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ABSTRACT

LIGHT-CONE BEHAVIOR OF HADRONIC WAVEFUNCTIONS
IN QCD AND EXPERIMENTAL CONSEQUENCES

Predictions are made for the high energy behavior of hadronic
structure functions and form factors in Quantum Chromodynamics (QCD).
These predictions follow from ladder-approximation calculations of the
light-coné behavior of pion and nucleon Bethe-Salpeter wavefunctions.

For the pion, some justification for the ladder approximation is found

in its agreement with the operator-product expansion of the wavefunction.
Our model gives logarithmic corrections to the asymptotic form factor
expressions obtained by Brodsky and Farrar and also makes predictions

for the threshold behavior of strucfure functions. We find Ezawa's re-
sults, (1—x)2, (l—x)3 for the pion and nucleon transverse structure
functions, respectively, with additional powers of In(l-x). A careful
examination of the pion result suggests that an infrared singularity in
the wavefunction may produce a slower falloff near threshold. For the
longitudinal structure functions of the pion and nucleon, we find 1/Q2
and (l-x)S/Q2 threshold behavior, modulo logarithms. In the nucleon
structure function calculation, it is noted that photons having momentum
near threshold strike only quarks having spin parallel to that of the
parent nucleon. This gives WT (neutron)/WT(proton) + 3/7 as x > 1.

These results are consistent with experiment, although experimental error
prevents a convincing test at present. A prediction is made for the mag-
nitﬁde of the asymptotic pion form factor and found to be in reasonable
agreement with experiment. We find that the Brodsky-Farrar rules do not

automatically give 1/Q4 behavior for the N+A transition form factor.
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If the amplitudes for .a photon to strike quarks with either spin
direction are equal,‘the model gives l/Q6 behavior for the N-»A transi-

tion form factor and the neutron F1 form factor, consistent with

experiment.
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Chapter I

"~ INTRODUCTION AND SUMMARY

Quantum chromodynamics (QCD) is a renormalizable sfrong interaction
"théorf'that appéars to be consistent with scaling phenomena observed in
hadronic processes at high energy. Asymptotic freedom is a key element
in deriving scaling laws as approximations in QCD. At high energies, the
effective gluon coupling constant should be small, minimizing the intru-
sion of logarithmic factors that contain the renormalization mass. A
small coupling constant makes perturbative calculations possible and
offers hope that quantitative comparisons of experiment and theory can
be made. |
In this dissertation, an attempt is made to obtain quantitative
QCD predictions for hadron-electromagnetic processes at high energies.
The approach used here is inspired by the success of many of the scaling
laws obtained by Brodsky and Farrar from a quark-quark scattering picture

[1]. We will consider quasielastic scattering
(Spacelike y) + (Hadron A} - (Hadron B)

(Timelike y) - (Hadron A) + (Hadron B)

and inclusive scattering
(Spacelike v) + (Hadron) - (Anything)
(Timelike y) ~ (Hadron) + (Anything)

v
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The form factors contain the essentials of elastic scattering,
while the structure functions contain the essentials of inclusive

scattering.

1.1 Key'Aséumptions

Hadrons are assumed to be bound states in QCD, which immediately
brings the Bethe-Salpeter formalism to the.fore [2]. The pion form
factor provides a good illustfation of the assumptions we make in order
to simplify the Bethe-Salpeter approach. These assumptions can be partly
justified or at least suggested by renormalization-group methods, and
our hope'is that we have stripped away low energy detail and retained the

essentials needed for a description of asymptotic behavior.

Figure 1.1 shows a schematic diagram for obtaining the pion form
factor from a convolution of pion wavefunctions (round blobs) with the
quark-photon scattering kernel (square box). Further discussion is given
in Chapter III, but, for the present, it is only necessary to know that
the scattering kernel contains a profusion of gluons. Our first assump-
tion is that these gluons decouple at high energies (as the effective
coupling constant goes to zero), leadiﬁg to the simpler diagram of Figure
1.2, which shows the photon coupled to a quark with no gluon dressing.
The photon momentum will flow primarily into one wavefunction over part
of the domain of loop integration and primarily into the other wavefunc-
tion over thé remainder. One can say that the photon is probing the high
momentum '"tails' of the wavefunctions, and that knowledge of the asymptotic
behavior of form factors can be used to determine the asymptotic behévior

of the wavefunction and vice-versa.

.
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---- --=- (2p,+q,)E (@)

Figure 1.1

Exact Bethe-Salpeter Calculation of the Pion Form Factor

--=-i(2Q,*g)F(a)

Figure 1.2

Approximate Calculation for the Asymptotic Pion Form Factor
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Our éecond assumption has to do with calculafing the tail of the
wavefunction. The exact Bethe—Salpeter equation is given diagramatically
in Figure 1.3a. We assume that the gluons'in the quark-quark scattering
kernel decogple at high energies, leaving a single gluon with momentum-
dependent coupling as shown in Figure 1.3b. This is a '"'ladder" approx-
imation, . almost certainly incorrect when quark momentum is low, but
hopefully exact when used to calculate the tail of the wavefunction.

We aspire to calculations in the spirit of Figure 1.3, but, in some
cases, this proves too difficult and an additional assumption is intro-
duced [3]. This is the assumption of Brodsky and Farrar that the wave-
function constrains the constituent quarks to have comparable shares of
the hadron momentum. This constraint is supposed to be strong enough that
the tail of the wavefunction can be estimated by the exchange of the
minimum number of gluons required to accelerate the quarks to large
momenta (one gluon for pions, two gluons for nucleons). This leads to
simple Born diagrams of the type shown in Figure 1.4.

Oui intent is to go beyond scaling laws, to determine the dependence
of cross-sections not only upon energy, but upon dimensionless variables
as well, such as angles and the scaling variable, x. For pion processes,
it is possible to go ‘even further. By normalizing the wavefunction to
give the correct value for the pion decay constant, one can make
predictions for the absolute magnitude of the form factor and structure
functions. .Further, the two-body bouﬁd state problem is simple enough in
the ladder approximation to allow calculation of logarithmic violations

of power scaling laws.
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(a)

- %9

(b)

Figure 1.3

(a) The Bethe-Salpeter Equation for the Pion and (b) the Ladder
Approximation to the Kernel, With Momentum-Dependent Coupling Constant



(a)

(c)

Figure 1.4

Born Diagrams Contributing to (a) the Pion Form Factor, (b) the Nucleon
Form Factors, and (c¢) the Pion Structure Functions. The
Incoming Bosons are Photons and the Other Bosons are Gluons.



1.2 Outline and Summary of Results

Chapter II develops the Born diagram approach for the pion. Simple.

spinology rules are discussed, and applied to obtain the results

Wy, a-02 x =1
1 -

Wy e x =1
q

for the pion transverse and longitudinal structure functions. The same
result for the transverse structure function was obtained by Ezawa [4]
in a similar model. Other models give WT

[6] in the threshold (x = 1) region. Experimental errors are too great

« 1-x [5] and W& = constant

at present to clearly favor one model over the others [7].

The Born diagram approach oversimplifies the wavefunction. As a
first step toward remedying this deficiency, Chapter III collects
assorted facts about the two-body wavefunction from the literature.

The simplifications resulting from symmetry of the wavefunction under
parity, G-parity, and time.reversal are derived, The Wick spectral repre-
sentation for the wavefunction is introduced in preparation for its
extensive use in the following three éhapters. It is shown that the

tail of the wavefunction in momentum space corresponds to the light cone
in configuration space.

The first real use of QCD is made in Chapter IV, where the operator
product expansion of the wavefunction on the light cone is developed.
Appelquist and Poggio [8] have pointed out the aﬁalogy between moments
of Wick's spectral function and moments of structure functions. Both
carry logarithmic factors whose fractional powers are directly related

to the anomalous dimensions of local operators. We find that this analogy



th moment of the spectral

fails in two important.respects. First, the n
function receives contributions not only from the operator with n deri-=
vatives, but also -from operators with n—2,.n-4, ... derivatives. Second,
operators of twist three turn out to be just as important as operators of
twist two. Thege properties are important to the comparison of the
operator product results with definife wavefunctions found in Chapter V.

Using the ladder approximation (Figure 1.3b), asymptotic solutions
are obtained in Chapter V for the two;body Bethe-Salpeter equation in
QCD. These solutions exhibit all the properties demanded by the operator
product expansion, which suggests that the ladder approximation may be
valid when computing the wavefunction on the light cone. At this stage,
an inconsistency in the simpler Born diagram approach becomes evident.
In the ladder approximation, the tail of the wavefunction appears in the
left- and right-hand sides of the Bethe-Salpeter equation, so that one
can say that the tail begets the tail. In the Born diagrams, the low-
momentum part of the wavefunction produces the tail through a single
gluon exchange. This gives the correct l/k4 behavior for the wavefunction
tail, but this falloff is too slow to justify the assumption that the
ladder approximation loop integral is restricted to small values of
momentum. This results in modifications to the Born diagram results,
as discussed in Chapter VI.

Chapter VI adopts the simplest Bethe-Salpeter solution for compari-
son with experiment, even though the wavefunction, in principle, must be
a superposition of the entire sequence of solutions. The Born diagram

results for the pion form factor and longitudinal structure function

are only modified by inverse powers of In q2 and 1n(l-x), respectively,



coming from the effective gluon coupling constant. The predicted magni-
tude for the asymptotic pion form factor is found to be in reasonable
agreement with experiment tg], while the predicted magnitude for the
longitudinal structure function near threshoid is consistent with the
upper bound set by experiment [7].

An infrared singularity in fhe ésymptotic wavefunction makes it im-
possible to perform a consistent calculation of the transverse structure
function. This singularity appears as the (momentum)2 of either quark
approaches zero, a region in which the asymptotic solution is not
supposed to be valid, If the correct infrared behavior is this siﬁgu—
larity regulated by a mass parameter, WT « (1-x)2/3 results. If this

singularity can be disregarded (for some unknown reason), we get the

Born diagram result W_ « (l-x)2 modified by two inverse powers of In(1-x).

T
As a concession to the difficulties of the three-body Bethe-Salpeter

formalism, we do not attempt a derivation of the tail of the nucleon

wavefunction. Instead, we revert to the method of estimating the.tail

from the low-momentum part of the wavefunction with minimal gluon ex-

changes. The results of the pion calculation indicate that form factors

and structure functions obtainéd in this way should be valid up to logarith-

mic factors, barring'infrared problems. A simple, phenomenological low-

momentum wavefunction is adopted, with SU(6) symmetry. The gluon exchanges

then provide an explicit SU(6) breaking mechanism for the wavefunction

tail.

In Chapter VII, we show that GE/GM scaling holds in this model, with

GM « 1/Q4, the Brodsky-Farrar result [1]. The N-A transition form factor
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also goes as 1/Q4,-with a constant of proportionélity determined by a
free parameter in the model. This free parameter is the ratio of the
amplitudés for the photon to strike quarké with gpin parallel and anti-
parallel to that of thé nucleon. Setting this ratio equal to unity sup-
presses the N—thransition,.as experiment suggests is the case {10],

and gives the interesting result

F (neutron) _ 1
1 Q6
Applying this model to the nucleon transverse structure function
in Chapter VIII, we find that the amplitude for a transverse photon to
strike a quark with spin antiparallel to the nucleon is zero near
threshold. One of the principal results of this SU(6) violation is that
the ratio of neutron to proton structure functions should approach 3/7
as x ~ 1. Experimental data favor the value 1/4 [10], but systematic
errors large enough to give the 3/7 ratio cannot be ruled out. This
model gives WT « (1-x)3, WL « (l-x)s/Qz. Based on the pion results, we
conjecture that eight powers of the effective coupling constant should
appear in the structure function. This produces reasonable agreement

with the fourth-power behavior for WT suggested by experiment [10].
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Chapter II

BORN DIAGRAM APPROACH TO PION
ELECTROMAGNETIC FORM FACTOR AND STRUCTURE FUNCTIONS

Brodsky and Farrar [1] have argued that the asymptotic behavior of
form factors is governed by Born diagrams such as those in Figure 2.1.
These diagrams contain a minimal number of gluons which serve to "reas-
semble the constitutent quarks into a hadron after one quark has been
struck by a photon. In slightly more elegant terms, the gluon exchanges
give a ladder épproximation to the Bethe-Salpeter wavefunction at large
quark momentum differences. Taking the incoming and outgoing quarks as
on-shell is a further approximation amounting to the assumption that the
quarks spend most of their time with small relative four-momentum. For
convenience, but somewhat loosely, we will refer to the wavefunction
region in which the rest-frame components of relative four-momentum have
values on the order of m_ as ""the normal wavefunction" and the region
in which some components are large as '"the tail of the wavefunction."

In this chapter, the pion structure functions will be calculated
in the Brodsky-Farrar spirit, adding the parton model assumption that
the hadronic final state, X, in ete” > m + X can be approximated by
quarks with small values of squared four-momentum. It will develop
that these calculations can make sense only near threshold (scaling var-
iable w ~ 1). The main results turn out to be that the transverse struc-
ture fﬁnction goes as (m—l)2 near threshold while the longitudinal struc-
ture function goes as 1/q2. These results are consistent with the data
but disagree with some other predictions based on the Drell-Yan-West

relation. We will discuss this point, and will delve into the spinology
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(a)

(b)

Figure 2.1

Diagrams Contributing to (a) the Pion
Form Factor and (b) the Nucleon Form Factors
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of the present model ‘to better understand the physics of this somewhat

unusual result.

2.1 Spinology

Evaluation of the Born diagrams is straightforward and is carried
out in some detail in the Appendices. In this section, a short-cut
method will be developed which will make it‘possible to '"'get inside'" the
Feynman diagrams and keep track of the flow of linear and angular momen-
tum. The result will be some simple rules that permit heuristic discus-
sion of the threshold behavior of structure functions and the asymptotic
behavior of form factors. These rules will be derived for vector and
scalar gluons and will be applied to L = 0 mesons and baryons.

If transverse momentum is limited, frames can be found in which
the 3-momenta in a given Feynman diagram are nearly in the z-direction.
If spin is quantized in this direction, spin states become helicity
states. It will be crucial in the following to distinguish between
helicity and chirality, which are the same only for massless fermions.
It will develop that the pion structure function threshold suppression
is due to conflicting demands for helicity and chirality conservation.

In the standard Dirac matrix representation with

o _f10) i _Jood| s _ _fo1 »
Y = {0_1]’ Y = [_0-1 O]’ Y = Ys - [1 0] (2'1)
the spinors of positive and negative helicity with momentum K in

z-direction are
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1 0
0 . 1
u, = /B | X u . = vE+mj O _ (2-2)
1 —— -1
E+m . K
0 E+m
with
2 2 2

E" -« K =m (2-3)

Spinors of definite chirality are produced by the projection matrices
[1 i_YSJ/Z, making it possible to break a spinor of definite helicity

into pieces that have "correct' and "incorrect" chirality. If E > m,

- m : .
Y ”\/Q—E [ess * 25 °s(-s) | (2-4)

where eSC'is a unit norm spinor having spin S = +1and chirality

C=+1.

e e = 8 S (2-5)
54 5L T8S gy
From {2-4), one sees that the ratio of '"incorrect' to "correct" chirality
amplitude is m/(2E).
Simple selection rules for the emission of scalar bosons follow

from (2-5) while, for vector bosons, we need the following:

0 3

Y eSC = eS(-C) Y e = S8C e

S(-C)
(2-6)
'Yle =C e 2e =iSCe-.
sC - €(-8)(-C) Y e (-8) (~C)

Consider the amplitude
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. \ '
_ q .
Tu, = ——1:5»— (2-7)

where T is a Dirac matrix (unit matrix) for vector (scalar) boson emis-
sion. The selection rules for chirality are well-known and obvious from

relations (2-5) and (2;6): Emission or absorption of a vector (scalar)

boson does not (does) change fermion chirality.

