- Water barrier, dielectric, 
biocompatibility 

-- 

    
Pressure sensors -- Water barrier, dielectric, 

biocompatibility 
-- 

    
Stents -- Biocompatibility, water 

barrier, primer 
-- 

    
Cochlear implants -- Water barrier, dielectric, 

biocompatibility 
-- 

    
Blood-handling 

components 
-- Chemical resistance, 

biostability 
-- 

    
Needles/syringes Lubricity -- Lubricity, water 

barrier 
    

Cannulae Lubricity -- -- 
    

Analytical lab 
components 

-- Chemical resistance, 
biostability 

-- 

    
Ocular implants  -- Biocompatibility, water 

barrier, dielectric, 
mechanical strength  

Biocompatibility, 
water barrier, 
dielectric, UV 

stability, process 
temperature stability 
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Figure 2-8. Chemical structures of Kisco amino parylenes [79]. 
 

 

Figure 2-9. Comparison of Young’s moduli of various materials. Ordinate is logarithmic. 
 
 
on their arrays for many of these reasons, we have chosen to use it as the main substrate 

for our devices [80, 81], a paradigm that leverages these advantages to the greatest extent. 

The new high-temperature stable [82] variant of parylene, parylene HT, has also been 

used to fabricate iridium electrode arrays. We will show that while evaporation and 

patterning of iridium is unsuccessful on parylene C due to the high melting temperature 

of iridium, parylene HT lends itself to such a process, and we present this as another 

possible technology for ensuring good charge delivery to neural tissue. 
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Although parylene is known to be biocompatible in many sites of implantation, in 

order to initially assess the intraocular biocompatibility of the material in the unique 

immune environment of the eye, an approximately 2 cm × 0.5 cm piece of unmodified 20 

μm thick parylene C was implanted in the vitreous cavity of the right eyes of two rabbits 

for six months (Figure 2-10). The retinas of the right eyes of both rabbits were compared 

post-mortem with those of their left eyes that served as controls. Histological evaluation 

(all histological sections are shown in Figure 2-11 and a detailed comparison of two 

sections is given in Figure 2-12 with layers identified) reveals no discernable difference 

between right and left eyes, indicating that there was no detectable adverse immune 

response affecting the retina due to parylene implantation in the vitreous cavity. These 

results supported the tenet that parylene C is a biocompatible bulk material for an 

intraocular retinal prosthesis and other ocular implants, and paved the way for the design 

and fabrication of a flexible electrode arrays and a packaging system using parylene C as 

the primary substrate. Given these biocompatibility results, we have also been 

investigating parylene in several other ocular implants, with excellent results to date [83-

85]. Similar experiments were performed with parylene C implanted on the spinal cord of 

mice. The arrays were well tolerated, with no obvious immune reaction or gliosis.  

 

  
Figure 2-10. Parylene C implanted in the vitreous cavity of the rabbit eyes for six 

months. 
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Figure 2-11. Histological sections of the retinas of the left and right eyes of two rabbits 
after parylene C implantation in their right vitreous cavities for six months. Courtesy of 

Dr. Dilek Guven. 
 

 
Figure 2-12. Typical morphology of rabbit retinas after parylene C implantation in the 

right eye for six months (Left eye: control, Right eye: experiment).  
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2.3 Introduction to Microelectrodes 

The term “multielectrode array” historically refers to a rigid substrate on which 

electrodes are fabricated for in vitro studies. However, gradually this term is being used 

to describe any device, flexible or rigid, on which multiple electrodes have been 

fabricated, for in vitro or in vivo applications. Thus, our arrays will be referred to as 

multielectrode arrays, or MEAs. 

It is critical to understand what happens when an electrode is placed in solution, 

as well as some of the important methods of studying electrodes, the essential aspects of 

which will be briefly covered here, but the details of which are beyond the scope of this 

dissertation. Interested readers can consult many excellent references for further in depth 

analyses of the subject [34, 86-88].  

 

2.3.1 Charge-Transfer Mechanisms and Cellular Excitation 

There are several possible mechanisms by which charge can be transferred from 

an electrode to tissue. When an electrode is placed in an electrolyte, such as the saline 

containing many chlorine ions present in the human body, and a voltage is applied to it, 

the electrode can capacitively affect the electrolyte, generating ionic flow that can 

stimulate tissue, by the so-called non-Faradaic mechanism. Electrons at the electrode 

surface attract positive ions in the solution to the electrode surface, but no charge is 

transferred. The positive ions are hydrated such that a dielectric layer of water separates 

them from the electrode surface. The overall consequence is that a capacitance between 

the electrode and the ions in solution, known as the Helmholtz double layer, is created. A 

line drawn through the electrical centers of these ions defines what is known as the Outer 
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Helmholtz Plane (OHP). Past this, there is a diffuse arrangement of charge in the diffuse 

layer that ends at a distance known as the Debye length, at which point bulk solution is 

now present. In concentrated solutions, the Debye length can be neglected, and charge 

transfer occurs as by charging of a parallel-plate capacitor [34]. By this mechanism, no 

real charge is passed from the electrode to the solution, and damage to tissue and 

electrodes are limited. However, this mechanism is limited to 20 μC/cm2 of charge 

transfer of real electrode surface area [89]. Beyond this level, real charge transfer begins 

to take place in the so-called Faradaic reactions. 

In Faradaic reactions, ionic flow is induced by oxidation-reduction (redox) 

reactions. These reactions can be reversible, which is the case when the chemistry is 

confined to the electrode surface, and can be negated by running an identical current in 

the opposite direction for the same amount of time (addition and removal of the same 

quantity of charge). In these reactions, no new chemicals are generated in the bulk 

solution that are capable of diffusing away. Examples of reversible Faradaic reactions are 

oxide formation at platinum and iridium surfaces (equations (1) and (2)), and hydrogen 

atom plating at platinum surfaces [34] (equations (3) and (4)).  

  Pt  H2O  ֞ PtO  2H  2e‐   (1)

  Ir  2H2O  ֞  IrሺOHሻ2  2H  2e‐    (2)

  Pt  H֞  Pt‐H    (3)

  Pt  H2O  e‐ ֞ Pt‐H OH‐   (4)
 

If charge delivery exceeds this reversible limit, then irreversible Faradaic reactions occur. 

These generate new chemical species in the bulk solution that are capable of diffusing 

away from the reaction site, or of bubbling out as a gas. Such reactions include the 
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electrolysis of water when outside the “water window” (equations (5) and (6)), or 

platinum corrosion (equation (7)) and chlorine ion oxidation (equations (8) and (9)). It is 

important to note that Faradaic reactions typically will not affect other organic materials 

in the biofluid for a number of reasons, most notably because noble metals in the 

89]. presence of chlorine serve as poor catalysts for such reactions [

  2H2O  2e‐ ֜ H2 ՛  2OH‐   (5)

  2H2O  ֜  O2 ՛  4H 4e‐     (6)

  Pt  4Cl‐  ֜ ሾPtCl4ሿ 2‐ 2e‐   (7)

  2Cl‐ ֜  Cl2 ՛  2e‐     (8)

  Cl‐  H2O  ֜ ClO‐2H 2e‐   (9)
 

Cells at rest have a negative resting membrane potential (the inside of the cell is 

negative with respect to the outside). In order to bring an electrically excitable cell to 

threshold, a negative, cathodic (electron-mediated) current is usually injected from a 

stimulating electrode. This causes a rise in the voltage across the cell membrane 

(depolarization) above threshold and ionic movement then propagates an action potential. 

The minimum current needed to bring a cell to threshold with an infinitely large pulse 

duration is called the rheobase (b) (shown in Figure 2-13, an example strength-duration 

curve for a cell), a property which is affected by the distance between the cell and the 

electrode as well as cell size and membrane properties. The chronaxie time of the cell (c), 

which is determined by its time constant of depolarization, is the value of the pulse 

duration (d) at twice the rheobase current, and is the duration with the lowest energy 

requirement for stimulation (d = c) (Figure 2-13). As will be discussed, in order to negate 

the effects of cathodic stimulation and its associated reduction reactions, application of an  
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Figure 2-13. Normalized strength-duration curves and expressions for current and charge 
defining chronaxie and rheobase. b: rheobase; c: chronaxie; d: pulse duration; I: current; 
Q: charge (=I×d). Energy required for stimulation is lowest when duration is set at the 

chronaxie time. Adapted from [90]. 
 

anodic pulse of the same charge magnitude, but opposite in sign, is usually used to affect 

the reverse, oxidation reactions.  

In most cases of electrical stimulation, the non-Faradaic charge injection limit of 

20 μC/cm2 is unreasonably low because of diffusion and charge spreading in the tissue, 

such that the voltage gradient across the cellular membrane is not altered sufficiently to 

bring the cell to threshold. It is thus important to choose materials whose reversible limits 

are high enough to transfer sufficient charge for electrical stimulation of the tissue of 

interest, a topic which will be discussed after a look at the Randles circuit model of the 

electrode-electrolyte interface. 

  

2.3.2 Randles Equivalent Circuit 

John E. B. Randles, one of the most important theorists in the field of 

electrochemistry, devised a circuit model (Figure 2-14) in 1947 to describe the electrode-

electrolyte junction [91]. He described the interface as a capacitor, the Helmholtz double- 
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Figure 2-14. Randles equivalent circuit for electrode-electrolyte interface. W.E.: working 
electrode; R.E.: reference electrode; C.E.: counterelectrode. Adapted from [92]. 

 
 
layer capacitance, in parallel with an impedance to charge transfer, all in series with a  

solution, or tissue, resistance. The charge transfer impedance is made up of a resistance 

and the Warburg impedance, a term that is mostly negligible at the frequencies used in 

electrical stimulation. As a result, the junction circuit model can be simplified to a 

resistor, RCT, in parallel with a capacitor, CDL, all in series with a solution resistance, RS. 

CDL is approximated by the expression 

  CDL ൌ ε0εr A
dOHP

  (10)

 

 

where dOHP is the distance between the two “plates” of charge, A is the electrode area, 

and ɛ0 and ɛr are the permittivities of free space and the dielectric constant of the solution, 

respectively. The impedance at the phase boundary can then be simplistically modeled as: 

 
 Z ൌ  1

1
RCT

jωCDL
 RS .  (11)

 

At low frequencies, the parallel circuit has a profound effect on the total impedance. At 

high frequencies, the impedance is dominated by the tissue (and cabling) resistance, 
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because the capacitor acts as a short. It is clear, then, that frequency plays a major role in 

electrode behavior, but it is only one of the many factors determining stimulation and 

recording efficacy. The main methods used to characterize electrodes will now be 

discussed.  

 

2.3.3 Evaluation of Electrodes and Electrode Materials 

2.3.3.1 Electrochemical Impedance Spectroscopy 

The first method of electrode analysis is electrochemical impedance spectroscopy 

(EIS). In this setup, three electrodes are used. One is the electrode under study, the 

working electrode. The counter electrode (also called the secondary or auxiliary 

electrode) corresponds to the other end of the circuit, closing the circuit, and is usually a 

high surface-area platinum electrode. The third electrode is the reference electrode, which 

is usually a silver/silver chloride (Ag/AgCl) electrode. This electrode sets the zero 

potential of the cell because its relative potential varies insignificantly during the 

experiment. A sinusoidal alternating current is applied, and phases and impedance 

magnitudes are graphed as a function of frequency. Depending on the type of electrode, 

the typically chosen 1 kHz frequency can be located in various regimes of the magnitude 

plot. It is often important to show complete magnitude and phase data for electrode 

behavior, but 1 kHz impedance data is that most often presented [34].  

2.3.3.2 Cyclic Voltammetry 

Cyclic voltammetry (CV) is the method of choice of electrochemists for 

determining charge delivery capacity, and for investigating the behavior of an unknown 

analyte or to compare electrode materials using a common electrolyte. In this technique, 
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also done using three electrodes, a potential is applied between the working and the 

reference electrodes and the current to the counter electrode is measured. The potential is 

swept at a constant slew rate, also known as the scan rate, from a starting potential to a 

reverse potential and then back to the starting potential, usually at 50 mV/s or 100 mV/s. 

The starting and reverse potentials are chosen so that they usually fall just within the 

limits of the water window, or the voltages at which water hydrolysis occurs, so that the 

electrode is cycled to its fullest extent. These data are then graphed on a current-voltage 

plot. Characteristic peaks of Faradaic charge transfer will be seen (Figure 2-15), 

corresponding to the presence of an electrochemical reaction occurring at that potential. 

In a fully reversible reaction, peaks on the reverse sweep will serve to negate the effects 

of reactions occurring in the peaks of the forward sweep. If forward and reverse peaks do 

not correspond, it is likely that an irreversible reaction has taken place during the sweep. 

By integrating the area under the curve for the forward sweep, or the area over the curve 

for the reverse sweep in fully reversible reactions, charge delivery capacity, or QCDC can 

be determined. Table 2-4 lists the maximal QCDC values reported for various thin-film 

materials at low sweep rates. It is important to note, however, that under faster pulsing, as  

 

Figure 2-15. Typical CV for a platinum electrode.  HO: hydride oxidation; OF: 
monolayer oxide formation; O2: oxygen gas evolution; OR: monolayer oxide reduction, 

HP: Hydrogen atom plating; H2: hydrogen gas evolution. Scan Rate: 100 mV/s. 
Electrolyte: 0.1 M phosphate-buffered saline. Adapted from [89]. 
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in the case of neuronal stimulation, only a fraction of this capacity is available for charge 

injection [93, 94]. Gold likely does not demonstrate sufficient charge delivery capacity 

for neural stimulation from electrodes of realistic size (the neural damage limits are 

currently accepted as 1 mC/cm2, but pulsing near this value may be necessary for 

percepts or functional neuromodulation to be elicited). Titanium nitride electrodes are 

non-Faradaic, with a flat CV [95], and are sputter deposited in a microcolumnar structure. 

However, they have not yet demonstrated charge injection capacities high enough for 

high current-density stimulation [95]. In addition, the biocompatibility of the material is 

unknown [95], and, in fact, the presence of TiN has been shown to increase cell death of 

retinal glial cells and neurons [96]. Other noble metals, platinum and iridium, are highly 

resistant to corrosion, but can do so under high current-density stimulation. However, the 

surface area of as-deposited platinum tends to be quite flat (especially when evaporated). 

As will be seen, electroplating of platinum enables a dramatic surface area increase for 

charge transfer. Iridium is an intriguing material because its charge delivery capacity is 

much higher and, as will be discussed later, can be oxidized and activated to achieve even 

higher QCDC values. The biocompatibility of iridium and iridium oxide, especially for use 

in the eye, is still a subject of debate. 

 
Table 2-4. Reported maximal charge delivery capacities of various thin-film metals, 

adapted from [97] (note that only a fraction of total QCDC is available under more rapid 
pulsing, but relative placement is realistic) 
Material QCDC (mC/cm2) 

Au 0.490 
TiN 0.687 
Pt 4.134 
Ir 17.078 

IrOx 28.450 
IrOx (after activation) 95.100 
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Metals are usually deposited via three major mechanisms. In thermal evaporation, 

quantity of metal is heated either by resistive heating of a boat holding the material, or by 

magnetically steered electron beam (e-beam) bombardment of the surface of a material 

held in a crucible. The samples to be coated are placed on a holder above the vaporizing 

material, and are often rotated to enhance uniformity or step coverage. Because 

deposition occurs in a vacuum, the mean free-path of the material is such that it strikes 

the sample without deflection. Resistive thermal evaporation is generally confined to 

materials that have relatively low melting temperatures (e.g., gold, aluminum), whereas 

high melting-temperature materials such as platinum and iridium must be e-beam 

deposited. Oxidation of the material is also minimized during deposition. Metals can also 

be sputtered via impingement with positive ions of argon or xenon or other inert gases, 

which causes metal to be released from a target and to land on the substrate. As opposed 

to thermal evaporation, sputtering is a relatively dirty process because a target is reused 

many times and the deposition pressure is generally higher. Sputtering, however, can 

generate higher surface-area materials and can be used to deposit certain materials that 

are not trivial to melt. Finally, metal can be deposited via wet deposition, either 

electroless/autocatalytic (especially nickel) or electoplating. These processes have the 

advantage that material can be deposited as very high surface-area coatings as well as on 

materials of complex geometry, but often add complexity to the fabrication process. 

