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ABSTRACT _ ii

In this thesis, we study several models for traffic flow. Qur interest is in
finding periodic solutions and to study the effect of including a time lag on
the propagation of shocks through a line of cars. The periodic solution was
stimulated by a problem from water waves in which a periodic solution is
created in the unstable region of the parameters by connecting segments of
the growing solution with shocks. This results in a finite amplitude solution
in the region of instability. The analysis of this is presented and then applied
to a continuum model for traffic flow. We look for a smooth version of this
periodic shock solution by considering a car following model for traffic. Car
following models define the n** car’s velocity in a line of cars as a function
of the distance between the n** and n — 1% cars and are thus a system of
differential-difference equations which define the motion of the cars.

The model we study is attributed to G.F. Newell who found a transfor-
mation which makes the nonlinear equation linear. We discuss this exact
solution and in particular, look at the shock solutions. These solutions, how-
ever, do not include the effect of a time lag. When this is included, we have
the possibility of instabilities. We look at the shock solutions with the time
lag included numerically and find that after some critical value, the smooth
shock profile breaks up into oscillations about the final velocity state. We
modify the equation by modeling the time lag continuously and look at these
same shock solutions. We then ﬁnd periodic solutions to this in the form of
steady profile waves and compare the results with a continuum theory which

also has smooth periodic solutions.
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Introduction

Roll waves are a type of water flow in open inclined channels in which the
flow becomes turbulent. These roll waves depend on the resistance provided
by the roughness of the channel surface. If the resistance is absent, roll waves
will not form. Roll waves are considered any steady wave form, which is pe-
riodic in distance, that results from turbulent flow down an inclined channel.
What distinguishes these roll waves from bores is their fundamental depen-
dence on the friction resulting from the roughness of the channel surfaces. In
1949, R.F. Dressler proposed a solution to the equations associated with roll
waves. He found that roll waves arise from instabilities in the flow due to the
steepness and roughness of the channel. Small disturbances on the surface
of the water will grow into finite amplitude waves which propagate down
the channel. The analytical solution to this problem is found by looking for
a traveling wave solution to the shallow water equations augmented by the
Chezy formula. The Chezy formula is an empirical term which expresses the
turbulent frictional force. The solution is obtained by connecting segments of
the growing solution with shocks to obtain a periodic solution. The analysis
presented by Dressler is repeated in Chapter 1. Since the continuous traf-

fic flow equations also exhibit instabilities and are similar to these shallow



water equations, we apply the ideas of the roll wave solution to the problem
of traffic flow. The instability in traffic is based on a relationship between
the mean velocity and the time lag. The presence of the time lag is required
for instabilities to occur.

In channel flow, roll waves do occur and experiments have been done that
illustrate this. Roll waves in traffic are the stop and go waves that everyone
who drives on freeways is familiar with. These stop and go waves are a series
of waves which travel down a line of cars. That this is caused by an instability
may be a reasonable conjecture for the following reason. When there is a car
stopped on the shoulder of the freeway, in heavy traffic, there is usually a
traffic jam before the stopped car and much less so after the stopped car.
When a car is stopped on the side of the road, people turn and look as they
pass, causing them to slow down just slightly. The theory would suggest that
this small change in speed, due to one car, causes the following cars to slow
down even more until further down the line there is a traffic jam. Thus, it
seems plausible that the phenomenon of ‘roll waves’, or periodic waves, in
traffic exists.

There are two basic ways to deterministically model traffic flow. One way
is with a continuum theory. This theory determines the density and flow
of the traffic as continuous quantities in terms of location and time. The
density and flow can be thought of as averaged quantities which give overall
characteristics of the flow as opposed to precise motions of individual cars.
The second way to model traffic is with car following models. These models

assume that the velocity or acceleration of each individual car is determined



from some function of the headway — distance between consecutive cars —
and/or the velocit)} difference between consecutive cars at a time T seconds
earlier. T is then the time lag, or time that it takes for the driver to respond
to some change in front of him. The function of the headway or velocity
difference is usually based on some empirical data defining steady state values
for the velocity and headway.

In Chapter 1, we consider a continuum model for traffic. Since the ideas
we will pursue are based on the problem mentioned above from water waves,
we review the roll waves solution and then apply these ideas to a contin-
uum model of traffic flow. We then look at ways of smoothing out these
discontinuities both in water and in traffic.

In the second chapter, we study a particular car following model. This
model was presented by G.F. Newell in 1960 and is particularly interesting
because it is a nonlinear model for which there is a transformation which
makes the equation linear and thus has exact solutions. This transformation

- is possible when the time lag is zero. We study shock solutions of this model
and find that there is a striking comparison to Burgers equation. When the
effect of a time lag is introduced, exact solutions cannot be obtained and the
new feature of instabilities arises. We examine these instabilities and then
see how they affect the shocks that we studied when the time lag was zero.

In Chapter 3, we revise the model from Chapter 2 slightly by modeling the
time lag differently. We have instabilities, as in Chapter 2, and we see how
this instability affects shocks in this case and compare the results with those

of Chapter 2. We then look for a periodic solution in the form of traveling



waves. This changes the equation from a differential-difference equation to
a differential-delay equation. We linearize about a uniform state and find
the conditions under which periodic solutions are possible. One of these
conditions is that we are in the unstable region. We use this linear solution
as a starting point for a perturbation expansion and find the circumstances
under which we may expect periodic solutions. The analysis follows closely
the ideas for limit cycle solutions to differential equations without a delay. We
proceed to look at these limit cycles numerically and see how the character of
the solution changes as we vary the two important parameters in the problem,
the wave speed and the time lag.

In Chapter 4, we look again at the car following model of Chapter 2
and apply the perturbation analysis of Chapter 3 to this equation. The
perturbation suggests that there are periodic solutions but perhaps only for
a certain value of the wave speed (as opposed to a range of values).

In Chapter 5, we consider another continuum model for traffic flow which
has smooth periodic solutions in the form of traveling waves. We apply
the perturbation analysis of Chapter 3 to this model and then look at the
periodic solution numerically. We find that this continuum model provides
a bridge between the car following model and the continuum model with
discontinuous shocks of Chapter 1. .

We conclude by tying together the approaches to periodic solutions of
Chapters 1, 3 and 5 and making a hueristic comparison with one piece of

actual data.



Chapter 1

Review of Continuum Theories

in Traffic and Water Waves

In this chapter, we introduce a confinuum model for traffic flow and discuss
its stability. We then review the roll waves solution to the problem of turbu-
lent flow down an inclined channel which was solved by Dressler in 1949. The
periddic solutions which are found model, qualitatively, the effect of a series
of hydraulic jumps propagating down stream. Physically, the more common
phenomenon is a series of these hydraulic jumps which are not periodic and
not steady, they move at different speeds and hence, merge to form waves
with different amplitudes. The periodic solution is a simplification and gen-
eralization of this. We study the periodic solution in particular because of
its simplicity in comparison to the non-uniform case. In this thesis, we are
primarily interested in the problem of traffic flow. We present the channel
flow problem because it is the motivation for the approach we take to study
traflic flow.

After we look at the water waves problem, we return to the equations



for traffic flow and apply the ideas from the roll waves problem to obtain a
discontinuous periodic shock solution for traffic flow. We then discuss ways

to alter the equations of shallow water and traffic to obtain smooth periodic

solutions.

1.1 The Simplest Continuum Model for Traf-
fic

The simplest continuum model for traffic flow is the conservation equation:
pi+ 4z =0,

where p(z,t) is the density of cars per unit area, and ¢(z,t) is the flow of
cars passing a position, z, per unit time. For this simple model, we assume

that the flow is a function of the density alone,

q=Q(p).

The waves travel with speed c¢(p) = @Q'(p) and this equation can lead to
shocks as discontinuities which travel with a velocity

= @p2) — Qpn)
P2 — P

The subscripts 1 and 2 denote the state ahead and behind the shock respec-
tively. A simple jump between two uniform states is illustrated in figure (1.1).
This corresponds to driving in light traffic and suddenly, at the position, z*,
slowing down and driving through heavier traffic. Additional terms added to

this equation smooth out these shocks. We introduce a model which includes



Tetxy

U «—

% > x

Figure 1.1: A simple jump discontinuity.

higher order effects. The first effect we include is the dependence on changes
in the density, i.e., ¢ depends on p, as well as p: ¢ = Q(p) - vp,. The other
effect we include is that of a time lag. The equations are:

vet oo = —2(v = V(p) + £p2). '

The first equation is the conservation equation where v(z,t) is the velocity
and hence, pv is thé flow, g. The second equation is the acceleration, where
the quantity V(p) — £p, is the velocity the driver accelerates towards and 7
is a measure of the drivers reaction time. We write the second equation in

conservation form to illustrate the shock conditions:

(pv): + (-p;—z + EP)z = —%(pv - Q(p)),



where we have used the relation that Q(p) = pV(p). This set of equations,

however, also includes a different family of shocks with speed U defined by:

’Ul—U= Zﬁz‘
T M

UQ—U= Z&.

T P2
Notice that here, the shock speed, U, is always less than the velocity.
An interesting phenomenon in these equations is the appearance of linear
instabilities. To analyze the instabilities, we linearize about a uniform state
vo and po by setting v = vo + w, and p = po + 1, (vo = V(po)). Thus the

linear equations are:

1
(wy + vow,) = ——(w — V'(po)r + lrz)
T Po

Ty + vorz + PolWz = 0.

Eliminating w, we have:

, 0 0
re + (vo + poV'(po))re = vree — T(E + voa—x-)Zr. (1.2)

Recognizing the first order wave speed on the left hand side of equation (1.2),
we let co = vg+ poV'(po). To look for instabilities, it is sufficient to make the
approximation £ =~ —co& on the right hand side of equation (1.2) to obtain
the equation:

re 4 core = (v — 7(co = v0)* )
We know that v — 7(co — vo)? > 0 corresponds to stable diffusion and that
v — 7(co — v9)? < 0 corresponds to instability. Therefore, we get instability

if \/g < (co — vp). With the use of the shock conditions given above, we can



show that these instabilities develop into finite amplitude waves, analogous

to the problem in water waves with similar equations.

1.2 Discontinuous Roll Waves in Shallow Wa-
ter

We look now at the problem from water waves and review the roll wave solu-

tion. Figure (1.2) is a sketch of these waves. In water waves, the problem of

Figure 1.2: Roll waves down an inclined channel.

turbulent flow down an inclined channel leads to the shallow water equations
augmented with the Chezy formula:
he +vh, + hv, =0 (1.3)

2
vt + vz + ghy =gS—Cf1)h—. (1.4)
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Here, h is the height of the water and v is the velocity in the horizontal
direction. S is the slope of the channel, C; is the friction coefficient and g is

gravity. The shock conditions are:

—~U[R]} + [vh]} =0 (1.5)
1
—Ulhv)? + PR + Egh]f =0, (1.6)
where [f]? means the jump in f across the shock — the value of f behind

the shock minus the value of f in front of the shock — and U is the shock

velocity. The shock conditions are equivalent to:

ha(h h
U = oy + (2t Ra) g (L)
2h
hy — by gh2(h1+h2) 1/2
Vg = vy + . 1.8
2= v (R (18)

We look for steady profile waves by setting X = z — Ut. Using this in
equations (1.3) and (1.4) and integrating equation (1.3), the equations can
be written as:

v=U—% (1.9)

dh gSh® = C4(B — Uh)?

dx gh3 — B2 ’ (1.10)

where B is the constant of integration. Solving (1.9) for B, the denominator

of (1.10) can be written as:

gh® = B? = —k*(U — (v —\/gh))(U = v — \/gh).

Since U > v, U is always greater than v — \/gh. Thus, the sign of the
denominator depends on the sign of U —v—+/gh. Using the shock conditions,



11

we find that at the lower end of the shock; we have

gha(hy + hs)
U—-wv = VT > \/ghi,

and hence U — vy — \/gh, is positive. At the other end of the shock, we have

hi(hy + h2)
U—v2= 91222 2 \/—

and thus, U — v, —v/gh; < 0. Therefore, gh® — B? changes sign for h between
hy and h, and the denominator of (1.10) vanishes for A = (372)1/3 = h, inside
the interval [A;, h;]. Thus, the shock conditions require 2y > A, > hy. Since
we don’t allow waves with infinite slope, we require that the numerator of
(1.10) also vanish at A = h.. This restricts either U or B.

