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ABSTRACT 

The combustion of chars from pulverized bituminous coals was experimentally 

and theoretically investigated. The chars were made by pyrolyzing size-graded 

PSOC 1451 coal particles in nitrogen at temperatures of 1000-1600K. Sized char 

particles were then used for further experiments. Low temperature reactivities of 

such cenospheric chars were measured at SOOK on a thermogravimetric analyzer. 

The effects of initial coal size, char size, p~rolysis temperature, and oxygen concen­

tration were investigated. Single particle combustion experiments were done in both 

air and 50% oxygen ambients at wall temperatures of 1000-lSOOK in a drop tube 

laminar fl.ow furnace. Particle temperatures were measured during the entire course 

of combustion. From the complete temperature-time histories of such burning par­

ticles, the apparent activation energy and pre-exponential factors were inferred, 

using numerical models and statistical modelling techniques. Questions of particle­

particle variability were addressed. The ignition transients of single burning parti­

cles were studied and a model that predicted delay times observed experimentally 

was developed. Char samples were also partially oxidized at temperatures in the 

range 1200-1500K (particle temperatures) and physically characterized. Methods of 

characterization included optical and electron microscopy, gas adsorption methods 

for specific surface area and pore volume distributions, and mercury porosimetry 

for pore volume distribution measurements. The results of these characterizations 

were compared with those done on chars oxidized at 500°C. 

The combustion of single char particles was numerically modelled. A contin­

uum model for asymptotic shrinking-core combustion was developed using apparent 
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reaction rates and temperature-dependent properties. Simplified assumptions were 

made regarding the gas-phase combustion. Parametric sensitivity of this model· 

yielded significant insight into the combustion process. A more general continuum 

model was then developed. This model treated the internal pore structure more 

realistically, as inferred from experiments. The steady state diffusion equation was 

solved inside the particle to determine its theoretical temperature-time history. 

Good agreement with experiments was found. The model was extended to include 

the effects of some nonlinear kinetic reaction rate expressions. A discrete model for 

a cenospheric particle was also developed. This model consists of spherical voids 

randomly placed in a spherical particle. It simulates the combustion by taking into 

account the connectivity of the internal pore structure. This connectivity influences 

the access of reactant to the interior of the particle and, therefore, the extent of 

internal reaction. The changes in the internal connectivity led to a percolation type 

behavior in most particles. 
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INTRODUCTION 
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This dissertation deals with some aspects of the combustion of chars made from some 

U.S. bituminous coals. Bituminous coals are characterized by fixed carbon contents 

between 69 and 86%. Of course there are wide variations in the contents of volatile 

matter, moisture and mineral matter between various bituminous coals. While the 

primary emphasis was on one coal, PSOC 1451, chars from other coals have been 

used for comparision purposes. The most common method of coal utilization is in 

the form of pulverized coal for power generation. The particle size used is in the 

range 40-200µm. When coal particles are heated, moisture and the volatiles are 

successively expelled leaving behind a carbonaceous char. The volatiles burn in the 

gas phase on time scales of the order of less than a millisecond while the char burns 

out in tens of milliseconds. Thus, char combustion is the controlling factor in the 

overall process and it determines combustor size. 

While gas phase combustion reactions involving the volatiles have been exten­

sively studied, the peculiar problems of char combustion are now receiving greater 

attention. The latter is a much more difficult problem due to the following ca.uses: 

heterogeneity of the system, internal morphology characterized by the presence of 

pores with diameters ranging from few angstroms to few microns, diffusion and re­

action in such a media, nonavailability of reliable kinetic data on intrinsic chemical 

reactions of the carbon at high temperatures, and the presence of ash and mineral 

matter in the solid which have physical and chemical ramifications on the com­

bustion process. All these problems are for single particle combustion. In a real 

system, the problems of particle-particle interaction, fluid-particle interaction and 
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mass transfer have also to be accounted for. 

Appendix I lists some of the physical and chemical properties of PSOC 1451 

including its proximate and ultimate analyses, heating values, elemental composi­

tion, and the composition of its ash. While there are many excellent reviews of 

coal science in the literature, not all of them deal with bituminous char combustion 

in sufficient detail. .Chapter 2 summarizes the important findings from the recent 

literature in the area of bituminous char combustion. Apart from char reactivities 

at low and high temperatures, the chapter also discusses models used to represent 

the internal structure of such chars and the dispersion of mineral matter and ash 

in single particles. Finally, single particle combustion models are discussed. No 

attempt has been made to discuss the combustion behaviour of groups consisting 

of many particles. 

Chapter 3 describes the results of oxidation studies on sized char particles at 

temperatures around SOOK. The experiments were done on a thermogravimetric 

analyzer. In addition to PSOC 1451, chars from two other bituminous coals, PSOC 

176 and PSOC 282 were also used in this study. At these low temperatures, it was 

shown that the effects of diffusion are minimal and that the observed reactivities 

represent the true rates. Various experiments were done to test the effect of coal 

type, char pyrolysis temperature, char particle size, parent coal particle size, oxy­

gen concentration, and other variables on reaction rates. Physical characterization 

of the chars was done using gas adsorption, capillary condensation, and mercury 

porosimetry. Surface area values were determined for some samples at intermediate 

conversions. Heating values were determined as a function of carbon conversion 
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for PSOC 1451 chars. The intrinsic kinetic rates were then determined from the 

apparent reactivities and the measured surface area values. It was shown that, 

after accounting for the effects of ash, the intrinsic rate was fairly constant over a 

wide range of carbon conversion. Appendix X describes in detail the experimental 

conditions used. 

Single particle combustion experiments done in the laminar flow drop tube 

reactor are described in Chapter 4. These experiments were done at wall temper­

atures in the range 1000K-1500K. Some experiments were done in air and others 

in an ambient of 50% oxygen. Complete temperature-time burn histories for each 

particle were recorded. This was repeated for many particles in a given sample. It 

was observed that particles from the same sample often produced temperature-time 

signatures that were quite different. This was primarily due to the different initial 

particle sizes and shapes. While there are other particle-particle differences, the 

initial size and shape variations are undoubtedly major causes of later combustion 

variability. Based on this hypothesis, a. statistical model was developed and used 

to derive the apparent kinetic rates of combustion at these high temperatures. Ap­

pendix VIII gives the listings of the programs used in the data acquisition, inversion 

and modelling. The temperature-time traces for each of the various runs is given 

in Appendix XII. 

Physical characterization experiments of char samples that were partially oxi­

dized at high temperatures in air are described in Chapter 5. The various methods 

of characterization include optical and electron microscopy, gas adsorption to deter­

mine BET specific surface areas, capillary condensation to determine pore volume 
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distributions of the micro and transition pores, and mercury porosimetry to find 

the pore volumes of the macro and transition pores. The physical changes occurring 

in the particles as conversion increases are discussed in great detail in the chapter. 

The final section compares the changes at high temperatures to those occurring 

when the conversion is carried out at low temperatures. The temperature of the 

particles as they burned was also measured at different conversions. Appendix II 

describes in some detail the design and construction of a two color optical pyrome­

ter employed for particle temperature measurement. The construction of the high 

temperature reactor is described in Appendix IV. Computer programs used for data 

acquisition and inversion for the gas adsorption experiments are given in Appendix 

V. Appendix VI gives similar listings for the programs used for mercury porosime­

try data analysis. Finally, programs used to acquire data from the pyrometer and 

convert the data to particle temperature measurements are given in Appendix VII. 

The temperature-time traces from single particle combustion experiments led 

naturally to questions regarding the ignition transients observed at the earlier stages 

of combustion. It was observed that while the particle temperature was constant, 

the light intensity signal from the particles continued to increase. This was at­

tributed to the growth of hot spots on the particle surface. A model that describes 

the growth of such a spot was developed and its predictions were compared to the 

experimentally observed delay times. Good agreement was found. This is described 

in Chapter 6. 

Continuum models depicting the combustion of single particles are described 

m Chapter 7. The simplest model assumes that all the reaction takes place on 



-6-

the external surface of the particle with the apparent kinetic rates derived earlier. 

This diffusion limited regime is typical of combustion of large particles at high 

temperatures and at high oxygen concentrations. While the model does not treat 

the details of the internal morphology, it does account for the presence of ash in 

the particle. The gas phase outside the particle is modelled in a simple manner 

assuming it to be quasi-steady with respect to the solid combustion. The next 

level of complexity involves accounting for the presence of pores inside the particle. 

Starting with initially monodisperse spherical pores, a general model that accounts 

for internal diffusion and reaction is formulated. The internal porosity and spe­

cific surface area are allowed to change. The chemical reactions are described by 

their intrinsic rates. The reaction rate is assumed to be linear with respect to local 

oxygen concentration. This model is then extended to allow a more realistic de­

scription of the internal morphology consisting of pores of three sizes corresponding 

to micro, transition and macro pores, observed experimentally. The parametric sen­

sitivities of all the models are discussed. The last section deals with the inclusion 

of nonlinear kinetic expressions in the reaction rates. Two forms corresponding to 

Langmuir-Hinschelwood and Power law functions of the local oxygen concentration 

are considered. Appendix IX lists the computer codes of the different models. 

While assuming that the interior of a char particle is homogenous and capable 

of continuum description is a convenience, it is often an over-simplification. There 

are cases when the internal morphology cannot be described as a continuum due to 

the presence of voids whose sizes are comparable to the particle radii. A discrete 

simulation model was developed to describe, in general terms, the combustion of 
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cenospheric chars like those of PSOC 1451. While most simulation models of this 

nature are based on lattice geometries, the present model described in Chapter 8, 

is closer to describing the physical reality. Spherical pores were randomly placed 

inside a spherical particle leading to void overlap. This model takes into account 

the connectivity of the pores inside the particle and the connectivity of pores to the 

outside. The access of oxygen to the interior is constrained by this connectivity. 

Particle void fraction and conversion are tracked as they change with burn time. 

Interesting percolation behaviour of the void structure was observed. Examples of 

the percolation traces are shown in Appendix XI. 

Specific surface areas and pore volume distributions obtained by gas adsorp­

tion techniques are widely used to characterize porpus particles in many different 

areas including coals and chars. However, there are many questions regarding the 

applicability of techniques, models, and inversion paradigms commonly used. The 

suitability of such techniques is discussed in Appendix ill. Four solids having dif­

ferent internal morphologies were chosen. Also, three different gases were chosen as 

the adsorptives. The applicability of the various adsorptive-adsorbate combinations 

is discussed. The next question involves inversion routines to generate pore volume 

distributions from the raw data. The standard inversion methods are described 

and critically analyzed. Finally, methods used specially for microporous solids are 

studied. 

Chapter 9 briefly summarizes the major conclusions of the thesis. 
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Chapter 2 

INTRODUCTION TO 

BITUMINOUS COAL CHAR COMBUSTION 
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2.1 Introduction 

Coal has always been a major source of energy for electricity generation. Since the 

1960's, however, it began losing ground as the primary fuel for power generation. Oil 

and natural gas prices were cheap and nuclear power was poised for rapid growth. In 

the 1970's the situation suddenly changed. Oil and gas prices had sky rocketed and 

safety concerns regarding the nuclear power industry were thwarting its projected 

growth. All this, coupled with the realization that oil and gas supplies are rapidly 

dwindling, has created renewed interest in utilization of the vast coal reserves in the 

world. Of course, coal, like oil, is also a non-renewable source of energy. Eventually, 

nuclear, solar or some other renewable energy source will be required. But, in the 

short term, coal and energy conservation off er the best alternatives for meeting our 

energy demands. 

At the very outset it should be recognized that 'coal' is a generic term and the 

solids it refers to are often more dissimilar than alike. This is due to the conditions 

under which coal was formed. At various times in geological history, due to land 

subsidence and water inundation, plant debris was gradually covered by silts which 

shielded it from further degradation. As this debris was buried under increasingly 

thick inorganic sediments, it was progressively compacted by overburden pressures 

and chemically altered by heat. Whenever this happened, coal was formed. The 

fact that coal is so widely distributed shows that it did not require a particular 

types of debris. It formed from whatever plant life happened to flourish at the 

time. But the variety of this vegetation and the diverse conditions under which it 

accumulated and decayed had a profound effect on the kinds of coal that developed 
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from it. 

Numerous attempts have been made to organize various types of coal into 

comprehensive classification schemes primarily to assess their suitability for differ­

ent applications. Rank, as applied to coal, carries the same meaning as extent of 

maturation and is therefore a qualitative measure of its carbon content. Bituminous 

coals and anthracites are classified as being high rank while lignites and subbitu­

minous coals are considered to be low rank. However, rank should not be confused 

with grade, which refers to quality. The widely accepted ASTM classification by 

rank is shown in Table 2.1. For lower rank coals, heating value rather than fixed 

carbon content is used to classify the coals. 

For practical purposes, the chemical composition of coal is always defined in 

terms of its proximate analysis which determines its moisture, volatile matter, ash, 

and fixed carbon contents. Upon heating, moisture and the volatiles are lost leaving 

a solid char which contains the carbon and mineral matter. At higher temperatures 

the char burns. Thus coal combustion involves the combustion of the volatiles in 

the gas phase and the combustion of the char. For pulverized combustion, in which 

coal is generally ground to sizes below 200µm, char combustion controls the overall 

burn time and, therefore, the combustor size. 

The scope of this chapter will be limited to combustion and modelling of single 

bituminous coal or char particles. Reactivity measurements at high and low tem­

peratures and various approaches used to model the internal morphology of char 

particles will be discussed. Attempts to predict the effects of ash on the combus­

tion of single particles are receiving greater attention now but as yet there is no 
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consensus on the best approach. Some experimental work on the effects of ash and 

mineral matter will be reviewed. Finally, some complete models of single particle 

combustion will be discussed. 

Excellent reviews in the general area of pulverized coal combustion are available 

in the literature. Field and co-workers (1967) described all aspects of combustion 

of pulverized coal including fluid mechanical, thermal, and chemical kinetic effects. 

Although most of the material is derived from their own research at the BCURA, 

they give a succint review of 'Various topics prior to the mid 1960's. A few years 

later, Mulcahy and Smith (1969) published a review dealing exclusively with chem­

ical kinetic aspects of pulverized fuel combustion. Laurendeau (1978) describes in 

great detail much of the progress made in the 1970's in the area of heterogenous 

kinetics of coal char combustion. His review gives a complete discussion of the 

mechanisms and rates of the relevant gas-solid reactions. Mass transfer and diffu­

sion are also discussed. Smith (1982) summarizes the field of char kinetics including 

a comprehensive attempt to gather the reactivity data for all types of carbons over 

a wide range of temperatures. He proposed an intrinsic chemical rate expression 

suitable for all chars. Essenhigh (1981) gives an extensive review of most aspects of 

coal combustion, with a scope much larger than any of those previously mentioned. 

Recently, Smoot and Smith (1985) have also published a valuable addition to the 

field of coal combustion. While most of the references mentioned above deal with 

the solid phase in greater detail than the gas phase combustion, Libby and Blake 

{1979) examine the latter in greater detail. 
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2.2 Low Temperature Kinetic Studies 

Although temperatures in the practical combustion systems of interest here are gen­

eralIJ'.' high, reactivity studies at lower temperatures can give valuable insight into 

the various physio-chemical processes occuring during combustion. The influence of 

diffusion resistance in the gas phase can be minimized by suitable choice of temper­

ature, oxygen partial pressure, and particle size making possible direct observations 

of chemical effects. In many cases pore diffusion does not limit the reaction rate, at 

least for the larger feeder pores. Therefore, it is possible, in principle, to determine 

the intrinsic reactivity of the carbonaceous matter from such experiments. Care 

must be taken to properly account for the presence of ash or mineral matter in 

the coal or char since, at lower temperatures, the influence of ash on the chemical 

kinetic effects can be quite important. The growth and development of the internal 

morphology (pore growth) is also important at lower temperatures. 

The Thermogravimetric Analyzer (TGA) is most commonly used for low tem­

perature reactivity studies. The TGA is convenient because it directly gives the rate 

of mass loss of a given sample under a specified programmable temperature load­

ing. From the rate of mass loss data the apparent reactivities are easily calculated. 

Finally, knowing the surface area of the sample and the diffusion limitations of the 

particular experiment, it is possible to estimate the intrinsic chemical reactivity. 

Table 2.2 summarizes some of the work in the area of low temperature reactivity 

measurement. Low temperature reactivity measurements in the present study are 

discussed in Chapter 3. 

In a major study Jenkins et al. (1973) investigated the role of coal rank, pyrol-
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ysis temperature, and mineral matter on the reactivity of chars from 21 US coals. 

For coals pyrolyzed in N2 at 600-1000°C they found that while reactivity increases 

with the decreasing coal rank, possibly due to the catalytic effects of mineral matter, 

it decreases with increasing pyrolysis temperature. They also correlated reactivity 

with the calcium and magnesium contents in the char. Since reactivity was not well 

correlated with other known catalysts like iron, they speculated that the form and 

distribution of mineral matter has an important influence on the reactivity. The 

role of the internal structure of the chars in determining their reactivities was shown 

by Dutta and Wen (1977). They found that in the chemical kinetic regime, the re­

activity depended more on the degree of gasification and the pore characteristics of 

the char than it did on the parent coal. In another important study Mahajan et al. 

(1978) supported the earlier findings of Jenkins et al .. While the latter had used 

the maximum weight loss as the reactivity parameter in their work, Mahajan et al. 

suggested that the time to reach a particular fractional burnoff, say 50%, be used 

as a parameter to correlate reactivity data of different chars. This unification of 

reactivity data was further proof that the changes in the pore structure with burnoff 

greatly influences reactivity. More recently, Morgan et al. (1987) have shown that 

reactivity depends on the maceral content of the chars. Vitrinites are more reactive 

than inertinites. An important conclusion of their work was that there is maceral 

segregation in the different size fractions of char. Therefore, char size, in addition 

to influencing diffusion conditions, also determines intrinsic chemical reactivity. 

2.3 High Temperature Kinetic Studies 

At higher temperatures, the combustion of particles in the pulverized size range is 
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usually strongly diffusion limited. There are two major diffusion limitations. The 

first is the diffusion across the particle boundary layer. The second is pore diffusion. 

Since the chemical rate is a sensitive function of the particle temperature, the 

combustion rate is governed by the amount of oxidant that reaches the char surface 

and then penetrates into the interior of the particle. In most cases, the reaction 

occurs only in the larger pores and most of the internal area in the smaller pores is 

not utilized. The particle density and size are both reduced. Since diffusion is such 

an important aspect of high temperature combustion, it must be treated in any 

determination of the intrinsic chemical rate parameters. Smith and Tyler (1974) 

have outlined a first order procedure for determining the intrinsic reactivities. 

A number of experimental techniques have been used to measure reactivity at 

high temperatures. The thermogravimetric analyzer can be used up to 1300K. Most 

workers have used the laminar flow drop tube reactor. The flow is generally kept 

laminar to minimize complications in the data interpretation due to fluid mechanics. 

The heat source can be a flame, plasma, or some type of electric heating. The 

limitations of using a flame (vitiated combustion) as the heat source are obvious. 

The temperature depends on the fuel/ oxidant mixture ratios and flame stability 

considerations. The chemistry in the gas phase around the particle is difficult to 

characterize due to the presence of various radicals and other species. Plasma 

heating also introduces reactive species. Electric heating allows greater control of 

the temperature and gas composition. Shock tubes have been used in some studies 

to determine high pressure reactivities. 

The reactivity can be measured either gravimetrically, involving a direct mea-
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sure of the carbon mass loss, or inferred from the gas phase composition by moni­

toring the carbon oxides. In most of the earlier measurements, the particle temper­

ature was calculated from the carbon mass loss data by using an energy balance and 

making appropriate assumptions regarding the nature of the heterogenous reaction 

at the particle surface. More recent studies have employed nonintrusive optical 

techniques for independent determination of the particle temperature. Table 2.3 

summarizes the high temperature reactivity studies of the last two decades. The 

present work in this area is presented in Chapters 4, 5, and 6. 

Direct comparison of the reaction rates or the activation energies from differ­

ent studies is not possible since the nature of the· chars is quite different. While 

it is certainly true that the influence of char type on the reactivity at higher tem­

peratures is much less than at lower temperatures, Smith (1982) found that the 

reactivities of different chars at a given temperature varied by as much as four or­

ders of magnitude. His attempt to unify the known reactivities of various carbons 

over a wide range of temperatures met with limited success. This may be due to 

the intrinsically different nature of the carbons and their reactivity with oxygen, 

or due to the different pore structures of the carbons, or both. The chemical influ­

ences of ash were not investigated. The measurement of reaction order is also open 

to question. Mechanisms that have been theoretically proposed for the carbon­

oxygen reaction (Nagle and Strickland-Constable, 1962; Essenhigh, 1981) have not 

been entirely validated (Laurendeau, 1978; Tseng and Edgar, 1985), probably due 

to incomplete control over experimental conditions. As experimental techniques 

improve, better understanding will doubtless emerge. The recent simultaneous op-
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tical measurements of particle size, velocity, and temperature reported by Mitchell 

(1987) represent a significant step in this direction. 

2.4 Description of Internal Morphology 

The description of the internal structure of a char particle is critical to any model 

that attempts to describe its combustion behaviour. The reaction rate depends 

on the available internal surface area, which, in turn, depends on the diffusion of 

reactant into the solid structure. The estimation of the overall porosity and the 

particle density are also determined by the particular pore structure model. It is 

quite clear from experiments that pore sizes in pulverized coal or char combustion 

range from tens of microns to few Angstroms. They are also irregular in shape. 

However, for reasons of mathematical tractability, simple geometrical pore shapes 

like cylinders, spheres, and slits are often assumed. A comprehensive pore model 

should be able to describe the overall features of the pore distribution, i.e. porosity, 

average pore radius, and pore surface area, as well as the evolution of the pore struc­

ture with reaction. Mechanisms of pore formation, growth, and coalescence must 

be described. Of course, the reaction kinetics are closely coupled with the problem 

of pore diffusion since the reaction rate is dependent on the local concentration of 

oxidant at each location inside the particle. Few general models are available that 

describe these features satisfactorily. Some of the important models will be briefly 

described below. 

Petersen (1957) proposed a simple model of reaction and diffusion in a single 

cylindrical pore and then extended it to a network of similar pores with random 

intersections. However, his model predicted values of effective diffusivity that were 
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an order of magnitude lower than the experimentally observed values. Johnson and 

Stewart {1965) and later Feng an·d Stewart {1973) calculated diffusivities using a 

capillary model containing a size distribution of randomly oriented pores. Cross 

linking of the pores was assumed. Their models contain adjustable parameters that 

must be evaluated from experiments. The 'calibrated' models predict reasonably 

accurate values of diffusivity. Szekely and Evans (1970) describe two simple models 

of porous solids. Their pore model consists of parallel, regularly spaced cylindri­

cal pores of uniform size. While this may ·describe some situations in heterogenous 

catalysis, it is not a suitable model for chars. Their grain model consists of spherical 

solid particles of uniform radii arranged in a lattice with fixed center separation. 

Using a population balance method, Hashimoto and Silveston (1973) proposed the 

first sophisticated model of a porous solid. They also review the relevant catalysis 

literature regarding homogenous and shrinking core models. Their model includes 

the effects of pore growth, creation of new pores, and pore coalescence. Surface 

area, porosity, and mean pore radius were predicted as a function of the extent 

of reaction. By adjusting the model parameters, they were able to obtain good 

agreement with experiments. Simons {1982) proposed a pore tree model for chars, 

postulating that feeder pores that were connected to the external surface branched 

into smaller and smaller pores as the radius increased. This branching sequence 

creates a pore network that resembles a tree-like structure. This model cannot 

predict the change of surface area and other pore structure parameters at the lo­

cal level that is essential for a predictive model. Gavalas (1980) and Bhatia and 

Perlmutter (1980) independently proposed similar random pore models for solids 
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with cylindrical pores. The model by Gavalas consists of infinitely long cylinders 

whose radii are drawn from a certain size distribution. The axes of the cylinders 

are randomly oriented creating pore intersections in a natural manner. Bhatia and 

Perlmutter consider the random overlap of a set of cylindrical surfaces of different 

radii. Although their formulation is different, their results closely resemble those 

obtained by Gavalas. 

2.5 Mineral Matter and Ash 

In addition to the engineering considerations of deposit formation, fouling, and en­

vironmental pollution (Raask, 1985), the presence of mineral matter and its trans­

formation to ash strongly influences the combustion of coal or char. 

The application of such methods as low temperature ashing and x-ray diffrac­

tion has increased our understanding of ash. Of the hundred or so different minerals 

that can occur in coal, about 15 are abundant enough to have major influence (Har­

vey and Ruch, 1984). Different investigations have shown that the presence of CaO 

in the ash tends to enhance reactivity (Hippo and Walker, 1975). Hippo and Walker 

(1975) also showed that MgO enhances reactivity when present in concentrations 

less than 1 %. Surprisingly, they found that iron, sodium or potassium do not 

correlate well with reactivity. Padrick (1984) observed enhancement in the hydro­

gasification rate when iron-bearing compounds were added to the coal. Pohl (1984) 

comments on the reactivity enhancement of graphite in the presence of sodium. 

But, he reports that sodium must be distributed on the molecular level to be effec­

tive. These obswervations suggest that the sodium in real coals may be segregated, 

reducing its effectiveness as a catalyst. Huffman and Huggins (1984) have concluded 
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from Mossbauer spectrometry that iron undergoes a number of reactions at high 

temperatures under both oxidizing and reducing conditions, suggesting that iron 

compounds may act as catalysts if present in sufficient amounts. The other impor­

tant effect of iron compounds is on ash emissivity (Raask, 1985) which profoundly 

affects the radiation balance of the particle and its temperature. 

2.6 Modelling of Single Particle Combust;on 

Although many models have been proposed to describe the combustion of single 

particles, a few of them will be described here. 

The simpler models assume that the particle is impervious to the reactant and 

that the reaction is lumped at the particle surface.· Caram and Amundson (1977) 

proposed such a boundary layer model for slab and spherical geometries. They also 

give an excellent review of some previous models. Two heterogenous reactions at the 

carbon surface (C+Or-+C02 ; 2C+02 --+2CO) and one homogeneous reaction in the 

gas phase involving oxidation of carbon monoxide were considered. The particle was 

assumed to be in radiation equilibrium with similar particles. Transport properties 

were assumed to be independent of temperature. From such a simple model, they 

nevertheless concluded that Stefan flow was a negligible factor in spherical geometry. 

More importantly, they found that while larger particles (5mm) burned according 

to the double-film theory, smaller ones (50µm) burned consistent with single-film 

theory predictions. In the latter, the primary reaction at the surface produces 

carbon monoxide which is later oxidized to carbon dioxide far from the particle. 

Thus there is no flame in the particle boundary layer. Caram and Amundson also 

predicted the existence of multiple steady states in the solution of the differential 
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equations, some of which were interpretaed as ignition and extinction phenomena. 

Mon and Amundson (1978) extended the previous work to include the effect of 

radiative exchange with a wall or enclosure and also assumed varying diffusivities 

of the gas phase components. They concluded that, for particles in the pulverized 

coal size range burning in air, CO oxidation always takes place outside the boundary 

layer and that the only important heterogenous reaction at the particle surface is 

2C + 02-+ 2CO. 

Srinivas and Amundson (1980, 1981a, 1981b) investigated the effects of intra­

particle transport. Although the earlier papers (1980, 1981a) treated the internal 

structure as invariant (e.g. porosity and surface area as constant) with respect 

to combustion, this assumption was later relaxed (1981b). They found that the 

pore structure and its evolution significantly influences all aspects of combustion 

including burn time, ignition, and extinction. The validity of previous boundary 

layer models (Caram and Amundson, 1977; Mon and Amundson, 1978) was thus 

dou btfuL under any condition. 

Thus the internal particle structure must be incorporated into any realistic 

model although properly formulated shrinking core models could still describe com­

bustion at high temperatures. For these, reaction rates were a crucial input pa­

rameter. Sotirchos and Amundson (1984) combined the previous approaches of the 

boundary layer and the intraparticle models into a single model. Internal surface 

area, porosity, and diffusivity were functions of the local conversion. They also 

included the effects of intraparticle thermal gradients. As before, internal pore 

structure and growth were dominant parameters. 
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Bhatia and Perlmutter (1980, 1981) proposed a random pore model to de­

scribe the internal particle geometry. Their model for the kinetic regime (1980) 

later extended to diffusion dominated combustion (1981) predicted experimentally 

observed maxima in the reaction rate. Independently, Gavalas (1980) proposed a 

similar random pore model, capable of realistically describing particles with cylin­

drical pores. His model for the kinetic regime gave similar results to that of Bhatia 

and Perlmutter (1980). Gavalas (1981) extended his model to describe the com­

bustion in diffusion dominated and intermediate regimes. Sotirchos and Burganos 

(1986) recently included Gavalas's random pore model in their unsteady particle 

combustion model. They found that pore structure, pore structure evolution, and 

radiant exchange significantly influences the ignition and extinction behaviour of 

single particles. Other models describing char combustion include those of Lee et 

al.(1984) and Simons (1979a,1979b). 

None of the models described above attempt to include the presence of ash 

in any manner. Some attempts to incorporate the presence of ash in continuum 

models is described in Chapter 7. 
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Fixed Carbona Volatile Mattera 
Class and Group (%) 
I. Anthracite 

1. Metaanthracite >98 
2. Anthracite 92-98 
3. Semianthracite 86-92 

II. Bituminous 
1. Low Volatile 78-86 
2. Medium Volatile 69-78 
3. High Volatile A <69 
4. High Volatile B 
5. High Volatile C 

III. Subbituminous 
1. Subbituminous A 
2. Subbituminous B 
3. Subbituminous C 

IV. Lignite 
1. Lignite A 
2. Lignite B 

a Calculated on dmmf basis. 

b Calculated on mmf basi1 with bed moisture content. 

c If agglutinating then HVC, else Subbit. A. 

d 1 Btu/lb = 478.55 J /kg. 

(%) 

<2 
2-8 

8-14 

14-22 
22-31 
>31 

Table 2.1 ASTM Coal classification by ra.nk. 

Heating Valueb 

(Btu/lb)d 

>14000 
13000-14000 
10500.13000C 

10500.13000C 
9500-10500 
8300.9500 

6300.8300 
<6300 



Authors Method 

Jenkins et. al. TGA 

{1973) 

Dutta et. al. TGA 

{1977) 

Mahajan et. al. TGA 

(1978) 

Radovic et. al. TGA 

(1983) 

Tseng et. al. TGA 

(1985) 

Knill et. al. TGA 

{1986) 

Morgan et. al. TGA 

{1986) 

Temperature % 02 Pressure Char Type 

500°c 21 1 atm From 21 US Coals pyrolyzed 

in N2 at 600-1000°C 

424-576°C 21 1 atm From 2 US Bituminous Coals pyrolyzed 

in N2 at 1024°C and 4 process chars 

405°C 21 1 atm From 16 US Coals pyrolyzed 

in N 2 at 1000°c 

550-750K 21 1 atm Process Chars 

425-900°C 0.5-100 1 atm From 1 US Bituminous Coal pyrolyzed 

in N2 at 1000°C 

< 500°C 0-100 1 atm From hydropyrolysis of sub-bituminous 

Canadian coals at 600-800°C 

450-650°C 21 1 atm From hydropyrolysis of a British 

coal at 1400°C 

Table 2.2 Low Temperature Reactivity Studies 

t...:i 
-4 

I 
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Authors Method Temperature % 02 Pressure Char Type 

Field Drop Tube 1200-1720°C 5, 10 1 atm low rank UK Coal 

(1969) (N2 at 1600K) 

Smith Drop Tube 1200-1900K 21 1 atm NZ Bit. Coal 

(1971) (air at 1500K) 

Hamor et al. Drop Tube 900-2200K 10, 20 1 atm Aust. Brown Coal 

(1973) (air at 1600K) 

Smith et al. Drop Tube 630-1812K 10, 20 1 atm Aust. Brown Coal 

(1974) (air at 1600K) 

Dutta et al. TGA 834-1106°C 0.2-2 1 atm US Bit. Coals 

(1977) (N2 at 1024°C) 

Smith See Ref. See Ref. See Ref. 1 atm Different 

(1978) Porous Chars 

Young et al. Drop Tube 1000-1800K 5-30 1 atm Petro. coke 

( 1981) 

Lester et al. Shock Tube 1700-2200K 10-50 5.5-10 atm US Bit. Coals. 

( 1981) 

Wells et al. Drop Tube I 1300-1700K 21 1 atm Process Chars 

(1984) 

Knill et al. Drop Tube 1100°c 21 1 atm Can. bit. coals 

(1986) ( 600-800°C) 

Mitchell Drop Tube 1300-1800K 0-30 1 atm Bit. coals/chars 

(1987) 

Table 2.3 High Temperature Reactivity Studies 
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Chapter 3 

PHYSICAL PROPERTIES AND OXIDATION RATES 

OF CHARS MADE FROM THREE BITUMINOUS COALS 

Published in Fuel, 67, 1988, 275-283. 
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Abstract 

Intrinsic oxidation rates of coal chars derived from three bituminous coals were 

measured at 800 K and the effects of char formation temperature, conversion, coal 

particle size and char particle size on the rates were evaluated. Characterization of 

the various samples by BET surface area, mercury porosimetry, mercury and helium 

densities, heating values and in some cases elemental analyses were carried out to 

better understand the roles and interacti~ns of the various parameters. Optical 

microscopic observations were also made to verify assumptions wherever possible. 

The results show that apparent and intrinsic rates as well as heating values are 

reduced with increasing char formation temperatur~. N2-BET surface areas increase 

by an order of magnitude with conversion and exhibit maxima in the range of 

temperatures considered (1000 K to 1600 K). Of similar sized chars derived from 

different sizes of coal particles, those from the smaller coal size fractions had higher 

apparent reaction rates. 
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S.l Introduction 

The relationship between char reactivity and its physical or chemical properties is 

a suhject of long standing. Several authors have reported on the dependence of the 

rates of char gasification by 02, H20, and C02 on rank or chemical composition 

of the parent coal, 1- 3 mineral matter, 1•2•4 •5 and thermal pretreatment.1•2 •4•5 These 

experimental studies have, in most instances, employed sufficiently low tempera­

tures and have taken other suitable precautions in order to minimize or eliminate 

intraparticle and external diffusion limitations. In the absence of diffusional effects 

the reaction rate divided by the surface area of the char, e.g. the N2-BET surface 

area, provides what is known as the "intrinsic rate" or "intrinsic reactivity." It is 

well known that both total surf ace area and reactivity vary with the rank of the 

parent coal and its thermal pretreatment, although both surface area and reactivity 

have not always been measured. 

Once a char has been prepared under specified and carefully controlled con­

ditions, the gasification rate becomes a function of temperature, gas composition, 

and char conversion only. From the standpoint of process design, the dependence 

on conversion is as essential as the dependence on gas composition. Rates of char 

gasification by 02, H20, and C02 have been reported as functions of conversion by 

several authors.6 - 9 •28 The rate versus conversion curves normalized by the max­

imum or the initial rate were found, in some cases, to be insensitive to reaction 

temperature but to vary with the reactant gas. Few workers measured surface area 

as well as reaction rate as functions of conversion to determine whether or not that 

ratio remained constant, although the assumption of constant ratio has been widely 
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employed in modelling work. In a recent investigation 10 oxidation rates of chars 

from an. anthracite and a bituminous coal (hva) were found to be approximately 

proportional to the surface area determined by C02 adsorption at 273K at all con­

versions. The constancy of the intrinsic rate permitted the analysis of the data by 

the random pore model. 

In addition to their inherent interest, studies as the ones quoted above are useful 

in the interpretation of gasification or combustion rates under conditions pertinent 

to applications. At temperatures typical of practical processes, the reactions of 

char are quite strongly influenced by external heat and mass transfer and by inter­

nal pore diffusion. The interpretation and extrapolation of high temperature data 

must somehow take into account pore diffusion and pore growth. Some progress has 

been made in this area 11•12 but the problem is far from having been satisfactorily 

treated, especially in regard to swelling coal chars. It is hoped, nevertheless, that 

in many cases the conversion dependence of pore structure characteristics and rel­

ative reaction rates measured under diffusion-free conditions can be approximately 

applied to high temperature reaction conditions. 

In this paper we report oxidation rates and physical properties of bituminous 

coal chars subjected to devolatilization for two seconds at 1000-1600K. The focus is 

on the variation of surface area, reaction rate, and intrinsic reaction rate with con­

version under diffusion-free conditions. Other physical properties reported include 

pore volume distribution, elemental composition and heating value. The effects of 

devolatilization temperature and particle size of the char and the parent coal are 

also examined. 



- 33 -

3.2 Experimental Procedure 

9.2.1 Char Formation 

Chars were made from three bituminous coals with the compositions given in Table . 
3.1. At first the coals were ground in a mechanized mortar and pestle grinder in 

air for approximately 30 seconds and then sieved on a mechanical shaker for 10 

minutes and classified into the following size fractions: less than 45µm, 45 - 53µm, 

53 - 90µm, 90 - 104µm, 104 - 125µm and greater than 125µm. 

Chars were then generated from the 45 - 53µm and 104 - 125µm size fractions 

of coal. These size fractions are narrow enough to minimize the effects of coal size 

variability while providing adequate sample quantities. The mean sizes 49µm and 

114µm were different enough to examine the effects of coal size on subsequent char 

combustion. 

The coals were pyrolysed in an electrically heated drop tube furnace. The fur-

nace consists of an alumina tube having 5 cm. internal diameter heated by Kanthal 

heating elements placed in a radiation cavity 20 cm. long. Coal particles were 

entrained in a stream of nitrogen at rates of 2 g/hr using the syringe pump feeder 

arrangement described by Senior13 and were injected into the radiation cavity of the 

furnace through a. wide bore (1 cm) water cooled injector. Furnace wall tempera-

tures were measured by thermocouples attached to the outside of the alumina tube. 

Gas temperatures were measured using a suction pyrometer. Based on both wall 

and gas temperatures the particle temperature was deduced from a steady state 

thermal energy balance. The carrier gas flow rate was adjusted to achieve residence 

times of 2 seconds. The devolatilization loss for the coals ranged between 30-50 %, 
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depending on the temperature, and varied from coal to coal. 

The chars were collected on a filter. To eliminate any tars that might have 

condensed, the chars were washed repeatedly with tetrahydrofuran and then dried 

at room temperature for 1 hour. Finally the tar-free chars were sieve.-classified into 

the following size fractions: less than 45µm, 45 - 53 µm, 53 - 90 µm, 90 - 104 µm, 

104 - 125 µm, 125 - 147 µm and greater than 147 µm. 

9.e.e Rate Measurements with TGA 

A DuPont model 920 electrodynamic balance was used to measure the weight loss of 

a char sample oxidized at 800 K. In all cases the samples were heated in nitrogen at 

50 K/min until the final temperature of 800 K was reached at which instant oxygen 

was admitted. The flow rates of the initial nitrogen stream and the oxidizing stream 

(17 % oxygen by volume) were kept at 100 cm3 /min STP for all runs. This low 

fiowrate was used to avoid entrainment of the extremely low density samples. The 

sample was placed on a platinum pan and its temperature was monitored with 

a thermocouple placed directly above. The mass loss, rate of mass loss, and the 

sample temperature were continuously recorded by a computerized data acquisition 

system. The initial sample masses were in the range 5 - lOmg. 

!J.2.9 Surface Area and Helium Density Measurement 

Surface areas were measured by a pseudo-static technique by acquiring gas adsorp­

tion isotherms using continous addition of adsorbate gas (N 2 at 77 K) as described 

by Northrop et al. 14 BET and capillary condensation analyses were carried out on 

the resulting isotherms. Calibration of the apparatus was carried out using various 

standardized samples of alumina and graphite. Helium densities were determined 
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on vacuum-dried samples by helium displacement at room temperature. Sample 

quantities of at least 0.8 g were used to obtain reliable density values. 

S.!!.4 Mercury Porosimetry 

Pore volume distributions were determined by mercury penetration. An Autoscan 

porosimeter, Model 33 was used. Low pressure penetration (101 kPa) was imple­

mented to fill the interparticle voids and intraparticle voids with openings larger 

than 7 µm. High pressure, to a maximu~ of 227 MPa (30000 psi), was used to 

penetrate pores having diameters larger than 6 nm. The Washburn equation 15 was 

used to calculate pore volume distribution as a function of pore radius from pressure 

and intrusion volume measurements under the assumption of cylindrical pores. 

3.3 Results and Discussion 

9.9.1 Physical Characteristics 

Apparent densities, UAi mercury densities, UHg, corresponding to the solid plus 

pores below 6 nm in diameter; and helium densities, UHe, for the uncombusted 

chars are listed in Table 3.2. Total porosity, EA, and porosity of pores below 64 A , 

E, can be estimated from the density values. Pore diffusivities for the initial materi­

als were calculated based on mercury porosimetry, nitrogen capillary condensation 

and helium density data. Values of mean pore radii rp were determined from the 

porosimetry plots or calculated from the microporosity values. Figure 3.1 shows the 

volume and surface area distributions for the 1200 K and 1600 K chars of PSOC-

1451. These were obtained from mercury intrusion and nitrogen capillary condensa­

tion measurements. An interesting feature of the pore volume and area distributions 



-36-

is that chars obtained by devolatilization at higher temperatures (1600 K) developed 

trimodal distributions while the low temperature (1200 K) chars developed bimodal 

ones. As is evident from the surface area curves in the same figure, pores below 

100 A' in diameter account for most of the area while contributing very little to the 

total volume. On the other hand the presence of the pores above 1000 A in diameter 

is manifested in the volume distribution. Therefore the presence of different pore 

ranges can be inferred by examining both the volume and surface area distributions. 

For the 1200 K char the distribution is bimodal showing appreciable pore volume 

in the macropore region and significant surface area in the micropore region. The 

same peaks are also evident for the 1600 K char. In addition there is a distinct peak 

around 500 A showing development of accessible porosity in the transitional region. 

The 1000 K and 1400 K chars for this coal exhibit characteristics similar to the 

1200 K char. Chars of the other coals also exhibited similar behaviour. The total 

pore volume penetrated by mercury, VHg, along with the pore size distribution is 

a good indication of the extent of connectivity of the macro and the transitional 

pores. The corresponding pore area, AHg is calculated assuming cylindrical pores. 

Also listed are initial BET surface areas, heating values and elemental composition, 

expressed as mass fractions, for some of the chars. Data for partially combusted 

PSOC-176 1600 K char at 80% conversion are also tabulated. The apparent den­

sity of the partially combusted char has diminished while its porosity and the pore 

volume have increased. 

9.9.2 Heating Values 

Higher heating values (HHV) were measured using the 1341 Parr oxygen bomb 
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calorimeter. The results obtained were reproducible to within 250 J/g or about 1%. 

The values obtained for the PSOC-1451 coal and chars are plotted in Figure 3.2 as 

a function of charring temperature both on a total weight basis and on a dry ash-

free basis. For both cases the heating values decrease with the increase in pyrolysis 

temperature. The reduction of heating value is obviously related to the loss of 

hydrogen at higher devolatilization temperatures as shown by the elemental analysis 

values listed in Table 3.2. Dulong16 gives an empirical relationship between coal 

heating value and C,H,O and S content. Experimental values agree very well with 

Dulong's formula as shown in the figure. There appears to be some disagreement for 

the 1600 K char. This might be due to a small error in the C:H ratio measurement. 

S.9.9 Rate Calculations 

The variation of sample mass with time in the TGA experiments was normalized 

with its value at the moment oxygen was admitted. There was some mass loss 

due to tar release as the sample was heated. The chars formed at relatively low 

temperature (1000 K and 1200 K) lost considerable mass during this period. For 

the 1400 K and 1600 K chars, almost all the volatiles were expelled during char 

formation, so that the loss during the heat up period was less than 3%. 

In Figure 3.3 the apparent reaction rate Pm is plotted versus carbon conversion. 

The conversion, X, at any given time is the mass of carbon reacted divided by the 

mass of initial carbon. 

X = fflinitia.l - m 
fflinitia.l - mash 

(3.1) 

The apparent reaction rate normalized per unit instantaneous mass, m, of carbon, 
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1 dm 
Pm=---­

m- mash dt 
(3.2) 

The mass of ash, mash, was measured in each run by carrying out oxidation until 

there was no further mass loss. 

Another common way to plot the data is also shown in Figure 3.3 where Pmo 

is defined by normalizing with respect to the initial mass. 

1 dm 
Pmo = · d 

fflinitial - mash t 
(3.3) 

Plotted in this fashion the reaction rate exhibits a distinct maximum at a certain 

conversion that varies with char type, and particle size. 

Figure 3.4 shows the reaction rate Pm, as a function of conversion for two sizes 

of the 1600 K char of PSOC-1451. The two curves are indistinguishable, consistent 

with the absence of diffusion limitations concluded from the calculations given in 

the discussion below. Optical microscope photographs of PSOC-176 1600 K char at 

conversions of 0, 65 and 90% show that the particle size is independent of conversion 

as would be expected for regime I reaction. 

S.S.,4 Surface Areas 

The surface area, AT, for the PSOC-176 1600 K char is shown in Figure 3.5 as a 

function of conversion. The area reported corresponds to the carbonaceous matter 

in as much as the surface area of the ash was measured to be only 2 - 3m2 /g, in 

good agreement with values reported by Smith and Tyler17• It can be seen that the 

surface area increases rapidly with conversion and at about 60% conversion, reaches 

a maximum value of 450m2 / g which is almost higher by an order of magnitude than 
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the initial value 50m2 /g. At higher conversions the area stays constant or decreases 

slightly. Similar trends have been observed for other coals18• Surface areas of the 

three chars are plotted as a function of char pyrolysis temperature in Figure 3.6. The 

top three curves give the areas of the chars after partial oxidation to 50% conversion 

while the fourth curve shows the variation of the uncombusted area of the PSOC-

176 char; areas for the other two 1600 K uncombusted chars are also shown. The 

area of the PSOC-176 char at zero conversion increases with pyrolysis temperature. 

There are two competing effects that affect surface area. While volatiles and tars 

released at higher temperatures leave a larger pore volume accessible to nitrogen, 

thermal annealing and structural reorganisation of the carbon matrix at higher 

pyrolysis temperatures leads to closing of pore mouths and pore coalescence thus 

reducing surface area. Which effect will dominate is not predictable a priori. In 

the present case experimental evidence suggests that for PSOC-176 the former does. 

The surface areas of partially combusted PSOC-176 and 1451 chars initially increase 

with pyrolysis temperature, reach a maximum and then drop. The high surface area 

of the PSOC-176 char indicates that it has more small pores accessible to N2 at 

77 K. In contrast,the surface area of the PSOC-282 char is approximately constant 

initially but later increases with pyrolysis temperature. Reduction of areas at higher 

charring temperatures may result from closure of the finer pores due to structural 

ordering of the carbon that increases with temperature of exposure. This hypothesis 

is supported by X-ray diffraction studies on semi-anthracite reported by Smith and 

Tyler17 • The anomaly presented by the 1000 K char is probably due to the presence 

of heavy tars in the material. 
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9.9.5 Diffusion Limitations 

Three distinct processes must be examined to insure that the measured rates are 

free of diffusional limitations. They are diffusion in the boundary layer between the 

flowing oxidizer stream and the bed of particles, diffusion through the particle bed, 

and pore diffusion inside the particles. Each shall be examined briefly. 

1. Bed Boundary Layer Diffusion: As a very simple approximation, the flow of 

oxidizer over the pan was modelled as flow past a flat plate, neglecting the 

effects of the pan walls, pan leading edge and the confining reactor tube walls. 

For the conditions of the experiment, the Reynolds number (based on average 

velocity at the reactor temperature and pan length) is about 1.5 and hence the 

flow is laminar. The time for diffusion across the boundary layer is negligible 

compared to the characteristic reaction time computed as p~1 (see Table 3.3). 

Therefore it is safe to assume that there is no limitation imposed by diffusion 

in the bed boundary layer. 

2. Bed Diffusion : Although sample quantities were small and spread uniformly 

over the pan, the effect of bed diffusion could become important at high temper-

atures. A modified Thiele modulus based on bed parameters and the apparent 

reaction rate can be formulated 23 as shown below 

(3.4) 

where N is the apparent reaction rate per unit bed volume (g/cm3-s), Co is 

the oxygen concentration in the ambient (g/cm3 ), His the bed thickness (cm) 

and DB is the bed diffusion coefficient (cm2 /s), given by Satterfield24 as 

DB= Dmf.o 
1' 

(3.5) 
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where Dm is the molecular or bulk binary diffusion coefficient of oxygen in 

nitrogen at the proper temperature, e0 is the void fraction of the bed normally 

in the range 0.35 - 0.4 and r is the bed tortuosity, commonly taken equal to 2. 

Bed diffusion is negligible23 for K < 1. For the 45 - 53 µm size fraction of the 

PSOC-1451 1600 K char the sample size was 5 mg. and its apparent particle 

density was 0.98 g/cm3 • The apparent rate was 25x10-4 g/cm3-s. The pan 

area was 0.3 cm2 • Hence, the thickness of the bed, H, was 0.017 cm. Assuming 

a mean particle size of 50 µm, the average bed depth was only 3.4 particles. 

At 800 K the value of Dm is 1.88 cm2 /s and, therefore, DB is 0.33 cm2 /s, 

assuming e0 to be 0.35. At an oxygen mole fraction of 0.17 Co is 6.03x10-5 

g/cm3 • The resulting Thiele modulus, K, is 3.64x10-4 , hence bed diffusion 

does not significantly influence the reaction in these experiments. 

3. Pore Diffusion: The present chars are extremely porous, having pore openings 

with length scales ranging from few microns down to few angstroms. The type 

of diffusion taking place covers the range from bulk diffusion in the macropores 

to Knudsen diffusion in the smaller meso and micropores with a combination 

of the two in pores of intermediate size. It is essential, therefore, to know 

the pore size distribution of the material before the pore diffusional resistance 

can be assesed. In the present study all micro and meso pore diameters were 

smaller than the mean free path of oxygen, approximately 0.3µm for the exper-

imental conditions and thus, the diffusivity was that corresponding to Knudsen 

diffusion 25 , 

(3.6) 
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For the pores that have diameters comparable to the mean free path of oxygen, 

the transition regime diffu~ivity was applied i.e. 26 , 

1 1 1 -=-+­
Dp Dm DK 

(3.7) 

Finally the total effective diffusivity was calculated by adding the contributions 

from the different pore sizes and the resulting values varied from 0.02 to 0.2. 

S. 9. 6 Reaction Rate 

As shown in Figure 3.3, Pm increases sharply during the first 3-4 % carbon conver-

sion. The principal reason for this phenomenon is that the gas composition over 

the bed gradually changes from pure nitrogen to a final mixture of 17% 0 2 in ni-

trogen. Jenkins et al. 1 also suggest that oxygen complex formation at the surface 

and char activation may also be important at this early stage of conversion. After 

this initial delay the oxygen concentration reaches a steady value and the apparent 

rate increases slowly with conversion until the completion of combustion. 

Following the proceedure outlined by Smith 19 an effectiveness factor '1 defined 

as the ratio of actual reaction rate to the rate found in the absence of restrictions 

due to pore diffusion can be calculated as: 

'1¢2(m+l) = ')'2 Pm<1A(m+l) 
2 4DeCs 

(3.8) 

where cf> is the pore Thiele modulus and')' is the characteristic length defined as the 

ratio of particle volume to external area. Thus the right side of equation (3.8) can be 

calculated and rt can be calculated by the relationships between '7 and rt<P2 (m + 1)/2 

given by Mehta and Aris20 • The effectiveness factors calculated for the uncombusted 
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chars using suitable diffusion parameters are equal to unity, in agreement with 

findings by Knill and others21 for similar coiiditions. This calculation also shows 

that there are no pore diffusion limitations. The order of magnitude increase in 

the surface area after partial combustion indicates the opening of a vast micropore 

network. A worst case calculation assuming that all pores have diameters of 10 A, 

yielded an effectiveness factor fl which was still close to unity. 

Since the particles oxidize in the kinetically controlled regime I as shown earlier, 

an intrinsic reaction rate Pi can be defined by 

Pm 
Pi=­

Ar 
(3.9) 

Table 3.3 shows the intrinsic rate of PSOC-176 1600 K char at various degrees 

of conversion. Values for the areas were taken from Figure 3.5 and values of the 

apparent rate from Figure 3.3. It can be seen that after approximately 5% of con-

version the intrinsic rate becomes essentially independent of conversion providing 

a justification for employing the N2-BET surface area Ar for the defination of Pi· 

Approximately constant intrinsic rates after the first 5% conversion were obtained 

for the PSOC-1451 chars as well. The small increase in the rate at the highest 

conversions could be attributed to experimental error particularly in the area mea-

surement of very small samples. It could also be due to the decrease in the particle 

conductivity with increasing porosity, causing local hot spots with high reaction 

rates. 

The fact that the intrinsic rate is nearly constant with conversion makes possi-

ble the comparison of the intrinsic reactivities of chars at any conversion for which 

surface area values are available. In the present study all rates have been compared 
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at 50% conversion. Figure 3. 7 shows the apparent reaction rate at 50% conversion 

for the three chars for two size cuts, 104-125µm and 45-53µm. It is evident that the 

reaction rates of all chars increase with decreasing pyrolysis temperature, possibly 

due to the residual volatile matter of higher reactivity or to less complete structural 

ordering which leaves a larger number of sites available for reaction with oxygen. 

The figure also shows that the apparent rate is independent of char particle size. 

The effect of parent coal size on the apparent combustion rate was investigated 

for PSOC-1451 chars for the two size cuts 45-53 and 90-104 µm, both produced 

from coal size cuts 53-90 µm, and from coal fines below 45 µmin diameter. This 

effect of parent coal size can be quite important as the fractionation of coal leads to 

selective segregation of the different maceral types in certain sizes22 • The presence 

of macerals of different chemical compositions affects the morphology, structure and 

reactivity of the char. Figure 3.8 shows the oxidation rates of chars derived from 

different size fractions of the parent coal. The oxidation rates of the char fraction 

derived from smaller coal particles appear to be 10-20% higher. This fraction was 

characterized by a more pronounced cenospheric structure and higher mineral mat­

ter content, the latter possibly causing some catalytic enhancement of the oxidation 

rate. 

Intrinsic reaction rates for two size cuts of the three chars are presented in 

Figure 3.9. The intrinsic rate for two of the chars decreases with pyrolysis temper­

ature, most probably due to the increased structural ordering of the carbon matrix 

with temperature. The rate of the PSOC-1451 char decreases the least, suggesting 

minimal structural changes. It is interesting to note that the intrinsic rates of the 
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three chars are equal at the lowest devolatilization temperature but deviate as much 

as 30% at higher devolatilization temperatures. One reason may be that struct.ural 

ordering at the lower temperature is minimal in all three chars while as the tem­

perature increases changes become more pronounced and differentiated among the 

chars. The fact that the intrinsic rate follows similar trends with the heating value 

of the chars suggests that the loss of hydrogen at higher devolatilization tempera­

tures reduces the number of active sites for oxidation. This is in agreement with 

results reported by Khan 27 showing a correlation between hydrogen content and 

rate of oxidation. 

3.4 Conclusions 

Increasing the pyrolysis temperature of three bituminous coals from 1000 K to 

1600 K resulted in (i) decrease of the H:C ratio of the resulting char by a factor of 

2 to 2.5 (ii) decrease of the heat of combustion of the char by 10-15% (iii) change 

in the pore volume and pore surface distributions from bimodal to trimodal with 

the creation of porosity in the mesopore range. The apparent oxidation rate (at 

SOOK) decreased by about 50% as the pyrolysis temperature increased from 1000 K 

to 1600 K. 

The N2-BET surface areas of the char increased from 10-50 m2 /g in the first 

few percent of conversion to 300-500 m2 /g at the highest conversions measured. The 

surface area at 50% conversion varied irregularly with the pyrolysis temperature. 

The intrinsic char oxidation rate defined in terms of the N2-BET surface area 

was approximately the same for all coals pyrolysed at 1000 K but varied with the 

parent coal for the higher pyrolysis temperatures. The intrinsic reaction rate after 
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the first 5 % of conversion was found to be approximately independent of conversion 

for all chars examined. 

Char particles in the same size fraction obtained from coal of different size 

fractions differ in properties. The cenospheric char produced from the smaller coal 

particles was 10-15% more reactive than the char of equal size produced from the 

larger coal particles. 
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List of Symbols 

SYMBOL DESCRIPTION UNITS 

AHg specific Mercury area[N2-BET] m2/g 

AT specific total area m2/g 

Cg ambient oxygen concentration g/cm3 

c. oxygen concentration at particle surface g/cm3 

d particle diameter cm 

DB bed diffusivity cm2/sec 

DK Knudsen diffusivity cm2/sec 

Dm molecular diffusivity cm2/sec 

Dr pore diffusivity cm2/sec 

H bed thickness cm 

K modified bed Thiele modulus 

m true order of reaction 

M molecular weight g/g-mole 

n apparent order of reaction 

N bed density g/cm3 

Po2 ambient partial pressure of oxygen 

rp mean pore radius cm 

Tg ambient temperature K 

Tl' particle temperature K 

VHg specific mercury pore volume cm3 /g 

x burn-off 
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I characteristic particle dimension cm 

Eo bed void fraction 

€ porosity below 6 nm. 

fA total porosity 

.,, effectiveness factor 

Pm apparent reaction rate g/g-sec 

Pm,D diff. controlled apparent reaction rate g/g-sec 

Pi intrinsic reaction rate g/cm2-sec 

D'A apparent density g/cm3 

D'Hg mercury density g/cm3 

D'He true (helium) density g/cm3 

T tortuosity 

¢ Thiele modulus 

x ratio of Pm to Pm,D 



COALS 282 176 1451 

RANK Bit. HVB Bit. HVB Bit. HVA 

MOISTURE (0/o) 5.7 0.8 2.5 

ASH (0/o) 6.8 6.5 13.5 

CAR BON (0/o) . 75.0 78.4 71.5 

HYDROGEN (0/o) 5.3 5.4 4.7 

OXYGEN (0/o) 8.7 5.5 7.0 

NITROGEN (0/o) 1. 7 1 .3 1 .3 

SULFUR (0/o) 1.6 2.9 1. 3 

VOLATILE 
MATTER (0/o) 35.7 40.2 33.5 

HEATING VALUE 
(DRY BASIS) cal/g 7407 7910 6965 

Table 3.1 Properties of the three bituminous coals devolatiiized to produce the chars used 

in the experiments. 
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Table 3.2 Properties of coals and chars. 
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CONVERSION APPARENT RATE INTRINSIC RATE 
O/o Pm (g/g-sec) pi (g/cm2 -sec) 

5 1. 9 x 10-3 7.0 x 10-10 

10 2.06 x 10-3 7 .2 x 10-10 

15 2.34 x 10-3 7.1 x 10-10 

20 2.52x10-3 7.15 x 10- 10 

25 2.67 x 10-3 7.11 x 10-10 

30 2.84 x 10-3 7.1 x 10-10 

35 2.96 x10- 3 7.12 x 10-10 

40 3. 15 x 10-3 7.3x10-10 

67 3.64 x 10-3 7 .9 x 10-10 

90 3.71 x 10-3 8.0x 10-10 

Table 3.3 Variation of rates with conversion for PSOC-176, 1600K char. 
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Figure 3.1 Pore volume and surface area distributions for PSOC-1451 chars (a) 1200 K 

(b) 1600 K 
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Figure 3.3 Apparent rates, Pm and Pmo versus conversion, X, for PSOC-176 1600 K char. 
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Figure 3.6 Initial surface areas and surface areas after 50% conversion 

for all chars versus pyrolysis temperature. 
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Abstract 

Single particle combustion experiments were carried out with 50 - lOOµm char 

particles derived from one lignite and one HVA bituminous coal. Reactor wall 

temperatures in the range 1050 K to 1450 K and oxygen partial pressures of 0.21 

and 0.5 were used. The complete temperature-time histories of individual burning 

particles were measured using two-color optical pyrometry techniques. Apparent 

combustion rate parameters of the chars were then estimated using a model of 

single particle combustion and taking into account the random particle-to-particle 

property variation. 
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4.1 Introduction 

The entrained fl.ow reactor is the standard experimental system for the measure­

ment of pulverized char combustion rates. Measurements that can be carried out in 

this system include ( i) carbon conversion and characterization of physical properties 

(size, density, etc.) of partially burned char withdrawn at the reactor outlet or at 

intermediate axial positions using a cooled probe (ii) reactor wall temperature and 

gas temperature at various axial locations. The measurement techniques and proce­

dures for data analysis have been described in the well known papers of Field (1969) 

and Smith and coworkers (Hamor and Smith, 1973). In analyzing their data these 

authors estimated particle temperatures by a steady-state energy balance using the 

measurements of reaction rates and gas and wall temperatures. Ayling and Smith 

(1972) used two-color pyrometry to determine directly the temperature of a stream 

of burning particles and found fair agreement between measured and calculated 

temperatures. Such measurements and calculations involve averages over many 

particles which, even when carefully sized, can differ considerably in shape, density, 

_mineral content and other properties. This averaging is quite reasonable from the 

engineering point of view but it introduces an as yet unexplored uncertainity in the 

reported apparent or intrinsic reaction rate parameters. 

More recently various workers have been able to measure the temperature of 

individual burning particles by two-color pyrometry (McLean et al., 1981; Mitchell 

and McLean, 1982; Timothy et al., 1982; Jorgensen and Zuiderwyk, 1985). The 

key element in this technique is the introduction of an extremely dilute stream 

of particles into the reactor so that the optical volume sampled by a pyrometer 
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equipped with a very sensitive detector, contains a single particle. The measure­

ments involve either a particle at a particular location along the furnace, i.e. at 

a particular instant during its burning history (McLean et al., 1981; Mitchell and 

McLean, 1982), or the complete temperature-time history of the particle (Timothy 

et al., 1982; Jorgensen and Zuiderwyk, 1985). The interpretation of single parti­

cle temperature-time traces using some suitable particle combustion model requires 

specification of particle properties. As mentioned earlier, these properties vary con­

siderably from particle to particle and this variation poses a major problem in the 

analysis of the data. The experimental technique of Mitchell and McLean (1982) 

provides simultaneous information about particle size and particle temperature at 

a fixed location but is not applicable in its present form to the measurement of a 

complete temperature-time trace. 

In this paper we report measurements of temperature-time traces of single 

char particles derived from a narrow sieve cut. A particle combustion model is 

then used to analyze the temperature traces and estimate the apparent combustion 

rate parameters. The analysis uses a simple approach to account for the random 

particle-to-particle property variation. 

4.2 Experimental Procedure 

4.f.1 Char Formation 

Chars were made from one high-volatile A bituminous coal (PSOC 1451) and one 

lignite coal (PSOC 1443). The coals were ground in a mechanized mortar and 

pestle grinder in air for approximately 30 seconds and then sieved on a mechanical 

shaker for 10 minutes into the following size fractions: less than 45µm, 45 - 53µm, 
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53 - 74µm, 74 - 104µm, 104 - 125µm and greater than 125µm. Chars were then 

generated from the 53 - 7 4µm size fraction of coal. 

The coals were pyrolysed in an electrically heated drop tube furnace. The fur­

nace consists of an alumina tube of 5 cm. internal diameter heated by Kanthal 

heating elements placed in a radiation cavity 20 cm. long. Coal particles were 

entrained in a stream of nitrogen at rates of 2 g/hr using the syringe pump feeder 

arrangement described by Senior and Flagan (1984) and were injected into the 

alumina tube through a wide bore (1 cm) water cooled injector. Furnace wall tem­

peratures were measured by thermocouples attached to the outside of the alumina 

tube. Gas temperatures were measured using a suction pyrometer. The carrier gas 

flow rate was adjusted to achieve residence times of 2 seconds. The devolatilization 

loss for the coals ranged between 30-50%, depending on the coal type. 

The chars were collected on a filter. To eliminate any tars that might have 

condensed, the chars were washed repeatedly with tetrahydrofuran and then dried 

at room temperature for 1 hour. Finally the tar-free chars were sieve-classified into 

the following size fractions: less than 45µm, 45 - 53 µm, 53 - 90 µm, 90 - 104 µm, 

104 - 125 µm, 125 - 147 µm and greater than 147 µm. A few chemical and physical 

characteristics of the coals are given in Table 4.1. Some properties of the derived 

chars are shown in Table 4.2. 

4.2.2 Optical Pyrometry 

The temperature of the burning char particles was measured by two-color optical 

pyrometry in the near infrared. The radiation from the burning particles was f o­

cussed onto a bifurcated optical fibre and transmitted to two silicon photodetectors 
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via medium band (70nm) filters centered at 800 and lOOOnm. The voltage signals 

from each channel were read by a high speed, computerized data acquisition system. 

Details of pyrometer construction are given elsewhere (Levendis and Flagan, 1987). 

By using Planck's law of radiation the temperature of each particle can be deduced 

from the ratio of the two signals as a function of time. The system was calibrated 

at the melting point of pure platinum (2045 K). The pyrometer was aligned along 

the direction of flow of the particles and thus was able to 'see' each particle for its 

entire burning history. 

4.f!.9 Experimental Conditions 

Experiments were carried out with char particles of different sizes at various wall 

temperatures and in different ambients. For the bituminous coal (PSOC 1451), char 
I 

sizes 45-53 and 104-125 µm were used. Both fractions were derived from sieving the 

char produced from the 53-74 µm coal fraction. Char sizes of 45-53 µm and 53-74 

µm were derived from 45-63 µm and 63-75 µm fractions of raw lignite, respectively. 

Ambients were air and 50% 0 2 for the bituminous char and air for the lignite char. 

Wall temperature was varied from 1000 K to 1500 K. In all cases the gas velocity 

was roughly 0.1 m/s, so the particles burned within a few millimeters after igniting. 

Since the distance between the point of injection and the detector was 0.3 m., the 

detector effectively saw 'stationary' particles. 

4.3 Experimental Results 

4.S.1 Temperature versus Time Traces 

Intensity-time traces were measured for at least twenty particles for each set of 
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experimental conditions. Figures 4.la-d show the intensity-time traces and the cal­

culated temperature-time traces for a few particles. The temperature-time traces 

show widely different qualitative behaviour from particle to particle. While some 

burn·at almost constant temperature (Figure 4.la}, many particles show temper­

ature maxima (Figure 4.lb} or even monotonic behavior, both increasing (Figure 

4.lc} and decreasing (Figure 4.ld}. This variability is particularly pronounced in 

the case of the bituminous char. Temperature traces for lignite char showed maxima 

at intermediate times in most cases. 

,+.9.!J Data Analysis 

The observed variability of the temperature-time· traces is due partly to experi­

mental error and partly to the variability in the initial properties of individual 

particles: size or shape, density, pore structure, maceral and mineral content. Py­

rometry measurements on uniform spherical particles of synthetic char (Levendis, 

1987} using the same reactor and pyrometer have yielded much more uniform traces 

of intensity and temperature. Most of the observed variation in the traces of the 

bituminous and lignite chars must, therefore, be due to differences in the properties 

of individual particles. 

The obvious approach to estimating combustion rate parameters from a set 

of temperature traces is to postulate a spherical particle having average size, den­

sity etc. and to assign to that particle a single temperature-time trace obtained 

by averaging the measured individual traces. This straightforward approach would 

entail loss of the detailed information contained in the individual traces. More­

over, calculating an 'average' trace is not very meaningful because of the different 
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burnout times of the individual traces. In this study we have followed a different ap­

proach whereby the rate parameters are estimated from the individual temperature 

traces treating the properties of individual particles as random variables. While the 

particle-to-particle variation involves several properties, the level of experimental 

accuracy and the need for mathematical tractability suggests a highly simplified ap­

proach. We assume that the properties of the ith particle are characterized by two 

random variables: its initial radius, roi, assuming spherical shape, and the apparent 

Arrhenius pre-exponential factor Aai· The apparent reaction rate is assumed to be 

of the form 

(4.1) 

This is based on the external surface area of the particle. The reaction order, m, is 

assumed to be one, but other types of kinetics can be treated without difficulty. 

Using an effective radius (i.e. assuming spherical particles) is a clear necessity in 

view of the impracticability of carrying out mathematical calculations for particles of 

irregular and unknown shape. The second random variable Aa is assumed to account 

for particle-to-particle variations in reactivity and porosity, the latter affecting Aa 

(and not Ea) as discussed by Gavalas (1981). Variations in mineral and maceral 

content affect Ea as well as Aa. Nevertheless, the accuracy of the data does not 

warrant using more than one or two parameters that vary from trace to trace. 

Therefore, we have treated Ea as an unknown parameter common to all traces. 

The other properties of the particle, namely density, heat capacity, and mineral 

content are treated as known constants. Under these assumptions, the temperature 
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of the ith particle may be expressed as 

(4.2) 

where £i(t) is the error in the measurement of the temperature. The dependence 

on the known properties (e.g. particle density and heat capacity) is not shown 

explicitly. The function f is defined by some suitable combustion model. The 

model that has been used in the present study is discussed briefly in the following 

section. 

The analysis of the data proceeds as follows. For each trace we define a quantity 

n 

Ji = L [f(t;; Ea, Aai, roi) - Tt':P(t; )] 2 + w(Fo - roi) 2 (4.3) 
i=l 

where the first term represents the deviation of experimental and calculated tem-

peratures over a suitable discrete set of times and the second term represents the 

deviation of the random radius from the known mean radius (the mean of the ap-

propriate sieve size cut). The weighting coefficient w must be chosen in accordance 

with the expected error in the temperature measurement (ti(t)) and the spread in 

particle size. It is given by Uf / u;
0 

where UT is the standard deviation in the parti-

cle temperature measurement and Ur0 is the standard deviation in the initial radius 

measurement. The error in the temperature measurement can be calculated from 

the spread observed over many calibration runs. It was taken as UT ....., 50K. The 

experimental error in the radius measurement was calculated by two independent 

means: (i) from optical size measurements over many particles (ii) from ASTM sieve 

standards for wire mesh sieves. Both methods give similar results, Ur
0 

....., l2µm. The 

values of Aai and roi that minimize Ji are denoted by A:i and r0i. We also denote 
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by Jt the minimum value of Ji. The three quantities A:i, r0i, and Jt are clearly 

functions of Ea. 

We now calculate the minimum with respect to Ea of the quantity 

N 

Q = LJt(Ea) (4.4) 
i=l 

obtained by summing over all N traces. H we denote by Ea the minimizing value 

of Ea then the quantities 

(4.5) 

(4.6) 

are the best estimates of radius and pre-exponential factor for the ith particle. A 

mean preexponential factor can then be defined by the arithmetic mean 

N 
- 1 ~ .. 

Aa = N L.JAai 
i=l 

(4.7) 

A mean particle size is not needed since this can be directly determined by simple 

observation. However, comparision of the range of fOi values with the directly 

observed range of particle sizes provides a general consistency check. 

The cumulative sum Q of the Ji 's over all particles versus activation energy is 

shown in Figure 4.2: Figures 4.2a and 4.2b show the minimization with respect to 

Ea for the bituminous char and lignite char, respectively. The estimated apparent 

rates for these two chars are given by 

(4.8) 

(4.9) 
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The estimated apparent activation energy for the bituminous char is in good agree-. 
ment with that reported by Fi.eld (1969) but lower than the value of 21400 cal/gmole 

that follows from the collective correlation given by Smith (1982). The apparent 

activation energy for the lignite char is somewhat lower than the value of 16300 

cal/gmole that is obtained from Australian brown coal chars reported by Smith 

and Tyler (1974). The values for preexponential factors reported here are arith-

metic means over many traces. The spread of these factors was rather large, as 

shown in the histograms given in Figures 4.3a and 4.3b. A similar, though smaller 

spread of values was obtained for the estimated particle diameters. The average of 

the diameter estimates was 45µm for the lignite char and 57µm for the bituminous 

char. Taking into account the irregular shape of the particles, the estimated equiv-

alent sphere diameters are in fair agreement with the sieve sizes (45-53µm) and the 

sizes observed by microscopy. 

4.4 Particle Combustion Model 

-'·-'·1 Model Description and Comparision with Experimental Data 

The particle combustion model described by Loewenberg et al. (1987) was employed 

for the calculations after being extended to include the effects of ash. The ash 

is initially uniformly distributed throughout the particle, but as the carbonaceous 

material is oxidized, the exposed ash particles accumulate on the surface as a porous 

layer of increasing thickness. Scanning electron microscopy of individual particles 

at various conversions has shown the accumulation of ash but does not exclude the 

possibility of some ash loss to the gas phase. The ash layer is assumed to add a mass 

transfer resistance in series with the resistance across the film or boundary layer 
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around the particle. However, it does not create an additional thermal resistance. 

To calculate the resistance to mass transfer, the ash layer is regarded as a stagnant 

packed bed with effective diffusivity equal to the bulk gas phase diffusivity multiplied 

by the ash layer void fraction (.....,0.4) and divided by a tortuosity factor (-2). 

The complete particle combustion model includes a detailed description of in­

traparticle diffusion and pore growth. However, the calculations reported here used 

a limiting form of the model wherein the reaction takes place in a thin outer shell 

(Gavalas (1981); Loewenberg et al. (1987)). Simulations have shown that this limit­

ing form of the model is adequate for the range of particle temperatures encountered 

in the experiments. In this case the mass and energy balances can be written as 

! [me + mash] = -47rr2 Ra (4.10) 

! [{meCpe + mashCPash}T] = 47rr2{Ra.6.H - ee - er} (4.11) 

where r is the radius of the particle including the ash layer; me, Cpe and mash, 

CPash are mass and heat capacity of the total carbon and the total ash within the 

particle; Ra is the apparent rate; .6.H is the heat of the combustion reaction; and 

ee, er are heat fluxes from the particle by conduction and radiation, respectively. 

The radiative term was based on a constant overall emissivity without provision for 

any effects of the accumulating ash. The apparent rate Ra depends on the intrinsic 

kinetics as well as on the pore structure of char (Gavalas (1981); Loewenberg et al. 

(1987)). From the standpoint of parameter estimation, however, all that is needed 

is a functional form as given by Eq.(4.1) where Aa and Ea are treated as apparent 

rate parameters. 
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Equations (4.10) and (4.11) are coupled to the equations of diffusion and heat 

transfer from the particle surface to the free stream. The latter equations, which 

include Stefan flow and temperature dependent properties are given in Lowenberg 

et al.· (1987). The coupled system of equations is solved to yield the radius and 

temperature of the particle and the oxygen partial pressure p8 at the surface of the 

particle, all as functions of time. 

Sample comparisions between calculated and experimental temperatures are 

shown for two particles in Figures 4.4a and 4.4b. For each particle the calculated 

curve was obtained using the optimal parameters Ea, Aai(Ea), and roi(Ea). The fits 

are good, indicating the ability of the simple model to describe particle combustion 

using the estimated rate parameters. 

+.+.e Parametric Studies 

Calculations were carried out to determine the effect of various properties on the 

particle temperature. Figure 4.5a shows that the predominant effect of increasing 

initial particle size is to increase the burn time and slightly decrease the maximum 

temperature. The increase in burn time varies approximately as the square of the 

particle radius as expected from the 'shrinking core' particle combustion. Increasing 

the apparent density of the particle (Figure 4.5b) increases only the burn time and 

does not affect the maximum temperature reached. The presence of ash affects the 

shape of the temperature trace dramatically (Figure 4.5c). At high conversions, 

the particle consists mainly of ash so that its thermal inertia is higher and, hence, 

its temperature does not fall as quickly as it would have if ash was not present. 

The effect of carbon emissivity (Figure 4.5d) is straightforward: for a fixed wall 
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emissivity, a particle with higher carbon emissivity burns at a lower maximum 

temperature due to increased radiative loss. However, the decrease in temperature 

is not dramatic and the burn time increases only marginally. The most dramatic 

effect on the temperature-time traces are caused by changing the reaction rate 

parameters. For example, the effects of the frequency factor at constant activation 

energy are shown in Figure 4.Se. 

4.5 Conclusions 

Single particle temperature-time traces measured by optical pyrometry show con­

siderable variability due to different size, shape, pore structure and mineral content 

of individual particles. A novel technique is introduced to analyze the traces by 

treating size and preexponential factor of each particle as random variables. This 

technique was used in conjunction with a particle combustion model assuming that 

the heterogenous reaction is limited to a thin surface layer of the particle in order 

to estimate the apparent kinetic parameters. The estimated values of the apparent 

preexponential factor varied significantly from particle to particle. Using the esti­

mated parameters provided good agreement between calculated and experimental 

temperature-time traces. 
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PSOC PSOC 
1451 1443 

RANK HVAB SUB- BIT C/ LIGNITE 

SAMPLE LOCATION PENNSYLVANIA TEXAS 

SEAM NAME PITTSBURG LOWER WILCOX 

PROXIMATE ANALYSIS (%) 
(AS REC'D) 

MOISTURE 2.54 28.54 

ASH 13.32 15.31 

VOLATILE MATTER 33.56 44.17 

FIXED CARBON 50.58 11.98 

ULTIMATE ANALYSIS(%) AS REC'D DRY AS REC'D DRY 

ASH t3.32 13.67 t5.3t 21.43 
CARBON 70.05 7t.SS 40.62 56.84 
HYDROGEN 4.ss• 4.67 2.92* 4.09 
NITROGEN 1.33 t .36 0.76 1.06 
SULFUR t.33 t.36 0.53 0.74 
CHLORINE 0.07 0.08 
OXYGEN (OIFF.) 6.81* 6.99 11.32* 15.84 * EXCLUDES MOISTURE 

FREE SWELLING INDEX 7.5 o.o 

Table 4.1 Properties of parent coals. 
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Coal Ra.nk HVA Bituminous Lignite 

C(wt %) 78.3 59.6 

H(wt %) 0.96 0.43 

Ash(wt %) 19.1 36.4 

Surface Area. 175• 235 

(m2 /g) 

Density 0.5 1.1 

(g/cm8
) 

Pore Volume 0.4 0.5 

(cm8 /g) 

Particle Dia.meter 45-53, 90-104 45-53, 61-74 

(µm) 

• after 5% conversion at 450°0 

Table 4.2 Properties of the Cha.rs. 
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Figure 4.la Intensity vs. Time and Temperature vs. Time during the combustion of one 

bituminous char particle in air at reactor wall temperature of 1450K. 
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bituminous char particle in air at reactor wall temperature of 1450K. 



- 83 -

- 0.120 Ill 
~ ·c: 
= 
>. .. .., 

0.090 ... 
~ 

:.c .. 
..!!. 
>. 0.060 ~ 

·;:; 
c 
;.> 
~ 

c -
0.030 

0.000 11-----L------1.---'----''------'-----_.._ ___ __ 

0 5 10 15 20 25 JO 

Time (ms) 

~000 

-::a:: 
3000 

r:,; ... 
= ~ .., .. 

