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ABSTRACT

Wave propagation in a two-dimensional elastic wedge is
fundamental to a large class of problems in elastodynamic theory,
however until now analytical solutions to all but certain degenerate
cases were unknown. In this thesis a general elastodynamic solu-
tion is derived for the wedge in a state of plane strain. Surface
tractions are’ restricted to uniform normal and shear loads spread-
ing from the wedge vertex at constant velocity., The geometry and
loading then allow self-similar solutions of the governing differential
equations and boundary conditions in hyperbolic and elliptic domains.
Hyperbolic solutions are found in terms of the elliptic solutions by
the method of characteristics, while elliptic solutions are reduced
using analytic function theory to two independent Fredholm integral
equations of the second kind in one dimension. Although numerical
solutions are beyond the scope of the investigation, the integral
equations are solvable by standard techmiques. Such solutions can
be used to solve a number of plane elastodynamic problems involving

an edge.



NOMENCLATURE

Propagation speed of dilatational waves

d
<. - Propagation speed of rotational waves
cp Propagation speed of Rayleigh surface waves
k Ratio of the dilatational to rotational wave speeds
P Similarity variable, p. 12
q Similarity variable, q = kp, p. 12
P, Value of p at the traction discontinuity
Pr Value of p at the Rayleigh wave, p. 29
r Radial coordinate in a polar coordinate system

R{p) Rayleigh function, p. 29

R Coefficients of the factored Rayleigh poles, m=1-4, p. 52
S() Heaviside step function

Sm Coefficients of the factored traction poles, m=1-4, p.51, 52
t Time

T Coefficients in the residue at the traction poles, p. 30

u Displacement vector

u, Radial component of displacement

Uy Angular component of displacement

u Real part of the complex variable, w, p. 39

v Imaginary part of the complex variable, w, p. 39

v Traction velocity, p. 5

w Complex variable, p. 39

X Real part of the complex variable, z, p. 39, or a Cartesian

coordinate, p. 6
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v Imaginary part of the complex variable, z, p. 39, or a

Cartesian coordinate, p. 6

z Complex variable, p. 39, or a cylindrical polar coordinate,
p. 5

o4 Complex variable, p. 17

o, Characteristic variables, p. 17

B Complex variable, p. 17

B:t Characteristic variables, p. 17

Y Half the wedge angle, p. 6

(z) Logarithm of the Rayleigh factor, p. 46

5() Dirac delta function

6 Angular coordinate in a polar coordinate system
Gh Termination point of leading head wave, p. 21
s Dilatation, p. 8

©(e¢) Elliptic solution for ¢, p. 17
Gi(ai) Hyperbolic solutions for ¢, p. 17

Elastic constant, p. 8, or separation parameter, p. 35

B Elastic constant

p Material density

Oy Components of stress tensor, xx:00, rr, rf
o, Coefficient of normal surface traction

TS Coefficient of tangential surface traction

d’s a Density function for symmetric“and asymmetric loading
cases, p. 53
b Residual of the factorization in the symmetric and asym-

metric loading cases, p. 48



- vii -

Ye o Density function for symmetric and asymmetric loading
cases, p. 53

N\ Residual of the factorization in the symmetric and asym-
metric loading cases, p. 49, 50

w Magnitude of the rotation vector, p. 8

Q(B) Elliptic solution for w, p. 17

Qi(ﬁ:l) Hyperbolic solutions for w, p. 17
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INTRODUCTION

Wave propagation in a two-dimensional (plane) elastic wedge
is fundamental to a large class of problems in elastodynamic the-
ory, however analytical solutions to all but certain degenerate
cases are virtually unknown. The difficulty can be attributed in
general to the nonseparable nature of the boundary conditions, and
as a consequence classical separation of variables or transform
techniques are unsuitable.

The wedge is an idealization of geometries encountered in
the theory of diffraction, waveguides, and, rather recently, steady
dynamic crack propagation with branching (e.g., Knopoff [11,
Miklowitz [ 2], Achenbach [3], respectively). Numerous appli-
cations can be found in seism.ology, strong-motion earthquake
engineering, nondestructive evaluation, acoustic wave electrical
device design, etc. With respelct to analytical techniques, separable
solutions are known for arbitrary angle (Kostrov [4] and Zemell
[5]) in the highly idealized case that boundary coﬁditions on both
faces are mixed (i.e., normal or tangential surface traction with
tangential or normal displacements, respectively, are prescribed);
for the half-space and semi-infinite slit, so-called degenerate or
separable geometries, realistic nonmixed boundary conditions are
admissible (e.g., Lamb [6], Craggs [7], Maue [8], de Hoop [9],
Miles [10]); and for the quarter space, due to equivalent half-space
superpositions, mixed conditions need only be given on one face

(e.g., Wright [11]). The review paper by Knopoff [1] discusses



a number of mathematical techniques which have met with limited
success in applications to more general cases.

A natural approach to nonseparable wedge problems is the
method of self-similarity. Provided only that the geometry and
boundary conditions do not introduce a characteristic length, the
method yields a reduction in the number of independent variables
from three to two, namely r/t and 0, where r and 6 are polar
coordinates and t is time. This is the technique used by Miles
[10] and Craggs [7] for the degenerate cases, and Kostrov [4]
for arbitrary angles with mixed boundary conditions. Knopoff
discusses the technique (as the method of conical flows) and con-
cludes, in part on the basis of Gangi's work [12], that it does not
appear to allow a deterministic formulation of boundary cénditions
for the nonseparable problem. A paper by Achenbach and Khetan
[13], as yet unpublished and just recently brought to the author's
attention, treats the nonmixed wedge by similarity methods. The
loading is a transient normal pressure applied uniformly to the
faces and the work is a continuation of Achenbach's efforts towards
an understanding of dynamic crack propagation and branching
mentioned earlier. Unfortunately due to the nature of the analysis
and consequent complexity of the numerical method used in the
solution it appears at this stage to be of limited utility.

The aim of this thesis is to de{felop an elastodynamic
solution for the plane wedge using the method of self-similarity.
To satisfy the similarity requirement, surface tractions are

restricted to uniform normal and shear loads spreading from the



wedge vertex at some constant velocity. It follows that the infini-
tesimal dilatation and rotation are functions of r/t and 6 only.
Practicality suggests decomposing the original load into symmetric
and asymmetric components and examining the resulting problems
separately. The treatment is essentially the same for each and

is done concurrently in the sequel. Observe that the above loading
is directly applicable to a number of interesting unsolved problems.
For example, letting the traction velocity go to infinity it yields
the short-time response of a two-dimensional waveguide with no;n-
parallel faces‘, near the uniformly loaded end; or by the super-
position of moving tractions with finite velocities to cancel the
incident wave on the wedge surface, it solves the problem of the
diffraction of elastic waves by a wedge shaped void.

In Sections 1-4 the wedge problem is formulated and reduced
to the determination of two analytic functions over semi-infinite
strips in respective complex planes. In Section 5 the stress
boundary conditions are used to cast boundary values of the analytic
functions in a canonical form which clearly exhibits the singular
nature of the solution, e.g., the Rayleigh wave, etc., and in
Section 6 the edge behavior is established. The semi-infinite
strips are mapped to half-planes in Section 7 and the singular
parts of the analytic functions are factored out on the basis of the
canonical forms. In Section 8 determination of the unknowns
remaining after the factorization is reduced to the solution of a
single Fredholm integral equation of the second kind for each

loading case, symmetric and asymmetric. Uniqueness of solutions



is discussed in Section 9 as well as recovery of the field quantities,
i.e., dilatation, rotation, stresses, and velocities. Numerical
solutions of the integral equations are beyond the scope of the
investigation, however they are solvable by standard techniques.
Before proceeding a few comments are in order on motivation
of the thesis topic. The author's interest in the problem stems
from work in experimental mechanics, in particular on the dynamics
of dipping layers (in contrast to parallel layers) in earth structure
idealizations. Existing techniques in elastodynamic theory have
been of limited use in understanding details of the phenomenon near
the edge. Typically, these structures are modeled experimentally
by finite wedges and the response measured by surface transducers,
photoelasticity, etc. For example, a truncated wedge of small
included angle impacted at the larger end is used to model the
focusing of waves from a near field seismic source (Lee and Sechler
[26]
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Wojcik and Felix [27]). Of primary interest is the response
near the wedge vertex, however it is due to a supefposition of
incoming as well as diffracted outgoing waves and an experimental
determination of their relative strengths is formidable. Because of
this and other experimental difficulties a theoretical analysis of the -
simplest dipping structure, namely the plane wedge of arbitrary
angle, is called for. The solution given in the sequel is particularly
useful in addressing this as well as many related problems in

elastodynamics.



§ 1. THE PROBLEM

Consider the two-dimensional wedge shown in Figure 1, of
some homogeneous, isotropic, linear elastic solid extending infi-
nitely out of the figure (along the z axis in a cylindrical polar
coordinate system). At t = 0 the wedge is loaded by surface trac-
tions applied to either face, constant in the z direction so that a
state of plane strain exists. The problem is to determine thé
system of waves generated and propagated outward from the edge.

Observe that the wedge is without a characteristié length.

If the loading likewise lacks a length scale we expect asﬁects of
the response to be similar with respect to time (dynamic or selfv~
similarity); in which case the independent variables can be reduced
from r,08,t to r/’c, 0. To permit such self-similar solutions and
the analytical simplifications resulting, the loading is restricted

to uniform normal and shear tractions spreading along either face
from the edge at constant velocity, V (0<V <), It is convenient
at the outset to split these into symmetric and asymmetric compo-
nents and solve the two problems separately. The following cases

are therefore examined:

0 =0 : Ogp = pGOS(Vt—r) s (1. 1)

o9 = p.'TOS(Vt-r) , (1. 2)
symmetric case

o9 = -HTOS(Vt~r) , (1. 4)
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Ogp = —}LUOS(Vt~l‘) . (1.5)
asymmetric case
0.9 = W S(Vi-x) (1.6)

where p is the shear modulus of the material, o, at 7 are dimen-
sionless coefficients, and S represents the Heaviside step function,
zero for negative argument and unity for positive. The decom-

position yields mixed conditions on the bisecting ray as

6 =v ¢ 0.9 = Vg = 0 ; sym. case, (1.7)
%g = Y9, = 0 ; asym. case, (1. 8)

which follow directly from the symmetry or asymmetry of the load-
ing.

Due to the combinations of wedge angle and load velocity
possible, a compromise is struck between exposition and algebraic
complexity by treating a wedge with included angle, 2y, somewhat
less than ©/2, as in Figure 1, and limiting the surface traction
velocity to V< S where c. is the rotational wave speed. The
results are readily generalized to arbitrary angle and V2c¢_ as

r
discussed in the last section.