The numerator of (1.10) is

gSh® — C;U*h* + 2C;UBh — C; B2 (1.11)

For A, to be a zero of this, we divide expression (1.11) by & — k. and require

that the remainder be zero. This requirement gives the restriction on U:

gS

th

U=—:t

We take the plus sign since U = v + 2 7 and hence, U > /% The numerator,

(1.11), can then be written as

C - C
S(h — h){R? + (h, — ZLU?)h + ZLp3).
g5( R+ ( gSU) +3 2}

The roots of the quadradic, k, and ks, are then

ab_-{—clw h:t\/(Cg,U? he)? — Cs,fhg}.
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Substituting the value for U, we find h, and k; in terms of A, Cy and S:

has 10, VE; % (%P“) (1.12)

The shock conditions become:

B th(hl + h2) 1/2
e = ( oh: ye. (1.13)
Using (1.9), evaluated at state 1 and state 2, we have:
B
v = U- 7;1-
B
Vg = U - ‘}‘{2‘

So far, hy is determined in terms of A, and the rest of the parameters:
v1, 2, U, he, hy and h, can be expressed in terms of B. Equation (1.10) be-

comes:
S(h = ha)(h = hs)

h? + hh. + hZ
We see from equation (1.14) that if A = A, or hy, X must be equal to Foo.

hx =

(1.14)

Thus, the solutions are of the form illustrated in figure (1.3). If we are in the
unstable region, it can be shown that S > 4C; and hence, \/Z*_; < 3. From
this and equation (1.12), we see that h,, the largest of h, and A, is less than
h.. Thus, we piece together sections of the upper curve in figure (1.3), with
j—)}} always positive, to form a periodic solution. It can be shown (refer to
Dressler’s paper) that a periodic solution to this equation is not possible any
other way. This equation can be integrated to get X (k). Given this, we find
the wavelength A = X (hy) — X (k) which, in integral form is:

X (h2) h: k% + hh, + h?
dX = ¢ _dh.
/X(hl) h S(h —hy)(h — hy)



. G em— —— co—

13

Figure 1.3: Possible solution types for h(X).

Thus, the periodic roll wave solution is constructed with 2 free parameters,

he and py, say, although this is not the only choice. We see that for %lhc >0,

we must have 4C; < S which is the instability condition and the relationship

between the friction and the slope that is required to produce roll waves, i.e.,

too much friction or too little slope will result in no roll waves.

1.3 Discontinuous ‘Roll Waves’ in Traffic

Since the traffic flow equations, equations (1.1), are similar to the shallow

water equations studied in the previous section, we look for discontinuous

periodic solutions for this problem. The first equation of (1.1) is already in

conservation form. The second equation of (1.1) can be written in conserva-
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form as:
(p0)e+ (0" + Zp)e = —=(ov — Q).

From the conservation form of the equations, the shock conditions are:

—Ulpli + [pv]? =0

124
~Ulpvli + [pv* + =pli = 0.

'Ul—U= K&
T/
UQ—U: K'&'
T P2

As in section 1.2, we look for steady profile waves by setting X = z — Ut,

These can be rewritten as:

where U is the shock velocity. Consequently, equations (1.1) become

p(v—=U) = A = const (1.15)
(Q(p) — pv) (1.16)

Q=

14
—px +p(v=Ulvx =

Recall from the shock conditions that v > U so that A > 0. Solving for v in

(1.15) and substituting this into (1.16), we have:

do _pP*Q(p)—pU—-A
5 e PR (1.17)

Using (1.15), the shock conditions can be written as:

o (1.18)

v
‘;Ple = A% (1.19)
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Note that the denominator of (1.17) vanishes at p = p, = \/gA. We see that
p. is between p; and p,, and thus in the region of interest, since A% = £p1ps
and thus, p2 = pyp;. We require finite slopes in the profile of p, so the
numerator must also vanish at p,. As a particular model, we take the case
Q(p) = ap(B — p). This is the quadratic profile with 3 = p;, the jam
density. pn, is equal to the value of p where @ is a maximum, p,, = %ﬂ , with

Qpm) = %a,m = gm. Using this form for @) in equation (1.17), we obtain:
dp _ pPap’+(U-af)p+ A

dX 7 Lpr — A? (1.20)
which can be written as:

dX — 1 2(p—pa)(p+pa)’
where p, = \/%-A. Equating the numerators of equations (1.20) and (1.21),

we have:

U =af —alp. + /)

aVr
\/7 1
p=1[==
Ta
So far there is one free parameter — p, or A. In terms of p, equation (1.17)

can be written as:
dp _ pPal —2y/%
X~ v P+ Pa
Expressing A in terms of p, and ps, equation(1.19) and the shock velocity

can be written as:

v
—p1p2 = Q2pip;
-

U= —a(pe + ps — pj)-
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The shock conditions, equations (1.18), give v, and v, in terms of p; and p,.
The last relationship that we have is obtained from the requirement that the
solution be periodic. This implies that the wavelength, A, is related to the

other parameters by:

X(p2)
A= [ Max =2 [0 L1y,
X (p1) v Jo p*p — ps)

For roll waves in traffic, d%% should be negative since we expect the shocks to
jump from a low density to a higher one. This requires that p > p,. Recall
that the instability condition derived in section (1.1) was (co—vp) > \/g We
relate the parameters in section (1.1) to those of this section by noting that
co —vo = poV'(po). Using the relation pV(p) = Q(p) and the quadradic form
for (), we have V(p) = a(B — p) and V'(py) = —a. Substituting the value of
poV'(po) into the instability condition, we have apy > \/—f_ or po > i-\/g = pp.
So the instability condition is required for roll waves to occur.
The equation for X is
X =_2 / _ép_'*'ﬁ_dp,
vJ p*p—ps)

which integrates to

a P Db\ | PaPs
X =——[(pa + p»)In + +C.
sz(p b) ( P) ) P]

C is unimportant since it just fixes the origin on the X axis. The solution
is thus determined in terms of two free parameters. If we took the two free
parameters to be p; and p,, both U and p, are determined in terms of these.
Given particular values for p; and p,, p(X) could be plotted as a function of

X as in figure (1.4).
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Figure 1.4: Plot of p(X)

1.4 Smooth Roll Wave Solutions in Water

In water, something like discontinuous hydraulic jumps is observed. How-
ever, it is possible to smooth out these discontinuities to obtain a continuous
solution. This solution is a smoothed out version of figure (1.2). A contin-
uous version of these shocks can be obtained in two ways. Dressler looked
at the full two-dimensional water waves problem and took a perturbation
approach to get a continuous periodic solution. Needham and Merkin added

an eddy viscosity term to the shallow water equations that were presented
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in section (1.2). Dressler takes the full equations for water waves:

Ug + v, =0

U + uUug + vuy, = ——;pz

Uy + UVy + VU, = —=p,

Vp = Uy

with boundary conditions
M+ uny =v at  y=1
p=0 at y=19
udy, —v =20 at  y=d(z),

where u(z,) is the velocity in the horizontal direction, z, v is the velocity in
the vertical direction, y, p is the pressure and p is the density. In the boundary
conditions, we have that 7 is the surface displacement and d(z) defines the
bed of the channel. Dressler contends that it is possible to augment these
equations in such a way that if a perturbation expansion for shallow water
is déne on the augmented equations, with the vertical height of the water

equal to

YO4 ¥t ...
and the horizontal velocity:

u=U+elU'+ .-,
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the 0% and 1* order equations alone will give exactly the equations that
Dressler used to construct the periodic shock solution. That is, the friction
term, C fu—:, will only come into the 0** and 1°t order equations of the pertur-
bation problem and the higher order equations will not include any friction
terms except as part of the 0% order solution. So, the higher order equations
will be the same, formally, as those of the expanded, unaugmented hydro-
dynamic equations. Thus, to 0** order we have the steady solution for the
horizontal velocity that was obtained in section 1.2, and the vertical height,
Y? is constant. We find from the 1° order approximation (which can only be
found after looking at the equations of 2"¢ and 37 order) that Y is linearly
related to U! and that Y can be expressed in terms of the cn function. Thus,
a continuous periodic solution is found.

In their alternative view, Needham and Merkin add on an eddy viscosity
term to the shallow water equations from section (1.2). They looked at the
equations:

he + (hv), =0

: 2
vy + vy + ghy, = g5 — Cf%‘ + VoUze

and showed that a periodic solution could be obtained.

1.5 Equations for Smooth Roll Wave Solu-
tions in Traffic

In traffic, higher derivitives correspond to Needham and Merkins approach.

Discrete equations in the form of car following models have often been used.
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A general car following equation is given by
v(t+T) = G(h,)

where v,(t) is the velocity of the n™ car, h,(t) = s,_1(t) — s.(t) is the
spacing between two consecutive cars with s, equal to the position of the n'

car and G is a function of the spacing. These equations can be approximated

o

Car Carcr
n n-1

AT ST

Figure 1.5: Diagram of car following.

by continuous differential equations by an expansion of the spacing between
consecutive cars that appears in the discrete equations. If this expansion is
cut off appropriately, we have an equation similar to Needham and Merkin’s.

We write the velocity and position as continuous variables:

vu(t) = v(&n,t)
Sn(t) = S(é‘m t)
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where £, is a label and equals the position of the n** car at ¢ = 0. The

discrete equations become:

V(n,t + T) = G(s(én-1,1) — 3(én, 1))
ds
%(‘fmt) = v(fn’t)'

If the cars are in a uniform state to begin with, then ¢, = —nA¢ where
A€ = h,(0) is the same for all n. In particular, A¢é = G~ !(vg), where v
is the uniform flow. In general, £, is just s, at ¢ = 0. However, we are
interested in small perturbations from a uniform state, so we let ¢, = —nA¢
with A constant. This substitution yields

v(—nAE,t+T) = G{s(—(n — 1)A{, t) — s(—nA¢, 1)}
%(—nA{,t) = v(—nA&, 1)

We now expand s(—nA¢ + AE,t) about —nA¢:

(1.22)

s(=nAE + AL, 1) = s(—nAE, 1) + Abse(—nAE, 1) +
%(Aﬁ)%sé(—nﬁﬁ,t) e

Therefore, the difference s(—(n — 1)A¢,t) — s(—nA¢,t) becomes
1
(Af)se(=nAL,t) + 5 (A see + -+

If p, defined as %, is the density of cars, then in a Lagrangian description,
we have that for a fixed time, to, p 8¢|,=y, = p 63|¢=: which can be written as
& = i;? = s¢. We choose py = ALe and let { = —nA¢. We expand v(¢,t + T)
for T small in some sense and use this together with the expansion for s(£ +

A¢,t) — s(€,t) in equation (1.22) to obtain:

o(6,1) + Toi(€, 8) + %vn(g, Dt =
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1

d
G(= + 06—
p

¢ p

1

A= (=) +-+)

1
2
ds

a(gv t) = U(f, t)'

we now expand G(u) for u near 3:

d 1 1
FOH106) +

2y ey
5288 (p))+ ]G(p)+ ,

G(w) = G) + [50¢

and write this as:

1 1 d
G(;) + §A§E

l)G’( 2+ (aeree )(j‘i(i))u

1d21 1

Ed—ﬁ(;)G (;)] +

(

If we keep terms up to and including order (A¢)? on the right, then we
have an equation with the desired higher derivatives. If we choose some large
number of cars, IV, then we are assuming that A¢ is small in comparison to
the total distance over which N cars are stretched. That is m% < 1, so that
the approximation is good for a large number of cars. We are also assuming
that T is small compared to some typical time scale.

In view of this expansion, we see that the equation v,(t+7T) = G(h,) can
be viewed as an equation with an infinite number of derivatives. We expect
these higher derivatives to smooth out the discontinuities in the first order
continuous equation. Thus, in Chapter 3, we look for continuous roll wave

type solutions from this type of equation.



Chapter 2
A Discrete Model

As noted earlier, one general form for car following models is:
valt +T) = G(ha(2)) (2.1)

where various choices for G have been studied. In general, car following
models give the velocity (or acceleration) of a car at time t as some function of
the headway (distance between front bumpers of consecutive cars) evaluated
at a time T seconds earlier. Acceleration models also include dependence
on the velocity difference between consecutive cars. The simplest forms of
these dependencies were studied initially. Small deviations from a uniform
state were studied by R.E. Chandler, R. Herman, and E.W. Montroll in 1958
by considering the acceleration as a linear function of the velocity difference
and headway. However, their experiments showed that the acceleration was
more sensitive to the velocity difference than to the headway, so the headway
dependence can be dropped. This leaves a perfectly integrable equation in
the linear case and leads us back to considering equations of the form (2.1).

Linear models have been studied in some detail but not much has been done

23
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on nonlinear models. Nonlinear models in general illustrate more interesting
phenomena and have the potential of illustrating effects that linear models
do not contain at all.

The nonlinear model proposed by G.F. Newell that was alluded to earlier
has the great advantage that it has exact solutions. Aside from that it has
the properties that the shape is approximately correct for the steady state
data, it gives what is expected at zero velocity and at infinite headway, and

it is a fairly simple model. The equation is:
- Aln
, n(t+T) = ve(n)(1l — e?;f:f[hn(t)—dn])’

where vy(n) represents the n'* car’s free speed, d,, the n'* car’s spacing
when all the cars are at rest, and A(n), the slope of V(h) at zero velocity.
For simplicity, we study the case where A and v; are constant; independént

of n. d, can be eliminated from the equations by setting

yn(t) = xn(t) ot kzi: dk.

Notice that letting d, be a function of n allows for different size cars. Since
it can be eliminated from the equation, there is no loss in taking it to be a

constant, L. This is accepted in the following.

2.1 CaseT =0

Solution for T = 0 were obtained by Newell. The key step is that the

transformation

2alt) = ¢ "0
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linearizes the equation exactly. For v,, we have

dz
vn(t) = id%’tﬁ - —EAI%
This transformation gives a linear equation in z,:
We can non-dimensionalize ¢ by letting 7 = At and the equation becomes
dz,
T + 2Zn = 2

where

This solution is just the uniform flow:

v, (t) = pus
ha(t) = 337—1(11) —za(t) = ¢ - L',

In Newell’s notation, p = 1 — a.
If A and vy are left as functions of n, the transformation still yields a

linear equation, but the simplicity of the solution is lost.