Angular momentum conservation demands that the component of spin
along the direction of the single outgoing or incoming particle be con-

served and, since we consider only colinear frames, scalar bosons and

longitudinal vector bosons do not flip the fermion spin, while

transverse bosons do flip the spin., Considering the Breit frame

where

q= (0,0,0,—Q) > k]. = [E’O’O:%] ) k2 = [E,0,0,—%] s

it follows that emission or absorption of a longitudinal vector boson
produces an helicity-chirality conflict, since the former is changed

while the latter is not. This costs a factor ;%-.

q4 Q Scalar Boson or
é Transverse Vector Boson
= (2-8)

k, »
1 m  Longitudinal Vector Boson

We have omitted phase factors and will take these from (2-6) whenever
there is more than one diagram to evaluate.
The discussion has so far been restricted to on-shell fermions. We

wish to consider diagrams in which the incoming and outgoing fermions
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are on-shell but which may contain several virtual fermion lines. One
can still assign vertex factors when one or more of the fermions is off-
shell by defining -off-shell spinors identical to (2-2), but with m re-
placed by the square root of squared four-momentum (imaginary if the
fermion momentuﬁ is spacelike). Fermion propagator numerators can then
be expressed in terms of off-shell spinors through the completeness

relation

2

= I o Ly )
K + ﬁ s,c[ Ugo U f\/;_ Uge uS(—C)] (2-9)

This shows that the chirality of an off-shell fermion can flip as it

propagates, but this costs an amplitude factor m/Vk~. The vertex factors

(2-8) can be generalized to the case where at least one fermion is off-
shell, but our immediate needs are satisfied by the simple observation

that longitudinal vector bosons suffer no m/Q suppression relative to

transverse bosons when coupling to off-shell fermions because the off-

shell '"mass" is.\/;2 = 0(Q). When quantitative results are needed, one
can work in a special frame, displaying all propagators and vertices as
explicit Dirac maérices and using relations (2-5) and (2-6). When

evaluatiﬁg Brodsky-Farrar form factors, this inelegant approach proves

to be much faster and simpler than using traces.

2.2 “Pion Form Factor

The amplitude for a pion of momentum p to absorb a photon of momen-
tum q and polarization e is e°(2p+q)Fﬂ[q2}. In the Breit frame,

2p+q= [ZEﬂ,0,0,G], and it is clear that the photon polarization must
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be longitﬁdinal. One of the two Born diagrams fof calculating the
asymptotic behavior of FTr is shown in Figure 2.2. | |

The ﬁeavy arrows deﬁote spin direction and the other arrows are
momentum reference directions. The incoming photon is longitudinal,
denoted L, and fhe exchanged vector gluon must be transverse, denoted
f, to avoid an m/Q suppression factor at the lower vertex. One sees
that the spins undergo a single flip in going through the diagram.
Neglecting phases and numerical factors of order unity, QFTr has a power
of Q coming from each of the three boson vertices and a factor 1/Q2
from each of the two propagators. The numerator of the fermion propa-
gator is accounted for by two of the vertex factors just noted and an
additional factor unity because no chirality €lip is required of the
virtual fermion. No chirality flip is required as the upper fermion
has the "'correct" chirality entering and leaving the diagram (as does
the lower fermion). Adding up powers of Q, one obtains the Brodsky-

Farrar result,

1
F_ 52- (2-10)

2.3 Pion Structure Function

A detailed calculation of the Born diagram for the pion structure
function is given in Appendix A. Equivalent results will be developed
here using the spinology rules, The pion structure functions are
measured in electron-positron annihilation experiments, which means

that q is time-like. In the Born diagram approach, there is no essen-
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Figure 2.2

Vertex and Propagator Factors in the Calculation of the Asymptotic
Behavior of the Pion Form Factor. The Heavy Arrcws are Spin
Directions and the Light Arrows are Directions
of Three-momentum in the Breit Frame.
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tial difference between the timelike and spacelike cases, so the some-
what more familiar spacelike case will be discussed here.

The diagram of Figure 2.2 will serve for the structure function
calculation if the outgoing quarks have unconstrained momenta. The
longitudinal stfucture function is the square of this amplitude, |M[2,

integrated over the phase space of the outgoing quarks.

4 2 f.2 2 2 2
W o« Jd ky [M] 6[gl-m }6[k2-m ] (2-11)

The momentum of the outgoing quark is kl’ and the momentum of the out-
going antiquark is kz. The transverse structure function, WT’ is found
in the same fashion with M computed for a transverse photon. The struc-

ture functions depend upon only q2 and the scaling variable

w = -2%£q (2-12)
q

The invariant mass of the outgoing quarks is
W = (p+q)2 = qz(l—w) + mﬁ | (2-13)
We wish to examine the Bjorken limit
q *® , w = finite
It will prove necessary to specialize further to the threshold region
2

w+1 s, WT>> mﬁ

For present purposes, a crude evaluation of the phase space integral

(2-11) is sufficient. The quark and gluon propagators restrict (trans-
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. 2 L. '
verse momentum)2 to a region of order m”, giving a phase space factor

mz/w. The virtual quark and gluon have
(momentumj2 = () ﬂfi
T Mlw-1

This can be seen §ery simply by noting that, near threshold, the gluon
must transfer a fraction %-- 1 of the momentum of the unstruck quark

to the struck quark. This Qould leave the unstruck quark off-shell, so
the gluon must dribble a small fraction, y, of the photon momentum down

to the unstruck quark.

(1) 3+l - n2

- m2
Y =0 1 )
| P‘C{‘l-u;’
. 2 m2
It follows thgt the virtual quark and gluon have (momentum)® = 0'&S:TJ'
If m is large enough, and w is close enough to unity, the virtual par-
ticle will be far off-shell. In an asymptotically free theory, this
lends credence to the perturbatibn approach used here. One can readily
verify that scalar gluons give the same power behavior as vector gluons,
although the lack of asymptotic freedom in scalar gluon theories makes
this case less interesting.
The w- and qz-dependence of |M|2 is gotten by taking a factor
mz/(w-l) for the photon vertex (the “(mass)z" of the virtual quark),
mZ/Q»-l) for each gluon vertex, and Gn-l)z/m4 for each propagator.

Appending the phase space factor gives
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W, = 1/Q°

Unlike-WL, WT is suppressed by an helicity-chirality conflict.
With a transverse photon and a transverse gluon, the outgoing struck
quark has reversed helicity. To make the chirality agree, a suppression

factor w-1 must be used for the qﬁark propagator. The photon vertex

factor is Q2 in this case, giving

Wp < (w—l)2

With a longitudinal gluon, no suppression arises in the quark propagator,
2
but the lower gluon vertex factor becomes m2 rather than £%T" giving

W © (w-l)2 again.

2.4 Drell-Yan-West Relation

The scaling part of the transverse structﬁre function goes as (w—l)2
near threshold. It is often asserted that the Drell-Yan-West relation
[2] gives W © w-1 if the pion form factor, Fos falls off as l/qz.
Feynman [3] has pointed out that, because the elastic process efe” >
is mediated by longitudinal photons, the Drell-Yan-West argument actually

gives a relation between WL and F“.

2 2], ]2
wy, (Q ,w)l < q |F.
w=1 2
Fixed W

If we assume W falls off as l/q2 for fixed w, then WL must be independent
of w near threshold. Further, if WL/WT o« 1/q2, Feynman's argument gives
a transverse structure function that is also independent of w near

‘threshold.



23

We see that our model agrees with the Drell-Yan-West relation in

giving
1
WL %7
q

apart from a mild logarithmic dependence on W2 as shown in Appendix A.

"It differs from Feynman in giving an w-dependent WL/WT ratio.
L___ ¥ , (2-14)

The calculation of Appendix A shows that p depends upon the quark
mass in the following way
2 2 . W
2
m

4
=gz 1n -1 | {2-15)

In the present, someﬁhat naive, approach, quark mass pa;ameters"
cannot be differentiated from dimensional parameters originating in the
wavefunction. The dependence of u on wavefﬁnction parameters is derived
in Chapter VI.

Experimentally [4], W /Wy << 1 for 1.1 < w < 2, g% = (7.4 Gev) 2.

The predicted fall-off of W, as w + 1 is so rapid that Wy > Wp for

T
w-1< uz/w2 [5]. Whether this unusual prediction is experimentally

testable depends on the size of u.. We can only consider W > 2GeV, and
the arguments of Chapter VI suggest that u is of the order of m_. This

places the test of our WL/WT prediction somewhat beyond the capabilities

of present experiments.



- 24

2.5 Bloom-Gilman Duality

Bloomvana Gilman view the structure function in the scaling region
as a summation of contributions from individual resonances [6]. If the
resonance form factors have the same large —q2 behavior as the elastic
form factor, the Drell-Yan-West relation results. If our model is to
. exhibit Bloom-Gilman duality, the zero-helicity transition form factors
must fall off as 1/q2 (a fraction of the resonances could fall off faster
without upsetting things) and the + 1 helicity form factors must fall off
as [I/qz}z.

The simplest transition form factor to treat in this model is that
for vy > T + p where y is a time-like photon. We cannot use the m-p
transition to comment on Bloom-Gilman duality for the longitudinal struc-
ture function, as Yy # ™ + p for longitudinal photons. One way to see
this is to cogsider the decay of a time-like longitudinal photon at rest
into m + p moving in opposite directions along the z-axis. The m + p
orbital momentum must be L = 1 in order that the overall parity be the
same as the photon, and the coﬁﬁonent of orbital momentum along the decay
axis is necessarily zero. A longitudinal photon at rest has no angular
momentum in the z-direction, so the only possible decay is into a p with
s, = 0. The Clebsch-Gordon coefficient connecting the photon spin state
11,0> to the final spin orbital state |1,0>¥[1,0> vanishes, so the de-
cay is forbidden. Similarly, the produétion process Y + T+ p is for-
bidden.if Y is longitudinal.

Using the spinology rules with a transverse photon, it is a simple

matter to show that the m-p transition suffers from an helicity-chirality

suppression of the m-p amplitude by a factor m/Q relative to the mw-T ampli-
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tude. If the ﬂ-p‘transition form factor is proportional to the m-p
amplitude with a Lorentz factor puqv removed, the form factor will go
as [I/qz}z, consistent with Bloom-Gilman duality.

Having shown that our model is consistent with Bloom-Gilman duality
up to the.simplest resonance, one should next worry about resonances
.having orbital excitation. We have not done this, but note that
L =0, S =0 resonances can contribute only to W, and must have transi-

L

tion form factors going as l/q2 according to Bloom-Gilman duality.

Brodsky and Farrar [1] point out that L # O form factors should vanish

more rapidly than L = 0 form factors as q2 + o, but the rate of falloff

has not been determined for general L in the present model.

2.6 Order-g6 Diagrams

We have examined a very limited set of order—g6 diagrams and find
evidence that our main results do not change as one increases the order
of the perturbation. Diagrams with additional virtual gluons will not
be discussed as these lead into important but unresolved, infrared
issues. We have looked only at diagrams with real gluons in the final

state (see Figure 2.3), and find that these give “% o« 0»-1)2.

2.7 Conclusions

The present model of the pion wavefunction "tail' as given by free
quarks exchanging one gluon gives results which seem reasonéble, if a
bit unexpected. The behavior WL « mz/q2 is expected from the Drell-Yan-
West relation, but the result W, « (m-l)z, together with Bloom-Gilman

T

duality, demands an unexpectedly rapid falloff of resonance transition
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Some Order -g6 Diagrams Contributing
To The Pion Structure Functions
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form factors, namély (I/qz}z. This behavior is predicted for the T-p
transition, suggesting that our model is consistent with Bloom-Gilman
duality. A comparison of our results with experiment will be found in
Chapter VI, in which a more realistic, properly normalized wavefunction

is used.
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Chapter III

" THE PION BETHE-SALPETER WAVEFUNCTION

This chaptér is a short introduqtion to properties of the pion
wavefunction that can be discussed without reference to the Bethe-
Salpeter equation or the renormalization group. Much of this material
can be found in the literature, but we have elaboratéd areas that are
important in the following chapters.

After a brief introduction to the use of the Bethe-Salpeter wave-
function in perturbation theory, its P, G and T symmetry properties
are discussed. The final topic is Wick's spectral representation, which
is shown to have a close connection with parton model and light-cone

ideas.

3.1 Definition of the Bethe-Salpeter Wavefunction

The pion wavefunction in configuration space is defined as

X, (P>X) = <0|T ua[g}ib[-g}jrﬁ (3-1)
To avoid a proliferation of sub- and superscripts, an explicit choice
of quark and hadron flavors has been made, and color indices on the
quark fields have been suppressed, but not summed over. The quark
Dirac indices are given explicitly as a and b here, but will be sup-
pressed in some later formulae for the sake ofibrevity.

The wavefunction in momentum space is

k-

4. ikex '
¢ab(p,k) = Jd'x e Xap (P»X) (3-2)
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]

Both X and ¢ depend upon the pion momentum in a way that is most clearly
seen by Lorénti-decomposing into scalar wavefunctions. Taking into
account the parity of the pion, the general decomposition of the con-

figuration 5péce wavefunction is
Xy (0:X) = Yglxg [x2,0ex[B + 5 X, (x%.peox| (48]
ab ‘P> stA (X 0P 2 Xo|* 4P ’
2 2 .
+ x3[x ,p'x} + X4(X ,p'X}x} ®I (3-3)

" The pion momentum is p and I is a unit color matrix. The scalar
wavefunctions X; depend only upon the invariants x2 and p°*Xx.
Considering rotations of the coordinate system, Leutwyler [1]
shows that X; and X, are, respectively, L = O_and L = 1 portions of
the wavefunction. The same comment applies to Xz and Xy The corres-

ponding decomposition of the momentum space wavefunction is

0.1 = vgle [K2.0k]8 + J o, k%K) 01

+ ¢3(k2,p-k) + ¢4[k2,p-k]}(} ® 1 (3-4)
Because of the X-dependent Lorentz factors appearing in expression (3-3),

the éi are not simply the Fourier transforms of X -

(2 ) 2 3 2
Ql Lk ,p'kA = Xl{k ,p'k] -1 31-)':—1; X4 [k ,p'k] (3"53)
4 3\
2 _ s O 2 . ‘
@2 {k ,p-k‘ = -2i ‘-a—k—z- XZ (k P k] _ (S—Sb)
o (k2 pek] = x[K%pek] (3-5¢)
3 ,P ) X3 ,p
2 ). .. 3 2 . _
¢4[L ,p-kJ = -2 5;§-X4[k »P k] ’ (3-5d}
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2

The Fourier transforms of xi[xz,p-x} are denoted Xi[kz,p-k] above,

3.2 Feynman Rules for the Bethe-Salpeter Wavefunction

Huang and Weldon [2] give a very clear exposition of the applica-
tion of the Bethe-Salpeter formalism to the calculation of physical
amplitudes for bound-state scattering. The graphical rules amount to
" a convolution of Bethe-Salpeter wavefunctions and an irreducible quark
kernel. The rules will be illustrated here by means of two exaﬁples
of particular interest.

The simplest example is the calculation of the pion decay constant,
defined by

<oLA”+|n+> = if p (3-6)
. it T™u
where A; is one member of the isotriplet of axial vector currents, and

states are normalized according to

3 3, o (3-7)
2E, § . (2m° & (B )

<mln>

(3-8)

n
—

<0]0>'

Graphically, the calculation for fTr is

Pu‘tz-—(::::):::yxnua = if p, (3-9)

where the momentum space wavefunction is

O

What (3-9) really means is

ST o)

+k =90(p,k) (3-10)
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4

d 'k . .
— Tr @(k)[-lY Y ] =if p {3-11)
.[ (2'")4 >u TH

The axial current vertex is bare because the rules prescribe that
the quark-antiquark axial-vector current kernel be two-particle
irreducible in the pion channel. One may regard the dressing of this
vertex as already contained in the wavefunction. The wavefunction also
contains, by definition, propagators for the quark and antiquark. The

trace in (3-11) is over spin and color indices. In terms of the scalar

wavefunctions,

4
pk dk
£ =12 o+ ¢ [ —— (3-12)
m /[ 1 ,mz 4] (21]_)4 :

Expression (3-12) is a sum rule equivalent to one of Leutwyler's

light cone sum rules (1).

Another example of interest is the calculation of the pion

electromagnetic form factor

i pﬂ(QZ] [qu + zpu] - = | —— (3-13)

The photon-quark kernel has no quark legs and is two-particle

irreducible in the pion channels. It can be broken down into connected

and disconnected parts.

S 3.
—— + TN (3-14)

= ~1
——] | (—-—-49————) ———] e
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R e

g
b
(3~16)

The disconnected part is the proper electromagnetic vertex with

r

{
f

}
f

gluon interactions, but with no flavor interactions. The outgoing

wavefunction in (3-13) is the Fourier transform of

out - <rtita |Xa [ X -
Xop (@,x) = <m l'rda(z]ub[ 2}|0> (3-17)
In the next section, we will find that discrete symmetries enable one

to express the outgoing wavefunction in terms of the incoming

wavefunction.