2.3.3.3 Current Pulse Testing 

In current pulse testing, a current is applied to an electrode and the resulting 

voltage fluctuation is measured. A typical biphasic cathodic-first current waveform is 

graphed in Figure 2-16. In implantable electronics, the pulse is usually biphasic to 
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minimize tissue and electrode damage by enabling both the forward and reverse 

processes in the reversible Faradaic redox reactions to occur. This test mimics the activity 

of the electrode when used in practice, with the exception that the pulse parameters can 

be changed to accelerate the test, by changing the pulse period T (inverse frequency) or 

test multiple phase width (tpw), pulse width, and intra- and inter-pulse intervals (d and tip 

respectively). The recording of the voltage response gives insight into the impedance of 

the electrode-tissue circuit, as well as the presence of afterpotentials which can mask 

recordings taken just after stimulation such as in cardiac-pacing applications [34]. It is 

important to realize that it is significantly easier, and thus safer, to provide charge-

balanced current pulses than it is to provide charge-balanced voltage pulses because of 

the complexity of the RC network in the Randles circuit. Hence, it is unusual to provide 

voltage-controlled pulses [34]. In addition, when a metal of a higher surface area is 

compared with an identical metal with a flat surface, the voltage excursion when injecting  

 

 

Figure 2-16. Common cathodic-first biphasic pulse and associated defining parameters. 
Tpw: phase width; d: intra-pulse delay; tip: inter-pulse interval; T: period (inverse 

frequency). 
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the same amount of charge over a given geometric area is significantly lower, a property 

that can minimize corrosive effects on the electrode, and thus enhance electrode 

longevity. Typical currents used for stimulation of the human retina vary from 50 μA to 

500 μA for 1 ms per phase across 520 μm diameter platinum electrodes (0.024 to 0.24 

mC/cm2 of geometric area, below the 0.35 mC/cm2 safe limit generally accepted for 

platinum). In general, as electrodes get smaller, the amount of current it is possible to 

inject without going over the electrochemical safety limit is also decreased. At some 

point, a smaller electrode will not be able to inject enough current to bring cells to 

threshold and generate action potentials without exceeding this limit, and at that size 

should not be used for stimulation. However, even very small electrodes can record cell 

activity. Some frequencies of stimulation can select certain cell types over others (e.g., 

ganglion cells over presynaptic bipolar or amacrine cells [98, 99]).   

 
 
2.4 Conclusions 

The basics of microelectromechanical systems and the processes behind their 

fabrication have been discussed, with a focus on photolithography as an enabling 

technology for MEMS, as well as on the differences between bulk and surface 

micromachining. Parylene, a unique polymer for a plethora of reasons, has been 

introduced, with a discussion of its advantages over other commonly used materials for 

microelectrode arrays. Finally, an introduction to microelectrodes and methods of 

studying the electrode-electrolyte/tissue interface were presented, with a particular 

emphasis on several of the different metals from which it is possible to choose for charge 

injection.   
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3 MULTIELECTRODE ARRAYS FOR 
RETINAL STIMULATION AND RECORDING 

 

 

 

 

3.1 Introduction 

As discussed in Chapter 1, one of the main goals of this work is to design and 

fabricate multielectrode arrays for retinal stimulation. From Chapter 2, we know that such 

multielectrode arrays would also be capable of retinal recording action potentials as well. 

In this chapter, we discuss our goal of a chronically implantable parylene-based retinal 

stimulation system capable of high-resolution stimulation of the retina in patients with 

outer retinal diseases such as AMD and RP. We begin with an overview of such a system, 

followed by a discussion of the fabrication methodologies for single-metal layer and 

multi-metal-layer parylene-based MEAs. A discussion of a novel heat-molding and 

annealing process we have developed follows, a technology that promises to increase the 

mean time to failure (MTTF) of such devices, as well as discussion of an electroplating 

methodology that theoretically would also enable increased electrode longevity and 

efficacy under chronic stimulation. The results of a stimulation and recording study on 

vertebrate retina using parylene-based electrode arrays are presented, showing the ability 
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of our arrays to elicit retinal responses in a manner similar to phototransduction, as well 

as a discussion of chronic six-month implantation tests of parylene-based arrays in canine 

eyes. The results of electroplating tests are also presented, showing preliminary evidence 

that this technology does indeed increase the longevity of electrodes under chronic 

pulsing at near threshold limits for the geometric area of our platinum electrodes. The 

novel material, parylene HT, will be presented as part of a method for fabricating iridium 

electrode arrays. Some concluding remarks and future work follows. 

 

3.2 System Overview 

As previously introduced, a chronically implantable retinal prosthesis requires, at 

a minimum, a power source and an electrode array for stimulating the electrically 

excitable cells retina. This power source can be light itself (in the case of photodiode 

electrode arrays), an implanted battery, or a wireless transmission system. Because of the 

high power requirements for such a device, implantable batteries are an inelegant 

solution, because, unless technology improves dramatically over the next few years, the 

battery would need to be replaced constantly. Photodiodes have not been shown to be 

able to provide sufficient charge to stimulate the neurons of interest. In addition, 

photodiode electrode arrays are hard to assess objectively in a clinical setting for the 

simple reason that they are always “on,” so studies evaluating their efficacy are at best 

extremely difficult, in comparison to those powered by wireless telemetry. In fact, a 

wireless system provides an added advantage that the external components of the system 

(such as the camera, the data processors, and the battery) can be upgraded over time. It is 

possible to place a camera inside the eye as well [100, 101], so that vision would be more 
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natural (foveation instead of turning of the head to centralize a scene or object of interest 

would be possible). 

In a typical implementation, then, external to the eye would be a camera, 

responsible for picking up the visual signal, circuitry for converting this image into a data 

stream that can be sent wirelessly into the eye, radiofrequency (RF) coils for data and 

power transmission, and an external battery. For an all-intraocular system, which we 

believe to be optimal because there are no open potential routes for infection or fluid loss, 

the intraocular components, as shown in Figure 3-1, would be one or two RF coils for 

receiving the wireless power and data signal, circuitry (application-specific integrated 

circuits (ASICs) and discrete components such capacitors, diodes, and oscillators) for 

converting this into simulation pulses [102-104], a flexible cable, and a high-density 

multielectrode array. The component of primary importance that serves at the interface 

between the tissue and the engineered device is the multielectrode array, on which this 

chapter focuses. 

Intraocular
RF coil

Packaged
ASIC

High lead-count
flexible cable

Epiretinal
multielectrode

array

 

Figure 3-1. Components and proposed placement of next-generation intraocular retinal 
prosthesis. 
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3.3 Fabrication 

3.3.1 Process Development 

 In order to fabricate high-density multielectrode arrays and cabling in parylene 

that are capable of providing adequate charge delivery to the tissue, a novel method for 

depositing and patterning a high charge delivery capacity material such as platinum on 

parylene had to be developed. Platinum is a notoriously hard material to work with on 

polymers. This is largely due to a lack of a well-defined yet controllable platinum wet 

etch, and because its adhesion to many materials is bad. Aqua regia, whose contents are 

concentrated nitric acid and concentrated hydrochloric acid typically mixed in a 1:3 ratio, 

is capable of etching platinum through a complex chemical reaction. The etch, however, 

is difficult to control, and for application to microdevices and especially multielectrode 

arrays, the difficulty lies in the fact that any overetching can quickly remove small 

features. In our first multielectrode array fabricated of platinum, our goal was a 

technology capable of defining traces of 6 μm width. Aqua regia was not well controlled 

enough to accomplish this. 

A technique for fine features that is well known in the IC industry is metal liftoff. 

With this technique, a negative image of a design is used. Instead of retaining a 

photoresist mask where we want the features to be (a positive image), we keep the 

photoresist mask over areas in the design where we do not want the features to be (and 

remove the photoresist where the features are designed to be, a negative image) (Figure 

3-2). Then, under metal deposition, the metal only lands on the surfaces where we want 

the features. The remaining mask photoresist is then removed, leaving only the design of 

interest on the device.  
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Figure 3-2. Positive and negative photoresist masks. For liftoff, a negative mask is 
chosen, so that the metal lands directly on the parylene surface to form the feature of 

interest. 
 

Perhaps most important in this technique is the ability to create, ideally, 

photoresist sidewalls of a reentrant profile. As depicted in Figure 3-3, when metal is 

deposited on sidewalls that are of a non-reentrant profile (positive slope), there is usually 

continuity, or step coverage, of the film over the photoresist sidewall. When an attempt is 

made to subsequently remove this photoresist, the solvent does not have direct access to 

the photoresist, as it is covered completely with metal. In addition, any breaking of the 

metal continuity results in tearing of the film at uncontrollable points. These metal “tags” 

result in a very “dirty” appearance, can short adjacent features together if they are very 

closely spaced, and are very difficult to remove, even using such techniques as 

ultrasonication. In contrast, when a metal film is deposited across a reentrant (negatively 

sloped) sidewall, step coverage is extremely difficult to achieve. Thus, no tearing of the 

film occurs when the photoresist is removed, and the resulting liftoff is “clean.”  
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Figure 3-3. Different possible liftoff resist profiles. Reentrant profiles help achieve 
“clean” liftoff. 

  

The easiest way to achieve a reentrant profile is to use a negative photoresist. 

Because the incident light is gradually absorbed as it traverses through the photoresist 

(known as the bulk effect), the cross-linking of the photoactive compound with a cross-

linking agent is uneven. The top of the photoresist is cross-linked more than the bottom 

[105]. This gradual transition, upon development, results in the underside of a sidewall 

developing slightly faster than that photoresist on top, and a sidewall of negative slope. 

The inherent problem with negative photoresists, however, is that the cross-linking agent 

also serves to make the resist very difficult to remove. For applications where 

biocompatibility is a foremost concern, it is important that any organic residues are 

removed from the device.  
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Positive photoresists, for the very same reason of bulk effect, typically have 

positive sidewall slopes. The exposed regions develop faster on the top because the 

photoactive compound helps catalyze the material’s removal in solvent. The bottom of a 

trench is exposed less, and hence develops slower. This typically results in a positive 

slope of approximately 75° to 85° [105], tending to prevent the use of positive photoresist 

for liftoff applications. In addition, most photoresists, both positive and negative, are not 

thermally stable. Due to the high thermal deposition temperature of platinum, both types 

of photoresist often crack, generating stray lines of metal in areas where there should be 

none. Important characteristics of positive and negative photoresists are summarized in 

Table 3-1. For these reasons, a novel liftoff technique for parylene-based processes 

needed exploration. 

 
Table 3-1. Characteristics of positive vs. negative resists (adapted from [106]) 

Characteristic Positive Resist Negative Resist 
Exposure 
 

No chemical change takes place in 
resist that forms the image 
 

Rely upon cross-linking for image 
formation 

Molecular Weight No molecular weight changes 
chemical reaction in non-image 
areas 
 

High molecular weight products 
formed during exposure 

Oxygen Sensitivity No oxygen sensitivity Have oxygen sensitivity, causing 
exposure problems 
 

Removal Easy removal, has no high 
molecular weight products present 
 

Are difficult to remove, due to high 
molecular weight 

Developing The image is unaffected by the 
aqueous developer. Disposal is 
relatively simple 
 

Solvent developing results in image 
swelling. Disposal is more difficult 

Coating Thickness and 
Resolution 

Coating thickness can be equal to 
or greater than minimum image 
size 
 

Coating thickness must be 1/3 the 
minimum image size 

Resist Step Coverage Excellent, since thick coatings (2-3 
μm) can be used 
 

Marginal due to thin coating 
limitations 

Useful for Liftoff? Usually not Usually 
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A photoresist specially developed for liftoff purposes, Lift-Off Resist (LOR), has 

been developed by Microchem Corp. (Newton, MA, USA). This resist is used in 

combination with a normal positive photoresist to define an optimal liftoff structure, as 

illustrated in Figure 3-4. LOR has the unique characteristic that it develops in standard 

developer without needing to be exposed, with a precisely controlled undercut rate that is 

determined by soft bake temperature and time. The LOR is spun on the wafer and soft 

baked at this optimized high temperature. Then, a second positive photoresist layer is 

spun on the LOR and soft baked and exposed as normal. The subsequent developing step 

is crucial for feature definition. In developer, the overlying photoresist is dissolved, and 

the underlying LOR begins to be removed as well in a characteristic isotropic profile. 

With too short a developing time (or too high a soft bake temperature), the LOR does not 

undercut the overlying photoresist adequately (resulting in no step discontinuity under 

metal evaporation). Likewise, if the developing time is too long (or the soft bake at too  

 

 

Figure 3-4. Process flow of Microchem Corp. (LOR). Modified from [107]. 
 

 



 54  
 

low a temperature), the LOR is removed very quickly and narrow overlying photoresist 

features (such as those that define gaps between adjacent traces) are completely removed. 

If done just right, features such as those shown in the scanning electron microscope 

(SEM) image provided by Microchem Corp. (Figure 3-5) are defined. This profile 

facilitates the photoresist removal after subsequent metal evaporation, and assuages the 

metal tagging problem discussed above. One significant advantage of the use of LOR is 

that it is stable up to very high temperatures. Even if the imaging resist is post-baked 

significantly, the profile of the underlying resist does not change. In addition, even if the 

overlying photoresist cracks during high-temperature metallization, the underlying LOR 

does not. LOR is also easily removed in most N-Methylpyrrolidone (NMP)-based 

photoresist strippers, and comes off without residue. LOR processes are also possible for 

many different metal thicknesses, because the spin speed and the type of LOR chosen can 

be varied to accommodate liftoff of very thin to very thick films (Figure 3-6). What is 

more, because a competing requirement was anticipated for later versions of our 

electrode arrays, in which platinum depositions needed to be performed with very good 

sidewall coverage, we had the need for a very precisely controlled undercut. For these 

reasons, a process revolving around the use of LOR for these parylene-based arrays was 

devised. 
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Figure 3-5. SEM of dual LOR/positive photoresist layer profile after developing. 
Modified from [107]. 

 

 

 p p p 

Figure 3-6. Spin speed curves for different LOR resists (from Microchem Corp. LOR 
Data Sheet). 
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We began testing photoresist films of varied types and LOR/positive photoresist 

films to compare liftoff processes. Gold and platinum films were also compared. Figure 

3-7 depicts the problem with traditional positive photoresists when used for gold liftoff 

on a pattern comprising 6 μm lines with 6 μm spaces as well as electrodes and contact 

pads. As is clear from this image, after removal of the photoresist, many metal tags were 

present. In addition, many were completely broken off and lying across the traces, with 

the capacity of shorting adjacent lines together. Examples of similarly fabricated 

platinum lines on parylene are shown in Figure 3-8. Again, metal tags were present.  

 

 

 

Figure 3-7. Gold liftoff process on parylene with incomplete liftoff. 
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Figure 3-8. Platinum liftoff on parylene with poor results. 
 

To obviate these and other problems, then, an investigation of LOR and 

compatibility with parylene C substrates was performed. As shown in Figure 3-9, before 

optimization, the development of the LOR/positive resist combined film was problematic. 

If the LOR were not baked at a high enough temperature, for the right length of time, or if 

the top resist were developed too quickly and the underlying resist exposed too long to 

the developer, the 6 μm features would be undercut. On the left, we see that the overlying 

resist was completely released from the substrate and was displaced from its desired 

position. On the right, we see the results near the electrode portion of the array. Here, the 

resist has been entirely washed away by the post-development rinse. Figure 3-10, on the 

other hand, shows the results after optimizing the process (see complete process 

parameters in the appendices). The features are all in their desired locations, and lines are 

well defined. 
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Figure 3-9. Photomicrographs showing LOR and photoresist features using non-optimal 
bake, exposure, and developing parameters. 

 

    

Figure 3-10. Photomicrographs showing LOR and photoresist features using optimal 
bake, exposure, and developing parameters. 

 

 

With this technique now in hand, the complete liftoff process was attempted. One 

wafer was put through a titanium/gold deposition (200 Å/2000 Å) in the e-beam 

evaporator, and another through a titanium/platinum deposition (200 Å/2000 Å). In both 

cases, after liftoff, the lines and electrodes were clearly defined with no metal tags on the 

edges of the lines. 
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Figure 3-11. Results of titanium/gold liftoff process. All lines and electrodes are clearly 
defined. 

 
 

    

Figure 3-12. Results of titanium/platinum liftoff process. Liftoff of titanium and 
platinum from parylene is possible with at least 6 μm resolution. 