§ 2. GOVERNING EQUATIONS AND THE SELF-SIMILARITY
FORMULATION

Displacement equations governing the linearized motion of a

homogeneous, isotropic, elastic solid can be written as
(A +2p)V8 - 2uVxe = pu, (2.1)
with the dilatation, ¢, and rotation, w, defined by

v

"
<
e

, (2.2)

W]

© = 1Vxu; (2. 3)

where u is the displacement vector, A and p are elastic constants,
and p is the material density., Integrating twice over time and

applying quiescent initial conditions, (2.1) becomes
u = Vo + Vxy , (2. 4)

The so-called Lamé displacement potentials, ¢ and y, are defined

by
tT
6 = cgffodnd'r; cs - +2p /e, (2.5)
8o
tT
4 = ~Zcfffgg dndr ; c:lZ: =p/p. (2.6)
oo ,

Taking the divergence and curl of (2.1), switching the order

of space and time derivatives, and applying (2.2, 3) yields

V25 -3 | (2.7)

(9]
Sl



e

(2.8)

°nl
3 e

hence the dilatation and rotation are governed by scalar and vector
wave equations, with cq and c. the respective propagation velocities
of such disturbances. The same results are found for ¢ and ’qi by
taking the divergence and curl of (2.4), differentiating (2.5, 6) twice
with respect to time, substituting (2.2, 3) and combining the results,

.
i.e.,

2

vZ% = %4, (2.9)
€a

vz'qi - Jﬂ (2. 10)
C
r

The above reduction is due to Somigliana (e.g., Miklowitz
[14]) who used it to establish a one-to-one relationship between
solutions of the displacement equation, (2.1), and the much simpler
wave equations, (2.9, 10), through the decomposition (2. 4).

Specializing these results to a state of plane strain, u, and
8/0z vanish, reducing the two independent components of ¢ and w

~

(because V- = V- = 0 from (2.3, 6)) to one, namely

L!J’ :\pgz, W = we (2.11)
and the governing equations to scalar wave equations. In polar

coordinates the displacement-potential relation, (2.4), becomes

u. =9, + %«"4’9 , (2.12)



Introducing these into Hooke's law (e.g., Sokolnikoff [15]) yields

the stress-potential relations,

2 2
ogg = WG + ;Jz*»[mr + dgp t Vg - rq;re] , (2. 14)
2 2 2 , .
0., =AVT + rz[r bop t b g - Yl (2.15)
2
O = fz[zmre = 2yt gy - Xt Ty T (2.16)

Note that the subscripts on u or ¢ identify vector or tensor com-
ponents, otherwise they imply differentiation with respect to the
subscripted variable,

By differentiating (2. 12-16) twice over time and substituting

9, U = ~2¢%0,
I

(S TRV

&;:C

from (2.5, 6), the governing equations can be cast with either the
displacement potentials or the dilatation and rotation as the depend-
ent variables. Actually any time derivative of the displacement
potentials is admissible. The proper choice is made by requiring
the variable to exhibit self-similar solutions for the traveling step

surface traction.

One simple method of establishing self-similar solutions
(appropriate for the wedge problem) is to apply the principle of

dimensional analysis, viz., the independent variables and parameters



of the problem,

r, 0, t, ¥, 0 Tos A i P (2.17)

yield the following nondimensional groups,
r/cdt, 0, v, 0. Ty cd/cr, (2.18)

to which seli-similar solutions must conform. The similarity vari-
able, r/cdt, is due of course to the absence of a characteristic
length. Such solutions are "similar" at any time and collapse onto
a single “"curve" by scaling the distance as above. Equivalently
they are conical fields in r, 0, t space, constant on rays through
the origin (e.g., Keller and Blank [ 16]), or homogeneous bfunctions
of degree zero (e.g., Miles [10]).

By the fundamental linearity of the problem dependent vari-
ables are proportional to the applied load, i.e., N and To thuS.
to exhibit similarity solutions they must be dimensionless. Conse-
quently ¢ and ¢ (dimensions (1ength)2) do not possess such solutions,

at least for the traveling step load. An alternative is to reform-

ulate the problem, replacing the step by the highly singular form

%olg-g = RO 8 (VE-1)

for example, where &' is the derivative of the Dirac delta function
(dimensions (}.ength)“z). In this case 60 has dimensions (1ength)2
and (/)/0"0, Lf,J/UO are dimensionless.

Clearly then the dilatation and rotation are the appropriate

dependent variables for similarity solutions of the problem (Craggs



- 12 -

[ 7]). Note that the nondimensionalized stresses and velocities
(e.g., Ggg/p, ﬁr/c:d) are also self-similar.

Introducing the similarity variables

p=rfet, g=rfct; q=kp, k=cy/le (2.19)
(where for function of p or q
0 _ 40 _ 8 _ 8
e < te TP T 4%g)
reduces the wave equations on ¢ and w to
2 2 2 :
- + p(l-2 + =0, 2. 20
p(l-p)d,, + P(1-2p7)0, + dyg ( )
2 2 2 .
q (1-qe,, +all-297)e, + wyg = 0. (2.21)

We meake note that the higher order p and q terms in the coefficients
are the inertia contribution.

Making the change of dependent and independent variables in
(2.12-16), the displacement-potential relations give

2

-q” o L2 ,

TE TR % (222
2 ..

-q  duy 2 .

"'(':-"" -”a-é'l*- =k 136 + quq N (2- 23)

I

and after some manipulation, the stress-potential relations become



2
r’
2oThe K@% - 29, - So )

B 8g q gq 0

q2 9o
) rr 2 2. 2 4
= < — ag - (KT-2a% ey <%0 > =0

2

9" .9 b 2

—_— =T 3, + 2(q°-2

B oq q Yo T Al 2y

. i,

Integrating and applying the quiescent initial conditions yields

2
4 dogg 2 2 4
- = k -2 + W, , 2. 24
2
g aar@ Zk2 2z
— X R 9 -2 , 2. 25
2

Recall, by the decomposition into even and odd loading cases,

stress boundary conditions on 6 = 0, 2y are replaced by the simpler

set, (1.1, 2,7,8), on 8 =0,y. These are written as
0 =0: gy = poSla,-a); q, = kp = V/cr (2.27)
O.p = BT S(A -4), (2.28)

6 = v: Opg = Yg = 0; sym. case,

Gy = ur = 0; asym. case,

with similarity variables introduced by dividing the argument of S

in (1.1, 2) by ¢ _t. Substituting these into the displacement and
r ~
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stress relations, (2.22-25), gives boundary conditions on the

dilatation and rotstion as

2 2 2 4
0 =0: -0.4.8(a-9 ) = k(a7 -2)8, + wy, (2. 29)
2 2K 2 '
“To9,0(a-9,) = "9 - 2(a7 - 2, (2. 30)
2
2k 2
6 =v: =38, - 2(qg"-2)w_ =0
Vi (@ -2y
: sym. case,
kzﬁe + qu-.,\q =0

2, 2 4'
k -2 + —w
(a )6q 7“6

i
o)

asym. case,

2
kqﬁq—ZwB»O

where 6 is the delta function. Solving the homogeneous equations

on 8 =y vyields

0 =v: 8, = Wy = 0; sym. case, (2.31)
gq = wg = 0 ; asym. case, (2.32)

with the possibility of nontrivial solutions at q = 0 in either case.
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§ 3. SELF-SIMILAR SOLUTIONS: THE REDUCED PROBLEM

The self-similar forms of the governing differential equations,
(2. 20, 21), are of mixed hyperbolic-elliptic type. For example,
(2.20) is elliptic when p<1l, hyperbolic when p>1, and paraboli-
cally degenerate on the unit circle, p = 1. In the elliptic domain,
transforming the equation to canonical form by the change of vari-

ables (the so-called Chaplygin transformation),

£ = cosh™l1/fp = log%(l + f1-p2) ; 0<t<w, (3.1)
yields Laplace's equation,

0§§ + 696 =0;
while in the hyperbolic domain, the transformation
£ -cos lifp; O<E<u/2, (3.2)

gives the wave equation

0&5 = 099 ©
Similar results follow for w from (2.21). The change in character
of solutions across the q = 1 and p = 1 degenerate curves partition

the physical domain into three well defined regions referred to as

the common hyperbolic region (p = q/k> 1), the composite region

(1/k<p<1), and the common elliptic region (p< 1/k) (cf. Figure 2).
Solutions for ¢ and w are easily found from the canonical

forms to be
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(D) Common Elliptic Region
Composite Region
Common Hyperbolic Region

FIGURE 2
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O,(0,) +©_(@); @ =0 cos™t1/p, p>1, (3.3)

+
3(p, 0) = X
Re©O(@) ; a =0+ icosh™ " 1/p, p<1, (3. 4)
QB) + QB B, =0 % cos  1/q, q>1,  (3.5)
().)(q, 6) =

Re Q(B) 5 B =0 +icosh™l1/q, q<1, (3.6)

where the positive branch of the inverse functions is taken, as in
(3.1, 2). The elliptic solutions, © and §, are analytic functions
over strips in the complex & and 8 planes; and the hyperbolic
solutions, 9+, 6_, Q+, 2 , are distinct real functions. In a p- 0
polar coordinate system, the a, characteristics are straight lines
tangent to the p = 1 unit circle at 0 = @, as shown in Figure 2.
Because this circle is an envelope of characteristics, it is itself

a characteristic. In a q-0 coordinate system the [, characteristics

=+

are tangent to the g =1 unit circle, also a characteristic.
Self-similarity and the loading decomposition have reduéed
the dynamical problem to determination of the above elliptic and
hyperbolic solutions satisfying boundary conditions, (2.29-32), on
the 6 = 0, v rays.’ These conditions involve derivatives of ¢ and w,
~which are found by differentiating the hyperbolic solutions directly,

as

g = OL(a,) + ©' (@), ; (3.7)
1 1 1
3, = —==1[0] (a,) - ©' ()], (3. 8)

pvp -1
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wg = Q. (B) + QB (3.9)
1 . , |
= [, ) - Q (B)], (3.10)
q /q2~1 + 7+

or, using (3.4, 6) and the definition for derivatives of an analytic

function to write

6'(a) = Jg + ip\/‘1~p2 0p . (3.11)
Q'B) = wy + igy1l-q? © - ‘ (3.12)

Eliminating ¢ and w in (2.29-32) through the above relations yields

the following reduced set of boundary conditions.

p =q/k>1 (Cornxhon hyperbolic region)

6 =0: ai:icosnll/p, Bi:icos‘_ll/q
- ke z2)rg 4
0~——ﬂ—-—~+(+>«e(a)]+ —[2,B,) + 2' ()] (3.13)
pvp
Zkz i )
0 = Z-[0) (@) +0(a)] - ——3~—-—[sz (B ~ Q8] (3. 14)
qvq”

6 =v: a :Yicosmll/p, B :y:hcos°~1 1/q

& +
6+(a'+) = -0 (a), Q+(B+) =Q_ () ; sym. case (3.15)
©.(e) =0'@), QB = -Q(B) ; asym. case (3. 16)

1/k<p < 1 (Composite region)
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6 =0: Gz:icoshhll/p, B :icosnll/q

+
K(g%-2) ;. o 4o '
0 = —2—=Im O (a) + —[Q_ (B,) + Q (B)] (3.17)
5 q + 4+ - -
pvl-p
Zkz 2(92_2) 1 '
= q Re ©'(a) - - [Q+(B+) - 2 (B)] (3.18)
qvq -1

0 =v: a=v + icosh—ll/p, B, =y :l:cos—ll/q

Re ©'(a) =0, £ (B,) =Q'(B); sym. case (3.19)

Im ©'(0)

I
o
<

+ —
w

+V
|

= -—Q'_(B__) ;  asym. case (3. 20)

0<p < 1/k (Common elliptic region)

6 =0: a = icosh—ll/p , B = icoshhll/q

2 4
2 - ! — Re Q! 3.2
"Goqoﬁ(q'qo) _ k(g %) I:r:g@ (@) + q e Q'(B) | ( 1)
P‘/l“PL
2 2K? 2(q%-2) |
-7 4,6(a-q,) = Re ©'(a) - S4—Z1m Q'(B) - (3.22)
o'o o q >
qvl-q
0 =v: a-=y +icosh—ll/p, B :y+icosh_ll/q
Re ©'(@) = Im Q'(B) = 0.; sym. case (3. 23)
Im ©' (@) = Re '(B) = 0 ; asym. case (3. 24)

We find in the sequel that the hyperbolic solutions are easily

determined from (3.13-20) by the method of characteristics, but
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elliptic solutions are considerably more involved.
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§ 4. HYPERBOLIC SOLUTIONS: HEAD WAVES AND CYLINDRICAL
. WAVEFRONT BEHAVIOR

In the common hyperbolic region, as p, q = « corresponding
to t = 0 and/or r —~ «, quiescent initial conditions require the

dilatation and rotation to vanish. Thus from (3.3, 5),
©,(0% w/2) =9 (6+w/2) =0; p,q =, (4.1)

the results of which are illustrated in Figure 3. Substituting these
initial conditions into (3.13-16), solving and continuing into the
interior along characteristics, it readily follows that solutions in

the common hyperbolic region vanish identically, hence

This is due of course to the absence of supersonic (V>cd) boundary
disturbances (recall V< cr).