2.1.1 Shock Solution

Since the z, equation is a linear equation, any superposition of these is also
a solution. If we put two of these together, we get a shock profile for the

solution v,(t). We add two and have:

2y = e~PITHan 4 o-p27tan,
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Therefore, the velocity, v,, is:

v (7-) _ ple”””""“" + p2e—p27'+q2n
" T emmiTtain + e—P27ta2n

which, by rearranging the exponentials appropriately can be written as:

ve 1 1 1
Un(t) = 7"{5(101 +p2) = 5(p2 —py) tanh(5(p, —p)X)}.  (22)
Here,
X =At—-An
and =
A=2-0 _ log(3=22)

P2— D P2—DM .

The corresponding y, is then

(b1 + p2)t = Infeoshl3(ps ~ )X}

[N

Yn(t) = %(

The state ahead is <Lp;, and the state behind is *£p,. In Newell’s notation,
p1 =1—«aand p; =1 — S. See figure (2.1).

Newell also solved the equation by generating functions, where the general
solution is given in terms of the displacement of the lead car and the initial
displacement of all the cars. He then looked at the special case where the
lead car decelerates instantaneously from a velocity v, to a new velocity
vy and until ¢ = 0, all the cars are traveling at speed v;. The solution to
this can be written in terms of Gamma functions. Newell does asymptotics
on this for large n and shows that the velocity profiles of the cars tend to
the same solution, ( 2.2). Notice that v, is a function of 7 — nA alone and

otherwise independent of 7 and n. The n®* car has the same velocity profile



Figure 2.1: 1-shock solution for T' = 0.
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as the (n — 1)* car at a time 4 later. Whereas in the simplest continuum
theory discussed in the first chapter, the shock is discontinuous, the discrete

equations give a smooth shock and give the details of the motion through it.

2.1.2 Expansion Wave

Newell also did the case where the lead car accelerates from a velocity v,
up to a velocity v, which we would think of as an expansion wave. He does

asymptotics for large n and obtains the velocity

vi(l—a) ifr<z=t

o

Uy ~ ’Uf( _n%I) ifﬂ;—1'<T<nTzl

ve(l—=8) ifr> 15—1
Notice here that each individual section is a solution to the equation. The two
constant states are just the simple solutions shown earlier, and the middle
case can be substituted into the equation for v, and seen to satisfy the

equation with
‘ (n —1)!

T, (1) =z, + ke In( " )-

A
The corresponding z,, for this is
e=(1=c)r—in(a) jf ; ¢ n=1

A
z(1) ~ (22 if 2=l <7<

Fn—1

e~ (1=B)7=n(B) if 7 %l'

3
Q(l
—

Notice that just as in Burgers equation,
Ct + CCr = VCys,

where the transformation

¢ = —2v(log ¢).
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transforms the equation into a linear one, here also, a logrithmic transfor-

mation yields a linear equation. Similar to ¢ = ——21/%, we have for Newell’s
equation that v, = —3;\1-(’7';)—' The solution also looks similar to that of Burg-

ers equation. We saw earlier that the sum of two simple solutions gave the
shock profile. If we add three of these solutions together, we get interacting

shocks just as in Burgers equation.

2.1.3 Multishocks

For three of these simple solutions, we have that

vy ple"””""“” + poe~P2Ttan o pae P37
'Un(T) -7y —-p17HqIn —paT+qan —p3T4qsn
A e PTHan L e—p2THRn L e—P3T+es

We want to see in what regions of (7,n) space each exponential dominates.

Lets call f; = e7?7+%"  First we look for where f; dominates. We rewrite v,

as :
L2
vg Prt+pay + psd
\vn(T) — { 1 + fl + fl }
f
, : . N e
Each ‘};- can be written as e~ ?i=P)(7=4iin) where A;; = %:——q-’- which is %(%_;?_)'

Notice that A;; = Aj; and also that A;; > 0 since for pi > pj, T2 1 p . > 1. Thus,
the numerator is positive and, by assumption, the denominator, p; — p; is
positive also. For f; to be donﬁrﬁant, we require the other exponentials to

decay. This means that 7 > Asn and 7 > Ayn. Looking at

log 1-p;
Ai(p) = _(1;1’2,
P—Di
we can see that this is an increasing function of p, so that for p3 > p,, we

have that A3 > Ay;. Hence, vy ~ %\fjpl for 7 > Azn.
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Next, we find where f; dominates. We write v, as

vy Pl‘% + P2 "1"1031:2
S Li1+d )

vn(T) =

Again, for f; to dominate, the other exponentials must decay. This is true
for 7 < Ayen and 7 > Agn. Since A;(p) is an increasing function of p, we
have that As; > A;2, so the only way for 7 to be between Asn and A,n
is for n and hence 7, to be negative. Thus, for Azn < 7 ’< Ajon, we have
Ua(T) ~ Ejﬁpz-

Following the same reasoning for fs;, we find that for 7 < Asn and
T < Aszgan, we have:

T<Azn ,n>0
vn(7) ~ \P3 for {7‘<A32n ,n<0

Graphically, we draw the 7 —n plane in figure (2.2) showing the regions of
different velocities. Since we have a smooth solution, these lines in the 7 — n
plane do not represent discontinuous shocks, rather there is some transition
region around these lines where the solution is changing. This same type of
solution is seen in Burgers equation. This merging of two shocks into one
can also be seen if you directly compute the car following equation with the
lead car’s velocity set to the sum of two hyperbolic tangent curves which

represent the three velocity states:

w(t) = 252 = L= tann(C(t - D)) - 2

tanh(C(t - FE))
and initially have all the cars moving at the speed v;. A sequence of cars
following the lead car is shown in figure (2.3). We see that the two shocks,

from v, to vy, and v, to vs, merge into one shock, from v; to vs.
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u=U;
Ay

T> AN

Figure 2.2: 7 - n plane.
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A superposition of k of these simple solutions:
k
2z, = Ze—m‘r+q.‘n’
=1

would then give for v,

_ vy prePrTtan Loy pre PrTHan
v"(T) =7y -p1T+q1n —PrTHEn
A e~PniTtan 4 ... | e—prTtHax

’

where p; < p; < -+ < p. This solution has exactly the same structure as

the solution to Burgers equation with z replaced by 7 and t replaced by n.

2.2 CaseT #0

So far, we have only looked at the case where 7' = 0. When T # 0, we are
not so fortunate as to have a transformation that makes the equation linear.
In this case, the transformation that made the equation with 7' = 0 linear,
yields the equation:

1404T)  zua(?)

N+ T) - m(t)

which is not linear. As Newell pointed out, the solution could be constructed

by integrating the equations consecutively but this alone sheds little light on
the characteristics of the solution. Asymptotics for small T' can be used and
some particular cases have been done by Newell. However, since computers
are easily accessible, once we have some interesting cases to study, the solu-
tion can be obtained numerically. The important new feature with T # 0 is

the possibility of instabilities which are not possible if T = 0.
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2.2.1 Instabilities

Instabilities do arise for T' # 0. To analyze them, we look at the linearized
equation. We start with a car following equation of the form (2.1). There
are two types of stability to look at. One is stability with respect to time,
that is, whether two cars collide as ¢ — co. This analysis was done in a
paper by Herman, Montroll, Potts, and Rothery in 1958, and is done by
taking the Laplace transform of the linearized equation and analyzing the
properties of the solution from the singularities of the transformed solution.
To linearize the car following equation stated above about a uniform state,
v =1y, h = G7}(vp) = ho, we set z, = vot + y, + z,,(0). Substituting this
into the car following equation, expanding G about hq¢ and linearizing, we

have the equation:
?]n(t +T) = a[yn—l(t) - yn(t)]a

where a = G'(ho). Herman et al. determine that the acceleration, velocity
and headway of the n* car will have the following properties based on the
single parameter aT'.

1.) For oT > %7(', the motion is oscillatory with increasing amplitude.

2) For oT = %r, the motion is purely oscillatory.

3.) For % <al < %W, the motion is damped and oscillatory.

4.) For oT < 1, the motion is damped and non-oscillatory.

The second type of instability has to do with the character of the accel-
eration, velocity and headway as a disturbance propagates down the line of

cars, i.e., if a small disturbance is created near the front of the line, we want
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to know if it grows, decays or stays the same as it propagates down the line of
cars. We are looking for linear instabilities now, so the possibility of finding
stabilized growth (limit cycles) is ruled out at this point. To find this out,
we again go to the linearized equation. We set y,(t) = f"e* and the linear
equation becomes

e“Tiw = a(= - 1).

Solving for f, we have:
a

f= a + wewT’

For stability, we require that |f| < 1. The modulus is then:

o?

I =

a? — 2wasinwT + w?

and the requirment that this to be less than 1 leads to the condition
2asinwT < w.

If sin wT is negative, this is always true. If sin w7 is positive, then we require

. . . 1
a < 5525, the smallest value for which is 5%. Therefore, we must have

ol < % for stability. Notice that for a7 in the range of -;- to %71‘, we have

a solution which is linearly stable in time but unstable in n. That is, the
velocity of the n** car will decay in time but the amplitude of the oscillations
will grow from car to car. Also note that if T = 0 or is small enough, the
solution will always be stable in time and in n. Since a = G’ (ho), it will
be different for each steady state velocity v and since in general, G(hg) is a
decreasing function of Ao, it will be the smaller speeds which will be unstable

for a fixed reaction time 7.
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2.2.2 Shock Velocity

We find the shock velocity independent of the model and the reaction time
T. We do this here since the value is verified in the next section for the
different cases studied. We assume a shock profile where to the left of the
shock, all of the cars have velocity v; and headway h;, and to the right, v,
and h;. We look at a piece of the shock profile in figure (2.4) and assume the
shock moves with speed V to the left. We consider a car located a distance
z; from the left boundary. In time 6t the car moves a distance v;6t to the
right, and the boundray, moving with the shock velocity, moves a distance

Vét to the left. For this car to enter the shaded region, we require
z, — Vét = v ét.

The number of cars in the distance z; is #, which in terms of V is E‘,—fl—‘-’-&t.
This is the number of cars entering the shaded region. Similarly, we look at
the cars in the distance z, and see that for them to pass out of the shaded

region in time ¢, we must have
Ty — Viét = v25t

and the number of cars which pass out of the shaded region is == EZMLV&.
The number of cars entering must equal the number of cars leaving and thus,

we have the relation
(%] h2 hatl %)) hl

hl—hz

The velocity relative to the cars in state 1 is

V =

v — U2

hy = hy

T)1+V:h1
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Figure 2.4: A piece of the shock profile.
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This has velocity dimensions and we would like to have the shock speed in
terms of number of cars per second. This is l’-‘hlﬂ = U and we have

vy — V2
U_..

T hy—hy
This checks with the shock solution obtained in section 2.1.1. We also check

(2.3)

this relation in the numerical calculations.

2.2.3 Numerical Studies

Because the introduction of non-zero T indicates that instabilities can occur,
we investigate what happens to the solution with T now included. We carry

out numerical studies for T # 0 for Newell’s model:

A
—;(hn—L)

v(t+T)=vs(l—e )

Because of the time lag T, v, must initially be given for a range of ¢:
t € (-=T,0). We chose to let v, = vy for t € (=T,0) and then let the lead
car produce some disturbance after ¢ = 0 and watch how this disturbance
propagates down the line of cars. Since z,_, and z, are known T seconds
earlier, v, ({+7T) can be computed immediately. We therefore march forward
~in time evaluating v,(¢) at each step based on the values of z,_; and z,, at
time ¢t — T'. To make this easier, we choose At such that T is an integer mul-
tiple of it, T' = mAt. To obtain the values of =, at t, we add to the previous

value of z,,, At times the average of the current and previous velocities, i.e.,

Za(t) = za(t — At) + %[vn(t) +on(t — At)).

The disturbance that we study is that the lead car, initially at velocity vy,

slows down smoothly to a speed v; < v;. We do this for various values of
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a;T by keeping o, ﬁxéd, which corresponds to v, fixed, and varying T'. o,
is the value of « evaluated at vy = v,. We also keep o fixed with oy < ay
and our choice of T keeps oy T < 1/2.

We first see what happens when T is zero. The solution we obtain should
mimic the asymptotic result obtained by Newell. Since we know the solution
for T equal to zero, this case provides a check on the numerical procedure as
well. Giving the lead car the actual shock solution profile gave each car down
the line that same profile. This is expected since it is an exact solution. We
give the lead car a velocity profile in the form of a hyperbolic tangent with
the width and center adjustable. When the velocity profile of the lead car is
very steep, we see that the successive velocity profiles spread out down the
line of cars (the velocity profile of the 50" car was steeper than that of the
100%*). The velocity profile of car number 100 was almost identical to the
asymptotic shock solution but was slightly steeper.

We then increase T from 0, using the shock solution for T = 0 as the lead
car’s velocity. As a,T increases, the velocity profile steepens and the shock
width narrows. The solution appears to be steady — car numbers 50 and
100 have almost the same profile. Figure (2.5) shows car numbers 50 and
100 for ;T equal to .1, .2, .3 and .4.