 
 

The fabrication of the electrode arrays discussed below made use of this 

optimized process. Small variations in exposure time and developing time had to be 

allowed for as the humidity and ambient temperature in the cleanroom changed, however, 

for the most part, there was minimal deviation from this process. This liftoff process has 

now become the mainstay for any metallization step involving platinum for these and 

other devices fabricated in our laboratory [108]. 
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Because of the unique requirements of such implantable devices, the flexible 

cables typically must be far longer than the multielectrode array region of the device. On 

the other hand, the multielectrode array must be of very high resolution. While 

photolithography using contact aligners is typically done to define structures spanning a 

large portion of a wafer, photolithography using 5X or 10X reduction steppers is usually 

done to achieve very high-resolution devices with micron-scale features. Usually, such 

steppers are used in the IC industry to repeat a single pattern many times over the same 

wafer. However, in order to accommodate high-density electrode arrays with high-lead-

count cables, for which a contact aligner would not achieve resolutions high enough and 

where the structure is not the same on neighboring die, the stepper was chosen. In this 

case, the program on the stepper and the design was modified to allow die “stitching,” 

where one pattern was exposed and a neighboring pattern was overlapped slightly with 

the first and exposed in succession. This process was repeated until all structures in the 

device were defined. As an example, in Figure 3-13 we see a desired layer of 

photolithography for an electrode array of an approximate length of 50 mm. However, 

this array is clearly too large to fabricate on a stepper whose maximal exposure size is 10 

mm per die. In order to accommodate this, then, the pattern was divided into three 

sections, as shown in Figure 3-14, where the electrode array region was one “die,” the 

cable region was another “die,” and the contact region was another “die.” The cable 

region, shown on the bottom, could be repeated as many times as necessary to generate 

the final desired trace length. 
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Figure 3-13. Approximately 50 mm long electrode array design. 
 
 
 

    

                                    

Figure 3-14. Final masks for “die” that were stitched to fabricate device in  
Figure 3-13. (top left) electrode array; (top right) contacts; (bottom) repeatable cable 

region. 
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3.3.2 Single-Metal-Layer Flexible MEAs 

Single-metal-layer parylene C-based electrode arrays are fabricated as shown in 

Figure 3-15 (see details in Appendix A). A photoresist sacrificial layer is optionally spun 

on a standard silicon wafer. Approximately 8 μm of parylene C is then vapor deposited in 

a PDS2010 system (Specialty Coating Systems, Indianapolis, IN, USA) on the entire 

wafer. An LOR3B photoresist layer (Microchem Corp., Newton, MA, USA) and an 

AZ1518 layer (AZ Electronic Materials, Branchburg, NJ, USA) are spun on top of the 

parylene, exposed in a 10X reduction GCA Mann 4800 DSW wafer stepper (General 

Signal Corporation, Stamford, CT, USA) or a Kasper 2001 contact aligner (Kasper 

Instruments, Inc., Sunnyvale, CA, USA) depending on the required resolution of the 

electrode array, and developed to achieve a liftoff pattern comprising contacts, 

conductive traces, and electrodes. After hard bake, approximately 2000 Å to 5000 Å of 

platinum, with or without a 200 Å titanium layer, is then e-beam evaporated (SE600 

RAP, CHA Industries, Fremont, CA, USA) on the wafer. The subsequent photoresist 

strip generates the desired single-layer metallization pattern. An approximately 7 μm 

thick coating of parylene C is then deposited, followed by a spin coating of photoresist. 

This photoresist etch mask is exposed over the areas of the electrodes and contact pads 

and to pattern the overall array geometry, and the entire wafer is then subjected to an RIE 

in oxygen plasma, removing the parylene insulation over the electrodes and the parylene 

surrounding the array. The photoresist mask is then removed with solvent. Finally, if a 

sacrificial photoresist layer was used, the array is released from the substrate in an 

acetone bath. If no sacrificial layer was used, it is peeled from the silicon in a water bath. 

Ultimately, for most cases, the sacrificial photoresist layer is unnecessary, and can often 
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complicate array fabrication due to cracking while under process. The arrays can be 

easily released from a natively oxidized silicon surface by placing them in a deionized 

water bath and peeling them from their edge. The water will then release the rest of the 

structure due to the hydrophobicity of the underlying parylene surface. 

An inherent problem with single-metal-layer arrays is that electrodes and traces 

are necessarily fabricated alongside each other. For high-lead-count devices, this limits 

the size of electrodes and tends to crowd electrodes and traces into artificial groups. To 

allay these problems, a dual-metal-layer approach was devised that enables traces to pass 

underneath overlying electrodes. The fabrication process for these dual-layer arrays is 

discussed next.  

 

 

Figure 3-15. Fabrication process for parylene-based single-metal-layer flexible MEAs. 
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3.3.3 Dual-Metal-Layer Flexible MEAs 

Dual-metal-layer electrode arrays are fabricated as shown in Figure 3-16 (see 

Appendix B for complete process). Approximately 8 μm of parylene C is first deposited 

on a silicon wafer with the optional photoresist sacrificial layer, forming the underside of 

the electrode array. A platinum or titanium-platinum metal liftoff process is used to 

define traces with 16 μm pitch and 2000 Å to 3000 Å thickness. A second parylene 

deposition (~1 μm) forms the insulation between the two metal layers. At this point, 6 μm 

 6 μm vias are patterned in the insulation layer over the ends of the traces using an O2 

plasma RIE. A second step-coverage optimized liftoff process is used to define a second 

metal layer comprising electrodes and traces, while at the same time achieving electrical 

continuity between the underlying traces and the overlying electrodes. A final parylene 

coating approximately 7 μm thick forms the top insulation. The electrodes are exposed 

and the overall geometry of the implant is defined in a final set of O2 reactive-ion etches 

using a thick photoresist etch mask. Finally, the arrays are peeled from the wafer in a 

water bath or released through removal of the sacrificial photoresist in acetone. 

×
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Figure 3-16. Fabrication process for parylene-based dual-metal-layer flexible MEAs. 
 

The process depends on optimal step coverage of the parylene sidewall during 

evaporation, which is aided, in part, by the slightly isotropic nature of the O2 plasma etch 

of parylene [109] as well as by the special design of the rotating wafer domes inside the 

e-beam evaporator, for which the angle of attack of the metal evaporant is adjusted for 

best coverage. This requirement conflicts marginally with those for successful metal 

liftoff, however, in this case, the liftoff technique is robust even under these step-

coverage optimized conditions due to the choice of an LOR/positive photoresist 

compound layer. 

 

3.3.4 Annealing and Heat Molding 

Initial testing of such parylene-metal-parylene structures under accelerated-

lifetime conditions in hot saline solution revealed a significant problem. Upon soaking, 

samples tended to develop interfacial delamination that was visible even under light 
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microscopy. A matrix of different processes was done on wafers coated with parylene, 

followed by a subsequent parylene coating. Figure 3-17 shows such a parylene-parylene 

sandwich structure, where oxygen plasma roughening was performed on the surface of 

the first layer of parylene before the second parylene coating, after soaking for one day in 

77 °C saline solution. As can be clearly seen, a significant amount of delamination at the 

interface has already occurred. We conjectured that if we placed a piece of the exact same 

sample into a vacuum oven and brought it to a high temperature, past the glass-transition 

temperature of parylene C (150 °C [110]) but below its melting point (290 °C) prior to 

soaking, that this problem would be obviated. One such sample, then, was “annealed” for 

two days at 200 °C in a vacuum oven with nitrogen backfill, at a total pressure of 

approximately 10 Torr. As shown in Figure 3-18, this was indeed a good hypothesis. No 

interfacial delamination could be detected, even after months of soaking at this high 

temperature. In fact, under these accelerated-lifetime passive soak test conditions, this 

annealing process has been shown to increase the extrapolated MTTF of devices to 20 

years or more [81]. The configuration of the annealing chamber is diagrammed in Figure 

3-19.  
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Figure 3-17. Unannealed parylene C sandwich structure after short accelerated-lifetime 
saline soak test. Interfacial delamination is clearly discernable. 

 

 

Figure 3-18. Annealed parylene C sandwich structure after long accelerated-lifetime 
saline soak test. No interfacial delamination can be seen. 
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Figure 3-19. Annealing chamber for achieving strong parylene-parylene adhesion. 
 

 

The mechanism by which this process strengthens parylene-parylene adhesion is 

not entirely known. First, it is believed that, when parylene is deposited and the vacuum 

is broken to remove the sample, some important things happen. This exposure to 

atmosphere inhibits all possibilities for polymerization to continue on the strands of 

parylene molecules already deposited on the sample. The sample has, in essence, a 

discrete parylene layer that will not chemically react with additional parylene that is 

subsequently deposited on the surface, so the interface between layers is not homogenous 

with the material in the two layers individually. In addition, it is possible that any 

unpyrolyzed parylene or contaminants in the parylene are now stuck in the sample, or on 

the surface of the sample, and cannot be removed. The annealing process, then, can work 

in a number of ways. Because it is at a temperature beyond the glass-transition 

temperature, it can serve to reflow the material at this interface, so that polymers of 
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parylene from one layer can interweave with parylene polymers from the other layer (not 

cross-linking, per se, as no chemical reaction is taking place). Is it is possible, but 

unlikely, that any activated ends of the polymers may have also gain sufficient activation 

energy in the form of thermal energy to join with others from the other layer (a true 

chemical reaction). Finally, this annealing process might serve to move any contaminants 

out of this interfacial region. All of these possibilities serve to make this interface much 

more homogeneous with the bulk material in the two layers individually. Any water or 

chemicals passing through the parylene (parylene is not truly hermetic, despite its strong 

water-barrier properties) will no longer get trapped at this interface, but pass through it 

similarly to the rest of the material. Thus, chemical trapping at this interface is reduced. 

One final possibility, for which we now have some preliminary evidence, is that the 

parylene layers themselves become slightly modified. It is well known that polymers tend 

to increase their density when heated and then recooled, especially if the excursion is 

beyond any glass transition temperature of the material. We have done experiments that 

suggest that the density of parylene increases similarly. The layers themselves, then, may 

serve as stronger barriers to chemical and water flow because of the closer spacing of the 

polymer strands. Thus, it is likely that this increase in density of the parylene layers may 

serve as another reason, likely in combination with the others, that interfacial 

delamination is not observed after annealing. Remarkably, as we have shown, even if 

processes are performed that tend to increase this delamination problem, such as O2 

plasma roughening (which makes surfaces more hydrophilic), photoresist spinning and 

processing, and various chemical treatments, when compared with depositing two 

parylene layers in quick succession, this process can convert these poorly behaving 

 



 70  
 

samples into well-behaving ones in a very short time. Although a full matrix of tests has 

been run, it seems that this initial guess of two days at 200 °C may actually be optimal. 

Our implants, then, are routinely annealed for two days at 200 °C in the annealing 

chamber depicted in Figure 3-19 to optimize parylene-parylene adhesion.  

An important aspect of these parylene arrays is that they are heat moldable due to 

this glass transition. If the arrays are contoured and confined to a geometry of interest for 

the target application during the annealing process, we have discovered that this 

conformation will be maintained throughout sterilization, implantation, and follow-up. 

The retinal arrays are shaped using a custom 6061 aluminum mold comprising a recessed 

concave region and a mating stainless steel sphere that approximates the curvature of the 

canine retina (diameter ~22 mm). During annealing, the array region is sandwiched 

between the sphere and the mating surface, while the cable is pressed flat against the 

aluminum plateau. We initially began with a structure where the concave region was 

exactly half the diameter of the sphere (Figure 3-20). Unfortunately, during heating and 

associated thermal expansion, the sphere would become cemented in place, and the cable 

region would be cut by the lip of the cavity. To solve this, we cut the curved molding 

region in half so that the majority of the expansion of the ball would occur above the 

mold, and smoothed the edge of the lip. All following molding attempts were successful 

in molding the array without cutting the cable or cementing the sphere in place. It is 

important to note that, during annealing, parylene will get stuck to oxide surfaces, such as 

those of glass slides. It is important to use a material such as metal or Teflon® to enable 

array release after the annealing process. A photograph of the final mold used is shown in 

Figure 3-21.  
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Figure 3-20. Initial design of heat-forming mold for chronic canine parylene retinal 
implants. Units are in inches. 

 

 

Figure 3-21. Custom heat-forming mold for chronic canine retinal implants. 
 
 

3.3.5 Electroplating 

As a possible mechanism for extending the longevity of chronically pulsed 

electrodes, we have chosen to investigate electroplated films of high surface-area 

platinum. Specially designed thin-film platinum electrode arrays, consisting of sixteen 75 

μm and 150 μm diameter electrodes of 3000 μm center-to-center spacing, were fabricated 

according to the single-layer process. Initial experiments were performed on these arrays 

to determine material morphologies after plating at different potentials in an aqueous 

ammonium hexachloroplatinate solution according to Whalen et al. [111]. Subsequently, 
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arrays were immersed in the solution in a specialized jig and six were plated at a plating 

potential of -0.6 V (vs. an Ag/AgCl reference electrode) for 1.5 hours. The others 

remained unplated. Electrochemical tests were performed to evaluate the efficacy of this 

plating step in extending electrode longevity under chronic pulsing. 

 

3.4 Results and Discussion 

3.4.1 16 × 16 Electrode Array 

A single-layer square-grid electrode array, consisting of 256 Ti/Pt thin-film 

electrodes 125 μm in diameter in a 16 × 16 grid with connecting lines of 12 μm pitch 

fabricated in the manner of Figure 3-15 is shown in Figure 3-22.  An SEM highlighting 

the typical electrode morphology in such structures is shown in Figure 3-23, with 

magnified views of a typical thin-film platinum surface given in Figure 3-24.  As can be 

seen, the parylene covering the electrode has been completely removed, whereas the 

incoming trace remains conformally coated with the material.   

 

Figure 3-22. Photograph of Ti/Pt electrode array of 256 electrodes and lines of 12 μm 
pitch.  
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Figure 3-23. SEM of electrode morphology showing parylene C insulation surrounding 
exposed metal electrode. 

 

Also fabricated in this manner were various electrodes for performing standard 

electrochemical measurements, such as CV and EIS (Figure 3-25). In Figure 3-26, we see 

a CV of one such 50 μm diameter electrode in 0.1 M PBS electrolyte, the first ever for 

one of these parylene-based electrodes. The jumps in the current are anomalous and 

correspond to an amplifier switching in the electronics. This CV shows the peaks 

expected for a platinum stimulating electrode when compared with those found in the 

literature [89]. 

   

Figure 3-24. Magnified SEMs of thin-film platinum electrode. 
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Figure 3-25. (left) 50 and 200 μm diameter test electrodes for electrochemical 
measurements and (right) SEM of electrode array depicting 200 μm diameter 5000 Å 

thick Pt electrodes. 
                                 

 

 
Figure 3-26. CV of 50 μm diameter test electrode (200 Å Ti / 2000 Å Pt) in 0.1 M PBS 

(50 mV/s sweep rate). 
 
 

3.4.2 In Vitro Retinal Recording and Stimulation 

Parylene C-based arrays of thin-film platinum electrodes, comprising four 200 μm 

diameter stimulating electrodes and 56 recording electrodes of 10 μm diameter were 

fabricated according to the single-metal-layer process on a glass substrate, as shown in 

Figure 3-27.  
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Figure 3-27. Fabricated in vitro parylene-based retinal stimulation array. 
 

 

 

These were placed in a bicarbonate perfusate under a microscope and connected 

to a stimulus generator and preamplification board (Multi Channel Systems MCS GmbH, 

Reutlingen, Germany) [99]. As shown in Figure 3-28, a retina isolated from larval tiger 

salamander (Ambystoma tigrinum) was placed RGC side down on the array (to simulate 

epiretinal stimulation), and a remote platinum ground electrode was introduced to the 

bath.  
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Figure 3-28. Isolated larval tiger salamander retina (darker region at left) overlying 
parylene-based platinum electrode array. Arrow indicates 10 μm diameter electrode used 
for recording traces in Figure 3-29 and Figure 3-30. Asterisk identifies 200 μm diameter 

stimulating electrode used to generate action potentials seen in Figure 3-30. 
 
 

In order to assess retinal health, and for comparison with electrical stimulation 

results, a white light pulse 40 ms in duration was applied to the tissue. As shown in 

Figure 3-29, a voltage trace of the activity of the cells overlying one of the recording 

electrodes (electrode indicated with an arrow in Figure 3-28), a robust ON response was 

detected after the phototransduction delay, followed by the expected OFF response 

approximately 50 ms later. Subsequently, with the lights off, a 20 μA, 400 μs/phase, 

cathodic-first biphasic electrical pulse was applied between the stimulating electrode 

indicated with an asterisk in Figure 3-28 and the ground electrode. The voltage trace from 

the same recording electrode as above is shown in Figure 3-30. This stimulation was 

consistently repeatable over a 50 pulse train with a 400 ms inter-pulse interval, and other 

stimulating electrodes were also capable of “epiretinally” stimulating other cells in the 

retinal slice. As is clear from these results, the parylene-based platinum electrode was 
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able to stimulate the tissue and elicit a response similar to the response generated from a 

light pulse in this intact retina. Given these results and the knowledge garnered from 

clinical trials with prototype arrays fabricated of other materials, it is not unreasonable to 

presume that our arrays will most likely be able to stimulate retinal tissue in other 

species, including human. To this end, the chronic biostability of implanted parylene-

based arrays was also evaluated. 