In the composite region, referring to Figure 4, the first
B, B+? characteristics on which w does not necessarily vanish pass

through p = 1 on 6 = 0, 2y and are tangent at 6 = 6 2y - 6

h’ h

respectively, where
-1
6, = cos 1/k . (4. 3)

Provided then that Zy>9h as in Figure 4, some neighborhood of
the entire composite region boundary is a simple wave zone, in
other words, solutions depend on a single characteristic variable,

B nearG:OandB+near9:2Y.
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FIGURE 3
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FIGURE 4
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Therefore, we can set Q+(B+) = 0 in the composite boundary

conditions, (3.17-18), on 0 = 0, giving

2 .
0 = K4 =2 1, 01(0) + %9'_(3,)» (4. 4)
p l-pz
2k 2(q°%-2)
0 = TRG 6'(02) + - '——‘Q_'. (B_) s (4. 5)
q q2~1

and solve for §'(B ) on the boundary as

2, 2 2/ 2 ‘
QUB) = ;".lf._ig._:..g.).lm 8'(a) = “k Vg -1 Re O'(a) . (4. 6)

WPl 2
4\/1—p2 q-2

This is continued into the composite region along characteristics by
the substitution q = l/cosB_ (i.e., setting 6 = 0 in B, (3.5))

whence (4.6) becomes

Q' (B) = ck tanf pe Gi(icosh—l[kcos B 1), (4.7)

choosing the second equality. To determine Q;_(B+) excited on the
6 = 2y boundary, use is made of the relationship, B+ +B = 2v,
on the bisector 6 = ¥ to eliminate 6_ in (4.7). Substituting the

result into the conditions on 6 = vy, (3.19, 20), gives

2 " |
QL(8,) = #S18REVBe) Reoi(icosh™ [Kkcos(2y-8,)]) (4. 8)
tan®(2y-B,)-1

where the upper and lower signs refer to symmetric and asymmetric
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loading cases respectively. Thus the dilatation on the boundary
determines completely the rotation in the head wave region.

These hyperbolic solutions in the composite region are
commonly referred to as head waves. They are Mach envelopes
of rotational disturbance excited on the boundary by the dilatation.
Such solutions are readily generalized to smaller angles by includ-
ing reflected head waves iﬁ the boundary conditions but this merely

adds algebraic complexity and is not considered further.

Observe that on the q = 1" characteristic envelope, from

(3.5),
w1, 0y = Q.0) +9_(9).

Therefore, provided that the behavior of w across the characteristic
is known, values of w on g = 1  (and likewise ¢ on p = 17) in the
elliptic domain can be determined. Clearly information on the
wavefront behaviér is required.

To establish continuity across the characteristic envelopes
recall that ¢ and w are governed by scalar wave equations, hence
the results of geometrical optics are applicable. In particular any
jump or infinity across a cylindrical wavefront (with radius R = ct)
decays like R~1/2 due to réy divergence [17]. However, by virtue
of self-similarity, such singularities must remain unchanged as the
front propagates, so ¢ and w are continuous by contradiction. The
same is true for all 6 derivatives because they are functions of

P, @ and satisfy the same scalar wave equations as § and ow.
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Values of I and Wy (appropriate because e;: and Q;: are
generally known) can therefore be continued from the hyperbolic

into the elliptic domains across cylindrical wavefronts as

06 = Re O'(0) = G;(@) + ©'(9), ' (4. 9)
wg = Re Q'(0) = Q;(e) + Q'(), ' (4.10)

with the hyperbolic solutions given by (4.2, 6, 8). These supply
necessary conditions on the elliptic solutions.
Additional details at the wavefront are found from local

solutions of the governing equations, e.g.,

2 2 2
q (l-q )wqq + q(l-2q )wq + Wy = 0,

in the neighborhood of q = 1. Introducing q = 1 % ¢ ; 0<e<<1,

into the above gives

2€wee + w_ F Wpg G .
Separable solutions continuous across q = 1 have the asymptotic
form,
=+
ol * €, 0) = (b, + b2ﬁ+ 0(e)) B(O), (4.11)

where constants b; and b. are defined on either side of the

2
characteristic, and B is a regular function of 0, i.e., possesses
all 6 derivatives. Similar results are found for ¢, with p = 1% ¢,

as

S(lte, 0) > (a; +azVe + 0(c) AB) . (4.12)
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Substituting these local solutions into (3.5, 6) and letting

P, 9 1 (e—0),

0'(0) = a;A'0) - i—‘g‘aé A9) (4. 13)
Q'(0) = b B'O) - i[gb; (6) . (4. 14)

Therefore O'(@) and ©'(B) are analytic on the p, g = 1 degenerate

curves by the regularity of A and B.
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§ 5. CANONICAL BOUNDARY VALUE REPRESENTATIONS ON
6 = 0 IN THE ELLIPTIC DOMAINS

The reduced boundary conditions, (3.17, 18, 21, 22), provide
canonical forms for boundary value representations of ©'(q) and
Q'(B) on the 6 = 0 boundary. In the sequel these representations
yield natural factorizations of ©' and Q' in complex half-planes
(onto which the semi-infinite strips will be mapped, as in Figure 5b).

On the 0 = 0 boundary of the common elliptic region (3.21,

22) are equivalent to

. 2

-g.q%s(a-a,) + i®,) = ﬂ‘ﬂ—i?-e'(a) b oRB) (5.1)
pv 1-p
2 . 2

raZ6la-ay) + it () = o + B, (5.2)

3
qvl-q

(by taking real parts of the above) where &, and ¥, are unknown

real functions. Solving for ©' and ' gives

o) = P 1-p” 2 : 2
(@) = (@7-2)®,(p) + i2/1-q" ¥, (p) +

kR(p)
[1(q ~2)o, - 2V1- 'f]q 6(qq)$ , (5. 3)

2
Q'(p) = T ; i 2/1-p% & (p) + <q2-2>\111(p) +
2R(p)

l

[?A/lp o, +1(q -2)7_lq 6(qq)2 . (5. 4)
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The well-known Rayleigh function,

2 2 2 2 2
Rp) = (p%-2)” - a/1-p" V1%, (5.5)
Ch :
has a simple zero at PR = —, where c_, is the Rayleigh wave
Cq R

velocity, and double zero at the origin, with

R(p) ~ -2(k%+1)p? . (5. 6)

The poles in (5.3, 4) at Pr give rise to the Rayleigh surface wave.
Delta functions in (5.3, 4) characterize the singularities of
©'(e) and Q'(B) at the surface traction discontinuity as simple poles.

Their residues follow from the representation. For example,

writing
Cla) . . . -1
O'(a) = -O%&—(-) ; 0!0 = i §0 = icosh 1/po , (5.7)

and taking the limit as 0 — O+, gives

oY = CXi§HW6(§~§Q - i?%?~] . ' (5. 8)

(o]

where the delta function is the limit of a delta convergent sequence

(Gel'fand and Shilov [18]). Using the identity

6(a-a ) =1¢"(q)]8(8-¢) , (5.9
to write
6(¢-% )
6(q-q) = *-~*~—g ) (5. 10)
9,V 1P,
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then substituting (5.10) into (5.3) and comparing the result to (5. 8)

gives the residue of O'(@) at p, 2s

2 .
1Y
. _ \ B '—]; (o} s 2— _ 2
lim (¢ 050)9 (@) = T Rip_) [-i (qo 2)00 + 2vV1 quo] ,
oo [¢]
o
= iooTl +,70T2 s : (5.11)

where the definitions of T1 and T_ are obvious. - Similarly, the

2

residue of '(B) at q, is

2
q
lim (- )0'(B) = 2= w2y [24 197 oy + 127 ]
B"’Bo . o)
=0 T, + i1 T, . (5.12)

These results are equivalent to those of Cole and Huth [19] for the
steady state response of the half-space to traveling surfacé loads.
With regards to the sufficiency of representations, (5.3, 4),
we examine briefly the possibility of hidden singularities in the
unknown real functions, <I>1 and Cbz. Use is made of the fact that
except for isolated singular points on the boundary the real and
imaginary parts of either O' or ' are complex conjugates. For
example, if ©' has a simple pole besides the traction and Rayleigh
poles then depending on the character of the residue (i.e., real,
imaginary, or complex) from (5. 8) <b1 in (5. 3) exhibits a pole
and for delta function while CI’Z exhibits a conjugate delta function

and/or pole. In other words the singularity of one completely

determines the singularity of the other by virtue of the conjugacy.
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The same argument applies to a simple pole in the §' represen-
tation, (5.4), however it is readily shown that the conjugate pair
deduced from (5.3) is equivalent to the pair deduced from (5. 4)
if and only if the singularity occurs at the Rayleigh wave, 1.e.,
P = PR- Similar results are found for logarithmic branch points

or higher order poles. In any event because the Rayleigh pole is
explicitly factored in (5.3, 4) any infinity in @l or @2 at pp can

be shown to give rise to unbounded energy at the Rayleigh wave

and therefore must be excluded. Note that in general any singularity
worse than a simple pole is likewise inadmissible on physical
grounds,

We conclude that (I)l and (I)Z in (5.3, 4) may have at most
integrable infinities on the closed interval, 0 < g < 1, with the
exception of the Rayleigh wave where they are necessarily bounded.
Actually because the governing equations and boundary conditions
give absoclutely no indication of contrary behavior it can be safely
assumed in the sequel (for the sake of simplicity) that @l and (I)z
are bounded functions (except possibly at the edge as discussed in
the next section).