2000 r:,; 
c.. s ::: 

1000 

0 '------'--___ _._ __ ...____,.__ ___ ...__ ________ ~ 

0 5 10 15 20 25 JO 

Time (ms) 

Figure 4.lc Intensity vs. Time and Temperature vs. Time during the combustion of one 

bituminous char particle in air at reactor wall temperature of 1450K. 
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Figure 4.ld Intensity vs. Time and Temperature vs. Time during the combustion of one 

bituminous char particle in air at reactor wall temperature of 1450K. 
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Chapter 5 

COMBUSTION OF CHARS AT 

HIGH TEMPERATURES 
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5.1 Introduction 

Particle temperatures in large pulverized coal combustion systems are often greater 

than lOOOK and may be in excess of 2000K. Many of the published measurements 

of coal or char combustion rates were made at temperatures much lower than this 

(Essenhigh, 1981; Tseng and Edgar, 1984). The low temperature data are useful 

and can be obtained with relative ease, but, given the complex nature of coal or 

char and the combustion process, it is not obvious that low temperature combustion 

data can be used to predict behavior at higher temperatures. 

The entrained flow reactor is the most common experimental system for the 

study of high temperature pulverized char combustion. Measurements typically 

made in combustion experiments include ( i) carbon conversion and characterization 

of physical properties (size, density, etc.) of partially burned char withdrawn at the 

reactor outlet or at intermediate axial positions using a cooled probe (ii) reactor 

wall temperature and gas temperature at various axial locations (Field, 1969; Hamor 

and Smith, 1973). 

Prior to understanding combustion behavior, it is imperative that the physical 

and structural changes of the char be well characterized. This chapter describes 

experiments that were carried out to physically characterize bituminous chars com­

busted at high temperatures. These results are then compared to those from similar 

experiments done on the same chars combusted at lower temperatures. 
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5.2 Experimental Procedure 

5.2.1 Char Formation 

Chars were made from PSOC 1451. The chemical and physical properties of this 

coal are summarized in Table 5.1. The coal was ground in a mechanized mortar 

and pestle grinder in air for approximately 30 seconds and then sieve classified on 

a mechanical shaker for 10 minutes. Chars were generated from the 53 - 74µm size 

fraction of the coal. 

The coal was pyrolysed in an electrically heated drop tube furnace. The fur­

nace consists of an alumina tube of 5 cm. internal diameter heated by Kanthal 

Super 33 heating elements placed in a radiation cavity 20 cm. long. Coal particles 

were entrained in a stream of nitrogen at rates of 2 g/hr using a syringe pump 

feeder and were injected into the alumina tube through a wide bore (1 cm) water 

cooled injector. The furnace wall temperature was maintained at a temperature 

of approximately 1650K, in order to achieve gas temperatures of 1600K. Furnace 

wall temperatures were measured by thermocouples attached to the outside of the 

alumina tube. Gas temperatures were measured using a suction pyrometer. Based 

on wall and gas temperatures the particle temperature was deduced from a steady 

state thermal energy balance. The carrier gas flow rate was adjusted to achieve 

residence times of about 2 seconds. The mass loss during devolatilization of the 

coals ranged from 30-40%, depending on the coal particle size. 

The char particles were collected on a filter. To eliminate any tars that might 

have condensed, the chars were washed repeatedly with tetrahydrofuran and then 

dried at room temperature for 1 hour. Finally, the tar-free chars were sieve-classified 
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into the following size fractions: less than 45µm, 45 - 53µm, 53 - 90µm, 90 - 104µm, 

104 - 125µm, 125 - 147µm and greater than 147µm. The 45-53µm and 90-104µm 

char size fractions were used for the combustion studies described in this chapter. 

Combustion experiments were performed in the high temperature flow reactor 

shown in Figure 5.1. Preheater wall temperatures of 1475K and 1675K were used to 

heat the primary air stream. However, due to heat losses in the section between the 

pre-heater and the reactor, the gas temperature at the entrance to the reactor was 

lower. The particle temperature was measured by a split-beam two-color optical 

pyrometer. Particle temperatures were generally higher than the gas temperature 

at the same axial location. For each value of the pre-heater wall temperature, 

partially burned particles were collected for analysis at three axial locations using a 

moveable water-cooled, N 2-quenched collection probe. The residence time upstream 

of the collection point in the reactor was also estimated in each case by knowing the 

velocity of the laminar carrier gas flow. The collected samples were then analyzed 

as described in a later section. 

5.f!.f! Experimental Conditions 

Experiments were carried out using two sizes of char particles at two reactor tem­

peratures. Char sizes of 45-53 and 90-104µm were used. The first two sets of 

experiments were performed at a preheater wall temperature of 1475K using the 

two char sizes. For the third set of experiments, the preheater temperature was 

1675K, and the initial char size was 90-104µm. In the first two sets of experiments 

the gas velocity was roughly 0.7 m/s. In the last set it was about 0.9 m/s. In 

all cases the particles travelled several centimeters before burning out. Partially 
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burned samples were collected at three different axial locations. While every effort 

was made to collect samples of widely differing conversions, a priori control of con­

version at the sampling locations was not possible. The quantities of char collected 

were small since the original samples were themselves small due to the narrow size 

cuts chosen. 

5.2.S Particle Temperature Determination 

The particle temperatures as a function of.axial location were measured in a dilute 

stream using the two-color pyrometer. The detector optics was mounted on a 3-

degree of freedom translator so that any volume in the test section could be probed. 

The pyrometer was focussed at the center of the particle stream on the axis of the 

reactor. The whole assembly was moved vertically to the desired axial location. 

The view volume of the detector optics was about 0.4 to 0.8 millimeters at its 

narrowest. At the flow rates used, the particle residence time in the view volume 

was 0.3 to 0.6 ms. Since the view volume was so small, and the particle stream 

so dilute, the probability of more than one particle occupying the view volume at 

the same time was negligible. A high-speed data accquistion system was used to 

gather the temperature data. Average particle temperatures were determined by 

observing many particles at each location. The pyrometer was calibrated using a 

Type S thermocouple bead placed in the hot gas flow within the view volume of the 

detector optics. 

Table 5.2 shows the average particle temperatures measured in each case. The 

spread of measurements as well as the average is shown. The temperature data 

are consistent with model predictions that the temperature of the particles remains 
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reasonably constant over the burnout period. The drop in temperature at the 

highest conversions is attributed to heat losses from the test section since it was 

not completely insulated. The particle temperatures of the 1675K preheater wall 

temperature samples are smaller than the 1475K case because they were collected 

further downstream than the latter and thus suffered more heat losses. Given the 

uncertainities in calibration and measurement, it is impossible to infer minor trends 

with conversion. The data suggest that the particle temperature was approximately 

constant throughout the combustion process for each case. 

5.2.4 Collection of Partially Oxidized Chars 

A water-cooled probe was used to collect the partially oxidized material. The 

particles were quenched with a large flow of nitrogen to ensure that oxidation did 

not take place in the probe and on the filter downstream. A schematic diagram of 

the collector is shown in Figure AIV.6 (Appendix IV). 

5.3 Conversion Determination 

The single most important variable in characterizing the partially oxidized samples 

is the carbon conversion or burnoff. The conversion is most commonly determined 

gravimetrically from mass measurements made before and after combustion. As­

suming that there are no sampling losses the extent of conversion is easily estimated. 

However, in most cases sampling losses are unavoidable so this method is relatively 

inaccurate. 

In the present system, while most of the particle stream was captured, there 

were thermophoretic losses at the cold entrance region of the collector. These losses 
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are difficult to estimate. Therefore, the ash was used as a tracer to estimate the 

quantity of carbon represented by a particular char sample. This assumes that the 

ash is not lost due to devolatilization during char formation. Even at combustion 

temperatures, volatilization is minimal, amounting to less than a few percent of 

the ash (Flagan and Friedlander, 1978). Since the chars were made at 1600K, 

ash volatilization is expected to be a very small correction. Thus the ash-tracer 

technique is well suited for measuring carbon conversion in chars used in this study. 

The drawbacks of this method are that the char sample must be destroyed to 

determine the ash content and that, for reasons of accuracy, the sample size should 

be as large as possible. Therefore, all char characterization tests were performed on 

the sample before its ash content was determined by incineration and subsequent 

weighing. Rapid heating rates were used in char ashing to prevent graphitization 

of the carbon. This is necessary since the resulting graphitic structure is difficult 

to oxidize except at very high temperatures. Graphitic residues left with the ash 

could lead to erroneous carbon conversion values. 

Let the mass fractions of ash in the unburned and partially burned chars be x0 

and x respectively. Let the total masses in the beginning and at the end of partial 

combustion be mo and m respectively. Since1 the mass of ash is assumed to be 

constant, we have 

mox0 = mx (5.1) 

Also, the mass of carbon burnt, m1o8 s is 

fflloss == mo - m {5.2) 

The experimental carbon conversion, Xexpt, is defined as the mass of carbon burnt 
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divided by the initial mass of carbon. Thus, 

X - mzoss 
ezpt - ( ) mo 1- xo 

(5.3) 

Combining equations (5.1), (5.2) and (5.3), and eliminating m and mo, we have, 

x-xo 
Xezpt = (l ) 

X -Xo 
(5.4) 

Thus, knowing the mass fractions x and xo, conversion Xezpt can be calculated. 

5.4 Experimental Methods and Results 

5.4.1 Optical Microscopy 

Particle size was determined visually under the optical microscope. Since the par-

tides were generally irregular, the following procedure was used: the length along 

the major axis and the greatest length along its perpendicular were measured. The 

average particle size was computed as the arithmetic mean of these lengths. This 

was randomly repeated for 25 particles in each sample. Figure 5.2 shows the dis-

tributions of the average particle sizes for the unburned 90-104µm sieve cut char. 

This figure clearly shows that char sizes were bigger than expected from the partic-

ular sieve size cut. Similar size distributions were also measured for one group of 

the partially burned samples (1675K wall, 90-104µm parent size). They are shown 

in Figures 5.3-5.5 in order of increasing carbon conversion. The size distribution 

shifts to smaller sizes at higher conversions. However, the decrease in particle size 

is smaller than would be expected from diffusion limited combustion conditions. 

Thus, there must be some internal combustion to explain the observed carbon loss. 

This will be discussed more fully later on. Figure 5.6 shows the variation of the 

average particle size as a function of conversion. 
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Observations using the optical and electron microscopes have shown that the 

bituminous char is cenosphe~ic, i.e. it is almost spherical and contains large bubble­

like voids (Lightman and Street, 1967). The free swelling index (FSI) of the parent 

coal (7.5) also indicates its propensity to swell on devolatilization. An indicator of 

the irregularity of shape of a particle is its aspect ratio, which is defined as the ratio 

of the major to the minor dimension. The average aspect ratio for the unburned 90-

104 µm bituminous char particles is 1.18. Since this is not too different from unity, 

it shows that the char of this size is indeed roughly spherical. However, aspect ratio 

measurements on the partially burned ch.ars do not show any systemic variation. 

This also indirectly supports the contention that there is internal combustion. The 

argument is as follows: Let each particle be an eilipse. Further, let the external 

surface recede at a constant velocity all around the particle, as would be expected for 

diffusion limited combustion. The aspect ratio of the particle should then increase 

monotonically. Since this is not observed, there must be some penetration of oxidant 

into the particle causing internal reaction. 

5.4.2 Electron Microscopy 

Figure 5. 7 is an electron micrograph of an unburned char particle from the 90-

104µm sieve cut. It is a typical cenosphere. The outer surface is smooth though 

quite convoluted. In addition to the large pore in the upper part of the figure, other 

pore mouths are clearly visible. Some mineral matter agglomerates are also seen on 

the surface of the particle. Figure 5.8 is a higher magnification picture of the lower 

part of the same particle. The smooth nature of the surface is again clearly visible. 

At the top right hand corner of this figure, pore mouths about lµm in diameter are 
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seen. Fine mineral matter is also dispersed on the particle surface. 

Figures 5.9 and 5.10 show two different magnifications of a particle converted to 

17.4 % at the 14 75K preheater wall temperature. The striking changes even at such 

small conversions should be noted. The particle surface is very convoluted now, 

with deep recesses, and shows the enlarged mouths of the bigger pores. On the 

small scale, however, the surface is still very smooth. Large ash agglomerates are 

clearly seen. The effect that such an ash agglomerate might have on reactant access 

to the interior of the particle is unknown. However, 5-8µm diameter pore mouths, 

beyond the ash, are seen in Figure 5.10. It seems plausible that the ash particle 

grows by physical agglomeration as the carbon surface recesses with combustion, 

thus bringing together the smaller ash particles. The ash itself appears fairly loosely 

bound and there is no evidence of ash melting. Figure 5.11 shows another particle 

converted to 17.4% at 1475K. From this picture it seems that there is hardly any 

change from the unburned material, but the morphology on the blind side is hard 

to guess. A closer look at the particle (Figure 5.12) shows that loose physical 

agglomeration of ash has taken place like in Figure 5.10. Yet another particle 

converted to 17.4% is shown in Figure 5.13. Although not much ash is visible, the 

hollow nature of the particle is striking. Clearly, in such a particle, there is little 

difference between the external and internal surfaces as far as reactant access is 

concerned. The pores in the interior surface are also visible. 

Figures 5.14 and 5.15 show two particles, from the 45-53µm size fraction burned 

to 46.6% conversion at a preheater wall temperature of 1475K. The presence of large 

voids in the particle is obvious. Ash also appears in forms similar to those in the 
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larger particles. In general, the smaller particles are not as rounded as the bigger 

ones. They also have more ash. The ash bridge on the particle in figure 5.14 is an 

interesting feature. 

The ash in the char may catalyze combustion (Walker and Nichols, 1957) 

and/or limit access of oxygen to the particle surface. The catalytic effects of ash 

are expected to be more important at lower temperatures than at higher tempera­

tures. However, the physical effects of ash are important at higher conversions at 

all temperatures. It appears from examination of the micrographs that much of the 

ash remains associated with the particle. While some ash may be lost due to frag­

mentation or attrition, this is probably of minor importance at these conversions 

as indicated by the absence of separate ash fragments on the filter. 

5.,j.9 Surface Area Measurement 

Adsorption isotherms on all samples were obtained using nitrogen at 77K as the ad­

sorptive gas. The Brunauer-Emmett-Taylor (BET) theory (Brunauer et al., 1938) 

was then used to infer specific surface areas of unburned and partially oxidized sam­

ples from these isotherms. The procedure and details are described later (Appendix 

III). 

Although most of the pore volume in these porous chars is present in the macro 

and larger transition pores, it is well known that the micropores account for most 

of the surface area. The areas normalized per unit total mass are shown in Table 

5.3. Since the weight percent ash is also given in the same table, the area per unit 

carbon mass can also be easily obtained. 

In all cases, there is a significant decrease in the area compared to the unburned 



- 107-

material at very low conversions. This can only be attributed to closure of the small 

pores due to thermal annealing at these high temperatures (Smith, 1972). For the 

45-53µm char, the trend with respect to conversion appears to be anomalous. But 

this iS most probably due to an erroneous data point at 5.6% conversion. In the 

other cases, the surface area, after the initial drop, appears to rise with conversion, 

reaches a maximum (90-104µm, 1675K wall temperature case) and then decreases 

again. The final drop is due to pore coalescence at the higher conversions. While 

the trends are correct, the actual values may not be exact because sample sizes were 

small in most cases. 

5 . ..l.-1 Pore Volume Distribution: Capillary Condensation 

Pore volume distributions for pores with radii between 20 and 200 A were obtained 

from measurement of capillary condensation of nitrogen in the pores of the chars. 

This corresponds to relative pressures of 0.35 to 0.975 of the isotherms. Since 

multilayer adsorption occurs over the entire range of pressures, the pore radii and 

volumes had to be adjusted accordingly. The algorithm given by Yan and Zhang 

(1986) was used for the calculations. Details of the inversion are given in Appendix 

III. 

Results are given in Figure 5.16 for one case and tabulated in Table 5.3 for 

all cases. As before, the total volume in this range of pore sizes is appreciably 

smaller after few percent conversion at high temperatures compared to the unburned 

material indicating thermal annealing effects in pores of this range. The effect of 

conversion is best illustrated by Figure 5.16. The pore volume distributions shown 

are for the 90-104µm parent material converted at 1675K wall temperature. There 
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is very little decrease of the volume with conversion and no shift of the distribution 

at all. This shows that pores of this size do not participate in combustion because 

of diffusion limitations. The figure also shows that the char has very few pores 

with radii in the range 30-50A radius. However, minor growth of the smaller pores 

creates some pores of this size at the higher conversions. 

5.,1.5 Pore Volume Distribution: Mercury Porosimetry 

Mercury porosimetry experiments were performed on an Autoscan-33 porosimeter 

capable of applying pressures up to 33000 psig. This means that the smallest pores 

that can be detected are around 32A in radius. The raw data were in the form of 

cumulative volume versus applied pressure. Although both intrusion and extrusion 

curves can be interpreted to derive pore sizes, the intrusion branch was used in 

our experiments. The many problems of data interpretation including hysteresis 

and pore geometry are discussed by Lowell and Shields (1979). The pore radius 

penetrated at a given pressure is calculated from the Washburn equation: 

2'"'(cos6 
rp = p (5.5) 

where rp is the pore radius,'"'( is the surface tension of mercury normally taken to 

be 480 ergs/cm2, (J is the angle of contact between mercury and the char, and P 

is the applied pressure. The contact angle is conventionally assumed to be 140°. 

This equation assumes that the pores are cylindrical in shape. Thus, while the 

results may not have any intrinsic value in describing the present char which is 

cenospheric, their value as a comparative tool is well accepted. Figure 5.17 shows an 

example of the raw data derived from a porosimetry run. The abscissa is the volume 
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in cubic centimeters and the ordinate is the pressure in psig. The intrusion and 

extrusion curves are both shown. The former is shown in two parts, the scale being 

expanded at lower pressures for better accuracy in that range. This cumulative 

curve (intrusion branch) was numerically differentiated to give the pore volume 

distribution shown in Figure 5.18 for the 90-104µm size fraction of the unburned 

material. A dead volume correction was applied before the numerical differentiation. 

The distribution for the unburned material shows that there is significant tran­

sition porosity (200-lOOOA radius) as well as macroporosity in this char. Pores 

larger than 1. 76µm in radius are penetrated at pressures below 60 psig and are 

assumed to be interparticle spaces rather than internal porosity. Of course, it is not 

possible to rule out the presence of cracks and voids of these sizes or even larger 

ones within particles. Indeed electron micrographs do show the presence of voids of 

this size in the particles. Thus, at these low pressures it is impossible to resolve the 

controversy regarding the relative contributions of the inter and intraparticle voids 

to the total voidage, particularly in a material that has large voids. 

Figure 5.19 shows the pore volume distribution of the 90-104µm parent char 

after 65.9% conversion at 1675K preheater wall temperature. Comparing with figure 

5.18, it is clear that there is less transitional porosity in the burned char. This 

indicates that these pores are accessible to oxygen at these temperatures. There is 

some resulting increase in the macroporosity. Table 5.3 shows the pore volumes in 

the ranges 32-500A and 500-17600A. 32A is normally taken as the micro-transitional 

boundary and sooA is the transitional-macropore boundary in the literature. Due 

to sample size limitations, porosimetry was done on samples having the highest 
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conversion in each group. In the 1675K 90-104µm group we see that while the 

transitional pore volume decreases, the macroporosity increases showing oxygen 

accessibility in the transitional range. The same trend is observed in the sample 

with big particles burned at 1475K wall temperature. 

5.4.6 Conclusions from High Temperature Combustion 

This section will stimmarize the observations from all the characterization experi­

ments described earlier. Although there is a noticeable decrease in the particle size 

with conversion at high temperatures indicating the possibility of diffusion-limited 

combustion, this decrease by itself is insufficient to account for the total carbon 

loss. Thus there is internal burning in these char particles which is not surprising 

considering that there are macropores as large as 8µm in diameter visible on the 

char surface. These obviously act as feeder pores allowing oxygen to penetrate into 

the particle. The only question that remains to be answered is the extent of the 

oxygen penetration. 

Capillary condensation and mercury porosimetry together indicate quite clearly 

that while pores above 200A in radius do grow during combustion, those smaller 

than this size remain unaffected. Thus pores below 200A are diffusion limited. This 

is also indirectly seen from the small values of surface area present in the samples. 

Since most of the surface area is in the micropores below 200A in radius, it is 

clearly not accessible. One cause of the lack of penetration into pores of this size 

may be that their pore mouths are closed by some thermal annealing mechanism 

as the particle is heated to these temperatures. That thermal annealing occurs is 

indicated in the drop in the surface area value compared to that of the unburned 
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material. 

The presence of ash on the surface of the burned materials is quite evident from 

the electron micrographs. The ash appears to be present as loosely bound globules 

of very small size that are drawn together as the carbon surface below them recedes. 

There is no evidence to show ash melting at the temperatures used. 

5.5 Comparison of High and Low Temperature Combustion 

Table 5.4 shows data on chars burned to various conversions at 500°C. There are 

two major sets of data corresponding to the 104-125µm and 90-104µm size fractions. 

Porosimetry experiments were done on the bigger samples for reasons of greater 

sample availability. However, since the sizes are similar, the results should also be 

indicative of the 90-104µm size fraction. 

The main difference between high and low temperature combustion is seen in 

the surface area values. Table 5.4 and Figure 5.20 show the change of the surface 

area with conversion at 500°C. The areas at the lower temperature are at least an 

order of magnitude larger than those from the high temperature experiments. This 

indicates that most or all of the micropores are accessible at low temperatures and 

that diffusion is not a factor. Thus combustion takes place in the kinetic limited 

regime. Figure 5.20 shows the surface area normalized with total and carbon masses. 

The rapid initial rise in the surface area is due to the opening of the pore mouths. 

Thereafter, the rise is smaller, reaching a maximum at some carbon conversion and 

finally the area decreases due to pore coalescence. 

Pore volume distributions from capillary condensation are shown in Figure 

5.21. This shows that the volume in this range increases with conversion and drops 
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slightly at the last point. This reinforces the conclusion that even these small pores 

are accessible to oxygen, unlike burning during high temperatures (Figure 5.16). 

The pore volume data from porosimetry on the 104-125µm samples show that 

pore volumes in all size ranges increase with conversion. The pore volume distri­

bution of a char converted to 70.6% at 500°C is shown in Figure 5.22. Comparing 

with the pore volumes of the unburned material (Figure 5.18) and that burned at 

1675K wall temperature (Figure 5.19) to a similar conversion we see that although 

the total volume is not very different, there is little volume in the small pores (in­

dicating their growth) and somewhat more porosity in the larger pores and cracks. 

Figure 5.23 is a plot of the pore volumes versus conversion at low temperature. 

Thus the major difference between the combustion of the char at low and 

high temperatures is the absence of diffusion limitations in the micropores and 

their resulting accessibility to the oxidizer at lower temperatures. There is also no 

evidence of thermal annealing at the low temperature. 
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Rank HVAB 

State Pennsylvania 

Seam Pittsburgh 

Proximate Analysis (%) 

Moisture 02.54 

Ash 13.32 

Volatile Matter 33.56 

Fixed Carbon 50.58 

Ultimate Analysis (%) As rec'd Dry 

Ash 13.32 13.67 

Carbon 70.05 71.88 

Hydrogen 4.55* 4.67 

Nitrogen 1.33 1.36 

Sulfur 1.33 1.36 

Chlorine 0.07 0.08 

Oxygen( diff.) 6.81* 6.99 

*excludes moisture 

Free Swelling Index 7.5 

Dry Heating Value 29114 J/g 

Table 5.1 Properties of raw coal. 
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Wall Sieve Conversion Particle 

Temperature Cut Temperature 

K µm % K 

1475 45-53 5.6 1425±44 

46.6 1446±60 

63.l 1457±44 

1475 90-104 10.3 1465±44 

17.4 1441±59 

30.4 -

1675 90-104 11.7 1363±27 

46.7 1406±29 

65.9 1379±10 

Table 5.2 Particle temperature measurements. 



Wall Sieve Run N2 Hg Ash Conv. Avg. Aspect N2 BET Vol. (Hg) 

Temp. Cut No. Mass Mass Size Ratio Area 32-5ooA 500-11600A 32A-oo 

K µm g g % % µm m2 /gtot cc/gtot cc/gtot cc/gtot 

1475 45-53 345 0.1031 25.5 0 11.3 

330 0.1400 28.7 5.6 7.8 

331 0.0716 34.3 46.6 5.2 

329 0.0829 0.1027 37.4 63.1 8.7 0.0994 0.1931 0.3112 

1475 90-104 248 0.0747 0.1800 19.5 0 12.6 0.1279 0.1991 0.3988 

341 0.0836 21.3 10.3 4.7 

342 0.0778 22.7 17.4 5.5 

340 0.0550 0.1063 25.9 30.4 12.4 0.0851 0.2218 0.3222 

1675 90-104 248 0.0747 0.1880 19.5 0 114.0 1.177 12.6 0.1279 0.1991 0.3988 

337 0.0693 21.6 11.7 111.7 1.140 6.4 

332 0.0520 31.3 46.7 109.3 1.186 10.2 

336 0.0506 0.0639 41.6 65.9 100.9 1.166 5.3 0.0905 0.2845 0.4405 

Table 5.3 Characterization of PSOC 1451 1600K chars burned at high temperatures. 

Vol. (N2) 

20-200A 

cc/gtot 

0.062 

0.018 

0.016 

0.024 

0.040 

0.018 

0.014 

0.034 

0.040 

0.026 

0.028 

0.027 

..... 

...... 
~ 

I 



Run Char 

No. Size 

µm 

239 104-125 

232 

233 

234 

236 

235 

248 90-104 

346 

249 

348 

349 

350 

247 

345 45-53 

Conv. N2 Hg Ash N2BET Vol. (N2) Vol. (Hg) 

Mass Mass Areas 20-200 A radius 32-5ooA 500-11600A 

% g g % m2 /gtot m2/gC cc/gtot cc/gC cc/gtot cc/gtot 

0 0.1323 0.0856 19.0 12.4 15.3 0.0413 0.0510 0.1279 0.1991 

14.2 0.0801 0.0616 21.5 146.1 186.0 0.1042 0.1327 0.1185 0.2477 

27.3 0.0752 0.0568 24.4 190.2 251.5 0.1252 0.1656 0.1165 0.2729 

39.9 0.0842 0.0639 28.1 148.5 206.4 0.1550 0.2155 0.1298 0.3306 

57.7 0.0613 0.0503 35.7 181.1 281.5 0.1896 0.2948 0.1558 0.3547 

70.6 0.0590 0.0427 44.4 200.0 359.7 0.1881 0.3383 0.1616 0.3961 

0 0.0747 19.5 12.6 22.7 0.0400 0.0497 

4.6 0.0694 20.2 21.7 27.2 0.0473 0.0593 

7.0 0.0711 20.5 87.2 110.0 0.0774 0.0973 

32.4 0.0792 26.4 150.3 204.0 0.0597 0.0810 

41.2 0.0666 37.0 189.2 267.0 0.0812 0.1289 

65.7 0.0541 41.4 201.5 344.0 0.1041 0.1776 

72.5 0.0419 44.6 163.0 306 0.5205 0.9395 

0 0.1031 25.5 11.3 15.1 0.0619 0.0831 

Table 5.4 Characterization of PSOC 1451 1600K chars burned at 500°C. 

32A ·oo 

cc/gtot 

0.3988 

0.4630 

0.4729 

0.7001 

0.7357 

0.8109 
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Figure 5.1 Schematic of the high temperature fl.ow reactor. 
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Figure 5.4 Particle size distribution of 90-104µm sieve cut PSOC 1451 1600K char after 

46. 7% conversion at 1675K. 
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65.9% conversion at 1675K. 
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Figure 5.7 Electron micrograph of an unburned PSOC 14511600K 

90-104µm char particle. 
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Figure 5.8 Magnified electron micrograph of the particle in Figure 5. 7. 
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Figure 5.9 Electron micrograph of a PSOC 1451 1600K char particle 

after 17.4% conversion at 1475K. 
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Figure 5.10 Magnified electron micrograph of the particle in Figure 5.9. 
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Figure 5.11 Electron micrograph of a PSOC 1451 1600K char particle 

after 17.4% conversion at 1475K. 
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Figure 5.12 Magnified electron micrograph of the p~ticle in Figure 5.11 
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Figure 5.13 Electron micrograph of a PSOC 1451 1600K char particle 

after 17.4% conversion at 1475K. 



- 131-

Figure 5.14 Electron micrograph of a PSOC 1451 1600K char particle 

after 46.7% conversion at 1475K. 
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Figure 5.15 Magnified electron micrograph of the particle in Figure 5.14. 
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Abstract 

The temperature-time history of single char particles burning at temperatures above 

1500 K have been measured by two-color near infrared pyrometry techniques. Two 

coal chars and a synthetic char consisting of spherical glassy carbon particles of uni­

form size were used in the experiments. The results indicate that in the regime of 

lean combustion and low-to-medium temperatures, the char particles do not ignite 

over their whole external surface, but exhibit preferential ignition at specific sites. 

These hot-spots probably involve regions where the material exhibits strong inho­

mogeneities, either on or below the surface. Following ignition, the reaction may 

propagate over the particle surface. At elevated combustor temperatures and/or 

high oxygen partial pressures, ignition spreads quickly over the entire particle sur­

face and the importance of the hot-spots diminishes. A simple model is used to 

estimate the rate of growth of a hot-spot under various experimental conditions. 
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6.1 Introduction 

The structural complexity of coal is well-documented. The organic components 

have been mixed with sedimentary strata, compacted, variably subjected to decay 

and chemically altered by geological processes 1• In addition to the organic compo­

nents, the coal microstructure incorporates small and large pores and a plethora 

of minerals. The particles produced during the grinding process have irregular 

shapes, and contain cracks and loosely bound material on the surface. Because of 

this variable surface morphology and the physical and chemical inhomogeneities, 

there is no reason to expect the particles to ignite and burn uniformly over their 

surface. In the customary mathematical analysis of char combustion the particles 

are assumed to have spherical shape and spatially uniform properties, density, pore 

structure etc. Real particles of course, have irregular shapes and gross spatial in­

homogeneities (pores, cracks, minerals) but these irregularities cannot be described 

mathematically in any reasonable fashion. Nevertheless it is quite clear that these 

irregularities in char particles cause significant particle-to-particle variations in par­

ticle temperature and burnout time. Variations in ignition behavior due to these 

irregularities can also be expected. 

Efforts to understand the ignition mechanism of coal particles date back to 

Semenov2 • Thereafter studies on the ignition of clouds of particles, 314 and packed 

beds of particles5 have been conducted but studies concerning the ignition behavior 

of single particles are rare. Ignition of coal particles has been assumed to be either 

homogeneous6 where emitted volatiles ignite first or heterogeneous 7 where ignition 

occurs at the particle surface. Recent studies on ignition of single coal particles8 
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suggest that ignition swiches from being homogeneous to heterogeneous as the reac­

tor temperature increases. The ignition of char particles is heterogeneous, in view of 

the absence of volatiles. Ignition occurs with9 or without10 a temperature jump and 

the measured ignition temperature has been observed to increase with decreasing 

particle size. 9 

Previous modelling work has utilized steady or unsteady energy balances as­

suming that the particle ignites uniformly over its surface.9 - 12 In this paper we 

shall present experimental observations that suggest that ignition does not occur 

uniformly over the particle surface but, rather, occurs in small localized regions. 

Reaction fronts then propagate over the particle surface. A theoretical description 

of a reaction front propagation is developed. 

6.2 Experimental 

The coal chars used in the combustion experiments were derived from the two high 

volatile bituminous coals, listed in Table 6.1, by devolatilization at 1600 K, for 

2 s, and in nitrogen. Experiments were also conducted with glassy carbon cha.rs 

for comparison purposes. These glassy carbons were synthesized from polymer 

materials13 in the form of mineral-free, homogeneous, uniformly sized spheres. The 

char particles were sized by sieving, with the aid of a mechanical shaker. The size 

and surface morphology of the particles were examined by optical and scanning 

electron microscopy (SEM). Physical properties and chemical composition of the 

particles were measured as described elsewhere.13•14 

Both coal pyrolysis and char combustion were performed in an externally 

heated, laminar flow, drop-tube furnace capable of reaching centerline temperatures 
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of 1600 K. Pyrolysis was performed in a stream of pure nitrogen and combustion 

in 0 2-N2 mixtures at oxygen partial pressures varying between 0.21 (air) and 1.0 

atm. Particle temperatures were monitored with a two-color pyrometer, with broad 

band filters centered in the near-infrared at 800 and 1000 nm, respectively, and em­

ploying silicon photocell detectors. Details of the combustion apparatus and the 

pyrometer are given elsewhere.13 For the present experiments, only one particle at 

a time was introduced into the combustion chamber making it possible to record 

the two-color radiation intensity traces throughout the combustion life of a single 

particle. Employing a Planck-law analysis, temperature-time profiles were derived 

from the ratio of the two intensity signals. 

6.3 Results and Discussion 

Typical intensity-time traces and the corresponding calculated temperatures for the 

two coal chars are shown in Figures 6.1-6.3. The combustion atmosphere and wall 

temperatures were as indicated in the figures while the gas temperature was 1100 K 

for all cases. Since the oxidation took place at furnace temperatures (centerline and 

wall) lower than the temperatures used for the pyrolysis process, no devolatilization 

is anticipated during the char combustion experiments. In Figure 6.1, the particle 

temperature is approximately constant throughout combustion, but the emission 

intensities rise through a large fraction of the burn time (region 1) and then de­

crease throughout the remaining time (region 2). The behavior in region 2 can be 

attributed to the decreasing particle cross section as the char particle shrinks during 

the final stages of combustion. In short, the increase in intensity in region 2 is a 

purely geometrical effect. 
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The behavior in region 1, where the intensity increases while the temperature 

remains approximately constant is more difficult to explain. We first ascertained 

that this behavior is not an artifact generated by the pyrometer electronics. This 

possibility can be eliminated by the following observations: (a) The silicon photocell 

detectors used, Hamamatsu 81996-SBQ, are very fast, having a nominal rise time 

of 0.2 µs, and exhibit a linear response. (b) The 'slew' rate of the amplifiers is 

very fast, 2 V / µs. (c) The response of the two channels of the pyrometer was 

verified to be the same, by swapping the filters. (d) Radiation intensity traces 

obtained by Sarofim and coworkers16•17 exhibit similar behavior, even though a 

totally different system was used for data acquisition. The pyrometer used in their 

work employed photomultiplier tubes (PMT) that exhibited a rise time of 15 ns. 

( e) The peak occurred at different times for different particles and, moreover, a late 

peak occurred only for particles burning in air, in contrast to particles burning at 

high 0 2 partial pressures, where the intensity rise is almost instantaneous. Thus, it 

can be safely concluded that the intensity increase must be a characteristic of the 

combustion behavior of the chars. 

It is proposed that the gradual increase in intensity at constant temperature 

is caused by the spread of the reacting region from one or more localized ignition 

sites at the particle surface. The intensity of the radiation that is received by the 

detectors depends on three parameters: (i) the luminosity of the light source that 

is directly related to its temperature; (ii) the size of the light source, and (iii) the 

distance between the source and the detector. The distance did not vary significantly 

in our experiments since, at the furnace flowrates used, a particle travels at most 2 to 
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4 mm during its burntime (velocity~ 10-1 mm/ms), which is much smaller than the 

distance between the particle and ·the detector ( ~ 300 mm). Hence, the detectors see 

a particle that is almost stationary during its entire combustion history. Further, 

if distance were responsible for the intensity variation at constant temperature, 

the intensity traces would monotonically decrease, since the particles travel away 

from the detector. Such behavior was not observed for any particles. The second 

parameter, luminosity at some fixed wavelength, is a function of temperature via 

the temperature dependence of Planck's law and by the temperature dependence 

of the emissivity. However, if the temperature of the particle remains constant, as 

observed, the luminosity of the particle should also remain constant. Therefore, the 

recorded intensity variations must be due to variations in the radiating area of the 

particle projected in the direction of the detector. The increase in the radiating area 

could be attributed to either an increase in the total area, radiating uniformly, or 

an increase of the radiating fraction of a roughly constant physical area. In view of 

prior devolatilization, the total area could not increase by swelling. Therefore, the 

area of the particle that is radiating increases with time in region (1). It is proposed 

that a few reactive regions on the char surface ignite first, and thereafter combustion 

fronts propagate over the rest of the particle. Thus, the radiating area of the particle 

can increase without an associated increase in temperature, if the ignited regions or 

hot-spots have roughly the same temperature. Progressive ignition on the particle 

surface has also been observed by photographic techniques.17 

The higher reactivity in localized regions on the particle surface could result 

from a number of causes. One possibility is local mineral concentrations that cat-



- 148 -

alyze and accelerate reaction. Previous investigations18 have shown that the reac­

tivity is greatly enhanced in the presence of impurities, particularly magnesium and 

calcium. Reactive spots could also be due to localized macro- and transitional pores 

that serve as feeders to the micropores and enhance reactivity. In Figure 6.4a the 

scanning electron micrograph of a char particle reveals an irregular particle shape, 

various surface cavities, and large pores and protrusions that usually appear (by the 

degree of darkness in BSE-SEM) to be rich in ash and could contribute to localized 

ignition. 

Whatever the cause of the localized ignition, particles of the same char would be 

expected to become fully ignited more rapidly in oxygen-enriched atmospheres than 

at lower oxygen levels because the combined effect of the oxygen availability and the 

resulting higher temperatures accelerate the reaction. Hence, the observed delay 

times, i.e., the duration of region (1), should be short. This is seen by comparing 

Figures 6.1-6.3. Clearly, the rate of intensity increase in region (1) increases with 

oxygen level. The short delay observed in the high 02 level experiments was usually 

associated with the period of increasing temperature. Ignition in pure oxygen was 

almost instantaneous. 

Combustion of spherical synthetic char particles such as that shown in Figure 

6.4b provides a sharp contrast to coal char combustion. These particles are highly 

uniform and are mineral-free, hence catalytic effects are minimal. These particles 

are not expected to have important reactive sites. Instead of undergoing localized 

ignition, such a particle may be uniformly heated close to the ignition temperature 

before rapid reaction begins. Once ignited, the particle would rapidly be engulfed 
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in flame. This was confirmed in the experiments whenever it occurred. Combustion 

of the synthetic chars, proceeded rapidly. Any delay in reachirlg peak intensities 

was associated with rising temperatures. The temperature and intensity profiles for 

combustion of a typical synthetic char particle is shown in Figure 6.5. 

Some coal char particles exhibited another interesting phenomenon that is 

shown in Figure 6.6. The intensities undergo roughly periodic fluctuations. In 

Figure 6.6a, the intensity in each channel fluctuates periodically for three complete 

cycles while following an overall decreasing trend. The temperature of the parti­

cle is almost constant over that period of time. We attribute these oscillations to 

the tumbling motion of the particle that changes the projected burning area that 

is viewed by the detector. Another set of measurements is shown in Figure 6.6b. 

In this case the periodically varying signal is superimposed on an increasing trend 

suggesting that tumbling is taking place while hot-spots are growing. 

Pyrometry traces were also obtained for a lignite char. These are not shown 

here but they exhibit similar ignition delay times as those observed for the chars 

of the two bituminous coals. Similar pyrometry results on lignite have also been 

obtained by others.15•16 

6.4 Analysis of the Growth of a Hot Spot 

In this section we examine the growth of a single local ignited region in an attempt to 

explain the gradual intensity rise while the particle temperature remains constant. 

We postulate that a hot, burning region propagates on the comparatively cooler 

particle surface without delving into the reasons of how such a region was ignited in 

the first place. The burning region, assumed circular and locally two-dimensional 
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(Figure 6.7), dissipates heat to the surroundings and the rest of the particle while 

spreading on the surface at the same time. Using a quasi-one.-dimensional analysis 

and thermal balance arguments, we calculate the growth of the burning region and 

determine the time required for the ignited region to engulf a hemisphere of the 

entire particle. This time turns out to be larger than the experimental ignition 

delay time indicating that ignition involves several rather than one spot on the 

particle surface. 

Assuming the burning region to be a spherical sector, its area A 8 is given as; 

(6.1) 

where r and rp are the radii of the burning region and the particle, respectively. 

The area of a differential element is then given by; 

r 
dA 8 = 211"r P dr ( 6.2) 

Jr~ -r2 

The growth of the burning region is controlled by the balance between heat gener-

ation and heat dissipation; 

(6.3) 

where QG and Q D are the heat generation and dissipation terms, respectively, Cp the 

heat capacity and Ua. the apparent density. The thickness, J, and the temperature, 

Ts, of the burning region are assumed to be constant. The temperature Ts is taken 

equal to the temperature measured by pyrometry. The thickness, J, is estimated 

by the procedure followed in reaction-diffusion problems in the limit of large Thiele 

modulus. It is given by; 

- rp 
d=-

t/> 
(6.4) 
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where Tp is the particle radius and </> is the Thiele modulus of the particle19 given 

as: 

,/... - rp [A R·cm-1n-1] 1/2 
'¥ -

3 
T<1a i s e (6.5) 

AT is the pore surface area per unit mass, averaged over the course of combustion, 

obtained from BET measurements or other equivalent techniques; Ua is the apparent 

density of the solid; ~ is the intrinsic reaction rate coefficient; C8 is the oxygen 

concentration at the particle surface; m is the true reaction order, taken as unity 

in the present calculations, and De is the effective diffusivity in the porous particle. 

Thus the value of</> can be estimated using information about the porous structure 

of the particle and measured combustion rates. 

The heat generated by the burning region can be expressed as: 

(6.6) 

where Ei is the activation energy of the reaction, Ai is the pre-exponential factor, 

and C 8 is the oxygen concentration at the particle surface. ll.H is the heat of 

combustion at temperature T8 assuming that the heterogeneous reaction at the 

surface produces CO exclusively. 

Heat dissipation consists of three contributions: conduction into the core of 

the particle, convection to the surrounding gas, and radiation to the furnace walls. 

The convection to the ambient gas can be calculated from: 

(6.7) 

where kgas is the thermal conductivity of the gas at the film temperature. This 

assumes that the Nusselt number is 2, since the Reynolds number, based on the 
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slip velocity between the particle and the gas is very small. The radiation to the 

furnace enclosure is: 

(6.8) 

where u is the Stefan-Boltzmann constant and fs and fw are the emissivities of the 

hot-spot and the wall respectively. 

Conduction from the surface layer to the interior of the particle is a complicated 

unsteady two-dimensional problem coupled with the overall propagation problem. 

For the purpose of this analysis we assume that heat conduction occurs only per-

pendicular to the surface in an unsteady fashion. The heat flux from an element of 

the burning region is then given by: 

kc(Ts - Tp) 

Jo.ef!(t -{) 
(6.9) 

where kc, O.eff are the thermal conductivity and the effective thermal diffusivity 

of the particle core, t is the current time, and { is the time at which burning first 

reached the surface element in question. The conduction heat flux over the entire 

burning region is then given by: 

(Ts -Tp) 1r kcdAs 
O Jo.eJJ(t-{) 

(6.10) 

where now As is the area of the burning region at time {and r is the radius at time 

t. 

Combining Eqs. (6.3),(6.6)-(6.8) and (6.10) we obtain the heat balance equa-

tion for the burning region: 

(6.11) 
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In equation (6.11), the time t for the front to propagate to radius r is given by 

{r df 
t =Jo S(f) (6.12) 

where S(r) = dr/dt is the velocity of propagation of the burning region. Similarly 

tr is given by Eq. (6.12), replacing r in the upper limit of the integral with f. 

Thus Eq. (6.11) is an integro-differential equation in r(t) which must be solved 

numerically. Once r(t) has been computed, the total time taken by the burning 

region to cover the hemispherical surface of the particle (visible to the detector) can 

be found as that value oft for, which r(t) = rp. This time, which will be denoted as 

tb, should be the upper bound of the experimentally observed delay time, tD, that 

elapses before the peak in the pyrometer signals occurs. For the present calculations 

the temperature of the burning region was taken equal to the temperature deduced 

from the pyrometer traces, assumed constant, and the temperature of the rest of the 

particle was assumed equal to the combustor wall temperature. The total surf ace 

area of the layer was deduced from BET area measurements on partially combusted 

samples, assuming that the burning region had the same average surface per unit 

mass as that of the char after partial burning. Details of the variation of total surface 

area with burnout are not included in the present analysis but are given elsewhere14• 

The effective conductivity was estimated using the correlation of Butt20 , while the 

heat capacity by a relationship given by Kelley21 • The intrinsic kinetics used were 

determined for the present chars from other experiments22 employing the same 

experimental setup and analyzing the results using the capillary model of Gavalas23 

to describe the evolution of pores. For the PSOC-14511600 K char the activation 

energy, Ei was estimated to be 34000 cal/mole and the pre-exponential factor A; 
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was 8.6x105 cm/s. Smith's kinetics24 (Ei = 42800 cal/mole and Ai = l.46x106 

cm/s) give similar values. 

Figure 6.8 shows the calculated variation of tb with oxygen partial pressure. 

The predicted ignition transient times are higher by a factor of almost five compared 

to those observed experimentally. For the case of the particle shown in Figure 6.1, 

the experimentally observed delay time is 12 ms while the thoeretically determined 

delay time (corresponding to an oxygen partial pressure of 0.12) is around 60 ms. 

This suggests that there are more than one such spots propagating over the particle 

surface. As expected, tb decreases with increasing oxygen partial pressure and with 

decreasing particle size. 

The speed of propagation of the spot increases rapidly as the radius expands, 

reaches a maximum and falls off as the particle radius is reached. This is shown 

in Figure 6.9. H several hot-spots are growing simultaneously as suggested by the 

experimental ignition delay times then only the first part of the speed versus radius 

curve is physically significant. The values assumed for the emissivities of both the 

particle and the wall had negligible effects in the calculation, indicating the minor 

importance of the radiation heat loss in the cases examined. Likewise, the apparent 

particle density does not seem to be an important factor. Finally, tb is inversely 

proportional to the pore surface area of the char. 

6.5 Conclusions 

The ignition behavior of coal chars at various oxygen partial pressures and com­

bustion chamber temperatures has been observed by means of near-infrared optical 

pyrometry techniques. It has been concluded that at mild combustion conditions 
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(combustor temperatures around/or below 1300 K and oxygen partial pressures 

at/or below 0.21), the char particles undergo preferential ignition at localized reac­

tive sites leading to the development of hot-spots. The reaction zones take a finite 

time to engulf and ignite the whole particle. These reactive sites can be due to of 

mineral matter catalysis, enhanced porosity or favorable surface morphology. At 

elevated combustor temperatures and/ or high 0 2 concentrations the ignition pro­

ceeds almost instantaneously because of temperature-dependent kinetics. A energy 

balance was used to estimate the time required for the spreading of a local hot 

spot. Comparision of the estimated times and measured ignition times suggest that 

several spots are spreading over the particle surface simultaneously. 
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Notation 

SYMBOL DESCRIPTION UNITS 

Ai pre-exponential factor g/cm2s 

As surface area of spherical sector cm2 

AT specific total surface area cm2 /g 

Cp heat capacity of carbon J/gK 

Cs surface oxygen conceritration g/cm3 

d oxygen diffusion zone cm 
, 

d thermal diffusion zone cm 

De effective diffusivity cm2/s 

e particle porosity 

Eif R reduced activation energy K 

kp conductivity of carbon W/cmK 

kc effective conductivity W/cmK 

kg as conductivity of gas W/cmK 

P02,B oxygen partial pressure at particle surface atm 

r radial distance cm 

rp particle radius cm 

Ri intrinsic reaction rate coefficient cm/s 

s flame front velocity cm/s 

tb theoretical flame propagation time ms 

f D experimentally observed delay time ms 

Tp particle temperature K 
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Tg ambient temperature K 

Ta hot-spot temperature K 

Tw combustor wall temperature K 

' Ci.ef f effective thermal diffusivity cm2/s 

6 flame front propagation zone cm 

fl.H heat release J/g 

f.a emissivity of hot-spot 

f.w emissivity of wall 

Ua apparent density g/cm3 

u Stefan-Boltzmann constant W/cm2K4 
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COALS 176 1451 

RANK Bit. HVB Bit. fiVA 

MOISTURE (O/o) 0.8 2.5 
ASH (0/o) 6.5 t3.5 
CARSON (0/o) 78.4 71.5 

HYDROGEN (0/o) 5.4 4.7 
OXYGEN (0/o) 5.5 7.0 

NITROGEN (0/o) 1.3 1.3 
SULFUR (0/o) 2.9 1.3 

VOLATILE 
MATTER (0/o) 40.2 33.5 

HEATING VALUE 
(DRY BASIS) eol/g 7910 6965 

Table 6.1 Properties of parent coals. 
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Chapter 7 

CONTINUUM MODELLING 
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7.1 Introduction 

This chapter will describe, in detail, the models that were developed to describe 

char particle combustion. All the models assume that the particle is spherical 

and has internal spherical symmetry. The internal morphology is assumed to be a 

continuum of fine pores, thereby allowing diffusion and reaction inside the particle 

to be described by differential equations. Models that consider larger discrete pores 

are described in the next Chapter. 

Most of the attention has been focussed on the changes in the internal solid 

structure of the particle and its effect on combustion variables. Reasonable assump­

tions were made regarding the description of the s9lid morphology. Pore structure 

parameters were estimated from gas adsorption and mercury porosimetry data. 

Thermodynamic and transport properties were assumed to be functions of temper­

ature within the particle and in the gas phase. The reactions in the gas phase were 

not considered. 

The simplest model which assumes that all the reaction occurs at the particle 

surface and none inside is described in detail in the next section. While this may 

seem too restrictive at first, it is applicable to many situations of combustion at 

high temperatures and high oxygen concentrations since, in these situations, there 

is very little penetration of oxygen into the particle as will be shown later. The 

computational burden is light, and the model can describe fairly accurately the 

proper temperature-time histories observed in the experiments. 

Section 7.3 describes the general model involving a simplistic internal geometry 

which is later extended in Section 7.4 to more realistic internal morphologies. The 
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diffusion equation inside the particle is solved to accurately predict the internal 

oxygen concentration profiles which then determine the carbon flux, void fraction, 

specific surface area, etc. 

The influence of nonlinear reaction kinetics such as the Langmuir-Hinschelwood 

and Power law are discussed briefly in the last section. 

The effects of parametric variations are discussed in detail in all cases. Limi­

tations and applicability of the various models are stated as necessary. 

Computer code listings for all the major programs are given in Appendix IX. 

The programs were written in standard Fortran 77 and the actual simulations were 

done on IBM and compatible personal computers. 

7 .2 Asymptotic Model with Lumped Surface Reaction 

The simplest model of char combustion considered is a homogenous particle that 

reacts only at its exterior surface. The solid particle is assumed to be spherical 

and to contain internal voids and ash particles distributed uniformly throughout its 

entire volume. Details of the internal morphology, such as pore volume distribution 

and ash size and distribution, are not important in this model since the reaction is 

assumed to occur only at the particle surface. However, the presence of the voids 

changes the particle density. Let the volume fraction of the voids and ash in the 

particle be £ and f.A. respectively. Assuming that the densities of carbon and ash 

are Pc and PA, a mass balance gives, 

Pa= fA(PA - Pc)+ Pc(l - £) (7.1) 

where Pa is the apparent density of the particle. 
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The reaction at the particle surface is assumed to be the heterogenous reaction, 

2C+0 2 -t 2CO since it has been shown that, at high temperatures, the heteroge­

nous reaction leading to C02 formation is not as important (Mitchell, 1986). Also, 

the reaction of carbon with water vapor has been neglected since the amounts of 

water vapor in the experimental systems used in this study were negligible. 

Once the carbon monoxide is formed, it is assumed to oxidize in the gas phase, 

far from the particle. Thus, in this model det_ails of the gas phase combustion are 

not considered. The gas phase is also assumed to be quasi-steady with respect to 

solid phase combustion. 

The particle is also assumed to be isothermal. The reaction rate used in this 

model is based on the external area of the particle, i.e. it is the apparent rate. All 

thermodynamic and transport properties are assumed to be temperature dependent. 

This is a significant improvement over models that assume constant or average 

property values over wide ranges of temperature variation. 

Assumptions regarding the effects of ash on combustion are based on exper­

imental observations from electron microscopy as discussed in Chapter 5. As the 

carbon is oxidized, the ash particles are exposed at, then accumulate on the surface. 

The thickness of the ash layer increases as combustion proceeds, and it is assumed 

that none of the ash is lost. This porous ash layer presents a diffusional resistance 

to the oxygen transport in series with the gas phase diffusional resistance. The 

presence of ash also manifests itself in the energy balance of the particle, increas­

ing its thermal inertia and altering its radiative properties. A detailed study of 

the radiative properties of the combined carbon-ash layer has not been undertaken. 
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Instead, an overall emissivity of the particle is used. 

In an early version of the model, the effect of ash was accounted for differently. 

Instead of forming a porous layer on the particle, patches of ash were assumed to 

cover parts of the surface of the carbon. Reaction was allowed to take place only 

on those parts not blocked by the ash. The fraction of surface blocked was equal 

to the ash mass fraction in the particle. The computer code for this model is also 

given in Appendix IX. 

7.2.1 Equations 

The particle mass balance can be written in terms of the apparent reaction rate as: 

(7.2) 

where me is the mass of carbon, Aa and Ea are the apparent Arrhenius reaction 

rate parameters, R is the universal gas constant, Y1• is the mass fraction of oxygen 

at the carbon surface, r is radius of the carbon sphere (Figure 7.1), and Tp is the 

particle temperature. The negative sign implies that mass decreases with time. 

The reaction kinetics are assumed to be first order with respect to surface oxygen 

concentration. The value of Yi. is determined as follows: at first the oxygen mass 

fraction outside the ash layer, Yip, is determined and then by properly accounting 

for diffusion in the ash layer, we get Yi.. 

The particle energy balance can be written as: 

d -
dt {mcHc + mAHA} =Energy Generation Rate - Energy Loss Rate (7.3) 

where m and H are the mass and enthalpy, respectively. The subscripts C and A 
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denote carbon and ash. The energy generation rate is given by 

(7.4) 

where D..Hcomb is the enthalpy of combustion of the heterogenous reaction at the 

particle temperature. The rate of mass loss can be rewritten using the carbon mass 

flux per unit external area at the particle surface, Np, as 

(7.5) 

. 
The energy generation term can be written in terms of the enthalpies and the mass 

fluxes of the gas phase components (02=1: C0=2: N2=3) as 

3 

-47rr2 "'"""N.·H· p L.J •• 
i=l 

(7.6) 

In equation (7.6), Ni and Hi are, respectively, the mass flux away from the particle 

and specific enthalpy of the gas phase component i. From stoichiometry we have 

(7.7) 

There are two heat loss terms accounting for conduction and radiation. The heat 

loss by conduction is given by 

(7.8) 

where k is the thermal conductivity of the gas phase. The heat loss due to radiation 

from the particle to its surroundings is given by 

(7.9} 
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where a is the Stefan-Boltzmann constant of radiation, f. 0 is the emissivity of the 

particle, f. 00 ·is the emissivity of the wall or radiating environment far from the 

particle, and T 00 is the temperature of the wall. The unsteady term on the left 

hand side of equation (7.3) can be expanded using the chain rule. Also the enthalpy 

Hof either carbon or the ash can be written as 

1
Tp 

H =Ho+ cpdT 
To 

(7.10) 

where Ho is the enthalpy at some reference temperature To. Using the chain rule, 

equation (7.10) and equation (7.5), the unsteady term in equation (7.3) becomes 

(7.11) 

Therefore combining equations (7.11),(7.6),(7.8) and (7.9), the particle energy bal-

ance becomes 

(mccpc + maCpa) d:ip = 47rr; [NpHc - t NiHi 
•=1 r=r,. 

Defining 

and 

the energy balance becomes 

+ k ddT I - a{ f. 0 T: - f.ooT!}] 
r r=r,, 

- ep 
"Ip= N 

p 

(7.12) 

(7.13) 

(7.14) 

(7.15) 
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Transport in the gas phase is described by the Stefan-Maxwell equations: 

(7.16) 

where Yi is the mass fraction of species i, Ni is the mass flux of i, Pg is the density 

of gas and [)ii is the diffusivity of component i in component j. Here, in our 3-

component system: species 1 = 02, 2 = CO, and 3 = N2. Since these molecules 

are similar in size, the binary diffusion coefficients [)ii are assumed equal. This 

simplifies (7.16) to 

(7.17) 

where N is the total mass flux Li Ni which satisfies 

(7.18) 

where the subscript p denotes values at the surface of the particle. Loewenberg 

et al. (1987) have shown that the equations (7.17) for the various species can be 

combined to give 

d(Y1/4 + Y2/7) _ Y1/4 + Y2/7 
dYa - Ya 

(7.19) 

From this, along with boundary conditions at r-+oo and the fact that Li Yi = 1, 

Y2 and Ya are obtained in terms of Y1 as given below: 

Ya= 3/28Y1 + 1/7 
l/Yaoo(Y100 /4 + Y200 /7) + 1/7 

(7.20) 

(7.21) 

where the subscript oo denotes values far from the particle. 
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The energy balance for the gas phase is: 

(7.22) 

From the stoichiometric relations (7.19) and overall mass balance (7.18), 

(7.23) 

with h(T) = {7H2 - 4H1}/3. The boundary conditions are: 

r = r p : T = Tp; r --+ oo : T --+ T 00 {7.24) 

Integrating (7.23) gives 

(7.25) 

This is an algebraic expression for mass flux at the surface. Combining (7.25) with 

the mass balance for oxygen (7.23) yields 

(7.26) 

Dividing (7.26) by (7.23) gives 

pg[) dY1 _ Y1+4/3 
k dT h(T) - "/p 

(7.27) 

Assuming that the temperature and mass fraction of oxygen far from the particle 

are T 00 and Y1 00 equation (7.27) can be integrated to yield 

(7.28) 

This is a quadrature for the energy flux at the particle surface. Equations (7.25) and 

(7.28) were solved numerically to obtain the particle temperature and the oxygen 

mass fraction at the external surface of the ash layer as a function of time. 
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Once the oxygen mass fraction outside the ash layer, Y1p, is obtained, its mass 

fraction, Y1*, at the carbon surface can be determined. The ash layer is assumed 

to be at the same temperature as the particle. Let hmgas and hmash be the mass 

transfer coefficients in the boundary layer outside the particle and in the ash layer 

respectively. Then, the mass balance across the various layers can be written as 

2A -Ea./ RT. y 2h (Y y ) 'f Mo2 47rr ae " h = 47rr mash lp - h RT. 
p 

2 . 'f Mo2 
= 47r(r + t). hmgas(Y100 - Y1p) RTg 

(7.29) 

where, t is the thickness of the ash layer, 'f is a stoichiometric factor relating the 

number of grams of carbon to the number of grams of oxygen, Mo2 is the molecular 

weight of oxygen and T9 is the boundary layer film temperature. Eliminating Y1p 

from (7 .29) we get 

y _ XY100 
i. - (M + l)(X + 1) - 1 

(7.30) 

where M and X are given by the relations below: 

X = mgas l + _ h ( t) 2 

hmaah r 
(7.31) 

A e-E./RT,, M=-a ___ _ 
h 'fM02 

ma11h RT,, 

(7.32) 

The mass transfer coefficients, assuming spherical geometry and negligible Reynolds 

number, are given by 

and 

[) 
hmgas = -­

r+t 
(7.33) 

(7.34) 
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In equation (7.34), the void fraction, EA, and tortuosity, TA, in the ash layer are 

assumed to be 0.35 and 2, respectively. The bulk diffusivities [) in the gas and the 

ash layers are calculated at the film and particle temperatures respectively. The 

thickness of the ash layer, t, is calculated from a mass balance of the total ash in 

the particle, assuming that none of it is lost. 

[ 

( 3 3) l 0.33 3 xo ro - r 
t= r + -r 

1-0.35 
(7.35) 

where, xo is the initial volume fraction of ash in the particle and 0.35 is the void 

fraction in the ash layer. The mass fraction Yi. is then used in the carbon flux 

calculation. 

7.2.2 Parametric Sensitivity 

Since so many different parameters have to be known in advance as inputs to the 

model, it is important to find out the effect of some of the major parameters on 

crucial combustion variables such as particle temperature and burnout time. 

Figure 7 .2 shows the temperature-time histories for three different initial par-

tide radii. While the bigger particles appear to burn at slightly lower temperatures 

due to increased radiative heat loss, the burnout times scale approximately as the 

square of the size. The radiating area also explains the increase in particle tern-

perature with time. As the particle becomes smaller, the radiation loss decreases. 

The ash volume fraction was arbitrarily assumed to be 1 % for all three cases. Wall 

temperature was kept at 1600K and the apparent densities of all particles were 

assumed to be 0.9 g/cc {900 kg m-3 ). The ambient was air. The initial particle 

temperature was lOOOK. Emissivities of the wall and the particle were taken to be 
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0.8 at all temperatures. The apparent activation energy was 17000 cal/mole {71.4 

kJ/mole) and the pre-exponential factor was 46 g cm-2s-1 {460 kg m-2s- 1) in all 

three cases. 

The influence of the apparent density of the particle is shown in Figure 7 .3 

for combustion of 25µm radius particles. It has no effect on the maximum particle 

temperature, but the burn time increases linearly with density as expected. Figure 

7.4 shows the effect of wall temperature keeping all other parameters the same. 

Not unexpectedly, the particle burns faster and at higher temperatures if the wall 

is hotter. This is due to higher radiant heat transfer to the particle. Particle 

emissivity is not a very influential parameter for the combustion of such small 

particles, as seen in Figure 7 .5. Decreasing the emissivity from 0.8 to 0.6 increased 

the maximum temperature by only 4%, with hardly any change in the burntime. 

The apparent reaction kinetics profoundly influence combustion. For a constant 

apparent activation energy of 17000 cal/mole, calculations for variation in the pre­

exponential factor from 23 to 92 g cm-2s-1 are shown in Figure 7.6. The burn time 

decreases with increasing frequency factor as expected. At high rates, the particle 

burns isothermally over a significant part of its history, with a relatively brief initial 

rise and final burnout phase. At lower rates, however, there is no isothermal region. 

Instead, the temperature begins to fall immediately after the initial heatup period. 

Figure 7. 7 shows the dramatic influence of ash on the combustion. Since the 

final mass of the particle does not go to zero, the ash residue eventually reaches 

a steady-state temperature in radiative and conductive equilibrium with its sur­

roundings. In reality, this steady-state may not be physically attainable since frag-
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mentation of the particle would most likely have occured before this. The density 

of the ash was taken as 2 g/cc and the carbon density was 1.5 g/cc. The fact 

that all three curves have similar heatup characteristics deserves special comment. 

While particles with higher ash contents should have more thermal inertia, this is 

not the case since the value of specific heat of the ash is not very different from 

that of carbon over the temperature range of interest. Figure 7.8 shows the effect 

of ash density. As expected, higher density implies a higher thermal inertia and 

consequently a higher burnout time. In order to emphasize this effect, the initial 

ash volume fraction was assumed to be 20%. 

'T .3 General Case: Monodisperse Internal Voids 

The model described in the previous section does not treat the problem of diffusion 

and reaction inside the particle. Only at very high temperatures or at high oxygen 

concentrations, can reaction be assumed to proceed only at the exterior surface 

of the char particle. Under these special conditions, the particle is pore diffusion 

limited and the penetration of oxygen is limited to a fairly thin outer shell of the 

particle. 

In general, however, internal reaction within the pores of the particle must 

be accounted for. This requires a suitable model for the internal structure of the 

particle. Pore sizes in coal char may vary over four orders of magnitude (Chapter 

5). However, as a first step in modelling this internal structure, a relatively simple 

pore model will be used. As in any continuum model, the porosity will be assumed 

to be homogenous within the particle. However, as combustion proceeds, variations 

in the radial distribution of pores will develop. In this model, the initial porosity 
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is assumed to be due to monodisperse spherical voids present in the particle. The 

radius of the void and the void volume fraction (or porosity) are the two parameters 

that characterize the initial porosity. Let ao be the initial radius of the spherical 

voids and let there be .X voids per unit particle volume. Then, accounting for pore 

overlap (Gavalas, 1985), the initial void fraction in a solid of infinite extent is 

->. .!7ra3 
Einit = 1 - e 3 o (7.36) 

The void fraction of a finite particle will be larger due to edge effects. 

In the present analysis, temperature has been assumed to vary with time but to 

be constant throughout the particle. The maximum difference between the external 

particle temperature and that at its center is estimated to be 25-50K (Field, 1967). 

Thus, the particle can reasonably be taken to be spatially isothermal. 

The presence of ash has been neglected in this model because: ( •) the bitumi-

nous char does not have as much ash as many other coals and chars and thus it is 

not as significant; and ( ia) the main purpose of the modelling effort was to test the 

effect of the internal structure as the particle burns. Without knowing the various 

details of how the ash behaves inside the particle, its inclusion in any model but the 

very simplest (like the one in the previous section) would be meaningless. Moreover, 

it would obscure those parts of the model that do correspond to physical reality. 

At the present moment our knowledge of ash behavior do not justify its inclusion 

in this model. 

Since the reaction can take place inside the particle, the kinetic parameters 

used in the model are the intrinsic Arrhenius parameters derived from single particle 

experiments described in Chapter 4. These are based on the total surface area per 
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unit mass of the particle (e.g. N2-BET area). The reaction kinetics will be assumed 

to be first order with respect to local oxygen concentration. 

The overall scheme of the solution is as follows. The steady state diffusion 

equation is solved within the particle to determine the oxygen concentration as a 

function of radius. Since the problem is linear in oxygen concentration, the diffusion 

equation can be solved with an arbitrary boundary concentration at the exterior 

surface of the particle. Once the concentration profile is determined, it is scaled 

such that the external concentration matches the concentration determined from 

the transport outside the particle. This scaling is possible due to the linearity of 

the reaction rate. 

7.9.1 Equations 

The diffusion equation inside the particle is 

1 8 ( 2 Be) 1 E·/R~ -- r De- ::::: -Aie- • PS(r)c 
r 2 Br Br Pc 

(7.37) 

where c is the oxygen concentration, De is the effective diffusion coefficient, Pc is the 

density of carbon, Ai and Ei are the intrinsic Arrhenius parameters, and S is the 

internal surface area per unit volume. The boundary conditions for this equation 

are 

and 

ac 
r=0:-=0 ar 

• • r=r :c=c 

(7.38a) 

(7.38b) 

The first condition is from spherical symmetry. r• and c• are the external radius and 

oxygen concentration respectively. c• is determined from the gas phase equations 
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and is the matching condition at the boundary. 

Based on the oxygen concentration inside the particle, the local carbon reces-

sion q is determined by 

(7.39) 

This important equation determines the depth of carbon burned at any given radial 

location as a function of time. It is assumed that the void radius grows by the 

amount q with time. Thus, knowing q, the void fraction£ can be determined as 

(7.40) 

Once the void fraction is known, the local surface area, S, is given by 

S(r) = [1 - £(r)] 47r .\(a0 + q(r)) 2 (7.41) 

This surface area is then used in the reaction rate term of the diffusion equation 

(7.37). 

In calculating the external radius of the particle, the effect of surface crumbling 

must be taken into account. Once the void fraction at the surface reaches a critical 

value, the surface becomes too porous to retain its structural integrity. The char 

particle then crumbles, shedding some carbon and decreasing in radius to the point 

where the void fraction is below the critical value. This becomes the fresh surface 

and the cycle repeats. The fragments of carbon burn in the gas phase tranferring 

some or all heat to the particle. H the model is run at fine enough time intervals the 

magnitude of the shedding is small and the radius appears to decrease smoothly. 

The time resolution is based on the penetration of oxygen and depends on the 
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porosity at the exterior surface. Therefore, the radius of the particle is calculated 

as follows: 
for f.e::ct < f.crit : r"' = ro - q( ext) 

• • df./dt I 
f.e::ct ~ f.crit : r = r old - d /d At 

f. r e::ct 
for 

(7.42) 

where the subscript ext refers to the external surface of the particle and Ecrit denotes 

the critical value of the void fraction at which crumbling starts. f.crit was assumed 

to be 0.8 in the model. 

The effective diffusivity in equation (7.37) was calculated from the void fraction 

using 

1 
De(r) = -DE(r) 

1' 
(7.43) 

where, T is a tortuosity factor, commonly taken as 2, and D is the bulk diffusion 

coefficient at the particle temperature. 

Clearly, the above equations are strongly coupled with each other and with 

the external gas phase equations. The particle energy equation and all the gas 

phase transport equations derived in the previous section can be applied to this 

formulation. The particle was radially discretized into fifty shells of equal radial 

thickness. Conditions were assumed to be uniform inside each shell. As the radius 

decreased with time, the number of remaining shells correspondingly decreased. The 

position of the external surface was calculated as a function of time by interpolating 

between shells. Hence, the resolution in calculating the radius was not limited by 

the number of shells chosen. 

The overall carbon flux for the particle was the sum of all ihe fluxes at the 

various radii. This flux, in conjunction with the gas phase, determined the new 

external oxygen concentration. This was used to recalculate new internal profiles of 
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the various quantities. This iterative process was continued until convergence was 

achieved at each time step. Then the overall energy balance was used to calculate 

the new particle temperature and a new particle radius was also calculated. This 

was repeated over as many time steps as needed to achieve preset final conversion 

values. 

7.9.~ Parametric Sensitivity 

Figure 7.9 shows the size of the particle as a function of time. A typical particle, 

having an initial radius of 25µm and an initial void fraction of 0.1 consisting of 

O.lµm diameter voids, was used. The density of the solid carbon was assumed to 

be 2.0g/cc. The initial particle and wall temperatures were both 1500K and the 

critical void fraction was 0.8. The wall and the particle emissivities were 0.9 and 0.8 

respectively. The figure shows three distinct regions. At first, the external radius 

of the particle decreases very slowly because the surface void fraction is below the 

critical void fraction and the radius can only change by reaction. When the surface 

void fraction does reach the critical value, crumbling starts and the radius reduces 

as a faster rate. As the particle burns, however, oxygen penetrates further and 

more of the outer shell reaches the critical value and is shed. This causes the 

radius to decrease faster. Finally, when the particle becomes quite small, there 

is complete oxygen penetration and it burns in the kinetic limited regime. The 

shedding thickness becomes smaller and the radius decrease is arrested. Eventually, 

the entire particle reaches the critical void fraction and disintegrates. This happens 

when the radius is around 3µm. Therefore the final radius is not zero. Figure 

7.10 shows the variation of conversion versus time. The particle temperature is 
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shown in Figure 7.11. The heat up period, the almost isothermal phase, the rapid 

decrease and finally the kinetic regime are all shown. In the kinetic regime the 

particle is in thermal equilibrium with its environment. In fact the kinetic regime is 

seen because of the preceeding temperature drop. Figure 7 .12 shows the variation 

of the surface oxygen partial pressure. The initial surface partial pressure, 0.145, 

is lower than that in the free stream, 0.21, because of the diffusional resistance in 

the particle boundary layer. During the heat up period, the reaction rate increases 

and the oxygen concentration drops. For most of the burning period, the oxygen 

concentration at the surface is quite low, indicating near diffusion limited conditions. 

Finally, as the particle size decreases, the external concentration rises, approaching 

the ambient partial pressure. The flux of carbon from the particle is shown in 

Figure 7.13. The fluctuations are due to the numerical method employed and the 

choice of each time step interval. The temporal resolution in various runs was 

0.1 milliseconds. Figure 7.14 shows the surface and total void fractions of the 

particle as a function of time. Since the critical void fraction is chosen as 0.8, 

the surface void fraction increases to 0.8 and then remains constant throughout 

most of the combustion. The drop at the start of the kinetic regime is due to 

computational inaccuracies. The total void fraction starts from the value of the 

initial void fraction (0.1). At first it rises because the radius is not changing and 

there is some reaction. As soon as shedding begins, it starts decreasing because the 

particle loses its most porous external shell. However, the thickness of the outer 

layer that crumbles decreases with time, and the particle void fraction decreases to a 

relative minimum. Eventually, the particle size becomes small enough that oxygen 
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penetrates throughout the particle. The accelerating reaction then increases the 

particle void fraction monotonically till the critical void fraction is reached when 

the entire particle crumbles. 

The effect of particle radius on the combustion temperature plot is shown in 

Figure 7.15. The burn times again scale approximately as the square of the size 

because of the aforementioned shrinking core type of behavior. The peak tempera­

ture is almost the same for the two particle sizes examined. The initial void fraction 

and void radius, were, in both cases, 0.1 and 0.05µm, respectively. The wall and 

initial particle temperatures were both 1500K. The intrinsic pre-exponential factor 

was 105 kg m-2s-1 and the intrinsic activation energy was 179740 J/mole (43000 

cal/mole). Figure 7.16 shows that the carbon density affects only the burn time and 

not the peak temperature. The lower density particle also heats more rapidly due to 

its low thermal inertia. The influence of carbon emissivity is shown in Figure 7.17. 

Again, the change in the temperature is small and the higher the emissivity, the 

lower the final particle temperature. In both cases the wall emissivity was assumed 

to be 0.9. In Figure 7 .18, the influence of the pre-exponential factor is demon­

strated. The nature of the variation is as expected. The initial rate of rise is not 

commensurate with the rise in reaction rate, but the duration of time the particle 

spends in the final kinetic regime is dramatically increased with decreasing reaction 

rate. The curves in Figure 7 .19 show the effect of initial void size. The initial void 

fraction in all cases was 0.1, so the number concentration of voids decreased with 

increasing void size. The specific surface area increases as the void size decreases, 

so the net reaction rate also increases. Since the radiative heat loss is the same in 
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all cases, the particles with the smaller voids tend to reach higher temperatures and 

consequently burn out faster. The influence of the initial void fraction is shown in 

Figure 7 .20. The initial void size in all cases was 0.05µm in radius. The smaller 

the void fraction, the larger the particle mass and therefore the longer the burn 

time. The particle temperature does not vary significantly with void fraction. In all 

the cases discussed above, the energy released by the core particle and the burning 

fragments was completely fed back to the particle. However, not all the energy of 

combustion is necessarily available for the remaining particle. Burning fragments 

expelled from the particle may burn far from the particle. To simulate such a situ­

ation, various fractions of energy released by the exterior crumbling shell were fed 

back to the particle and the effect on its combustion behavior noted. Figure 7.21 

shows two cases involving no (0%) and 50% feedback. The particle burns at almost 

lOOK high in the second case. The final comparision (Figure 7.22) involves various 

wall temperatures. The heat up period is longer when the wall is cool, but the 

latter part of the combustion is similar in both cases. 

Figures 7 .23-7 .29 show the oxygen concentration profiles inside the particle as a 

function of time for different values of reaction rate, initial void size and initial void 

fraction. Figure 7.23 shows the case with a pre-exponential factor of 105 kg m-2s-1, 

initial void radius of 0.05 µm, and initial void fraction of 0.1. The first profile is 

labelled 0 ms. It shows that after the first time step, the radius of the particle is still 

25 µm and the external oxygen partial pressure is 0.12. There is no penetration 

below 10 µm radius, implying that the oxygen is confined to an outer layer 15 

µm thick. The profiles are drawn every 2 ms and labelled every 10 ms for clarity. 
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Twenty milliseconds after the start of combustion, the profile shows that the particle 

radius is around 18 µm and the penetration depth is only 3 µm. The surface partial 

pressure is 0.025. As combustion continues, the external concentration rises, and 

the radius decreases. The penetration depth remains around 3 µm. At about 42 ms 

after the start of combustion, the concentration at the center of the particle becomes 

non-zero for the first time and the particle is in the kinetic regime. Although 

there is some drop in concentration inside the particle, the penetration of oxygen 

is not limited to a layer on the outside. Figures 7.24 and 7.25 show similar profiles 

for a lower and a higher pre-exponential factor, respectively. When the reaction 

rate is lower, there is better penetration of oxygen into the particle and also the 

concentration at the exterior is higher. The opposite is true for the high reaction 

rate (Figure 7.25). The influence of the initial void fraction on the profiles are shown 

in Figures 7.26, 7.23 and 7.27 which have initial void fractions of 0.05, 0.1 and 0.15 

respectively. All three cases have the same initial void size and reaction rate. The 

higher the void fraction, the greater the void surface area (this is only true for small 

void fractions; at much larger void fractions, void coalescence actually reduces the 

area) and effectively, higher the reaction rate. Hence, there is better penetration of 

oxygen at lower void fractions. The influence of initial void size are shown in Figures 

7.28, 7.23 and 7.29 respectively. All three cases have the same initial void fraction 

(0.1) and reaction rate. Clearly, for a given void fraction there are more numbers 

of smaller voids leading to larger surface areas and therefore higher reaction rates. 

Therefore there is very little penetration and the surface concentrations are the 

least for the smallest void sizes {Figure 7.28). 
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7 .4 General Case: Polydisperse Internal Voids 

In general coal chars have a distribution of void sizes. We now extend the spherical 

void model to a more realistic representation of the internal structure. Three differ-

ent void sizes, corresponding to micro, transition, and macro pores were used. The 

sizes of the voids and the void fraction for each size were determined from mercury 

porosimetry. (see Chapters 5 for examples). The surface area and diffusion calcula-

tions were modified to account for the presence of the different size voids. All other 

equations are essentially unchanged from the ones given in the previous sections. 

Input data for the internal pore morphology assumed in this model were the 

average radii of pores in the micro, transition, and macro ranges, assumed to be 

O.OOlµm, O.Olµm, and O.lµm, respectively. The void fractions in the three pore 

types were also specified. At first, the void number density, Ai, was determined. 

This is the number of voids of a particular type per unit particle volume. The 

number densities were then held constant while the pore radii were allowed to grow 

by reaction. Let li,D be the initial void fractions of the macro (i=l), transition 

(i=2), and micro (i=3) pores. If ai,o are the initial radii, then let 

_4 3 
Wi 0 = -11".~ia; 0 ' 3 ., i=l,2,3 

Assuming overlap of micro pores with the other two types we have 

· ls,o = 1 - e-wa,o 

(7.43) 

(7.44) 

Also, assuming overlap of transition pores with macro pores but not with micro 

pores we have 

£
2

,0 = f-W3,o _ f-W2,o-Wa,o (7.45) 
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Finally assuming no overlap of the macro pores with the other two types we get 

(7.46) 

Equations (7.44), (7.45), and (7.46) successively determine .>.3 , A2 and .>. 1 respec-

tively. Once the void number concentrations are known, the void fractions at any 

time can be determined by knowing the surface recession, q. Let 

i = 1, 2,3 (7.47) 

Then the void fractions are given by 

E3 = 1- e-W3 

(7.48) 

The total void fraction, E, is given by 

(7.49) 

The surface area, S ( q), is given by 

3 

S(q) = (1 - E)47r L Ai(ai,o + q) 2 (7.50) 
i=l 

The result of varying the different void fractions in the various sizes is shown in 

Figure 7.30. The total initial void fraction is kept constant in all cases. Figure 7.31 

shows the specific surface area of the particle as a function of carbon conversion. 