3.3 Discrete Symmetries

Under the parity operator, fermion fields transform in the standard

Dirax matrix representation according to

PP = () ' (3-18)

Having odd parity, a single pion state of three-momentum p transforms as

Plu,p> = -|=,-p> (3-19)
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Taking the vacuum to have even parity, the wavefunction (3-1) must

satisfy

X(&,B) = -v, X(-X,-p)Y, (3-20)
This condition dictates the Y5 factor employed in the Lorentz decompo-
sition, expression (3-3).

Under charge conjugation,

cycl-g v w* (3-21)

where * denotes operator conjugate. Applying this to the wavefunction
gives a relationship between the 7" and T wavefunctions that is not
especially useful to us. If G-parity is assumed to be a good symmetry,
much of our later work will be simplified, Displaying the fermion iso-

pin indices,

-1 . -1
G wi G~ = exp[l'rrIyij} C le c . (3-22)

Glm> = -|m (3-23)

This gives

Xx(x) = - Y2 YO )(T(-x)\(0 Yz (3-24)

where T denotes a matrix transposition.

Under time reversal,

T“’["o]rl P w[-xo] (3-25a)

T w*[xo]T'l =-i 'Yl Y3 "’*(”‘o] | (3-25b)
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Tlw,p> = |7, -$> (3-26)

Time reversal changes in-states to out-states, but this is immaterial
for one-particle states. Splitting the antiunitary time reversal
operator into the product of the charge conjugation operator and a

unitary operator exposes one pitfall in its use.

T=UK (3-27)

The Bethe-Salpeter wavefunction is a special case of the inner product

<0|B>.

<0|B> = <0|KB>* = <o|u’IUKB>* = <0|TB>* (3-28)

One misses the complex conjugation by wrongly acting to the left with
T! as if T were unitary.

In order to apply time reversal, it is wise to exhibit the time-
ordering of the fields explicitly by means of step functions. TP

symmetry gives, as noted by Goldberger, Soper and Guth [3]}:

1

1 3 7T 3
X = -yl Y e Yy (3-29)

The constraints on the invariant wavefunctions due to GP symmetry

are:

X1» X5 Xg = even im pex (3-30a)

odd in p°*x ' (3-300b)

£
i
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Ql’ QZ,IQS = even in p°k
¢4 = odd in p°*k
Defining
QOUt(p,k) - -/;A x e-ikfx XOUt(p,X)
¢out( LK) = Ys[égUt[kZ,p.k}ﬁ

+ §¢>°“t[k2,p-k] [k.$] + @‘;“t{kz,p-k]

the TP condition gives

4 3 3

@2“t K2, pek| = @ _(kz,p-k ,i=1, 2,4
3 J 3 P
( . A 2 3
$out kz, k| = -0 {k ,p°k
3 P 30 P

(3-30c)

(3-30d)

(3-31)

(3-32)

(3-33a)

(3-33b)

In order to illustrate the momentum and Dirac index conventions for

outgoing wavefunctions, we will write out the loop integral for the dis-

connected part of the pion form factor.

ta

- J[ ak 1 ¢°“t[p+q, k+ng“ o (p,k) s;l[k -

(2m)

(3-34)

%3
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_Note that an inverse fermion propagator is needed to lop off the lower
leg of one of the wavefunctions. The trace is over Dirac and color in-
dices. The color trace simply introduces a factor 3, as the four

factors in the integrand of (3-34) are unit color matrices.

3.4 Spectral Representation of Bethe-Salpeter Wavefunction

We find it convenient to use Wick's spectral representation [4] for
a number of reasons. First, one of the variables in the spectral func-
tions turns out to be a scaling variable closely related to Feynman's
x. Second, the spectral functions are simply related to Leutwyler's
light cone spectral functions. Finally, the asymptotic spectral func-
tion will be found to factorize in its two variables, facilitating
solution of the Bethe-Salpeter equation.

The invariant wavefunctions defined by expression (3-4) depend on
two variables, so a two-dimensional spectral representation will be

used. Wick introduced the representation

1
] [kz ) J f‘” ff g; (€,t)akde .
k%, kep| = 3-35
* 0 ° -12— [kﬂ% - €}+ k%(—lz-+ £l -t + ie}
where
k, = 12’- + k ' : (3-36)
k, = 12’- -k ' (3-37)
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The momenta k1 and k, are, respectively, the outgoing momenta of the

2
upper and lower fermion legs. We will use this form for i = 1, 3, 4

and represent QZ(kz,p-k] by

f gz (g,t)dgdt
1 K2 - 2Epek - t + ie

(3-38)

Choice of denominator power is a matter of taste. The choices above
make all g; dimensionless. The denominator power can always be reduced
by integrating by parts on t, given that gi(E,t) and a suitable number
of deérivatives vanish at t = 0. This is probably true, for it appears
that gi(g,t) must vanish for t smaller than a value set by the binding
energy. The issue is clouded by the apparent nonexistence of the quark
mass (in the ordinary sense) in QCD, but if quark states of mass mq
exist,

m2
2 _m

4

gi(g,t) =0 for t < tm. = mq - (3-39)

in

This follbws from Wick's arguments about the analytic structure of
the Bethe-Salpeter wavefunction. Inserting a complete set of states in
(3-1)

¢ o N
Xab(P,x) = i<0luaL%]ln><n'dbL- g]!w >6[x0]

_ x x\ * .
- $<0|db[- 7;[m><m|ua[§1|w >0 X, (3-40)

Translating the field operators to x = 0 by means of
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A

vy = etE X yoyeltx (3-41)

i{g!— kn]~x _
Xgp@:X) = L e <0fu, (0)|n><n[d, (03 |n*>8 (xo)
-i[g'- km].x - +
-Ze <o|db(0)|m><m1ua(0)|n >6{-x0] (3-42)

m

Without worrying about the problem that the intermediate states |m>

and |n> have quark quantum numbers, (3-42) shows that, for t > 0, the
wavefunction contains only positive frequencies while, for t < 0, only
negative frequencies are present, Taking the Fourier transforms of
xab(p,x) these "Feynman boundary conditions" require ¢(p,k) to be
analytic everywhere in the k0 plane except on two éuts. The right-hand

cut begins at the minimum frequency appearing in (3-42) for t > O,

which is
m
0 m
“pin = FN -2 (3-43)
in the pion rest frame. IN> is the lowest mass intermediate state con-

tributing to the first sum in (3-42) and, if this is a single up-quark
state of mass mq,
1
2 m
*12 2 il
Wein = (Ikl * mq} -5 (3-44)
Taking .the down-quark mass equal to the up-quark mass for simpli-
city, the left-hand cut extends to the least negative frequency in the

second sum of (3-42), which turns out to be - CIP
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- Returning to the double spectral functions, it can be readily

shown that the @i are analytic except at the point

kg =m £+ (mfr 2+ |%|% st - ieF , (3-45)

Considering that t ranges from zero to infinity, this gives two cuts

with branch points + w .  where
— min

2 1
m 5 m
_ | 212 .12 i)
“min ~ [4 RS e - 18] o) (3-46)
At the right-hand branch point, only the £ = - %—part of the

spectral function contributes while only the £ = %—part contributes
at the left-hand branch point. We have assumed that the spectral func-
tions vanish for t < tmin’ and a comgarison of (3-44) and (3-46) shows

m
that tin Must have the value mé - —E-, as given in (3-39). This quan-

4

tity will be positive if the binding energy is positive, and a positive
tmin (or wmin’ which is nearly the same thingj is to be desired, for it
allows one to set gi(E,t) and its derivatives equal to zero at t = 0
and also permits a Wick rotation in the relative energy variable, ko.

If quark confinement means that there are no finite-energy states
having quark quantum numbers, the above discussion breaks down at its
starting point, expression (3-40). Perhaps tin and the binding energy
are infinite, and the wavefunction is analytic for all values of the
relative energy except for an essential singularity at infinity. This
would be a Pproblem for us, as the wavefunctions considered here are

almost power-behaved and certainly not analytic for all finite values

of the relative energy.
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A

To proceed with the present approach, then, the existence of
finite-energy states having quark quantum numbers must be admitted.
These need not be single-particle states, and could conceivably be

coherent states of some sort. The quantity mq is the minimum invar-

iant mass for these states, and the branch point at k0 =W ., corres-
_ ponds to kf = mz, where k1 = g-+ k is the momentum leaving one leg of

the wave function in momentum space., The other branch point corres-

ponds to k2

5 = m2, where k., = 2 - k.
q

2 2

3.5 Wavefunction on the Light Cone and at Short Distances

The double spectral functions are helpful in discussing properties

of the wavefunction on the light cone

2 >0 | (3-47)

and at short distances

x>0 | (3-48)

Considering the wavefunction in momentum space, the primary contri-

bution to the light cone region comes from the momentum space region

AY

K2 + o, 3112-‘3 = finite (3-49)
K

while the primary contribution to the short distance region comes from

K2 >, 323_5 >0 ~ (3-50)
k

We will refer to (3-49) and (3-50) as the light cone and short distance

lilnits, while remembering that these limits are actually defined by

u

AN
(3-47) and (3-48). For example, at x* = 0, the configuration space
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>
wavefunction is equal to the integral of the momentum space wavefunction

over all momenta. In this sense, large and small momenta enter at short

distances.

To gain some insight into the spectral representation, a connection
will be established between the variables £, t, and the parton model

-l
variables x and k2 where x is the longitudinal momentum fraction of

T,

) 22 . .
a quark, and k.. is the square of its transverse momentum.

T
kl = ko, kT, X P3 (3_51)
p = PO: O’ P3 (3'52)

A more convenient momentum to use is k = k. - g-, in terms of which

1

a typical invariant wavefunction can be written

w 1
z 2 2
: 1 3" g4 (€,t)/3t |
o =3 f 5 dgdt (3-53)
% 7y KO- 2pekE - to+ e
2

In the infinite-momentum limit, Pys Pz > =, and on the light cone,

a little algebra shows that

22
2 .
LS S & (3-54)
Zp K 2 " 7p°k
Then
w 1
' 2
. 22 g4(E,t)/0t?
(bs = Aok dédt (3-55)
P 1 xv - E 4 ip*ke

2
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where

(3-56)

For simplicity, assume that gs(i,t) factorizes into separate func-
tions of & and t, as will be the case for the.wavefunctions that will
-be encountered in Chapter V. 1In this case, the x-dependence of the .
imaginary part of the wavefunction is approximately the same as the
E-dependence of the spectral function. The x-dependence of the real
"part of the wavefunction is nearly the same as the £-dependence of the
Hilbert transform of the spectral function. Transverse momentum de-
pendence cannot be factored from the x-dependence, and the scale of
transverse momentum is set by the values of t occurring in the spectral
function.

The double spectral functions are intimately related to the single
spectral functions used by Leutwyler for the wavefunction on the light
cone [1]. The simplest invariant wavefunction to discuss in this con-
nection is Xs[xz,p-x], which is the Fourier transform of ¢3{k2,p°k}.
Inserting the spectral representation for the latter function into the

Fourier integral for xs{xz,p-x],

' 1

, © 7
x5 (<, pex) = f £, (6,006 % i(x2, 12 agar (3-57)

1
0 - 5
where
4 ikex
2 2 d'k e
K(x2,u2) - f (3-58)
on?® [ -2 +19°
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B =t - LI - E_]mn ’ (3-59)
The function K[xz,uz] can be recognized as the second derivative

.of a Feynman propagator.

k(x?,u3) -1 (i} . AF(xz,uz] - (3-60)
ou

2 (x2u?) - f atx 1 (3-61)

F= em? K - u? . ie

Expression (3-57) is useful in that it approximately separates the
x2 and p*x dependence of the wavefunction, the former being a convolu-
tion of the t-distribution with the kernel, K, and the latter being the

Fourier transform of the £-distribution.

To examine the light cone limit, AF for small xz can be used [5].

. 2
AF("Z’“2] s Zlnﬁ[xz] i li 2 Tor o+?)

' 1

.2 21:2 =
+ -1112 1n ¥ Ir ' + 6[|x2|2 ln!le] (3-62)
16w

The logarithmic singularity gives the leading contribution to K

from which the following result can be obtained:

N

X5(0,p*x) = f by (E)e 5P g (3-63)

N =



: i gi (E’t)dt

kYAl 1 21 2 .
0 t- LI - & ]mTr - i€

(3-64)

Expression (3-63) is Leutwyler's definition of the light-cone
spectral f@nction, ps(g). Expression (3-64) provides us with a connec-
. tion between Wick's and Leutwyler's spectral functions.

The other invariant wave functions are not so conveniently
expressed in configuration space in terms of the spectral functions.
One frequently-occurring linear combination that is expressible in
simple form is

Xl(xz,pvx) + Ezi X4(X2,p'x] =
m

[wy

i
® 2
Jr .j; (gl * €g4]e_igp'x K[xz,uz]dédt (3-65)
0 -5 } .

2
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3 Chapter IV

AYMPTOTIC BEHAVIOR OF THE PION BETHE-SALPETER
WAVEFUNCTION AS DETERMINED BY THE RENORMALIZATION GROUP

The renormalization group, coupled with the operator product expan-
sioh, provi&eg useful information about the asymptotic behavior of the
Bethe-Salpeter wavefunction. Appelquist and Poggio apply these methods
. to the two-body wavefunction in a simple asymptotically-free theory,
¢3 in six dimensions [1]. Callan and Gross [2] and Goldberger, Soper
and Guth [3] discuss the two-fermion wavefunction in finite fixed-point
theories. Some of the results of the above papers carry over into QCD,
but we will find that a detailed examination of the problem produces
several interesting new results.

Appelquist and Poggio have shown that moments of Wick's spectral
functions enter into a discussion of the asymptotic wavefunction in
much the same way as moments of structure functions enter in treatments
of scaling in electroproduction. The operator product expansion does
not constrain the pion wavefunction as much as it constrains the electro¥
production structure functions. The pion wavefunction is a non-forward
matrix.element, which brings in a host of operators not found in electro-

th oment is "contaminated” by the oper-

production. As a result; the m
ators from the levels below m in the spin tower and does not carry a
singlé power of logarithm. In a gauge theory, the wavefunction is not
gauge-invariant because it describes the "insidgs" of the hadron, which
are definitely not colorless. To this extent, the wavefunction is non-

physical, and predictions about its asymptotic behavior do not translate

effortlessly into statements about cross-sections.
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Evén with these complications, it will be possible to make predic-
" tions about the asymptotic behavior of thé pion form factor, which we
will do in Chapter VI. On the formal side, the renormalization group
results will allow us to comment on the existence of some of Leutwyler's
light-cone sum rules [4] and will provide a check on asymptotic solutions

of the Bethe-Salpeter equation.

4.1 Symmetry Constraints on thé Operator Product Expansion

The bilocal operator to be expanded is

0(x) =T ua[%]a'b(- %}] (4-1)
and the matrix element <0{0(x)[ﬂ> is the Bethe-Salpeter wavefunction.
The usefulness of the expansion increases if we can argue that certain
classes of local operators do not appear because they have the wrong
quantum numbers or transformation properties. Further simplification
will result by omitting terms that do not contribute to the desired
matrix element.

It is helpful to ma&e a list of the properties that the local
operatérs of interest must possess.

1. Proper behavior under local gauge transformations.

2. Singlets under global gauge transformations.

3. Flavor quantum numbers of pion.

4, 0dd Parity.

5. 0dd G-Parity

6. Leading light cone behavior.
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If any of the operators that pass through this sieve turn out to
"have directly measurable <0| |m> matrix elements, that is an added bonus,
giving sum rules in addition to the asymptotic logarithmic behavior.

In electfoproduction, one is interested in an expansion of a bilocal
product of color-gauge-invariant currents. Condition (1) is met in that
_case by admitting only gauge-invariant operators. The operator we wish
to expand is obviously gauge-variant, and one expects a mixture of local
operators that émploy ordinary derivatives and gluon fields, not neces-
sarily in the covariant derivative (Du) combination. We will present an
argument that only ordimary derivatives should appear in the expansion,

so that operators such as

VYg ¥ Wyg 3, ¥ U Yg Y, Y
are to be included, while operators such as
, Vs Oy Uy v ALY
are to be excluded.
For simplicity, consider an abelian gauge theory and write a few

terms in the expansion of ¥(0) ¥(x).