In the composite region, boundary conditions on 6 = 0, given

by (4.4, 5), are equivalent to

-
1®,(p) = ;1——139:239 O'(a) + —(—%—Q'_(B) - (5.13)
pvl-p



2 2
i) = Z-0ne + Hiayp (514
qvg -1 |

{again by taking real parts). The real functions, <I>1 and \Ifl, can
be thought of as extensions of their namesakes in (5.1, 2). Elimi-
nating ' (B) from (5.13, 14) yields

/ 2
e'(a) =

kR(p) (q -2)®,(p) - 2q -1 ¥ (P)% , (5.15)

which is clearly the continuation of (5.3) with 1—q2 - i q2~1

The Rayleigh function is now complex, as

R(p) = (k%p2-2)% - i4f1-p% JKZp2-1 . (5.16)

Observe that from (5.15), or eqmvalc,ntly (4. 6), the argument of

o' (a) on the boundary segment is

I~ 72 72
ARG 0'(a) = tan"lgr;@:(g; = tan” ! "4‘2{2?2 ‘/21; p -l (5.17)

In the sequel we use this informatio%x to factor out the complex
behavior on the mapped segment.

The boundary value representations of ©'(@) and Q'(B) given
by (5.3, 4, 15) are taken as canonical forms by reason of their
explicit complex and singular behavior. Additionally, for degenerate
(separable) angles, 2y =w, 2w, applying simple conformal mappings,
the semi-infinite strips in the @ and 3 planes go to half-planes,

e.g., Figure 5b for the slit, where the representation can be
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continued off the real axes by inspection. This is the technique
used by Craggs [7] and Miles [10] for the half-space and semi-
infinite slit respectively, however their formalisms can be
simplified considerably using the above canonical forms. The
semi-infinite slit is the more involved of the two and is examined
in the Appendix. We note in passing that the loading decomposition

is superfluous for the half-space.
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§ 6. EDGE BEHAVIOR

Typically with physical problems involving an edge, conditions
on the behavior of solutions as r—0 must be established to insure
uniqueness. There‘fore, before proceeding with the elliptic solutions,
we investigate the asymptotic behavior of ¢ and w at the edge. A
straightforward approach is to solve local forms of the goverﬁing
equations and boundary conditions. The results so obtained are
compatible with the self-similar solutions and reduced boundary
conditions.

Provided crt>>r, in particular as r—+0 at the edge, p and
q are small. Expanding the coefficients of the governing equations,

(2. 20, 21), to lowest order in p and q gives

2
+ + =~ 0, 6.1
P I, T PO, 099 (6. 1)
Dzw + pw + w ~ () (6. 23
X pp £ p 66 ¥ [N ]

where the neglected terms are due to inertia. Consequently we
expect solutions of (6.1, 2) to yield quasi-static behavior. Expand-
ing the boundary conditions, (2.24, 25), in a similar fashion gives,

on 8 =0, 2y

2

which we recognize as the Cauchy-Riemann equations in polar



coordinates, p and 6 .

Separable solutions of (6.1, 2) satisfying (6.3, 4) are

3p,0) ~ p*(alcosxe +a,sinX0) , . (6. 5)

2
K%
P (a»1 sin)f - a_cosxf) , (6. 6)

wlp,0) = >

or, for the separation parameter, X (not to be confused with the

elastic constant used in §2), vanishing

3(p,0) =~ b0 + b,Inp , (6.7)
K? ~
wp,0) = > (bZG - b,inp) , . (6. 8)

where ags az, bl’ b2 are arbifrary real constants. These satisfy

the Cauchy-Riemann equations, (6.3, 4), for arbitrary 6, and so

asymptotically -2~2 w is the harmonic conjugate of 4. Also, sub-

stituting the Cauchy-Riemann equations into (2,22, 23) gives

L

e, o~z w0 | (6.9)

4 r

_gE 8{19 r

L2 = S, =0, (6. 10)
r c.

the expected result that inertia effects are negligible for r<< c.t.
We conclude that a neighborhood of the edge (expanding uniformly

with time) moves at some constant velocity.
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To determine the order of the power singularity in (6.5, 6)

we resort to the stress equations of motion [15], written as

aorr 801-9 .
or T oot %y T % T PTU.
oc o0,
0 006 N -
o + ob + 201*9 = PTYg

Recalling that r—g—lj = p-é% for functions of r/t, and substituting

(6.9, 10), these reduce to the static equilibrium equations,

00 o0 6

rr r :

pap +~*é§-+0‘rr°-066———0, (6.11)
o0 oo

p af* age t 2 9 =0, (6.12)

with the compatibility equation, Vzﬂ = 0, implicit in (6.1). Sub-

stituting (6.5) into (2.26), gives

A : ;
o.. =P (c;cosX® + c,sindb) - gpp
with
= 2u(k®-1) a ;
C1,2 TeME ~H8y 2

introducing this into (6.11), eliminating 0.9 ©OF Ty between the

two equations, and solving, yields

A '

Gpg = PAO) - (6.13)
PYA '

o = P'B(O) , (6. 14)

where
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A(G) - z(atd (ZMLZ)[clcos A6 + czsinke] + c3cos(l+2)9
A
+ c4sin(7t+2)9 , (6. 15)

A
BO) = )“H)(ZM—Z) [(~c1 + 72( CZ) sinx0 + (—12—~c1+c2) cosAf ]
A

+ —;\—[(h+2)c3 - 254) sin (A+2)0 - (2c,+(At+2)c ) cos(A+2)0] (6. 16)

4)

Boundary conditions on 6 = 0, 2y may be taken as

%%g _ %%
op op

=0 , (6.17)
which require
Ay = B0) = Azy) = Blay) =0

The conditions on 6 = 0 give

()2 A+l
3 = > Cy s Gy = RTC, (6.18)
A
while those on 0 = 2‘}/ yield 2 homogeneous system of equations
for ¢y and P For a nontrivial solution, the determinant of the

system vanishes leaving a transcendental equation for X, namely
2 .
sin2 2y (A+1) = (A+1) s:tn2 2y . (6.19)

This equation and its admissible solutions are well known from

static theory [20], [21]. In particular X = -1/2 when v = = (slit)
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and increases monotonically to X =0 when ¥ = n/2 (half-space).

For the reentrant wedge, w<2y<2mw, we therefore expect power
singularities in the dilatation and rotation, but for smaller angles
the behavior is given by (6.7, 8), with at most a logarithmic
singularity at the edge. We mention in passing that attempting
to solve for constants b1 and b2 in (6.7, 8) using the static
equations, (6.11, 12), as above gives in general only the trivial
solution (exceptions are at 2y = w/2, ).

To determine the behavior of O'(a) and Q'(8) we substitute

the edge solutions, (6.5-8), into asymptotic forms of (3.5, 6), giving

for p,q—+0
-ixz"(al-z-iaz)eim; 2y> T (6. 20)
6'(a) ~
b, +ib, ; 2y<w | (6.21)
2-2 ' .
[ Akl_,\ (al-iaz)elw; 2y>m (6.22)
2
§24(B)~ > _
.k .
ml—z—(blﬂbz) VA (6.23)

With the edge behavior known we are in a position to solve uniquely

for ©' (@) and '(B).
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§ 7. FACTORIZATIONS OF O'(a(z)) AND '(B(w)) IN THE
TRANSFORMED ELLIPTIC DOMAINS

In preparation for determining the analytic functions, O'(@)
and '(B), the semi-infinite strips in the range 0<6 <y are mapped
onto the upper half of complex z and w planes by the conformal

transformations,

™

Z:X'i’iY:]./COS*Ty—”, (7. 1)
W:u-}-iV:l/COSI;‘/@ . (7. 2)

The succession of mappings from the physical domain, to the semi-
infinite strips, to the z and w planes, is illustrated in Figures 5a, b.

On the real axes (the mapped elliptic domain boundaries) we have

1/x = cos%g cosh(——;j- cosh™! 1/p) , (7. 3)
1/u = cos%q- cosh(—%r- cosh™* 1/q) . (7. 4)
- Points X, E¥ps Uy, Up in Figure bb are the images of P, Pps 9,5 9p

(i.e., the traction and Rayleigh poles) on 6 = 0, while subscripts
a-g, usea primarily in the éequel, refer to images of A-G in
Figure 5a (e.g., x, on the real axis in the z plane).

The conformal mapping preserves boundary values, so collect-
ing boundary conditions on O'(@) from the previous sections gives

conditions on O'(a(x)) as:

X221, xs-1(p=1, 0<0=<y)




- 40 _

FIGURE 5a
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Re O'(a(x)) = 0 , (7.5)

from (4.9) and (4. 2), where
ax) = 0(x) = L cos™l1/x ; (7. 6)

~1<x<0 (0=vy, 0<p<]1)

Re O' (a(x)) = 0 ; sym. case, (7.7)

Im ©'(a(x)) = 0 ; asym. case, (7.8)
from (3.19, 20, 23, 24) where
a(x) =y + icosh™! 1/p(x) = v+ 1-}Tir- cosh™? 1/x (7.9)

0<sx<l (0=0, 0<p<1)

2
0'(a(x)) = RENLRL) Y (20 218 (px) + i2/1-0%x) W, (p)

kR(p(x))
+*[i(q§—2)q)— ZJItés 70]q§6(qhd-qo) , (7.10)
from (5.3, 15) with

1/p(x) = k/q(x) = cosh(y/= cosh™ ! 1/x) . ' (7.11)

Similarly, boundary values on '(B(u)) are:

H(6(u)) ; l<su<u ,

Re Q'(B(u)) = (7.12)
H(O(u)) = H(2y-0(u)) ; u?uh , us -1,
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2
H(0) = :-—15—~2t—%9—?~ Re @‘(icosh—l(kCOSQ)) s (7.13)

tan™6 -1
from (4.10, 7, 8), where

Bu) = 0(u) = Lcos™tiju ; (7.14)

T

~-1<u<0 (O=y, O0<g=sl)

Im '(B(u)) =0 ; sym. case, N (7.15)
ReQ2'(B(u)) = 0 ; asym. case, (7.16)
from (3.23, 24), with

Bw) = v+ iLcosh1/u ; (7.17)

0<u<l (8=0, 0sqg<l)

_
QB = Wi | 2/1p?) &) + (@Xw-2) ¥, (pw)

/ 2 ., 2 2
+ [2/1-p] o, +i(q -2)7 ] 8(a(w)-q ) | , (7.18)
from (5.4), where

1/q(u) = 1/kp(a) = cosh (L cosh™ 1/u) . (7.19)

This boundary behavior is illustrated in Figure 6. Notice

that on the characteristic envelopes, CE and BF in Figure ba,
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applying results of the wavefront expansion, i.e., (4.13, 14),
©'(0) and Q'(0) are bounded there, including the endpoints. Hence
at infinity in the z and w planes (images of D or I in Figure 5a)
©' and Q' go to imaginary and complex constants respectively
(recall, from (4.2, 9) Re O' vanishes). Additionally, solutions
at branch points corresponding to B, C, E, ¥, and H are bounded,
at least from one side, in which case analytic function theory
guarantees boundedness from both sides. This excludes, for
example, logarithmic or algebraically unbounded branch points
(e.g., 1/Jz). Therefore transitions from real or imaginary to
- complex along the boundary in the z or w planes are continuous at
images of B, C, E, F, and H.