When a,T reaches 1/2, we see oscillations about the final veloéity which
die out in time (see figures (2.6) and (2.7)). We continue to increase a,T
slowly. Figures (2.6) and (2.7) show that although the amplitude of the
oscillation grows initially, the solution stabilizes and in fact looks to be a

steady profile solution. Each car down the line repeats the same velocity
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profile as the car in front of it at a time { later. We see this steady profile
solution for a,T < .56 (figures (2.8) and (2.9)). We also see that as a,T
increases, the amplitude of the oscillation increases.

When a,T' = .56, we no longe;' see steady profile solutions. The amplitude
no longer stabilizes, but oscillates in n, see figures (2.10) through (2.15).

We call the amplitude of any one profile the amplitude of the largest
oscillation. So far, the largest oscillation has been the first oscillation. For
asT = .56, we see that the amplitude of the first oscillation decreases at
times giving the other oscillations more weight. Figures (2.10) - (2.15) show
clearly that the solution is no longer a steady profile solution. We run this
case for many more cars and see that this shifting of weight of the oscillations
continues until some of the cars have profiles in which the second oscillation
is the dominant one rather than the first. We also see here that the amplitude
is becoming quite large in comparison to the cases for a,T" < .56.

For greater values of a;T", we see this eventual growth in the amplitude
sooner and thus, we see a crash sooner. When the headway gets below a
certain value, we call this a crash and the program is stopped. Figures (2.16)

- (2.19) illustrate this growing solution for a;T = .57.

We see that when a»T is not too large, there is growth in n but it is either
bounded or the growth is so slow that it cannot be noticed. Eventually, for
ayT too large, the oscillation continues to grow and becomes large enough
to cause a crash. We note that the stability analysis for large time implies
that we should see oscillatory solutions which decay in time and we do see

this. Perhaps this is why we mainly see the first oscillation grow in n - the
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growth in n must overcome the decay in time for the secondary oscillations
to grow as n increases. We also check the shock speed U. This is checked
from the distance between consecutive velocity profiles. This distance should
be % and we find that it fits the theory quite well.

Since we appear to have found traveling wave solutions, we look at the
traveling wave problem to assess the types of solutions that are possible.
We change variables to look at variations about a uniform state, v, Ao, by
Ta(t) = vot — nho + ya(t) and look for traveling wave solutions by setting

£ =Ut—n, g(£) = ya(t) in equation (2.1) to obtain the equation:
vo +Ug'({ +UT) = G(g(§ +1) = g(€) + ho).

We linearize the equation aﬁd normalize U and T by a = G'(h), % =W

and o = 7, to obtain

Wg'(§+Wr)=g(£+1) - g(é).
We look for solutions of the form g(¢) = e*¢ and find that A must satisfy
WAeM™ = e* — 1. (2.4)

We let f(A) = WXe*™ and h(\) = e — 1 and sketch the two sides of
equation (2.4) in figure (2.20). Since the slopé of f at the origin is W, the
type of intersection we will have depends on whether W is less than or greater
than one. We know that U = 2= from section 2.2.2. Therefore, for the

velocities we have chosen, we have that W = % = .7581 which is less than

one.
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Figure 2.20: Sketch of the two sides of WAe’™ = ¢ — 1 as functions of A

for W<1.

For W < 1, we have three types of intersections. For the first type, we
have two real roots, both negative. This corresponds to an exponentially
decaying solutions for ¢ increasing in the positive direction. The second
type is no intersection at all, or purely complex roots. This corresponds to
oscillatory solutions which decay or grow in £&. The last possibility is that
of a double root for A negative. Given a value for W, we can find the value
of 7 = 7" such that we have a double root. For 7 < 7%, we have decaying
solutions with no oscillations. For 7 > 7*, we have oscillatory solutions
which either decay or grow. The numerical results indicate a solution which
decays as t increases and hence, as £ increases in the positive direction. Since
the two real solutions are negative, our numerical results suggest that these

correspond to small values of 7, 7 < 7*. Thus, for 7 > 7*, we expect that
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there are complex solutions with negative real part which corresponds to the
numerical results of decaying oscillations discussed earlier. |

We proceed now to find the value of 7* for which equation (2.4) has a
double root. For a double root, we have that equation (2.4) and its derivative

are satisfied. This leads to the pair of equations:

Wr = 1 1

i pape Sl y (2.5)

WA = ¢ — 1. (2.6)

Substituting the value of Wr from equation (2.5) into equation (2.6), leaves

an equation in terms of A alone:
—_
We e = et — 1.

We solve this for A by Newton’s Method and find A = —2.82 and by substi-
tuting this into equation (2.5), we find 7* = .38. We see in figure (2.5), that
for 1 = A4, thefe are no oscillations, but, for + = .5, in figure (2.6), we do
have oscillations. Therefore, visible oscillations start for 7 between .4 and .5.
This theory we have presented suggests that oscillations begin for 7 > .38

and this is approximately what we see.



Chapter 3
A Revised Model

In chapter 2, we modeled the reaction time discretely. This implies that
the driver Waits exactly T' seconds after some change in headway occurs
before he/she adjusts the velocity. It seems plausible to consider a continuous
reaction time. This leads to a model in which v,(t + T) is replaced by
vn(t) + T0n(t). This is also the first two terms of the Taylor expansion of
Un(t+T) for small T. This method of modeling reaction times is used in other
contexts as well. As one example, the relaxation time in polymers is modeled
this way. To illustrate how this models the reaction time continuously, we

look at the equation

0a(t) + Ton(t) = k.

The solution is

va(t) = k(1 — e'%t) + Ae™ T,

where v(0) = A and v(co0) = k. The parameter T here gives the time that it
takes for the velocity to be within, say 1/10 of k¥ and hence gives the reaction

time continuously. Noting this and the slim range of aT for which we found

39
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stable solutions to the car following equation in Chapter 2, we came to the

view that the revised model:
Una(t) + T0,(t) = G(zpoy — Z,),

where G is the same as in the previous chapter, was a reasonable model to
consider. We expect there to be similarities in the solution to this equation

and in that of Chapter 2 since for T small, v,(t+T) is close to v, (t) +T0,(1).

3.1 Stability

Using this modified equation where

- (h-L)

G(h) = vy(1—e )

we find that the stability analysis for large n gives the same constraint that
we obtained in Chapter 2. We let z,, = vot + y, + z,(0) as before. We then

let y,(t) = et f™ and substitute this into the linearized equation:
yn(t) + Tiin(t) = afyn-1(t) — Yn(t)]

to obtain

w—Tw? = a(l —1).

Solving for f, we have
a

a+iw — Tw?’

f=

For stability, we require |f| < 1. This leads to the constraint

2aT < 1+ T4,?
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which, to be true for all w requires that o7 < 1/2. When o1 > 1/2, there
will be a range of w where the solution will be unstable. This is so for

w € (0,w*), where
2 22T -1
YETT

This says that long waves will be unstable.

3.2 Numerical Studies for Shock Waves

We compute the solution to the full nonlinear equation with the same initial
conditions, velocities and motion of the lead car as in Chapter 2 and find very
similar results. A difference in the computational method arises because we
now have a second order differential equation. We integrate this with a
Runga-Kutta method and only need the velocity and position at ¢t = 0 to get
started.

We first look at the case where a,T is less than 1/2. For a7 = .1,
we see that the solution is almost identical to the solution in Chapter 2 for
the same value of ayT. As a,T increases, we see that the solutions of this
chapter are consistently not as steep as the solutions of Chapter 2 and we see
steady profile solutions here as well. Another feature that we notice is that
for a,T = .4, the solution has already begun to oscillate. This was not so
in Chapter 2. If we repeat the analysis of section 2.2.3 — look for traveling
waves, linearize the equation and look for solutions of the form e** — we find

that the equation A must satisfy is:

WA+ WirA2=¢* — 1.
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We find that the double zero occurs for A = —1.82 and 7 = .28. We see
oscillations for 7 = .4 and thus visible oscillations begin for 7 between .3 and
4 and the theory appears to be consistent with our numerical findings. The
cases for a;T < 1/2 are plotted in figure (3.1) for ;T equal to .1, .2, .3 and
4.
We see here that, as in Chapter 2, the solution initially grows in n but
stabilizes rather quickly. Figures (3.2) - (3.6) show several cases where the
solution settles to a steady profile, as it did in Chapter 2. Analogously,
we find that when a,T is too large, the solutions do not settle to a steady
profile solution. At a,T = .61, figures (3.7) - (3.10) clearly show that the
profiles are not the same.  The value of o, T which is too large to obtain
steady profile solutions, a;T = .61, is a higher value than in Chapter 2 and
correspondingly, we find steady profile solutions with larger amplitudes than
those of Chapter 2. We also see in figures (3.11) - (3.12), where a,T = .65
that the amplitude grows quite quickly and the solution does eventually crash
(this is not shown) just as in Chapter 2. We see that although the amplitude
is growing in n, the velocity profiles also oscillate in n and allow for different
peaks to take on the maximum value. Again, we check the shock speed U
and find that it agrees with equation (2.3). One benefit of this version is that

the cars do not crash as readily as in the model with discrete 7T'.

3.3 Periodic 'Solution

We now investigate whether there exists a smooth periodic solution to the

car following model of this chapter similar to the one constructed with shocks
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from the continuous traffic equations of Chapter 1. We start by looking for
a periodic solution to the linearized problem. We linearize about vy and &g

as before and let z,, = y, — nhg + vot. The linearized equation is:
Yn + T9n = a(yn—l - yn)-

We look for steady profile waves by setting x = Qt — un and y,(¢) = 9(x)
and find the equation for g(x) is

Q' (x) + Q°Tg"(x) = alg(x + 1) — g(x)]-

We let w = g—, and 7 = aT, to normalize the equation and obtain

wg'(x) + w'tg"(x) = g(x + 1) — 9(x)-
We now look for a solution of the form g(x) = X, and obtain the relation

2

w—wr = e'¥ — 1.,

Separating real and imaginary parts, we have

w=siny

w?r =1 ~ cos .

This determines w and x in terms of 7:

w=sinpy

l1—7

cos p =
-

Thus, we do have a periodic solution to the linearized problem. Notice that

for p ro be real, 7 must be greater than %, l.e., 7 must be in the unstable

region.
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3.3.1 Perturbation Expansion

We use this linear solution as a starting point for a perturbation expansion
where the small parameter is the amplitude of the waves. We expand ¢, u

and w in the typical way:

9(x) = €g1 + €*ga + -
p=po+ pg + -
w=w0+e2w2+---.

When we apply the perturbation expansion to the equation, we find that
there is a term on the right hand side of the equation at the second order
which leads to solutions which are not periodic. This arises in other problems,
such as water waves, as well. It is resolved by assuming a deviation from the
mean velocity or headway of order €%. In our case, we will assume a deviation
in both the mean headWay and velocity and look at a particular case later

on. Therefore, back in the original equation, we let

Zn(t) = yn(t) — n(ho + D) + (vo + C)t
x =8t — un
yn(t) = g(x)

and then obtain the modified equation
Vo C ’ 2 1
— T 5 twg () +wird"(x) = =Gla(x + 1) = 9(x) + ho + D.

We again look for small amplitude waves by letting

g(x) =€g1 + €¥g2 + - --
p=po+ €yt
w=wp+ €y +---
C=eCyt-
D=eDy+---,
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and expand G about hy . When we do this, we find that we must also expand
g(x + 1) about x + po. When this is included and we equate like powers of

€, we obtain:

60 i Yo = G(ho)

€' wogy +wirgl = [g1(x + #o) — g1(x)]

€21 2+ wogy +witgl = [g2(x + po) — 92(X)]
+5-G" (ho)g1(x + po) — 91(X))? + D>

€ wogh + witgy + wagh + 2wowaTgl =
l93(x + po) — g3(x)]
+1291(x + o) + 2D2G_I;(:—°2[91(X + o) — g1(x)]
+2[g1(x + po) — 9100))lg2(x + po) — g2(x)) 52
+E200 g, (x + po) — g1 (x)P?

*

I
Sa) _ g,

where we have used the relation G’(ho) = . To simplify, we let =

U . . .
and ﬂ—sjﬂ = a3. Then, the equations can be written as:

€' wogi +wiTel = g1(x + o) — g1(x)
€ % + wogy + wiTgy = ga(X + po) — g2(X)+
azlg1{x + o) — g1 (X))* + D2
€1 wogs + wiTgs + wagh + 2wow, Tyl =
g3(x + wo) — g3(x) + w291(x + #o) + 202 D3[g1(x + p0) — g1(x)] +
2a5[91(x + o) = 910))[g92(x + o) — g2(x)] +
aslgi(x + po) — g1(x)P?

At order €, we have the linearized problem that we solved previously and

found that _ ,
gi(x) = eX+ e X =2cosx
cos pig = =1

wp = sin Y.