The shape of the curves is very similar to those obtained experimentally, including 

the maximum observed at some intermediate conversion. This is an indicator of the 
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capability of such a model to describe accurately the combustion behavior of single 

particles. 

7 .5 General Case: Polydisperse Voids and Nonlinear Kinetics 

The condition of first order Arrhenius kinetics was relaxed to test the effects of 

various non-linear reaction rate expressions on the combustion history. The presence 

of ash was neglected in these formulations. 

The introduction of non-linearity m!l-kes the problem more difficult to solve 

num~rically. Various shooting and adaptive-grid techniques were used to make 

the numerical aspects tractable, accurate, and efficient since scaling was no longer 

possible. Computation times increased by about one order of magnitude. 

The first non-linear expression used was of the Langmuir-Hinschelwood type. 

The intrinsic reaction rate was assumed to be of the form 

R=A·e-E;/RTp c 
' 1 +Cc 

(7.51) 

wher.e c is the oxygen concentration and C is a constant. The effect of varying C 

is shown in Figure 7 .32. The results are also compared to the temperature-time 

history obtained from linear kinetics in Figure 7.33. 

Figure 7 .34 shows the internal oxygen concentration profiles when the intrinsic 

reaction rate is of the form 

(7.52) 

where m is between 0 and 1. H m is smaller than 0.8, the problem becomes numer-

ically stiff and difficult to solve. However, in those cases it is seen from the figure 

that the penetration of oxygen is confined to a very thin shell on the outside of the 



-196-

particle. In such situations, the asymptotic formulation given in Section 7 .2 can be 

used without much error. 
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Carbon 

Figure 7.1 Schematic diagram of a single char particle with ash. 
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Abstract 

A phenomenological model of structural transformations during pulverized coal char 

combustion is presented. The random geometry of the voids is modelled realistically 

by means of a random assemblage of spheres in a spherical particle. Pore connect­

edness and growth are accounted for as the combustion proceeds. The percolation 

behaviour of the void space is dramatically demonstrated. The effects of different 

initial voidfractions and of the random nature of the structure itself, at a given 

initial voidfraction are shown. This sheds some light on our ability to realistically 

model the solid. The limitation of shrinking core models of combustion of ceno­

spheric chars are demonstrated. In this initial appJication, the model is limited to 

isothermal combustion with no diffusional limitations. 
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8.1 Introduction 

Recent theoretical research in coal combustion and gasification has emphasized the 

role Of intraparticle reaction, diffusion, and pore morphology evolution. Two ap­

proaches have been taken. In the first approach [1-8], the carbonaceous matter is 

treated as a continuum and the material and energy balances governing the com­

bustion process are formulated as differential equations. These equations contain 

coefficients, such as specific surface area and internal diffusivity, which are gener­

ally functions of carbon conversion and vary with time and intraparticle position. 

The relations between surface area, diffusivity and conversion were either based on 

the random pore model [I,5,6], treated as directly measurable properties [2-4], or 

derived using results from percolation theory [7,8]. Regardless of the particular 

form or origin of these functional relationships, the use of local average properties 

presumes that the largest length scale characteristic of the porous structure is much 

smaller than the characteristic length associated with concentration gradients. It 

is not necessary, for our present purposes, to define these length scales more pre­

cisely except to note that the characteristic length of the porous structure could 

be considerably larger than the pore diameter itself. It is easy to verify that the 

relation between the length scales necessary to justify the continuum description 

is not satisfied under conditions of pulverized combustion where the oxygen pen­

etration depth of a few microns is on the same order of magnitude as the largest 

length scale characteristic of the porous structure. Chars of softening coals often 

possess a sponge-like structure containing large voids, several micrometers in diam­

eter, as well as smaller pores all the way down to one nanometer. For such chars 
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the continuum description is particularly unsuitable. 

In the second approach that has been used to describe intraparticle processes 

in combustion, the porous structure is represented by a lattice where, for example, 

the presence or absence of a bond signifies the solid and the void phases respectively. 

This approach, sometimes known as 'discrete simulation', has been used by several 

authors particularly as a means of exploring the role of connectivity and the onset 

of fragmentation. Sandmann and Zygourakis [9] have developed a detailed discrete 

simulation approach to describe char gasification. The char particle is represented 

by a two-dimensional lattice whereon voids of different sizes are constructed ac­

cording to some geometric rule to simulate mercury porosimetry data. To simulate 

pure kinetic control, they assumed that all voids are accessible and grow at the 

same rate in discrete increments. In another limiting case examined, only those 

voids accessible to the external particle surface were allowed to grow, all at the 

same rate. This diffusion-reaction regime would be applicable to a material having 

a macropore-micropore structure where the Thiele modulus for the micropores is 

very high but that for the macropores is low. 

Sahimi and Tsotsis [10] have represented the porous structure on a three­

dimensional lattice, using a percolation cluster to represent a char particle. Only 

those solid sites accessible to the particle surface were allowed to react, at an uni­

form rate. Their simulations provide detailed information about fragmentation as 

well as the rate of conversion history of a burning particle. 

Kerstein and Edwards [11] followed a similar modelling approach but used a 

two-dimensional lattice. The discrete simulation studies [9-11] do not consider the 
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effect of intraparticle diffusion. Sahimi and Tsotsis [12] have extended their model to 

include the effect of diffusion, simulated by random walks of the oxidizer molecules 

towards the particle. 

The near percolation structure used to represent the char particle in papers [10-

12] is not suitable for representing a material with macropore-micropore morphology 

or one having a more complex pore structure. Nevertheless, this limitation can 

be overcome by adopting the approach of Sandmann and Zygourakis [9]. Thus 

representation of the pore structure on a three-dimensional lattice in conjunction 

with random walks to describe diffusion provides, in principle, a very general and 

flexible approach to modelling char gasification and combustion. 

The use of the lattice is computationally attractive because it allows use of 

efficient searching and sorting routines. Many results from graph theory and per­

colation theory developed for lattices are also applicable. However, quantitative 

applications and predictions would have to employ three-dimensional and relatively 

fine grids involving large-scale computations. 

In this paper we present an alternative non-lattice representation of the porous 

structure which is computationally simpler although not quite as general as the 

lattice representation. 

8.2 Pore Structure Model 

As a model of a cenospheric char particle, consider a spherical char particle with 

spherical voids randomly distributed throughout its volume. The voids may overlap 

and, therefore, be connected to one another, or they may be isolated. Thus, connec­

tivity to other voids and the external particle surface are built into the geometry. 
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Two voids overlap when their center separation is less than the sum of their radii. 

Similarly, a void is connected to the outside when the distance between its center 

and the instantaneous external surface is less than its radius. Figure 8.1 illustrates 

the initial geometry, and that corresponding to a later time when considerable re­

action has already occurred. Voids that are connected together form clusters. A 

cluster is connected to the outside if any one of its constituent voids is connected 

to the outside. A cluster may be multiply-connected to the outside via more than 

one void. 

The size of the initial particle, the initial number, volume, and size distribution 

of the voids and the initial random distribution of the void centers are parameters in 

this geometry. We have chosen a particle size of 50µm in diameter. For simplicity 

the initial void sizes are taken to be monodisperse and 5µm in diameter. This 

assumption is easily relaxed to introduce a variety of void sizes, but the essential 

results of the model are captured by assuming an initially monodisperse set of voids. 

Initial voidfractions are then varied by changing the number of void centers in the 

particle. 

The particle combustion is modelled as follows. Analogous to Gavalas [1] we 

postulate a surface recession velocity, q, such that every surface that is connected 

to the outside, either directly or indirectly (being part of a cluster that is connected 

to the outside) recedes by the amount 6 = q!l.t in time, At. The effects of tem­

perature and reaction rates are lumped into the parameter q. In the simplest case 

we have assumed that q is constant with time and with radius. Physically this 

corresponds to an isothermal, homogeneous particle burning with no diffusional re-
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sistances. The motivation for this study was to determine the structural dynamics 

of a burning cenospheric char particle. Hence, as a first approximation we mini­

mized the complications introduced by diffusion, composition inhomogeneities, and 

the energy balance. However, diffusion can be taken into account by varying q with 

radius. 

It is clear that, if we take discrete steps of magnitude 6, the smaller we take o 

the better the temporal resolution of the simulation. That is, when o is small the 

surface area of an accessible cluster will change smoothly without abrupt jumps. 

However making o too small increases the simulation time considerably. We have 

taken q to be 0.05 µm/time step and the simulations have been carried out till o /Ro 

was 0.25. Since the particle was burning internally, this was sufficient to reach void 

fractions as high as 0.95. 

The main variable that is measured at each step is void fraction. By randomly 

distributing a large number (typically 3000 or more ) of probe points in the particle 

and counting that fraction which lies in the voids we can measure the void fraction 

and conversion very accurately. As the exterior of the particle also recedes at the 

rate q, the particle radius is defined accurately at all times. We also record some 

other geometrical parameters defined in the next section that shed light on the 

dynamics. 

The simulation is terminated after a given number of time steps. The values 

of conversion at the end of the runs were in the range 0.8-1.0 .. For some of the 

runs clearly fragmentation must have occurred. This paper will not address the 

challenging questions posed by fragmentation. 
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It is clear that the results will depend on the quality of the random number 

generator used. We have used a generator in the IMSL library after rigorously 

testing its output for independence of sequence entries and repartisation. To avoid 

the possibility of creating N-tuples for some starting seed numbers the random 

numbers were re-randomised by randomly mixing two strings [13]. 

8.3 Model Parameters 

The voidfraction is defined as the volume fr.action of voids in a particle. It is denoted 

by £. This parameter is directly obtained from the simulation by counting the 

number of probe points. The carbon conversion is calculated knowing the initial 

and final void fractions and radii of the particle. · This assumes that there is no 

mineral matter or ash in the particle. The final radius of the particle is the external 

radius of the particle at the termination time step. The conversion in percent is 

given by 

_ [ RJ(l - fJ )] 
c - 100 1- 3( ) R0 1- £0 

(8.1) 

where Rj and Rg are the final and initial radii of the particle and £/ and £o are 

the final and initial voidfractions. The density of the solid phase is assumed to stay 

constant throughout the process. Another interesting parameter is the conversion 

rate. This is the instantaneous slope of the conversion versus time curve, i.e., the 

rate of mass loss. The relation between number of steps in the simulation and real 

time for an isothermally burning particle is 

"MqN t = i,--
Rp 

(8.2) 

where t is time, M is the molecular weight of carbon, N is the number of steps, 
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q is the surface recession velocity (µm/step), p is the particle density, R is the 

reaction rate in moles-sec/cm2 (assumed invariant with temperature) and N is an 

unit conversion constant. 

For a particle whose temperature is uniform but varies with time, the relation 

is given by the following integral 

{T Mq dN 
t = N )

0 
R(r)p dr dr (8.3) 

where T is the particle temperature and rlJ:. is derived from an energy balance. 

A preliminary effort has been made to model the effects of diffusion by varying 

the parameter q with radius. An exponential function was chosen such that the value 

of q was 0.05µ/step at the instantaneous surface of the particle and 0.005µ/step at 

the particle center. However, results pertaining to diffusion will not be given in this 

paper. 

Apart from the above, another important variable is the size of the largest 

void cluster. Due to overlap and given the fact that the clusters do not grow in 

geometrically regular shapes we denote size by the number of void centers in a 

given cluster. As will be seen later this parameter shows interesting percolation 

properties. One other important variable is the radial distribution of voidfraction 

as a function of conversion. This clearly shows the depth of the combustion zone on 

the particle surface. H this depth is small, modelling of the process by a 'shrinking 

core' model can be justified. Hence, our model helps to identify those types of solid 

structures that can be modelled with traditional and simple models. 
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8.4 Results 

Table 8.1 shows the run numbers, number of initial voids and initial void fractions 

of the various runs. There are five groups of runs with around 50 (group E), 70 

(group C), 100 (group B), 165 (group A) and 215 (group D) voids in the particle 

initially for each run. Due to the random nature of specifying the voids it was not 

possible to have exactly the same number of voids in the particle for each run in 

a given group. Moreover, void overlap leads to additional variation in the initial 

void fraction. However we believe that the variances in the initial number of voids 

within a group do not significantly affect our conclusions. We shall study in detail 

those runs where in fact there are exactly the same number of initial voids (e.g. 

runs Dl,D2,D13,D14,Dl7,Dl8- all having 216 voids initially). The other runs are 

given for the sake of completeness. 

Table 8.2 compares the initial voidfractions obtained from the simulation and 

those calculated using the method given in Gavalas [ 1]. The void fractions calculated 

from theory are higher because the theory assumes an infinitely large particle and 

thus tends to overestimate the effects of voids whose centers are near or just outside 

the outer surface of the particle. 

Figure 8.2 is a plot of the void fraction versus number of steps for run D14. 

Plots for the other runs are similar. At first the rate of increase of the void fraction 

from the initial voidfraction, accelerates with conversion. The rate then levels off 

and decreases slowly till the termination of the simulation. Initially, only those few 

voids that are connected to the outside can grow. As time progresses, the number of 

voids connected to the outside increases due to the capture of inaccessible voids by 
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the growing externally-connected clusters. Some other voids also become externally 

connected as the particle radius decreases. Eventually, most of the voids become 

externally connected and, therefore, can grow. The void fraction then grows rapidly. 

Finally, void collapse becomes dominant and the rate of growth of void fraction 

decreases. Void collapse occurs when the surface of a given void no longer exists, 

having been merged with other neighboring voids. 

Figures 8.3 and 8.4 show conversion and conversion rate plotted against time, 

respectively. There is a slight maximum in Figure 8.4. The location and height of 

this maximum varies from run to run and, in some cases there is only a monotonic 

decrease as in Figure 8.5. This is consistent with previous experimental and theo­

retical observations of the variation of the reaction rate with time (or conversion). 

Since there are no composition heterogenities in the model solid, this variation is 

due to pore growth and collapse. The fact that different realizations show different 

behaviour underscores the importance of the random nature of the pore structure 

and its effects on the combustion. 

Figure 8.6 shows the ratio of the number of voids in the largest cluster (XLAR) 

to the total number of voids (RTOT) as a function of the void fraction. The 

percolation of the void cluster through the particle occurs at various void fractions 

and finally all voids belong to one large cluster by 60% void fraction. This ratio 

of the number of voids in the largest cluster to the total number of voids can be 

thought of as a percolation probability. However, although all runs showed similar 

behaviour, there are important differences. The discrete jumps in the curve are 

capture events when growing clusters merge, creating larger clusters. Thus, in this 
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example at 40% void fraction nearly 70% of the voids already belong to the largest 

cluster. However, in Figure 8.7 (run D13) at 40% void fraction nearly 90% of the 

voids belong to the largest cluster. The only difference between runs D13 and D14 

is that they are different members (realizations) of the same ensemble. There are 

similar examples in the other groups of runs where major differences are observed 

simply by changing only the random ordering of the voids in the particle. 

The strong influence of the initial random nature of the solid and the impor­

tance of connectivity and growth of the solid in the combustion process cannot be 

overemphasized. Given this variability between 'similar' particles we have to be 

careful in defining and using 'average' values. In Figures 8.6 and 8.7 we see that 

the major transition takes place at a given void fraction. Figures 8.8 and 8.9 plot 

the void fraction when the percolation probability is 80% and 50% respectively as 

a function of the total number of voids in each run. Although there is variability 

the average values point to a definite trend. The variability also does not exceed 

the lu limits which are plotted in the figures. From those figures it seems that the 

asymptotic (when the number of voids -+ oo) void fractions when the percolation 

probability is 80% and 50% are 0.4 and 0.32 respectively. 

The solid fraction is shown in Figure 8.10 as a function of the radius of the 

particle from run D14 at two different instants as it is burning. The curve A is at 

the start of the run and shows that except for deep inside the particle there are voids 

scattered throughout the particle such that the solid fraction at any radius is around 

75% - 95%. The curve is jagged because the particle was divided into 50 spherical 

shells in order to calculate the radial solid fraction and reflects numerical noise. 
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Curve B corresponds to 70% conversion when combustion has penetrated quite 

deep into the particle leaving deep pits in the external surface. These pits account 

for the greatly reduced solid fraction at larger radii. A pictorial representation of 

this particle is shown in Figure 8.1. In this instance the assumption of a shrinking 

core model would not be valid. That was the general observation in most of the 

runs. 

8.5 Discussion and Conclusions 

Some additional comments are necessary regarding the percolation behaviour 

demonstrated by the void space with change in conversion. It should be quite 

evident that the process described here does not correspond to a simple percolation 

process in which the changes occur homogeneously through the domain under con­

sideration. Here, only those voids connected to the outside grow and therefore this 

connectivity driven growth alters the phenomena and does not permit direct com­

parision with results from percolation theory (like critical voidfractions and critical 

exponents). Sahimi and Tsotsis have discussed this issue in considerable detail for 

their lattice representation. 

The assumption of an initially monodisperse set of voids is oversimplified. It 

is clear that the model can readily be applied to other pore size distributions since, 

from the second step of the simulation onwards, the voids become poly disperse 

due to the extenal connectivity-growth constraint. Far more important is the role 

of multiple scales of voids that are present in an actual particle. A real particle 

typically has voids whose length scales differ by as much as four orders of magnitude. 

The number of the smallest voids is also very large. While, in principle, our model 
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can be extended to simulate such a case the computational cost and time make 

such an approach impractical. Renormalisation to account for the various length 

scales is a more elegant approach but it is still an open problem particularly for 

the non-lattice random geometry described here. The connectivity problem further 

complicates the issue. 

Our calculations did not include diffusion and as such they are restricted to 

the following to physical situations. The first is a solid with a narrow pore size 

distribution burning in the kinetics controlled regime. The second is a bimodal 

macropore-micropore solid with large Thiele modulus for the micropores and small 

Thiele modulus for the macropores. In this case, the micropores need not be de­

scribed explicitly, although their effect is manifested via an apparent rate expressed 

per unit macropore surface area. Chars of softening coals contain macropores, as 

large as 5µm in diameter, and micropores. However they sometimes contain tran­

sitional pores as well. Under conditions of pulverized combustion the micropore 

Thiele modulus is large but the macropore Thiele modulus is not always small. To 

describe this situation more realistically, diffusion has to be incorporated in any 

such discrete model. 
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~ GROUP 

A 

B 

c 

D 

E 

t 2 3 4 5 6 7 tt 12 t3 14 ts 16 

( 169) (162) ( t58) ( t69) (171) ( t67) ( t63) 

O.tl87 o.ttos O.tt73 O.tt20 o.t211 O.tt58 O.t270 

( t04) (to6) (t04) (t05) (to7) (107) (t04) (106) 

0.0814 0.0814 0.0845 0.0852 0.0861 0.0734 0.0826 0.0907 

(67) (72) (71) (69) (73) (75) (66) 

0.0519 0.0588 0.0607 0.0594 0.0569 0.0575 0.0569 

(216) (216) (215) (214) (214) (2t5) ( 215) (2t6) (216) (2t4) 

0.1434 0.1609 0.t539 0.1516 0.1586 0.1466 0.1358 0.1479 0.1394 O.t4t3 

(5t) (54) (54) (55) (52) (52) 

0.0434 0.0362 0.0328 0.0469 0.0359 0.0348 

Table 8.1 Initial conditions for various runs. The number in brackets is the initial number 

of voids in the particle and the other number shows the initial void fraction. 
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RUN 
INITIAL INITIAL 

VOi OFRACTION VOIOFRACTION 
NUMBER 

(SIMULATION) (THEORETICAL) 

01 0.1434 0.1943 

02 0.1609 0.1943 

03 0.1539 0.1935 

06 0.1516 0.1927 

07 0.1586 0.1927 

011 0.1466 0.1935 

012 0.1358 0.1935 
013 0.1479 0.1943 

014 0.1394 0.1943 

016 0.1413 0.1927 

017 0.1678 0.1943 

018 0.1627 0.1943 

Table 8.2 Comparision of the initial void fractions as calculated from theory and from 

the simulation for Group D runs. 

I 
t.,:) 
~ 
00 

I 



INITIAL 
CURVE A 

INITIAL 

PARTICLE SIZE":>- - - "' 

PARTICLE / \ 
SURFACE 

( ) 
\ ', / / 
""'"---~/ / 

"---- ____.., 

70°/o CONVERSION 
CURVE B 

Figure 8.1 Geometry of the simulation showing the voids and clusters in the particle ini­
tially (A) and after significant conversion (B). The hatched area is solid carbon. 
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Figure 8.8 Void fraction versus number of initial voids for 

percolation probability = 80%. 
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Chapter 9 

CONCLUSIONS 
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Factors that govern the low and high temperature reactivities of coal chars 

were examined. The size of the parent coal particles had a significant influence. 

The cenospheric char produced from the smaller coal particles was 10-15% more 

reactive than char of equal size produced from larger coal particles. This is partly 

due to maceral segregation in the coal particle as a function of their size. Chars 

were formed by pyrolyzing the coals in nitrogen at temperatures ranging from lOOOK 

to 1600K. Increasing the pyrolysis temperature reduced the H:C ratio in the char 

by a factor of almost 2.5 and the heat of combustion by 10-15%. The apparent 

oxidation rate (at BOOK) decreased by as much as 50% as the pyrolysis temperature 

was increased. The pore size distribution in the chars changed from being bimodal 

at a pyrolysis temperature of lOOOK, to trimodal at 1600K. Transitional porosity 

was evident at the higher pyrolysis temperatures. The impact of carbon conversion 

on char reactivity was investigated. The N2-BET surface areas of the bituminous 

chars increased from 10-50 m 2 /g in the first few percent of conversion to 300-500 

m 2 /g at the highest measured conversions, but the intrinsic oxidation rate defined 

in terms of the N2-BET area was found to be almost constant after the initial 5% of 

conversion for all of the chars examined. The intrinsic rate was same for chars from 

different coals pyrolyzed at lOOOK but showed significant variations as the pyrolysis 

temperature was increased. Care was taken to account for diffusion effects in the 

interpretation of the reactivity results. It was shown that at SOOK, diffusion is not 
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important. 

Single particle experiments were performed in a drop-tube reactor at wall tem­

peratures ranging from 1050K to 1450K. Complete temperature-time histories were 

measured for individual particles. These traces show considerable variability due to 

the different size, shape, pore structure and mineral content of individual particles. 

Even though narrow size fractions of char were used, it was not possible to eliminate 

such variability. A novel technique was, therefore, used to analyze the traces by 

treating size and pre-exponential factor of each particle as a random variable. This 

technique was used in conjunction with an asymptotic combustion model to deter­

mine the apparent Arrhenius kinetic parameters. l,Jsing the estimated parameters 

provided good agreement between calculated and experimental temperature-time 

traces. 

Chars were also partially oxidized to various conversions at high temperatures. 

Physical characterization of these partially oxidized samples showed that while there 

is some decrease in the particle size, that reduction is insufficient to account for the 

total carbon conversion. Thus, there is internal combustion as well. Capillary con­

densation and mercury porosimetry indicate that while pores greater than 200A in 

radius grow during combustion, those smaller than this size remain unaffected. The 

surface area, which is mostly present in the micropores, is almost constant. The 

micropores may be inaccessible due to pore mouth closure induced by a thermal 

annealing mechanism. The above results from high temperature conversion are in 

marked contrast to those obtained from characterization of samples converted at 

lower temperatures (,...,, 500°C). The latter indicate that there is complete penetra-
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tion of oxygen into the particle at the lower temperatures. Surface areas increase 

significantly with early conversion as the smallest pores become accessible. 

The ignition behaviour of chars was observed from the temperature-time traces 

of single particles. Comparing the temperature traces with the intensity traces, it 

was concluded that under mild oxidation conditions (wall temperatures below 1300K 

and oxygen partial pressures at/or below 0.21}, the char particles undergo localized 

ignition at reactive sites leading to the development of hot-spots. These hot spots 

then grow, taking a finite time to engulf the whole particle. A model was proposed 

to explain this behaviour. Delay times predicted by the model agree closely with 

experimentally observed delay times. 

Continuum and discrete models of single particle combustion were developed. 

While the continuum models assume that the reaction-diffusion problem inside the 

particle can be formulated in terms of differential equations which are then solved 

subject to appropriate boundary and initial conditions, the discrete models take 

into account the non-homogenous and non-symmetric nature of the actual parti­

cles. Results of parametric variations of the continuum models indicate the relative 

importance of different parameters like particle size, density, reaction rate, emissiv­

ity, and ash content on the burn time of each particle. Burn times predicted by the 

various models are similar to those observed experimentally. By proper adjustment 

of the key parameters, good agreement was obtained between the experimental and 

theoretical temperature-time traces. The discrete models show the importance of 

void connectivity inside the particle. While the discrete models did not consider in­

traparticle diffusion, they pointed out the existence of percolation in the void space 
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with increase in carbon conversion. 

The total surface area and pore volume distribution obtained from gas adsorp­

tion experiments are widely used to characterize porous materials. A critical anal­

ysis of the various experimental methods used and the results obtained therefrom, 

was performed. Algorithms commonly used to invert pressure-volume raw data into 

pore volume distributions with respect to pore radius were critically examined. The 

suitability of different gas-solid pairs was also analyzed. Special methods used to 

probe microporous solids were also studied. 
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Appendix I 

PROPERTIES OF PSOC 1451 COAL 
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SAMPLE msTORY 
Penn State Number PSOC 1451 
Collected By Pennsylvania State University 
Collection Date May 1, 1985 

Reported Rank High Volatile A Bituminous (HVAB) 

Sample Type Channel Whole Seam 
Seam Name Pittsburgh 
Alternate Seam Name #8 
Total Seam Thichness 6 ft. 5 in. 
Thickness of Seam Sampled 6 ft. 5 in. 

SAMPLE LOCATION 
Country USA 
State Pennsylvania 
County Washington 
Township North Strabane 
Nearest Town Linden 

Coal Province Eastern 
Coal Region Appalachian 
Coal Field Main Bituminous 

Map Reference 
Latitude SOD SM 20S 
Longitude 40D 14M OOS 
Quadrangle Washington East (7.5 ft.) 

GEOLOCICAL AND l\.flNE INFORMATION 
System (Age) Pennsylvanian 
Group Monongahela 
Overburden Lithology Shale 
Overburden Thickness 230 ft. 
Floor Lithology Shale 

Mine name Mathies 
Mining Method Underground 
Mine Production 700,000 tons/year 
Mine Life Expectancy 15 years 
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CHEMICAL DATA 
As Rec'd Dry DAF DMMF(Parr) 

Proximate Analysis 
% Moisture 2.54 
%Ash 13.32 13.67 
% Volatile Matter 33.56 34.43 39.88 38.81 
% Fixed Carbon 50.58 51.90 60.12 61.19 

Ultimate Analysis 
%Ash 13.32 13.67 
% Carbon 70.05 71.88 83.26 85.08 
% Hydrogen 4.55* 4.67 5.41 5.53 
% Nitrogen 1.33 1.36 1.58 1.61 
% Sulfur 1.33 1.36 1.58 
% Chlorine 0.07 0.08 0.09 0.09 
% Oxygen(diff.) 6.81* 6.99 8.10 7.71 

• Excludes Moisture 

Elemental Analysis 
% Carbon 71.64 85.16 
% Hydrogen 4.64 5.52 
% Nitrogen 1.36 1.61 
% Organic Sulfur 0.53 0.63 
% Chlorine 0.08 0.09 
% Oxygen(diff.) 5.95 7.00 
% Mineral Matter 15.87 

Calorific Value 
(BTU/lb) 

MM-Containing 12528 12855 
MM-Free(Parr) 14682 15135 
Net DMMF 14713 
Ash Free 14891 

Atomic Ratios 
Atomic H/C 0.780 
Atomic O/C 0.068 
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ASH COMPOSITION 
Ashing at 750°C 

Major Compounds Trace Elements 
Si02 54.40 % Ba 540 ppm 
Al203 24.50 % Be 7 ppm 
Ti02 1.14 % Cr 150 ppm 
Fe20s 9.16 % Cu 80 ppm 
MgO 0.85 % Mn 140 ppm 
Cao 2.97 % Ni 65 ppm 
Na20 0.61 % Rb 100 ppm 
K20 2.02 % Sr 590 ppm 
P20s 0.34 % v 200 ppm 
SOs 2.30 % Zn 85 ppm 

Zr 240 ppm 

PETROGRAPHIC DATA 
Dry Weight (%) 

Vitrinite 73.7 
Inertinite 8.0 
Liptinite 2.8 
Mineral matter 15.5 

PHYSICAL PROPERTIES 
Hardgrove Grindability 38.9 
Free Swelling Index 7.5 
Gieseler Plasticity Data 

Maximum Fluidity 8525 
Max. Fluidity Temp. 433 
Initial Softening Temp. 390 
Solidification Temp. 470 
Fluid Temperature Range 80 

ASH FUSION ANALYSIS 
Reducing Oxidizing 

Initial Deformation Temperature 2435°F 2570°F 
Softening Temperature .2580°F 2640°F 
Hemisphere Temperature 2670°F 2690°F 
Fluid Temperature 2685°F 2700°F 
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Appendix II 

OPTICAL PYROMETER DESIGN 
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AII.1 Objective 

To elucidate the kinetics of char oxidation, it is necessary to know the relationship 

between the particle mass loss rate and its temperature. In this report, we describe 

a twd-color optical pyrometer designed to measure the temperature of individual 

burning particles. 

AII.2 Theory 

From Planck's law for spectral distribution of radiation from a black body at tern-

perature T, the intensity of radiation in the wavelength range [.\,.\+d.\] is given 

by 

. 2C1 
1>.,b = .xs(eC2/>.T -1) (AII.1) 

where C1 and C2 are the first and second radiation constants. The temperature of 

an emitting object can be estimated by measuring its absolute emission intensity 

at one wavelength (typically 650 nanometers) or by measuring the relative emission 

intensities at two or more different wavelengths. The former approach, called bright-

ness pyrometry, requires knowledge of the emissivity and geometry of the emitting 

object. The latter method is better suited to the measurement of temperatures of 

burning particles of microscopic size since it only requires that the particles be gray, 

i.e., that their emissivity not vary significantly over the wavelength range examined. 

The different wavelengths can be selected with monochromators or narrow band-

pass filters. The signal recorded by a detector is determined by the contributions 

of all wavelengths that reach the detector, i.e., 

(AII.2) 
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where Si is the response of the ith detector, £.>. is the emissivity, and 1>. is the 

wavelength dependent response function of the optical system and detector. Al and 

Ah are the low and high wavelengths allowed by the filter. The ratio of two such 

signals is used to estimate the temperature of the object being observed. In the 

special case of extremely narrow band pass measurements centered about A1 and 

A2 , this ratio reduces to 

(AII.3) 

where K is the calibration constant into which the optical inefficiencies and emissiv-

ity factors have have been lumped. K is determined by calibrating the instrument 

at a known temperature (e.g. melting point of a pure metal like platinum). It is 

then assumed to be independent of temperature. This last assumption is permis-

sible only if the source is a gray body. There is also a geometrical factor in the 

intensity expression if the source distance from the detector is rapidly changing. 

This is not necessary in the present case as the burning particle is quasi-static in 

relation to the detector given the short burning time and relatively slow particle 

velocity. 

Ail.3 System Specifications 

The size of particles to be burnt is in the range 50-300µm. Expected burning 

temperatures are in the range 1000 K to 2500 K. Particle flow velocity is around 10 

cm/s, corresponding to a cold gas flow rate of around 2 I min- 1 heated to 1500 K. 

The viewing dimension of the optics, 330µm was chosen to accommodate the largest 

particles expected. Based on the above flow rate, particle residence time in the view 



- 271-

volume is close to 4 ms. This sets the lower limit of the frequency response of the 

signal processing and real-time data acquisition systems. 

AII.4 Wavelength Selection 

Black bodies emit radiation whose spectral behaviour is governed by Planck's law. 

While coal or char particles are not expected to be black emitters, to a first approx­

imation they shall be assumed to be gray bodies. The spectral response of a black 

body is shown in Figure AII.1 for various temperatures. The intensity maxima and 

the temperature are related by Wien's displacement law. Clearly, in order to attain 

maximum sensitivity, wavelengths that are smaller than the wavelength at maxi­

mum intensity, Amax should be selected. The smallest Amax occurs at the highest 

temperature. This then sets a natural upper limit for the choice of wavelengths. 

However, it should be mentioned that it is definitely possible to use wavelengths 

higher than Amax if loss of resultant signal strength is compensated later in the 

signal processing stage. 

In the present case, since T max was 2500 K, Amax was calculated to be 1.16µm. 

The second criterion for choosing wavelengths is that the two wavelengths chosen 

be sufficiently apart to minimize experimental error and to enhance the sensitivity 

in temperature measurement. This implies, of course, that the smaller wavelength 

be quite small. The lower limit, however, is set by the intensity of the signal at the 

lowest design temperature, at that wavelength, that can be detected. Apart from the 

black body radiation, it must be kept in mind that the signal is attenuated in passing 

through the various optical elements before reaching the detector where it can be 

amplified. The last consideration regarding wavelength choice is the commercial 
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availability of suitable filters. Based on all these considerations, wavelengths around 

lOOOnm and 800nm were chosen. The filters chosen had bandwidths of 70nm and 

their spectral responses are shown in Figures AII.2 and AII.3. 

AII.5 Detector Selection 

This is governed by the following considerations: 

(i) Maximum sensitivity (Amps/Watts) at the desired wavelengths. 

(ii) It is desirable that the detector have similar sensitivity at both wavelengths. 

(iii) Low dark current. 

(iv) Reasonably large detector area. 

(v) Linearity of response over wide input power signals. 

The detector selected was the Hamamatsu 81336-SBQ. Its spectral response 

characteristics are shown in Figure AII.4. 

AII.6 Preamplifier Selection and Design 

As soon as the optical signal is converted at the detector to a feeble voltage signal, it 

is essential that this small voltage signal be amplified carefully (without amplifying 

the noise) before it can be processed and stored. For a variety of reasons that 

will become clear shortly, it is desirable to have the detector and the preamplifier 

physically close to each other and hence the design of the detector-preamplifier 

package is of paramount importance. For small signals, having the detector and 

the preamp separated means that additional wiring has to carry the signal to the 

amplifier and apart from noise, the stray capacitance induced in the wiring may 

seriously limit the frequency response of the circuit. 



- 273-

The amplifier gain is a crucial parameter. The gain has to be determined from 

considerations below and then a suitable amplifier capable of that gain along with 

the desired frequency bandwidth has to be selected. 

The gain is decided based on detectability of the signals. It is convenient to 

have signals that are at least tens of millivolts so that they can be detected easily 

and also input directly into the data acquisition system. It is therefore necessary 

to determine the optical signal strength of a typical burning particle. 

For a 50µm particle with emissivity one, burning at 1000 K, the radiant energy 

reaching the detector after filtering at 800 nm is 1.12x10-4 watts. The detector 

sensitivity is 0.6 amps/watt and therefore the detector signal will be 6.72x-5 amps. 

Accounting for various optical losses we expect microamp signals. Therefore, a 

gain of at least 1000 is necessary to convert this into a millivolt signal (an op-amp 

converts amps to volts). Of course, signal levels are more manageable at higher 

temperatures. 

The detector amplifier circuit is shown in Figure All.5. The single most im­

portant parameter of the detector is its junction capacitance, C;n, which· is 65 

picofarads for the 81336-SBQ. RF, the feedback resistance and Cp, the feedback 

capacitance of the amplifier will now be determined. An amplifier has to be cho­

sen at this point. H the gain, frequency bandwidth, and noise criteria cannot be 

simultaneously satisfied then a different amplifier has to be used and the process 

repeated. As a start the LF357 amplifier is chosen. 

Determination of RF 

The gain bandwidth of the LF357 amplifier is 12MHz (although its specifications 
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mention 20MHz, a conservative value is chosen). Since the time resolution required 

is of the order of milliseconds, it is necessary to have a frequency bandwidth of 

around lOkHz. Now 

A 
.
1 

bl G . Gain bandwidth va1a e am= 
Frequency bandwidth 

(AII.4) 

A .1 bl G . 12MHz 
va1 a e am= kH 10 z 

(AII.5) 

Thus the available gain is 1200. The impedance of the junction capacitance at 

lOkHz, Z;n is 240k0. Also 

G
. RF 

a1n=-
Z;n 

(AII.6) 

Therefore, RF is 1200x240k0 or 288MO. A conservative value of lOOMO is chosen 

Determination of CF 

Once the feedback resistance has been fixed, the breakpoint frequency, /i and the 

gain amplitude A2 (Figure AII.6) can be determined as follows: 

1 Ii=----
21rRFCjn 

A
2 

= Gain bandwidth 

Ii 

(AII.7) 

(AII.8) 

Thus Ji and A2 are calculated to be 24.5Hz and 480000 respectively. The frequency 

f 2 is defined as 

(AII.9) 

and therefore h is 17.3 kHz. The frequency /a is chosen such that it is larger than 

or equal to the frequency bandwidth but smaller than f2. Let /a be 10 kHz. Finally 
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1 
CF=---

211"RFfa 
(All.IO) 

Putting in the appropriate values for RF and fa, CF is computed to be 0.16 pico-

. 
farads. 

Noise Considerations 

The electronic noise in the circuit can be expressed in the following form 

Noise = 2ei + 4kT /RF + i! + e!/ R~ (All.11) 

The units of each term are in amp2 /Hz. The last two terms are device noise terms 

while the first two are unavoidable intrinsic noise factors. Neglecting the device 

terms, minimum noise is achieved when the first two terms are set equal and is only 

a function of temperature. 

iRFmin = 2kT/e (All.12) 

The device noise terms are tabulated in the specifications. fu the present design 

the choice of RF ensures that the overall noise is manageable. 

All. 7 Additional Features 

In addition to the preamplifier, the circuit includes a programmable gain amplifier 

with gain factors of 10 and 100 for further signal enhancement. A divide circuit is 

also present in case the signal ratio is desired directly. Finally, a log-ratio circuit 

is also present. Of course, signal processing can always be done via software after 

the raw intensity signals have been acquired. To help conserve the system memory, 

the data acquisition system is enabled only if the signal on a particular channel 
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(selected by the user) exceeds a certain reference signal. This is done in the trigger 

circuit. Actual data acquisition is done by a Data Translation DT-2801A board 

at upto 20kHz rates and the digital signal is input directly into the memory of a 

Zenith 148 PC converted for data acqisition purposes. Then the signal is read by 

software and processed. A schematic of the pyrometer is shown in Figure AII. 7 and 

the circuit is shown in Figure AII.8. Device specifications for the essential chips 

used in the circuit can be obtained from the respective manufacturers' catalogues: 

DIV 100, LOG 100, and PGA 102 (Burr Brown); LF 356, LF 357, and LM 393 

(Motorola). · 
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Figure AII.5 Circuit diagram of the detector preamplifier. 
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A CRITICAL ANALYSIS OF 

GAS-SOLID PHYSISORPTION 

To be submitted to the Journal of Colloid and Interface Science 
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Abstract 

The internal morphology of three porous solids ( '1-alumina, a. partially oxidized 

synthetic char and PSOC-190 coal) was studied in detail using gas adsorption. 

Four gases (nitrogen, argon, carbon dioxide and Freon-21) were used to observe 

specific adsorbent-adsorbate interactions in each solid. BET surface areas and C 

values were determined in each case. Several methods of determining pore volume 

distributions ( Cranston-Inkley, Yan-Zhang and Brunauer's Modelless method) in 

the meso and macropore range from the isotherms were examined and compared. 

The pore volume distribution in the micropore range was interpreted according to 

the M-P and Medek methods. Micropore volumes ".Vere obtained from the Dubinin­

Radushkevich-Kaganer method. 
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AIII.1 Introduction 

The use of gas adsorption to probe the internal structure of porous solids is presently 

an accepted and widely used experimental technique. One reason for this is that 

the measurement of the extent of adsorption of a gas on a solid under a given set 

of conditions is relatively easy. Also, physical adsorption is reversible (except for 

porous solids which exhibit hysteresis) and non-destructive. 

The amount of gas adsorbed on a s<;>Iid surface depends on the temperature 

of the system, the partial pressure of the particular adsorptive, and of course, the 

nature of the solid. Ordinarily, the extent of adsorption is measured as a function 

of pressure of the adsorptive at a fixed temperature. For this reason, the resulting 

plot is known as an isotherm. 

Since physical adsorption is rather non-specific, various gas- solid pairs give 

similar isotherms. Brunauer et al.(1) identified five basic types of isotherms. Porous 

solids usually give type III isotherms, but also psuedo-type I and more rarely type 

V. For types III and V, enhanced adsorption at relative pressures greater than 0.4 

is attributed to capillary condensation of adsorbate in the small pores of the solid. 

This is the .region of the isotherm where information about pore size distribution 

can be obtained. 

It has been found that desorption isotherms do not coincide with adsorption 

isotherms for porous materials. This phenomenon of hysteresis is attributed to 

different physical states of the gas-solid system which occur during the processes of 

evaporation and condensation. Hysteresis may be used to obtain information about 

pore shape; however, it is debatable as to how accurate this information is, insofar 
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as actual pores are rarely, if ever, describable by regular geometrical shapes. 

Since the dynamics of adsorption and the exact nature of solid surfaces on 

the molecular level are not well understood, interpretation of experimental data is 

rather open to question. Even more questionable is the interpretation of data in the 

regime of capillary condensation. A variety of simplifying assumptions have been 

made in the attempt to develop models which attempt to elucidate the nature of 

the underlying porous structure of the solid (Wheeler (7), Brunauer, et al. (14), 

Kaganer (16)). In these models, some ideal pore shape is assumed a priori. Pores 

are often assumed to be cylindrical or slit-shaped. In spite of the overly simplistic 

structures assumed, some models do, at least qualitatively, describe the particle 

morphology. The purpose of this paper is to examine a few of these models and 

apply them to isotherms of several gas-solid pairs. The models will be evaluated 

in light of what is known about the solid and the gas. An attempt will be made 

to correlate the properties of the adsorbate and adsorbent with the most suitable 

model. 

Given the complexity of any solid surface it is not surprising that the interaction 

of different gases with the same solid may lead to divergent interpretations as to 

the underlying solid structure. With sufficient information about the adsorbing gas, 

however, it should be possible to draw conclusions about the fundamental nature 

of the solid consistent with all observations. Thus, it may be preferable to infer 

the pore morphology of a given solid based on its interactions with a number of 

different gases rather than a single one. Some attempts in that direction shall be 

made in the present study. 
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The analysis of particle morphology in the microporous region is extremely dif­

ficult because of the presence of strong overlapping pore potentials from pore walis. 

Also, the concept of rigid pore geometry is unrealistic at molecular dimensions. 

Moreover, little is known about actual potential distributions in a real solid. Some 

of the more common methods for analysing the pore structure ·in this regime are 

compared in the present analysis and conclusions as to their suitability are drawn 

therefrom. 

AIIl.2 Experimental Procedure 

All isotherms were obtained using a system into which a continous flow of adsorbate 

was introduced (Northrop, et al. (2)). The adsorptive was admitted through a 10µ 

diameter orifice. The flow rate was very carefully calibrated for a given set of 

conditions by monitoring the pressure increase in a well defined volume. Generally, 

flow rates were kept at about 1.0 cm3 /min (STP). 

During the experimental run, the system pressure was periodically recorded 

with the aid of a computerised data acquisition system. The pressure was measured 

with an MKS Baratron 270A Digital pressure gage whose output signal was recorded 

in a Zenith 152 computer converted for data acquisition purposes. 

After the run was completed, the "dead-volume" of the system including the 

sample tube was measured using helium, assuming that the ideal gas law holds. 

Knowledge of the system dead-volume and pressure at a given time allowed calcu­

lation of the amount of adsorptive in the gas phase. The difference between the 

amount of adsorptive which had passed through the orifice and the amount remain­

ing in the gas phase was the amount adsorbed at that time. The system can also 
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be used to obtain desorption isotherms; however, only the adsorption branch was 

obtained and used in this series of experiments. For further details on apparatus 

and procedure consult ref. (2). 

Experiments were performed using four different adsorbates on three porous 

adsorbents. The gases used were: nitrogen at 77K, argon at 77K, carbon dioxide at 

195K, and Freon-21 at 273K. Carbon dioxide at 298K was also used to obtain data 

for the Dubinin-Radushkevich-Kaganer (DKR) theory. The solids examined were: 

a "(-alumina, a partially oxidized synthetic char, and a raw coal (PSOC-190). The 

unique interactions of each adsorptive-adsorbent pair are important in determining 

the type of isotherm for that pair. Table Aill.1 lists some of the properties of the 

adsorptives used. 

AIIl.3 Inversions 

Though the primary interest is in adsorption on porous materials, it will be useful 

to first consider multilayer adsorption on flat surfaces. Many models have been 

developed to explain physical adsorption on a free surface. For example, Halsey 

and Hill (3), Young and Crowell (4) and Sircar (5) have presented such models. 

However, none of these has been as successful as the theory developed by Brunauer, 

et al. (6). 

The BET theory is based on the assumptions of a homogeneous surface and no 

adsorbate-adsorbate interaction. These assumptions are difficult to justify, yet the 

model gives a good fit to experimental data for a wide variety of gas-solid pairs over 

a limited range of relative pressures. Furthermore, the theory predicts the amount 

of adsorbate required to form a layer one molecule thick over the surface. Knowledge 
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of the molecular cross-sectional area allows calculation of an overall surface area. 

The model also gives a measure of the strength of the gas-solid interaction through 

the C value. C is defined by exp{(f - fv)/ RT}, where f is the energy of adsorption 

per mole of adsorbate, and fv is the energy of vaporization per mole. The BET 

surface area and C value are useful for comparison between experiments; hence, 

they will be given for all gas-solid pairs (Table AIII.2). 

Capillary condensation occurs in porous solids below the vapor pressure of the 

adsorbate. The reason for this is that a pressure difference exists across the curved 

meniscus of the condensed vapor. The relationship between the size of the capillary 

and pressure is given by the Kelvin equation: 

ln(P / P 0
) = 21V cos() /LRT (AIII.1) 

where 1 is the surface tension, V is the molar volume,() is the angle of contact, R is 

the gas constant and T is the absolute temperature. L is a measure of the width of 

a pore; for a cylinder, it is the radius, while for a slit it is half the distance between 

walls. 

Wheeler (7) considered a model for capillary condensation which included mul-

tilayer adsorption. He deduced a relation between specific pore volume V(r) and 

the volume of nitrogen desorbed over a small segment on the desorption branch of 

the isotherm v(r): 

v(r) = (r - t(r)) 
2 
V(r) + dt/dr fro 2r' -;(r')V(r')dr' 

r lr r' 
(AIII.2) 

where r is the radius of the pore, and t is the thickness of the adsorbed layer of 

gas. The first term on the right accounts for liquid evaporated from the pore cores, 

while the second term represents the amount of gas desorbed from free surfaces. 
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The thickness of the layer was obtained from what is known as a t-curve(8). 

This is simply a plot of volume of adsorptive divided by BET surface area at mono-

layer coverage versus relative pressure for a non-porous substance. Thus, it is a 

relation between the thickness of the adsorbed layer and the relative pressure. It 

has been pointed out that a t-curve of a material with a similar C value must be 

used to obtain the proper t values (9). 

In principle, both the Kelvin radius and the average thickness of adsorbate can 

be calculated for a given relative pressure. The appropriate values can then be used 

in the integral equation (AIII.2). However, Wheeler was not able to come up with 

an iterative scheme for calculating V(r). 

Several authors have developed methods for calculating V(r). Among them are 

Pierce(lO), Dollimore and Heal(ll), and Cranston and Inkley(12). The inversion 

method of Cranston and Inkley was difficult to carry out when it was first intro-

duced, however the calculations are quite easy with any type of computer. For a 

finite adsorption step from pressure P1 (corresponding to radius r 1 ) to P2 (radius 

r 2 ) the amount of nitrogen adsorbed is 

(AIII.3) 

where t 1 and t2 are the adsorbed layer thicknesses at the respective pressures and 

Vr' is the volume of pores with radii in the interval r 1 to r2 • It has been shown (12) 

that Vi2 can be approximated by 

(AIII.4) 



- 293-

where 

(AIII.5) 

Yan and Zhang (13) have also developed a means of calculating pore volume 

distribution based on Wheeler's model. The volume of pores of mean radius Ti is 

given by 

( 

i-1 AV· i-1 AV·) 
AVi=R· Av·-2At·~-' +2fAt·~-' I i I I ,t_ _ I I ,t_ -2 

. T3· . T,· 
J=l . J=l 

(Alll.6) 

i= 1,2,···,n 

where i refers to the pore group and the overbar denotes average values. They have 

shown that this method gives essentially the same results as the Cranston-Inkley 

method. In fact, the only difference is that R 12 is essentially a log mean of Tl and 

T2 , while Ti is an arithmetic mean. Yan-Zhang's method is more compact, however. 

A rather different line of thought was used by Brunauer (14) to develop his 

"modelless" theory. This model is based on the thermodynamic identity 

1dS = µda (AIII.7) 

This equation relates change in surface area ( dS) of the adsorbate to the free energy 

change (da) through the surface tension 1 and the chemical potentialµ. Integration 

yields 

S = ~ J Anda=~ J RTln(P/P
0
)dn (AIII.8) 

where R is the ideal gas constant, T is the absolute temperature, po is the vapor 

pressure, dn is the incremental number of moles of adsorbate and An is the free 

energy of adsorption. The method is called modelless because it uses the hydraulic 
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radius as a characteristic length parameter for the cores instead of the more usual 

core 'radius'. (The core is the volume of the pore which is not occupied by adsorbed 

gas. ) The hydraulic radius is defined as follows: 

(AIII.9) 

where V is the volume of adsorbate and Sis the wetted surface area. 

Again, both the gas evaporating from the cores and the gas desorbing from 

open surfaces must be accounted for. Unfortunately, one must assume a shape for 

the pores to calculate the free surf ace area. 

An example of the calculations is as follows: for relative pressure from 1 to 

0.95, Vi = (ni.o - no.95)v where v is the molar volume of liquid. Then, S1 is 

obtained from equation (AIII.8). The definition of hydraulic radius is then used to 

obtain a measure of average core size in this range of relative pressures. For the 

next step, V2 = (no.95 - no.9o)v - v;. The second term is the correction for gas 

which is desorbing from the free surface. H the pores are assumed to be parallel 

slits, v; = (t 1 - t2)S110-4 , fort in A, S in m 2 and V in cm3 • The correction for 

cylindrical pores is more complicated but it does not change the result significantly. 

As it stands, the modelless method describes the size and volume distributions 

of the cores. In order to compare its results with those of other inversions, the 

pore size and pore volume distributions are needed. However, in going from cores 

to pores some assumption regarding geometry must be made; hence, the resulting 

method is no longer modelless. In the present analysis the statistical thickness 

calculated at the appropriate partial pressure was added to the core hydraulic radius 

to determine the pore radius. The core volume was also increased by an amount Siti 
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to determine the pore volume. These modifications were made in order to facilitate 

comparision of the now 'modelless' method with the other schemes. 

The procedures above pertain to pores in which capillary condensation takes 

place.' The lower limit of applicability of the Kelvin equation (AIII.1) occurs at a 

relative pressure of about 0.4, which corresponds to a radius of 16 A. Below this, 

the concept of bulk surface tension becomes difficult to justify. Of course, smaller 

pores may be present in the solid. Thus, it is necessary to consider analyses which 

deal with these micropores. 

One such method is known as the MP method(15). This theory is rooted in 

the concept of the t-curve described above. A v-t curve is a plot of the liquid 

volume uptake versus a statistical thickness which is obtained from a t-curve. It is 

imperative that a t-curve of a similar C value be used. 

A v-t plot for a non-porous adsorbent will be a straight line with a slope equal 

to the surface area (8). A microporous adsorbent will show a downward deviation 

at lower relative pressures, as shown later. The reason for this is the following: at 

the lowest pressures, adsorption occurs over the entire surface. As more adsorption 

occurs, some of the micropores become filled with adsorbate. Thus, less surface is . 
available for adsorption. This is reflected in the v-t curve by a decrease in slope, 

and hence, apparent surface area. 

Actually, surf ace area in pores of this size cannot be strictly defined because 

the pore dimensions are similar to the size of individual molecules. Whether the 

pore is cylindrical or slit-shaped, the total area "covered" by a molecule will be 

quite different from that which it covers on a free surface. 
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Dubinin and Radushkevich originally developed a theory for micropore volume 

analysis of carbonaceous solids; however, Kaganer (16) extended it to surface area 

analysis. The following assumptions are made concerning microporous materials: 

1. The potential distribution is of the form 

(AIII.10) 

where N is the number of moles of gas adsorbed, No the total number of moles 

at monolayer coverage, Eo is the energy of adsorption of the reference adsorbate 

and K is a constant characteristic of the system. 

2. All adsorbates can be scaled to a single reference adsorbate 

N=F(E//3) 

where /3 = E / Eo. 

The work required to isothermally compress a gas from P to P0 is 

E = RTln(P0 /P) 

Simple substitution of (AIII.11) and {AIII.12) into (AIII.10) gives 

N = Noexp(-K(RT)2 1n2 (P0 /P)/f3 2
) 

or, taking logarithms, 

logN = logN0 - 2.303K(RT/f3) 2 log2 (P0/P) 

(AIII.11) 

(AIII.12) 

(AIII.13) 

(AIII.14) 

A plot of logN vs. log2 (P0 / P) should give a straight line, from which the 

number of moles at monolayer coverage can be obtained. Given a molecular cross­

sectional area, the total surface area for the sample can be calculated. Again, it is 
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debatable as to what to use for the value of the the area of a molecule sitting on a 

particular surface. 

Medek (17) extended this theory to determine pore size distributions. Working 

from Dubinin's equation (AIIl.10), he assumed that the potential inside of a pore 

could be expressed as <I> = kr~3 , where k is a constant and r eq is the equivalent 

radius of the pore. Substitution into (AIII.10) yields: 

(AIII.15) 

where"" is related to k and the exponent n is close to 2 (but treated as a parameter 

in the Medek analysis). This expression can be differentiated to get the distribution. 

AIII.4 Results 

AIILJ.1 Isotherms 

The isotherms for nitrogen (N), argon (A), carbon dioxide at 195K (C) and Freon 

(F) on -y-alumina are shown in Figure AIII.1. They are plotted as a function of 

relative pressure (P /P0 , where P 0 is the vapor pressure of adsorptive at the system 

temperature) so that they can be compared on a single plot. All isotherms on the 

-y-alumina are typical Type IV isotherms. This indicates that the solid is porous, 

with most pores being in the meso- to macro-pore range (i.e. more than 16 A 

in diameter). The similarity between the nitrogen and argon isotherms is to be 

expected since both molecules are similar in size. The small difference in shapes 

is due to the slight difference in the relative rates of gas admission in the two 

cases. Carbon dioxide (196K) and Freon also produce similar isotherms. Since these 

molecules are larger, the total molar amounts adsorbed are smaller. Multiplication 
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of the respective molar volumes shows that the total pore volume is nearly 0.40 

cm3 /g in all four cases. The isotherm for carbon dioxide on ')'-alumina at 298K is 

shown in Figure AIII.2. It appears as though there is Type I behavior followed by 

further adsorption. It is possible that at very low relative pressures, carbon dioxide 

is adsorbed only by the most active sites. At higher pressures, there is more general 

adsorption. 

The nitrogen, argon and carbon dioxide at 195K isotherms on oxidized char are 

classic examples of pseudo-Type I isotherms (see Figure AIII.3). This shows that 

the char contains a very large number of micropores. Once these micropores are 

filled, there is very little subsequent adsorption. Surprisingly, the amount of argon 

adsorbed is significantly greater than the amounts of the other gases, contrary to the 

expectation that nitrogen and C02 should be adsorbed to a greater extent due to 

their smaller minimum molecular dimensions and significant quadrupole moments. 

While the Freon also produces a Langmuir type of isotherm, it is evident that there 

are two distinct regimes of adsorption (as manifested by the different slopes). This 

suggests that the char-Freon interaction is site specific and points to the existence 

of two distinct types of active sites. Given the larger size of the Freon molecule 

molecular sieve effects may affect its penetration into the very smallest pores. The 

pore volumes of the char are (in cm3 /g) 0.039 (N2), 0.033 (C02), 0.05 (Freon) 

and 0.06 (Ar). Incorporating effects of multilayer adsorption in the Freon case will 

reduce its pore volume but no simple explanation can explain the anomalous argon 

result. Figure AIII.2 shows the resulting isotherm for carbon dioxide at 298K on 

the partially oxidized char. 
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The nitrogen and argon isotherms on PSOC-190 (Figure AID.4) showed rather 

unusual behavior. At the lowest pressures there was very little adsorption. However 

when the relative pressure reached a critical value ( 0.04 for N2 and 0.08 for Ar) 

adsorption increased significantly. The reason for this appears to be lack of equi­

libration time in the dynamic adsorption apparatus used in this study. At some 

higher partial pressure there was significant adsorbate uptake at constant partial 

pressure indicating the establishment of a pseudo-steady state. This is not due to 

pressure drop in the bed as the particle size was 425µ and the bed was free flowing. 

Equilibration is not a limiting factor for C02 or Freon possibly due to their more 

complex interactions with the surface. C02 adsorbed most strongly on the coal. 

Freon gave a typical type IV isotherm. 

AIII.4.2 BET Plots 

The BET plots for nitrogen (N), argon (A), carbon dioxide at 195K (C), and Freon 

(F) on 1-alumina are shown in Figure AIIl.5. All are quite linear, and give rea­

sonably consistent surface areas. The areas were calculated using molecular cross­

sectional areas obtained from Lowell and Shields (18), and Gregg and Sing (19). 

The computed specific areas for this method are 207 m2 /g (N), 174 m2 /g (A), 200 

m2 /g (C) and 205 m2 /g (F). 

Figure AIIl.6 shows the BET plots for the same adsorbates on oxidized char. It 

is interesting to note the similar shapes of the nitrogen, argon and carbon dioxide 

plots. The upward deviation at higher relative pressures is due to the fact that 

there is so little additional adsorption in this region. Once the micropores of the 

solid are filled with adsorbate, the solid appears virtually non-porous. The specific 



- 300-

areas were found to be: 400 m 2 /g (N), 573 m2 /g (A), 430 m2 /g (C) and 433 m2 /g 

(F). 

In Figure Alli. 7 the BET plots on the coal are shown. The specific areas were: 

23.1 l'n2 /g (N), 22.8 m2 /g (A), 147.5 m 2 /g (C) and 151.6 m 2 /g (F). 

The Cvalues for these isotherms (as calculated from the BET plots) are shown 

in Table AIII.2. 

AIII.4.S Pore Volume Distributions 

The inversions described above ( Cranston-Inkley, Yan-Zhang and Modelless - here­

inafter referred to as CI, YZ and ML, respectively) were applied to each of the 

isotherms to determine the pore volume distributions in each case. Pore volume dis­

tributions were chosen instead of pore surface area distributions due to the following 

reasons: (a) Fundamentally, the concept of surface area in porous (or microporous) 

solids is nebulous on close scrutiny. Surface areas are useful only as a compari­

son between different materials; therefore, their intrinsic value has been questioned 

by many researchers (20). (b) Geometrical assumptions, often simplistic, must be 

made to derive surface area distributions from the experimental data. ( c) Most 

inversions naturally lend themselves to pore volume distribution determinations. 

In this section, all plots are in the form dV / dlog r vs. log r. The reason for 

this is that it is easy to visually integrate to obtain total void volume, and to view 

the contributions of different size intervals to the total porosity. 

The Cl and YZ distributions in all cases showed virtually identical results, as 

shown in Figures AIIl.8a-d. As discussed earlier, both methods are essentially the 

same. In order to observe the effect of the calculation, two approximations for the 
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thickness have been used in each method: (a) a polynomial function of the relative 

pressure ( C - 130) and (b) the Haisley expression ( C - 100). For a given expression 

of thickness, the two methods gave indistinguishable results (Figures AIII.8a,c or 

Figul'es AIII.8b,d). This shows that the method of calculation of mean radius (log 

mean vs. arithmetic mean) is unimportant. Figure AIII.9 shows thickness as a 

function of relative pressure for these two approaches. Note that the appropriate 

range of relative pressure is 0.4 to 0.95. The use of the Halsey thickness resulted 

in total pore volumes which were about 5% lower than those from the polynomial 

approximation. The reason for this is that the Halsey thickness was slightly smaller 

than that calculated by the polynomial approximation. 

Pore volume distributions were obtained for the different adsorptives on two 

different solids using the CI method (see Figures AIII.lOa,b). The char did not 

show appreciable volumes in this range of pore sizes, so they will not be considered 

here. For alumina (Figure AIII.lOa), the distributions from the nitrogen and Freon 

isotherms were strikingly similar. Counterintuitively, the distribution from argon is 

different. While total pore volumes (equal to area under the curve) are similar, the 

argon distribution is skewed toward larger pore sizes. The argon was admitted at a 

higher relative rate than the nitrogen; hence, there was less time for equilibration of 

the gas with the liquid in the pores. Thus, adsorption took place at higher relative 

pressures. This shows the importance of allowing adequate times for equilibration. 

The similarity of the nitrogen and Freon results may seem surprising. However, if 

the pores are sufficiently large, and if the interaction with the surface is similar, 

the result is reasonable. Freon has a higher dipole moment, yet it appears to have 
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little influence on the surface interaction. This may indicate that the nature of 

the adsorption is rather non-specific, and that the adsorbent is relatively passive. 

It is also possible that the Freon interaction is very strong on a local level. This 

interaction may be so localized that there is no overall orientation effect. 

The pore volume distributions for PSOC-190 are shown in Figure AIII.lOb. 

Here, the nitrogen and argon distributions differ for the same reasons as described 

above. Freon, on the other hand, gives a much larger total pore volume. It appears 

as though Freon has a strong specific interaction with the coal. This may lead to 

orientation of the adsorbate, which in turn may lead to enhanced adsorption. 

The modelless method was applied only to the nitrogen isotherms. The result­

ing distributions are shown along with those of CI (Figures AIIl.lla-c). Recall that 

,the hydraulic core radii calculated by the method were augmented by the adsorbed 

layer thickness as calculated by the Haisley equation (3). The pore radii in the two 

methods cannot be directly compared because Cl has assumed a cylindrical pore ge­

ometry, while the modelless method uses the hydraulic radius. Since the hydraulic 

radius of a cylinder is half of its radius, the radii from the modelless method could 

be multiplied by two to obtain some comparison. 

AIII.4.4 Microporosity Analysis 

The v-t plots for nitrogen adsorption on the porous solids are shown in Figure 

AIIl.12. The slope for the alumina (for t=3 to 5 A) gave an area of 211 m2 /g, 

which was quite close to the BET area. The v-t plot gave an area of 34 m2 /g 

for the PSOC-190. This area was significantly higher than the corresponding BET 

area. This is an unusual case where the two methods do not agree even though the 
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v-t plot does not show significant microporosity. 

The area for the char had to be estimated from the slope of a line passing 

through the origin tangent to the plot. This resulted in an area of 750 m2 /g, which 

was not even close to the nitrogen BET area. These plots show that only the char 

has significant microporosity. Therefore, the MP analysis was applied only to the 

char. 

The MP method result is shown in Figure AIII.13. According to this analy­

sis, the vast majority of pores have radii between 3.5 and 5 A. This seems quite 

reasonable in light of the original isotherm. 

The DRK Theory was applied to the isotherms of carbon dioxide at 298K 

(see Figure AIII.14). Strictly speaking, this theory .was developed for carbonaceous 

solids with micropores. Since the assumptions are not too stringent, the theory was 

applied to the alumina as well. The plot for PSOC-190 (C) was quite linear; those 

for ')'-alumina (A) and oxidized char (0) were less so. The region of lower log N 

was used in the calculation of specific area. The areas calculated by this method 

were: 161 m 2 /g for alumina, 1400 m 2 /g for char, and 162 m2 /g for PSOC-190. The 

values for ')'-alumina and PSOC 190 are similar to those calculated from the BET 

method for C02 • The value for char is significantly greater. 

The Medek method was applied to these isotherms in addition to several others. 

Figures AIII.15a-b show the results for C02 and Freon on the porous solids. The 

form of the curve is the same in all cases; only the magnitude and position of the 

maxima are different. 
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AIIl.5 Discussion 

For the materials studied, the continuous flow method gives isotherms similar to 

those obtained by the traditional method in a fraction of the time. Any discrepancy 

is due to the non-equilibration of the gas phase with the adsorbed phase. 

The adsorptives were selected because of their different molecular character­

istics. Nitrogen, generally regarded as the "standard adsorbate", is non-polar and 

axially symmetric. Argon, another commonly used adsorptive, is also non-polar, 

but is spherically symmetric. Carbon dioxide has a strong quadrupole, and is eas­

ily polarizable. Freon is larger than the others, and possesses a permanent dipole. 

In some orientations, however, its minimum dime~sion is comparable with that of 

nitrogen or argon. 

In spite of these differences, there was little effect on the overall form of the 

isotherm for a given adsorbent. The only significant exceptions were Freon on char 

and C02 on PSOC-190. The former was probably due to slow diffusion of large 

Freon molecules into the small micropores, as explained above. The latter was likely 

due to specific adsorbate-adsorbent interaction, a small minimum dimension, and 

high absolute temperature. 

The areas calculated for the microporous char are rather questionable. The 

models used assume that the adsorbate molecule sits on a locally flat surface. How­

ever, when a molecule is in a pore which has a diameter on the order of molecular 

dimensions, it will cover a much larger area. The discrepancy between the nitrogen 

and argon areas shows that the way in which the molecules are packed into the 

pores is also an important consideration. 
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It was interesting to see that the DRK model gave an area for "Y-alumina that 

was consistent with the other methods. As described previously, the model was 

developed from a theory of micropore adsorption. The alumina has few micropores, 

but it is rich in oxygen. It is possible that the carbon dioxide interaction with 

oxygen-containing groups is similar in magnitude to its interaction with the walls of 

a micropore. That the total area obtained is close to the others may be fortuitous. 

As mentioned above, the Medek method gave curves which appeared to be 

self-similar for all adsorbents and adsorptives. Furthermore, it showed significant 

microporosity for the alumina, which is rather questionable. It seems as though 

this method simply transforms a given isotherm into a log normal curve. 

Alumina is one of the most studied and relatively "well-characterised" material 

of all the solids considered in this study. According to the present experimental 

findings, conclusions can be drawn regarding its morphology by applying a unified 

analysis of surface area, pore volume and pore volume distribution. The BET 

surface area was around 200 m 2 /g f?r all gases except argon, which gave a lower 

value, possibly due to non-equilibration effects. The v-t plot gave a surface area 

which was very close to the BET values; it also indicated an absence of micropores. 

While the Medek method gave a micropore distribution, its validity is doubtful. 

Considering the similarity of the nitrogen and Freon CI pore size distributions, 

they are likely to give a reasonable picture of the true porosity. The modelless 

method is difficult to interpret without having some idea about pore shape. Un­

fortunately, it is difficult to infer anything about pore shape without a desorption 

isotherm. 
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The partially oxidized synthetic char is not a common material, but it gives 

isotherms similar to many other microporous substances, like molecular sieves or. 

activated charcoals. In this case, the micropores were large enough so that diffusion 

was not a problem. Not surprisingly, the microporous nature of the material pre­

cluded the use of CI and YZ. The MP method gave what appears to be a reasonable 

distribution. The Medek method gave distributions with much larger pore volumes 

and radii. 

The PSOC-190 is a typical bituminous coal. As with many raw coals, reli­

able determination of particle morphology is difficult at best. The existence of 

micropores which are of the order of molecular dimensions causes molecular sieve 

effects to be extremely important. Also, diffusion into pores of this size may be via 

an activated process. To counter these effects, an adsorptive with small minimum 

molecular dimension and high critical point is generally used for determining the 

isotherm. C02 at 196 or 298K is usually the adsorptive(21) of choice for these coals 

(Figure AIII.3). However, applying the BET analysis to the C02 at 196K isotherm, 

it is seen that, while the adsorptive uptake is quite high, the C value is quite small 

(Table AIII.2). Since the C value indicates the strength of the gas-solid interaction, 

the only possible conclusion that can be drawn is that C02 adsorbs strongly on 

itself. Care must be taken to interpret surface areas in this case. 

Aill.6 Conclusions 

Examination of the isotherms shows that the form of the isotherm is essentially 

independent of the type of adsorptive (for small enough molecules) for a given 

solid. 
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The BET areas were generally consistent with areas calculated by other meth­

ods for non-microporous solids. When micropores are present, the agreement was 

not as good. Of course, interpretation of area on this level is frought with uncer­

tainty. 

The equivalent methods of CI and YZ appear to be the most suitable means 

of obtaining pore size distributions in the mesopore range. The modelless method 

is also quite useful; however, additional information regarding pore shape must 

be obtained or assumed in order to formulate a reasonable picture of the internal 

structure. 

The MP analysis is the method of choice for pore size distributions in the 

micropore range. The Medek method is somewhat questionable. 
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tr a Vuq y 
ADSORBATE SHAPE <12 > to24(cm3) 

fL q 
(cm3/Q mol) (dynes/cm) 

N2 
SPHERO- t6.2 t.73 NO YES 34.65 8.5 
CYLINDRICAL 

Ar SPHERICAL t4.2 t.62 NO NO 28.53 t4.2 

SPHERO-
C02 CYLINDRICAL t9.5 2.59 NO YES 36.36 25.7 

FREON-2t IRREGULAR 40.0 7.4 YES YES 73.15 t8.0 w 
I-' 
0 
I 

Table AIIl.l Properties of the adsorptive gases. 
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ADSORBATE : NITROGEN 

Aen 
Cen 

Vc-1 VM-L Av-t AORK 

(m2/ol (cm3/o l (cm3/ol (m2/ol (m2/ol 

y-ALUMINA 207 260 0,409 211 

OXIDIZED 400 LARGE 0.009 508 SYN-CHAR 

PSOC-190 23 fOO 0.043 34 COAL 

ADSORBATE : ARGON 

AeET 
CeET 

Vc-1 VM-L Av-1 AORK 
(mZ/O) (cm'lo·l (cm3/;) (mZ/9) (m2/;l 

y-ALUMINA 174 52.5 0.546 

OXIDIZED 573 LARGE 0.026 7f4 SYN-CHAR 

PSOC-190 
23 46 0.06 COAL 

ADSORBATE : C02 AT 196 K 

ABET 
Can 

Vc-1 VM-L Av-1 AORK 
(m2/g) (cm3/9) (cm'/;) (m2/g) (m2/gl 

y-ALUMINA 200 ft! 0.166 i61 

OXIDIZED 430 LARGE 0.099 579 MOO SYN-CHAR 

PSOC-190 148 14.3 0.08 t62 COAL 

ADSORBATE FREON-21 

ABET 
Can 

Vc-1 VM·L Av·t AoRK 
(mZ/ol (cm3/;) (cm3/;) (mZ/g) < m2/ol 

y-ALUMINA 205 47 0.377 

OXIDIZED 433 t4 0.206 446 SYN-CHAR 

PSOC-190 
152 8.5 0.162 COAL 

Table AIIl.2 Summary of adsorptive-adsorbate interactions. 
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Figure AIIl.3 Nitrogen, Argon, C02 (196K), and Freon-21 isotherms on oxidized char. 
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Figure Aill.4 Nitrogen, Argon, C02 {196K), and Freon-21 isotherms on PSOC-190 Coal. 
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Appendix IV 

HIGH TEMPERATURE REACTOR 

EQUIPMENT DETAILS 
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AIV .1 Introduction 

This appendix provides details, specifications, and other information on ,the con­

struction of the high temperature reactor. Manufacturers' names, addresses and 

part numbers are also given. 

The major components of the reactor are as follows: the structural frame, 

the air preheater furnace, power supply for the furnace, temperature controller, 

air preheater tube, test section, particle feeder, water-cooled particle injector, and 

particle collector probe. In addition, the following supporting equipment was used: 

the optical pyrometer, suction pyrometer, disappearing filament pyrometer, and the 

data acquisition system. Other minor parts include the vacuum pump, condenser 

unit, slide, various pressure gages, flowmeters, thermocouples, valves, cooling water 

lines and air lines. 

The details of the electronic design of the pyrometer are described in Appendix 

II. The part numbers of the optical equipment will be given in this Appendix. The 

overall layout schematic of the system is shown in Figure AIV.1. 

AIV.2 Structural Frame 

The furnace and the test section are mounted on a steel frame that was designed 

and fabricated at Caltech. It is shown in Figure AIV.2. The structural members 

are angle iron, the various dimensions of which are shown in the figure. The joints 

are arc-welded for integrity. Levelling screws are provided to align the structure. 

AIV .3 Air Prebeater Furnace 

This furnace was purchased from Applied Test Systems, Butler, PA 16003. It 
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is a series 3310 tube type furnace with a maximum temperature rating of 3000°F 

(1650°C). Its tube and external diameters are 4.5in (114.3mm) and 16in (406.4mm) 

respectively. Its height is 21in (533.4mm) inclusive of the insulation layers at the top 

and bottom. It uses 8 Kanthal Super 33 heating elements (Kanthal Corporation, 

Bethel, CT 06801) These 3/6 style elements are capable of prolonged service at 

temperatures as high as 3200°F (1760°C). The elements are llin (279.4mm) long. 

The eight elements are connected in two parallel banks of four elements each. 

The furnace has a single heating zone ·nin (279.4mm) in length. The power re­

quired to run the furnace is 5.25kW at 58 volts (90.Samps). The insulation around 

the radiation cavity is a low "K" factor cast ceramic fiber, capable of service to 

3000°F (1650°C). There is a thin stainless steel shell on the outside of the fur­

nace with one thermocouple port via which the Type B control thermocouple (Pt-

6%Rh/Pt-30%Rh) can be introduced into the heating zone. 

The approximate heat-up time of the furnace, from room temperature to 

1600°C is about 45 minutes. 

AIV .4 Furnace Power Supply 

The furnace power supply was procured from NWL Transformers, Bordentown, NJ 

08505. The schematic of the transformer and the regulating system is shown in 

Figure AIV.3. The unit consists of a SkW, single phase, 60Hz transformer with a 

Thyristor phase angle controller. For safety purposes, the unit is equipped with 

a current limiting device. The level of the output power is determined by the 

signal from the temperature controller (0-SV, D.C.). The magnitude of this signal 

depends on the difference between the control thermocouple signal and the desired 
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set temperature. 

The whole unit is housed in a NEMA I enclosure designed to operate with 

natural convection cooling. Additional fan cooling is not necessary. 

AIV .5 Temperature Controller 

The temperature controller was purchased from Omega Engineering Inc., Stamford, 

CT 06907 (Part Number CN-2001A B-DCl}. It is a microprocessor-based controller 

that accepts the voltage signal from the Type B thermocouple and generates a 0-5 

volt D.C. signal. The magnitude of this signal depends on the difference between 

the thermocouple output and the furnace set temperature. The controller signal is 

sent to the power supply. 

AIV .6 Air Preheater Tube 

Primary air at room temperature is heated in the furnace heating zone before en­

tering the test section. It flows through the heating zone in a cast ceramic tube 

made by the Carborundum Company, Keasbey, NJ 08832 (Matl: Refrax 20). It is 

36in (914.4mm) long. Its internal and external diameters are 4in (101.6mm} and 

4.5in (114.3mm) respectively. This tube is capable of withstanding high temper­

atures while maintaining reasonably high thermal conductivity at those tempera­

tures. Moreover, since its radial thermal conductivity is much higher than its axial 

conductivity, there is not much heat loss to the outside. 

AIV. 7 Test Section 

The actual test section, in which the char is mixed with the hot primary air and 

combusted, is a cylindrical hollow tube 12in (304.Smm) long with a 2in (50.8mm) 
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internal diameter. The wall thickness is 0.5in (12.7mm). It is made of light weight, 

high temperature (up to 1650°C), fibrous ceramic: ZAL 15 (85% alumina; 15% 

silica), supplied by Zircar Fibrous Ceramics, Florida, NY 10921. This material is 

very easily machinable. 

In order to have optical access to the test section, two ground and polished 

plate quartz windows, 9in (228.6mm) long, 0.75in (19mm) wide, and 0.25in (6.4mm) 

thick are mounted in the walls of the ceramic tube diametrically opposite each other. 

The windows allow the light signal from the burning char particles to fall on the 

pyrometer detector and thereafter their temperature can be determined. The quartz 

plates were supplied by U.S. Fused Quartz (Brea, CA 92621). They are glued to 

the ceramic using high temperature alumina cement from Zircar Fibrous Ceramics 

(see address above). 

AIV .8 Particle Feeder 

This fluidized entrainment apparatus was designed and built at Caltech. A 

schematic diagram is shown in Figure AIV.4. The char sample to be injected into 

the furnace is put in a glass test-tube 6in (152.4mm) long with an internal diameter 

of 0.5in (12.7mm). The tube is then sealed from the top with an aluminum adaptor 

that allows entrainment air to be injected into the test-tube. This air fl.ow rate is 

adjusted to give desired char feed rate. The entrained char then leaves the tube via 

a 0.125in (3.175mm) outer diameter steel tube that leads it directly into the test 

section. Since the level of the char in the test-tube decreases with time, the tube is 

mounted on a simple apparatus that moves it up at the desired rate so as to keep 

the level of char constant with respect to the lower edge of the entrainment tube. 
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This apparatus consists of a screw, powered by a small motor (0-120V, 1.5amp, 

2000rpm) via pulleys and belts. The motor rpm is reduced significantly by two 

reduction gears with a combined ratio of 1:60. Motor speed control is achieved by 

controlling the input voltage using a simple transformer. All the small parts for 

this apparatus were obtained from Winifred M. Berg, Fort Rockaway, NY, 11518. 

The base and adaptor were machined at Caltech. 

AIV .9 Particle Injector 

The narrow tube carrying the char particles is introduced to the test section by 

passing it concentrically down the air preheater ceramic tube. To keep the char 

at room temperature, the injector tube is water cooled by a double water jacket. 

The length of the water cooled injector is 42in {1066.Smm}. Its outer wall is then 

insulated using ZAL 15 insulating board cut to the proper geometry. Cooling water 

is introduced directly at the pressure of the mains, without using a pump. Since 

the volume of water needed is not significant, a open loop system is used, the waste 

water being returned to the drain. Diagrams of the injector are shown in Figures 

AIV.5a-c. 

AIV .10 Particle Collector Probe 

This is a triple jacket probe with an outer diameter of 1.0in (25.4mm} and an internal 

diameter of 0.5in (12.7mm). It can be moved to any axial location inside the test 

section tube in order to collect partially burned char at various carbon conversions. 