At the origin the asymptotic edge solutions have both ©' and

Q' going to complex constants as in (6. 21, 23), but applying (7.7, 8)

or (7.15, 16) requires that ]o1 = 0 for the symmetric and bZ:O for
the asymmetric case; namely, for z,w-—0
ib2 ;  sym. case,
©'(a(z)) ~ \ (7. 20)
b1 ;  asym. case,
k2
> b2 ; sym. case, (7.21)
Q' () ~ )
—i-ls—z- b1 ;  asym. case. (7.21)

We now use these boundary value representations to factor

out the explicit boundary behavior of ©'(0(z)) and Q'(B(w)) (i.e

3
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branch points, poles, etc.).
Beginning with ©'(a(z)), the complex behavior of the Rayleigh
function in (7, 10) (cf., (5. 15, 16)) is factored by a sectionally holo-

morphic function with line of discontinuity (branch cut) on x, <x<1,

b
and equal to R(p(x)) there as y*’0+. In other words, we seek a
function analytic in the upper half-plane and real or imaginary on
the real axis, except for the segment xb<x<l on which it is

complex and equal to R(p(x)). This is easily found using limiting

values (y~>0+) of the Cauchy type integral,

1
I(z) = ’}1‘? %%lds , | (7. 22)
*b

to represent the principal value of the logarithm of R(p(x)) in the

range xb<x<l as

: 2 2 2
log R(p(x)) = LoglR(px)I + itan” ! ~4‘/1"P Z(X) ‘/k p_(x)-1

(k%% (x) - 2)°

lim T(z) = I'f(x)

y—o0" ’
1
l—/ D(s) ds + iD(x) ,
T S -X
b
with the last integral taking its principal value at s =x. Equating

real and imaginary parts gives
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-1 —4\/1 —pz(x) w/kzpz(x)— 1

D(x) = tan 55 5 ; (7.23)
(k'p (x)-2)
1
P - 1 D(s) _
Iz = — [ 22 ds = LoglRpx)] ,
*b
1 2 2 4 2
= = Log[ (%p%m)-2)* + 16(1-p%) % 2)-1)] (7. 24)
where the P su‘perscript denotes a principal value. The Rayleigh
factor is then
1
el(2) exp[——iir—'/‘ %%ds] , (7. 25)
: Xb

analytic everywhere except on the real segment, xb<x<1, (i.e.,

sectionally holomorphic) and O(1/z) at infinity.
Removing the complex behavior on xb<x<1 and the branch
point at z =1 (from the 1-p2(x) term in (7.10)) giveé

(=) 1
B,(z) = = O'a(z)) (7. 26)

l-2

with the square root positive for positive argument, that is, at

z =x<1. This convention is applied to all subsequent square root

branch points, with branch cuts taken on the real axis. The analytic

function, <I>2(z), is complex on O<x<xb, real on x?xb, and O(—-—}_—)
zZ

at infinity. Referring to Figure 6, for the symmetric case <I>2 is
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imaginary on x<0, and for the asymmetric case it has a branch
point at z =-1 like V14z (rather than 1//1+z , by continuity).
It is convenient in either case to remove the Rayleigh and

traction poles by subtraction, yielding the factorizations,

iRlx/Xb—-z + RZ\/‘z’

r
7o () - 0 em)
5 1-2z Z-Xp
0 Sz + i1 S Vx -z ‘
_© 1 0 2 "b , (7.27)

Z-X
o)

eI"(z)e‘(a(Z)) ] ile,/Z/(x.b~z)+R.2

& _(z) =
a 1-—z2 Z-Xp
cosl +1i TOSZ\/Z7(Xb—Z)
- . (7.28)
Z-X ,

The surviving factors, {I)s,a (symmetric and asymmetric respec-
tively), are real on the real axis except on 0<X<Xb where they are
complex. The square root branch points are chosen to make the
real and imaginary boundary behavior consistent and to match the
order at infinity. Solving for ©'(e(z)) gives, for the symmetric case,
iR Vx -z + Rz

Z -X

0'(a(z)) = e'r(z)ff?{[\/? _(2) +
R

+

GOSIH + 1 'TOSZ\/Xb—-z ]

Z - X
(e}

(7. 29)
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and for the asymmetric case,

i RI\/Z7(Xb—z) + RZ

Z-X

o' a(z) = e T B 1,2 [(I)a(z) +
R

+

. (7. 30)
C

0.8+ iTOSZ\fz 7(xb-z) ]

where the unknown factors are necessarily O(1/z) at infinity. To

exhibit the asymptotic results, (7.20), at the origin, clearly for

:x—-’O+
Re & _(x) = o(1A/F), Im &_(x) = OIAX) , (7.31)
Re (I)a(x) = O(1) , Im @a(x) = o(l) . | (7.32)

Also, from the 1—q2(x) term in (7.10), Im ©'(o(x)) vanishes ét

x. like L, -X whence as x—x,
b FpTE ¢ b

Im (I)S(X) = O(\/xb~x Yy, (7. 33)
Im & _(x) = O(l/—\/xb»x) . (7. 34)

Factorization of '(B(w)) are obtained in an analogous fashion

as

R3\/1+w+ i R4\/§“\-f

VTrw @ fw) = TLE0D

1-w W-U.R

ic S AW + 7.8 VJI+w
_ o 3 o 4 ’ | (7. 35)

W -1
O
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) = Q' (Bw)) R3\/\_V—+1R4\/1+W
a - . W~ u
V1-w R
igos3v1+w+vos4\f\£f"
- T, ,

where both residual factors are complex on u>0, u<-1

(7.36)

while

\IIS is real on -1<u<0 and \Ifa is imaginary there. Solving for

Q' (Bw)), the symmetric case gives

| R,VT+w +iR o/w
QUBWwW)) = V1-w I:\/1+W‘Ifs(w) + r—
R

. i 0053\/%7 +"7’OS4\/1+W ji

w-u
and for the asymmetric case,

R3\/€/ +i R4J1+w

‘W‘*UR

QB = JI-w {V’I\F T_(w) +

+
We-u

10083\/ 1+w+'r084\/\71 J i

where again the unknown factors are O(1/z) at infinity.

the asymptotic solutions, (7.20), require

i

Re ¥_(u) = O(1) , Im ¥ (u) = o(l) ,

i

Re ¥_(u) o(1/Nu), Im v _(u) = o(1 /Vu).

(7. 37)

(7. 38)

As u*’0+

(7.39)

(7. 40)
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Continuity at the w = -1 branch point and (7.12, 15, 16) yield for

u— -1
Re ¥_(u) = o(l//-T-u) , Im T () = o(1/-1-u) , (7.41)
Re ¥ (a) = O() , Im ¥ (u) = o(l) . (7. 42)

The residue at X hence S1 and SZ’ is found from (7.29, 30)

using (5.11) in

Z - x
. ' . C oy e o
lim (z~xo)9 (@(z)) = @ OOT1 +T '12) lim - 5 ,
Z—x Z7vX o
o o
(a***ozo)
2

I

T o
— (o, TyFiT To) x V1-x7

to be
N ) { *\/xo(lero) ;  sym. case,
L X
Sl =y Tle (o) _ (7.43)
X ; asym. case,
_ e ) \[XO(1+XO)/(Xb—XO) ; sym. case,
s, = TT%, e %o (7. 49)
‘ \/Xb-‘XO 5 asym. case.
Similarly S3 and 54 are found from (7.37, 38) using (5.12), as
\/1+u0 sym. case,
w
S3 = 7‘1‘3\/110 (7.45)
Vvu asym. case,

O
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w/u0 sym. case,

(7. 46)
Vitu ~ asym. case. " "

In order that the residues of ©'(@(z)) and £'(B(w)) in the

factorization be consistent with (7.10) and (7.18) at the Rayleigh

pole,
x*(af-2) .
R, = -R Voo fan e T R
3 1 a/1- 2 R/TR
IR
‘\/UR/XR \/(xb-xR)(l-FxR) sym. case,
(7.47)
l/\/xb—~xR asym. case,
k/1-PZ P
R4 = R2~———Z--—-=—— \/uR7xR e R
go-2
‘R
x/(1+uR)(1+xR) sym. case,
(7. 48)

\/uR7XR asym. case .

The factorizations of O'(a(z)) and Q'(B(w) are now complete.

There remains the determination of residual factors (I’s a(z) and

H

\Ifs a(W). In the next section this is reduced to the solution of

regular Fredholm integral equations of the second kind.



§ 8. INTEGRAL EQUATIONS ON THE RESIDUAL FACTORS

Recall that the residual factors in ©'(a(z)) and Q'(B(w)) are
analytic in the extended planes with the exception of branch cuts on
the real axes, and with at most integrable singularities at the
branch points. Consequently they are sectionally holomorphic
functions, equivalent to Cauchy type integrals over segments of

the real axes.

We therefore express q)s,a and \I’s,a as
x
b
1 *po8 $5(6)
@S(Z) = -;r—f S pap ds , (8.1)
0

1 " s rba(s)
®_(z) = 7/ /;;F —— ds (8. 2)
0

b (s)

1 £
\Ijs(W) - ?f \/‘l+s 5-w ds \ - (8.3)
L

s Yals)
1 1+
T_(w) = ?f/:-;?’- = ds : (8. 4)
L

with the weighted density functions, ({)S a and Lps a (henceforth
referred to as the density functions), assumed Holder continuous
on the open interval. The integration interval, I.,, is given by

L:s from -« to -1, 0 to =, ' (8.5)
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These representations clearly have the proper order at infinity.

Boundary values as y,v**’O+ on the paths of integration are

3T ) = VT b ) + BLE) (8. 6)
BT = 1 VE/Gp D 6,60 + BL(0) (8.7
Ve = VR () + T () (8.8)
Vi) = VDA b + T e (8.9)

where as before the P superscript means a principal value.
Applying results in Muskhelishvili [22] for the evaluation
of Cauchy type line integrals near the endpoints, the singular
integrals in (8.6-9) are all bounded at the endpoints provided the
density functions are bounded and nonvanishing there. For z or w
approaching an endpoint from off the integration path the integrals
are unbounded like the Cauchy kernals, e.g., W¢S(x) in
(8.1). It follows then that these representations satisfy conditions
(7.31-34) and (7.39-42) on the residual factors, with (;Ss a and

?

Lps’ a bounded and nonvanishing at the endpoints.

The factorizations, with unknowns represented by (8. 1-4),
exhibit all the explicit behavior of the boundary value represen-
’ca’cions but as of yet still do not satisfy boundary conditions on
O<x<xb and u< -1, u>0. Necessary conditions on the density

functions are found by substituting (8.6-9) into the factorizations,

(7.29, 30) and (7.37, 38), evaluated on the real axes, and applying
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boundary conditions. The two loading cases are considered separately
below. Because forms of the equations are similar in either case,
to simplify the notation the same ksymbols are used although their
definitions generally differ. No confusion should arise from this

convention.

SYMMETRIC LOADING CASE

Introducing (8.6, 7) into the ©'(a(z)) representation, (7.29),

evaluated on OSXSXb, gives

R, oS

X-X

Re O'(a(x)) = e_r(X)\/X(l-—x) [@f(x) +
R o

+ RI\/' (xb-xR);xR WG(X—XR)

+ 'rOSlw/(xb—-Xoﬂxo 1T6(X—XO) :] R (8.10)

o O O T S %
m 0'(a(x) = e B 0= b, 6) + oo+
- RZ\/XR;(Xb—xR) Tr6(X—xR)
- GOSI = (xb—xo) wé(x—xo)] . (8.11)

Similarly, on 0<u<1, (8.8, 9) into (7.37, 38) gives



R T S
Re Q'(B(u)) = x/l—uz [\yf(u) n _3 . 074
o)
WT}'S {(u-u )

+ cos3vuo/(1+uo) w6(u~uo)] , (8.12)

R4 0083
I @' (B(w) = Va(I-w) [wu) e ey
O

- R3\/(1+uR)7uR w&(u—uR)
- 7084\/(1+u0)7u0 w&(u—uo)] . (8.13)

The delta functions come from boundary values at the traction and
Rayleigh poles as in (5.7, 8).

