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Abstract

In the last several years, significant progress has been made in modelling the Internet con-
gestion control using theories from convex optimization and feedback control. In this dis-
sertation, the equilibrium and dynamics of various congestion control schemes are rigor-
ously studied using these mathematical frameworks.

First, we study the dynamics of TCP/AQM systems. We demonstrate that the dynamics
of queue and average window in Reno/RED networks are determined predominantly by the
protocol stability, not by AIMD probing nor noise traffic. Our study shows that Reno/RED
becomes unstable when delay increases and more strikingly, when link capacity increases.
Therefore, TCP Reno is ill suited for the future high-speed network, which has motivated
the design of FAST TCP. Using a continuous-time model, we prove that FAST TCP is
globally stable without feedback delays and provide a sufficient condition for local stability
when feedback delays are present. We also introduce a discrete-time model for FAST TCP
that fully captures the effect dfelf-clockingand derive the local stability condition for
general networks with feedback delays.

Second, the equilibrium properties (i.e., fairness, throughput, and capacity) of TCP/AQM
systems are studied using the utility maximization framework. We quantitatively capture
the variations in network throughput with changes in link capacity and allocation fairness.
We clarify the open conjecture of whether a fairer allocatioalgaysmore efficient. The
effects of changes in routing are studied using a joint optimization problem over both source
rates and their routes. We investigate whether minimal-cost routing with proper link costs
can solve this joint optimization problem in a distributed way. We also identify the tradeoff
between achievable utility and routing stability.

At the end, two other related projects are briefly described.
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Chapter 1

Introduction

1.1 Challenges of developing theories for the Internet

The Internet is a worldwide-interconnected computer network that transmits data by packet
switching based on the TCP/IP protocol suite. Originated from the NSFnet with a hand-
ful of nodes, it has undergone explosive growth during the last two decades. Today, it
connects hundreds of millions of machines, reaches billions of people, and forms a glob-
ally distributed information-exchanging system. With services provided by the Internet,
encyclopedic information on every subject can be easily searched and accessed, millions
of people from every corner of the world can interact with each other via e-mail and in-
stant messengers, and businesses can be conducted in new and more efficient ways. As the
most important innovation of the last century, the Internet has fundamentally changed our
lifestyle.

The huge success of the Internet is achieved with improving designs and enriching pro-
tocols. While keeping pace with the advances in communication technology and non-stop
demand for additional bandwidth and connectivity, the Internet continuously experiences
changes and updates in almost all aspects; see [165] for well-documented details. Now,
the Internet has evolved into a large-scale, heterogeneous, distributed system with com-
plexity unparalleled by any other engineering system. For example, its scale, measured by
the number of connected hosts, has grown from two thousand at the end of 1985 to over
three hundred million in 2005 with a growth rate of 80% per year. Its heterogeneity ex-

ists and increases at almost every layer. In the link layers, there are wired, wireless, fiber,
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and satellite links with bandwidths ranging from several Kbps to 10Gbps, and there are
propagation delays from nanoseconds to hundreds of milliseconds. Different networking
technologies such as Ethernet LANs, token ring, FDDI, ATM, and SONET are used simul-
taneously, while most of them did not even exist when the original Internet architecture
was conceived. In the application layer, new applications are continuously emerging, such
as multi-player network gaming, World Wide Web, streaming multimedia, peer-to-peer file
sharing, etc. Accompanying this increasing complexity is the decentralizing control of the
Internet. With the decommissioning of the NSFnet in 1995, large commercial ISPs began
to build and operate their own backbones. The Internet topology and inter-domain routing
became much more complex and hard to understand while every ISP is driven by profit.

As an evolving complex system with unprecedented scale and great heterogeneity, the
Internet presents an immense challenge for networking researchers to model and analyze
how it works. The innovation and development of the Internet are the results of an engi-
neering design cycle largely based on intuitions, heuristics, simulations, and experiments.
Formulating theories for such a complex heuristic system afterwards seems infeasible at the
first glance, which is partly the reason why theories for the Internet are lagging far behind
of its applications. However, in recent years large steps have been taken to build rigor-
ous mathematical foundations of the Internet in several areas, such as Internet topology
[92, 93], routing [51, 135], congestion control [98, 138], etc.

Previous Internet research has been heavily based on measurements and simulations,
which have intrinsic limitations. For example, network measurements cannot tell us the ef-
fects of new protocols before their deployment. Simulations only work for small networks
with simple topology due to the constraints of the memory size and processor speed. We
cannot assume that a protocol that works in a small network will still perform well in the
Internet. Furthermore, it is easier to verify the correctness of a mathematical analysis than
to check the feasibility of protocols in large-scale complex networks.

A theoretical framework can greatly help us understand the advantages and shortcom-
ings of current Internet technologies and guide us to design new protocols for identified
problems and future networks. Papachristodoulou et al. [128] also argued that protocol

design should be based on rigorous repeatable methodologies and systematic evaluation
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frameworks. Design based on intuition can easily underestimate the importance of certain
system features and lead to a suboptimal solution, or even disastrous implementation. One

such example is the original design of HTTP protocol quoted from Floyd and Paxson [42]:

“The HTTP protocol used by the World Wide Web is a perfect example of a success
disaster. Had its designers envisioned it in use by the entire Internet, and had they
explored the corresponding consequences with analysis or simulation, they might have
significantly improved its design, which in turn could have led to a more smoothly

operating Internet today.”

In summary, developing theories for the Internet is very important and challenging,
as the design and analysis of protocols need rigorous frameworks. Recently, a unified
framework to study Internet congestion control has been proposed and will be described
in Section 2.3. We will study the equilibrium and dynamics of TCP systems based on this

framework.

1.2 Related work in congestion control

In recent years, large steps have been taken in bringing analytical models into Internet
congestion control. We survey some important work in this subsection.

The steady-state throughput of TCP Reno has been studied based on the stationary dis-
tribution of congestion windows, e.g., [38, 90, 122, 109]. These studies show that the TCP
throughput is inversely proportional to end-to-end delay and to the square root of packet
loss probability. Padhye et al. [124] refined the model to capture the fast retransmit mech-
anism and the time-out effect, and achieved a more accurate formula. This equilibrium
property of TCP Reno is used to define the notiom 6P—friendlinesand motivates the
equation based congestion control TFRC [54].

Misra et al. [114, 115] proposed an ordinary differential equation model of the dynam-
ics of TCP Reno, which is derived by studying congestion window size with a stochastic
differential equation. This deterministic model treats the rate as fluid quantities (by assum-
ing that the packet is infinitely small) and ignores the randomness in packet level, in contrast

to the classical queueing theory approach, which relies on stochastic models. This model
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has been quickly combined with feedback control theory to study the dynamics of TCP
systems, e.g., [60, 100], and to design stable AQM algorithms, e.g.,[8, 61, 82, 166, 133].
Similar flow models for other TCP schemes are also developed, e.g., [24, 101] for TCP
Vegas, and [69, 157] for FAST TCP. We will study the dynamics of TCP Reno and FAST
TCP with these models in Chapter 3 and 4.

The analysis and design of protocols for large-scale network have been made possible
with the optimization framework and the duality model. Kelly [77, 80] formulated the
bandwidth allocation problem as a utility maximization over source rates with capacity
constraints. A distributed algorithm is also provided by Kelly et al. [80] to globally solve
the penalty function form of this optimization problem. This algorithm is called the primal
algorithm where the sources adapt their rates dynamically, and the link prices are calculated
by a static function of arrival rates.

Low and Lapsley [97] proposed a gradient projection algorithm to solve its dual prob-
lem. It is shown that this algorithm globally converges to the exact solution of the original
optimization problem since there is no duality gap. This approach is called the dual algo-
rithm, where links adapt their prices dynamically, and the users’ source rates are determined
by a static function.

There is a large body of research in congestion control based on this utility maximiza-
tion framework. Local stability with feedback delay is studied for the primal algorithm in
[106, 71, 151]. For more results on global stability and stability of other algorithms, please
see [161, 134, 158, 127]. For discussion on implementation of such algorithms in the In-
ternet with ECN, see [6, 5, 89, 102, 125]. Mehyar et al. [112] analyzed converge regions
when there are price estimation errors. The extension of this framework into multi-cast and
multi-path routing is provided in [75, 74, 95]. The joint optimization over both routing and
source rates is studied in [78, 154].

Low [96] provided a duality model that leads to a unified framework to understand and
design TCP/AQM algorithms. This framework viewed the TCP source rates as primal vari-
ables and congestion measures as the dual variables, and interpreted the congestion control
as a distributed primal-dual algorithm over the Internet to solve the utility maximization

problem. The existing TCP/AQM protocols can be reverse-engineered to determine the
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underlying utility functions. The equilibrium properties of a TCP/AQM system, such as
throughput and fairness, can be readily understood by studying the corresponding opti-
mization problems with these utility functions. We can also start with a general utility
function and design TCP/AQM to achieve this utility, e.g., FAST TCP [69]. The details of
this duality model will be briefly covered Section 2.3.
The optimization framework can not be used in certain situations, e.g., networks with

heterogeneous protocols [147]. It is worth noting that there are some other approaches to
studying Internet congestion control. For example, non-cooperative game theory is used in

[164, 49, 4, 32], and stochastic models are used in [148, 9] with large number flows.

1.3 Summary of main results

The main results of this dissertation are summarized in this subsection. There are two fun-
damental topics in this thesis: equilibrium and dynamics. First, we are concerned with
the dynamics of existing TCP algorithms and examine in particular the local and global
stabilities of the postulated equilibria using feedback control theory. Second, we study the
equilibrium properties such as fairness, throughput, and routing using the utility optimiza-
tion framework. At the end of the dissertation, we briefly describe two related projects:
equilibrium of heterogeneous protocols and characteristics of CHOKe. The existing opti-
mization framework is not applicable in these two cases, and new tools are introduced to

study them.

1.3.1 Dynamics and stability

Stability is an important property of congestion control systems. There is currently no
unified theory to understand the behavior of a distributed nonlinear feedback system with
delay when the system loses stability. It is therefore undesirable to let TCP/AQM systems
operate in an unstable regime, and unnecessary if stability can be maintained without sac-
rificing performance. In fact, instability can cause three problems. First, it increases jitters

in source rate and delay and can be detrimental to some applications. Second, it subjects
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short-duration connections, which are typically delay and loss sensitive, to unnecessary
delay and loss. Finally, it can lead to under-utilization of network links if queues jump

between empty and full. The studies of TCP Reno and FAST TCP are shown bellow.

1.3.1.1 Local stability of TCP/RED

TCP Reno and its variants are the only congestion control schemes deployed in the Internet.
It has been observed that TCP/RED may oscillate wildly, and it is difficult to reduce the
oscillation by tuning RED parameters [110, 26]. Although the AIMD strategy employed
by TCP Reno and noisy link traffic certainly contribute to the oscillation, we show that
their effects are small in comparison with protocol instability. We demonstrate that this
oscillation behavior of queue and average window is determined predominantly by the
instability of TCP Reno/RED.

We provide a general nonlinear model of Reno/RED systems, and study the local sta-
bility of Reno/RED with feedback delays. We also validate the model with simulations
and illustrate the stability region of TCP Reno—RED. It turns out that Reno/RED becomes
unstable when delay increases and more strikingly when network capacity increases! This

work is published in [99, 100] and will be presented in Chapter 3 of this dissertation.

1.3.1.2 Modelling and dynamics of FAST TCP

The oscillation persists in TCP/RED systems, even if we smooth out AIMD. Our research
suggests that Reno/RED is ill suited for future high-speed networks, which motivates the
design of new distributed algorithms for large bandwidth-delay product networks. The re-
cent development in optimization and control theory for Internet congestion control played
an important role in the design of new TCP algorithms. It provides a framework to un-
derstand and design protocols with the desired equilibrium and dynamic properties. FAST
TCP [69] is one of such algorithms that are designed based on this theoretical framework.
The modelling and dynamics of FAST TCP is studied in this dissertation. Based on
the existing continuous—time flow model, we prove that FAST TCP is globally stable for

arbitrary networks when there is no feedback delay. However, this model predicts insta-
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bility for homogeneous sources sharing a single link when feedback delay is large, while
experiments suggest otherwise. We conjecture that this inconsistence is partly due to the
self—clocking effect, which is not captured by this model. A discrete—time model is intro-
duced to fully capture the effects. Using this discrete-time model, we derive a sufficient
condition for local asymptotic stability for general networks with feedback delay. The con-
dition says that local stability depends on delays only through their heterogeneity, which
implies in particular that FAST TCP is locally asymptotically stable when all sources have
the same delay no matter how large the delay is. We also prove global stability for a single
bottleneck link in the absence of feedback delay. The techniques developed in this work
are new and applicable to other protocols. These results have been published in [156, 157]

and will be presented in Chapter 4.

1.3.2 Equilibrium and performance

Recent studies have shown that any TCP congestion control algorithm can be interpreted
as carrying out a distributed primal-dual algorithm over the Internet to maximize aggregate
utility, and a user’s utility function is implicitly defined by its TCP algorithm [80, 97, 101,
96]. The equilibrium properties of TCP/AQM systems such as throughput, performance,

and fairness can be studied via the corresponding convex optimization problem.

1.3.2.1 Relations among throughput, fairness, and capacity

The relations among these equilibrium quantities are studied under the optimization frame-
work in this dissertation. More specifically, we try to answer whether a fair allocation is
always inefficient and whether increasing capacity always raises throughput. We are espe-
cially interested in a class of utility functions [116]

(1—a)tzj™ ifa#l

)

Uz, o) = . , (1.1)
log x; ifa=1

wherea is a non-negative parameter. This utility function is special because it includes all

the previously considered allocation policies: maximum throughput (), proportional
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fairness ¢ = 1, achieved by TCP Vegas and FAST), minimum potential detay=( 2,
approximately achieved by TCP Reno), and max—min fairness ¢o ). The parametet
can be interpreted as a quantitative measure of fairness [107, 16]. An allocdaanifisy
is large ancefficientif aggregate throughput is large.

All examples in the literature suggest that a fair allocation is necessarily inefficient.
We derive explicit expressions for the changes in throughput when the paranmténe
capacities change. We characterize exactly the tradeoff between fairness and throughput
in general networks. This characterization allows us both to produce the first counter-
example and trivially explain all the previous supporting examples. Surprisingly, the class
of networks in our counter-example is such that a fairer allocatiaiwiaysmore efficient.

In particular it implies that max—min fairness can achieve a higher aggregate throughput
than proportional fairness.

Intuitively, we might expect that increasing link capacities always raises aggregate
throughput. We show that not only can throughput be reduced when some link increases
its capacity, but more strikingly, it can also be reduced wakrinks increase their ca-
pacities by the same amount. If all links increase their capacities proportionally, however,
throughput will indeed increase. These examples demonstrate the intricate interactions
among sources in a network setting that are missing in a single-link topology. This work is
published in [144, 146].

1.3.2.2 Joint utility optimization over TCP/IP

The previous subsection studies the effects of changes in fairness and link capacity. In this
section, we will study the effects of routing changes by investigating the joint utility maxi-
mization over source rates and their routes and try to understand the cross-layer interaction
of TCP-AQM, minimum-cost routing, and resources allocation.

Routing in the current Internet within an Autonomous System is computed by IP and
uses single-path, minimum-cost routing, which generally operates on a slower time scale

than TCP/AQM. The joint utility maximization over both source rates and their routes can



be formulated as

max max U(z;) s.t.Rx < ¢, (1.2)
RER 2>0 4

whereR is the set of all feasible single-path routing matrices. Its Lagrangian dual is

min ) max (Ui(xi) — i min zl: Rupz> + zl: api, (1.3)

whereR; denotes the set of available routes for sourdestriking feature of the associated
dual problem is that the maximization over routes takes the form of minimal-cost routing
with prices as link costs. This raises the question whether TCP/IP might turn out to be a
distributed primal-dual algorithm to solve this joint optimization with proper choice of link
costs.

We show that the primal problem (1.2) is NP-hard and in general can not be solved by
minimal-cost routing. When the congestion prices generated by TCP-AQM are used as
link costs, TCP/IP indeed solves the dual problem (1.3) if it converges to an equilibrium.
However, this utility optimization problem is non-convex, and a duality gap generally exits
between (1.2) and (1.3). Equilibrium of TCP/IP exists if and only if there is no such gap.
We also show that this gap can be described as the penalty for not splitting traffic across
multiple paths in single-path routing.

When such equilibrium exists, it is generally unstable under pure dynamic routing. It
can be stabilized by adding a static component to the link costs, but at the expense of a
reduced achievable utility in equilibrium. We demonstrate this inevitable tradeoff between
utility maximization and routing stability with a simple ring network. We also present
numerical results to validate this tradeoff in a general network topology. These results also
suggest that routing instability can reduce aggregate utility to less than that achievable by
pure static routing.

We show that if the link capacities are optimally provisioned, thare staticrouting
is enough to maximize utility even for general networks. Moreover single-path routing

achieves the same utility as multi-path routing at optimality. This work is presented in
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[153, 154].

1.3.3 Other related results

The following two projects are studied outside the optimization framework. We will briefly
describe the model, approach, and results in Chapter 7. See [147, 142, 155, 143, 145] for

details of these two projects.

1.3.3.1 Network equilibrium with heterogeneous protocols

An important assumption in the duality model is that all the TCP sources are homogeneous,
that means that they all adapt to the same type of congestion signals, e.g., loss probability
in TCP Reno and queueing delay in FAST [69]. During the incremental deployment of
new congestion control protocols such as FAST, there is an important and inevitable phase
where heterogeneous TCP algorithms reacting to different congestion signals coexist in the
same network. In this situation, the current optimization framework breaks down, and the
resulting equilibrium can no longer be interpreted as a solution to a utility maximization
problem. Characterizing the equilibrium of a general network with heterogeneous protocols
is substantially more difficult than in the homogeneous case.

We prove that, under mild assumptions, equilibrium still exists despite the lack of an
underlying optimization problem using the Nash theorem in game theory. In contrast to
the homogeneous protocol case with a unique equilibrium, there can be uncountably many
equilibria with heterogeneous protocols as illustrated by our examples. However, we can
also show that almost all networks have finitely many equilibria, and they are necessarily
locally unique. Multiple locally unique equilibria can arise in two ways. First, the set of
bottleneck links can be non-unique. The equilibria associated with different sets of bottle-
neck links are necessarily distinct. Second, even when there is a unique set of bottleneck
links, network equilibrium can still be non-unique, but is always finite and odd in number.
They cannot all be locally stable unless the equilibrium is globally unique. We also provide

various sufficient conditions for global uniqueness. This work also appears in [147, 142].
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1.3.3.2 Control unresponsive flow—CHOKe

All our previous studies have assumed that all sources utilize a certain TCP scheme to adapt
their rates based on network congestion. The number of non-rate-adaptive (e.g., UDP-
based) applications is growing in the Internet. Without a proper incentive structure, these
applications may result in more severe congestion by monopolizing the network bandwidth
to the detriment of rate-adaptive applications. This has motivated a new AQM algorithm
CHOKe [126], which is stateless, simple to implement, and yet surprisingly effective in
protecting TCP from unresponsive UDP flows.

We present a deterministic fluid model that explicitly models both the feedback equilib-
rium of the TCP/CHOKe system and the spatial characteristics of the queue. We prove that,
provided the number of TCP flows is large, the UDP bandwidth share peaks-ap—' =
0.269 when UDP input rate is slightly larger than link capacity and drops to zero as UDP
input rate tends to infinity. We clarify the spatial characteristics of the leaky buffer under
CHOKe that produce this throughput behavior. Specifically, we prove that, as UDP input
rate increases, even though the total number of UDP packets in the queue increases, their
spatial distribution becomes more and more concentrated near the tail of the queue and
drops rapidly to zero toward the head of the queue. In stark contrast to a non-leaky FIFO
buffer where UDP bandwidth share would approach 1 as its input rate increases without
bound, under CHOKe, UDP simultaneously maintains a large number of packets in the
gueue and receives a vanishingly small bandwidth share, the mechanism through which
CHOKe protects TCP flows. This work is published in [155, 143, 145].

1.4 Organization of this dissertation

The rest of this dissertation is organized as follows:

Chapter 2 provides background information in congestion control research. First, var-
ious existing Transmission Control Protocols and Active Queue Management schemes are
briefly described. Then a general network model of TCP/AQM systems is presented. We

also review the resource allocation problem based on utility maximization. The duality
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model, which interprets the TCP/AQM as a distributed primal—dual algorithm, is presented
with details. These models form the basis of our studies on network dynamics and equilib-
ria in the following chapters.

Chapter 3 and 4 include our studies on the dynamics of TCP/AQM systems. We show
that Reno/RED becomes unstable when delay increases and when network capacity in-
creases. This motivated the design of FAST. The modelling of FAST and several stability
results are presented.

Chapter 6 presents our research on the equilibrium properties of TCP systems. The
relation between fairness and efficiency, and the relation between link capacity and source
throughput are studied in an analytical way.

Chapter 5 describes the joint utility maximization problem over both source rates and
their routes, and tries to answer whether TCP/IP with minimal-cost routing distributedly
solves this problem by proper choice of link costs.

Chapter 7 briefly covers two other related projects. In Section 7.1, we study the equi-
librium structures of networks with heterogeneous congestion control protocols that react
to different congestion signals. In Section 7.2, we analyze CHOKe, which is a new AQM
that aims to protect TCP sources from unresponsive flows. Both the feedback equilibrium
of the TCP/CHOKe system and the spatial characteristics of the leaky queue are studied.

Chapter 8 concludes this dissertation and points out several future research directions.
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Chapter 2

Background and Preliminaries

Internet congestion occurs when the aggregate demand for certain resources (e.g., link
bandwidth) exceeds the available capacity. Results of this congestion include long trans-
fer delay, high packet loss, constant packet retransmission, and even possible congestion
collapse [63], in which network links are fully utilized, but the throughput, which an ap-
plication obtains, is close to zero. It is clear that in order to maintain good network perfor-
mance, certain mechanisms must be provided to prevent the network from being severely
congested for any significant period of time.

One intuitive solution is to use network provision to provide more resources. However,
Jain [66] had shown that large memory, high-speed links, and fast processors would not
solve the congestion problem in computer networks. Although the bandwidth exponen-
tially increased in the last decade, the request for additional bandwidth remained, and new
applications consumed much more bandwidth than expected, e.g., peer-to-peer file sharing
[52, 43]. The need for good congestion control schemes has been intensified by the increas-
ing capacity of the Internet instead of being alleviated, while what we want to achieve is
performance, stability, and fairness in a more heterogeneous environment [66]. Therefore,
congestion control is still a very important subject even in the future high-speed network.

Congestion control studies the design and analysis of distributed algorithms to share
network resources among competing users. The goal is to match the demand with available
resources to reduce congestion and under-utilization and to allocate the resources fairly.
There are two components in Internet Congestion Control. The first is a source algorithm

implemented in Transmission Control Protocol to dynamically adjust the sending rate based



14
on congestion along its path. The other is the Active Queue Management algorithm running
on the routers, which updates the congestion information and feeds it back to sources im-
plicitly or explicitly in the form of packet loss, delay, or marking. We will briefly describe

several such algorithms in the following subsections.

2.1 Transmission Control Protocol (TCP)

The early version of TCP used for the Internet before 1988 did not have a proper conges-
tion control scheme built in, and its main purpose was to guarantee reliable data transfer
across the unreliable best-effort network. This resulted in frequent congestion collapses
throughout the mid-1980s until the algorithm to dynamically adapt source rate based on
packet loss was introduced by Jacobson [63]. The algorithm has undergone many minor,
but important changes, e.g., [64, 140, 108, 3, 40, 57]. It has several slightly different im-

plemented versions such as TCP Tahoe, Reno, NewReno, and SACK, which have similar
essential features of additive increase and multiplicative decrease. We will not distinguish

them and will refer to them as TCP Reno in this dissertation.

2.1.1 TCP Reno

TCP Reno has performed remarkably well and has prevented severe congestion as the In-
ternet expanded by five orders of magnitude in size, speed, load, and connectivity. Mea-
surements in core routers have indicated that about 90% of all the traffic is generated by
TCP Reno sources [137]. TCP Reno is the only deployed congestion control scheme in
the current Internet, and it is very important for us to have a solid understanding of how
it works. In this subsection, we will describe the congestion control mechanism of TCP
Reno.

A TCP Reno source sends packets using a sliding window algorithm, see [129] for
details. Its sending rate is controlled by the congestion window size, which is the maxi-
mum number of packets that have been sent, yet not acknowledged. When the congestion

window is exhausted, the source must wait for an acknowledgement before sending a new
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packet. This is the "self-clocking” feature [98], which automatically slows down the source
when a network becomes congested and round-trip time (RTT) increases. Since there is
roughly one window of packets sent out for every RTT, the source rate is controlled by
the window size divided by RTT. The key idea in this algorithm is to additively increase
congestion window size for additional bandwidth and multiplicatively decrease it while
network congestion is detected.

A connection starts with a small window size of one packet, and the source increments
its window by one every time it receives an acknowledgement. This doubles the window
every RTT and is calledlow start see Figure 2.1. In this phase, the source exponentially
increases its rate and can grab the available bandwidth quickly. glovecompared to
the old design where the source sends as many packets as the receiver’s advertised window
size.) When the window size reaches the slow-start threshold (ssThreshold), the source
enters thecongestion avoidancphase, where it increases its window by the reciprocal
of the current window size for each acknowledgement (ACK). This increases the window
by one in each round-trip time and is referred to as additive increase. When a loss is
detected through duplicate ACKs, the source halves its window size, updates the value of
ssThreshold, and performdast recoverypy retransmitting the lost packets. When a loss is
detected through timeout expiration, the congestion window is reset to one, and the source
re-enters thelow-startphase. The mathematical model and dynamics of TCP Reno will

be studied in detail in Chapter 3.

+ cwnd _ _
Wheoooo oo Congestion Avoidance
Slow Start
ssThreshold |- - - - - - - -— 1 Timeout
L e i /
RTT Time

Figure 2.1: Congestion window of TCP Reno.
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There are some drawbacks in using packet loss as an indication of congestion. First,
high utilization can be achieved only with full queues, i.e., when the network operates at the
boundary of congestion [98]. This is ill-suited to the heavy-tailed TCP traffic, as observed
in [162, 91, 167]. While most TCP connections are “mice” (small, requiring low latency
[53]), a few “elephants” (long TCP connections, tolerating large latency) generate most of
the traffic. First, operating around a state with full queue, the mice suffer unnecessary loss
and queuing delay. Second, the performance of a loss-based TCP source will be degraded
in the situation where losses are due to other effects (e.g., wireless links).

There are also some other TCP alternatives we will briefly describe below.

2.1.2 TCP Vegas

Instead of using packet loss as a measure of congestion, there is another class of congestion
control algorithms that adapt their congestion window size based on end-to-end delay. This
approach is originally described by Jain [65] and is represented by TCP Vegas [19, 20] and
FAST TCP [69].