 

 

 

Figure 3-29. Recording of ON response followed by OFF response of cells overlying 
electrode denoted with an arrow in Figure 3-28 to a full-field white light stimulus of 40 
ms duration. Pulse began at 0 ms on the abscissa, with delay until ON response due to 

phototransduction.  
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Figure 3-30. Typical recording of response of cells overlying same recording electrode 
as in Figure 3-29 to a 20 μA, 400 μs/phase, cathodic-first biphasic electrical pulse from 
“epiretinal” stimulating parylene-based platinum electrode denoted with an asterisk in 

Figure 3-28. 
 

3.4.3 Chronic Retinal Implantation 

Chronically implantable retinal electrode arrays comprising 1024 75 μm diameter 

electrodes arranged in a complex biomimetic pattern that closely mimics the density of 

ganglion cells in the human retina [112] were designed (the electrode density varied 

radially in a ratio matched to that of the RGCs), as shown at the left in Figure 3-31. These 

arrays (shown at right in Figure 3-31) were fabricated according to the dual-layer process, 

with 60 of the electrodes connected via two traces each to facilitate electrical 

conductivity verification. The strength of metal adhesion was verified using a Scotch tape 

test, which demonstrated that direct platinum evaporation is feasible without the 
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Figure 3-31. (left) Design of biomimetic dual-metal-layer retinal electrode array showing 
biomimetic arrangement of electrodes. (right) Fabricated biomimetic chronically 

implantable arrays with 60 of 1024 75 μm diameter electrodes connected through dual-
layer process with U.S. dime for size comparison.  

 
 
need for a titanium adhesion layer. Electrical testing demonstrated a typical line 

impedance of a contact-electrode-contact circuit to be approximately 5 kΩ, which 

included two 8 μm wide traces of 20 mm length, as well as two via step junctions 

connecting underlying traces to the overlying electrode. Two types of via and electrode 

configurations were tested. Some electrodes (electrode SEM given in Figure 3-32 (left)) 

had vias connecting to the underlying trace near the center of the electrode, hence 

enabling charge spreading from the center of the electrode. One possible drawback to this 

configuration is that the contact from trace to electrode over the sidewall is a potentially 

vulnerable point of the circuit during processing (e.g., subsequent RIE processes) and 

during pulsing in electrolyte because the metal may be thinner there. The other electrode 

configuration had vias located adjacent to the electrode (electrode SEM given in Figure 

3-32 (right)), with the possible advantage that it would be protected during RIE and 

subsequent pulsing by the overlying conformal parylene layer. An SEM showing the 

morphology of a single central via is given in Figure 3-33. This clearly depicts the 
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sidewall coverage responsible for the electrical contact between the first and the second 

metal layers. Profiles of each of these electrode configurations are shown in Figure 3-34 

and Figure 3-35, with Figure 3-34 clearly depicting that the traces connected with central 

vias are recessed approximately 1 μm from the surface of the electrode. In both 

configurations, each via had an impedance of less than 12.5 Ω. The best final 

configuration has not yet been determined. 

 

   
Figure 3-32. Two possible dual-layer electrode configurations. Electrode with central 

vias (left), and electrode with abutting vias (right). 
 
 

 

Figure 3-33. Magnified view of trace to electrode via showing sidewall coverage. 
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Figure 3-34. 3D profile of central vias showing traces are recessed ~1 μm from surface. 
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Figure 3-35. 3D profile of conformally coated abutting vias. 
 

The arrays were successfully molded to the approximate curvature of the canine 

retina (Figure 3-36 (top)) using the custom mold, and sterilized using ethylene oxide gas. 

Two biomimetic arrays were implanted in the right eye of two canines through a 5 mm 

pars plana incision after vitrectomy, and were affixed to the retina (Figure 3-36 (bottom)) 

using a retinal tack modified by the addition of a PDMS washer (to account for the thin 

nature of the parylene arrays).  
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Figure 3-36. Heat-molded and annealed retinal electrode array with retained spherical 
curvature (top), and intraoperative photographs of tacking in each canine (bottom). 

 

Follow-up in both animals was conducted for six months using fundus 

photography, fluorescein angiography (FA), in which blood is fluorescently stained to 

assess vessel perfusion in the retina, and optical coherence tomography (OCT), an 

interferometric technique that enables cross-sectional imaging of the retina. Fundus 

photography and FAs of both animals, examples of which are shown in Figure 3-37, 

consistently demonstrated that vessel filling underneath the array was normal. 

Obstruction and vessel leakage would have been visualized if the array were placing 
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excessive pressure on the retina.  In addition, OCT demonstrated that the electrodes were 

consistently less than 50 μm away from the ganglion cell layer in both animals (typical 

OCTs of both animals are shown in Figure 3-38), an outcome that theoretically would 

afford excellent electrical coupling between the electrodes and the electrically excitable 

cells of the retina. It is important to note that in the OCT of the second canine, the scan  

 

 

Figure 3-37. Fundus photographs (left) showing parylene MEAs tacked to the right 
retina of both animals and FAs (right) showing normal vessel perfusion under the arrays. 

Arrows point to retinal tacks. 
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was taken along a segment furthest from the tack site, where one might expect the least 

proximity. Even at this location, this array remained in very close apposition throughout 

the six-month implantation. Post-enucleation histology has since confirmed the excellent 

biostability seen during follow-up. 

The dual-metal-layer process is wholly enabled by the use of parylene as an 

insulating layer. The low dielectric constant of parylene (~3.1 at 1 kHz [72]) enables this 

layer to be very thin while still minimizing capacitive crosstalk between overlapping and 

adjacent metal lines. The vapor-deposition process for parylene ensures that this layer can 

 

 

Figure 3-38. OCTs of both animals showing very close apposition (<50 μm) of the arrays 
to the RGC layer. 
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be very thin while still being pinhole free, where a spin-on coating, on the other hand, 

would prove problematic. As was briefly mentioned previously, the dual-layer process 

proffers considerable advantages over the more traditional single-layer approach. Design 

of single-layer electrode arrays is usually hindered by the need to route traces amongst 

the electrodes. This tends to cause crowding of traces and electrodes into groups, an 

organization that may not be optimal for stimulating the tissue of interest. In addition, this 

has a propensity to constrain the geometric area of the electrodes in the MEAs to smaller 

sizes, and thus reduces the number of electrodes possible in a given area. The dual-layer 

process obviates these problems by enabling traces to pass under overlying electrodes 

without making contact to them, having the effect of both relaxing the constraints on 

electrode size and number and enabling more complex electrode organization (such as the 

biomimetic one presented in this work). Although the arrays fabricated here had just 60 

electrodes of connectivity with 120 traces total, this was without making full use of both 

layers for wire routing and connection of electrodes. In order to not make traces 

unnecessarily narrow and of too high impedance, we believe an extension of this process 

to three or more metal layers will be necessary to achieve 1024 electrodes of total 

connectivity. Indeed, this fabrication process is easily extendable to create such structures 

through addition of extra layers of parylene and metal. Given the encouraging biostability 

results presented here and the ability of these arrays to stimulate retinal tissue, future 

studies will include chronic stimulation from implanted parylene-based arrays in an 

animal model.  
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3.4.4 Thin-Film vs. Electroplated Platinum 

If pulsed at close to the electrochemical safety limits for platinum (typically 

considered to be ~0.35 mC/cm2 [113]), thin-film electrode arrays of platinum will 

invariably fail after some time. Shown in Figure 3-39 are SEM micrographs of electrodes 

that have undergone failure. The top image is an overview of a 1 X 4 electrode array, 

with the two images on the bottom showing electrodes at different stages of failure. There 

are two possible reasons for this type of failure. The first is corrosion of the overlying 

platinum under chronic pulsing, a likely possibility when pulsing at or close to the 

electrochemical safety limit [34]. The second is delamination of the metal layer in contact 

with the parylene from the surface. We have seen from processing that the titanium 

“adhesion” layer typically used when platinum is deposited on silicon or oxide is, in fact, 

unnecessary to achieve good mechanical adhesion to parylene (see Section 3.4.3). We 

hypothesize that this is because the high temperature of the platinum evaporant enables it 

to “melt” itself into the top layer of parylene, embedding the platinum atoms into the top 

surface of the parylene. From our preliminary evidence, we also believe that this titanium 

layer is also detrimental to adhesion under pulsing. In the two bottom images of Figure 

3-39, it seems that a crack may have developed in the electrode surface (perhaps through 

some sort of focal corrosion mechanism), but that delamination of the electrode is likely 

to be the main mechanism of failure (SEM at left shows crack, SEM at right shows that 

the electrode has peeled from the parylene surface). In Figure 3-40, we see a magnified 

view of this crack. 
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Figure 3-39. SEM micrographs of thin-film platinum electrodes after failure. (top) 
Overview of 1 X 4 array. (bottom) Magnified views of failed electrodes.  

 

 

Figure 3-40. SEM showing magnified view of crack in electrode surface. 
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We aim to allay this problem through plating high surface-area platinum on the 

electrode surface. This would serve to increase the real surface area for charge transfer 

from an electrode of a defined geometric area. By doing this, the voltage necessary to 

inject the same amount of charge would be significantly lowered, likely below any levels 

necessary for corrosion to occur. In order to correctly test this hypothesis, the single-

metal-layer electrode arrays in Figure 3-41 were fabricated. Initial plating tests were 

performed in a specially designed jig (Figure 3-42), and CVs as well as SEM 

micrographs were taken to assess electrode morphology. 

 

 

Figure 3-41. Fabricated thin film electroplating test arrays with 150 μm and 75 μm 
diameter electrodes. 
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Figure 3-42. Jig for electrode platinization experiments. Courtesy of Dr. Jack Whalen. 
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The electrode morphologies of a typical array of 16 electrodes plated at different 

potentials are shown in Figure 3-43. Note that the 4 corner electrodes (1, 4, 13, and 16) 

were not plated. Magnified views of some of the possible morphologies attainable via this 

mechanism are shown in Figure 3-44. These micrographs show morphologies that likely 

correspond to a drastically increased surface area. In order to confirm this, CVs in O2-free 

H2SO4 were taken of the electrodes before and after platinization. According to [114], 

“real” electrode surface area can be adequately estimated by integration of the area over 

the hydrogen adsorption peak (HP in Figure 2-15), or likewise the area under the 

hydrogen desorption peak (HO in Figure 2-15). The two CVs in Figure 3-45 show that  

  

 

Figure 3-43. SEM of each of the electrodes on a typical 16-electrode array after 
platinization. 
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Figure 3-44. Magnified views of possible surface morphologies after platinization. 
 
 
 

 

Figure 3-45. CVs showing more than 40-fold increase in electrode surface area from 
before plating (left) and after plating (right). The surface area is estimated by integrating 
the area under the peaks circled in red. Note change in scale of the ordinate. Scan rate: 

100 mV/s. Electrolyte: O2-free H2SO4 (N2-bubbled). 
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there was a more than 40-fold increase in surface area after platinization when compared 

with the pre-plated surface area (note the change in scale of the ordinate from nA to μA). 

This was the maximal surface area increase noted, and was from the film plated at -0.6 V. 

From this, it was decided to use -0.6 V as the plating potential for subsequent 

experiments. 

The ability of the electroplating process to extend electrode longevity was 

evaluated by chronically pulsing single-layer thin-film and electrodes platinum-plated at  

-0.6 V in PBS. CVs were performed in 250 mM aqueous sulphuric acid prior to plating 

and periodically during pulsing to estimate electrode surface area and overall electrode 

health. In addition, voltage responses to the current pulses were recorded and EIS was 

performed regularly. The plated and unplated electrodes were pulsed continuously for 50 

days, or until failure occurred, at 100 Hz with a 60 μA (~0.34 mC/cm2 of geometric 

electrode area) biphasic cathodic-first current pulse with 1 ms per phase and a 100 µs 

inter-phase delay.  

The estimated surface area of the electrodes increased approximately 40 to 50 

times between before and after plating, in accordance with the other preliminary work. 

Under pulsing, the voltage responses of both plated and unplated electrodes remained 

stable for approximately 29 days, at which point the unplated electrodes showed signs of 

failure. Voltage responses for one such electrode on day 26, 29, and 31 are overlaid in 

Figure 3-46 (top), which documents the progression of failure. The plated electrodes, on 

the other hand, remained intact for much longer, most surviving more than 50 days, or 

430 million pulses, at which point the testing goal was met and the test was stopped. 
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Overlaid voltage responses for one such electrode, showing the voltage responses at day 

26, day 31, and day 50, are shown in Figure 3-46 (bottom).  

 

 

Figure 3-46. Voltage responses to a current pulse for (top) an unplated electrode, 
documenting the process of electrode failure, and (bottom) a plated electrode,  

showing steady responses throughout the 50 day test. Note response amplitudes for plated 
electrodes are far lower than those for the unplated electrode, as expected [34]. 
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The electrochemical impedances at 1 kHz of a typical plated and unplated 

electrode are shown in Figure 3-47. A dramatic jump in impedance was observed for the 

unplated electrode at the time of failure, while the plated electrode demonstrated only 

minor variability in its lower impedance throughout the 430-million-pulse trial (most 

variability happened on the days that CVs were taken, as expected). These preliminary 

data corroborate the evidence that plating of the electrodes is beneficial to longevity, and 

suggest that high surface-area platinization of electrodes can have a dramatic effect on 

extending electrode life while lowering electrochemical impedance to charge delivery. 

Future work will include replication of these tests and chronic pulsing at high 

temperatures for longer times to further accelerate and assess the possible modes of 

failure. 

 

Figure 3-47. Magnitude of the electrochemical impedances at 1 kHz of an unplated and 
plated electrode over time. The unplated electrode showed a dramatic increase in 
impedance around day 30, at which time the test was stopped, whereas the plated 

electrode showed steady impedance through day 50. The arrow denotes a  
temporary dip in impedance due to CV scanning. 
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3.5 Iridium Electrode Arrays with Parylene HT 

While the charge delivery capacity of platinum is sufficient for many applications, 

that of iridium is significantly higher [97], as it has four oxidation states as opposed to 

two [115]. In addition, iridium can be cycled to form an activated iridium oxide film 

(AIROF) [116] with even higher charge delivery capacity. Our investigation into the 

possibility of fabricating parylene-based flexible iridium electrode arrays spawned from 

such considerations. Usually, iridium or iridium oxide are deposited through sputtering 

[115, 117] or electroplating [118, 119], especially when they are applied to flexible 

substrates, a likely reason being that the high melting temperature of the material makes 

evaporation on polymers quite foreboding (thermal evaporation on thermally conductive 

substrates such as silicon is possible, however [120]).  

Due to the higher thermal stability of parylene HT (long-term stability at 350 °C, 

intermittent exposures up to 450 °C [71] or 500 °C [121]), it was surmised that the 

material would be better suited to iridium array fabrication than would parylene C (the 

melting temperature of iridium is 2447 °C whereas that of platinum, for which a parylene 

C substrate works well, is 1772 °C [122]).  Consequently, a minor modification of the 

single-metal-layer process was made to fabricate iridium electrode arrays (complete 

details in Appendix C). A thin parylene C layer (~2.4 μm) is deposited on the silicon 

wafer followed by a thicker layer of parylene HT (~5.7 μm) in a PDS2035 system 

(Specialty Coating Systems, Indianapolis, IN, USA). The parylene C layer facilitates 

fabrication and subsequent release, whereas the HT layer provides the necessary thermal 

stability. The dual photoresist layer is spun and patterned, and the iridium (~800 Å) is 

then e-beam evaporated on the wafer. After liftoff, a final parylene HT layer (~5.4 μm) is 
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deposited and patterned as with the parylene C arrays, and the arrays are released in a 

water bath. This process was compared to an identical process performed using only 

parylene C structural layers.  