Substituting these into the original reduced boundary condi-

;._n

tions on 6 =0, g =kp<1, (3.21,22), with a, B—alx), Rlux)),

yields coupled singular integral equations on qf)s(x) and LIJS(U.) over

OSxéxb, 0<u<xl as

9 () = £(x) UL (a) + RE () + 7 E,(5) (8. 14)
b (ux) = gx)® (X) + R,gq(x) + og,(x) , (8. 15)

where, from (7.11, 19), x and u are related by

-11

'y
=1t (8.16)

_ s -l L X
1/u(x) = cosh Y cosh [k cosh ( - cosh
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and
f(X) - "‘4\[1_132(}{)\/ ]‘—uz(x) er(X) R (8. 17)
kZ (qZ (x)-2) (Xb—X)(l ~-%)
) af1-p% ) Vi-q°(x) /E(iralE) L ’ 6. 18)
(qz(x)—Z)Z u(x)(xo—x) g(x)
oy o (R, /R ) £(x)
x) = S b , (8.19)
1 E-Xp u{x) up
R,/R
47 772
gy(x) = Xg__(;f) ST (8.20)
R R
-5 S f(x) -
fZ(X) Tox-X + a(x)-u ’ (8.21)
Slg(x) 83
g,(x) = /% T (8.22)
Chserve that (8.17-22) have removable singularities only and that

and g(x) are nonvanishing.

In the w plane,

on u<-1, u>1 (i.e., the map of the q=1

characterstic envelope), substituting (8.8, 9) into the factorization
gives
i R4 6083
Re §'(B(v)) = sgn(ulu(u-1) |y (uv) + + ] , - (8.23)
S u-up u-u
i R TS
Im Q'(B(w) = -sgn (ufu’-1 | Ul (w) + —o + 2 4] , oo
S u-u u-u
- R o]
where the sgn function gives the sign of its argument. Replacing
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Re ' in (7.12) by the above and solving for the density function,

the transformed conditions on the characteristic envelope yield

H({B(u)) ; 1<u<u

h 3
—R4 6083 1
L!JS(U) = G—_‘{;R - au + T H(B(u)) +H(Q2Y-0(u)); UZ‘Uh, (8.25)

“H(O ) - H(2y-0(u)); u< -1.

Substituting the factorization of ©O'(@(x)) into the definition of H(O),
introducing a superscript notation to designate contri-
butions on B+ and § characteristics in the physical domain (namely,

the 2y -0(u) or O0(u) arguments respectively in (8.25)), on l<susuy

q;s(u) = hl(u)@s(xl(u) + thi(u) + th?f(u) + oohé(u) + Tohlll(u), (8.26)

and on u<-1, u>uh

g, = hiwe <) + b e =Fw) + R (bl +hw)]
+ R,[h)(w) + ho(w)] + o [hi(w)+hi(w)]

+ 7 (bt +hom] (8.27)

with
h'(u) = -sgn(u) K (g% )®-2)/ (97 ()®- 1
S @2 -2) %+ 16(1- %)) (1-(q ()

v/:»e:%)(l-x“(u)) .
1) ; (8.28)

%)
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x (u)-x h(uw)
i) = [ ,
x (u) x (u)—xR
1 R,/R
h;(u) _ h™(u) 4’ "2 ,
X (u)—xR u-up
2
b =
x (u)-xR
) S b (w) 5,
h3(u) = ] - s
x (u)-x u-u
2
S,h7(u)
hZ('u) s
3 Xz(u)~x
o
xn(u)—x n
i) =S, [——=> 2l
- x(u) x (u)—XO
where n = 1, 2 and

l/Xn(u) = c:osh(»—;;cosh_1 l/pn(u))

kcos O(u) ; n =1 ,

1/p7(u) = k/q"(u) =

kcos 2y -6(u)) ; n =2

O(u) = —;)j:«cos”1 1/a .

b2

(8.

(8.

(8.

.29)

. 30)

31)

. 32)

33)

. 34)

35)

. 36)
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It follows that hn(u), hgl(u), m=1,2,3,4, n=1,2, are bounded
{the singularity in hl(u) at u=1 is removable because ql(u) =1)
and O(1/u) at infinity,

To understand the notation consider a point w =u on the real
axis with lul>1, whence u is an image of some point 8(u) on the
characteristic envelope in the physical domain. Tangent to the
envelope at O(u) are B;t =0(u) characteristics, illustrated in Figure 7

for u=u,«°, -1 corresponding to 0(u) =0 v/2, Y. The B_ char-

h?
acteristics pass through p = pl(u) on 0=0, with image Xl(u) in the
z plane; while B+ are continued off 6=y as B_ =2y -0(u) and
intersect p:pz(u), the image of XZ(U). Superscripts 1l or 2'in
(8.26, 27) et seq. therefore designate contributions "carried" on
B_ or B+ head waves respectively. From Figure 7 it is clear that

superscript 2 quantities are only defined for u=zu,, u<-1. Note

h’
that if y> Gh’ then the head waves do not overlap (as they do in
Figure 4) and (8.27) is unnecessary. For smaller angles (with
multiple head wave reflections) the contribution from reflected head
waves can be accounted for as in (8.27) by defining higher order
superscripted quantitites (e.g., h3(u), etc.) over appropriate
segments of the u axis. |

Examining (8.15, 26, 27), the q;s(u) density function is deter-
mined completely in terms of integrals on q&s(x), known smooth
functions, and unknown constants, Rl and RZ' By evaluating
P

\IIS (u(x)) in (8.15) we obtain the sought after equation on the

density function, qbs(x), for satisfaction of the boundary conditions.
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Consider \IIS in (8.15) written as

-1
- ) S W (s b (o)
‘I’sm’::;‘f T;s“?"a—d“*f

P (s)
s+———f /1+s ds , (8.37)

where 0<u<1 so the second integral is a principal value. The
aim is to evaluate each of these using (8.15, 26, 27). First note
that because \ps(l) in> (8.15, 26) does not necessarily vanish, the
second and third integrals have logarithmic singularities in general
as u— 1 , which cancel in the s;um. Such singularities could

easily be removed by subtraction, for example

'L'l u

h
[/— : >: ()= Vol b M)

J s - J’ v 1+s s-u
1

L (1) f '1+s s-u ’

but for the sake of simplicity they are carried through.

Defining the two integration paths,

Ll:sfrom -0 to -1, 1 to =, (8. 38)

LZ : s from -« to -1, v to =, (8. 39)
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consistent with the previous superscript notation, and substituting

(8.26, 27) into the integrals in (8.37) over ! yields

S 4‘5(5) 1 S)‘I) (x (S))
1+s s-u R 1+s 5-u ds
l

. hz(s)cbs(xz(s))
T [ Its — ds (8. 40)
2

+R[H +H(u]+R[H(u)+H(u)]

+ o[ Hy) + H@)] + 7 [Hiw) + Ha(w)]

where

) — b (s) |
(u) —T:j‘ /ﬂ?é ey ds , (8.41)

LIl

with m = 1-4, n =1, 2.
It is convenient to define H (u) by integrals over finite
paths on Xl(s) and x (s) through the change of variables, (8.35)

et seq. In terms of xl and xz, L1 and L2 are equivalent to

Ll xl(s) from x to x, (8. 42)

12 : x%(s) from 1 to X (8. 43)

where Xg is the image of pl(—-l) in Figure 7, i.e.,
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X, = cosh[—;—;— coshnl(kcosy)] . (8. 44)

Changing the variable of integration gives

~— M(x,s')h. (u(s"))
2 (x) = HL (u(x)) = -}T-jf /1‘:&"(5,),) e ds' ,  (8.45)
. Ln

ay
®
i

where
P | - PR Y
T 5 ~-X d\l(b i
Mx,s') = gEnaE) i | (8. 46)
with s' :xn(s), u(s') =s. Note, as s'—x_., u(s')—-1" and the

f 3

integrand is unbounded but integrable. Also, as x-*xb, Hrln(x) is

logarithmically unbounded. The expression for u(s') follows from

(8.35) et seq. as

1/u(s') = cos —%—/r«cos—l[—i‘i—cosh(%~ cosh-1 1/s"] , (8. 47)
hence
du(s') u(s'Wu?(s')-1 sinh(- cosh™t 1/s")

(8. 48)

ds' ks'/1~(SWZ sin(éé-cos—l 1/u(s'))

Applying the same change of integration variable to the

integrals in (8.40) and introducing @S(s') from (8.1), we find



b

1 p hn(S)@S(xn(S)) 1 . v U,(S!) Xb—-s"
—T—T_ 1+s s-u ds = :T—Z dsf 1+u(s') gt .

L I P

M(x, s')h" (u(s")d (s"")

]

ds''. (8. 49)

[N

(s'-x)(s"'-s)

Interchanging the order of integration in (8.49) allows (8.40) to be

written as

RS (s 7
T 1+s

Xy
H (x, s”)+I—I (x s'Y)
f :lqss(sn) dst!
Sll
0

g

+ R[HIG)+HS(=)] + R,[H](x) + He ()]

+ GO[H;)(XH-Hg(X)] + TO[Hi(X)+HZ(X)] . (8. 50)
where
H(xs') = Py / u(sT) M(X’S')hn(u(s‘)? ds' . (8.51)

I+u(s')y (s'-x)(s''-s8')

A sufficient condition for wvalidity of the above interchange is that
the integrand of (8.49) be integrable over the s', s'' rectangle.

Observing that
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for n = 2 it is certainly integrable, and likewise for n =1 provided
x<x, . When x =% (8.49) is logarithmically unbounded and the
ques’tion of interchange is meaningless.

To complete the evaluation of \Ilf(u) we substitute \LS(u) from

(8.15) into the principal value integral in (8.37) giving

tP (s) g(x( S))‘b (x(s))
f 1+s s u(x) f v l+s s~ u(x) ds

+ R,G(x) + 0.G,(x) , (8. 52)

where

G, ()

1l

— g,Z (x
f iTs ds , (8. 53)

and £ = 1, 2. Replacing <I)S (x(s)) by its singular integral repre-
sentation and making a change of integration variables, the repeated

singular integral in (8. 52) becomes

1 b
. g6 (3)) 8, (x(5)) 1 u(s) Xb"s
v s 0T 2 J[ Pragst) ST
0 0

M(x,s') g(s') ¢ _(s")

(s'-x)(s''-s")

ds' ,  (8.54)

where M(xls') is given by (8.46) and u(s') by (8. 16) with

du(s) _ w(s ) 1-u?(s') ¥ 1-(p(s))? . (8. 55)
ds s'V1-sM2V1-(q(s"))%
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Applying the Poincaré-Bertrand transformation formula for repeated
singular integrals (e.g., Muskhelishvili [22]) to (8.54), the order

of integration can be switched yielding

— gx(s))@ (x(s) / () (x,, —x) |
f/l+s s -u(x) x(Itu(x)) X,x)g(x)(és(x)

¢ (s |
+/ G(x, s'') —>—— ds'', (8.56)

0

where

- M(X s )g( ")
Gx,s') = be f /lﬁff(s —ry ds' (8. 57)

and we note that M(x,x) = 1. Writing

(s -x)(s''-s8')  s''-x's'-x s

G{x, s':") becomes

Gz,s") = 5 Ygop [ff+s s(kés ds

b .
; M(x,s") g(s')
u(s') 1
"f 1+u(s') Sl_sll dS J » (8-58)

where it is natural to evaluate the first integral as shown rather
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than over s'. In reference to the applicability of the Poincaré-
Bertrand formula to (8.54) with a square root infinity at an end-
point, Muskhelishvili's proof of the formula can easily be shown
to apply.