There are several key differences between TCP Vegas and TCP Reno. In slow-start
phase, TCP Vegas incorporates its congestion detection mechanism into slow-start with
minor modifications to grow the window size more cautiously. When packet loss is de-
tected, TCP Vegas uses a new retransmission mechanism and treats the receipt of certain
ACKSs as a trigger to check if a timeout should happen [19]. The most important difference
between them is that TCP Vegas updates its congestion window size based on end-to-end
delay.

TCP Vegas source estimates its round-trip propagation delay as the minimal RTT, mea-
suring the current RTT for each ACK received. Then, it can figure out the number of its
own packets buffered along the path as the product of end-to-end queueing delay and its
sending rate. The source will try to keep this number in a region, specified by two param-
etersa and 3. The window size linearly increases, decreases, or maintains the same by
comparing this number withh and3. The aim is to maintain a small number of packets in

the buffer to fully utilize the link and experience a small queueing delay.
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Low et al. [101] provided a duality model for TCP Vegas and studied its equilibrium in
detail. It is shown that TCP Vegas achieves weighted proportional fairness at the equilib-
rium when there is sufficient buffer. Choe and Low [24] studied the dynamics of the TCP
Vegas algorithm, showing that it can become unstable in the presence of network delay,

and provided modification for better stability.

2.1.3 FASTTCP

It is shown [100, 59] that the current congestion control algorithms, TCP Reno, and its
variants do not scale with bandwidth-delay products of the Internet as it continues to grow,
and will eventually become performance bottlenecks. This has motivated the design of
FAST TCP [69, 70], which targets high-speed networks with long latency. Unlike other
congestion control algorithms, it is designed based on a theoretical framework [98, 102]
and aims to achieve high throughput while maintaining a stable and fair equilibrium.

FAST TCP adjusts its congestion window size based on queueing delay instead of
packet loss. In networks with large bandwidth-delay products, packet losses are rare events,
and each packet loss only provides one bit of information. The queueing delay can be mea-
sured for each ACK packet, and the results provide multi-bit information. The measured
gueueing delay is processed with a low-pass filter to provide more accurate and smooth
information about the congestion in the networks. This measured queueing delay is fed
into an equation to decide the changes in the congestion window size. In the congestion

avoidance phase, FAST periodically updates the congestion window according to [69]:

W min {QW (1 —y)w + ~ (base W+ a) }
— — .
’ RTT

wherey € (0, 1], baseRTT is the minimum RTT observed so far, ands a constant.

Although FAST TCP and TCP Vegas have different window update algorithms and dy-
namics, they share the same equilibrium properties. Similar to TCP Vegas, FAST achieves
weighted proportional fairness, and the constans also the number of packets a flow
attempts to maintain in the network buffers at equilibrium.

There are some other important implementation features of FAST that are not described
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here, for example, burst control and window pacing. The details of the architecture, algo-
rithms, extensive experimental evaluations of FAST TCP, and comparison with other TCP
variants can be found in [68]. | will provide mathematical models of FAST TCP, and will
study its dynamics in detail in Chapter 4.

There are also some other TCP congestion control proposals for high-speed networks,
which will not be covered in detail here. The eXplicit Congestion control Protocol (XCP)
[76], proposed by Katabi et al., is designed based on control theory and requires explicit
feedback from the routers to achieve stability and fairness. The High Speed TCP (HSTCP)
[39], proposed by Floyd, is a modification of current TCP to increase more aggressively and
decrease more cautiously in large congestion window situations. The scalable TCP [81],
proposed by Kelly, uses multiplicative increase and multiplicative decease instead of TCP
Reno’s AIMD. The BIC TCP [163], proposed by Xu et al., uses binary search increase and
additive increase. See [21, 118] for experiments and performance comparisons between

these new proposals.

2.2 Active Queue Management (AQM)

The AQM algorithm runs on a router, which updates and feedbacks congestion information
to end-users. The feedback is usually in the form of packet loss, delay, or marking. There
is a very large body of AQMs proposed, and | will just describe few common AQMs in this

subsection.

2.2.1 Droptalil

Droptail is the simplest AQM scheme in the current Internet. It is just a first-in-first-
out(FIFO) queue with limited capacity, and it simply drops any incoming packets when
the queue is full. Since it is simple and easy to implement, Droptail is the dominant AQM
in the current Internet. This FIFO queue helps to achieve better link utilization and absorbs
the bursty traffic.

The congestion information in a Droptail queue is updated by the queueing process and
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is represented by the size of the backlog buffer. The delay-based TCP algorithms, e.g.,
TCP Vegas and FAST, receive this information by sensing the changes in the round-trip
delay. The dynamics of FAST TCP will be studied in Chapter 4 using Droptail routers with
sufficient buffer.

For loss-based sources, the Droptail queue sends back one bit of information by a packet
drop, which indicates that the router buffer is full and the network is congested. When
working with TCP Reno, Droptail routers have two drawbacks:|tto&-outand thefull-
gueuephenomena, which are pointed out in Braden et al. [17]. [bble—outphenomenon
involves a single or a few sources that monopolize the bandwidth. This situation is usually
the result of synchronization [55, 117]. Tlal-queuephenomenon refers to the effect
that the queue can be full (or almost full) for long periods of time, which produces large
end-to-end delays.

One possible solution to overcome these problems is to detect congestion early and to
convey congestion notification to sources before queue overflow. We describe one such

solution below.

2.2.2 Random Early Detection (RED)

The Random Early Detection algorithm, or RED, is proposed by Floyd and Jacobson [41] to
solve the synchronization and full queue problems of Droptail. In contrast to Droptail that
drops packets deterministically when the buffer is full, the RED algorithm drops arriving
packets probabilistically based on average queue size. The packet is dropped randomly to
break up synchronized processes that lead to the lock-out phenomenon, and RED controls
the average queue size to avoid queue overflow.

There are two components in the RED algorithm. The first is the estimation of average
gueue size using the exponential weighted average, which can also be interpreted as a low
pass filter to get rid of noise. The other part of the algorithm decides whether to drop an
incoming packet. There are three RED parameatargh , maxth , andmaxp controlling
the dropping probability as shown in Figure 2.2. When the average queue size is less

than the minimum thresholchinth , the dropping probability is zero. When it exceeds
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the maximum thresholchaxth , all the incoming packets will be dropped. When it is in
between, packets will be dropped with a probability that varies linearly fronm@etxp.

PA
1

maxp

minth maxth avg. queue size

Figure 2.2: RED dropping function.

The RED can also mark the incoming packets instead of dropping them with the deploy-
ment of Explicit Congestion Notification (ECN) [131] to prevent packet loss and improve
throughput. The basic idea of ECN is to give the network the ability to explicitly signal
TCP sources of congestion using one additional bit in the IP packet header and to have the
TCP sources reduce their transmission rates in response to the marked packets.

The dynamics of Reno/RED systems will be studied in details in Chapter 3. It is shown
that the system becomes unstable when the delay increases or when the link capacity in-
creases. It is very difficult to configure the RED parameters to achieve better performance.

There has been a large body of AQM schemes proposed recently. Some notable exam-
ples include, Stabilized RED [123], PI controller [58], REM [5] , AVQ [86], BLUE [35],

etc.

2.2.3 CHOKe

CHOKe [126], which stands for “CHOose and Keep for responsive flows, CHOose and
Kill for unresponsive flows”, is proposed by Pan et al. in 2001. It aims to penalize the un-
responsive flows (e.g., UDP sources), to protect the rate-adaptive flows (e.g., TCP sources),
and to ensure fairness.

The scheme, CHOKe, is particularly interesting in that it does not require any state

information and yet can provide a minimum throughput to TCP flows. The basic idea of
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CHOKe is explained in the following quote from [126]:

When a packet arrives at a congested router, CHOKe draws a packet at random from
the FIFO (first-in-first-out) buffer and compares it with the arriving packet. If they both
belong to the same flow, then they are both dropped; else the randomly chosen packet
is left intact and the arriving packet is admitted into the buffer with a probability that

depends on the level of congestion (this probability is computed exactly as in RED).

The surprising feature of this extremely simple scheme is that it can bind the bandwidth
share of UDP flows regardless of their arrival rate.
Its queue characteristics and the maximum throughput of unresponsive flows is studied

in [143, 155, 145]. These results will be briefly covered in Section 7.2.

2.3 Unified frameworks for TCP/AQM systems

In this subsection, we will review the general frameworks for studying the equilibrium and

dynamics of TCP/AQM systems. These models will be used throughout this dissertation.

2.3.1 General dynamic model of TCP/AQM

A network is modelled as a set @éflinks with finite capacities = (¢;,l € L). They are
shared by a set oV sources indexed by Each source uses a subset; C L of links.

The setd.; define anl, x N routing matrix

1 iflelL;
0 otherwise
We use the deterministic flow model developed in [115, 99] to describe transmission
rates. Two assumptions are made when using this model. First, the packets are infinitely
small and the sending rate is differentiable (like fluid flow). Second, the congestion signal

is fed back continuously.
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Each source has an associated transmission rate), and each link has an aggregate
incoming flow ratey,(t). Since all sources whose paths include lirdontribute toy; (),

we have the equation:
u(t) = Y Rymi(t—1), 2.2)

wherer; denotes the forward transmission delay from sountodlink !.
Each link! has an associatetbngestion measurgr price) p;(t), which is a non-
negative quantity maintained by AQM algorithms. The sources are assumed to have access

to the aggregate price of all links in their rodte
¢(t) = Z Ripi(t — 7)), (2.3)
l

wherer}, denotes the backward transmission delay from littkksourcei. The total round-

trip time 7; for sourcei thus satisfies
Ti = Tz{ +7;

for every link! in its path.

As shown in [96], this model includes, to a good approximation, the mechanism present
in existing protocols with a different interpretation for price in different protocols (e.g.,
marking or dropping probability in TCP Reno, queueing delay in TCP Vegas).

In this framework, a complete feedback-control system is specified by supplying two
additional blocks: the source rates change according to aggregate prices in the TCP algo-
rithm and the link prices update based on link utilization. The complete system determines
both the equilibrium and dynamic characteristics of the TCP/AQM network.

Since the TCP/AQM is decentralized, the sources only have access to their local in-

formation. Therefore, the key restriction in the above control laws is that they must be

1This is true when delay is used as congestion price. It is approximately true for random marking and
dropping when the probability is small.
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decentralized. Therefore, we can model the dynamics of TCP in a general form

#(t) = Fiwi(t), ai(t). (2.4)

Similarly, the dynamics at links can be writterfas

pi(t) = Gi(pu(t), mi(t)). (2.5)

The overall structure of this congestion control system is shown in Figure 2.3.

X
> yl(t):ZRlixi(t_Tl{) Y

. TCP AQM ..

P

r N

q,() = Zthl (¢ _TIZ;)

Figure 2.3: General congestion control structure.

We will study the dynamics of TCP within this general framework in Chapter 3 and 4.
The equilibrium properties will be studied with the duality model introduced in the next

subsection.

2.3.2 Duality model of TCP

In this section, it will be shown that the above feedback-control system solves a utility
maximization problem at its equilibrium.

Suppose that the equilibrium rates and prices are giveri py*, p*, andq*. Based on

2A more accurate formulation is given in [96] that includes the internal variables of AQM in the parameters
of G;.
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(2.3) and (2.2), we have following equilibrium relationships
y* = Rz*, ¢ = RTp". (2.6)
Assume that equilibrium rates satisfy

z; = filar), (2.7)

where f;(-) is implicitly defined byF;(z*, ¢f) = 0 or given by the source static law, e.g.,
[97]. fi(-) is usually a positive, strictly monotonic decreasing function, since the source
decreases its rate with increasing congestion.

Let f;'(z;) be the inverse function of (2.7), and let a utility functiéi(z;) be its

integral

Ui(w;) = /fi_l(xi)dxi- (2.8)

This relation implies thal/;(x;) is @ monotonic increasing and strictly concave function. It
is easy to check that the equilibrium rateuniquely solves

max Ui(x;) — ziq; (2.9)

Ti>

We interpret’;(z;) as the benefit the source receives by transmitting attaadg; as the

price per unit. Then (2.9) is a maximization of the source’s profit. This interpretation makes

few assumptions regarding TCP and AQM and can be used for various TCP schemes.
The global optimization problem to maximize aggregate utility with capacity con-

straints is formulated by Kelly in [77, 80],

x>0

max Y Uj(;) (2.10)

subjectto Rz < c. (2.11)

It has a unique solution, since it is maximizing a concave function over a convex set. Now
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we interpret the equilibrium price as the dual variables (or as the Lagrange multipliers) for

the problem (2.10-2.11). Then its Lagrangian is

L(z,p) = Z Us(x;) — Z]N(?/l —c) = Z (Ui(x:) — qiws) + Zplcl- (2.12)

%

The dual problem is

min > Big:) + ;plq, (2.13)
where

Convex duality implies that at the optimupi, the corresponding*, which maximizes
individual optimality (2.9), is exactly the unique solution to the primal problem (2.10-2.11)
since (2.14) is identical to (2.9). Therefore, provided the equilibrium pyitean be made
to align with the Lagrange multipliers, the equilibrium ratesolves the primal problem in

a distributed way. It is proven in [96] that any link algorithm that satisfies

Yy < ¢, with equality if p* > 0 for any! (2.15)

will guarantee this alignment. In this case€,is the unique primal optimal solution, and

p* is a dual optimal solution. It has been argued [96] that the condition (2.15) is satisfied
by any AQM that stabilizes the queue, e.g., RED, REM, and Droptail. Therefore, various
TCP/AQM protocols can be interpreted as different distributed primal-dual algorithms to
solve the global optimization problem (2.10-2.11) with different utility functions.

The equilibrium structures of different congestion control schemes are characterized by
their corresponding utility functions. This model provides us with a rigorous framework
in which to study various equilibrium properties such as fairness, efficiency, and effects of
different network parameters. In Chapter 6, | will present the methods and results following

this approach.
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This optimization framework can also be extended to study the interaction of TCP at a

fast timescale and IP routing at a slow timescale. See Chapter 5 for details.
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Chapter 3

Local Dynamics of Reno/RED

3.1 Introduction

It is well known that TCP Reno/RED can oscillate wildly and it is extremely hard to reduce
the oscillation by tuning RED parameters, e.g., [110, 25]. This oscillation could be the
outcome of the AIMD bandwidth probing strategy employed by TCP Reno and noise-like
traffic that are not effectively controlled by TCP (e.g., short lived TCP source). Recent
models e.g., [36, 59], imply however that oscillation is an inevitable outcome of the pro-
tocol itself. We present more evidence to support this view. We argue that Reno/RED
oscillates not only because of the AIMD probing and noise traffic, but more fundamentally,
it is due to instability. Therefore, even if there is no AIMD, and the congestion window is
periodically adjusted by the average of AIMD based on loss probability, the oscillation per-
sists. We illustrate usings-2simulations that, after smoothing out the AIMD component
of the oscillation, the average behavior can either be steady with small random fluctuations
(when the protocol is stable), or exhibit limit cycles of amplitude much larger than ran-
dom fluctuations (when it is unstable). Moreover, this qualitative behavior persists even
when a large amount of noise traffic is introduced, and even when sources have different
delays. We conclude that it is the protocol stability that largely determines the dynamics of
Reno/RED.

This motivates the stability characterization of Reno/RED. In Section 3.3 we develop a
general nonlinear model of Reno/RED. The equilibrium structure of this system is analyzed

using duality model, and a unique equilibrium exists because it is the unique solving of the
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underling utility maximization problem, see [96] for details. Here, we study local stability
by linearizing the model around this equilibrium. The linear model generalizes the single
link identical source model of [59]. We validate our model with simulations and illustrate
the stability region of Reno/RED. We derive a sufficient stability condition for the special
case of a single link witheterogeneousources. It shows that Reno/RED becomes unstable
when delay increases, or more strikingly, when link capacity increases!

In the linearized model, the gain introduced by TCP Reno increases rapidly with delay
and link capacity. This induces instability and makes compensation by RED extremely
difficult. In particular, RED parameters can be tuned to improve stability, but only at the
cost of a large queue, even when they are dynamically adjusted. Our results suggest that
Reno/RED is ill suited for future high-speed networks, which motivates the design of new

distributed algorithms for high speed long latency networks.

3.2 Motivation

Why does Reno/RED oscillate? What is the effect of AIMD probing, noise traffic, and
heterogeneity of delays on average congestion window and instantaneous queue size? In
this section, we show that their effect is insignificant in comparison with that of protocol
instability. This protocol instability is the dominant reason for oscillation in the Reno/RED
system. Therefore, it is very important to study the protocol stability of Reno/RED system.
We simulate a single bottleneck network usimgg2 The bottleneck link has a capacity
9 pkts/ms with a constant packet size of 1000 bytes. The AQM running on this link is RED
with ECN marking inbytemode (i.e., ACK packets are marked with negligible probability).
The RED parameters areaxp = 0.1, minth = 50 pkts,maxth = 550 pkts, and weight
for queues averaging = 10~4. The link is shared by 50 persistent TCP Reno sources.
We have run simulations with both one-way and two-way traffic, and the behavior is very
similar. The results in Figures 3.1 and 3.2 are for two-way traffic, and those in Figure 3.3
are for one-way traffic. The measurements on the Internet [2] show that most connections
have round-trip delays between 15-500ms. We perform simulations within this range of

delays.
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Figure 3.1: Window and queue traces without noise traffic.

Figure 3.1 gives the result of two cases where connections have identical roundtrip
propagation delay and generate traffic in both directions. Figure 3.1(a) shows an individual
window and the average window that is mean window size of all 50 sources, as a function
of time. They are typical traces when round-trip propagation delay is small (40ms in this
case). Oscillations due to AIMD are prominent in the individual window, but disappear
in the average window. Since the queue averages individual windows, it also displays a
smooth trace with small random fluctuations, as shown in Figure 3.1(b). We consider the

averagebehavior of the protocol stable (non-oscillatory) in this case.
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Figures 3.1(c) and (d) show the corresponding windows and queue when round-trip
propagation delay is increased to 200ms. Not only does the individual window oscillate
with a larger amplitude, more importantly, its average displays a deterministic limit cycle.
This also shows up in the queue trace. We say the protocol isumstableregime.

What is the effect of noise-like mice traffics that are not effectively controlled by
Reno/RED? To get a qualitative understanding, we add additional short HTTP sources to
the 50 persistent bi-directional TCP flows. Each HTTP source sends a single-packet request
to its destination, which then replies with a file of size that is exponentially distributed. Af-
ter the source completely receives the data, it waits for a random time that is exponentially
distributed with a mean of 500 milliseconds and repeats the process. Both the request and
the response are carried over TCP connections. Two sets of simulations are conducted:
the first with 60 http sources generating 10% noise (i.e., persistent TCP sources occupied
90% of bottleneck link capacity), and the second set with 180 http sources generating 30%
noise.

The queue traces when propagation delays are 40ms (stable) and 200ms (unstable),
respectively, are shown in Figures 3.2(a) and (b) for a noise intensity of 10% and in Figure
3.2(c) and (d) for a noise intensity of 30%. The behavior of the queue is dominated by the
stability of the protocol, not by noise-like mice traffic (compare with Figures 3.1(b) and
(d)). In the stable regime (40ms delay), the noise traffic increases the average queue length
slightly. This increases the marking probability and reduces the average window of the
persistent TCP sources.

All our previous simulations are for sources with identical propagation delay. Will the
dynamic behavior be very different when sources have different delays? We repeat the
previous experiments, without noise, with 50 persistent connections having delays ranging
from 40ms to 64ms at 1ms increments, with 2 sources to each delay value. We study their
dynamic behavior when all delays are scaled up, or down, over a wide range. The behavior
is qualitatively similar to the case of identical delay, with more severe queue oscillation.
Figure 3.3(a) shows the instantaneous queue when the scaling fagtdr(delays range
from 12ms to19.2ms), with an average delay ®%.6ms, averaged over all sources. Figure

3.3(b) shows the queue when the scaling factor is 4, with an average delay of 208ms.
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Figure 3.2: Queue traces with noise traffic.

Hence it is protocol stability that largely determines the dynamics of Reno/RED. We

now characterize when Reno/RED is stable.

3.3 Dynamic model

In this section we develop a model of Reno/RED and use it to study the local dynamics
of Reno/RED. We start with a nonlinear model, make a few remarks about its equilibrium

properties, and then linearize the model around the equilibrium. We validate our linear
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Figure 3.3: Queue traces with heterogeneous delays.

model withns-2 simulations and illustrate the stability region of Reno/RED. Finally we

derive a stability condition for the special case of a single link with heterogeneous sources.

3.3.1 Nonlinear model of Reno/RED

The general nonlinear model for TCP/AQM systems has been presented in Section 2.3.
Here more details are given in order to study Reno/RED systems.

A network is modelled as a set @éflinks with finite capacities = (¢;,l € L). They
are shared by a set 6f sources. The interactions between them are specified by a routing
matrix R whereR;; = 1 iflink [ is in the path of sourcg andR;; = 0 otherwise.

Denoter;(t) as the round-trip time of sourceat timet; it is the sum of round-trip
propagation delay; and the round-trip queueing deldy, R;;b;,(t)/¢;. Sourcei’s sending
ratex;(t) can be formulated as

w;(t)

wherew;(t) denotes the congestion window size. The aggregate flow rate dtifink

w(t) = 3 Ruailt = (). 32)
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wherer/ () is the forward delay from souragto link [.

The link congestion pricg;(t) in the general model corresponds to the packet marking
(or loss) probability in TCP Reno. The end-to-end marking probability observed at source
is actuallyg;(t) = 1 —]T,c,. (1 —m(t—7/(t))) wherer/(t) is the backward delay from link
[ to sourcei. We assume that,(¢) is small for allt so that, approximately, the end-to-end

probability is
G(t) = > Rupi(t —7i(1)). (3.3)
l
The forward and backward delays are related to the round-trip time through
T(t) = Ti(t) + 1)

foralll € L;.

We now model TCP Reno and RED to provide tf#€ G) functions in the general
framework. We focus on the AIMD algorithm of TCP Reno at tumgestion avoidance
phase. The congestion window change in this phase has been described in Section 2.1. At
time ¢, sourcei transmits at rate;(¢) packets/second; hence, it receives acknowledgments
atrater;(t — 7;(t)), assuming every packet is acknowledged. A fractibr ¢;(t)) of these
acknowledgments are positive, each incrementing the windgw by 1/w;(t); hence the
window w;(t) increases, on average, at the rate of — 7;(¢))(1 — ¢;(¢))/w;(t). Similarly
negative acknowledgments are received at an average rafe ofr;(¢))q;(t), each halving
the window, and hence the windaw(¢) decreases at a rate of(t — 7;(t))q;(t)w;(t)/2.

Hence, the window evolves under Reno according to

— it — () g:(t) “”ét) , (3.4)

in(t) = m(t—n(t»u—qxt»f@

whereg;(t) is given by (3.3).

To model RED, lety(¢) denote the instantaneous queue length at tirtiat evolves



34

according to
b(t) = w(t)—a, (3.5)

wherey,(t) is the flow rate given by (3.2) and is the link capacity. Define the average

queue length ag(t). It is updated according to

mt) = —aq (n(t) — b)), (3.6)

whereq is the averaging weight. Given the average queue length the marking proba-

bility is given by

0 7"l<t) S l_)l
n(t) = pu(ri(t) =b) b <mt)<b . (3.7)
1 Tl<t> Z Z_)l

whereb,, b;, andp, are RED parameters, apgd= p,/(b; — b,).
In summary, Reno/RED is modelled by (3.4-3.7), and their interconnection through the

network is modelled by (3.2-3.3).

The equilibrium of this system is studied in [96, 101]. The Reno/RED model is inter-
preted as carrying out a distributed, primal-dual algorithm to maximize the aggregate utility

over the Internet. The utility function of TCP Reno is derived to be

V2 1 (sz7,>
tan .
Ti \/§

The equilibrium properties can be studied by solving the underlying convex program. It

also implies that the Reno/RED system has a unique equilibrium.

3.3.2 Linear model of Reno/RED

We linearize the Reno/RED equations (3.4-3.7) to study its stability around equilibrium.

We make several simplifying assumptions. First we assume that the routing rRdtas
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full row rank so there is a unique equilibrium loss probability vegtor Second, only
congested links at the equilibrium are considered in the linear model. Moreover we assume
that the system operates in regign< 7;(t) < b;, so that the marking probability is affine
in the average queue length(t) = p;(r(t) — b;).

We make a key assumption on the time-varying, round-trip delay. Round-trip delay ap-
pears in two places: first, in the relation between windgy) and rater;(t), as expressed
in (3.1), and second, in the time argument of flow ratg), as expressed in (3.2), and
the end-to-end marking probability(t), as expressed in (3.3). Inclusion of instantaneous
gueueing delay in the first place yields a qualitatively different model than if queueing de-
lay is ignored or assumed constant. It means that the queue is not an integrator but has more
complicated dynamics; see (3.9) below. As the proof of Theorem 3.1 shows, this dynamic
is critical to the stability of Reno/RED. The resulting linear model matches simulations
significantly better than if queueing delay is assumed constant. Time-varying delay in the
second place makes linearization difficult, and we replace it by its (constant) equilibrium
value (including equilibrium queueing delay). We approximate the delgys Tlf(t) and
75(t) by their equilibrium values in (3.2) and (3.3). With these assumptions, we linearize

Reno/RED around the unique equilibrium. From (3.4), Reno becomes

Z

Letw},p;, ... be equilibrium quantities antly;(t) = w;(t) — w}, . ... be the small varia-

7

tions near the equilibrium. Linearization yields

dw; (t

q; W;
5]91 7'1 - wi<t)'

1

Around the equilibrium, the buffer process under RED evolves according to

t—Tf W; t—Tf
ZRlz lz) — = ZRZz ( lz) - —q.

le) . di + >y Rribi(t — 155) /e

Letr, = d; + >, Riib;/ci be the equilibrium round-trip time (including queueing delay).
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Linearizing, we have

(5bl Z Rlz 5wZ Th Z Z Rlz Rkl 6bk le)

The second term above is ignored if we have neglected or assumed constant the queueing
delay in round-trip time. The double summation sums over all linkksat share any source

7 with link [. It says that the link dynamics in the network are coupled through shared
sources. The termb,(t — 7} )w? /(r;c;) is roughly the backlog at link due to packets of
sourcei, under FIFO queueing. Hence the backlp@) at link [ decreases at a rate that

is proportional to the backlog of this shared souicd another linkk. This is because
backlog in the path of sourdereduces theate at which source packets arrive at link,
decreasing, ().

Putting everything together, Reno/RED is described by, in Laplace domain,

Sw(s) = —(sI+ D) 'DyRY(s)dp(s),
6p(s) = (s + D3) 'Dydb(s),
§b(s) = (s + Ry(s)DsR" Dg) 'Ry (s)D70w(s),

where the diagonal matrices afe, = diag (¢fw;/7;), Ds = diag (1/(7iq})), D3 =
dlag (C(lCl), Dy = dlag (alclpl), Ds = dlag (U)Z /Ti)’ 6 — dlag (1/01), and D; =
diag (1/7;), and R¢(s) and R(s) are delayed forward and backward routing matrices,

defined as

e ifle I e~ ifle L
[Ry(s)],; = . ,and  [Ry(s)],; = _ (3.8)
0 otherwise 0 otherwise.