The two outer jackets carry cooling water. The innermost jacket provides a path 

for a quenching gas (nitrogen or argon) to be introduced along with the char so 



- 340-

that the chemical reaction is terminated immediately upon entry of the char into 

the probe. The quenchi~g gas and the sample are drawn into the probe by suction 

provided by a vacuum pump. The char is collected on a glass fibre filter 47mm in 

diameter {Gelman, Type A/E). This filter sample is then removed and analyzed. 

The length of the probe is 22in (558.8mm). It is attached to a rack and pinion type 

axial slide. A diagram is shown in Figure AIV.6. The steel tubes for the probe and 

the injector were obtained from Tube Sales, Los Angeles, CA 90040. 

AIV .11 Pyrometers 

The design of the Optical Pyrometer has been described earlier. The optical rails, 

carriers, lens holders, and posts were obtained from· Newport Corporation, Fountain 

Valley, CA 92708. The lenses, beam splitter, and precision pin holes were from 

Melles Griot, Irvine, CA 92714. The filters, beam probes, and optical fibres were 

brought from Oriel Corporation, Stratford, CT 06497. The linear positioning slides 

were manufactured by Daedal Corporation (Harrison City, PA 15636). Two such 

stages (Model 4804 M) were used at right angles to give precise control in the X 

and Y directions. A 24in (609.6mm) vertical slide was built at Caltech and used as 

the adjustable Z axis. The various parts, part numbers and the suppliers are listed 

in Table AIV.1. 

The suction pyrometer was designed and built at Caltech. It uses a Type S 

thermocouple (Omega Engineering Inc.) 

The disappearing filament pyrometer was used to find the temperature of a 

fairly dense stream of particles. This was used to verify the temperature obtained 

from the optical pyrometer. 
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AIV .12 Additional Minor Equipment 

These include the vacuum pump, condenser unit, pressure gages, How meters, ther­

mocouples, valves, cooling water lines, air and gas lines, and the exhaust hood. 

The condenser unit was fabricated and built to extract any condensed moisture 

in the line before it passed through the vacuum pump. Various How meters were 

used to monitor the How rates of the primary, entrainment, and dilution gas streams. 

Matheson How meters (Dwyer Instruments Inc., Anaheim, CA 92806) as well as 

pressure drop How meters were used. The latter were used for their flexibility. 

Pressure gages were from Dwyer (Magnahelic type). While 0.25in poly-fto lines 

were used for the gas lines, water lines were of copper. The exhaust hood was 

fabricated at Caltech. 

AIV .13 Data Acquisition 

The light intensity signals from the burning char particles were converted to voltage 

signals in the optical pyrometer. After suitable noise filtering and amplification, 

these signals were sent to the data acquisition system. This consists of a Zenith 148 

Personal Computer with 640K RAM and two 360K floppy drives. The computer 

was equipped with a 8087-2 math co-processor for speed. For data acquisition 

purposes, it was equipped with an A/D converter and a Data Translation DT-

2801A board rated at 20kHz. Data from the pyrometer was dumped via DMA into 

the computer's RAM and later retrieved for analysis. Finally, software programs 

written in Fortran-77 were used to convert the data into temperature measurements. 

Suitable calibration data was used at this point. 
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PART l\'A~1E I PART I'\UMBER MAI'\UF ACTURER 

I 
11 Filters I 5i67o, 57i5o Oriel Corp. I I 

1: Beam Probes I ii64G Oriel Corp. I 
j1 Fused Silica Lens I 41:?54 Oriel Corp. I 
ii I 

i1 Plano-Convex Lens ! 01 LPX 219 Melles Griot 

11 Plano-Convex Lens 01 LPX 113 Melles Griot 

I j Plano-Conn•x Lens 01 LPX 041 Melles Griot 

\ Cube Beam Splitter I 03 BSC 029 Melles Griot 
I 
I 

Melles Griot i Precision Pin Holes 04 PlP 013 
I 

i; Optical Rails I ~lRL-6, MRL-12 Newport Corp. 

:1 c . I 
I arners . !\1TC, MTF Newport Corp. 

Lens Holders LHl-P, LHl-1 Newport Corp. 
I 

1 
Lens \1ounts L~l-1 Newport Corp. 

ii 
Posts I ~lSP-1 Newport Corp. 

Post Holders I ~1PH-l Newport Corp. 
I I 

1

: Silicon Photodiodes j Sl336-5BQ Hamamatsu Corp. 

J Linear Slides 4804 M Daedal Corp. I 

Table AIV.1 Details of the Optical Pyrometer components. 
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Appendix V 

PROGRAMS FOR 

GAS ADSORPTION EXPERIMENTS 
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This Appendix gives the listings of the various computer programs used in the 

data acquisition and interpretation of gas adsorption data. 

Two similar but distinct systems were used for the gas adsorption experiments. 

Both systems were used to determine BET surface areas, pore volume distributions, 

and densities of various char samples. Basically this involved monitoring the pres­

sure in the sample volume as a function of time (data points every 10 seconds or 

so) for a period of approximately two hours. The speed of data acquisition was 

not important. In each system, an analog pressure signal (0-5V) from the pressure 

transducer was first digitized and then stored in the computer. 

The first system used a DASCONl data acquisition board manufactured by 

Metrabyte Corporation, Taunton, MA 02780. It was driven by a Zenith 150 series 

PC. The other system used a Zenith 148 series PC to drive a DT2801-A board 

made by Data Translation Inc., Marlborough, MA 01752. The specifications of 

both boards are given in Table AV.1. 

Software programs provided by the respective manufacturers were modified 

to adapt them to the existing hardware. The modified driver programs for the 

DASCONl and DT2801-A boards are RT2.BAS and GETBET.BAS, respectively. 

Once the raw data are obtained, further manipulation is carried out according to 

the scheme shown in Figure AV.1. The relevant program listings follow. 
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DT2801-A DASCONl 

A/D Inputs 16SE/8DI 4SE/4DI 

A/D Resolution 12-bits 12-bits 

Voltage Input ±lOV ±2V 

Prog. Gain 1,2,4,8 No 

A/D Throughput 27.5kHz 30Hz 

D /A Channels 2 2 

D /A Resolution 12-bits 12-bit 

D /A Throughput 33kHz 30Hz 

Digital I/O 16 lines 12 lines 

Screw panel DT707 STAOl 

DMA Yes No 

Prog. Clock Yes Yes 

Ext. Trigger Yes Yes 

Table AV.1 Specifications of the Data Acquisition Boards. 
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Experimental Data 

RT2.BAS 
or 

GETBET.BAS 

Raw Data 
(Pressure Tl. Time) 

_ DASCONl.ADR ,.._ ___ I 

GET.ADR · 

Calibn.tion 
Experiments 

Calib,~Uon ~ I INST.BAS I ~ Room Tempentun Coefficients .----- .,._ ___ , Dead Volume 
Vapour p,_.ure 

I ISO.DAT I• 

- J, 

E:] 
l 

I RLINPLT.LNK I 

" I LINPLT.BAS I 
l 

BET.DAT 

l 

El 
l 

BET Surface Area 
Micromoles Gas Adsorbed 

BET C Value 

Figure AV.l Flow Diagram for the analysis of gas adsorption experiments. 
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AV.I RT2.BAS 

10' REAL TIME PLOTTING AND LOGGING PROGRAM 
20, 
30 'This program drives the METRABYTE DASCONl data acquisition system. Note 
40 'that the DEF SEG values occuring here had to he changed to accomodate 
50 'the ZENITH 152 PC. This program allows the user to select which A/D 
60 'are to he displayed for real-time plotting on the screen~ The user 
70 'may also store data from each channel in user-specified files. 
80 'The program requires a *.SCN file plus a *.PAR file which are created 
90 'by MAKEGRAF.BAS. It also requires the presence of LINPLT.BAS, RLINPLT.LNK 
100 'DASCONl.ADR and DASCONl.BIN. 
110' 
120 CLEAR, 32768! 
130 N = 6 * 60 * 5 
140 , 
150 KEY OFF 
160 TRUE= l:FAL = 0 
170 CLS:SCREEN o,o,o 

'size of storage arrays. 

180 PRINT" ---REAL TIME ANALOG 1/0 PLOT---
190 LOCATE 5,1 
200 INPUT "ENTER SCREEN FILE AS !dsk:J filename (no extension) ";FILX$ 
210 IF FILX$ = "" THEN 170 
220 LOCATE 8,1 
230 DIM C%( 4) 
240 PRINT" CHANNEL(S) TO BE DISPLAYED--
250 PRINT 
260 INPUT" CHANNEL 0 (Yes or No)" ;CHO$ 
270 IF MID$(CH0$,1,l)="Y" THEN C%(O)=TRUE ELSE C%(0}=FAL 
280 INPUT" CHANNEL 1 (Yes or No)" ;CH1$ 
290 IF MID$(CH1$,1,l)="Y" THEN C%(1)=TRUE ELSE C%(1)=FAL 
300 INPUT" CHANNEL 2 (Yes or No)" ;CH2$ 
310 IF MID$(CH2$,1,l)="Y" THEN C%(2)=TRUE ELSE C%(2)=FAL 
320 INPUT" CHANNEL 3 (Yes or No)" ;CH3$ 
330 IF MID$(CH3$,1,l)="Y" THEN C%(3)=TRUE ELSE C%(3)=FAL 
340 LOCATE 16,l:PRINT SPACE$(78);:LOCATE 16,1 
350 INPUT "ENTER SCAN RATE IN SECONDS ll to 3600] ";SCANRATE% 
360 IF SCANRATE% < 1 OR SCANRATE% > 3600 THEN 340 
370 ' 
380 'Setup the display and load the display program and scale parameters. 
390 , 
400 DEF SEG = &H2000 
410 BLOAD "DASCONl.BIN",O 
420 DASCONl = 0 
430 DIM DI0%(8) 'data array ANALOG I/O 
440 MD% = 0 'free scan mode 4 channels 
450 OPEN "I" ,#1,"DASCONl.ADR":INPUT #1,BASADD%:CLOSE #1 'base address 
460 CH% = 0 'not used in mode 0 
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470 , 
480 'Load the screen display and set the parameters for data scaling 
490 , 
500 CLS:SCREEN 2 
510 DEF SEG = &HB800 
520 BLOAD FILX$+" .SCN" 
530 DEF SEG 
540 OPEN FILX$+" .PAR" AS #1 LEN=30 
550 FIELD #1,15 AS PARX$, 15 AS PARY$ 
560 GET #1,1 
570 SX = CVS(PARX$):SY = CVS(PARY$) 
580 GET #1,2 
590 DX= CVS(PARX$):DY = CVS(PARY$) 
600 GET #1,3 
610 X2 = CVS(PARX$):Y2 = CVS(PARY$) 
620 GET #1,4 . 
630 Xl = CVS(PARX$):Yl = CVS(PARY$) 
640 GET #1,5 
650 QX = CVS(PARX$):QY = CVS(PARY$) 
660 GET #1,6 
670 OX= CVS(PARX$):0Y = CVS(PARY$) 
680 GET #1,7 
690 XA = CVS(PARX$):YA = CVS(PARY$) 
700 GET #1,8 
710 XE= CVS(PARXS):YE = CVS(PARY$) 
720 CLOSE #1 
740 , 

'graphics display segment 
'.SCN is the screen display 

'parameter file for .SCN 
'single prescion fields 

'scale factors 

'slope variables for axis 

'X, Y maximum values on graph 

'X, Y minimum values on graph 

'X, Y screen scale factor 

~graph starting point 

'data positional scale factors 

'scale x,y resolution 

750 'This is the section where the data is scanned and plotted for each 
760 'channel. The display sets a different graphic character for each 
770 'channel. This is added to the screen on line 23. 
780 , 
800 DIM OUTO%(N) , TIME%(N) , OUT1%(N) , OUT2%(N) , OUT3%(N) 
810 STIME$ = TIME$:SDATE$ = DATE$ 'start time/date 
820 LOCATE 23,lO:PRINT "START TIME IS ";STIME$;" START DATE IS ";SDATE$; 
830 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
840 PRINT "Fl= SAVE SCREEN F2 =END"; 
850 ON KEY(l) GOSUB 1200 
860 ON KEY(2) GOSUB 1580 
870 KEY(l) ON:KEY(2) ON 
880 , 
890 'One second delay loop 
900 , 

910 DEF SEG = SG 
920 XAXIS =0 
930 GOTO 1000 
950 FOR SECDLY% = 1 TO SCANRATE% 
960 TEMT$=RIGHT$(TIME$,2) 
970 IF RIGHT$(TIME$,2)=TEMT$ THEN GOTO 970 
980 NEXT SECDLY% 
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990 , 
1000 DEF SEG = &H2000 
1010 CALL DASCONl (MD%, CH%, DI0%(0), DI0%(8), BASADD3) 
1020 FOR I= 0 TO 3 
1030 IF C%(I) = FALSE THEN 1110 
1040 PS= 1 
~050 X = XA + SX * XAXIS *SCANRATE% 
1060 Y =YA - SY* DIO%(I) 
1070 IF X < 9 ORY< 9 THEN PS= 0 
1080 IF X > 271ORY>151 THEN PS= 0 
1090 IF PS= 0 THEN 1110 
1100 CIRCLE (QX*X+OX,QY*Y+OY),I 
1110 NEXT I 
1120 XAXIS = XAXIS + 1 
1130 IF XAXIS = 32766 THEN GOTO 1580 
1140 TIME%(XAXIS) = (XAXIS - 1) * SCANRATE% 
1150 OUTO%(XAXIS) = DI0%(0) 
1160 OUT1%(XAXIS) = DI0%(1) 
1170 OUT2%(XAXIS) = DI0%(2) 
1180 OUT3%(XAXIS) = DI0%(3) 
1190 GOTO 950 
1200 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1210 INPUT ;"ENTER SCREEN NAME AS [dsk:J filena.me (no extension) - ";SFLX$ 
1220 OPEN SFLX$+".PAR" AS #1 LEN=30 
1230 FIELD #1,15 AS PARX$,15 AS PARY$ 
1240 FOR XX%=1TO14:LSET PARX$ ="XXX":LSET PARY$ ="YYY" 
1245 PUT #1,XX%:NEXT XX%: CLOSE #1 
1250 OPEN SFLX$+" .PAR" AS #1 LEN=30 
1260 FIELD #1,15 AS PARX$,15 AS PARY$ 
1270 LSET PARX$ = MKS$(SX) 
1280 LSET PARY$ = MKS$(SY) 
1290 PUT #1,1 
1300 LSET PARX$ = MKS$(DX) 
1310 LSET PARY$ = MKS$(DY) 
1320 PUT #1,2 
1330 LSET PARX$ = MKS$(X2) 
1340 LSET PARY$ = MKS$(Y2) 
1350 PUT #1,3 
1360 LSET PARX$ = MKS$(Xl) 
1370 LSET PARY$ = MKS$(X2) 
1380 PUT #1,4 
1390 LSET PARX$ = MKS$(QX) 
1400 LSET PARY$ = MKS$(QY) 
1410 PUT #1,5 
1420 LSET PARX$ = MKS$(0X) 
1430 PUT #1,6 
1440 LSET PARX$ = MKS$(XA) 
1450 LSET PARY$ = MKS$(YA) 
1460 PUT #1,7 
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1470 XE = 1/ ABS(X2-Xl):LSET PARX$ = MKS$(XE} 
1480 XE= 1/ABS(Y2-Yl):LSET PARY$ = MKS$(YE) 
1490 PUT #1,8 
1500 CLOSE #1 
1510 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1520 DEF SEG = &HB800 'screen buffer 
1530 BSAVE SFLX$+" .SCN" ,O,&H4000 '16 k buffer 
1540 DEF SEG 
1550 PRINT "FILE ";SFLX$;"SAVED HIT ANY KEY TO GO ON";:LOCATE 20,1 
1560 KX$ = INKEY:IF KX$ =""THEN 1560 
1570 RETURN 1580 
1580 LOCATE 25,l:PRINT SPACE${78);:LOCATE 25,1 
1590 PRINT" TERMINATED AT ";TIME$;" ON ";DATE$;:LOCATE 23,1 
1595 , 
1597 'This is the part of the program which .stores the data on disk. 
1598 'Note that channel 3 is automatically stored. 
1599 , 
1600 KEY(l) OFF:KEY(2) OFF 
1610 CLS:SCREEN 0,0,0 
1620 LOCATE 1,1 
1630 INPUT "Should output from channel 0 be stored on disk : ";RESP$ 
1640 IF RESP$ = "n" GOTO 1840 
1650 LOCATE 3,1 
1660 INPUT "Enter name of storage data file !dsk: ]filename.dat" ;FILDATO$ 
1670 OPEN FILDATO$ AS #1 LEN = 30 
1680 FIELD #1, 15 AS X$, 15 AS Y$ 
1690 LOCATE 5,1 
1700 INPUT "Line, Dot or No plot mode (L,D,N)? ";A$ 
1710 IF A$="L" OR A$="1" THEN M=l:GOTO 1750 
1720 IF A$="N" OR AS="n" THEN M=2:GOTO 1750 
1730 IF A$="D" OR AS="d" THEN M=O:GOTO 1750 
1740 LOCATE 11,l:PRINT"RE-ENTER" :LOCATE 9,l:PRINT SPC(79):GOTO 1690 
1750 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
1760 LSET XS= MKS$(XAXIS):LSET Y$=MKS$(M) 
1770 PUT #1,1 
1780 FOR 1=2 TO XAXIS+l 
1790 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UT0%(1-1)) 
1800 PUT #1,I 
1810 NEXT I 
1820 CLOSE #1 
1830 CLS 
1840 LOCATE 3,1 
1850 INPUT "Should output from channel 1 be stored on disk. • ;RESP$ 
1860 IF RESP$= "n" GOTO 2060 
1870 LOCATE 5,1 
1880 INPUT "Enter name of storage data file [dsk:]filename.dat";FILDAT1$ 
1890 OPEN FILDAT1$ AS #1 LEN = 30 
1900 FIELD #1, 15 AS X$, 15 AS Y$ 
1910 LOCATE 7,1 
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1920 INPUT "Line, Dot or No plot mode (L,D,N)? •;A$ 
1930 IF A$="L" OR A$="1" THEN M=l:GOTO 1970 
1940 IF A$="N" OR A$="n" THEN M=2:GOTO 1970 
1950 IF A$="D" OR A$="d" THEN M=O:GOTO 1970 
1960 LOCATE 11,l:PRINT"RE-ENTER":LOCATE 9,l:PRINT SPC(79):GOTO 1910 
1970 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
1980 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
1990 PUT #1,1 
2000 FOR I=2 TO XAXIS+ 1 
2010 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UT1%(I-1)) 
2020 PUT #1,I 
2030 NEXT I 
2040 CLOSE #1 
2050 CLS 
2060 LOCATE 5,1 
2070 INPUT •should output from channel 2 be stored on disk. • ;RESP$ 
2080 IF RESP$ = •n" GOTO 2290 
2090 LOCATE 7,1 
2100 INPUT •Enter name of storage data file jdsk:]filename.dat";FILDAT1$ 
2110 OPEN FILDAT1$ AS #1 LEN = 30 
2120 FIELD #1, 15 AS X$, 15 AS Y$ 
2130 LOCATE 9,1 
2140 INPUT •Line, Dot or No plot mode (L,D,N)? •;A$ 
2150 IF A$="L• OR A$=•1• THEN M=l:GOTO 2190 
2160 IF A$=•N" OR A$="n" THEN M=2:GOTO 2190 
2170 IF A$=•D• OR A$="d" THEN M=O:GOTO 2190 
2180 LOCATE 11,l:PRINT" RE-ENTER" :LOCATE 9,l:PRINT SPC(79):GOTO 2140 
2190 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2200 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
2210 PUT #1,1 
2220 FOR I= 2 TO XAXIS+l 
2230 LSET X$=MKS$(TIME%(I-1)): LSET Y$=MKS$(0UT2%(I-1)) 
2240 PUT #1,I 
2250 NEXT I 
2260 CLOSE #1 
2270 CLS 
2280 LOCATE 9,1 
2290 PRINT "Output from channel 3 will be stored on disk." 
2300 LOCATE 10,1 
2310 INPUT •Enter name of storage data file jdsk:]filename.dat•;FILDAT1$ 
2320 OPEN FILDAT1$ AS #1 LEN = 30 
2330 FIELD #1, 15 AS X$, 15 AS Y$ 
2340 INPUT "Line, Dot or No plot mode (L,D,N) ? ";A$ 
2350 IF A$="L" OR A$="1" THEN M=l:GOTO 2390 
2360 IF A$="N" OR A$="n• THEN M=2:GOTO 2390 
2370 IF A$="D" OR A$="d" THEN M=O:GOTO 2390 
2380 LOCATE 11,l:PRINT"RE-ENTER":LOCATE 9,l:PRINT SPC(79):GOTO 2340 
2390 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2400 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
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2410 PUT #1,1 
2420 FOR 1=2 TO XAXIS+l 
2430 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UT3%(I-1)) 
2440 PUT #1,I 
2450 NEXT I 
2460 CLOSE #1 
2470 CLS:LOCATE 12,28:PRINT"DONE":LOCATE 25,1 
2480 END 
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AV.2 GETBET.BAS 

10 ' SLOW REAL TIME PLOTTING AND LOGGING PROGRAM 
20' FEBRUARY 20 1986 
30, 
40 'This program drives the DATA TRANSLATION board DT 2801-A on the 
50 'Zenith 148 system. It is used to obtain data from the SETRA Digital 
60 'Pressure Gage for gas adsorption measurements. It plots the data 
70 'points (pressure as a function of time) in real time on screen using 
80 'MAKEGRAF.BAS which makes PRES.SCN and PRES.PAR. It acquires data 
90 'from 8 A/D channels by sequentially scanning them. Data from selected 
100 'channels can be stored in user defined files. 
110, 
120, 
130 CLEAR, 32768! 
140 N = 360 'sise of storage array for actual input data. 
150 , 
160 GAIN(O)=l: GAIN(1)=2: GAIN(2)=4: GAIN(3)=8 
170 ADSCHANNEL=O: ADECHANNEL=7 
180 NCONVERSIONS#=8 
190 , 
200 INPUT• A/D GAIN (TYPE 0,1,2 OR 3)•;ADGAIN 
210 IF ADGAIN < 0 THEN GOTO 200 
220 IF ADG AIN > 3 THEN GOTO 200 
230 , 
240 KEY OFF 
250 TRUE=l: FAL=O 
260 CLS:SCREEN 0,0,0 
270 PRINT • REAL TIME ANALOG 1/0 PLOT --
280 LOCATE 5,1 
290 INPUT •ENTER SCREEN DISPLAY FILE [dsk:] filename (no extension) •;FILX$ 
300 IF FILX$ = .. THEN 260 
310 LOCATE 8,1 
320 DIM C%(8) 
330 PRINT• CHANNEL(S) TO BE DISPLAYED--
340 PRINT 
350 INPUT• CHANNEL 0 (Yes or No)• ;CHO$ 
360 IF MID$(CH0$,1,l)=•Y- THEN C%(O)=TRUE ELSE C%(0)=FAL 
370 INPUT• CHANNEL 1 (Yes or No)• ;CH1$ 
380 IF MID$(CH1$,1,l)=•Y- THEN C%(1)=TRUE ELSE C%(1)=FAL 
390 INPUT• CHANNEL 2 (Yes or No)• ;CH2$ 
400 IF MID$(CH2$,1,l)=•Y- THEN C%(2)=TRUE ELSE C%(2)=FAL 
410 INPUT• CHANNEL 3 (Yes or No)• ;CH3$ 
420 IF MID$(CH3$,1,l)=•Y- THEN C%(3)=TRUE ELSE C%(3)=FAL 
430 INPUT• CHANNEL 4 (Yes or No)• ;CH4$ 
440 IF MID$(CH4$,1,l)=•Y- THEN C%(4)=TRUE ELSE C%(4)=FAL 
450 INPUT" CHANNEL 5 (Yes or No)• ;CH5$ 
460 IF MID$(CH5$,1,l)=•Y- THEN C%(5)=TRUE ELSE C%(5)=FAL 
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470 INPUT" CHANNEL 6 (Yes or No)" ;CH6$ 
480 IF MID$(CH6$,1,l)="Y" THEN C%(6}=TRUE ELSE C%(6)=FAL 
490 INPUT" CHANNEL 7 (Yes or·No)" ;CH7$ 
500 IF MID$(CH7$,1,l)="Y" THEN C%(7)=TRUE ELSE C%(7)=FAL 
510 LOCATE 20,l:PRINT SPACE$(78);:LOCATE 20,1 
520 INPUT "ENTER SCAN RATE IN SECONDS [1to3600] ";SCANRATE% 
530 IF SCANRATE% < 1 OR SCANRATE% > 3600 THEN 510 
540 ' 
550 'Setup the display and load the display program and scale parameters. 
560 ' 
570 DEF SEG = &H2000 
580 OPEN "I" ,#1,"GET.ADR":INPUT #1,BASADD%:CLOSE #1 'boards base address 
590 • 

600 'Load the screen display and set the parameters for data scaling 
610 ' 
620 CLS:SCREEN 2 
630 DEF SEG = &HB800 'graphics display segment 
640 BLOAD FILX$+" .SCN" '.SCN is the screen display 
650 DEF SEG 
660 OPEN FILX$+" .PAR" AS #1 LEN=30 'parameter file for .SCN 
670 FIELD #1,15 AS PARX$, 15 AS PARY$ 'Bingle prescion fields 
680 GET #1,1 
690 SX = CVS(PARX$):SY = CVS(PARY$) 'scale factors 
700 GET #1,2 
710 DX = CVS(PARX$):DY = CVS(PARY$) 'slope variables for axis 
720 GET #1,3 
730 X2 = CVS(PARX$):Y2 = CVS(PARY$) 'X, Y maximum values on graph 
740 GET #1,4 
750 Xl = CVS(PARXS):Yl = CVS(PARY$) 'X, Y minimum values on graph 
760 GET #1,5 
770 QX = CVS(PARX$):QY = CVS(PARY$) 'X, Y saeen scale factor 
780 GET #1,6 
790 OX = CVS(PARX$):0Y = CVS(PARY$) 
800 GET #1,7 
810 XA = CVS(PARX$):YA = CVS(PARY$) 
820 GET #1,8 
830 XE= CVS(PARX$):YE = CVS(PARY$) 
840 CLOSE #1 
850 , 

860 ' 

'graph starting point 

'data positional scale factors 

'scale x,y resolution 

870 'This is the section where the data is scanned and plotted for each 
880 'channel. The display sets a different graphic character for each 
890 'channel. This is added to the screen on line 23. 
900 ' 
910 ' 
920 DIM OUTO%(N) , TIME%(N) , OUT1%(N) , OUT2%(N) , OUT3%(N) 
930 DIM OUT4%(N),OUT5%(N),OUT6%(N),OUT7%(N),ADH%(8),ADL%(8) 
940 STIME$ = TIME$:SDATE$ = DATE$ 'start time/date 
950 LOCATE 23,lO:PRINT "START TIME IS ";STIME$;" START DATE IS ";SDATE$; 
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960 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
970 PRINT "Fl = SAVE SCREEN F2 = END"; 
980 ON KEY(l) GOSUB 1370 
990 ON KEY(2) GOSUB 1760 
1000 KEY(l) ON:KEY(2) ON 
1010 , 
1,020 'One second delay loop 
1030 , 
1040 DEF SEG = SG 
1050 XAXIS =0 
1060 GOTO 1130 
1070 'Start loop : 
1080 FOR SECDLY% = 1 TO SCANRATE% 
1090 TEMT$=RIGHT$(TIME$,2) 
1100 IF RIGHT$(TIME$,2)=TEMT$ THEN GOTO 1100 
1110 NEXT SECDLY% 
1120 , 
1130 DEF SEG = &H2000 
1140 GOSUB 3570 
1150 FOR I = 0 TO 7 
1160 IF C%(1) = FAL THEN 1240 
1170 PS= 1 
1180 X = XA + SX * XAXIS * SCANRATE% 
1190 Y =YA - SY* (ADL%(1+1)+ ADH%(1+1) * 256) 
1200 IF X < 9 OR Y < 9 THEN PS = 0 
1210 IF X > 271 OR Y > 151 THEN PS = 0 
1220 IF PS = 0 THEN 1240 
1230 CIRCLE (QX* X+OX,QY* Y+OY),I 
1240 NEXT I 
1250 XAXIS = XAXIS + 1 
1260 IF XAXIS = 32766 THEN GOTO 1760 
1270 TIME%(XAXIS) = (XAXIS - 1) * SCANRATE% 
1280 OUTO%(XAXIS) = ADL%(l)+ADH%(1)* 256 
1290 OUT1%(XAXIS) = ADL%(2)+ADH%(2)* 256 
1300 OUT2%(XAXIS) = ADL%(3)+ADH%(3)* 256 
1310 OUT3%(XAXIS) = ADL%(4)+ADH%(4)* 256 
1320 OUT4%(XAXIS) = ADL%(5)+ADH%(5)* 256 
1330 OUT5%(XAXIS) = ADL%(6}+ADH%(6)* 256 
1340 OUT6%(XAXIS) = ADL%(7)+ADH%(7)* 256 
1350 OUT7%(XAXIS) = ADL%(8)+ADH%(8)* 256 
1360 GOTO 1080 
1370 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1380 INPUT ;"ENTER SCREEN NAME AS [dsk:J filename (no ext.) -- •;SFLX$ 

1390 OPEN SFLX$+" .PAR" AS #1 LEN=30 
1400 FIELD #1,15 AS PARX$,15 AS PARY$ 
1410 FOR XX%=1 TO 14: LSET PARX$="XXX" 
1420 LSET PARY$="YYY": PUT #1,XX%: NEXT XX%: CLOSE #1 
1430 OPEN SFLX$+" .PAR" AS #1 LEN=30 
1440 FIELD #1,15 AS PARX$,15 AS PARY$ 



1450 LSET PARX$ = MKS$(SX) 
1460 LSET PARY$ = MKS$(SY) 
1470 PUT #1,1 
1480 LSET PARX$ = MKS$(DX) 
1490 LSET PARY$ = MKS$(DY) 
1500 PUT #1,2 
1510 LSET PARX$ = MKS$(X2) 
1520 LSET PARY$ = MKS$(Y2) 
1530 PUT #1,3 
1540 LSET PARX$ = MKS$(Xl) 
1550 LSET PARY$ = MKS$(X2) 
1560 PUT # 1,4 
1570 LSET PARX$ = MKS$(QX) 
1580 LSET PARY$ = MKS$(QY) 
1590 PUT #1,5 
1600 LSET PARX$ = MKS$(0X) 
1610 PUT #1,6 
1620 LSET PARX$ = MKS$(XA) 
1630 LSET PARY$ = MKS$(YA) 
1640 PUT #1,7 
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1650 XE= 1/ABS(X2-Xl):LSET PARX$ = MKS$(XE) 
1660 XE= 1/ABS(Y2-Yl):LSET PARY$ = MKS$(YE) 
1670 PUT #1,8 
1680 CLOSE #1 
1690 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1700 DEF SEG = &HB800 'screen buffer 
1710 BSAVE SFLX$+• .SCN" ,O,&H4000 '16 k buffer 
1720 DEF SEG 
1730 PRINT "FILE •;SFLX$;• SAVED HIT ANY KEY TO GO ON";:LOCATE 20,l 
1740 KX$ = INKEY$:IF KX$ = .. THEN 1740 
1750 RETURN 1760 
1760 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1770 PRINT" TERMINATED AT •;TIME$;• ON •;DATE$;:LOCATE 23,1 
1780 KEY(l) OFF:KEY(2) OFF 
1790 CLS:SCREEN 0,0,0 
1800 LOCATE 1,1 
1810 INPUT "Should output from channel 0 be stored on disk • ;RESP$ 
1820 IF RESP$= •n" GOTO 2020 
1830 LOCATE 3,1 
1840 INPUT "Enter name of storage data file !dsk:Jfilename.dat";FILDATO$ 
1850 OPEN FILDATO$ AS #1 LEN = 30 
1860 FIELD #1, 15 ASX$, 15 AS Y$ 
1870 LOCATE 5,1 
1880 INPUT "Line, Dot or No plot mode (L,D,N) •;A$ 
1890 IF A$="L" OR A$="1" THEN M=l:GOTO 1930 
1900 IF A$="N" OR A$="n" THEN M=2:GOTO 1930 
1910 IF A$="D" OR A$=•d" THEN M=O:GOTO 1930 
1920 LOCATE 11,l:PRINT"RE-ENTER" :LOCATE 9,l:PRINT SPC(79):GOTO 1870 
1930 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
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1940 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
1950 PUT #1,l 
1960 FOR I=2 TO XAXIS+l 
1970 LSET X$=MKS$(TIME%(1-l)):LSET Y$=MKS$(0UTO%(I-1)) 
1980 PUT #1,I 
1990 NEXT I 
2000 CLOSE #1 
2010 CLS 
2020 LOCATE 3,1 
2030 INPUT "Should output from channel 1 be stored on disk. " ;RESP$ 
2040 IF RESP$= "n" GOTO 2240 
2050 LOCATE 5,1 
2060 INPUT "Enter name of storage data file !dsk:]file.dat";FILDAT1$ 
2070 OPEN FILDAT1$ AS #1 LEN= 30 
2080 FIELD #1, 15 ASX$, 15 AS Y$ 
2090 LOCATE 7,1 
2100 INPUT "Line, Dot or No plot mode (L,D,N) ";AS 
2110 IF AS="L" OR AS="l" THEN M=l:GOTO 2150 
2120 IF A$="N" OR A$="n" THEN M=2:GOTO 2150 
2130 IF AS="D" OR A$="d" THEN M=O:GOTO 2150 
2140 LOCATE 11,l:PRINT"R~-ENTER" :LOCATE 9,l:PRINT SPC(79):GOTO 2090 
2150 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2160 LSET XS = MKS$(XAXIS):LSET Y$=MKS$(M) 
2170 PUT #1,1 
2180 FOR 1=2 TO XAXIS+l 
2190 LSET XS=MKS$(TIME%(I-l)):LSET Y$=MKSS(OUT1%(I-1)) 
2200 PUT #1,I 
2210 NEXT I 
2220 CLOSE #1 
2230 CLS 
2240 LOCATE 5,1 
2250 INPUT "Should output from channel 2 be stored on disk. • ;RESP$ 
2260 IF RESP$ = "n" GOTO 2460 
2270 LOCATE 7,1 
2280 INPUT "Enter name of storage data file !dsk: ]file.dat" ;FILDAT2S 
2290 OPEN FILDAT2$ AS #1 LEN = 30 
2300 FIELD #1, 15 ASX$, 15 AS Y$ 
2310 LOCATE 9,1 
2320 INPUT "Line, Dot or No plot mode (L,D,N) ";AS 
2330 IF A$="L" OR A$="l" THEN M=l:GOTO 2370 
2340 IF A$="N" OR AS="n" THEN M=2:GOTO 2370 
2350 IF AS="D" OR AS="d" THEN M=O:GOTO 2370 
2360 LOCATE 11,l:PRINT"RE-ENTER":LOCATE9,l:PRINT SPC{79):GOTO 2090 
2370 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2380 LSET XS = MKS$(XAXIS):LSET Y$=MKS$(M) 
2390 PUT #1,1 
2400 FOR I= 2 TO XAXIS+l 
2410 LSET X$=MKS$(TIME%(I-l)): LSET Y$=MKS$(0UT2%(I-l)) 
2420 PUT #1,I 



2430 NEXT I 
2440 CLOSE #1 
2450 CLS 
2460 LOCATE 7,1 
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2470 INPUT "Should output from channel 3 be stored on disk.• ;RESP$ 
2480 IF RESP$ = "n" GOTO 2660 
2490 LOCATE 11,1 
2500 INPUT "Enter name of storage data file [dsk:]file.dat";FILDAT3$ 
2510 OPEN FILDAT3$ AS #1 LEN= 30 
2520 FIELD #1, 15 AS X$, 15 AS Y$ 
2530 INPUT "Line, Dot or No plot mode (L,D,N) ";A$ 
2540 IF A$="L" OR A$="1" THEN M=l:GOTO 2580 
2550 IF A$="N" OR A$="n" THEN M=2:GOTO 2580 
2560 IF A$="D" OR A$="d" THEN M=O:GOTO 2580 
2570 LOCATE 11,l:PRINT" RE-ENTER" :LOCATE 9,l:PRINT SPC(79):GOTO 2090 
2580 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2590 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
2600 PUT #1,1 
2610 FOR I=2 TO XAXIS+l 
2620 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UT3%(I-1)) 
2630 PUT #1,I 
2640 NEXT I 
2650 CLOSE #1 : CLS 
2660 LOCATE 9,1 
2670 INPUT "Should output from channel 4 be stored on disk : ";RESP$ 
2680 IF RESP$= "n" GOTO 2880 
2690 LOCATE 11,1 
2700 INPUT "Enter name of storage data file [dsk:]file.dat";FILDAT4$ 
2710 OPEN FILDAT4$ AS #1 LEN = 30 
2720 FIELD # 1, 15 AS X$, 15 AS Y$ 
2730 LOCATE 13,1 
2740 INPUT "Line, Dot or No plot mode (L,D,N) ";A$ 
2750 IF A$="L" OR A$="1" THEN M=l:GOTO 2790 
2760 IF AS="N" OR A$="n" THEN M=2:GOTO 2790 
2770 IF A$="D" OR A$="d" THEN M=O:GOTO 2790 
2780 LOCATE 11,l:PRINT"RE-ENTER":LOCATE 9,l:PRINT SPC(79):GOTO 2730 
2790 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
2800 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
2810 PUT #1,1 
2820 FOR I=2 TO XAXIS+l 
2830 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UTO%(I-1)) 
2840 PUT #1,I 
2850 NEXT I 
2860 CLOSE #1 
2870 CLS 
2880 LOCATE 11,1 
2890 INPUT "Should output from channel 5 be stored on disk. • ;RESP$ 
2900 IF RESP$ = "n" GOTO 3100 
2910 LOCATE 13,1 
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2920 INPUT "Enter name of storage data file !dsk:]file.dat";FILDAT5$ 
2930 OPEN FILDAT5$ AS #1 LEN = 30 
2940 FIELD #1, 15 AS X$, 15 AS Y$ 
2950 LOCATE 15,1 
2960 INPUT "Line, Dot or No plot mode (L,D,N) ";A$ 
2970 IF A$="L" OR A$="1" THEN M=l:GOTO 3010 
2980 IF A$="N" OR A$="n" THEN M=2:GOTO 3010 
2990 IF A$="D" OR A$="d" THEN M=O:GOTO 3010 
3000 LOCATE 11,l:PRINT"RE-ENTER":LOCATE9,l:PRINT SPC(79):GOTO 2950 
3010 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
3020 LSET X$ = MKS${XAXIS):LSET Y$=MKS$(M) 
3030 PUT #1,1 
3040 FOR I=2 TO XAXIS+l 
3050 LSET X$=MKS$(TIME%(I-l)}:LSET Y$=MKS$(0UT1%(I-1)) 
3060 PUT #1,I 
3070 NEXT I 
3080 CLOSE #1 
3090 CLS 
3100 LOCATE 13,1 
3110 INPUT "Should output from channel 6 be stored on disk. " ;RESP$ 
3120 IF RESP$ = "n" GOTO 3310 
3130 LOCATE 15,1 
3140 INPUT "Enter name of storage data file ldsk:]file.dat";FILDAT6$ 
3150 OPEN FILDAT6$ AS #1 LEN = 30 
3160 FIELD #1, 15 ASX$, 15 AS Y$ 
3170 LOCATE 17,1 
3180 INPUT "Line, Dot or No plot mode (L,D,N) ";A$ 
3190 IF A$="L" OR A$="1" THEN M=l:GOTO 3230 
3200 IF A$="N" OR A$="n" THEN M=2:GOTO 3230 
3210 IF A$="D" OR A$="d" THEN M=O:GOTO 3230 
3220 LOCATE 11,l:PRINT"RE-ENTER":LOCATE 9,l:PRINT SPC(79):GOTO 2950 
3230 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
3240 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
3250 PUT #1,l 
3260 FOR I = 2 TO XAXIS+l 
3270 LSET X$=MKS$(TIME%(I-1)): LSET Y$=MKS$(0UT2%(1-1)} 
3280 PUT #1,I 
3290 NEXT I 
3300 CLOSE #1 
3310 LOCATE 15,1 
3320 INPUT "Should output from channel 7 be stored on disk. ";RESP$ 
3330 IF RESP$ = "n" GOTO 3510 
3340 LOCATE 17,1 
3350 INPUT "Enter name of storage data file [dsk:]file.dat";FILDAT7$ 
3360 OPEN FILDAT7$ AS #1 LEN = 30 
3370 FIELD #1, 15 AS X$, 15 AS Y$ 
3380 INPUT "Line, Dot or No plot mode (L,D,N) ";A$ 
3390 IF A$="L" OR A$="1" THEN M=l:GOTO 3430 
3400 IF A$="N" OR A$="n" THEN M=2:GOTO 3430 
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3410 IF A$="D" OR A$="d" THEN M=O:GOTO 3430 
3420 LOCATE 11,l:PRINT"RE-ENTER":LOCATE9,l:PRINT SPC(79}:GOTO 2950 
3430 CLS:LOCATE 12,24:PRINT"STORING DATA ON DISK" 
3440 LSET X$ = MKS$(XAXIS):LSET Y$=MKS$(M) 
3450 PUT #1,1 
3460 FOR I=2 TO XAXIS+l 
3470 LSET X$=MKS$(TIME%(I-l)):LSET Y$=MKS$(0UT3%(I-1)) 
3480 PUT #1,I 
3490 NEXT I 
3500 CLOSE #1 
3510 CLS:LOCATE 12,28:PRINT" DONE" :LOCATE 25,1 
3520 END 
3530 'The following part of the program reads the board. The board is 
3540 'set up for SE BIPOLAR operation. 
3550 'Define constants for the board. 
3560 ' 
3570 BASE.ADDRESS=&:H2EC 
3580 COMMAND.REGISTER=BASE.ADDRESS+l 
3590 STATUS.REGISTER=BASE.ADDRESS+l 
3600 DATA.REGISTER=BASE.ADDRESS 
3610 COMMAND.WAIT=&:H4 
3620 WRITE.WAIT=&:H2 
3630 READ.WAIT=&:H5 
3640 CCLEAR=&:Hl 
3650 CCLOCK=&:H3 
3660 CSAD=&:HD 
3670 CRAD=&:HE 
3680 CSTOP=&:HF 
3690 PERIOD#=40000! 
3700 BASE.FACTOR#=4096 
3710 BASE.CHANNELS=8 
3720 NCONVERSIONS#=8 
3730 GAIN(O)=l: GAIN(1)=2: GAIN(2)=4: GAIN(3)=8 
3735 ' 
3740 'Stop and clear the DT2801-A board. 
3750 ' 
3760 OUT COMMAND.REGISTER, CSTOP 
3770 TEMP= INP(DATA.REGISTER). 
3780 WAIT STATUS.REGISTER, COMMAND.WAIT 
3790 OUT COMMAND.REGISTER, CCLEAR 
3800 ' 
3810 'Set clock rate. 
3820 ' 
3830 WAIT STATUS.REGISTER, COMMAND.WAIT 
3840 OUT COMMAND.REGISTER, CCLOCK 
3850 ' 
3860 PERIODH =INT(PERIOD#/256) 
3870 PERIODL =PERIOD# - PERIODH* 256 
3880 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
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3890 OUT DATA.REGISTER, PERIODL 
3900 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
3910 OUT DATA.REGISTER, PERIODH 
3920 WAIT STATUS.REGISTER, COMMAND.WAIT 
3930 OUT COMMAND.REGISTER, CSAD 
3940 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
3~50 OUT DATA.REGISTER, ADGAIN 
3960 WAIT STATUS.REGISTER, WRITE. WAIT, WRITE. WAIT 
3970 OUT DATA.REGISTER, ADSCHANNEL 
3980 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
3990 OUT DATA.REGISTER, ADECHANNEL 
4000 , 
4010 NUMBERH = INT(NCONVERSIONS#/256) 
4020 NUMBERL = NCONVERSIONS# - NUMBERH* 256 
4030 I 

4040 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
4050 OUT DATA.REGISTER, NUMBERL 
4060 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
4070 OUT DATA.REGISTER, NUMBERH 
4080 WAIT STATUS.REGISTER, COMMAND.WAIT 
4090 OUT COMMAND.REGISTER, CRAD 
4100 , 
4110 FOR LOOP = 1 TO NCONVERSIONS# 
4120 WAIT STATUS.REGISTER, READ.WAIT 
4130 ADL%(LOOP} = INP(DATA.REGISTER) 
4140 WAIT STATUS.REGISTER, READ.WAIT 
4150 ADH%(LOOP) = INP(DATA.REGISTER) 
4160 NEXT LOOP 
4170 , 
4180 WAIT STATUS.REGISTER, COMMAND.WAIT 
4190 STATUS = INP(STATUS.REGISTER) 
4200 IF (STATUS AND &HBO) THEN GOTO 4230 
4210 RETURN 
4220 RETURN 
4230 'Board Error. 
4240 PRINT 
4250 PRINT "Error" 
4260 RETURN 
4270 END 
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AV.3 INST.BAS 

10, CREATE ADSORPTION INFORMATION FILES 
20, 
30 'This program is used to invert the raw data (pressure versus time) of adsorption. 
40 'It calculates the isotherm, the BET, and pore volume distribution 
50 'plots. The required inputs are the raw data file, the run number (#), 
60 'the temperature during the run, the dead volume, room temperature 
70 'and the coefficients of the polynomial fit to the flow rate (POLY2.BAS on INFLO.BAS). 
80 'Outputs are: the isotherm file (iso#.dat), BET file (bet#.dat), and the pore size 
90 'distribution file (pore#.dat). 
100, 
110, 

120 PGH(0)=.5 : PGH(l)=l : PGH(2}=2 : PGH(3}=4 
130 N = 1500 'size of the arrays 
140 , 
150 CLS:SCREEN 0,0,0:KEY OFF 
160 LOCATE 1,1 
170 INPUT "What was the gain"; GAIN# 
180 IF GAIN#<O OR GAIN#>3 GOTO 160 
190 FACTOR=PGH(GAIN#) 
200 LOCATE 3,1 
210 INPUT "Enter name of data file to be read as !dsk:Jfile.dat";FILOLD$ 
220 LOCATE 5,1 
230 PRINT •The new data files will be sent to drive b: " 
240 LOCATE 7,1 
250 INPUT "Enter run number of this experiment ";RUNNUM$ 
260 FILNEW1$ = "b:iso"+RUNNUM$+".dat" 
270 FILNEW2$ = "b:bet"+RUNNUM$+" .dat" 
280 FILNEW3$ = "b:pore"+RUNNUM$+".dat" 
290 DIM X(N) , Y(N) , COEF(6) ,Z(N) 
300 LOCATE 9,1 
310 PRINT "Reading data ... • 
320 OPEN FILOLD$ AS #1 LEN = 30 
330 FIELD #1, 15 AS X$, 15 AS Y$ 
340 GET #1,l 
350 NPTS = CVS(X$) 
360 M = CVS(Y$) 
370 FOR I= 1 TO NPTS 
380 GET #1,I+l 
390 X(I) = CVS(X$} 
400 Y(I) = CVS(Y$) 
410 NEXT I 
420 CLOSE #1 
430 LOCATE 11,1 
440 PRINT "Smoothing data ... " 
450 FORK= 1 TO NPTS 
460 Z(K) = Y(K) 



470 NEXT K 
480 , 
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490 'Smooth the data by using appropriate weights of local points. 
500 I 

510 NMOD = NPTS - 2 
520 FOR N = 3 TO NMOD 
530 Y(N) = (-3*Z(N-2)+ 12*Z(N-1)+ 17*Z(N)+ 12*Z(N+ 1)-3*Z(N+2))/35 
540 NEXT N 
550 , 

560 'Now that the data is smoothed, calculate the isotherm. 
570 , 
580 LOCATE 13,1 
590 INPUT •Enter initial temperature ink• ; TEMPI 
600 LOCATE 14,1 
610 INPUT •Enter final temperature in k • ; TEMP2 
620 LOCATE 15,1 
630 INPUT •Enter total effective volume in ml• ; VOL 
640 LOCATE 16,1 
650 INPUT •What was the vapor pressure of adsorbate • ;PFIN 
660 LOCATE 17,1 
670 , 

680 'Read coefficients for instantaneous flow rate as a function of pressure: 
690 , 

700 INPUT •Enter first rate coefficient •;COEF(l) 
710 INPUT •Enter second coefficient•;COEF(2) 
720 INPUT •Enter third coefficient •;COEF(3) 
730 INPUT •Enter fourth coefficient •;COEF(4) 
740 INPUT •Enter fifth coefficient •;COEF(5) 
750 INPUT •Enter sixth coefficient •;COEF(6) 
760 CLS 
770 LOCATE 13,1 
780 PRINT •computing Isotherm ... • 
790 , 

800 'Pressure= bits/4096*20psi*0.01934torr/psi 
810 , 

820 PO= Y(l)/(3.96017*FACTOR) 
830 DVOL=32.96 
840 , 
850 'The initial amount of gas is that in the dead volume at t=O. 
860 , 
870 TOTMOL=PO*DVOL* 16.0364/TEMPl 
880 TIME= X(2)-X(l) 
890 FOR I = 2 TO NPTS 
900 P = Y(I)/(3.96017*FACTOR) 
910 Q = COEF(6) 
920 FOR CNT% = 5 TO 1 STEP - 1 
930 Q = Q * P + COEF(CNT%) 
940 NEXT CNT% 
950 , 
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960 TEMP= TEMPI+ (TEMP2-TEMP1)*(X(I)-X(O)}/(X(NPTS)-X(O)} 
970 TOTMOL=TOTMOL + Q *TIME 
980 ADSMOLdTOTMOL-P* VOL* 16.0364/TEMP 
990 X(I) = P 
1000 Y(I) = ADSMOL 
1010 NEXT I 
1020 X(l)=PO : Y(l)=O 
1030 LOCATE 19,1 
1040 PRINT "Creating data files:" 
1050 OPEN FILNEW1$ AS #1 LEN= 30 
1060 FIELD #1, 15 ASX$, 15 AS Y$ 
1070 LSET X$ = MKS$(NPTS) : LSET Y$ = MKS$(M} 
1080 PUT #1,1 
1090 FOR I = I TO NPTS 
1100 LSET X$ = MKS$(X(I)) : LSET Y$ = MKS$(Y(I)) 
1110 PUT #1,I+l 
1120 NEXT I 
1130 CLOSE #1 
1140 PRINT FILNEW1$ 
1150 ' 
1160 'Now create a BET file. 
1170 • 
1180 OPEN FILNEW1$ AS #2 LEN = 30 
1190 FIELD #2, 15 AS X$, 15 AS Y$ 
1200 GET #2,1 
1210 NPTS = CVS(X$) 
1220 M = CVS(Y$) 
1230 NNEW = 1 
1240 FOR I = I TO NPTS 
1250 GET #2, l+l 
1260 X(NNEW) = CVS(X$) 
1270 Y(NNEW) = CVS(Y$) 
1280 PHI=.31*PFIN 
1290 PL0=.04*PFIN 
1300 IF X(NNEW) > PHI OR X(NNEW) = PHI GOTO 1330 
1310 IF X(NNEW) >PLO OR X(NNEW) =PLO THEN NNEW = NNEW + 1 
1320 NEXT I 
1330 CLOSE #2 
1340 OPEN FILNEW2$ AS #1 LEN= 30 
1350 FIELD #1, 15 ASX$, 15 AS Y$ 
1360 LSET X$ = MKS$(NNEW) : LSET Y$ = MKS$(M) 
1370 PUT #1,1 
1380 FOR I= 1 TO NNEW 
1390 X(I) = X(I)/PFIN 
1400 Y(I) = X(I)/(Y(I)*(l-X(I)))*lOOOOOO! 
1410 LSET X$ = MKS${X{I)) 
1420 LSET Y$ = MKS$(Y(I)) 
1430 PUT #1,I+l 
1440 NEXT I 
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1450 CLOSE #1 
1460 PRINT FILNEW2$ 
1470 , 
1480 'Now create volume distribution file. 
1490 , 
1500 OPEN FILNEW1$ AS #1 LEN= 30 
1510 FIELD #1, 15 AS X$, 15 AS Y$ 
1520 GET #1,1 
1530 NPTS = CVS(X$) 
1540 M = CVS(Y$) 
1550 NNEW = 1 
1560 FOR N = 1 TO NPTS 
1570 GET #1, N+l 
1580 X(NNEW) = CVS(X$) 
1590 Y(NNEW) = CVS(Y$) 
1600 HIEND = .92*PFIN 
1610 LOEND = .5*PFIN . 
1620 IF X(NNEW) > HIEND OR X(NNEW)=HIEND GOTO 1650 
1630 IF X(NNEW) > LOEND OR X(NNEW)=LOEND THEN NNEW=NNEW+l 
1640 NEXT N 
1650 CLOSE #1 
1660 OPEN FILNEW3$ AS #2 LEN= 30 
1670 FIELD #2, 15 AS X$, 15 AS Y$ 
1680 LSET X$ = MKS$(NNEW): LSET Y$ = MKS$(M) 
1690 PUT #2,1 
1700 FOR J = 1 TO NNEW 
1710 Z(J) = Y(J) 
1720 NEXT J 
1730 NLAST = NNEW - 2 
1740 Y(l)=O:X(l)=O:Y(2)=0:X(2)=0 
1750 Y(NLAST+2)=0:X(NLAST+2)=0:Y(NLAST+l)=O:X(NLAST+l)=O 
1760 FOR 1=3 TO NLAST 
1770 ARG = X(I) /PFIN 
1780 IF ARG < 0 OR ARG = 0 THEN GOTO 1930 
1790 DEN= -1*LOG(ARG) 
1800 I 

1810 'This routine uses the method developed by Yan and Zhang. 
1820 , 
1830 'Surface Tension nitrogen= 8.5 dynes/cm, v = 34.65 cm3 /gmole. 
1840 , 
1850 PRAD = 1.018E-07 /DEN 
1860 'For freon, gamma= 18 dynes/cm, v=73.15cm3 /gmole,T=282 K. 
1870 'PRAD = 1.123E-07 /DEN 
1880 X(I) = LOG(PRAD)/2.303 + 6 
1890 Y(I) = (Z(I-2)-8*Z(l-1)+8*Z(I+l)-Z(I+2))*3.465E-05/(12*(X(l)-X(I-1))) 
1900 LSET X$ = MKS$(X(I)) 
1910 LSET Y$ = MKS$(Y(I)) 
1920 PUT #2, I-1 
1930 NEXT I 



1940 CLOSE #2 
1950 PRINT FILNEW3$ 
1960 SCREEN 0,0,0 
1970 DIM FL$(1) 
1980 , 
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1990 'User has the option to plot isotherm or BET file immediately. 
2000 , 
2010 INPUT •no you wish to plot the isotherm ";ANS$ 
2020 IF ANS$="y" OR ANS$="Y" THEN FL$(1)=FILNEW1$ ELSE GOTO 2060 
2030 YLBL$= "Micromoles " 
2040 XLBL$= "Pressure (torr)" 
2050 GOTO 2100 
2060 INPUT •Do you wish to see the BET plot "; ANS$ 
2070 IF ANS$="y" OR ANS$="Y" THEN FL$(1)=FILNEW2$ ELSE GOTO 2370 
2080 YLBL$= "BET plot" 
2090 XLBL$= "Rel. Pres. (P /PO)" 
2100 PRINT "Working .... • 
2110 NOF = 1 
2120 , 
2130 'This part of the program sets the parameters required for plotting 
2140 'the data. 
2150 , 
2160 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
2170 FIELD #1, 30 AS RFLD$ 
2180 FOR I= 1 TO 21:LSET RFLF$ = "XXXXXXXXX":PUT #1,I:NEXT !:CLOSE #1 
2190 OPEN "RLINPLT.LNK" AS #1 LEN = 30 
2200 FIELD #1, 30 AS RFLD$ 
2210 GET #1,1 
2220 LSET RFLD$ = MKI$(NOF) 
2230 PUT #1,1 
2240 GET #1,2 
2250 LSET RFLD$ = YLBL$ 
2260 PUT #1,2 
2270 GET #1,3 
2280 LSET RFLD$ = XLBL$ 
2290 PUT #1,3 
2300 FOR I = l TO NOF 
2310 GET #1,1+3 
2320 LSET RFLD$ = FL$(I) 
2330 PUT #1,1+3 
2340 NEXT I 
2350 CLOSE #1 
2360 CHAIN • LINPLT.BAS" 
2370 END 
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AV .4 INFLO.BAS 

10 ' INSTANTANEOUS ORIFICE FLOW PROGRAM 
20, 
30 'This program computes the instantaneous flow rate for given 
40 'pressure and temperature of the system. 
50 'Input data file is the raw data for the blank run. 
60 'Output file is user named containing flow rate in micromoles/s 
70 'versus downstream pressure in torr. 
80, 

90 PGH(0)=.5 : PGH(l)=l : PGH(2)=2 : PGH(3)=4 
100 N = 1500 'size of the arrays 
110 , 
120 CLS:SCREEN O,O,O:KEY OFF 
130 LOCATE 3,1 
140 INPUT "What was the gain"; GAIN# 
150 FACTOR= PGH(GAIN#) 
160 LOCATE 5,1 
170 INPUT "Enter data to be differentiated as !dsk:Jfile.dat •;FILOLD$ 
180 LOCATE 7,1 
190 INPUT "Enter name of output file as !dsk:Jfilename.dat •;FILNEW$ 
200 DIM X(N) , Y(N) , Z(N) 
210 LOCATE 9,1 
220 INPUT ,, What was the temperature during calibration •;TEMP 
230 LOCATE 11,1 
240 PRINT ,, Reading old file ... • 
250 OPEN FILOLD$ AS #1 LEN= 30 
260 FIELD #1, 15 ASX$, 15 AS Y$ 
270 GET #1,1 
280 NPTS = CVS(X$) 
290 M = CVS(Y$) 
300 FOR I= 1 TO NPTS 
310 GET #1,I+l 
320 X(I) = CVS(X$) 
330 Z(I) = CVS(Y$) 
340 NEXT I 
350 CLOSE #1 
360 , 
370 LOCATE 13.1 
380 PRINT "Computing modifications ... • 
390 DEN= 12*(X(3)-X(2))*FACTOR 
400 NEND = NPTS - 2 
410 , 
420 FOR I= 3 TO NEND 
430 ' 
440 'For 5 micron with nitrogen, vol.= 40.00 cc. For micromoles/sec, 
450 'and psia gage, const. = 20 psi/10volt*51.7149 torr/psia *30.4 ml 
460 '/82.05 ml atm/gmol k /760torr/atm *10e6 micromoles/mole =12.701 



- 376-

470 , 
480 Y(I) = (Z(I-2)-8*Z(I-1)+8*Z(I+l)-Z(I+2)}*160.5655*30.4/(DEN*TEMP*40!) 
490 , 
500 'Conversion factor for millibar ga.ge is 3.96017 
510 , 
520 X(I) = Z(I)/(3.96017*FACTOR) 
530 NEXT I 
540 NTOT=NPTS-5 
550 LOCATE 15,1 
560 PRINT •Writing new file ... • 
570 OPEN FILNEW$ AS #1 LEN = 30 
580 FIELD #1, 15 AS X$, 15 AS Y$ 
590 LSET X$ = MKS$(NTOT) : LSET Y$ = MKS$(M) 
600 NEND=NEND-1 
610 PUT #1,l 
620 FOR I= 3 TO NEND 
630 LSET X$ = MKS$(X(I)) : LSET Y$ = MKS$(Y(I)) 
640 PUT #1,I-1 
650 NEXT I 
660 CLOSE #1 
670 LOCATE 17,1 
680 PRINT •Done.• 
690 LOCATE 24,1 
700 END 
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AV.5 MONO.BAS 

10' MONOLAYER COVERAGE CALCULATION PROGRAM 
20, 
30 'This program calculates the BET surface area and 'C' value from the 
40 'BET data file. The data are fit with a straight line using a modified 
50 'form of POLY2.BAS. The slope and intercept of this line are used to 
60 'calculate the desired quantities. Input is the BET file, output is 
70 'to the screen. The values are, respectively: intercept, slope, surface 
80 'area (assuming nitrogen), micromoles at monolayer coverage, 'C' value 
90 'and sum of residuals. 
100 'The polynomial fit is described in more detail in POLY2.BAS. 
110, 

120 SCREEN 0,0,0:KEY OFF:CLS:LOCATE 25,l:PRINT"POLYNOM"; 
130 DIM COEF(6), MTX(6,7), SM(lO), RT(6) 
140 , 
150 'The data points are read from the input file. 
160 , 
170 NP= 2000 
180 LOCATE 2,1 
190 INPUT "Enter name of file to be read as !dsk:]filename.dat ";FILOLD$ 
200 DIM X(NP) , Y(NP) 
210 OPEN FILOLD$ AS #1 LEN = 30 
220 FIELD #1, 15 AS XS, 15 AS Y$ 
230 GET #1,1 
240 N = CVS(X$) 
250 DUM = CVS(Y$) 
260 FOR I = 1 TO N 
270 GET #1,l+l 
280 X{I) = CVS{X$) 
290 Y(I) = CVS(Y$) 
300 PRINT I,X(I),Y(I) 
310 NEXT I 
320 CLOSE #1 
330 , 
340 'This is the regression part of the program. 
350 , 
360 CLS:LOCATE 25,l:PRINT"POLYNOM - PERFORMING LINEAR REGRESSION"; 
370 ORD= 1 
380 LOCATE 10,20:PRINT"WAIT- REGRESSION ANALYSIS IN PROGRESS" 
390 FOR l=l TO 2*0RD 
400 SM(l)=O 
410 NEXT I 
420 FOR I= 1 TO ORD+l 
430 RT(I)=O 
440 NEXT I 
450 FOR PNT = 1 TO N 
460 FOR I= 1 TO ORD*2 



470 SM(I)=SM(I) + X(PNT)" I 
480 NEXT I 
490 FOR I= 1 TO ORD+l · 
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500 IF l=l THEN RT(I)=RT(I) + Y(PNT) 
510 IF I<>l THEN RT(I) = RT(I) + Y(PNT)*(X(PNT)" (I-1)) 
520 NEXT I 
530 NEXT PNT 
540 MTX(l,l)=N 
550 FOR I=l TO ORD+l 
560 MTX(I,ORD+2)=RT(I) 
570 FOR J=l TO ORD+l 
580 IF I+J<>2 THEN MTX(I,J)=SM(I+J-2) 
590 NEXT J 
600 NEXT I 
610 FOR K = 1 TO ORD 
620 KTMP=K+l 
630 L=K 
640 FOR I=KTMP TO ORD+l 
650 IF ABS(MTX(I,K))>ABS(MTX(L,K)) THEN L=I 
660 NEXT I 
670 IF L=K THEN GOTO 730 
680 FOR J=K TO ORD+2 
690 TMP=MTX(K,J) 
700 MTX(K,J)=MTX(L,J) 
710 MTX(L,J)=TMP 
720 NEXT J 
730 FOR 1= KTMP TO ORD+l 
740 FTR = MTX(I,K)/MTX(K,K) 
750 FOR J= KTMP TO ORD+2 
760 MTX(I,J)=MTX(I,J) - FTR * MTX(K,J) 
770 NEXT J 
780 NEXT I 
790 NEXT K 
800 COEF(ORD+l) = MTX(ORD+l,ORD+2)/MTX(ORD+l,ORD+l) 
810 I=ORD 
820 ITMP= l+l 
830 TOT= 0 
840 FOR J= ITMP TO ORD+l 
850 TOT=TOT + MTX(I,J)*COEF(J) 
860 NEXT J 
870 COEF(l)=(MTX(I,ORD+2)-TOT)/MTX(I,I) 
880 l=l-1 
890 IF I>=l THEN GOTO 820 
900 , 
910 'Display data. 
920 ' 
930 CLS:LOCATE 1,1 
940 FOR l=l TO ORD+l 
950 PRINT"COEF(";I;") = ";COEF(I) 



-379-

960 NEXT I 
970 RECIP = 1/(COEF(l)+COEF(2)) 
980 AREA = 16.2 * 6022 * RECIP 
990 NM= RECIP 
1000 C=COEF(2)/COEF(l) + 1 
1010 RESID = 0 
1020 FOR I =1 TON 
1030 RESID = RESID +ABS(Y{l)-COEF(2)*X(I)-COEF(l)) 
1040 NEXT I 
1050 PRINT AREA,RECIP,C,RESID 
1060 END 
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AV.6 POLY2.BAS 

10' FIFTH-ORDER LEAST-SQUARES POLYNOMIAL FIT PROGRAM 
20, 
3Q, 
40 'This program evaluates the coefficients Cl-6 for the polynomial 
50 'approximation:-
60, 
70 , y = Cl + C2*X + C3*XA 2 + C4*XA 3 + C5*XA 4 + C6*XA 5 
80, 

90 'such that the sum of the squares of the errors between the actual 
100 'value of Y and the polynomial value of Y for all data points entered 
110 'is minimised (i.e. curve fitting). 
120 'This approximation is useful for linearis_ing transducer outputs. 
130 'e.g. ftowmeters, thermocouples, tacho-generators etc .. The transducer 
140 'output is obtained from the A/D converter (suitably scaled if required) 
150 'as variable X and the linearized output from the transducer e.g. flow, 
160 'temperature, velocity etc. is calculated as variable Y. The coefficients 
170 'Cl-6 are calculated from a set of Y,X data or calibration points. 
180 'Type RUN( CR) to run the program. The prompts are self explanatory. 
190 'The data are assumed to be X,Y in the file. The program then proceeds to perform 
200 'a regression analysis to calculate the coefficients of the polynomial. 
210 'You are prompted to select the order required, up to 5th. order. Usually 
220 '5th. order is the best option unless you want to experiment with trying 
230 'a lower order. After the analysis is finished, the coefficients are 
240 'displayed and you can check the conformance by inputting various values 
250 'of X and seeing how accurate Y is. If you wish, before exiting the 
260 'program, you can run the regression at another order on the same data 
270 'to see how good the conformance is with a different order polynomial. 
280, 
290 'Once the coefficients are evaluated the polynomial can be inserted 
300 'into your programs as a subroutine. The neatest way is to use a loop to 
310 'evaluate it as follows:-
320, 

330 ' xxxOO Y = COEF(l) 
340 ' xxxlO FOR CNT3 = 5 TO 1 STEP - 1 
350' xxx20 Y = Y + COEF(CNT3 + 1) * X A CNT3 
360 ' xxx30 NEXT CNT3 . 
370 ' xxx40 RETURN 
380, 
390, 

400 '-START - INITIALIZATION SECTION--------
410 SCREEN 0,0,0:KEY OFF:CLS:LOCATE 25,l:PRINT"POLYNOM"; 
420 DIM COEF(6), MTX(6,7), SM(lO), RT(6) 
430 '-DATA POINT ENTRY------------
440 CLS:LOCATE 25,l:PRINT"POLYNOM - DATA FILE ENTRY"; 
450 NP= 2000 
460 LOCATE 2,1 
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470 INPUT "Enter name of file to be read as [dsk:]filename.dat ";FILOLD$ 
480 DIM X(NP) , Y(NP) 
490 OPEN FILOLD$ AS #1 LEN = 30 
500 FIELD #1, 15 ASX$, 15 AS Y$ 
510 GET #1,1 
520 N = CVS(X$) 
5,30 DUM = CVS(Y$) 
540 FOR I = I TO N 
550 GET #1,I+l 
560 X(I) = CVS(X$) 
570 Y(I) = CVS(Y$) 
580 PRINT I,X(I),Y(I) 
590 NEXT I 
600 CLOSE #1 
610 '-PERFORM LINEAR REGRESSION---------
620 CLS:LOCATE 25,l:PRINT"POLYNOM- PERFORMING LINEAR REGRESSION"; 
630 LOCATE 2,l:INPUT"ORDER OF ANALYSIS REQUIRED (0-5)? ",ORD 
640 IF ORD <O OR ORD>5 THEN GOTO 630 
650 LOCATE 10,20:PRINT"WAIT- REGRESSION ANALYSIS IN PROGRESS" 
660 FOR l=l TO 2*0RD 
670 SM(I)=O 
680 NEXT I 
690 FOR I= 1 TO ORD+l 
700 RT(I)=O 
710 NEXT I 
720 FOR PNT = 1 TO N 
730 FOR I= I TO ORD*2 
740 SM(I)=SM(I) + X(PNTr I 
750 NEXT I 
760 FOR I= I TO ORD+l 
770 IF I=l THEN RT(I)=RT(I) + Y(PNT) 
780 IF I<>I THEN RT(l) = RT(I) + Y(PNT)*(X(PNTr (I-1)) 
790 NEXT I 
800 NEXT PNT 
810 MTX(l,l)=N 
820 FOR l=l TO ORD+l 
830 MTX(I,ORD+2}=RT(I} 
840 FOR J=l TO ORD+l 
850 IF l+J<>2 THEN MTX(I,J)=SM(I+J-2) 
860 NEXT J 
870 NEXT I 
880 FOR K = I TO ORD 
890 KTMP=K+l 
900 L=K 
910 FOR l=KTMP TO ORD+l 
920 IF ABS(MTX(I,K)}>ABS(MTX(L,K)) THEN L=I 
930 NEXT I 
940 IF L=K THEN GOTO 1000 
950 FOR J=K TO ORD+2 



960 TMP=MTX(K,J) 
970 MTX(K,J)=MTX(L,J) 
980 MTX(L,J)=TMP 
990 NEXT J 
1000 FOR I= KTMP TO ORD+l 
1010 FTR = MTX(I,K)/MTX(K,K) 
1020 FOR J= KTMP TO ORD+2 
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1030 MTX(I,J)=MTX(I,J) - FTR * MTX(K,J) 
1040 NEXT J 
1050 NEXT I 
1060 NEXT K 
1070 COEF(ORD+l) = MTX(ORD+l,ORD+2)/MTX(ORD+l,ORD+l) 
1080 l=ORD 
1090 ITMP= I+ 1 
1100 TOT= 0 
1110 FOR J= ITMP TO ORD+l 
1120 TOT=TOT + MTX(I,J)*COEF(J) 
1130 NEXT J 
1140 COEF(l)=(MTX(I,ORD+2) - TOT)/MTX(I,I) 
1150 l=l-1 
1160 IF l>=l THEN GOTO 1090 
1170 '-DISPLAY COEFFICIENTS---------
1180 CLS:LOCATE 1,1 
1190 FOR I=l TO ORD+l 
1200 PRINT'COEF(";I;") = ";COEF(I} 
1210 NEXT I 
1220 RESID = 0 
1230 FOR I= 1 TO NPTS 
1240 P = X(I) 
1250 Q = COEF(6) 
1260 FOR CNT% = 5 TO 1 STEP - 1 
1270 Q = Q * P + COEF(CNT%} 
1280 NEXT CNT% 
1290 RESID = RESID + ABS( Y(I) - Q ) 
1300 NEXT I 
1310 PRINT RESID 
1320 '--TEST FIT------------
1330 LOCATE 25,l:PRINT SPC(79):LOCATE 25,l:PRINT"POLYNOM- TEST FIT"; 
1340 LOCATE 9,l:PRINT"TEST CONFORMANCE":PRINT" " 
1350 LOCATE 12,1: PRINT SPC(79} 
1360 LOCATE 12,l:INPUT "X VALUE (type Q to quit)?" ,A$ 
1370 IF A$="Q" OR A$="q" THEN GOTO 1470 
1380 X=VAL{A$) 
1390 Y = COEF(l) 
1400 FOR CNT%= 5 TO 1 STEP - 1 
1410 y = y + COEF(CNT%+1) * XA ONT% 
1420 NEXT CNT% 
1430 LOCATE 14,1: PRINT SPC(79) 
1440 LOCATE 14,l:PRINT"Calculated Y (output}= ";Y;" for X (input)= ";X 
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1450 GOTO 1360 
1460 LOCATE 14,1: PRINT SPC(79) 
1470 LOCATE 14,l:INPUT "TRY DIFFERENT REGRESSION ORDER (Y/N)? ",A$ 
1480 IF A$="y" OR A$="Y" THEN GOTO 1500 
1490 LOCATE 25,l:PRINT SPC(79):LOCATE 20,l:END 
1500 ERASE SM, MTX, RT, COEF 
1510 DIM COEF(6), MTX(6,7}, SM(lO), RT(6) 
1520 GOTO 610 
1530 END 
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AV.7 MPLOT.BAS 

10 ' PROGRAM TO MAKE/READ A LINEAR PLOT CONTROL FILE 
20' 
30' 
40 'This routine allows the user to make or read a plot control file and 
50 'execute it if desired. This program links the program LINPLT.BAS and 
60 'runs the program. The LINPLT.BAS program uses the file called RLINPLT.BAS 
70 'as a control file. The RLINPLT.BAS control file contains: 
80' 
90 ' A. THE NUMBER OF FILES TO BE PLOTTED 
100 ' B. THE 'X' AXIS LABLE [ 30 CHARACTERS LONG ] 
110 ' C. THE 'Y' AXIS LABEL I 20 CHARACTERS LONG J 
120' D. FILES TO BE PLOTTED (n records following) 
130' 
140 SCREEN 0,0,0:CLS:KEY OFF 
150 DIM FL$(15} 
160 PRINT TAB(20) ;•MAKE/ READ A LINEAR PLOT FILE" 
170 PRINT 
180 PRINT •no you wish to (R)ead or (M)ake a plot file•; 
190 R$ = INKEY$: IF R$ = •• THEN 190 
200 IF R$=•R• THEN 220 ELSE IF R$=•M" OR RS="m• THEN 500 ELSE CLS 
210 GOTO 160 
220 OPEN "RLINPLT.LNK" AS #1 LEN=30 
230 FIELD #1, 30 AS RFLD$ 
240 GET #1,1 
250 NOF = CVI(RFLD$) 
260 GET #1,2 
270 YLBL$ = RFLD$ 
280 GET #1,3 
290 XLBL$ = R:f'.LD$ 
300 FOR I = 1 TO NOF 
310 GET #1,1+3 
320 FL$(1) = RFLD$ 
330 NEXT I 
340 CLOSE #1 
350 CLS 
360 PRINT TAB(20);" READ A LINEAR PLOT CONTROL FILE" 
370 LOCATE 3,1 . 
380 PRINT "NUMBER OF DATA FILES TO BE PLOTTED !15 maxJ = •;NOF 
390 LOCATE 5,1 
400 PRINT "X - AXIS LABEL ( 30 characters maximum]: •;XLBL$ 
410 LOCATE 7,1 
420 PRINT "Y - AXIS LABEL [ 16 characters maximum J: •;YLBL$ 
430 LOCATE 9,1 
440 FOR 1%= 1 TO NOF 
450 LOCATE 9+1%-1,1 
460 PRINT "DATA FILE NAME "; 
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470 PRINT USING "##";!%;:PRINT "[DSK:J FILENAME.EXT ";FL$(I%); 
480 NEXT 1% 
490 GOTO 880 
500 CLS 
510 PRINT TAB(20);" MAKE A LINEAR PLOT FILE" 
520 LOCATE 3,1 
530 INPUT "NUMBER OF DATA FILES TO BE PLOTTED [15 MAXJ = ",NOF 
540 IF NOF <1 OR NOF >15 THEN LOCATE 3,l:PRINT SPACE$(78);:GOTO 520 
550 LOCATE 5,1 
560 INPUT "ENTER 'X' AXIS LABEL [30 characters maximumj: ",XLBL$ 
570 LOCATE 7,1 
580 INPUT "ENTER 'Y' AXIS LABEL 116 characters maximum]:" ,YLBL$ 
590 LOCATE 9,1 
600 FOR 1%= 1 TO NOF 
610 LOCATE 9+1%-1,1 
620 PRINT "DATA FILE NAME '; 
630 PRINT USING "##";!%;:PRINT" [DSK:j FILENAME.EXT "; 
640 INPUT;FL$(I%) 
650 IF FL$(I%) =""THEN LOCATE 9+I%-1,l:PRINT SPACE$(78);:LOCATE9+I%-1,1 
660 GOTO 630 
670 NEXT I% 
680 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
690 FIELD #1, 30 AS RFLD$ 
700 FOR I= 1 TO 21:LSET RFLF$ = "XXXXXXX":PUT #1,I:NEXT !:CLOSE #1 
710 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
720 FIELD #1, 30 AS RFLD$ 
730 GET #1,1 
740 LSET RFLD$ = MKI$(NOF) 
750 PUT #1,1 
760 GET #1,2 
770 LSET RFLD$ = YLBL$ 
780 PUT #1,2 
790 GET #1,3 
800 LSET RFLD$ = XLBL$ 
810 PUT #1,3 
820 FOR I = 1 TO NOF 
830 GET #1,1+3 
840 LSET RFLD$ = FL$(I) 
850 PUT #1,1+3 
860 NEXT I 
870 CLOSE #1 
880 LOCATE 25,l:PRINT SPACE$(70};:LOCATE 25,1 
890 INPUT;"UPDATE ENTRY Nof, X axis,Y axis, File#, Exit, Plot ";ERC$ 
900 ERC$=LEFT$(ERC$,l) 
910 IF ERC$ = "N" OR ERC$ = "n" THEN 1010 
920 IF ERC$ = ·x· OR ERC$ = "x" THEN 1050 
930 IF ERC$ = "Y" OR ERC$ = "y" THEN 1090 
940 IF ERC$ = "F" OR ERC$ = "f" THEN 1130 
950 IF ERC$ = "E" OR ERC$ = "e" THEN CLS:NEW:END 
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960 IF ERO$ <>"P" OR ERO$ <>"p" THEN 990 
970 GOTO 880 
980 CLS 
990 CHAIN "LINPLT.BAS" 
1000 ' 
1010 LOCATE 3,l:PRINT SPACE$(78);:LOCATE 3,1 
1020 INPUT "NUMBER OF DATA FILES TO BE PLOTTED [15 MAXJ = •,NOF 
1030 IF NOF < 1 THEN 1010 ELSE IF NOF > 15 THEN 1010 
1040 GOTO 680 
1050 LOCATE 5,l:PRINT SPACE$(78);:LOCATE 5,1 
1060 INPUT "ENTER 'X' AXIS LABEL [30 characters maximumJ: • ,XLBL$ 
1070 IF LEN(XLBL$) > 30 THEN 1050 
1080 GOTO 680 
1090 LOCATE 7,l:PRINT SPACE$(78);:LOCATE 7,1 
1100 INPUT "ENTER 'Y' AXIS LABEL [16 characters maximumJ: • ,YLBL$ 
1110 IF LEN(YLBL$) >16 THEN 1090 · 
1120 GOTO 680 
1130 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
1140 INPUT;"ENTER FILE NUMBER TO BE CHANGED= •,NFC 
1150 IF NFC> NOF THEN 1130 ELSE IF NFC> 15 THEN 1130 
1160 LOCATE 8+NFC,l:PRINT SPACE$(79);:LOCATE 8+NFC,1 
1165 PRINT "DATA FILE NAME •; 
1170 PRINT USING "##";NFC;:PRINT" IDSK:] FILENAME.EXT "; 
1180 INPUT;FILX$:IF FILX$="" THEN 1160 ELSE FL$(NFC)=FILX$ 
1190 GOTO 680 
1200 END 
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AV .8 LINPLT .BAS 

