ANALYSIS OF AN INTERACTIVE
VIDEO ARCHITECTURE

Thesis by

Petros N. Mouchtaris

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1993
(Defended June 10, 1992)

ii

© 1993
Petros N. Mouchtaris
All Rights Reserved

i1

Acknowledgements

First of all, I would like to thank my advisor Professor Edward C. Posner. During my
studies | have questioned my decisions of becoming an Electrical Engineer, coming
to Caltech for graduate studies, doing research in traffic theory and many more.
The only decision I never questioned was joining Professor Posner’s research group.
Among other things, I would like to thank him for suggesting the interactive video
service that is discussed in this thesis and for his constant advice and encouregement
throughout the course of this work.

The financial support of Pacific Bell is gratefully acknowledged. Pacific Bell sup-
ported my research at Caltech, provided funds for computer equipment and offered
me summer employment in 1991. During my stay at Pacific Bell, I was allowed to
use computer equipment for doing my research and this is where a great part of this
thesis was written. I am really very thankful to all the people that made that possible
and especially to Doctors Yuet Lee, Kuo-Hui Liu and Ning Zhang all of Pacific Bell.

Last but not least, I would like to thank my family in Greece and my friends at
. Caltech for their moral support. Especially, I would like to thank Nikos Bekiaris,
Gamze Erten, Michael Mandell and Isaac Wong. I'm definitely going to miss them.

Abstract

A new residential application for interactive video is proposed. There is a service
provider that prepares and distributes daily news programs customized to subscriber
interest. The provider assembles the programs from short news clips and uses a profile
data base of subscribers for selecting the appropriate clips. The time of viewing the
program can be selected by the customers in near-real-time. We model this service
and propose a network architecture that can support it. There is a main node that
contains most of the storage and sourcing facilities, and an intermediate node to which
all customers are connected. Multicasting is used as much as possible for reducing
the traffic load on the network. In addition to that, popular material is stored in the
intermediate node which is closer to the customers, which further decreases the traffic
load.

QOur main concern is the time that a customer has to wait until he starts getting
his program. This time is a function of the capacity of the link that connects the
main node to the intermediate node, the so-called main link. The case that the main
link can only transport a single video connection is considered first. We propose
a recurrent algorithm that calculates the probabilities of the states and uses them
for evaluating the expected wait, and prove that there is a very simple relationship
between the expected wait and the probabilities of the states. A simplified analysis
that directly computes the expected wait is proposed next. This approach is compu-
tationally more efficient but does not give us any information about the probabilities

of the states.

v

For the general case that the main link can transport more than one video con-
nection, we generalize the recurrent algorithm that calculates the probabilities of the
states and t}je simple relationship between the expected wait and the probabilities of
the states. For the cases that the complexity of our algorithm is too large, we propose
and evaluate three approximate'techniques for estimating the expected wait. In the
first technique we ﬁse the results for the case that a main link can only transport a sin-
gle connection for estimating the results for the general case. In the second technique
we use the idea of rescaling time. In the third, motivated by the fluid-flow theory, we
solve a deterministic problem and use the results of that problem for estimating the
expected wait for the problem we are interested in. We show that these approximate
techniques compare well with simulations. Thus, we can now decide what the capac-
ity of the main link should be so that our system has the desired performance, and

we can do that even if the number of customers is very large.

Vi

Contents

1 Introduction
1.1 Feasibility of Interactive Video
1.2 Qutlineof Thesis e

2 Service Model

2.1 Service Description e
2.2 System Architecture o
2.3 TraficModel
24 SUMMATY . . . v e e e e e e e e e e e e

3 The Single-Server Case

3.1 Queueing Analysis e
3.1.1 Constant-Service-Times,
3.1.2 Variable-Service-Times

3.2 A Simplified Analysis o

3.3 Numerical Examples

3.4 Summary e e e e e e e

3.A Appendix: Proof of Theorem 3.1

3.B Appendix: Proof of Theorem 3.2

3.C Appendix: Proof of Theorem3.4

4 The Multiple-Servers Case

4.1 Queueing Analysis L e

11
15

18
18
20
24
27

31
32
36
39

44

vii

4.1.1 Constant-Service-Times 45

4.1.2 Variable-Service-Times oo i 49
4.2 Im;;roving the Efficiency of the Algorithm 53
43 ASmmpleExample L 57
4.4 Numerical Example 60
4.5 Some Apf)roximate Techniques. 60
4.6 Numerical Examples of Approximate Models 66
4.7 Summary e 70
4.A Appendix: Proof of Theorem 4.2 70
4.B Appendix: Expression for E(W") using Little’s Result 73

5 Epilogue 78

viii

List of Figures

2.1 A Simple Network o 10
2.2 System Architectureo 12
2.3 Traffic Model 14
3.1 Probability Distribution for N =50 33
4.1 Probability Distributionfor N =45 61
4.2 E(W)in number of slots for N =100 68

4.3 E(W) in number of slots for N =1000 69

X

List of Tables

3.1 E(W™)innumberofslots, 32
4.1 Values of Pi((ny,ng)/j)fori=1 58
4.2 Values of Pl((ny,ny)/j) fori=2 59

4.3 Values of Pi((ny,na)/j)fori=3 59

Chapter 1

Introduction

1.1 Feasibility of Interactive Video

Fiber technology has been advancing rapidly in the last decade. This has resulted
in a significant decrease in the cost of fiber. Today, fiber offers an alternative to
the use of copper not only for long distance point to point transmission but also for
transmissions up to the customer’s end.

The use of fiber has three very important advantages. The first one is that it
has low attenuation. This‘reduces the need for amplification, which usually results
in signal distortion. This is very important especially for the cable industry. The
second advantage is that the bandwidth of the fiber is almost unlimited. The only
limitations, for the time being, are the optical devices and the devices that are used
- for converting electrical signals to optical and back (see [4]). The third advantage of
fiber is its cost efficiency, which has drastically improved. In particular fiber has low
maintenance costs. For all these reasons the use of fiber all the way to the customer’s
end is becoming more and more attractive (see [2, 3, 4, 6]).

At the same time, with advances in fiber technology, new video coding techniques
have been developed. Vector quantization (see [5]) and subband coding (see [10]) are
the most interesting among them. These new techniques together with the use of

motion compensation have made possible transmission of video at unprecedented low

2

bit-rates. It has been reported that even High Definition TV (HDTV) signals can be
transmitted at rates below 50 Mbps (see [1, 8]).

Storage technology has been also advancing rapidly. This is very important for
Video on Demand. The reason is that even if coding techniﬁues continue to improve,
we will still need transfer rates of the order of 1 Mbps for NTSC video and more
than that for HDTV. So, if we want to store a movie that is 100 minutes long, we
will need storage of the order of 1 gigabyte (GB) Storing a library of movies will
thus require enormous storage capacity. But even if we need to store only small video
segments, that will still require a lot of memory. Although we may be able to use
existing technology for doing so, we also need to make sure that this technology is
cost effective. It has been predicted in [8] that by the year 2000 all the necessary
storage equipment will be available, although it is not very clear yet whether their
price will be low enough for practical applications. |

Another important component of technology for video applications are the switch-
ing facilities. New high-bandwidth packet switches have been introduced which are
based on Batcher-banyan technology (see [9]). It has been reported that 38.4 Gbps
switching fabrics are under construction (see [8]). It has become clear that in the
near future switches that can be used for video applications will be available.

In the previous paragraphs we discussed all the technological components that are
necessary for the introduction of services that requi.re’video signals transmitted up to
the customer’s end. We have shown that within the next decade or so the technology
will exist for applications of this kind (see also [8]). The exact architecture of the
networks that will deliver video to the customer are yet unclear. It is possible that in
the beginning some hybrid architectures will be used (see for example 2, 7]). It may
be the phone or the cable company that will deliver the video.

It seems very likely that Broadband ISDN based on Asynchronous Transfer Mode
(ATM) will be the basic ingredient in these architectures. This fact is becoming
widely accepted and for that reason most of the researchers are working towards this

direction. The basic idea of BISDN based on ATM is that information is divided into

3

small packets of fixed length, called cells. Cells from different sources are statistically
multiplexed and transmitted through the same link. There is no dedicated connection
for each éoﬁrce, which makes the introduction of variable bit-rate sources efficient.
The reason is that capacity can be used more efficiently. We do not dedicate the
maximum needed capacity to a connection for the duration of the connection because
this is wasteful Whenever the bit-rate of the source is smaller than the maximum. By
allowing sources to send cells only if they need to, we can multiplex more sources
through the same link and expect that the probability that all sources will need to
transmit at their maximum rate will be negligible.

It is evident that video will be delivered to customers in the near feature and
for that reason proposals for new architectures that can efficiently deliver video have
started appearing in the literature. New applications that require the delivery of
video signals have also been proposed. Among these, interactive applications are the
ones that pose the hardest requirements on technology because they require switched
video, but are clearly the ultimate desired services and we expect that they will

become feasible in thé near future.

1.2 Outline of Thesis

In Chapter 2 we propose a novel application for interactive video. There is a service
provider that prepares and distributes daily news programs customized to subscriber

interest. The provider assembles the programs from short news clips and uses a profile
data base of subscribers for selecting the appropriate clips. The time of viewing the
program can be selected by the customers in near-real-time. We model this service
and propose a network architecture that can support it. There is a main node that
contains most of the storage and sourcing facilities, and an intermediate node to
which all customers are connected. Our main concern is the time that a customer
has to wait until he starts getting his program which is a function of the capacity of

the link that connects the main node to the intermediate node. We call this link the

main link.

In Chapter 3 we examine the case that the main link can only transport a single
video connection. We propose a recurrent algorithm that calculates the probabilities
of the states of the system and uses them for evaluating the expected wait. We
prove that there is a very simple relationship between the expected wait and the
probabilities of the states.. We propose an alternative approach that directly computes
the expected wait. This approach is computati(;nally more efficient but does not give
us any information about the probabilities of the states.

In Chapter 4 we examine the general case that the main link can transport more
than one video connection. We generalize the recurrent algorithm proposed in Chap-
ter 3 and also the simple relation that relates the probabilities of the states and the
expected wait. We then propose some approximate techniques for estimating the
expected wait for the cases that the complexity of our exact algorithm is too large.
Thus, we can now decide what the capacity of the main link should be so that our
system has the desired performance

Finally, in Chapter 5 we propose some directions for further research. Applications
of interactive video are technologically very demanding and therefore we need to study

them very carefully before we can actually implement them.

Bibliography

(1]

[2]

[3]

[4]

[5]

[6]

[7]

T. C. Chen and K. H. Tzou, “HDTV Coding at below 45 Mbps for Digital Trans-
mission,” GLOBECOM 91, 3.5, pp. 96-100, December 1991.

J. A. Chiddix and W. S. Ciciora, “Introduction of Optical Fiber Transmission
Technology into Existing Cable Television Networks and its Impact on the Con-

sumer Electronic Interface,” IEEE Transactions on Consumer Electronics, Vol.

35, pp. 51-62, May 1989.

S. A. Esty and D. E. Wolfe, “Cable TV Turns to Fiber for Sysiem Upgrades,
Rebuilds,” Photonics Spectra, pp. 79-84, June 1990.

D. Large, “A Comparison of Various Fiber Optic Topologies for Delivery of En-
tertainment Video to Residencies,” IEEE Transactions on Consumer Electronics,

Vol. 35, pp. 72-80, May 1989.

Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector Quantizer Design,”
IEEE Transactions on Communications, Vol. COM-28, pp. 84-95, Jan. 1980.

C. W. Lundgren and P. S. Venkatesan, “Applications of Video on Fiber Cable,”
IEEE Communications Magazine, Vol. 24, pp. 33-49, May 1986.

T. S. Rzeszewski, “A Two Layer Fiber Network for Broadband Integrated Ser-

vices,” IEEE Transactions on Consumer Elecironics, Vol. 35, pp. 81-85, May
1989.

6

[8] W. D. Sincoskie, “Video On Demand: Is It Feasible?” GLOBECOM 90, 305.3,
pp. 201-205, December 1990.

[9] D. R. Spears, “Broadband ISDN Switching Capabilities from a Services Perspec-
tive,” IEEE Journal on Sel. Areas in Communications, Vol. JSAC-5, pp. 1222-
1230, October 1987.

[10] J. W. Woods and S. D. O’Neil, “Subband Coding of Images,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, pp. 1278-1288,
October 1986.

Chapter 2

Service Model

A new residential application for interactive video is proposed in this chapter. There
is a service provider that prepares and distributes daily news programs customized
to subscriber interest. The provider assembles the programs from short news clips
and uses a profile data base of subscribers for selecting the appropriate clips. The
customers may ask for their service any time in the evening but may have to wait for a
few minutes until their programming starts. This is because the network may be able
to serve only a subset of the whole customer population at the same time. A subscriber
may also provide feedback ‘on the program that he received and the network will try
to learn his preferences. We model this service and propose a network architecture

that can support it.

2.1 Service Description

Residential applications of real-time video usually distinguish between two types of
services: broadcast and interactive (see [9]). In broadcast video, a program is trans-
mitted through the network. There may be many channels available but the only
control that a customer has is to select particular channels. After selecting a channel
the customer doesn’t have any control over the content of the program that is being

viewed; all customers that are watching the same channel receive exactly the same

8

video signal. In interactive video, customers can control the beginning time of the
program and have some control over its content. Each customer may receive a dif-
ferent program and for that reason switched video is required. Pay-Per-View service
may be viewed as an intermediate service, where customers have modest control over
the beginning of the program, since the same program is broadcasted in periodic in-
tervals. Clearly, interactive video is the ultimate desired service and we expect that
it will become feasible in the near future (see for example (8]).

We propose a residential application for interactive video (see also [5]). We assume
that there is a service provider that prepares and distributes daily news programs
customized to subscriber interest. The provider prepares and edits short news clips
which we call segments. Each segment contains news about a specific event or a
general news summary and lasts for about 3 minutes. Segments may have overlapping
content and different segments about the same event may exist, because different
subscribers may be interested in different aspects of that particular event. There may
be supplemental segments that contain backround information. Each segment has
some keywords attached to it, not transmitted to the subscriber, that describe the
segment’s content and demographic properties of potential viewers. Thé program of
each subscriber is assembled from these segments.

The service provider maintains a profile data base of the subscribers. This profile
may be based on direct input from the subscriber, on demographics and on learning
subscriber preferences via feedback. The service provider uses these profiles and
the keywords of the segments for deciding which segments to use for assembling the
program of a particular subscriber. A similar idea is proposed in {1, 7]. Information
about the status of the network and profiles of other subscribers may also be taken
into account when assembling the program of a particular customer. The reason is
that if for example it is expected that more than one customer would like to view a
particular segment, that segment may be preferred, because the same segment may
be multicast to more than one customer. We will talk more about this later on.

The subscriber tunes into the interactive channel some time during the evening.

9

He is allowed to do that during say a 3 hour time window. At first he gets some
general broadcast continuing feed but within a couple of minutes his tailored feed
is switched in. The reason for this delay is the fact that the network may be able
to serve only a subset of the whole customer population. How long a customer will
have to wait on the average will be our measure of performance of a system. Once
transmission starts there are no interruptions.