This model generalizes the single-link, identical-source model of [59] to multiple links

with heterogeneous sources.
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3.3.3 \Validation and stability region

We present a series of experiments to validate our linear model when the system is stable
or barely unstable, and to illustrate numerically the stability region.

We consider a single link of capacity pkts/ms shared by sources with identi-
cal round-trip propagation delay ms. ForN = 20, 30,...,60 sources, capacity =
8,9,...,15 pkts/ms, and propagation delaly = 50,55,...,100 ms, we examine the
Nyquist plot of the loop gain of the feedback systefijw) in (3.9) below). For each
(N, ¢) pair, we determine the delad, (N, ¢), atbms increments, at which the smallest in-
tercept of the Nyquist plot with the real axis is closestth This is the delay at which the
system(N, ¢) transits from stability to instability according to the linear model. For this
delay, we compute the critical frequengy(N, ¢) at which the phase df(jw) is —=. Note
that the computation of (jw) requires equilibrium round-trip time, the sum of propa-
gation delayd,, (N, ¢), and equilibrium queueing delay. The queueing delay is calculated
from the duality model [96]. Hence, for ea€lV, ¢) pair that becomes barely unstable at
a delay between 50ms and 100ms, we obtain the critical (propagation)diglay c¢) and
the critical frequencyf,,,(V, ¢) from the analytical model. For all experiments, we have
fixed the parameters at= 10~%, p = 0.1/(540 — 40) = 0.0002.

We repeat these experimentsist2 using persistent TCP sources and RED with ECN
marking. The RED parameters are (0.1, 40pkts, 540ppkts’), corresponding to the and
p values in the model. For ea¢tV, ¢) pair, we examine the queue and window trajectories
to determine the critical delay,;(V, c) when the system transits from stability to insta-
bility. We measure the critical frequendy;s(V, ¢), the fundamental frequency of queue
oscillation, from the fast fourier transform of the queue trajectory. Thus, corresponding
to the linear model, we obtain the critical deldy,(/V, c¢) and frequencyf,,s(N, ¢) from
simulations.

We compare model prediction with simulation. Figure 3.4(a) plots the critical delay
d,s(N, ¢) from ns-2simulations versus the critical deldy, (N, ¢) computed from the lin-
ear model. Each data point corresponds to a parti¢iNar) pair. The dashed line is where

all points should lie if the linear model agrees perfectly with the simulation. Figure 3.4(b)
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Figure 3.4: Linear model validation.

gives the corresponding plot for critical frequencfes(V, ¢) versusf,, (N, ¢). The agree-
ment between model and simulation seems quite reasonable (recall that delay values have
a resolution of 5ms).

Consider a static link model where marking probability is a function of link flow rate

p(t) = filu(t)).

Then the linearized model is

opi(t) = fi(yp) ou(t),

wheref/(y;) is the derivative off; evaluated at equilibrium. Also shown in Figure 3.4(b)
are critical frequencies predicted from this static-link model (wfithy;) = p = 0.0002;
this does not affect the critical frequency), using the same Nyquist plot method described
above. It shows that queue dynamics are significant at the time-scale of interest.

Figure 3.5 illustrates the stability region implied by the linear model. For ééch
it plots the critical delayl,, (N, ¢) versus capacity. The curve separates stable (below)

from unstable regions (above). The negative slope shows that Reno/RED becomes unstable
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when delay or capacity is large. A% increases, the stability region expands, i.e., small
load induces instability. Intuitively, a larger delay or capacity, or a smaller load, leads to
a larger equilibrium window; this confirms the folklore that TCP behaves poorly at large

window size.

3.4 Local stability analysis

We now characterize the stability region in the case of a single link Witheterogeneous
sources. Writing forward delay as a fractigne (0, 1) of round-trip time,TZ.f = [(;71;, and

dropping link subscript, the open-loop transfer function is

L(s) = Ry(s)D7(sI + Dy) "DyR{ (s)(sI + D3) " Dy(sI + Rs(s)DsR" D) ™"
S 1 acp ! . (3.9)

Tp*(Tis + prwf) s+ac s+ LY Tae—fims

%

The first term on the right-hand side describes Reno dynamics, the second term describes
RED averaging, the third term is the buffer process, and the last term represents network
delay. The special case where all sources have identical round-trip times,r, and
forward delays are zer@; = 0, is analyzed in [59]. They provide sufficient conditions for

closed-loop stability and use them to tune RED parametensdp.
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We start with a lemma that collects some equilibrium properties. It can be proved di-
rectly from the fixed point of (3.4)—(3.7). L&t:= max; 7;, 7 := min,; 7, 7 := (3, 1/7;) "',

andB = Imax; ﬁl

Lemma 3.1. Letp* be the equilibrium loss probability, and lef andz} be the equilibrium
window and rate respectively. Theh = 2/(2 + (¢7)?), w} = c7 for all sourcesi, x} =
wi/mand) . xf /e = 1.

A sufficient condition for local stability is provided by the following theorem.

Theorem 3.1. The closed-loop system described by (3.9) is stable if

72 1 1—
P <1+—+ _ ) < GGl
TIP™ W, cTo  prw, \/432+772(1 — B)?

Proof. See [100] for detailed proof.

The left-hand side of the (sufficient) stability condition depends on network parameters
(c and 7;) as well as RED parametera @nd p). The right-hand side is a property of
the network node that is independent of these parameters. For stability, the left-hand side
must be small. This requires small capacitgnd delays; and large/N, confirming the
simulation results of the last section. To understand this, notecthet the equilibrium
window size of all sources. Assuming = c¢7 > 2 so thatp = 2/w3?, then the stability

condition can be re-written as

pwf”N (wf N) _ (1 — B3)? .
) BN e i

This suggests that the system becomes unstable when windowSibecomes large,
agreeing with our empirical experience that TCP behaves poorly at large window size.
Roughly, wherc doubles, the equilibrium rate doubles, and hence the window is halved
with twice the magnitude at twice the frequency, resulting in a quadratic increase in control
gain and pushing the system into instability.

The dependence of the stability condition @nr, and N is most clearly exhibited in

the case of identical sources, with=7, =7 =17 = N7.
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Corollary 3.1. Suppose = 2/w}?. Then the stability condition in Theorem 3.1 becomes

A3 < cT 1 ) (1 — B3)?
cr 1+— ) < .
4AN? \/4E2+772(1—B)2

g oN T aer
The stability condition also suggests that a smalland a largerr enhance stability.

A smallerp implies a larger equilibrium queue length [96]. A largeincorporates the

current queue length into the marking probability more quickly. See [100] for proofs of

this Corollary.

3.5 RED parameter setting

It is suggested in [34] that the RED parameteaxp be dynamically adjusted: reduce
maxp as N decreases and raise it otherwise. Raismaxp, or reducingnaxth-minth

is equivalent to increasing ( = maxp/(maxth-minth) ) in the direction consistent

with the stability condition in Theorem 3.1. Theorem 3.1 sets an upper bound on
given N, ¢, andr, and hence a lower bound on equilibrium queue length, to ensure sta-
bility. Adapting RED parametersannotprevent the inevitable choice between stability
and performance: either is set small to stabilize the queue, around a large value, or,
alternatively, it is set large to reduce the queue, at the risk of violent oscillation. What
adaptation can hope to achieve is to dynamically find a good compromise when network
condition changes.

The same stability analysis can also be applied to other AQM schemes, such as Virtual
Queue [50, 85, 87] and REM/PI [5, 59], and clarifies the role of AQM. The stability proof
relies on bounding a set of the forki - co{h(v, )} to the right of(—1,0). The gaink
and the trajectory: depend on TCP as well as AQM. For instance, for the case of a single
link with capacityc shared byN identical sources with delay, TCP and network delay

contribute a factor
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to the trajectoryh and a factor

Ky = (3.10)

to the gaink’, assuming the equilibrium window is large so that= 2/w? = 2N/cr.
AQM compensates for the high gain introduced by TCP by shapiagd reducingk.
With RED, for instance,

1 e 7Y cTap

= — . n K =
v, 6) Ju+act v hicp, @ 1-p

- Kiep.

The first term inh is due to RED averaging, the second term is due to queue dynamics that
also bound$ < 6,. Hence both the queue and RED add phase lag More importantly,
RED adds anothetr to the gaink’, necessitating a smallp for stability and leading to
sluggish response and large equilibrium queue. The fagtdr— 3) in K comes from the
queue.

The high gaink,, in (3.10) is mainly responsible for instability at high delay, high
capacity or low load. It makes it difficult for any AQM algorithm to stabilize the current
TCP.

3.6 Conclusion

We have presented simulation results to demonstrate that it is protocol stability more than
other factors that determine the dynamics of TCP/RED. We have developed a multi-link,
multi-source model that can be used to study the stability of general TCP/AQM. We have
presented a sufficient stability condition for the case of a single link with heterogeneous
sources and illustrated the form of Reno/RED’s stability region. It implies that Reno/RED
becomes unstable when the network scales up in delay or capacity. Our analysis indicates

the role, and the difficulty, of RED in stabilizing Reno.
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Chapter 4

Modelling and Dynamics of FAST

4.1 Introduction

Congestion control is a distributed feedback algorithm to allocate network resources among
competing users. The algorithms in the current Internet, TCP Reno and its variants, have
prevented severe congestion while the Internet underwent explosive growth during the last
decade. In the previous chapter, we have shown that TCP Reno is ill suited for the future
high-speed networks. Itis well known that it does not scale as the bandwidth-delay product
as the Internet continues to grow [59, 100]. This has motivated several recent proposals for
congestion control of high-speed networks, including HSTCP [39], Scalable TCP [81],
FAST TCP [69], and BIC TCP [163] (see [69] for extensive references). We have briefly
described the motivation, background theory, and congestion window update functions of
FAST TCP in Chapter 2. The details of the architecture, algorithms, extensive experimental
evaluations of FAST TCP, and comparison with other TCP variants can be found in [69].
Local stability of FAST TCP in the absence of feedback delay is proved in [69] for the case
of a single link. We extend the analysis to local stability with feedback delay and global
stability without feedback delay, both for general networks.

Most of the stability analysis in the literature is based on the fluid model introduced in
[59] (see surveys in [98, 79, 138] for extensions and related models). Key features of many

of these models are that a source controls its sending rate diractlythat the queueing

1Even when the congestion window size is used as the control variable, sending rate is often taken to be
the window normalized by eonstantound-trip time, and hence a source still controls its rate directly.
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delay at a link is proportional to the integral of the excess demand for its bandwidth.

In reality, a source dynamically sets its congestion window rather than its sending rate.
These models do not adequately capture the self-clocking effect where a packet is sent only
when an old one is acknowledged, except briefly and immediately after the congestion win-
dow is changed. This automatically constrains the impté at a link to the link capacity,
after a brief transient, no matter how large the congestion windows are set. Recently, a
new discrete-time link model was proposed in [160, 69] to capture this effect, and detailed
experimental validations have been carried out in [160]. While the traditional continuous-
time link model does not consider self-clocking, the new discrete-time link model ignores
the fast dynamics at the links. We first present both models of FAST TCP in Section 4.2.
Experimental results are provided to show that, despite errors in these models, both of them
track queueing delays reasonably well.

In Section 4.3, we prove that FAST TCP is globally stable for arbitrary networks when
there is no feedback delay using the continuous-time model. We also derive a sufficient
condition for local asymptotic stability for arbitrary networks with feedback delay, using
the techniques developed in [125, 152]. This condition is also necessary when the sources
are homogeneous with a single bottleneck link. We compare the predictions of stability
based on this condition to experiments on the Dummynet Testbed with such topology. Our
experiments suggest that FAST TCP is always stable for homogeneous sources with a sin-
gle link, while the model with delay predicts instability when the delay is large. We conjec-
ture that this conflict maybe due to the self-clocking effect ignored in the continuous-time
model.

In Sections 4.4, we analyze the stability of FAST TCP using the discrete-time model.
First, we prove that local asymptotic stability of FAST TCP in arbitrary networks in the
presence of delay depends on feedback delays only through their heterogeneity. It implies
in particular that a network where all sources have the same delay is always stable, no
matter how large the delay is. It also confirms the common belief that a slower update
enhances stability. Then we restrict ourselves to a single link without feedback delay and
prove the global stability of FAST TCP. The techniques developed for this discrete-time

model are new and applicable to analyzing other protocols.
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Finally, we conclude in Section 4.5 with limitations of this work.

4.2 Model

4.2.1 Notation

A network consists of a set df links indexed byi with finite capacityc;. It is shared by a
set of N flows identified by their sources indexed byl et R be the routing matrix where
R;; = 1 if sourcei uses linkl, and0 otherwise.

We usef for time in the continuous model, and for time step in the discrete-time model.
The meaning of should be clear from the context. FAST TCP updates its congestion
window every fixed time period, which is used as the time unit.

Let d; denote the round-trip propagation delay of sourandg;(¢) denote the round-
trip queueing delay. The round-trip time is given By(t) := d; + ¢;(t). We denote the
forward feedback delay from sourcdo link [ by T/; and the backward feedback delay
from link [ to sourcei as7/;. The sum of forward delay from sour¢eo any link/ and
the backward delay from link to sourcei is fixed, i.e.,7; := 7j, + 7} for any link I on
the path of sourcé. We make a subtle assumption here. In reality, the feedback delays
TZJ;, 7 include queueing delay and are time-varying. We assume for simplicity that they
are constant, and mathematically unrelated;to). Later, when we analyze linear stability
around the network equilibrium in the presence of feedback delay, we can interpeet
the equilibrium value of’;.

Let w;(t) be source’s congestion window at time(discrete or continuous time). The

sending rate of sourceat timet is defined as

zi(t) = — (4.1)
whereT;(t) = d; + ¢;(t). The aggregate rate at lirlks

y(t) = Z Ryt — 7). (4.2)
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Let p,(t) be the queueing delay at lirik The end-to-end queueing delayt) observed by

source is

a(t) =Y Rupi(t — 7). (4.3)
l

4.2.2 Discrete and continuous-time models

FAST TCP source periodically updates its congestion winddvased on the average RTT

and estimated queueing delay. The pseudo-code is

baseRTT )
——W+a,

wherey € (0, 1], baseRTT is the minimum RTT observed, andis a constant. We model

this by the following discrete time equation

wi(t+1) =7 (m

Fau) + (1= uo) (4.9

wherew;(t) is the congestion window of thgh source;y € (0, 1], anda; is a constant for

sourcei. The corresponding continuous-time model is

mmzv(§§§%+%—ww0, (4.5)

where the time is measured in the unit of update period in FAST TCP.

For the continuous-time model, queueing delay has been traditionally modelled with

1

Cl

pi(t) (w(t) — ). (4.6)

However, TCP uses self-clocking: the source always tries to maintain that the number
of packets in fly equals to the congestion window size. When the congestion window is
fixed, the source will send a new packet exactly after it receives an ACK packet. When the
congestion window changes, the source sends out bulk traffic in burst, or sends nothing in
a short time period. Therefore, one round-trip time after a congestion window is changed,

packet transmission will be clocked at the same rate as the throughput the flow receives.
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We assume that the disturbance in the queues due to congestion window changes settles
down quickly compared with the update period of the discrete-time model; see [160] for
detailed justification and validation experiments for these arguments. A consequence of this
assumption is that the link queueing delay vectdt) = (p;(t), for all 1), is determined

implicitly by sources’ congestion windows in a static manner

Z R w;(t — 7)) =q ifp(t) >0

li
= ditat-1) | <o  ip)=0

, 4.7)

where thgy; is the end-to-end queueing delay given by (4.3).

In summary, the continuous-time model is specified by (4.5) and (4.6), and the discrete-
time model is specified by (4.4) and (4.7), where the source rates and aggregate rates at
links are given by (4.1) and (4.2), and the end-to-end delays are given by (4.3). While
the continuous-time model does not take self-clocking into full account, the discrete-time
model ignores the fast dynamics at the links. Before comparing these models, we clarify

their common equilibrium structure by the following theorem cited from [69].

Theorem 4.1. Suppose that the routing matri has full row rank. A unique equilibrium

(x*, p*) of the network exists, and is the unique maximizer of

max a;logz; st Rx<c (4.8)
with p* as the corresponding optimum of its Lagrangian dual. This implies in particular

that the equilibrium rate:* is «;-weighted proportionally fair.

4.2.3 Validation

The continuous-time link model implies that the queue takes an infinite amount of time
to converge after a window change. In the other extreme, the discrete-time link model
assumes that the queue settles down in one sampling time. Neither is perfect, but we now
present experimental results that suggest both track the queue dynamics well.

All the experiments reported in this paper are carried out on the Dummynet Testbed
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[132]. A FreeBSD machine is configured as a Dummynet router that provides different
propagation delays for different sources. It can be configured with different capacity and
buffer size. In our experiments, the bottleneck link capacigpisvibps, and the buffer size

is 4000 packets with a fixed packet length 8300 bytes. A Dummynet monitor records

the queue size every4 second. The congestion window size and RTT are recorded at the
host every 50ms. TCP traffic is generated uspegf. The publicly released code of FAST
[33] is used in all experiments involving FAST. We present two experiments to validate the
model, one closed-loop and one open-loop.

In the first (closed-loop) experiment, there are 3 FAST TCP sources sharing a Dum-
mynet router with a common propagation delay of 100ms. The measured and predicted
gueue sizes are given in Figure 4.1. In the beginning of the experiment, the FAST sources
are in the slow start phase, and none of the models gives accurate prediction. After the

FAST TCP enters the congestion avoidance phase, both models track the queue size well.

700

600

500

100

Real Queue
----- Discrete time model
Continuous time model

Il Il Il Il Il Il
0 2 4 6 8 10 12 14
Experiment time (seconds)

Figure 4.1: Model validation—closed loop

To eliminate the modelling error in the congestion window adjustment algorithm itself
while validating the link models, we decouple the TCP and queue dynamics by using open-
loop, window control. The second experiment involves three sources with propagation
delays 50ms, 100ms, and 150ms sharing the same Dummynet router.

We changed the Linux 2.4.19 kernel so that the sources vary their window sizes ac-
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cording to the schedules shown in Figure 4.2(a). The sequences of congestion window
sizes are then used in (4.1)—(4.2) and (4.6) to compute the queueing delay predicted by the
continuous-time model. We also use them in (4.1)—(4.2) and (4.7) to compute the predic-
tions of the discrete-time model. The queueing delay measured from the Dummynet and
those predicted by these two models are shown in Figure 4.2(b), which indicates that both

models track the queue sizes well. We next analyze the stability properties of these two

models.
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Figure 4.2: Model validation—open loop.

4.3 Stability analysis with the continuous-time model

We present the stability analysis of the continuous model in general networks with and

without feedback delays.

4.3.1 Global stability without feedback delay

In this subsection, we show that FAST is globally stable for general networks by designing a

Lyapunov. When there is no feedback delay, the equations (4.2) and (4.3) can be simplified
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as
y(t) =Y Ruxzi(t) and g(t) =Y Rup(t). (4.9)
i l

Suppose thar is full row rank, and the system has unique equilibrium source rates

and link prices. Letv;, p;, . .. be the equilibrium quantities, and denaéte;(t) := w;(t) —

w;, 0p(t) = pi(t) — pu, - . .. From (4.5) we can formulate the equilibrium window as
i1
wy = St (4.10)
4q;

whereT; is the equilibrium round-trip delay; = d; + ¢;.

Based on (4.5) and (4.10), we can write the derivativegf) as

1. B qi()w;(t)
;wi(t) = ai_T(t)’
— o ;((?) (wi + Sw(t)),
_ _Qi(t) , ‘ﬂ(t)Qi_Qi(t)ﬂ
= e O T T
G o didgi(t)
— —méwz(t) a; T
Therefore, we have
1. oqt) e a;d; 4
Based on (4.1) and (4.10) we have
w="rw T T m T ne" T T TOn ¢
Therefore, we have
Sai(t) = %&ui(t) - %5%@). (4.12)
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Based on (4.12) and (4.9), the derivative of link price is

Cl Z Rlzxz — Cl Cl Z RlZ(SZL’Z (413)

From (4.12) and (4.13), we have

Spi(t) ZRh( Suwi( )—#i)qiéqi(t)). (4.14)

With the preliminary results, we present and prove the following theorem.

Theorem 4.2. The continues-time model of FAST TCP is globally asymptotically stable

when there is no feedback delay aRds full row rank.

Proof: Considering the functiol (w(t), p(t)) defined as

LS o) — w2 (4.15)

2
!

LS b )
V(wlt).p(t) = 5 Z o wn(t) = wi)? +
Clearly, the functionV (w, p) is non-negative for allw(t),p(t)). Itis zero if and only if
w(t) = wandp(t) = p, where the system is at its equilibrium. Differentiatiigu(¢), p(t))
with respect to the solution trajectory using (4.14) and (4.11) yields

Vw.pt) = 3

— yod;

= S (a0 - i)
#3257 A ()~ g a0 amo)
D> o) 3 Rudn(t) = 3 000 3 Ridt)

q;qi(1) 2 & 2
= 2 Tgad O 2 gy 40

Sw; ()5 (t) + Y edpi(t)opi(t),
l

From the above equatiol,(w(t), p(t)) < 0. Sincea > 0,¢; > 0 andT}(t) > d; > 0, ifthe
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equality holdsgg;(t) = 0, which also implies thadw;(t) = 0. Thereforel (w(t), p(t)) =
0, if and only if the source rates are at equilibrium. Therefore, the system is at its unique
equilibrium under our assumption thatis full row rank.
From the above argumenit(w(t), p(t)) is a system Lyapunov function, and the system

is globally asymptotically stable. ]

From the proof, it is clear that (w(t),p(t)) = 0 only implies that the source rates
are in equilibrium. WhenR is not full rank, the source rates still globally converge to
their equilibrium values, but the equilibrium link prigeis no longer unique and may not
converge to a fixed value.

In our continuous model, we ignored that positive projection in the link price updates
(i.e., the link prices have to be non-negative). This is equivalent to assuming that the bot-
tleneck link is unchanged in this dynamical system. We need to consider this saturation

problem in our future research.

4.3.2 Local stability with feedback delay

When feedback delays are present, the global stability analysis for FAST TCP in general

networks is still open. In this section, we try to provide a condition to ensure local stability.
Since there exists a unique equilibrium as described in Theorem 4.1, we can linearize

the model (4.5) and (4.6) around this equilibrium. Define routing matrices with feedback

delay in frequency domain as

e if Ry =1 e~ if Ry =1
(Ry(8))ii == _ (Ro(s)) == _ :
0 if R; =0 0 if R; =0

Let z;, ¢;, andT; be the corresponding equilibrium values associated with sourdée

following Lemma provides the open-loop transfer function.

Lemma 4.1. The open-loop transfer function of the linearized FAST TCP system is

L(s) = D3R (s)A(s) X R} (—s), (4.16)
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where

e Tis+171;
Tis Tis + g

D3 := diag (l) , X :=diag(z;), and A(s) := diag( ).

a

Proof. See Appendix 4.6.1. O

The following theorem provides a sufficient condition for local stability.

Theorem 4.3. The FAST TCP system described by (4.5) and (4.6) is locally stable if

M 2 QTQ
71 /W <1, (4.17)
Y qmin

where)M is the maximal number of links in the path of any souggg, = min; ¢;, Trax =

¢ := min T tant 1_—%/TZ . (4.18)
i\ 2 2v/4i/Ti

max; T; and

Proof. See the Appendix 4.6.2. O

This is actually a very weak theorem. The condition (4.18) can hardly be satisfied when
M is large. But it can provide us with some information about the effect of various param-
eters on the stability. For example, this condition suggests that the equilibrium queueing
delay should be large to guarantee stability. In general, this condition is only sufficient.
When there is only one link and all sources have the same feedback delays, it becomes

necessary as well. Our numerical simulations for this model validate this.

4.3.3 Numerical simulation and experiment

The condition in Theorem 4.3 implies that FAST TCP may become unstable in a single
bottleneck network with homogeneous sources. However our experiments with FAST TCP
on the Dummynet Testbed have always been stable.

We now present an experiment that violates the local stability condition. Moreover, nu-

merical simulation of the continuous-time model exhibits instability. Yet, the same network
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on Dummynet is clearly stable. This suggests that the discrepancy is not in the stability the-
orem but rather in the continuous-time model.

In our experiment, the sources have identical propagation dela§Oofis with a con-
stanta value of70 packets. They share a bottleneck with capacity0oMbps. The simu-
lations and experiments consist of three intervals. The interval lengthssconds for the
continuous-time model simulation and 100 seconds for the expefimEmee sources are
active from the beginning of the experiment, seven additional sources activate in the sec-
ond interval, and in the last interval, all sources become inactive except five of them. The

simulation and experimental results are shown in Figure 4.3 and Figure 4.4, respectively.
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Figure 4.3: Numerical simulations of FAST TCP.

The stability condition in Theorem 4.3 is not satisfied and, as expected, the numerical
simulation based on the continuous-time model exhibits periodic oscillation. However, in
the Dummynet experiment, FAST TCP is actually stable (see Figuré 4.4).

We believe that the discrepancy is largely due to the fact that the continuous-time model

does not capture the self-clocking effect accurately. Self-clocking ensures that packets are

2We use a long duration in the Dummynet experiment because a FAST TCP source takes longer to con-
verge due to slow-start, which is not included in our model.

3The regular spikes every 10 seconds in the queue size are probably due to a certain background task in
the sending host.
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Figure 4.4: Dummynet experiments of FAST TCP.

sent at the same rate as the goodput the source receives, except briefly when the window
size changes. This self-clocking feature can actually help the system approach an equi-
librium. Indeed, for the case of one source for one link, a discrete-event model is used
in [160] to prove that TCP FAST and Vegas are always stable regardless of the feedback
delay. It also provides justification for the discrete-time models in (4.4) and (4.7) based on

the self-clocking feature introduced in the last section.

4.4 Stability analysis with the discrete-time model

We now analyze the stability of this model. We will see that the discrete-time model pre-
dicts that a network of homogeneous sources with the same feedback delay is locally stable
no matter how large the delay is, agreeing with our experimental experience. In the follow-
ing subsection, we study the local stability of FAST TCP using the discrete-time model for

arbitrary networks with feedback delays.
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4.4.1 Local stability with feedback delay

A network of FAST TCP sources is modelled by equations (4.3), (4.4), and (4.7). This
generalizes the model in [69] by including feedback delay. When local stability is studied,
we ignore all un-congested links (links where prices are zero in equilibrium) and assume
that equality always holds in (4.7).

The main result of this section provides a sufficient condition for local asymptotic sta-

bility in general networks with common feedback delay.

Theorem 4.4. FAST TCP is locally stable for arbitrary networksif € (0, 1] and if all

sources have the same round-trip feedback delay 7 for all .

The stability condition in the theorem does not depend on the value of the feedback
delay, but only on the heterogeneity among them. In particular, when all feedback delays
are ignoredy; = 0 for all 7, then FAST TCP is locally asymptotically. This generalizes the

stability result in [69].

Corollary 4.1. FAST TCP is locally asymptotically stable in the absence of feedback delay

for general networks with any € [0, 1).