Finally, substituting (8.56) intoc (8.52), and (8.50, 52) into
(8.37), we obtain an integral equation of the second kind on <f)s(x)

over 0<Ssx<x

b
—ReEN f Ji‘—ﬁ)cb S(s)ds + Ro[£(x)(H) () + H () 44, ()]
(g (x)-2) ,
£ 1 2
+ R, E()[ H, (x) + Hj (x) + G (x)]
£ 1 2
+ o (X)[H3(X)+H3(X)+GZ(X)]
+or [£)(HL () + HE (x) + £, ()]
o 4 4 2 ?
= I(x) + RyF (%) + R,F,(x)
+ GOF3(X) + TOF4(X) , (8.59)
Whefe
J(x,s) = f(x)[Hl(x,s)sz(x,s)+G(x,s)] , (8. 60)
and the definitions of I{x) and Fi(X)’ i=1-4, are obvious. The

right hand side of (8.59) has a removable logarithmic singularity

at x =X, otherwise the terms are continuous. The only non-

removable singularity of the kernel is the algebraic infinity due

to 1/'s
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There remain two unknown constants, R and RZ’ in (8.51)
which are related to the residue at the Rayleigh pole as in (7.27,
28). These are evaluated quite naturally by means of the Rayleigh
function multiplying cj)s(x) on the left hand side. From (5.5) et seq.,
R(p(x)) vanishes at x = O,XR but cf)s(x) is bounded at these points, |
thus % = O,XR are irregular points of the integral equation. How-
ever these irregularities are removable by the proper choice of

Rl and RZ' Setting x = O,XR yields two equations for their

determination, namely

FOR, + FLOR, = -[1(0) + o F,(0) + 7 F (0)] , (8.61)
Fl(XR)Rl + FZ(XR)RZ = ~[I(XR) + O‘OF3(XR) + TOF4(XR)] (8.62)
Provided only that
D = F (0)F,(xp) - F,(x)F,(0) A0, (8. 63)
then Rl and RZ are
*b
FERO
- o A A
R, = = qu(s)ds + O‘OD13 ! TOD14 , | (8. 64)
0
*b
7, (s)
RZ = = ¢>s(s)ds + OODZ3 + 7'OD24 s (8. 65)
0

where
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3, = %[Fi(O)J(XR,.s) - Fi(xR)J(O,S)] ) | (8. 66)

1
Dij —5[}?( )F(x ) - F(x )Fj(O)] , (8.67)

with i = 1,2, j =3,4. Replacing R1 and RZ in (8.59) by (8. 64, 65)

gives

*b

R(p (%)) K(x, s) .
(b (x) = ¢ (s8)ds + Gﬂz(x) + 7 T(x) , (8.18)
(@ x)-2)% S '[ Y ° °

O
where
K(x,s) = J(x,s) - Fl(X)Jl(S) + FZ(X)JZ(S) s (8. 69)
Z(x) = -Dy F (%) + D, F,(x) + Fux) , ~ (8.70)
T(x) = -Dy F () + D, Fy(x) + F(x) . (8.71)

ASYMMETRIC LOADING CASE

Derivation of the integral equation on gba(x) is analogous to
the above case, hence only the essential steps are described below.
For this case the real and imaginary parts of ©'(a(x)) and

Q' (B(u)) on OSXSXb, 0<u <1 are
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— R oS
Re O'(a() = o CW1-52 [‘I’fb{) =y
O

R

+ Rl\/xR; (xbme) 1T6(X—XR)

+ ~’TOSZ\/X0/(Xb~XO)' Tr6(x~xo) ] s | . (8.72)
2 R TS
o R
b R
- RZV/(Xb“XR)}XR W&(X_XR)
- COSIV(Xb—XO);XO w6(x-x ) :l , (8.73)
N P R3 7084
Re ' (B(u)) = vu(l-u) [\I'a(u) + g o
[¢]
+ Ry/(Trap)fup wé(u-up)
+ o S/(Itu )/, “5(“*‘10)] ; (8. 74)
> R oS
Im Q'(B(u)) = ‘/I——uz [q;a(u) + ujR ¥ uo‘“3
o]

- RBV uR;(l+uR) w6(u—uR)

- 7034xfu07(1+u0) w&(u—uo)] . (8.75)

Applying the reduced boundary conditions to these yields the

singular integral equations,

6,6 = 1) T, (a(x) + Rf (=) + 7 £, 05) (8.76)
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P () = g @) + Rog () + o g, () - (8.77)

where u(x) and fi’ g i=1,2 are given by (8.16, 19-22), but f(x)

and g(x) become

o - 17 j/u(x)(l—u(x))(xb—x) T

, (8. 78)
k(g% (x)-2) x(1-x°)
412 Y102 (x) /“‘X)(Xb"x) 1 5.79)
- x(I+u(x))  g(x) :

2 2
(@7 (x)-2)
Note that f(x) has a simple zero at Xy (where u(xb) = 1),

On u< -1, u>1 the real and imaginary parts of Q'(B(u)) are

' R g5
Re Q'(B(w) = sgn (w)vu’-1 [wa(u) f o o ] , (8. 80)
R o
P Ry oS4
ImQ'(B(w) = -sgn (v) Vafe-1) [@am) bt o B ] . (8.81)
: R o

Applying (8.80, 81) to the boundary condition on the characteristic

envelope, (7. 12), L;Ja(u) on l<u Suh is written as

Vo) = b & G @) + Rphi(@) + Ryhi() + o hi()

+ ’rohi(u) , (8.82)

and onu<-1, u>uh,



- 73 =
Yo = bl e G @)+ b @ ) + Ry[h)(a) + hEw)]
+ Rz[hé(u) + hg(u)] + Go[h;(u) + hg(u)]

+ To[h}}(u) + hi(u)] ) : (8.83)

with h2 and h , n=1,2, given by (8.30-33) and

2 a2 2 i 21
K2 (@) ?-2) V(g W) %1
Ji®@)2-2)% + 16(1-p ) % <u>)2>

hn(u) = -sgn(u)

n 2
1-(x () (8. 84)

uzal

n
h}’;(u) =/ h (u) (8. 85)

w/x (u Xn(u)—x ’

n x(u) h(u)

Xn(u) Xy xn(u) X

(8. 86)

where xn(u) is as previously defined in (8. 35, 36) et seq. Note
that hi(u), hi(u), and @a(xl(u)) are all unbounded like l/\/xl(u)~xb
as u—"1+ (where Xl(l) = Xb) however the singularity is removable
in (8.82).

Substituting L{,aa(u) from (8.77, 82, 83) into \I/':(u), with the
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integration path divided as in (8.37), yields

”)+H ] (b (Sll)dsl!

__f/TFsT“‘” f[H(xs ]

+ R [HI(x) + Hi(x)] + RZ[Hé(x) + HY (x)]

+ GO[H;(X) + Hg(x)] + 'ro[Hi(x) + HZ(X)] , (8.87)
: b_(s)
1 / 1ts "a'® _ X(1+U-(X))
o / p P ds = - ax)(x - g(X)Q5 (X
0
*b
+ G(x, s”)q5 (s"
m
+ R,Gy(x) + 0 G, (x) , (8.88)
where
oo x,5') = St lz?s(q)) M:j{ h (u S))) ds! (8. 89)
—— M(x,s") b (u(s'))
e - L f e 2Tt e .90
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1 p. <
. 1 5T s g(x(s) 44 . [Lru(sh)
G(X,S ) = ;‘2 st x [ f/ S S-—U.(X) ds [ u(S‘)
0 0
M(X,S')g(S‘) ¥
Siogtt ds] s (8.91)

g, (x(s)) '
:?rl” /‘ /1+s ﬂu(x) ds | (8.92)

and the other terms are as previously defined. The integration
interchanges leading to (8.87) and (8.88) are valid provided x # Xy -
The difficulty at %y in this case is the removable algebraic singu-
larity (in addition to the removable logarithmic singularity as in the
symmetric case).

Substituting \I/f(u) from (8.87, 88) into (8.76) yields a second

kind integral equation on (ba(x) over 0<x <xy

Z(E(X)) b jf ngs x
((x)-3)°

+ Rl[f(x)(H;(X) + H?(X)) +£,(x)]

1

+ R, f(x)[HZ(X) + Hg(x) + Gl(x)]

+ o f(x [H (X)+H3(X) + G (x)]
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o (860 (H () + Ha () + £,(2)]

I

I(x) + RlFl(X) + R FZ(X)

+ GOFB(X) T 'TOF4(X) , _ (8.92)

where J(x,s) is given by (8.60). Because f(x) has a simple zero
af xb,multiplication of \If}:(u(x)) in. (8.76) by f(x) has effectively
cancelled the removable singularities at Xy The only remaining
singularity is the integrable infinity in the kernel due to 1/&]’3‘-‘5‘ .

The unknown constants, Rl and RZ’ are determined as in

the previous case (cf., (8.62-68)) to be

b
J4(s)
_.R1 = f ¢ (s)ds + GD13 + 70D14 , (8.94)
xb -5
*b
J5(s)
RZ = [ — d)a(s)ds + OOD23 + ToDZéL . (8. 95)
5 %, -8

Substituting then back into (8.93) yields the final form of the

integral equation,

R(E(X) 6 () f Eﬁi__ﬂ 6 (s)ds + ¢ 2(x) + T T(x) (8.96)
(q (x)-

where K(x,s), 2(x), and T(x) are as previously defined by (8.69-71).
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§ 9. DISCUSSION AND GENERALIZATION OF THE SOLUTIONS

Despite the removable irregularities and weak endpoint
singularities in the kernels, the integral equations for the den-
sity functions are of the Fredholm type. Consequently the
Fredholm Alternative (e.g., Mikhlin [23]) applies and either
unique solutions exist or the homogeneous equations obtained by
setting o, =T, = 0, i.e., zero surface traction, have nontrivial
solutions. Applying the Fredholm theorems the latter alternative
implies that there are no solutions, otherwise they would exist
for particular values of a and T violating the linearity of
the problem.

We use the above results to examine the question of
uniqueness. Recall from our discussion of the canonical forms
in § 5, particularly for ©'(@) on 0 < g < 1, that besides the
explicit singular and complex behavior of ©O' in (5. 3) integrable
infinities (i.e., algebraic branch points) are admissible. Although
the density functions, d)s,a’ are assumed Holder continuous in
§ 8 they can in fact be singular (but integrable) in such a way
that an integrable infinity of ©'(aq) (relegated‘to the residual
factors in the factorizations) can be represented as in (8.1, 2).
Such cases are discussed by Muskhelishvili [ 22] in the context
of the Hilbert problem with discontinuous or singular coefficients.
It follows that the Cauchy integrals in (8.12) are sufficient to

represent the residual factors, moreover because the factoriza-

tions themselves are a result of necessary conditions, (7. 29, 30)
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and (8.1, 2) are both necessary and sufficient to represent
©'(a(z)). Therefore in order for solutions to exist a necessary
and sufficient condition is that the integral equations have solu-
tions. Hence if the elasticity problem possesses solutions they
follow uniquely from the integral equations by virtue of the
Fredholm Alternative. This argument is by nc fnéans rigorous
(e.g., we have ignored the possibility of essential singularities),
however because the problem gives no indication of contrary
behavior there is little doubt that the integral equations do indeed
possess solutions.