At the next order, we have the equation

Cq
— + wog; +worgs =
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92(x + po) = 92(x) + ezg1(x + 1o) = g1 (X)I* + Ds.
Looking at the terms on the right hand side, we see that the term
[91(x + 1o) — g1 (X)I* = e** (e — 1)* + e2x(efo —1)? + 4(1 — cos po),

where T means the complex conjugate of z, includes the constant term 4(1 -

cos fig). This must be balanced with %7- and D,. Thus, we find that

% =4(1 - cos po)az + Ds.
o

We solve for g, by assuming the form ¢, = Ae?X + Ae?X and determine that

Qo

A )(cospo—l—}-isin,uo). '

= 2(1 — cos po
Or, writing the solution in terms of sines and cosines, we have
1
92(x) = —az[cos 2x + —\/27__-_—-1— sin 2x].
The third order equation is:
wogds + wogs + wag) + 2woweTgy =
93(x + po) = g3(x) + #2931 (x + pt0) + 202 D2[g1 (x + o) — 61(x)]
+202(91(x + #0) — 91()][g2(x + o) — 92(x)]
+aslgi(x + o) = g1(X)P°.
We want g3 to be periodic so we require all of the terms involving e** and
e~X to balance. This means that the eX and e~*X terms of wag1 + 2wow2T g}
must balance with those of
#291(X + o) + 202 Dafg1 (X + o) — g1 (x)] +
20591 (x + #o) — g1 (X)Nlg2(x + #o) — g2(x)]

+asfg1(x + po) — g1 ().
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When we require this, we obtain the complex relation:
(1 — 2woT)wy =
pai€™ + 20, Dy(e™ e — 1)
200 A(€¥0 — 1)(e ™ — 1) +
3as(e™ — 1)} (e 0 —1).
Substituting the value for A and separating real and imaginary parts results

in the two equations:
Wa — [ COS g =
S{pzie™ +2a;Dyfc™ — 1) + 2ay A% — 1)(e= — 1)
+3az(e — 1) (e~ — 1)}
—2woTwsy + p2sin pg =
- R{paie™ + 20, Dy — 1) + 20, A€ — 1) (e~ — 1)
+3aa(e™ — 1)(eo 1)),

which, after determining the real and imaginary parts of the left hand side

yields:
Wa = fi3 €OS flg = sin po[2a, Dy + 403 cos po + 6arz(1 — cos o))
and
—2(4)07'(.02 + H2 sin Ho =
(cos pto — 1)[202 D3 + 4a(1 + cos po) + 6aa(1 — cos o).
Solving for p3 and w; and using the relation that ap = —%% and a3z = %(;’\;)2,
we obtain

27w sin pg + cos po — 1

H2 = 2a3Dy—
sin fg — 2Twg COS Lo
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Or, in terms of 7,

and
2Q2D2 + 2 27' -1 .

“= Tt

Finally, for the first few terms of the expansion, we have that

9(x) = 2ecos x — aze?[cos 2x + 72—:_—1 sin 2x] + O(e?)
C = eaf4(1 ~ cos po)ay + Dy] + O(e?)
= po + €222 + O(e*)
w = sin o + €228 1 402VZ=T) 4 ((4)
where g is defined in terms of T by cos o = % and D is arbitrary. In

terms of our original variables, we have:

ha(t) = g(x + 1) — 9(x) + ho + D
vn(t) = awg’(x) + vo + C.

The headway, h,(t) and the velocity, v,(t) are periodic, oscillating about
ho + D and vo + C respectively. The frequency in time is
Q= aw = asin g + O(€)

2T
o sin uo

and the period is then %’r which to first order is

. Thus, the closer uq
is to 0, the longer the period, and this will occur when 7 is near 1/2.

These perturbation results are expected to be good only for small ampli-
tude e. Small amplitude depends on the ratio of succesive terms. Thus, ¢

small means that
62].92 Imaa:

<1,
6|gl|ma.:v
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which gives the condition

A 1
—(1 + —— 1.
4vf( +\/21'—1)6<<

We can view the solution with a shift of mean velocity alone (case D = 0),
or a shift of the mean headway alone (case C = 0), or a shift of both the
headway and the velocity, where the shifts are related by

C = af4(1 — cos uo)ay + Dy)e? + - --.

If we choose to look at this as a shift in mean velocity alone, then we have

D = 0 and this results in

#o= o+ O(e?)
w = sin poll + (Z¢)*] + O(e?).

To order €2, i does not change and the mean velocity is then

Vo — 2a—(1 — cos g€

Uy
which is smaller than that predicted by linear theory.

3.3.2 Comparison to Ordinary Differential Equations

We could look at this problem in another way. We use the ideas of limit cycles
for differential equations without a delay and apply them to our differential-
delay equation. For reasons that will become apparent later, we change the
independent variable slightly and look for steady profile waves by letting
E=Vt—n, (= ff) With everything else the same as before, the equation

becomes

vo+C+Vg(§) +TV?g"(§) = Glg(€ + 1) — g(¢) + ho + D). (3-1)
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| Following the ideas of the Hopf Bifurcation theorem, we choose a bifurcation
parameter. We take that as W = % The critical W is that value where the
linearized problem gives an exact periodic solution. Paralleling the ideas for
limit cycles, the small parameter which we consider is the distance from the
critical, W — W,. For second order differential equations, we know that in
most cases we will get a limit cycle on one side or the other of W, that is
W < Wy or W > W,. To see which side of W, to expect limit cycles, we
note from our perturbation expansion that W — Wy = W, = ¢2{£2t0-won)

Ho

which, in terms of y and 7 is

2a2D2

HoV2Tt — 1

The sign of W, gives which side of W, we find the limit cycle. Consistent

W —W, =¢€ (1 — Wo) + 4aiWy). (3.2)

with the case for differential equations, we find that the amplitude of the
periodic solution is proportional to |W — Wy|'/2, Thus, the further W is
from the critical, the larger the amplitude. In the perturbation expansion,
we had that the amplitude was e. In terms of W, we have that the amplitude

is determined by

2__1_ _ 64
& = (W = Wo) + O(e).

If we had defined ¢ as W——Wfo—l, then the perturbation expansion deter-
mines the amplitude of g, ae in terms of the other parameters = and fo. We
would obtain the amplitude instead of w,, which was obtained in the per-
turbation expansion done earlier. The Hopf theory for ordinary differential
equations also tells us that we will find limit cycles for W in a limited region

about W,. That is b < W < W, for the case where limit cycles are found
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for W < Wy or Wy < W < ¢ for the case where limit cycles are found for
W > Wo. Assuming that these ideas carry over for our differential-delay
equation, we expect there to be a limit on how large the amplitude can be

such that we still have a periodic solution.

3.3.3 Singular Points of the Equation

The equation which we will compute the solution to is a modified version
of equation (3.1). Since C' and D are not known in advance, we set them
equal to 0. We non-dimensionalize the equation by setting f(¢) = U—’}g({)
and set W = % and 7 = oT, as before. Using this change of Variables‘ and

the relations, vy = G(ho) and a = G'(hg), we obtain the equation
W'(€) + Wrf"(€) = 1 — " UErD=1), (3.3)

We would like to look at a phase diagram for this equation, however, in its
present form, it is not clear how to do this. From the perturbation, we found
that f’ is periodic and f is not. This suggests that the phase space in which
we will see periodic orbits is not the usual f versus f', but f’ versus f”. We
set u = f’ and v = f” and obtain the pair of equations in u and v:

= (=Wt [ = W - Worolfu(é + 1) — u(©)])
The singular points of the equation are at v = 0 and [1 — Wu][u(é +1) —
u(£)] = 0, which leads to u = 5 and u = const = S. Checking u = 7 in
equation (3.3), we find that u = 7% leads to W = 0 which is not a feasible

solution. We check u = § in equation (3.3) and find that S must satisfy

WS=1-e5,
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There are two solutions to this, S = 0 and one positive solution for W < 1.
Thus, the two singular points of the equation are v = 0, v = 0 and u = § ,
v = 0. Both of these points correspond to uniform states. The point u = 0,
v = 0 corresponds to the uniform state v = vy, h = kg, and the point u = S,
v = 0 corresponds to v = vo + aW LS, h = hy + LS.

We first look at the point u = 0, v = 0. We linearize equation (3.3) about
this point by setting f = 5. The linear equation has solutions of the form

n = €’¢ where 8 satisfies
WB+Wrp? =e - 1. (3.4)

We know that there are purely periodic solutions for W exactly equal to W,
with 8 = iuy. When W is not exactly equal to W, we expect to find complex
solutions with the real part non-zero. The sign of the real part tells us in
which direction in ¢ the phase plane will have outgoing spirals. We expect
the outgoing spirals to lead to limit cycles.

Since we know there is a pure imaginary root at § = iu for W = Wo, we
perturb about this solution and look for a root, 8 = e+ iuo, fof W =Wy—+.
On substituting these into equation (3.4), expanding for small € and keeping
only order ¢ terms and larger, we find that the real part of 3 is

R(B) = A{e (T

—v) =1}

where A? is a positive constant.
Since the sign of this depends on whether W is less than or greater than
Wo, we look back at the perturbation solution to determine which side of Wo

we find periodic solutions. Equation (3.2) gives the value of W, in terms of
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a, 7 and W,. We see that it also depends on D;. In order to find the sign
of W, we must know the the value of D, - the shift in the mean headway.
When we look for periodic solutions numerically, having set ¢ = D = 0, a
term proportional to ¢ will arise in the solution, f. Thus, we choose D such
that Ct — Dn is proportional to £. This fixes D, and determines the value
of W:

W, = —404% Wo

which is negative. Thus, for periodic solutions, we require W < W,

To determine whether the real part of 3 is positive or negative, the fact
that W < W, tells us that v is positive and hence, va}v—;—:‘ < 1. Since &7 < 1,
1:—" — 7 < 1 and hence, the real part of 3 is negative. Therefore, the point
u =0, v =0 is an outward winding spiral for £ < 0 provided W < W,.

For the other singular point, u = S, v = 0, we linearize and set n = eft
to obtain

WB+W?rp* = e 5[ef —1].

If we graph the two sides of this equation as functions of 3, we find that the

1—e~5S

slope of the parabola at the origin is W, which in terms of S is W = <

The slope of the exponential at the origin is e=5. Since €5 > 1 + S, we
see that W > e~5. Therefore, there are two real roots of this equation, one

positive and one negative and the point u = S, v = 0 is a saddle point.

3.3.4 Numerical Studies of the Periodic Solution

The equation we will compute solutions to is equation (3.3). The right side

of this equation is a function of f(£+1)— f(£), the left side only involves f (&
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and its derivatives. In order to solve for f(£) as an initial value problem, we
must know f(¢ +1). This means that we must let ¢ increase in the negative
direction rather than the positive direction. The analysis of the singular
points implies an unstable spiral for ¢ increasing in the negative direction
and therefore, this is the direction we expect to find limit cycles.

We start at the point u = ¢, v = 0, close to the spiral point. Setting
u = ¢ implies that f = e£. Since we must give the values of f(£) for ¢ in the
interval [0,1], we set f = e{ in this interval. We integrate this numerically

using a fourth order Runga-Kutta scheme where the equation is written as

u = f'(¢)
o = f/l(g) — le_z{]_ _ e‘[F(f)“f(f)] - Wu}

and F(§) = f(£ +1) is known at each new step. The Runga-Kutta scheme
requires the values of F at the step which was just computed, €prev, ONE StED
later, &prev+AE, and at the half step between these two, fprev+%§. The values,
F(&prev) and F(Eprey + AL), are either given in the initial conditions or are
the result of a calculation done earlier. We must approximate F (€prev + 2 AE)

and we do this by taking the average value over one step:

F(fprev + %Af) = %[F(é‘prev) + F(fprev + Aﬁ)]

We find limit cycles, as expected. Figure (3.13) shows the solution winding
out to the limit cycle. Depending on the starting value € 7, and on the distance
that W is from the critical, we obtain curves in the phase plane which either
wind out to the limit cycle or wind in to the limit cycle. We find that for
T near 1/2, we are very limited in our choice of W. It must be very close

to Wy to get periodic solutions. If it is too far from W, the solution grows
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88

infinitely and there is no periodic solution. As 7 decreases towards 1/2, the
period becomes longer, consistent with the perturbation prediction. But as 7
increases, the range of acceptable values for W becomes larger. This means
that one way of obtaining relatively long waves, requires that the amplitude

be small and to obtain larger amplitudes, we must have larger values of 7.

Comparison of Various W for Fixed 7

We first look at the numerical calculations for a fixed value of 7 and vary
W away from W,. The phase diagrams for all of the various selected values
for W are shown in figure (3.14) with the values W and W, — W given
in table (3.1). The largest curve corresponds to the largest Wy — W and

Table 3.1: The values for 7, W, and Wy, — W for the case of fixed 7 and
various W.

T W WO—W
57 1 .9082 | .008503

91 | .006703
913 | .003703
916 | .000703

the smallest corresponds to W closest to Wy. For the case 7 = .57, the
amplitude decreases as Wy — W decreases, which is what we expect from the
perturbation analysis. The phase diagram also shows that as W, — W — 0,
the solution becomes more symmetric. The solution curve for the largest
value of Wy — W has its maximum value of f’ closest to the saddle point.

Table (3.2) shows how the distance from the maximum to the saddle point
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Table 3.2: Comparison of the maximum value of f'(§) with the value of f’
at the saddle point for the case of fixed 7 and various W.