The rest of this subsection is devoted to the proof of Theorem 4.4.
We applyZ-transform to the linearized system and use the generalized Nyquist criterion
to derive a sufficient stability condition. Define the forward and backwatdansformed

routing matricesk;(z) and R (=) as

Z_Tlfi if R; =1 Z_lei if R;=1
(Ry(2)) = _ and (Ry(2)); == _ .
0 if R; =0 0 if R; =0

The relationr;| + 7} = 7; gives
Ry(2) = Rp(271) - diag(z™™). (4.19)

Denotell'(z), Q(z), andP(z) as the corresponding-transforms obw(t), d¢(t), anddp(t)

for the linearized system. Letandw be the end-to-end queueing delay and congestion
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window at equilibrium. Linearizing (4.7) yields
Sw;(t — 1) Sqi(t — i)
Ri ? li/ ; ? li — 0’
21,: ! < d; + q; v (di + q:)?

where the equality is used in (4.7). The correspondipgansform in matrix form is

Ry(2) D "MW (z) — Ry(2)BQ(z) = 0, (4.20)

where the diagonal matricés, D, andM are

B :=diag (W) M = dlag(di n q') , andD := diag(d;).

7

SinceR/(z) is generally not a square matrix, we cannot cancel it in (4.20).

Equation (4.3) is already linear, and the correspondirtgansform in matrix form is
Q(2) = Ry(2)" P(2). (4.21)

By combining (4.20) and (4.21), we obtain

( 1 Rb<z>> <@<z>)( 0 )W(Z)'
R¢(2)B 0 P(z) Ry(2)D™*M

Solving this equation with block matrix inverse gives the transfer function frisfa) to

Q(z)

Q(2)

i = B GBE] () By(z) D7 M.

The Z-transform of the linearized, congestion window update algorithm is
W(z) =7 (MW (z) = DBQ(z)) + (1 — v)W(z).

By combining the above equations, we get the open-loop transfer funetigrirom W (z)
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L(z) = —(y(M —DBR{(2)(Rs(2)BR} (2)) "'Rp(z)D™'M) + (1 —y)I) z~".

A sufficient condition for local stability can be developed based on the generalized Nyquist
criterion [23, 31]. Since the open-loop system is stable, if we can show that the eigenvalue
loci of L(e’*) does not enclose-1 for w € [0,27), the closed-loop system is stable.
Therefore, if the spectral radius 6fe’*) is strictly less than 1 fow € [0, 27), the system
will be stable.

Whenz = ¢/, the spectral radii of.(z) and—zL(z) are the same. Hence, we only

need to study the spectral radius of
J(z): = ~4(M —DBRI(z) (Ry(2)BRL(2)) " Ry(z)D™"M + (1 —4)I.

Clearly, the eigenvalues of(z) are dependent ofn. For any giver: = ¢/, let the eigen-
values of.J(z) be denoted by;(v), ¢ = 1... N, as functions ofy € (0,1]. Itis clear
that

Al = A1) + (=) <A@+ (1 =),

Hence ifp(J(z)) < 1 foranyz = e/ for v = 1, it will also hold for ally € (0, 1].
Therefore, it suffices to study the stability condition fo# 1.

Let u; be theith diagonal entry of matrid/ with p; = d;/(d; + ¢;). Denoteu . =
max; i1;. Since the end-to-end queueing delagannot be zero at equilibrium (otherwise
the rate will be infinitely large), we hawg > 0 andu.,... < 1. The following lemma

characterizes the eigenvaluesigt) with v = 1.

Lemma 4.2. Whenz = ¢/ withw € [0,27) andy = 1, the eigenvalues of(z) have the

following properties:

1. There areL zero eigenvalues with the corresponding eigenvectors as the columns of
matrix M ' DBR] (z).
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2. The nonzero eigenvalues have moduli less théin,,., — Tin < 1/4, wherer,.x =

max; 7; and ri, = min; 7; .

Proof: At v = 1, the matrixJ(z) is
M — DBR](2)(Rs(2)BR[ (2)) " 'Rs(2) D' M.
It is easy to check that
J(z)M*DBR}(2) = DBR](2) — DBR} (2) = 0.

SinceM ~'DBR] (z) has full column rank, it consists df linearly independent eigenvec-
tors of J(z) with corresponding eigenvalue 0. This proves the first assertion.
For the second assertion, suppose thstan eigenvalue of (z) for a givenz. Define

matrix A as
A: = J(z) =M= (M —\)— DBR](2)(Rs(2)BR] (2)) ' Rs(2)D™* M,
which is singular by definition. Based on the matrix inversion formula (see, e.g., [62])
(J + EHS) '=J'—J'BE(H ' +SJ'E)"'ST
if J+ EHS is singular, then eithef or H=! + SJ~1E is singular. We can let
J:=M— M\, E:=—-DBR}(z), H:=(R;(2)BRl(2))"", andS := R;(2)D~' M.

SinceA = J + EHS is singular, eithet/ = M — A\l or H=* + SJ~'E is singular. The
second term can be reformulated iftp(z)(B — M (M — X )~'B)R[ ().
Case 1:M — M is singular. Sincél/ is diagonal, then

)

d; + g;

0< A= = 1 < fhmax < 1.

Case 2:R;(z)(B — M(M — X)~'B)R[ (z) is singular.
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It is clear that

B—M(M —\)™'B=diag(l — pi(; — \)7'8) = —Adiag(u‘ﬁ_i A) :

whereg; is theith diagonal entry of matrix3. Hence,A = 0 is always an eigenvalue,

which is claimed before. If is nonzero, it has to be true that

det (Rf(z)diag(wﬁ_i )\) RbT(z)> = 0. (4.22)
Whenz = ¢/, we have:~! = z. Hence, equation (4.19) can be rewritten as

Rl (2) = diag(z_”)R?(E) = diag(z" ") R}(2).

Substituting the above equation into (4.22) with- ¢/ yields

2

det (Rf(z)diag (e:wf) R;@)) 0. (4.23)

Therefore, the following formula is also zero

e . ej(ei-i—ﬂ))ﬁi »
e~ (@Tmax+9) et (Rf(z)d|ag (ﬁ) Rf(Z)) = 0.

whered; = (Tmax — 7;)w, @andy can be any value. Whem,., — mmin < 1/4, we have

Suppose that there is a solution such that> 1. Based on Lemma 4.3, which will be
presented later, there existsjas.t. Im(diag(e/(%+¥)3;/(; — ))) is a positive diagonal
matrix. Therefore the imaginary part of matri(z)diag(e? ™) 3; /(11; — \))) Rj(z)

is positive definite, and the real part is symmetric. From Lemma 4.4 below, it has to be

nonsingular. This contradicts the equation

det (Rf(z)diag (%) R}(z)) = 0.
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Hence, we have\| < 1. O

The proof of Theorem 4.4 will be complete after the next two lemmas.

Lemma 4.3. Suppose thal < p; < 1 and0 < 6; < w/2. If |A\| > 1, there exists a such
that

J(0i+) 3.

) >>0 for 1=1...N.
Wi —

Proof: See Appendix 4.6.3. ]

Lemma 4.4. If the real part of a complex matrix is symmetric, and the imaginary part is

positive definite, then the matrix is nonsingular.

Proof: See Appendix 4.6.4. O

4.4.2 Global stability for one link without feedback delay

In the absence of feedback delay, when there is only one link, the FAST TCP model can be

simplified into

wi(t+1) =7 (Cfif—iq(% + Oq) + (1 = y)w;(t), (4.24)
Z #(;)(t) < ¢ with equality if¢(t) > 0, (4.25)

whereq(t) is the queueing delay at the link (subscript is omitted). The main result of this
section proves that the above system (4.24)—(4.25) is globally asymptotically stable and

converges to the equilibrium exponentially fast starting from any initial value.

Theorem 4.5. On a single link, FAST TCP converges exponentially to the equilibrium, in

the absence of feedback delay.

In the rest of this section, we prove the theorem in several steps. The first result is that

after finite stepdy;, equality always holds in (4.25) andt) > 0 for anyt > K. Define
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the normalized congestion window sum¥&) := > . w;(t)/d;. From (4.25), it is clear

thatq(t) > O ifand only if Y () > c.

Lemma 4.5. There existds; > 0 such that the following claims are true for alt> K;:
1. q(t) > 0.
2. v(t+1) = (1 —~)v(t)wherev(t) ==Y (t) —c— >, a;/d; .

Proof: If initially ¢(¢) = 0, which also mean¥(t) < ¢, from (4.24) we havé&’(t + 1) =
Y (t) +v>_, a;/d;, which linearly increases with ThenY (¢) > ¢ after some finite steps.
Therefore, there exists/,; such thaty'(¢) > c andg(t) > 0 att = Kj.
We will show thatY (t) > ¢ impliesY (t + 1) > ¢. Henceq(t) > 0 for all ¢t > K;.
Moreover,v(t) converges exponentially to O.
Suppos&’(t) > c. From)_, w;(t)/(d; + ¢i(t)) = ¢, we have
v(t+1) = Z@_ %_07

i

w;(l) — oy w;(t

This proves the second assertion. Moreover it implies

Y(t+1):(1—7)Y(t)+v< %Jrc).

HenceY () > cimpliesY (¢t + 1) > candq(t + 1) > 0. This completes the proof. [

For the rest of this subsection, we pick a fixedith 0 < ¢ < . «; /d;. Define

i o d o;
min -— == — - ; and max - — — = )
! ¢ <Xz: d; 6) ! ¢ ( T di ! E)

whered,,;, := min; d; andd,,., := max; d;.

Theng(t) is bounded by these two values after finite steps.
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Lemma 4.6. There exists a positivR; such thaty,;,, < ¢(t) < guax foranyt > Ks.

Proof: From Lemma 4.5, after finite stegs,, v(t + 1) = (1 — v)v(t). Therefore, there

exists ak, such thafv(t)| < e forall t > K. It implies

oy w;(t) w;(t) w;(t)
i d; = , Ti—c+e:Z(di _di+Q(t)>+67

el ale
= zl: i (d; + q(1)) = K e

Therefore,

The proof forg,,. is the same. [

Define p;(t) := d;/(d; + ¢(t)), and denot@u,,.x := max; d;/(d; + Gmin)s fmin =
min; d;/(d; + gmax). Based on Lemma 4.6, we haVve> jiy.x > pi(t) > pimin > 0 for any

t > K,. Define

ni(t) = ad )’ (4.26)

and denote),,.x(t) := max; 1;(t), Mmin(t) := min; n;(t). We will show that the window
update for sourcéis proportional toy;(¢), and the system is at equilibrium if and only if

all n;(t) are zero. The next lemma gives boundsgm).

Lemma 4.7. There exist two positive numbe¥sandd, such that for allt > K,

Nmax(t) > —01(1 — )" and  nuin(t) < d2(1 — 7).

Proof: From (4.26), it is easy to check th&t¢ + 1) — Y (t) = —yv(t). By Lemma 4.5,

whent > K, we have

Y(t+1) =Y (t) = —yw(t) < (1 =) (k)| = k(1 - 7)", (4.27)



64
wherex == v(1 — v)~%2|v(Ky).

The update of sources congestion window is

wtr )= u0) = 7 (720 o w0) = 210 (S5 e - )

i + q(t) ~ i+ q(t) \qt)
youdiq(t) (wi(t) — oy Ly _ ().
‘@+mw( n —q®>——ww®m®Mﬂ

Choose), large enough such that N v i Gumin fomin/ dmax > & Wherea,;, := min; o;.
We now proven,..(t) > —d;(1 — ) for all t > K, by contradiction. Suppose that
there is a timg > K, such that),..(t) < —d:(1 — ~)". Then all they,(¢) are negative,

which implies

Y(t+1)=Y(t) = Y (wilt+1) —wi(t)/di = Z —yuq(t)ps(t)mi(t) /ds,

)

v

N(_nmax)fyamin(hninﬂmin/dmax7

Z 51N(1 - ’Y)tfyamin%ninﬂmin/dmax > K'<1 — ’Y)t

This contradicts equation (4.27), which proves the claim. The proaffQi(t) is similar.
O

DefineL(t) as:
L<t) = nmax(t) - nmin(t)' (428)

The following lemma implies that the difference between differg(tt) goes to zero expo-

nentially fast.

Lemma 4.8. There are two positive numbesgandd,, such that for > K, we have
1. L(t) > 0.
2. Lt +1) < (1 =7+ Yptmax) L(t) + 03(1 — 7)".
3. L(t) < 041 =¥ + Vhtmax)".

Proof: See Appendix 4.6.5. ]
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Lemma 4.9. Bothn,,,..(t) andn.,i, () exponentially converge to zero.

Proof: Whent > K,, combining Lemma 4.7 and Lemma 4.8 yields an upper bound for

nmax(t)y
nmax(t> - L(t) + nmm(t) S 54(1 -7 + 7/~Lmax)t + 52(1 - V)t.

The lower bound ofy,. IS —01 (1 — )" < Nae(t). Since both the upper and lower bounds
of nmax(t) converge to zero exponentially fast, it exponentially goes to zero. The proof for

Nmin (t) IS SIMilar. -

Proof of Theorem 4.5: The system is at equilibrium if and onlyif;(t) = w;(t + 1) for

all <. This is equivalent te);(¢) = 0 for all i because of the equation

wi(t + 1) — w;(t) = —yaaq(t) pi(¢)m:(1).

Since bothy,,..(t) andnu,i,(t) converge to zero exponentially from any initial value, the

system converges to the equilibrium definedy) = 0 globally. O

4.5 Conclusion

We have introduced the traditional continuous-time model for FAST TCP. We analyze its
stability for general networks. We prove that the FAST TCP system is globally stable
without feedback delay. When the feedback delays are present, a sufficient condition is
provided for local stability. However, there are certain inconsistencies between this model
and our experiments, which maybe due to the self-clocking effects.

We present a new discrete-time link model that fully captures the effect of self-clocking.
Using this discrete-time model, we have derived a sufficient condition for local asymptotic
stability for general networks in the presence of feedback delay. The condition states that
the system is stable if the difference among delays of the sources is small. This implies, in

particular, that a network with homogeneous sources is always stable, consistent with our



66
experimental experience so far. We also prove that FAST TCP is globally stable on a single
link in the absence of feedback delay.

This work can be extended in several ways. First, the condition for local asymptotic
stability derived appears more restrictive than our experiments suggest. Moreover, we have
also found scenarios where predictions of the discrete-time model disagree with experi-
ment. These discrepancies should be clarified. Second, it will be interesting to extend
the global stability analysis to general networks with feedback delays. Finally, the new
model and the analysis techniques here can be applied to analyze other congestion control

algorithms.

4.6 Appendix

4.6.1 Proofof Lemma4.l

The FAST TCP model (4.1, 4.3, 4.5, 4.2, and 4.6) can be linearized into

Sa:(6) = 3 Rudplt =), oayfy = Sl wdatt)

Cdi+ ¢ (di+ @)%

ira (Grap) 000= 2 Rubnlt-m),

opi(t) = oy(t)/crs

MM&IV(

wherew; andg; are the equilibrium values. Singe= 7;/ + 7, for all link I on the path of

sourcei, the following equation holds

R} (s) = diag(e” "*) R} (—s). (4.29)
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The Laplace transform of the linearized system in matrix form is

(

Q(s) = Ry(s)"P(s),

(s) = DiW(s)— BQ(s,)

sW(s) = (DD, —1)W(s) — DBQ(s)),
)
)

>

Y(s) = Ry(s)X(s),
sP(s) = Ds3Y(s),

\

where the diagonal matrices are

D :=diag(d;), D;:= diag(d n ) ;
i T di

B :=diag (—(di n qi)Q) , Ds := diag (C_z> )

The open-loop transfer function froi(s) to P(s) can be derived based on the above

equations as

“DsRy(s) (YDDA(ST ~ (DD ~ D)™ + 1) Do (5).

By using the fact that; = d; + ¢;, ©; = w;/T; and (4.29), we can simplify the open loop
transfer function’(s) into (4.16). O

4.6.2 Proof of Theorem 4.3

It is sufficient to show that the eigenvalues of the open-loop transfer function do not encircle
—1 in the complex plain fos = jw, w > 0 when the condition is satisfied. Since both

X andA(s) are diagonal matrices, by using the similar technique in [24], it is not difficult
to check that whes = jw, the set of eigenvalues di(s) is same as that of (jw) =
A(s)RT(—jw)R(jw) except for some zero eigenvalues whéigw) is defined as

R(jw) = diag—) R, (jow)diagl y7).

Ja
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Following the argument of [152], we study the convex hull as a functiofwdiormed by

N Nyquist trajectories. More specifically, the spectrum_¢fw) satisfies
o(L(jw)) = o (M) R (—jw)R(jw)) € p (BT (—jw) R(jw) ) - c0(0 U{Ai(jw)}),

wherei = 1... N, co(-) denotes the convex hull, and

e T T + 4T,

Ai ] = - )
() Jwli jwTi + vq;

where ther; is replaced withl’; sincer; = T; at equilibrium. Similar to [24], the spectral
radius of R” (—jw)R(jw) is less than\Z, which is the maximal number of links in the path

of any source) = max; Y, R;;. Itimplies
o(L(jw)) €M -co(0U{A;(jw), i=1...N}).

Therefore a sufficient condition for local stability is theftA;(jw) does not encircle-1 for
any i.

It is a standard control theory result that the largest phase 16@.af + +7;)/(jwT; +
v¢;) is produced when'T; = /~T; - vq; , which is

SIVLiya T ] —qi/T;

] a. .
IVYTE -G + V4 2v/qi/T;

The above equation yields

1 —q/T;
ZA(jw) > —wT; — T tan™! L/
2 2v/qi/Ti

Suppose that at frequency the phase lag ok;(jw) is —7. Hence,

1 q/T,
—1 =N (Jw;) > —w;T; — T tant L/
2 2v/ai/Ti
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Based on (4.18) we have
w;T; > ¢ for i =1...N.
It is easy to check that the magnitude/of jw) is a decreasing function af. Therefore,

. by M @+ TE M+ T
MAl Wi <M AZ — )| = — —ZS— —W<1,
Al = Y T%)| o\ 2+ T o\ P2+,

and M A(jw;) can not encircle-1. Based on the above argument, the system is locally

stable if (4.17 ) is satisfied. O

4.6.3 Proof of Lemma 4.3

g

Figure 4.5: lllustration of Lemma 4.3.

Proof: There is a complex plane in Figure 4.5. Let the poidisB, and\ represent the
value of twin, tmax, @aNdA, respectively.Z is the intersection of segment\ and the unit
circle, and\ stands for the complex conjugate af

Let ¢, € [0,27) be the phase of /(1; — A). Clearly, ¢; € [0,7) if Im(\) < 0,
and¢; € (m,2m) otherwise. Denot@,,.. := max; ¢; and ¢, = min; ¢;, then <

Gmax — Omin < . Since everyu; is in the rangeimin, (imax), it IS €asy to check that every
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¢; is in the range formed by the phasesl @f/umin — A) @and1/(tmax — A). This implies

1 1 —
— /| = /ANB = LANB < LOZB < 7/2.
Hmin — A Hmax — )\

¢max - ¢min S |4
Lete > 0 be small enough such that,., — ¢min < 7/2 — €. Choosingy = — @i + €
gives us

4% = ¢+ +0;,

= ¢ — dmin + €+ 0;, (greater than 0)

< Omax — Pmin + €+ 7T/2 < .

The fact that its phase is i), 7) implies that

J(P+0:) 3.
Jm<3——@)>0
pi — A

4.6.4 Proofof Lemma4.4

Suppose thatl = A, + jA; whereA, = AT and A; is positive definite. IfA is singular,
there exists a nonzero vectosuch thatdv = 0. Suppose that = a + j5. ThenAv =0

gives

Aa— A8 = 0, (4.30)
AB+ A = 0. (4.31)

Multiplying 37 to equation (4.30) yields

BT Ao = BT A3 > 0. (4.32)
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Multiplying o to equation (4.31) gives us

alA.p=—alAa <0. (4.33)

Sincef? A,a = aT AT3 = oT A,3, both (4.32) and (4.33) must hold with equality. This

means that both and are zero. It contradicts the assumption th& nonzero. O

4.6.5 Proofof Lemma4.8

It is obvious thatl.(¢) > 0 because of its definition in (4.28). We start with the update of

ni(t)

ni(t +1) — mi(t) ad Ty + "ok
_yoaq(Optnt) 11
N oyd; Q(t + 1) q(t)7
o va@nit) 1 1
di+q(t)  qt+1)  qt)
= A ) - Ly ]

gt +1)  q(t)

For simplicity, we leta;(¢) := 1 — v + yu;(t) and denoteu,.x := 1 — v + Vimax, then
a;(t) < amax. This definition simplifies the above equation into
1 1

ni(t 4+ 1) = a;(t)ni(t) — JE+1) + ) (4.34)

By comparing equation (4.34) for sourcand;, we obtain

mi(t+1) = n;(t +1) = ai(O)m(t) — a;()n; (1), (4.35)

Without loss of generality, suppose that at titme 1, the largest and smallest valuesrof

are achieved at sourcéandj, respectively. This assumption implies

Lit+1) = n(t+1)—mi(t+1).
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The upper bound ok (¢ + 1) is derived by considering the following three cases separately.

Case 1:7;(t) andn;(t) have different signs. It is easy to see that

Lt +1) = a(®)m(t) = a;(0)n; (1) < amax(mi(t) = 1;(1)),

< amaX<77maX(t) - nmin(t)) = amaXL<t>'

Case 2:Both;(t) andn;(t) are positive. It yields

Lt+1) = a(t))m(t) —aj()n;(t) < AmaxTmax(t),
= Amax L(t) + Gmaxmin(t) < Gmax L(t) + amaxd2(1 — )%,

S amaxL(t) + 55(1 - 7)t7

where the last step is choosinglarger thani,, ...

Case 3:Both;(t) andn;(t) are negative. The proof is similar to that for Case 2.
Summarizing all the above cases, we have pravigd- 1) < apa, L(t) 4 05(1 — )" for

allt > K,. Denoteb := 1 — ~, thenl > a,., > b > 0. For anyt > K,, an upper bound

of L(t) is

L(t) < GmaxL(t —1) 4+ 630" < al- B2 LK) + 65(b" + b 2amax + - - - + 520" K271,

max max

bi2q: K 5
= (G_KQL(IQ) - 53—b Cina ) Ay + 77—

max
— Gmax b — Gmax

Note that the coefficient df is negative. By choosingy, as the coefficient of’ ., we get

max’

L(t) S 54afnax = 54(1 - + ’Y#max)t-



73

Chapter 5

Cross-Layer Optimization in TCP/IP
Networks

5.1 Introduction

Recent studies have shown that any TCP congestion control algorithm can be interpreted
as carrying out a distributed primal-dual algorithm over the Internet to maximize aggregate
utility, and a user’s utility function is defined by its TCP algorithm, see, e.g., [80, 97, 116,
107, 101, 88, 96] for unicast, [75, 30] for multi-cast, and [98, 79, 138] for recent surveys
and further references. All of these works assume that routing is given and fixed at the
timescale of interest, and TCP, together with active queue management (AQM), attempts
to maximize aggregate utility over source rates. In this chapter, we study the cross-layer
utility maximization at the timescale of route changes.

We focus on the situation where a single minimum-cost route (shortest path) is selected
for each source-destination pair. This models IP routing in the current Internet within an
Autonomous System using common routing protocols such as OSPF [dnB]P [56].
Routing is typically updated at a much slower timescale than TCP-AQM. We model this
by assuming that TCP and AQM converge instantly to equilibrium after each route update
to produce source rates and “congestion prices” for that update period. These congestion
prices may represent delays or loss probabilities across network links. They determine

the next routing update in the case of dynamic routing, similar to the system analyzed in

1Even though OSPF implements a shortest-path algorithm, it allows multiple equal-cost paths to be uti-
lized. Our model ignores this feature.
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[48]. Thus TCP-AQM/IP forms a feedback system where routing interacts with congestion
control in an iterative process. We are interested in the equilibrium and stability properties
of this iterative process. To simplify notation, we will henceforth use TCP-AQM/IP and
TCP/IP interchangeably.

Here are our main results. In the case of pure dynamic routing, i.e., when link costs are
the congestion prices generated by TCP-AQM, it turns out that we can interpret TCP/IP
as a distributed primal-dual algorithm to maximize aggregate utility beéinsource rates
(by TCP-AQM) and routes (by IP) if TCP/IP converges. We consider the problem, and its
Lagrangian dual, of maximizing utility over source rates and over routing that use only a
singlepath for each source-destination pair. Unlike the TCP-AQM problem or the multi-
path routing problem that are convex optimizations with no duality gap, the single path
TCP/IP problem is non-convex and generally has a duality gap. Equilibrium of the TCP/IP
system exists if and only if this problem has no duality gap. In this case, TCP/IP equilibrium
solves both the primal and the dual problem. Moreover, itincurs no penalty for not splitting
traffic across multiple paths: optimal single-path routing achieves the same aggregate utility
as optimal multi-path routing. Multi-path routing can achieve a strictly higher utility only
when there is a duality gap between the single-path primal and dual problems, but in this
case, the TCP/IP iteration does not even have an equilibrium, let alone solving the utility
maximization problem.

Even when the single-path problem has no duality gap and TCP/IP has an equilibrium,
the equilibrium is generally unstable under pure dynamic routing. It can be stabilized by
adding a sufficiently large static component to the definition of link cost. The existence
and characterization of TCP/IP equilibrium when the link costs are not pure congestion
prices, however, are open problems. To proceed, we specialize to a ring network with a
common destination and demonstrate an inevitable tradeoff between utility maximization
and routing stability (Section 5.5). Specifically, we show that the TCP/IP system over the
special ring network is indeed unstable when link costs are pure prices. It can be stabilized
by adding a static component to the link cost, but at the expense of a reduced utility in
equilibrium. The loss in utility increases with the weight on the static component. Hence,

while stability requires a small weight on prices, utility maximization favors a large weight.
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We present numerical results to validate these qualitative conclusions in a general network
topology. These results also suggest that routing instability can reduce aggregate utility to
less than that achievable by (the necessarily stable) pure static routing.

Indeed we show that if the link capacities are optimally provisioned, thea static

routing is enough to maximize utility even for general networks (Section 5.6). Moreover,
it is optimal within the class of multi-path routing: again, there is no penalty at optimality
in not splitting traffic across multiple paths.

Finally, we discuss some implications and limitations of these results (Section 5.7).

5.2 Related work

Our goal is to understand equilibrium and stability issues in cross-layer optimization of
TCP/IP networks. Another approach to joint routing and congestion control is to allow
multi-path routing, i.e., a source can transmit its data along multiple paths to its destination.
In this formulation, a source’s decision is decomposed into two: how much traffic to send
(congestion control) and how to distribute it over the available paths (multi-path routing
or load balancing) in order to maximize aggregate utility. This has been analyzed in, e.g.,
[46, 80, 74]. The general intuition is that, for each source-destination pair, only paths with
the minimum, and hence equal, “congestion prices” will be used, and this minimum price
determines the total source rate as in the single-path case. In contrast to TCP/IP networks,
this formulation assumes that both decisions operate on the same timescale. However, it
provides an upper bound to the problem TCP/IP attempts to solve (see Section 5.4).