O 900 = T v egle?) + T o, v o ) [x7)
(4-2)

+a E'Au p xM cz(xz]

The ci(xz] are dimensionless functions of x2M2, where M2 is the renor-

malization mass. Under a gauge transformation, the right- and left-hand
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2

.éiQes of the expansion should behave in thé same way. The fields

" transform as follows:

¥ = B i, A ) = AN+ 2 8) (4-3)
Taking 6(0) = 0 for convenience, the left-hand side of (4-2) becomes

T v = ¢80 Fro) v
(4-4)

= (1 +igd Ox"r..) P (0) V' ()

To see what the right-hand side does, consider the gauge transformation
properties of the local operators. First, according to Brandt and Pre-
parata [5], coefficient functions can be generated by taking short

distance limits of bilocal operators.

$(0) ¥(0) co[x2]== Lim $(0) ¥(x)

x>0

(4-5a)

— 2) — — 2
w(O)Bu ¥ (0) cl(x },= Lim w(O)aﬁ y(x) - ¥(0) \P(O)au Co[x(l_sb)
x*0

50 4,0 ¥ ¢)( = 1in FO) 4,60 ¥00

x>0

(4-5¢)

Substituting (4-3) into the right-hand side of (4-5), and allowing the

coefficient functions to be gauge-dependent,

Ty co[xz] =P Y c(')(xz] (4-6a)
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A O TN X AR IS] O RS

<
Q2
R
[¢]
—
—
b
N
[Nl
]
<
Qo
<
O

E'Au Y ?2{¥2] = Y Aﬁ ?' cé(xz] + 3u PP cé[le (4-6¢)

After an infinitesimal gauge transformation, expression (4-2) in

the short distance limit is
[1 +ig3 6 x”]av P! c(')(xz] = [1 +1igd 6 M
+ q Bu 6 Xu}ﬁ' U C(')(xz} ’ (4-7)

This result shows that the ﬁ'Au Y operator has no place in the expansion,
as it upsets the guage transformation properties.

This argument can be readily extended to exclude all Au terms from
the operator product expansion. Of course, the validity of this argument
is ehtirely dependent upon assumption (4-5). To lend plausibility to the

above result, consider the gauge-invariant operator

s u
-1%/XA dx
0 H

V(o) e P(x)

The expansion of this operator would contain covariant derivatives and
no'ordinary derivatives. The gauge-invariant wavefunction formed by
taking the <0| |7> matrix element of the above operatér gives the ampli-
tude to find a quark at x, an antiquark at the origin, and an infinity
of gluons at points between. In the operator product expansion, these
gluons stem from the vector potential terms. The Bethe-Salpeter wave-

function, on the other hand, gives the amplitude to find a quark and an
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antiquark with no gluons. Since this is the case, it would be embarras-
sing to find éiuon fields in the operator product expansion of P (0) P(x).
The expansion of this operator is similar to an ordinary Taylor series
with ordinary derivatives, but no covariant derivatives. The expansion
of a current-current product is more complicated because the fields in

- the expansion are not the currents themselves.

It appears that the same argument that excludes gluon fields from
the expansion also excludes ghost fields, since their presence would
change the gauge transformation properties of the right-hand side of the
expansion.

Conditions (2) and (3) above lead to the admission of color singlet
local operators and the exclusion of flavor singlet operators. This means
that we escape the complication that arises in electroproduction due to.
the existence of two classes of flavor singlet operators.

Condition (4) will be partially met if attention is restricted to

the bilocal operators

060 = 13, Yg v, [3) - (-®)
M) =T Ea[- %}YMYS “a[g] (4-9)
Ouv(x) =T Ea(- %] [YU’ yv]ys ua[%ﬂ (4-10)

The common subscript "a" denotes a sum on color indices. Dirac indices

are suppressed, but summed over in the usual way.
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It remains to 1ist the local operators of odd parity. Following

common practide, these will be organized according to spin and twist

(dimension-spin).

like W'Yu aV Y requires a symmetrization and trace subtraction that will

not be made explicit. The list of local operators is given in Table 4.1

G-
Parity

To produce an operator of definite spin from something

Twist 3

Spin

0 1.
¥ i i

d Yg u, aa d Ye U aa 88 d Yg U

-— AN <A, -t
d y. 9. u, aa H'YS au u, 9 38 d Yg au

5 u e

o

R

dy M

5

=

Twist 2

‘(O }(1 .

Ty ygu, 8, d v ygu, 9 3, T vgu, L

Table 4.1. Local Operators of Odd Parity

Operators not on this list, but satisfying conditions 1-4, have been

excluded either by reducing them to one of the above by means of Dirac

’

algebra, or by noting that they are antisymmetric with respect to

Lorentz indices.

In the notation above,
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EI_YS au u ={'cT(x)Y5 3‘1 u(x) - [Bud(x)] A u(x)} x=0

a}Jl a‘ys u ='{au[3(x)ys u(x)] } xX=0

Goldberger, Guth, and Soper make the same distinction between anti-
symmetric and symmetric derivatives [3]. This is especially important
. for us, because the two types of derivative have opposite G-parity, as
will be seen. To understand why it is necessary to worry about two
types of operator derivative, we shall examine a general matrix element
of a locél operator formed by taking a derivative of another locai opera-
tor, denoted OL(x). Let A and B be states having definite four-momentum

Pa and Pp- Then

<Alau0L(0)|B> = {8u<A|0L(x)IB>} x =0
={au<AIei?'x0L(0)e’.ip'xlB>} x=0
= i(p, - pg), <AlO (0)}B>

In electroproduction, one is interested in a forward matrix element
where Py = Pg» SO the symmetrical derivatives do not enter. It is clear
that the symmetrical derivative operators are trivially related to the
operator %rom which they are derived, and that any renormalization proce-
dure that makes matrix elements of 0(0) finite will do the same for BUO(O)ﬁ
It follows that a symmetrically-derived operator has the same anomalous
* dimensions as its 'parent."

There are three operator product expansions to be performed, and in

order to apply condition 5 above, it is necessary to study the behavior
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- under G-parity of the 3 bilocals given by expressions (4-8, -9, -10).

With the G-parity operator as defined in expression (3-22),

60(x)6! = -0(-x) (4-11a)
60" 67! = - M(x) . (4-11b)
c eVt = W) (4-11c)

The local operators have definite G-parity. They are normal-ordered
rather than time-ordered, but the treatment of G-parity proceeds in the
same wave as for the time-ordered bilocals. The essential point is that

~ the G-parity transformation changes U to d and vice-versa, and that the
transposition needéd to place U and d in their original order introduces
a minus sign. Setting x = 0 in (4-11), it follows that H'Ys u and
H'Yu Yg u have odd G-parity. With N antisymmetric derivatives, transposi-
tion introduces an additional factor (-l)N. Symmetrical derivatives do
not affect fransposition, so any number can be applied without changing
G-parity. Given the odd G-parity of the pion, only operators having an
even number of antisymmetric derivatives will have non-vanishing <0|0|ﬂ>
matrix elements.

In determining the degree of singularity of the coefficient func-
tions near the light cone, dimensional analysis leads to the conclusion
that the twist-two operators will be dominant if the coefficient func-
tions contain no powers of mass. At least one such power of mass must
be present in the twist-two coefficient functions of T E{EJYS u[- 5}

2 2
~and T 3{%}[Yu, YY]YS U[- ;], because these operators have odd Ys-symmetry.
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-In ’the next chapter, fermion mass is set equal to zero in order to sim=
plify the solution of the Bethe—Sélpeter equation, so we will omit
twist-two operators in the expansions of the Ys-odd bilocals.

For our purposes, the relevant terms in the operator product

expansions are
T a{%]"s “[' %] =dY5u ao[xz) * {coztau1 auz Tvgu]) ao(xz]

. < H H

- . “ 2 1 2

+dy. 3 9J u a (x }}x X
5 By M, 2

' + {c04[3u1 Buz 3u3 3U4 E-YS u] ao{xz)
+c2:4[a 9 H'Y‘B. ‘5 ]az[x2]

5 u
Yy uz Uz Hy

e e TR TR TR
v Tv.5 5 % % woa(xlxta2g3,d
5 %up n, Cug Cu, Y%
(4-12a)

(4-12b)



> 57

T' El'g-] [YU, YV]YS u[_ %] - [[Xu VY a“)a" Ye u]boo ao(xz] |

| | o {[[xu ¥ - o) Uy s Iy ‘i]boé "‘o(XZJ

* [{"u 2" - x a”}& s ‘3111‘5“2 u]bzz az(xz}} xul‘ X2

+ ... (4-12c)

Conditions (4-11a, -11b, -11c¢) have been used in the above to
eliminate terms having an odd number of powers of x from the first two
expansions and'an even number of powers of x from the third expansion.

The features that are important to us are somewhat obscured by the
overabundant subscripts in (4-12) and are best described in words. First
note that there are really only a few different operators appearing. For
example, a'YS u, with its coefficient function ao(xz] is responsible for
three of the terms exhibited in (4-12a). Owing to the symmetric deriva-
tive terms,tthis operator appears in the coefficient of every power of x.
The operator H’YS ELI 3;2 u does not appear in the zero-pdwer term, but
appearsvin all higher terms, and so on for higher derivative operators.
The same sort of comment applies to the other two expansions.

The a{gJy“ Yg u[; %] expansion shows another feature of interest.
The terms in this expansion divide into two classes: those in which

attaches to a derivative and those in which u simply appears in a factor

x". The first class will contribute to xl[xz, p-x], the second to

2

x (% o).



‘.4.2 Moments of the Wavefunction
To make a..connection between the invariant wavefunctions and the
bilocal operator expansions, traces should be taken of the wavefunction,
(3-1), aftér multiplication by Yoo Yg ‘y“, and YS[YU’ Y\’] .

b

2 1 = :
xs(x s p°x] =-12 <0|T d[— -)25}*{5 u{-’é—] | 7> (4-13a)

P 1, (2 o]+ 0, (52, o) -

1 = x{ u X
- 13 <o|T d[- 2}* Yg u[2]]ﬂ> (4-13b)

[, x“]xz [xz, p-x] =

- T1§ <o|T E_l'[.. -zx—][y“, YV]ys u[%) [ > (4-13c)

Since proper normalization is one of our interests, it is worth
stressing that d u implies a sum over color indices while u d (as in
(3-1) ) does not.

The next step is to insert the operator product expansions into
(4-13).1 Without explicitly showing the index symmetrization and trace

subtractions, the matrix elements of interest are

<0}d v, 3:11 ‘5”2 3; ufm>
n

{1

L
(-1) pul pun A (4-14)

(11

<0|Ty, Y3 ...3d u|m>
B S u, u

A
) 0"p, ..., B (4-15)

1 un

The matrix element B, is directly measurable, being the pion decay

1

constant, fﬂ. If xz is small, the invariant wavefunctions can now be

expressed in the form



x'[xz p'x] = 1 ; Gip'x)n g a B b [xz] (4-163a)
1 ? 12 n=0 =0 mn m+l m+l
(even) (even)
[+ ] n !
2 i .
xz{x , p:;] = f%- z Glp-x)n z bmn Am am(xz] (4-16b)
n=0 m=0
{even) (even)
o n
2 _ 1 PR, 2
XS(X sP x) = - 13 EO( ip-x) mzo c . A am[x ] (4-16¢)
(even) (even)
© n-1
2 _ 1 RN || 2
x4(x >P x) = - 13 nil (-ip-x) mf dmn el bm+1[ ) (4-164d)
(odd) (even)

The renormalization group will give the asymptotic behavior of the
coefficient functions am(XZ] and bm(xz]. 'The relative size of terms
involving the same operator is unknown, and the constants am? etc.,
have been included to reflect this fact. Without losing generality,

we can set

H

anO = cno = 1 ’ - (4*17)

It is now possible to determine the asymptotic t-dependence of the
spectral function moments. To take the simplest case first, expand
xs[xz,p-x} in powers of -ip*x, using the representation given in expfes-
sion (3-57). Comparing With the coefficients of (-ip+x)" in (4-16c)

gives
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n ‘
-%—‘Zc.A a(xz]
p=Q BN W m

(even)
' 2., 1/2 _
1 2
= v // " g3(E,t)K(x ,uz]dgdt (4-18)
0 -1/2
. R ' 2 2 . 1-3 . 2
The kernel K is the Fourier transform of [k -u o+ 18] with ¢
given by expression (3-59). Taking a Fourier transform of (4-18) and
doing the t-integration.
(n) 2
e Ic aald- [;kz] (4-19)
m=g " ™ ™ n! 2|k |
(even)
The spectral moments appearing above are defined by
1/2
-1/2

In doing the t-integration, the leading kz—behavior was found by
assuming that k is spacelike and that gS(E,t) depends logarithmically
on t. This is in anticipation of the renormalization group results,
which will show that am(kz] and bm(kz} behave for spacelike k as
(sz'2[1n|k2|}Y(m) with y(m) a number of order unity. A similar situa-
tion is encountered in electroproduction, but here there is less predic-
tive power because the mth moment receives contributions from the mth
level on the operator "tower' as well as from all lower levels., As men-

tioned earlier, this happens because we are dealing with a non-forward

matrix element.



61
Reéults similar to (4-19) can be obtained for the other spectral
functions, but there are minor complications due to the x-dependent
Lorentz factors. The simplest and most important case is the combina-

tion gl(E,t) + €g4(£,t), for which we find

m)[_,2 (n+1)
- -11—2 " ramn+-_dm(r21—1)_ B o1 Pmel (kz) - gln ( k ] + ggn: ( kz]
m=0 mﬂ : n! 2[1( J
- (even)

(4-21)

Because of the assumption that G-parity is a perfect symmetry,

th

have only even moments, with the n~ moment being a linear com-

£1,2,3
bination of am(kz] or bm(kz] containing all even m £ n. The remaining
spectral function, 84> has only odd moments, with the (n+1)th moment

being a linear combination of bm(kz} containing all even m £ n.

4.3 The Renormalization Group

The fractional power of ln{-kz] found in each coefficient function
is related to the anomalous dimension of the corresponding local operator.
In order to establish the notation to be used in connection with the re-
normalization group, we will summarize the well-known procedure for find-
ing fractional powers of logarithms [6].

| I1f a Green's funétion can be renormalized by absorbing the unrenor-
malized coupling constant and regulation parameter into a renormalized
coupling constant and field renormalization factors in the following

fashion:
G(kl, e kN’ g, Mﬂ = V7 qﬂl(kl oo ko gun] (4-22)

then .
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= M 92
Y= 57 W

is the anomalous dimension of G.

62

(4-23)

The mass parameter M sets the scale

at which all Green's functions of the theory are to be renormalized.

The scaling behavior of G for large non-time-like momenta is determined

by solving the renormalization group equation

G = ¥G

where
L 9

D= M *B 3¢

B=M N
In QCD,

B = - bg3

S

NF = number of flavors

If

Y = dg2

as in the cases that concern us, then

Gﬁkl ces AkN, g, M]

e

(4-24)

(4-25)

(4-26)

(4-27)

(4-28)

(4-29)

Xy 800, M)

[1+bg” 1m

The effective coupling constant is

7[47 ) (4-30)
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_ 2
1 + bg” 1InA

2

and D is the naive, integer, dimension of G.

We are dealing with operator product expansions of the form

H
Ox) = I omnl R S cmn{gz} (4-31)
n,m s

Sandwiching (4-31) between the states u(y)|0> and d(z)|0> and Fourier

transforming

¢k, p, a8, W =

Dy ooy

n 3
I G (P, a, g, M) (i) coe
n,m o ’ kM

e ()
c k
akfn ™
(4-32)
The momenta k, p, and q are conjugate, respectively, to x, y, and z.
Acting on (4-32) with the renormalization group operator, U, the

left-hand side is a four-quark Green's function (unamputated) for which

00(4) =-4 Yg ¢ (4-33) .

The two-point functions on the right-hand side with operator

insertions obey

vséi)=-(2 Yp * ynm}cgi) (4-34)

When calculated to lowest non-trivial order,

(4-35)

Y =d g ' (4-36)
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so the logarithmic dependence of G(4) and G(z) is of the form (4-30).