After the tailored program is over, the channel is switched back to broadcast feed.
The subscriber may then ask for further background information on the program that
he just viewed. The subscriber can also send other feedback about the program. The
service provider uses this feedback for learning subscriber preferences. By using this
feedback, the service provider can update the profile of the subscriber and increase

customer satisfaction and revenue.

2.2 System Architecture

We propose the hierarchical architecture shown in Figure 2.1 for supporting the service
that we described in the previous section. This is a rather simple architecture but
can be used as the basic building block for designing more complex networks (see for
example [9]). The reason for concentrating on this system is that it gives rise to a
simple analysis, as will become clear in the following chapters.
As we sce in Figure 2.1, there is one node, called the main node. This node
contains sourcing facilities and storage. We assume that most of the segments are
| stored in the main node. Customers are connected to the main node through an
intermediate node. Each customer is assumed to have some sort of facilities for
displaying video signals and sending data for making requests and providing feedback
to the service provider.
The intermediate node contains a switch and some more sourcing facilities and
storage. The introduction of sourcing facilities and storage in the intermediate node

is a very important point. This i1s what makes our architecture different from the

10

main node

main link er——e————

intermediate node

C

customers

Figure 2.1: A Simple Network

architecture proposed in [9]. The idea of having more than one level for storing
material and making popular material easily accessible is also proposed in [3] but in
our architecture popular material is also stored closer to the subscribers.

The reason for adding these capabilities to the intermediate node is the following.
Let us assume that a customer asks for his program and that in his program there
is a segment that the service provider expects that more customers would like to
see, for example a segment containing local news. When sending the segment to
that customer the service provider arranges for that segment to be also stored in
the intermediate node. In that way when the ot‘her customers are going to get their
program, this segment won’t have to be retransmitted from the main node again.
This decreases the load on the transmission links that connect the main node to the
intermediate node. We also assume that the switch in the intermediate node has
multicasting capabilities. So, whenever possible, the same segment is multicast to
more than one customer, which further decreases the load on the storage and the
delay.

The problem of deciding which segments are going to be stored in the main node

11

and which are going to be stored in the intermediate node is a difficult problem,
especially when the number of segments is large which is the case in the problem that
we are cdnsi‘dering. We will not try to solve this problem. One approach for solving
this problem has been proposed in [6).

The link that connects the main node to the intermediate node is called the main
link. This link may be able to transport more than one video connection at the same
time. Deciding what the actual capacity of this link should be so that the system has
the desired performance is a difficult question which we will answer in the following
chapters.

The same architecture is shown in Figure 2.2 in greater detail. All the links that
are shown in Figure 2.2 are assumed to have the same capacity, the capacity required
for transporting video signal. Only the downstream links for transporting the video
signal are shown in this figure. It is assumed that there are some upstream links
that transport data and are used by the customers for making requests and sending
evaluation and other feedback. The number of links that connect the main node with
the intermediate node will be smaller than the total number of customers. Thus, it
may be possible that if many customers ask for their program exactly at the same
time, some of them will have to wait. How long they have to wait is the question that

we will try to answer in the following chapters.

2.3 Traffic Model

We consider a circuit‘ switching system. The reason for making this assumption is
that we want customer’s programming to continue without any interruptions. We
further assume that time is slotted. This is a major assumption. The reason for
assuming this is that in that way transmission of segments to different customers can
be made to start at exactly the same time which makes multicasting much easier.
Thus, we divide the time window of duration T' during which requests are allowed

into n slots. This window is the three-hour window that .we mentioned in Section 2.1.

12

7

main node

intermediate node

R L

SWITCH

alala

Figure 2.2: System Architecture

13

The duration of each slot is equal to d sec, the duration of each segment. During this
time window of duration T each of the N customers will make exactly one request for
~his progrénil The algorithm that we are going to describe can be used even if each
customer is allowed to make more than one request through the whole window but in
that case we need to have a probability distribution of the number of requests that
each customer makes. For simplicity we do not allow that here.

The request of a particular customer may occur at any one of the n slots; occur-
rences of the requests are independent of each other and uniformly distributed over
the whole window. That means that the probability that r requests will occur at the
1’th slot is (];J)L_:l),f——r

We assume that requests arrive exactly in the beginning of a slot. In reality
requests arrive througout the duration of a slot. When estimating the average delay
of requests as seen by a subscriber, we will take into account that component too.
Since we assume that requests arrive exactly at the beginning of a slot, it is possible
that some requests will arrive exactly at the same time. In that case we order these
requests at random. The same is done in [4]. Requests are then served in First-Come-
First-Served order. That may be a restrictive assﬁmption because in a real system we
may want to serve requests in the way that will maximize multicasting but analysis
of such a system is very difficult.

The number of links that connect the main node to the intermediate node is
equal to k. We are mainly interested in the delay that requests are experiencing as a
_ function of k. The reason for the delay is that if a large number of customers ask for
their program, only & of them will be served at the same time and the rest of them
will have to wait. We want k& to be as small as possible for making the service more
economical but we also want the average wait that the requests will have to wait to
be fairly small too, so that customers will be satisfied by the service.

In our analysis we assume that each customer doesn’t cancel his request. even if
he has to wait for a long time. In other words we assume infinitely patient customers

as is explained in [2]. Some different types of customers are also described there, but

14

switch

¢“
i

kxN

Figure 2.3: Traffic Model

we will not consider them here because they make the analysis very complicated.
Under these assumptions our system can be modeled as shown in Figure 2.3. The
buffer that stores requests is assumed to have enough capacity to store all the requests.
All k servers are identical. The service time of each request can be up to m slots and is
assumed that after a server starts serving a particular request it will continue serving
it until the request leaves the system. There is a probability vector p = (po, ..., Pm)
that determines the duration >of the service time of a request. What this means is
that the probability that a request will require 7 slots of service is equal to p;. The
service time of each request is just the duration of the transmission between the main
node and the intermediate node for the program of the particular customer. So, the
program of a particular customer may last fbr up to m slots, i.e., contain up to m
segments. How many segments will need to be transmitted from the main node to the
intermediate node depends on the joint preferences of the subscribers, the segments
that are stored in the intermediate node and the actual duration of the subscriber’s
program. All these factors have to be taken into account in the probability vector p,
which thus may be hard to estimate. We further assume that the segments that are
transmitted from the main node to the intermediate node are directly transmitted
to the customer and form the first part of his program. Immediately after this part

is over, transmission of the segmehts that are stored in the intermediate node starts

15

and is assumed that enough storage and multicast facilities exist in the intermediate

node for accommodating the remaining segments.

2.4 Summary

In this chapter we have proposed a new residential application for interactive video.
The introduction of this service will be made possible with the deployment of Broad-
band ISDN. We proposed an architecture that can support this service efficiently.
The novelty of this architecture is the introduction of storage closer to the customers,
which increases the effectiveness of our system. The reason is that by storing pop-
ular material closer to the customer we decrease the traffic load in the system. We
proposed a traffic model for quantitative analysis of this service. In the following

chapters we will base our analysis on this model.

16

Bibliography

(1] H. E. Bussey, et al., “Service Architecture, Prototype Description, and Network
Implications of a Personalized Information Grazing System,” INFOCOM 1990,
pp. 1046-1053.

[2] A. D. Gelman and S. Halfin, “Analysis of Resources Sharing in Information Pro-
viding Services,” GLOBECOM 90, 308.5, pp. 312-316, December 1990.

[3] A. D. Gelman, S. Halfin and W. Willinger, “On Buffer Requirements for Store-

And-Forward Video on Demand,” GLOBECOM 91, 28.5, pp. 976-980, December
1991.

[4] T.-C. Hou and A. K. Wong, “Queueing Analysis for ATM Switching of Mixed
Continuous-Bit-Rate and Bursty Traffic,” INFOCOM ’90, pp. 660-667.

[5] E. C. Posner and P. N. Mouchtaris, “Interactive Video on Demand,” Joint FAW-
IEEE Workshop, Germany, September 1990.

(6] R. Ramarao and V. Ramamoorthy, “Architectural Design of On-Demand Video
Delivery Systems: The Spatio-Temporal Storage Allocation Problem,” ICC 91,
17.6, pp- 506-510, June 1991.

[7] J. Rosenberg, et al., “Multimedia Communications For Users,” IEEE Communi-

cations Magazine, Vol. 30, pp. 20-36, May 1992.

[8] W. D. Sincoskie, “ Video on Demand: Is it Feasible?” GLOBECOM 90, 305.3,
pp. 201-205, December 1990.

17

[9] T.-S.P. Yum, “Hierarchical Distribution of Video with Dynamic Port Allocation,”
IEEE Trans. on Communications, Vol. 39, pp. 1268-1274, August 1991.

18

Chapter 3

The Single-Server Case

The case that the main link can only transport a single video connection is examined in
this chapter. According to our traffic model this is the single-server case. A recurrent
technique for the analysis of our system is proposed. This algorithm calculates the
probabilities of the states and uses them for evaluating the expected wait. We prove
that there is a vefy simple relationship between the probabilities of the states and
the expected wait. We also propose an alternative approach that directly computes
the expected wait. This approach is computationally more efficient but does not give

us any information about the probabilities of the states.

3.1 Queueing Analysis

Our analysis is going to be based on the probabilities of the states. Therefore, we
need to define what the states are. We consider the state of the system to be a vector
n = (ny,...,Nn), where n; for 1 <7 < m — 1 is the number of requests that require 2
more slots of service. However the last component of the vector, n,,, is the number of
requests that are waiting in the queue and it doesn’t mean that each request waiting
will actually require m slots of service. That is because requests that have not been
served at all will require ¢ slots of service with probability p;, m slots with probability

Pm. It is clear that 377" n; < 1, since there is only 1 server, while Y7, n; < N, since

19

each one of the sources is allowed to make exactly one request through the whole
window of duration T that we consider.

In the foilowing sections we will describe a way of calculating the probability that
the systemn is in state (ny, ..., nn,) at the end of a particular slot ¢, given that there were
exactly j requests in the first 7 slots. We call these probabilities Pil((ny,...,nm)/j)-
We will use them. for calculating the expected time that a request will have to wait
until it starts getting served, which will be the criterion for measuring the performance
of our system.

Before we start the analysis we need to introduce some notation. Let n~ =
(n1,...,Mm)" be the state of the system at the end of slot 7 — 1 when we know that the
state of the system at the end of the ¢’th slot is going to be n = (ny,...,np). Thisis
assuming that no new requests are going to occur at the beginning of the ¢’th slot and
that a request that enters the serving .facility will require m slots of service. Suppose
we know that 7' n; = 1, i.e., one of the servers is busy and has some unfinished
work to do. Then, if the request being served needs m — 1 more slots of service, i.e.,
Nm-1 = 1, then (ny,..,ny,)" = (0,...,0,n,+1). This is because the request that needs
m — 1 slots of service at the end of slot i needed m slots of service at the end of slot
i — 1. Similarly if 77! n;'= 1 but n,—1 = 0 then (nq,..,nm)” = (0,74, ey Te—2, T).
On the other hand if 77" n; = 0 then (ny,..,nn)" = (1,0,...,0,n,). We will also
refer to the components of n™ as n] for simplicity.

We should mention one more assumption that we are making. The above definition
~ is a little ambiguous because (0,..,0)” can be equal to either (0,...,0), if the system
was empty at the end of the previous slot, or (1,0,...,0), if there was only one request
in the system that needed one more slot of service. The notation we are going to
adopt is that (0,...,0)~ = (1,0,...,0) and (0,...,0,1,—1)" = (0,...,0). The latter
doesn’t have any meaning in a real system but is a notational tool that we are going
to use in order to make the proofs simpler. The problem arises from the fact that
we want n~ to be unique. We can formally define (ny,...,n,,)” to be equal to (1 —

mI MM, ey Mane2, -1 + Tm). This definition unifies all the different cases that

20

we considered.
We will now prove a lemma which is quite general and is true for both constant
and variable-service-times. We will need this lemma later on when we try to relate

the E(W) to the probabilities of the states.

Lemma 3.1 Under the conditions thati > (j —1)-m and np, > 1:
PB((ny,....nn)" /) = J an: 1 (2) (_Z_‘%)ip[z‘—ﬂ((m,...,nm)‘/j —a).
a=0

Proof: The idea is that the set of cases that can lead the system to a particular state
n~ at the end of slot i — 1 is a subset of the set of cases that can lead to the same
state at the end of slot 7. This subset is the number of cases that can lead to the
state n~ at the end of slot : provided that there was no arrival in the first slot. One
has to consider the cases in which there were, say, a arrivals in the first slot. Since
i 2 (7 = 1) - m, these arrivals cannot affect the state that will occur at the end of slot
7, because they were too far in the past. So, the number of cases that can lead to
state n~ at the end of slot 7 is the number of cases that can lead to state n™ at the
end of slot ¢ — 1 if there were only j — a arrivals in the first ¢« — 1 slots. (A detail,
though, is that we have to take a weighted average of those cases to take into account
the probability distribution of the arrivals.) This completes the proof. The reason
for considering n~ instead of n is because we are going to have n™’s in the proof of

the theorems, where we are going to use this lemma.

3.1.1 Constant-Service-Times

Let us concentrate on the case where the service time of each request is constant and
equal to m. This means that p = (0,...,0,1). The special case m =1 is treated in
[11]. Actually that algorithm can be generalized to solve the case m > 1, but our
technique, although not as efficient in the special case, can be generalized for the
case of variable-service-times and multiple-servers as we will see in the next chapter.
The work in [11] was motivated by a recursive approach for continuous-time periodic

queues presented in [4, 5].

21

We are ready to express the probabilities Pi((ny,...,n)/j) of the states at the
end of slot 7, given that exactly 7 requests occurred in the first 7 slots, as a function of
the same pr‘c‘)babilities of the states at the end of slot z — 1. Let us temporarily forget
about the all-zero state and concentrate on the other states. If we know the number
of arrivals (new requests) that occurred at the beginning of slot %, then we don’t have
any choices about the state of the system at the end of slot # — 1. So, what we have
to do is average over the different possible number of arrivals a at the beginning of
slot i. We can easily do that because we know the number of arrivals in the first 7

slots, which is exactly j. Thus:

ATt £\ (o ima
PY((n1,....nm) /i) = ZO (i) (i_—;)—P[i-ll((nl, s — @)™ [§ — a).

For the all-zero state things are more complicated. The reason is that we can go
to the all-zero state from two different states. These are the all-zero state itself and
the state n = (1,0,...,0). When m = 1, things are even more complicated because
here it is actually possible to go from the all-zero state to the all-zero state in two
ways. One way is if there are no arrivals at all at the beginning of the ¢’th slot, and
the other is if there is exactly one arrival at the beginning of the ’th slot. Thus if
m > 1:

i—1
i

PH((0,...,0)/) = [PEY((0, .., 0)/5) + PETI((1, ..., 0)/5)|(——Y'.