W | saddle | maximum | distance from the
point of f' saddle point
9082 | .1959 .1938 .0021
91 1917 .1565 .0352
913 | .1849 .1085 .0764
916 | .1781 .0430 .1351

increases as Wy — W decreases. Since the 1ocation of the saddle point depends
on W, it will be at a different place for each value of W.

We look now at the profiles for the velocity perturbations, f'(£), figures
(3.15) - (3.18).  We see that the period decreases as the distance from the
critical decreases. The perturbation expansion predicts that the amplitude
will decrease with Wo—W since € o« /Wy — W. We compare the perturbation
amplitude given by 2/‘0\/@—%- with the amplitudes given by the. numerical

calculation in table (3.3). We see that the agreement is good for Wy — W

Table 3.3: Comparison of the amplitudes of the numerical solution,Ax with
the amplitudes of the perturbation solution, A, for the case of fixed 7 and

various W.
relative error

W | Axv | 4, Ax=ds
9082 | .1456 | .1379 5.0%
91 |.1239 | .1225 1.0%

913 |.0915 | .0910 0.5%
916 | .0397 | .0397 0.1%

small and gets worse as Wy — W increases. For values of W closer to W,
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than we show here, we found that the the relative error in the solution was
quite large. This is because the solution is winding out to the limit cycle
very tightly and thus, it is very difficult to tell when the solution has arrived
at the limit cycle. The linear theory implies periodic solutions of arbitrary
amplitude for W = W, and an outward spiral for W < W,. The closer W is
to Wo, the more tightly the solution will wind out. Thus, this tight winding
to the limit cycle is consistant with the linear theory.
Looking at the period of the perturbation expansion, 2—:—, with

_ _2W0—W sin pg
“ Ho WO 1"'WO,

we see that it also decreases with Wy — W. The difference from pq , however,
is not as prongunced in the perturbation as it is in the numerical calculations.

Table (3.4) has the details of this comparison.

Table 3.4: Comparison of the period of the perturbation solution, P, = 27",
with the period of the computed solution, Py, for the case of fixed r and
various W. Two terms are taken in the expansion for u.

\%Y% Py P, | relative error
PN‘PE
Py
9082 | 18.75 | 11.03 41.0%
91 [ 11.52] 10.46 9.0%
913 | 9.79 | 9.63 1.6%
916 | 8.95 | 8.93 0.2%

We look now at the shape of the velocity profiles and see that the largest
value for Wy — W gives a shape which is very wide on top and narrow on

the bottom and which also has the smallest percentage of its total amplitude
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Table 3.5: The maximum and minimum values of f/(£) and the percentage of
the total amplitude (2A) which is negative for the case of fixed 7 and various

W. The percentage which is negative is —min]

mazr—min’

W | maximum | minimum | % negative
.9082 1938 -.0974 33%

91 1565 -.0913 37%
913 1085 -.0745 41%
916 .0430 -.0368 46%

less than zero, see table (3.5)

. As Wy — W decreases, the mean value of f'(¢)

moves down towards zero, that is, the curves become more symmetric about

zero. We compare the curves corresponding to W = .916 and W = .9082 to

the perturbation solution in more detail. Figures (3.20) and (3.19) show the

2-term perturbation solution as the solid curve and the numerical solution

as the dotted one and see that we have good agreement for W = .916 and

the solution is very different from the perturbation for W = .9082.

We compare the computed mean values of the numerical solutions to

those predicted by the perturbation expansion in table (3.6). The mean is

Table 3.6: Comparison of the mean value of f'(¢) from the numerical calcu-
lation, My, with the mean value from the perturbation expansion, M, for
the case of fixed T and various W.

W My | M, | % difference =
My—M,
My
9082 1 .1127 | .0547 51%
91 .0568 | .0431 24%
913 | .0266 | .0238 10%
916 | .0046 | .0045 2%
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computed by

M=k [pia = Lot PI= @

where P is the period. The function f is known from the numerical calcula-

tion and we find the period from f’(¢) which we know to be periodic (f(¢)

is not). The perturbation prediction of the mean,

Wo— W1 — cos po
Wo 1—W0 ’

M,=2

is consistently smaller than the mean of the numerical calculations. For
Wy — W at its largest value, the perturbation predicts a mean which is about
half of the numerical mean. This case, however, is for a reasonably large value
of ¢ and the shape is quite different from that of the 2-term perturbation
expansion, as is seen in figure (3.19).

We see that qualitatively, the numerical calculations are in agreement
with the predictions of the perturbation expansion, but when Wy — W is
the largest that we have computed, the actual numbers do not agree so well.
The amplitude, however, is getting quite large and we would not expect the
perturbation expansion to do as well. The numerical solutions do, however,
give us some information that the perturbation cannot. They tell us that
for large amplitudes, the mean is tending towards the other steady state
solution, the value at the saddle point, and that the curves are not sinusoidal
for large e.

Going back to the physical variable, v, we have that

oalt) = vo + WL f(¢)
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so that the amplitude of the velocity is A, = (v—vo)WA;. For vy = 20 ft/sec
and vy = 54ft/sec, we see that this value varies from A, = 4.5ft/sec for
W = 9082, to A, = .13ft/sec for W = .9167. Also, since the variable
§ = aWt —n, the period in ¢ is related to the period in time by P, = =P
Therefore, for A = .79/sec, the period in time ranges from 41.29 sec for W =
.9082 to 19.64 sec for W = .}916. In terms of the number of cars, the period

in { is the same as the period in n and thus ranges from 18 cars to 9 cars.

Maximum Amplitude Solutions for Various

We look at the numerical calculations another way now. We compare the
solutions of the maximum amplitude for various 7. The maximum was deter-
mined from the value of W furthest from W, that gave a limit cycle. Values
of W further from W, gave solutions which diverged. Since the phase por-
traits are very close to the saddle point for each 7, these solutions are close to
the maximum possible amplitude. We vary 7 from just above 1 /2, T = .51,
up to 7 = .6667 which was an arbitrarily chosen stopping point. In each case
we have varied W as far away from W, as was possible before the solution
diverged.

We find that for the smallest value of 7, closest to 1/2, this maximum
amplitude was the smallest. As 7 increases, the maximum amplitude for
~each 7 increases. We know from the perturbation theory that the amplitude
depends on the difference Wy, — W. Correspondingly, we find that we can
choose W further from Wy as 7 increases and thus, we get larger amplitudes.

Figure (3.21) shows the phase portraits for these various cases with table
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| (3.7) giving the values of 7, W and W, that were used. The largest solution

Table 3.7: The values of 7, W and W, for the case of maximum amplitude
for various 7.

T w WQ
.6667 | .8100 | .8270
.61 | .8650 | .8766
57 1.9082 | 9167
53 1.9583 | .9620
511 .9855 | .9869

Table 3.8: Comparison of the amplitudes of the perturbation solution, A,
with the amplitudes of the numerical solutions, Ay for the case of maximum
amplitudes for various 7.

T An A, | % difference =

An—4Ap
N

.6667 | .3182 | .3000 5.7%
.61 .2090 | .2019 3.4%
Y .1456 | .1379 4.5%
.03 | .0605 | .0594 1.9%
.51 .0209 | .0211 -1.0%

is the solution for 7 = .6667 and the smallest corresponds to 7 = .51. Table
(3.8) has the values of the amplitudes. We see that there are limit cycles
for W < Wo but W > b. The numerical solutions suggest that b depends
on 7 in such a way that the smaller 7 gets, the closer b is to W,. We see
that the limiting condition on the amplitude to the right of zero is the saddle
point. The location of the saddle point is an upper bound on f’ (¢). Table

(3.9) shows how close the maximum of f’ is to the saddle point. Perhaps
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Table 3.9: Comparison of the saddle point with the maximum value of f/(¢)
for the case of maximum amplitude for various 7.

T saddle { maximum of | distance from the
point () saddle point
6667 | . 4374 4210 .0074
.61 2974 2722 .0253
57 .1959 .1938 .0021
.53 .0858 .0786 .0072
.51 .0293 0272 .0021

an explanation for the significantly smaller amplitudes for 7 near 1/2, is
that for 7 near 1/2, Wy ~ 1, and the saddle point, S, is near 0. Therefore,
provided that we must choose W near W;, we cannot expect to see a very

large amplitude since S will be near 0.

Looking at the velocity profiles, figures (3.22) - (3.26), it is clear that the
greatest amplitude comes from the largest value of T as was seen from the
phase diagram. We compare the values of the amplitﬁde for the different
values of 7 in table (3.8). We also compare the numerical value of the am-
plitude to the perturbation expansion. Because we are looking at the largest
amplitudes for each value of 7, we do not expect our numerical solution to
compare very well with the perturbation theory.

We look now at the shape of the velocity profiles. They are significantly
different from the 2-term expansion, this was seen in figure (3.19) of the
previous set of figures. We see that all of the shapes have in common that
they are wider on top than on bottom. We also see that the curve extends

further above zero than below zero. For the cases shown here, the amount
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Figure 3.22: Velocity perturbation for 7 = .6667, W = .81.
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of the curve below zero is between 33 and 35% of the distance from the

maximum to the minimum. Table (3.10) shows this. This fact and the fact

Table 3.10: The maximum and minimum values of f(¢) and the percentage
of the total amplitude (2A) which is less than 0 for the case of maximum
amplitudes for various 7.

T maximum | minimum | % less than 0 =
6667 4210 -.2155 33%

.61 2722 -.1459 35%

BT .1938 -.0974 33%

.53 .0786 -.0424 35%

.51 0272 -.0145 35%

that the curves are wider on top contribute to the mean value of f/(£) being
adjusted significantly above zero. This new mean was also predicted by the

perturbation expansion. The perturbation expansion predicts a mean value

for f'(¢) of

A, Wo—W 1 —cospg
ZEM, =2 .
’Ufe 2 WQ I—WO

In table (3.11), we compare the mean values of the numerical solution with

those of the perturbation solution and we see that the numerical solution has
a mean much higher than that of the perturbation expansion.
Qualitatively, at this point, we are in agreement with the results of the
perturbation expansion, however, since we are looking at the extreme values
of W for each 7, the actual numbers do not agree very well. From our
analysis of the stationary points, we know that f'(£) = S corresponds to a

new mean flow different from vy. We see that the maximum value of each of
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Table 3.11: Comparison of the mean value of f’ from the perturbation so-
lution, M, with the mean of the numerical solution, My for the case of
maximum amplitudes for various 7.

T My | M, | relative error
MN"Mg

My
6667 | .2103 | .1186 44%
.61 | .1184 | .0774 35%
ST | 1127 0547 51%
53 |.0343 | .0227 34%
51 |.0122 | .0085 31%

these curves is close to its corresponding value of S (table(3.9)). As we move
further away from W, towards b, we see that the mean value of the function
is moving up towards S. It would seem then, that if we could continue
computing for greater values of Wy — W, we would see the mean value of
f'(€) tending towards S with the top portion of the velocity curve getting
wider and the bottom getting narrower. This is difficult to compute since we
are approaching the saddle point. This means that we are getting close to the
-curve which heads directly into the saddle point. On one side of this curve
we have a solution which diverges. Therefore, as we approach this curve,
numerical errors can bump us onto the diverging solution curve. Typically,
in ordinary differential equations, as the limit cycle nears the saddle point,
the period increases and the limiting case which goes throﬁgh the saddle point
is a soliton, a curve which takes an infinite amount of time to return back to
the saddle point. It is possible that our solutions do this also, but we do not
see the periods diverging drastically from the perturbation solution. That is,

we may see them twice the period of the perturbation solution, but no larger.
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The periods are recorded and compared with the period of the perturbation

solution in'table (3.12). We can get periodic solutions of arbitrary period by

Table 3.12: Comparison of the periods of the numerical calculation, Py with
the periods of the perturbation solution, P, for maximum amplitudes for

various T.

T Py P, | relative error

Pn—PE
Py

6667 | 10.51 | 7.46 29%
.61 (1091 8.82 19%
57 [ 18.75 | 11.03 41%
53 119.94 | 16.21 19%
51 | 34.93 | 28.40 19%

- varying 7. The choice of 7 however, will limit the resulting amplitude.

Again, we relate these back to the physical variable, the velocity, and
keep vo fixed at 20f¢/sec. We have then that the amplitude of the velocity
ranges from A, = 8.76 ft/sec for 7 = .6667, W = .81 to A, = .7ft/sec for T
= .51 and W = .9855. The period in time ranges from 70.89 sec for r = .51,
W = 9855, to 25.95 sec for T = .6667, and W = .81.



Chapter 4

Periodic Solution for Discrete
Time Lag

We now add the perturbation theory for the equation with a discrete time
lag considered in Chapter 2. As in the case with the continuous reaction

time, there will be a velocity shift. So we introduce perturbations by:

za(t) = ya(t) — (ho:{— D)n — (vo + C~')t
vn(t) = yn - (UO + C)7

where C and D accomodate changes in the mean velocity and headway. As
in Chapter 3, we let x = Ot — un and g(x) = y.(t). We non-dimensionalize
) and T with « by letting Q@ = aw and aT = 7 and normalize the equation

as we did in Chapter 3 to obtain:
: ¢ )= £ (:)+D]
wf'(x +wr)+ — =1— e Uxtu)=5x)+D]

a

The changes, C and D are second order, so the linear problem that we

consider is:

wf'(x +wr) = f(x +u) — f(x).