Our comparison of iridium array fabrication on parylene C and fabrication on 

parylene HT yielded remarkable results. As can be seen in Figure 3-48, when e-beam 

evaporated and patterned on parylene C, the iridium film cracked and the liftoff was 

incomplete. Electrically, the traces from the contacts to the electrodes were non-

conductive. However, when the arrays were fabricated using the hybrid parylene C/HT 

process, the evaporation and liftoff on the HT surface occurred routinely (Figure 3-48). In 

addition, electrical testing of contact-electrode-contact circuits using sets of 45-μm-wide 

traces ranging 56 mm to 70 mm in length revealed impedances ranging from 

approximately 12.8 kΩ to 16.7 kΩ, depending on the lengths of the traces in the circuit 

(the high resistance is due to the thin nature of the iridium wires).  

 

 

Figure 3-48. Photomicrograph of an iridium electrode on a parylene C surface after 
liftoff (left) compared with an iridium electrode on a parylene HT surface after liftoff 
(right). Parylene HT enables fabrication of flexible iridium electrode arrays through 

thermal evaporation. 
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An SEM of a fabricated parylene HT-based iridium electrode array is shown in 

Figure 3-49. The composition of the electrode surface was analyzed via energy dispersive 

spectroscopy (EDS) (histogram in Figure 3-50) and verified to be iridium (the fluorine 

and carbon are from parylene HT). This work constitutes, to our knowledge, the first time 

that iridium electrode arrays have been successfully fabricated on a parylene substrate 

through thermal evaporation. Future work includes electrochemical analysis and chronic 

pulsing of these and similarly fabricated iridium arrays.  

 

 

Figure 3-49. SEM of a fabricated parylene HT-based iridium MEA. 
 

 

Figure 3-50. Compositional analysis through EDS verified exposed material is iridium. 
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3.6 Conclusions 

Single- and dual-metal-layer fabrication processes for parylene-based electrode 

arrays have been outlined and demonstrated as robust techniques for building flexible 

MEAs. These revolutionary MEAs have the ability to stimulate and record from neural 

tissue in the retina, and demonstrate excellent biostability when chronically implanted in 

contact with canine retinas. The parylene-enabled dual-metal-layer process allows 

increased electrode density while obviating many of the issues typically associated with 

single-layer arrays, such as constraints on electrode size and electrode crowding due to 

wire routing. It is a simple matter to extend this process to increase the number of metal 

and parylene insulation layers, as will likely be necessary to fabricate a fully connected 

1024-electrode device of approximately the same geometry. High surface-area platinum 

electroplating technology has shown encouraging results in terms of extending electrode 

life while also decreasing electrochemical impedance. In addition, evaporated iridium 

electrode arrays have been fabricated using the novel high-temperature stable variant of 

parylene, parylene HT, further adding to the repertoire of parylene-based technologies for 

neural interfaces.  

Given these excellent results, we believe the next steps should include chronic 

stimulation tests in vivo in an animal retina to demonstrate long-term stimulation efficacy 

and biostability. In addition, it will be important to evaluate these electrode arrays at a 

much larger scale for a full understanding of possible failure modes. Additional 

electroplating technologies will be explored using processes that have already been 

qualified for use in retinal implantation, so that the compatibility of these techniques with 

our parylene electrode arrays can be studied. In the next chapter, we further the 
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discussion of these parylene arrays through an exposition of the application of this 

technology to spinal cord prosthetics.  
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4 MULTIELECTRODE ARRAYS FOR SPINAL 
CORD STIMULATION AND RECORDING 

 

 

 

 

4.1 Introduction 

The same technology as described in the previous chapter can be applied in 

various other neural stimulation and recording applications. We have chosen to 

investigate the use of parylene-based multielectrode arrays in spinal cord prosthetics. In 

this chapter, we discuss the overall system for spinal cord stimulation and recording, 

show electrode arrays that have been fabricated to test the feasibility of such a system, 

and present both stimulation and recording results from our arrays in murine models. Our 

ultimate goal, given the known biocompatibility of parylene and the dearth of studies 

using high-density electrode arrays in cases of spinal cord injury, is to use a high-density 

parylene-based electrode array to facilitate stepping and standing in patients with spinal 

cord injury. Although we do not expect to control and time muscle activity directly to 

accomplish this, because of the innate functionality of the spinal cord, even after 

transection, we do aim to modulate the activity of the spinal cord using subthreshold 

electrical fields generated by the array. In addition, the ability to record from the 
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electrodes in the array enables critical studies of cord activity as well as incoming sensory 

information, and, ultimately, modification of the stimulation parameters to achieve 

optimal stepping and standing. The goal of the present work, however, is to show that our 

electrodes can directly couple to the spinal cord through both stimulation and recording. 

Stimulation from our electrodes in this chapter is superthreshold to show this coupling 

capability, with the assumption that subthreshold tonic stimulation would be equally 

possible. 

 

4.2 System Overview 

The ideal spinal cord stimulation system, just like the retinal system, would have 

a power source, circuitry for driving the appropriate electrodes, as well as a cable and 

electrode array, this time implanted epidurally or subdurally on the spinal cord. We 

believe that a penetrating electrode array would be problematic for implantation and 

would likely lose efficacy and fail ultimately due to a gliosis over time, as has been 

shown in  many other studies [34]. The power source could be an RF coil, or could, due 

to the much larger space available in the abdomen and back as compared with the eye, be 

a rechargeable battery capable of charging through the inductive link. The RF coil, in 

addition, would enable reprogramming of the implanted electronics for alternative 

stimulation protocols at the physician’s discretion. The electrode array should be 

conformable to the spinal cord so that it can tonically stimulate at low currents and with 

high precision. While a completely implantable system is the ultimate goal, an interim 

goal is to stimulate the spinal cord chronically from an array connected to a head plug,  
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Figure 4-1. Proposed system for spinal cord array studies in a chronic murine 
preparation. 

 

while simultaneously being able to record electromyograms (EMGs) (Figure 4-1). In 

order to achieve this, we have studied the efficacy of the multielectrode array portion of 

this system and have begun to develop a connector technology capable of connecting 36 

electrodes in with a small enough form factor to be chronically mounted on a mouse 

skull. 

 

4.3 Fabrication 

Spinal cord arrays, consisting of five or ten electrodes of 250 μm diameter were 

designed (Figure 4-2). Interelectrode spacing was controlled so that each array of 

electrodes covered four to five segments of the murine lumbosacral spinal cord upon 

implantation. Suture holes were also designed into the body of the array to ensure proper 
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Figure 4-2. Graphical depiction of spinal cord MEA. Contact pads were designed to 
connect to Clincher connectors. 

 

placement and attachment of the array on the cord, as well as to facilitate implantation 

(suture can be attached to the end of the array and can be threaded along the cord first to 

help direct the array along it). 

The single-metal layer fabrication process was performed in the same manner as 

in Section 3.3.2, using a contact aligner process for fast throughput. The fabricated arrays 

were annealed to increase the adhesion of parylene to parylene. At the same time, they 

were clamped between two pieces of Teflon or glass slides coated with aluminum foil to 

ensure they would be flat during implantation.  In the future, a specially designed metal 

cylinder could be used to more closely approximate the electrode arrays to the curvature 

of the spinal cord. The arrays were connected via Clincher connectors (FCI, Versailles 

Cedex, France) to the stimulation and recording electronics. 
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Figure 4-3. Parylene MEA for murine spinal cord stimulation and recording. 
 

 

 

Figure 4-4. Clincher connector for connecting array to stimulation and recording 
electronics. 

 

4.4 Results and Discussion 

Just prior to implantation, the arrays were rinsed in isopropyl alcohol. Under 

isoflurane anesthesia, the spinal cord electrode arrays were implanted epidurally on spinal 

cord segments L2-S1 in nontransected mice. The electrodes were oriented linearly along 

the rostrocaudal extent of the cord. Recording capability was assessed by using the 
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electrode array to record spinal cord potentials evoked by tibial nerve stimulation. 

Following stimulation of the tibial nerve, somatosensory evoked potentials were recorded 

from the cord dorsum at three lumbosacral levels (P1-P3, rostral to caudal). The recorded 

waveform consisted of three response peaks, two of which are clearly depicted in Figure 

4-5 (N1 and N3). These findings closely mirror results reported previously in a study 

using conventional spinal cord recording electrodes [123] demonstrating that the 

recording capability of the array electrodes matches that of conventional electrodes. By 

measuring the difference in the response latencies obtained at each electrode position 

(corresponding to different levels of the spinal cord), and by utilizing the known, fixed 

interelectrode spacing, accurate measurements of the conduction velocities were 

obtained. The properties of these responses can potentially be used to diagnose the 

progressive recovery of the spinal cord as a result of treatments provided after a spinal 

cord injury. 

 

 

Figure 4-5. Peak amplitudes of somatosensory evoked potentials (N1 and N3) recorded 
from three levels of the rostrocaudal spinal cord (P1-P3). Example waveform at top 

shows approximate response times. 
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To test the capability of the electrode array to act as a multichannel stimulating 

device for generating hindlimb movements, constant-current monophasic stimulus pulses 

(amplitude: 50-850 μA, frequency: 0.3-10 Hz, pulse duration: 0.5 ms) were applied to the 

spinal cord between each of the array electrodes and a ground electrode located near the 

shoulder, while muscle activity was monitored using electromyogram (EMG) recordings 

of the tibialis anterior and medial gastrocnemius muscles. Stimulation generated a typical 

three-component EMG action potential consisting of an early (direct motor), a middle 

(monosynaptic), and a late (polysynaptic) response, classified by post-stimulus latency 

(Figure 4-6). These data clearly indicate that the parylene arrays were able to stimulate 

the spinal cord in such a way that the musculature was activated.  

Because of the known spacing of the electrodes on the array (as compared with 

traditional fine-wire electrodes which do not have known interelectrode spacing), we 

were able, in addition, to determine whether electrode position had a significant impact 

 

 

Figure 4-6. Typical medial gastrocnemius (ankle plantarflexor) EMG recording showing 
early, middle, and late responses after stimulation of spinal cord with parylene MEA. 
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on muscle recruitment. The appearance and magnitude of each of the EMG responses 

was indeed correlated with the choice of electrode position (Figure 4-7). This serves as 

evidence that position of stimulation is very important. With a one-dimensional array, it 

is difficult to assess whether a bilateral stimulation paradigm would also result in 

lateralization of response, but we strongly suspect that this would be the case.  

Varying the interelectrode spacing between the stimulating electrode and a ground 

electrode now on the array, as opposed to at the shoulder, affected the sensitivity with 

which the target muscles were activated. The recruitment profile of the medial 

gastrocnemius middle response is shown in Figure 4-8 using interelectrode spacings of 

1500 μm (filled bars) and 4500 μm (unfilled bars). With the smaller spacing, graded 

  

 

Figure 4-7. Medial gastrocnemius EMG showing varying levels of activation due to 
stimulation at different rostrocaudally located electrode sites. 
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Figure 4-8. Effect of interelectrode spacing on muscle recruitment. Smaller spacings 
yielded graded muscle activation while larger spacings yielded maximal amplitude 

responses at low currents. 
 

muscle activation was achieved. With the larger spacing, approaching a monopolar 

configuration, the muscle quickly attained maximal activation at low currents.  Thus, the 

specific goal and sensitivity requirements of a particular motor task may dictate optimal 

interelectrode spacing and whether a monopolar or bipolar configuration is chosen.  

 
 
 
4.5 Connectors 

In order to achieve a chronically implantable system for our future studies, we 

have investigated the possibility of using a tight-pitch connector technology to serve as 

the electrical conduit between the stimulation and EMG recording electronics and the 
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implanted device. A prototype spinal cord electrode array has been connected to a high-

density assembly incorporating two 18 pin Omnetics Nano connectors (Omnetics 

Corporation, Minneapolis, MN, USA) and a PCB stiffener (Figure 4-9). These connectors 

mate with wired adaptors that enable connection to a breadboard, head unit, or other 

components necessary for recording and stimulation. A more robust and reliable 

connection methodology has been used to achieve electrical continuity between the pins 

of the connector and the parylene-based electrode contacts (Figure 4-10) with additional 

hardening of these connections through silicone encapsulation (Figure 4-11). Using this 

method, five electrodes have been connected using forward and return lines to two pins 

each, for a total of 10 pins of connectivity. As can be seen, this connector assembly has 

36 pins available for connection. This connection strategy is readily scalable to enable 

higher-density arrays, for example, as will likely be necessary for human implants, and is 

fully compatible with the dual-layer process outlined in Chapter 3.  

This connector, because it has been strengthened using thick silicone 

encapsulation of the pin region, is robust even under vigorous movement. Furthermore, 

moisture permeation to the pins is minimized using this protective method, long delaying 

and likely preventing any failure due to corrosive mechanisms at the connector. A ten-

electrode array has been assembled in an identical fashion and is ready for in vivo testing. 

In addition, we are currently at the development stage with higher density and bilateral 

arrays. 
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Figure 4-9. Five-electrode array connected to Omnetics assembly. In this prototype, 
forward and return lines to ten pins enable confirmation of high yield electrical continuity 

from the connector to each of the five electrodes in the prototype array. The connector 
assembly weighs approximately one gram after silicone encapsulation. 

 

 

Figure 4-10. Metal bump joining pin of Omnetics Nano connector to electrode contact to 
enable high-density connection. Pin-to-pin pitch is approximately 650 μm. 
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Figure 4-11. Silicone encapsulation at the region adjoining the parylene array with the 
Omnetics connector assembly hardens device against movement-related failures and 

prevents moisture penetration and corrosion at the pin to contact junctions. 
 

 

4.6 Conclusions 

As these results have shown, parylene-based electrode arrays can very useful in 

studies of the spinal cord and, most likely, for spinal cord prostheses for the treatment of 

spinal cord injury. The advantages of these microfabricated flexible MEAs, when 

compared with traditional fine-wire electrode arrays, include their ability to stimulate and 

record from locations with predetermined positions (with slight surgical variations) and 

very exact interelectrode spacings. Currently, we are developing higher-density MEAs 

capable of finer, bilateral stimulation for assessing the somatotopic distribution of 

locomotor circuits in the spinal cord. We believe that in order to achieve this without 

making the array excessively wide, these will have to be fabricated according to the 
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multi-metal-layer fabrication process presented in Chapter 3. Our future work includes 

studies using these arrays in transected mice at both subthreshold and superthreshold 

levels, and use in different animal models, such as in the rat, to begin to assess scalability 

prior to human implantation. At the same time, we have started work using other already 

approved low-density chronic arrays in humans to assess epidural and subdural 

stimulation capability and efficacy in cases of spinal cord damage. We strongly believe 

that our ability to fabricate high-density biocompatible chronically implantable arrays 

that are flexible enough to conform to the dorsum of the spinal cord may lead to 

revolutionary treatments for patients with spinal cord injury. 
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5 CHIP-LEVEL INTEGRATED 
INTERCONNECT TECHNOLOGY 

 

 

 

 

5.1 Introduction  

Despite our ability to fabricate such a large number of electrodes in such a small 

area, a significant impediment to future progress is the problem of how to package and 

interconnect these multielectrode arrays with foundry-fabricated ASICs, discrete 

components (e.g., chip capacitors, oscillators, diodes) and RF coils in a way that provides 

for high lead-count interconnects. A wafer-level process is cost prohibitive, as it is 

necessary to maximize the area of a wafer devoted to IC processing to keep costs low. 

Furthermore, current technologies for packaging would be far too tedious and low yield 

to apply to a 1000-electrode device. In order to achieve our goal of a 1000-electrode 

retinal prosthesis and a high-density spinal cord stimulation system, then, a new way of 

forming such a package so as to enable high-lead-count integration is necessary.  

We have invented a way to place prefabricated chips, manufactured, for example, 

at a foundry, into the fabrication process of a parylene-based multielectrode array and/or 

RF coil, such that all interconnections to the chip are made using standard 
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photolithography and standard microfabrication techniques in a fully scalable manner 

[80]. This packaging scheme is now known as the chip-level integrated interconnect (CL-

I2) package. Figure 5-1 illustrates this concept, showing how a prefabricated stand-alone 

IC chip is can be directly integrated with an MEA and with, ultimately RF coil power and 

data connections. Figure 5-2 shows an overview of the fabrication process and how 

multiple chips could be joined together in this manner. A detailed discussion of the 

fabrication process, as adapted from [80], follows. 

 

 

Figure 5-1. Illustration of the CL-I2 packaging concept. A prefabricated ASIC or discrete 
component can be placed directly into the fabrication process of an overlying 

multielectrode array. 
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Figure 5-2. Overview of the CL-I2 process. Multiple chip connections are possible. 
 