(4 -6
G( )(k,p,q,g,M)X

(4)
G (Ak, Ap, Aq, g, M) =
[1 + bg® 1ma® 270

(4-37)

e}, 0,M)A""2
mn

4-38
[1 + bg? 127~ Con-23F)/(20) (4-38)

C .
cZhak, g, W) =

Interpreting expression (4-37), it is significant that this Green's

. . . 2 . s .
function is proportional to g~ in lowest order, giving an extra inverse

power of lnkz. The two-point functions are non-vanishing with g2 0,
2
which permits the approximation G2 (g0)) = 62 (0).
The left-hand and right-hand sides of (4-32) must scale in the same

way, giving the asymptotic behavior

¢ (k%)= i k2]1+(3mn+2dF)/(2b) (4-39)

In (4-39), n is the number of derivatives, and m is the spin
of the parent operator. The anomalous dimensions are therefore inde-
pendent of n. Calculating the anomalous dimensions in a gauge with

gluon propagator

2
guv'(l'a)kukv/k

Duv = - i k2 ‘ (4-40)
one finds
2 _ 1 __2
W T2 [x- m(m+1)] (4-41)

for the twist-two operators [6] and
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3 1 340
dnE - 6_2[0‘ "l (4-42)
¥

for the twist-three operators. For the fermions,

o
d_ = (4-43)
F 12112
Finally,
a [kz] = : (4-44)

T

b, (17 A N (4-45)
T (e ]

which, toéether with expressions (4-19) and (4-21), give the asymptotic
behavior of the spectral function moments. Although we have not written
an expression for gén)(—kz}, it contains the same powers of 1n k2 as
ggn)[-kz]; The moments of all four spectral functions have logarithmic,
but no power dependence on kz.

The "Fermi'' gauge-defined byA(4-40) does have ghosts, but the pro-
blem of ghost mixing [6] does not arise for fermion-antifermion opera-
tors. Note that, even though the twist-two operators are gauge-variant,
their anomalous dimensions (4-41) do not depend upon the Fermi gauge
parameter, o.. We do not know whether this invariance extends to all
gauges and all powers of g. The anomalous dimensions of the twist-three
operators, on the other hand, are explicitly gauge-variant,

The Landau gauge (o = 0) is especially convenient for us, since the

fermion anomalous dimension is zero in that gauge, and o need not be
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treated as a running parameter, The Landau gauge will be used in the
following chapter in order to simplify the solution of the Bethe-Salpeter

equation.
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Chapter V

ASYMPTOTIC SOLUTION OF THE BETHE-SALPETER EQUATION

Although the operator product expansion gives information about the
asymptotic behavior of the wavefunction moments, it does not predict the
relative size of the moments, Furthermore, each moment is a mixture of
logarithmic terms having different anomalous dimensions, and the rela-
tive size of these terms is also unknown. In order to determine the
wavefunction on the light cone, one must appeél ultimately to the Bethe-
Salpeter equation. Appelquist and Poggio do this for ¢3 in six dimen-
sions [1]{ but only succeed in obtaining the short-distance behavior.
Nevertheless, their solution is quite interesting, as it shows how the
Bethe-Salpeter equation can be used to calculate anomalous dimensions.

In this chapter, we will obtain a solution of the asymptotic Bethe-
Salpeter equation, valid over the entire light cone. More accurately,
we will obtain a family of solutions, in which the anomalous dimensions

appear as eigenvalues. We show that the boundary condition

gi[g -+3 t} =0 (5-1)
produces solutions having all the properties dictated by the operator
product expansion. If the first solution inthe family is associated with the
pion, only two anomalous dimensions enter and a definite wavefunction
emerges. If the pion is a superposition of solutions, we have only
slightly more information than the operator product expansion gives. 1In
the following chapter, the simplest solution is used to predict the ab-
solute magnitude of the pion electromagnetic form factor and structure

functions.
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A careful reading of the title of this chapter exposes a certain
faintheartedness. One would like to see a discussion of the "Asymp-
totic Behavior of Solutions of the Bethe-Salpeter Equation." It must
be stressed that weldeal with an aéymptotic form for the Bethe-Salpeter
kernel and do not prove that solutions of the resulting equation share
the asymptotic behavior of solutions of the exact equation. The consis-
. tency of the solutions found here with the operator product expansion

encourages the hope that infrared effects will not destroy our results.

5.1 The Asymptotic Equation

In graphical form, the Bethe-Salpeter equation is

The amputated wavefunction is

—_— - + L(
P~ p/2 = r‘(p,k) (5-3)

2 (p,k) = S [15— + k]r(p,k)sF [k - g} (5-4)

and the Bethe-Salpeter kernel is the two-particle-irreducible four-

point function

K [ §+ }){+Y+;&+---cs-s)

<% e

Hn

The crosses are used as a reminder that K is an amputated Green's

function.
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If all incoming momenta are large, non-exceptional, and non-
timelike, the renormalization group tells us that the Bethe-Salpeter

kernel behaves as

X' + k] A(E-+ q}
. 2
gi> ——% —*——2~—9 1g YGCQ‘YB[gGB-IGIB/IZ]
—d b b - 7N 2.2 (5-6)
E’ : [1+bg“1nr] 12
i s
1=gq-k (5-7)

This is in the Landau gauge, where the fermion anomalous dimension
vanishes. In our application, the s-channel momentum, p, is exceptiomnal.
Because the Bethe-Salpeter kernel has no singularities corresponding to
bound states in this channel, it is plausible that (5-6) should represent
the asymptotic behavior of the Bethe-Salpeter kernel even when p2 is
small, provided all quark lines carry large (momentum)z.

Our principal assumption, then, is that the asymptotic Bethe-

Salpeter kernel is

P_ + k B o+ q

- K - ~ 1 Ya® YB(gOtB'lalB/lz] (5-8)
—- —x] e b 12 1nl12/M2J

P _x P _ q

2 2

For large spacelike momentum, the asymptotic fermion propagator in the

Landau gauge is

~ 1K
Sp (k) = F (5-9)
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Because the fermion propagator is simple, the relationship between the
amputated and unamputated wavefunctions is simple. Defining the invar-

iant amputated wavefunctions,
1
T(p,k) = Ys[rl B+ g IKp)+ T+ T, k] (5-10)

in which the Ti depend only upon k2 and p°k, one finds the relations

- 2 1.
ro=-k%¢ -2pke, (5-11a)
T.=-%k%o_ -0 (5-11b)
2 2%
a2 2
I, = (k% o, + k¥ o, (5-11c)
- . 2
T, = 2pk ¢ + K ¢, (5-11d)

The asymptotic Bethe-Salpeter equation is

{1 AV 2
X d4k Y q’(P,k)Y [gu\)_lul\)/l ]
qz/MZJ 2

4
3b In

P(P’Q) = )
(2m) 17 + ie

PR v

(5-12)

Expressions (5-6) and (5-8) should have been written with color
matrix factors for the gluon-fermion vertices, These were omitted for
the sake of brevity, but the appropriate color factor, 4/3, has been in-
cluded in the asymptotic equation, (5-12). The logarithmic factor in
the kernel is slowly-varying compared to the other power-behaved factors
in the integrand. Treating the logarithmic factor as a constant will

give an approximation valid to within a factor 1 + 0{———%——7—1. This
1nq /M



72

same order of approximation is found in the operator product expansion
and will be adequate here.

Over part of the range of integration, the momenta of the virtual
quarks will not be large and spacelike, even if the external momenta
g—+ é and g—- q are large and spacelike. Finiteness of the spectral

functions at § = + 3 is a sufficient condition for non-dominance of

B =

this infrared contribution, as will be seen.
The loop integration is readily performed if the spectral represen-

tation is used. For example, one term in the integration is

xe e U2
3
J[ 2 = J/rdt dg g5 (€,t)L(E,t,q,p) (5-13)
o Z1/2

17 + ie

where L is

4

L(&,t,q,p) = _//[ d k

12 + i) (k% - 28pek -t + i)

After a Feynman parameterization and a shift in Kk,

. 1
4
L(Est:q’P) =3 bzdb 2 d ]2< 4
0 [k° + b(1-b)(q"-2Ep+q) -bt + id]

If the external momentum is spacelike and satisfies

>1 5-14
2 poq ( )

a Wick rotation can be performed, leaving
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1
2
L(E,t,9,P) = = / db (5-15)
25 [0-v [qz-%P'qJ-t]z

Recognizing that the t-integrand is L(&,t,q,p) multiplied by a logarith-

nic function, gs(E,t), the leading-log approximation will be obtained

if we treat (5-15) as if t << ]q2 - 2Ep*k|, giving

. 2
L(5,t,Q,P) = ——5—— (5-16)
Zlq -2£p'th

As t approaches b'ql, L(&,t,q,p) drops off sharply from the value given

by (5-16), so that in the leading-log approximation,

4% o, i 1/2 b, (£,p*4)
3 AT 3 (5-17)
1% + ie 2 2 _ opege

-1/2 q P*q

where b3(€,t) is a regulated version of Leutwyler's light-cone spectral

function,
t

g; (€,t)dt
N (5-18)
0

The renormalization group forewarns us that

g, (E,t) ~ (n t)7"

This is a good point at which to pause and examine the legality of
our calculation so far. The Wick rotation was more than just a formal
device. In fact, a Wick rotation in only one momentum is not always
possible, rather, all external momenta must in general be rotated. We

certainly do not wish to rotate the pion momentum, p, and would rather
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not rotate the external momentum, q. Taking q to be spacelike and im-
posing (5-14) was essential to the rotation, and the rotation places
the internal quark momenta in the Euclidean region. The quark momenta

are of order
2 2 -
k™~ b(l-b)[q -2£p°q} - bt ¥t~ pq

This puts us safely in the deep Euclidean region and strengthens the
hope that the asymptotic kernel can be used. There remain worries about
infrared singularities in the kernel and the wavefunction itself. Sin-
gularities such as k"4 or stronger would undoubtedly upset our results.
Once specific wavefunctions have been obtained, it will at least be
possible to check their infrared behavior for consistency.

The other loop integrations can be done in a manner similar to
the above. After gathering coefficients of Ys p,ys[k,ﬁ], Vg and YSK,

the asymptotic equation can be written in the following form:

1/2
rl[kz,p-k) = B(p*k) J/- X2 (o) + Bby)de (5-192)
-1/2 x!-§1°
1/2
B(pek b
rz(kz,p-k] - —égjig- J/f . 2 > d (5-19b)
-1/2 x!'-§
1/2
b
Fs[kz,p°k} - - SB(p'k)d/[ r3 dg (5-19¢)
vz X8 |
1/2 b.+Eb
1 - 4 (5-19d)

lar |
o
fr——
~
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e
LS
]
[=-]
~~
lae]
.
=
~
|
-
-~
N
ol
]
m
N
Q.
Y



75

In the above expressions, the bi are given by (5-18) with argu-
ments & and p+k. Because of the logarithmic behavior of the bi’ it is

immaterial which of p-k, k2, Ep-k, etc., is used. For convenience, the

variable

X! = §§§E (5-20)
has been employed.. Also, we have defined

B(p°k) = 1 (5-21)

38T%b (pek) 1n(p-k/M?)

which exhibits the gross behavior of the amputated wavefunction. The
anomalous powers of log and the x' dependence are contained in the in-
tegral factors

The asymptotic Bethe-Salpeter equation has separated into two un-
coupled sets of equations. Equations (5-19a, -19d) are to be solved for

the Ys-odd part of the wavefunction, while {5-19b, -19¢) give the Ys-

even part. The odd part contributes to fﬂ, F WL, and WT’ while the

-n-’

even part contributes only to w&.

~ As discussed in Chapter III, the branch points (as seen in relative
energy) that arise when one of the quarks is on-shell correspond to
£ = :_%—. If the spectral functions are finite at these points, and

[x'l > %—, this infrared portion of the wavefunction will not contribute

to the Bethe-Salpeter loop integral, as (5-19) shows. However, (5-19)

also shows a singularity as |[x"| » 1 | and this is precisely the condi-

2.’

tion under which one of the quarks approaches its mass shell. To avoid
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infrared singularities in the amputated wavefunctions, the spectral

2
functions must vanish at the end points more rapidly than L% - Ez] .
We will find that all solutions have infrared singularities, but that

these singularities are sufficiently tame as not to invalidate the

Bethe-Salpeter solution teéhnique.

5.2 Ys-Odd Solution

From the equations for Pl and P4 one can obtain

@1(k2,p-k) + x! ¢4[k2,p-k]

< an .2
B(p+k) 12 ok g, E:t) + &g (5,1)
© 2pek T2 (5-22)
172 7o l""gj t
2 | 2B(p-k) 1/2 "kzgl(i,t)+€g4(£,t)
2p-1<[4 k ,p.k];__._._.ﬂ. = 1/ / o dtdg
(x ] "2 Yo x'-g) t

(5-23)
Before proceeding with the general light‘cone solution, it is wise to

consider the short-distance limit |x'| - <. In this limit, the squared
momenta of the two quarks are equal. The two integrations become iden-

tical, giving the relation

o ->-ip_:1_<.q>
k2 1

A , X' > @ (5-24)
7 a% -k
f =12 [cp +P2Xg ] (5-25)
m (zﬂ)4 1 _m2 4
m .

will be finite, because
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wn2
_ (22 k)2 (5-26)
Pk

&) -

integrates to zero over the hypersphere in four dimensions. Without
recourse to the Bethe-Salpeter equation, there is every reason to worry
about the existence of the integral for fﬂ. In terms of the spectral

functions,

B co

f£f = -3i / g(O) (t) * gcl) (t) dt (5_27)

m 2 t
sm 0

The renormalization group tells us that

g0 m + g~ g (5-28)
which would cause £ to be infinite were it not for the cancellation
.enforced by the Bethe-Salpeter equation. Phrasing this point differ-
ently, the invariant wavefunctions Xi[qu may be infinite at the origin,
but the linear combination that determines the rate of quark amnihila-
tion is finite at the origin.

Returning to the full light cone, solutions will be sought that
factorize in the form

£, (&)
7 _N1-€
t
in —
[ MZJ

It will turn out that an infinity of such solutions exists, each solu-

g; (6,) = (5-29)

tion having a power, €, corresponding to one of the twist-two operators.
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Consistency with the operator product expansion demands more than this,
and we shall find that the fi(E) have all the required properties.
The t-integrals on the right-hand side of the Bethe-Salpeter

equation have the form

€
2 2
2
dt _ M
J/f 1€ - + constant
t €
tiln —-—2—
while, on the left-hand side,
o]
/ dt _ -1
2 2f1-¢ = Z
o KZ-2pke-t)*1nt/m JI8 7 e ?xr-g)2link®?f 1-E

As pointed out by Appelquistvand Poggio [1], the cut-off on the
right-hand integral occurs when the loop momentum through the kernel
approaches the external momentum. This cut-off eliminates one power
of logarithm, but this power is replaced by the logarithm from the
kernel. One finds, then, the same power of log on both sides of the
Bethe-Salpeter equation. Appelquist and Poggio assert that € > 0 is
a necessary condition for consistency. This would certainly be true
if we were seeking an exact solution, for otherwise the constant term
in the right-hand t-integral would dominate the fractional power of
log at large k2 We expect non-leading powers of log in the gi(E,t),
however, and these generate constant terms of the same type. Consistency
simply demands a connection between the magnitude of leading and non-
leading logarithmic pieces of gi(g,t), but finding this connection is

' not possible with the present approach. It is important that we be
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able to handle the case € < 0, because the renormalization group shows
that gl(g,t) and g4(£,t) will have this behavior.
Cancellation of the common fractional power of log on the right-

and left-hand sides of the Bethe-Salpeter equation leaves the following:

V2 @ee @ g [ @@
[ore)2 € = -3 EE g
-1/2 x - -1/2 x'-
(5-30)
1/2 1/2
/ £ (‘E) -48/e £, (E)+6£, (£)
o RIEE! : e (5-31)
2172 -¢ "% 21/2 x -&
2
B = —¢ N (5-32)
3[11 - %—NFJ
It is possible to obtain a single eduation in the unknown
£(8) = £,(8) + &£,(8) . (5-33)

This is accomplished by noting that

HEXEE ) 5O
lx'—EJ2 l -E] x"-§

72 &-E

The equation thus obtained is



2 .
[ﬁ-%}i—na i) (5-34)
dE 2+ *B-

where F(£) is the Hilbert transform of f(&) .

1/2 .
F (8) = U/f fléiLié_ (5-35)

_1/2 E'g '

Equation (5-34) has only been established for jgl > %3 but we will
assume its validity over the entire range of £. Hilbert transforming
(5-34), one finds that £(£) obe&s the same equation. Equation (5-34)

is a special case of the ultraspherical equation [2].