So, for the case n = 1 we have to sum three terms:

PE(O/) = [PE)0/5) + PE /)ty
+PE(0/5 - 1); t;)—ﬂ

We should also note that PH((ny,...,n,)/j) =0 7 n; > 1or < 0,0r 7% n; > j
or < 0, or n,, > j, since the number of customers in service cannot be negative or
larger than the number of servers, and the number of customers in the system cannot
be larger than the total number of arrivals.

The question that remains is how to start the recursion. There are many ways

to do so but there is a very simple answer. Since we know that everything starts at

22

the first slot, we also know that nothing happened before that. So, we can set all the
PY((ny, ...,nm)/j) at the the end of the 0’th slot to zero, except for P((0, ...,0)/0).
This is equal to 1 since there are no arrivals before the first slot and the system can
only be in the all-zero state. A

After finding a way of calculating the probabilities of the s£ates, we can use these
to find the expected time that an arrival will have to wait until it starts getting
served. We call this F(W). This expected wait depends on the slot in which the
arrival occurred. So, we have to take the average over the different possibilities. If we
call E(W?) the expected time that a request will have to wait given that it arrived
at the i’th slot, we have:

=1

The reason is that, because we assumed that occurrences of the requests are uniformly
distributed over the whole time window, the probability that the request arrived at
any of the slots is -71;, the same for all slots.

One point that we can make is that E(W*) increases as 7 increases. Actually it
is strictly increasing until ¢ = m - (N — 1) and stays constant after that. This is
because after that the number of cases that can force a request to wait stay the same.
Requests that occurred more than m- (N —1) slots in the past cannot hurt the current
request even if all the requests occurred at that slot. The consequence of the above
statement that E(W*) increases as i increases is that requests that arrive in the last
slots receive worse service than the ones that arrive in the first slots. For that reason
from now on we will concentrate on evaluating only E(W") because we know that
arrivals in the last slot will receive the worst service. So E(W™") will be an upper
bound for E(W). | |

Another reason for concentrating on E(W") is the fact that if we consider that
the arrival pattern is periodic then the delay that all the requests are experiencing is
equal to E(W™), because each request can be considered as arriving at the end of a
window of duration n - d with exactly N arrivals in that window. The other E(W*)’s

give the delay that the arrivals experience when we start from a completely empty

23

system.

What we have to do is find out how much a request will have to wait given that it
occurred at the n’th slot. It is possible that other requests occurred at the same slot,
too. So, we will have to average over these possibilities using the random ordering
assumption that we have made. After we know how many requests occurred at the
last slot, we have to know in which state the system was at the end of the previous

slot. Thus we have to take an average again. The result is

N-1 _ n — N-1-a
EW") =) (N 1)(n}V)"l : Y Pr((ny,..n,)/N —1—a)

a=0 a a+ 1 all states
-y [prod(n) +t - m] (3.1)
t=0

where

prod(n) = Z n; - 1.

t=1
The question now is whether we can find a somewhat simpler relation for E(W").

Hopefully such a simpler relation will generalize for the case of variable-service-times.

The following theorem will answer this question.
Theorem 3.1 Whenn > m- (N — 1) then:

EW™) == ¥ P((ny,.nm)/N) - np.

all states
This is proven in Appendix 3.A. The result of the following corollary which is a special

case of Theorem 3.1 is mentioned in [1, 11]. Some similar results for a continuous-time

system have also been mentioned in (2, 6, 7].

Corollary 3.1 If m=1 and n > N —1 then:

n N-1

E(W") =+ 3 PP(m/N) - m.

n;=0
Proof: Since m = 1, the state vector reduces to a simple number or index that we

call n;. Thus, the above relation follows.

24

3.1.2 Variable-Service-Times

We will now deal with arbitrary p. We can again express the probabilities of the
states by using a recursive approach.

Let us temporarily forget about the states that have n,_; = 1, and also the
all-zero state. The other states can occur either because the request currently in
service needed one more slot of service at the previous slot or because a new request
that needed fewer than m slots of service entered the service facility. In the case
of constant-service-times, only the first of these two cases can occur. In case a new
request enters the system, this new request may not have been the first in line. Then
all the requests that were in front of it didn’t need any service at all. Thus

Pi((ny,...,npn) /i) = %_,_mj (g)(i—_—.l-f—)ijP[i_ll((nl,...,nm—-a)‘/j—a)

7
a=0 t

1)j—r max(j—r—1,0) 1] '
+Z ()——— 3 PE-1((0,...,0,8)/5 —)

r=0 s=max{nm+1-r,0)
m=1 _
$+7r—ngm—1 U
-po T T By
=1
For the states in which n,,_; = 1, things are simpler because we know that a new

request that needed m slots of service entered the system. Thus

_ j N\ (5 — j-r max(j—r—1,0)
PH((0,...,0,1,n0)/5) = 3 (J)(—”)

J
r=0 \T t s=max(nm+1-r,0)

-P[i‘ll((O,...,O,s)/j — 1) pm DT “m—1

We can use similar arguments for the all-zero state, remembering the special

properties of the all-zero state that we discussed in the case of constant-service-times.

We have
)j
P — 1)3 r max(j—r-1,0) .
iy ()___ > PEU(,...0,8)/5 — 1)

r=0 s=max(1-r,0)

PI(©0,..,0)/3) = [P0, -, 0)/5) + PE((1, .., 0)/](

g-l-r +ps+r 1P1]-

25

We will again concentrate on E(W™) for the reasons explained earlier. We have

N-1 _ n— N-i-a
vy = 3 (VOIS o B A /N -1

'a=0 a a+ 1 all states

. zi:[prod(n) — N -+ (R + £) - prod(p)]. (3.2)

The only difference from the constant-service-time case is that when ¢ + n,, requests

are in front of the request that we are considering we have to take the average by using

the probability vecfor p. The waiting time of that request is not just (¢ + n,,) - m.
We are now ready to express E(W™) as a simple function of the probabilities of

the states. The proof of the theorem can be found in Appendix 3.B.

Theorem 3.2 When n > m - (N — 1) then:

E(W"):% S PP ((ng, e, nn) /N) - .

all states

Let us now try to make our algorithm a little more efficient. The expression that
we have from Lemma 3.1 gives us an alternative for calculating the probabilities of the
states. This expression is more efficient and simpler to use than the general recursive
relations that we have. The only problem is that we cannot always use it since there
are those two conditions that have to be satisfied: these are i > (j—1)-m and n, > 1.
What we will do now is to try to relax those conditions as much as possible. If we
do that we will be able to use the simpler relations more often and thus increase the

performance of our algorithm.

Lemma 3.2 Under the condition that i > (j —nn)-m+1—7'n; -1 and n is not
the all-zero state:

PY((ny,...onm)/5) =]_f (j) (i—iﬁl’“‘”((nl, s om) [— @)

a=0
Proof: The reason for this expression holding is the same as the one that we produced
in the proof of Lemma 3.1. The difference is that in that proof we were interested in
treating all the states together and for that reason our result was more conservative.
Here we concentrate on each state separately. In fact, the result of Lemma 3.1 is the

worst-case result of this lemma and corresponds to the (0,...,0,1) state.

26

Lemma 3.3 Ifn is the all-zero state and i > j - m + 1, we have:
Pi((ny,...,nm)/j) = ZJ: (2) Q—Zi-i.—)i_—apﬁ-ll((o, . 0)/j —a).
a=0
Proof: The proof is the same as the proof of the previous lemmé. The only difference
is the fact that the summation goes from a = 0 up to a = j instead of going up to
a = j — 1. The reason is that for the all-zero state we are not certain that the server
was busy at the previous slot.

It is very important, as was mentioned in [11], that the results of the lemmas
relate the probability of a particular state to the probabilities of the same state at
the previous slot for various numbers of arrivals. What it means is that, because of
the lemmas, when calculating the probabilities of a particular state, we can forget
about the probabilities of the other states. So, instead of having to operate on a
huge matrix, we only have to operate on vectors. This decreases both the number of
operations and the storage requirements.

Let us now take advantage of another fact. We have mentioned in the previous
sections that E(W?) is strictly increasing up to one point and then stays the same.
We may be able to use that fact to stop our algorithm before it actually reaches the
last slot, because after E{(W?*) stops increasing the algorithm doesn’t give us any more
information. This is indeed true and will be clear after the next theorem.

We will need to prove a lemma before proving the t‘he,orem.

Lemma 3.4 Letn, = (N —1)-m. Ifn > n,:

N N\ (n) (n — n. N-r
P ((ny, o) /N) = 3 (“)(S =0 plel((g .) 1)

r=nm+1 \7 n?
Proof: By using similar arguments to the ones that we used for proving Lemma 3.1

we can write:

N-rm-1 n)V (n — nx)®
P ((ny, .onm)/N) = S (N)(=)~) P™((ny,....,n,)/N — a).

a nN

a=0
The only difference is that, instead of expressing the probabilities of the states at the
end of slot n by using the states at the end of slot n — 1, we do that by using the

27

probabilities of the states at the end of slot n.. By making a change of variable the
result follows.

Now we are ready to prove the theorem.

Theorem 3.3 Letn. = (N —1)-m. Ifn > n, then:

DY ()22l pt o)) -

all states r=nm+l r

E(W™) =

SE

Proof: By using the result of Theorem 3.2 and the previous lemma the result follows.
It is now clear that in order to calculate £(W"), we only need to use the recursive
relations and the results of the lemmas to calculate the probabilities of the states at

the end of slot n.. After we do that, we can use the result of the last theorem to get

E(W™).

3.2 A Simplified Analysis

Let us now concentrate a little more on relation 3.2 in page 25 for E(W™). It seems
possible that by using the results of Lemma 3.1 and Theorem 3.2 we will be able to get
a relationship between E(W™) when there are N customers, which we call E(W™, N),
and F(W™) when there are N — 1 customers, which we call E(W™, N —1). This is

indeed true and this is what we are going to prove next. It is clear that
E(W™ N)=
= (N=1\(n=-1)N 1 1| -
Z (.)) Z Pl 1](('nl,...,nm)/]\/ —1-a)

a=0 a+ 1 all states

-Za:{prod(n) — Ny - M+ (N + t) - prod(p)]

=0

N-1 n — N-1-ga)
Z () (n}v)—l 2 i 1 Z P[n'll((nl,...,nm)/N —1-a)

a=0 all states

a+1)-[prod(n) — n, - m + n, - prod(p) + %prod(p)].

Let us now assume that n > m- (N —1) so that Lemma 3.1 and Theorem 3.2 hold.

By using Lemma 3.1, Theorem 3.2 and the fact that the sum of the probabilities of

28

all the possible states for a given number of arrivals is equal to 1, we get:

N-1 _ n— N-1-a
o = X (VOO S A,)V -1

a=0 all states
[prod(n) — n,, - mj

+N _ 1prod(p)E(W", N-1)
n

+pr0d(p) IE (N - 1) (n—1)N-1-e

2 a niN-1

a
a=0

i [— __ 1\N-1-a
> (A 1)% T PEU((ny, s n)/N — 1 - a)

a=0 a all states
[prod(n) — n,, - m]

+ - prod(p)E(W™, N — 1)
pT‘Od(p) 1 = N-1 N-l-a
+ 5 nN_laz;l w1 (N —a)(n—-1)
N-1 . _ N—-1—a
=T (N 1)% S PP U((ny, . n)/N — 1 — a)
a=0 a n all states
‘[prod(n) — n,, - m|
T —
+ prod(p)E(W",N — 1)

n

d N -1
L prod(p) | .

2 n

The following theorem will help us simplify the first term.

Theorem 3.4 Whenn > m- (N — 1) then:

3" PN((ng,...,nn)/N) - [prod(n) — n, - m] =

all states

N m(m —1 m—1)(m—2
(iD= Uim=2)

AN UES bt pr)

This is proven in Appendix 3.C. We can use the result of this theorem in equa-

tion 3.3. What we get is:

N-1 m(m —1 m—1)(m —2
BNy = X1G,mmol o lmd))
N-1 prod(p)'N——l :

+

prod(p)E(W™,N — 1) +

) 2 n

29

By using the fact that prod(p) = py + 2p2 + ... + mp,,, we get that

-1
E(W" N) = Nn prod(p)E(W" N —1) + 2n Zp, i (3.4)

i=0
This is a very simple and efficient relation for calculating E(W™). If we are only
interested in E(W™) we do not need to run the whole algorithm and obtain the
probabilities of the states. We can use this relation which is much faster and can give
us the answer for all practical cases. In the case that we need the probabilities of the
states the whole algorithm has to be used, though.

From our analysis it is clear that, if we let N and n become large then our system
looks like a continuous-time system and our results should agree with the known
results for the M/G/1 queue. The relation that we just proved gives us a good
opportunity to check this agreement. Let N,n — oo by keeping their ratio constant.
This ratio is the arrival rate that is usually called A in the continuous-time systems.

What our relation gives us is:

AZ:—OP1 Z
2(1 = X prod(p))’

This result is in direct agreement with the known Pollaczek-Khinchine formula for

E(W) that says that:

E(W") =

Fl

AE(7?)
2(1 - p)
where p = X - E(7) and 7 is the service time of arrivals which is a random variable

E(W) =

(see [8], page 58). This is therefore another derivation of that formula.
In the special case that m = 1 and p = (0, 1) equation 3.4 reduces to the
following relation:

E(W/N) = %E(W/N —1)+ -N—Q“n—l

It can be easily proven (e.g. by induction} by using this relation that:

N-1 1
EWIN) =5 ¥ o)

Amazingly enough, this is almost the same relation that is mentioned in [3] for the ex-

pected wait in an nD/D/1 queue. That relation is derived from the Laplace-Stieltjes

30

transform of the waiting time distribution for that system. The only difference be--
tween that relation and the relation derived here is due to the fact that in [3] the
service time of each request is equal to D and the duration of the time window that we
consider is equal to the time unit, while in our case the service ti__fne of each request is
equal to the time unit and the duration of the window is equal to n. There is another
difference in the exhibited relation but clearly it is due to a typo in [3].

Similarly, in the case of arbitrary m and p it can be proven by using equation 3.4

that:
152 (N=1) 1
BOWIN) = 3 3 et () (rod®) ™+

=1 i=0
This result agrees with the expected wait in an nD/G/1 queue (see [9]). The only

difference is due to the fact that the average service time is taken to be the time unit
in [9)].

Let us now consider what happens when we rescale time; what we mean by that
will become clear later on. We know that for the M/M/1 queue, when we rescale
time (divide both the arrival and the service rates by the same constant,) E{(W) gets
rescaled (gets multiplied by the same constant). The following theorem will show us

what happens when we rescale time in the system that we are considering.

Theorem 3.5 Consider two systems. In the first system the total number of slots is
ny, the total number of arrivals is N and the probability vector that determines the
service times is p1 = (p1,0y...,P1,m). In the second system the total number of slots is
ng, the total number of arrivals is N and the probability vector that determines the
service times is p2 = (P20, P2,1), Where pyy = ;}1- YeoPrict and ppg=1—po;. Let
ni=ng-mand nyg > N —1. Let Ey(W™) and FEo(W™) be the expected wait that

requests in the first and second system experience respectively. Then

By (W™) = Ey(W™) -

Proof: The proof is by induction on N. For N = 2 it is trivially true. By assuming

that it is true for V it can be proven that the same relation holds for N +1 by using
relation 3.4. This completes the proof.