10' 
20' 

LINEAR PLOT PROGRAM 

30' 
40 'This program will plot from one to 15 data files with the same scale 
50 'factors for all the files. The program also has a save screen command 
60 'which allows the user to save the resultant plot for future reference. 
70 'The program also allows the user to chain an additional set of data 
80 'files to be plotted on the already data files shown. Printing of the 
90 'screen is done by entering the option as directed, then SHFT PrtSc key. 
100 'The user must have the graftrax option active. 
110' 
120 'This section is where the starting graph coordinates and screen scale 
130 'ratio is set. OX,OY =starting point of graph. QX,QY =screen scale x:y. 
140, 
150 KEY OFF:SCREEN O,O,O 
160 OX=70:0Y=O:QX=l.8:QY=.9000001 
170 DIM X(100),Y(100),F$(15) 
180 CLS:LOCATE 12,30:COLOR 31,0,0:PRINT •coMPUTING GRAPHICS FILES"; 
190 ' 
200 'This is the main link to the plotting program. The file RLINPLT.LNK 
210 'has the file name and disk of the file(s) to be plotted. 
220 ' 
230 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
240 FIELD #1, 30 AS RLNK$ 
250 GET #1,1 
260 NF = CVI(RLNK$) 
270 GET #1,2 
280 YLB$ = RLNK$ 
290 GET #1,3 
300 XLB$ = RLNK$ 
310 IP= 1 
320 FOR I= 1 TO NF 
330 GET #1,I+3 
340 F$(IP) = RLNK$ 
350 IP= IP+ 1 
360 NEXT I 
370 CLOSE 
380 ' 
390 'This loop scans the data files and sets the X, Y Max/Min values so 
400 'all the data files are on the same scale. 
410 ' 
420 Xl=O 
430 X2=0 
440 Yl=O 
450 Y2=0 
460 FOR I=l TO NF 
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470 IC=O 
480 OPEN F$(1) AS #1 LEN=30 
490 FIELD #1, 15 AS XVAL$, 15 AS YVAL$ 
500 GET #1,1 
510 Nl=CVS(XVAL$) 
520 FOR J=l TO NI 
530 IC=IC+l 
540 GET #1,IC+l 
550 A=CVS(XVAL$) 
560 B=CVS(YVAL$) 
570 IF A <Xl THEN Xl=A 
580 IF A>X2 THEN X2=A 
590 IF B<Yl THEN Yl=B 
600 IF B>Y2 THEN Y2=B 
610 NEXT J 
620 CLOSE #1 
630 NEXT I 
640 , 
650 'This section establishes the actual scale factors used to plot the 
660 'data as the files are read. These values are also the same values saved 
670 'on the disk when a Save command is executed. 
680 , 
690 CLS:COLOR 7,0,0:SCREEN 2 
700 DX= ABS(CINT((X2-Xl)/25+.5)) 
710 DY= ABS(CINT(((Y2-Yl)/25)+.5)) 
720 SX=260 I (X2-Xl) 
730 SY=140 /(Y2-Yl) 
740 , 
750 'This section locates the Axis x,y and plots them out with the small 
760 'tick marks identifing the scale. The axis labels are also printed. 
770 , 
780 , 
790 IF Y2<=0 THEN YA=lO:GOTO 830 
800 IF Yl=>O THEN YA=150:GOTO 830 
810 YA=lO +SY* Y2 
820 , 
830 'Set the range limits 
840 ' 
850 IF X2 <= 0 THEN XA=270:GOTO 880 
860 IF Xl => 0 THEN XA=lO:GOTO 880 
870 XA=lO - SX * Xl 
880 FOR YLBL = 1 TO 16 
890 LOCATE 2+ YLBL,6:PRINT MID$(YLB$,YLBL,1); 
900 NEXT YLBL 
910 LOCATE 1,l:PRINT USING"#.##"' "' '" "'";Y2; 
920 LOCATE 19,l:PRINT USING"#.##"'"'"'"' "';Yl; 
930 LOCATE 20,lO:PRINT USING"'#.##"' "' '" "'"';Xl; 
940 LOCATE 20,68:PRINT USING"'#.##"'"'"'"' ";X2; 
950 PSET (QX*O+OX,QY*O+OY) 
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960 LINE-(QX*279+0X,QY*O+OY) 
970 LINE-(QX*279+0X,QY*159+0Y) 
980 LINE-(QX*O+OX,QY*159+0Y) 
990 LINE-(QX*O+OX,QY*O+OY) 
1000 LINE (QX*XA+OX,QY*10+0Y)-(QX*XA+OX,QY*150+0Y) 
1010 LINE (QX*10+0X,QY*YA+OY)-(QX*270+0X,QY*YA+OY) 
1020 , 
1030 'Mark the x axis ticks. 
1040 , 
1050 K=O 
1060 B=YA-2 
1070 C=YA+2 
1080 K=K+l 
1090 A=DX * K 
1100 AA=XA+SX*A 
1110 IF AA>271 GOTO 1140 
1120 LINE (QX*AA+OX,QY*B+OY)-(QX*AA+OX,QY*C+OY) 
1130 GOTO 1080 
1140 K=O 
1150 K=K+l 
1160 A=DX*K 
1170 AA=XA-SX*A 
1180 IF AA<9 GOTO 1240 
1190 LINE (QX*AA+OX,QY*B+OY)-(QX* AA+OX,QY*C+OY) 
1200 GOTO 1150 
1210 , 
1220 •Mark the y axis ticks. 
1230 , 
1240 K=O 
1250 A=XA-2 
1260 C=XA+2 
1270 K=K+l 
1280 B=DY*K 
1290 BB=YA-SY*B 
1300 IF BB<9 GOTO 1330 
1310 LINE (QX*A+OX,QY*BB+OY)-(QX*C+OX,QY*BB+OY) 
1320 GOTO 1270 
1330 K=O 
1340 K=K+l 
1350 B=DY*K 
1360 BB=YA+SY*B 
1370 IF BB> 151 GOTO 1400 
1380 LINE (QX*A+OX,QY•BB+OY)-(QX*C+OX,QY*BB+OY) 
1390 GOTO 1340 
1400 LOCATE 22,1 
1410 PRINT• X TICK=•;INT(DX);" Y TICK=•;JNT(DY);• File#l is •;F$(1) 
1420 LOCATE 20,22:PRINT XLB$;:LOCATE 22,I 
1430 , 
1440 'This section recalls all the files and plots them one by one. 
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1450 , 
1460 FOR I=l TO NF 
1470 IC=O 
1480 JC=O 
1490 OPEN F$(I) AS #1 LEN=30 
1500 FIELD #1, 15 AS XVAL$, 15 AS YVAL$ 
1510 GET #1,1 
1520 NI = CVS(XVAL$):DOT = CVS{YVAL$) 
1530 FOR J=l TO 100 
1540 IC=IC+ 1 
1550 GET #1,IC+l 
1560 X(J)=CVS(XVAL$) 
1570 Y(J)=CVS(YVAL$) 
1580 IF J = 1 AND IC= 1 THEN XIN = X(J):YIN = Y(J):GOTO 1600 
1590 IF J = 100 THEN XTMP = X(J): YTMP = Y(J) 
1600 IF IC =NI GOTO 1620 
1610 NEXT J 
1620 FOR J=l TO 100 
1630 JC=JC+l 
1640 PS= 0 
1650 IF J = 1 AND JC=l THEN XTMP=XIN:YTMP = YIN:GOTO 1680 
1660 IF J = 1 THEN GOTO 1680 . 
1670 XTMP = X(J-l):YTMP=Y(J-1) 
1680 AA= XA +sx * X(J) 
1690 AT = XA + SX * XTMP 
1700 BB = YA -SY * Y(J) 
1710 BT= YA - SY* YTMP 
1720 IF AA< 9 OR BB< 9 THEN PS= 1 
1730 IF AA> 271 OR BB> 151 THEN PS= 1 
1740 IF PS GOTO 1810 
1750 IF INT(DOT + .5) = 2 THEN GOTO 1810 'No plot 
1760 IF INT(DOT+.5)=0 THEN GOTO 1790 'Dot plot 
1770 LINE (QX*AT+OX,QY*BT+OY) - (QX*AA+OX,QY*BB+OY) 'Line plot 
1780 CIRCLE (QX*AA+OX, QY*BB+OY),2 :GOTO 1810 
1790 IDOT =I 
1800 CIRCLE (QX*AA+OX,QY*BB+OY),IDOT 
1810 IF JC=NI GOTO 1840 
1820 NEXT J 
1830 GOTO 1530 
1840 CLOSE #1 
1850 NEXT I 
1860 • 
1870 'This is the conversational part of the program where the user may 
1880 'save the plot/graph or add more data or print plot/graph. 
1890 • 
1900 LOCATE 24,l:INPUT ;"ENTER OPTION Save, Make plot, Exit ";OPTX$ 
1910 IF OPTX$="S" OR OPTX$="s" THEN 1970 
1920 IF OPTX$=" M" OR OPTX$="m" THEN 2110 
1930 IF OPTX$="E" OR OPTX$="e" THEN LOCATE 24,l:PRINT SPACE$(78); 
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1940 LOCATE 23,l:END 
1950 LOCATE 24,l:PRINT SPC(79):LOCATE 24,l:GOTO 1900 
1960 ' . 
1970 'Save screen routine. 
1980 ' 
1990 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,1 
2000 INPUT ;"ENTER IDSK:J filename (NO EXTENSION) ";FIL$ 
2010 OPEN FIL$+" .PAR" AS #1 LEN=30 
2020 GOSUB 2170 
2030 LOCATE 24,l:PRINT SPACE$(78);:LOCATE 25,l:PRINT SPACE$(78);:LOCATE 23,1 
2040 DEF SEG =&HB800 
2050 BSAVE FIL$+" .SCN" ,O,&H4000 
2060 DEF SEG 
2070 LOCATE 25,l:PRINT "FILE ";CHR$(34);FIL$ ;CHR$(34);" SAVED"; 
2080 LOCATE 23,l:END 
2090 LOCATE 24,l:PRINT SPACE$(78);:LOCATE 23,1 
2100 END 
2110 LOCATE 24,l:PRINT SPACE$(78);:LOCATE 24,1 
2120 FLX$="mplot.bas" 
2130 LOCATE 24,l:PRINT SPACE$(78);:LOCATE 24,1 
2140 GOSUB 2160 
2150 GOTO 2440 
2160 OPEN "CHAINDAT.PAR" AS #1 LEN= 30 
2170 FIELD #1, 15 AS XPAR$,15 AS YPAR$ 
2180 LSET XPAR$ = MKS$(SX) 
2190 LSET YPAR$ = MKS$(SY) 
2200 PUT #1,l 
2210 LSET XPAR$ = MKS$(DX) 
2220 LSET YPAR$ = MKS$(DY) 
2230 PUT #1,2 
2240 LSET XPAR$ = MKS$(X2) 
2250 LSET YPAR$ = MKS$(Y2) 
2260 PUT #1,3 
2270 LSET XPAR$ = MKS$(Xl) 
2280 LSET YPAR$ = MKS$(Yl) 
2290 PUT #1,4 
2300 LSET XPAR$ = MKS$(QX) 
2310 LSET YPAR$ = MKS$(QY) 
2320 PUT #1,5 
2330 LSET XPAR$ = MKS$(0X) 
2340 LSET YPAR$ = MKS$(0Y) 
2350 PUT #1,6 
2360 LSET XPAR$ = MKS$(XA) 
2370 LSET YPAR$ = MKS$(YA) 
2380 PUT #1,7 
2390 XE= l/ABS(X2-Xl):LSET XPAR$ = MKS$(XE) 
2400 YE= 1/ABS(Y2-Yl):LSET YPAR$ = MKS$(YE) 
2410 PUT #1,8 
2420 CLOSE #1 



2430 RETURN 
2440 CHAIN FLX$ 
2450 END 
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AV.9 MAKEGRAF.BAS 

10 ' MAKE A LINEAR X,Y GRAPH 
20, 
30, 

40 'This program allows the user to make an x,y linear graph on the 

50 'graphics monitor with the x and y axis labeled. The graph is generated 

60 'via LINPLT.BAS program which calls file RLINPLT.LNK. The RLINPLT.LNK 

70 'file has the x and y labels and the data file which this program makes. 
80, 

90 CLS:KEY OFF 
100 XLOOP = 0 
110 GOTO 580 
120 OPEN •RLINPLT.LNK" AS #1 LEN = 30 
130 FIELD #1,30 AS RFLD$ 
140 GET #1,1 
150 LSET RFLD$ = MKI$(1) 
160 PUT #1,1 
170 GET #1,2 
180 LSET RFLD$ = YLBL$ 
190 PUT #1,2 
200 GET #1,3 
210 LSET RFLD$ = XLBL$ 
220 PUT #1,3 
230 GET #1,4 
240 LSET RFLD$ = FILX$ 
250 PUT #1,4 
260 CLOSE #1 
270 OPEN FILX$ AS #1 LEN = 30 
280 FIELD #1,15 AS X$,15 AS Y$ 
290 FOR I= 1TO14:LSET X$ = •xxx•:LSET Y$ ="YYY":PUT #1,I: 

NEXT I:CLOSE #1 
300 OPEN FILX$ AS #1 LEN= 30 
310 FIELD #1,15 AS X$,15 AS Y$ 
320 GET #1,1 
330 LSET X$ = MKS$(2):LSET Y$ = MKS$(2) 
340 PUT #1,1 
350 GET #1,2 
360 LSET X$ = MKS$(XMAX):LSET Y$ = MKS$(YMAX) 
370 PUT #1,2 
380 GET #1,3 
390 LSET X$ = MKS$(XMIN):LSET Y$ = MKS$(YMIN) 
400 PUT #1,3 
410 LOCATE 25,1 
420 PRINT SPACE$(78);:LOCATE 25,1 
430 PRINT "ENTER OPTION Plot, End "; 
440 YN$ = INKEY$: IF YN$ ="" THEN 440 
450 IF YN$ ="E" OR YN$ = "e" THEN CLS:NEW:END 
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460 IF YN$ ="P" OR YN$ = "p" THEN CLOSE #l:CHAIN "LINPLT.BAS" ELSE 410 
470 LOCATE 25,l:PRINT SPACE$(78);:LOCATE 25,l:XLOOP = 1 
480 INPUT;"ENTER FIELD CHANGE XMAX, XMIN, YMAX, YMIN, XLAB, YLAB, 

FILE, RUN :" ,EF$ 
490 IF EF$ = "XMAX" OR EF$ = "xmax" THEN 580 
500 IF EF$ = "YMAX" OR EF$ = "ymax" THEN 640 
510 IF EF$ = "XMIN" OR EF$ = "xmin" THEN 610 
520 IF EF$ = "YMIN" OR EF$ = "ymin" THEN 670 
530 IF EF$ = "XLAB" OR EF$ = "xlab" THEN 700 
540 IF EF$ = "YLAB" OR EF$ = "ylab" THEN 730 
550 IF EF$ ="FILE" OR EF$ ="file" THEN 760 
560 IF EF$ ="RUN" OR EF$ ="run" THEN 120 
570 GOTO 470 
580 LOCATE 3,l:PRINT SPACE$(78);:LOCATE 3,1 
590 INPUT ;"ENTER 'X' MAXIMUM VALUE= ",XMAX 
600 IF XLOOP = 1 THEN GOTO 470 ELSE 610 
610 LOCATE 4,l:PRINT SPACE$(78);:LOCATE 4,1 
620 INPUT ;"ENTER 'X' MINIMUM VALUE = ",XMIN 
630 IF XLOOP = 1 THEN GOTO 470 ELSE 640 
640 LOCATE 6,l:PRINT SPACE$(78);:LOCATE 6,1 
650 INPUT ;"ENTER 'Y' MAXIMUM VALUE= ",YMAX 
660 IF XLOOP = 1 THEN GOTO 470 ELSE 670 
670 LOCATE 7,l:PRINT SPACE$(78);:LOCATE 7,1 
680 INPUT ;"ENTER 'Y' MINIMUM VALUE = ", YMIN 
690 IF XLOOP = 1 THEN GOTO 470 ELSE 700 
700 LOCATE 9,l:PRINT SPACE$(78);:LOCATE 9,1 
710 INPUT ;"ENTER 'X' LABEL 130 charactr'sJ: ",XLBL$ 
720 IF XLOOP = 1 THEN GOTO 470 ELSE 730 
730 LOCATE 10,l:PRINT SPACE$(78};:LOCATE 10,1 
740 INPUT ;"ENTER 'Y' LABEL 116 charactr's]: ",YLBL$ 
750 IF XLOOP = 1 THEN GOTO 470 ELSE 760 
760 LOCATE 12,l:PRINT SPACE$(78);:LOCATE 12,1 
770 INPUT ;"ENTER DATA FILE NAME dsk:fi.lename.ext - ",FILX$ 
780 GOTO 470 
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Appendix VI 

PROGRAMS FOR 

POROSIMETRY EXPERIMENTS 
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Two short progams used in the inversion of data from the mercury porosimetry 

experiments are given in this Appendix. 

The raw data from a porosimetry run are in the form of intrusion pressures 

versus intrusion volumes. This is plotted on graph paper in real-time. That data 

is digitized either by hand or by any other suitable means and a digitized data 

file is made. The program HGINV.BAS reads the digitized data file and after 

suitable manipulations, produces a file containing the pore volume and pore surface 

area distributions. The dead volume correctiQn as provided by the porosimeter 

manufacturer is incorporated in the program. 

The HGVOLPRT.BAS program computes the specific volumes and surface ar­

eas from the respective distribution data in the three pore size ranges corresponding 

to micro, transitional, and macro pores. The appropriate ranges are user defined. 
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AVl.1 HGINV.BAS 

10' MERCURY INTRUSION INVERSION PROGRAM 
20, 
30 'This program reads the digitized data. file a.nd creates a file containing 
40 'r(P), dV /d(log r) and dS/d(log r). The distribution curves are plotted 
50 'versus log r. The dead volume correction is included. 
60 KEY OFF 
70 CLS 
80 'Polynomial corrections for blank volume: 
90 'These coefficients are from the run performed on 2/13/87. 
100 'Intrusion 0-3000 psi 
110, 

120 C0=-.000762: Cl=-9.243701E-07: C2=1.59553E-10 
130, 
140 'Intrusion 3000-33000 psi 
150, 
160 D0=-.002943: Dl=l.560229E-07: D2=-l.902453E-12 
170, 
180 'Extrusion 25-3000 psi 
190, 
200 E0=.0015 : El=O! : E2=0! 
210, 

220 'Extrusion 3000-33000 psi 
230, 
240 F0=.001016: Fl= 1.43002E-07: F2=-4.873868E-12 
250, 
260 DIM VOLLOG(NN),SURLOG(NN),DV(NN),DP(NN),P(NN),V(NN) 
270 DIM R(NN),RR(NN),VRAW(NN),VCOR(NN),RAV(NN) 
280 INPUT "NO.OF PRESSURE POINTS";NN 
290 INPUT "NAME OF DATA FILE" ;N$ 
300 INPUT "MASS OF SAMPLE";M 
310 INPUT "NAME OF OUTPUT FILE ";FILI$ 
320 INPUT "Intrusion (0) or extrusion (l)";FLAG 
330 IF (FLAG=O OR FLAG=l)GOTO 340 ELSE GOTO 320 
340 OPEN "I" ,#1,N$ 
350 FOR I = 1 TO NN 
360 INPUT #1,P(I),VRAW(I) 
370 NEXT I 
380 CLOSE #1 
390 IF FLAG = 1 THEN GOTO 490 
400, 
410 'The first point correction is different. 
420, 
430 FOR 1=2 TO NN 
440 IF P(I)<3000 THEN VCOR(I)=CO+P(I)*(Cl+P(I)*C2) 
450 IF P(I)>3000 THEN VCOR(l)=DO+P(I)*(Dl+P(I)*D2) 
460 NEXT I 



470 VCOR(l}=O! 
480 GOTO 540 
490 FOR I=2 TONN 
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500 IF P(I)<3000 THEN VCOR(I)=EO+P(I)*(El+P{I)*E2) 
510 IF P(1)>3000 THEN VCOR(I)=FO+P(I)*(Fl+P(I)*F2) 
520 NEXT I 
530 VCOR(l)=.0035 
540 FOR I=l TO NN 
550 V(l)=VRAW(I)-VCOR(I) 
560 NEXT I 
570 R(1)=106.66/(P(1)+14.7): DV(l)=V(l)/M : DP(l)=P(1}+14.7 
580 RAV(1)=2*106.66/(P(1)+14.7) 
590 TOTSURF=O 
600 FOR I = 2 TO NN 
610 R(I) = 106.66/{P{I)+14.7} 
620 RAV(l)=(R(I)+R(I-1))/2 
630 DV(I)=(V(I)-V(I-1))/M 
640 IF DV(I)<O THEN DV(I)=O 
650 DP(I) = P(I) - P(I-1) 
660 VOLLOG(I) = 2.303*P(I)*DV(I)/DP(I) 
670 SURLOG(I)=VOLLOG(I)*2/RAV(I) 
680 SURF=2*DV(I)*10000!/RAV(I) 
690 TOTSURF=TOTSURF+SURF 
700 NEXT I 
710 VFIN=V(NN)/M 
720 LOCATE 11,1 
730 PRINT "Total volume intruded was (cc/g)" : PRINT VFIN 
740 LOCATE 13,1 
750 PRINT "Total surface area was (sq. cm/g)" :PRINT TOTSURF 
760 LOCATE 15,1 
770 PRINT "Writing new files ... • 
780 OPEN FIL1$ FOR OUTPUT AS #1 
790 FOR I= 1 TONN 
800 RAV(I)=RAV(I)*lOOOO 
810 WRITE #1, RAV(I),VOLLOG(I),SURLOG(I) 
820 NEXT I 
830 CLOSE #1 
840 LOCATE 17,1 
850 PRINT "DONE." 
860 END 
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AVI.2 HGVOLPRT.BAS 

10 ' POROSIMETRY DATA PARTITIONING PROGRAM 
20, 
30 'This program computes the specific volume and surface area 
4-0 'from pore volume and pore surface distributions in three 
50 'pore size ranges corresponding to external, macro, and transition 
60 'pores. The ranges are defined by the user. 
70 'Suggested ranges are: < 500 A for transitional-macro boundary and 
80 '< 17600 A for macro-interparticle boundary (60 psi). 
90 'This program also calculates a mean pore radius for each range. 
100, 

110 DIM R(200), VLOG(200), SLOG(200), DVDR(200), DSDR(200) 
120 DIM DELVOL(200),DELSURF(200),RVOL(200) 
130 CLS 
140 INPUT •What is the name of the input file •;FILI$ 
150 INPUT •What is the file name you will write to • ;N$ 
160 INPUT •Number of points in file •;NPTS 
170 INPUT •Enter the radius (A) for transition-macro boundary •;Rl 
180 INPUT •Enter the radius (A) for macro-interparticle boundary •;R2 
190, 
200 'Open pore volume distribution file (from HGINV.BAS) 
210, 
220 OPEN FILI$ FOR INPUT AS #1 
230 FOR X=l TO NPTS 
240 INPUT #1,R(X),VLOG(X),SLOG(X) 
250 NEXT X 
260 CLOSE #1 
270, 
280 'Calculate area under dV /dlog r curve to get volume. 
290 'The average radius is obtained from the first moment. 
300, 
310 FOR I=l TO NPTS-1 
320 DVDR(I)=VLOG(I)/R(I) 
330 DELVOL(I)=.5*(DVDR(I)+DVDR(I+l))*(R(I)-R(l+l)) 
340 RVOL(l)=.5*(VLOG(I)+VLOG(I+l))*(R(I)-R(l+l)) 
350 DSDR(I)=SLOG(I)/R(I) 
360 DELSURF(I)=.5*(DSDR(I)+DSDR(I+l))*(R(I)-R(I+l)) 
370 NEXT I 
380 RTRANS=Rl/2! 
390 RMACRO=(Rl+R2)/2! 
400 RINTRP=(R2+R(l))/2! 
410 EXTVOL=O:MACVOL=O:TRNVOL=O:EXTSUR=O:MACSUR=O:TRNSUR=O 
420 FOR J=2 TO NPTS 
430 IF R(J) > R2 THEN EXTVOL=EXTVOL+DELVOL(J) 
440 IF R(J) > R2 THEN EXTSUR=EXTSUR+DELSURF(J) 
450 IF R(J) < R2 AND R(J) >RI THEN MACVOL=MACVOL+DELVOL(J) 
460 IF R(J) < R2 AND R(J) > Rl THEN MACSUR=MACSUR+DELSURF(J) 
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470 IF R(J) < Rl THEN'TRNVOL=TRNVOL+DELVOL(J) 
480 IF R(J) < Rl THEN TRNSUR=TRNSUR+DELSURF(J) 
490 NEXT J 
500 EXTSUMRV=O: MACSUMRV=O: TRNSUMRV=O 
510 FOR J=2 TO NPTS 
520 IF R(J) > R2 THEN EXTSUMRV=EXTSUMRV+RVOL(J) 
530 IF R(J) < R2 AND R(J) > Rl THEN MACSUMRV=MACSUMRV+RVOL(J) 
540 IF R(J) < Rl THEN TRNSUMRV=TRNSUMRV+RVOL(J) 
550 NEXT J 
560 EXTRAV=EXTSUMRV /EXTVOL 
570 MACRAV=MACSUMRV /MACVOL 
580 TRNRAV=TRNSUMRV /TRNVOL 
590 VOLSUM=EXTVOL+MACVOL+TRNVOL 
600 SURSUM=EXTSUR+MACSUR+TRNSUR 
610 OPEN N$ FOR OUTPUT AS #1 
620 WRITE #1,RTRANS,TRNVOL,TRNSUR 
630 WRITE #1,RMACRO,MACVOL,MACSUR 
640 WRITE #1,RINTRP,EXTVOL,EXTSUR 
650 PRINT RTRANS,TRNVOL,TRNSUR 
660 PRINT RMACRO,MACVOL,MACSUR 
670 PRINT RINTRP,EXTVOL,EXTSUR 
680 PRINT 
690 PRINT ,VOLSUM, SURSUM 
700 PRINT 
710 PRINT 
720 PRINT EXTRAV,MACRAV,TRNRAV 
730 CLOSE #1 
740 END 



- 401-

Appendix VII 

PROGRAMS FOR 

HIGH TEMPERATURE PYROMETRY 
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The programs used to acquire particle temperature data from the high tem­

perature reactor pyrometer are given in this Appendix. 

The data acquisition program is GETTEMP.BAS. It uses the DT2801-A board 

and an external trigger to gather the signals from the lOOOnm and 800nm channels 

of the pyrometer. The signals are digitized and stored in the computer RAM via a 

DMA procedure. PYRO.BAS reads in the raw signal data and creates the actual 

signal data for temperature inversion. Basically, this involves separating the DMA 

data into their respective channels, calculating the baselines averages and finally, 

calculating the signal strengths above their respective baselines. MTEMP.FOR 

uses suitable calibration data and Planck law analysis to generate the particle 

temperature-time data. 

Figure AVIl.1 shows the sequence of steps just outlined. Program listings 

follow. 



Calibration 
Da.ta 
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Experimental Data 

' 

I 
GETTEMP.BAS 

I 
~ 

Raw Data 
(Intensities va. Time) 

I PYRO.BAS I 
, 

Sipa.l Ratio 

~ , 

. I MTEMP.FOR 

I 

~ . 
Tempera.ture vs. Time 

Figure AVII.1 Flow Dia.gram for the analysis of optical pyrometry data. 
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AVII.1 GETTEMP.BAS 

10' 
20' 
30' 
40' 

DIRECT MEMORY ACCESS PROGRAM 

50 'This program is used to gather pyrometry data from the high 
60 'temperature reactor. Channels 0 and 1 collect the 
70 'signals from wavelengths 1000 and 800 nm. 
80 'It performs fast data acquisition (20kHz) by driving 
90 'the DT2801-A data acquisition board (DATA TRANSLATION INC.). 
100 'The system is externally triggered when the voltage on channel 0/1 
110 'rises above an adjustable threshold. A fixed number points 
120 '(user specified) are obtained from each channel. 
130 'These data are printed sequentially on the screen, and then plotted 
140 'by chaining to MPLOT.BAS, thence to LINPLT.BAS via RLINPLT.LNK. 
150 'The memory allocation specifications etc. are for the Zenith 148. 
160 CLEAR ,25000 
170 ' 
180 DEFINT A-Z 
190 BASE.ADDRESS= &H2EC 
200 COMMAND.REGISTER= BASE.ADDRESS+ 1 
210 STATUS.REGISTER= BASE.ADDRESS + 1 
220 DATA.REGISTER= BASE.ADDRESS 
230 COMMAND.WAIT = &H4 
240 WRITE. WAIT = &H2 
250 READ.WAIT= kH5 
260 CSTOP =&HF 
270 CCLEAR = &Hl 
280 CERROR = &H2 
290 CCLOCK = &H3 
300 CSAD = &HD 
310 CRAD = &HE 
320 MIN.CONV = 3 
330 MAX.CONV = 20000! 
340 CDMA = &HlO 
350 DUMMY= 5 
360 FREQUENCY#= 800000! 
370 PERIOD# = 40 
380 EXT.TRIGGER= &H80 
390 , 
400 'A/D parameter constants. 
410 ' 
420 FACTOR# = 4096 
430 ' 
440 'The memory to be used for DMA starts at memory address &HF800 
450 'on memory page 0. 
460 , 
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470 DMACHANNEL = 1 
480 DMAMODE = &H45 
490 BASEREG = 2 
500 COUNTREG = 3 
510 PAGEREG = &H83 
520 DMABASEL = 0 
5,30 DMABASEH = &HO 
540 DMAPAGE= 3 
550 , 
560 'Check for legal Status Register. 
570 , 
580 STATUS = INP(STATUS.REGISTER) 
590 IF NOT((STATUS AND &H70) = O} THEN GOTO 2540 
600 , 
610 'Stop and clear the DT2801-A. 
620 , 
630 OUT COMMAND.REGISTER, CSTOP 
640 TEMP = INP(DATA.REGISTER) 
650 WAIT STATUS.REGISTER, COMMAND.WAIT 
660 OUT COMMAND.REGISTER, CCLEAR 
670 COMMAND=COMMAND+EXT.TRIGGER 
680 , 
690 GAIN(O) = 1 : GAIN(l) = 2 
700 GAIN(2) = 4 : GAIN(3) = 8 
710 , 

720 'Range and Offset are set for unipolar differential outputs. 
730 , 
740 RANGE=lO : OFFSET=O 
750 CLS 
760 INPUT •what is the name of the file series •;FILSER$ 
770 , 
780 'Print out conversion rate. 
790 , 

800 PRINT 
810 PRINT •The internal clock is set to a frequency of •; 
820 PRINT USING •#####";FREQUENCY#/PERIOD#;: PRINT• Hertz.• 
830 , 
840 'Get A/D gain. 
850 , 
860 PRINT "Legal values for gain are •;GAIN(O);•, •;GAIN(l); 
870 PRINT•, ";GAIN(2);", and •;GAIN(3);• .• 
880 INPUT• Gain value= •;Y 
890 ' 
900 FOR GAIN.CODE= 0 TO 3 : IF GAIN(GAIN.CODE) = Y THEN GOTO 950 

910 NEXT GAIN.CODE 
920 , 
930 PRINT : PRINT• Please use legal gain value.• 
940 GOTO 860 
950 START.CHANNEL=O: END.CHANNEL=! 



960 ' 
970 'Get number of conversions to do. 
980 ' 
990 PRINT : PRINT : PRINT " 

-406-

"· ' 
1000 PRINT "Legal values for number of conversions are ";MIN.CONY; 
1010 PRINT" through ";MAX.CONY;"." 
~020 INPUT" Number of conversions value= ";NUM.CONY 
1030 ' 
1040 IF (NUM.CONY >= MIN.CONY AND NUM.CONY =< MAX.CONY) 

THEN GOTO 1090 
1050 ' 
1060 PRINT 
1070 PRINT "Please use legal number of conversions value.• 
1080 GOTO 960 
1090 ' 
1100 'Set up the A/D converter. 
1110 'Write SET A/D PARAMETERS command. 
1120 ' 
1130 WAIT STATUS.REGISTER, COMMAND.WAIT 
1140 OUT COMMAND.REGISTER, CSAD 
1150 ' 
1160 'Write A/D gain byte. 
1170 ' 
1180 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1190 OUT DATA.REGISTER, GAIN.CODE 
1200 ' 
1210 'Write A/D start channel byte. 
1220 ' 
1230 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1240 OUT DATA.REGISTER, START.CHANNEL 
1250 ' 
1260 'Write A/D end channel byte. 
1270 ' 
1280 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1290 OUT DATA.REGISTER, END.CHANNEL 
1300 I 

1310 'Write two bytes, dummy number of conversions. 
1320 ' 
1330 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1340 OUT DATA.REGISTER, DUMMY 
1350 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1360 OUT DATA.REGISTER, DUMMY 
1370 ' 
1380 'Set internal clock rate. 
1390 'Write SET CLOCK PERIOD command. 
1400 ' 
1410 WAIT STATUS.REGISTER, COMMAND.WAIT 
1420 OUT COMMAND.REGISTER, CCLOCK 
1430 ' 
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1440 'Write high and low bytes of PERIOD#. 
1450 , 
1460 PERIODH = INT(PERIOD#/256) 
1470 PERIODL = PERIOD# - PERIODH * 256 
1480 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1490 OUT DATA.REGISTER, PERIODL 
1500 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT 
1510 OUT DATA.REGISTER, PERIODH 
1520 , 
1530 'Set-up DMA controller 
1540 , 
1550 DMACOUNT = (NUM.CONV * 2) - 1 
1560 DMACOUNTH = INT(DMACOUNT /256) 
1570 DMACOUNTL = DMACOUNT - DMACOUNTH * 256 
1580 ' 
1590 OUT 11,DMAMODE ' set DMA mode 
1600 OUT 12,0 ' clear byte flip-flop 
1610 OUT BASEREG,DMABASEL 'set DMA memory base address 
1620 OUT BASEREG,DMABASEH 
1630 OUT COUNTREG,DMACOUNTL ' set DMA byte count 
1640 OUT COUNTREG,DMACOUNTH 
1650 OUT PAGEREG,DMAPAGE 'set DMA memory page 
1660 OUT 10,DMACHANNEL ' enable DMA channel mask 
1670 , 
1680 'Check for ERROR. 
1690 , 
1700 WAIT STATUS.REGISTER, COMMAND.WAIT 
1710 STATUS= INP(STATUS.REGISTER) 
1720 IF (STATUS AND &H80) THEN GOTO 2320 
1730 , 
1740 'Write READ A/D WITH DMA command. 
1750 , 
1760 PRINT : PRINT • Starting conversions.• : PRINT 
1770 , 
1780 WAIT STATUS.REGISTER, COMMAND.WAIT 
1790 OUT COMMAND.REGISTER, CRAD +CDMA+ COMMAND 
1800 , 
1810 'Check for ERROR. 
1820 , 
1830 WAIT STATUS.REGISTER, COMMAND.WAIT 
1840 STATUS = INP(STATUS.REGISTER) 
1850 PRINT "TRIGGERED" 
1860 IF (STATUS AND &H80) THEN GOTO 2320 
1870 , 
1880 'Calculate and print the A/D readings in volts. 
1890 , 
1900 PRINT 
1910 , 
1920 DEF SEG = &H3000 
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1930 SUFF=MAIN+97 
1940 RUNNUM$=CHR$(SUFF) 
1950 ' 
1960 FILNEW$=FILSER$+RUNNUM$+" .dat" 
1970 OPEN FILNEW$ AS #1 LEN=30 
1980 FIELD #1, 15 ASX$, 15 AS Y$ 
1990 LSET X$=MKS$(NUM.CONV) : LSET Y$=MKS$(0) 
2000 PUT #1,1 
2010 FOR LOOP = 1 TO NUM.CONV 
2020 ADDRESS= (LOOP - 1) * 2 
2030 DATA.VALUE#= PEEK(ADDRESS) 
2040 DATA.VALUE#= DATA.VALUE#+ PEEK(ADDRESS + 1) * 256 
2050 VOLTS#=((RANGE*DATA.VALUE#/FACTOR#)-OFFSET)/ 

GAIN(GAIN.CODE) 
2060 TIME#=(LOOP-1)*.05 
2070 LSET X$ =MKS$(TIME#): LSET Y$ =MKS$(VOLTS#) 
2080 PUT #1, LOOP+l 
2090 PRINT" CHANNEL";: PRINT USING "##";CHANNEL; 
2100 PRINT"=";: PRINT USING "###.######";VOLTS#; 
2110 IF CHANNEL= END.CHANNEL THEN PRINT 
2120 NEXT LOOP 
2130 CLOSE #1 
2140 PRINT 
2150 PRINT FILNEW$ 
2160 GOTO 2700 
2170 PRINT: PRINT 
2180 INPUT" Do you want to do more conversions (Y/N)";Y$ 
2190 IF Y$ = "N" ORY$= "n" THEN GOTO 2230 
2200 IF Y$ = "Y" OR Y$ = "y" THEN GOTO 760 
2210 ' 
2220 GOSUB 2270 : GOTO 2160 
2230 ' 
2240 PRINT : PRINT 
2250 PRINT" READ A/D WITH DMA Operation Complete" 
2260 GOTO 2610 
2270 ' 
2280 'Respond to query with 'Y' or 'N'. 
2290 ' 
2300 PRINT : PRINT " 
2310 RETURN 
2320 ' 
2330 'Fatal board error. 
2340 ' 
2350 PRINT 

Please respond with 'Y' or 'N' only." 

2360 PRINT "FATAL BOARD ERROR" 
2370 PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);• HEXIDECIMAL" 
2380 PRINT : BEEP : BEEP : GOSUB 2430 
2390 PRINT "ERROR REGISTER VALUES ARE:" 
2400 PRINT" BYTE 1 - ";HEX$(ERROR1);" HEXIDECIMAL" 
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2410 PRINT" BYTE 2 - ";HEX$(ERROR2};" HEXIDECIMAL" 
2420 PRINT: GOTO 2610 
2430 , 
2440 'Read the Error Register. 
2450 , 
2460 OUT COMMAND.REGISTER, CSTOP : TEMP = INP(DATA.REGISTER} 
2470 WAIT STATUS.REGISTER, COMMAND.WAIT 
2480 OUT COMMAND.REGISTER, CERROR 
2490 WAIT STATUS.REGISTER, READ.WAIT 
2500 ERROR! = INP(DATA.REGISTER) 
2510 WAIT STATUS.REGISTER, READ.WAIT 
2520 ERROR2 = INP(DATA.REGISTER) 
2530 RETURN . 
2540 , 
2550 'Illegal Status Register. 
2560 ' 
2570 PRINT 
2580 PRINT "FATAL ERROR - ILLEGAL STATUS REGISTER VALUE" 
2590 PRINT "STATUS REGISTER VALUE IS ";HEX$(STATUS);" HEXIDECIMAL" 
2600 BEEP : BEEP 
2610 PRINT: PRINT 
2620 , 
2630 INPUT" Run program again (Y/N)";Y$ 
2640 IF Y$ = "Y" ORY$= "y" THEN RUN 
2650 IF Y$ = "N" ORY$= "n" THEN GOTO 2690 
2660 , 
2670 PRINT : PRINT " 
2680 GOTO 2620 
2690 , 

Please respond with 'Y' or 'N'." 

2700 'This part of the program sets the parameters for plotting the data. 
2710 , 
2720 SCREEN 0,0,0:CLS:KEY OFF 
2730 DIM FL$(1) 
2740 NOF=l 
2750 XLBL$ ="TIME" 
2760 YLBL$ = "VOLTS" 
2770 FL$(1)=FILNEW$ 
2780 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
2790 FIELD #1, 30 AS RFLD$ 
2800 FOR I= 1 TO 21:LSET RFLF$ = "XXXXXXXXX":PUT #1,I:NEXT l:CLOSE #1 
2810 OPEN "RLINPLT.LNK" AS #1 LEN= 30 
2820 FIELD #1, 30 AS RFLD$ 
2830 GET #1,1 
2840 LSET RFLD$ = MKI$(NOF) 
2850 PUT #1,1 
2860 GET #1,2 
2870 LSET RFLD$ = YLBL$ 
2880 PUT #1,2 
2890 GET #1,3 



2900 LSET RFLD$ = XLBL$ 
2910 PUT #1,3 
2920 FOR I = 1 TO NOF 
2930 GET #1,1+3 
2940 LSET RFLD$ = FL$(1) 
2950 PUT #1,1+3 
2960 NEXT I 
2970 CLOSE #1 
2980 CLS 
2990 CHAIN "LINPLT.BAS" 
3000 , 
3010 END 

- 410-
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AVII.2 PYRO.BAS 

10 ' PYROMETRY INVERSION PROGRAM 
20' 
30 'This program takes the pyrometry signal file (from GETTEMP.BAS) 
40 'and first separates the signals into their respective channels. 
50 'It then computes the baseline average (over the last 15 points) 
60 'signal in each channel. Finally, it computes the actual signal 
70 '(input-average) in each channel and the ratio of the signals (rat) 
80 'The output file, readable by zplot (ASCII) contains the actual 
90 'signals, their ratio and also the raw signals and time. 
100 'This output file is read by MTEMP.EXE (from MTEMP.FOR) to deduce 
110 'the temperature from the signal ratio. 
120' 
130' 
140 N = 200 'size of the arrays 
150 I 

160 CLS:SCREEN 0,0,0:KEY OFF 
170 LOCATE 5,1 
180 ' 
190 'Enter input file from GETTEMP.BAS 
200 ' 
210 INPUT "Enter name of file to be modified as !dsk:]filename.dat ";FILOLD$ 
220 LOCATE 7,1 
230 INPUT "Enter name of new file as [dsk: ]filename.dat 
240 DIM X(N),Y(N),Yl(N),Y2(N),Y1SIG(N),Y2SIG(N),RAT(N) 
250 LOCATE 9,1 
260 PRINT •Reading old file ... • 
270 OPEN FILOLD$ AS #1 LEN= 30 
280 FIELD #1, 15 AS X$, 15 AS Y$ 
290 GET #1,1 
300 NPTS = CVS(X$) 
310 M = CVS(Y$) 
320 FOR I = 1 TO NPTS 
330 GET #1,I+l 
340 X(I) = CVS(X$) 
350 Y(I) = CVS(Y$) 
360 NEXT I 
370 CLOSE #1 
380 IC=l 
390 , 
400 'Separate the signals into proper channels. 
410 , 
420 FOR l=NPTS TO 2 STEP-2 
430 Yl(IC)=Y(I) 
440 Y2(IC)=Y(I-1) 
450 X(IC)=(IC-1)*.1 
460 IC=IC+l 

";FILNEW$ 



470 NEXT I 
480 NNEW=NPTS/2 
490 , 
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500 'Calculate baseline average in each channel. 
510 , 
520 SUMI= 0 
~30 SUM2 = 0 
540 FOR J=l TO 15 
550 SUMl=SUMl+Yl(J) 
560 SUM2=SUM2+Y2(J) 
570 NEXT J 
580 YlAV=SUMl/15! 
590 Y2AV=SUM2/15! 
600 , 
610 'Find the actual signal level in each channel and the signal ratio. 
620 , 
630 FOR K=l TO NNEW 
640 YlSIG(K)=Yl(K)-YlAV 
650 Y2SIG(K)=Y2(K)-Y2AV 
660 RAT(K)=Y1SIG(K)/Y2SIG(K) 
670 IF RAT(K)<l! THEN RAT(K)=l!/RAT(K) 
680 PRINT RAT(K) 
690 NEXT K 
700 PRINT "Computing modifications ... " 
710 , 

720 'Write to output file. 
730 , 

740 LOCATE 13,1 
750 PRINT "Writing new file ... " 
760 OPEN FILNEW$ FOR OUTPUT AS #1 
770 FOR I= 1 TO NNEW 
780 WRITE #1,X(I),Yl(I),Y2(I),YlSIG(I),Y2SIG(I),RAT(I) 
790 NEXT I 
800 CLOSE #1 
810 LOCATE 15,1 
820 PRINT "Done." 
830 KEY ON 
840 LOCATE 24,1 
850 END 
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AVIl.3 MTEMP.FOR 

10 c This program calculates the particle temperature from the 

20 c high temperature pyrometry experiments. Its input is the 

30 c file from PYRO.BAS that has the ratio of the signals in the 

40 c two wavelengths. Using that ratio and a calibration factor 

50 c the particle temperature is calculated from a Planck law 

60 c analysis. 

70 c 
80 c 

90 DIMENSION X(50),Y1(50),Y2(50),Y1S(50),Y2S(50) 

100 DIMENSION RAT(50),TEMP(50),TIME(50) 

110 CHARACTER*15 OLDFILE,NEWFILE 

120 c 
130 WRITE(*,10) 

140 10 FORMAT(1X,'ENTER OLDFILE:') 

150 READ(*,12)0LDFILE 

160 12 FORMAT(A15) 

170 WRITE(*,14) 

180 14 FORMAT(1X,'ENTER NEWFILE') 

190 READ(*,12)NEWFILE 

200 WRITE(*,16) 

210 16 FORMAT(1X,'ENTER RATIO') 

220 READ(*,*)RATIO 

230 c 
240 OPEN(1,FILE=OLDFILE,STATUS='OLD',FORM='FORMATTED') 

250 DO 100 I=1,50 



260 

270 

280 

290 

300 c 

310 

320 c 
330 

340 

350 

360 

370 

380 

390 c 

400 

410 

420 

430 

440 

450 

460 
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READ(1.*.END=101)X(I) .Y1(I) ,Y2(I) ,Y1S(I) ,Y2S(I) ,RAT(I) 

100 CONTINUE 

101 CONTINUE 

CLOSE(1) 

CAL=-1.0*ALOG(RATI0/26.3114) 

DO 200 J=1,50 

IF (RAT(J) .EQ. O.O)GOTO 201 

TIME(J)=(J-1)*0.1 

TEMP(J)=3597.0/(ALOG(RAT(J))+CAL) 

200 CONTINUE 

201 CONTINUE 

OPEN(2,FILE=NEWFILE,STATUS='NEW') 

DO 300 K=1,50 

IF(Y1S(K) .NE. O.O)THEN 

WRITE(2,400)TIME(K).TEMP(K),Y1S(K),Y2S(K),RAT(K) 

ELSE 

CONTINUE 

END IF 

470 300 

480 400 

490 c 

CONTINUE 

FORMAT(5X,5G12.6) 

500 CLOSE(2) 

510 STOP 

520 END 
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Appendix VIII 

PROGRAMS FOR 

KINETIC PARAMETER ESTIMATION 
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The experimental and theoretical procedure used to get the chemical kinetic 

parameters at high temperatures is outlined in Figure AVIII.1. First, single particle 

experiments are done and individual temperature-time traces depicting the particle 

combustion histories are obtained. The program AD2.FOR is used for data ac­

quisition purposes. The raw data containing the light intensity voltage values are 

converted to particle temperatures in the program RETEMP.FOR. 

Once the experimental time histories are known, the kinetic parameter esti­

mation program VARASH.FOR is used to determine the kinetic parameters. In­

dividual traces are fit by polynomial functions and the polynomial coefficents are 

used as inputs in the VARASH program. VARASH also contains a suitable particle 

combustion model (VARNU.FOR, see Appendix IX) to interpret the traces. Details 

of the procedure are given in Chapter 4. Temperature-time traces of most of the 

runs are collected in Appendix XII. 



PARTICLE COMBUSTION 
MODEL 
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SIZED CHAR 

~Dilution 
SINGLE PARTICLE COMBUSTION 

~Pyrometry 
TEMPERATURE-TIME HISTORY 

j 
===~® 

j 
KINETIC PARAMETER 

ESTIMATION PROGRAM 

!l 
APPARENT ARRHENIUS KINETIC PARAMETERS 

Figure AVIII.1 Flow diagram for kinetic parameter estimation. 
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AVID.I AD2.FOR 

.. .. .. .. ltOt.":':Jtt AD2 f CU U acrui • i t.i Onl 
~lML~SlON 1Jt.AW:Cl200J,11U.~:<~200) 

~lMENSlON XCl200>,Y<l200> 
aTT! F!::.tc20),AN$W 
VC:ON • 10. I 4096. 
aKA.X • l!OO 
lCJ!l - 2 
IC:H2 • 3 
'11'1'! lD, IC:Hl, IC:H2 

!O FONV.7 Cl IT~O. '%)\l&l A/'O Fu: SU1plin9 Pro9rar.-. -- ' 
1 'S&J11Flin9 C:hanne:a '.l2,' ' •.:2 //l 
'J"n>E lS 
FOllMA7t'Stnter the Nlmlber of A/'O Samples to Take: '> 
ACCEPT • , lt01J!>°T 
U lltO.,._": .1.E. 0 .OP.. aoUNT .In .aKA.Xl GOTO 12 
ZJ)nt-ltOU)."7 

30 
ftPE 30 
FOJIMATt'IEnter ~hreshold 110°""'940> 
ac:an •. 1uc: 
TYH 35 

, ) 

35 l'OIU'IATt'ltnter •of D&aeline points: 'l 
&eaPT •,11.\VG 

40 TYH SO 
50 l"OllHAT l' SKi t u~ to at an aami;:in9: • I 

ACCEPT 55, .7UNJ( 

H F011HA7 IAl > 
5' 1'1:"•0 
60 CAl.l. GTlMlT!irr.> 
61 CAl.:. Al)S£T21lC:Hl,lC:ll2,ltOUt."7,IIU.W~,%1U.~:> 

C.\l.l. GT:tMlT!lfT't> 
SEC:• ll.APStlTlNTa,TlNTtl 
~ FPEAI< 1%Jl.AW2, 1%)%1'1, llXC,ll.\VG, %AVG, ICVI, %115, %NJ:> 
ITtlll•ITE"•l 
'J"n>t io, I'rt", lc:EN, lAVG 

io FOJU'IATl/TS,'%T'EllATlOH•',Il,5X,'Pr.AJI: AT :',J4, 
S SX,'aA.Stl.lltt SIQNAJ. :',I4l 

IF 1%T'Elll .&O. 500> GO TO 222 
IF 1%C%N .10. •ll GO TO 60 
U 1%C%N .SO. •21 GO TO 60 
IF 1%CE.N .IO. •3> GO TO 60 
ftPt 150, S&C, aoUNT 

150 f'OIU'CAT(' T.1141 &lapHd "-'- ts•.r10.J,• MCOftcb for',%5 I> 
'J"n>t 1'0, IJIS, lllt 

160 FOJIMATtT5,'SlGNAl. ITAJlTS AT:',14,JX,'SIGNAl. ~S AT:'.%4> 
CAl.l. llTATlltO\Jt."T,IIU.Wl,AVl,1%)1,SLll 

200 

, 

AVl • AVl • VCON 
Cl • VCON • ll:>l 
SLl • IL1 • VC:ON 
C.\l.l. lSTATlltOTJNT,IIU.W2,AV2,S~2,SL2> 
AV2 • AV2 • VC:ON 
C2 • C2 • VC:ON 
ll.2 • SU • VC:ON 
TYPI 200, l,AVl,S:l,Sl.l 
'J'1'1'E 200, 2,AV2,Sl:>2,SL2 
FO~.ATI' For Channel',I3,' Avera;e•',Fl.4,' 
l Fl.4,' llope•',F9.S,' Volta') 
Z>O i l•l,ltOUl'n 

YlI> • Fl.CATIVC:Ofl•IJl.AWltll) 
Xtl> • Fl.CA'!(I) 

C(».'TlNUt 
in:~ • o.o 
%M:N • 2 
%1"..U • ltOt.'?-"7 

It .:l>ev .•', 
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2~5 IX01JNT•IHAX-IMIN•l 
C CALL P.>.NGtSfIXO'IJNT,XfIM:Nl,Yt!MINl,XM!N,Xl".AX,YX!N,YMAXJ 

XMIN•X t IMIN) 
lCKAX•XtIHAXl 
YMIN•'l' tIMINl 
YMAX•'l'tIMIN) 
IF (lCMIN.tC.ll XMIN•O. 
DO 212 I•IMIN,IHAX 

IF fYIIl .LT.YMINJ YM!N•'l'til 
IF <Yfil .GT.XMAXl YMAX•'l'fl) 

2:2 CONTINt.l!: 
YMIN•YMIN•0.001 
YMAX•YMAX•0.001 
C.U.L VStTSfYMIN,nL\X,XH!N,XMAX,Ol 

210 CA.:..1. VXPLOT<O,X,Yl 
IITEP • llKAX•IMIN•ll/100 
IJ' CISTEP.LT.1) ISTtP • l 
l>O 220 I • IMll'I, IMAX. lSTl:P 

CAl.L VXAt>Dll,Xlll,Yllll 
220 C:ON'l'Itro'E 

CIJ.L VPU'l'<24,ll 
222 'J'Yl't 225 
225 FO""'-'T<'SSelect M tc aaqnify, S tc 5ave, ~ tc ~at, ' 

l 'I tc Initialise, Q tc Q~it: 'l 
ACCEPT 226,ANSW 

226 FOJUU.T<All 
IF IANSW.tQ.'5') GOTO 240 
IF CAN5W.tQ.'I'l GOTO 12 
IF CANSW.tQ.'Q'l GOTO 401 
IF CANSW.tQ.'~'l GOTO 400 
IF IANSW.tQ.'M') GOTO 229 
GOTO 222 

229 'J'Yl't 230 
230 FO""'-'Tl'S?nter IMZN,IHAX : 'I 

ACCEPT•, IMIN,IMAX 
IF CIMIN.Gt.IMA.X .O~. IMA.X.GT.KO'IJNTl GOTO 229 
GOTO 205 

240 CAl.l. ASltFILC3,FI::.El 
CAl.l. ASSIGNf3,Fll.E) 
l>O 300 I•IMIN,IMAX 

Wl'IT£f3,333l VCON•IJU.Wlfll,VCON•IJU.W21Il 
333 ro"""'T<' ',2F8.4l 
300 C:ON'l'IllUE 

C:LOst (UHIT•3 l 
400 CAl.l. VINIT 

GO TO 59 
401 STOP 

tNtl 
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c: 
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c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 

c: 
c: 
c: 
c: 

10 

c: 
c: 
c: 

l! 

c: 

c: 
c 
c 
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SUB~OUTINE FPI.AJ<<IBUT,:DIH,lEXC,NAVG,lAVG,ICEN,INS,lNE) 

THIS JlOIJTINE IS us~ TO DETECT SIGNAl.S ~:TTE:l BY aUP.NING 
C:OA!. PAATIC:U:S ANtl JU:C:O~EI) BY A TWO C:Ol.O~ PYllOMETE~ 

1Tli£ APPllOXIMATE c:ENTEll OF THE PEAJ( CAN Al.SO BE FOUNtll 

METHO~: THE CEN'l'Ell OF THE PEAJI IS DEFINE~ AS THE POINT WHICH 
GIVES THE MAXIMUM C:OIUU:l.\TION OF THE SIGNAl. ANtl A WI~OW 
OF CONSTANT Vlt.l.t1E. 

MOTE: THIS llOO'TINE ASSUK!:S THAT THE FIJlST •NAVG• DATA POINTS 
UPllESENT A %Ell0 lZVEL IN THE SlGNAl. AN!) THAT THE PEAJ( 
OCC'IJJl.S •nnN• POINTS auoJt.E THE END SPEC:IFlEll aY •Il)IM" 

INPUT: ?aUF- ~y CONTAIRING THE SIGNAl. 

J.ZJIGTH or ~y 

OOTPUT: ICEN- Dft)EX TO APPJlOXIMATE CDl'TP or THE PU.X 

INS• FlllST OCc::tnU:Hc:E WKEN SIGNAl. EXCECS TllllESHO:.D 
S'l'AATING nOM THE UGINNING or THE SIGHAl. 

IH'!:• Flit.ST OCCUlU:Nc:E WHEN SIGNAl. EXC%C>S THJU:SHO:.D 
STU.TING Flt.OM THE ~ or THE SlGN.\l. 

EJIJl.OllS: ICEN- SET TO •l IF NO PEAJI: FOlJlim 

PAJV.METEJlS: MAVG- • or POINTS TO Fl~ A~ OVEll ZEllO I.EVEL 
IN SIGHAl. 

IWIN- WIDTH or vnoow TO FIND PU.X 

IEXC:• AllSOLUTE VAl.tl'E THE SIGNAl. MUST CHANGE aY 
SEFOJt.E SE.IJl.C:H FOil PEAX IS MADE 
lOOmv IS 4l. 

nn'EGEJt.•2 ISUF<IDIMl 
VIJlT'UAl. IaUF (ID IM l 

GET %Ell0 l.EVtL FOil S'l'AAT or SIGNAl. 

AVG-0. 
~ 10 J•l,NAVG 
AVG-AVG•IIUF(J) 
IAVG-AVG/NAVG 

FIN:! E?OING ZEJlO LEVEL 

AVG-0. 
DO l~ J•IDIM-NAVG•l,:D:H 
AVG-AVG•IIUT IJ) 
IAVGE•AVG/NAVG 

TWO STATEMENTS THAT SET EllJIO~ Fl.AGS row.ow 

IF <IWIN .GT. 20> GO TO 19 



:: 
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IF c:B~rt:~:M) .i:. IEXC/2)G0 TO 19 
lCI:N•-3 
JU:T:."l'Ji 

c F:11o-: STAJl.':':NG lN:IEX WHERE s:GNAl. £XC£CS THJU:SHO:.: 
c 

:: 

19 INS•l 
20 IF ( IA!IS1:aur1:NSl•lAVG) .GT. IEXC) GO TO 25 

INS•INS•l 
IF I INS .~T. IWIN !GO TO 20 

!SET El'Jl.O~ !F SlGNAl. 
!DOESN'T £XCEE~ THJU:SHO:,:) 

:: F:llo"C Ello":::NG I1'"0£X WHEP.£ SlGNAl. EXCECS THJU:SHO:.:l 
c 
25 J:n•IPIM 
28 IF I IABSlIBUF<INEl•lAVGl:l .GT. IEXC l GO TO 30 

INE•INE·l 
GO TO 28 

C IHS•INS•IWIN/2 
C INE•INE•IWIN/2 

IF I INS .iT. ll INS•l 
IF ( INE .GT. Il)lMl INE•IPIM 

c 
C l.OOK FO~ PEAX 
c 

30 XMAX•O 
PO SO l(•INS,INE 

TKAX•O 
40 TKAX•TKAX•IABSlIBTJFIKl·IAVG) 

IF ( TMAX.U.XMA>Cl GO TO SO 
IC:EN•K 
XMAX•TMAX 

SO C01r.I!ro1: 
JU::'1.17UI 
&1'"0 



c 
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.TlT~E Al:>SET2 -- TAKES 2 SETS OF AID P.£A:::NGS 

.Gl.O!I. Al:>SET2 

FOJlTJIAN USAGE: CAl.l. AJ:)SETSClC!,lC2,KOUNT,IAJl.!,:AP.2l 
lCHl • FIJI.ST AID CHAl.'NEl. NtlMBEJl 10-15 NORMA.l.~Yl 
lCH2 • SECO~ A/D CKANN?:l. NtlMllER 10-l.5) 
KOUNT • NtlMBER OF IU:A:lINGS TO TAX!: 
IAJl.l • FIJI.ST INTEGER ~y SPACE FOR IU.W AfD VAI.UES 
IAP.2 • SECO~E INTEGER ~y SPACE FOR iu.w AID VAl.~'ES 

NOTE THAT lCHl, lCH2, AH':J KOUNT AIU: INTEGER 0 2 VAl'\lAll.ES, ANO 
L\Jll AND IAA2 AN: INTEGER•2 AAMYS Dl.MENS:O~ TO AT l.LAST KOUNT 

OSTAT•l'70400 
GNCli~•l70402 

.AP:ATA•l'70402 

AllSE':2:: 

NEXT: 
1.00Pl: 

1.00P2: 

TST 
NOV 
NOV 
NOV 
NOV 
MOV 
NOV 
TST 
~ 
MOV 
NOV 
TST 
aGE 
NOV 
l>EC 
mn 
U'TO'IUI 
.lt.ND 

Ul.51 • 
I Ill!) •,Ill 
I Ill! l •, Jt.2 
I tll.5!•,JlO 
(Jl.5) .... Jl3 
(Jl.5) •• Jl4 
Jll,ftGNC~ 

ttc=STAT 
1.00Pl 
ftA:)OATA, CJl3) + 
Jl2,ftGNC~ 

ft~STAT 

1.00P2 
ftAllDATA, lll4) • 
JlO 
NEXT 

%GIHOll.E t OF ~S 
IU • lCHl 
Jl2 • lCH2 
JlO • KOUNT 
Jl3 • API>ll.ESS OF I.Ml 
Jl4 • ADDUSS or lAA.2 
STAJlT CONVEJlSION 
AID CONVEIUION DONU 
1.00P UNTll. DONE 
SAVE JU.If DATA IN IAJll 
STAJlT ICH2 CONVEIUION 
AID COMVEJl.SION l>ONE7 

SAVE JI.AW DATA IN IAP.2 
DEC1'DltNT KOUNT 
NEXT S1'KP :U: tnn.ES S Jl2 • 0 
Al.l. l>OHl: 
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AVIII.2 RETEMP.FOR 

10 C This program calculates the ratio of the two signals 

20 C generated by the combustion of a char particle. 

30 C First the magnitudes of the two signals are computed 

40 C then the ratio is taken and f inaly the temperature 

50 C is calculated. 

60 c 

70 c 

80 

90 

100 

110 c 

120 c 

130 c 

140 

150 2 

160 

170 60 

180 c 

190 

200 c 
210 

220 

230 100 

240 101 

250 99 

CHARACTER*16 INFIL,OUTFIL 

REAL*4 A1(1000),A2(1000),DA(1000),AA1(1000).AA2(1000) 

REAL*4 TIME(1000).T(1000) 

Read in data from the input file. 

WRITE(*.2) 

FORMAT(2X,' ENTER INPUT DATA FILENAME:'\) 

READ(*.60)INFIL 

FORMAT(A15) 

OPEN ( 1. FILE=INFIL.FORM='FORMATTED',STATUS='OLD') 

DO 100 I=1.1000 

READ(1,99,END=101) A1(I).A2(I) 

CONTINUE 

CONTINUE 

FORMAT(1X.2F8.4) 
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260 DO 102 !=1,16 

270 WRITE(*,99) A1(I),A2(I) 

280 102 CONTINUE 

290 c 

300 C Enter flag corresponding to furnace wall temperature. 

310 c 

320 WRITE(*,33) 

330 33 FORMAT(' ENTER FLAG FLAG=1 FOR 10.3MV ELSE O:'\) 

340 READ(*,*)FLAG 

350 c 

360 c 

370 c 

380 

390 

400 

410 

420 

430 110 

440 

Compute the baseline average in each channel. 

A1SUM=O. 

A2SUM=O. 

DO 110 !=1,16 

A1SUM=A1(I)+A1SUM 

A2SUM=A2(I)+A2SUM 

CONTINUE 

A1BCK=A1SUM/16. 

450 A2BCK=A2SUM/16. 

460 

470 111 

480 c 

490 c 

500 c 

WRITE(*,111)A1BCK,A2BCK 

FORMAT(//,2X,' A1BCK = ',F8.4,3X,' A2BCK = ',F8.4) 

Calculate the signal average in each channel. 

510 DO 200 1=1,1000 

520 AA1(I)=A1(I)-A1BCK 



-425-

530 AA2(I)=A2(I)-A2BCK 

540 200 CONTINUE 

550 c 

560 c Compute signal ratio. 

570 c 

580 DO 300 I=1, 1000 

590 IF(AA1(I).LT.0.000001) GOTO 300 

600 DA(I)=AA2(I)/AA1(I) 

610 300 CONTINUE 

620 c 

630 c Calculate the temperature. 

640 c 

650 IF(FLAG .EQ. 1.)THEN 

660 DO 310 I=1,1000 

670 IF(DA(I).LE.O.O)GO TO 311 

680 IF(DA(I).GT.0.0)GO TO 312 

690 311 T(I)=O.O 

700 GO TO 310 

710 312 T(I)=(3597)/(ALOG(DA(I))+1.0921929) 

720 310 CONTINUE 

730 ELSE 

740 DO 410 I=1, 1000 

750 IF(DA(I).LE.0.0)GO TO 411 

760 IF(DA(I).GT.0.0)GO TO 412 

770 411 T(I)=O.O 

780 GO TO 410 

790 412 T(I)=(3597)/(ALOG(DA(I))+1.2033064) 
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800 410 CONTINUE 

810 END IF 

820 c 
830 c Write to output file. 

840 c Time(i) is in milliseconds, assuming 1000/0.1sec rate. 

850 c 
860 WRITE(*,320) 

870 320 FORMAT(2X,' ENTER OUTPUT FILENAME : . \) 
880 READ(*,50)0UTFIL 

890 OPEN(2,FILE=OUTFIL,FORM='FORMATTED',STATUS ='NEW') 

900 DO 350 I=1.1000 

910 TIME(I)=O .1*I 

920 WRITE (2,330)I,TIME(I),AA1(I),AA2(I),DA(I),T(I) 

930 350 CONTINUE 

940 330 FORMAT(1X,I4,1X,5F10.4) 

950 c 
960 CLOSE(1) 

970 CLOSE(2) 

980 GOTO 999 

990 990 WRITE(* ,991) 

1000 GOTO 999 

1010 992 WRITE(*,993) 

1020 GOTO 999 

1030 993 FORMAT(' ERROR DURING READ') 

1040 991 FORMAT(' ERROR IN OPENING INPUT FILE') 

1050 999 STOP 

1060 END 
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AVIIl.3 VARASH.FOR 

10 

20 

30 

40 

50 

60 

70 

80 

90 
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190 
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c 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

c 

This program is used to determine the apparent Arrhenius 

kinetic parameters from single particle temperature-time 

traces. The experiments were done in the drop-tube reactor 

at high temperatures. 

Since there is significant particle to particle variability 

even when experimental conditions are the same, this is 

attributed to variation in the particle initial size and the 

particle shape. Both parameters are lumped in the initial 

particle radius. 

The experimental temperature trace is first fit with a fifth 

order polynomial using the program POLY2.BAS. These 

coefficients are inputs to this program. The average initial 

particle radius. guesses for the pre-exponential factor 

and activation energy, wall temperature, and oxygen partial 

pressure are the other inputs. 

Using the guessed kinetic parameters, the particle burning 

model (asymptotic version VARNU.FOR) is run. This predicts 

a temperature-time trace. The pre-exponential factor is 

adjusted till the experimental and model burn times match. 

Then a least squares residual is computed that represents 

the difference between the model and experimental traces. 



260 c 

270 c 

280 c 

290 c 
300 c 

310 c 

320 c 

330 c 

340 c 

350 c 

360 c 
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The above procedure is repeated with different initial 

particle radii and activation energies. For each trace. 

the residual is computed for many values of activation 

energies and initial radii. That value of activation energy 

(and the associated pre-exponential factor) and initial 

radius is chosen which minimizes the residual. 

The process is then repeated for many traces. Finally the 

activation energy that minimizes the sum of the minimum 

residuals of each trace is chosen as the correct parameter. 

370 c----------------------------------------------
380 c 

390 c 

400 c 

410 

420 

430 

440 

450 

460 

470 

480 

490 

500 

510 

520 

Declarations. 

IMPLICIT REAL*4(A-H.O-Z) 

REAL*8 CHRON0(800).CALOR(800) 

REAL*8 TFAC.PEMMIS 

CHARACTER*15 OFIL 

DIMENSION CTIME(10).CTEMP(10),ATEMP(10),PLTEMP(10) 

DIMENSION ER(10),VARER(15),PHTEMP(10) 

INTEGER IER.NCOUNT 

EXTERNAL QCR,VARNU 

COMMON /BIG/ EPSO,RHOC,RINIT.RFINAL,PINF,AERR,RERR. 

1 TWALL.DUM.RBAR.NCOUNT.ENG.PTS.NDEG.EPSF.ASHO.A(3) 

COMMON /DATA/CHRONO.CALOR 

COMMON /TI/TSTART.TEND 
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530 COMMON /TF/TFAC,PEMMIS 

540 c 

550 c----------------------------------------------
560 c 

570 c 

580 c 

590 

600 306 

610 

620 305 

630 

640 310 

650 

660 

670 312 

680 

690 

700 315 

710 

720 

730 317 

Parameter inputs. 

WRITE(*,306) 

FORMAT(1X,'ENTER THE OUTPUT FILE NAME:') 

READ(*,305)0FIL 

FORMAT(A15) 

WRITE(*,310) 

FORMAT(1X,'ENTER START AND END-TIMES (ms):') 

READ(*,*)TSTART,TEND 

WRITE(*,312) 

FORMAT(1X,'ENTER !NIT ASH AND VOID FRACTIONS, PEMMIS:') 

READ(*,*)ASHO,EPSO,PEMMIS 

WRITE(*,315) 

FORMAT(1X,'ENTER INITIAL RAD(mic), TWALL AND 02 P.P:') 

READ(*,*)RINIT,TWALL,PINF 

WRITE(*,317) 

FORMAT(1X,'ENTER !NIT., FINAL ACT. ENERGIES, INCREMENT:') 

740 READ(*,*)E,FAE.DELE 

750 WRITE(*,320) 

760 320 

770 

780 

790 325 

FORMAT(1X,'ENTER THE !NIT. GUESS FOR A AND THCK FACTOR:') 

READ(*,*)GUESSA,TFAC 

WRITE(*,325) 

FORMAT(1X,'ENTER NUMBER OF COEFF.S (MAX=5):') 
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800 READ(*.*)NDEG 

810 DO 340 IT=1.NDEG 

820 WRITE(*.330)IT 

830 330 FORMAT(1X.'ENTER COEFF. •• 12) 

840 READ(*.*)A(IT) 

850 340 CONTINUE 

860 c 

870 c ASH0=0.12 

880 c EPS0=0.68 

890 RHOC=1.6 

900 OPEN(2.FILE=OFIL.STATUS='NEW') 

910 c 

920 DELRINIT=l.0*1.0E-04 

930 E=E-DELE 

940 XACC=0.0001 

950 XACC2=0.025 

960 RINIT=RINIT*l.OE-04 

970 RFINAL=RINIT*(ASH0/(1.0-EPS0))**0.333333 

980 INDEX=(FAE-E)/DELE 

990 c 

1000 c Main program main loop begins. 

1010 c 

1020 DO 370 1=1.INDEX 

1030 E=E+DELE 

1040 GUESS1=1.7*GUESSA 

1050 GUESS2=3.0*GUESSA 

1060 c 



1070 

1080 

1090 

1100 

1110 

1120 

1130 

1140 

1150 

1160 

1170 

1180 

1190 

1200 

1210 

1220 

1230 350 

1240 365 

1250 

1260 

1270 c 

1280 

1290 

1300 

1310 

1320 

1330 

DUMR=RINIT 

X1=GUESS1 

X2=GUESS2 
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CALL QCR(E,X1,DUMR,FX1) 

WRITE(*,*)FX1 

CALL QCR(E,X2,DUMR,FX2) 

WRITE(*,*)FX2 

DO 350 J=1, 100 

GUESS3=GUESS1+(GUESS1-GUESS2)*FX1/(FX2-FX1) 

CALL QCR(E,GUESS3,DUMR,FX3) 

WRITE(*,*)FX1,FX2,FX3 

IF(ABS(FX3) .LE. 0.1)GOTO 365 

GUESS1=GUESS2 

GUESS2=GUESS3 

FX1=FX2 

FX2=FX3 

CONTINUE 

FREQ=GUESS3 

GUESSA=FREQ 

WRITE(*,*)FREQ 

DELCHRO=(TEND-TSTART)/11.0 

DO 400 J=1.10 

DUMJ=TSTART+DELCHRO*J 

DO 450 K=1,800 

IF (CHRONO(K) .GT. DUMJ)THEN 

CTIME(J)=CHRONO(K) 
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1340 CTEMP(J)=CALOR(K) 

1350 GOTO 401 

1360 ENDIF 

1370 450 CONTINUE 

1380 401 CONTINUE 

1390 400 CONTINUE 

1400 c 

1410 c The following two program blocks perform numerical 

1420 c differentiation with respect to initial radius. 

1430 c 

1440 RLOW=RINIT-DELRINIT 

1450 CALL QCR(E.FREQ.RLOW.FUNT) 

1460 DO 600 J=1.10 

1470 DUMJ=TSTART+DELCHRO*J 

1480 DO 660 K=l,800 

1490 IF (CHRONO(K) .GT. DUMJ)THEN 

1500 PLTEMP(J)=CALOR(K) 

1510 GOTO 601 

1520 ENDIF 

1530 650 CONTINUE 

1540 601 CONTINUE 

1550 600 CONTINUE 

1560 c 

1570 RHIGH=RINIT+DELRINIT 

1580 CALL QCR(E.FREQ.RHIGH.FUNT) 

1590 DO 600 J=1.10 

1600 DUMJ=TSTART+DELCHRO*J 



1610 

1620 

1630 

1640 

1650 

1660 650 

1670 601 

1680 600 

1690 c 

1700 

1710 

1720 c 

1730 c 

1740 c 

1750 

1760 

1770 

1780 710 

1790 

1800 

1810 

1820 700 

1830 c 

1840 

1850 

1860 

1870 
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DO 650 K=l,800 

IF (CHRONO(K) .GT. DUMJ)THEN 

PHTEMP(J)=CALOR(K) 

GOTO 601 

ENDIF 

CONTINUE 

CONTINUE 

CONTINUE 

SUMER=O.O 

DO 700 IL=l .10 

Set Initial ATEMPS to 0. 

ATEMP(IL)=O.O 

DO 710 JK=l.NDEG 

ATEMP(IL)=ATEMP(IL)+A(JK)*(CHRONO(IL)*1.0E-03)**(JK-1) 

CONTINUE 

DERIV=(PHTEMP(IL)-PLTEMP(IL))/(2.0*DELRINIT) 

ER(IL)= (ATEMP(IL)-CTEMP(IL))/DERIV 

SUMER=SUMER+ER(IL) 

CONTINUE 

VARSUM=O.O 

ERBAR=SUMER/10.0 

DO 800 KL=l .10 

VARSUM=VARSUM+(ER(KL)-ERBAR)*(ER(KL)-ERBAR) 
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1880 800 CONTINUE 

1890 c 

1900 c Write to file. 

1910 c 

1920 VARER(I)=VARSUM/9.0 

1930 WRITE(2.380)E,FREQ.VARER(I) 

1940 WRITE(*.380)E.FREQ.VARER(I) 

1950 c 

1960 370 CONTINUE 

1970 380 FORMAT(1X.2F12.5.1X.1F18.12) 

1980 CLOSE(2) 

1990 STOP 

2000 END 

2010 c 

2020 c----------------------------------------------
2030 c 

2040 c 

2050 c 

2060 

2070 

2080 

2090 

2100 

2110 

2120 

2130 

2140 c 

This is the calling program for VARNU. 

1 

SUBROUTINE QCR(EM.P.DUMR,FUNT) 

IMPLICIT REAL*4(A-H.O-Z) 

REAL*8 RHOP.DTWAL,TPINIT,DP,C1INF,DRINIT 

REAL*8 ASHINIT,ACEN.TTOT 

EXTERNAL VARNU 

COMMON /BIG/ EPSO.RHOC.RINIT,RFINAL,PINF,AERR.RERR. 

TWALL,DUM,RBAR,NCOUNT.ENG.PTS.NDEG,EPSF.ASHO.A(3) 

COMMON /TI/TSTART.TEND 



2150 

2160 

2170 

2180 

2190 

2200 75 

2210 

2220 

2230 

2240 

2250 

2260 

2270 c 

2280 

2290 1 

2300 

2310 

2320 

2330 c 
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RHOP=(1.0-EPSO-ASHO)*RHOC 

DTWAL=TWALL 

TMPR=O.O 

DO 75 K=1.NDEG 

TMPR=TMPR+A(K)*(TSTART*1.0E-03)**(K-1) 

CONTINUE 

TPINIT=TMPR 

DP=P 

C1INF=PINF 

DRINIT=DUMR*1.0D04 

ASHINIT=ASHO 

ACEN=EM 

CALL VARNU(RHOP.DTWAL.TPINIT.DP. 

C1INF.DRINIT.ASHINIT.ACEN.TTOT) 

FUNT = TTOT-(TEND-TSTART) 

RETURN 

END 

2340 c----------------------------------------------
2350 c 

2360 SUBROUTINE VARNU(AZ1.BZ1.CZ1.DZ1.EZ1.FZ1.GZ1.HZ1.TBURN) 

2370 c 

2380 IMPLICIT REAL*8(A-H.O-Z) 

2390 REAL*8 NMAX 

2400 REAL*8 K11.K12.K13.K14.K21.K22.K23.K24 

2410 REAL*4 TSTART.TEND 
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2420 DIMENSION CHRON0(800).CALOR(800) 

2430 C. 

2440 c 

2450 EXTERNAL EC.ECH.CPC,CPCH 

2460 EXTERNAL FLUX.ENERGY 

2470 EXTERNAL GAMMA,RTBIS.RADIUS,SOLID 

2480 c 

2490 c 

2500 COMMON /FIRST/T,GAM.TWALL.FP 

2510 COMMON /R/RHOC,XFAC.ACEN 

2520 COMMON /Y1S/Y1S.Y1INF 

2530 COMMON /ASH/ASHFRAC.RHOASH.ASHINIT. 

2540 1 RPINIT,CPASH,AMMIS.THCK 

2550 COMMON /DATA/CHRONO.CALOR 

2560 COMMON /TI/TSTART.TEND 

2570 COMMON /TF/TFAC.PEMMIS 

2580 c 

2590 c Initialization. 