(1-x2) cé“)' (x) - (2a+1)x c( 1" (k) +m(me20) c(“)( ) =0
Qur interest is in the case o = - %
£y @ = ¢/ P00, m= 135, O (5-36)
The first few solutions are
£..(6) =1 - (25)°
1)
£.(8) = 1 - 6(25)% + 5028
(3)
(5-37)
£5(8) = 1 - 15028)2 + 35026)% - 210268
- 28207 + 126020)* - 202p)° + 2202)°

INGES

with corresponding anomalous powers for the logarithm
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] - — 2
e =4 m@D 35 . (5-38)
m 511 -2
" 3°F

These are precisely the powers obtained (with much greater ease) from
the operator product expansion. This is a gratifying result, but con-
sistency demands further that these powers appear only in certain
moments. The general solution isla superpésition
= ¢ P e
g (E,t) + Eg,(E,t) = I a - | (5-39)

(oad) " e

According to (4-21), the nth moment of this expression should contain

only the powers

€ s see¢ E

n+1’ €n-l 1

This requires that some of the moments of the Cé'l/z) vanish,

specifically,
1
Hén) - .j( £ Cé-l/z)(x)dx =0, n < m-2 (5-40)
-1

This condition is met, as can be verified by evaluating moments of
{5-37). A better method is to mulitply the ultraspherical differential
equation by x" and integrate from -1 to +1. The result is a recursion

relation for the moments.
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n(n-l)uén_z) + (m2+2am—n2+2an—2n+2a-l)uén)
22-0cM @) = o (5-41)
The inhomogeneous term vanishes for Ial = %—[For o = %—, the ultra-
spherical polynomials are Lengendre polynomials while, for a = - %—,

Céa)(:_l) = O.}. Setting n = m-2 in (5-41) shows that the (m—4)th and
lower moments vanish if a = - %—, just as desired.
The simplest solution has f(g).= 1 - (ZE)2 and vanishing anomalous

dimensions. Using (5-22) and (5-23), the momentum-space wavefunction

can be constructed.

2 4fﬁ x’
<I’1[1‘ ’P'k] = 7 1 2|1 7
12b(p+k) lnlp'k/M J T- x'
] (5-42)

o k2. p k| = — x7
4" P ¢ 2 211 1 )
12b(p+k) “In|p-k/M’| L - x'

I o

5 -
L,
2

- 1n

] (5-43)

xl

The normalization of @1 and ®4 has been adjusted to agree with the

sum rule (5-27). If the pion contains a substantial admixture of the
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higﬂer-order terms, the lowest term will still be normalized according
to (5-42) and (5-43), as the other terms have vanishing zeroth moments
and do not contribute to fﬂ.

Because the spectral functions vanish at the end points, there
is no consistency problem arising from wavefunction infrared infinities
(finiteness at the end points would have been sufficient). This is not
to say that the wavefunctions remain finite as the quarks approach their
mass shell. Expressions (5-42) and (5-43) have first-power singulari-
ties as ]x'| > %—. This singularity is due to the fermion propagators,
and, when these are removed via expression (5-11), only a logarithmic

singularity remains in the amputated wavefunction.

5.3 YS-Even Solution

Using the techniques employed in the ys-odd case, a differential

equation can be obtained for

g, (&) = _fe&)__ (5-44)

1-¢
In l%
M

[:lf - EZJ &) - 88 EfY (&) - [28 - 1]f(£) =0 (5-45)

Polynomial solutions of this equation do not vanish at the end
points. This gives an infrared singularity in the wavefunction as
the squared four-momentum of either quark approaches zero. We will
discuss such singularities in the next chapter, but will tentatively

enforce the boundary condition

f(g) =0, E =1 %- (5-46)
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This condition was automatically satisfied by regular solutions for
the antiparallel wavefunction. Further justification for (5-46) can
be obtained by looking at the recursion relation for the moments of

f(£). Putting condition (5-46) and the anomalous dimensions of the

operator product expansion into (5-41), one finds vanishing moments

precisely where demanded by the operator product expansion.

Near § = 1 the solution must approach

E’:
e - 3-¢°

with

s=1-3 (5-47)

Taking f(£) to have the form

$
£(5) = B— - Ez} h(£) (5-48)

we must now solve

: 2
[% -2 @ - 2[2 - e ,-[125 - 1B, Zih(s) (5-49)

€

This equation has two sets of nth-order polynomial solutions, one with

€ 6

E = m (5—50)
and the other with

£ 2

B = nez (5-51)
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The fractional powers given by (5-50) agree with the operator product
expansion, while those given by (5-51) do not. Only one solution meets

our tentative boundary condition. It is

1/3 :
£(5) = [% - 52} (5-52)

with

7 =6 (5-53)
It may be significant that the surviving anomalous dimension,
corresponding to the local operator E'YS ¥, is the only gauge-invariant

twist-three anomalous dimension (see expression 4-42). All of the
twist-two anomalous dimensions were (apparently) gauge invariant, and
all of them appeared in the Bethe-Salpeter solution.

We will content ourselves with the solution

1/3
1 2
[z' 5}

g,(,t) = - (5-54)
[1nt/M2}1'4/[1;_ - ENFJ
Conformal invariance gives [3]
g,(,t) = (% - Ez)e(t) (5-55)

One might have expected an asymptotically-free theory with zero fermion
mass to come closer than this to the conformal solution.
In the previous section, it was found that Leutwyler's sum rule

for the pion decay constant was convergent in QCD. The corresponding
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sum rule for the y:-even part of the wavefunction is obtained by postu-

lating a bilocal divergence relation [4], which connects the value of

xz[xz,p.x] at the origin with the quark mass, m.
24m X.,(0,0) = |m> - 4n°|£ 5-56
mXZ s = ’ﬂ'- m T (' )

In terms of the spectral function, the wavefunction at the origin is

I/j//” g, (€, t)dtde
(5-57)
0

According to the operator product expansion and the Bethe-Salpeter

X,(0,0) =

192ﬂ _1/2

equation, the zeroth moment of gz(E,t) falls off more slowly than

(1n t)'l, shoﬁing that xz(xz,p'x} must be infinite at the origin. We
conjecture that sum rule 65—56) can be resurrected in QCD with quark
mass evaluated at (momentum)2 = t and the wavefunction evaluated at a
distance (t)'l/2 from the origin. In terms of the regulated single

spectral function, one expects the relation

(0)(t)dt
t

_m(t)

2 = [l - 4nP(t) £, (5-58)
8w

0

This agrees with the operator product expansion result of relation

(5-58) if one sets

1
)

m(t) =
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in agreement with the asymptotic behavior of quark mass in QCD [5].

5.4 Conclu;ions

Lacking real physical insight into these asymptotic solutions, it
is hard to judge their relevance to the bound-state problem in QCD.

The YS-Odd solutions inspire more confidence than the Ys-even solutions,
because of the close correspondence with operator product expansion re-
sults. Recalling that, in the operator product expansion, we banished
.twist-two operators from the Ys-even wavefunction by setting the quark
mass equal to zero, it is natural to wonder whether this assumption is
the cause of the present infrared difficulty. 1In the Born diagram cal-
culation of Appendix A, the masses appearing in the fermion propagators
are certainly important, as they make a leading contribution to WT (but
not to WL).

The Ys-odd solution appears to be quite useful, especial}y in pro-
viding.absolute normalization for FTr and WL. In the next chapter we
will look at the phenomenological conséquences of the asymptotic solu-
tions, with particular emphasis on the expected modifications of the

naive scaling laws due to anomalous dimensions and infrared singularities.
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Chapter VI

EXPERIMENTAL CONSEQUENCES FOR PION

Predictions for the pion electromagnetic form factor and structure
functions will be made using the asymptotic wavefunctions found in the
previous chapter. The Ys-odd wavefunction gives expressions for F1T and
Wf differing only by logarithms from the Born diagram results. The infra-
red singularity of the Yg-even solution upsets the Born diagram result for

W.., giving a (w-1)2/3 threshold dependence (presumably with additional

T
logarithmic fall-off).

The f1T sum rule provides absolute normalization for F. and WL’ if
derivative operator terms in the wavefunction can be neglected. The re-
sult for E. is in reasonable agreement with experiment, while the data

for WL are too coarse to allow a comparison between theory and experiment.

6.1 Infrared Singularities

Although the asymptotic wavefunctions were derived under the assump-
tion that both quarks carried large (momentum)z, infrared singularities
are evident in both the Ys-odd and Yg-even wavefunctions. These may or
may not be representative of the true infrared behavior of the exact
wavefunctions, but it is necessary to verify that these singularities
do not make infinite contributions to the form factor and structure
functions. In the following, attention is restricted to the lowest-order
solutions, corresponding to operators with no antisymmetric derivatives.

It is expected that the unamputated wavefunction will have singu-
larities due to the fermion propagators. The interesting singularities

are those left over when the legs are removed. For example, the YS-Odd



20

wavefunction given by expressions (5-42) and (5-43) has a first-power

singularity as

5 1
!x'l—)'i-
This is equivalent to kf + 0 or kg + 0 where k1 and k2 are the momenta

of quark and antiquark. This singularity is absent in the amputated

wavefunction
4fﬂ 1 %—- x!
Ty k,x') = 4 R {’" ” ‘] n (6-1)
1 7 spkmPE 8 Lax
-2f, 5-x
' ( k,x") = n 1+ x'Iln (6-2)
4 3b p°k 1In Eik --% + x!

The amputated wavefunction does have a logarithmic infrared singularity,

but we shall find that E. and WL depend upon only the following linear

combination.

(6-3)

This combination has no singularity as the (momentum)2 of the

unstruck quark approaches zero (x' +-%) .
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Things do not work out so favorably in the case of the Yg-even

solution. Its only contribution is to W, through the amputated wavefuction.

T
2 _ 2 |1 2
kT, + Ty = (2p-k) [Z - x! ] 3, (6-4)
Up to a logarithmic factor,
1/2 Y
1 2
1 7 ¢
¢2 o« —sr dg ' (6-5)
S @pew [ - &)
-1/2
where
1
Y = 3 (6-6)
This gives a singularity
o, = - (6-7)

1
LI et
as x 5

This singularity is virulent enough to upset the calculation for

WT,

spectral function had vanished more rapidly at the end points, with

but causes no trouble in the calculations for Fﬂ and WL. If the

Y > 1, there would have been no infrared singularity to worry about.

6.2 Pion Electromagnetic Form Factor

We will consider the case in which q2 is large and negative. If all

quarks carry large, spacelike momenta, and the momentum in every channel
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is non-exceptional (large, negative invariant mass in every channel),
the renormalization group says that the asymptotic form of the photon-
quark kernel of expression (3-14) is simply the bare photon-quark vertex
plus an inverse propagator for the unstruck quark. This is because all
gluon dressing disappears as the effective coupling constant goes to
zero. Of course, the momenta in the pion channels are exceptional, hut
we will assume, as in Chapter V, that the two-particle irreducibility of
the kernel allows a smooth continuation from non-exceptional to exceptional
momenta.

If integration regions where any of the quark momenta are timelike

can be ignored, the pion form factor calculation is

1
5 P1K {q

p
R GRRe  €) m Gy S

As Menotti has shown [1], the Ys-odd part of the wavefunction makes

the leading contribution, giving

while the Yg-even part contributes a 1/(q2)2 term, barring infrared
problems.

Following Brodsky and Farrar [2],.the loop integration will be divided
into two regions, one in which the left upper line carries greater
(momentum)2 than the right-uppér line and one in which the opposite
situatiqn holds. We are not to assume that one line carries (momentum)2

of order mz, because the wavefunction falls off as 1/k4 at large momenta.
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We shall find leading log terms generated by the same mechanism as
appeared in the Bethe-Salpéter solution. One log is generated from the
region in which the photon momentum flows mainly through the right-hand
line. A logérithm is generated at the boundary in k-space where the
integrand changes from 1/k4 due to the left-hand wavefunction (the right-
hand wavefunction being '"saturated'" by the photon momentum and effectively
independent of the ldop momentum) to l/k7 due to both wavefunctions and
the inverse propagator. This leading log term is proportional pu. A
second leading log term proportional to pu + qu is generated at the
boundary where the left-hand wavefunction goes from the 'saturated" to
"unsaturated" condition.

We will perform the loop integration using the spectral functions.
This makes the calculation easy, but makes it difficult to identify
particular regions of loop momentum as important or unimportant. We
have not been able to prove the dichotomy of k-space described above,
but believe that this is the true situation, based upon experience with
the simpler case of the Bethe-Salpeter equation and the discussion of
leading-log generation given by Appelquist and Poggio [3].

One of the two leading-log terms is

Lo+ $la
P—= = a% Mu
- 1 --2-3 f T3 (6-9)
5 (2~ kq

M o= T!{E(l‘ﬂi)rl + (k + %4]1‘4] {%ﬁ t 4+ K]Yu[ﬂﬁ + oK ]}

(6-10)
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The heavy quark line and the symbol A indicate that we are calcu-
latingvthe leading log term emanating from desaturation of the right-
hand wavefunction. The right-hand wavefunction is used in its amputated
form while the left-hand wavefunction is unamputated. This mode of
expression is mostly a matter of convenience, and is suggestive of the

corresponding Born diagram

=F P, (6-11)

The wavefunction arguments are not shown in expression (6-10) but it

should be'noted that ¢ depends upon the invariants k2 and p-k, while

the corresponding invariants for ' are [k + %q]z and (p+q)-(k + %q].
Doing the spin trace (the color trace produced the factor 3 in

(6-9), one obtains

1 3
M, = 4[P1 + §T4][®1pu(q~k—q p) + ®4ku[2q~k - 5P q]
1 .
f @1 kup q + §-¢4 pu k q] + 4[{p q kU -

- k.q<pu][r1 9, - T, @1]] ' (6-12)

Upon integrating, the qu term is found to be non-leading, while the

1 . . . .
b 1} §-F4, which has no infrared singularity.

We will approximate this slowly-varying function of kg (where k2 = %{p—k)

p,. term is proportional to T

is the momentum of the unstruck quark) by its kg = 0 value.
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2
f k
1 - T 2
Ty +3Ty= ) (6-13)
| L2 [kl]
i
Using the spectral form for ¢, we encounter integrals of the form
[1 " Ipv) ) d4k[l, KM, M k"]
T T RHZr.2 5 (614
TEET H GRS
With the approximations used in the previous chapter,
. . 2 u 2 u v
(I, IIJ, Iu\)] = 1T [15 EP 3 E P p) (6_15)

20-0)% £ - 5%,

The leading log will be generated, as in the Bethe-Salpeter solution, by
the t-integration. Because the leading-log expression contains no qu
factors, the terms we have neglected in expression (6-13) make no contri-
bution. After doing the t-integration, the final result is
1/2
a£2 £,(8) + &£, (8)
F_= 1 dg (6-16)
5=

m 2 2
la”[b 1n ﬂgl
M

<1/2

The functions fi(EJ are defined in the preceding chapter. The normaliza-

tion used here is such that, for the lowest-order solution,

2

£1(E) + EE,(D) = 1 - & - (6-17)

This gives
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22 |
fr =5 2 | (6-18)
lqa“lb 1n|d5
M
where
1 - 2N,
b = ——— {(6-19)
1672 ‘
Data on Fﬂ extend to q2 = - 4(GeV)2 and are consistent with [4]
. 1 : "
FT[ = — (6'20)
1-2.1q

The pion decay constant contains the cosine of the Cabbibo angle. Re-
moving this factor gives fﬂ = 132 MeV. Our asymptotic expression is

supposed to be valid for

2
b g 1n Jﬂij- >> 1 (6-21)
M .

Since this condition is not met by the present data, we attempt to con-
tinue the asymptotic expression to smaller q2 by adopting the monopole

form of (6-20) in place of the l/q2 factor of (6-18) and noting that

2
b In 93- is just the asymptotic value of the effective coupling constant.
M
2 2 2
4.2 £ g°(q")
Fﬂ_ = 5 (6-22)
(1 -2.1q97)
Matching the two expressions for F1T at q2 = - 2(GeV)2 as shown in Figure

6.1 gives g2/4ﬂ ~ .8 at M = 2 GeV. Given the ambiguities in determining
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o

Figure 6.1

Monopole (solid line) and monopole x logarithm (dashed line)
compared to spaceclike pion form factor data summarized by
Bebek et al. The logarithmic curve has

g2/4m = 0.8 and NF = 6 flavors.
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the form factor with hydrogen and deuterium targets [4] and the ambiguities
of our extrapolation, this result seems reasonable.

Larger |q2| values are available in colliding beam experiments,
which provide information on the time-like form factor. The errors in
these data are too large at present to permit a coﬁparison of theory and

experiment [5]. We have not looked into the difficulties the present

model might have for time-like q.