31

For the special case that we have constant-service-times, Theorem 3.5 says that
Ey(W™) = E(W™)-m. What that means is that by scaling down the total number
of slots and the service time by m the expected wait gets multiplied by m. This is
reasonable because a similar effect occurs in the continuous-time case. Something
even stronger is true for this case, though. The probabilities that the number of
requests in the queue is [, i.e., n,, = [, is the same for both systems. We will give the

proof of this statement when we talk about the multiple-servers case.

3.3 Numerical Examples

Let us now try a few numerical 1examples. Let us assume that m = 7 and that all
pi’s are equal, i.e., p; = 0.125.. We are going to keep the ratio % constant and equal
to 1. In other words we are going to keep the arrival rate constant. Let us see what
happens to E(W™) as both N and » increase. We showed in the previous section that
E(W™) will approach a specific value and that value is 2.5 in this case. In Table 3.1
we see that indeed E(W™) approaches that value, although N and n need to become
fairly large before that value is achieved. We calculated the values in this table by
using the simplified analysis. This is the reason why we could calculate E(W™) for
such large values of N and n.
If we are interested in the probabilities of the states we can use the full algorithm.
In Figure 3.1 we see the probability distribution for n,, for the case that N = 50,
n = 350 and for the same probability vector p as before. What we see in that figure is
| oy P (ny, ..;,nm) plofted versus n.,,. The probability that n,, = 0 is fairly
large, 0.7875. The probability that n,, is larger than 16 drops below 1071,

3.4 Summary

A new recurrent algorithm for the analysis of our system for the case that the main

link can only transport a single video connection was proposed. We showed how this

32

N n EW?")
10 70 1.794
50 350 2317
100 700 2.405
500 3,500 2.480
1,000 7,000 2.490
5,000 35,000 2.498
10,000 70,000 2.499
50,000 350,000 2.500

Table 3.1: E(W™) in number of slots

algorithm can be used to obtain the probabilities that our system is at a particular
state. We proved that there is a simple relation which we can use for calculating the
expected wait after we have obtained the probabilities of the states.

We also proposed a simplified analysis. In the case that we are not interested in
the probabilities of the states we can directly obtain the expected wait with a very
simple and efficient algorithm. With this approach we can calculate the expected
wait for a very large number of customers, which we caﬁnot do with the previous
algorithm. We also showed that in the limit that the number of customers becomes

very large our formula reduces to the well-known Pollaczek-Khinchine formula.

3.A Appendix: Proof of Theorem 3.1

Let us define

nm-—1

f(m) & ¥ [14 prod(n) — (t + 1)m],

t=0

Fn,Nyn) £ % (PH(a/N) = PP (N)]f(n).

all states
with nm 21

33

100
10-1

102

103

104

PR S

105

JRRPUY IR

106

Prob[requests in queue=x]

107

108

109 - 1

10-10 | L 1 L i L i
0 2 4 6 8 10 12 14 16

x (requests in queue)

Figure 3.1: Probability Distribution for N = 50

What f(n) expresses is the sum of the delays that the n,, requests will experience if
all of them arrive at the beginning of the same slot and the state at the end of that
slot is n. We have

n m—1+nm n — 1)V-e
Fi,Nom) = & 5 Y (N)(_an)_

all states a=0 a
with nm>1

'P[n—ll((n‘l’ ceey M —'a)—/N - a)f(n)

o (e

all states =0]
with nm>1

P ((ny, .., nm)” /N = j)f(n).

The first sum holds because of the recurrence algorithm and the second because

34

of Lemma 3.1; the condition for the lemma is indeed satisfied because n, > 1.

Continuing,

F(n,N,n) = % Z Z a nv

all states a=1
with n;m2l

PP((ng, .t — @) /N — @) f(n1, ey)

n v N"”Z’"'l (N) (n—1)N-4
N all states j=1 .7 nN
with n;,m>1

Pr((ng, o) T /N =) f (s ey).

m—1+nm (Af) (n _ 1)N—a

(There were some cancellations and algebraic manipulations in deriving the above

relation.) Continuing,

n fm—1+nm—1 N (,n _ 1)N—1—a
Fla,Non) = 5 2)3 (a-l-l)—nN——

all states a=0
with nm>1

-P["_I]((nl, vyt —a) /N =1 =a)f(ny,...;nm)

N-np,m-2 N-1-j;
n m N Y (n-1) d
JV. all atzatea Jg() (J + 1) nN

with ny,m 21
'P[n—ll((nla ""nm)_/N —1- J)f(nl’ '“’nm)
Tom—1+nm—1 (]v _ 1) (Tl - 1)N—1—a.

= > > V-1

all states a=0
with ny,m>1

a

1
_P["_ll((nl’ vy Uy — @ — 1)—/]V - 1- a)a T lf(nla "'anm)
R
all states j=0 j nN—]
with nm,m>1

L1
-P[”'H((nl, s) T /N =1 = 7)= f(n1y ey i)
J+1

One important point is that n,, —a — 1 can be negative in the above expression. The
reason why this makes sense was mentioned earlier in the definition of n™ about the
all-zero s.ta,te; only the m’th component of n~ is negative and not the m’th component
of n. We can now write:

F(n,N,n) = %_-:1 > (N_l)(f__an)ivf_—l;

a=0 all states with
. nm2atleng,
nm21

35

n— - 1
Pl 1]((n1,...,nm —a—-1) /N -1 —a)a+ 1f

s T

all states 7=0 .7
with ny,m 21

PP (g,) /N = 1 —)

J+1
N-1 nm<N-2-a (N _ 1) (n _ 1)N—1—a

= Z Z nN-1

a=0 all states with
nm2—Nypy
and
nm2—a

_ BN 1
Pr=U((ny, ...,n)" /N -—1—a)a+1

Ne-nm~-2 N — n— N—-1-j
-y Z (N ‘ 1)(_7111\)_1__

all states -7
with nm2>1

P ()N = 1=) (1)

CE R (e

all states with a
nNM2 =Ny

f(nl.v ceey nm)

a

f(n1,eoyim+a+1)

w:th
aZ—~nm

1
-Pl"-ll((nl-,)T /N =1 — &) —=—=f(n1,es i + @+ 1)

+1
- R (e
all states] nN_l
with ng >1

n— - N
P[]((nla"'7nm) /Af_l _])mf(nl,-..,nm)

T e

all states with a
nm2=Ny 1

PP (g, ng) /N =1 — a)

. 1 cer N, .
a-l-lé[+ prod(ny, ..,nm) +1 - m]

N-nm-1 N n— 1)V-1-a
T G e

all states a=0 a
with ny, >0

-P["“ll((nl, ym) [N — 1 —a)
Z[prod (n1,y .y) + 1 - ml.

a+1

The last step follows because the time that a request would have to wait if the system

36

were at state n~ is one slot more than the time that it would have to wait when the

system is at state n. |
Thus we finally conclude that E(W") = F'(n, N,n). One detail is that we assume,

as usual, that whenever the lower limit of a summation is larger than the upper limit

then the whole summation is equal to zero. It is also easy to see that
f7) = fn) =ng.

That is because of the meaning of f(n) that we mentioned before. Each of the n
requests will have to wait one more slot if the system is at state n~ rather than state
n. This completes the proof of the theorem.

The main point of the proof is that we can use the probabilities of the states n to
directly calculate E(W™). The problem is that when we calculate the probability of
a particular state we allow cases in which there were no arrivals at the last slot. For
finding E(W™), our assumption is that there was certainly at least one arrival and
we are trying to find the expected wait for this arrival. So, we have to subtract the
probability of state n™, which is the probability that we are going to enter state n if
there was no arrival at the last slot. This is what n™ means, after all. This is why

F(n, N,n) is defined as above. There are some more details that just work out in the

combinatorial algebra.

3.B Appendix: Proof of Theorem 3.2

Let us define

f(n) = nmz— [1+ prod(n) — n,, - m+1t - prod(p)],
o) 2 [T, 0 1 0m = 3) = (om =)i I
’ _1
£(0,...,0,1,n,,)’
Fa,Nn) £ = 3 [PM(/N) - Pr(n/N)]f(n)

and ng,_1=0

37

+_"N > [PM(n/N) — g(n)PM(n™/N)] f(n).

all states
with nm>1
and ny, =1

We are now going to use the lemma and the recursive relations that we have for the
probabilities of the states. By omitting some of the steps that are identical to the

ones taken to prove Theorem 3.1, we get

F(n,N,n) =
Z N—iz—Z (]V _ 1) (TL _ 1)N—1—a
s, a=0 ¢ nt
and ng, _1=0

1
a+1f(n1,...,nm+a+1)

oy N-§~2 (_N'—l) (n _n}v)ivl—l—j

all states J
>0

P ((ny, cynm)" /N =1 —a)

with nm
and nyg,) 1 =0

PrU((ng,)/N—l—y)—f(nu > Tom)

n n——l)N"T max(N—-r—1,0)
D> Z ()______ Y. PU(,...,0,5)/N ~r)

all states r= = —_
oaTetes, 0 s=max(nm+1-7,0)

and ny,_y=0

m-1 _
o T B f(n)
=1

N—r max(N-r-1,0)

+%) z()("—’12—— Y P10, ...,0,8)/N — r)

all states r= = -
alaniotes 0 s=max(nm+1-r,0)

and ny =1

T s+r 'nm—lf()

n N-nm-1 n — N-—j
B > -(]Y)(—}V)-—P-[”“”((nl,...,nm)-/N—j)f(n)g(n)

all states j=0] n
with nyp>1
and n,,;_)=1

N—np,-—2 . n— N-1—a
= > > (N 1)(_;;\[)__1___-})[11—.1}((”1’ v i) T /N =1~ a)

all states a=0 a
with n;,m 20
and nyg_1=0

a

[1+prod(ny,..,nm) — N - m + (n, + t)prod(p)]

a+1:i=
N-1 n — l)N_]_r max(N—-r-2,0} m—1 .
+'N 2. X (r+1> nN > T IL A f(n)
ﬂfih":;fx r=0 s=max(nm—r,0) i=1

and ngy,_q y =0

38
.Pl*=1((o,...,0, .s)/N —1-71)

n (_ 1)]\]_1_,- max(N-r—2,0) o
D Z (r+1)—_—nN Y. pmpg ™ f(n)

all states r= _ _
with nm >1 0 s=max(nm—r,0)

and ny, =1

P=1(0,...,0,8)/N =1 —r)
N-nm-2 (n _ 1)N 1-j

e o S B e

all states =0
with n,m>1 J
and ng_1=1

Pl-U((ny, .. onm) /N =1 7).

We have so far performed some algebraic manipulations that are similar to the ones

that we did for proving Theorem 3.1. Continuing on, we have
F(n’]V, TL) —
Nenp,-2 Neia
N-1\(n-1 .
Z Z ()L—nl\l)fl—P[1]((n1,...,nm)/1\r_1 ~a)

all states with a

Z:"T m=1
Z[prod (N1, ey om) = g - M + (i + t)prod(p)]

a+1
('I’L . 1)N-—1—1‘ max(N-r-2,0)

+ZZ()——7@:—E

all states r=0 = -
ieh 1 s=max(nm—r,0)

and ne,_ 1_0

PO, 0,8)/N 1= 7) - g3t T] A ——f()
=1

(n—1)N-1-r max(N—r-2,0)
" Z ()T >

all states r= == -—
—h S 0 s=max(nm-r,0}

and ny,_1=1

n— STr—n 1
P 1((0,...,0,8)/N =1 = 7) - prp - p5T "‘T+1f(n)
N-nm-2 N-1—3
N -1\ (n—-1)N-1-J
- E ()

all states J
21

with nem
and ny,_q y=1

P10, ., 0, + 1)/N — 1 — §) - j—_ll_—l—f(n)g(n).

Let us concentrate on a particular state of the form (0,...,0,n,). Each of these
states occurs a certain number of times with the plus sign and a certain number of

times with the minus sign. In the second and the third summation, this happens

39

whenever the (0, ...,0,n,) state can lead to the state over which we are summing. In
the last summation, each of the states of the form (0, ..., 0, n,,) occurs once but it has
a large wéigiit because it gets multiplied by g(n). Because of the form of g(n), what

we get 1s:

' N—nm—2 —1\ (n — 1\N-1-a
F(n,N,n) = 3 3 (N 1)(_7L}V)T

all states with a=0 a
m—1 =1
i=1 M7

P U((ny, onp) /N — 1 — a)
1 a

a+tl 2 lprod(n, ., nm) = i + (n + t)prod(p)]
t=0
N-1 /N _ 1 (n—l)N‘l—r -
+ Z Z (r)—_nTV-—T——P[1]((0,...,0,nm)/N__1_r)
nm>1 r=0

1
-m[f(ﬂ, vy 0, 1,70 +7) — f(0,...,0,1, mp, — 1)].

Thus we can conclude that E(W™) = F(n, N,n). This completes the proof. It is again
true that f(n™)—f(n) = n_, for the states that have n,,_y = 0 and f(n~)—g(n)f(n) =

n,, for the states that have n,,_,; = 1.

3.C Appendix: Proof of Theorem 3.4

Let us state a different theorem first. This theorem is stated and proven in [10]
(Section 2, Theorem 3, page 4) as an extension of the classical Ballot Theorem. The
same theorem is mentioned in [1]. We will state the theorem here because we are

going to use it later.

Theorem 3.6 Suppose that an urn contains n cards marked with non-negative inte-
gers ky, ks, ..., k, respectively where ky + ky + ... + k, = k < n. All the n cards are
drawn without replacement from the urn. Denote by vy, r = 1,2,....n, the number on

the card drawn at the rth drawing. Then

k
Prvi+vo+ ..+, <rforr= 1,...,n]=1—;

b}

provided that all the possible orders of drawing are equally probable.

40

Let us now state a lemma. We are going to use this lemma in the proof of Theorem 3.4

too.

Lemma 3.5 Let v; be the number of slots of service that the jth arrival requires.

Then
N

E(Z v;) = (p1 + 2p2 + ... + mpm)N.

j=1
Proof: Since service times of requests are independent from each other, the result
follows.