2600 c 

2610 RHOC=AZ1 

2620 TWALL=BZ1 

2630 TPINIT=CZ1 

2640 XFAC=DZ1 

2650 C1INF=EZ1 

2660 RPINIT=FZ1 

2670 ASHINIT=GZ1 

2680 ACEN=HZ1 



2690 c 

2700 

2710 

2720 

2730 

2740 

2750 

2760 

2770 

2780 c 

2790 

2800 c 

2810 

2820 

2830 c 

2840 

2850 

2860 

2870 

2880 

2890 

2900 

2910 

2920 c 

2930 c 

2940 

2950 c 

3000 

900 

RHOASH=2.5 

NMAX=2000 

ES1=1.0D-6 

ES2=1.0D07 

XACC=0.0001 

STEPQ=0.0001 

DELTEMP=20 

WEMMIS=0.8 

PEMMIS=0.8 

AMMIS=0.8 
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Y1INF=(C1INF * 32.0)/(C1INF * 32.0 +(1.0 - C1INF)•28.0) 

A= (1.0 I (1.0 - Y1INF)) * (Y1INF I 4.0) 

TP = TPINIT 

RP = RPINIT 

C1S = CUNF 

TIME = 0.0 

DTDR = 0.0 

FP=O.O 

THCK=O.O 

ASHFRAC = ASHINIT 

WRITE(*, 900) TIME, RP, TP, C1S, FP 

FORMAT(1X,5G12.4) 



2960 c 

2970 c 

2980 c 

2990 

3000 

3010 

3020 

3030 

3040 

3050 

3060 c 

3070 c 

3080 c 

3090 

3100 

3110 

3120 

3130 

3140 

3150 

3160 

3170 

3180 

3190 

3200 

3210 

3220 
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X1 and X2 are appropriate brackets for GAM. 

Typically. ES1 is 0(10-6). while ES2 is 0(1D11). 

IF ( TPINIT .LT. TWALL) THEN 

X1 = ( -2331.5425 

X2 = ( -2331.5425 

ELSE 

X1 = ( -2331.5425 

X2 = ( -2331.5425 

END IF 

Main loop in VARNU begins. 

JMAX = NMAX 

DO 1000 I = 1 1 JMAX 

STEP=STEPO 

T = TP 

+ 0.3388749*TPINIT) 

+ 0.3388749*TPINIT) 

+ 0.3388749*TPINIT) 

+ 0.3388749*TPINIT) 

- ES2 

- ES1 

+ ES1 

+ ES2 

RR = RP * 1D-04 

THCK=(RP**3.0+(ASHINIT*(RPINIT**3.0-RP**3.0))/0.65)** 

1 (1.0/3.0)-RP + 1.0D-08 

THCK=THCK*1.0D-04*TFAC 

CALL RTBIS(GAMMA.X1,X2.XACC.RR.GAM) 

DUMC = (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

CALL FLUX(DUMC.RR) 

FP1 = -1.3333 * FP 

FP2 = 2.3333 * FP 

EP = GAM * FP 



3230 

3240 991 

3250 1 

3260 c 

3270 

3280 

3290 

3300 

3310 

3320 

3330 

3340 c 

3350 

3360 

3370 c 

-439-

CALL SOLID(R.R.) 

CALL R.UNG(R.ADIUS.ENER.GY.DUMC,STEP.EP, 

PEMMIS,WEMMIS.RR.RNEW,TNEW) 

IF(DABS((RNEW-RR)/RR) .LT. 0.0001)THEN 

IF(RNEW .LE. 0.0001)THEN 

TBURN=TIME 

GOTO 1001 

END IF 

RP = 1.0D4*R.NEW 

TP = TNEW 

TIME = TIME + 1.0D3*STEP 

CHRONO(I)=TIME+TSTART 

CALOR(I)=TP 

3380 c 

3390 c 

Reducing brackets for the next call of GAM. 

3400 

3410 

3420 

3430 

3440 

3450 

3460 

3470 c 

IF ( TP .LT. TWALL) THEN 

ELSE 

END IF 

X1 = GAM - DABS(1000.0*GAM) 

X2 = ( -2331.5425 + 0.3388749*TP ) - ES1 

X1 = ( -2331.5425 + 0.3388749*TP ) + ES1 

X2 = GAM + DABS(1000.0*GAM) 

3480 1000 CONTINUE 

3490 1001 CONTINUE 
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3500 RETURN 

3510 END 

3520 c 

3530 c 
' 

Main loop in VARNU ends. 

3540 c 

3550 c----------------------------------------------
3560 c 

3570 c 

3580 c 

3590 c 

3600 c 

3610 c 

3620 

3630 

3640 

3650 

3660 

3670 

3680 

3690 

3700 

3710 

3720 c 

3730 

3740 

3750 

3760 

Property values. 

EC and ECH calculate the enthalpy of the solid in cal/g. 

Data from the Coal Data Book. 

REAL*8 FUNCTION EC(D) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /FIRST/T,GAM,TWALL,FP 

CPCO = 0.024 

CPC1 = 6.953D-04 

CPC2 = -2.841D-07 

EC = CPCO*(D - 298) + (CPC1 I 2.0)*(D*D - 298*298) 

1 + (CPC2 I 3.0)*(D*D*D - 298*298*298) 

RETURN 

END 

REAL*8 FUNCTION ECH(D) 

IMPLICIT REAL*S(A-H,0-Z) 

COMMON /FIRST/T,GAM,TWALL,FP 

CPCHO = 0.36 
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3770 CPCH1 = 6.931D-05 

3780 ECH = CPCHO*(D - 298) + (CPCH1 I 2.0)*(D*D - 298*298) 

3790 RETURN 

3800 END 

3810 c 

3820 c 

3830 c 

3840 c 

CPC and CPCH calculate heat cap. of the solid in cal/g-K. 

Data from Coal Data Book. 

3850 REAL*8 FUNCTION CPC(D) 

3860 IMPLICIT REAL*8(A-H,O-Z) 

3870 COMMON /FIRST/T,GAM,TWALL,FP 

3880 CPCO = 0.024 

3890 CPC1 = 6.953D-04 

3900 CPC2 = -2.841D-07 

3910 CPC = CPCO + CPC1 * D + CPC2 * D * D 

3920 RETURN 

3930 END 

3940 c 

3950 REAL*8 FUNCTION CPCH(D) 

3960 IMPLICIT REAL*S(A-H,0-Z) 

3970 COMMON /FIRST/T,GAM,TWALL,FP 

3980 CPCHO = 0.36 

3990 CPCH1 = 6.931D-05 

4000 CPCH = CPCHO + CPCH1 * D 

4010 RETURN 

4020 END 

4030 c 
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4040 c----------------------------------------------
4050 c 

4060 c 

4070 c 

4080 c 

4090 

4100 

4110 

4120 

4130 c 

4140 

4150 

4160 

4170 c 

This routine finds the fraction of solid covered by ash 

(ASHFRAC). (ASHFRAC --> 1.0 as RR--> RMIN). 

1 

SUBROUTINE SOLID(RR) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT,CPASH,AMMIS,THCK 

ASHFRAC = ASHINIT*(1.0D-4*RPINIT/RR)**3.0 

RETURN 

END 

4180 c----------------------------------------------
4190 c 
4200 c 
4210 c 

Root finder by the method of bisection for function TET. 

4220 SUBROUTINE RTBIS(TET.X1,X2,XACC,R2,XMID) 

4230 IMPLICIT REAL*8(A-H,O-Z) 

4240 EXTERNAL TET 

4250 COMMON /FIRST/T,GAM,TWALL,FP 

4260 PARAMETER (JMAX = 500) 

4270 c 
4280 CALL TET(X1,FX1.R2) 

4290 CALL TET(X2,FX2,R2) 

4300 IF(FX2*FX1 .GE. 0.0) PAUSE 'BRACKET ROOT IN VARNU' 



4310 

4320 

4330 

4340 

4350 

4360 

4370 

4380 

4390 

4400 

4410 

4420 

4430 

4440 200 

4450 

4460 

4470 c 
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DX = X2 - X1 

DO 200 J = 1, JMAX 

CONTINUE 

DX = DX * 0.5 

XMID = X1 + DX 

CALL TET(XMID,FMID,R2) 

IF (FMID * FX1 .GT. O.O)THEN 

X1 = XMID 

ELSE 

END IF 

FX1 = FMID 

X2 = XMID 

FX2 = FMID 

IF (DABS(DX/XMID) .LT. XACC) RETURN 

PAUSE 'TOO MANY BISECTIONS IN VARNU' 

END 

4480 c----------------------------------------------
4490 c 

4500 c 

4510 c 

Calculation of solid flux in gmC/cmA2-s.(Smith 1974) 

4520 SUBROUTINE FLUX(B,R) 

4530 IMPLICIT REAL*8(A-H,0-Z) 

4540 COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

4550 1 RPINIT,CPASH,AMMIS,THCK 

4560 COMMON /FIRST/T,GAM,TWALL,FP 

4570 COMMON /R/RHOC,XFAC,ACEN 
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4580 c 
4590 c Older calculation of FP. 

4600 c 
4610 c CASH=B-FP*R*R(1/(R+T)-1/R)/C*M02*DASH 

4620 c FP = XFAC*DEXP( -1.0*ACEN/(1.98 * T))*CASH 

4630 c 
4640 DASH=0.35*3.13*(T/1500.0)**1.75/2.0 

4650 PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

4660 FP=PF*B/(1.0+82.05*T*PF*R*THCK/ 

4670 1 ((R+THCK)*(32.0*DASH))) 

4680 TEST=PF*B 

4690 RETURN 

4700 END 

4710 c 
4720 c----------------------------------------------
4730 c 
4740 c This routine calculates the value of the integrated 

4750 c equations from TWALL to TP based on GAM1. 

4760 c 
4770 SUBROUTINE GAMMA(GAM1,F,R1) 

4780 IMPLICIT REAL*8(A-H,O-Z) 

4790 COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

4800 1 RPINIT,CPASH,AMMIS,THCK 

4810 COMMON /FIRST/ T,GAM,TWALL,FP 

4820 COMMON /R/RHOC,XFAC,ACEN 

4830 COMMON /Y1S/Y1S,Y1INF 

4840 c 
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4850 cc = -3.00430-05 

4860 DASH=0.35*3.13*(T/1500.0)**1.75/2.0 

4870 IF (T .LT. TWALL) THEN 

4880 HH = DSQRT(DABS(-2331.6425 - GAM1)/0.3388749) 

4890 IF (GAM1 .GT.-2331.6425) THEN 

4900 

4910 

4920 

4930 

4940 

4950 

4960 

4970 

4980 

4990 

5000 

5010 

5020 

5030 

5040 

5050 

5060 

5070 

5080 

5090 

5100 

5110 

1 

2 

1 

1 

1 

1 

1 

AR1=-1.0*CC * ((DSQRT(TWALL) - DSQRT(T)) + HH/2.0 * 

(DLOG((DSQRT(TWALL) - HH)•(DSQRT(T) + HH)/ 

((DSQRT(TWALL) + HH)•(DSQRT(T) - HH))))) 

HM = (2331.6425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)•((T-HM)/ 

(TWALL-HM))**0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0•Y1S))) 

PF=XFAC•DEXP( -1.0•ACEN/(1.98 * T)) 

FFP=PF•CONC/(1.0+82.05*T*PF*R1•THCK/ 

((R1+THCK)•(32.0•DASH))) 

F = AR1-R1* FFP 

ELSE 

AR2=-1.0•CC•((DSQRT(TWALL)-DSQRT(T))-HH* 

(DATAN(DSQRT(TWALL)/HH)-DATAN(DSQRT(T)/HH))) 

HM= (2331.6425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)•((T-HM)/(TWALL-HM))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0•Y1S))) 

PF=XFAC•DEXP( -1.0•ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF•R1•THCK/ -

((R1+THCK)*(32.0•DASH))) 

F = AR2-R1* FFP 
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5120 END IF 

5130 ELSE 

5140 FF = DSQRT(DABS(2331.5425 + GAM1)/0.3388749) 

5150 , 

5160 

5170 

5180 

5190 

5200 

5210 

5220 

5230 

5240 

5250 

5260 

5270 

5280 

5290 

5300 

5310 

5320 

5330 

5340 

5350 

5360 

5370 

5380 

1 

1 

1 

1 

2 

1 

1 

IF (GAM1 .LT.-2331.5425) THEN 

AR3 = CC*((DSQRT(T)-DSQRT(TWALL))-FF* 

(DATAN(DSQRT(T)/FF)-DATAN(DSQRT(TWALL)/FF))) 

C3 = (2331.6425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

PF=XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1*THCK/ 

((R1+THCK)*(32.0*DASH))) 

F = AR3-R1* FFP 

ELSE 

AR4 = CC * ((DSQRT(T) - DSQRT(TWALL)) + FF/2.0 * 

(DLOG((DSQRT(T) - FF)*(DSQRT(TWALL) + FF)/ 

((DSQRT(T) + FF)*(DSQRT(TWALL) - FF))))) 

C3 = (2331.5425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

PF=XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1*THCK/ 

((R1+THCK)*(32.0*DASH))) 

F = AR4-R1* FFP 

END IF 
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5390 END IF 

5400 RETURN 

5410 END 

5420 c 

5430 c----------------------------------------------
5440 c 

5450 c 

5460 c 

5470 

5480 

5490 

5500 

5510 

5520 

5530 

5540 c 

5550 c 

5560 c 

5570 

5580 

5590 

5600 

5610 

5620 

5630 

5640 

5650 

Energy balance. 

1 

SUBROUTINE ENERGY(EP,PEMMIS,WEMMIS,RR,DUM2,ANST) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL CPC,EC,CPCH,ECH 

COMMON /FIRST I T, GAM, TW ALL , FP · 

COMMON /R/RHOC,XFAC,ACEN 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT,CPASH,AMMIS,THCK 

Note that RHOC=1.6*(1-ASHINIT-EPSINIT)=Apparent density 

SIG = 1.6950-12 

IF (DUM2 .LT. 1350) THEN 

CPSOL= CPC(DUM2) 

VAL = EC(DUM2) 

ELSE 

END IF 

CPSOL= CPCH(DUM2) 

VAL = ECH(DUM2) 

CPASH = 0.183 + 0.111D-3*T 
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5660 ANST=3.0*(RR+THCK)*(RR+THCK)*(FP*VAL-EP-SIG* 

5670 

5680 

5690 

1 

2 

3 

(PEMMIS*DUM2**4-WEMMIS*TWALL**4))/ 

(RR*RR*RR*(CPSOL*RHOC + CPASH*RHOASH* 

(ASHINIT+0.65*((1+THCK/RR)**3.0-1.0)))) 

5700 RETURN 

5710 END 

5720 c 

5730 c----------------------------------------------
5740 c 

5750 c 

5760 c 

5770 c 

5780 

5790 

5800 

5810 

5820 

5830 

5840 

5850 c 

5860 

5870 

5880 

5890 

5900 

5910 

5920 

Fourth order Runge-Kutta method for solving 

TEST1 and TEST2 for each time step. 

1 

SUBROUTINE RUNG(TEST1,TEST2,DUMC,STEP,EP, 

PEMMIS,WEMMIS,RR,RNEW,TNEW) 

IMPLICIT REAL*8(A-H,O-Z) 

REAL*8 K11,K12,K13,K14,K21,K22,K23,K24 

EXTERNAL TEST1,TEST2,ENERGY,RADIUS 

COMMON /FIRST/ T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

DUM1=RR 

DUM2=T 

CALL TEST1(DUMC,DUM1,DUM2,DRDT) 

CALL TEST2(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K11=DRDT 

K21=DTDT 

DUM1 = RR + K11*STEP/2.0 
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6100 
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6120 

6130 

6140 c 
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DUM2 = T + K21*STEP/2.0 

CALL TEST1(DUMC,DUM1,DUM2,DRDT) 

CALL TEST2(EP,PEMMIS,WEMMIS.DUM1,DUM2,DTDT) 

K12 = DRDT 

K22 = DTDT 

DUM1 = RR + K12*STEP/2.0 

DUM2 = T + K22*STEP/2.0 

CALL TEST1(DUMC.DUM1.DUM2,DRDT) 

CALL TEST2(EP.PEMMIS,WEMMIS.DUM1,DUM2,DTDT) 

K13 = DRDT 

K23 = DTDT 

DUM1 = RR + K13*STEP 

DUM2 = T + K23*STEP 

CALL TEST1(DUMC.DUM1,DUM2,DRDT) 

CALL TEST2(EP.PEMMIS.WEMMIS.DUM1.DUM2.DTDT) 

K14 = DRDT 

K24 = DTDT 

RHEW = RR + STEP*(K11 + 2.0*K12 + 2.0*K13 + K14)/6.0 

THEW = T + STEP*(K21 + 2.0*K22 + 2.0*K23 + K24)/6.0 

RETURN 

END 

6150 c----------------------------------------------
6160 c 

6170 c 

6180 c 

Mass balance. 

6190 SUBROUTINE RADIUS(B.DUM1.DUM2,ANS) 



6200 

6210 

6220 

6230 

6240 

6250 c 

6260 c 
6270 c 
6280 

6290 

6300 

6310 

6320 

6330 

6340 

6350 c 

1 
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IMPLICIT REAL*8(A-H,O-Z) 

COMMON /FIRST/ T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT.CPASH,AMMIS,THCK 

Note that RHOC=1.5*(1-ASHINIT-EPSINIT)=Apparent density 

1 

DASH=0.35*3.13*(DUM2/1500.0)**1.75/2.0 

PF= XFAC*DEXP( -1.0*ACEN/(1.98 * DUM2)) 

FFP=PF*B/(1.0+82.05*DUM2*PF*DUM1*THCK 

/((DUM1+THCK)*(32.0*DASH))) 

ANS =-1.0*FFP/RHOC 

RETURN 

END 

6360 c----------------------------------------------
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Appendix IX 

NUMERICAL MODELS 
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Program listings of various numerical models are gathered in this Appendix. 

Every effort has been made to document the programs with generous comments 

whereever applicable. All programs were written in DOS FORTRAN 3.3 and run 

on IBM PC/ AT's or clones. 

IGNIT2 is the model used to determine ignition delay times for single particle 

combustion. The model is described in Chapter 6. 

MENU and VARNU are two versions of the asymptotic model for single parti­

cles. While VARNU has been described in detail (Chapter 7), MENU differs from 

it only in the way the presence of ash is accounted for. While VARNU treats the 

ash as a diffusion layer around the particle, MENU treats ash as forming patches 

on the particle. The ash patches prevent reactant access to portions of the particle 

they cover. 

3VOIDS is the general single particle combustion program described in Chapter 

7. It describes the internal morphology with three different sized voids. It uses linear 

kinetics. This model is extended to include power law kinetics in PCONC. A similar 

extension to include Langmuir-Hinschelwood kinetics was done in another program 

that is not listed here for reasons of space. 

An example of the discrete approach to modelling char combustion is CEN­

MOD21 (Chapter 8). 
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ADC.I IGNIT2.FOR 

10 PROGRAM IGNIT2 

20 c 

30 IMPLICIT REAL*4(A-H,O-Z) 

40 CHARACTER*15 IFILE 

50 DIMENSION RADMIC(100),ARAT(100) 

60 COMMON /S/S(100) 

70 COMMON /R/RAD(100) 

80 COMMON /A/A1,A2,A3,A4 

90 COMMON /CS/ A11, B11 

100 EXTERNAL SUM.FUNT 

110 c 

120 WRITE(*,7) 

130 7 FORMAT(1X,'ENTER PART.RAD (cm), DOD (cm):') 

140 READ(*,*)RP,DOD 

150 WRITE(*,8) 

160 8 FORMAT(1X,'ENTER E,ARR,CMAX,CMIN:') 

170 READ(*,*)E,ARR,CMAX,CMIN 

180 WRITE(*,9) 

190. 9 FORMAT(1X,'ENTER ETA,RHOAP,EPS,TS:') 

200 READ(*,*)ETA,RHOAP,EPS,TS 

210 WRITE(*,11) 

220 11 FORMAT(1X, 'ENTER THE DATA FILENAME') 

230 READ(*,12)IFILE 

240 12 FORMAT(A16) 

250 c 
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260 SBET=3500000 

270 c RHOAP=0.5 

280 DELH=2340*4.187 

290 c CSURF=0.15 

300 B11=LOG(CMAX/CMIN)/RP 

310 A11=CMAX 

320 A1=ETA*ARR*EXP(-E/(1.98*TS))*SBET*DOD*RHOAP*DELH 

330 c 

340 CPCARB=1.880 

350 TC=1200 

360 A2=2.0*RHOAP*DOD*CPCARB*(TS-TC) 

370 c 

380 SIG=5.667E-012 

390 EMMS=0.25 

400 TINF=1150 

410 TWALL=1250 

420 c EPS=0.75 

430 CCARB=10.0E-02 

440 CAIR=0.0891E-02 

450 CEFF=CCARB*(1.0-EPS)**2.0 + CAIR*(EPS**2.0) 

460 c 

470 c Alternate values for CCARB: 57.4(1000K);60.2(1300K); 

480 c 0.71(3300K);5.9(300K) 

490 c 

500 TFILM=(TS+TINF)/2.0 

510 RADP=RP 

520 A3=SIG*EMMS*(TS**4-TWALL**4) + CAIR*(TS-TINF)/RADP 
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530 c 

540 c EPS1=0.03 

550 c EPS2=0.60 

560 c EPS3=0.12 

570 c DBULK=3.13*(TFILM/1500)**1.75 

580 c PORER2=1.0E.;.07 

590 c PORER3=25E-07 

600 c DK2=9700*PORER2*SQRT(TS/32.0) 

610 c DK3=9700*PORER3*SQRT(TS/32.0) 

620 c DEFF2=1.0/(1.0/DBULK + 1.0/DK2) 

630 c DEFF3=1.0/(1.0/DBULK + 1.0/DK3) 

640 c DEFF=0.5*(EPS1*DBULK + EPS2*DEFF2 + EPS3*DEFF3) 

650 ALPHAEFF=CEFF/(RHOAP*CPCARB) 

660 A4=2.0*CEFF*(TS-TC)/SQRT(ALPHAEFF) 

670 c 

680 DO 50 I=1, 100 

690 S(I)=O.O 

700 50 CONTINUE 

710 c 

720 OPEN(2,FILE=IFILE,STATUS='NEW') 

730 XACC=0.001 

740 GAP=RP/99.0 

750 c 

760 DO 300 I=2,99 

770 c 

780 GUESSL=1.0E-10 

790 GUESSH=100000 



800 

810 c 
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RAD(I)=(I-1)*GAP 

R=RAD(I) 

CALL FUNT(I,GAP.RADP.GUESSL,FX1,R) 

CALL FUNT(I,GAP,RADP,GUESSH.FX2,R) 

IF(FX2*FX1 .GE. 0.0) PAUSE 'BRACKET ROOT IN MAIN' 

DX = GUESSH-GUESSL 

DO 200 J = 1. 500 

DX = DX * 0.5 

ANSW = GUESSL + DX 

CALL FUNT(I,GAP.RADP,ANSW,FMID,R) 

IF (FMID * FX1 .GT. O.O)THEN 

ELSE 

END IF 

GUESSL = ANSW 

FX1 = FMID 

GUESSH = ANSW 

FX2 = FMID 

IF (ABS(DX/ANSW) .LT. XACC) GOTO 111 

CONTINUE 

PAUSE "TOO MANY BISECTIONS IN MAIN' 

S(I)=ANSW 

WRITE(*.*)I.RAD(I),S(I) 

CONTINUE 

TAU=O.O 

DO 400 I=2,99 
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RADMIC(I)=RAD(I)*1E04 

ARAT(I)=RAD(I)**2/RAD(99)**2 

TAU=TAU + GAP/S(I) 

WRITE(2,*)TAU,RADMIC(I),S(I),ARAT(I) 

CONTINUE 

WRITE(*,*)TAU 

CLOSE(2) 

STOP 

END 

c------------------------------------------------------
c 

SUBROUTINE FUNT(I,GAP,RADP,X.FX,R) 

IMPLICIT REAL*4(A-H.O-Z) 

COMMON /A/A1.A2.A3.A4 

COMMON /CS/AU .BU 

EXTERNAL SUM 

c 
CALL SUM(I,GAP,X,ANS,RADP) 

DUMSUM=ANS 

FX=A2*R*X*RADP/(SQRT(RADP**2-R**2))+ 

1 (A3-A1*A11*EXP(-B11*R))*2.0*(RADP**2) · 

2 *(1.0-SQRT(1.0-(R/RADP)**2))+A4*DUMSUM 

RETURN 

END 

c 
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1340 c------------------------------------------------------
1350 c 
1360 

1370 

1380 

1390 

1400 c 
1410 

1420 

1430 

1440 

1450 

1460 

1470 

1480 

1490 200 

1500 

1510 

1520 

SUBROUTINE SUM(I,GAP,X,ANS,RADP) 

IMPLICIT REAL*4(A-H,O-Z) 

COMMON /S/S(100) 

COMMON /R/RAD(100) 

ANS=O.O 

DO 100 J=2,I 

IF (I. EQ. 2) THEN 

SUM1=GAP/X 

ELSE 

END IF 

SUM1=0.0 

DO 200 K=J,I-1 

SUM1=SUM1+GAP/S(K) 

CONTINUE 

SUM1=SUM1+GAP/X 

ANS=ANS+(RADP/(SQRT(RADP**2-RAD(J)**2)))* 

1530 1 ((RAD(J)*GAP)/(SQRT(SUM1))) 

1540 100 CONTINUE 

1550 RETURN 

1560 END 

1570 c 

1580 c------------------------------------------------------
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AIX.2 MENU.FOR 

10 c 

20 c 

30 c 

40 c 
50 c 

60 c 

70 c 

80 c 

90 c 

100 c 

110 c 

120 c 

130 c 

140 c 

150 c 

160 c 

170 c 

180 c 

190 c 

200 c 

210 c 

220 c 

230 c 

240 c 

250 c 

This program simulates the combustion of a single solid 

carbon particle with no internal structure. The particle 

is assumed to be isothermal. 

The gas phase is assumed to be in a quasi-steady state 

relative to the solid for a given time step. The 

reaction at the solid is 2C + 02 ---> 2CO and in the gas 

phase the oxidation is assumed to be far enough from the 

particle so as to have no effect on it. The gas phase 

equations include the Stefan flow term. Gas phase property 

values are calculated using the kinetic theory of gases. 

The integral equations are then solved analytically. 

Ash is assumed to be distributed uniformly inside the 

particle, initially. However, as the particle burns, its 

radius shrinks and the ash fraction in the particle 

increases as only the carbon burns. It is assumed that 

at each step, the fraction of ash covering the surface is 

the same as the ash volume fraction in the particle. The 

presence of ash affects the access of oxygen to the 

particle (blockage effect), the effective 

emmissivity of the particle (since ash has an emissivity 

different from carbon), and the thermal inertia 

of the particle (assuming some heat capacity tor ash). 

These effects have been taken into account. 
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260 c--------------------------------------------
270 c 

280 c 

290 c 

300 c 

310 

320 

330 

340 

350 

360 c 

370 c 

380 

390 

400 

410 c 

420 c 

430 

440 

450 

460 

470 c 

Declarations. 

IMPLICIT REAL*8(A-H.O-Z) 

REAL*8 NMAX 

REAL*8 K11,K12.K13.K14,K21,K22.K23,K24 

CHARACTER*15 IFILE 

CHARACTER*1 QRESP 

EXTERNAL RHOG.DIFF.EC,ECH,CPC.CPCH 

EXTERNAL RLAMB,EOX.ECO.FLUX.MFRC.ENERGY 

EXTERNAL GAMMA,RTBIS,RADIUS,SOLID 

COMMON T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC.ACEN 

COMMON /Y1S/Y1S.Y1INF 

COMMON /ASH/ASHFRAC.RHOASH.ASHINIT.RPINIT,CPASH.AMMIS 

480 c-------------------------------------------
490 c 

500 c 

510 c 

520 c 

Interactive program parameter inputs. 
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530 c 

540 WRITE(*,9) 

550 9 

560 

570 8 

580 

590 c 

600 

610 

620 

630 10 

640 

650 

660 

670 

680 11 

690 

700 

710 

720 

730 12 

740 

750 

760 

770 

780 13 

FORMAT(1x,'WANT TO READ THE MENU.INP FILE (YORN)?') 

READ(*,8)QRESP 

FORMAT(A1) 

IF((QRESP .EQ. 'y') .OR. (QRESP .EQ .'Y'))GOTO 2000 

OPEN(1,FILE='MENU.INP',STATUS='NEW') 

WRITE(*,10) 

FORMAT(1x,'ENTER PARTICLE AND ASH DENSITIES ING/CC') 

READ(*,*)RHOC,RHOASH 

WRITE(1,•)RHOC,RHOASH 

WRITE(*,11) 

FORMAT(1x,'ENTER WALL AND !NIT. PARTICLE TEMPS. INK') 

READ(*.*)TWALL,TPINIT 

WRITE(1,*)TWALL,TPINIT 

WRITE(*,12) 

FORMAT(1x,'ENTER THE INITIAL ASH VOLUME FRACTION') 

READ(*,*)ASHINIT 

WRITE(1,*)ASHINIT 

WRITE(*,13) 

FORMAT(1x,'ENTER THE INIT. PART. RADIUS IN MICRONS') 

790 READ(*.*)RPINIT 
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800 WRITE(1,*)RPINIT 

810 

820 WRITE(*,14) 

830 14 FORMAT(1x,'ENTER THE 02 PART. PRES. IN THE AMBIENT') 
" 

840 READ(* ,*)C1INF 

850 WRITE(1, *)C1INF 

860 

870 WRITE(*,15) 

880 15 FORMAT(1x,'ENTER THE WALL, CARBON AND ASH EMMISIVITIES') 

890 READ(*,*)WEMMIS,PEMMIS,AMMIS 

900 WRITE(1,•)WEMMIS,PEMMIS,AMMIS 

910 

920 WRITE(*,16) 

930 16 FORMAT( 1x,'ENTER THE MAXIMUM TEMPERATURE INCREMENT') 

940 READ(*,*)DELTEMP 

950 WRITE(1,•)DELTEMP 

960 

970 WRITE(*,17) 

980 17 FORMAT( 1x,'ENTER FACTOR XFAC, ACEN AND TIMESTEP') 

990 READ(*,*)XFAC,ACEN,STEPO 

1000 WRITE(1,*)XFAC,ACEN,STEPO 

1010 

1020 WRITE(*,18) 

1030 18 FORMAT(1X,'ENTER ES1,ES2,XACC (0 < ES1 << ES2) ') 

1040 READ(*.*)ES1,ES2,XACC 

1050 WRITE(1,*)ES1,ES2,XACC 

1060 
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1070 WRITE(*,19) 

1080 19 FORMAT( 1x,'ENTER THE NUMBER OF TIMESTEPS') 

1090 READ(*,*)NMAX 

1100 WRITE(1,*)NMAX 

1110 

1120 WRITE(*,21) 

1130 21 FORMAT( 1x,'WRITE OUTPUT FILENAME (HOT MENU.IMP !)') 

1140 READ(*,22)IFILE 

1150 22 FORMAT(A16) 

1160 

1170 CLOSE(1) 

1180 GOTO 3000 

1190 

1200 2000 OPEN(1,FILE='MENU.INP',STATUS='OLD') 

1210 READ(1,*)RHOC,RHOASH,TWALL,TPINIT,ASHINIT,RPINIT,C1INF, 

1220 1 WEMMIS,PEMMIS,AMMIS,DELTEMP,XFAC,ACEN,STEPO,ES1,ES2, 

1230 2 XACC,NMAX 

1240 CLOSE(!) 

1250 

1260 WRITE(*,30)RHOC,RHOASH 

1270 30 FORMAT(1x,'1. PARTICLE AND ASH DENSITIES ING/CC: 

1280 1 ',F8.4,3X,F8.4,/) 

1290 

1300 WRITE(*,31)TWALL,TPINIT 

1310 31 FORMAT(1x,'2. WALL AND INIT. PART. TEMPS.INK: ' 

1320 1 F10.4,3X,F10.4,/) 

1330 



1340 

1350 32 

1360 

1370 

1380 33 

1390 

1400 

1410 34 

1420 

1430 
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WRITE(*,32)ASHINIT 

FORMAT(1x,'3. THE INIT. ASH VOLUME FRACTION: '.F8.4,/) 

WRITE(*,33)RPINIT 

FORMAT(1x,'4. THE !NIT. PART. RAD. IN MICRONS: ',F8.4,/) 

WRITE(*,34)C1INF 

FORMAT(1x,'6. THE 02 PART. PRES. (AMBIENT): ',F8.4,/) 

WRITE(*,36)WEMMIS,PEMMIS,AMMIS 

1440 35 FORMAT(1x,'6. THE WALL, CARBON AND ASH EMMISIVITIES: ' 

1450 1 F6.4,3X,F6.4,3X,F6.4,/) 

1460 

1470 

1480 36 

1490 

1500 

1510 37 

1520 

1530 

WRITE(*,36)DELTEMP 

FORMAT( 1x,'7. THE MAXIMUM TEMP. INCREMENT: ',F8.2,/) 

WRITE(*,37)XFAC,ACEN,STEPO 

FORMAT( 1x,'8. THE FACTOR XFAC, ACEN AND TIMESTEP: ' 

1 F8.4,3X,F10.4,3X,F8.6,/) 

1540 WRITE(*,38)ES1,ES2,XACC 

1550 38 

1560 

1570 

1580 

1590 39 

1600 

FORMAT(1X,'9. ES1,ES2,XACC (0 < ES1 << ES2): ' 

1 E9.4,3X,E9.4,3X,E9.4,/) 

WRITE(*,39)NMAX 

FORMAT( 1x,'10. THE NUMBER OF TIMESTEPS: ',F10.2,/) 
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1610 WRITE(*.41) 

1620 41 FORMAT( 1x."WRITE OUTPUT FILENAME (NOT MENU.INP !)") 

1630 READ(*.42)IFILE 

1640 42 FORMAT(A15) 

1650 

1660 1990 WRITE(*.43) 

1670 43 FORMAT(1X. "WRITE ENTRY HO. TO BE ALTERED (0 TO RUN)") 

1680 READ(*.*)NALT 

1690 IF(NALT .EQ. O)GOTO 2500 

1700 IF(NALT .EQ. 1)GOTO 2010 

1710 IF(NALT .EQ. 2)GOTO 2020 

1720 IF(NALT .EQ. 3)GOTO 2030 

1730 IF(NALT .EQ. 4)GOTO 2040 

1740 IF(NALT .EQ. 5)GOTO 2050 

1750 IF(NALT .EQ. 6)GOTO 2060 

1760 IF(NALT .EQ. 7)GOTO 2070 

1770 IF(NALT .EQ. 8)GOTO 2080 

1780 IF(NALT .EQ. 9)GOTO 2090 

1790 IF(NALT .EQ. 10)GOTO 2100 -
1800 GOTO 1990 

1810 

1820 2010 WRITE(*.10) 

1830 READ(*.*)RHOC.RHOASH 

1840 GOTO 1990 

1850 

1860 2020 WRITE(*.11) 

1870 READ(*.*)TWALL.TPINIT 
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1880 GOTO 1990 

1890 

1900 2030 WRITE(*.12) 

1910 READ(*.*)ASHINIT 

1920 GOTO 1990 

1930 

1940 2040 WRITE(*.13) 

1950 READ(*.*)RPINIT 

1960 GOTO 1990 

1970 

1980 2050 WRITE(*.14) 

1990 READ(*,*)C1INF 

2000 GOTO 1990 

2010 

2020 2060 WRITE(*,15) 

2030 READ(*.*)WEMMIS.PEMMIS.AMMIS 

2040 GOTO 1990 

2050 

2060 2070 WRITE(*.16) 

2070 READ(*.*)DELTEMP 

2080 GOTO 1990 

2090 

2100 2080 WRITE(*.17) 

2110 READ(*.*)XFAC.ACEN.STEPO 

2120 GOTO 1990 

2130 

2140 2090 WRITE(*.18) 
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2150 READ(*,*)ES1,ES2,XACC 

2160 GOTO 1990 

2170 

2180 

2190 

2200 

2100 WRITE(*,19) 

READ(*,*)NMAX 

GOTO 1990 

2210 

2220 

2230 

2240 

2500 OPEN(1,FILE='MENU.INP',STATUS='NEW') 

WRITE(1,*)RHOC,RHOASH,TW-ALL,TPINIT,ASHINIT,RPINIT,C1INF, 

1 WEMMIS,PEMMIS,AMMIS,DELTEMP,XFAC,ACEN,STEPO,ES1,ES2, 

2250 2 XACC,NMAX 

2260 CLOSE(1) 

2270 c 

2280 c------------------------------------------
2290 c------------------------------------------
2300 c 

2310 c 

2320 c 

2330 c 

2340 c 

2350 c 

2360 c 

2370 c 

2380 c 

2390 c 

2400 c 

2410 c 

Main program. 

After initialization, the main loop begins. Timestep 

(STEP) is set to its original value. Radii are converted 

to centimeters for the actual calculation but are written 

out in microns. GAM is found by the method of bisection. 

The coupled gas and solid phase equations are solved to 

get GAM. Flux is calculated based on a reaction rate by 

Smith. Property values in the gas phase are functions of 

temperature. DUMC is the mole fraction of 02 at the 

external surface of the particle. X1, X2 are initial 



2420 c 

2430 c 

2440 c 

2450 c 
' 

2460 c 

2470 c 

2480 c 

2490 c 

2500 c 

2510 c 

2520 c 

2530 c 

2540 c 

2550 c 

2560 c 

2570 c 

2580 c 

2590 c 

2600 c 

2610 

2620 

2630 c 

2640 

2650 

2660 

2670 

2680 
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guesses for GAM and XACC is the error tolerance. DTDR is 

the temperature gradient at the surface. 

Subroutine SOLID calculates the ash coverage of the 

particle. The reaction takes place on that portion of the 

solid that is free of ash. Ash is assumed to be at the 

same temperature as the rest of the particle. 

Subroutine RUNG solves the coupled equations of mass and 

energy for a given time step. If the temperature change 

in the time step is larger than DELTEMP. the time step is 

halved and the process is repeated. 

Every tenth data point is written to file and screen. 

Initialization. 

3000 Y1INF=(C1INF*32.0)/(C1INF*32.0+(1.0-C1INF)*28.0) 

A = (1.0 I (1.0 - Y1INF)) * (Y1INF I 4.0) 

TP = TPINIT 

RP = RPINIT 

C1S = CUNF 

TIME = 0.0 

DTDR = 0.0 



2690 

2700 

2710 c 

2720 

2730 

2740 

2750 900 

2760 c 

2770 c 

2780 c 

2790 c 

2800 

2810 

2820 

2830 

2840 

2850 

2860 

2870 c 

2880 c 

2890 c 

2900 

2910 

2920 

2930 

2940 

2950 
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FP=O.O 

ASHFRAC = ASHINIT 

OPEN(2,FILE=IFILE,STATUS='NEW') 

WRITE(2, 900) TIME, RP, TP, C1S, FP 

WRITE(*, 900) TIME, RP, TP, C1S, FP 

FORMAT(1X,5G12.4) 

X1 and X2 are appropriate brackets for GAM. 

Typically, ES1 is 0(1D-6), while ES2 is 0(1D11). 

IF ( TPINIT .LT. TWALL) THEN 

X1=( -2331.5425 ~ 0.3388749*TPINIT) 

X2=( -2331.5425 + 0.3388749*TPINIT) 

ELSE 

X1=( -2331.5425 + 0.3388749*TPINIT) 

X2=( -2331.6425 + 0.3388749*TPINIT) 

END IF 

Main loop begins. 

JMAX = NMAX 

DO 1000 I = 1, JMAX 

STEP=STEPO 

T = TP 

RR = RP* 1D-04 

CALL RTBIS(GAMM.A,X1,X2,XACC,RR,GAM) 

- ES2 

- ES1 

+ ES1 

+ ES2 



2960 

2970 

2980 

2990 

3000 

3010 

3020 

3030 991 

3040 

3050 

3060 

3070 

3080 

3090 

3100 

3110 

3120 

3130 

3140 c 

3150 c 

3160 c 

3170 

3180 

3190 

3200 

3210 c 

3220 c 

1 
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DUMC = (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

CALL FLUX(DUMC) 

FPl = -1.3333 * FP 

FP2 = 2.3333 * FP 

EP = GAM * FP 

DTDR=-1.0D-4*(EP-FP1*EOX(T)-FP2*ECO(T))/RLAMB(T) 

CALL SOLID(RR) 

CALL RUNG(RADIUS,ENERGY,DUMC,STEP,EP,PEMMIS,WEMMIS, 

RR,RNEW,TNEW) 

DELR=(RR-RNEW)/RR 

IF((ASHFRAC .GE. 1.0).0R.(DELR .LT. 0.00001))GOTO 1001 

IF(ABS(TNEW - TP) .GT. DELTEMP)THEN 

STEP = STEP/2.0 

GOTO 991 

END IF 

RP = 1.0D4*RNEW 

TP = TNEW 

TIME = TIME + 1.0D3*STEP 

Writing to file. 

IF(MOD(I,10) .EQ. O)THEN 

WRITE(2, 900) TIME, RP, TP, DUMC ,FP 

WRITE(*, 900) TIME, RP, TP, DUMC ,FP 

END IF 

Reducing the brackets for the next call of GAM. 
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3230 c 

3240 IF ( TP .LT. TWALL) THEN 

3250 X1 = GAM - DABS(1000.0*GAM) 

3260 X2 = ( -2331.5425 + 0.3388749*TP 

3270 ELSE 

3280 X1 = ( -2331.5425 + 0.3388749*TP 

3290 X2 = GAM + DABS(1000.0*GAM) 

3300 END IF 

3310 c 

3320 1000 CONTINUE 

3330 1001 CLOSE(2) 

3340 STOP 

3350 END 

3360 c 

3370 c Main loop and main program end. 

3380 c 

3390 c------------------------------------------
3400 c------------------------------------------
3410 c 

3420 c 

3430 c 

3440 c 

Property values. 

) - ES1 

) + ES1 

3450 c 

3460 c 

3470 c 

Gas diffusivity is calculated for an N2-02 system over a 

range of 300K to 3000K. Units are cmA2/s. 

3480 REAL*8 FUNCTION DIFF(D) 

3490 IMPLICIT REAL*8(A-H,O-Z) 



3500 

3510 

3520 

3530 

3540 

3550 

3560 

3570 

3580 c 

3590 c 

3600 c 

3610 c 

3620 

3630 

3640 

3650 

3660 

3670 

3680 c 

3690 c 

3700 c 

3710 c 

3720 c 

3730 

3740 

3750 

3760 
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COMMON T,GAM,TWALL,FP 

DIFFO = -0.099 

DIFF1 = 6.910D-04 

DIFF2 = 1.070D-06 

DIFF3 = -6.04D-11 

DIFF = DIFFO + DIFF1*D + DIFF2*(D*D) + DIFF3*(D*D*D) 

RETURN 

END 

Gas density is found using the ideal gas law in g/cc. 

Average molecular weight for air is taken as 29.0. 

REAL*8 FUNCTION RHOG(D) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON T,GAM,TWALL,FP 

RHOG = 29.0/(82.05*0) 

RETURN 

END 

Gas thermal conductivity coeffs. are in W/m-K for D in K. 

Data from Eckert (300K to 2500K). RLAMB is converted 

to cal/cm-K. 

REAL*8 FUNCTION RLAMB(D) 

IMPLICIT REAL*8(A-H,O-Z) 

REAL*8 LGO,LG1,LG2,LG3,D 

COMMON T,GAM,TWALL,FP 



3770 

3780 

3790 

3800 

3810 

3820 

3830 

3840 c 

3850 c 

3860 c 

3870 c 

3880 c 

3890 c 

3900 

3910 

3920 

3930 

3940 

3950 

3960 

3970 

3980 

3990 

4000 c 

4010 

4020 

4030 

-473-

LGO = -1.333D-03 

LG1 = 1. 036D-04 

LG2 = -4.715D-08 

LG3 = 1. 341D-11 

RLAMB=(1.0/418.0)*(LGO+LG1*D+LG2*(D*D)+LG3*(D*D*D)) 

RETURN 

END 

The enthalpies for the gases are in cal/mol for D in K. 

Ref state= 0 at 298K (except CO); Data from Smith and 

VanNess (298K to 2500K). Heat capacities are assumed 

to be constant to obtain reasonable integrable forms. 

REAL*8 FUNCTION EOX(D) 

IMPLICIT REAL*8(A-H.O-Z) 

COMMON T,GAM.TWALL,FP 

CPOXO = 7 .16 

CPOX1 = 0.001 

CPOX2 = -40000.0 

EOX = (CPOXO*(D - 298) + (CPOX1 I 2.0)*(D*D - 298*298) 

1 + CPOX2*(1.0/D - 1.0/298)) I 32.0 

RETURN 

END 

REAL*8 FUNCTION ECO(D) 

IMPLICIT REAL*8(A-H.O-Z) 

COMMON T,GAM.TWALL,FP 



4040 

4050 

4060 

4070 

4080 

4090 

4100 

4110 

4120 c 

4130 

4140 

4150 

4160 

4170 

4180 

4190 

4200 

4210 

4220 

4230 c 

4240 c 

4250 c 

4260 c 

4270 

4280 

4290 

4300 
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CPCOO = 6.79 

CPC01 = 0.00098 

CPC02 = -11000.0 

DELH = -26416.0 

ECO=(DELH+CPCOO*(D-298)+(CPC01/2.0)*(D*D-298*298) 

1 + CPC02*(1.0/D-1.0/298))/28.0 

RETURN 

END 

REAL*8 FUNCTION EN(D) 

IMPLICIT REAL*8(A-H,0-Z) 

COMMON T,GAM,TWALL,FP 

CPNO = 6.83 

CPN1 = 0.0009 

CPN2 = -12000.0 

EN = (CPNO*(D - 298) + (CPN1 / 2.0)*(D*D - 298*298) 

1 + CPN2*(1.0/D - 1.0/298))/ 28.0 

RETURN 

END 

EC and ECH calculate the enthalpy of the solid in cal/g. 

Data from coal data book. 

REAL*8 FUNCTION EC(D) 

IMPLICIT REAL*8(A-H,0-Z) 

COMMON T,GAM,TWALL,FP 

CPCO = 0.024 
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4380 c 

4390 

4400 

4410 

4420 

4430 

4440 

4450 

4460 

4470 c 

4480 c 

4490 c 

4500 c 

4510 

4520 

4530 

4540 

4550 

4560 

4570 

CPC1 = 6.9530-04 

CPC2 = -2.8410-07 
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EC = CPCO*(D - 298) + (CPC1 I 2.0)*(D*D - 298*298) 

1 + (CPC2 I 3.0)*(D*D*D - 298*298*298) 

RETURN 

END 

REAL*8 FUNCTION ECH(D) 

IMPLICIT REAL*8(A-B.O-Z) 

COMMON T.GAM.TWALL,FP 

CPCHO = 0.36 

CPCH1 = 6.9310-05 

ECH = CPCHO*(D - 298) + (CPCH1 / 2.0)*(D*D - 298*298) 

RETURN 

END 

CPC and CPCH calculate the heat capacity of the solid in 

cal/g-K. Data from coal data book. 

REAL*8 FUNCTION CPC(D) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON T.GAM.TWALL,FP 

CPCO = 0.024 

CPC1 = 6.9530-04 

CPC2 = -2.8410-07 

CPC = CPCO + CPC1 * D + CPC2 * D * D 
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4580 RETURN 

4590 END 

4600 c 

4610 REAL*8 FUNCTION CPCH(D) 

4620 IMPLICIT REAL*8(A-H,O-Z) 

4630 COMMON T,GAM,TWALL,FP 

4640 CPCHO = 0.36 

4650 CPCH1 = 6.931D-05 

4660 CPCH = CPCHO + CPCH1 * D 

4670 RETURN 

4680 END 

4690 c 

4700 c------------------------------------------
4710 c 

4720 c 

4730 c 

4740 c 

4750 

4760 

4770 

4780 c 

4790 

4800 

4810 

4820 c 

This routine calculates the fraction of solid covered by 

ash (ASHFRAC). (ASHFRAC --> 1.0 as RR--> RMIN) 

SUBROUTINE SOLID(RR) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT,RPINIT,CPASH,AMMIS 

ASHFRAC = ASHINIT*(1.0D-4*RPINIT/RR)**3.0 

RETURN 

END 

4830 c------------------------------------------
4840 c 



4850 c 

4860 c 

4870 

4880 

4890 

4900 

4910 

4920 c 

4930 

4940 

4950 

4960 

4970 

4980 

4990 

5000 

5010 

5020 

5030 

5040 

5050 

5060 

5070 

5080 

5090 200 

5100 

5110 
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Root finder by the method of bisection for function TET. 

SUBROUTINE RTBIS(TET,X1,X2,XACC,R2,XMID) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL TET 

COMMON T,GAM,TWALL,FP 

PARAMETER (JMAX = 600) 

CALL TET(X1,FX1,R2) 

CALL TET(X2,FX2,R2) 

IF(FX2*FX1 .GE. 0.0) PAUSE 'BRACKET ROOT IN RTBIS" 

DX = X2 - X1 

DO 200 J = 1. JMAX 

DX = DX * 0.6 

XMID = X1 + DX 

CALL TET(XMID,FMID.R2) 

IF (FMID * FX1 .GT. O.O)THEN 

X1 = XMID 

ELSE 

END IF 

FX1 = FMID 

X2 = XMID 

FX2 = FMID 

IF (DABS(DX/XMID) .LT. XACC) RETURN 

CONTINUE 

PAUSE 'TOO MANY BISECTIONS' 

END 
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5120 c 

5130 c----------------------------------~-------

5140 c 

5150 c 

5160 c 

5170 

5180 

5190 

5200 

5210 

5220 c 

5230 

5240 

5250 

5260 c 

Calculation of solid flux in gmc/cm·2-s.(Smith 1974) 

SUBROUTINE FLUX(B) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT,RPINIT,CPASH,AMMIS 

COMMON T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

FP=(1.0-ASHFRAC)*XFAC*9.3*DEXP(-ACEN/(1.98*T))*B 

RETURN 

END 

5270 c------------------------------------------
5280 c 

5290 c 

5300 c 

5310 c 

This routine calculates the value of the fully 

integrated equations from TWALL to TP based on GAM1. 

5320 SUBROUTINE GAMMA(GAM1,F,R1) 

5330 IMPLICIT REAL*8(A-H,O-Z) 

5340 COMMON T, GAM, TWALL,FP 

5350 COMMON /R/RHOC,XFAC,ACEN 

5360 COMMON /Y1S/Y1S,Y1INF 

5370 c 

5380 CC = -3.0043D-05 
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5390 IF (T .LT. TWALL) THEN 

5400 HH = DSQRT(DABS(-2331.5425 - GAM1)./0.3388749) 

5410 IF (GAM1 .GT.-2331.5425) THEN 

5420 

5430 

5440 

1 

2 

AR1=-1.0*CC*((DSQRT(TWALL) - DSQRT(T))+HH/2.0* 

(DLOG((DSQRT(TWALL) - HH)*(DSQRT(T) + HH)/ 

((DSQRT(TWALL) + HH)*(DSQRT(T) - HH))))) 

5450 HM = (2331.6425 + GAM1)/0.3388749 

5460 Y1S=(Y1INF+4.0/3.0)*((T-HM)/(TWALL-HM))**0.8095478-4.0/3.0 

5470 

5480 

5490 

5500 

5510 

1 

1 

ELSE 

F = AR1-R1* XFAC*9.3*DEXP(-ACEN/(1.98*T))* 

(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

AR2 = -1.0*CC*((DSQRT(TWALL)-DSQRT(T))-HH* 

(DATAN(DSQRT(TWALL)/HH)-DATAN(DSQRT(T)/HH))) 

5520 HM= (2331.6425 + GAM1)/0.3388749 

5530 Y1S=(Y1INF+4.0/3.0)*((T-HM)/(TWALL-HM))**0.8095478-4.0/3.0 

5540 

5550 1 

5560 END IF 

5570 ELSE 

F = AR2-R1* XFAC*9.3*DEXP(-ACEN/(1.98*T))* 

(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

5580 FF = DSQRT(DABS(2331.6425 + GAMl)/0.3388749) 

5590 IF (GAM1 .LT.-2331.5425) THEN 

5600 AR3 = CC*((DSQRT(T)-DSQRT(TWALL))-FF* 

5610 1 (DATAH(DSQRT(T)/FF)-DATAN(DSQRT(TWALL)/FF))) 

5620 C3 = (2331.6425 + GAMl)/0.3388749 

5630 Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))**0.8095478-4.0/3.0 

5640 

5650 1 

F = AR3-R1* XFAC*9.3*DEXP(-ACEN/(1.98*T))* 

(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 
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ELSE 

AR4 =CC* ((DSQRT(T) - DSQRT(TWALL)) + FF/2.0 *· 

(DLOG((DSQRT(T) - FF)*(DSQRT(TWALL) + FF)/ 

((DSQRT(T) + FF)*(DSQRT(TWALL) - FF))))) 

C3 = (2331.5425 + GAM!)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))**0.8095478-4.0/3.0 

F = AR4-R1* XFAC*9.3*DEXP(-ACEN/(1.98*T))* 

END IF 

END IF 

RETURN 

END 

(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

5790 c------------------------------------------
5800 c 

5810 c 

5820 c 

5830 

5840 

5850 

5860 

5870 

5880 

5890 c 

5900 

5910 

5920 

Energy equation. 

SUBROUTINE ENERGY(EP.PEMMIS.WEMMIS.RR.DUM2.ANST) 

IMPLICIT REAL*8(A-H.O-Z) 

EXTERNAL CPC.EC.CPCH,ECH 

COMMON T. GAM. TWALL.FP 

COMMON /R/RHOC.XFAC.ACEN 

COMMON /ASH/ASHFRAC.RHOASH,ASHINIT.RPINIT,CPASH,AMMIS 

SIG = 1.5950-12 

IF (DUM2 .LT. 1350) THEN 

CPSOL= CPC(DUM2) 



5930 

5940 

5950 

5960 

5970 

5980 

5990 

6000 1 

6010 2 

6020 3 

6030 

6040 

6050 c 

ELSE 

END IF 
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VAL = EC(DUM2) 

CPSOL= CPCH(DUM2) 

VAL = ECH(DUM2) 

CPASH = 0.183 + 0.111D-3*T 

ANST=3.0*RR*RR*(FP*VAL - EP - SIG* ((ASHFRAC*AMMIS+ 

(1.0-ASHFRAC)*PEMMIS)*DUM2**4-WEMMIS*TWALL**4))/ 

(RHOC*RR*RR*RR*CPSOL+ 

CPASH*RHOASH*ASHINIT*((1.0D-4*RPINIT)**3.0)) 

RETURN 

END 

6060 c------------------------------------------
6070 c 

6080 c 

6090 c 

6100 c 

6110 

6120 1 

6130 

6140 

6150 

6160 

6170 

6180 c 

6190 

Fourth order Runge-Kutta method for solving TEST! and 

TEST2 for one time step. 

SUBROUTINE RUNG(TEST1.TEST2,DUMC,STEP,EP. 

PEMMIS,WEMMIS.RR,RNEW,TNEW) 

IMPLICIT REAL*8(A-H,O-Z) 

REAL*8 K11.K12.K13,K14,K21,K22.K23,K24 

EXTERNAL TEST1.TEST2.ENERGY,RADIUS 

COMMON T, GAM, TWALL.FP 

COMMON /R/RHOC,XFAC,ACEN 

DUM1=RR 
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6200 DUM2=T 

6210 CALL TEST1(DUMC.DUM1.DUM2.DRDT) 

6220 CALL TEST2(EP.PEMMIS.WEMMIS.DUM1.DUM2.DTDT) 

6230 K11=DRDT 

6240 K21=DTDT 

6250 DUM1 = RR + K11*STEP/2.0 

6260 DUM2 = T + K21*STEP/2.0 

6270 CALL TEST1(DUMC.DUM1.DUM2.DRDT) 

6280 CALL TEST2(EP.PEMMIS.WEMMIS.DUM1.DUM2.DTDT) 

6290 K12 = DRDT 

6300 K22 = DTDT 

6310 DUM1 = RR + K12*STEP/2.0 

6320 DUM2 = T + K22*STEP/2.0 

6330 CALL TEST1(DUMC.DUM1.DUM2.DRDT) 

6340 CALL TEST2(EP.PEMMIS.WEMMIS.DUM1.DUM2.DTDT) 

6350 K13 = DRDT 

6360 K23 = DTDT 

6370 DUM1 = RR + K13*STEP 

6380 DUM2 = T + K23*STEP 

6390 CALL TEST1(DUMC.DUM1.DUM2,DRDT) 

6400 CALL TEST2(EP,PEMMIS,WEMMIS.DUM1.DUM2,DTDT) 

6410 K14 = DRDT 

6420 K24 = DTDT 

6430 RNEW = RR + STEP*(K11 + 2.0*K12 + 2.0*K13 + K14)/6.0 

6440 TNEW = T + STEP*(K21 + 2.0*K22 + 2.0*K23 + K24)/6.0 

6450 RETURN 

6460 END 
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6470 c 

6480 c------------------------------------------
6490 c 
6500 c 
6510 c 
6520 

6530 

6540 

6550 

6560 

6570 c 
6580 

6590 

6600 

6610 

6620 

6630 

6640 c 

Particle mass balance. 

SUBROUTINE RADIUS(B,DUM1,DUM2,ANS) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON T, GAM, TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT,RPINIT,CPASH,AMMIS 

ANS=((-1.0*(XFAC*9.3*DEXP(-ACEN/(1.98 * DUM2))* B))* 

1 (1.0-ASHFRAC))/((RHOASH*ASHFRAC + RHOC*(1.0-ASHFRAC)) 

2 +((RHOC -RHOASH)*ASHINIT*((1.0D-4*RPINIT)**3.0)/ 

3 (DUM1**3.0))) 

RETURN 

END 

6650 c------------------------------------------
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AIX.3 VARNU.FOR 

10 c 

20 c 

30 c 

40 c 

50 c 

60 c 

70 c 

80 c 

90 ·c 

100 c 

110 c 

120 c 

130 c 

140 c 

150 c 

160 c 

170 c 

180 c 

190 c 

200 c 

210 c 

220 c 

230 c 

This program simulates the combustion of a single solid 

carbon particle with no internal structure. The particle is 

assumed to be isothermal. 

The gas phase is assumed to be in a quasi-steady state 

relative to the solid for a given time step. The hetero 

reaction at the solid is 2C + 02 ---> 2CO and in the gas 

phase the oxidation is assumed to be far enough from the 

particle so as to have no effect on it. The gas phase 

equations include the Stefan flow term. Gas phase properties 

are calculated using the kinetic theory of gases. The 

integral equations are then solved analytically. 

Ash is assumed to be distributed uniformly inside the 

particle, initially. However, as the particle burns, the 

carbon shrinks and the ash fraction in the particle rises. 

It is assumed that none of the ash is lost; it accumulates 

on the carbon surface. The ash layer affects the access of 

oxygen to the particle (blockage effect), the effective 

emmissivity of the particle (since ash has an emissivity 

different from carbon), and the thermal inertia 

of the particle (assuming some heat capacity for ash). 

These effects have been taken into account. 

240 c--------------------------------------------
250 c 
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260 c Declarations. 

270 c 

280 c 

290 IMPLICIT REAL*8(A-H,O-Z) 

300 REAL*8 NMAX 

310 REAL*8 K11,K12,K13,K14,K21,K22,K23,K24 

320 CHARACTER*15 IFILE 

330 CHARACTER*1 QRESP 

340 c 
350 EXTERNAL EC,ECH,CPC,CPCH 

360 EXTERNAL FLUX.ENERGY 

370 EXTERNAL G.AMMA,RTBIS,RADIUS,SOLID 

380 c 
390 c 

400 COMMON /FIRST/T,GAM,TWALL,FP 

410 COMMON /R/RHOC,XFAC,ACEN 

420 COMMON /Y1S/Y1S,Y1INF 

430 COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

440 1 RPINIT,CPASH,AMMIS,THCK 

450 COMMON /TF/TFAC,PEMMIS 

460 c 
470 c-------------------------------------------
480 c 

490 c Interactive program parameter inputs. 

500 c 

510 c 

520 WRITE(*,9) 



530 9 

540 

550 8 

560 

570 

580 

590 

600 

610 10 

620 

630 

640 

650 

660 11 

670 

680 

690 

700 

710 12 

720 

730 

740 

750 

760 13 

770 

780 

790 
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FORMAT(1x. ·wANT TO READ THE VARNU.INP FILE (YORN)?•) 

READ(*.8)QRESP 

FORMAT(A1) 

IF((QRESP .EQ. •y•) .OR. (QRESP .EQ .•y•))GOTO 2000 

OPEN(1.FILE='VARNU.INP •• STATUS='NEW') 

WRITE(*, 10) 

FORMAT(1X •• ENTER VOID FRC. AND THICKNESS FACTOR') 

READ(*.*)EPSO.TFAC 

WRITE(1.*)EPSO,TFAC 

WRITE(*,11) 

FORMAT(1X.'ENTER WALL AND INIT. PART. TEMPS. INK') 

READ(*.*)TWALL.TPINIT 

WRITE(1,*)TWALL,TPINIT 

WRITE(*,12) 

FORMAT(1X,'ENTER THE INITIAL ASH VOLUME FRACTION•) 

READ(*.*)ASHO 

WRITE(1,*)ASHO 

WRITE(*, 13) 

FORMAT(1X,.ENTER THE INIT. PART. RADIUS IN MICRONS') 

READ(*.*)RINIT 

WRITE(1.*)RINIT 
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800 WRITE(*,14) 

810 14 FORMAT(1X,'ENTER THE 02 PART. PRES. IN THE AMBIENT') 

820 READ(*,*)PINF 

830 WRITE(1,*)PINF 

840 

850 WRITE(*,15) 

860 15 FORMAT(1X,'INPUT WALL, CARBON AND ASH EMMISIVITIES') 

870 READ(*,*)WEMMIS,PEMMIS,AMMIS 

880 WRITE(1,*)WEMMIS,PEMMIS,AMMIS 

890 

900 WRITE(*,16) 

910 16 FORMAT(1X,'ENTER THE MAXIMUM TEMPERATURE INCREMENT') 

920 READ(*,*)DELTEMP 

930 WRITE(1,*)DELTEMP 

940 

950 WRITE(*,17) 

960 17 FORMAT(1X,'ENTER XFAC, ACEN AND TIMESTEP') 

970 READ(*,*)XFAC,ACEN,STEPO 

980 WRITE(1,*)XFAC,ACEN,STEPO 

990 

1000 WRITE(*,18) 

1010 18 FORMAT(1X,'ENTER ES1,ES2,XACC (0 < ES1 << ES2) ') 

1020 READ(*,*)ES1,ES2,XACC 

1030 WRITE(1,*)ES1,ES2,XACC 

1040 

1050 WRITE(*,19) 

1060 19 FORMAT(1X,'ENTER THE NUMBER OF TIMESTEPS') 



1070 

1080 

1090 

1100 

1110 21 

1120 

1130 22 

1140 

1150 

1160 

1170 

READ(*,*)NMAX 

WRITE(1,*)NMAX 

WRITE(*,21) 
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FORMAT(1X,'ENTER THE OUTPUT FILENAME (NOT VARNU.INP!)') 

READ(*,22)IFILE 

FORMAT(A15) 

CLOSE(1) 

GOTO 3000 

1180 2000 OPEN(1,FILE='VARNU.INP',STATUS='OLD') 

1190 READ(1,*)EPSO,TFAC,TWALL,TPINIT,ASHO,RINIT,PINF.WEMMIS. 

1200 1 PEMMIS,AMMIS,DELTEMP,XFAC,ACEN,STEPO,ES1,ES2,XACC,NMAX 

1210 CLOSE(1) 

1220 

1230 WRITE(*,30)EPSO,TFAC 

1240 30 FORMAT(1X,'1. PARTICLE VOID FRAC. AND TFAC: 

1250 1 ',F8.4,3X,F8.4,/) 

1260 

1270 WRITE(*,31)TWALL,TPINIT 

1280 31 FORMAT(1X,'2. WALL AND INIT. PART. TEMPS. INK: ' 

1290 1 F10.4,3X,F10.4,/) 

1300 

1310 

1320 32 

1330 

WRITE(*,32)ASHO 

FORMAT(1X,'3. THE INIT. ASH VOLUME FRACTION: ',F8.4,/) 



1340 

1350 33 

1360 

1370 

1380 34 

1390 

1400 
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WRITE(*.33)RINIT 

FORMAT(lX.·4. THE !NIT. PART. RADIUS IN MIC.: ".F8.4./) 

WRITE(*.34)PINF 

FORMAT(lx.·s. THE 02 PART. PRES. (AMBIENT): ·.F8.4./) 

WRITE(*.35)WEMMIS.PEMMIS.AMMIS 

1410 35 FORMAT(lX,'6. THE WALL, CARBON AND ASH EMMISIVITIES: •• 

1420 1 F6.4.3X,F6.4,3X,F6.4,/) 

1430 

1440 

1450 36 

1460 

1470 

1480 37 

1490 

1500 

WRITE(*,36)DELTEMP 

FORMAT(lX.'7. THE MAXIMUM TEMP: INCREMENT: ·.F8.2,/) 

WRITE(*,37)XFAC,ACEN,STEPO 

FORMAT(lX,"8. THE FACTOR XFAC, ACEN AND TIMESTEP: ' 

1 F8.4,3X,F12.2,2X,F8.6,/) 

1510 WRITE(*,38)ES1,ES2,XACC 

1520 38 FORMAT(lX.'9. ES1,ES2.XACC (0 < ESl << ES2): ' 

1530 1 E9.4,3X,E9.4,3X,E9.4,/) 

1540 

1550 

1560 39 

1570 

1580 

1590 41 

1600 

WRITE(*,39)NMAX 

FORMAT(lX.'10. THE NUMBER OF TIMESTEPS: ",Fl0.2,/) 

WRITE(*.41) 

FORMAT(lX,'ENTER THE OUTPUT FILENAME (NOT VARNU.INP!)•) 

READ(*,42)IFILE 
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1610 42 FORMAT(A15) 

1620 

1630 1990 WRITE(*,43) 

1640 43 FORMAT(1X, 'ENTRY NO. TO BE ALTERED (0 TO RUN)') 

1650 READ(*,*)NALT 

1660 IF(NALT .EQ. O)GOTO 2500 

1670 IF{NALT .EQ. 1)GOTO 2010 

1680 IF{NALT .EQ. 2)GOTO 2020 

1690 IF{NALT .EQ. 3)GOTO 2030 

1700 IF(NALT .EQ. 4)GOTO 2040 

1710 IF{NALT .EQ. 5)GOTO 2050 

1720 IF{NALT .EQ. 6)GOTO 2060 

1730 IF{NALT .EQ. 7)GOTO 2070 

1740 IF{NALT .EQ. 8)GOTO 2080 

1750 IF{NALT .EQ. 9)GOTO 2090 

1760 IF{NALT .EQ. 10)GOTO 2100 

1770 GOTO 1990 

1780 

1790 2010 WRITE(*.10) 

1800 READ{*,*)EPSO,TFAC 

1810 GOTO 1990 

1820 

1830 2020 WRITE{*, 11) 

1840 READ(*,*)TWALL,TPINIT 

1850 GOTO 1990 

1860 

1870 2030 WRITE(*,12) 
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1880 READ(*.*)ASHO 

1890 GOTO 1990 

1900 

1910 2040 WRITE(*.13) 

1920 READ(*.*)RINIT 

1930 GOTO 1990 

1940 

1950 2050 WRITE(•.14) 

1960 READ(*.*)PINF 

1970 GOTO 1990 

1980 

1990 2060 WRITE(•.15) 

2000 READ(•.•)WEMMIS.PEMMIS.AMMIS 

2010 GOTO 1990 

2020 

2030 2070 WRITE(•.16) 

2040 READ(*.*)DELTEMP 

2050 GOTO 1990 

2060 

2070 2080 WRITE(•.17) 

2080 READ(*.*)XFAC.ACEN.STEPO 

2090 GOTO 1990 

2100 

2110 2090 WRITE(*.18) 

2120 READ(*.*)ES1.ES2.XACC 

2130 GOTO 1990 

2140 
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2150 2100 WRITE(*,19) 

2160 

2170 

2180 

READ(*,*)NMAX 

GOTO 1990 

2190 2600 OPEN(1,FILE='VARNU.INP',STATUS='NEW') 

2200 WRITE(1,*)EPSO,TFAC,TWALL,TPINIT,ASHO,RINIT,PINF,WEMMIS, 

2210 1 PEMMIS,AMMIS,DELTEMP,XFAC,ACEN,STEPO,ES1,ES2,XACC,NMAX 

2220 

2230 c 

CLOSE(1) 

2240 c-------------------------------------------------
2250 c 

2260 c 

2270 c 

2280 c 

2290 c 

2300 c 

2310 c 

2320 c 

2330 c 

2340 c 

2350 c 

2360 c 

2370 c 

2380 c 

2390 c 

2400 c 

2410 c 

Main program. 

After initialization, the main loop begins. STEP (timestep) 

is set to its original value. Radii are converted to ems. 

for actual calculation but are written out in microns. GAM 

is found by bisection. The coupled gas and solid phase 

equations are solved to get GAM. Flux is calculated based on 

a reaction rate by Smith. Property values in the gas phase 

are functions of temperature. DUMC is the mole fraction of 

02 at the external surface of the particle. X1, X2 are 

initial guesses for GAM and XACC is the error tolerance. 

DTDR is the temperature gradient at the surface. 

Subroutine SOLID finds the ash fraction of the particle. 

Ash is assumed to be at the same temperature as the rest 

of the particle. 
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2420 c 

2430 c Subro.utine RUNG solves the coupled equations of mass and 

2440 c energy for a given time step. If the temperature change in 

2450 c a time step is larger than DELTEMP. the time step is halved 

2460 c and the process is repeated. 

2470 c 

2480 c Every tenth data point is written to file and screen. 

2490 c 

2500 c 

2510 c Initialization. 

2520 c 

2530 RHOC=1.6*(1-ASHO-EPSO) 

2540 C1INF=PINF 

2550 RPINIT=RINIT 

2560 ASHINIT=ASHO 

2570 c 

2580 RHOASH=2.0 

2590 c 

2600 c NMAX=2000 

2610 c ES1=1.0D-6 

2620 c ES2=1.0D07 

2630 c XACC=0.0001 

2640 c STEP0=0.0001 

2650 c DELTEMP=20 

2660 c WEMMIS=0.8 

2670 c PEMMIS=0.8 

2680 c AMMIS=0.8 



2690 c 

2700 3000 

2710 

2720 c 

2730 

2740 

2750 

2760 

2770 

2780 

2790 

2800 

2810 

2820 

2830 

2840 

2850 900 

2860 c 

2870 c 

2880 c 

2890 c 

2900 

2910 

2920 

2930 

2940 

2950 
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Y1INF=(C1INF•32.0)/(C1INF * 32.0 +(1.0 - C1INF )*28.0) 

A = (1.0 I (1.0 - Y1INF)) * (Y1INF I 4.0) 

TP = TPINIT 

RP = RPINIT 

C1S = C1INF 

TIME = 0.0 

DTDR = 0.0 

FP=O.O 

THCK=O.O 

ASHFRAC = ASHINIT 

OPEN(2,FILE=IFILE,STATUS='NEW') 

WRITE(*. 900) TIME, RP. TP, c1s. FP 

WRITE(2, 900) TIME, RP, TP, C1S, FP 

FORMAT(1X,6G12.4) 

X1 and X2 are appropriate brackets for GAM. 

Typically, ES1 is 0(1D-6), while ES2 is 0(1D11). 

IF ( TPINIT .LT. TWALL) THEN 

ELSE 

X1 = ( -2331.6425 + 0.3388749•TPINIT) - ES2 

X2 = ( -2331.6425 + 0.3388749•TPINIT) - ES1 

X1 = ( -2331.6425 + 0.3388749•TPINIT) + ES1 

X2 = ( -2331.6425 + 0.3388749•TPINIT) + ES2 



2960 

2970 c 

2980 c 

2990 c 
' 

3000 

3010 

3020 

3030 

3040 

3050 

3060 

3070 

3080 

3090 

3100 

3110 

3120 

3130 

3140 

3150 991 

3160 

3170 

3180 

3190 

3200 

3210 

3220 
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END IF 

Main loop begins. 

1 

1 

JMAX = NMAX 

DO 1000 I = 1, JMAX 

STEP=STEPO 

T = TP 

RR = RP * 1D-04 

THCK=(RP**3.0+(ASHINIT*(RPINIT**3.0-RP**3.0))/ 

0.65)**(1.0/3.0)-RP + 1.0D-08 

THCK=THCK*1.0D-04*TFAC 

CALL RTBIS(GAMMA,X1,X2,XACC,RR,GAM) 

DUMC = (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

CALL FLUX(DUMC,RR) 

FP1 = -1.3333 * FP 

FP2 = 2.3333 * FP 

EP = GAM * FP 

CALL SOLID(RR) 

CALL RUNG(RADIUS,ENERGY,DUMC,STEP.EP, 

PEMMIS,WEMMIS,RR,RNEW.TNEW) 

IF(RNEW .LE. 0.0001)THEN 

TBURN=TIME 

GOTO 1001 

END IF 

RP = 1.0D4*RNEW 

TP = TNEW 



-496-

3230 TIME = TIME + 1.0D3*STEP 

3240 c 

3250 c Writing to file. 

3260 c 

3270 IF(MOD(I,10) .EQ. O)THEN 

3280 WRITE(*, 900) TIME, RP, TP, DUMC ,FP 

3290 WRITE(2, 900) TIME, RP, TP, DUMC ,FP 

3300 END IF 

3310 c 

3320 c Reducing the brackets for the next call of GAM. 

3330 c 

3340 IF ( TP .LT. TWALL) THEN 

3350 X1 = GAM - DABS(1000.0*GAM) 

3360 X2 = ( -2331.5425 + 0.3388749*TP ) - ES1 

3370 ELSE 

3380 X1 = ( -2331.6426 + 0.3388749*TP ) + ES1 

3390 X2 = GAM + DABS(1000.0*GAM) 

3400 END IF 

3410 c 

3420 1000 CONTINUE 

3430 1001 CONTINUE 

3440 CLOSE(2) 

3450 END 

3460 c 

3470 c Main loop and main program end. 

3480 c 

3490 c------------------------------------------
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3500 c------------------------------------------
3510 c 

3520 c 

3530 c 

3540 c 

3550 c 

3560 c 

3570 

3580 

3590 

3600 

3610 

3620 

3630 

3640 

3650 

3660 

3670 c 

3680 c 

3690 

3700 

3710 

3720 

3730 

3740 

3750 

3760 

Property values. 

EC and ECH calculate the enthalpy of the solid in cal/g. 

Data from coal data book. 

REAL*8 FUNCTION EC(D) 

IMPLICIT REAL*8(A-H.O-Z) 

COMMON /FIRST/T.GAM.TWALL.FP 

CPCO = 0.024 

CPC1 = 6.9630-04 

CPC2 = -2.841D-07 

EC = CPCO*(D - 298) + (CPC1 I 2.0)*(D*D - 298*298) 

1 + (CPC2 I 3.0)*(D*D*D - 298*298*298) 

RETURN 

END 

REAL*8 FUNCTION ECH(D) 

IMPLICIT REAL*8(A-H.O-Z) 

COMMON /FIRST/T.GAM.TWALL.FP 

CPCHO = 0.36 

CPCH1 = 6.9310-05 

ECH = CPCHO*(D - 298) + (CPCH1 I 2.0)*(D*D ·- 298*298) 

RETURN 

END 



3770 c 

3780 c 

3790 c 

3800 c 

3810 

3820 

3830 

3840 

3850 

3860 

3870 

3880 

3890 

3900 c 

3910 

3920 

3930 

3940 

3950 

3960 

3970 

3980 

3990 c 
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CPC and CPCH calculate the heat capacity of the solid in 

cal/g-K. Data from coal data book. 

REAL*8 FUNCTION CPC(D) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /FIRST/T,GAM,TWALL.FP 

CPCO = 0.024 

CPC1 = 6.953D-04 

CPC2 = -2.841D-07 

CPC = CPCO + CPC1 * D + CPC2 * D * D 

RETURN 

END 

REAL*8 FUNCTION CPCH(D) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /FIRST/T,GAM.TWALL,FP 

CPCHO = 0.36 

CPCH1 = 6.9310-05 

CPCH = CPCHO + CPCH1 * D 

RETURN 

END 

4000 c-------------------------------------------------
4010 c 

4020 c 

4030 c 

This routine calculates the fraction of ash in the solid. 

{ASHFRAC). {ASHFRAC --> 1.0 as RR--> RMIN) 
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4040 c 

4050 SUBROUTINE SOLID(RR) 

4060 IMPLICIT REAL*S(A-H,0-Z) 

4070 COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

4080 

4090 c 

1 RPINIT,CPASH,AMMIS,THCK 

4100 ASHFRAC = ASHINIT*(1.0D-4*RPINIT/RR)**3.0 

4110 RETURN 

4120 END 

4130 c 

4140 c-------------------------------------------------
4150 c 

4160 c 

4170 c 

4180 

4190 

4200 

4210 

4220 

4230 c 

4240 

4250 

4260 

4270 

4280 

4290 

4300 

Root finder by the method of bisection for function TET. 

SUBROUTINE RTBIS(TET,X1,X2,XACC,R2,XMID) 

IMPLICIT REAL*S(A-H,0-Z) 

EXTERNAL TET 

COMMON /FIRST/T,GAM,TWALL,FP 

PARAMETER (JMAX = 600) 

CALL TET(X1,FX1,R2) 

CALL TET(X2,FX2,R2) 

IF(FX2*FX1 .GE. 0.0) PAUSE 'BRACKET ROOT IN MENU' 

DX = X2 - X1 

DO 200 J = 1, JMAX 

DX = DX * 0.6 

XMID = X1 + DX 



4310 

4320 

4330 

4340 

4350 

4360 

4370 

4380 

4390 

4400 200 

4410 

4420 

4430 c 
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CALL TET(XMID.FMID,R2) 

IF (FMID * FX1 .GT. O.O)THEN 

X1 = XMID 

ELSE 

ENDIF 

FX1 = FMID 

X2 = XMID 

FX2 = FMID 

IF (DABS(DX/XMID) .LT. XACC) RETURN 

CONTINUE 

PAUSE 'TOO MANY BISECTIONS IN MENU' 

END 

4440 c-------------------------------------------------
4450 c 

4460 c 

4470 c 

4480 

4490 

4500 

4510 

4520 

4530 

4540 c 

4550 c 

4560 c 

4570 c 

Calculation of solid flux in gmc/cmA2-s.(Smith 1974) 

1 

SUBROUTINE FLUX(B,R) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT,CPASH,AMMIS.THCK 

COMMON /FIRST/T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

Older approach to calculate FP. 

CASH=B-FP*R*R(1/(R+T)-1/R)/C*MD2*DASH 



4580 c 

4590 c 
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FP = XFAC*DEXP( -1.0*ACEN/(1.98 * T))*CASH 

4600 DASH=0.35*3.13*(T/1500.0)**1.75/2.0 

4610 PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

4620 FP=PF*B/(1.0+82.05*T*PF*R*THCK/ 

4630 1 ((R+THCK)*(32.0*DASH))) 

4640 TEST=PF*B 

4650 RETURN 

4660 END 

4670 c 

4680 c-------------------------------------------------
4690 c 

4700 c 

4710 c 

4720 c 

4730 

4740 

4750 

4760 

4770 

4780 

4790 

4800 c 

4810 

4820 

4830 

4840 

This routine calculates the value of the fully integrated 

equations from !WALL to TP based on GAM1. 