 
5.2 Fabrication 

Three MOSIS-fabricated ASICs, as well as seven chips fabricated to simulate 

them (with circuitry that facilitated testing), were used to demonstrate the CL-I2 

packaging technology.  In order to fabricate the replicas of the MOSIS chips, these chips 

were imaged using a WYKO interferometer (Veeco Instruments Inc., Woodbury, NY, 

USA), and were found to have mean dimensions of 2.500 mm in length, 2.617 mm in 

width, and 254.2 μm in total thickness (Figure 5-3).   
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Figure 5-3. WYKO image of MOSIS-fabricated chip. Data were used to assess diced 
chip dimensions. 

 

One hundred angstroms of chrome and 2000 Å of gold were e-beam evaporated 

on a 260 μm thick silicon wafer.  Using a photoresist mask, the metal was wet etched to 

pattern pads of the same size and in the same locations as on the MOSIS-fabricated chips 

(approximately 70–100 × 100 μm2 with a center-to-center pad spacing of approximately 

200 μm), as well as a pattern of short circuits connecting these pads to nearby pads. After 

stripping the photoresist, a second photoresist layer was spun on the wafer and patterned 

as a mask for a Bosch through-wafer etch in a PlasmaTherm SLR-770B deep reactive ion 

etching (DRIE) system (Unaxis Corporation, St. Petersburg, FL, USA). This etch defined 

the length, width, and thickness of the simulated chips as 2.49 mm, 2.61 mm, and 260 

μm, respectively. Finally, the photoresist mask was removed from the individual chips. In 

this manner, chips comprising simple electrical shorts and intrinsic resistors were 

fabricated as our primary CL-I2 package test structures (Figure 5-4). 
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Figure 5-4. MOSIS ASIC (left) next to test chip (right). 
 

 

The only properties of these prefabricated chips that had to be known before 

incorporation in the CL-I2 process were their overall length, width, and thickness, and the 

dimensions and locations of the contact pads.  Figure 5-5 gives a detailed CL-I2 process 

flow, and Figure 5-6 gives a cross-sectional depiction of the interconnects as they are 

formed (corresponding to steps 5 through 10 of Figure 5-5). The complete fabrication 

process is given in Appendix D. To begin, shallow alignment marks are etched into a 

standard 550 μm thick silicon wafer using a thin photoresist mask and an SF6 plasma.  

2.51 × 2.63 mm2 holes are then patterned after alignment in a 10X reduction stepper in 

thick photoresist and an optional silicon dioxide mask.  Through holes are then etched 

using the Bosch DRIE process.  After photoresist and oxide removal, Nitto tape is placed 

on the frontside of the wafer.  The chips are then self-aligned in the holes by inserting 

them from the backside (the Nitto tape enables frontside planarization whereas the lateral 

dimensions of the etched cavity determine lateral displacement), and they are sealed in 

place using several drops of sacrificial photoresist to cover the backside of the chip and to 
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fill the gaps around it.  A subsequent approximately 12 μm thick parylene C deposition in 

a PDS2010 mechanically anchors the chips in place from the backside.  After removal of 

the frontside parylene by peeling off the Nitto tape, vertical displacements of the chips 

are measured using a stylus profilometer (Alphastep 200 and P-15, KLA-Tencor, San 

Jose, CA, USA).  

 
 
 
 

 

Figure 5-5. Detailed process flow for CL-I2 package fabrication. 
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Figure 5-6. Interconnect cross-sectional views corresponding to steps 5–10 of Figure 5-5. 
 

The parylene-based flexible electrodes, or, in this implementation, contact pads 

for electrical testing, are then fabricated on this wafer as if it were a whole wafer with 

prefabricated integrated circuitry.  First, a photoresist sacrificial layer is spun on the 

wafer and patterned to expose the chip’s surface.  After baking to remove excess solvent, 

approximately 3 μm of parylene C is deposited on the entire wafer.  Photoresist is spun 

on the wafer, exposed in the 10X reduction stepper, and developed to pattern etch holes 

above the on-chip pads, similar to the vias in the dual metal-layer process.  This pattern is 

transferred into the parylene using an O2 plasma in an RIE system, exposing the metal of 

these on-chip pads.  Two hundred angstroms of titanium and 2000 Å of gold are 

deposited in the e-beam evaporation system using optimized step coverage, and patterned 

(using a photoresist mask and wet etching) to define the remote contact pads and remote 

pad to on-chip pad interconnects.  The top photoresist is stripped, and a second layer of 

approximately 10 μm of parylene C is deposited and patterned as before, but this time to 
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open the remote pads/electrodes to enable electrical testing. Finally, all photoresist, 

including the sacrificial layer, is removed by soaking the wafer in acetone, releasing a 

flexible parylene skin with embedded interconnects to the packaged ASIC.  The host 

wafer can be substituted in the process with a precisely machined substrate, and can be 

reused after this release step. It is also important to note that the ASIC or discrete 

component can be of any thickness, but generally the thickness should be less than that of 

the host wafer or machined substrate, and it can have parylene or any hermetic coating 

deposited on it a priori, provided that the chip contacts can be opened using 

microfabrication techniques before the interconnect metal is laid down and patterned 

(Figure 5-5 and Figure 5-6, steps 8 and 9). Thus, this technology combines the best 

aspects of chip-level packaging, in which every surface of the prefabricated chip can be 

manipulated or coated beforehand, and wafer-level packaging, in that photolithography 

and microfabrication can be performed on the surface after such chip-level techniques. 

 

5.3 Integration Testing Results 

We successfully performed photolithography on ten prefabricated stand-alone 

chips using this paradigm: seven test chips (three conformally coated in parylene a 

priori) and three MOSIS-fabricated chips (one coated in parylene a priori). A MOSIS 

chip anchored in place in the host substrate (i.e., after step 4 of Figure 5-5) is shown 

centrally in Figure 5-7 with the host wafer shown on the perimeter. As is expected, 

minimizing vertical displacement of the ASIC from the wafer surface is crucial for 

further photolithography steps. Figure 5-8 gives typical surface profiles of all ten chips 
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Figure 5-7. MOSIS chip (center) shown anchored in host silicon substrate (perimeter). 
 

with respect to the surrounding host wafer, and indicates that for most chips, this vertical 

displacement was less than 5 μm after removal of the frontside Nitto tape.  

Photolithography on the somewhat anomalous test chips 2 and 7, however, was also 

successful.  A detailed three-dimensional profile of the surface of MOSIS chip 3 and its 

surrounding host substrate is shown in Figure 5-9. As can be seen, the entire chip is 

recessed only 2.5 μm and is parallel with the host wafer’s surface.  
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Figure 5-8. Typical single-axis vertical displacements of all 10 chips after mechanical 
anchoring in the host wafer (Figure 5-6, step 4), where the top surface of the wafer 

corresponds to 0 μm. 
 

 

Figure 5-9. Detailed 3D profile of MOSIS chip 3 after mechanical anchoring in the host 
wafer. 
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The accurate horizontal alignment of the perimeter interconnects to the embedded 

chips is shown in Figure 5-10, with Figure 5-11 giving a detailed micrograph of a single 

interconnect for both the test chip (a) and the MOSIS chip (b).  By design, the chips 

should be self-aligned to within 10 μm of lateral displacement; some chips were aligned 

far better than this, however others were misaligned worse than this. With tighter 

tolerances on the cavity sidewalls, or with chip-alignment lithographic equipment, this 

alignment error could be improved. The embedded chip with remote contact pads is 

shown in Figure 5-12, and Figure 5-13 depicts the flexibility of this package.   

 

 

Figure 5-10. Embedded chip with fabricated perimeter interconnects (numbered traces 
connect to numbered remote pads shown in Figure 5-12). 
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Figure 5-11. (a) Example of <10 μm lateral misalignment of a test chip; (b) Example of  
>10 μm lateral misalignment of a MOSIS chip. 

 
 

 

Figure 5-12. A CL-I2 packaged chip shown resting on a penny (numbered pads used to 
generate to Table 5-1). 
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Figure 5-13. Demonstrates flexibility of CL-I2 package. Chip can be seen underlying 
overlying parylene “skin.” 

 
 
 

The electrical resistance values between remote pads connected to the on-chip 

pads in a quadrant of a typical test chip (Table 5-1) are those expected: the electrical 

nature of the connection between pads 1 and 8, 2 and 7, 3 and 6, and 4 and 5 is a short 

with an average resistance of ~59.7 Ω, whereas, for example, shorted pads 3 and 6 show 

approximately the same intrinsic through-die resistance to pad 4.  The measured I-V 

curve for the short (e.g., remote pad 3 across test chip to remote pad 6) showed ohmic 

contact (Figure 5-14 (left)), whereas for the intrinsic circuit (e.g., remote pad 3 through 

highly doped intrinsic resistor to remote pad 4) it showed the expected Schottky effect 

(Figure 5-14 (right)). Similar functional contacts with the MOSIS chip’s pads were also 

verified. 
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Table 5-1. Resistance in Ω between remote pads connected to the embedded chip  
(arrows indicate shorted pairs) 

 

 

 

  

Figure 5-14. Measured I-V curves for short (left) and intrinsic circuit (right). 
 
 
5.4 Discussion 

It should be stressed that the lead-count and interconnect density limitations for 

this technology stem only from the limitations of the microfabrication and 

photolithography equipment used to fabricate the CL-I2 package, and, in particular, to 

pattern the first parylene etch (Figure 5-5 and Figure 5-6, step 7).  All interconnects to the 

chip are fabricated simultaneously during the metal deposition step, and depend on 
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optimal step coverage of the parylene sidewall (aided in part by the slightly isotropic 

nature of the O2 plasma etch of parylene [109]).  The CL-I2 process thus avoids the use of 

tedious and comparatively low-density ball-wedge [77] or wire bonding.   

Our method of incorporating discrete modules into a MEMS process is far more 

cost-effective when compared with full-wafer IC processing and MEMS integration 

[124], because valuable space on the wafer is not wasted during the IC fabrication step.  

Furthermore, in comparison to other ASIC integration attempts [124-126], this packaging 

scheme is superior for biodevices because it takes advantage of parylene’s low water-

absorption [127] and highly conformal pinhole-free deposition, and because the package 

is both flexible and biocompatible.  Among the feasible uses for this technology is the 

interconnection of chips, devices such as other CMOS-compatible MEMS, as well as 

discrete components such as chip capacitors, fabricated using different materials and 

processes, to make large conglomerate circuits for neural prostheses and for other 

applications.  This technology is capable of far surpassing the projected number of I/O 

interconnects expected to be available by 2010 [128], while using lead-free, 

biocompatible materials. Fabrication is not limited to the use of parylene as either the 

backside anchoring material or as the frontside electrode insulation material, although, 

because of its superior electrical, mechanical, and water permeability properties when 

compared with other polymers, we believe parylene will ultimately prove to be the best 

choice for monolithic high-density neural prosthetics. It is interesting to note that another 

research group has, after our original publications [80, 129, 130], explored an integration 

technique in polyimide very similar to ours, with interconnect density motivations much 

akin to our own [131]. 
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5.5 Monolithic System Design and Processing 

We have designed a complete monolithic system that is currently undergoing 

process characterization and refinement. This system comprises a BION stimulator chip 

designed for neuromuscular prostheses [132], two chip capacitors (AVX Corporation, 

Myrtle Beach, SC, USA), and a specially designed three-layer RF coil. The chip 

capacitors and BION chips (after dicing) were analyzed using the WKYO system (Figure 

5-15) to obtain their dimensions, which were averaged for the mask design.  

 

   

Figure 5-15. WYKO Images of BION chip (left) and AVX chip capacitor (right) (not to 
scale). 

 

The components are all connected according to the CL-I2 integration process, as 

shown in the mask design given in Figure 5-16. The complete fabrication process flow is 

given in Figure 5-17. This process is divided into two sections: the RF coil fabrication 

process, and the chip integration process. The RF coil is fabricated of gold for low 

impedance, and the electrodes and interconnects are fabricated of platinum for optimal 

stimulation capability. A novel via geometry has been incorporated, in which more than 

four sidewalls are made, to enable more efficient electrical coupling between the 

components during the final platinum deposition and to minimize possible failure 
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(because these sidewalls are the locations of electrical conduction between the underlying 

chip and the overlying contacts).  

 

 

Figure 5-16. Design of completely integrated monolithically fabricated RF controlled 
stimulator connected according to CL-I2 process. E1 and E2 are the electrodes controlled 

by the BION chip. 
 

 

Figure 5-17. Integration process flow for monolithic RF coil stimulator using BION chip 
and chip capacitors. 
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Several unusual problems were encountered during processing of this prototype. 

There were bubbles formed in the parylene and under the gold (Figure 5-18) after 

deposition and the subsequent metal patterning steps during the RF coil fabrication 

process, an extremely atypical development. Because of the scarcity of the BION chips 

available for this fabrication process, and thus our desire for the process to turn out 

optimally in the first full fabrication run, future work will include repeating this 

fabrication process. Nevertheless, we have demonstrated the integration concept for a 

fully functional device using much more highly available RF identification (RFID) chip 

technology [133]. Although not a fully functional FES system, the RFID system has 

demonstrated our ability to microfabricate all interconnects to a functional chip and 

communicate with this chip from an external power source, a very important 

development. The proposed full monolithic system’s microfabrication and integration 

process is given in Appendix E as a reference for future work. 

 

 

   

Figure 5-18. Bubbling problem encountered during fabrication of monolithic parylene-
based device, requiring refabrication. 
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5.6 Monolithic Geometry Implantation Studies 

It is important to test the feasibility of surgical implantation of such parylene-

based devices in animal models to determine optimal implantation technique and to 

establish the robustness of the devices and materials under surgical manipulation. 

Already shown in Chapters 3 and 4 was implantation of electrode arrays in both the eye 

and the spinal cord. Because of the much greater space available in the abdomen and 

back for spinal cord electrode arrays, we feel that geometrical constraints will not limit 

technological advancement in this area. However, because of the extreme size limitations 

placed on a device intended to be placed in the human eye because of its low volume and 

complex anatomy, it is imperative to evaluate possible geometries for such a device prior 

to finalizing device specifications. To this end, a prototype geometry for an all-

intraocular parylene-based device, simulating the overall profiles of the required 

components but without the fabrication complexities, was conceived (Figure 5-19) and 

fabricated in parylene C using a photoresist mask and an oxygen RIE. The design 

included an RF coil region, intended for implantation in the lens capsule, a flexible cable, 

to be passed through a posterior capsulotomy into the vitreous cavity, and an electrode 

array region, designed, as shown before, to be attached to the retina using a retinal tack.  

The proposed location of the RF coil within the lens capsule or just anterior to it in the 

ciliary sulcus would enable excellent alignment and coupling of an external primary coil 

on a pair of glasses with the implanted secondary coil, thus serving as impetus for testing 

a geometry with such component placement. A dummy chip was epoxied to the cable in 

one of the possible positions anticipated for the ASIC, partway down the parylene cable.   
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Figure 5-19. Prototype geometry for an all-intraocular parylene-based device with all 
required component regions for a completely implantable system. 

 

This test structure was then implanted in several ex vivo porcine eyes to evaluate 

surgical approach and determine the device’s mechanical stability in the eye (example 

surgical photographs are given in Figure 5-20). It was determined that O2 plasma 

roughening to increase hydrophilicity of the surface in a comparison of several devices 

made little to no difference in terms of surgical outcome. A significant problem with this 

initial design was that the flexible cable was too long, causing the cable to fold over itself 

and become tangled during implantation.  In addition, it was discovered that the point of 

attachment of the flexible cable to the RF coil region caused a cabling effect, where the  

 

   

Figure 5-20. Example surgical photographs of prototype geometry implantation under (a) 
anterior and (b) intravitreal illumination. 
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RF coil region tended to be drawn through the posterior capsulotomy into the vitreous 

cavity during surgery.  

To mitigate the surgical problems encountered with this first device, a second 

model was designed (Figure 5-21) that utilizes capsular retaining wings to tether the RF 

coil region in place in the crystalline lens capsule while the cable exits through the 

capsulotomy into the posterior segment. In addition, electrodes, wires, and contact pads 

were added to the overall structure to monitor for electrical malfunction upon 

implantation. To ease continuity testing, each of the four electrodes in this design was 

connected via two traces to large contact pads in the RF coil region.  The length of the 

cable was also shortened to facilitate implantation in the porcine and canine animal 

models (it is important to note that these eyes have different average geometries than 

human eyes, so precise device dimensions will vary for human implantation).  These 

devices were fabricated successfully (as shown in Figure 5-22 and Figure 5-23).  The  

 

 

Figure 5-21. Improved geometry for an all-intraocular retinal prosthesis. 
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surface profile of the electrode region for this device is given in Figure 5-24, showing an 

overall parylene thickness of approximately 14 μm and electrodes recessed 

approximately 7 μm from the surface.  