Solving the integral equations, for example by reducing
them to a system of linear algebraic equations usinyg approximate
quadrature formula compatible with the endpoint singularities of
the kernels (e.g, Kantorovich and Krylov [24] and Krylov [25]),
then the analytic functions, ©'(¢) and Q'(B8), are known and the
head waves follow from (4.7, 8). Substituting these into (3. 10-12)
and the result into (2.22-26) the p derivatives of the field quan-
tities are determined. Convenient forms for evaluating these
derivatives are

3 = Im O'(q) (9.1)

F P‘/l"Pz




- 79 -

—— (918 - ' (B)] ;5 a>1, (9. 2)
2
pvg -1
(}J fomg
p
m @°B) ;g 9. 3)
2
pvl-q
H
b, e, 2o, (12480 + QLA a> 1, (9. 4)
e 0 + ol
ap P P 2
- Re Q'(A) 5 q<1 , (9. 5)
ou -C 2¢C
.ég _ .;_g. Re 0'(0) - —u (9. 6)
a0, ou
66 B 2 T 2
= R SN ,
- b le 19, ] (9-7)
oo ou
0 _ -2p 1 70
B C b lemg Tl (9. 8)

Therefore to recover the response at 0 and p = r/cr’c we integrate
the above on the 0 ray from p = 17 in the common hyperbolic

region (where the solutions vanish) to p, e.g.,

r/cdt

/ Bﬁr
ur(r,G, t) = 5 ds

1
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Such integrals must in general be evaluated numerically.

A simple example is the dilatational wavefront behavior at
p =1 (cf. (4.12)). From the analyticity of ©'(q(z)) on x< 1, x>1
O'(@) is analytic on p =1 and can be expanded in a Taylor series.
Set’cing Q;(Bi) =0 in (9.2, 4), retaining only the first térm in the

©'(a) expansion (i.e., ©'(6) which is purely imaginary), and

integrating,
-
ﬁ(rses t)
-4 (2,0, 1) ) ~ V2 Im ©'(8)VI-x /(e h) (9. 9)
r
. (r,0,1)
————— Opp (1,0,
CRIL y

with {19 and o g o(1~r/cdt).

On the 6 =0 surface, setting Q;_(B+) =0 and evaluating

8699 Sar
and , the surface velocities become
op Op
a{lr~—.:c..§. [O‘ 6(_ +l<f_:.[._rp_.@_'..(._@] 9. 10
B - T2 %90 (479) = , (9. 10)
Vi-p
(e R (B))
" s a>1 , {(9.11)
R
C .
d _2Im QB .
< [T a9 8(a-q,) = 15 q<1, (9. 12)
-

1-q
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and from (2.26) the unknown stress is

2
0, = 2p(k7-1)8 - po S(a-q ) . (9.13)

To examine surface behavior near the traction and Rayleigh poles
we expand (9.1, 3, 10,11) near the poles, replace Im 6'(a) and

Im £'(B) by (8.11, 13, 73, 75), and integrate directly across the
singularity. Integrals of the delta function, in (8.11) for example,
give a simple jump while principal value integrals of the pole give
a logarithmic infinity. This is of course equivalent to contour
integration around the pole in the complex domain.

Applying the above at the traction discontinuity ¢, 0. and ﬁr
have simple jumps proportional to a, and logarithmic infinites pro-
portional to T and similarly for v and uy with the roles of o,
and T switched. This behavior is analogous to the half-space result.

At the Rayleigh wave 9, O es and {lr have jumps proportional

to R, and infinities proportional to R and vice versa for w and

2

Y. In contrast to results for the half-space, because Rl and R

l’

2
in (8. 64, 65) depend on both o, and 'r\o, the Rayleigh wave response

has a jump and infinity for either component of applied surface
traction. For example, in Craggs' [ 7 ] solution for applied
normal tracticn on the half-space &, Oy and {lr jump at the
Rayleigh wave while w and {19 are smooth.

The method of solution developed in this work is easily
generalized to arbitrary wedge angle. For smaller angles, with

2y <6 reflected head waves must be included in the treatment of

h’
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the composite region as mentioned in §4. In practice this requires
no more than careful bookkeeping. For larger angles the details
simplify somewhat because the head wave overlap region, which
necesgsitates the superscript notation in (8.27, 83), shrinks and

eventually vanishes when Y20, (cf. (4.3)). The net effect of

h
arbitrary angle is to shift the Uy, branch point in Figure 5b but
with the method otherwise unchanged. When 2y> 7w and the wedge
is reentrant the density functions must exhibit the edge singularity
given in (6. 20, 22). In principle this does not cause any diffi-
culties except when 2y = 2w, i.e., the slit, in which case the prob-
lem is solvable by more direct methods as discussed in the Appendix.
To generalize the method to arbitrary traction velocity we
consider the locus of traction poles as V increases through . and
cq- Referring to Figure 4, for cr$ V < cq the traction pole in
O'(a) still occurs on 0 =0 but moves to Py = V/cd in the composite
region. The head waves essentially transfer the traction dis-
continuity on the 8 = ~cos ™} l/qO characteristic (éalled the primary
rotational wave) to the g = 1 cylindrical wavefront at the point
of termination, 60 = —cos_1 l/qo, where Q'(B) then exhibits the
traction pole. Therefore as V increases through c. the traction
pole in Q'(f) migrates from the 6 =0 boundary along the cylindrical
wavefront. For smaller wedge angles the primary wave may
reflect off the 0 = 2y boundary and in.fact undergo multiple reflec-
tions before terminating. Similarly, as V increases through <4 |

the traction pole in ©O'(q@) migrates from the 0 =0 boundary along

the p =1 cylindrical wavefront (e.g., Figure 2). In any event the
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complete system of primary waves in the common hyperbolic and
composite regions, including residues at the wavefront traction
poles, is readily found using the method of characteristics. In
terms of the factorization for €'(@(z)) and Q'(B(w)) the poles are
removed in the same manner with only their location and residue
altered. Note that when the traction discontinuity and Rayleigh
wave coincide, from (5.3, 4, 11, 12) the singularities in ©'(a@) and
Q'(B) behave like double poles in which case the method breaks
down. This is attributable to deficiencies in linear elasticity theory
rather than the self-similar formulation because transform solutions
for the half-space exhibit the same pathology.

In conclusion we observe that althougyh the general wedge
solution presented here is considerably more involved than that
for the degenerate case of a half-space, the qualitative wavefront
and surface behavior is much the same. This is implicit in the
canonical boundary value representations used to deduce the factor-

izations. The canonical forms are in fact the key to the method.
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APPENDIX: THE SEMI-INFINITE SLIT

For the sake of completeness the semi-infinite slit will be
examined in some detail. A natural point of departure from the .
general analysis is the conformal mappings to half-planes in § 7.
Substituting ¥ = v in the boundary relations, (7.3, 4), between x
and p and u and g gives

( p ; x>0 (q ;i u>0

X = s u = , (A1)
i—p; x< 0 t—q; u<0

whence we obtain the simple relationship,
u = kx . (A2)

The canonical boundary value representations become

2
O'(a(x)) = X=X § (kzxz—-Z)(I)l(x) +i2y 1-k%x2 T, (x)
( ,_ ]

!

kR(x)

+ [i(kxcz)-Z)co - 24 1—k2;§ 'To]kxgﬁ(x-xo) E (A3)
Q'(B) = 'LT1712‘) ; ZVKPw? g M + 22w (/)

+ [—-V —u - ifu »2)70]11(2) 6(u—ug)§ (A4)

valid on 0<=x, u< 1. Note that the vRayleigh function,

R(x) = (k2x2-2)% - af1-x2 J1-k2:% | (A5)
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is sectionally holomorphic with branch cuts over 1/k <]x|< 1 on

the real axis, zeros at x = iXR, and O(X4) at infinity. It can be
factored by applying the same technique used to determine the
T'(x)

Rayleigh factor, e in (7.25), giving

4

Ree) = kg o+ o7 09

(A6)

where el“+(x) = er(X)

is analytic in the left half-plane with branch .
cut on 1/k <x <1, while ' ~®) is analytic in the right half-plane
with branch cut on -1 < x < -1/k. This is the factorization used
by deHoop [9] in his solution of the slit by means of the Wiener-
Hopf technique.

In order to solve the problem we attempt to find (I)l(x) and
\Irl(:x.) in (A3, 4) which exhibit the traction poles, the proper order
at infinity (so that ©'(a(x)) a:nd Q'(B(u)) are O(1)), and cancel terms
in the Rayleigh factorization, (A6), incompatible with the behavior
shown in Figure 6 (e.g., the Rayleigh pole and complex behavior
on x, u< 0). Substituting (A6) into (A3, 4) two forms are found by

inspection, namely

I(x) [ X¥g

0. S,e Tix %, ;  sym. case,
0; asym. case,
0 ; sym. case,
\I’I(X) = x+x
S er—(X) _x R ;  asym. case. (A8)
02 I+kx x-x = 7
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A solution for symmetric loading is then

—OOSI Jicz (k222~ 2) e—f‘(z)

O (z)) = —% = (A9)
k vz (z—xo)(z—xR)
-0.S, ./ 2 -T'(w/k)

Q!(B(W)) - o 1 1\/k"W Jl"W e , (AlO)

k Vw (W—uo)(W"uR)

and for asymmetric loading,

-T 8 f 2 pr—— -T'(z)
O'(a(z)) = ki’-,z iyl-z y1-ks e , - (A11)

vz (z-x ) (z-xp)

TS pe— 2 ~I'(w/k)
Q' (Blw)) = & Ylw(w -Z)e , (A12)

2Vk vw (w—uo)(w~uR)

where, using the equations preceeding (7.43) to evaluate the

- residues and substituting T1 and T, from (5.11, 12),

2

I(x4) .
5 e Olx -x.)
s, = 2 <12 T °o R | (A13)
T o o
R(xo)
' (xo)
5 e “ONx -x.)
s, = 2 VN v °c R (A14)
T o o
R(xo)

Clearly these solve the slit problem for the symmetric
normal load and asymmetric shear load. Generalizing them to

arbitrary load velocity they are in fact the solutions found by
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de Hoop [9] and Miles [10] for the two-dimensional problem of a
slit diffracting an incoming plane wave. This follows by observing
that traveling surface tractions as considered here can be applied
to the slit faces to satisfy the boundary conditions thereby canceling
reflections of the incident plane wave and reducing the diffraction
problem to a simple superposition,

Before concluding we note that the symmetric shear load
is amenable to a more general approach, similar to but much
simpler than that used for arbitrary angle. Although the details
will not be reproduced here it turns out that the resulting integral
equations can be solved in closed form. The same approach
applied to the asymmetric normal load yields the trivial solution
only, however it can be shown that such a loading on the slit is

actually a contact problem so there is no contradiction.
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