1 

SUBROUTINE GAMMA(GAM1,F,R1) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT,CPASH,AMMIS,THCK 

COMMON /FIRST/ T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

COMMON /Y1S/Y1S,Y1INF 

CC = -3.0043D-05 

DASH=0.35*3.13*(T/1500.0)**1.75/2.0 

IF (T .LT. TWALL) THEN 

HH = DSQRT(DABS(-2331.5425 - GAM1)/0.3388749) 



4850 

4860 

4870 

4880 

4890 

4900 

4910 

4920 

4930 

4940 

4950 

4960 

4970 

4980 

4990 

5000 

5010 

5020 

5030 

5040 

5050 

5060 

5070 

1 

2 

1 

1 

1 

1 

1 
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IF (GAM1 .GT.-2331.5425) THEN 

AR1=-1.0*CC*((DSQRT(TWALL) - DSQRT(T)) + HH/2.0 * 

(DLOG((DSQRT(TWALL) - HH)*(DSQRT(T) + HH)/ 

((DSQRT(TWALL) + HH)*(DSQRT(T) - HH))))) 

HM = (2331.5425 + GAM1)/0.3388749 

Y1S= (Y1INF+4.0/3.0)*((T-HM)/(TWALL-HM))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1•THCK/ 

((R1+THCK)*(32.0*DASH))) 

F=AR1-R1* FFP 

ELSE 

AR2 = -1.0*CC*((DSQRT(TWALL)-DSQRT(T))-HH* 

(DATAN(DSQRT(TWALL)/HH)-DATAN(DSQRT(T)/HH))) 

HM = (2331.5425 + GAM1)/0.3388749 

Y1S= (Y1INF+4.0/3.0)•((T-HM)/(TWALL-HM))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0•Y1S))) 

PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1*THCK/ 

((R1+THCK)•(32.0•DASH))) 

F = AR2-R1* FFP 

5080 END IF 

5090 ELSE 

5100 FF = DSQRT(DABS(2331.5425 + GAM1)/0.3388749) 

5110 IF (GAM1 .LT.-2331.5425) THEN 



5120 

5130 

5140 

5150 

5160 

5170 

5180 

5190 

5200 

5210 

5220 

5230 

5240 

5250 

5260 

5270 

5280 

5290 

5300 

5310 

5320 

5330 

5340 

1 

1 

1 

1 

2 

1 

1 
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AR3 = CC*((DSQRT(T)-DSQRT(TWALL))-FF* 

(DATAN(DSQRT(T)/FF)-DATAN(DSQRT(TWALL)/FF))) 

C3 = (2331.5425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1*THCK/ 

((R1+THCK)*(32.0*DASH))) 

F = AR.3-R1* FFP 

ELSE 

AR4 = CC * ((DSQRT(T) - DSQRT(TWALL)) + FF/2.0 * 

(DLOG((DSQRT(T) - FF)*(DSQRT(TWALL) + FF)/ 

((DSQRT(T) + FF)*(DSQRT(TWALL) - FF))))) 

C3 = (2331.6425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))** 

0.8095478-4.0/3.0 

CONC=(1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

PF= XFAC*DEXP( -1.0*ACEN/(1.98 * T)) 

FFP=PF*CONC/(1.0+82.05*T*PF*R1*THCK/ 

((R1+THCK)*(32.0*DASH))) 

F = AR4-R1* FFP 

END IF 

5350 END IF 

5360 RETURN 

5370 END 

5380 c 
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5390 c-------------------------------------------------
5400 c 

5410 c 

5420 c 

5430 

5440 

5450 

5460 

5470 

5480 

5490 

5500 c 

5510 c 

5520 c 

5530 

5540 

5550 

5560 

5570 

5580 

5590 

5600 

5610 

5620 

5630 

5640 

5650 

Energy balance. 

1 

SUBROUTINE ENERGY(EP,PEMMIS,WEMMIS,RR,DUM2,ANST) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL CPC,EC,CPCH,ECH 

COMMON /FIRST/ T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

COMMON /ASH/ASHFRAC,RHOASH,ASHINIT, 

RPINIT,CPASH,AMMIS,THCK 

Note that RHOC=1.5*(1-ASHINIT-EPSINIT) c Apparent density 

SIG = 1.595D-12 

IF (DUM2 .LT. 1350) THEN 

CPSOL= CPC(DUM2) 

VAL = EC(DUM2) 

ELSE 

END IF 

CPSOL= CPCH(DUM2) 

VAL = ECH(DUM2) 

CPASH = 0.183 + 0.111D-3*T 

ANST=3.0*(RR+THCK)*(RR+THCK)*(FP*VAL-EP-SIG* 

1 (PEMMIS*DUM2**4-WEMMIS*TWALL**4))/ 

2 (RR*RR*RR*(CPSOL*RHOC + CPASH*RHOASH* 

3 (ASHINIT+0.65*((1+THCK/RR)**3.0-1.0)))) 
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5660 RETURN 

5670 END 

5680 c 

5690 c-------------------------------------------------
5700 c 

5710 c 

5720 c 

5730 c 

5740 

5750 

5760 

5770 

5780 

5790 

5800 

5810 c 

5820 

5830 

5840 

5850 

5860 

5870 

5880 

5890 

5900 

5910 

5920 

Fourth order Runge-Kutta method for solving TEST1 and 

TEST2 for one time step. 

1 

SUBROUTINE RUNG(TEST1,TEST2,DUMC,STEP.EP, 

PEMMIS,WEMMIS,RR,RNEW.TNEW) 

IMPLICIT REAL*8(A-H.O-Z) 

REAL*8 K11,K12,K13,K14,K21,K22,K23,K24 

EXTERNAL TEST1,TEST2,ENERGY,RADIUS 

COMMON /FIRST/ T,GAM,TWALL,FP 

COMMON /R/RHOC,XFAC,ACEN 

DUM1=RR 

DUM2=T 

CALL TEST1(DUMC,DUM1,DUM2,DRDT) 

CALL TEST2(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K11=DRDT 

K21=DTDT 

DUM1 = RR + K11*STEP/2.0 

DUM2 = T + K21*STEP/2.0 

CALL TEST1(DUMC,DUM1,DUM2,DRDT) 

CALL TEST2(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K12 = DRDT 
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K22 = DTDT 

DUM1 = RR + K12*STEP/2.0 

DUM2 = T + K22*STEP/2.0 

CALL TEST1(DUMC,DUM1,DUM2,DRDT) 

CALL TEST2(EP.PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K13 = DRDT 

K23 = DTDT 

DUM1 = RR + K13*STEP 

DUM2 = T + K23*STEP 

CALL TEST1(DUMC,DUM1.DUM2,DRDT) 

CALL TEST2(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K14 = DRDT 

K24 = DTDT 

RNEW = RR + STEP*(K11 + 2.0*K12 + 2.0*K13 + K14)/6.0 

TNEW = T + STEP*(K21 + 2.0*K22 + 2.0*K23 + K24)/6.0 

RETURN 

END 

6110 c-------------------------------------------------
6120 c 

6130 c 

6140 c 

Mass balance. 

6150 SUBROUTINE RADIUS(B.DUM1.DUM2.ANS) 

6160 IMPLICIT REAL*8(A-H,O-Z) 

6170 COMMON /FIRST/ T.GAM.TWALL.FP 

6180 COMMON /R/RHOC,XFAC.ACEN 

6190 COMMON /ASH/ASHFRAC.RHOASH,ASHINIT. 



6200 

6210 c 
6220 c 
6230 c 

1 
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RPINIT.CPASH.AMMIS.THCK 

Note that RHOC=1.5*(1-ASHINIT-EPSINIT) = Apparent density 

6240 DASH=0.35*3.13*(DUM2/1500.0)**1.76/2.0 

6250 PF= XFAC*DEXP( -1.0*ACEN/(1.98 * DUM2)) 

6260 FFP=PF*B/(1.0+82.05*DUM2*PF*DUM1*THCK 

6270 1 /((DUM1+THCK)*(32.0*DASH))) 

6280 ANS = -1.0*FFP/RHOC 

6290 RETURN 

6300 END 

6310 c 

6320 c-------------------------------------------------
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AIX.4 3VOIDS.FOR 

10 c 

20 c 

30 c 

40 c 

50 c 

60 c 

70 c 

80 c 

90 c 

100 c 

110 c 

120 c 

130 c 

140 c 

150 c 

160 c 

170 c 

180 c 

190 c 

200 c 

210 c 

This program simulates the combustion of a single porous 

carbon particle. The particle is assumed to be isothermal 

internally. It has spherical voids distributed inside. 

Three sizes of voids corresponding to macro, transition 

and micro pores are used to describe the internal structure. 

As combustion proceeds, the local recession, which is a 

function of the local oxygen concentration and the particle 

temperature is computed at 50 fixed points within the 

particle. This local recession. Q, determines the local 

voidfraction and the local surf ace area at any radial 

location. The bulk diffusion coefficient is used throughout. 

It is modified to account for the local void fraction 

according to the Satterfield relation. The diffusion 

equation is solved inside the particle to determine the 

oxygen profile inside the particle. The boundary conditions 

are zero gradient at the particle center and known surf ace 

concentration determined by solving the gas phase equations. 

The particle radius changes in two ways. Until the 

external void fraction reaches the user-set value, radius 



220 c 
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280 c 

290 c 
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350 c 

360 c 

370 c 

380 c 

390 c 

400 c 

410 c 

420 c 

430 c 
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changes due to reaction. However, once the external void 

fraction reaches the critical value, that portion of the 

solid in which the void fraction exceeds or equals the 

the critical value is shed. The particle temperature is 

determined by an overall energy balance including radiation 

conduction and convection terms. 

The gas phase is assumed to be quasi-steady relative to the 

solid for a given time step. The heterogenous reaction 

at the solid is 2C + 02 ---> 2CO and in the gas phase, 

the CO oxidation is assumed to be far enough from the 

particle so as to have no thermal effect on the particle. 

The gas phase equations include the Stefan flow term. 

Gas phase properties are calculated using kinetic theory 

of gases. The integral equations are solved analytically. 

The reaction rate is assumed to be linear with respect to 

the surface oxygen concentration. 

No attempt has been made to simulate the presence of ash in 

this version. 

440 c------------------------------------------------
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Declarations. 

1 

IMPLICIT REAL*8(A-H,O-Z) 

CHARACTER*15 IFILE 

CHARACTER*! QRESP 

DIMENSION WK(54) 

EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

EXTERNAL RTBIS,GAMMA,RUNG,PROF,RADIUS,ENERGY,QUE 

EXTERNAL STROBE,RTBISOL,RUNGSOL.EQN1,EQN2 

EXTERNAL QCR 

COMMON T,TWALL 

COMMON /R/RHOC,FRAC,RPINIT 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT.EPSOLD,FSHED, 

EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLA.MB3 

COMMON /MISC/C,XLOW,AO,BO,XFAC.ACEN 

COMMON /ARR/X(50),R(50),Y1(50),Y2(50) 

COMMON /CS/CSTAR,TAU,XACC,SURFSUM 
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680 COMMON /QS/Q(4,50),DQDR(4.50).QINT.QBAR.QCRIT 

690 COMMON /AQ/AQ(50),ADQDR(50) 

700 COMMON /Y1/Y1S.Y1INF 

710 c 

720 c 

730 c-----------~------------------------------------

740 c 

750 c 

760 c 

770 c 

780 

790 9 

800 

810 8 

820 

830 

840 

850 10 

860 

870 

880 

890 11 

900 

Interactive program parameter inputs. 

WRITE(*,9) 

FORMAT(lx,'WANT TO READ THE 3VOIDS.INP FILE (YORN)?') 

READ(*,8)QRESP 

FORMAT(A1) 

IF((QRESP .EQ. 'y') .OR. (QRESP .EQ .'Y'))GOTO 2000 

WRITE(*,10) 

FORMAT(lx,'ENTER SOLID DENSITY ING/CC') 

READ(*.*)RHOC 

WRITE(*,11) 

FORMAT(lx,'ENTER WALL AND !NIT. PARTICLE TEMPS. INK') 

READ(*,*)TWALL,TPINIT 
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910 

920 · WRITE(*.12) 

930 12 FORMAT(1x.·ENTER THE CRITICAL VOLUME FRACTION•) 

940 READ(*.*)EPSCRIT 

950 

960 WRITE(*.13) 

970 13 FORMAT(1x.·INIT. PART .• VOID RADII(mu) AND VOIDFRACTS 

980 1 (BIG--> SMALL)•) 

990 

1000 

1010 

1020 14 

1030 

1040 

1050 

1060 16 

1070 

1080 

1090 

1100 16 

1110 

1120 

1130 

READ(*.*)RPINIT.VOID1.VOID2.VOID3.EPS1.EPS2.EPS3 

WRITE(*.14) 

FORMAT(1x.·ENTER THE 02 PARTIAL PRES. IN THE AMBIENT•) 

READ(*. *)C1INF 

WRITE(*.15) 

FORMAT(1x.·ENTER THE WALL AND CARBON EMMISIVITIES 1
) 

READ(*.*)WEMMIS.PEMMIS 

WRITE(*.16) 

FORMAT( 1x. 1 ENTER FRAC AND SWITCH(1:1 VOID;0:2/3 VOIDS) 1
) 

READ(*.*)FRAC.SWITCH 

WRITE(*.17) 
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1140 17 FORMAT( 1x.'ENTER FACTOR XFAC. ACEN AND TIMESTEP') 

1150 READ(*.*)XFAC.ACEN.STEPO 

1160 

1170 . 

1180 18 

WRITE(*.18) 

FORMAT(1X.'ENTER ES1.ES2.XACC (0 < ES1 << ES2) ') 

1190 READ(*.*)ES1.ES2.XACC 

1200 

1210 WRITE(*,19) 

1220 19 FORMAT( 1x,'ENTER THE NO. OF TIMESTEPS, TAU AND CSTAR') 

1230 READ(*.*)NMAX,TAU.CSTAR 

1240 

1250 

1260 21 

1270 

1280 22 

1290 

1300 

1310 

WRITE(*,21) 

FORMAT( 1x,'ENTER THE OUTPUT FILENAME (NOT *.INP !)') 

READ(*,22)IFILE 

FORMAT(A15) 

GOTO 2500 

1320 2000 OPEN(1.FILE='3VOIDS.INP',STATUS='OLD') 

1330 READ(1,*.END=129)RHOC,TWALL,TPINIT.EPSCRIT,RPINIT,VOID1. 

1340 1 VOID2.VOID3.EPS1.EPS2,EPS3,C1INF.WEMMIS,PEMMIS,FRAC. 

1350 2 SWITCH.XFAC.ACEN,STEPO.ES1.ES2.XACC.NMAX,TAU,CSTAR 

1360 CLOSE(1) 



1370 

1380 129 

1390 30 

1400 

1410 
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WRITE(*,30)RHOC 

FORMAT(1x,'1. SOLID DENSITY ING/CC: 

1 ',F8 .4 ,/) 

1420 WRITE(*,31)TWALL.TPINIT 

1430 31 FORMAT(1x,'2. WALL AND INIT. PARTICLE TEMPS. INK: ' 

1440 1 F10.4,3X,F10.4,/) 

1450 

1460 

1470 32 

1480 

WRITE(*,32)EPSCRIT 

FORMAT(1x,'3. THE CRITICAL VOLUME FRACTION: ',F8.4,/) 

1490 WRITE(*,33)RPINIT,VOID1,VOID2,VOID3,EPS1,EPS2,EPS3 

1500 33 FORMAT(1x,'4. INIT. PART.,VOID RADII(mu) AND VOIDFRAC.:' 

1510 1 ,/7G10.4,/) 

1520 

1530 

1540 34 

1550 

1560 

WRITE(*,34)C1INF 

FORMAT(1x,'6. THE 02 PART. PRES. (AMBIENT):',F8.4,/) 

WRITE(*,35)WEMMIS,PEMMIS 

1570 35 FORMAT(1x,'6. THE WALL AND CARBON EMMISIVITIES: ' 

1580 1 F6.4,3X,F6.4,/) 

1590 



1600 

1610 36 

1620 

1630 

1640 37 

1650 

1660 

1 
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WRITE(*,36)FRAC,SWITCH 

FORMAT( 1x,'7. FRAC AND SWITCH: ',2F8.2,/) 

WRITE(*,37)XFAC,ACEN,STEPO 

FORMAT( 1x,'8. THE FACTOR XFAC, ACEN AND TIMESTEP: ' 

F9.4,3X,F10.2,2X,F8.6,/) 

1670 WRITE(*,38)ES1,ES2,XACC 

1680 38 

1690 

1700 

FORMAT(1X,'9. ES1,ES2,XACC (0 < ES1 << ES2): ' 

1 E9.4,3X,E9.4,3X,E9.4,/) 

1710 WRITE(*,39)NMAX,TAU,CSTAR 

1720 39 FORMAT( 1x,'10. THE NO. OF STEPS, TAU, CSTAR: 

1730 1 ',I8,2X.2F12.4,/) 

1740 

1750 

1760 41 

1770 

1780 42 

1790 

WRITE(*,41) 

FORMAT( 1x,'ENTER THE OUTPUT FILENAME (NOT *.INP !)') 

READ(*,42)IFILE 

FORMAT(A15) 

1800 1990 WRITE(*,43) 

1810 43 

1820 

FORMAT(1X, 'ENTER# OF ENTRY TO BE ALTERED (0 TO RUN)') 

READ(*,*)NALT 
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1830 IF(NALT .EQ. O)GOTO 2500 

1840 IF(NALT .EQ. 1)GOTO 2010 

1850 IF(NALT .EQ. 2)GOTO 2020 

1860 IF(NALT .EQ. 3)GOTO 2030 

1870 IF(NALT .EQ. 4)GOTO 2040 

1880 IF(NALT .EQ. 5)GOTO 2050 

1890 IF(NALT .EQ. 6)GOTO 2060 

1900 IF(NALT .EQ. 7)GOTO 2070 

1910 IF(NALT .EQ. 8)GOTO 2080 

1920 IF(NALT .EQ. 9)GOTO 2090 

1930 IF(NALT .EQ. 10)GOTO 2100 

1940 GOTO 1990 

1950 

1960 2010 WRITE(*.10) 

1970 READ(*.*)RHOC 

1980 GOTO 1990 

1990 

2000 2020 WRITE(*.11) 

2010 READ(*.*)TWALL.TPINIT 

2020 GOTO 1990 

2030 

2040 2030 WRITE(*,12) 

2050 READ(*.*)EPSCRIT 
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2060 GOTO 1990 

2070 

2080 2040 WRITE(*.13) 

2090 READ(*.*)RPINIT.VOID1.VOID2,VOID3.EPS1.EPS2,EPS3 

2100 GOTO 1990 

2110 

2120 2050 WRITE(*.14) 

2130 READ(*,*)C1INF 

2140 GOTO 1990 

2150 

2160 2060 WRITE(*.16) 

2170 READ(*.*)WEMMIS,PEMMIS 

2180 GOTO 1990 

2190 

2200 2070 WRITE(•,16) 

2210 READ(*,*)FRAC,SWITCH 

2220 GOTO 1990 

22~0 

2240 2080 WRITE(*,17) 

2250 READ(*,*)XFAC,ACEN,STEPO 

2260 GOTO 1990 

2270 

2280 2090 WRITE(*,18) 
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2290 READ(*.*)ES1.ES2,XACC 

2300 GOTO 1990 

2310 

2320 2100 WRITE(*.19) 

2330 READ(*.*)NMAX.TAU.CSTAR 

2340 GOTO 1990 

2350 

2360 2600 OPEN(1.FILE='3VOIDS.INP'~STATUS='NEW') 

2370 WRITE(l.*)RHOC,TWALL.TPINIT,EPSCRIT.RPINIT,VOID1.VOID2. 

2380 1 VOID3.EPS1,EPS2,EPS3,C1INF.WEMMIS.PEMMIS,FRAC. 

2390 2 SWITCH.XFAC.ACEN.STEPO,ES1.ES2.XACC.NMAX.TAU,CSTAR 

2400 CLOSE(!) 

2410 c 

2420 c------------------------------------------------
2430 c------------------------------------------------
2440 c 

2450 C Main Program. 

2460 c 

2470 c 

2480 c 

2490 c 

2500 c 

2510 c 

After initialisation of various parameters. the main 

loop begins. C1INF and YlINF are the mole and mass 

fractions of oxygen far from the particle. A is used 

to calculate the mass fractions of the other species. 

EPSCRIT is the critical voidfraction at which shedding 
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starts. QINT is the interval between the 60 fixed 

points where Q's are calculated. 

The porosity in the solid is characterized by the 

three parameters EPS. VOID and DLAMB for each void size. 

The porosity is obtained by polydisperse spherical voids 

whose initial sizes are VOID1. VOID2 and VOID3 microns. 

The initial void fractions are EPS1. EPS2 and EPS3 

respectively. From the EPs•s and VOID·s. the DLAMB's 

(the number densities of the voids (#/vol)) are obtained. 

DLAMB's remain constant thereafter. 

Factors of 1D4 or 1D-4 occur in converting from ems. to 

microns and back. 

RTBIS is called to calculate the carbon flux from the 

solid. It calls GAMMA which in turn calls SOLID. SOLID 

solves for the oxygen concentration profile inside the 

particle using EQN1 and EQN2. It uses a scaling method 

to solve the two-point boundary value problem for the 

profile. 

The routine RUNG uses a fourth order Runge-Kutta scheme 
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to solve the simultaneous equations for particle radius 

and temperature. It calls ENERGY and RADIUS. The latter 

calls SOLID and QUE to actually calculate DR/DT. The 

routine QUE calculates the recession at points inside 

the particle and checks to see if the critical recession 

(calculated from EPSCRIT) is reached at the surface. 

The concentration profiles in the particle are written 

into a file called PRO.DAT at every 20th step. 

After a profile has been calculated, PLACE is called. 

This routine rearranges the R's such that more points 

are put in the region where the profile has steeper 

gradients. 

The reaction rate expression is from Smith's paper (1974}. 

It is based on the external surface area. 

XFAC multiplies the pre-exponential factor and can be 

adjusted. 

RATE=XFAC*305*DEXP(-ACEN/(1.98*T})*CONC [G/CN·2-S] 
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Initialization. 

Initially equally spaces R's 

DO 153 I=1,50 

FIX=I-1 

R(I)=FIX*RPINIT/49.0 

CONTINUE 

DO 156 L=1,50 

AQ(L)=O.O 

ADQDR(L)=O.O 

CONTINUE 

Y1INF=(C1INF*32.0)/(C1INF * 32.0 +(1.0 - C1INF )*28.0) 

A = (1.0 I (1.0 - Y1INF)) * (Y1INF I 4.0) 

FP=O.O 

TIME = 0.0 

DTDR = 0.0 

FLAG=1.0 

CONV=O.O 

QINT=RPINIT/49.0 
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T = TPINIT 

TPOLD=TPINIT 

RP = RPINIT 

ROLD=RPINIT*1.0D-04 

C1S = C1INF 

Y10LD=Y1INF 

Y1S=Y1INF 
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DLAMB3=-1.0*DLOG(1.0-EPS3)/(4.2*VOID3*VOID3*VOID3) 

DLAMB2=(-1.0*DLOG(1.0-EPS3-EPS2)-DLAMB3* 

1 (4.2*VOID3*VOID3*VOID3)) 

2 /(4.2*VOID2*VOID2*VOID2) 

DLAMB1=(-1.0*DLOG(1.0-EPS3-EPS2-EPS1)-DLAMB3*4.2*VOID3**3 

1 -DLAMB2*4.2*VOID2**3)/(4.2*VOID1**3) 

EPS=1.0-DEXP((-4.2*DLAMB1*(VOID1)**3)+(-4.2*DLAMB2* 

1 (VOID2)**3)+(-4.2*DLAMB3*(VOID3)**3)) 

SURF=((1.0-EPS)*12.6*(DLAMB1*VOID1**2 

1 + DLAMB2*VOID2**2 + DLAMB3*VOID3**2))/((1.0-EPS)*RHOC) 

EPSOLD=EPS 

EPSOUT=EPS 

EPSINIT=EPS 
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0PEN(2,FILE=IFILE,STATUS='NEW' ,FORM='FORMATTED') 

OPEN(3,FILE='PRO.DAT',STATUS='NEW',FORM='FORMATTED') 

WRITE(2, 900)TIME,CONV.RP,T,C1S,FP,SURF,EPSOLD,EPSOUT 

WRITE(*, 900)TIME,CONV,RP,T,C1S,FP,SURF,EPSOLD,EPSOUT 

FORMAT(1X,3F9.4,1X,F7.2,1X,2F8.6,1X,F6.2,1X, 

F6.4,1X,F6.4) 

X1 and X2 are appropriate brackets for GAM. 

Typically, ES1 is 0(1D-6), while ES2 is 0(1D11). 

IF ( TPINIT .LT. TWALL) THEN 

X1 = ( -2331.5425 + 0.3388749*TPINIT) - ES2 

X2 = ( -2331.5425 + 0.3388749*TPINIT) - ES1 

ELSE 

X1 = ( -2331.5425 + 0.3388749*TPINIT) + ES1 

X2 = ( -2331.5425 + 0.3388749*TPINIT) + ES2 

END IF 

Calculation of QCRIT. 

3640 IF(SWITCH .EQ. 1)THEN 

3650 QCRIT=(-1.0*DLOG(1.0-EPSCRIT)/(DLAMB1•4.2))••.33-VOID1 

3660 ELSE 
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GUESS1=(-1.0*DLOG(1.0-EPSCRIT)/(DLAMB1*4.2))**·33-VOID1 

GUESS2=0.0 

CALL RTBISOL(QCR,GUESS2,GUESS1,XACC,RSLT) 

QCRIT=RSLT 

END IF 

WRITE(*,*)QCRIT 

Main loop begins. 

DO 1000 I = 1, NMAX 

SWIT=O.O 

STEP=STEPO 

RR= RP* 1.0D-04 

CALL RTBIS(GAMMA,X1,X2,XACC,STEP,PEMMIS,WEMMIS,RR,RNEW, 

1 TNEW,FP,ANSW,SWIT) 

FP1 = -1.3333 * FP 

FP2 = 2.3333 * FP 

EPF=ANSW*FP 

DTDR = -1.0D-4*(EPF-FP1*EOX(T)-FP2*ECO(T))/RLAMB(T) 

DUMC= (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

RBAR=(ROLD+RNEW)/2.0 

FSHED=0.333*(1.0-EPSOUT)*RHOC* 

1 (ROLD**3.0-RNEW**3.0)/(STEP*RBAR**2.0) 



3900 

3910 

3920 

3930 ' 

3940 

3950 

3960 

3970 c 

3980 c 

3990 c 

4000 

4010 

4020 

4030 148 

4040 

4050 147 

4060 c 

4070 c 

4080 c 

4090 

4100 

4110 
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ROLD=RNEW 

RP = 1. OD4*RNEW 

CONV=1.0-((RP/RPINIT)**3.0)*((1.0-EPSOLD)/(1.0-EPSINIT)) 

SURF=SURFSUM*1.0D-12/(4.2*RNEW**3.0*(1.0-EPSOLD)*RHOC) 

T = TNEW 

TIME = TIME + 1.0D3*STEP 

TPOLD=T 

Writing profiles to PRO.DAT 

IF(MOD(I.20) .EQ. O)THEN 

DO 148 LI=1.60 

WRITE(3.147)R(LI).Y1(LI) 

CONTINUE 

END IF 

FORMAT(6X.2G12.4) 

Writing results to DATA file. 

IF(MOD(I.10) .EQ. O)THEN 

WRITE(2.900)TIME.CONV.RP.T.DUMC.FP.SURF.EPSOLD.EPSOUT 

WRITE(*.900)TIME.CONV.RP.T.DUMC.FP.SURF.EPSOLD.EPSOUT 

END IF 
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4130 c 

4140 c Equispacing R's 

4150 c 

4160 DO 157 KI=1,50 

4170 FIX=KI-1 

4180 R(KI)=FIX*RP/49.0 

4190 157 CONTINUE 

4200 c 

4210 DO 158 LI=1,50 

4220 AQ(LI)=Q(4,LI) 

4230 ADQDR(LI)=DQDR(4,LI) 

4240 158 CONTINUE 

4250 c 

4260 c Reducing brackets for next call of ANS. 

4270 c 

4280 IF ( T .LT. TWALL) THEN 

4290 Xl = ANSW - DABS(lO.O*ANSW) 

4300 X2 = ( -2331.5425 + 0.3388749*T ) - ESl 

4310 ELSE 

4320 Xl = ( -2331.5425 + 0.3388749*T ) + ESl 

4330 X2 = ANSW + DABS(10.0*ANSW) 

4340 END IF 

4350 c 



4360 c 

4370 c 

4380 

4390 

4400 c 

4410 

4420 c 

4430 

4440 

4450 

4460 

4470 

4480 c 

4490 c 

4500 c 

4510 c 

1 

1000 

1001 
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Program exit condition. 

IF((EPSOLD .GE. EPSCRIT) .OR. 

(R(60) .LE. O.O))GOTO 1001 

CONTINUE 

CLOSE(2) 

CLOSE(3) 

CONTINUE 

STOP 

END 

Main loop and main program end. 

4520 c------------------------------------------------

4530 c------------------------------------------------
4540 c 

4550 c 

4560 c 

4570 c 

4580 c 

Property subprograms. 

RLAMB:gas thermal conductivity (cal/cm-K) [300-2600K] 

from Eckert. The COEFFS are in W/m-K for D in K 
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4780 

4790 

4800 c 
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Form NOT used here. 

EOX :oxygen enthalpy (cal/gmol). Ref. state is 0.0 at 

298K. Valid for 298-2500K. Heat capacities assumed 

constant. From Smith and VanNess. Form NOT used. 

ECO :CO enthalpy. As above except ref. state. 

EC :Carbon enthalpy (cal/g) [LT 1350K](COAL DATA BOOK) 

ECH :Carbon enthalpy (cal/g) [GE 1350K](COAL DATA BOOK) 

CPC :Carbon heat cap. (cal/g-K) [LT 1350K](COAL DATA BOOK) 

CPCH :Carbon heat cap. (cal/g-K) [GE 1350K](COAL DATA BOOK) 

REAL*8 FUNCTION RLAMB(D) 

IMPLICIT REAL*8(A-H,O-Z) 

REAL*8 LGO,LG1,LG2,LG3 

LGO = -1.333D-03 

LG1 = 1.036D-04 

LG2 = -4.715D-08 

LG3 = 1.341D-11 

RLAMB = (1.0/418.0)*(LGO+LG1*D+LG2*(D*D)+LG3*(D*D*D)) 

RETURN 

END 
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4820 REAL*8 FUNCTION EOX(D) 

4830 IMPLICIT REAL*8(A-H,O-Z) 

4840 CPOXO = 7 .16 

4850 CPOX1 = 0.001 

4860 CPOX2 = -40000.0 

4870 EOX = .(CPOXO*(D - 298) + (CPOX1 I 2.0)*(D*D - 298*298) 

4880 1 + CPOX2*(1.0/D - 1.0/298)) I 32.0 

4890 RETURN 

4900 END 

4910 c 

4920 c 

4930 REAL*8 FUNCTION ECO(D) 

4940 IMPLICIT REAL*8(A-H,O-Z) 

4950 CPCOO = 6.79 

4960 CPC01 = 0.00098 

4970 CPC02 = -11000.0 

4980 DELH = -26416.0 

4990 ECO = (DELH+CPCOO*(D-298)+(CPC01/2.0)*(D*D-298*298) 

5000 1 + CPC02*(1.0/D - 1.0/298))/ 28.0 

5010 RETURN 

5020 END 

5030 c 

5040 c 



5050 

5060 

5070 

5080 

5090 

5100 

5110 

5120 

5130 

5140 c 

5150 

5160 

5170 

5180 

5190 

5200 

5210 

5220 c 

5230 c 

5240 

5250 

5260 

5270 
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REAL*8 FUNCTION EC(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCO = 0.024 

CPC1 = 6.9530-04 

CPC2 = -2.8410-07 

EC = CPCO*(O - 298) + (CPC1 / 2.0)*(0*D - 298*298) 

1 + (CPC2 I 3.0)*(D*D*D - 298*298*298) 

RETURN 

END 

REAL*8 FUNCTION ECH(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCHO = 0.36 

CPCH1 = 6.9310-05 

ECH = CPCHO*(D - 298) + (CPCH1 I 2.0)*(D*D - 298*298) 

RETURN 

END 

REAL*8 FUNCTION CPC(D) 

IMPLICIT REAL*8(A-H,0-Z) 

CPCO = 0.024 

CPC1 = 6.9530-04 



5280 

5290 

5300 
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5320 c 

5330 

5340 

5350 
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5370 

5380 

5390 

5400 c 

- 531-

CPC2 = -2.841D-07 

CPC = CPCO + CPC1 * D + CPC2 * D * D 

RETURN 

END 

REAL*8 FUNCTION CPCH(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCHO = 0.36 

CPCH1 = 6.931D-05 

CPCH = CPCHO + CPCH1 * D 

RETURN 

END 

5410 c------------------------------------------------
5420 c 

5430 SUBROUTINE RTBISOL(TET,X1,X2,XACC,XMID) 

5440 IMPLICIT REAL*8(A-H,O-Z) 

5450 EXTERNAL TET 

5460 PARAMETER (JMAX = 600) 

5470 c 

5480 CALL TET(X1,FX1) 

5490 CALL TET(X2,FX2) 

5500 IF(FX2*FX1.GE.O)PAUSE 'ROOT MUST BE BRACKETED IN RTBISOL' 



5510 

5520 

5530 

5540 

5550 

5560 

5570 

5580 

5590 

5600 

5610 

5620 

5630 

5640 200 

5650 

5660 

5670 c 
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DX=X2-X1 

DO 200 J = 1, JMAX 

DX = DX * 0.5 

XMID = X1 + DX 

CALL TET(XMID,FMID) 

IF (FMID * FX1 .GT. O.O)THEN 

ELSE 

END IF 

X1 = XMID 

·FX1 = FMID 

X2 = XMID 

FX2 = FMID 

IF (DABS(DX) .LT. XACC) RETURN 

CONTINUE 

PAUSE 'TOO MANY BISECTIONS IN RTBISOL' 

END 

5680 c------------------------------------------------
5690 c 

5700 

5710 

5720 

5730 1 

SUBROUTINE QCR(P,FUNT) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD.FSHED. 

EPSCRIT.VOID2,EPS2.DLAMB2,VOID3.EPS3,DLAMB3 
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5740 c 

5750 FUNT=DLAMB1*(VOID1+P)**3+DLAMB2*(VOID2+P)**3+DLAMB3* 

5760 1 (VOID3+P)**3 + DLOG(1.0-EPSCRIT)/4.2 

5770 RETURN 

5780 END 

5790 c 

5800 c 

5810 c------------------------------------------------
5820 c 

5830 c 

5840 

5850 

5860 

5870 

5880 

5890 c 

5900 c 

5910 

5920 

5930 

5940 

5950 

5960 

SUBROUTINE PROF(ITER,RPIN,T,BETA) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL STROBE,RTBISOL,RUNGSOL.EQN1,EQN2 

COMMON /ARR/X(50),R(50).Y1(50).Y2(50) 

COMMON /MISC/C,XLOW,AO,BO,XFAC,ACEN 

AO=O.O 

BO=R(50) 

RP=RPIN*1.0D4 

Y1INIT=1.0 

Y2INIT=O.O 

CALL STROBE(T,Y1INIT,Y2INIT,ANS) 
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6000 . 

6010 
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6030 

6040 

6050 c 

181 
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FACTOR=BETA/Y1(50) ' 

DO 181 1=1,50 

Y1(I)=FACTOR*Y1(I) 

Y2(I)=FACTOR*Y2(I) 

X(I)=R(I) 

CONTINUE 

RETURN 

END 

6060 c------------------------------------------------
6070 c 

6080 

6090 

6100 

6110 

6120 

6130 c 

6140 

6150 

6160 

6170 

6180 

6190 

SUBROUTINE STROBE(T,Y1INIT,Y2INIT,SHOT) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL RTBISOL,RUNGSOL,EQN1,EQN2 

EXTERNAL DCADRE,IFLSQ 

COMMON /ARR/X(60),R(60),Y1(60),Y2(60) 

Y1 (1)=Y1INIT 

Y2(1)=Y2INIT 

DO 600 I=1.49 

RINIT=R(I) 

Y1INIT=Y1 (I) 

Y2INIT=Y2(I) 



6200 

6210 

6220 

6230 

6240 600 

6250 

6260 

6270 

6280 c 
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H=R(I+1)-R(I) 

CALL RUNGSOL(T,EQN1,EQN2,RINIT,Y1INIT,Y2INIT,H.ANS,ANSP) 

Y1(I+1)=ANS 

Y2(I+1)=ANSP 

CONTINUE 

SHOT=Y1(50) 

RETURN 

END 

6290 c--------------------------------------7---------
6300 c 

6310 

6320 

6330 

6340 

6350 

6360 c 

6370 

6380 

6390 

6400 

6410 

6420 

SUBROUTINE RUNGSOL(T,TST1,TST2.RINIT, 

1 Y1INIT,Y2INIT,H,ANS,ANSP) 

IMPLICIT REAL*8(A-H,O-Z) 

REAL*8 K11.K12,K13,K14.K21.K22.K23,K24 

EXTERNAL TST1,TST2.EQN1,EQN2,DCADRE,IFLSQ 

XP=RINIT 

DUM1=Y1INIT 

DUM2=Y2INIT 

CALL TST1(DUM1,DUM2,DY1DT) 

CALL TST2(T,XP,DUM1,DUM2,DY2DT) 

K11=DY1DT 
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6430 K21=DY2DT 

6440 XP=XP+H/2.0 

6450 DUM1 = Y1INIT+ K11*H/2.0 

6460 DUM2 = Y2INIT + K21*H/2.0 

6470 CALL TST1(DUM1,DUM2,DY1DT) 

6480 CALL TST2(T,XP,DUM1,DUM2,DY2DT) 

6490 K12 = DY1DT 

6500 K22 = DY2DT 

6510 DUM1 = Y1INIT + K12*H/2.0 

6520 DUM2 = Y2INIT + K22*H/2.0 

6530 CALL TST1(DUM1,DUM2,DY1DT) 

6540 CALL TST2(T,XP,DUM1,DUM2,DY2DT) 

6550 K13 = DY1DT 

6560 K23 = DY2DT 

6570 XP=XP+H/2.0 

6580 DUM1 = Y1INIT + K13*H 

6590 DUM2 = Y2INIT + K23*H 

6600 CALL TST1(DUM1,DUM2,DY1DT) 

6610 CALL TST2(T,XP,DUM1,DUM2,DY2DT) 

6620 K14 = DY1DT 

6630 K24 = DY2DT 

6640 ANS = Y1INIT + H*(K11 + 2.0*K12 + 2.0*K13 + K14)/6.0 

6650 ANSP = Y2INIT + H*(K21 + 2.0*K22 + 2.0*K23 + K24)/6.0 
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6660 RETURN 

6670 END 

6680 c 

6690 c------------------------------------------------
6700 c 

6710 c 

6720 c 

6730 

6740 

6750 c 

DY1DT is in molfrac/mu. 

SUBROUTINE EQN1(DUM1,DUM2,DY1DT) 

IMPLICIT REAL*8(A-H,O-Z) 

6760 DY1DT = DUM2 

6770 RETURN 

6780 END 

6790 c 

6800 c------------------------------------------------
6810 c 

6820 

6830 

6840 

6850 

SUBROUTINE EQN2(T,XP,DUM1,DUM2,DY2DT) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /MISC/C,XLOW,AO,BO,XFAC,ACEN 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD.FSHED, 

6860 1 EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLAMB3 

6870 COMMON /QS/Q(4,50),DQDR(4,50),QINT,QBAR,QCRIT 

6880 COMMON /CS/CSTAR,TAU,XACC,SURFSUM 



6890 
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7060 
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7090 

7100 
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COMMON /R/RHOC,FRAC,RPINIT 

KL=INT(XP/QINT)+1 

QBARL=Q(4,KL)+((XP-(KL-1)*QINT)/QINT)*(Q(4,KL+1)-Q{4,KL)) 

DQBARL=DQDR(4,KL)+((XP-(KL-1)*QINT)/QINT)*(DQDR(4,KL+1)-

DQDR(4,KL)) 

EPS=1.0-DEXP((-DLAMB1*4.2*(VOID1+QBARL)**3)+(-DLAMB2*4.2* 

1 (VOID2+QBARL)**3)+(-DLAMB3*4.2*(VOID3+QBARL)**3)) 

SQ=(1.0-EPS)*12.6*(DLAMB1*(VOID1+QBARL)**2 

1 + DLAMB2•(VOID2+QBARL)**2 + DLAMB3*(VOID3+QBARL)**2) 

1 

1 

FREQ=305.0 

DIFF=3.13*(T/1500.0)**1.75 

E=ACEN/1.98 

RHOG=1.0/(82.05*T) 

C1=TAU*FREQ*XFAC/(24.0*DIFF*RHOG) 

IF(XP .GT. CSTAR)THEN 

DY2DT = C1*DEXP(-E/T)*SQ*1D-04*DUM1/EPS-2.0*DUM2/XP 

-SQ*DQBARL*DUM2/EPS 

ELSE 

DY2DT = C1*DEXP(-E/T)*SQ*1D-04*DUM1/EPS-

END IF 

RETURN 

SQ*DQBARL*DUM2/EPS 
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7120 END 

7130 c 

7140 c------------------------------------------------
7150 c 

7160 SUBROUTINE QUE(T.DELT,DRDT.ITER.FP) 

7170 IMPLICIT REAL*8(A-H.O-Z) 

7180 DIMENSION Y1BAR(50),Y2BAR(50) 

7190 COMMON /ARR/X(50) .R(50)°. Y1(50). Y2(50) 

7200 COMMON /MISC/C.XLOW.AO,BO.XFAC.ACEN 

7210 COMMON /SOL/VOID1.EPS1.DLAMB1.EPSOUT.EPSOLD.FSHED. 

7220 1 EPSCRIT.VOID2.EPS2.DLAMB2.VOID3.EPS3.DLAMB3 . 
7230 COMMON /QS/Q(4.50).DQDR(4.50).QINT.QBAR.QCRIT 

7240 COMMON /R/RHOC.FRAC.RPINIT 

7250 COMMON /CS/CSTAR.TAU.XACC,SURFSUM 

7260 COMMON /AQ/AQ(50).ADQDR(50) 

7270 c 

7280 FREQ=305.0 

7290 E=ACEN/1. 98 

7300 C2=FREQ*XFAC/RHOC 

7310 RXN = C2*DEXP(-E/T)*1.0D04 

7320 c 

7330 c Q's are in microns for the above expression of reaction 

7340 c The inner J-loop finds the position of Q(I) just below 
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7350 C R(J). Y1BAR and Y2BAR are the interpolated values of 

7360 C mass fraction and its gradients at· the fixed locations 

7370 C where Q's are calculated. 

7380 0 

7390 Y1BAR(1)=Y1(1) 

7400 Y2BAR(1)=Y2(1) 

7410 DO 300 1=2,60 

7420 DIST = QINT*(I-1) 

7430 DO 360 J=1,49 

7440 IF((R(J).LT.DIST).AND.(R(J+1).GE.DIST))THEN 

7450 Y1BAR(I)=Y1(J)+((DIST-R(J))/(R(J+1)-R(J)))* 

7460 

7470 

7480 

7490 

7500 

7510 

7520 

1 

1 

(Y1 (J+1)-Y1(J)) 

Y2BAR(I)=Y2(J)+((DIST-R(J))/(R(J+1)-R(J)))* 

(Y2(J+1)-Y2(J)) 

ELSEIF (DIST .GT. R(60)) THEN 

Y1BAR(I)=Y1(60) 

Y2BAR(I)=Y2(60) 

ENDIF 

7530 350 CONTINUE 

7540 300 CONTINUE 

7550 c 

7560 Q(ITER,1)=AQ(1)+DELT*RXN*Y1BAR(1) 

7570 DQDR(ITER,1)=ADQDR(1)+DELT*RXN*Y2BAR(1) 
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7580 DO 310 1=2.50 

7590 Q(ITER.I)=AQ(I)+DELT*RXN*Y1BAR(I) 

7600 DQDR(ITER.I)=ADQDR(I)+DELT*RXN*Y2BAR(I) 

7610 750 IF((Q(ITER.I).GE.QCRIT).AND.(Q(ITER.I-1).LT.QCRIT))THEN 

7620 RCRIT=QINT*(I-2)+((QCRIT-Q(ITER.I-1))/(Q(ITER.I)-

7630 1 . Q(ITER.I-1)))*QINT 

7640 DQDT=RXN*Y1AVG 

7650 DRDT=-1D-04*(R(50)-RCRIT)/DELT 

7660 FLAG=O.O 

7670 GOTO 940 

7680 END IF 

7690 310 CONTINUE 

7700 c 

7710 KL=INT(R(60)/QINT)+1 

7720 IF(KL .EQ. 60) THEN 

7730 QBAR=Q(ITER.60) 

7740 DQDRP=DQDR(ITER.60) 

7750 ELSE 

7760 QBAR=Q(ITER.KL)+((R(60)-(KL-1)*QINT)/QINT)*(Q(ITER.KL+1) 

7770 1 -Q(ITER.KL)) 

7780 

7790 1 

DQDRP=DQDR(ITER.KL)+((R(60)-(KL-1)*QINT)/QINT)* 

(DQDR(ITER.KL+1)-DQDR(ITER.KL)) 

7800 END IF 
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QLAST=AQ(KL)+((R(50)-(KL-1)*QINT)/QINT)*(AQ(KL+1) 

1 -AQ(KL)) 

DRDT=-1D-04*(QBAR-QLAST)/DELT 

FLAG=1.0 

Flux (fp) is calculated using mole fraction gradient 

at the surface Y2(50), diffusivity. and stoichiometric 

coefficient 24.0 [gm/cm-2-s]. The expression for 

diffusivity is from Field's book. 

940 IF(FLAG .EQ. 1.0)THEN 

1 

1 

2 

IF (R(50) .EQ. RPINIT)THEN 

QBAR=Q(ITER,50) 

ELSE 

KL=INT(R(50)/QINT)+1 

QBAR=Q(ITER,KL)+((R(50)-(KL-1)*QINT)/QINT)* 

(Q(ITER,KL+1)-Q(ITER,KL)) 

END IF 

EPSOUT=1.0-DEXP((-4.2*DLAMB1*(VOID1+QBAR)**3)+ 

(-4.2*DLAMB2* (VOID2+QBAR)**3)+(-4.2*DLAMB3* 

(VOID3+QBAR)**3)) 

ELSE 

KL=INT(R(50)/QINT)+1 
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8040 QSUP=Q(ITER,KL)+((R(50)-(KL-1)*QINT)/QINT)* 

8050 1 (Q(ITER,KL+1) -Q(ITER,KL)) 

8060 EPSSUP=1.0-DEXP((-4.2*DLAMB1*(VOID1+QSUP)**3)+ 

8070 1 (-4.2*DLAMB2* (VOID2+QSUP)**3)+(-4.2*DLAMB3* 

8080 2 (VOID3+QSUP)**3)) 

8090 EPSOUT=(EPSCRIT+EPSSUP)/2.0 

8100 END IF 

8110 c 

8120 SUM=O.O 

8130 VOLSUM=O.O 

8140 SURFSUM=O.O 

8150 KL=INT(R(50)/QINT)+1 

8160 DO 560 1=2,KL 

8170 QSHELL=(Q(ITER,I)+Q(ITER,I-1))/2.0 

8180 AQSHELL=(AQ(I)+AQ(I-1))/2.0 

8190 EPSSHELL=1.0-DEXP((-4.2*DLAMB1*(VOID1+QSHELL)**3)+ 

8200 1 (-4.2*DLAMB2* (VOID2+QSHELL)**3)+(-4.2*DLAMB3* 

8210 2 (VOID3+QSHELL)**3)) 

8220 SQSHELL=(1.0-EPSSHELL)*12.6*(DLAMB1*(VOID1+QSHELL)**2 

8230 1 + DLAMB2*(VOID2+QSHELL)**2 + 

8240 2 DLAMB3*(VOID3+QSHELL)**2) 

8250 ROUT=QINT*(I-1) 

8260 RIN =QINT*(I-2) 
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8270 FPSHELL=4.2*(ROUT**3.0-RIN**3.0)*SQSHELL* 

8280 1 (QSHELL-AQSHELL) 

8290 SURFSUM=SURFSUM+4.2*(ROUT**3.0-RIN**3.0)*SQSHELL 

8300 SUM=SUM+FPSHELL 

8310 IF(QSHELL .LT. QCRIT)THEN 

8320 VOLSUM=VOLSUM+EPSSHELL*(4.2*(ROUT**3.0-RIN**3.0)) 

8330 END IF 

8340 560 CONTINUE 

8350 QR50=Q(ITER,KL)+0.5*(((R(50)-(KL-1)*QINT)/QINT)* 

8360 1 {Q(ITER,KL+1)-Q(ITER,KL))) 

8370 AQR50=AQ(KL)+0.5*(((R(50)-(KL-1)*QINT)/QINT)*(AQ(KL+1) 

8380 1 -AQ(KL))) 

8390 EPSR50=1.0-DEXP((-4.2*DLAMB1*(VOID1+QR50)**3)+ 

8400 1 (-4.2*DLAMB2* (VOID2+QR50)**3)+(-4.2*DLAMB3* 

8410 2 (VOID3+QR50)**3)) 

8420 SQR50=(1.0-EPSR50)*12.6*(DLAMB1*(VOID1+QR50)**2 

8430 1 +DLAMB2*(VOID2+QR50)**2+DLAMB3*(VOID3+QR50)**2) 

8440 FPQ50=4.2*(R(50)**3.0-(QINT*(KL-1))**3.0)* 

8450 1 SQR50*(QR50-AQR50) 

8460 VOLR50=EPSR50*(R(50)**3.0-(QINT*(KL-1))**3.0)*4.2 

8470 SURFSUM=SURFSUM+SQR50*(R(50)**3.0-

8480 1 (QINT*(KL-1))**3.0)*4.2 

8490 EPSOLD=(VOLSUM+VOLR50)/(4.2*R(50)**3.0) 
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8500 FP=(SUM+FPQ50)*RHOC*1.0D-04/(DELT*12.6*R(50)**2.0) 

8510 RETURN 

8520 END 

8530 c 

8540 c-------------------------------------------------
8550 c 

8560 c 

8570 c 

8580 c 

8590 c 

8600 c 

8610 c 

8620 c 

8630 

8640 

8650 

8660 

8670 

8680 

8690 

8700 

8710 

8720 c 

This routine uses the method of bisection to find the 

root of the function described by TET. X1 and X2 are the 

bounds of the root and must be input into the routine. 

When the relative accuracy specified by XACC is reached, 

the root is returned as XMID. 

SUBROUTINE RTBIS(TET,X1,X2,XACC,STEP,PEMMIS,WEMMIS,R2, 

1 RNEW,THEW,FP,XMID,SWIT) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL TET 

EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

EXTERNAL GAMMA,RUNG,PROF,RADIUS,EHERGY,QUE 

EXTERNAL STROBE,RTBISOL,RUHGSOL,EQN1,EQN2 

COMMON T,TWALL 

PARAMETER (JMAX = 500) 



8730 

8740 

8750 

8760 . 

8770 

8780 

8790 

8800 

8810 

8820 1 

8830 

8840 

8850 

8860 

8870 

8880 

8890 

8900 

8910 

8920 200 

8930 

8940 

8950 c 
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DXACC=XACC 

·CALL TET(X1,FX1,R2,STEP,PEMMIS,WEMMIS,RNEW,TNEW,FP,SWIT) 

CALL TET(X2,FX2,R2,STEP,PEMMIS,WEMMIS,RNEW,TNEW,FP,SWIT) 

IF(FX2*FX1 .GE. O.O)PAUSE 'YOU BRACKET ROOT IN RTBIS' 

DX = X2 - X1 

DO 200 J = 1, JMAX 

DX = DX * 0.5 

XMID = X1 + DX 

CALL TET(XMID,FMID,R2,STEP,PEMMIS,WEMMIS, 

RNEW,TNEW,FP,SWIT) 

IF (FMID * FX1 .GT. O.O)THEN 

ELSE 

ENDIF 

X1 = XMID 

FX1 = FMID 

X2 = XMID, 

FX2 = FMID 

IF (DABS(DX/XMID) .LT. 0.05)SWIT=1.0 

IF (DABS(DX/XMID) .LT. DXACC) RETURN 

CONTINUE 

PAUSE 'TOO MANY BISECTIONS IN RTBIS' 

END 
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8960 c------------------------------------------------
8970 c 
8980 SUBROUTINE GAMMA(GAM1.F.R1.STEP.PEMMIS.WEMMIS.RNEW. 

8990 1 TNEW,FP,SWIT) 

9000 IMPLICIT REAL*8(A-H.O-Z) 

9010 EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

9020 EXTERNAL RUNG.PROF,RADIUS,ENERGY,QUE 

9030 EXTERNAL STROBE,RTBISOL,RUNGSOL,EQN1,EQN2 

9040 COMMON T, TWALL 

9050 COMMON /Y1/Y1S,Y1INF 

9060 c 
9070 cc = -3.00430-05 

9080 C3 = (2331.6425 + GAM1)/0.3388749 

9090 Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))** 

9100 1 0.8095478-4.0/3.0 

9110 C1SURF= (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

9120 CALL RUNG(RADIUS,ENERGY,C1SURF,STEP,PEMMIS,WEMMIS, 

9130 1 GAM1.R1,RNEW,TNEW,FP.SWIT) 

9140 c 

9150 IF (T .LT. TWALL) THEN 

9160 HH = DSQRT(DABS(-2331.5425 - GAM1)/0.3388749) 

9170 IF (GAM1 .GT.-2331.6425) THEN 

9180 AR1 = -1.0*CC*((DSQRT(TWALL)-DSQRT(T))+HH/2.0* 



- 548-

9190 1 (DLOG((DSQRT(TWALL) - HH)*(DSQRT(T) + HH)/ 

9200 2 ((DSQRT(TWALL) + HH)*(DSQRT(T) - HH))))) 

9210 F = AR1-R1* FP 

9220 ELSE 

9230 AR2 = -1.0*CC*((DSQRT(TWALL)-DSQRT(T))-HH* 

9240 1 (DATAN(DSQRT(TWALL)/HH)-DATAN(DSQRT(T)/HH))) 

9250 F = AR2-R1* FP 

9260 END IF 

9270 ELSE 

9280 FF = DSQRT(DABS(2331.6425 + GAM!)/0.3388749) 

9290 IF (GAM1 .LT.-2331.6425) THEN .. 
9300 AR3 = CC*((DSQRT(T)-DSQRT(TWALL))-FF* 

9310 1 (DATAN(DSQRT(T)/FF)-DATAN(DSQRT(TWALL)/FF))) 

9320 F = AR3-R1* FP 

9330 ELSE 

9340 AR4 = CC * ((DSQRT(T) - DSQRT(TWALL)) + FF/2.0 * 

9350 1 

9360 2 

(DLOG((DSQRT(T) - FF)*(DSQRT(TWALL) + FF)/ 

((DSQRT(T) + FF)•(DSQRT(TWALL) - FF))))) 

9370 F = AR4-R1* FP 

9380 END IF 

9390 END IF 

9400 RETURN 

9410 END 
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9420 c 

9430 c------------------------------------------------
9440 c 

9450 

9460 

9470 

9480 

9490 

9500 

9510 

9520 c 

9530 

9540 

9550 

9560 

9570 

9580 

9590 

9600 

9610 

9620 

9630 

9640 

SUBROUTINE ENERGY(EP,PEMMIS,WEMMIS,RR,DUM2,ANST) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

COMMON T,TWALL 

COMMON /R/RHOC,FRAC,RPINIT 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD,FSHED, 

1 EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLAMB3 

SIG = 1.695D-12 

IF (DUM2 .LT. 1350) THEN 

CPSOL= CPC(DUM2) 

VAL = EC(DUM2) 

ELSE 

CPSOL= CPCH(DUM2) 

VAL = ECH(DUM2) 

END IF 

ANST=(3.0/(1.0-EPSOLD))*((FP+(1.0-FRAC)*FSHED)* 

1 VAL-EP-SIG* (PEMMIS*DUM2**4-WEMMIS*TWALL**4)) 

2 /(RR*RHOC*CPSOL) 

RETURN 
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9650 END 

9660 c 
9670 c------------------------------------------------

' 9680 c 
9690 c This .routine solves the coupled equations TEST1 and 

9700 c TEST2 for one time step. It is a standard first order 

9710 c Runge Kutta algorithm. 

9720 c 
9730 SUBROUTINE RUNG(TEST1.TEST2.DUMC.STEP.PEMMIS.WEMMIS. 

9740 1 GAM1.RR.RNEW.TNEW.FP.SWIT) 

9750 IMPLICIT REAL*8(A-H.O-Z) 

9760 REAL*8 K11.K12.K13.K14.K21,K22.K23.K24 

9770 EXTERNAL TEST1,TEST2 

9780 EXTERNAL EC.ECH.CPC.CPCH.RLAMB,EOX.ECO 

9790 EXTERNAL PROF,RADIUS.ENERGY,QUE 

9800 EXTERNAL STROBE,RTBISOL.RUNGSOL.EQN1,EQN2 

9810 COMMON T,TWALL 

9820 COMMON /ARR/X(50),R(50),Y1(50).Y2(50) 

9830 COMMON /SOL/VOID1.EPS1.DLAMB1.EPSOUT,EPSOLD,FSHED, 

9840 1 VOID2.EPS2.DLAMB2.VOID3.EPS3,DLAMB3 

9850 COMMON /R/RHOC.FRAC.RPINIT 

9860 COMMON /CS/CSTAR.TAU.XACC.SURFSUM 

9870 c 



9880 

9890 

9900 

9910 

9920 

9930 

9940 

9950 

9960 

9970 

9980 

9990 

10000 

10010 

10020 

10030 

10040 

10050 

10060 

10070 

10080 c 
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IF(SWIT .EQ. O.O)THEN 

ITER=4 

CALL PROF(ITER,R1.T,DUMC) 

DIFF=3.13*(T/1500)**1.75 

FP=1.0D04*Y2(50)*DIFF*EPSOUT*24.0/(TAU*82.05*T) 

RETURN 

END IF 

DUM1=RR 

DUM2=T 

ITER=4 

CALL PROF(ITER.DUM1,DUM2,DUMC) 

CALL TEST1(STEP,DUM2,ITER,DRDT,FP) 

EP=FP*GAM1 

CALL TEST2(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K11=DRDT 

K21=DTDT 

RNEW = RR + STEP*K11 

TNEW = T + STEP*K21 

RETURN 

END 

10090 c------------------------------------------------
10100 c 



10110 

10120 

10130 

10140 c 

10150 

10160 

10170 

10180 

10190 c 
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SUBROUTINE RAQIUS(TMSTP,DUM2,ITER,ANS,FP) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL QUE 

CALL QUE(DUM2,TMSTP,DRDT,ITER,FP) 

ANS=DRDT 

RETURN 

END 

10200 c------------------------------------------------
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AIX.5 PCONC.FOR 

10 c 

20 c 

30 c 

40 c 

50 c 

60 c 

70 c 

80 c 

90 c 

100 c 

110 c 

120 c 

130 c 

140 c 

150 c 

160 c 

170 c 

180 c 

190 c 

200 c 

210 c 

This program simulates the combustion of a single porous 

carbon particle. The particle is assumed to be isothermal 

internally. It has spherical voids distributed inside. 

Three sizes of voids corresponding to macro. transition 

and micro pores are used to describe the internal 

structure. 

The reaction rate has a nonlinear dependence on the oxygen 

concentration at the particle surface. This function is 

a m-th power expression where m can be varied between 0 

and 1. For small values of m, the problem becomes very 

stiff and concentration is zero inside of the particle 

except in a thin outer shell. Thus the asymptotic model 

MENU can be used for those cases with proper reaction 

rate expressions. 

As combustion proceeds. the local recession. which is a 

function of the local oxygen concentration and the particle 

temperature is computed at 50 fixed points within the 

particle. This local recession, Q, determines the local 

void fraction and the local surf ace area at any radial 



220 c 

230 c 

240 c 

250 c 

260 c 

270 c 

280 c 

290 c 

300 c 

310 c 

320 c 

330 c 

340 c 

350 c 

360 c 

370 c 

380 c 

390 c 

400 c 

410 c 

420 c 

430 c 

440 c 
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location. The bulk diffusion coefficient is used throughout. 

It is modified to account for the local void fraction 

according to the Satterfield relation. The diffusion 

equation is solved inside the particle to determine the 

oxygen profile inside the particle. The boundary conditions 

are zero gradient at the particle center and known surf ace 

concentration determined by solving the gas phase equations. 

The particle radius changes in two ways. Until the 

external void fraction reaches the user-set value, radius 

changes due to reaction. However, once the external void 

fraction reaches the critical value, that portion of the 

solid in which the void fraction exceeds or equals the 

the critical value is shed. The particle temperature is 

determined by an overall energy balance including radiation 

conduction and convection terms. 

The gas phase is assumed to be quasi-steady relative to the 

solid for a given time step. The heterogenous reaction 

at the solid is 2C + 02 ---> 2CO and in the gas phase, 

the CO oxidation is assumed to be far enough from the 

particle so as to have no thermal effect on the particle. 

The gas phase equations include the Stefan flow term. 



450 c 

460 c 

470 c 

480 c 

490 c 

500 c 
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Gas phase properties are calculated using kinetic theory 

of gases. The integral equations are solved analytically. 

No attempt has been made to simulate the presence of ash in 

this version. 

510 c------------------------------------------------
520 c 
530 c Declarations. 

540 c 
550 IMPLICIT REAL*8(A-H,O-Z) 

560 CHARACTER*15 !FILE 

570 CHARACTER*1 QRESP 

580 c 
590 DIMENSION WK(64) 

600 c 
610 EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

620 EXTERNAL GAMMA,PROF,RADIUS,ENERGY,QUE 

630 EXTERNAL STROBE,RTBISOL,EQN1,EQN2 

640 EXTERNAL QCR,SHOOT 

650 c 
660 COMMON T,TWALL 

670 COMMON /R/RHOC,FRAC,RPINIT 
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680 COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD,FSHED, 

690 1 EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLAMB3 

700 COMMON /MISC/C,XLOW,AO,BO,XFAC,ACEN 

710 COMMON /ARR/X(50),R(50),Y1(50),Y2(50) 

720 COMMON /CS/CSTAR,TAU,XACC,SURFSUM 

730 COMMON /QS/Q(4,50),DQDR(4,50),QINT,QBAR,QCRIT 

740 COMMON /AQ/AQ(50),ADQDR(50) 

750 COMMON /Y1/Y1S,Y1INF 

760 COMMON /POW/POW 

770 c 

780 c------------------------------------------------
790 c 

800 c 

810 c 

820 

830 

840 9 

850 

860 8 

870 

880 

890 

900 10 

Interactive program parameter inputs. 

WRITE(*,9) 

FORMAT(1x,'WANT TO READ THE PCONC.INP FILE (YORN)?') 

READ(*,8)QRESP 

FORMAT(A1) 

IF((QRESP .EQ. 'y') .OR. (QRESP .EQ .'Y'))GOTO 2000 

WRITE(*, 10) 

FORMAT(1x,'ENTER SOLID DENSITY ING/CC') 



910 

920 

930 

940 11 

950 

960 

970 

980 12 

990 

1000 

1010 

1020 13 

1030 

1040 

1050 

1060 

1070 14 

1080 

1090 

1100 

1110 15 

1120 

1130 
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READ(*.*)RHOC 

WRITE(*.11) 

FORMAT(1x.'ENTER WALL AND INIT. PART. TEMPS INK') 

READ(*.*)TWALL.TPINIT 

WRITE(*.12) 

FORMAT(1x.'ENTER THE CRITICAL VOLUME FRACTION') 

READ(*.*)EPSCRIT 

WRITE(*.13) 

FORMAT(1x.'INIT PART .• VOID RADII(mu) AND VOIDFRACTIONS 

1 (BIG--> SMALL)') 

READ(*.*)RPINIT,VOID1,VOID2.VOID3.EPS1,EPS2.EPS3 

WRITE(*,14) 

FORMAT(1x.'ENTER THE 02 PART. PRES. IN THE AMBIENT') 

READ(*.*)C1INF 

WRITE(*,15) 

FORMAT(1x,'ENTER THE WALL AND CARBON EMMISIVITIES') 

READ(*.*)WEMMIS.PEMMIS 



1140 

1150 16 

1160 

1170 

- 558-

WRITE(*.16) 

FORMAT( 1x."ENTER FRAC .POW ") 

READ(*.*)FRAC.POW 

1180 WRITE(*.17) 

1190 17 FORMAT( 1x."ENTER XFAC. ACEN AND TIMESTEP") 

1200 READ(*.*)XFAC.ACEN.STEPO 

1210 

1220 WRITE(*.18) 

1230 18 

1240 

1250 

1260 

1270 19 

1280 

1290 

1300 

1310 21 

1320 

1330 22 

1340 

FORMAT(1X."ENTER ES1.ES2.XACC (0 < ES1 << ES2) ") 

READ(*.*)ES1.ES2.XACC 

WRITE(*.19) 

FORMAT( 1x."ENTER THE NO. OF TIMESTEPS. TAU AND CSTAR") 

READ(*.*)NMAX.TAU.CSTAR 

WRITE(*.21) 

FORMAT( 1x.'ENTER THE OUTPUT FILENAME (NOT *.INP !)') 

READ(*.22)IFILE 

FORMAT(A16) 

1350 GOTO 2600 

1360 
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1370 2000 OPEN(1,FILE='PCONC.INP',STATUS='OLD') 

1380 READ(1,*,END=129)RHOC,TWALL,TPINIT,EPSCRIT,RPINIT,VOID1, 

1390 1 VOID2,VOID3,EPS1,EPS2,EPS3,C1INF,WEMMIS,PEMMIS,FRAC, 

1400 2 POW,XFAC,ACEN,STEPO,ES1,ES2,XACC,NMAX,TAU,CSTAR 

1410 CLOSE(1) 

1420 

1430 

1440 129 WRITE(*,30)RHOC 

1450 30 FORMAT(1x,'1. SOLID DENSITY ING/CC: 

1460 1 ',F8.4,/) 

1470 

1480 WRITE(*,31)TWALL,TPINIT 

1490 31 FORMAT(1x,'2. WALL AND !NIT. PARTICLE TEMPS. INK: ' 

1500 1 F10.4,3X,F10.4,/) 

1510 

1520 

1530 32 

1540 

WRITE(*,32)EPSCRIT 

FORMAT(1x,'3. THE CRITICAL VOLUME FRACTION: ',F8.4,/) 

1550 WRITE(*,33)RPINIT,VOID1,VOID2,VOID3,EPS1,EPS2,EPS3 

1560 33 FORMAT(1x,'4. !NIT. PART., VOID RADII(mu) AND VOIDFRAC.:' 

1570 1 ,/7G10.4,/) 

1580 

1590 WRITE(*,34)C1INF 
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1610 
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FORMAT(1x. ·6. THE 02 PART. PRES. (AMBIENT): ·.F8.4./) 

1620 WRITE(*.36)WEMMIS.PEMMIS 

1630 35 FOR.MAT(1x.•6. THE WALL AND CARBON EMMISIVITIES: • 

1640 1 F6.4.3X.F6.4./) 

1650 

1660 WRITE(*.36)FRAC.POW 

1670 36 FORMAT( 1x.·7. FRAC .POW ·.F8.2.2X.E9.4./) 

1680 

1690 WRITE(*.37)XFAC.ACEN.STEPO 

1700 37 FORMAT( 1x.·a. THE FACTOR XFAC. ACEN AND TIMESTEP: • 

1710 1 F10.4.3X,F10.2,3X.F8.6./) 

1720 

1730 WRITE(*.38)ES1.ES2.XACC 

1740 38 

1750 

1760 

1770 

1780 39 

1790 

1800 

1810 41 

1820 

FORMAT(tX. 1 9. ES1.ES2,XACC (0 < ES1 << ES2): ' 

1 E9.4,3X,E9.4,3X,E9.4,/) 

WRITE(*,39)NMAX,TAU,CSTAR 

FOR.MAT(1x,'10. NO. OF STEPS, TAU, CSTAR:',I8,2X.2F12.4,/) 

WRITE(*,41) 

FORMAT( 1x.'ENTER THE OUTPUT FILENAME (EXCEPT *.INP !) 1
) 

READ(*.42)IFILE 
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1830 42 FORMAT(A15) 

1840 

1850 1990 WRITE(•,43) 

1860 43 FORMAT(1X, 'ENTRY NO. TO BE ALTERED (0 TO RUN)') 

1870 READ(*,*)NALT 

1880 IF(NALT .EQ. O)GOTO 2500 

1890 IF(NALT .EQ. 1)GOTO 2010 

1900 IF(NALT .EQ. 2)GOTO 2020 

1910 IF(NALT .EQ. 3)GOTO 2030 

1920 IF(NALT .EQ. 4)GOTO 2040 

1930 IF(NALT .EQ. 6)GOTO 2050 

1940 IF(NALT .EQ. 6)GOTO 2060 

1950 IF(NALT .EQ. 7)GOTO 2070 

1960 IF(NALT .EQ. 8)GOTO 2080 

1970 IF(NALT .EQ. 9)GOTO 2090 

1980 IF(NALT .EQ. 10)GOTO 2100 

1990 GOTO 1990 

2000 

2010 2010 WRITE(•,10) 

2020 READ(*,*)RHOC 

2030 GOTO 1990 

2040 

2050 2020 WRITE(*, 11) 
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2060 READ(*,*)TWALL,TPINIT 

2070 GOTO 1990 

2080 

2090 2030 WRITE(*,12) 

2100 READ(*,*)EPSCRIT 

2110 GOTO 1990 

2120 

2130 2040 WRITE(*,13) 

2140 READ(*,*)RPINIT,VOID1,VOID2.VOID3,EPS1,EPS2.EPS3 

2150 GOTO 1990 

2160 

2170 2050 WRITE(*,14) 

2180 READ(*,*)C1INF 

2190 GOTO 1990 

2200 

2210 2060 WRITE(*.15) 

2220 READ(*,*)WEMMIS,PEMMIS 

2230 GOTO 1990 

2240 

2250 2070 WRITE(*,16) 

2260 READ(*,*)FRAC.POW 

2270 GOTO 1990 

2280 
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2290 2080 WRITE(*,17) 

2300 ·READ(*,*)XFAC,ACEN,STEPO 

2310 GOTO 1990 

2320 

2330 2090 WRITE(*,18) 

2340 READ(*,*)ES1,ES2,XACC 

2350 GOTO 1990 

2360 

2370 2100 WRITE(*,19) 

2380 READ(*,*)NMAX,TAU,CSTAR 

2390 GOTO 1990 

2400 

2410 2500 OPEN(1,FILE='PCONC.INP',STATUS='NEW') 

2420 WRITE(1.*)RHOC.TWALL,TPINIT.EPSCRIT,RPINIT,VOID1.VOID2, 

2430 1 VOID3,EPS1.EPS2,EPS3,C1INF,WEMMIS,PEMMIS,FRAC, 

2440 2 POW.XFAC,ACEN,STEPO,ES1,ES2.XACC.NMAX.TAU.CSTAR 

2450 CLOSE(1) 

2460 c 

2470 c------------------------------------------------

2480 c------------------------------------------------
2490 c 

2500 c 

2510 c 

Main Program. 



2520 c 

2530 c 

2540 c 

2550 c 

2560 c 

2570 c 

2580 c 

2590 c 

2600 c 

2610 c 

2620 c 

2630 c 

2640 c 

2650 c 

2660 c 

2670 c 

2680 c 

2690 c 

2700 c 

2710 c 

2720 c 

2730 c 

2740 c 
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After initialization of various parameters, the main 

loop begins. C1INF and Y1INF are the mole and mass 

fractions of oxygen far from the particle. A is used 

to calculate the mass fractions of the other species. 

EPSCRIT is the critical void fraction at which shedding 

starts. QINT is the interval between the 60 fixed 

points where Q's are calculated. 

The porosity in the solid is characterized by the 

three parameters EPS, VOID and DLAMB for each void size. 

The porosity is obtained by polydisperse spherical voids 

whose initial sizes are VOID!, VOID2 and VOID3 microns. 

The initial void fractions are EPS1, EPS2 and EPS3 

respectively. From the EPS's and VOID's, the DLAMB's {the 

number densities of the voids (#/vol)) are obtained. 

DLAMB's remain constant thereafter. 

Factors of 1D4 or 1D-4 occur in converting from ems. to 

microns and back. 

RTBIS is called to calculate the carbon flux from the 

solid. It calls GAMMA which in turn calls SOLID. SOLID 

solves for the oxygen concentration profile inside the 



2750 c 

2760 c 

2770 c 

2780 c 

2790 c 

2800 c 

2810 c 

2820 c 

2830 c 

2840 c 

2850 c 

2860 c 

2870 c 

2880 c 

2890 c 

2900 c 

2910 c 

2920 c 

2930 c 

2940 c 

2950 c 

2960 c 

2970 c 
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particle using EQN1 and EQN2. It uses a shooting method 

to solve the two-point boundary value problem for the 

profile. 

The routine RUNG uses a fourth order Runge-Kutta scheme 

to solve the simultaneous equations for particle radius 

and temperature. It calls ENERGY and RADIUS. The latter 

calls SOLID and QUE to actually calculate DR/DT. The 

routine QUE calculates the recession at points inside 

the particle and checks to see if the critical recession 

(calculated from EPSCRIT) is reached at the surface. 

The concentration profiles in the particle are written 

into a file called PRO.DAT at every 20th step. 

After a profile has been calculated, PLACE is called. 

This routine rearranges the R's such that more points 

are put in the region where the profile has steeper 

gradients. 

The reaction rate expression is from Smith's paper (1974). 

It is based on the external surface area. 

XFAC multiplies the pre-exponential factor and can be 
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2980 c adjusted. The concentration is raised to the m-th power. 

2990 c 

3000 c RATE= XFAC*306*DEXP(-ACEN/(1.98*T))*CONC**m [G/CMA2-S] 

3010 c 

3020 c Initialization. 

3030 c 

3040 c Initially equally spaces R's 

3050 c 

3060 c 

3070 DO 163 I=1.60 

3080 FIX=I-1 

3090 R(I)=FIX*RPINIT/49.0 

3100 163 CONTINUE 

3110 c 

3120 DO 166 L=1,60 

3130 AQ(L)=O.O 

3140 ADQDR(L)=O.O 

3150 166 CONTINUE 

3160 c 

3170 Y1INF=(C1INF*32.0)/(C1INF*32.0+(1.0-C1INF)*28.0) 

3180 A = (1.0 I (1.0 - Y1INF)) * (Y1INF I 4.0) 

3190 c 

3200 FP=O.O 



3210 

3220 

3230 

3240 

3250 

3260 

3270 

3280 

3290 

3300 

3310 

3320 

3330 

3340 c 

3350 

3360 

3370 

3380 

3390 

3400 

3410 

3420 

3430 

TIME = 0.0 

DTDR = 0.0 

FLAG= LO 

CONV=O.O 

LIE=1 

QINT=RPINIT/49.0 

T = TPINIT 

TPOLD=TPINIT 

RP = RPINIT 

ROLD=RPINIT*1.0D-04 

C1S = C1INF 

Y10LD=Y1INF 

Y1S=Y1INF 
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DLAMB3=-1.0*DLOG(1.0-EPS3)/(4.2*VOID3*VOID3*VOID3) 

DLAMB2=(-1.0*DLOG(1.0-EPS3-EPS2)-DLAMB3* 

1 (4.2*VOID3*VOID3*VOID3)) /(4.2*VOID2*VOID2*VOID2) 

DLAMB1=(-1.0*DLOG(1.0-EPS3-EPS2-EPS1)-DLAMB3*4.2*VOID3**3 

1 -DLAMB2*4.2*VOID2**3)/(4.2*VOID1**3) 

EPS=1.0-DEXP((-4.2*DLAMB1*(VOID1)**3)+(-4.2*DLAMB2* 

1 (VOID2)**3)+(-4.2*DLAMB3*(VOID3)**3)) 

SURF=((1.0-EPS)*12.6*(DLAMB1*VOID1**2 

1 +DLAMB2*VOID2**2+DLAMB3*VOID3**2))/(RHOC*(1.0-EPS)) 



3440 

3450 

3460 

3470 c 

3480 c 

3490 

3500 

3510 

3520 

3530 900 

3540 

3550 c 

3560 c 

3570 c 

3580 c 

3590 

3600 

3610 

3620 

3630 

3640 

3650 

3660 c 

1 

EPSOLD=EPS 

EPSOUT=EPS 

EPSINIT=EPS 
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OPEN(2,FILE=IFILE,STATUS='NEW',FORM='FORMATTED') 

OPEN(3,FILE='PRO.DAT',STATUS='NEW',FORM='FORMATTED') 

WRITE(2,900)TIME,CONV,RP,T,C1S,FP,SURF,EPSOLD,EPSOUT 

WRITE(* 1 900)TIME,CONV,RP,T,C1S,FP,SURF,EPSOLD,EPSOUT 

FORMAT(1X,3F9.4,1X,F7.2,1X,2F8.6,1X,F6.2,1X, 

F6.4,1X,F6.4) 

X1 and X2 are appropriate brackets for GAM. 

Typically, ES1 is 0(10-6), while ES2 is 0(1D11). 

IF ( TPINIT .LT. TWALL) THEN 

X1 = ( -2331.5425 + 0.3388749*TPINIT) - ES2 

X2 = ( -2331.5425 + 0.3388749*TPINIT) - ES1 

ELSE 

X1 = ( -2331.5425 + 0.3388749*TPINIT) + ES1 

X2 = ( -2331.5425 + 0.3388749*TPINIT) + ES2 

END IF 



3670 c 

3680 c 

3690 

3700 

3710 

3720 

3730 c 

3740 c 

3750 c 

3760 c 

3770 c 

3780 

3790 

3800 

3810 

3820 c 

3830 c 

3840 c 

3850 

3860 

3870 

3880 

3890 
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Calculation of QCRIT. 

GUESS1=(-1.0*DLOG(1.0-EPSCRIT)/(DLAMB1*4.2))**·33-VOID1 

GUESS2=0.0 

CALL RTBISOL(QCR,GUESS2,GUESS1,XACC,RSLT) 

QCRIT=RSLT 

Main loop begins. 