112
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The periodic solution is f(x) = e’ where w satisfies:

7
W= =—
.
and pu satisfies
sinf = (41
2 272t

Thus, there is a periodic solution to the linear problem. We now go to the

perturbation scheme to improve on this.

4.1 Perturbation Expansion for Small Am-
plitude Waves

We look for small amplitude waves using expansions
f=chitef, 4

w=wy+ etwy +---

p=po+ €pg+ -
C=6202+"'
D=¢&Dy+---.

After expanding f'(x + wt), f(x + 1), and the exponential for small ¢ and

equating like powers of ¢, we find

e : wofi(x +wot) = filx + wo) — fi(x)

€ wofy(x +wor) + 2 = firx + po) — fa(x) + Da
—%[fl(x + po) — f1(x)]?

e : wof3(x + woT) + wowaT f{'(X + wor) + wa f{(x + wo) =

Js(x + po) = fa(x) + pafi(x + po)
~[filx + po) = FLOONf2(x + po) = fo(x)]
—Da[fi(x + o) = A(X)] + e[ AAlx + mo) — ()P
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Here, f, is the linear solution of the last section with wg and py determined
by sin £ = (%Q)% and w = £2. With wer = £, the equations take a more
symetric form in the variable ¢ = x4 £2. We then take the first order solution

to be fi = e’ +e7* = 2cos ¢. In the order €? equation, we see that the term

[fi(o+ %9 - fi(e - %)]2 = —4sin? %(e""‘zs + %) 4 85in? %

includes a constant term. We use C; and D; to eliminate this and get the
relation:

C .
At D, ——4s1n2ﬁ-g.
o 2

This leaves us with the equation

’ 1 B b ; 2
wofi(8) = [fa(p + %) — fa(o — %9)] — —2-(6 T T2 (% 4 ),
To solve this, we let f, = Ae¥® + Ae~%4. We find that
A= 1 sin £

"~ 211 —cos &

and that
sin £
= ——2—5in 2¢.
f2(4) 1 —cos £ sin2¢

The third order equation is

wof3(¢) + wowat fi'(9) + w2 fi(4) = .
fa(e+8) — fa(¢— &) + pafi(d + &)
—[fi(d+ &) — fi(é - ENfalP+ 2) — f2(é — 2]
—Dyfi(¢+3) = fi(¢— )] + Lfi(d+ ) - fi(d - 2.

We must balance the terms involving e'® and e=**. We find that equating

the €' terms, we have the equation

. . sEO .sin® £2 cos £0
— ]
—WawoT + wWol = Uqre’2 + 41 oo &0

—2iD,sin &2 + 44 sin® 2.
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Equating the real parts, we obtain

. Ho
Wo2 T = U2 SIN —

2

which is equivalent to

Lo = 2Tw,.
Equating the imaginary parts yields

3 Lo o
sin” £2 cos Lo . Mo
—2 2 4 4gin3 = — 2D, sin 22,

Ho
wo(l 27‘cosz)—4 [—cos @ 5 5

After some algebra, this can be rewritten as

sin £ Ho D2

=4—"2
w2 1—2Tcosﬂ’-( +C082 9

and from this, we find that

sin £2
H2 = STW(l — 27 cos ’—)

Thus, to third order in our perturbation expansion, we do have a periodic

solution:

f(¢)—-26cos¢+e —Zm s1n2¢+O( 3)

u-uo+621—8§'-f;f&—a(1+cosﬂ )+ 0(eh)

o=t + 24 Ol
€ = ¢(D; - "4 sin? 234+ O(eh)

where D is arbltrary and po is determined from sin £ = %121

We cannot compute the solution to this equation in the same way that
we did in Chapter 3. The problem is that we now have two delays. If we give
the information needed on the appropriate intervals to get started and try

to compute this as an initial value problem, we see that as ¢ is increased or
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decreased, the solution will be obtained at a point inside the interval where
the initial data was given and possibly give conflicting information. Also, in

terms of the parameter W = 2, we see that W = W, to second order:
W =5 +O()
T 2r )

Thus, if Wy, say, is non-zero, to find limit cycles, W must be closer to W,
than it was in Chapter 3 for the same value of ¢. It is possible that there are
no limit cycles at all for this problem but periodic solutions only for W = W,
and for no other values of W. To determine this, one would need to show
this was true for all orders in the perturbation. There are, in fact, periodic
solutions for W = W, obtained by G.B. Whitham earlier this year. Thus,
periodic solutions are possible but it is not clear that they will be found in

the form of limit cycles.



Chapter 5

Periodic Solutions to a
Continuous Traffic Flow Model

We know from Chapter 1 that there is a periodic solution to the continuous
traffic flow equations studied there supplemented by discontinuous shocks.
We would like to get a smooth periodic solution to some modified continuous
equations. For the roll waves problem of shallow water theory, Needham and
Merkin found periodic solutions by adding on a higher derivative term, as is a
standard approach to smoothing out discontinuous shocks. To get some idea
of what kind of higher order term to add on to the equations from Chapter

1, we relate this set of continuous traffic flow equations,
Pt + (Up):c =0 i
v +vv, = —Lv - V(p) + £pz), (5.1)

to the car following model,

On(t) + Toa(t) = G(znr(t) — za(t)). (5.2)

117
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5.1 Derivation of Additional Terms

Since car following models are naturally given in Lagrangian coordinates,
(the cars are analogous to particles in fluid dynamics and 7 is the label) we
first convert the continuous traffic equations, equations 5.1, to Lagrangian
form. We do this by introducing z = z(a,t) and v = v(a,t) where a is a

label identifying individual cars (‘particles’). We have the relations:

ot = 8t " "oz
and
o _,9
da 9z
From these relations, the first of equations (5.1) becomes
9p p
(55 + 5 T =0 (5.3)
or equivalently,
(pza): = 0;

this can also be established directly from the car following variables. This
says that pz, is constant, say ;. Solving for z, and substituting this into

equation (5.3), we have

dp 200
(8t)la+bp 'a_a =0.

Setting p = + in this equation we have
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When the substitutions

B, 00 oo
at "oz ~ ‘ot
and
L1
a pb
are made in the second of equations (5.1), we have the equation
Ov v
T(a)la +v=V(p) - PLG
which in terms of A is:
ov v
Ta +v=_G(h)+ ﬁbha,

~ where V(p) = G(h). If we take 7 = T and v = —1V’(p) we have v = -h;-G'(h)
and the equations become

v+ Tv; = G(h) + bk, G'(h)
ht - b’Ua = 0.

(5.5)
We now see how these compare with the discrete model, (5.2). The car
following model could be written as a differential-delay equation rather than
a differential-difference equation, (the differencing in z is replaced by a delay).
This is done by setting x,(t) = X(—bn,t), where —bn is, say, the position
of the n®* car in some uniform initial state. If we let the variable, a = —bn,

then z,_1(t) — 2.(t) = X(a + b,t) — X(a,t), and the equation becomes

v(a,t) + T% = G(X(a+b,t) — X(a,1)).

We note that expanding X (a + b,¢) for b small results in the equation

’U(a, t) + Tglt{ = G(bXa(a, t) + —;—b2Xaa(a, t) + .. .),
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where b is small in comparison with the distance a long line of cars occupies.
To compare with (5.5), we introduce 8X,(a,t) = k. Since v = X,(a,t), we
have the identity
hy — bv, = 0.
This agrees with equation (5.4). We expand G for b small and obtain the
equation v
v(a,?) + T% = G(h) + %bhaG’(h) + b?[%hga"(h) + %haaG’(h)] Feee,

The left side of the equation is the same as the left side of the Lagrangian
version of the continuous equation. The first two terms of the right side
of this equation match up with the continuous equation also. Therefore, if

we want to add higher derivative terms to the continuous equations, a good

candidzite would be the term
b2[éhZG”(h) + éhaaG’(h)].

This choice should compare well with the periodic solutions to the car fol-
lowing equation studied in Chapter 3. This approach links the coefficients
of the derivatives explicitly to the discrete model. These coefficients could
be freed of this connection to include the same effects but in a more general

model,

5.2 Steady Profile Wave Equation

We now study the continuous equations

ht - bva = O
v+ Tv = G(h) + 3bh,G'(h) + B[R2G"(h) + LhauG'(h)],
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with Newell’s G:
2 (h-L)
e's

G(h) = v(1 — ).

Relating these variables to those of the car following equation, we have

v(a,t) = v,(t)
h(a,t) = zp_1(t) — z,(2).

We let a = ba in order to eliminate b and obtain the equations

ht — Vs = 0 (5 6)
v+ To, = G(h) + LhaG'(h) + Lh2G"(h) + Lk G (h). '

We look for steady profile waves by setting ¢ = Ut + . The first equation

of (5.6) becomes
Uhf — V¢ = 0

which, when integrated becomes

v —Uh = B = const. (5.7)

The second equation of (5.6) becomes

G'(h 1 1 ‘
v+ TUv = G(h) + ‘—é—)hs + 3G (MhE + 5 G (h)hee. (5.8)

Solving (5.7) for v in terms of A and substituting this into (5.8), we have

éG’(h)m55 = —%G”(h)hg + [UT - Qéi)]hf +B+Uh~G(h). (5.9)

We write this as
P(R)hee = Q(h)hE + R(h)he + S(h)

where P, Q, R and § are the corresponding coefficients in equation (5.9).
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5.3 Singular Points and Stability

We expect from Chapter 3 that there will be a limit cycle around the point
h = ho, v = vo. We first look at the linearized problem. This will give the
critical wave speed. Analysis of the singular points determines whether or
not we have an unstable spiral as a candidate for a limit cycle. The other
singular point will give a possible bound on the amplitude. We normalize
the equation by setting 5 = %(h — ho) and fix B from the uniform state as

B = Uhg + vo. For S(h), we then have

S(k) = U(h — ko) — [G(R) — G(ho)].
We introduce h = =Ly + ko and note that

-2 (h-L o
u,( )

G(h) = vs(1 —e ) =vs(1 - ~¢ )

where a = G'(ho). We also let W = £ and 7 = oT so that finally in (5.9),

we have
P(m)nee = Q(m)ng + R(n)ne + S(n) (5.10)
where
P(n) = ge™”
Q(n) = ge”

R(n) = W?r — Ze7"
S(n)=Wn—(1-e).
We now consider the singular points of the full nonlinear equation, equa-
tion (5.10). We first set f = ¢, f¢ = nee and obtain the system of equations
4 _ QU)HR()f+S(n)

36 P(n)
%=1




123

The singular point are at f =0, S(n) = 0. Setting S(n) = 0, we have
Wp=1-e".

S(n) has two zeros, one at n = 0 corresponding to h = kg, and one other
point. If W < 1, the intersection is for n > 0. If W > 1, the intersection is

for < 0.
The linear equation about the point (0,0) is

1 1
glee = (WPt = Shne + (W — 1.
It has solutions of the form 7 = e* where )\ satisfies

A —6(W?2r — %)/\ —6(W—-1)=0.

Solving the quadratic equation, we find

A= %[(W% - %) + \/36(W27- - %)2 +24(W — 1)

There are period solutions when )\ is pure imaginary, A = iy, where

1

7

For 4 to be real, we require W < 1 which in turn requires 7 > 1/2. When W

p=46(1-W), W=

is different from 31;, A has a non-zero real part, and a non-zero imaginary part
provided W < 1. Thus, the point (0,0) is a spiral. The stability of the spiral
depends on the sign of W27 — 1. For W > 712—1_, we have W?r —1 > 0, and we
have an unstable spiral for ¢ > 0. For W < 5z we have W?r — 1 <0, and

this gives an unstable spiral for ¢ < 0. The perturbation will determine which
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side of the critical W that we will find limit cycles, and this will determine
whether we find limit cycles for £ positive or negative.

We look at the second singular point, n = * where 7* # 0 and where 7*
satisfies

Wyp*=1-e". (5.11)

We linearize equation (5.10) about n = n* and we obtain the equation

-

6—77 ]. _m* —_r *
5 77&=(W27—§€ ")+ (W —e"")(n —n").
We let n — n* = e*¢ and obtain
6; MN=(Wir—ze ™M+ W—=¢e"

and therefore

1 _,. 1 2
A =3e™[W?r — 56"" + \/(W27' - -2-6"7')2 + 56‘2"'(We"' —1)].
From (5.11), we have
e” —1
77*
and thus, the quantity inside the square root is positive and the point- = 5*,

We' = >0

J =0 is a saddle point. Therefore, if we do have a limit cycle, we expect
that n* will bound the amplitude on the positive end. We now go to the
perturbation expansion to see whether it shows periodic solutions and, if so,

which side of W, they are found.

5.4 Perturbation Expansion

We introduce 6 = u£ into (5.10) so the equation becomes

12 P(n)nes = 1*Q(n)ng + uR(n)ne + S(n),
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and use expansions
n(0) = en + €y + -+
p=pot€pzt
W= Wo+62W2+"'.