The multi-path problem is equivalent to the multicommodity flow problem which has
been extensively studied; see, e.g., [1, 13]. The standard formulation is to maximize aggre-
gate throughput, corresponding to a common and linear utility function. It is then a linear
program and therefore can be solved in polynomial time, though there are combinatorial
algorithms for this class of problems that are more efficient. Recently, fast approxima-
tion algorithms and their competitive ratios have been developed for network flow, and
other, problems, e.g., [130, 48, 7]. Since the multi-path problem upper bounds the TCP/IP

problem, the work on network flow problems provides insight to the performance limit of
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TCP/IP. There are however differences. First, our single-path routing problem is NP-hard
(see Section 5.4) and generally has a duality gap, whereas the network flow problem is gen-
erally a linear program that is in P and has no duality gap. Second, the utility functions that
correspond to common TCP algorithms are strictly concave whereas they are typically lin-
ear, in fact, identity, functions in network flow problems. Third, the algorithms developed
for network flow problems are typically centralized and therefore cannot model TCP/IP
iterations or be carried out in a large network where they must be decentralized.

Instability of single-path routing is not surprising as it is well known that stability gen-
erally requires that the relative weight on the dynamic (traffic-sensitive) component of the
link cost be small. Indeed, our conclusions are similar to those reached in [12, 103] that
study the same ring network for routing stability using different link costs. Here, since the
dynamic component is the dual-optimal price for the utility maximization problem com-
puted by TCP—-AQM, this implies a tradeoff between routing stability and utility maxi-

mization.

5.3 Model

In general, we use small letters to denote vectors, e.guith z; as itsith component;
capital letters to denote matrices, e.f., W, R, or constants; e.gl, N, K*; and script
letters to denote sets of vectors or matrices, &, W,,., Rs, R... Superscript is used to
denote vectors, matrices, or constants pertaining to seuece.,y’, w', H?, K*.

A network is modelled as a set @f uni-directional links with finite capacities =
(¢,l=1,...,L), shared by a set d¥ source-destination pairs, indexeddfgve will also
refer to the pair simply as “soura®). There arek* acyclic paths for sourcerepresented

by aL x K'0-1 matrix H* where

i 1, if path jof sourcei uses linkl
lA pu—
’ 0, otherwise.

Let H* be the set of all columns aofi* that represents all the available paths tander
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single-path routing. Define the x K matrix H as
H = [H' ... HY],

whereK := Y. K', andH defines the topology of the network.
Letw’ be aK*® x 1 vector where theth entry represents the fraction of sousaan its

jth path such that
wi>0Vj, and 1w’ =1,

wherel is a vector of an appropriate dimension with the value every entry. We require
w’ € {0, 1} for single-path routing and allow’ < [0, 1] for multi-path routing. Collect
the vectorsu?,i = 1,..., N, into aK x N block-diagonal matriXV'. Let )V, be the set of

all such matrices corresponding to single-path routing defined as
{(W|W = diagw?, ..., w") € {0, 1}V 17w’ =1}.
Define the corresponding sBf,,, for multi-path routing as
{(W| W =diagw?,...,w") € [0,1]N, 1w’ =1}, (5.1)

As mentioned abovell defines the set of acyclic paths available to each source and rep-
resents the network topologit” defines how the sources load balance across these paths.
Their product defines & x N routing matrixR = HW that specifies the fraction a%&

flow at each linkl. The set of all single-path routing matrices is
Rs = {R|R=HW,W eW,}, (5.2)
and the set of all multi-path routing matrices is

R = {R|R=HW,WeW, }. (5.3)
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The difference between single-path routing and multi-path routing is the integer constraint

onW andR. A single-path routing matrix ifR , is an 0-1 matrix

R 1, iflink [isin a path of source
li —
0, otherwise

A multi-path routing matrix ifR,,, is one whose entries are in the rangel |

B > 0, iflink [isina path of source
li
= 0, otherwise

The path of source is denoted by = [Ry; ... Rp;’, theith column of the routing
matrix R.

We consider the situation where TCP—AQM operates at a faster timescale than routing
updates. We assumesangle path is selected for each source-destination pair that mini-
mizes the sum of the link costs in the path, for some appropriate definition of link cost. In
particular, traffic is not split across multiple paths from the source to the destination even
if it is available. This models, for example, IP routing within an Autonomous System. We
focus on the timescale of the route changes and assume TCP—-AQM is stable and converges
instantly to equilibrium after a route change. As in [96], we will interpret the equilibria of
various TCP and AQM algorithms as solutions of a utility maximization problem defined
in [80]. Different TCP algorithms solve the same prototypical problem (5.4) with different
utility functions [96, 101].

Specifically, suppose each souideas a utility function;(z;) as a function of its total
transmission rate;. We assumé/; is strictly concave increasing (which is the case for
common TCP algorithms [96]). Le®(t) € R, be the (single-path) routing in periedLet
the equilibrium rates:(t) = x(R(t)) and price(t) = p(R(t)) generated by TCP-AQM

in periodt, respectively, be the optimal solutions of the constrained maximization problem

max U(z;)) s.t. R(t)xr < ¢, (5.4)
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and its Lagrangian dual

min )  max (Ui(xi) - xiZl:Rli(t)pl> + Zl:cmz. (5.5)
The pricesp,(t),l =1, ..., L, are measures of congestion, such as queueing delays or loss

probabilities [96, 101]. We assume the link costs in petiade
d(t) = ap(t) +bm, (5.6)

wherea > 0, b > 0, and7; > 0 are constants. Based on these costs, each source computes

its new router’(t + 1) € H* individually that minimizes the total cost on its path
r'(t+1) = arg min dy(t)ri. 5.7
(t+1) griew; ()] (5.7)

In (5.6), 7; are traffic insensitive components of the link cdgt), e.g.,n, = 1/¢,. If 7
represent the fixed propagation delays across lirdesd p;(¢) the queueing delays at link
[, thend,(t) represent total delays across lihkThe protocol parametetsandb determine
the responsiveness of routing to network trafic= 0 corresponds to static routing= 0
corresponds to purely dynamic routing, and the larger the ratigipfthe more responsive
routing is to network traffic. As we will see below, they determine whether an equilibrium
exists and whether it is stable, and the achievable utility at equilibrium.

An equivalent way to specify the TCP—AQM/IP system as a dynamical system, at the
timescale of route changes, is to replace (5.4)—(5.5) by their optimality conditions. The

routing is updated according to

ri(t+1) = arg rllré% ;(apl(t) + bry)ri, forall i, (5.8)
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wherep(t) andz(t) are given by

> Ru(t)p(t) = Ul(xi(t)) foralli (5.9)
l

ZRZi(t)xi(t){ sa =0 (5.10)
i =¢q ifp(t) >0

z(t) >0, p(t)>0. (5.11)

This set of equations describe how the routif(), ratesz(¢), and pricesp(t) evolve.
Note thatz(¢) andp(t) depend only orz(t) through (5.9)—(5.11), implicitly assuming that
TCP—AQM converges instantly to an equilibrium given the new rouf(g.

We say that(R*, z*, p*) is anequilibrium of TCP/IPif it is a fixed point of (5.4)—
(5.7), or equivalently, (5.8)—(5.11), i.e., starting from routiRg and associatetz*, p*),

the above iterations yieldR*, z*, p*) in the subsequent periods.

5.4 Equilibrium of TCP/IP

In this section, we study the condition under which TCP/IP as modelled by (5.4)—(5.7) or
(5.8)—(5.11) has an equilibrium and characterize the equilibrium as the optimal solution
of an optimization problem. Since (5.8)—(5.11) is a system of mixed integer nonlinear
inequalities, characterization of its equilibrium, even the basic question of existence and
unigueness, is in general difficult to determine. The case of pure dynamic routing)
andb = 0, is the simplest and most instructive.

We completely characterize the case of pure dynamic routing,0 andb = 0 in this
section. Without loss of generality, we get 1 in (5.7) and (5.8) wheh = 0.

Consider the joint optimization problem

max max Ui(z;) s.t.Rx < ¢, (5.12)
RER, 20 4
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and its Lagrangian dual

min »  max (Ui(xi) — ; min, Zl: Ru]ﬂz) + Xl: i, (5.13)

wherer® is theith column of R with r} = R;;. While (5.4)—(5.5) maximize utility over
source rates only, problem (5.12) maximizes utility over both rates and routes. While (5.4)
is a convex program without duality gap, problem (5.12) is non-convex because the variable
R is discrete and generally has a duality gaphe interesting feature of the dual problem
(5.13) is that the maximization ovét takes the form of minimum-cost routing with prices

p generated by TCP—-AQM as link costs. This suggests that TCP/IP might turn out to be
a distributed algorithm that attempts to maximize utility, with proper choice of link costs.

This is indeed true when equilibrium of TCP/IP exists.
Theorem 5.1. Under pure dynamic routing, that is,= 1 andb = 0.

1. An equilibrium(R*, z*, p*) of TCP/IP exists if and only if there is no duality gap
between (5.12) and (5.13).

2. In this case, the equilibriurtR*, =*, p*) is a solution of (5.12) and (5.13).

Hence, one can regard the layering of TCP and IP as a decomposition of the utility
maximization problem over source rates and routes into a distributed and decentralized
algorithm, carried out on two different timescales, in the sense that an equilibrium of the
TCP/IP iteration (5.8)—(5.11), if it exists, solves (5.12) and (5.13). An equilibrium may not

exist. Even if it does, it may not be stable—an issue we address in Section 5.5.

Example 1: Duality gap

A simple example, where there is a duality gap and equilibrium of TCP/IP does not exist,
consists of a single source-destination pair connected by two parallel links each of capacity
1, as shown in Figure 5.2 (také = 1). Clearly, under pure dynamic single-path routing,

equilibrium of TCP/IP does not exist, because the TCP/IP iteration (5.8)—(5.11) will choose

2The nonlinear constraim®z < ¢ can be converted into a linear constraint—see proof of Theorem 5.2—so
integer constraint o is the real source of difficulty.
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one of the two routes in each period to carry all traffic. TCP—AQM will generate positive
price for the chosen route and zero price for the other route, so that in the next period, the
other route will be selected, and the cycle repeats. The proof that there is a duality gap
between the primal problem (5.12) and the dual problem (5.13) is given in Appendix 5.8.1
(take N = 1). Intuitively, either path is optimal (both for primal and for dual problem). For
the primal problem the optimal rate i$ = 1, constrained by link capacity, whereas for
the dual problem, the optimal ratei$ = 2, primal infeasible. Hence the primal optimal

value isU(1), strictly less than the dual optimal valuef2). O

The duality gap is a measure of “cost of not splitting”. To elaborate, define the La-

grangian [14, 104]

L(R,z,p) = ) (Uz’(%)—%ZRZiPl) + ) ap.

The primal (5.12) and dual (5.13) can then be expressed respectively as

Vep = max min L(R, z,p)
ReRs, x>0 p>0

Vsa = min max L(R,x,p).
p>0 RER,w>0

If we allow sources to distribute their traffic among multiple paths available to them, then

the corresponding problems for multi-path routing are

Vip = dmax min L(R, z,p)
Vima = min  max L(R,z,p). (5.14)

p=>0 RER’"L7Q;ZO
Theorem 5.2. The relations among these four problems &g < Vyy = V,,,, = Vina.

According to Theorem 5.1, TCP/IP has an equilibrium exactly when there is no dual-
ity gap in the single-path utility maximization, i.e., whéf, = V,;. Theorem 5.2 then
says that in this case, there is no penalty in not splitting the traffic, i.e., single-path routing

performs as well as multi-path routing, = V,,,. Multi-path routing achieves a strictly
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higher utility V,,,, precisely when TCP/IP has no equilibrium, in which case the TCP/IP it-
eration (5.8)—(5.11) cannot converge, let alone solving the single-path utility maximization
problem (5.12) or (5.13). In this case the problem (5.12) and its dual (5.13) do not charac-
terize TCP/IP, but their gap measures the loss in utility in restricting routing to single-path
and is of independent interest.

Even though minimum-cost routing is polynomial, it is shown in [153] that single-path
utility maximization is NP-hard. This is not surprising since, e.g., a related problem on

load balancing on a ring has been proved to be NP-hard in [29].
Theorem 5.3. The primal problem (5.12) is NP-hard.

Theorem 5.3 shows that the general problem (5.12) is NP-hard by reducing all instances
of the integer partition problem to some instances of the primal problem (5.12). Theorem
5.2 however implies that the sub-class of the utility maximization problems with no duality
gap are polynomial-time solvable, since they are equivalent to multi-path problems that are
concave programs and hence polynomial-time solvable. It is a common phenomenon for
sub-classes of NP-hard problems to have polynomial-time algorithms. Informally, the hard

problems are those with nonzero duality gap.

The rest of this section is devoted to the proofs for Theorems 5.1-5.3. We will first
prove Theorem 5.2. Then we show that an equilibrium of TCP/IP must solve the dual
problem (5.13). This together with Theorem 5.2 implies Theorem 5.1. Finally, we present

a proof for Theorem 5.3.

Proof of Theorem 5.2. The inequality follows from the weak duality theorem [14]. We

now proveV,; = V,,,q andV,,, = V,,4. We formulatel’y; as

Vg = min max (Z Ui(x;) —pTRx> +ple,

p>0 RER,z>0

p>0 >0 Wew,

= min max (Z Ui(z;) — min pTHWas) +ple,
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whereR = HW with W € W, from (5.2). Similarly, from (5.3) we have

p>0 2>0 WeWnm

V.4 = minmax (Z Ui(z;) — min pTHW:c> +ple.
Define functionsf,(x, p) and f,,,(x, p) as

: T . T
S = HW m P = HW .
fs(z,p) = min p 2, fmlz,p) = min p T

In order to show thaV,; = V,,4, we only need to show thgt(x,p) = f,.(x,p). Clearly
fs(z,p) > fm(z,p) sinceW, C W,,. From (5.1), noting thall/’ = diag(w"), we have

Since this is a linear programming for giverandp, at least one of the optimal points lies
on the boundary, i.ewj. = 0 or1 for all i andj, and hence is iV, C W,,. Such a point
solves bothf;(z, p) and f,.(z, p), i.e., fs(z,p) = fu(z, p).

To showV,,,; = V,,,,,, transformV/,,,, into a convex optimization with linear constraints,
which hence has no duality gap; see, e.g., [14]. Ngyy, is equivalent to the problem

(1 t. <e. .
pax Z Ui(z;) st Rxr<c (5.15)

Note that this is not a convex program since the feasible set specified by c is generally

not convex. Define thé; x 1 vectorsy’ in terms of the scalar; and theK; x 1 vectors

w' as the new variables
Y = ' (5.16)

The mapping from(z;, w') to ' is one-to-one: the inverse of (5.16)is = 17y and
w® = y'/x;. Now change the variables in (5.15) and (5.14) frdi z) to y by substituting
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z; = 17y* andRx = HWx = Hyinto (5.15) and (5.14). We obtain an equivalent problem

max  U(17y") st Hy<c
Y20 =

and its Lagrangian dual. This is a convex program with linear constraint and hence has no

duality gap. This proves,,, = V,,.4. O

Proof of Theorem 5.1. It is easy to show that optimal solutions exist for both the primal
problem (5.12) and its dual (5.13), so the issue is whether there is a duality gap. We will
prove the theorem in two steps. First, given an equilibridgnz, ) of TCP/IP, we will

show that it solves both the primal (5.12) and the dual (5.13), and hence there is no duality
gap. Then, given a solutia?*, z*, p*) of the primal and the dual problems, we will show
that it is an equilibrium of TCP/IP.

Step 1: NecessityLet (R, #,p) be an equilibrium of TCP/IP, i.e., a fixed point of (5.4)—
(5.7) witha = 1,b = 0. Then

pL = minplrt  foralli, (5.17)
LEH’L

. T3 T

(p,T) = arg m_ln max ( E Ul(x;) Rx) +pe (5.18)

wherer’ are theith columns of routing matrix® € R,.2 We will show that(R, i, ) solves
the dual problem (5.13). Then, since the dual problem (5.13) upper bounds the primal
problem (5.12) by Theorem 5.2, arit € R, is a single-path routing and hence primal
feasible,(R, #, p) also solves the primal (5.12).

To show that(R, #, p) solves the dual problem, we use the fact that the dual problem

has an optimal solution, denoted bi*, =*, p*) and show that both achieve the same dual

30ne can exchange the order of min and max in (5.18) since gﬁ/,ethere is no duality gap in
maxg>o 27 Uz(‘Lz) s.t.Rx <c.
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objective value, i.e.L(R, Z, ) = L(R*, z*,p*). Now

* * *\ : N : T T
(p*, 2", R*) = arg min max (Z U(x;) Din p Rx+p c) : (5.19)

p=0 x>0

Let

x>0

flp) = max (Z Ufa:) —pr?w> +ple
>0

g(p) = max (Z U(z;) — é%%pTRﬂ;) +pTe.

Then (5.18) impliesf(p) = min,>o f(p) and (5.19) implieg)(p*) = min,>o g(p). Since

R € R,, we have

f(p) < g(p) forallp >0,

and hence

f() zglzigf(p) < r;lzigg(p) =g(p").

On the other hand

f(p) = max U(z;) — ' Re+pe

Y
=2
S

=

where the third equality follows from (5.17). Thereforgp) = g(p*) = ¢(p) and
L(R,%,p) = L(R*,z*,p*). Moreover,(R,z,}) is an optimal solution of the dual prob-

lem.
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Step 2: Sufficiency. Assume that there is no duality gap af*, z*, p*) is an optimal
solution for both the primal problem (5.12) and its dual (5.13). We claim that it is also an
equilibrium of (5.4)—(5.7) withu = 1 andb = 0, i.e., we need to show that

()T (") = min(p*)", (5.20)

rteH?

(p*2") = argglzlgrgggL(R ,T,p) = argrgggglzlgL(R ,x,p),  (5.21)

where(r?)* are theith columns ofR*. The second equality in (5.21) follows from the fact
that there is no duality gap for the TCP—AQM problem.

Since(R*, z*, p*) solves the dual problem (5.13), the optimal routing malsatisfies
(5.20) by the saddle point theorem [14]. But*, z*, p*) also solves the primal problem
(5.12). In particular(z*, p*) solves the utility maximization problem over source rates and

its Lagrangian dual, witl* as the routing matrix, i.e(x*, p*) satisfies (5.21). O

Proof of Theorem 5.3.We describe a polynomial time procedure that reduces an instance
of integer partition problem [47, pp. 47] to a special case of the primal problem. Given a
set of integers, . . ., cy, the integer partition problem is to find a subset {1,..., N}

such that

Given an instance of the integer partition problem, consider the network in Figure 5.1, with
N sources at the root, two relay nodes, avideceivers, one at each of tiéleaves. The

two links from the root to the relay nodes have a capacity 9t; /2 each, and the two links

from each relay node to receivehave a capacity af;. All receivers have the same utility
function that is increasing. The routing decision for each source is to decide which relay
node to traverse. Clearly, maximum utility 8f. U;(c;) is attained when each receivier
receives at rate;, from exactly one of the relay nodes, and the links from the root to the
two relay nodes are both saturated. Such a routing exists if and only if there is a solution to

the integer partition problem. O
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Figure 5.1: Network to which integer partition problem can be reduced.

Comment: The case ob > 0 for general network is completely open. df= 0 and
b > 0, routing R(t) = R, for all ¢, is the static minimum-cost routing with as the link
costs. An equilibriun{ R, z(R), p(R)) always exists in this case. Even thougiminimizes
routing cost andz(R), p(R)) solves (5.4)—(5.5), it is not known {?, z(R), p(R)) jointly
solves any optimization problem.

For the case ofi > 0 andb > 0, even the existence of equilibrium is unknown for
general networks. In the following section, we will study the dynamics of TCP/IP under

the assumption that such an equilibrium of TCP/IP exists.

5.5 Dynamics of TCP/IP

Theorem 5.1 suggests using pure congestion pgi¢gsgenerated by TCP-AQM as link
costs. In this case, an equilibrium of TCP/IP, when it exists, maximizes aggregate utility
over both rates and routes. We show in this section however that the equilibrium may not
be unstable. Routing can be stabilized by including a strictly positive traffic-insensitive
(static) component in link cost$ (> 0), but at a reduced achievable utility. There thus
seems to be an inevitable tradeoff between achievable utility and routing stability.

To make this precise, we start with analysis of a special ring network with a common
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destination. As remarked in the last section, for a general network, we do not even know if
an equilibrium exists whebh > 0, let alone characterizing it. For the ring network, however,
not only does equilibrium always exists, but we can also study rigorously its stability and
achievable utility, as well as their tradeoff under minimum-cost routing. We also illustrate
through a numerical example that the qualitative conclusions derived from this network

seem to generalize to a general network.

5.5.1 Simple ring network

Consider a ring network wittv + 1 nodes, indexed by= 0,1,..., N. Nodesi > 1 are

sources and their common destination is node 0; see Figure 5.2. For notational convenience

Figure 5.2: A ring network.

we will also refer to nod@® as nodeV + 1. Each pair of nodes is connected by two links,
one in each direction. We will refer to the two uni-directional links between ricdd

and: as link ¢; the direction should be clear from the context. The fixed delay on:link

is denoted as; > 0,7 = 1,..., N + 1, in each direction. We construct the cost on link

i in periodt asd;(t) = ap;(t) + br;, wherep;(t) is the price on linki. At time ¢, source

i routes all of its traffic in the direction, counterclockwise or clockwise, with the smaller
cost. The ring network is particularly simple because the routing of the whole network
can be represented by a single numbheNote that under minimum-cost routing, if node

i sends in the counterclockwise direction, so must nodel, and if node; sends in the

clockwise direction, so must nodet 1. Hence, we can represent routing on the network
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by r € {0, ..., N} with the interpretation that nodés. . . , » send in the counterclockwise
direction and nodes+ 1, ..., N send in the clockwise direction.

For this special case, we now show that the duality gap is trivial, that minimum-cost
routing based just on prices £ 0) indeed solves the primal and dual problems as Theorem
5.1 guarantees, but that the equilibrium is unstable. Using a continuous model, we then
show that routing can be stabilized if the weightn the fixed delay is nonzero and the
weighta on price is small enough. The maximum achievable utility however decreases with
smallera. There is thus an inevitable tradeoff between utility maximization and routing

stability.

5.5.2 Utility and stability of pure dynamic routing

Suppose all sourceshave the same utility functiotv(z;), and all links have the same
capacity ofc = 1 unit. We assume thdl’ is strictly concave increasing and differen-
tiable. Then at any time, only link 1, in the counterclockwise direction, and/Nnk 1,

in the clockwise direction, can be saturated and have strictly positive price. The utility

maximization problem (5.12) reduces to the following simple form

Ulz; 5.22
By i 2 V() (22
r N
subjectto Y x;<1,and » ;<1 (5.23)
i=1 i=r+1
When routing isr, nodesi = 1,...,r see pricep;(r) on their paths while nodes=

r+1,..., N see priceon1(r) on their paths. Since these rate§r) and pricey;(r) are
primal and dual optimal, they satisfy [97]

Ulxi(r)) = pi(r) fori=1,...,r, (5.24)
U'z;(r) = pyia(r) fori=r+1,...,N. (5.25)
This implies thatey(r) = - - - = z,.(r) andx, .1 (r) = - - - = zn(r).

It is easy to see that the optimal routing# 0 or N. Hence both constraints are active
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at optimality, implying that (from (5.23))

r(r) = =z,(r) = 1, (5.26)

T (r) = = an(r) = . (5.27)

The problem (5.22)—(5.23) thus becomes

1 1
- N — )
re{lr,r.l.i%—l}r u (r) + nu (N — 7‘)

Dividing the objective function byv and using the strict concavity of, we have

r 1 N —r 1 2
_ - < =
()T (Es) < v(3):

with equality if and only ifr = N/2. This implies that the optimal routing is

= |N/2 (5.28)
and the maximum utility is

el () el () e

where|y| is the largest integer less or equaktand|y] is the smallest integer greater or

equal toy.

It can be shown that there is no duality gap for the ring network considered here

when N is even, by verifying that routing* in (5.28), ratesc;(r*) in (5.27), and prices
p1(r*), pny1(r*) in (5.24)—(5.25) are indeed primal-dual optifiawhen NV is odd, there

is generally a duality gap due to integral constraint-psee Appendix 5.8.1 for a proof.

This duality gap disappears in the convexified problem when routing is allowed to take

real value in[0, N], a model we consider in the next subsection. This suggests that TCP

together with minimum-cost routing based on prices can potentially maximize utility for

4This also follows from Theorem 5.1 and the fact that N/2 is by symmetry the equilibrium routing
whenN is even.
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this ring network. We next show, however, that minimum-cost routing based only on prices
is unstable.
Given routingr, we can combine (5.24)—(5.25) and (5.27) to obtain the pyices and
pn+1(r) onlinks 1 andV + 1

p(r) = U <%> andpy(r) = U’ <N1_T). (5.30)

The path cost for nodein the counterclockwise direction is

Z br; + apy(r) = bZTJ +al’ ( ) (5.31)

and the path cost in the clockwise direction is

N+1 N+1
D (i;r) Z br; + apnia(r) =b Z 7+ al’ ( ) : (5.32)
Jj=i+1 j=i+1

In the next period, each nodewill choose the counterclockwise or clockwise direction

accordingly ag>~(i; ) or D" (i;r) is smaller. Definef(r) as
f(r) == max{i| D (i;r) < D*(i;r)}. (5.33)
Then the resulting routing satisfies the recursive relation

0 if D=(1;7(t)) > D*(1;7(¢))
rt+1)=<¢ N if D=(N;r(t)) < DT (N;r(t))
f(r(t)) otherwise.

Theorem 5.4.1f b = 0 anda > 0, then, starting from any routing(0) except the equilib-

rium N/2 whenN is even, the subsequent routing oscillates between Q\and
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Proof. For anyr(0) € {0,..., N}, we have

D~ (1;7(0)) = D¥(1;7(0)) = D‘(N;T((i))—DWN;T(Oi),
= o (v (o) v (=)

If NViseven, therV/2 is the unique equilibrium routing that solves (i; N/2) = D*(i; N/2).
Suppose-(0) # N/2. If r(0) > N/2, thenl/r(0) < 2/N < 1/(N —r(0)). SincelU’ is
strictly decreasing/’(1/r(0)) > U’'(1/(N — r(0)) and hence)~(1;7(0)) > D*(1;7(0))
andr(1) = 0. Similarly, if »(0) < N/2,thenD~(N;r(0)) < D*(N;r(0)) andr(1) = N.

Hencer oscillates between 0 and henceforth. O]

Even though purely dynamic routing based on pri@es- 0) maximizes utility, The-
orem 5.4 says that it is unstable. We will henceforth, without loss of generality,-set

and consider the effect afon utility maximization and stability.

5.5.3 Maximum utility of minimum-cost routing

As mentioned above, the duality gap for the ring network we consider is of a trivial kind
that disappears when integer constraint on routing is relaxed. For the rest of this section,
we consider a continuous model where every point on the ring is a source. A point on the
ring is labelled bys € [0, 1], and the common destination is the pdir{pr equivalently 1).