We will now use Theorem 3.6 and Lemma 3.5 to prove Theorem 3.4. Let a; be the
number of arrivals in the beginning of a particular slot z. We know that i, a; = V.
These arrivals are ordered somehow. Let v; be the number of slots of service that the
j’'th arrival requires. We can now form a vector u = (ay, ..., ap; vy, ...,on). In order to
get the probability of a particular state at the end of the n’th slot we need to find all
the vectors u that can lead to that particular state and then take the weighted sum
by taking into account the probability that the vector u occurred. Thus

PH@m/N)= Y Pr(u).

all U that
lead to I

Let us now concentrate on a particular vector u that leads to state (0,...,0,1,n.,)
at the end of the n’th slot. In this case the request that is being served at the last
slot needed m slots of service. If that request only needed m — 1 slots instead of
m, the state at the end of slot n would have been (0,...,0,1,0,n,,). Let us consider
the vector u’ = (ay, ..., an, G1; V144, .-, UN+q;) Where indices are considered modN. In
the case that u’ occurs instead of u then the state at the end of slot n is going to
be (0,...,0,1,0,n,,) where n;, may be different from n.,, depending on the number of
arrivals, a;, that occurred in the first slot. This is true because of the condition that
n > m-(N —1). It is clear that by considering all the possible vectors u that lead to
state (0,...,0,1,7n,,) we get vectors that lead to state (0,...,0,1,0,n!). Not only that;
by considering all the possible vectors u that can lead to state (0, ...,0,1,n,,) for all

possible n,,’s with the last request entering the system requiring m slots of service,

41

we actually get all the vectors that lead to state (0,...,0,1,0,n,,) for all possible n! s

m
with the last request entering the system requiring m — 1 slots of service. Thus we
can conclude that

N-1 N-1
Z P[n]((oavovlaoanm)/N) = Z P[n]((()”o’l’nm)/N)

Ny =0 Ny =0

Pm-1 N-1 '
+== 3" PF((0,...,0,1,n,)/N).

m pym=0

By using similar arguments, we can prove that

N-1
Z P[n]((oa-.-,oy ni = 1101""O’nm)/N) =
nm=0
oy N-1
(Pm + -I-}~+Pz+1) > PO, ...,0,1,7,,)/N). (3.5)
m N =0

We also have

Nf PU((0,0,n,)/N) = Pmtothr Nz—lpinl((o,...,o,an)/N)

o =0 Dm i =0

+[1 —(m+2p2+ ...+ mpm)j—:—]
We get the first term by using the same arguments that we used for obtaining rela-
tion 3.5. The difference in this case is that we héve to take into account more cases.
These are the cases in which the server was idle during the last slot. This is why we
need the second term. We can get that second term by applying Theorem 3.6 to our
problem and using the result of Lemma 3.5.

It is now clear that, since oy states PP((R1, ooy 2m) /N) = 1,

it . N
Y PR((o,...,0,1,n,)/N) = Pm .

Ny =0
By using these results we have:

3" PM((ny,...,nm)/N) - [prod(n) = n, -m] =

all states

N N N
;Pm(m -1)+ *n—(Pm + Pm-1)(m — 2) + ;(Pm + ...+ p2)

_ E(pmm(mz— 1) ey (m — 1)2(m —2)

-+ ... +P2).

mn

This completes the proof.

42

Bibliography

[1]

2]

[4]

[5]

[6]

A. Bhargava, P. Humblet and M. G. Hluchyj, “Queueing Analysis of Continuous
Bit-Stream Transport in Packet Networks,” GLOBECOM 1989, 25.6, pp. 903-907.

V. E. Benes, General Stochastic Processes in the Theory of Queues. Reading, MA:
Addison Wesley, 1963.

L. G. Dron, G. Ramamurthy and B. Sengupta, “Delay Analysis of Continuous Bit
Rate Traffic Over an ATM Network,” IEEFE Journal on Sel. Areas in Communi-
cations, Vol. 9, pp. 402-407, April 1991.

A. E. Eckberg, Jr., “The Single Server Queue With Periodic Arrival Process and

Deterministic Service Times,” IEEE Trans. on Communications, Vol. 27, pp. 556-

562, March 1979.

A. E. Eckberg, Jr., “Response Time Analysis For Pipelining Jobs In a Tree Net-
work of Processors,” Applied Probability - Computer Science: The Interface, Vol-
ume 1, R. L. Disney and T. J. Ott, Eds. Boston, MA: Birkhatiser, 1982.

I. Norros, J. W. Roberts, A. Simonian and J. T. Virtamo, “The Superposition of
Variable Bit Rate Sources in an ATM Multiplexer,” IEEE Journal on Sel. Areas
in Communications, Vol. 9, pp. 378-387, April 1991.

J. W. Roberts and J. T. Virtamo, “The Superposition of Periodic Cell Arrival

Streams in an ATM Multiplexer,” IEEE Trans. on Communications, Vol. 39, pp.
298-303, February 1991.

43

[8] M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis,

Addison-Wesley Publishing Company, 1987.

[9] B. Sengupta, “A Queue with Superposition of Arrival Streams with an Application
to Packet Voice Technology,” PERFORMANCE ’90, P.J.B. King, 1. Mitrani and
P.J. Pooley, Eds. Amsterdam, The Netherlands: North-Holland, 1990, pp. 53-60.

[10] L. Takacs, Combinatorial Methods in the Theory of Stochastic Processes, Wiley
 (New York), 1967.

[11] A. K. Wong, “Queueing Analysis for ATM Switching of Continuous-Bit-Rate
Traffic-A Recursion Computation Method,” GL OBECOM 1 990, 801.2, pp. 1438-
1444.

44

Chapter 4

The Multiple-Servers Case

The case that the main link can transport more than one connection is examined
in this chapter. According to our traffic model this is the multiple-servers case.
A recurrent technique for the analysis of our system is proposed. This algorithm
calculates the probabilities of the states and uses them for evaluating the expected
wait. We prove that there is a very simple relationship between the probabilities of
the states and the expected wait. This relationship is an extension of what we proved
in the previous chapter for the single-server case. For cases in which the complexity
of the proposed algorithm is too large, we propose some approximate techniques for

estimating the expected wait of the multiple-servers system.

4.1 Queueing Analysis

Our analysis in this chapter will be an extension of our analysis for the single-server
system that we presented in the previous chapter. The state of our system is again
a vector n = (ny, .;.,nm), where n; for 1 <1 < m — 1 is the number of requests that
require ¢ more slots of service. The last component of the vector, n,, is the number of
requests that are waiting in the queue and it doesn’t mean that each request waiting

will actually require m slots of service.

We will again describe a way of calculating the probability that the system is in

45

state (n1,...,m,) at the end of a particular slot ¢, given that there were exactly j
requests in the first ¢ slots. We call these probabilities PU((n;y,...,n.)/7). We will
use them for calculating the expected time that a request will have to wait until it
starts getting served, which will be the criterion for measuring the performance of
our system.

Before we stdrt the analysis we need to introduce some notation. Let n~ =
(P1,...,7m)~ be the state of the system at the end of slot : — 1 when we know that
the state of the system at the end of the 7’th slot is going to be n, assuming that no
new arrivals occurred at the beginning of the ¢’th slot and all requests that entered
the service facility required m slots of service. We will refer to the components of n—
as n; for simplicity.

The above definition is a little ambiguous for some cases. For example (0, .., 0)~
can be equal to (0, ...,0), if the system was empty at the end of the previous slot,
or to (1,0,...,0), if there was only one request in the system that needed one more
slot of service. It can be actually equal to various other states depending on the
value of k. The notation we are going to adopt is that (0,...,0)~ = (k,0,...,0). We
formally define (ny,...,n,)~ to be equal to (k - T Ry Ry ey Ry e +).
This definition has some implications. It says, for example, that 0,...,0,k,~k)~ =
(0,...,0). The latter doesn’t have any meaning in a real system but is a notational
tool that we are going to use in order to make the proofs simpler. The problem arises
from the fact that we want n~ to be unique. This is the reason why we defined n-
~ as (k- 77" n;ym, cees P25 -1 + N). Our definition here is an extension of our

definition in the previous chapter.

4.1.1 Constant-Service-Times

We will now concentrate on the case where the service time of each request is constant
and equal to m. This means that p = (0, ...,0, 1). The special case m = 1 was treated
in [8]. The work there was an extension of the analysis for the single-server case that

was similar to the continuous-time analysis in [1, 3, 4, 6].

46

For the probabilities of the states we will consider two cases. The first case is
the case where either n,, > 1 or 77" n; = k and the second case is the case whefe
= 0 and also Y7 ' n; < k. The difference between these two cases is that in

the first case if we know the number of arrivals that occurred in :_t'he beginning of the
current slot and we also know the state at the end of the current slot then we can
determine the state at the end of the previous slot. The same is not true for the
second case. The reason is that we know that at the end of the current slot some
of the servers are going to be idie but we don’t know whether they were idle at the

end of the previous slot nor whether they are about to finish serving some requests.

Thus, for the first case we have:
' . m+nm—1] (Z _ 1)j—a) .
P ((ny,cmm) /i) = 3 . —T—P["”((nl, s T — @) /] — a).
a=0
For the second case, the case where n,, = 0 and 377! n; < k, things are more
complicated for another reason. When m = 1, a request can arrive at the beginning
of a slot and leave at the end of the same slot, if there is a free server. Thus if m = 1:
P(n,/5) ZZ()——P[’ {r —a/j —a).
r=0a=0

When m > 1 we have:
Pi((ny,.cunm)/i) =
=S s :
ZZ:; E) (a) %P[’ U((r, M, ooy Moy Rl — a)/j — a).

We will now introduce some notation that will help us express E(W™) as a function
of the states in a somewhat simple way. Let us call wait(ny,...,nm, k) the number of
slots that a request will have to wait until it starts getting served, when there are n;
requests in the service facility that require ¢ more slots of service (¢ takes all values
between 1 and m — 1), n,, requests waiting in the queue, and the number of servers is
equal to k. This is equivalent to the amount of time that a. request will have to wait if

the system is in state (n1,...,ny) at the time of its arrival and no other request arrived

at the same slot, or, even if more requests arrived at the same slot, the request that we

47

consider was ordered first. Actually this function is an extension of prod(ny, ..., nm),
the function that we introduced in the previous chapter for the single-server case,
i.e., when there is only one server. That function was simply equal to 37, n; - 7. It
is more difficult to express wait(ni,...,nm, k) as a function of the n;’s in the general
case, though. However, we do not need to do that, because of a theorem that we
will prove below, which states that E(W") can be expressed as a simple function of
the probabilities of the states. This difficulty of expressing wait(ny, ..., 7m, k) as a
function of the n;’s is the reason why we cannot carry out a simplified analysis for
calculating the expected wait without obtaining the probabilities of the states, as we
did for the single-server case.

Using the above notation we can write:

N-1 — N-l1-a
N-1 (n 1) 1
E(W™ Z P[n-1] T 1 —
() a=0D (a) pN-1 a+1 allgt;ltes ((”17 777'm,)/]\' a)

a
. Z wait(ny, ..., Bpm—1, Ny + ¢, k).

We should mention that the E(W?)’s are strictly increasing as 7 increases up to a
point, and then they stay constant. The reason is the fact that, after we have looked
far enough in the past for cases that can force a request to wait, looking further in
the past doesn’t add any r;ew cases.

Before proving the theorem that we mentioned above, we will need to prove two

lemmas.

Lemma 4.1 Under the conditions that 1 > I—‘%l]m and n, > 1:
) J—nm-—k . -1
PY((ny, ..., nm) [3)= 3 (])up[’ (1, snm)™/5 = a).
a=0 a v
Proof: The reason why this lemma is true is merely the fact that arrivals that
occurred too far in the past cannot affect the current state. A more detailed proof

can be obtained by using the same arguments that were used for proving Lemma 3.1.

Lemma 4.2 Let us define

Nm~1

> 1+ wait(na, .oy nm—, , k).

=0

>

f(n, k)

48

Let N be the set of all states (ny,...,nm) with f(n, k) = . Under the condition that
P> ['%k]m and for all possible N we have: |
3 PH((ny,.omm) /i) = X J_im“:k (]) D™ pi-ti((ny, .) /5 — a).
neEN; neN; a=0 a v ,
Proof: The function f(n,k) is an extension of the function f(n) that we defined in
the proof of Theorem 3.1. We will use this function again when we prove the next
theorem which is an extension of Theorem 3.1 for the multiple-servers case. For the
cases that ¢ > [LJ—;—ll]m we don’t need to prove anything. The result follows from
Lemma 4.1. For the remaining cases Lemma 4.1 doesn’t hold and the reason for that
is that the statement of Lemma 4.1 is stronger than the statement of this lemma.
The proof for these cases is similar to the proof of Lemma 3.1. What happens in
these cases is that, although the arrivals that occurred in the first slot may affect the
state that will occur at the end of the 7’th slot the resulting state is going to remain
within the same set A;. This completes the proof.

We will now prove the theorem we mentioned above.

Theorem 4.1 Whenn > [LN—k'@}m then:

EW™ == Y P((ny,....npn)/N) 1.
N all states
Proof: Let us define
nm—1
f(n. k) = Z [1 + wait(ni, ..., np-1,1, k)],
t=0
F(n,Nn k) £ = 3 [PF(@/N) - PP(a"/N)|f(n,)

all states
with n;m>1

The function f(n, k) is the same function that we defined in Lemma 4.2. The rest of
the proof is similar to the proof of Theorem 3.1. Instead of using the lemma that we
used for proving Theorem 3.1 we use Lemma 4.2 in this proof. Also the upper limits

of the summations change. It is again clearly true that

f(n7,k) - f(n,k) =n..

This completes the proof.

49

4.1.2 Variable-’-Service—Times

Let us now consider the most general case where we have k servers and the service
times of the requests are determined by the probability vector p.

Before we can express the probabilities of the states with the usual recursive
approach we have to introduce some more notation that will make the expressions
look simpler. Let us define prob(vi, ..., vm, p,w) to be the probability that among
the 37", v; requests, v; need : slots of service and all of these requests will leave the
queue and start getting served if they need to. The probability vector p determines
probabilistically the number of slots of service that a request will require and w is
the number of servers. It is clear that if >"7=, v; > w then the value of this function is
equal to zero. On the other hand it is possible that the sum of the v,’s from 7 = 0 up
to m exceeds w if vg is large enough, i.e., there are enough requests that don’t require
any service at all. These requests cannot be last in the queue, though, because we
are assuming that requests get served in a First-Come-First-Served order. So, even
if a request doesn’t need any service at all it has to wait in line until it becomes
first in line. It is clear that part of this function is going to consist of products of
the form p;*, but the main question is how many different choices there are for the
different ways that we ca;1 order the requests and get an allowable ordering. It is not
difficult to see that in the case that }_7_, v; = w, by using the multinomial coefficient
notation, we have:

2y Vi w—1+v\ T o,
prob(vo,....,vm,p,-w) = (vl,...,vm) . (%) . ;‘-E‘!:)pi)
When 312, v; < w things are a little easier because requests that don’t require any
service at all can be last in the queue. Thus:
prob(vg, ..., U, P, W) = (Lizo i) . ﬁpi”‘.
Vo Um/) g

In order to be able to express the probabilities of the states with the usual approach

we have to distinguish among different cases. Let us consider the case where n,, > 1

or "™ ' n; = k first. We have to consider two cases again. The first case is the case

30

where n,,—; = 0. In this case we have:

Pm((nn nm)[J) =
Z (a)(z zﬂ) pt-1] ((ny,..cynm —a)"/j — a)

a=0
i— 1) . L max(j—r—k,0)
+Zj()—————— - 3
= M0 Mo hems(D o)
[L5 om0 +nm—r.0)

PEU((n},)G —)
m-1

m~—1
prob(r + ny, — Ny, — Z(n[—nl),n] —ni, . ,npny —nm_1,0,p, k Z ny).

i=1 i=1

Let us consider a simple example that will show the validity of this formula. Let
N=3 k=2, m=2n=3and p= (02, 0.3, 0.5). Let us concentrate on
the probability that the system is at state (0,1) at the end of the third slot and we
know that there were three arrivals in the first three slots, i.e., we are looking for
PB1((0,1)/3). There are four different cases that can lead the system to the state
that we are considering. The first case is when the system is at the all-zero state at
the end of the second slot, there was no arrival in the first two slots and the first
two arrivals in the beginning of the third slot required one slot of service each. The
second case is when the system is at state (1,0) at the end of the second slot, there
was one arrival in the first two slots and the first arrival in the beginning of the third
slot required one slot of service. The third case is when the sytem is at state (2,0)
at the end of the second slot and there were two arrivals in the first two slots. The
fourth case is when the system is at state (2,1) at the end of the second slot and

there were three arrivals in the first two slots. In other words we have:

+ PR((1,0)/1) - : 0.3
2 PR /) Y

PEI((0,1)/3) = PR((0,0)/0)- (03)

+Pm«zoym-3

We can get the same result by using the general formula that we gave above. It is

clear that (0,1)~ = (2,1) and (0,0)" = (2,0). By substituting the values of our

51

example in that formula we get:

2

PEI(0,1)/3) = PP((1,0)/1) - g5 - prob(0,1,0,p,1) + P (21)/3)- (37

+PR((2,0)/2) -3 - §—+Pm((0 0)/0) - — 1 - prob(0,2,0,p,2).