From successive powers of ¢, we obtain

e ugny = —6(1— Wo)my
2.

b pgny = ub(m)? 4 3ponim + (6Wo — 3)7;% —6(1 — Wo)n,
€ ping + 2uopany = Sulnin + 3uonine + Sponin,

+12WoWatpony + 3pomny + 6Wany + 12Wonin,
+(BWo — 1)77 — 6mnz — 6(1 — Wo)ns

where in some of the terms we have used the relation from the solution to
the linear problem that Wr — 1 = 0.

The e-equation is solved by n; = € + e7%, u? = 6(1 — W), repeating the
linear equation.

The €*-equation has a solution in the form
_ AL20 | 7 -2if
M2 = Ae™ + Ae™™ + M.

The constant M is required because of the squared terms, (7})? and 2. On

substituting this into the e?-equation, we find that

1 7
= —(6 — 5u
30 g)
and
A= i("_g i)
g2 Hot):

In terms of sines and cosines, we have that

1 2 ) 7
n2(0) = —2{(% —2)cos 20 + 2ugsin 26 + 6 — §,u§}.
Ho
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From the third order equation, we only want to find W, and ;. These will

come from balancing the ¢’ and e~* terms in the usual way. We find that

— 15 _ 3 _ 132
W2 =73 2w as Mo
3 _ o s
H2 = Bue ~ 2] T asho-

Since W, can be written as

1 9 39

_._._),

C12Worud 4

it 1s negative provided fg- > 3’4—, or 7 < .698. We find that u, is also negative

W2=

since we can write it as

1.95 53 21
3[ 4 'g/"g ]

agho
and see that the roots are complex and hence the quantity in the square
bracket is always positive. Therefore, we expect to see the period increase
slightly as € increases.

We have then that the perturbation solution to second order is

n=2cos0+ez[(l— ) cos20 + 2 sin 20 + & — 1]+ O(°)

B= po — [48#0 - %ué 21+ O(eY)

W =W, - —:(3 23k8 + 3mmg) + O(e)
where W, = 712-1 and po = 1/6(1 — Wp). Since W is negative, we expect limit
cycles for W < W), and hence, for ¢ < 0.

5.5 Numerical Studies

We now compute the periodic solution which the perturbation expansion

suggests exists. We use the normalized form for the equation

P(n)nee = Q(n)nf + R(n)ne + S(n)
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~ where, as before,

P(n) = ge™
Q(n) = ge7"
R(n) = W?r — Len

Stm)=Wn—1+e™.
We find that stable limit cycles are found for ¢ < 0. Figure (5.1) is an
example of this.

We look at the numerical solutions in two ways, just as in Chapter 3.
We would like to compare the results from the solution to this continuous
equation with those from the solution to the discrete steady profile equation
that we studied in Chapter 3. The first way we look at the solutions is to fix
7 and let W vary from its smallest value that we could compute up towards
the critical Wy. We choose 7 = .57, as we did in Chapter 3, so that we can
compare the results. The second way we look at the solutions is for various
values of 7 and we choose W as far away from W, as we can without the
solution diverging. We look at the same values for 7 as we did in Chapter 3

and compare the results.

5.5.1 Various W for fixed 7

For 7 fixed, we find that the solutions are very similar to those of Chapter
3. Figure (5.2) shows the phase portraits for each W. We see that as W
decreases away from W, the value of the maximum gets closer to the sad-
dle point. Table (5.1) has the actual values. We also clearly see that the
amplitude decreases as W gets closer to W

We look now at the velocity perturbations, figures (5.3) through (5.6).’

We see that 7 is related to the velocity in the same way as f'(€) was in
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Figure 5.5: Velocity perturbations for 7 = .57 and W = .932.
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Chapter 3:

vn(t) = vo + %aWn.

Along with the increasing amplitude for Wy — W increasing, we also have
the period increasing. Comparing the period here to that of the discrete
equation, we find larger periods here and the increase in the period from
the smallest W — W, to the largest is higher for this same value of 7. The
increase here is about 14 whereas the discrete model had an increase of about
10. Table (5.2) has the values of the amplitude and period for each value of
w.

From the velocity profiles, we see that as W tends to W, the curves
become more symmetric about 0. In table (5.3), we compare the percentage
of the total amplitude which is negative for each W and we see that this
percentage varies from 32.8% for the largest value of Wy — W, to 49% at the
smallest value. A value of 50% tells us that half of the curve sits below zero
and half sits above zero, thus, as W — Wy, we see that the curves are tending
to a symmetric function. Table (5.4) has the mean values for each case and
the percentage of the total amplitude which the mean value occupies. We
see that the mean increases from close to 0 as Wy — W increases. Clearly, as
the amplitude decreases, the mean will also decrease. Therefore, the relevant
comparison is the ratio of the mean to the total amplitude. When this is low,
we see a more symmetric solution. The third column of table (5.4) shows
that as W — W, decreases, so does this ratio. We see in the next sub-section

that this ratio does not decrease as the amplitude decreases.
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Table 5.1: This shows the value of the saddle point for each W — W, and the
distance that the maximum value of 5 is from it.

W — W, | saddle point | distance from the maximum
to the saddle point
01029 1551 .0005
.00759 .1491 0311
.00459 .1425 .0569
.00159 .1360 .0904

Table 5.2: The values for W, W — W,,, the amplitude = @ and the

period.
W | W~-W,| A p
9263 | .01029 | .1151 | 24.52
929 | .00759 |.0932 | 12.78
932 | .00459 | .0713 | 11.30
935 | .00159 | .0409 | 10.50

Table 5.3: The maximum, minimum and percentage of the total amplitude
which is negative for each W.

W | max | min | % <0 =lzn
9263 | .1546 | -.0755 32.8%
929 | 1180} -.0684 36.7%
.932 | .0856 | -.0570 40.0%
935 | .0456 | -.0362 44.3%
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5.5.2 Maximum Amplitude Solutions

We see the greatest differences in the solutions to the discrete equation and
the continuous equation when we look at the maximum amplitude solutions
for various values of 7. Table (5.5) gives the values chosen for W for each
7 as well as the resulting maximum, minimum and location of the saddle
point. Figure (5.7) has the phase portraits for this case. Clearly, just as
in Chapter 3, the amplitude decreases with decreasing 7. In comparing
these solutions to those of Chapter 3, we notice that the amplitudes are
consistently smaller here than those of Chapter 3. Table (5.6) illustrates
this. Since the actual velocity depends on the value of W, and this value
is different for the continuous problem and the discrete problem, we check
that the actual velocities for both cases followed this same pattern. We find
that the amplitudes of the velocity profiles, even though the values of W are
different, are still larger for the discrete case. Table (5.7) compares the values
of W times the corresponding amplitude for each 7 for both cases. Wn for
the continuous equation corresponds to W f’ of the discrete equation.

Next, we compare the period. Table (5.8) has this comparison. We see
that the periods of the solutions to the continuous equation decrease as 7
decreases, which is what we expect from the perturbation. We also see that
the periods here are greater than the corresponding ones from the solutions to
the discrete equations. For example, the period for the case of 7 = .61 for the
continuous case is 16.6, and for the discrete case it is 10.9. We find in table
(5.9) that the distance from the saddle point is quite small for the continuous

equation. The distances are smaller than the corresponding distances for the
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Table 5.4: The mean and the percentage of the total amplitude which the
mean occupies for each value of W.

W | mean = M 5]‘%
9263 .0973 42.3%
.929 .0396 21.2%
932 .0208 14.6%
.935 .0065 8.0%

Table 5.5: The value of 7, W, the maximum, the minimum and the location
of the saddle point.

T

|44 max

67| .8427 | .3466
.61 .8903 | .2338
BT .9263 | .1546
53 | 9666 | .0669
51| .98852 | .0228

min | saddle point
-.1662 .3526
-.1138 2371
-.0755 1551
-.0337 .0683
-.0115 .0231

Table 5.6: Comparison of the amplitudes for the continuous case - A, with
those of the discrete case - A, for each value of 7.

T

A, Aqg

671 .2564 | .3182
.61 1.1738 | .2090
ST | 1151 | .1456
53 | .0503 | .0605
511.0172 | .0209
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Table 5.7: Comparison of the actual velocities for the discrete and continuous
cases by comparing the values of W times the amplitude for each .

T | WA, | WA,
.67 | 2161 | .2577
.61 | .1547 | .1808
571 .1066 | .1322
.53 | .0486 | .0580
511 .0170 | .0206

Table 5.8: Comparison of the periods of the continuous and discrete cases

for each 7.

T

P

Py

.67
.61
BT
53
51

13.53
16.63
24.53
28.30
50.98

10.51
10.91
18.75
19.94
34.93

Table 5.9: The location of the saddle point and the distance from it to the

maximum for each 7.
T | saddle point | distance from the maximum
to the saddle point
.67 .3526 .006
.61 2371 .003
Y 1551 .0005
53 .0683 .001
.51 0231 .0003




140

discrete equation. Perhaps, because we have orbits closer to passing through
the saddle points, we find longer periods. We see also from the velocity
profiles, figures (5.8) through (5.12), that the shape is slightly different.
The discrete case had more symetric profiles than the continuous case. The
continuous case has profiles which lean slightly to the right and thus provide
a good comparison with the discontinuous shock solution. Table (5.10) shows
that for both the continuous and discrete equations, in these extreme cases,
the percentage of the total amplitude which is negative is about the same —
an average of 33% for the continuous case and 34% for the discrete case.

We also compare the mean velocity. Since the amplitudes are smaller
here, we expect the mean to be smaller and it is. We compare the actual
mean values .for different values of 7 for the continuous case in table (5.11).
In comparing the solutions to the two equations, instead of comparing the
actual means, we compare the ratio of the mean to the total amplitude. We
do this in the third column of table (5.11). We find that for the continuous
equation, this ratio is higher . The discrete equation gives a lower range of
values, with its average slightly lower. Thus, we conclude that we have a
higher mean as compared to the amplitude for the continuous equation. We
can also interpret this as saying that the continuous equation gives a flatter
velocity profile at the top of the curve than does the discrete equation. This
is visually apparent from comparing the figures.

The overall characteristics of the periodic solutions for the continuous
equation are very much the same as those of the discrete model. There are

differences in the actual numbers, as is seen in the tables of this section,
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Figure 5.8: Velocity perturbation for 7 = .67 and W = .8427.
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Figure 5.10: Velocity perturbations for 7 = .57 and W = .9263.
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Table 5.10: Comparison of the percentage of the total amplitude which is

negative for the continuous and discrete cases for each value of 7.

r Iminle | minly
24 244
.67 32.4% | 33%
.61 32.7% | 35%
57 32.8% | 33%
.53 33.5% | 35%
.51 33.4% | 35%
average | 33.0% | 34.2%

Table 5.11: The mean values for each 7 and the comparison of the ratios of

the mean to the total amplitude for the continuous and discrete cases.

T mean = M, ;—j‘”: -21‘—1‘:
.67 .1862 36.3% | 33.0%
.61 .1298 37.3% | 29.3%
.87 .0973 42.3% | 38.7%
.83 0357 35.5% | 28.3%
.51 0127 37.2% | 29.2%
average 31.7%

377%
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but they are qualitatively the same. The most notable difference is the less
symetric nature of the solutions to the continuous equation as compared
to those of the discrete equation and hence, the solution to the continuous
equation provides a bridge between the discontinuous shock solution and the

periodic solution of the discrete equation.



Concluding Remarks

We have seen that the result of instabilities is growing oscillations, the mag-
nitude of which is determined by the extent of the instability. For shocks,
we found that if the instability was not too severe, the magnitude of these
oscillations stabilized and did not continue to grow down the line of cars and
thus produced what appeared to be steady profile waves.

We also found oscillations in the form of periodic waves. The three the-
ories that we considered all resulted in some form of periodic solution. The
discontinuous shock theory of Chapter 1 had the velocity profile leaning all
the way to the right. The car following model of Chapter 3 had more sym-
metric velocity profiles. The continuum model of Chapter 5 gave solutions
which were continuous as in Chapter 3, but not as symmetric. The solutions
leaned to the right, similar to the discontinuous solution of Chapter 1. We
can think of the car following model as a model with an infinite number (and
order) of derivatives which smooth out the discontinuous shock significantly
more than the continuum model of Chapter 5 with only one higher derivative.

A thorough comparison with experimental data on traffic would be an-
other nice thing to consider. One piece of experimental data was obtained

from a report that was done by two surf students in the summer of 1987.
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N

Figure (5.13) shows the velocity profile of their car on the 605 freeway at
rush hour. This is a graph of the record they kept while driving through a

-
o

|sPEED (MPR)

& |

Figure 5.13: The velocity profile of a car on the 605 freeway during rush
hour. o

traffic jam. Although there are many short, frequent oscillations, the overall
shape compares nicely with the periodic solution obtained in this thesis. The
dotted line shows a smooth version of the actual velocity curve. This cur\}e
has the characteristic that it spends much of its time at a higher velocity
and occasionally dips down for a short duration as do our solutions. Clearly,
the actual values do not compare well at all, but this could be due to the

parameter values that we chose.
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In addition to the mathematical interest of these periodic and shock so-
lutions, there is perhaps some practical interest as well. Stop and go waves
clearly exist in traffic and it seems that this instability can be triggered very
easily. These waves are not desirable in traffic. By lowering the mean ve-
locity, they lower the flow and are also a source of great frustration to the

driver.
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