The utility maximization problem becomes

1
max max / U(x(u))du (5.34)
ref0,1]  x(:) 0
r 1
subject to / r(u)du < 1, and/ z(u)du < 1. (5.35)
0 T

As in the discrete case, both constraints are active at optimality, and hence the problem

reduces to
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which, by concavity, yields the optimal routing and maximum utilityl”*
1
rt o= 1 and V* = U(2). (5.36)
To see that there is no duality gap, note that the problem (5.34)—(5.35) is equivalent to

Uz™)+ (1 —r)U(at
max max - rU@7)+ 1 -n)UET),

subjectto  rz~ <1, (1—r)zt <1.
Define the Lagrangian as
Liryz= 2t p=,p)=rU@@ )+ (1 —=r) U@ +p (1—ra”) +p (1 —(1—r)zh).
It is easy to verify that
rr=2" =2 pF=p"=U'(2 (5.37)
are primal-dual optimal and there is no duality gap; see Appendix 5.8.2.

We now look at the maximum utility achievable by the equilibrium of minimum-cost

routing. Let the delay from to the destination in the counterclockwise direction be

wherer(u), u € [0, 1], is given. Herey(u) corresponds to link cost in the discrete model.
Given routingr € [0, 1], the price in the counterclockwise directionli$(1/r), and the

price in the clockwise direction &’(1/(1 — r)). Then the cost of sourcein the counter-
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clockwise direction is

D (s;r) = T(s)+al’ (—) (5.38)

and the cost in the clockwise direction is

D*(s;r) = T(l)—T(s)+aU’( ) (5.39)

1—7r
A routing r is in equilibrium if the costs of sourcein both directions are the same.

Definition 5.1. A routingr is called anequilibrium routingif D~ (r;r) = D*(r;r). ltis

denoted by, or r(a).

By definition,r, is the solution of

o(r) = 2T(r)—T(1) +a (U’ (1) _ (ﬁ)) 0. (5.40)

r

Sinceg(0) < 0, g(1) > 0 andg’(r) > 0, the equilibriumr, isin (0, 1) and is unique. Given

a routingr, its utility is

V(r) = rU (%) -0y (1i7’) |

The maximum utility achieved by minimum-cost routing, with parametes thenV/ (r,,) <
V(rs) =V*.

The next result implies that, varies between, andr* and converges monotonically to

r* asa — oo. As a result, the losg™ — V' (r,) > 0 in utility also approache§ asa — oc.

Denote the interval in which/r, and1/(1 — r,) vary asl := [2,1/ min{rg, 1 — ro}].

Theorem 5.5. Supposé/” exists and is bounded an For all @ > 0, |r, — r*| is a strictly

decreasing function af. Moreover, as: — oo, |r, — r*| andV* — V (r,) approach O.

Proof. The equation (5.40) defines the equilibrium routirig) := r, as an implicit func-



96

tion of a. By the implicit function theoremy;’ () satisfies

a7 (7)o ()] e () o ()

The right-hand side is positive sinégis strictly concave. Hencé(a) has the same sign

as the term in the square bracket, i.e., sitité decreasing,

> 0 if r, <r*
7’/(0,) = < 0 if Tg > r* . (541)
=0 if ro =1"

This implies thatr, — r*| is a strictly decreasing function ef see Figure 5.3.
Hence|r, — r*| converges to a limit a8 — oo. SinceU” is bounded on the closed

interval 7, so isU’. Hence, from (5.40), we must have

U'(1/1a) = U'(1/(1 = 12)) = 0, or U'(1/ lim r,) = U'(1/(1 = lim r,).

a— 00

Sincel’ is strictly decreasing, this implies thiatn, ... 7, = 1 — lim, ., 7, = 7r*.
To show that* — V'(r,) > 0 also converges to 0, note thidt(r*) = 0 and hence we

have, by Taylor expansion,
Virg) —V* = “V"(u)(ry —r*)?
for someu between-, andr*. Here

7 1 " 1 1 " 1 2u
pu— _— - > -
v = 5 () i () 2 - mmrd =

wherey is the upper bound df” on . Hence

plra =12
(min{re, 1 —rg})3

o
IN

V- V<Ta)

Since|r, — r*| — 0, the proof is complete. O
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The shape of'(a) in (5.41) implies that, if-(0) > r* thenr(a) > r* for all a butr(a)
decreases to* asa — oo, and ifr(0) < r* thenr(a) < r* for all a butr(a) increases to*

monotonically, as illustrated in Figure 5.3. This is a consequence of the continuity of

Figure 5.3: The routing(a).

5.5.4 Stability of minimum-cost routing

We now turn to the stability of,. For simplicity, we will takeU (x) = log z, the utility
function of TCP Vegas [101] and FAST [69]. With this logarithm utility,(r,) = log(1 —
r)/r and hence Theorem 5.5 can be strengthened to show/that V' (r,) is a strictly
decreasing function af, and hence converges monotonically to @as oc.

Givenr, let f(r) denote the solution of

It is in the rangd0, 1] if and only if 0 < T'(s) < T'(1), or if and only if

T T .
20 T - 2a



98

We will assume thatnin,cjo 1) 7(u) > 0. ThenT ! exists and

1

f(r)y = 171 (a(T(1)+a) —ar). (5.42)

The routing iteration is

rit+1) = [fr®)], (5.43)

where[r]j = max{0, min{1,r}}.

Definition 5.2. The equilibrium routing-, is (globally) stableif starting from any routing

r(0), r(t) defined by (5.42)—(5.43) converges-jast — oc.

Example 2: Uniform 7
Suppose delay is uniform on the ringu) = 7 for all u € [0, 1], so thatT'(r) = r7. From

(5.40), the equilibrium routing is

coinciding with the utility-maximizing routing*.

Suppose: < 7. Then the routing iteration becomes

41 = o ba) = 2r(e) = F0r(n).

Since|f(s) — f(r)| = (a/T)|s — | < |s —r|, f(r) is a contraction mapping and hence

is globally stable for alb < a < 7.

Hence for the uniform delay case, adding a static component to link cost stabilizes
routing provided the weight on prices is smaller than link delay. Moreover, the static com-
ponent does not lead to any loss in utility, (= *). The stability condition generalizes to
the general delay case. The following theorem says thatsfsmaller than the minimum

“link delay,” thenr, is globally stable; it is bigger than the maximum “link delay,” then it
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is globally unstable (diverge from any initial routing except, otherwise, it may converge

or diverge depending on initial routing.

Theorem 5.6. The stability is affected by parametesuch that
1. If a < min,ep) 7(u) thenr, is globally stable.
2. Suppose > T'(1). Then there exists < r, < 7 such that

(@) If r(0) = r or r(0) = 7 then subsequent routings oscillate betweemdr.

(b) If »(0) < r or r(0) > 7 then subsequent routings after a finite number of

iterations oscillate between 0 and 1.

(c) If r < r(0) <7 thenr(t) converges ta, provideda < min,e7 7(u).

3. If a > max,cp1 7(u) then starting from any initial routing(0) # r,, subsequent

routings after a finite number of iterations oscillate between 0 and 1.

Proof. 1. We show that the routing iteration (5.43) is a contraction mapping

minyeo,1) 7(u). Now

(as — ar)

Y

BT

a

min,ep,1) 7(u)

IN

’8—T|,

for somewu betweenr and s, by the mean value theorem. Henkg-) is a contraction

mapping and starting from any0) € [0, 1], r(¢) converges exponentially tq.

2. Defineh(r) = (T'(1) + a)/2 — ar. The routing iteration can be written as

T(rt+1) = [h(r®)s. (5.44)
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Define the following sequences

apt1 = hil(bn% anrl = T(an+1)~

Note that(a,,,n > 0) is a routing sequence going backward in time. The following lemma

is proved in the appendix, following [103].

Lemma5.1. LetT, = T(r,) = h(r,). Then

O=ag < g << 1y <---<ag < a1 <1,

TO)=by < by <---< T, <---< by < b <T(1).

Since the sequences are monotone, the lemma implies that therarmde with 0 <

r <r, <T < 1such that

lim aq, = T, and lim Aop+1 = T.

n—oo n—oo

By continuity of 7" andh, we have
T(r) = h(r), and T(F) = h(r).

This implies that starting from(0) = r or »(0) = 7, the subsequent routings oscillate
between andr.

To show the second claim, suppoge) < r. Specifically, Suppos@,, » < r7(0) < as,
for somen. If h(r(0)) > T'(1) (possible since > T'(1)), thenr(1) = 1 and subsequent
routings oscillate between 0 and 1. Otherwise, from (5.44)) = A~ '(T(r(1))), and
henceas, » < ™Y (T(r(1))) < as,. Sinceh is strictly decreasing, we haveg, ; <
T(r(1)) < by,—3 by definition ofb,,. Hence, sincd’ is strictly increasinggs,—1 < (1) <
as,—3. The same argument then shows that , < r(2) < as,_». Hence we have shown

thatr(0) < asg, impliesr(2) < as,—o. This proves the second claim. The proof of the third
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claim follows the same argument of part 1.

3. By the mean value theorem, we have, foreall in [0, 1],

B (T) - (T = )

|a - O/‘v
for someu betweem anda’. Hence the iteration map
a1 = h(T(an))

is a contraction provided > max,c(,1) 7(u). This implies that the sequence,,n > 0)
converges and, sineeg is the unique fixed point ot ' (7'(+)), r = 7 = r,. The assertion

then follows from part 2(b). O

5.5.5 General network

It is difficult to derive an analytical bound anto guarantee routing stability or to compute
optimal routing for general networks. In this section, we present numerical results to illus-
trate that the intuition from the simple ring network analyzed in the previous subsections
extends to general topology.

We generate a random network based on Waxman’s algorithm [159]. The nodes are
uniformly distributed in a two-dimensional plane. The probability that a pair of nades

are connected is given by

Pro(u,v) = « exp (d(u’v>> :

/L

where the maximum probability > 0 controls connectivityg < 1 controls the length of

the edges with a larget favoring longer edgesi(u, v) is the Euclidean distance between
nodesu andv, andL is the maximum distance between any two nodes. In our example, we
set the number of nodé€s = 30, a = 0.8, # = 0.3, which generated 90 bidirectional links;
see Figure 5.4. The fixed delayof each link/ is randomly chosen according to a uniform

distribution over [100, 400]ms. The link capacities are randomly chosen from the interval
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random network with N=30,a=0.8,=0.3

Figure 5.4: A random network.

[1000, 4000] packets/sec, also with uniform distribution. There are 60 flows on the network
with randomly chosen source and destination nodes. Routing on this network is computed
using the Bellman-Ford minimum-cost algorithm, with link cdgt) = 7, + ap;(¢) in each
update period, on a slower timescale than congestion control. In each routing pg&riod
we first solve the link prices based on the current routing, using the gradient projection
algorithm of [97]. We iterate the source algorithm to update rates and the link algorithm to
update prices, until they converge. The link prices are then used to compute the minimum-
cost for the next period.

We measure the performance of the scheme at differdnt the sum of all of the
source’s utilities. If the routing is stable (at sma)) the aggregate utility is computed using
the equilibrium routing. Otherwise, the routing oscillates and the time-averaged aggregate
utility is used. The result is shown in Figure 5.5.

As expected, when is small, routing is stable and the aggregate utility increases with
a, as in the ring network analyzed in Section 5.5.3 (Theorem 5.5). Whenl, the static
delay ; dominates the link cost, and the routes computed wjith) remain the same as

with static routing ¢ = 0), and hence the aggregate utility is independent.oRouting
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Figure 5.5: Aggregate utility as a function @for random network

becomes unstable at around= 10. Even though the time-averaged utility continues to
rise after routing instability sets in, eventually it peaks and drops to a level less than the

utility achievable by the necessarily stable static routing.

5.6 Resource provisioning

Results in the previous sections show that even though an equilibrium of TCP/IP, when
it exists, maximizes utility under pure dynamic routing, it can be unstable and hence not
attainable by the TCP/IP system. In this section, we show that if the link capacities are op-
timally provisioned, however, puigaticrouting is enough to maximize utility. Moreover,
it is optimal even within the class of multi-path routing: again, there is no penalty in not
splitting traffic across multiple paths.

Suppose it costs; > 0 amount to provision a unit of capacity at linkand leto = («y,
for all [) be the vector of unit costs. For instance, a longer link may have a laygdihe
total capacity cost over the entire networkiSc. Suppose the budget for provisioning the

capacity isB. Consider the problem of optimally selecting capacities, routing, and source
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rates to maximize utility

max max max ZUZ-(%), (5.45)
subjectto Rz < ¢, (5.46)
ale < B. (5.47)

whereU; are concave increasing utility functions. Note ti#atanges inR,, and hence
multi-path routing is allowed. This problem may arise when optical lightpaths can be

dynamically reconfigured at a connection timescale.
Theorem 5.7. Supposé//(z;) > 0 for all : andz; > 0. At optimality,

1. There is an optimal solutiofx*, R*, =*) whereR* € R, is a single-path routing.

N

. Moreover,R* is pure static routing using; as link costs.
3. R*z* = ¢*, i.e., there is no slack capacity.

4. o'c = B, i.e., there is no slack in budget.

ol

. Link prices generated by TCP—AQM are proportional to the provisioning cp’sts,

~v*a for somey* > 0.

Proof. It is easy to show the existence of an equilibrium. Define the Lagrangian of (5.45)-

(5.47) as
L(c, R,w,p,7) = Y Ui(;) = p"(Rz — ¢) = y(a"c = B).

At optimality, the KKT condition holds: there exigt > 0 and~* > 0 such that

U'z;) = (R, (5.48)
P = Yo, (5.49)
(P (Ra* =) = 0, (5.50)

v (fer—=B) = 0. (5.51)
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From (5.49), we obtain the last claim in the theorem. Moreover, (5.49Y&0d) > 0
imply thaty* > 0 andp; > 0 for all /, sincea > 0. Hence, from (5.50) and (5.51),
equality holds in (5.46) and (5.47), proving the third and fourth claims.
To prove the first two claims, express the routing maktias R = HW whereWW ¢
Wi.. Using the equalities in (5.46) and (5.47) to eliminateve can transform the utility

maximization problem (5.45)—(5.47) into:

max max E Ui(x;),
Wew,, x>0 -
7

subject to Z ("H'w) z; = B,
wherelV =diag(w’). SincelU; is nondecreasing and both the objective and the constraints
above are separableinin order to maximize utilityzo® should be chosen to be a solution
of

min ol H'w',

w?

subjectto  1"w'=1, 0<w) <L

Since this is a linear program, there exists an optimal point on the boundary. Hence there
is an optimallW* € W, i.e., minimum-cost single-path routing usingas link costs is

optimal. ]

5.7 Conclusion

Given a routing, TCP-AQM can be interpreted as a distributed primal-dual algorithm over
the Internet to maximize aggregate utility over source rates. In this chapter, we study
whether TCP-AQM together with IP (modelled by minimum-cost routing) can maximize
utility over both source rates and routing, on a slower time scale. We show that we can
indeed interpret TCP/IP atemptingto maximize utility in the sense that its equilibrium,

if it exists, solves the utility maximization problem and its dual, provided congestion prices

generated by TCP-AQM are used as link costs. TCP/IP equilibrium exists if and only if
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there is no penalty in not splitting traffic across multiple paths. Even if equilibrium exists,
however, TCP/IP with pure dynamic routing can be unstable. Specializing to a special ring
network, we show that routing is indeed unstable when link costs are congestion prices. It
can be stabilized by adding a static component to the definition of link cost, but the static
component reduces the achievable utility. There thus seems to be an inevitable tradeoff
between routing stability and utility maximization, for a given set of link capacities. We
show, however, that if link capacities are optimally provisioned, then pure static (and hence
stable) routing is sufficient to maximize utility even for general networks, and link costs
are proportional to the provisioning costs. Moreover single-path routing can achieve the
same utility as multi-path routing. Hence, one can regard the layering of TCP and IP as
a decomposition of the utility maximization problem over source rates and routes into a
distributed and decentralized algorithm, carried out on different time scales, at least when

network capacities are well provisioned.

5.8 Appendix

5.8.1 Proof of duality gap

We prove that there is generally a duality gap between the primal problem (5.22)—(5.23)
and its dual whemV is odd.

It is easy to see that the primal optimal routing is

N -1 N +1

T —_= _ R

2 2

Suppose without loss of generality that= (N — 1)/2 (the other case is similar). Then,

the source rates are
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yielding a primal objective value of

e () - 2 ()
() (e ()
< NU(%)?

where the last inequality follows from the strict concavity(of We now show that the

right-hand side is the optimal dual objective value, and hence there is a duality gap.
The dual problem of (5.22)—(5.23) is (e.g., [97])

N
min (Z max ¢(z;, p1, py+1) + (1 +pN+1)> ;

pP1,pN+120 \ <
=1

whereo(x;, p1, pn+1) = U(x;)—x; min{py, py11}. First, note that the minimizing:, py1)

must satisfyp; = pn1, for otherwise, if (sayp; < pn+1, then the dual objective value is
N
Z max (U(z;) — zip1) + (p1 + pn+1)
-1
and can be reduced by decreasing ; to p;. Hence the dual problem is equivalent to
min Z max (U(z;) — xip) + 2p. (5.52)

Let p* denote the minimizer and! = z;(p*) = x(p*) =: z* denote the corresponding

maximizers (they are equal for a@lby symmetry). Then we have
U'z*) = p* (5.53)

Differentiating the objective function in (5.52) with respeciptand setting it to zero, we

have

0 = NU' (=)' (p*) —pa'(p”) — ") + 2. (5.54)
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Using (5.53), we have* = 2/N, and hence the minimum dual objective value is

2
N(maxU(z") — 2" p") +2p° = NU (N)

as desired. O

5.8.2 Proof of primal-dual optimality

We prove that the solution given by (5.37) is primal-dual optimal using the saddle-point
theorem (e.g., [14, pp. 427]). Clearly*, x—*, «™*) is primal feasible andp—, p**)
is dual feasible. We now show that*, z=* =™ p~* p*™) is a saddle point, i.e., for all

(r,z=,z",p~,pT). Now
L(r,a™, 2", p %, p™) < L@, a2, p " p™) < L(r* 272 p7,p").

For the right inequality, substituting*, z=*, z™) from (5.37) intoL(r*, x=*, 2™, p~, p*)
to get, for all(p~, p*),

Lir*,a "2 p",p") = U(2).

But U(2) = L(r*,xz~*, 2™, p~*, p™*), establishing the right inequality. For the left in-

equality, denoting* := p~* = p™*, from (5.37) we have

L(r,a™a®,pp™) = rU@") + (1 =n)U@") = (ra” + (L—r)2")p" + 2p"

< U(y) —yp*+2p* (concavity ofU), (5.55)

with y := rz~ + (1 — r)x™, where equality holds if and only if~ = ™ sinceU is strictly
concave. Notice that the right-hand side is maximized gvdrand only if y satisfies
U'(y) = p*. Thisimplies thaty = z—* = «™ = 2 sincel’ is strictly monotonic. Substitute
y = 2 into (5.55) yields, for al(r, x=, ™),

L(r,x”, 2z, p ", p™) < U(2)
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as desired, sincE(2) = L(r*, z—*, z ™, p~*, pt*). -

5.8.3 Proof of Lemma5.1

We will prove the lemma by induction. Note thiat < T, implies thata; = h=1(by) >
h~Y(T,) = r,. Sincea > T(1) andh(1) < 0, a; = h™*(by) < 1 (see Figure 5.6). Hence

T(r)

a, a, a

Figure 5.6: Proof of Lemma 5.1.

O=ag<r, <a <l1.

This implies that, = T'(a,) satisfies

T0)=by<T, <b <T(1).

Sinceb; < T(1) < h(0), az = h=*(by) > =1 (h(0)) = 0, we have

O=ag<ag <71y <a; <l.
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Let the induction hypothesis be

ag < ... < Q9 < Tqg < Qop—1 < ... < 7

bo < ... < bypg < T, < boyp1 < ... < by.

Thenbgn = T(a2n) > T(a2n72> = bop—2 andbgn = T(Clgn) < T(?”a) =T,. Hence,

b2n72 < b2n < Ta-

This implies that, < as,;1 < as,_1, Which in turn implies tha¥, < by,,1 < ba,_1. This

completes the induction. ]
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Chapter 6

Throughput, Fairness, and Capacity

6.1 Introduction

Recent studies, e.g. [80, 97, 116, 164, 101, 88, 96], have shown that a bandwidth allocation
policy can be formulated as a utility maximization problem where the bandwidth allocation

x* (source rates) solves [80]
max Z Ui(x;) subjecttoRz < c. (6.1)

It is remarkable that as long as traffic sources adapt their rates to the aggregate (sum of)
congestion in their paths, they are implicitly maximizing some utility. The optimization
problem (6.1) is a convenient characterization of the equilibrium properties of various
TCP/AQM systems. We can derive the underlying utility functions of various TCP al-
gorithms and use them to study the relations among network throughput, fairness, and ca-
pacity. Our work reveals some counter-intuitive behaviors, which will be briefly presented
in this chapter. See [144, 146] for more detailed results and proofs.

We refer to network throughput as the total traffic through the network, which measures
the efficiency of the bandwidth allocation policy under which the network operates. There
are many examples in the literature that point to an inevitable tradeoff between fairness and
aggregate throughput (efficiency), yet there is no general theorem clarifying this folklore.
How do we balance fairness and efficiency in designing bandwidth allocation policies?

Will adding additional link capacities necessarily result in higher aggregate throughput?
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In this chapter, we rigorously study these questions in general networks using an ana-
lytical model . Here are our main results.

Suppose that the bandwidth allocation policies, represented by utility functions, are
parameterized by a common scatar> 0. We derive explicit expressions for the changes
in source rates and congestion prices when the parameterthe capacities change for
general utility functions.

We specialize to a particular class of utility functions [116] that characterize various
TCP variants and include various fairness criterions as special cases. The paraimeter
these utility functions can be interpreted as a quantitative measure of fairness [107, 16], and
an allocation idair if «is large. All examples in the literature indicate that a fair allocation
is necessarily inefficient. We quantitatively formulate the relations between fairness and
efficiency in general networks. This characterization allows us both to produce the first
counter-example (Theorem 6.3) and trivially explain all the previous supporting examples
(Corollary 6.2). Surprisingly, the class of networks in our counter-example indicates that
a fairer allocation could balwaysmore efficient. In particular it implies that max-min
fairness can achieve a higher aggregate throughput than proportional fairness.

Intuitively, we might expect that the aggregate throughput will always rise when some
links increase their capacities. This turns out to be wrong, and we characterize exactly the
condition under which this is true (Theorem 6.4). Not only can the aggregate throughput be
reduced when some link increases its capacity, more strikingly, it can also be reduced even
whenall links increase their capacities by the same amount (Theorem 6.5). Moreover, this
holds under all bandwidth allocation policies . This paradoxical result seems less surprising
in retrospect: raising link capacities always increases the aggregate utility, but mathemat-
ically there is no a priori reason that it should also increase the aggregate throughput. If
all links increase their capacities proportionally, however, the aggregate throughput will
indeed increase, under the class of utility functions proposed in [116] (Theorem 6.6).

It is well known that counter-intuitive behavior can arise in a distributed system where
agents optimize their own objectives, e.g., the Braess paradox in transportation networks.
It was discovered theoretically in 1968 [18, 120, 44] and verified in real world years later

[37]. It shows that adding a new road to a transportation network may taugertravel
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time foreverycar. Subsequent paradoxes have been discovered in mechanical and electrical
networks [27], in queueing networks [28, 136, 83, 11, 84], and in computer systems [72,
73]. Even though our results have the same flavor, they differ in important ways from the
Braess paradox.

First, in the Braess paradox, the performance degradation is due to misalignment of
individual and social optimalities. In our case, it is due to misalignment of two social
objectives (utility maximization versus throughput maximization). Second, in the Braess
paradox, the addition of new road leads to degraded performaned ftows, and hence
the new equilibrium point is not Pareto optimal. In our case, all equilibrium points are
Pareto optimal, and hence some flows are worse off and some better off in the new equi-
librium point. Finally, examples of the Braess paradox always involve the addition of new
paths and flows that re-route to maximize their own objectives. In our case, only link

capacities are changed, while network topology and routing are fixed.

6.2 Model

A network consists of, links with finite capacity;. Itis shared byV sources indexed by
R is the routing matrix wheré;; = 1 if source: uses linkl and0 otherwise. Letr; be the
transmission rate of souréeandU;(x;; ) be its utility. All the utility functionsU;(z;; «)

are parameterized by a scatar> 0. Supposéd’;(z;; a) are concave in; for « > 0 and
strictly concave when > 0. Whena andc are clear from the context, we may usgz;)

in place ofU;(z;; «).

Consider the utility maximization problem

max Ui(z;; ) subjectto Rx <, (6.2)

and its Lagrangian dual

min _ max (Ui(:c@-; o) — x; ZZ: Ru}?z) + Zl: apr- (6.3)
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A maximizerz = xz(«, c) for (6.2) and a minimizep = p(«, ¢) for (6.3) exist fora: >
0,c¢ > 0, since the utility functiong/;(x;) are concave.
Unless otherwise specified, we will assume that- 0, and R is full row rank, so
that the solutionss = z(a,c¢) andp = p(a,c) are unique. The aggregate throughput

T = T(a, c) is defined in terms of the unique solution,
T(a,c) = Z zi(a,c). (6.4)

From Lemma 6.1 below;(«, ¢) andp(«, ¢) are continuous functions ef andc. More-
over, they are differentiable except at a finite number of points when the active constraint
set at optimal changes asor c is perturbed. We can studyl’/0a and 9T /0c in be-
tween these points. Hence, all our statement should be interpreted piecewise in between
non-differentiable point. For the rest of the paper, we will thus focus on the utility max-
imization with equality constraints that represent only those constraints that are active at
optimality

max Ui(z;; ) s.t. Rx = c. (6.5)

;>0 -
1

In this case the dual problem (6.3) should be interpreted as the Lagrangian dual of (6.2)
with a possibly reduce®, as opposed to the dual of (6.5).

Supposer has full row rank. Suppos® > L and letM = N — L be the difference
between the number of sources and the number of links. Thes the dimension of the
null space ofR. Let (z,,,m = 1,..., M), z,, € R" be any basis of the null space Bf
and letZ = [z z» ... z)] be the matrix withz,, as its columns. LeV = V(z;a) :=
>, Ui(z;; ) be the aggregate utility function. Lé2 = D(a, ¢) denote the curvature of
the aggregate utility function

0*V
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andb = b(«, ¢) be
0*V

b= Oxda (6.7)

at the optimal allocation = z(«, ¢).

6.3 Basic results

In the rest of this chapter, we assume that the active constraint set is unchanged evhen
c is perturbed locally (i.e., we consider problem (6.5) instead of problem (6.2)). \i#hen
is full row rank, the following lemma cited from [150] guarantees the differentiability of

z(a, c) andp(a, , ¢).