6.3 Ys-even Contribution to Form Factor

It is easy to see why the Yg-even part of the wavefunction makes a
non-leading contribution to the pion form factor. First, to the extent
that quark masses can be neglected, the odd and even parts of the wave-
funcfion do not interfere in the F_ calculation. The T3 part of the am-
putated wavefunction has no 4 factor, as do Fl and P4. With Pl and F4,
this ¢ factor gives rise to a p°q factor, which is lacking in the PS
contribution to F“. The Pz term has a factor ¢, but this is compensated
by the 1/(q2)2 falloff of FZ'

All of this amounts to dimensional analysis, assuming that no quark
masses enter. .If the Ys;even wavefunction contains no infrared singu-

larities, direct calculation bears out the result of dimensional

analysis. Our solution is infrared singular with power behavior

1 y=1
' k“;}‘s“- 2~{ 3

for the integrand in the F_ calculation. A factor
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1
211~y

k)

comes from each amputated wavefunction with an additional power of
l/kg coming from two quark propagators. The loop integration is infinite,

but we can assume that this infinity would be replaced by a factor

213-2Y =2

a* [ 1}1'2Y
i
2 B

k

if masses were taken into account. Using dimensional analysis again,
the contribution of the Yg-even part of the wavefunction to FTr should

go as

e

With vy > 0, this is non-leading. Note that Y > 0 is also the condition

for vanishing of the spectral function gz(g,t) at the end points,

oo 1
g = 5

6.4 Pion Structure Functions

The structure function calculation is beset by two difficulties
not encountered in the form factor calculation. First, we have no
asymptotic form for the imaginary part of the 4-quark, 2-photon Green's
function. As in the Born diagram approach, we shall simply assume that
on-shell quarks can be used to approximate the final state. The second

problem is that experimental data only exist for time-like photon momen-
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tum. The spectral functions provide a means of continuing the wavefunc-
tion to timelike momentum, but one may be suspicious of using a bare
vertex for timelike photons.

Ignoring these difficulties, the
e'+e” + T + Anything

cross-section will be computed from the diagram of Figure 6.2. With

x =224 (6-23)

and, in the photon rest frame
Pk = |p| [kl cose (6-24)
the m cross-section for unpolarized beams is

= GT(l + cosze) + o sinze (6-25)

do
dx d cosb

The transverse and longitudinal cross-sections are given by

2
ol Vv
o = —— " p L (6-26)
49" p+q *
2
oy + .;.cL R gL (6-27)
8(q7)

where o is the fine-structure constant and wuv is given by the diagram

of Figure 6.3.
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Q

Figure 6.2

Amplitude for e’ + e - pion + anything

|

| <&
>
< 4

kg
Figure 6.3

Diagram for the pion structure functions
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d'k T
W= f . G(kg - mz]G(kg - mz] (6-28)
L (zm) [klj
TUV = Tr[KS + m]Yu{Kl + m]P{Kz + m]P[kl + m] (6-29)
The unstruck quark has kg = mz. I1f the amputated wavefunction has no

singularities as kg + 0, it can be written in the form

2 ‘ A 1 B C D
r[kz = 0] = ys{Fk-p + 5 — [K.F] + K T K K}® I
(pek)
(6-30)

21 , -
k, =5k +k (6-31)

where I is a unit color matrix. The trace in Tuv is to be taken over
color and spin. Doing the phase space integral (see Appendix A), one

obtains the following results:

2 2
@ _ - 3(1-x) 1 12, (B+0) .5
W = 71 (A t3 D} M ] -3 (6-32)
1 2
J3IA+ 5D 2
(TR _% 2 W . 5
PP WUV = - [ln ;5-— 1} ) (6-33) -

The factor 5/9 is the sum of the sqﬁares of the two quark charges, and
the factor 3 comes from the color trace. The normalization of pu pv Wuv
is determined by the sum rule for fﬂ. The '"constants'" A and D actually
have a logarithmic dependence on the (momentum)2 of the struck quark.

Replacing this logarithm by the effective coupling constant,
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(1-x)M
This gives
2 2
5f° o 2 2
o> op = T 5 gt 2] in HE" 1 (6-35)

54w q (1-x)M J m

The data on o in the region x ~ 0.8, q2 = 7.4 set an upper limit

q2 o < (25 MeV)z/q2 [6]. This limit is much too high to permit a test

of (6-35).
The prediction for I is more uncertain, owing to the infrared
singularity of the Yg-even wavefunction. Following the line of reason-

/3

ing used for Fﬂ, q2 0., should scale with (1-x)2 thréshold dependence,

T
rather than the (l-x)zdﬁpendence indicated by (6-27) and (6-32).

If we simply ignore the Yg-even wavefunction,

2 .2 2 ‘
2 Sa” £,(1-x)° [ 2 ]
1 % 2

g 2 (6"36)
4327 m (A-x)M J

The quark mass, m, comes from the mass-shell delta function for the
unstruck quark, and appears in (6-36) because it determines an important
phase space boundary: the minimum invariant mass of the hadrons produced
by the unstruck quark. It seems reasonable to take m ~ Mes which gives
values for q2 OT that are two orders of magnitude smaller than the
measured values. A quark mass of several MeV would give a more reasonable

magnitude for q2 0., but the effective coupling constant would be substan-

tially greater than unity, invalidating the entire calculation,
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We are led to the conclusion that the Yg-even part of the wavefunction

is the dominant contributor to GT.



105

Chapter VI References and Footnotes

P. Menotti, Phys. Rev. D 14, 3560 (1976).

S. J. Brodsky and G. R. Farrar, Phys. Rev. Letters 31, 1153 (1973),
and Phys. Rev. D 11, 1309 (1975); V. Matveev et al., Lett. Nuovo
Cimento 7, 719 (1973).

'T. Appelquist and E. Poggio, Phys. Rev. D 10, 3280 (1974).

C. J. Bebek et al., Phys. Rev. D 13, 25 (1976).

M. Bernardini et al., Phys. Lett. 46B, 261 (1973); L. Paoluzi,
Acta Phys. Pol. B5, 839 (1974).

R. F. Schwitters, SLAC-PUB-1666 (1975}, and R, Hollebeek, Lawrence
Berkeley Laboratory Report No. LBL-3874. :



106

Chapter VII

NUCLEON FORM FACTORS

Our treatment of nucleon form factors and structure functions will
be less ambitious than the preceding discussion of the pion problem. We
revert to the Born diagram approach, but use a more realistic wavefunc-
tion than the free quark model of Chapter II and Appendix A. Employing
a phenomenological wavefunction with parameters adjusted to give SU(6)
symmetry for the "normal" part, we are left with a free parameter that
can be adjusted to suppress the N >~ A electromagnetic transition, in con-

formity with experiment. This leads to the interesting prediction

p(neutron) 1

S i

Suppression of the N -+ A transition is found to be impossible with
scalar glue. The spinology rules show that both vector and scalar glue
give GE/GM scaling.

The previous chapters indicate that the Born diagram approach gives
the correct leading behavior for the pion form factor, provided the in-
frared singularities of the wavefunction are as tame aé those found in
the asymptotic solution of the Bethe-Salpeter equation. In applying
the Born diagram approach to the nucleon, we are assuming a similar
degree of tameness for the nucleon wavefunction, but do not attempt an

explicit statement of the required infrared behavior.



107

7.1 GE/GM Scaling

In this section, the spinology rules will be applied to a represen-
tative diagram to obtain the Brodsky-Farrar predictions for GE and GM'
Three different classes of Born diagrams can be identified in the lowest-
order form factor calculation, as illustrated in Figure 7.1. For the
sake of brevity, we will only apply the spinology rules to "Class b"
diagrams, in which the struck quark emits a single gluon.

Each gluon in the diagrams of Figure 7.1 must carry a sizeable frac-
tion of the photon momentum q, giving a denominator factor l/Q8 due to
the quark and gluon propagators. The lower gluon in the Class b diagrams
must be transverse to avoid an m/Q suppression factor. The middle quark
suffers no change in chirality due to the gluon exchange and must flip
its spin in order to avoid an helicity-chirality conflict. This forces
the upper gluon to be longitudinal, but carries no penalty because this
gluon couples to off-shell quarks. Considering the struck quark, there
is no conflict with a transverse photon and an m/Q suppression factor for
the longitudinal photon. The form factors are proportional to the ampli-
tudes of Figure 7.1 divided by the amplitude for a single point fermion

to absorb a photon. Including vertex factors, we get

: 4
Gy = G = 1/Q . (7-1)

This is the Brodsky-Farrar prediction for nucleon form factors
[1], in good agreement with experiment [2]. In the following sections
we will consider all Born diagrams and will see that each gives a l{Q4
contribution. Scalar gluons also give GM @ GE « 1/Q4, although Class b

diagrams have an helicity«chirality conflict and only contribute a 1/Q6

term to GM'
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Figure 7.1

Born diagrams contributing to nucleon form factors in the

Feynman gauge.

u,, is normalized to 2M{nucleon).

N
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7.2 Simple Wavefunction, Approximations

The N-N and N-A form factors can be obtained in the ladder approxi-
mations by a convolution of the diagrams of Figure 7.1 with appropriate
wavefunctions. These diagrams are divided into three classes, according
to the type of spin selection rule they obey with vector glue. We will
concentrate on vector glue and merely note the places in which scalar
glue gives significantly different results.

Diagrams of Class a select the spin of the struck quark to be the
same as that of the nucleon. The two gluons are transverse, so the
lowest incoming quark line must have spin antiparallel to the nucleon
spin. Two and only two quarks must have spin parallel to the nucleon
if L = 0, so Class a diagrams select all 3 quark spins.

Diagrams of Class b also select pafallel spin for the struck quark
and nucleon, but place a less stringent selection rule on the unstruck
quarks, because the gluon comnecting to the struck quark is longitudinal,
"insulating" that quark from the spin flips of the lower two. These are
connected by a transverse gluon and must, in consequence, have anti-
parallel spins.

Class ¢ diagrams contain two transverse gluons and select all 3
quark spins. Unlike Class a diagrams, the spin of the struck quark is

antiparallel to the spin of the nucleon.

With scalar glue, there are no such spin selection rules, and
Class b diagrams are non-leading.

In order to gain a degree of generality, we will not assume that
the incoming and outgoing quarks are on-shell but will assume that, in

the "normal" wavefunction, quark spins can be described by free spinors

of mass m /3.
N
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pu = mgn Tu = My P -y

where p is the four-momentum of the nucleon. This type of wavefunction
is used in the relativistic quark model of Feynman, Kislinger, and
Ravndal [3]. It is important to recognize that the quarks are not
assumed to be free. Rather, the wavefunction has been assumed to fac-
torize into spin and spatial pieces. In a non-relativistic model, one
would say that we are neglecting spin-orbit coupling. We shall assume
that the spatial part of the wavefunction makes no orbital contribution
to hadron spin. While this type of wavefunction may not be a good approx-
imation to reality, it does have the virtues of simplicity and lLorentz
covariance. For present purposes, the greatest virtue of this wavefunc-
tion is that it can be made SU(6)-symmetric. The gluon exchanges of the
Born diagrams provide an explicit SU(6)-breaking mechanism for the "tail"
of the wavefunction. It is these breaking effects that we wish to com-
pute and compare with experiment.

As a further approximation, it will be assumed that the wavefunction
restricts the squared four-momenta to small values. We neglect the de-
pendence of the Born diagrams of Figure 7.1 upon quark transverse momentum
and assume that the only significant wavefunction invariants are the two
that measure the fraction of the nucleon momentum carried by each quark
inthe infinite momentum frame. These fractions will be denoted Zys Zgs

at the input of the diagram and zi, zé, z! at the output. Of course,

23 3

+ 2z + 2! =1 (7-2)

The index 1 corresponds to the top (struck) quark in each diagram, and

the indices run from top to bottom.
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Although no candidate spatial wavefunction is proposed here, it
is at least possible to be explicit about its definition. The Bethe-
Salpeter wavefunction in configuration space for a nucleon of momentum

p is

X[poxy%p) = <o Ta(x;)a(x,)a(0) |p> (7-3)

We have suppressed the color and flavor indices of the quark fields,
q(x). The Fourier transform of X is the unamputated momentum space

wavefunction for which we assume the form

# = - =.f - « 3 - £ C A Y Y f_A\
Q(P,kl,Kz} P[p’Kl’KZJ 2 3yey WP x ﬁa(PJ X a Py Li-5)

o,B,Y
The Greek letters are SU(6) indices and @(p, kl,kz} is a scalar function
g, kl' k2’ p-kl, and p-kz. "Convolution" of

the Born diagrams with the wavefunction means integrating over k1 and k2

of the five invariants ki, k

at the input and k! and k} at the output. The z's introduced earlier

1 2

are Sudakov variables, defined for a dummy momentum, 1.

”
]
H
n

o

1543 P+ l+71, T, °P rl-l (7-5)

L1}
o

k, = 2, PtY, 1+1, T,°P r2-1 (7-6)

We assume that the wavefunction falls off rapidly with respect to the
Y and T, in comparison to the Born diagrams, so the convolution in-
volves the two-dimensional wavefunction

2

- {9 2. 42 -
f(zl,zz] o (o(p,kl,kz}dyldyzd r,dr, (7-7)
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The integration is carried out in any colinear frame where

r

0"1‘
1=

N o

Letting 12,p°1 + © with 12/p'1 finite, the support of the wavefunc-
tion is restricted to O <(zl, z2)< 1 and we assume that f(zl,zz) becomes
independent of 12 and pel. This limiting form of the two-dimensional
wavefunction is presumably the 3-quark part of the infinite-momentum-
frame wavefunction of the parton model. The other pieces of the parton
model wavefunction, the amplitudes to find three valence quarks plus
specified quark, antiquark, and gluon combinations can be similarly re-
lated to '‘reducible" Bethe-Salpeter wavefunctions such as
<Oqu[x1]q[x2]q(x3]q(x4]aIO)|p> which, in turn, can be computed from the
"jrreducible'" wavefunction (Expression 7-3) by definite diagrammatic

rules [4].

7.3 Evaluating Diagrams

In evaluating the diagrams of Figure 7.1, quark electric charge and
the gluon coupling constant will be set equal to unity and the correct
charges inserted later when the SU(6) wavefunction is considered. Color
wavefunctions and matrices will be ignored because all diagrams carry
the same color factor. One might expect that the set of order-g4 dia-
grams would include trilinear Yang-Mills gluon couplings, but these
vanish if the fermions are in a color singlet state. This can be proven

by keeping track of color indices as below:

S |
Color ;{:f
e = o TB TY

Singlet g €abe Tad be ‘cf faBY

£
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Greek indices run over 1-8 and Latin indices over 1-3. The point at
which the photon attaches has no significance. The right-hand part of
this diagram will be multiplied by an antisymmetric color singlet wave-
function,:edef. Using the antisymmetry of eabc and faBY and the symmetry
of Ta , one can show that the above diagram is completely symmetric in
the indices def. It follows that a distinction between abelian and non-
abelian vector glue cannot be made at our level of approximation, with
only color singlet nucleons available.