 

 

Figure 5-22. Fabricated surgical test structure for mechanical and electrical 
characterization. 

 
 

   

Figure 5-23. Fabricated surgical test structures: (a) retinal aspect highlighting electrodes 
and (b) vitreal aspect highlighting tack hole. 
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Figure 5-24. Surface profile of retinal aspect of electrode array region of surgical test 

structure. 
 

Surgical implantation in vivo proceeded as follows: an incision approximately 5 to 

7 mm long was made in the cornea, followed by an anterior capsulorhexis. The lens was 

extracted via phacoemulsification. A posterior capsulotomy was made, followed by 

removal of the vitreous posterior to the lens capsule. The electrode region was threaded 

under the cornea, through both holes in the capsule, and the RF coil region was then 

folded, introduced into the lens capsule and then unfolded. Vitrectomy was then 

performed through scleral ports, and the array region was tacked in place on the retina. 

Finally, the cornea was sutured closed as well as all the scleral ports. Intraoperative 

surgical photographs under anterior (a) and intravitreal (b) illumination are shown in 

Figure 5-25. 
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Figure 5-25. Surgical implantation of improved surgical structure under anterior 
illumination (left) and intravitreal illumination (right). 

 
 

Upon surgical implantation, it was noted that the design modifications resulted in 

a better surgical outcome and that the RF coil region showed improved anchoring within 

the lens capsule.  Pad-electrode-pad impedances were measured prior to implantation of 

this device using the anticipated surgical procedures ex vivo in a porcine eye and in vivo 

in a canine eye. After explantation, the eyes were sectioned to evaluate surgical 

positioning prior to extraction of the array. As shown in Figure 5-26, the array was tacked 

in place in at the correct retinal location (folds are an artifact from the fixation and 

sectioning procedure), while the capsular wings showed efficacy in maintaining the RF 

coil section at the correct location. 
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Figure 5-26. Views of typical array placement after enucleation and before removal for 
electrical testing. Array region was tacked in the correct location and the capsular wings 

helped keep the RF coil region in the lens capsule. 
 

 

Line impedances were measured and compared with those measured prior.  For 

two out of three surgeries using identically fabricated devices from the same run, the 

results graphed in Figure 5-27 show that the pre-surgical coil-electrode-coil circuit 

impedances fell into two groups based on the physical lengths of these circuits, the 

shorter having a mean impedance of 135 Ω  and the longer having a mean impedance of 

152 Ω.  Post-surgical testing of the electrical characteristics of the circuits revealed mean 

impedances of 136 and 154  Ω for the short and long circuits, respectively, with no lines 

having been broken during the surgical procedures.  Another device was made for a 

subsequent surgery. In this case, presurgical and post surgical impedances were nearly 

identical in 7 out of 8 lines. One line was broken during or after surgery. We believe that 

this is because the tack partially tore through the parylene and a line during implantation 

or explantation. This, however, could be easily mitigated by better tack handling during 

surgery or during removal. Nevertheless, these results indicate that the embedded thin- 
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Figure 5-27. Pad-electrode-pad circuit resistances before and after surgical implantation 
in porcine eye (left) and canine eye (right). 

 

film metal wires are robust under surgical and post-surgical procedures, and point to the 

utility of the novel surgical design in keeping the RF coil anchored either in the lens 

capsule or the sulcus while the cable makes its way back to the retina in the final 

implementation of an all-intraocular system. 

 

5.7 Conclusions 

This chapter has described a high-lead-count integration technology that is 

capable of achieving electrical contacts to prefabricated chips in a highly scalable 

manner. This means that, for the first time, the direct integration of individual 

prefabricated ASICs with CMOS compatible MEMS in a flexible, scalable, standard 

photolithography- and standard microfabrication-limited manner has been shown.  This 

scalability means that our technology is capable of achieving the high lead count required 

for modern neural prostheses. This work constitutes a ground-breaking, biocompatible, 

and cost-effective technology for interconnecting prefabricated chips and ASICs with 
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each other, with MEMS devices, and with neural prostheses. The design and processing 

results for a completely integrated monolithically fabricated device have been presented, 

work which will continue and be further expounded upon as this project continues. 

Finally, a novel geometry for an all-intraocular system has been devised and surgically 

tested, giving preliminary evidence that it is possible to introduce and anchor the relevant 

components of the full monolithic device in the target regions of the eye in such a way 

that all the parts are completely implanted and that there is no nidus for infection due to 

permanent scleral incisions. In addition, it has been shown that thin-film metal lines are 

robust under real surgical conditions. When combined with the high-lead-count electrode 

technologies presented in Chapters 3 and 4 and our RF coil technology [81, 134], this 

packaging technology and implantation scheme complete the suite of technologies and 

knowledge necessary for both a chronically implantable retinal and spinal cord 

prosthesis. 
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6 CONCLUSIONS 

 

 

 

 

BioMEMS, an emerging field in which MEMS are designed, fabricated, and 

utilized to interface with and examine biological systems, is a discipline replete with 

incredible possibilities, but also one that is fraught with potential pitfalls. This is no more 

true than in the case of implantable microelectronics, where applications abound because 

of the near perfect match in the sizes of the functional components of the body, namely 

cells and neurons, and the technologies possible using microfabrication techniques, many 

of which we have discussed in Chapter 2.  Materials must be carefully selected such that 

they are biocompatible with the body, while still enabling maximal functionality to be 

delivered to the patient, requirements that are often competing in nature. In this vein, the 

microtechnologies necessary for parylene-based retinal and spinal cord prosthetics have 

been presented, spurred by a discussion of the clinical problems of retinal and spinal 

disease in Chapter 1. Flexible microelectrode arrays fabricated of multiple metals and in 

various geometries have been presented in Chapters 3 and 4 to show both recording and 

stimulation results in the two neural models, the results of which are extremely 

promising. Because parylene C and HT are superior to many other polymers in terms of 
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their mechanical, water permeability, and dielectric properties, devices fabricated using 

these materials as the main substrate are likely to be tolerable for many years in the 

human body without loss of functionality and without harm to the patient. A high-lead-

count packaging scheme has also been presented in Chapter 5, a paradigm which we 

believe solves the problem of interconnection of such arrays with the driving or recording 

electronics necessary for their ultimate use. All evidence thus far points to the fact that 

parylene-based technologies are likely an ideal option for implantable neuroprostheses 

and microdevices, and the hope is that, soon, these technologies will be implemented in 

real devices to treat patients with these diseases. 

It should be stressed that these technologies are not limited to use in these two 

groups of disease. In fact, the ability of our flexible arrays to conform to the geometries 

of interest in the human body enables them to be used in a variety of locations heretofore 

previously inaccessible with such high precision. Such locations include the surfaces of 

the cerebral cortex, another area of interest from both a scientific and treatment point of 

view due to such neurological problems as stroke, epilepsy, and memory loss. Areas of 

other interest include peripheral nerve and muscle. It is also possible to embed sensors in 

our arrays, as will likely be done in the near future, to assess mechanical forces placed on 

the tissues of interest by our arrays as well as to detect extrinsic pressures, such as those 

within the eye or within blood vessels.  

Perhaps understandably, there is a public reticence to the implementation of such 

technologies in the human body. While such apprehension is not a recent phenomenon, 

the burgeoning era of computerized special effects in television and cinema has helped 

fuel the fear that the blending of “man” and “machine” can have devastating 
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consequences. What is missed in such intimations is that, in the hands of ethical doctors, 

engineers, and other scientists, such consequences are extremely remote. But it is not 

about the inventors of these technologies, and it should never be about personal glory. All 

of that slips away the moment one talks to a person who has devoted their life to be a 

pioneer in the field by volunteering to be a test subject of such devices for the benefit of 

mankind. In such conversations, one realizes the full potential of this technology. 

Investigation into these devices not only has the possibility to positively affect the lives 

of such people, by enabling them to “walk” or “see” again, but it transcends all that by 

bringing about in all involved a sense of camaraderie. Indeed, the selfless motivation of 

such individuals who devote their most precious commodity, their body, to such studies, 

more than anything else highlights our very humanity. It shows that, despite the need for 

such technological innovation, it is only by working together and for one another that we, 

as a people, can break the bonds of human disease. 
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Appendix A: Single-Layer Electrode Array 
Microfabrication Process 

 
Substrate: Prime silicon wafers, 550 μm thick, 4 inch diameter. Do not remove native 
oxide. 
 
1) Alignment Marks (Single-Side, Front-Side Only) – Stepper Process Only 

1. HMDS prime 
a.  2 mL 
b.  Time: 1 minute 

2. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

3. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

4. Expose the alignment marks – UV Cannon 
a.  Time: 20 seconds 

5. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 90 seconds 

6. Rinse in DI H2O 
7. Spin dry 
8. Examine the alignment marks 
9. Etch the alignment marks 
 a.  Machine: RIE 

 b.  Plasma type: SF6/O2 
c.  Plasma Pressure/Power/Time: 120 mTorr/120 W/10 min (Recipe 4) 

10. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: ~ 10 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine the alignment marks 

 
2) Optional Sacrificial Photoresist – Not Suggested 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

 2. Hard bake 
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   a.  Temperature: 100 °C 
   b.  Time: 12 hours 
 
3) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~10 grams 
 
4) Liftoff 

1. Spin LOR3B  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 190 °C 
b.  Time: 10 minutes 

3. Spin AZ 1518  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

4. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

5a. Expose the pattern – Stepper  
a. Time: 0.35 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

5b. Expose the pattern – Contact aligner 
a. Time: 25 seconds 

6. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 1 minute 

7. Rinse in DI H2O 
8. Spin dry 

 9. Examine 
 10. Hard bake 

a.  Temperature: 120 °C 
b.  Time: 12 hours 

 11. Descum 
 a.  Machine: PEII 

 b.  Plasma type: O2 
c.  Plasma Pressure/Power/Time: 200 mTorr/50 W/2 min 

12. Deposit metal in e-beam 
  a.  (optional) Ti: 200 Å 
  b.  Pt: 2000-5000 Å 
13. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 
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14. Rinse in DI H2O 
15. Spin dry 
16. Examine  
 

5) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~7 grams 
 
6) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3a. Expose the electrode and geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

3b. Expose the electrode and geometry etch pattern – Contact Aligner 
a. Time: 99.9 seconds 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11a. Expose the geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

11b. Expose the geometry etch pattern – Contact aligner 
a. Time: 99.9 seconds 

12. Develop in AZ351 Developer  
a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 
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13. Rinse in DI H2O 
14. Spin dry 

 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/25 min (Recipe 3) 
17. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
18. Rinse in Post-Solvent Rinse 
19. Rinse in DI H2O 

 20. Examine 
 
7) Release Devices 
 1a. If sacrificial photoresist used – not suggested 
  a.  Soak in acetone for 2 days 
  b.  Peel 
 1b. If no sacrificial photoresist used 

a. Place in water bath 
b. Tap edge of array with tweezers and peel 

 2. Rinse in DI H2O 
 3. Examine 
 
8) Anneal for Parylene-Parylene Adhesion 

1. Place and clamp in appropriate jig  
2. Place in vacuum oven 
 a.  N2 backfill at 10 Torr 

b.  Temperature: 200 °C 
c.  Time: 2 days 

 3. Vent 
4. Examine 
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Appendix B: Dual-Layer Electrode Array 
Microfabrication Process 

 
Substrate: Prime silicon wafers, 550 μm thick, 4 inch diameter. Do not remove native 
oxide. 
 
1) Alignment Marks (Single-Side, Front-Side Only) – Stepper Process Only 

1. HMDS prime 
a.  2 mL 
b.  Time: 1 minute 

2. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

3. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

4. Expose the alignment marks – UV Cannon 
a.  Time: 20 seconds 

5. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 90 seconds 

6. Rinse in DI H2O 
7. Spin dry 
8. Examine the alignment marks 
9. Etch the alignment marks 
 a.  Machine: RIE 

 b.  Plasma type: SF6/O2 
c.  Plasma Pressure/Power/Time: 120 mTorr/120 W/10 min (Recipe 4) 

10. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: ~ 10 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine the alignment marks 

 
2) Optional Sacrificial Photoresist – Not Suggested 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

 2. Hard bake 
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   a.  Temperature: 100 °C 
   b.  Time: 12 hours 
 
3) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~8 grams 
 
4) 1st Liftoff 

1. Spin LOR3B  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 190 °C 
b.  Time: 10 minutes 

3. Spin AZ 1518  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

4. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

5a. Expose the 1st layer pattern – Stepper  
a. Time: 0.35 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

5b. Expose the 1st layer pattern – Contact aligner 
a. Time: 25 seconds 

6. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 1 minute 

7. Rinse in DI H2O 
8. Spin dry 

 9. Examine 
 10. Hard bake 

a.  Temperature: 120 °C 
b.  Time: 12 hours 

 11. Descum 
 a.  Machine: PEII 

 b.  Plasma type: O2 
c.  Plasma Pressure/Power/Time: 200 mTorr/50 W/2 min 

12. Deposit metal in e-beam 
  a.  (optional) Ti: 200 Å 
  b.  Pt: 2000-5000 Å 
13. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 
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14. Rinse in DI H2O 
15. Spin dry 
16. Examine  
 

5) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~2 grams 
 
6) Etch Vias 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 2 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3a. Expose the via pattern – Stepper  
a. Time: 1.5 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

3b. Expose the via pattern – Contact aligner 
a. Time: 50 seconds 

4. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 2:30 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/9 min (Recipe 3) 
9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
10. Rinse in Post-Solvent Rinse 
11. Rinse in DI H2O 

 12. Examine 
 
7) 2nd Liftoff 

1. Spin LOR3B  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 190 °C 
b.  Time: 10 minutes 
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3. Spin AZ 1518  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

4. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

5a. Expose the 2nd layer pattern – Stepper  
a. Time: 0.35 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

5b. Expose the 2nd layer pattern – Contact aligner 
a. Time: 25 seconds 

6. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 1 minute 

7. Rinse in DI H2O 
8. Spin dry 

 9. Examine 
 10. Hard bake 

a.  Temperature: 120 °C 
b.  Time: 12 hours 

 11. Descum 
 a.  Machine: PEII 

 b.  Plasma type: O2 
c.  Plasma Pressure/Power/Time: 200 mTorr/50 W/2 min 

12. Deposit metal in e-beam 
  a.  (optional) Ti: 200 Å 
  b.  Pt: 2000-5000 Å 
13. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 
14. Rinse in DI H2O 
15. Spin dry 
16. Examine  

 
8) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~7 grams 
 
9) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 

 



 151  
 

b.  Time: 30 minutes 
3a. Expose the electrode and geometry etch pattern – Stepper  

a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

3b. Expose the electrode and geometry etch pattern – Contact aligner 
a. Time: 99.9 seconds 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11a. Expose the geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

11b. Expose the geometry etch pattern – Contact aligner 
a. Time: 99.9 seconds 

12. Develop in AZ351 Developer  
a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 

13. Rinse in DI H2O 
14. Spin dry 

 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/25 min (Recipe 3) 
17. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
18. Rinse in Post-Solvent Rinse 
19. Rinse in DI H2O 

 20. Examine 
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10) Release Devices 
 1a. If sacrificial photoresist used – not suggested 
  a.  Soak in acetone for 2 days 
  b.  Peel 
 1b. If no sacrificial photoresist used 

a. Place in water bath 
b. Tap edge of array with tweezers and peel 

 2. Rinse in DI H2O 
 3. Examine 
 
11) Anneal for Parylene-Parylene Adhesion 

1. Place and clamp in appropriate jig  
2. Place in vacuum oven 
 a.  N2 backfill at 10 Torr 

b.  Temperature: 200 °C 
c.  Time: 2 days 

 3. Vent 
4. Examine 
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Appendix C: Parylene HT Iridium Electrode 
Array Microfabrication Process 

 
Substrate: Prime silicon wafers, 550 μm thick, 4 inch diameter. Do not remove native 
oxide. 
 