Lemma 6.1. For anya > 0, ¢ > 0, the unique solutior:(«, ¢) and p(a, ¢) of (6.5) is

continuous and differentiable &tv, ).

The basic results on how throughput and prices vary as the utility paramatet ca-
pacityc change are given in the next theorem. In the next two sections, we will specialize to
a particular class of utility functions to study the throughput-fairness tradeoff and whether

increasing capacity always raises throughput.

Theorem 6.1. The optimal ratess = z(«, ¢) of (6.5) and optimal pricep = p(«, c) of

(6.3) satisfy the following equations

g_z — (D™= D'RT(RD™'RT)'RD )b,
% — D 'RY(RD'RY)"!,

g_i = (RD'RT)"'RD™,

B~ (rD7R),

where matrixD and vecto are defined in (6.6) and (6.7), respectively.
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Proof: At the optimal point, the Karush-Kuhn-Tucker condition holds. We have

Rr=c and R'p-— g—‘x/ = 0. (6.8)

Y= . W= , an w,y) = )
P «Q RTp — %—Z

Then (6.8) can be rewritten &5 w, y) = 0. The derivatives of functiot are

G R 0 R 0
Wb e)-(r)
oG I 0 Io
w-(s)- )

Since R is full row rank andD is positive definite, RD-!R* is positive definite. Then

Define

0G /0y is always invertible, and it can be checked that

—1
R 0 D-'RT(RD-'RT)"' D-'— D-'RT(RD~'RT)"'RD"
D RT —(RD'RT)"! (RD-'RT)"'RD! '

All the above matrices are well defined becaiige ' R is invertible. From the implicit

function theorem, the vectgrcan be uniquely solved in terms aflocally. Moreover

—1
dy  (0G\ oG [ R 0O I 0
dw oy ow D RT 0ob |

From the definitions off andw, we have

ox ox

— =(D' =D 'RY(RD*R")'RD™ )b, — =D 'RY(RD'R")™,
Ox oc

Op B B 3 dp _ _

—= =(RD'R"Y'RD™ % =L = (RD'RTY~ L.

5 = ) , 5 =~ )
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[l

Since the optimat always satisfies the constraints = ¢, for a fixedc, the change in

x should be in the null space &f asa varies. This is captured by the following corollary.
Corollary 6.1. The derivative)z/0da can also be expressed as

ox

= = Z(Z'DZ) ' Z"b
A I

where the columns of matri¥ form a basis of the null space &.
Proof: Denote
A:=D"'—-D'RYRD'R")'RD' - Z(Z"D2Z) ' Z".

From Theorem 6.1 and the definition &f we only need to show = 0. By the definition

of matrix Z we have
RZ =0, and Z'RT =0.

It is clear that

R A RD'—RD'-0
ZTD Zr —0- 27

R
The next step is to show that the matiix . is full rank so thatA must be the zero
Z'D
matrix. Suppose it is not, then there exists a nonzero vectach that

R
v = 0. (6.9)
Z'D

Hence,Rv = 0, i.e.,v is in the null space oR. Since the columns of form a basis of the
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null space ofR, there existsv such thaty = Zw. Substituting into (6.9), we have
Z'"Dv=Z"DZw = 0.
SinceZT D7 is positive definite and invertible, we must have= 0 andv = Zw = 0. This

contradicts the assumption that~ 0. Therefore! .
Z*D

] is full rank andA = 0. O

We will apply these results to a particular class of utility functions to study the effect of

changes in fairness§ and capacity) on throughput in general networks.

6.4 Is fair allocation always inefficient?

Now we apply the expression for: /0« in Corollary 6.1 to study the effect of changes in
fairness §) on throughput'(a) = T'(«a, ¢) for a fixedc > 0. It clarifies a folklore about

the tradeoff between efficiency and fairness of a bandwidth allocation policy.

6.4.1 Conjecture

Recent studies show that bandwidth allocations can be formulated as a utility maximization
problem [80, 97, 96], and allocation properties such as throughput and fairness can be
studied by analyzing the underlying convex optimization problem.

Kelly et al. [80] introduceproportional fairness characterized by utility function
Ui(z;) = log x;, which is achieved by TCP Vegas and FAST. Massoulie et al. [107] propose
another allocation policyninimum potential delawith U;(z;) = —1/z;, which has been
shown to approximate the fairness of TCP Reno by Kunniyur and Srikant [88]. Mo and

Walrand [116] present the following class of utility functions

1—a)ta; > if 1
Uz, a) = (=)™ ke . (6.10)
log x; ifa=1

It includes all the previously considered allocation policies as special cases—maximum

throughput & = 0), proportional fairnessa( = 1), minimum potential delayo = 2),
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and max-min fairnessy( = o). It provides a convenient way to compare the fairness of
different allocation policies . Moreover, it can also generate utility functions of major TCP
congestion control algorithms, e.g., Reno £ 2), HSTCP [39] ¢« = 1.2), and Vegas,
FAST [69], Scalable TCP [81|(= 1).

We are not concerned with fairneasross different flowsinder the same allocation
policy represented by a givenm value, as, e.g., Jain’s fairness index is [67]. Rather, we
want to compare fairneggross allocation policieswWhile there are no generally accepted
criteria to compare the fairness of allocation policies, many examples in the networking
literature (e.g., [107, 116, 16, 105, 139]) informally compare specific allocation policies
in terms of theira. For instancep = 0 maximizes throughput but can be extremely
unfair. Proportional fairnessy( = 1) is considered fairer, and max-min fairness £
oo) the fairest because it generalizes equal sharing at a single resource to a network of
resources in a way that maintains Pareto optimality [45, 15]. Comparison of fairness of
these polices [107] in a simple network shows that the minimum-potential-delay policy
(o = 2) “penalizes more (less) severely long routes than max-min (proportional) fairness.”
We extrapolate this intuition based on special cases to a continuum of allocation policies
indexed byw, and interprety as a quantitative measure of fairness.

Is a fairer policy (largerv) always less efficient (smaller aggregate throughipt))?

This conjecture is prompted by the various examples in resource allocation in the literature
of wired networks [107, 116, 16], wireless networks, [105, 139], economics, [22], etc.

These examples seem to illustrate (quoted from [105])

“the fundamental conflict between achieving flow fairness and maximizing
overall system throughput. ... The basic issue is thus the tradeoff between

these two conflicting criteria.”
This conjecture can be analytically expressed as
Conjecture 6.1. T'(«) is non-increasing

T
a— < 0 fora>0.
Ox
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6.4.2 Special cases

We review several examples in the literature that have motivated Conjecture 6.1. The con-
jecture is checked in special networks for max-min fairness, minimum potential delay,
proportional fairness, and the maximum-throughput policy by analytically solving (6.2)
or numerically computing’(«). However, these techniques are not applicable to general
networks. As is shown in the next subsection, the underlying network topology in these
examples possesses a special structure that leads to trivial sufficient conditions for the con-

jecture to be true.

Example 1: Linear network with uniform capacity [107, 16]
Consider the classical linear network withunitary capacity links an&v = L + 1 com-

peting sources, shown in Figure 6.1. The ratgs) are computed by solving (6.2) [16] ,
\ - )
N
® ® —@ ¢ o o o———@
) T ) /%)

Figure 6.1: Linear network.

which gives
1/a
Io(Oé> = _Ll/a——f—l’ and l’z(Oé) = _Ll/a——}—]_ for i Z 1.
Using this, we can easily check that, for> 0,
or  —LY*(L-1)logL ) =0, L=1
o o?(1+ LY | <0, L>2

Hence, except for the single-link cag&y) is strictly decreasing in for the linear network

with uniform link capacity. After examining this special case with several specralues,
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Massoulie et al. [107] made a cautious comment: “It is not known whether the same

ordering holds for arbitrary network topologies.”

Example 2: Linear network with nonuniform capacity [116]
The same network topology in Example 1 is considered in [116] Witk 2 with link

capacities:; < c,. The source rates under max-min fairness are

It is not hard to solve (6.2) to obtain the source rates and derive the aggregate throughput

for proportional fairness

2 1 2 c
T(l) = 561 + 5\/C%+C§——C102+ 502 > co+ 51 = T(OO)>

which supports the conjecture faor= 1 anda = .

Example 3: Linear network with two long flows

Consider a linear network with two long flows, shown in Figure 6.2. The link capacities

ox L)
AYAYAYAYS)

Figure 6.2: Linear network with two long flows.

arec = (500,400, 300, 200, 500)7, and the aggregate throughffe) can be numerically
solved for anye > 0. The result is shown in Figure 6.3. It suggests that the conjecture is

true for allae > 0 for this network. Corollary 6.2 below implies that, indeed, it is.
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Figure 6.3: Fairness-efficiency tradeoff.

6.4.3 Necessary and sufficient conditions

We now investigate the conjecture in general networks. The aggregate throtgigpat

function of source rate(«)

T(z(a)) = 1Tz(a), (6.11)
wherel = (1,...,1)T. From Corollary 6.1, we have
g—T = 1"2(Z"D2)'Z"0. (6.12)
(0%

When the utility function/(z, «) is defined as in (6.10), the matrix and vectowb defined
in (6.6) and (6.7) take the forms

D =adiagz; ..oy, b= (37%loga, ..., 2y logan)T,

wherez = z(a) = z(«,c) are the optimal rates. Let = p(a,c), f = [(a,c) and
A = A(a, ¢) be defined by

pi = 2o, B = —1Tz, and A = Z'DZ, (6.13)
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wherez; are theith columns ofZ. Note thatA is positive definite and hence invertible.
Let A;(«, c) denote the matrix obtained from replacing tie row of A with row vector

BT = (81,3 ... By). From the above definitions and (6.12) we have

orT
e (6.14)

Our first main result is a necessary and sufficient condition for the conjecture to hold.

Note that the condition is a function afeven though this is not explicit in the notation.

Theorem 6.2. Foranya > 0

oT M _
0 <0 ifandonlyif Z“i det A; > 0.

(0% -
=1

Proof: The key observation is the following expression for the row vector

1 _ _ _
BT AT = i (det Ay, det Ay, ..., det A,), (6.15)

which follows from the following formula for matrix inverse [62]

-1 _ 1 *
det AT

whereA* is the adjoint matrix ofA. Combining (6.14) and (6.15), we have

oT 1 & _

O

Theorem 6.2 characterizes exactly the set of netwoiks) in which Conjecture 6.1
is true. Though difficult to understand intuitively, this characterization leads directly to
two sufficient conditions that explain all the examples in Section 6.4.2. The first condition
implies that the conjecture is true when every link has a single-link flow and there is only

one long flow. This condition is satisfied by Examples 1 and 2. The second condition
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implies that the conjecture is true when there are two long flows but both pass through the
same number of links. This condition is satisfied by Example 3. The corollary implies that,
while the diversity of capacitieg in Examples 2 and 3 makes the optimization problem
(6.2) hard to solve and the previous analysis methods complicated, they are not relevant at

all to the truth of the conjecture for these examples.
Corollary 6.2. Suppose every link has a single-link flow.
1. If dim(Z) = 1, thendT' /0o < 0 for all o > 0.

2. If dim(Z) = 2 and the only two long flows pass through the same number of links,
thendT'/0a < 0 for all a > 0.

To prove the corollary, we now specialize to a particular b&si$ the null space of the
routing matrix R, making use of the fact that every link has a single-link flow. Rearrange

the column of routing matrixz to expressk as
R — [ [L Rl } )

wherel; is theL x L identity matrix andR; is aL x M matrix, N = L + M. We choose

a set of basis for the null space Bfsuch that matrixZ can be expressed as

Clearly ranKZ) =dim(Z) = M.

Lemma 6.2. Suppose every link has a single-link flow. Fom the form of (6.16), we have
1. gy, >0form=1,... M.
2. Qym > Ay forallm,n =1,..., M.

Proof: The proof is a series calculations based on the Karush-Kuhn-Tucker conditions.

See [144, 146] for the detailed proof. O
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We are now ready to prove Corollary 6.2 with the above lemma.
Proof of Corollary 6.2: 1) In this caseM = 1 andZ € RV*! is a column vector.
There arel single-link flows, one at each of the links, and exactly one other flow that
can traverse one or more links. This me@§:1 —2z1; > 1 since the long flow at least

transverses one link. Hence
L
61 = —1T21 = Z—le -1 > 0.
j=1

From Lemma 6.2, we know that, > 0. From Theorem 6.2 we have

(9_T _ _Mlﬁl <
Oa detA —

since matrix A is positive definite.

2) In addition to thel single-link flows, there are two flows that traverse one or more

links. Since they traverse the same number of links, we have
Bi=0=-1"2 > 0, (6.16)
as in the first assertion. We also have
pydet Ay 4 po det Ay = By 1 (ase — az1) + pa(arn — arn)] .

Lemma 6.2 and (6.16) then imply that the above quantity is nonnegative. Hence,

a_T . _MldetA1+M2detA2 <
oo det A -
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6.4.4 Counter-example

The condition in the second part of Corollary 6.2 that both long flows pass through the
same number of links is important. When it fails, there are networks whe@pthesiteof

the conjecture is true!
Theorem 6.3. Whendim/(Z) > 2, for any«, > 0, there exists a network such that

T
8—>O forall o > ay
Ox

Proof: See the detailed proof in [144, 146] . O

Since in reality there are many more flows than bottleneck links and therefo(e flim
is typically large, it is conceivable that Conjecture 6.1 is wrong more often than right in

practice.

Example 4: Counter-example

Consider the linear network with = 5 links and/N = 7 sources, shown in Figure 6.4. The

L . J

¢, GC_ c.¢C

SYAYAYAYSY

Figure 6.4: Network for counter-example in Theorem 6.3.

null space ofR has a dimension dif) = N — L = 2. There are five one-link flows with
rateszy, ..., rs and two long flows with ratesg, z7. Links 1 and 2 have a small capacity
cs, and links 3, 4, and 5 have a large capacity We solve the utility maximization (6.5)
numerically to comput&(«) for a € [0.5, 10].

The aggregate throughpii{«) is plotted in Figure 6.5 as a function af for cs = 10

andc;, = 1,000. The minimal throughput is achieved aroungl = 0.95 and will be
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achieved around, = 0.75 if we change-;, to be5, 000. T'(«) is strictly increasing beyond

ap. In particular,

T(oo) > T(2) > T(1).

The example is surprising at first because the conventional wisdom in networking is that

3007.8

3007.6

3007.41

3007.21

3007
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3006.6

3006.4

30062 L L L L L
0 2 4 6 8 10 12
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Figure 6.5: Throughput versus efficieneyin the counter-example.

increasingx favors long flows that take up more resources, leading to a drop in aggregate
throughput. This is not exactly right. Recall that the ppgat a link is a precise measure

of congestion at that link. A more precise intuition is that increasirigvors “expensive”
flows, flows that have the largest sum of link prices in their paths. In Example 4, the link
capacitycg is small and, is large, so that prices are high at links 1 and 2, and low at links
3, 4, and 5. Even though traverses more links, it has a lower aggregate price over its
path thanz;. Hence, whenv increasesy; increases, leading to a reductiornig(because

of sharing at link 2). This reduction allows increases in flawsrs,andz; , so that the net
change in aggregate throughfutx) is positive. Hence the counter-example relies on the
design that the longest flow is not the most expensive.

Indeed, one can prove that for the network in Figure 8:4,/0a > 0 anddzg/0a < 0
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for all @ > «g, as illustrated in Figure 6.6. In this example, the decrease; iallows

—)(6

4
-

35 K

251

source rate
~

1
6 8
a value

10 12

15
0 2 4

Figure 6.6: Source rates versusn the counter-example.

increases in just three one-link flows, and yet this is enough to produce a net increase in the
aggregate throughput. Our example actually is compact in that our proof showg tiest

to pass through at least three links (link 3,4,5) to makgoa > 0.
One may notice that the amount of increment in Figure 6.5 is quite small. In fact, an

easy and loose upper-bound for the increment of aggregate throughpy2isCurrently,

we don’t know whether this small variation is true only for this example or for general
networks (R, c).

6.5 Does increasing capacity always raise throughput?

We have seen how fairness, as measured,lman affect efficiency, as measured’Byin

unexpected ways due to interaction among sources in general networks. In this section, we

study how increasing capacityaffects the aggregate throughgtit The results here can
be useful in deciding in which links resources should be invested to maximize aggregate

throughput.
Let § € R” be the vector that represents the increases in link capacities in the entire
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network. For instance, when= e¢;, wheree > 0 is a small scalar, ang is a L-vector that
has all its entries O except tlheh entry which is 1, then only link increases its capacity
from ¢; to ¢; + e. Whend = €1, then all links increase their capacities bynit. When
0 = ec, then all links increase their capacities by amounts proportional to their current
capacities.
The change in aggregate throughput per unit of an infinitesimal chaimgeapacities

is measured by the directional derivativg” of 7" in directiond, defined as
DT(«,8) = DT(a,d;¢) = lim T(a,c) —T(a,c+ 65).

e—0 €

From (6.11), we have

DT (a,0) = 1Tg—x5,
(&

wheredz/0c is evaluated at the optimal rai€a, c¢). We will take § to denote thelirec-
tion of increase in capacity, with the understanding tHaf’(«, §) provides an estimate of
change in aggregate throughput wheis changed t@ + ). Our results should be inter-
preted in the context of small perturbations that do not change the active constraint set in
(6.2).

DefineB = RD-'RT, n = 1" D~'R”, and B, is the matrix obtained by replacinith

row of B by n. A similar argument to the proof of Theorem 6.2 yields the following:
Theorem 6.4.For anyd, « > 0
L
DT(e,6) >0 ifandonlyif 6 det B; > 0.
=1

Theorem 6.4 characterizes exactly the set of all netwofks:), and directions), in
which aggregate throughput will increase, & fairnessae > 0. An easy consequence is

the following:
Corollary 6.3. If R has only two rows, theBT'(«, ) > 0 for anya > 0 and anys > 0.

Proof: Let B;; denote thei, j) element ofB. A similar argument to the proof of Lemma



130
6.2 shows that

;= Bii7 and B;; > Bij = Bji for Z,j =1,2.

Then

det(By) = mBas — naBay = baa(Bi1 — Bar) > 0.

Similarly we haveldet(B,) > 0. From Theorem 6.4, we ha®&T («, §) > 0. O

Corollary 6.3 says that increasing link capacity always raises aggregate throughput,
provided there are only two bottleneck links. Intuitively, one might expect this to hold
more generally. This is however not the case. We provide three interesting examples, with
different instantiations of directiofy as an illustration.

The first result says that not only can the aggregate throughput be reduced when some
link increases its capacity; paradoxically, it can also be reduced ahdmks increase

their capacities by the same amount. This is true for almost all faimness

Theorem 6.5. Given anyag > 0,
1. there exists a network, ¢) such that for alle > «, DT (v, ¢;) < 0 for some link.
2. there exists a network; ¢) such that for alle > «, DT'(a, 1) < 0.

Proof: The proof is by construction. For the first claim, consider the network in Figure 6.7.

Figure 6.7: Counter-example for Theorem 6.5(1).

There is a single-link flowt; at each linkl, forl = 1,...4. The flowz; transverses links
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1,2, and5, and flowzg transverses link3, 4, and5 respectively. The capacities of the links
arec; = ¢ = c3 = ¢4 = ¢, andes = cg. We increase only link 5’s capacity by 1, which
corresponds té = e;. For any fixedn, > 0, we can choose;, /cs large enough, such that
for anya > aq all links are fully utilized. Calculating the change in aggregate throughput

using Mathematica gives

DT (v, e5) = 1T%e5 —1"D'RT (RD™'R") "¢ = 1.

For the second claim, consider the network shown in Figure 6.8. There is a single-link

X1

C1

X1

C10

X13

Figure 6.8: Counter-example for Theorem 6.5(2).

flow z; at each linkl, for{ = 1,...,10. The link capacities are = c5 for i = 1,2,3 and
o =cpforl=4,...,10. We skip the detailed proof @7(«, 1) < 0, which can be found
in [144, 146]. O

Example 5: DT'(c0, 1) < 0 for somec in Figure 6.8

To illustrate, we calculate the change in aggregate throughput for the network in Figure 6.8
under max—min policyr = oco. Let the link capacities be; = 2 andc;, = 10. The source

can be easily calculated under max-min fairness, and it is easy to check that the aggregate
throughput is55. When all capacities are increasedZaywith 0 < ¢ < 1, we can check

that the total throughpuf'(¢) changes int&5 — ¢, i.e., T'(¢) is a decreasing function ef

IndeedDT (o0, 1) = —1/2 < 0 in this situation.
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If link capacities are increased proportionally, i.e.¢iis increased td1 + ¢)c, then
aggregate throughput will always rise. Note that even though increasing all link capacities
proportionally may be interpreted as changing the unit of capacity, it dogsply that
general utility functions increase proportionally in optimal flow vectors. It does however

imply this for the class of utility functions defined in (6.10).
Theorem 6.6. For any network (R,c) and for alk > 0, DT'(«a, ¢) > 0.

Proof: The necessary and sufficient condition for any 0 andp > 0 to be primal and
dual optimal are
ov .

Rr=c¢, and R'p= e (1% .z

Supposer andp are optimal with link capacities. Whenc is increased t@1 + ¢)c for
e > 0, we claim thatz(1 + ¢) and(1 + ¢)~“p are the new optimal rate and price vectors,
respectively. We can check that these vectors satisfy the optimality condition for capacity

(1+e€)c

Rx(l1+¢€) = c(l+e),

ov

Rip(l+e)™ = (1+e) (a1 ... a3")" = 5
ox

Therefore, the aggregate throughput is increased from the original Yatog 1 + ¢)7.

Hence, we hav®T (a,c) =T > 0. O

6.6 Conclusion

A bandwidth allocation policy can be defined in terms of utility functions parameterized
by some protocol parameter. We have studied how throughputs and prices change as
link capacities orx changes. We then focus on a specific class of utility functions where
« can be interpreted as a quantitative measure of fairness. We say an allocation is fair if
is large and efficient if the aggregate throughput is large. We use this model to investigate

whether a fairer allocation is always more inefficient and whether increasing link capacities
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always raises throughput. We characterize exactly the set of all netBrk$ in which
the answers are “yes.” Though these characterizations are difficult to understand intuitively,
they have led to simple corollaries that explain all the examples we found in the literature
and to the discovery of the first counter examples.

There are a number of ways this preliminary work can be extended. First, we have
focused of how throughputschange in response to changesiiandc, which is only half
of Theorem 6.1. The application of the other half of Theorem 6.1 on how prices change
has not been exploited. Second, the necessary and sufficient conditions for the conjectures
are hard to understand intuitively and check for large networks. It is not clear whether
this condition is likely to hold or fail in practice. It would be useful to derive equivalent
characterizations that are more intuitive or more general corollaries than reported here.
Finally, we have assumed that every source has the same utility function. It would be
interesting to see how the fairness definition and tradeoff results should generalize when
sources have the same class of utility functions but with differergarameters, or have

different utility functions.
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Chapter 7

Other Related Projects

7.1 Network equilibrium with heterogeneous protocols

7.1.1 Introduction

As we have seen in the previous chapters, congestion control protocols can be modelled
as distributed algorithms to maximize the aggregate utility, e.g., [80, 97, 116, 164, 88,
96]. However, these studies assume that all sources are homogeneous, that is, even though
they may control their rates using different algorithms, they all adapt to the same type of
congestion signals, e.g., loss probabilities in TCP Reno and queueing delay in FAST TCP
[69]. When sources witheterogeneougrotocols that react to different congestion signals
share the same network, the current duality framework is no longer applicable. With new
congestion control algorithms proposed for large bandwidth-delay product networks and
usage of congestion signals other than packet losses (including explicit feedbacks with
ECN), we need a rigorous framework to understand the behavior of large-scale networks
with heterogeneous protocols.

A congestion control protocol generally takes the form
pl =4q ( Z xj(t)vpl(t)) ) :tj = fj (xj(t)7 Z mg(pl(t))> . (71)
J:leL(j) l

As we have shown in Chapter 2, hejg-) models a queue management algorithm, and

f;(-) models a TCP algorithm. The effective prices (p;(t)) are functions of the link
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pricesp,(t), which in general can vary depending on the links and source.

When all algorithms use the same pricing signal (i.e., homogeneous protocols with
m{ = my for all j), the equilibrium of (7.1) turns out to be very simple. At the equilibrium,
the source rates; solve a utility maximization problem, and the link congestion measure
p; serves as a Lagrange dual. When heterogeneous algorithms that use different pricing
signals share the same network, i:e/, are different for different sources the situation
is much more complicated. For instance, when TCP Reno and FAST TCP share the same
network, neither loss probability nor queueing delay can serve as the Lagrange multiplier at
the link, and (7.1) can no longer be interpreted as solving the standard utility maximization
problem. Basic questions, such as the existence and uniqueness of equilibrium, and its

local and global stability, need to be re-examined.

7.1.2 Model

A network consists of a set df links with finite capacities;. There are/J different proto-
cols indexed by superscript and there aréV’ sources using protocglindexed by(j, 7).
The total number of sources ¥ := ° N7. The L x N/ routing matrix R’ for type
j sources is defined bgﬁ{i = 1 if source(j,7) uses link/, and O otherwise. The overall
routing matrix is denoted b = [ R' R? ... R’ |.

Every link [ has a pricep;. A type j source reacts to the “effective price%{ (pr) in
its path. By specifying functiom:/, we can let the link feed back different congestion
signals to sources using different protocols. The end-to-end prices for gguites ¢/ =
> Rim](p)- Letg! = (qi=1,...,N?),q = (¢/,j = 1...,J),m/ (p) = (m](p), ] =
1,...L)andm(p) = (mi(p,),j = 1,....J) be vector forms. They = (R/)" mi(p) and
q = R'm(p).

Let 27 be a vector with the rate/ of source(j, i) as itsith entry, and let: be the vector
of z7. We suppose that sourcg, ) has a utility functionUZ (:1:{) that is strictly concave
and increasing.

A network is in equilibrium when each sour¢g ¢) maximizes its net benefit and the

demand for and supply of bandwidth at each bottleneck link are balanced. Formally, a
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network equilibrium is defined as follows.

Given pricesp, the end-to-end price vectaris formulated as; = Rm(p). The
source rate:’ is uniquely determined by/, and it uniquely solvesiax.~, U7 (z) — z¢’.
Therefore, the source rates vectois a function of link priceg, denoted as(p). Denote
y(p) as the aggregate source rates at links, ten = Rz(p).

In equilibrium, the aggregate rate at each link is no more than the link capacity, and
they are equal if the link price is strictly positive. Formally, we galdn equilibriumif it

satisfies

P(y(p) —¢) =0, y(p) <c, p=>0 (7.2)

where P := diag(p;) is a diagonal matrix. We will study the existence and uniqueness

properties of network equilibrium specified by the above equations.

7.1.3 Existence of equilibrium

We prove the existence of equilibrium under the following assumptions.

Al: Utility functions U{ are strictly concave, increasing, and twice differentiable. Price

mapping functionSn{ are differentiable and strictly increasing WW(O) = 0.