DO 1000 I = 1, NMAX 

SWIT=O.O 

STEP=STEPO 

RR = RP * 1. OD-04 

RTBIS merged here. 

1 

1 

DXACC=XACC 

CALL GAMMA(X1,FX1,RR,STEP,PEMMIS,WEMMIS, 

RNEW,TNEW,FP,SWIT) 

CALL GAMMA(X2,FX2,RR,STEP,PEMMIS,WEMMIS, 

RNEW,TNEW,FP,SWIT) 



3900 

3910 

3920 

3930 

3940 

3950 

3960 1 

3970 

3980 

3990 

4000 

4010 

4020 

4030 

4040 

4050 

4060 200 

4070 

4080 c 

4090 c 

4100 111 

4110 

4120 
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IF(FX2*FX1 .GE. 0.0) PAUSE "BRACKET ROOT IN MAIN" 

DX = X2 - X1 

DO 200 J = 1. 500 

DX = DX * 0.5 

ANSW = X1 + DX 

CALL GAMMA(ANSW.FMID.RR.STEP.PEMMIS.WEMMIS. 

RNEW.TNEW.FP.SWIT) 

IF (FMID * FX1 .GT. O.O)THEN 

ELSE 

END IF 

X1 = ANSW 

FX1 = FMID 

X2 = ANSW 

FX2 = FMID 

IF (DABS(DX/ANSW) .LT. 0.20)SWIT=1.0 

IF (DABS(DX/ANSW) .LT. DXACC) GOTO 111 

CONTINUE 

PAUSE "TOO MANY BISECTIONS IN MAIN" 

FP1 = -1.3333 * FP 

FP2 = 2.3333 * FP 

EPF=ANSW*FP 



4130 c 

4140 

4150 

4160 
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DTDR=-1.0D-4*(EPF-FP1*EOX(T)-FP2*ECO(T))/RLAMB(T) 

DUMC= (1.0/(-1.0/7.0 + 8.0/(7.0*Y1S))) 

RBAR=(ROLD+RNEW)/2.0 

FSHED=0.333*(1.0-EPSOUT)*RHOC* 

4170 1 (ROLD**3.0-RNEW**3.0)/(STEP*RBAR**2.0) 

4180 ROLD=RNEW 

4190 RP = 1.0D4*RNEW 

4200 CONV=1.0-((RP/RPINIT)**3.0)*((1.0-EPSOLD)/(1.0-EPSINIT)) 

4210 SURF=SURFSUM*1.0D-12/{4.2*RNEW**3.0*(1.0-EPSOLD)*RHOC) 

4220 T = THEW 

4230 TIME= TIME + 1.0D3*STEP 

4240 TPOLD=T 

4250 c 

4260 c 

4270 

4280 c 

4290 

4300 

4310 148 

4320 c 

4330 147 

4340 c 

4350 c 

Writing profiles to PRO.DAT 

IF(MOD(I,10) .EQ. O)THEN 

DO 148 LI=1,50 

WRITE(3,147)R(LI),Y1(LI) 

CONTINUE 

END IF 

FORMAT(5X,2G12.4) 

Writing results to data file. 
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4360 c 

4370 WRITE(2,900)TIME,CONV,RP,T,DUMC,FP,SURF,EPSOLD,EPSOUT 

4380 WRITE(*,900)TIME,CONV,RP,T,DUMC,FP,SURF,EPSOLD,EPSOUT 

4390 c 

4400 c Equispacing R's 

4410 c 

4420 DO 157 KI=1,50 

4430 FIX=KI-1 

4440 R(KI)=FIX*RP/49.0 

4450 157 CONTINUE 

4460 c 

4470 DO 158 LI=1,50 

4480 AQ (LI)=Q (4 ,LI) 

4490 ADQDR(LI)=DQDR(4,LI) 

4500 158 CONTINUE 

4510 c 

4520 c Reducing brackets for next call of ANS. 

4530 c 

4540 IF ( T .LT. TWALL) THEN 

4550 X1 = ANSW - DABS(4.0*ANSW) 

4560 X2 = ( -2331.5425 + 0.3388749*! ) - ES1 

4570 ELSE 

4580 X1 = ( -2331.5425 + 0.3388749*! ) + ES1 
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4590 X2 = ANSW + DABS(4.0*ANSW) 

4600 END IF 

4610 c 

4620 c 

4630 c 

Program exit condition. 

4640 IF((EPSOLD .GE. EPSCRIT) .OR. 

4650 1 (R(50) .LE. O.O))GOTO 1001 

4660 c 

4670 1000 CONTINUE 

4680 c 

4690 1001 CLOSE(2) 

4700 CLOSE(3) 

4710 CONTINUE 

4720 STOP 

4730 END 

4740 c 

4750 c Main loop and main program end. 

4760 c 

4770 c------------------------------------------------

4780 c------------------------------------------------
4790 c 

4800 c 

4810 c 

Property subprograms. 



4820 c 

4830 c 

4840 c 

4850 c 

4860 c 

4870 c 

4880 c 

4890 c 

4900 c 

4910 ~ 

4920 c 

4930 c 

4940 c 

4950 

4960 

4970 

4980 

4990 

5000 

5010 

5020 

5030 

5040 
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RLAMB:gas thermal conductivity (cal/cm-K) [300-2500K] 

from Eckert. The COEFFS are in W/m-K for D in K 

Form NOT used here. 

EOX :oxygen enthalpy (cal/gmol). Ref. state is 0.0 at 

298K. Valid for 298-2500K. Heat capacities assumed 

constant. From Smith and VanNess. Form NOT used. 

ECO :CO enthalpy. As above except ref. state. 

EC :Carbon enthalpy (cal/g) [LT 1350K](COAL DATA BOOK) 

ECH :Carbon enthalpy (cal/g) [GE 1350K](COAL DATA BOOK) 

CPC :Carbon heat cap. (cal/g-K) [LT 1350K](COAL DATA BOOK) 

CPCH :Carbon heat cap. (cal/g-K) [GE 1350K](COAL DATA BOOK) 

REAL*8 FUNCTION RLAMB(D) 

IMPLICIT REAL*8(A-H.O-Z) 

REAL*8 LGO.LG1,LG2,LG3 

LGO = -1.3330-03 

LG! = 1.0360-04 

LG2 = -4.7150-08 

LG3 = 1.3410-11 

RLAMB = (1.0/418.0)*(LGO+LG1*D+LG2*(D*D)+LG3•(D*D*D)) 

RETURN 

END 
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5050 c 

5060 c 

5070 REAL*8 FUNCTION EOX(D) 

5080 IMPLICIT REAL*8(A-H.O-Z) 

5090 CPOXO = 7.16 

5100 CPOX1 = 0.001 

5110 CPOX2 = -40000.0 

5120 EOX = (CPOXO*(D - 298) + (CPOX1 I 2.0)*(D*D - 298*298) 

5130 1 + CPOX2* (1.0/D - 1.0/298)) I 32.0 

5140 RETURN 

5150 END 

5160 c 

5170 c 

5180 REAL*8 FUNCTION ECO(D) 

5190 IMPLICIT REAL*8(A-B.O-Z) 

5200 CPCOO = 6.79 

5210 CPC01 = 0.00098 

5220 CPC02 = -11000.0 

5230 DELH = -26416.0 

5240 ECO = (DELH+CPCOO*(D-298)+(CPC01/2.0)*(D*D-298*298) 

5250 1 + CPC02* (1.0/D - 1.0/298))/ 28.0 

5260 RETURN 

5270 END 



5280 c 

5290 c 

5300 

5310 

5320 

5330 

5340 

5350 

5360 

5370 

5380 

5390 c 

5400 

5410 

5420 

5430 

5440 

5450 

5460 

5470 c 

5480 c 

5490 

5500 
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REAL*8 FUNCTION EC(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCO = 0.024 

CPC1 = 6.953D-04 

CPC2 = -2.841D-07 

EC = CPCO*(D - 298) + (CPC1 / 2.0)*(D*D - 298*298) 

1 + (CPC2 I 3.0)*(D*D*D - 298*298*298) 

RETURN 

END 

REAL*8 FUNCTION ECH(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCHO = 0.36 

CPCH1 = 6.931D-05 

ECH = CPCHO*(D - 298) + (CPCH1 / 2.0)*(D*D - 298*298) 

RETURN 

END 

REAL*8 FUNCTION CPC(D) 

IMPLICIT REAL*8(A-H,O-Z) 



5510 

5520 

5530 

5540 

5550 

5560 

5570 c 

5580 

5590 

5600 

5610 

5620 

5630 

5640 

5650 c 

CPCO = 0.024 

CPC1 = 6.9530-04 

CPC2 = -2.8410-07 
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CPC = CPCO + CPC1 * D + CPC2 * D * D 

RETURN 

END 

REAL*8 FUNCTION CPCH(D) 

IMPLICIT REAL*8(A-H,O-Z) 

CPCHO = 0.36 

CPCH1 = 6.9310-05 

CPCH = CPCHO + CPCH1 * D 

RETURN 

END 

5660 c------------------------------------------------
5670 c 

5680 SUBROUTINE RTBISOL(TET,X1,X2,XACC,XMID) 

5690 IMPLICIT REAL*8(A-H,O-Z) 

5700 EXTERNAL TET 

5710 PARAMETER (JMAX = 500) 

5720 c 

5730 CALL TET(X1,FX1) 



5740 

5750 

5760 

5770 . 
5780 

5790 

5800 

5810 

5820 

5830 

5840 

5850 

5860 

5870 

5880 

5890 200 

5900 
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CALL TET(X2,FX2) 

IF(FX2*FX1 .GE. 0.0) PAUSE 'BRACKET ROOT IN RTBISOL' 

DX=X2-X1 

DO 200 J = 1, JMAX 

DX = DX * 0.5 

XMID = X1 + DX 

CALL TET(XMID,FMID) 

IF (FMID * FX1 .GT. O.O)THEN 

X1 = XMID 

ELSE 

END IF 

FX1 = FMID 

X2 = XMID 

FX2 = FMID 

IF (DABS(DX) .LT. XACC) RETURN 

CONTINUE 

PAUSE 'TOO MANY BISECTIONS IN RTBISOL' 

5910 END 

5920 c 

5930 c------------------------------------------------
5940 c 

5950 SUBROUTINE QCR(P,FUNT) 

5960 IMPLICIT REAL*8(A-H,O-Z) 
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5970 COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD,FSHED, 

5980 

5990 c 

1 EPSCRIT,VOID2,EPS2,DLAMB2,VOIDS,EPS3,DLAMB3 

6000 FUNT=DLAMB1*(VOID1+P)**3+DLAMB2*(VOID2+P)**3+ 

6010 1 DLAMB3*(VOID3+P)**3 + DLOG(1.0-EPSCRIT)/4.2 

6020 RETURN 

6030 END 

6040 c 

6050 c 

6060 c------------------------------------------------
6070 

6080 

6090 

6100 

6110 

6120 

6130 

6140 

6150 

6160 

6170 

6180 

6190 

c 

c 

c 

c 

SUBROUTINE PROF(LIE,ITER.RPIN.T.BETA) 

IMPLICIT REAL*S(A-H,0-Z) 

EXTERNAL SHOOT,STROBE,RTBISOL,EQN1,EQN2 

COMMON /ARR/X(50),R(50),Y1(60),Y2(60) 

COMMON /MISC/C,XLOW,AO,BO,XFAC,ACEN 

COMMON /JW/JWARN 

RSTART=R(LIE) 

BO=R(60) 

Y1BASE=BETA 



6200 

6210 

6220 

6230 

6240 

6250 c 

6260 

6270 

6280 

6290 

6300 

6310 

6320 

6330 

6340 

6350 

6360 

6370 

6380 

6390 

6400 

6410 

6420 c 

ALPHAB=1.0D-04 

ALPHAA=O.O 

GRADO=O.O 
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CALL SHOOT(T,GRADO,ALPHAA,ALPHAB,Y1BASE,RSTART,LIE) 

IF(Y1(1) .GE. 1.0D-10)RETURN 

DO 201 J=1,10 

DO 101 1=1.49 

IF ((Y1(I).LT.1.0D-10) .AND. (Y1(I+1).GE.1.0D-10))THEN 

RSTART=R(I) 

LIE=! 

Y1BASE=BETA 

ALPHAB=Y1(LIE+1)+1.0D-07 

ALPHAA=O.O 

GRADO=O.O 

CALL SHOOT(T,GRADO.ALPHAA.ALPHAB.Y1BASE,RSTART.LIE) 

IF(JWARN .NE. 100) RETURN 

END IF 

101 CONTINUE 

201 CONTINUE 

RETURN 

END 
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6430 c------------------------------------------------
6440 c 

6450 

6460 

6470 

6480 

6490 c 

6500 

6510 

6520 

6530 

6540 

6550 

6560 

6570 

6580 

6590 

6600 

6610 

6620 

6630 

6640 

6650 

SUBROUTINE SHOOT(T,GRADO,ALPHAA,ALPHAB,Y1BASE,RSTART,LIE) 

IMPLICIT REAL*8(A-H,O-Z) 

EXTERNAL STROBE,EQN1,EQN2,RTBISOL 

COMMON /JW/JWARN 

Y1INIT=ALPHAA 

Y2INIT=GRADO 

CALL STROBE(T,Y1INIT,Y2INIT,RSTART,LIE,ANS) 

VOUTA=ANS 

Y1INIT=ALPHAB 

Y2INIT=GRADO 

CALL STROBE(T,Y1INIT,Y2INIT,RSTART,LIE,ANS) 

VOUTB=ANS 

TOLR=0.0001 

DO 100 J=1,100 

JWARN=J 

ALP=ALPHAA+(ALPHAB-ALPHAA)*(Y1BASE-VOUTA)/(VOUTB-VOUTA) 

Y1INIT=ALP 

Y2INIT=GRADO 

CALL STROBE(T,Y1INIT,Y2INIT,RSTART,LIE,ANS) 

VALOUT=ANS 



6660 

6670 

6680 

6690 

6700 

6710 

6720 

6730 

6740 

6750 

6760 

6770 

6780 

6790 

6800 

6810 c 
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IF(DABS((VALOUT-Y1BASE)/Y1BASE) .LT. TOLR)THEN 

GOTO 201 

ELSEIF(VALOUT .GT. Y1BASE)THEN 

ALPHAB=ALP 

VOUTB=VALOUT 

GOTO 199 

ELSEIF(VALOUT .LT. Y1BASE)THEN 

ALPHAA=ALP 

VOUTA=VALOUT 

GOTO 199 

END IF 

199 CONTINUE 

100 CONTINUE 

201 RETURN 

END 

6820 c------------------------------------------------
6830 c 

6840 SUBROUTINE STROBE(T,Y1INIT,Y2INIT,RSTART,LIE,SHOT) 

6850 IMPLICIT REAL*8(A-H,O-Z) 

6860 REAL*8 K11,K12,K13,K14,K21,K22,K23,K24 

6870 EXTERNAL RTBISOL,EQN1,EQN2 

6880 COMMON /ARR/X(50),R(50),Y1(50),Y2(60) 



6890 c 

6900 

6910 

6920 

6930 

6940 

6950 

6960 

6970 

6980 200 

6990 

7000 

7010 

7020 

7030 

7040 

7050 

7060 

7070 

7080 c 

7090 c 

7100 c 

7110 
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IF(RSTART .EQ. O.O)THEN 

Y1 (1)=Y1INIT 

Y2(1)=Y2INIT 

L=2 

ELSE 

DO 200 J=1.LIE 

Y1(J)=O.O 

Y2(J)=O.O 

CONTINUE 

Y1(LIE+1)=Y1INIT 

Y2(LIE+1)=Y2INIT 

L=LIE+2 

END IF 

DO 600 I=L.50 

RINIT=R(I-1) 

Y1INIT=Y1 (I-1) 

Y2INIT=Y2(I-1) 

H=R(I)-R(I-1) 

Following is the old RUNGSOL routine now absorbed here. 

XP=RINIT 



- 584-

7120 DUM1=Y1INIT 

7130· DUM2=Y2INIT 

7140 CALL EQN1(DUM1,DUM2,DY1DT) 

7150 CALL EQN2(T,XP,DUM1,DUM2,DY2DT) 

7160 K11=DY1DT 

7170 K21=DY2DT 

7180 XP=XP+H/2.0 

7190 DUM1 = Y1INIT+ K11*H/2.0 

7200 DUM2 = Y2INIT + K21*H/2.0 

7210 CALL EQN1(DUM1,DUM2,DY1DT) 

7220 CALL EQN2(T,XP,DUM1,DUM2,DY2DT) 

7230 K12 = DY1DT 

7240 K22 = DY2DT 

7250 DUM1 = Y1INIT + K12*H/2.0 

7260 DUM2 = Y2INIT + K22*H/2.0 

7270 CALL EQN1(DUM1,DUM2,DY1DT) 

7280 CALL EQN2(T,XP,DUM1,DUM2,DY2DT) 

7290 K13 = DY1DT 

7300 K23 = DY2DT 

7310 XP=XP+H/2.0 

7320 DUM1 = Y1INIT + K13*H 

7330 DUM2 = Y2INIT + K23*H 

7340 CALL EQN1(DUM1,DUM2,DY1DT) 



7350 

7360 

7370 

7380 

7390 

7400 c 

7410 

7420 

7430 600 

7440 

7450 

7460 

7470 c 
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CALL EQN2(T,XP,DUM1,DUM2,DY2DT) 

K14 = DY1DT 

K24 = DY2DT 

ANS = Y1INIT + H*(K11 + 2.0*K12 + 2.0*K13 + K14)/6.0 

ANSP = Y2INIT + H*(K21 + 2.0*K22 + 2.0*K23 + K24)/6.0 

Y1(I)=ANS 

Y2(l)=ANSP 

CONTINUE 

SHOT=Y1(50) 

RETURN 

END 

7480 c------------------------------------------------
7490 c 

7500 c 

7510 c 

DY1DT is in molfrac/micron. 

7520 SUBROUTINE EQN1(DUM1,DUM2,DY1DT) 

7530 IMPLICIT REAL*8(A-H,O-Z) 

7540 c 

7550 DY1DT = DUM2 

7560 RETURN 

7570 END 
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7580 c 

7590 c------------------------------------------------
7600 c 

7610 

7620 

7630 

7640 

7650 

7660 

7670 

7680 

7690 

7700 c 

7710 

7720 

7730 

7740 

7750 

7760 

7770 

7780 

7790 

7800 

1 

1 

SUBROUTINE EQN2(T,XP,DUM1,DUM2,DY2DT) 

IMPLICIT REAL*8(A-H,O-Z) 

COMMON /MISC/C,XLOW,AO,BO,XFAC,ACEN 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT,EPSOLD,FSHED, 

EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLAMB3 

COMMON /QS/Q(4,50),DQDR(4,60),QINT,QBAR,QCRIT 

COMMON /CS/CSTAR,TAU,XACC,SURFSUM 

COMMON /R/RHOC,FRAC,RPINIT 

COMMON /POW/POW 

KL=INT(XP/QINT)+1 

QBARL=Q(4,KL)+((XP-(KL-1)•QINT)/QINT)*(Q(4,KL+1)-Q(4,KL)) 

DQBARL=DQDR(4,KL)+((XP-(KL-1)•QINT)/QINT)*(DQDR(4,KL+1)-

DQDR(4,KL)) 

EPS=1.0-DEXP((-DLAMB1*4.2•(VOID1+QBARL)**3)+(-DLAMB2*4.2* 

1 (VOID2+QBARL)**3)+(-DLAMB3*4.2*(VOID3+QBARL)**3)) 

SQ=(1.0-EPS)*12.6*(DLAMB1*(VOID1+QBARL)**2 

1 +DLAMB2*(VOID2+QBARL)**2 + DLAMB3*(VOID3+QBARL)**2) 

FREQ=305.0 

DIFF=3.13*(T/1500.0)**1.75 



7810 

7820 

7830 

7840 

7850 

7860 1 

7870 

7880 

7890 1 

7900 

7910 

7920 

7930 c 
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E=ACEN/1.98 

RHOG=1.0/(82.05*T) 

C1=TAU*FREQ*XFAC/(24.0*DIFF*RHOG) 

IF(XP .GT. CSTAR)THEN 

DY2DT = C1*DEXP(-E/T)*SQ*1D-04*DUM1**POW/EPS 

-2.0*DUM2/XP-SQ*DQBARL*DUM2/EPS 

ELSE 

DY2DT = C1*DEXP(-E/T)*SQ*1D-04*DUM1**POW/EPS 

END IF 

RETURN 

END 

-SQ*DQBARL*DUM2/EPS 

7940 c------------------------------------------------
7950 c 

7960 SUBROUTINE QUE(T,DELT,DRDT,ITER,FP) 

7970 IMPLICIT REAL*8(A-H.O-Z) 

7980 DIMENSION Y1BAR(50),Y2BAR(50) 

7990 COMMON /ARR/X(50),R(50),Y1(50),Y2(50) 

8000 COMMON /MISC/C,XLOW,AO.BO,XFAC.ACEN 

8010 COMMON /SOL/VOID1.EPS1,DLAMB1,EPSOUT,EPSOLD.FSHED. 

8020 1 EPSCRIT,VOID2,EPS2.DLAMB2,VOID3,EPS3,DLAMB3 

8030 COMMON /QS/Q(4,50).DQDR(4,50),QINT.QBAR.QCRIT 



8040 

8050 

8060 

8070 

8080 c 

8090 

8100 

8110 

8120 

8130 c 

8140 c 

8150 c 

8160 c 

8170 c 

8180 c 

8190 c 

8200 

8210 

8220 

8230 

8240 
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COMMON /R/RHOC.FRAC.RPINIT 

COMMON /CS/CSTAR.TAU.XACC,SURFSUM 

COMMON /AQ/AQ(50).ADQDR(50) 

COMMON /POW/POW 

FREQ=305.0 

E=ACEN/1.98 

C2=FREQ*XFAC/RHOC 

RXN = C2*DEXP(-E/T)*1.0D04 

Q's are in microns for the above expression of RXN. 

The inner J-loop finds the position of Q(I) just below 

R(J). Y1BAR and Y2BAR are the interpolated values of 

mass fraction and its gradient at the fixed locations 

where Q's are calculated. 

Y1BAR(1)=Y1(1) 

Y2BAR(1)=Y2(1) 

DO 300 1=2.50 

DIST = QINT*(I-1) 

DO 350 J=i.49 

IF((R(J).LT.DIST).AND.(R(J+1).GE.DIST))THEN 

Y1BAR(I)=Y1(J)+((DIST-R(J))/ 
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8270 1 (R(J+1)-R(J)))*(Y1(J+1)-Y1(J)) 

8280 Y2BAR(I)=Y2(J)+((DIST-R(J))/ 

8290 1 (R(J+1)-R(J)))*(Y2(J+1)-Y2(J)) 

8300 ELSE IF (DIST .GT. R(50)) THEN 

8310 Y1BAR(I)=Y1(50) 

8320 Y2BAR(I)=Y2(50) 

8330 END IF 

8340 350 CONTINUE 

8350 300 CONTINUE 

8360 c 

8370 IF(Y1BAR(1) .EQ. O)THEN 

8380 Q(ITER,1)=AQ(1) 

8390 DQDR(ITER,1)=ADQDR(1) 

8400 ELSE 

8410 Q(ITER,1)=AQ(1)+DELT*RXN*Y1BAR(1)**POW 

8420 DQDR(ITER,1)=ADQDR(1)+DELT*RXN*Y2BAR(1)* 

8430 1 POW*Y1BAR(1)**(POW-1.0) 

8440 END IF 

8450 c 

8460 DO 310 I=2,50 

8470 IF(Y1BAR(I) .EQ. O)THEN 

8480 Q(ITER,I)=AQ(I) 

8490 DQDR(ITER,I)=ADQDR(I) 



8500 

8510 

8520 

8530 

8540 

8550 c 

1 
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ELSE 

Q(ITER,I)=AQ(I)+DELT*RXN*Y1BAR(I)**POW 

DQDR(ITER,I)=ADQDR(I)+DELT*RXN*Y2BAR(I)* 

POW*Y1BAR(I)**(POW-1.0) 

END IF 

8560 IF((Q(ITER,I).GE.QCRIT).AND.(Q(ITER,I-1).LT.QCRIT))THEN 

8570 RCRIT=QINT*(I-2)+((QCRIT-Q(ITER,I-1))/(Q(ITER,I)-

8580 1 Q(ITER,I-1)))*QINT 

8590 DRDT=-1D-04*(R(60)-RCRIT)/DELT 

8600 FLAG=O.O 

8610 GOTO 940 

8620 END IF 

8630 310 CONTINUE 

8640 c 

8650 KL=INT(R(60)/QINT)+1 

8660 IF(KL .EQ. 60) THEN 

8670 QBAR=Q(ITER,60) 

8680 DQDRP=DQDR(ITER,60) 

8690 ELSE 

8700 QBAR=Q(ITER,KL)+((R(60)-(KL-1)*QINT)/QINT)*(Q(ITER,KL+1) 

8710 1 -Q(ITER,KL)) 

8720 DQDRP=DQDR(ITER,KL)+((R(60)-(KL-1)*QINT)/QINT)* 



8730 

8740 
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8760 

8770 

8780 

8790 c 

8800 c 

8810 c 

8820 c 

8830 c 

8840 c 

8850 

8860 

8870 

8880 

8890 

8900 

8910 

8920 

8930 

8940 

8950 

- 591-

1 (DQDR(ITER,KL+1)-DQDR(ITER,KL)) 

END IF 

QLAST=AQ(KL)+((R(50)-(KL-1)*QINT)/QINT)*(AQ(KL+1) 

1 -AQ(KL)) 

DRDT=-1D-04*(QBAR-QLAST)/DELT 

FLAG=1.0 

Flux (FP) is calculated using mole fraction gradient 

at the surface Y2(50), diffusivity, and stoichiometric 

coefficient 24.0 [gm/cmA2-s]. 

The expression for diffusivity is from FIELD's book. 

940 IF(FLAG .EQ. 1.0)THEN 

1 

1 

2 

IF (R(60) .EQ. RPINIT)THEN 

QBAR=Q(ITER,60) 

ELSE 

KL=INT(R(60)/QINT)+1 

QBAR=Q(ITER,KL)+((R(60)-(KL-1)*QINT)/QINT)* 

(Q(ITER,KL+1)-Q(ITER,KL)) 

END IF 

EPSOUT=1.0-DEXP((-4.2*DLAMB1*(VOID1+QBAR)••3)+ 

(-4.2*DLAMB2* (VOID2+QBAR)**3)+ 

(-4.2*DLAMB3*(VOID3+QBAR)**3)) 
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8960 ELSE 

8970 KL=INT(R(50)/QINT)+1 

8980 QSUP=Q(ITER.KL)+((R(50)-(KL-1)*QINT)/QINT)* 

8990 1 (Q(ITER.KL+1)-Q(ITER,KL)) 

9000 EPSSUP=1.0-DEXP((-4.2*DLAMB1*(VOID1+QSUP)**3)+ 

9010 1 (-4.2*DLAMB2*(VOID2+QSUP)**3)+ 

9020 2 (-4.2*DLAMB3*(VOID3+QSUP)**3)) 

9030 EPSOUT=(EPSCRIT+EPSSUP)/2.0 

9040 

9050 c 

9060 

9070 

9080 

9090 

9100 

9110 

9120 

9130 

9140 

9150 

9160 

1 

2 

END IF 

SUM=O.O 

VOLSUM=O.O 

SURFSUM=O.O 

KL=INT(R(50)/QINT)+1 

DO 660 1=2,KL 

QSHELL=(Q(ITER.I}+Q(ITER,I-1))/2.0 

AQSHELL=(AQ(I)+AQ(I-1))/2.0 

EPSSHELL=1.0-DEXP((-4.2*DLAMB1*(VOID1+QSHELL)**3)+ 

(-4.2*DLAMB2*(VOID2+QSHELL)**3)+ 

(-4.2*DLAMB3*(VOID3+QSHELL)**3)) 

SQSHELL=(1.0-EPSSHELL)*12.6*(DLAMB1*(VOID1+QSHELL)**2 

9170 1 +DLAMB2*(VOID2+QSHELL)**2+DLAMB3*(VOID3+QSHELL)**2) 

9180 ROUT=QINT*(I-1) 
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9190 RIN =QINT*(I-2) 

9200 FPSHELL=4.2*(ROUT**3.0-RIN**3.0)•SQSHELL* 

9210 1 (QSHELL-AQSHELL) 

9220 SURFSUM=SURFSUM+4.2*(ROUT**3.0-RIN**3.0)•SQSHELL 

9230 SUM=SUM+FPSHELL 

9240 IF(QSHELL .LT. QCRIT)THEN 

9250 VOLSUM=VOLSUM+EPSSHELL*(4.2*(ROUT**3.0-RIN**3.0)) 

9260 END IF 

9270 560 CONTINUE 

9280 QR50=Q(ITER,KL)+0.6•(((R(50)-(KL-1)•QINT)/QINT)* 

9290 1 (Q(ITER,KL+1)-Q(ITER,KL))) 

9300 AQR50=AQ(KL)+0.5•(((R(50)-(KL-1)•QINT)/QINT)•(AQ(KL+1) 

9310 1 -AQ(KL))) 

9320 EPSR50=1.0-DEXP((-4.2*DLAMB1•(VOID1+QR50)**3)+ 

9330 1 (-4.2•DLAMB2•(VOID2+QR50)**3)+ 

9340 2 (-4.2•DLAMB3•(VOID3+QR50)•*3)) 

9350 SQR50=(1.0-EPSR50)*12.6•(DLAMB1*(VOID1+QR50)**2 

9360 1 +DLAMB2•(VOID2+QR50)**2+DLAMB3*(VOID3+QR50)**2) 

9370 FPQ50=4.2•(R(60)**3.0-(QINT*(KL-1))**3.0)* 

9380 1 SQR60*(QR50-AQR50) 

9390 VOLR50=EPSR50*(R(60)**3.0-(QINT*(KL-1))**3.0)*4.2 

9400 SURFSUM=SURFSUM+SQR50*(R(50)**3.0-(QINT•(KL-1))**3.0)*4.2 

9410 EPSOLD=(VOLSUM+VOLR50)/(4.2•R(60)**3.0) 
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9420 FP=(SUM+FPQ50)*RHOC*1.0D-04/(DELT*12.6*R(60)**2.0) 

9430 RETURN 

9440 END 

9450 c 
9460 c------------------------------------------------
9470 c 
9480 SUBROUTINE G.AMMA(GAM1,F,R1,STEP,PEMMIS,WEMMIS.RNEW.TNEW. 

9490 1 FP.SWIT) 

9500 IMPLICIT REAL*8(A-H,O-Z) 

9510 REAL*8 K11,K12.K13.K14,K21.K22,K23.K24 

9520 EXTERNAL EC.ECH.CPC.CPCH.RLAMB,EOX,ECO 

9530 EXTERNAL PROF,RADIUS,ENERGY,QUE.SHOOT 

9540 EXTERNAL STROBE.RTBISOL,EQN1,EQN2 

9550 COMMON T,TWALL 

9560 COMMON /MISC/C.XLOW,AO.BO,XFAC,ACEN 

9570 COMMON /ARR/X(60).R(50).Y1(50),Y2(60) 

9580 COMMON /SOL/VOID1.EPS1.DLAMB1.EPSOUT,EPSOLD.FSHED, 

9590 1 EPSCRIT,VOID2.EPS2.DLAMB2,VOID3,EPS3.DLAMB3 

9600 COMMON /R/RHOC,FRAC.RPINIT 

9610 COMMON /CS/CSTAR,TAU,XACC.SURFSUM 

9620 COMMON /Y1/Y1S. YUNF 

9630 c 
9640 cc = -3.00430-05 
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C3 = (2331.5425 + GAM1)/0.3388749 

Y1S=(Y1INF+4.0/3.0)*((T-C3)/(TWALL-C3))**0.8095478-4.0/3.0 

C1SURF= (1.0/(-1.0/7.0 + 8.0/(7.0*YlS))) 

IF(C1SURF .LT. O.O)THEN 

F=l.O 

RETURN 

END IF 

RUNG merged here. 

LIE=l 

IF(SWIT .EQ. O.O)THEN 

ITER=4 

CALL PROF(LIE.ITER.R1.T.C1SURF) 

DIFF=3.13*(T/1500)**1.75 

FP=1.0D04*Y2(50)•DIFF*EPSOUT*24.0/(TAU•82.05*T) 

GO TO 111 

END IF 

DUM1=R1 

DUM2=T 

ITER=4 

CALL PROF(LIE.ITER.DUM1.DUM2.C1SURF) 

CALL RADIUS(STEP.DUM2.ITER.DRDT,FP) 
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EP=FP*GAM1 

CALL ENERGY(EP,PEMMIS,WEMMIS,DUM1,DUM2,DTDT) 

K11=DRDT 

K21=DTDT 

RNEW = R1 + STEP*K11 

TNEW = T + STEP*K21 

IF (T .LT. TWALL) THEN 

HH = DSQRT(DABS(-2331.6425 - GAM1)/0.3388749) 

IF (GAM1 .GT.-2331.6426) THEN 

AR1 = -1.0*CC * ((DSQRT(TWALL) - DSQRT(T)) + HH/2.0 * 

1 (DLOG((DSQRT(TWALL) - HH)*(DSQRT(T) + HH)/ 

2 ((DSQRT(TWALL) + HH)*(DSQRT(T) - HH))))) 

F • AR1-R1* FP 

ELSE 

AR2 = -1.0*CC*((DSQRT(TWALL)-DSQRT(T))-HH* 

1 (DATAN(DSQRT(TWALL)/HH)-DATAN(DSQRT(T)/HH))) 

F = AR2-R1* FP 

END IF 

ELSE 

FF = DSQRT(DABS(2331.6426 + GAM1)/0.3388749) 

IF (GAM1 .LT.-2331.6425) THEN 
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AR3 = CC*((DSQRT(T)-DSQRT(TWALL))-FF* 

1 (DATAN(DSQRT(T)/FF)-DATAN(DSQRT(TWALL)/FF))) 

F = AR3-R1* FP 

ELSE 

AR4 = CC * ((DSQRT(T) - DSQRT(TWALL)) + FF/2.0 * 

1 (DLOG((DSQRT(T) - FF)*(DSQRT(TWALL) + FF)/ 

2 ((DSQRT(T) + FF)*(DSQRT(TWALL) - FF))))) 

F = AR4-R1* FP 

END IF 

END IF 

RETURN 

END 

10240 c-----------------------------------------------
10250 c 

10260 

10270 

10280 

10290 

10300 

10310 

10320 

10330 c 

1 

SUBROUTINE ENERGY(EP,PEMMIS,WEMMIS,RR,DUM2,ANST) 

IMPLICIT REAL*8(A-H.O-Z) 

EXTERNAL EC,ECH,CPC,CPCH,RLAMB,EOX,ECO 

COMMON T,TWALL 

COMMON /R/RHOC,FRAC,RPINIT 

COMMON /SOL/VOID1,EPS1,DLAMB1,EPSOUT.EPSOLD.FSHED, 

EPSCRIT,VOID2,EPS2,DLAMB2,VOID3,EPS3,DLAMB3 
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SIG= 1.695D-12 

IF (DUM2 .LT. 1350) THEN 

CPSOL= CPC(DUM2) 

VAL = EC(DUM2) 

ELSE 

CPSOL= CPCH(DUM2) 

VAL = ECH(DUM2) 

ENDIF 

ANST=(3.0/(1.0-EPSOLD))*((FP+(1.0-FRAC)*FSHED)*VAL-EP-SIG* 

1 (PEMMIS*DUM2**4-WEMMIS*TWALL**4))/(RR*RHOC*CPSOL) 

RETURN 

END 

10470 c-----------------------------------------------
10480 c 

10490 SUBROUTINE RADIUS(TMSTP,DUM2,ITER,ANS,FP) 

10500 IMPLICIT REAL*8(A-H,O-Z) 

10510 EXTERNAL QUE 

10520 c 

10530 CALL QUE(DUM2,TMSTP,DRDT,ITER,FP) 

10540 ANS=DRDT 

10550 RETURN 

10560 END 
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10570 c 

10580 c-----------------------------------------------
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AIX.6 CENMOD21.FOR 

10 c 

20 c 

30 c 

40 c 

50 c 

60 c 

70 c 

80 c 

90 c 

100 c 

110 c 

120 c 

130 c 

140 c 

150 c 

160 c 

170 c 

180 c 

190 c 

200 c 

210 c 

This program describes the growth of the internal structure 

of a char particle containing polydisperse spherical voids 

randomly distributed in it. It is a phenomenological model 

and does not consider actual effects of chemical kinetics, 

temperature and diffusion. Instead it simulates the burning 

of the char particle. The focus is on how the pores grow, 

coalesce etc: ultimately fragmenting the particle at high 

conversions. 

The voids are randomly distributed in the particle. Their 

sizes are also randomly selected. Once the void centers 

fixed, they remain unchanged. Only void size can grow by 

reaction. Clearly, due to the random placement, voids may 

intersect each other and might have access to the outside. 

Two voids intersect if the sum of their radii is less than 

their center separation. Similarly, a void is connected to 

the outside if its center lies closer to the particle 

surface than its radius. 

Reaction is simulated by allowing those voids that are 

either directly or indirectly (via other voids) connected 
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300 c 

310 c 

320 c 
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360 c 

370 c 

380 c 

390 c 

400 c 

410 c 
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to the outside to grow a certain amount in each time 

step. The external surface is also assumed to reduce in 

each time step. In this program diffusion is not taken 

into account and thus voids grow the same amount no matter 

where they are present as long as they have access to the 

outside. However, diffusion can be simulated by allowing 

the growth parameter to be a function of radius. 

Thus, after many time steps, the particle void fraction 

will reach large values and the particle may fragment. 

The user sets both the growth parameter and the number 

of time steps. 

This discrete model keeps track of the connectivity of 

individual voids. It computes the void fraction at each 

time step and calculates conversion. Other parameters 

of interest are the number fraction of voids connected 

to the outside, and the number fraction of voids in the 

largest void cluster. 

420 c------------------------------------------------
430 c 

440 c Declarations. 
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450 c 

460 $LARGE C(ND1,3),VC(ND,3),PC1(ID1,3),PC(ID,3) 

470 $LARGE RVX(ND1),RVY(ND1),RVZ(ND1),RPX(ID1),RPY(ID1),RPZ(ID1) 

480 $LARGE VOID(ND),VDIA(ND),VDIAM(ND1),ICON(ND,ND),MAT(ND,ND) 

490 c 

500 PARAMETER (ND1=430,NDIM=1290,ID1=3200,IDIM=9600,NCON=161) 

510 PARAMETER (ND=220,ID=2000,NDEL=60) 

520 c 

530 REAL RVX(ND1),RVY(ND1),RVZ(ND1),RVA(ND1) 

540 REAL RPX(ID1),RPY(ID1),RPZ(ID1) 

550 REAL C(ND1,3),VC(ND,3),RS,VS,DIST1,RC 

560 REAL DIST2,Q,IN,OUT,PC1(ID1,3),PC(ID,3) 

570 REAL Q1,Q2,COUNTIN,COUNTOUT,RCOUNTOUT,RTOTAL,RTOT 

580 REAL DIST,RSO,VDIAO,QCONV,CCOUNT,VOID(ND),XLARGE 

590 REAL VDIA(ND),VDIAM(ND1),VOIDF(NCON),CONV(NCON) 

600 REAL SUMX,SUMY,SUMZ,SUMM,SUMR,RADGY,USED(ID) 

610 REAL CMASSX,CMASSY,CMASSZ,DCON(NCON) 

620 REAL CF,RLN,XLN,Q3,RNDEL 

630 REAL RTO(NDEL),RSOLID(NDEL),RBIG(NDEL) 

640 REAL RSMALL(NDEL),RMEAN(NDEL),RRATIO(NDEL) 

650 c 

660 INTEGER ICON(ND,ND),ICLUSTER,IDCON(1,ND),MOUT,HOUT 

670 INTEGER MAT(ND,ND),IMAP(1,ND),LICLU 
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REAL*8 DSEED1,DSEED2,DSEEDS,DSEED4,DSEED5,DSEED6 

REAL*8 DSEED7 

OPEN(9,FILE='FOR.DAT',STATUS='NEW') 

OPEN(8,FILE='MOD.DAT',STATUS='NEW') 

OPEN(7,FILE='RAD.DAT',STATUS='NEW') 

WRITE(*,89) 

FORMAT(3X,'ENTER THE VALUES OF DSEEDS 1-6 like xxxx.DX') 

READ(*,*)DSEED1,DSEED2,DSEED3,DSEED4,DSEED5,DSEED6 

WRITE(*,88) 

FORMAT(3X,'ENTER THE VALUE OF DSEED7') 

READ(*,*)DSEED7 

RS0=25.0 

VDIA0=5.0 

QCONV=0.05 

VS=VDIA0-2.0*QCONV 

RC=RSO+VDIA0/2.0 

RS=25.0+QCONV 
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910 c Random number generation for void centers. Separate 

920 c strings for x,y and z coordinates. 

930 c 

940 11=ND1 

950 12=NDIM 

960 CALL GGUBS(DSEED1,ND1,RVX) 

970 CALL GGUBS(DSEED2,ND1,RVY) 

980 CALL GGUBS(DSEED3,ND1,RVZ) 

990 c 

1000 c Creating the void centers in the cube. 

1010 c 

1020 DO 200 J=1,ND1 

1030 C(J,1)=RVX(J)*RC*2.0 

1040 C(J,2)=RVY(J)*RC*2.0 

1050 C(J,3)=RVZ(J)*RC*2.0 

1060 200 CONTINUE 

1070 c 

1080 c Random number generation for probe points. 

1090 c 

1100 13=ID1 

1110 14=IDIM 

1120 CALL GGUBS(DSEED4,ID1,RPX) 

1130 CALL GGUBS(DSEED5,ID1,RPY) 
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1140 CALL GGUBS(DSEED6.1D1.RPZ) 

1150 c 

1160 c Creating probe centers in the cube. 

1170 c 

1180 DO 700 J1=1,lD1 

1190 PC1(J1,1)=RPX(J1)*RS0*2.0+VDIA0/2.0 

1200 PC1(J1,2)=RPY(J1)*RS0*2.0+VDIA0/2.0 

1210 PC1(J1,3)=RPZ(J1)*RS0*2.0+VDIA0/2.0 

1220 700 CONTINUE 

1230 c 

1240 c Setting the initial diameters of the voids. 

1250 c 

1260 CALL GGUBS(DSEED7.ND1.RVA) 

1270 DO 91 131=1,11 

1280 VDIAM(I31)=VDIAO*RVA(I31) 

1290 91 CONTINUE 

1300 c 

1310 c Ordering the void centers in the sphere. Since this 

1320 c does not change, this part is outside the main loop. 

1330 c 

1340 OUT=O.O 

1350 IN=O.O 

1360 INC=O 
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1370 INC1=0 

1380 DO 300 J10=1,I1 

1390 Q=SQRT((C(J10,1)-RC)**2+(C(J10,2)-RC)**2+ 

1400 1 (C(J10,3)-RC)**2) 

1410 IF(Q.GT.(VDIAM(J10)/2.0+RS))THEN 

1420 OUT=OUT+1 

1430 ELSE 

1440 IN=IN+1 

1450 INC=INC+1 

1460 INC1=INC1+1 

1470 VC(INC,1)=C(J10,1) 

1480 VC(INC,2)=C(J10,2) 

1490 VC(INC,3)=C(J10,3) 

1500 VDIA(INC)=VDIAM(J10) 

1510 END IF 

1520 300 CONTINUE 

1530 WRITE (*,11)INC 

1540 11 FORMAT(10X,I4) 

1550 c 

1560 c 

1570 c 

Ordering the probe centers in the original sphere. 

1580 DO 334 M1=1,ID 

1590 USED(M1)=0.0 
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1600 334 CONTINUE 

1610 IPIN=O 

1620 IPIN1=0 

1630 DO 800 J9=1.ID1 

1640 Q1=SQRT((PC1(J9.1)-RC)**2+(PC1(J9,2)-RC)**2+ 

1650 1 (PC1(J9.3)-RC)**2) 

1660 IF(Q1 .LE. RSO)THEN 

1670 IPIN=IPIN+1 

1680 IPIN1=IPIN1+1 

1690 PC(IPIN.1)=PC1(J9.1) 

1700 PC(IPIN.2)=PC1(J9,2) 

1710 PC(IPIN,3)=PC1(J9,3) 

1720 ELSE 

1730 CONTINUE 

1740 END IF 

1750 800 CONTINUE 

1760 c 

1770 c Initialisation. 

1780 c 

1790 DO 333 M=1,NCON 

1800 VOIDF(M)=O.O 

1810 CONV(M)=O.O 

1820 333 CONTINUE 
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1830 c 

1840 c Main loop starts here. 

1850 c 

1860 DO 5000 I17=1,NCON 

1870 RS=RS-QCONV 

1880 VS=VS+2.0*QCONV 

1890 DO 801 J9=1,IPIN 

1900 Q2=SQRT((PC(J9,1)-RC)**2+(PC(J9,2)-RC)**2+ 

1910 1 (PC(J9,3)-RC)**2) 

1920 IF(Q2 .GT. RS)THEN 

1930 USED(J9)=1.0 

1940 IPIN1=IPIN1-1 

1950 ELSE 

1960 CONTINUE 

1970 END IF 

1980 801 CONTINUE 

1990 c 

2000 c Initialization for connectivity matrix. 

2010 c 

2020 DO 2000 JCON=1,INC 

2030 DO 2000 KCON=1,INC 

2040 IF(JCON .EQ. KCON)THEN 

2050 ICON(JCON,KCON)=1 



2060 

2070 

2080 
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ELSE 

ICON(JCON,KCON)=O 

END IF 

2090 2000 CONTINUE 

2100 

2110 12 

2120 c 

2130 c 

2140 c 

2150 

2160 

2170 

2180 

2190 

2200 

2210 

2220 

2230 

2240 

WRITE(*,12)INC 

FORMAT(10X,I4) 

Internal connectivity calculation. 

1 

2 

DO 3000 JCON=1,INC 

DO 3000 KCON=1,INC 

DIST1=SQRT((VC(JCON,1)-VC(KCON,1))**2+ 

(VC(JCON,2)-VC(KCON,2))**2 

+(VC(JCON,3)-VC(KCON,3))**2) 

IF(DIST1 .LT. (VDIA(JCON)+VDIA(KCON))/2.0)THEN 

ICON(JCON,KCON)=1 

ELSE 

CONTINUE 

END IF 

2250 3000 CONTINUE 

2260 c 

2270 c 

2280 c 

External connectivity calculation. 
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2290 IN3=INC+1 

2300 DO 4000 JCON=1,INC 

2310 DIST2=SQRT((VC(JCON,1)-RC)**2+(VC(JCON,2)-RC)**2 

2320 

2330 

2340 

2350 

2360 

2370 

1 +(VC(JCON,3)-RC)**2) 

IF(ABS(RS-DIST2) .LT. VDIA(JCON)/2.0)THEN 

ICON(JCON,IN3)=1 

ELSE 

ICON(JCON,IN3)=0 

ENDIF 

2380 4000 CONTINUE 

2390 c 

2400 c Initializing the diagonal of the connectivity matrix ICON. 

2410 c 

2420 DO 400 JCON=1,INC 

2430 ICON(JCON,JCON)=O 

2440 400 CONTINUE 

2450 c 

2460 c Writing to screen. 

2470 c 

2480 WRITE(*,998)RS,VS 

2490 998 FORMAT(5X,'RS=',1PE10.3,6X,'VS=',1PE10.3/) 

2500 c 

2510 c Calculating connected clusters and those connected to 



2520 c 

2530 c 
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the outside. Results in MAT(ICLUSTER,KCON). 

2540 DO 2010 JX=1,INC 

2550 DO 2010 KX=1,IN3 

2560 MAT(JX,KX)=O 

2570 2010 CONTINUE 

2580 

2590 

2600 

2610 

2620 

2630 

2640 60 

2650 10 

2660 

2670 1 

2680 

2690 

2700 1 

2710 

2720 

2730 

2740 

ICLUSTER=1 

DO 60 JCON=1,INC 

IF(ICON(JCON,JCON) .EQ. O)THEN 

ICLUSTER=ICLUSTER+1 

DO 60 KCON=1,INC 

IDCON(1,KCON)=ICON(JCON,KCON) 

CONTINUE 

DO 70 KCON=1,INC 

IF((ICON(KCON,KCON).EQ.O).AND. 

(IDCON(1,KCON).EQ.1))THEN 

DO 80 KCON1=1,INC 

IF((IDCON(1,KCON1).EQ.1).0R. 

(ICON(KCON,KCON1) .EQ. 1))THEN 

IDCON(1,KCON1)=1 

ELSE 

IDCON(1,KCON1)=0 

END IF 
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2760 

2770 

2780 

2790 

2800 

2810 

2820 

2830 

2840 

2850 c 

2860 

2870 

2880 

2890 

2900 

2910 

2920 

2930 70 

2940 

2950 

2960 

2970 
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CONTINUE 

ICON(KCON,KCON)=ICLUSTER 

MAT(ICLUSTER,KCON)=1 

IF(ICON(KCON,IN3) .EQ. 1)THEN 

MAT(ICLUSTER.IN3)=1 

MOUT=1 

ELSE 

MOUT=O 

END IF 

IF(KCON .NE. JCON)THEN 

WRITE(*,1)ICLUSTER,KCON,MOUT 

ELSE 

CONTINUE 

END IF 

GOTO 10 

ELSE 

CONTINUE 

END IF 

CONTINUE 

ICON(JCON,JCON)=ICLUSTER 

MAT(ICLUSTER,JCON)=1 

IF(ICON(JCON,IN3) .EQ. 1)THEN 

MAT(ICLUSTER,IN3)=1 



2980 

2990 

3000 

3010 

3020 c 

3030 

3040 

3050 

3060 50 

3070 c 

3080 c 

3090 c 

3100 c 

3110 c 

3120 

3130 

3140 

3150 

3160 

3170 

3180 

3190 

3200 
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NOUT=1 

ELSE 

NOUT=O 

END IF 

WRITE(*.2)ICLUSTER.JCON.NOUT 

ELSE 

CONTINUE 

END IF 

CONTINUE 

Calculating the number of clusters. number of clusters 

connected to the outside. number of voids in the largest 

cluster. number of voids connected to the outside. 

XLARGE=O.O 

LICLU=O 

KOUNT=O 

DO 705 ICLU=2.ICLUSTER 

IF(MAT(ICLU.IN3) .EQ. !)THEN 

DO 710 KCON=1.INC 

IF(MAT(ICLU.KCON) .EQ. 1)THEN 

KOUNT=KOUNT+1 

ELSE 
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3210 CONTINUE 

3220 END IF 

3230 710 CONTINUE 

3240 > ELSE 

3250 CONTINUE 

3260 END IF 

3270 705 CONTINUE 

3280 KOUNT1=KOUNT 

3290 DO 36 ICLU=2.ICLUSTER 

3300 VOID(ICLU)=O.O 

3310 36 CONTINUE 

3320 ICLUSTER1=ICLUSTER-1 

3330 CCOUNT=1.0 

3340 DO 37 ICLU=2.ICLUSTER 

3350 IF(MAT(ICLU.IN3) .EQ. 1)THEN 

3360 CCOUHT=CCOUNT+1.0 

3370 ELSE 

3380 CONTINUE 

3390 END IF 

3400 DO 38 KCON=1.INC 

3410 IF(MAT(ICLU.KCON) .EQ. 1)THEN 

3420 VOID(ICLU)=VOID(ICLU)+1.0 

3430 ELSE 
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3440 CONTINUE 

3450 END IF 

3460 38 CONTINUE 

3470 IF(VOID(ICLU) .GT. XLARGE)THEN 

3480 XLARGE=VOID(ICLU) 

3490 LICLU=ICLU 

3500 ELSE 

3510 CONTINUE 

3520 END IF 

3530 37 CONTINUE 

3540 XLN=ALOG(XLARGE) 

3550 c 

3560 c 

3570 c 

3580 CMASSX=O.O 

3590 CMASSY=O.O 

3600 CMASSZ=O.O 

3610 RADGY=O.O 

3620 DO 49 KCON=1,ND 

3630 IMAP(1,KCON)=O 

3640 49 CONTINUE 

3650 DO 51 KCON=1,INC 

3660 IMAP(1,KCON)=MAT(LICLU,KCON) 
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3670 51 CONTINUE 

3680 c 

3690 c Calculating the center of mass of the largest cluster. 

3700 c 

3710 SUMX=O.O 

3720 SUMY=O.O 

3730 SUMZ=O.O 

3740 SUMM=O.O 

3750 DO 52 KCON=1. INC 

3760 IF(IMAP(1,KCON) .EQ. 1)THEN 

3770 SUMX=SUMX+((VDIA(KCON))**3)*VC(KCON,1) 

3780 SUMY=SUMY+((VDIA(KCON))**3)*VC(KCON,2) 

3790 SUMZ=SUMZ+((VDIA(KCON))**3)*VC(KCON,3) 

3800 SUMM=SUMM+VDIA(KCON)**3 

3810 ELSE 

3820 CONTINUE 

3830 END IF 

3840 52 CONTINUE 

3850 CMASSX=SUMX/SUMM 

3860 CMASSY=SUMY/SUMM 

3870 CMASSZ=SUMZ/SUMM 

3880 c 

3890 c Finding the radius of gyration of the largest cluster. 



3900 c 

3910 

3920 

3930 

3940 

3950 

3960 

3970 

3980 

3990 

4000 53 

4010 

4020 

4030 c 

4040 c 

4050 c 

1 

2 
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SUMR=O.O 

DO 53 KCON=1,INC 

IF(IMAP(1,KCON) .EQ. 1)THEN 

SUMR=SUMR+(((VC(KCON,1)-CMASSX)**2)+ 

((VC(KCON,2)-CMASSY)**2) 

+((VC(KCON,3)-CMASSZ)**2))*(VDIA(KCON)**3) 

ELSE 

CONTINUE 

ENDIF 

CONTINUE 

RADGY=SQRT(SUMR/SUMM) 

RLN=ALOG(RADGY) 

Writing to file. 

4060 WRITE(9,1007)ICLUSTER1,CCOUNT,XLARGE,RADGY,KOUNT1,SUMM 

4070 1007 FORMAT(5X,'NO. OF CLUSTERS=',I5/ 

4080 1 5X,'NO.OF CLUSTERS CONNECTED TO THE OUTSIDE=',E10.4/ 

4090 2 5X,'NO. OF VOIDS IN THE LARGEST CLUSTER=',E10.4/ 

4100 3 5X,'RADIUS OF GYRATION OF THE LARGEST CLUSTER=',E10.4/ 

4110 4 5X,'NO. OF VOIDS CONNECTED TO THE OUTSIDE=',I5/ 

4120 5 5X,'NONOVERLAP VOL. OF THE LARGEST CLUSTER=',E10.4) 
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4130 WRITE(9,1008)CMASSX,CMASSY,CMASSZ 

4140 1008 ·FORMAT(6X,'CMASSX=',E10.4,2X,'CMASSY=', 

4150 

4160 c 

4170 c 

4180 c 

4190 

4200 

4210 

4220 

4230 61 

4240 

4250 

4260 

4270 

4280 

4290 

4300 

4310 

4320 

4330 

4340 

4350 

1 E10.4,2X,'CMASSZ=',E10.4/) 

Finding the probe points that are outside all the voids. 

1 

DO 61 1=1.NDEL 

RSOLID(I)=O.O 

RTO(I)=O.O 

RMEAN(I)=O.O 

CONTINUE 

RNDEL=NDEL 

DO 62 IP=1. IPIN 

DO 63 1=1,NDEL 

RBIG(I)=RS-((I-1)*RS/RNDEL) 

RSMALL(I)=RS-(I*RS/RNDEL) 

RMEAN(I)=(RBIG(I)+RSMALL(I))/2.0 

Q3=SQRT((PC(IP,1)-RC)**2+(PC(IP,2)-RC)**2+ 

(PC(IP,3)-RC)**2) 

IF(Q3 .LE. RS)THEN 

IF((Q3.LE.RBIG(I)).AND.(Q3.GT.RSMALL(I)))THEN 

RTO(I)=RTO(I)+1.0 

ELSE 



4360 

4370 

4380 

4390 

4400 

4410 

4420 

4430 

4440 

4450 

4460 

4470 

4480 

4490 

4500 

4510 

4520 

4530 

4540 

4550 

4560 

4570 

4580 

63 

62 

1 

1 

1 

2 

ELSE 
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CONTINUE 

END IF· 

CONTINUE 

END IF 

CONT.INUE 

CONTINUE 

COUNTIN=O.O 

COUNTOUT=O.O 

RCOUNTOUT=O.O 

RTOTAL=IPIN1 

RTOT=INC1 

DO 900 IP=1,IPIN 

IF(USED(IP) .EQ. O.O)THEN 

DO 90 I=1,NDEL 

Q3=SQRT((PC(IP,1)-RC)**2+(PC(IP,2)-RC)**2+ 

(PC(IP,3)-RC)**2) 

IF((Q3.LE.RBIG(I)).AND. 

(Q3.GT.RSMALL(I)))THEN 

DO 13 MC=1,INC 

DIST=SQRT((VC(MC,1)-PC(IP,1))**2+ 

(VC(MC,2)-PC(IP,2))**2+ 

(VC(MC,3)-PC(IP,3))**2) 



4590 

4600 

4610 

4620 . 
4630 

4640 

4650 13 

4660 c 

4670 

4680 

4690 

4700 

4710 

4720 

4730 

4740 

4750 90 

4760 

4770 

4780 

4790 

4800 

4810 900 

ELSE 
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IF(DIST .GE. VDIA(MC)/2.0)THEN 

COUNTOUT=COUNTOUT+1.0 

ELSE 

COUNTIN=COUNTIN+1.0 

USED(IP)=1.0 

END IF 

CONTINUE 

WRITE(*,*)COUNTOUT,COUNTIN 

IF(COUNTIN .EQ. O)THEN 

ELSE 

RSOLID(I)=RSOLID(I)+1.0 

ELSE 

CONTINUE 

END IF 

CONTINUE 

END IF 

CONTINUE 

COUNTOUT=O.O 

COUNTIN=O.O 

CONTINUE 

END IF 

CONTINUE 



4820 

4830 

4840 

4850 

4860 

4870 

4880 

4890 

4900 

4910 

4920 

4930 

4940 93 

4950 

4960 

4970 

4980 

4990 

5000 

5010 92 

5020 c 

5030 

5040 c 

RCOUNTOUT=O.O 

116=117-1 
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DO 92 I=1,NDEL 

RCOUNTOUT=RCOUNTOUT+RSOLID(I) 

IF(RTO(I) .NE. O.O)THEN 

RRATIO(I)=RSOLID(I)/RTO(I) 

ELSE 

RRATIO(I)=1.0 

END IF 

IF((I16 .EQ. 0) .OR. (I16 .GE. 10))THEN 

IF(MOD(I16,10) .EQ. O)THEN 

WRITE(7,93)RMEAN(I),RRATIO(I) 

FORMAT(5X,E10.4,5X,E10.4) 

ELSE 

CONTINUE 

END IF 

ELSE 

CONTINUE 

END IF 

CONTINUE 

WRITE(*,*)RCOUNTOUT.RTOT,RTOTAL 

CF=XLARGE/RTOT 
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5050 c Calculate and write void fraction and conversion. 

5060 c 

5070 !12=!17-5 

5080 VOIDF(I17)=1.0-(RCOUNTOUT/RTOTAL) 

5090 CONV(I17)=1.0-((1.0-VOIDF(I17))/ 

5100 1 (1.0-VOIDF(1)))*((RS/RS0)**3) 

5110 IF(I16 .GE. 5)THEN 

5120 DCON(I17)=CONV(I17)-CONV(I12) 

5130 ELSE 

5140 DCON(I17)=0.0 

5150 END IF 

5160 WRITE(9.1111)I16 

5170 1111 FORMAT(5X.'STEP=·I5/) 

5180 WRITE(9.1002)RS,VS.VOIDF(I17).INC1. 

5190 1 IPIN1.ND.CONV(I17).DCON(I17) 

5200 1002 FORMAT(5X.'RS='.E10.4.2x.·vs=·.E10.4.2X.'VOIDF=·.E10.4/ 

5210 1 6X.'INC1=·.1s.2x.·1PIN1=·.1s.2x.·No=·.15/ 

5220 2 sx.·coNVERSION=·.E10.4.2X.'DELTA CONVER='.E10.4///) 

5230 WRITE(8.444)I16,VOIDF(I17).CONV(I17). 

5240 1 DCON(I17).CF.KOUNT1.RLN.XLN 

5250 444 FORMAT(1X.I4.1X,E9.4.1X,E9.4.1X. 

5260 1 E9.4.1X.E9.4,1X.I4,1X,E9.4,1X,E9.4) 

5270 c 



5280 c 

5290 c 

5300 c 
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Increasing void diameters if they are connected to the 

outside. 

5310 DO 905 ICLU=2.ICLUSTER 

5320 IF((MAT(ICLU,IN3) .EQ. !))THEN 

5330 DO 910 KCON=1.INC1 

5340 IF((MAT(ICLU.KCON) .EQ. !))THEN 

5350 

5360 ELSE 

VDIA(KCON)=VDIA(KCON)+2.0*QCONV 

5370 CONTINUE 

5380 END IF 

5390 910 CONTINUE 

5400 ELSE 

5410 CONTINUE 

5420 END IF 

5430 905 CONTINUE 

5440 IPIN1=IPIN 

5450 5000 CONTINUE 

5460 c 

5470 c 

5480 c 

Main loop ends. 

5490 STOP 

5500 CLOSE(7) 
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5510 CLOSE(8) 

5520 CLOSE(9) 

5530 END 
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Appendix X 

TGA EXPERIMENTAL 

CONDITIONS 
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This Appendix shows the details of the experimental conditions for the different 

sets <?f TGA experiments that were done. All the chars used were derived from 

PSOC 1451 coal. Experiments done on other chars are not reported in this thesis. 

Table AX.6 shows the organization of a typical data file after the raw data have 

been converted to suitable form. Time, in seconds, is shown in column 1. Data 

points were collected everysix seconds by a computerized data acquisition system. 

Column 2 shows the normalized carbon mass of the sample. The normalizing factor 

is the carbon mass at the moment the oxidizer reaches the sample. Column 3 shows 

the rate of loss of carbon normalized by the instantaneous carbon mass. Sample 

temperature, as recorded by a thermocouple is shown in column 4. Finally, the 

carbon conversion is shown in the last column. Since all samples were burned until 

there was no further weight loss, the final mass was taken to be the mass of ash. 

Table AX.1 shows two sets of similar experiments done at TGA temperatures 

of SOOK and HOOK. In each set, two char sizes (45-53µm and 90-104µm) were used. 

Finally, four different pyrolysis temperatures (lOOOK, 1200K, 1400K, and 1600K) 

were used for each size and TGA temperature. The parent coal was also used. In 

all experiments, the total flow rate (110 cc/min) and oxygen concentration (17%) 

was kept constant. All chars used for experiments in Table AX.1 were made from 

parent coal of size 53-00µm. The experiments in Table AX.2 were exactly like 

those in Table AX.1, the only difference being the parent coal i;ize. The effect 

of initial mass was investigated in the runs shown in Table AX.3. The behaviour 

of chars made from large size coal particles was investigated in the runs reported 
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in Table AX.4. Finally, Table AX.5 shows experiments in which only the oxygen 

concentration was varied. 



RUN COAL CHAR PYROLYSIS OXYGEN INITIAL TGA COMMENTS 
NAME SIZE SIZE TEMPERATURE CONCENTRATION MASS TEMPERATURE 

u=· ·-·- I H_(µm) I (µm) J (!<) _ I ___ (%) -=~-[~(mg)_-l-. .. (KT- _----r _ ~~ 
CAN I.DAT 53-90 45-53 1600 17 13.403 1100 (In all runs 
CAN2.DAT 1400 11.328 the total flow 
CAN3.DAT 1200 10.132 rate was llOcc/min) 
CAN4.DAT 1000 15.234 
CANS.DAT 45-53 - - 17.383 
CANll.DAT 53-90 104-125 1600 17 12.524 1100 (Total flow rate 
CAN12.DAT 1400 13.306 =110 cc/min) 
CAN13.DAT 1200 9.766 
CAN14.DAT 1000 12.207 
CAN15.DAT 104-125 - - 11.914 
CAN21.DAT 53-90 45-53 1600 17 10.864 800 (Total How rate 
CAN22.DAT 1400 12.231 =110 cc/min) 
CAN23.DAT 1200 13.770 
CAN24.DAT 1000 12.524 
CAN25.DAT 45-53 - - 10.278 
CAN25A.DAT 45-53 - - 18.164 
CAN31.DAT 53-90 104-125 1600 17 10.962 800 (Total How rate 
CAN32.DAT 1400 13.281 =110 cc/min) 
CAN33.DAT 1200 10.938 
CAN34.DAT 1000 11.719 
CAN35.DAT 104-125 - - 19.067 

Table AX.1 TGA runs on chars from PSOC 1451 53-90µm coal. 

~ 
~ 
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RUN COAL CHAR PYROLYSIS OXYGEN INITIAL TGA COMMENTS 
NAME SIZE SIZE TEMPERATURE CONCENTRATION MASS TEMPERATURE 

--······---- ······-···-- ----········--------------------------~---------------------

c -L(~m)l (µnl)_I -~- _(K)_=---c- -- --- - {%r=-=:=IlffigI= I (K) I II 
DANI.DAT L.T. 4S 4S-S3 1600 17 6.S43 1100 (In all runs 
DAN2.DAT 1400 5.078 the total flow 
DAN3.DAT 1200 5.176 rate was llOcc/min) 
DAN4.DAT 1000 5.884 
DANS.DAT =CANS.DAT 
DANH.DAT L.T. 4S 104-12S 1600 17 10.742 1100 (Total flow rate 
DAN12.DAT 1400 10.156 =110 cc/min) 
DAN13.DAT 1200 4.688 
DAN14.DAT 1000 5.00S 
DANIS.DAT =CANIS.DAT 
DAN21.DAT L.T. 45 45-53 1600 17 S.542 800 (Total flow rate 
DAN22.DAT 1400 S.762 =110 cc/min) 
DAN23.DAT 1200 5.151 
DAN24.DAT 1000 6.44S 
DAN2S.DAT =CAN2S.DAT 
DAN31.DAT L.T. 45 104-125 1600 17 5.347 800 (Total flow rate 
DAN32.DAT 1400 5.151 =110 cc/min) 
DAN33.DAT 1200 4.785 
DAN34.DAT 1000 4.712 
DAN35.DAT =CAN35.DAT 

Table AX.2 TGA runs on chars from PSOC 1451 <45µm coal. 
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RUN I COAL I CHAR 1-- PYROLYSIS I OXYGEN I INITIAL I TGA I COMMENTS II 
NAME SIZE SIZE TEMPERATURE CONCENTRATION MASS TEMPERATURE 

II _ Ljµm) I _ (µm) I (K) I (%) I (mg) I (K) I ~-0 
MANI.DAT 90-125 125-147 1600 17 5.762 1100 (In all runs 
MAN2.DAT 3.057 the total flow 
MAN3.DAT 1.338 rate was llOcc/min) 
MAN4.DA1' 19.824 
MANS.DAT 11.523 
MANS.DAT 1.963 

Table AX.3 Effect of initial sample mass on TGA runs. 

II RUN I COAL I CHAR I PYROLYSIS I OXYGEN I INITIAL I TGA I 
NAME SIZE SIZE TEMPERATURE CONCENTRATION MASS TEMPERATURE 

COMMENTS 

II 
II =r(µm) I (µrr{J (K) I (%) I (mg) I (K) _ I u- II 

FAN I.DAT 90-125 L.T. 53 1600 17 5.078 1100 (Flow rate=llOcc/min) 
FANll.DAT 125-147 5.762 =MANI.DAT 
FAN2l.DAT 90-125 L.T. 53 1600 17 5.371 800 (Flow rate=llOcc/min) 
FAN31.DAT 125-147 5.029 

Table AX.4 Effect of char size and TGA temperature. 
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RUN I COAL I CHAR I PYROLYSIS I OXYGEN I INITIAL I TGA I COMMENTS 
NAME SIZE SIZE TEMPERATURE CONCENTRATION MASS TEMPERATURE 

II I (µm) I (µm) I (K) I (~) I (mg) I (K) I ______ _II 
GANI.DAT 90-125 125-147 1600 21.0 4.883 1100 (Total flow rate 
GAN2.DAT 19.l 4.980 =110 cc/min) 
GAN3.DAT 17.0 5.762 =MANI.DAT 
GAN4.DAT 15.3 5.273 
GANS.DAT 11.5 5.200 
GAN6.DAT 07.6 4.980 
GAN7.DAT 81.9 5.176 
GANS.DAT 45.5 5.249 

Table AX.5 Effect of oxygen concentration on TGA runs. 

TIME SAMPLE CARBON 

TEMPERATURE CONVERSION 

II (s) I I (s- 1) I (K) -] (%) I 

II I I I I I 
Table AX.6 Data file format for TGA experiments. 
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Appendix XI 

DETAILS OF 

CENOSPHERE SIMULATION RUNS 
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The initial conditions of all the simulation runs are shown in Tables in this 

Appendix. The Figures that follow show the variation of the void percolation prob­

ability (P) as a function of particle void fraction (E) for the different cases. 

The structure of the primary data file (MODrunname.DAT) produced by each 

simulation run is shown in Table AXI.1. Number of steps, void fraction, conversion 

and the rate of change of conversion are shown in columns 1-4, respectively. Column 

5 shows the void percolation probability. The total number of voids connected to 

the outside of the particle, KOUNTl, is shown in the next column. Column 7 is 

the natural logarithm of the radius of gyration of the largest void cluster (RLN) 

and the last column is the natural logarithm of the number of voids in that cluster 

(XLN). 

Tables AXI.2 and AXI.3. show the five main sets of simulations that were done. 

The initial number of voids in each case was kept reasonably similar and varied 

from set to set. In these runs the void size initially was monodisperse. Due to the 

random nature of the void placement process, particles having the same number 

of initial voids often have different initial void fractions. Table AXI.4 shows runs 

in which the size of the initial voids was randomly selected in the range 0-5 units 

while Table AXI.5 shows the runs where the initial size of the void was either 1 or 

5 units, subject to the constraint that 90% of the voids be of the smaller size. 

The effect of an assumed diffusion mechanism was tested in the runs shown 

in Table AXI.6. In each of the relevant Tables, the parent Fortran program name 

is also shown. A listing of one of the programs (CENMODE21.FOR) is given in 
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Appendix IX. The other programs are similar. 
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Number of Void frac., Conv., dX/ dN I Percolation KOUNTI RLN XLN 
Steps, N f x Probability 

I I I I I I 
Table A.XI.I Typical data file organization (MODnm acme.DAT). 

RUN NO.OF INITIAL PROGRAM COMMENTS 
NAME VOIDS VOID FRAC. 

Al.DAT 169 0.119 CENMOD20 Initially, voids 
A2.DAT 162 0.111 were monodisperse. 
AS.DAT 158 0.117 Particle diameter=SO 
A4.DAT 169 0.112 Void diameter=5 
AS.DAT 171 0.128 True for all runs 
AS.DAT 167 0.116 below. 
A7.DAT 163 0.127 
Cl.DAT 67 0.0519 CENMOD20 
C2.DAT 72 0.0588 
CS.DAT 71 0.0607 
C4.DAT 69 0.0594 
CS.DAT 73 0.05S9 
CS.DAT 75 0.0575 
C7.DAT 66 0.05S9 
Ell.DAT 51 0.0434 CENMOD20 
El2.DAT 54 0.0362 
E13.DAT 54 0.0328 
El4.DAT 55 0.04S9 
E15.DAT 52 0.0359 
El6.DAT 52 0.0348 
E17.DAT 53 0.0348 
EIS.DAT 53 0.0294 

Table AXI.2 Basic simulation runs. Initially monodisperse voids. 
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RUN NO.OF INITIAL PROGRAM COMMENTS 
NAME VOIDS VOID FRAC. 

Bl 108 0.0807 CENMOD20 Initially, voids 
B2 104 0.0814 were monodisperse. 
B3 110 0.0695 Particle diameter=50 
B4 117 0.0665 Void diameter=5 
BS 106 0.0814 True for all runs 
B6 118 0.0866 below. 
B7 120 0.0956 
Bll 104 0.0845 
B12 105 0.0852 
B13 107 0.0861 
B14 107 0.0734 
B15 104 0.0826 
B16 106 0.0872 
B17 107 0.0835 
B18 104 0.0780 
Dl 216 0.143 CENMOD20 
02 216 0.161 
D3 215 0.154 
04 212 0.139 
05 218 0.148 
06 214 0.152 
07 214 0.159 
DU 215 0.147 
012 215 0.136 
013 216 0.148 
Dl4 216 0.139 
Dl5 212 0.139 
Dl6 214 0.141 
017 216 0.168 
Dl8 216 0.163 

Table AXI.3 B~ic simulation runs. Initially monodisperee voids. 
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RUN NO.OF INITIAL PROGRAM COMMENTS 
NAME VOIDS VOID FRAC. 

B21 105 0.0225 CENMOD21 Initially, voids 
B22 107 0.0260 were randomly sized 
B23 107 0.0283 in the range 0-5. 
B24 106 0.0206 Particle diameter=50. 
B25 105 0.0233 True for all runs 
B26 104 0.0274 below. 
D21 120 0.0564 CENMOD21 
D22 104 0.0479 
D23 105 0.0472 
D24 107 0.0453 

Table AXI . .t Simulations with initially random med voids. 

RUN NO.OF INITIAL PROGRAM COMMENTS 
NAME VOIDS VOID FRAC. 

G21 172 0.0192 CENMOD22 Bimodal voids: 
G22 175 0.0153 90% were 5 and 10% 
G23 177 0.0158 were 1 in diameter. 
G24 172 0.0120 Particle diameter=SO. 
G25 177 0.0140 

Table AX.1.5 Simulations with initially bimodal voids. 

RUN NO.OF INITIAL PROGRAM COMMENTS 
NAME VOIDS VOID FRAC. 

BlD 105 0.0833 CENMOD20D Void diameter=S. 
B2D 097 0.0646 Particle diameter=SO. 
B3D 101 0.0749 With diffusion. 
B4D 104 0.0774 
BSD 104 0.0883 
B4N 104 0.0774 CENMOD20N Without diffusion. 
BSN 104 0.0883 

Table AX.I.6 Simulations showing the effect of diffusion. 
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Appendix XII 

SINGLE PARTICLE EXPERIMENTS: 

TEMPERATURE-TIME TRACES 
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Single particle drop-tube experiments were done under a variety of conditions. 

Only .the temperature-time traces are shown in this Appendix. The intensity-time 

traces from which these were derived are not shown due to space limitations. The 

derived area-ratio is also not shown. 

At the top of each Figure is a line that describes the conditions of that exper­

iment. The first two words are 1451 and 1600K indicating that the chars were 

derived from the bituminous PSOC 1451 coal, after pyrolysis at 1600K. The next 

number, e.g. 45-53 indicates the char size in microns. Following that is the value 

of the wall temperature in degrees Celsius. lOOOW means the wall temperature 

was 1000°C. Finally the particular filename.ext is given. The starting letter of the 

filename indicates whether the experiment was carried out in air or in 50% oxygen. 

Filenames starting with A, P, R, X, and Y denote experiments in air and those 

starting with L, S, T, and V are for experiments in 50% oxygen. 

Two additional comments are in order. The file series starting with the letter P 

shows data from chars oxidized to 13% conversion at 500°C. This is indicated in the 

top header for those files. All other chars are initially unburnt. The files starting 

with the letters X and Y are from the same char but belong to two density classified 

fractions - D for the denser and L for lighter fraction. This is also indicated in 

their respective top headers. 

Table AXII.1 shows the organization of each data file. Time, in milliseconds, 

is in column 1. Columns 2 and 3 show the signal intensities in Volts in the wave­

length ranges centered around 800nm and lOOOnm respectively. Column 4 shows 
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the particle temperature in degrees Kelvin. Finally, columns 5 and 6 show the area 

ratios (projected area of the particle along the detector line-of-sight as a function 

of time, divided by the initial projected area) as obtained from the 800nm and the 

lOOOnm signals. Table AXII.2 summarizes the experimental conditions for runs in 

air while Table AXII.3 does the same for runs in 50% oxygen. 

Figure AXII.1 is a flow diagram showing the sequence of steps involved in 

gathering an interpreting the data from the experiments. The various steps are 

discussed in Chapter 4. Figure AXII.2 shows the calibration sensitivity curve. It 

shows how sensitive the particle temperature is to the value of the experimentally 

determined calibration constant, C. The sensitivity depends on the ratio of the sig­

nals at the two wavelengths. Various curves are for different signal-ratios as shown. 

The subsequent Figures show the temperature-time traces of the various runs. The 

.calibration runs are also shown in the first few Figures labelled CAL*.DAT. 
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Time 800nm lOOOnm Particle Area ratio Area ratio 
(ms) signal signal Temperature (800nm) {lOOOnm) 

Table AXIi.I Data file format for single particle experiments. 

I RUN 
NAME 

n 
Rl6B 1,2,4, 
6-10,12-14 
Rl6S 1-14 
Xl6B 2-7 
Yl6B 1-14 
P16S 1,4,5,8, 
9,13,14,16,17 
A16S 1-16 

I ~i:t: I TEM~~~URE I COMMENTS II 

I (µm) I (°C) I II 
90-104 1000 

45-53 1000 
90-104 1000 Dense particles 
90-104 1000 Light particles 
45-53 1000 13% B.O. at 

500°C 
45-53 800 

Table AXII.2 Details of single particle experiments in air. All particles 
were PSOC 1451 1600K char. 

H 
S16B 2,6-9,11, 
13,15,16,18,21 
Sl6S 1-3,5,7-9, 
12,14,16,17,20 
Tl6B 1,4,9, 
10,12 
Tl6S 3,4,6,8, 
11,13,14 
Ll6S 1-6,8-16, 
19-21 
Vl6S 1,3,4,6,8,9, 
12-15,17-21 

I CHAR I WALL I COMMENTS I 
SIZE TEMPERATURE 

I (µm) I (°C) I H 
90-104 1200 

45-53 1200 

90-104 1000 

45-53 1000 

45-53 800 

45-53 700 

Table AXII.3 Details of single particle experiments in 50% 0 2 • All particles 
were PSOC 1451 1600K char. 
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SINGLE PARTICLE COMBUSTION 

1 Optical Signal 

PYROMETER I 
1 Voltage Signal 

REAL-TIME 
DATA ACQUISITION SYSTEM 

TEMPERATURE INVERSION PROGRAM 

TEMPERATURE-TIME msTORY 

CALIBRATION 

Figure XII.I Procedure for obtaining temperature-time traces from single 

particle drop tube experiments. 
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