This completes the example. We now return to the general study of cases.
The remaining cases are similar to the one that we just described. In the case

where n,,_; > 0 but still n,,, > 1 or 3"j1 n; = k we have:
P((ny,...,nm)/j) =

bl _1\i-T ny LY max{(j—-r—k,0) '
) (])(Z L PIRNEDS > PE=Y((n3, .. m2) /5 —)

*

ny=0 170 p2 —max(z =1 ()
+nm+nm_1—-r0)

m-1
prob(r +n — Z(n; —N7), Ny = N,y Ny | — N1y Pn—1, P,
=1
m-1
k=3 ni)
i=1

In the case where n,, = ny, -y = 0 and 77" n; < k we have:

P((ny, ...t 2,0 0}/3) =

=1
P[z l] k - Z Ty Ny e nm—Z’O)/])(K)J
1=1
j i — 1) k—z:::'z ng Temn—2 max(j-r—k,0)
OIUEEE D SR o S
=0 n; =0 n; *=0 n:n-l = ng, =max

n;#k—Z:’;}z n; when (z::;l("i—l —n:)—r,O)
k— '.n—l(ni_l—-n:)=0

=2
min(k—zy;:z n; —n: ,

-1
b=y (i1 =)

PE((nf, . my) /5 =) > prob(r +n}, — ny, —
g=0 '
m— 1 m-—1
-1 = 77, - 4,4, — n;, ceny 2 — 'ﬂ:n_l,O, p,k - Z n:‘)
:::2 =1

In the case where n,,_; > 0 but n,, = 0 and Zz_l n; < k we have:

P[i]((nls cees Mm—1, 0)/]) =

92

m-l

LU o S iy

7
t ny *=0 n3=0 ny 1= n} =max(ng,_1

-1
+Z:’;2 (ni—1—n})-.0)
m—1
t=1 1
1
—rmo1=) i, (mic1=n)))

min(k-— ng —n;‘ ,n:n+r

PEU((n3,n2)) — 1) 3 prob(r + nk, — ng, —
q=0
m—1
Z(ni-l —RI) = M1 — G, @y 1 — Mgy eeey Tln—2 — Ty, Bem—1, Py & — Z n;).
1=2 =1

We can now use these probabilities to write an expression for E(W™"):

N-1 —1—a
EW™) = 3. (N—l)("_l)N ! S PrU((ny,..,nm)/N =1 —a)

N-1
a=0 a n a-+ 1 all states

a
. Z wait(ny, ..oy Nm—1, N + ¢, k).

We will now prove a lemma which is similar to Lemma 4.1 but holds for variable-

service-times.

Lemma 4.3 Under the conditions that 1 > [i%l]m +m and n, > 1:

P[i]((nl, ey) [7) =]—nzm__ (a) (i____Q_P[z 1](()"/ —).

¥
a=0 :

Proof: The reason why this lemma is true is again merely the fact that arrivals that
occurred too far in the past cannot affect the current state. In this case though we
have to be a little more careful. Although requests that occurred far in the past may
not have been able to affect the current state of the system if all the requests had
constant-service-times, they may affect the current state if variable-service-times are
allowed. The reason for that is that they may allow requests with shorter service
times to occur in between. For that reason the conditions under which Lemma 4.3
holds are different from the conditions under which Lemma 4.1 holds.

By using this lemma we can now prove a theorem that holds for variable-service-

times. The theorem is proven in Appendix 4.A.

Theorem 4.2 When n > [%‘—a]m + m then:

E(W"):% S PP((ngy.s) [N) - T

all states

53
- This expression that relates the expected wait with the probabilities of the states

can be proved by using Little’s result. The difference is that Little’s result can be

used only urider a stricter condition, i.e., n > [%1m + m (see Appendix 4.B).

4.2 Improving the Efficiency of the Algorithm

The expression that we have from Lemma 4.3 gives us an alternative for calculating
the probabilities of the states. This expression is more efficient and simpler to use
than the general recursive relations that we have. The only problem is that we cannot
always use it since there are those two conditions that have to be satisfied: these are
1> [ij%zl.lm+m and n,, > 1. What we will do now is to try to relax those conditions
as much as possible. If we do that we will be able to use the simpler relation more
often and thus increase the performance of our algorithm.

Let us introduce some notations first. Consider a vector (no, ..., ,,-1) of dimension
m with non-negative components. Define n; as the number of objects that have
length . Let us order these objects according to their length by putting the ones
with shorter length first. We assume that this ordering is cyclié, which means that
if there are k£ objects in total, then the first one is also the k 4 1’st one. We define
length(nog,...,’m—1,7) to be the length of the j’th object in that ordering.

We will first concentrate on the case of constant-service-times.

Lemma 4.4 Under the conditions that 1 > [i%"l]m — length(k — X727 niymy, <.
o1,k — ((j = em — k)mod k) +1) + 1 and n,, > 1:

J—nm—k y 7 — j-a .
PH((ma, s mm)) = 3 (i)%—l’["”((nl,--.,nM/j ~a).

Lemma 4.5 Under the conditions that i > [Q:Zk’il—ﬂ]m+m—length(k—zl”;1 ni,

Ny ey me1, b — ((5 — 27" ny)mod k) + 1} + 1 and n,, = 0:
) -7""2:::1 i N (3 — 1) ..
P((ny,.conm) /i) = D (i) E= D™ pi-ti((, ..,) 7 — a).

V]
a=0 !

94

The proofs of these two lemmas are the same as the proofs of Lemmas 3.2 and 3.3
and therefore omitted.

It is very important that, especially when the service times of the requests is
constant, the conditions of the two lemmas are almost always:'satisﬁed. What is
actually true in the case of constant-service-times is that the probabilities of the
states are zero up to a particular slot. After that slot the results of the lemmas hold.
So we only have to use the complicated recursions for finding the probabilities of the
states at the slots that take a non-zero value for the first time.

Another important point is this. The results of the lemmas relate the probability of
a particular state to the probabilities of the same state at the previous slot for various
number of arrivals. What it means is that, because of the lemmas, when calculating
the probabilities of a particular state, we can forget about the probabilities of the
other states. So, instead of having to operate on a huge matrix, we only have to
operate on vectors. This decreases both the number of operations and the storage
requirements, which is why the algorithm is so efficient for the special case considered
in [8].

What we mentioned for the coﬁstant—service-times case is not true for the general
service time case. The reason is that the probabilities of the slots are non-zero even
from the first slot. This means that we have to use the complicated relations for
several times before we can use the results of the lemmas. A

Let us now take advantage of another fact. We have mentioned in the previous
sections that E(W?) is strictly increasing up to one pbint and then stays the same.
We may be able to use that fact to stop our algorithm before it actually reaches the
last slot, because after E(W*) stops increasing the algorithm doesn’t give us any more
information. This is indeed true and will be clear after the next theorem.

We will need to prove a lemma before proving the theorem.

Lemma 4.6 Let n, = [@]m. Let N be the set of all states (ny,...,ny) with

i)

f(n,k) =1 and Nm 2 1. Ifn 2 n. and for all possible N, we have:

N) (n — n, N-r
Y P,/ N) = 53 (N)()(nN P pl () 7).

neN; neN; r=nm+k r

Proof: By using similar arguments to the ones that we used for proving Lemma 4.2

we can write:

Y Pll(ng, . mm)/N) =

neN;
N-nm—-k N—a n — nk)®
>N (N) (m) n(N) P™((ny,...,nm) /N — a).

neN; a=0 a

The only difference is that, instead of expressing the probabilities of the states at the
end of slot n by using the states at the end of slot n — 1, we do that by using the
probabilities of the states at the end of slot n.. By making a change of variable the
result follows.

Now we are ready to prove the theorem.

Theorem 4.3 Let n, = [@]m If n > n, then:

n N n,.Tn—ln,., N=r
EWh =5 2 X (N)()(nN L ple((ns, oy) 1) - .

all states T=np,+k r

Proof: By using the result of Theorem 4.1 and the previous lemma the result follows.

It is now clear that in order to calculate E(W™), we only need to use the recursive
relations and the results of the lemmas to calculate the probabilities of the states at
_ the end of slot n,. After we do that, we can use the result of the last theorem to get
E(Wm).

We will now consider the variable-service-times case.

Lemma 4.7 Under the conditions that i > [LJ—":—”‘l]m — length(k — Y27 vy, ng, oy
N1,k — ((J = —k)mod k) + 1)+ 1, j—npm — k< k and n,, > 1:

PO (ncmm)fi) = Yo (J) C= I Py —).

J
a=0 a 2

36

Proof: The proof of this lemma is similar to the proof of Lemma 4.3. There is a
difference though. The difference is that the total number of arrivals in this case
is very small. For that reason the phenomenon that we described in the proof of

Lemma 4.3 cannot occur.

Lemma 4.8 Under the conditions that 1 > fij—"—,’c"_ll]m +m — length(k — 77" ny,
N1y ey ety bk — ((J — 0 — k — 1)mod k) + 1)+ 1, and n, > 1:
Pi((ny,...;nm)/5) = J 2} k (i) (L:;.):P[i_ﬂ((nl, ey) [— @)
a=

Proof: The proof is again based on the proof of Lemma 4.3. The worst case occurs if
one request occurs at the first slot. Because of the conditions of the lemma, requests
that occurred even in the next m — 1 slots cannot have any effect on the current state.
Actually even if all the remaining requests occurred at the m’th slot they cannot affect
the current state. The reason for being so conservative is the phenomenon that we
described in the proof of Lemma 4.3. This completes the proof.

In the same way we can prove the next two lemmas for the case that nn, is equal

to 0. We will omit the proofs.

Lemma 4.9 Under the conditions that i > [Q‘ﬂ————]m-!—m-—length(k Yt g,
Ny, ey ety b — (G = St nm)mod k) + 1)+ 1, j =27 ' i < k and np, = 0:

| =iy ™ i
e S e

a=0 v .
Lemma 4.10 Under the conditions that : > [(J—Z—‘ﬂ—fﬂ]m + m — length(k —
Y ng, e Rme1, k= ((— 2027 i — l)mod E)+1)+m+1 and n, = 0:
) j_21=1 ny . s j—'ﬂ. ~ .
PG} = 5 (D) P =),
. a=0
From Lemma 4.7 it is clear that for the case N —1—k < k we can make a stronger

statement than the one we did in Theorem 4.2.

Theorem 4.4 When n = [@]m and N-1-k<k.

EW™ == Y PMP((ny,....;nn)/N) -1

N all states

57

We will omit i;he proof of this theorem because it is identical to the proof of Theo-
'rem 4.2.

By usiné‘similar ideas to the ones that we used for proving Theorem 4.3 we can
prove the following theorem. The proof is very similar to the proof of Theorem 4.3

and therefore will be omitted.

Theorem 4.5 Let n, = |'£-N;—21'|m +m. If n > n, then:

n N n.) (n —n)N-"
E(W™) = N > > (N)(I N) PrY(ny, .oy nm)/7) M.

all states r=nm+k r

4.3 A Simple Example

We are now going to give a simple example that will make the ideas that we have
expressed in the previous sections more concrete. We are going to assume that there
are two servers, three customers and only three slots. The requests need two slots of
transmission with probability 0.5, one slot with probability 0.3 and don’t require any
transmission with probability 0.2. In other words k =2, N =3, n =3, m =2 and
p = (0.2, 0.3, 0.5). Let us concentrate on the probabilities of the states at the end
of the last slot given that three arrivals occurred at the first three slots. The reason
for doing that is that, because of our queueing model, we know that exactly three
arrivals are going to occur in the first three slots. We have called these probabilities
PBl((n1,n2)/3). There are six possible sates: (0,0), (1,0), (2,0), (0,1), (1,1) and
(2,1). We are only going to consider the last three because these are the only ones
' that we need for E(W?). |

The only way that the system can be at state (2,1) at the end of the third slot is
if all the arrivals occurred at the beginning of the third slot and the first two arrivals

required two slots of service. Thus:

PRI(2,1)/3) = PH((0,0)/0) - 5(0.5)"

The system can be at state (1,1) at the end of the third slot if either all the arrivals

occurred at the beginning of the third slot and one of the first two arrivals required

\(0,0) oy | eco | oo] an | ean

0 1000 | 0000 | 0000 | o000 | 0000 | 0.000
1 0500 | 0500 | 0000 | 0000 | 0000 | 0.000
2 0250 | 0500 | 0250 | 0000 | 0000 | 0.000
3 0080 | 0180 | o100 | o009 | 0300 | 0250

Table 4.1: Values of PUl((ny,nz)/j) fori =1

two slots of service and the other one just one, or the system was at state (1,0) at
the end of the second slot, two arrivals occurred at the beginning of the third slot

and the first of them required two slots of service. Thus:
1
PBI((1,1)/3) = PP((0,0)/0) - = -2-0.3-0.5 + P1¥((1,0)/0) - 3- = - 0.5.

We have already shown that

PR,1)/3) = Po(0,0)/0) - %X 4 pE(1, 01) - -0
+PE((2,0)/2) -3 - % + PP((2, 1)/3) . (%)3.

In Tables 4.1, 4.2 and 4.3 we show the actual values of the probabilities of the states
for 1 =1, 2 and 3 respectively obtained by our algorithm.