A2. For anye > 0, there exists a numbet,,.. such that ifp; > pna., for link [, then

2! (p) < eforall (4,7) with R}, = 1.
These assumptions are mild. Concavity and monotonicity of utility functions are often
assumed in network pricing for elastic traffic. The assumptiomppreserves the relative
order of prices and maps zero price to zero effective price. Assumption A2 says that when

p; IS high enough, then every source going through links a rate less than
Theorem 7.1. Suppose Al and A2 hold. There exists an equilibrium ppicéor any
network(c,m, R, U).

The mathematical tool used to prove this theorem is the Nash theorem in game theory
[121, 10], which is an application of Kakutani’'s generalized fixed point theorem. The

detailed proof can be found in [147].
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7.1.4 Examples of multiple equilibria

Theorem 7.1 guarantees the existence of network equilibrium; however the equilibrium
may not be unique. We show two examples of multiple equilibria.

In a single-protocol network, if the routing matrix R has full row rank, then there is
a unique active constraint set. In contrast, the active constraint set in a multi-protocol
network can be non-unique even if R has full row rank as shown in Example 1. Clearly, the

equilibrium prices associated with different active constraint sets are different.

Example 1: Multiple equilibria with different active constraint sets

Consider a symmetric network in Figure 7.1 with three flows. The link 1 and link 3 have

X X

N
7

X

Figure 7.1: Example 2: two active constraint sets.

identical parameters, and flows, 1) and(1,2) have identical utility function. We show
that [142], under certain conditions, the network has two equilibria with different congested
links. We also carry out experiments with TCP Reno, which reacts to loss probability,
and TCP Vegas/FAST, which reacts to delay, and we set the experiment parameters such
that the conditions are satisfied. The prices (queues) at link 1 and link 2 are shown in
Figure 7.2. This result unambiguously exhibits that there are two equilibria with different
active constraint sets. The queue flip is produced when the network operates at different
equilibria.
Example 2: Multiple equilibria with a unique active constraint set

When the active constraint set is unique, it is still possible to have multiple equilibria,

and even uncountable many of them. We show that such an example/ witl8. The
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Figure 7.2: Shifts between the two equilibria with different active constraint sets.

network is shown in Figure 7.3 with three unit-capacity links= 1. All the sources use

A
6 Ry X

Figure 7.3: Example 2: uncountably many equilibria.

the same utility functio? (/) = — (1 — 27)” /2, and the price mapping function is linear
m?(p) = K’p, where K7 are L x L diagonal matrices wittk! = I, K? = diag(5, 1, 5),
andK? = diag(1, 3, 1).

It can be shown that the equilibrium pripesatisfies

Y R(R)'Kp = Y Ril-c
j J

J

which is a linear equation in It has a unique solution if the determinalat (Zj Rj(Rj)TKj>
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is nonzero, but has no or multiple solutions otherwise. By choosing appropriate parameters
(as shown above), we can make this determinant zero. It is easy to check that all of the

following are equilibrium prices for this network
pr=ph=1/8+4¢ and pb=1/4—2¢ where ec [0,1/24].

The corresponding source rates can also be derived, and all capacity constraints are tight
with these rates, yet there are uncountably many equilibria.

Examples 1 and 2 show that global uniqueness is generally not guaranteed in a multi-
protocol network. We will show, however, that local uniqueness is basically a generic

property of the equilibrium set.

7.1.5 Local uniqueness of equilibrium

We denoteF as the equilibrium set whereis in E if and only if it satisfies (7.2). Fix an
equilibrium pricep* € E. Let theactive constraint sek = L(p*) C L be the set of links
at whichp; > 0. Consider the reduced system that consists only of links iand denote
all variables in the reduced system &yp, 7, etc. Then, since,(p) = ¢, for everyl € L,

we havejj(p) = ¢. Let the Jacobian for the reduced systemdg® = 95(p),/dp, and

i( AT O (H
- SR () 79
Since the equilibrium pricg* for the links in L is a solution ofy(p) = ¢, by the inverse
function theorem, the equilibrium prigg, is locally uniqueif the Jacobian matriﬁ(ﬁ*) =
0y/0pis nonsingular gf*. We call a networkegularif all its equilibrium prices are locally
unique. The following theorem shows that almost all networks are regular and that regular
networks have finitely many equilibrium prices. This implies that the uncountablly many

equilibria shown in Example2 almost never happens in real networks.

Theorem 7.2. Suppose assumptions Al and A2 hold. Given any price mapping functions

m, any routing matrixk and utility functiong’,
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1. the set of link capacitiesfor which not all equilibrium prices are locally unique has

Lebesgue measure zerodi .

2. the number of equilibria for a regular networtk, m, R, U) is finite.
We now narrow our attention to networks that satisfy an additional assumption:
A3: Every link! has a single-link flow(j, i) with (U7)’ (¢;) > 0.

Assumption A3 says that when the price of lihks small enough, the aggregate rate
through it will exceed its capacity. It implies that the active constraint set is unique and
contains every link.

Since all the equilibria of a regular network have nonsingular Jacobian matrices, we

can define théndex/(p) of p € E as

1 if det (J(p)) >0

I(p) = _ :
-1 if det(I(p)) <O

Theorem 7.3. Suppose assumptions A1-A3 hold. Given any regular network, we have

S I(p) = (~1)"

peEE
wherel is the number of links.

The proof of this theorem is based on the Poincare-Hopf index Theorem [149, 113].
First, we construct a vector field formed by a continuous-time gradient project algorithm
[97] with multiple protocols. Clearlyy* is an equilibrium point of this vector field if and
only if it is a network equilibrium. Under the assumption A3, there will be a contraction
region in this vector field, and all the equilibria are in this region. The Jacobian matrix of
the vector field equilibrium point is the same as 7.3 if uniform stepsize is used. Since the
network is regular, every equilibrium has an index. Using the Poincare-Hopf index theorem

gives us the result in Theorem 7.3. An obvious consequence of this theorem is:

Corollary 7.1. Suppose assumptions A1-A3 hold. A regular network has an odd number

of equilibria.
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Corollary 7.1 also implies the existence of an equilibrium, although we show this in a
more general setting in Section 7.1.3. Next we will present another example to illustrate

Theorem 7.3 and Corollary 7.1.

Example 3: lllustration of Theorem 7.3 and Corollary 7.1
Recall that in Example 1, there are uncountably many equilibria. The comparients
andq] of these equilibrium points are shown by the (red) solid line in Figure 7.4. We can

change the utility function of every source into the following form

Uit oy = | HEDTO e el AL
B log ] if o] =1
wherea’ and 3/ are parameters. We pick two points (the two black dots), and choose ap-
propriate parameters’ and 3’ for every source, such that these two points will be isolated
equilibria.
After this perturbation, we can check whether the two designed equilibria are locally
unique, and the network is regular. Corollary 7.1 predicts an odd number of equilibria. We

indeed can find another equilibrium, and three of them in total 7.4.

X

1
Xi=(Bay)"

(0.135,0.865)

78] ===

/ (0.165,0.835)

S R

Figure 7.4: Example 3: construction of multiple isolated equilibria.

We further check the local stability of these three equilibria under the gradient algo-

rithm. It turns out that one of them is not stable and has index 1, while the other two are
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stable with index—1. The dynamics of this network under the gradient algorithm can be
illustrated by a vector field. We draw the vector field restricted on the plare ps, and
the phase portrait is shown in Figure 7.5. The (red) dots represent the three equilibria. Note
that the equilibrium in the middle is a saddle point, and it is therefore unstable. The (red)
arrows give the direction of this vector field. Individual trajectories are plotted with slim

(blue) lines.

0.

15 v . f f 1 / RS
01 011 012 013 014 015 016 017 018 019 02
pl

Figure 7.5: Example 3: vector field ofy(, p-).

7.1.6 Global uniqueness of equilibrium

The exact condition under which network equilibrium is globally unique is generally hard

to prove. We provide several special cases for global uniqueness.

Theorem 7.4. Suppose assumptions A1-A3 hold. If all equilibria have indeX”, then
E contains exactly one point. In particular, if all equilibria are locally stable, then

contains exactly one point.

The first claim of the theorem directly follows from Theorem 7.3. It can be checked
that a local stable equilibrium also has an index-ef )~, and the second claim also holds.

This result relates the local stability of an algorithm to the uniqueness property of a
network. Local stability can be checked in several ways, and it can be used to prove global

uniqueness. We will concentrate on several special cases in the rest of this section.
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Theorem 7.5. Suppose assumptions A1-A3 hold d@hdas full row rank. If for all; and

l m‘lj(pl) = k’p, for some scalak’ > 0, then there is a unique network equilibrium .

Under the assumption of Theorem 7.5, it is easy to show that we have an unusual situ-
ation in the theory of heterogeneous protocols where the equilibrium rate westidves

the following concave maximization problem

maXijUij(xg) S.t. Rz < c.
1]

Therefore, such a network always has a globally unique equilibrium WHeare strictly
concave. It can also be proved using Theorem 7.4 by showing that every equilibrium is

locally stable under the gradient projection algorithm.

Theorem 7.6. Suppose assumptions A1-A2 hold. The linear network in Figure 7.6 has a

unique equilibrium.

7.6. We can show that every equilibrium in this network is locally stable and that even

XL+1
X , J

X Xz NG
Figure 7.6: Corollary 7.6: linear network.

every source uses different protocols. By Theorem 7.4, the equilibrium is globally unique.
Theorem 7.4 also implies the global uniqueness of equilibrium for any network in which

no flow passes through more than 2 links in the active constraint set, when A1-A3 hold. In

this case, the Jacobian matrix is strictly diagonally dominant with negative diagonal entries,

and hence its determinant(is-1)~.

Theorem 7.7. Suppose assumptions A1-A3 hold. A network where all flows using at most

two links has a unique equilibrium.
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7.1.7 Conclusion

When sources sharing the same network react to different pricing signals, the current dual-
ity model no longer explains the equilibrium of bandwidth allocation. We have introduced a
mathematical formulation of network equilibrium for multi-protocol networks and studied
several fundamental properties, such as existence, local uniqueness, number of equilibria,
and global uniqueness. We prove that equilibria exist and are almost always locally unique.
The number of equilibria is almost always finite and must be odd when they are associ-
ated with the same active constraint set. We provide four sufficient conditions for global
uniqueness.

The utility maximization problem that underlies a single-protocol network implies that
the equilibrium source rates exist and are always unique [96]. In the heterogeneous protocol
case, we prove that equilibrium still exists, under mild conditions, despite the lack of an un-
derlying concave optimization problem. There can be uncountably many equilibria, and the
bottleneck links set can be also be non-unique. However, we prove that almost all networks
have finitely many equilibria and that they are necessarily locally unique. Non-uniqueness
can arise in two ways. First, the equilibria associated with different sets of bottleneck links
are always distinct. Second, the number of equilibria associated with each set of bottleneck
links can be more than one, though always odd. Moreover, these equilibria cannot all be
locally stable unless the equilibrium is globally unique. We also provide several special
cases for global uniqueness of network equilibrium. We also provide numerical examples

to illustrate the theorem and equilibrium properties.

7.2 Control unresponsive flow—CHOKe

7.2.1 Introduction

TCP is believed to be largely responsible for preventing congestion collapse while the In-
ternet has undergone dramatic growth in the last decade. Indeed, numerous measurements
have consistently shown that more than 90% of traffic on the current Internet still consists

of TCP packets, which, fortunately, are congestion controlled. Without a proper incen-
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tive structure, however, this state of affairs is fragile and can be disrupted by the growing
number of non-rate-adaptive (e.g., UDP-based) applications that can monopolize network
bandwidth to the detriment of rate-adaptive applications. This has motivated several active
gueue management schemes, e.g., [111, 41, 94, 141, 123, 126, 35], that aim at penalizing
aggressive flows and ensuring fairness. The scheme, CHOKe, of [126] is particularly in-
teresting in that it does not require any state information and yet can provide a minimum
throughput to TCP flows.

The basic idea of CHOKe is explained in the following quotation from [126]:

“When a packet arrives at a congested router, CHOKe draws a packet at random from
the FIFO (first-in-first-out) buffer and compares it with the arriving packet. If they both
belong to the same flow, then they are both dropped; else the randomly chosen packet
is left intact and the arriving packet is admitted into the buffer with a probability that

depends on the level of congestion (this probability is computed exactly as in RED). ”

The surprising feature of this simple scheme is that it can bound the bandwidth share of
UDP flows regardless of their arrival rate. Extensive simulation results in [126] show that
as the arrival rate of UDP packets increases without bound, their bandwidth share peaks and
then drops to zero! It seems intriguing that a flow that maintains a much larger number of
packets in the queue does not receive a larger share of bandwidth, as in the case of a regular
FIFO buffer. We provide an analytical model of CHOKe that explains both this throughput
behavior and the spatial characteristics of its leaky buffer. In this section, we will present

the model, analysis, and simulations of CHOKe very briefly. See [155, 143, 145] for details.

7.2.2 Model

We focus on a network with a single bottleneck link with capaeitykts/sec, which is
shared by byV identical TCP sources and a UDP flow with a constant sending rate. We
study the network’s equilibrium behavior.

Equilibrium quantities (rate, dropping probability, etc.) associated with the UDP flow

are indexed by 0. Since the TCP sources are identical, we will use index 1 for all TCP
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flows. The definition of all variables and some of their obvious properties are collected

below:
d: common round-trip propagation delay for TCP sources.
7. common queueing delay, and round-trip delay is 7.
b;: packet backlog from flow, i = 0, 1.
b: total backlogp = by + b1 N.

r: congestion based dropping probability. In generak (b, 7) whereg is a function

of aggregate backlogand queueing delay.

x;: source rate of flow. In generalr; = f(p1, 7) wheref is a function of overall loss

probability p; and queueing delay.
h;: the probability that an incoming packet of flavis dropped by CHOKé,; = b;/b.

p;. overall probability that a packet of flowis dropped before it gets through.

A packet may be dropped, either on arrival due to CHOKe or congestion (e.g., according
to RED) or after it has been admitted into the queue when a future arrival from the same
flow triggers a comparison. Every arrival packet from flogan trigger eithet packet loss
from the buffer, 1 packet loss due to RED, or 2 packet losses due to CHOKe. These events
happen with respective probabilities @f — 4;)(1 — r), (1 — h;)r, andh;. Hence, each

arrival to the buffer is accompanied by an average packet loss of

Consider a packet of flowthat eventually goes through the queue without being dropped.
The probability that it is not dropped on arrival(is— r)(1 — k;). Once it enters the queue,
it takesT time to go through it. In this time period, there are on averagepackets from

flow i that arrive at the queue. The probability that this packet is not chosen for comparison
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is (1 —1/b)""". Hence, the overall probability that a packet of flbsurvives the queue is

The rate of the flow’s packets getting through the bufferig(1 — p;). Since the link is

fully utilized, the flow throughputs sum to link capacity:
zo(1 —po) + Nz (1 —p1) = e

The model is derived by putting together all the above equations. The only independent
variable is UDP rate;,, and there are ten dependent variables. In summary, the model is

described by the following ten equations:

pi = 2hi+r—rh;, i=0,1 (7.6)
pi = 1—(1—r)(1—h) (1—%) i=0,1 (7.7)
h; = % i=0,1 (7.8)
b = b+ Nb (7.9)
¢ = 2o(1—po)+ Nai(1—p) (7.10)
z1 = f(p,7) (TCP) (7.11)
r = g(b,7) (e.g. RED) (7.12)

Substituting( f, g) with the analytical model of Reno/RED, this set of nonlinear equations
(7.6)—(7.12) can be solved numerically using Matlab. The solution is accurately validated
with ns-2 simulations shown in Section 7.2.5. This solution can then be used in the differ-

ential equation model described later to solve for spatial properties of the leaky buffer.

7.2.3 Throughput analysis

By making three approximations, we can derive the maximum achievable UDP throughput,

and prove that UDP throughput approaches zero when it sends infinitely fast.
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First, we approximate the system by one in which the order of congestion based drop-
ping and CHOKe is reversed. Second, we assume/thigtlarge such that a comparison
triggered by a CParriving packet never yields a match. The last assumption is that we can
approximatg1 — 1/b)" ~ ¢!, Under these assumptions, we can eliminaie the model

(7.6)—(7.12) and get our key equation

1—h0 . fo(l—?“)(l—ho)
1—2h, P (c—x0(1—r)(1—2h0))' (7.13)

Let uo = po(xo) denote the UDP throughput shamrg, = zo(1 — po)/c, and let
Wy = maxg,>o po(zo) denote the maximum achievable UDP share. The UDP through-
put behavior can be totally captured using equation (7.13), which is independent of TCP
and AQM algorithms. We show the bandwidth properties in Theorem 7.8 and visualize it

in Figure 7.7 which shows UDP throughput versus sending rates.
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Figure 7.7: Bandwidth share, v.s. Sending rate,(1 —r)/c.

Theorem 7.8. The UDP throughput has the following properties:

1. The maximum UDP bandwidth sharesi§ = (e + 1)~! = 0.269. It is attained
when the UDP input rate after congestion based droppingjigd — 7*) = ¢(2e —
1)/(e + 1) = 1.193c. In this case, the CHOKe dropping rate for UDP i§ =
(e—1)/(2e — 1) = 0.387.
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2. As the UDP sending rate grows without bound, even though UDP packets occupy up
to half of the queue, its throughput drops to zero. That isz@as> oo, by — b/2 but

,uo—>0.

The second result of the theorem can also be proved without using the three approxi-

mations. See proofs and more details in [155, 143, 145].

7.2.4 Spatial characteristics

We now derive the spatial characteristics of the leaky buffer under CHOKe that give rise to
the macroscopic properties of maximum and asymptotic throughput proved in the previous
subsection.

Lety € [0, b] denote a position in the queue, with= 0 being the tail. Define(y) as the
velocity at which the packet at positigrmoves toward the head of the queug) = dy/dt.
For instance, the velocity at the head of the queue equals the link capdaéjty- c. Let
pi(y) be the probability that the packet at positigrbelongs to flowi, i = 0,1. The
bandwidth share; is the probability that the head of the queue is occupied by a packet
from flow i, u; = p;(b). We can derive an ordinary differential equation (ODE) model of

these two quantities

V'(y) = Bpo(y)wo+ (1= po(y))z1), (7.14)

o IS
po(y) = Blwo— 1) poly)(1 po(y))v(y), (7.15)

where = log(1 — 1/b), and the boundary conditions are
v(b) =¢, and p;(0)v(0)=a;(1 —7r)(1—h;), i=0,1.

The spatial characteristics of the leaky buffer under CHOKe are totally captured by
these differential equations. Now we present some structural properties of the velocity
v(y) and spatial distributiop(y), which are shown in Theorems 7.9, 7.10, and illustrated

in Figure 7.8.
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Theorem 7.9. 1. Forall zy > 0, packet velocity(y) is a convex and strictly decreasing

function. Itis linear if and only ifcy = z;.

2. Suppose;, > z;. Thenpy(y) is a strictly decreasing function. Moreoverf(0) <
p*, thenpy(y) is convex. Ifpg(b) > p*, thenpy(y) is concave. Ijpy(b) < p* < po(0),
thenpy(y) is first concave and then convex (as it is shown in Figure 7.8(b) ) , where
p* = (xo — 221)/(3(x0 — 21)).

Now we study the asymptotic properties«dfy) andpy(y) asz, goes to infinity. We
assume that the pointwise limits@fy) andp, (y) exis and denote this by*(y) andpi°(y).

We describe the asymptotic properties in the following theorem.

Theorem 7.10.For any z,, every flow, including UDP flow, occupies less than half of the

gueue. Whenr, — oo, we have
1. the buffer sizé> is finite. The UDP’s share of this bufferig® = (1—r°°)/(2—r>).
2. the throughput of UDP source goes to zero, ig(,l — py) = po(b)c — 0.

3. lety* =b>°(1—r>°)/(2—r>). Whend < y < y*, we have® = 1 andv>(y) = oc.
Wheny* < y < b, we havep® = 0 andv™®(y) = ¢ — 3%x5° (b —y)

When the UDP input rate increases, even though the total number of UDP packets in
the queue increases, their spatial distribution becomes more and more concentrated near the
tail of the queue and drops rapidly to zero toward the head of the queue. This means that
most of the UDP packets are dropped before they reach the head. It is therefore possible to
simultaneously maintain a large number of packets (concentrated near the tail) and receive a
small bandwidth share, in stark contrast to the behavior of a non-leaky FIFO buffer. Indeed,
as ., grows without bound, UDP share drops to 0. This also confirms the approximate
throughput analysis of Theorem 7.8. Second, the packet velocity is infinite before the

positiony* because UDP packets are being dropped at an infinite ratetintil
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Figure 7.8: lllustration of Theorems 7.9 and 7.10.
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7.2.5 Simulations

We implement a CHOKe module in ns-2 version 2.1b9. We have conducted extensive
simulations with a single bottleneck link network. This network is shared’lnewReno

TCP sources and one UDP source which sends data at a constant rate. We present three
sets of simulation results. The first set illustrates the accuracy of our TCP/CHOKe model
(7.6)—(7.12) and its macroscopic properties. The second set illustrates the spatial properties
proved in Theorem 7.10. The third example uses TCP Vegas and illustrates that these
properties are insensitive to the specific TCP algorithms.

For the newReno simulations in the first two sets the link capacity is fixed at 125
pkts/sec, and round-trip propagation delay is 100ms. We use RED+CHOKe as the queue
management with RED parameters mibite 20 packets, maxth = 520 packets,p,qz =
0.5. The corresponding analytical model for Reno (functfgrand RED (functiorny) can
be found in Chapter 3.

In our simulation, we vary the UDP sending ratgefrom 0.1¢ to 10c and measure the
aggregate queue size UDP bandwidth sharg, = py(b), and TCP throughput,. We
also solve for these quantities using the analytical model (7.6)—(7.12) and the approximate
model described in Section 7.2.3. The results, shown in Figures 7.9, illustrate both the
macroscopic behavior of TCP/CHOKe and the accuracy of our analytical models.

As can be seen from Figure 7.9, the aggregate queue |éngfimadily increases as
the UDP rater, rises. UDP bandwidth shaye = p,(b) rises, peaks, and then drops to
less than 5% as, increases fronf.1c to 10¢, while the total TCP throughput follows an
opposite trend, eventually exceeding 95% of the capacity (not shown). These results match
closely those obtained in [126], for both the analytical model and the approximate mode.
Figure 7.9(b) also displays the UDP bandwidth share measured from the simulations for
the cases, = 0.1c, ¢, 10c. It verifies Theorems 7.8 that predicts that the UDP bandwidth

share peaks at around 0.269 and tends to zerg Bcreases.

The next set of results measures the spatial distribufigfiy of UDP packets in the
above simulations shown in Figure 7.9. The simulation results, and analytical solutions, are

both shown in Figure 7.10. They match well Theorem 7.10 and agree with Figure 7.8(b)
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Figure 7.9: Experiment 1: effect of UDP ratg on queue size and UDP share

in Section 7.2.4. When, = 0.1¢ (Figure 7.10(a)), UDP packets are distributed roughly
uniformly in the queue, with probability close to 0.08 at each position. As a result, its
bandwidth share is roughly 10%. Ag increasepy(y) concentrates more and more near
the tail of the queue and drops rapidly toward the head, as predicted by Theorem 7.10.
Also marked in Figure 7.9(b) are the UDP bandwidth shares corresponding to UDP rates in
Figure 7.10. As expected the UDP bandwidth shares in 7.9(b) are equgbjan Figure
7.10. Whenzy > 10¢, even though roughly half of the queue is occupied by UDP packets,
almost all of them are dropped before they reach the head of the queue!

In the last set of simulations, we use TCP Vegas [20] instead of newReno. In these sim-
ulations, the link capacity is fixed at= 1875 pkts/sec., the round-trip propagation delay is
d = 100ms, and the number of TCP sources\is= 100. We set Vegas parameted = 20
packet, and use RED parametég, 1020, 0.1). The UDP sending rate varies frdimi c to
10c. We measure the UDP bandwidth shageand queue length, and compare them with
the numerical solutions of the full model and those of the approximate model described.
The results are shown in Figure 7.11. Comparison of this with Figure 7.9 for NewReno
simulations confirms that the qualitative behavior of TCP/CHOKe is insensitive to TCP

algorithms.
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7.2.6 Conclusions

We have developed a model of CHOKe. Its key features are the incorporation of the feed-
back equilibrium of TCP and a detailed modelling of the queue dynamics. We prove that as
the UDP input rate increases, its bandwidth peaks-atl ) ~! = 0.269 when the UDP input

rate is slightly larger than link capacity, and drops to zero as the UDP input rate tends to in-
finity. To explain this phenomenon, we have introduced the concepts of spatial distribution
and velocity of packets in the queue. We prove that structural and asymptotic properties
of these quantities make it possible for UDP to simultaneously maintain a large number
of packets in the queue and receive a vanishingly small bandwidth share, the mechanism

through which CHOKe protects TCP flows.



156

Chapter 8

Summary and Future Directions

We have studied the equilibrium and dynamics of the Internet congestion control using tools
recently developed from feedback-control theory and optimization theory. We summarize
our work and list several future research directions in this chapter.

The models and dynamics of TCP Reno and FAST TCP have been studied in chapters

3 and 4. We point out several future directions in the studies of TCP dynamics.

1. TCP dynamics can be studied in several different settings, e.g., single link vs. general
network, homogeneous sources vs. heterogenous sources, local stability vs. global
stability, without feedback delay vs. with feedback delay. In general, the latter set-
tings are more difficult to deal with. Our studies only cover part of them and should

be extended to global stability with feedback delays in general networks.

2. As we mentioned in Section 7.1, during the incremental deployment of congestion
control schemes, there is an inevitable phase of heterogenous protocols running on
the same network. While the equilibrium properties of heterogenous protocols have
been studied in [146], the dynamics of such systems are still open and is one of our

future directions.

3. The fluid model of TCP has been widely used to study TCP dynamics; however this
model can not capture the self-clocking feature in the packet level. We have shown
in Chapter 4 that this model may give wrong predictions about stability. A discrete-
time model is introduced to capture tisislf-clockingeffect. However, we also found

several scenarios where its predictions also disagree with the experiments. It seems
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that both models are inaccurate. We need to clarify the discrepancies in these models

and hopefully derive a better one.

Recent studies have shown that TCP/AQM algorithms can be interpreted as carrying
out a distributed primal-dual algorithm over the Internet to maximize aggregate utility.
The equilibrium properties (i.e., fairness, throughput, capacity, and routing) of TCP/AQM
systems are studied using the utility maximization framework in Chapter 5, and 6. These

studies can be also extended in several ways.

1. We have focused on how network throughput changes in response to changes in
fairness and capacity in Chapter 6. However, how link prices and network revenue

changes has not been investigated.

2. We have identified the existence of a non-trial duality gap, in the joint utility maxi-
mization problem in Chapter 5, and we need to derive a bound for this gap which is

the penalty for not splitting the traffic.

3. Even though numerical examples suggest that the tradeoff between routing stability
and utility maximization exists in a more general network, we have not been able to

find an analytical proof.

4. When a static component is included in link cost, it is not known if TCP/IP has an
equilibrium, whether the equilibrium jointly solves a certain optimization problem,

and under what condition it is stable.
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