1) Alignment Marks (Single-Side, Front-Side Only) – Stepper Process Only 

1. HMDS prime 
a.  2 mL 
b.  Time: 1 minute 

2. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

3. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

4. Expose the alignment marks – UV Cannon 
a.  Time: 20 seconds 

5. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 90 seconds 

6. Rinse in DI H2O 
7. Spin dry 
8. Examine the alignment marks 
9. Etch the alignment marks 
 a.  Machine: RIE 

 b.  Plasma type: SF6/O2 
c.  Plasma Pressure/Power/Time: 120 mTorr/120 W/10 min (Recipe 4) 

10. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: ~ 10 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine the alignment marks 

 
2) Optional Sacrificial Photoresist – Not Suggested 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

 2. Hard bake 

 



 154  
 

   a.  Temperature: 100 °C 
   b.  Time: 12 hours 
 
3) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~6 grams 
 3. Parylene HT: ~23 grams 
 
4) Liftoff 

1. Spin LOR3B  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 190 °C 
b.  Time: 10 minutes 

3. Spin AZ 1518  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

4. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

5a. Expose the pattern – Stepper  
a. Time: 0.35 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

5b. Expose the pattern – Contact aligner 
a. Time: 25 seconds 

6. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 1 minute 

7. Rinse in DI H2O 
8. Spin dry 

 9. Examine 
 10. Hard bake 

a.  Temperature: 120 °C 
b.  Time: 12 hours 

 11. Descum 
 a.  Machine: PEII 

 b.  Plasma type: O2 
c.  Plasma Pressure/Power/Time: 200 mTorr/50 W/2 min 

12. Deposit metal in e-beam 
  a.  Ir: 800 Å 
13. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 
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14. Rinse in DI H2O 
15. Spin dry 
16. Examine  
17. If necessary 
 a.  5 min ultrasonic rinse in n-methyl-2-pyrrolidone 
 b.  H2O rinse 
 

5) Deposit Parylene 
 1. PDS 2035 
 2a. Parylene HT: ~23 grams 
 2b. Or perhaps next time do parylene C: ~15 grams 
 
6) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3a. Expose the electrode and geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

3b. Expose the electrode and geometry etch pattern – Contact aligner 
a. Time: 99.9 seconds 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11a. Expose the geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

11b. Expose the geometry etch pattern – Contact aligner 
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a. Time: 99.9 seconds 
12. Develop in AZ351 Developer  

a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 

13. Rinse in DI H2O 
14. Spin dry 

 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/25 min (Recipe 3) 
17. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
18. Rinse in Post-Solvent Rinse 
19. Rinse in DI H2O 

 20. Examine 
 
7) Release Devices 
 1a. If sacrificial photoresist used – not suggested 
  a.  Soak in acetone for 2 days 
  b.  Peel 
 1b. If no sacrificial photoresist used 

a. Place in water bath 
b. Tap edge of array with tweezers and peel 

 2. Rinse in DI H2O 
 3. Examine 
 
8) Anneal for Parylene-Parylene Adhesion 

1. Place and clamp in appropriate jig  
2. Place in vacuum oven 
 a.  N2 backfill at 10 Torr 

b.  Temperature: 200 °C 
c.  Time: 2 days 

 3. Vent 
4. Examine 
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Appendix D: CL-I2 Microfabrication Process 
 
Substrate: Prime silicon wafers, 550 μm thick, 4 inch diameter. Do not remove native 
oxide. 
 
1) Alignment Marks (Single-Side, Front-Side Only)  

1. HMDS prime 
a.  2 mL 
b.  Time: 1 minute 

2. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

3. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

4. Expose the alignment marks – UV Cannon 
a.  Time: 20 seconds 

5. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 90 seconds 

6. Rinse in DI H2O 
7. Spin dry 
8. Examine the alignment marks 
9. Etch the alignment marks 
 a.  Machine: RIE 

 b.  Plasma type: SF6/O2 
c.  Plasma Pressure/Power/Time: 120 mTorr/120 W/10 min (Recipe 4) 

10. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: ~ 10 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine the alignment marks 

 
2) Etch Chip Cavities 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

 



 158  
 

3. Expose the pattern – Stepper  
a. Time: 10 seconds 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Remove photoresist ring 
 9. Attach to backside wafer with several drops of 1518 
 10. DRIE etch with B=7 seconds process 
   a. 700 loops 

11. Strip photoresist and remove backside wafer in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 

 
3) Seal Chips in Wafer 

1. Place Nitto tape on front side 
2. Place chips in from back side 
3. Paint thick layer of 9260 on back side 
4. Bake 

a.  Temperature: 100 °C 
b.  Time: 60 minutes 

 5. Deposit parylene 
  a.  PDS 2035 

b.  Parylene C: ~20 grams  can be more 
 6. Peel off Nitto tape 
 7. Profile surface in profilometer 
 

***From this point forward, try to avoid using vacuum chuck*** 
 
4) Sacrificial Photoresist – May Be Optional 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the surface of the chip – Stepper  
a. Time: 1 second 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 2 minutes 

5. Rinse in DI H2O 
6. Spin dry 
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 7. Examine 
 8. Hard bake 

a.  Temperature: 100 °C 
b.  Time: 1 hour 
 

5) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~5.5 grams 
 3. Profile surface in profilometer  
 
6) Etch Vias 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the via pattern – Stepper  
a. Time: 4.5 seconds 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 4 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/11 min (Recipe 3) 
9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
10. Rinse in Post-Solvent Rinse 
11. Rinse in DI H2O 

 12. Examine 
   
7) Deposit Metal 

1. Deposit metal in e-beam 
  a.  Ti: 200 Å 
  b.  Au: 2000 Å 
 

8) Etch Metal 
1. Spin AZ 9260  

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
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c.  Time: 40 seconds 
2. Soft bake 

a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the metal pattern – Stepper  
a. Time: 4.5 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 
c. Flood expose surrounding die 

 4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 4 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Wet etch 
   a.  Au etch (1 minute) 
   b.  Ti etch (BHF for 20 seconds; or 10:10:200 HF:H2O2:H2O for 4 

seconds) 
   c.  Rinse in DI H2O 
   d.  Spin dry 
   e.  Examine 

9. Flood expose in UV cannon 
 a. 10 seconds 

 10. Strip in straight AZ351 Developer  
 a.  2 minutes  
11. Rinse in DI H2O 
12. Spin dry 
13. Examine 
14. Test for contact on probe station 

  
9) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~10-15 grams 
 
10) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the electrode and geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

4. Develop in AZ351 Developer  
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a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11. Expose the geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 

12. Develop in AZ351 Developer  
a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 

13. Rinse in DI H2O 
14. Spin dry 

 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
17. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
18. Rinse in Post-Solvent Rinse 
19. Rinse in DI H2O 

 20. Examine 
 
11) Release Devices 
 1. Remove sacrificial photoresist  
  a.  Poke holes over chips on backside 
  b.  Soak in acetone for 2 days 
  c.  Peel 
 2. Rinse in DI H2O 
 3. Examine 
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12) Anneal for Parylene-Parylene Adhesion 
1. Place and clamp in appropriate jig  
2. Place in vacuum oven 
 a.  N2 backfill at 10 Torr 

b.  Temperature: 200 °C 
c.  Time: 2 days 

 3. Vent 
4. Examine 
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Appendix E: Proposed Monolithic Prosthesis 
Microfabrication Process 

 
Substrate: Prime silicon wafers, 550 μm thick, 4 inch diameter. Do not remove native 
oxide. 
 
1) Alignment Marks (Single-Side, Front-Side Only) 

1. HMDS prime 
a.  2 mL 
b.  Time: 1 minute 

2. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

3. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

4. Expose the alignment marks – UV Cannon 
a.  Time: 20 seconds 

5. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 90 seconds 

6. Rinse in DI H2O 
7. Spin dry 
8. Examine the alignment marks 
9. Etch the alignment marks 
 a.  Machine: RIE 

 b.  Plasma type: SF6/O2 
c.  Plasma Pressure/Power/Time: 120 mTorr/120 W/10 min (Recipe 4) 

10. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: ~ 10 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine the alignment marks 

 
2) Sacrificial Photoresist – May Be Optional 

1. Spin AZ 4400  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 4 krpm 
c.  Time: 40 seconds 

 2. Hard bake 
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a.  Temperature: 100 °C 
b.  Time: 1 hour 

 
3) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~17 grams  7 μm 
   
4) Deposit Metal 

1. Deposit metal in e-beam 
  a.  Ti: 200 Å 
  b.  Au: 5000 Å 
 

5) Etch Metal 
1. Spin AZ 1518  

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the metal pattern – Stepper  
a. Time: 0.7 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 
c. Flood expose surrounding die, neighboring electrode region, and 

alignment marks 
d. DCR5;ALIGN,ELEC,COIL (Blank Frame,Blank Frame,First Metal 

Layer) 
 4. Develop in AZ351 Developer  

a.  4:1 DI H2O:AZ351 
b.  Time: 2 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Wet etch 
   a.  Au etch (2 minutes) 
   b.  Ti etch (BHF for 20 seconds) 
   c.  Rinse in DI H2O 
   d.  Spin dry 
   e.  Examine 

9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine 

 



 165  
 

  
6) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~3 grams  1.5 μm 
 
7) Etch Vias 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the via 1 pattern – Stepper  
a. Time: 7 seconds 
b. DCR5;COIL 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 6 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/7 min (Recipe 3) 
9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
10. Rinse in Post-Solvent Rinse 
11. Rinse in DI H2O 

 12. Examine 
 
8) Deposit Metal 

1. Deposit metal in e-beam 
  a.  Ti: 200 Å 
  b.  Au: 5000 Å 
 

9) Etch Metal 
1. Spin AZ 1518  

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

 



 166  
 

3. Expose the metal pattern – Stepper  
a. Time: 0.7 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 
c. Flood expose surrounding die, neighboring electrode region, and 

alignment marks 
d. DCR5;ALIGN,ELEC,COIL (Blank Frame,Blank Frame,Second Metal 

Layer) 
 4. Develop in AZ351 Developer  

a.  4:1 DI H2O:AZ351 
b.  Time: 2 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Wet etch 
   a.  Au etch (2 minutes) 
   b.  Ti etch (BHF for 20 seconds) 
   c.  Rinse in DI H2O 
   d.  Spin dry 
   e.  Examine 

9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine 

  
10) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~3 grams  1.5 μm 
 
11) Etch Vias 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the via 2 pattern – Stepper  
c. Time: 7 seconds 
d. DCR5;COIL 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 6 minutes 

5. Rinse in DI H2O 
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6. Spin dry 
 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/12 min (Recipe 3) 
9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
10. Rinse in Post-Solvent Rinse 
11. Rinse in DI H2O 

 12. Examine 
 
12) Deposit Metal 

1. Deposit metal in e-beam 
  a.  Ti: 200 Å 
  b.  Au: 5000 Å 
 

13) Etch Metal 
1. Spin AZ 1518  

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the metal pattern – Stepper  
a. Time: 0.7 seconds 
b. Stitching if necessary (2.5-5 μm overlap) 
c. Flood expose surrounding die, neighboring electrode region, and 

alignment marks 
d. DCR5;ALIGN,ELEC,COIL (Blank Frame,Blank Frame,Third Metal 

Layer) 
 4. Develop in AZ351 Developer  

a.  4:1 DI H2O:AZ351 
b.  Time: 2 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Wet etch 
   a.  Au etch (2 minutes) 
   b.  Ti etch (BHF for 20 seconds) 
   c.  Rinse in DI H2O 
   d.  Spin dry 
   e.  Examine 

9. Strip photoresist in ST-22 
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 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
11. Rinse in Post-Solvent Rinse 
12. Rinse in DI H2O 
13. Spin dry 
14. Examine 

  
14) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~6 grams  3 μm 
 
15) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the Chip Cavity Etch – Stepper  
a. Time: 10 seconds 
b. DCR5;ELEC (Cap/Chip Cavity Etch) 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11. Expose the Chip Cavity Etch – Stepper  
a. Time: 10 seconds 
b. DCR5;ELEC (Cap/Chip Cavity Etch) 

12. Develop in AZ351 Developer  
a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 

13. Rinse in DI H2O 
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14. Spin dry 
 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min or until done 
(Recipe 3)  

17. Examine 
 
16) Etch Chip Cavities 

1. Spin AZ 9260 (no strip) 
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the pattern – Stepper  
a. Time: 10 seconds 
b. DCR5;ELEC (Cap/Chip Cavity Etch) 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Remove photoresist ring 
 9. Attach to backside wafer with several drops of 1518 
 10. DRIE etch with B=7 seconds process 
   a. 700 loops 

11. Strip photoresist and remove backside wafer in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 

 
17) Seal Chips in Wafer 

1. Place Nitto tape on front side 
2. Place chips in from back side 
3. Paint thick layer of 9260 on back side 
4. Bake 

a.  Temperature: 100 °C 
b.  Time: 60 minutes 

 5. Deposit parylene 
  a. PDS 2035 

b. Parylene C: ~20 grams  can be more 
 6. Peel off Nitto tape 
 7. Profile surface in profilometer 
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***From this point forward, try to avoid using vacuum chuck*** 

 
18) Deposit Parylene 
 1. PDS 2035 
 2. Parylene C: ~3 grams  1.5 μm 
 3. Profile surface in profilometer 
 
19) Etch Vias 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the Coil and Chip Contact pattern – Stepper  
a. Time: 7 seconds 
b. DCR5;COIL,ELEC (Coil Contact Vias,Cap/Chip Contact Etch) 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 6 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/7 min (Recipe 3) 
9. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 5 minutes 
10. Rinse in Post-Solvent Rinse 
11. Rinse in DI H2O 

 12. Examine 
 
20) Liftoff 

1. Spin LOR3B  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 190 °C 
b.  Time: 10 minutes 

3. Spin AZ 1518  
a.  Ramp rate: 1 krpm/sec 
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b.  Spin speed: 3 krpm 
c.  Time: 40 seconds 

4. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

5. Expose the liftoff layer pattern – Stepper  
a. Time: 0.35 seconds 
b. DCR5;COIL,ELEC (Metal Liftoff,Metal Liftoff) 

6. Develop in AZ351 Developer  
a.  4:1 DI H2O:AZ351 
b.  Time: 1 minute 

7. Rinse in DI H2O 
8. Spin dry 

 9. Examine 
 10. Hard bake 

a.  Temperature: 120 °C 
b.  Time: 12 hours 

 11. Descum 
 a.  Machine: PEII 

 b.  Plasma type: O2 
c.  Plasma Pressure/Power/Time: 200 mTorr/50 W/2 min 

12. Deposit metal in e-beam 
  a.  (optional) Ti: 200 Å 
  b.  Pt: 2000-5000 Å 
13. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 2 hours 
14. Rinse in DI H2O 
15. Spin dry 
16. Examine  

 
21) Deposit Parylene 
 1. PDS 2010 
 2. Parylene C: ~7 grams 
 
22) Etch Parylene 

1. Spin AZ 9260  
a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

2. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

3. Expose the electrode and geometry etch pattern – Stepper  
a. Time: 10 seconds 
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b. DCR5;ELEC,ELEC,ELEC,COIL (Electrode Opening Etch,Probe 
Opening Etch,Parylene Etch 2, Parylene Etch 2) 

4. Develop in AZ351 Developer  
a.  3:1 DI H2O:AZ351 
b.  Time: 5 minutes 

5. Rinse in DI H2O 
6. Spin dry 

 7. Examine 
 8. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
9. Spin AZ 9260 (no strip) 

a.  Ramp rate: 1 krpm/sec 
b.  Spin speed: 1 krpm 
c.  Time: 40 seconds 

10. Soft bake 
a.  Temperature: 100 °C 
b.  Time: 30 minutes 

11. Expose the geometry etch pattern – Stepper  
a. Time: 10 seconds 
b. DCR5; ELEC,COIL (Parylene Etch 2, Parylene Etch 2) 

12. Develop in AZ351 Developer  
a.  120 mL:55 mL DI H2O:AZ351 
b.  Time: 7 minutes 

13. Rinse in DI H2O 
14. Spin dry 

 15. Examine 
 16. Etch Parylene 

 a.  Machine: RIE 
 b.  Plasma type: O2 

c.  Plasma Pressure/Power/Time: 350 mTorr/400 W/30 min (Recipe 3) 
17. Strip photoresist in ST-22 
 a.  Temperature: 80 °C 
 b.  Time: 10 minutes 
18. Rinse in Post-Solvent Rinse 
19. Rinse in DI H2O 

 20. Examine 
 
23) Release Devices 
 1. Remove sacrificial photoresist 
  a.  Poke holes over chips on backside 
  b.  Soak in acetone for 2 days 
  c.  Peel 
 2. Rinse in DI H2O 
 3. Examine 
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24) Anneal for Parylene-Parylene Adhesion 

1. Place and clamp in appropriate jig  
2. Place in vacuum oven 
 a.  N2 backfill at 10 Torr 

b.  Temperature: 200 °C 
c.  Time: 2 days 

 3. Vent 
4. Examine 
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