From Theorem 6 we know that
E(W?) = PPI((0,1)/3) + PPY(1,1)/3) + PPI((2,1)/3).
Because of Lemma 10 we also have
(3] _ pl2] 2.5
By using the above relations we get:
1
EW?®) = PU(0,0)/0) - 52 (0.5)242-0.5-0.3 4+ (0.3)]

+PB((1,0)/1) -3 %{0.3 +0.5]+ PR((2,0)/2) -3 .

59

(0,0) (1,0) (2,0) (0, 1) (L, 1) (2,1)
1.000 0.000 0.000 0.000 0.000 0.000
0.750 0.250 0.000 0.000 0.000 0.000
0.563 0.375 0.063 0.000 0.000 0.000
0.286 0.300 0.059 0.193 0.131 0.031

Table 4.2: Values of Pl((ny,n,)/7) for i =2

(0,0) (1,0) (2,0) (0,1) (L 1) (2,1)
1.000 0.000 0.000 0.000 0.000 0.000
0.833. 0.167 0.000 -0.000 0.000 0.000
0.694 0.278 0.028 0.000 0.000 0.000
0.498 0.352 0.045 0.057 0.039 0.009

Table 4.3: Values of Pld((ny,n3)/7) fori =3

60

We can get the same result by directly using the definition of E(W?). As we have -
explained before E(W?) is the average waiting time that a request that arrives at the
third slot will experience. So, we are given that a request will arrive at the beginning
of the third slot. In this case it is easy to directly use the definition of E(W?) because

the example is simple. What we get is:

EW? = 31—2 - % - PE((0,0)/0)[2 - (0.5)> +2-0.5 - 0.3 + (0.3)?]
+2- 32—2 : %Pm((l, 0)/1) - [0.3 4 0.5] + %PM(Q,O)/Q).

It is clear that both relations for F(W?3) are equivalent.

4.4 Numerical Example

Let us assume that the number of customers is equal to 45, the total number of slots
is equal to 64 and the number of servers is equal to 3, i.e., N =45, n = 64 and k = 3.
The probability vector p that determines the service times of requests is equal to
(0.2, 0.2, 0.2, 0.2, 0.2), so m = 4. In Figure 4.1 we see the probability distribution

for n,,. What we have in that figure is 5, PB4 (n,, ..., n,,) plotted versus n,,.

v ftmel

The probability that n,, = 0 is very large, 0.9183. The probability that n,, is larger
than 15 drops below 10710,

4.5 Some Approximate Techniques

The algorithm that we proposed and discussed in the previous sections can be used
for solving the queueing problem that we are considering for arbitrary values of NV, &,
m and p. The complexity of the algorithm however can be very large if N, k and m
are fairly large. The reason is that the number of states, i.e., the number of allowable
vectors (n1,,m), is equal to (k';"zl) (N—-Fk+1).

In this section we will propose some approximate techniques that can be used

in the case that the complexity of our algorithm is too large. We will concentrate

61

100 T T T T T T

101 L .
102 |- .
103 | .
10-4‘ - |
105 | .

106 | .

Prob[# in queue=x]

107 + -

eng e

108 i

10° A .

10-10 L 1 L L L 1
o 2 4 6 8 10 12 14 16

x (requests in queue)

Figure 4.1: Probability Distribution for N = 45

on the expected wait although these approximate techniques can also be used for
approximating the probabilities of the states. The reason is that we are mainly
interested in the expected wait.

Let us assume that n > fw—k'—a’lm + m. The reason for doing that is that in order
to be able to get the expected wait we need to use Theorem 4.2. That theorem holds
only if this condition is satisfied. Later in this section we will discuss what happens
when this condition is not satisfied.

Let us define E(W™, N, k,p) to be the expected wait that requests that arrive at
the last slot experience when there are N customers, the system has & servers and

service times of arrivals are determined by the probabﬂity vector p. We have been

62

calling this quantity just E(W™), and the dependencies on the other parameters.were
only implicit.

We are going to consider what happens if instead of having k servers, we actually
have only one server that is k& times faster. The way we are goihg to do that is by
considering a system with a single server and observe it for a window that has n - k
slots. The duration of one slot in the system with k servers is equivalent to the
duration of k slots in the system with one server. Qur claim is that E(W™, N, k,p) <
-lk-E (W™* N, 1,p). The reason is that if we consider a particular arrival pattern that in
the second system leads to a state n at the end of the last slot, this same arrival pattern
leads to state n’ in the first system with n!, < n,,. Therefore, by using Theorem 4.2
we get that E(W™, N, k,p) < tE(W™*, N,1,p). We call this approximation Model 1.
The reason for the scale factor —1); is that the expected wait is measured in number of
slots and the duration of a slot in the first system is equivalent to the duration of k
slots in the second system.

It is indeed mentioned in [5], that if we want to minimize the expected wait that
arrivals experience, it is better to have many servers than having just one fast server.
The reason is that when there are few arrivals, let us say less than %, they won’t need
to wait at all in the first system, while they may need to wait in the second.

Furthermore, as N and n increase with their ratio remaining constant the ratio
of the expected wait for the two systems approaches 1. As we mentioned earlier, a
particular arrival pattern that in the system with the single-server leads to a state n
will lead to state n’ in the multiple-servers system with.nﬁn < . This n]_, though, is
not much smaller than n,,. Therefore, as N and n become large this difference loses
its significance.

The reason for approximating the multiple-servers system with a single-server
system is that we can use the simplified analysis proposed in the previous chapter.
This analysis is only valid for the single-server case but can give us the expected wait
for very large numbers of N and m.

Let us now consider what happens if we rescale time. Instead of observing a

63

system with k servers, N customers and a probability vector p1 = (p1,0,...,p1,m) for a
time window that has n slots, we observe a system that has k servers and N customers
for a time window that has only = slots. The probability vector that determines the
service times in the second system is p2 = (p2,0, P2,1) Where pyy = L37p1; and
P20 = 1 — py 1. The reason for doing something like this is that the complexity of our
algorithm for the éecond system is smaller than the complexity of our algorithm. for
the first one. The number of states for the second system is only N —k+1 compared
to (k:'n"i;l) (N — k +1) for the first. So, if we can get an estimate of the expected
wait in the first system by using the result for the second system, we will be able to
analyze systems that we couldn’t analyze otherwise because of the complexity of the
algorithm.

We showed in the previous chapter that if we do something similar for the single-
server case, we find that the expected wait for the first system is a scaled version of the
expected wait for the second system. One would expect something like that to hold
because the second system is very similar to the first system except for a rescaling of
time. A similar relation is not true in general for the multiple-servers case, though.
By using this reséaling argument we only get an épproxirnate expression in this case.

Our claim is that

E(W™ N, 2 ROy L
(7N7 ’pl)"N‘E(Wmvakvp2)—m——.‘-
Zizopl,i.z

We call this approximation Model 2. The reason why this approximation makes
sense, is that as we mentioned earlier in this section, the expected wait for the first
" system will approach the expected wait of a particular single-server system and the
expected wait of the second system will approach the expected wait of a different
single-server system. By using Theorem 3.5 we can find the ratio of the expected
waits of the single-server systems. Thus, the ratio of the two multiple-servers systems
‘will approach that ratio as NV and n increase with the ratio of N and n remaining
constant. The reason why this relation is not exact in general is the fact that the
expected waits of the muliple-servers systems may not approach the expected waits

of the single-server systems at the same speed.

64

There are some cases, though, where the previous relation is exact as the following

theorem states.

Theorem 4.6 Consider two systems. In the first system the total number of slots is
n1, the total number of arrivals is N, the number of servers is k- and the probability
vector that determines the service times is p1 = (P10, 0y..., 0, P1,m). In the second
system the total number of slots is ny, the total number of arrivals is N, the number
of servers is k and the probability vector that determines the service times is pz =
(p2.0, P2.1), where pag = prm and pao = pro. Let ny = ny - m and ny > [%_—Zn + 1.
Let E1(W™) and Eo(W™) be the expected wait that requests in the first and second

system ezxperience respectively. Then
El(Wnl) = Ez(Wn2) s m.

Proof: The main idea is to group slots in the first system in groups of m. The first
m slots belong to the first group, the second m to the second and so on. A request
that arrives at the 7’th slot in the second system may arrive at any of the slots of
the z’th group in the first system. No matter in which of the m slots of that group
the request arrived, the last component of the state vector of the first system at the
end of the window of n; slots that we are considering is going to be unaffected. Not
only that: this last component of the state vector is going to be the same as the last
component of the state vector at the last slot of the second system. This completes
the proof.

Let us now consider what happens if the condition n > f@]m + m is not
satisfied. If & > ﬂl}"ﬂ we expect Model 1 and 2 to still give us quite accurate
results. Theorem 4.2 may not be exactly true but it still gives us an accurate estimate
of the expected wait. The reason is that the proof of the theorem is based on the
assumption that our system has enough capacity to empty the queue within a time
window of n slots if all requests arrived in the first slot. The worst case is if all
requests needed m slots of service. In that case k will need to be greater or equal to

%ﬂl which is approximately the condition of Theorem 4.2. It is very unlikely, though,

65

that all requests will need m slots of service. We expect that on the average each
request will only need about Y72, p; - ¢ slots of service, i.e., will need the average
service time. Thus we expect that our theorem and thus our two models will be a
good approximation for cases in which k& > E%D—p'—l

We now need to consider what happens if k < Q’%ﬂﬂ In this case the rate at
which new work airives in the system is faster than the service rate. Clearly, this
situation results in long waiting times for the requests. Motivated by the fluid-flow
approximation for continuous-time queues (see [5] Section 2.7 pp. 56-62) we will
propose another approximation model which we call Model 3. According to the fluid-
flow approximation we can replace stochastic processes by their average values as a
function of time. The reason is that the average values are large compared to the
fluctuations.

In our approximate model, we assume that all the arrivals are uniformly dis-
tributed over the time window of duration n in a deterministic manner, i.e., in each
slot there are % arrivals. The results that we are going to get by making this as-
sumption are not going to be very different from the exact results. This is because
the servers are almost always busy, so the exact time of occurrences of requests does
not much change the expeéted wait of requests that arrive at the last slot. We make
another assumption, too. We assume that service times of requests are exactly equal
to the average service time and are not determined by the probability vector p. This
is especially justified for large N because then the expected wait of requests at the
last slot is affected by the service time of a large number of other requests. So, the
average service time of those requests is very close to the actual average service time

of requests.

By using the two assumptions that we made, i.e., that there are % arrivals in each
slot and that the service time of each request is equal to the average service time of
requests, we can determine the state of the system at the end of slot n — 1. By using
the random ordering assumption for the % requests that arrive at the last slot, we

can get the expected wait for these requests. This can be done easily because of the

66

constant-service-time assumption. Therefore, this model can be used for obtaining
the expected wait under heavy load even for a large number of requests.

There are some problems with this approach. The first problem comes from the
fact that %’- may not be an integer. So, it may not be very easy to ;iniformly distribute
the N arrivals in the n slots. In case N is fairly large the different uwa,ys of distributing
the requests will give very similar results, though. The next problem comes from the
fact that the average service time of requests may not be an integer. In that case
we can average the result for the two closest integers and that will give us a good

estimate of the average wait for the case in which we are interested.

4.6 Numerical Examples of Approximate Models

Let us now concentrate on a particular example. We assume that there are 100
customers, i.e., N = 100. As we mentioned in Chapter 2 we expect that the segments
will last for about 3 minutes. For this reason we assume that the duration of each
slot i1s 3 minutes. The probability vector that determines the service times of the
requests has the form p = (0, 0, 0, 0, 0.1, 0.2, 0.4, 0.2, 0.1, 0, 0). The program of
a particular customer lasts for 10 slots but from the form of p it is clear that at most
8 of the segments will need to be transmitted from the main node to the intermediate
node. The fact that the program of each customer consists of 10 segments is realistic
because that means that the duration of the program will be 30 minutes. The choice
of p is arbitrary but we expect that in reality it will have the form that we assume
in this example. We believe that there will be a peak and the components of the
probability vector will decrease rapidly as we move to the left and the right of that
peak. The reason is'that we think that there will be a number of segments that most
of the customers would _liké to get and these segments are going to be stored in the
intermediate node. In our example this number is 4. Thev rest of the segments that
cover the personal preferences of the different subscribers are going to be stored in

the main node.

67

The form of p enables us to use m = 8 in our algorithm what decreases the amount
of calculations that we need to do. The total number of slots is 64, i.e., n = 64. As
we explaiﬁeci‘in Chapter 2, customers are allowed to tune into the network within a 3
hour window. Since the duration of each slot is 3 minutes, 60 would be a good choice
for the total number of slots. We chose 64 because we would prefer this number to
be divisible by m Which is 8 in our case.

In Figure 4.2 we compare the results that we obtained from Models 1 and 2 and
from our simulation. Both in the theoretical models and simulation we assumed that
requests arrive exactly in the beginning of a slot. This is not realistic because requests
of the customers may occur anytime during a slot. For that reason we added an extra
half slot delay to all the results that we obtained. This is the reason why the expected
wait approaches 0.5 and not 0 as the number of servers increases.

In Figure 4.2 we can see that the results of Model 2 are in excellent agreement
with the simulation results for & > 10, i.e., k > E;—n&l The results of Model 1
overestimate the expected wait but even this model is in good agreement with the
behavior of the expected wait as a function of the number of servers. On the other
hand we see that for k¥ < 10 neither of our models is in good agreement with the
simulation results, as we expected. For the cases that 10 < k < 15, the results of
Models 1 and 2 compare well with simulation, although Theorem 4.2 does not hold.
The reasons for this agreement were explained in the previous section.

Let us now discuss whether we may be interested in the cases that £ < 10. As

~we see from Figure 4.2, the expected wait increases exponentially as k decreases. For
example the expected wait measured in number of slots goes from 2 for k£ = 10 to 5 for
k = 9. This is to be expected because the system does not have enough capacity and
the arrival rate is larger than the service rate, which results in requests accumulating
in the queue. In this region, by a very small increase in the number of servers, we
can get a large improvement in the performance of our system, i.e., the expected wait
will decrease drastically.

Let us now consider what happens if we increase the number of subscribers N to

68

7 .
6 x J
sl N x Model 1]
0 Model 2
[1]
4+ + Simulation |
S
3+ -
X
2+ * .
X
X
1k d X i
X
* ¢ b . : : :
0 L L |) ! 1 3
8 10 12 14 16 18

k (servers)

Figure 4.2: E(W) in number of slots for N = 100

1000. We keep all other parameters the same. In this case Model 2 cannot be used
because the complexity of the algorithm is prohibitory. In Figure 4.3 we compare the
results of Models 1 and 3 with simulation. One imporfa,nt point is that now we are
interested in the cases k < 94, i.e., k < % The reason is that although in the
beginning the expected wait increases exponentially, as we move away from the case
k = 94 the increase becomes only linear. We didn’t observe this phenomenon in the
case N = 100 because we stopped within the area of the exponential increase. As we
increase N, the increase in the expected wait becomes smoother when we decrease
the number of servers. We observe in Figure 4.3 that Model 1 captures the behavior

of the system when k& > 94 and Model 3 captures the behavior of the sysﬁem when

69

U l
6.
6 . 4
x Model 1
5l * 0 Model 3 |
. + Simulation
. 4 L * . .
g
m +
3t ° .
+ X
2+ T |
o + X
+ X X }
1F o + x _
0 o + + : : X X
O I L 1 ! 1 | 1 . 1
84 86 88 90 92 94 96 98 100 102
k (servers)
Figure 4.3: E(W) in number of slots for N = 1000
k < 94.

From the numerical examples it is clear that we should choose the number of
servers k£ to be around N—Z:;;QE The exact chpice of k depends on the desirable
level of performance and on economical factors. In order to make the choice we are
equipped with our three approximate models. In the case that &V is of the order of 100
subscribers, Models 1 and 2 can be used for obtaining good approximations. When

N is of the order of 1000, Models 1 and 3 can be used instead.

70

4.7 Summary

A new recurrent algorithm for the analysis of our system for the cases that the main
link can transport more than one video connection was proposed. We showed how this
algorithm can be used to obtain the probabilities that our systei is at a particular
state. We proved that there is a simple relation which we can use for calculating the
expected wait after we have obtained the probabilities of the states.

For the cases that the complexity of our algorithm is too large, we proposed some
approximate techniques. We showed that the results of these approximations compare
well with simulations. Equipped now with these approximations, we can decide what
the number of servers k should be so that the customers obtain the desirable level of

scrvice even if the number of customers N is fairly large.

4.A Appendix: Proof of Theorem 4.2

Let us define

nm—1

f(n,k) = D1+ wait(ng,...,npo1,1, k)],
t=0
A B D Dt
gnk) = | 3) S F(0] ey k)
A n =1
m—1
-p’l‘Ob((n: - n;_+1) - n:n—l n:n, LA n2_1 7n’:n—-2 - n;z-lv
=1 .
m—1 1
Tl:n_ ap:k— (ni _) ' ’
ok = L] 7
Fn,N,nk) & = 3 [PM(n/N) - PPm/N)|f(n, k)
with s
and ny, ;=0
n -
+ES (PMn/N) - gln, KPR /N)Lf (0,)

all states
with nm>1
and Ny _3 21

Since the proof is similar to the proof of Theorem 3.2 we will go through some of

the steps with little explanation. By omitting a few of the steps that we have seen

71

before and using Lemma 4.3 we get:

F(n,N,n,k) = .
N-nm—k—1 N-1-a
(N R 1) (—n——L—l————P[n"”((nl, wos) /N —1 —a)

2 > Nl
all states a=0 a n
with nyp >0
andng, __1=0

1

F(R1y eyt + @ + 1, k)

a +1
N=ttm k=1 (N —~ 1) (n —1)N-1-i

P[n_l]((nla '--anm)_/jv —1-])

- 22X - N3
— n
htates, =0 J
andn,,__1=0
1
——f(n1, .., m, k)
J+1
n_l)N—r ny Tn_1 max(N —r—£,0)
or oy (e >
* *
bt MO M ST
T iy =m0 {or)

and ngy,..1=0

'P[n—l]((n;, 7n:n)/N - T) ' f(ll, k)

m—1

" * -_— * -_— * -— *
-pTOb(7 + Ny — N — Z (ni —n;)?nl Ty ey T — nm—laov P:
’ t=1

m—1

k=2.ni)

=1
max(N —r—k,0)

N—T nl m—l
s ys(Mersl ¥ Ty
n;_o n:n I—On —max(zm -1 "—- ")
+nm+nm_1—r0)

n
+%
all states r=0

>1

with nm,
and ng, 1 >0

PEN((n, .. n}) /N =7) - f(n, k)

m-—1

prob(r + ny, —nm — Y (n7 —n}),n] —n},..,n5_,
=1

*
— N1 m-1, P,

n Nenp-1 N (n—1)V-J
oy ¥ (?)%P&“”((nh...,nm)‘/N—j)

all states =0
with nm>1 J
and n,,_1>0

f(n, k)g(n, k) :
(V) A g1

>y

all states a=0
with nm>0
and ny,.1=0

a

72

1 a
: 1+ wait(ny, ., n + £, k
a+1 tz—__(:)[+ war (nl, y P+)]
n (n— 1)N-1-7 ML "mo
+N all ;:tes 1;) (T + 1) n'N n*=0 o "*Z=0 :
with nm>1 1= m—1
and n,,_1=0 Hm l(n'—n*)¢0

max(N—-r—k—1,0)

Z [n—l]((n;’ ’n:n)/N -r-= 1) : f(nv k)

-1
* - * — * - *
prob(r + 14+ n), — ny, — E (n; —ni),nT —n},..,n._, —nr_4,0,p,
i=1

m—1
£-%)
i=1
n TL _ 1 N-l-r 77 -1 max{N -r—k—1,0)
tﬁfihsi?;fil =0 nlm0 n:n 1_0 "—max(z::—l(n;——n?‘)

and ny, 1>0

Pr((nt, o0t) /N —r — 1)- f(n, k) - prob(r + 1+ nJ,

+nm+ng,_1—r-1,0)

m—1 m-1
- Z (n: - n:)’ nl_ - n;’ "'7n1_n-—1 - n:z—lvnm—l’ p, k— Z n:)
i=1 =1
n Z N—nfk—l (N) (n _ 1)N—1—j
N all states j=0 j + 1 TI,N
with ny,m >1

and ny,__1>0

P U((ny,) /N =1 — 7) - f(n,k) - g(n, k) ,
N-nm—k-1 _ n— N-l-a
> > (N 1) (—niN)_l——P["-ﬂ((nl,) /N = 1 —a)

all states with a=0 a
-1

n;=k

=1

Zwazt N1y ey N + 1, k)

a+1
(’I’l . 1)N——l—r ny 1
> ()—-;;Tv‘— 2 2
'ﬁlhst't:tegl r=0 n;=0 ":n—l=0
and ny,_3=0 H:’;;l(n..——n:)#o
max(N-r—k—1,0) [1
- Pr=U((nx, . .n*)/N —r—1)- —— - f(n,k
> (85, m) N =7 = 1)+ == (0,)

+nm—r—1,0)

m—1
prob(r+14+n; —ny — > (n] —nf),n] —n},...,nm_; — n_y,0,P,

=1

73

k=2 n)
=1
ity 1\ (n = 1)N-1-r ny - max(N ~r—k—1,0)
tgfihai;l::;l =0 ny=0 - n:n_1=0 bl -max(z _]1 ni_—n‘)

and npy_1>0 +nm+ngy,.q—r—1,0)

1
PP H((n],..,n0) [N =7 — 1) r1 J k) prob(r +1 +nf, —

m—1 m—1
- Z (nz_ - n:)’ nl— - n;’ ---’n;,,—-l - n*m—l, Nm-1,P, k— Z n:)
=1 =1
N-np—k-1 N-1—-j5
m N-1\(n-1 o . .
- 2 () e v -1)
all state> J=0 7 n

with ny,m>1
and ng,_1 >D

1
g T B) gl b

N-npm—k-1 \T _ 1\N-1-a
(N 1) (l—l)——P["-ll((nl, ey) /N =1 =)

2. 2

a%s':‘affs with a=0 a nN_l
n;=k
1
1 Zwazt(nl, o m + 1, k)
a
N-nm—k-1 N-1-r
™ N-1\(n-1) e
Y S (71y—mr—ﬂﬂmwwwm—hﬂ
all states with r=0 '
m=1

1=1 ni<k

1 m-1
l[f(nla oy T — 1+k‘— Z Niy N, + 7, k)
i=1
m—1
—f(nl,...,nm_l + k— Z n;,, Ny, — l,k)]

i=1

It is again true that f(n~,%) — f(n, k) = n,,~ for the states that have n,,_; = 0 and
f(n7,k) — g(n, k) f(n,k) = n,,~ for the states that have n,,_; > 0. This completes
the proof.

4.B Appendix: Expression for E(W") using Little’s Result

In this Appendix, we will prove by using Little’s result that when n > [E)m + m,

E(W™) = E P[”] ((n1,..,mm)/N) - n

all states

Our proof will be based on the following version of Little’s result that is stated and

T4

proven in [2, 7).

Theorem 4.7 Let L(z) be the number of customers present at time ¢, and define the

mean number L of customers present throughout the time interval [0,00) as

1
L = lim ! L{z)dz;

t—oo t Jo

let N(t) be the number of customers who arrive in [0,t], and define the arrival rate A
as

A= lim Et)

t—o0
let W; be the waiting time of the i ’th customer, and define the mean wailing time W
as

= lim — ZW

N—+00 n

If X and W exist and are finite, then so does L, and
L = \W.

Up to now we have been considering a time window with n slots. Requests are
allowed to occur within this window. Let us now consider what happens if we require
that each customer makes a request every n slots, i.e., if a customer makes a request
at the ¢’th slot, he also makes a request at the n + ¢’th slot, the 2n + ’th and so
on. The system starts operating at the beginning of the first slot and keeps operating
forever. If we consider n consecutive slots, we see that the arrival distribution is
the same as in the first n slots. Exactly N requests arrive at this arbitrary window
of n slots and they are uniformly distributed throughout this window. Therefore,
we can use the P ((ny,...,n,,)/N)’s as the probabilities that the system is at state
(n1y.ry n,_n) at any of the slots after the n’th.

When computing P((n,,...,n,,)/N) for the first n slots, we assume that the
system is empty in the beginning. In general this may not be true for an arbitrary
window of n slots. Since n > [Z]m + m, the initial state has no effect on the state

of the system at the last slot of the time window that we are considering. Therefore,

75

the probability that the system is at state (ni,...,nn,) at any of the slots after the
'n’th slot is just P ((ny,...,nm)/N). Similarly, the average wait stays the same after
the n’th slot.

In order to use Theorem 4.7, we need to prove that the arival rate and the mean
N

waiting time are finite. The arrival rate is & since we know that there are N arrivals
every n slots. The mean waiting time is finite for the following reason. The queue
empties at least once within a time window of n slots. This is because n > [—]]\ﬂ m+4m.
Therefore, none of the requests stays in the queue for more than n slots. Since the
waiting time of each request is bounded by n, the average waiting time is bounded
by n, too.
By applying Theorem 4.7 in our problem we get that
Z Prob(system at state (n1,...,nn)) Ny =

all states

]—Z—E(W).

Since the probabilities of the states and the average wait stay the same after the n’th

slot, we can ignore the first n — 1 slots and conclude that

E(W™) = S PY((ny, ey n) [N 0.

n
N o states

Our arguments here are however valid only if n > [&]m + m. Therefore, Theo-
rem 4.2 is slightly stronger. One example is the case m = 1, p = (0, 1). Theorem 4.2
says that n can be equal to N — 1 and the expression for the expected wait is still
valid. In that case, our proof based on Little’s result does not apply because the ar-
-rival rate is faster than the service rate and the queue for the system with customers

that make requests every n slots grows beyond any bounds; moreover, the average

waiting time is not finite.

76

Bibliography

[1] V.E. Benes, General Stochastic Processes in the Theory of Queues. Reading, MA:
Addison Wesley, 1963.

[2] R.B. Cooper, [Introduction to Queueing Theory, CEEPress Books, Washington
D.C., 1990.

(3] A.E. Eckberg, Jr., “The Single Server Queue With Periodic Arrival Process and
Deterministic Service Times,” IEEE Trans. on Communications, Vol. 27, pp. 556-

562, March 1979.

[4] A.E.Eckberg, Jr., “Response Time Analysis For Pipelining Jobs In a Tree Network
of Processors,” Applied Probability - Computer Science: The Interface, Volume 1,
R. L. Disney and T. J. Ott, Eds. Boston, MA: Birkhaiiser, 1982.

[5] L. Kleinrock, Queucing Systems Volume II: Computer Applications, Wiley Inter-

science, 1976.

[6] J.W. Roberts and J.T. Virtamo, “The Superposition of Periodic Cell Arrival
Streams in an ATM Multiplexer,” IFEE Trans. on Communications, Vol. 39,
pp. 298-303, February 1991.

[7] S. Stidham, Jr., “A Last Word on L = AW,” Operations Research, Vol 22, pp.
417-421, March-April 1974.

77

[8] A.K. Wong, “Queueing Analysis for ATM Switching of Continuous-Bit-Rate
Traffic-A Recursion Computation Method,” GLOBECOM 1990, 801.2, pp. 1438-
1444.

78

Chapter 5
Epilogue

In this thesis, we proposed a residential application for interactive video. After de-
scribing the service, we modeled it and proposed a network architecture that can
support it. The question that we considered was what the capacity of the main link
should be so that the customers receive a good grade of service. The measure of the
goodness is the delay that customer requests experience.

There are some questions related to this architecture that we didn’t consider. We
assumed that the segments that are used for creating the programs of the subscribers
are stored either in the main node or in the intermediate node. We did not explain
how the service provider is going to determine which segments are going to be stored
in the intermediate node and which in the main node. This is a difficult problem;
some initial attempts have been made in [2] but the problem is far from solved.

We asserted that popular material should be stored in the intermediate node. It
is not clear though what a good measure of popularity is and what level of popularity
justifies introducing more storage in the intermediate node rather than having larger
capacity in the main link. The answer depends heavily on the actual cost of storage
and capacity. We have not studied this further.

After it has been decided where each segment is going to be located, we can
compute the probability vector p that determines the service times of the requests.

This probability vector was very important in our analysis. We made some comments

79

on the form of p but it is clear that more work needs to be done for getting good
" estimates on p. It also needs to be determined whether p is actually constant in time
as we assumed or not. In a practical system, we may even want to make p depend
on the actual traffic. What we mean by that is that we may want to offer better
service when there are only a few requests but if the system gets congested, popular
segments may be éent to every customer so that the customers will not have to wait
for a long time. In that case the analysis becomes much more involved and it is not
cleaf that the expected wait can be expressed as a simple function of the probabilities
of the states anymore.

Another interesting problem is to consider different ways for selecting segments
that are going to be used for creating the program of a particular subscriber. One
simple approach has been proposed in [1]. A neural network is used for ranking
segments for each customer. Only the profile of the particular customer and the
keywords of the segments are taken into account. It may be better to take into
account profiles of other customers too, so that multicasting can be used more often.

There are many problems that need to be considered before interactive video
services can be introduced. Our contribution is that we proposed an approach for
analyzing such services. Although we used this approach for analyzing a particular
service, the only significant assumption that we made was that video information is
delivered in segments. We believe that this is going to be the case in many interactive
video applications, becauses it makes multicasting much easier. Therefore, we hope
~ that our approach will be used for analyzing a wide class of such services and that it

will stimulate further research and development in this area.

80

Bibliography

[1] E. C. Posner and P. N. Mouchtaris, “Interactive Video on Demand,” Joint FAW-
IEEE Workshop, Germany, September 1990.

[2] R. Ramarao and V. Ramamoorthy, “Architectural Design of On-Demand Video

Delivery Systems: The Spatio-Temporal Storage Allocation Problem,” ICC 91,
17.6, pp. 506-510, June 1991.