All diagrams contain at least one quark with a single gluon attached.
Working in the nucleon-photon Breit frame in which the outgoing nucleon
has its three-momentum reversed and energy unchanged, one can evaluate

the amplitude for the emission of a single gluon.

q 4 20‘

= -iul, Y%ug (7-8)
s s

Using the spinor identities of Chapter II

q+ o
S
6

S St

—_ o
€s1(-s1)Y  ®s(s)

But E = Q/2, and chirality is unchanged by the vector gluon, giving

q 2“
- _ isq O, .0 0 _
S st 12 Gs(__sv)[x +1S8y } (7-9)
where t* = (1,0,0,0), &= (0,1,0,0,), qa = - Qfx, and § = + 1. Expres-

sion (7-9) tells us that, to leading order, the gluon must be circularly-

polarized and must flip the quark spin.
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Diagrams of Class a can now be worked out by evaluating the top

fermion line. For example,

k. X g
c d
1 =7= Y A ZS s 5
g i}kb 3 (1) (1788485 (g1y05 (.s1y¥
=(Q 247727 P37z
2 ) (ZJ 77222 2 (7-10)
glk 27 ka kb kc kd
a
3
where, in the Feynman gauge with gluon propagator - iguv/kz,
= e H : . .
N = °s1(-5,)" Kd(X+1521)kc(X+153f)eslsl (7-11)

Working in the Breit Frame, Kd and kc involve only the Dirac matrices

0 3 .
Y and Y, because we are neglecting transverse momentum.

k, = [zl+23_23)2,0,0,[zlf23+zé}2 (7-12)
K] = 2} 30,0, (2-2!)3 | (7-13)

To evaluate N, we can operate on the right-hand spinor with % + iS3 y

according to the rules of Chapter II, which give

(*+ isz]eslsl =50 - S85 s ) (s

We.see that Sl and 83 must be opposed, and next act on e(_Sl)(_Sl)W1th
K, -

Ko S5 T 2% Ssp sy
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Continuing in this fashion, the right-hand spinor is moved to the
left, changing its chirality and/or spin and picking up a factor at each

vertex and propagator. Finally,
= 02,1 H s -
N=0Q 23[1 - 5153)(1 N slsz]sl(x " 1sly“)as (s (7-14)

Diagrams of Class ¢ can be worked out in the same way, while diagrams
of Class b differ slightly in havingone longitudinal gluon. Up to an

overall factor, one finds

B
) ¢
2 = A tB - ZB £7_1CY
= 1 - zi Li-1o)
5 ¢
{ 8
2
B B
g -t (7-16)
3 |
in any Fermi gauge, that is, any gauge with gluon propagator
guv-(l-a)kukv/kz
Duv = -1 k2 (7-17)

In the Feynman gauge (o=1), one finds the peculiar result that half
of the Class b diagrams are non-leading, as indicated in Figure 7.1.
This is not true for o#1 and occurs because the gluon polarization vec-
tor enters the upper line as £+Z in the Feynman gauge. In the leading
approximation, this is a multiple of the incoming or outgoing nucleon

momentum and annihilates the incoming or outgoing spinor.
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7.4 SU(6) Results

Figure 7.1 summarizes our results for the Born diagrams in the
Feynman gauge. These amplitudes are to be convoluted with nucleon
{or other L=0 baryon) 'mormal" wavefunctions. It is interesting to
assume SU(6) symmetry for the normal wavefunction, as this allows us
to obtain relations between transition form factors within an SU(6)
multiplet. We will compare the p-p and p-Atransitions using the

"normal" wavefunctions

IProton,Sz=l> = —1——[2|u+ufd+> + 2[utdyut>o+ 2|dyutut>

2 32

- Jutuddt> - Jududda> - Jutdtud> - juddtut>

- |dtutuy> - [dtusut> | (7-18)

4

|8%,5 =2> = z[ |utusat> + |utdtud> + |dburai>

+ Juditdy> + Jududdey> ¢+ |uddiud> + [uddiud>

+ |dbubut> + |dhutue ] (7-19)

In the leading approximation, all three quarks have their spin
flipped at the output. This means that only one of the: three helicity
amplitudes connecting lproton,sz=%> to A is leading.

The photon acts on the state |ututd+> to produce
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J“[u_+u+d+> = - i{qu[ a, (123) + a,(123) + a, (213) + a,(213)
+ 2b(123) + 2b(213) + 2b(132) + 2b(231)] +qy [c(312)

+ c(321)]} lututd4> (7-20)

The amplitudes a;, a b, and ¢ are defined in Figure 7.1. Quark

2,
spins are specified in the nucleon rest frame on the left side of this

equation and in the rest frame of the outgoing hadron on the right side.

Similarly, one finds

J¥|dttus> = - i{ qd[ a  (123) + a,(123) + 2b(123)
+ 2b(132)] +q, [a1(213) + a,(213) + 2b(213) + 2b(231)

+ c(312) + c(321)] } |d b ut> (7-21)

Using the SU(6) wavefunction and permuting indices in (7-20)

and (7-21)

<proton' |J%|Proton> = :%1:&{5qu+qd]+'§{qu+2qd]] (7-22)

<A+|Ju|Proton> = Zigz (qu-qd](alﬁj (7-23)

where o and B are the averages over the nucleon wavefunctions of the
amplitudes o and B8 that the struck quark has spin parallel or anti-

parallel to that of the nucleon.

o = 31(1233 + a2(123} + 4b(123) + 5 permutations (7-24)
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B = 2c(123) + 5 pérmutations (7-25)
1
a 1 ] * t ] @
_J/- dz1 dz2 dz1 d22 f[zl,zz]f [zl,zz} (7-26)
gl ° | B

Not having a definite z-distribution, we will take o and B as
free parameters. Experiment indicates that <A"|J"|Proton> falls off

faster with q2-than <Proton' |J"|Proton> [5], which leads us to set
a=8 (7-27)

This has an interesting consequence for the neutron form factors. First
note that the amplitudes of Figure 7.1 are proportional to EN T, Uy
which means that we are calculating Fl(qz). Interchanging up- and down-
quark indices in (7-22), the neutron form factor is predicted to vanish.
Of course, the prediction is really that the neutron F2 falls off at
least as fast as Q_6} This result is consistent with the existing
data [6], which have large errors and only extend to Q2 = 2.5 (GeV)z,
For o = B, no preference is given to quarks with spin parallel or
antiparallel to the nucleon. Struck and unstruck quarks are treated
in any case democratically; all must flip their spin in going through
the Born diagram. In these circumstances it is easy to see why a = B
suppresses the p > N (and n ~ AO) transition: The quarks at the output
are in the same SU(6) state as the input quarks, giving no overlap with
the A. Further, as each diagram is weighted by the electric charge of
the struck quark, the overall amplitude will be proportional to the sum

of quark charges if no selection of the spin of the struck quark is made.
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This suppresses the neutron Fl’ as indicated above.

For scalar glue, the results are quite different. As noted earlier,
Class b diagrams are non-leading. There are two leading pA form factors
because the quark spin selection rules are less stringent with scalar

glue. Photons with spin opposed to the nucleon spin and striking quarks

with spin parallel to the nucleon spin contribute to the form factor

2

+ _1,.- _1
<A ,SZ-—EJJ |Proton,SZ— > _ V2 (qu-qg)
<Proton,$S =-11J_|Proton,s -1 4449y
z 2 z 2

(7-28)

Photons of the opposite helicity striking antiparallel quarks contribute

to the form factor

t g 35t =1 )
<A ,SZ-ZIJ [Proton,s _=2> 2 %% -29)
<Proton,SZ=-%1J_IProton,Sz=%> 3 4949

With scalar glue, then, the p + A transition must be leading, in

contradiction to experiment.

Feynman [7] has proposed a simple breaking rule in which the struck
quark is required to have the same isospin as the parent nucleon as
x > 1. After the photon strikes, the hadronic final state muét still
be an SU(2) doublet having no overlap with the A. This rule, though
lacking a dynamical explanation, also seems to be in agreement with the
observed neutron/proton inclusive cross-section ratio in deep inelastic
scattering. This topic is discussed in the next chapter in connection

with the quark spin selection rule.
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7.6 Asymptotic Freedom

The simpie scaling prediction for the pion form factor was found
to be modified by one inverse power of 1n qz. This power could be
traced to the effective coupling constant of the single gluon, which
prompts the conjecture that the proton form factor should contain two
inverse powers of 1n qz. This presumes that, as for the pion, the
operator anomalous dimensions contribute negative fractional powers
except for one dominant operator having no anomalous dimension. The
possible appearance of logarithms in experimental data is discussed at

the end of Chapter VIII.
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Chapter VIII

 NUCLEON STRUCTURE FUNCTIONS

In this chapter, the Born diagrams contributing to the nucleon
structure functions will be evaluated under the assumptions used for
the form factor calculation. The predicted threshold behavior
WT o (w-l)3 and WT(neutron)/WT(prqton) = 3/7 is found to be in rough
agreement with experiment. It appears that the discrepancy in the
threshold power of w-1 may be due to our neglect of higher-order (in gz)
diagrams, whose effect should be to lower the gluon coupling constant
at large momentum transfers, while the discrepancy in the neutron/proton
ratio could be either a fault of our model or a result of ignorance of
the deuterium wavefunction.

Qur model gives WL/WT = uz/Q2 near threshold with uz an x-independent

constant whose magnitude depends upon details of the nucleon wavefunction.

This result is consistent with the present, inadequate, data.

8.1 Born Diagrams

Compared to the pion case, there are many more diagrams to be con-
sidered. No helicity-chirality conflict occurs in WL QE.WT’ which give
the "expected" (w—l)3 dependence.

In the Feynman gauge, the following diagrams make leading contribu-

tions to

Nucleon + Transverse Photon + 3 Quarks.

> =3 =
Au = = + + = (8-1)
& = =



123

= = =
B = e + &= + & (8-2)
=

= =

The amplitudes A.p and Bu are to be convoluted with the nucleon wavefunc-
tion, after which the forward Compton amplitude can be found by squaring
and integrating over the phase space of the three outgoing quarks.
There are 16 diagrams to be considered, which will be denoted

ug w;\J) i,j=1, 2, 3,4
where Hy is a mass parameter coming from the wavefunction. The super-

script convention will be defined by giving a few examples.

S SV S
BN

3 11

Hy wp\) = = } 5 g Y (8-3a).
= ! =
§ 1
= ' =
Mo Mo = = i} 5 { ¢ P (8-3b)
= f f =
| {3
= . =
“g ws\s) = g : 3 (8-3c¢)
! L 3
;¢
= =
344 f f 530

3




= ' =
Ug Wii = = S s f 2 ; = (8-3e)
A
ug Wzi - = g i 5 g g (8-3f)
., 3
~ =
“g ";113= ¢ (8-3g)

L

P2

Only two of the sixteen diagrams must be worked out in detail,
say (ij)=(11) and (33). The other diagrams either involve a relabeling
of the lower two quarks, or are interference terms proportional to a
mean of diagrams (ij) = (11) and (33).
The 1list of diagrams would be considerably longer if we did not
work in the Feynman gauge where the amplitudes of Figure 8.1 are non-
leading and if wé included Class ¢ diagrams (Figure 8.2). As shown in
Appendix B, Class ¢ diagrams make a non-leading contribution to the trans-
verse structure functions (even though they do make a leading contribution
to the form factors) because the photon momentumis forced to go through a
quark propagator, giving an extra factor in the structure function.
Diagrams (ij) = (21) and (12) are actually nbn—léading, because
they are interference terms between amplitudes that connect to final

states with differing quark spins.
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z ;
r 5

Figure 8.1

Diagrams making a non-leading contribution
to the nucleon transverse structure function in the Feynman gauge

Figure 8.2

Diagrams that do not contribute to the
transverse structure function in the scaling limit
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8.2 Heuristic Derivation

The diagrams of Equation (8-3) have the form indicated in equation
(8-4) where the blobs indicate any arrangement of two gluons with each
of the three quark lines having at least one gluon vertex. The blobs

are not to be confused with the Bethe-Salpeter wavefunction or kernel.

n
Joud
U
N
=
[
Rt
O
™
~——
=
—
+
Q
N
3]

In this section, the phase space integration will be discussed hcuristic-
ally. From the resulps of Appendix B, it will be possible to tell at

a glance, once Mii for the ijth diagram is known, whethcr that diagram
scales and what its threshold power of w-1 is. As indicated in Equation
(8-4), all quarks are given the same mass for fhe sake-of‘simplicity.

As in the form factor calculation, incoming quarks carry fractions Zys

Z of the incoming nuclcon momentum, while outgoing quarks carry

2> 3
fractions zi, zé, zé of the outgoing nucleon momentum.

The phase space integration is carried out in Appendix B in suffi-
cient detail to permit experimentation with phenomenological wavefunc-
“tions. We shall not follow this line of attack, but will pursue the less
ambitious goal of extracting the threshold w-dependence and the neutron/

proton ratio. For this, it is sufficient to note that the phase space

factor is proportional to l/W2, just as in the pion case. This follows
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if all four components of quark transverse momentum are limited to

finite values as q2 =+«  giving, symbolically,

4

ra% 2% = L (8-5)

=

As for the pion, off-shell quarks and gluons have

2

(moméntum)2 = OLS?I] - (8-6)

/2

For every gluon vertex, there is a factor m(u)-l)-1 , which combines
with the propagator denominators to give a factor (m-l)l/2 for every
off-shell quark. Transverse photon vertices receive a factor Q, while

longitudinal photon vertices receive a factor m. Putting this together

with the phase space factor gives

Wy = (w-1)3 (8-7)
3
W, '(‘w;;l (8-8)
Q

The detailed analysis of Appendix B reaches the same conclusion

and also gives the following rule: With vector glue, the spin of the

struck quark must be parallel to that of the nucleon for w = 1. This

result is easily obtained from the spinology rules, and is a direct
consequence of the suppression of Class c¢ diagrams (see the spinology
discussion at the beginning of Chapter VII and the analysis of non-

leading diagrams in Appendix B).
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8.3 Consequences of the Spin Selection Rule

If one is willing to assume SU(6) symmetry for the "normal" wave-
function, the spin selection rule can be translated into a statement
about isospin. According to the SU(6) wavefunction (Expression 7-18},
a quark carrying the same spin as the parent proton is 5 times more
likely to be an up quark than a down quark. The situation is reversed
for the neutron, so the ratio of neutron to proton structure functions

near threshold is predicted to be

+ = . ) '
) __ 3 (8-9)

For comparison, Feynman's isospin selection rule gives

2
1
w? _ ’?) _1
—_—= = — (8-10)
P 2 4
T (3
3
while a naive prediction is that, because a proton contains two up quarks

and one down quark,

2 2
1 2 }
"'Irl_z[’f] * [Zf] 2
= - -2 (8-11)
WT

These predictions will be compared with experiment in Section 8.5.
Another consequence of the spin selection rule, pointed out by

Landshoff [1], is that fast pions produced in

e +pFre + X+
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near threshold should be preferentially . If u-quarks turn into T
with unit probability and d-quarks turn into 7 with unit probability,

the expected ratio is

(412 ‘
+ 5!21
L 3
—= = 20 (8-12)
m

L-a (8-12)
m

and the most naive prediction

+
[y
m——
Wil
———
N

it

= 8 (8-14)

A |
3]

|

A "fast" pion is one in the quark fragmentation region with momentum

m——
| =

nearly equal to the kinematically allowed maximum. Present data [2] con-
tain too few events in this unbopular corner of phase space to permit a
test of these predictionms.

A cleaner test of the spin selection rule can be found in the

neutrino interactions
+ T4
vy ¥ P X
-— +
+ -> + X
Vu P H

The antineutrino interacts with u-quarks while the neutrino interacts

with d-quarks leading to the prediction
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vp vy o5
= / -3 (8-15)
dx dx

near w = 1. This ratio takes on the values « and %3 respectively, for

the isospin selection rule and the naive quark counting rule.

8.4 Quark Spin Selection for Longitudinal Structure Functions

The longitudinal structure functions in our model have the same
threshold behavior as found for the transverse structure functions and

vanish in the scaling limit according to

L
—

Wy P*q

W : 2
L_ (mass parameter) + 0 gz(l—x) (8-16)

Changing the photon polarization from transverse to longitudinal intro-
duces an helicity-chirality conflict that can be resolved by a chirality
reversal in one of the propagators of the upper fermion line or by using
the "wrong chirality' piece of the spinor of the struck quark. This
gives the relation

N 0 L N
(__.TlT}% it

=
<=
- Lo

(8-17)

(AN}

i

:|
e
o

where the mass paramater ui depends upon the quark mass. With the trans-
verse gluons, as indicated above, quark spin selection is made in the
same way for both transverse and longitudinal photons. Things are ac-
tually more complicated than this, owing to the fact that, near threshold,

the upper quark is far from its mass shell before the photon strikes.
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This makes it possible to exchange a longitudinal gluon and transfer
the helicity-chirality conflict to one of the lower quarks. Such a

term in diagram (11) is

§r

& ' 2 = : =
RSNy My ST T T (319
DS S TR SN
= : = = + =
Pk,
The longitudinal photon vertices introduce a factor ——— and the lower
2
longitudinal gluon vertices introduce a factor p?k relative to the
1

transverse photon diagram.

One concludes that, in this model, the quark spin selection rule
is violated by longitudinal photons. Near threshold, we see a departure
from parton model ideas, in that knowledge of the wavefunction as measured
by transverse photons is insufficient to determine WL. This behavior,
and the w-dependent WL/WT ratio found for the pion, result from the insis-
tence of our model that quarks with w = 1 have (momentum)2 of order
- 4%/ (w-1).

We have not performed an exhaustive evaluation of all diagrams contri-

is quite laborious because

buting to W, as we did for WT- Calculating W

L L

TRV e v 4 2.1 )
TP ML = (prky) pramt W (yy) (8-19)
with quark mass m coming from numerous propagators and spinors.

8.5 Comparison with Experiment

To test the prediction W, « (w—l)s, we will consider the wide-angle

T

electroproduction data [3] summarized in Figure 8.3. The appearance of
{
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scaling is enhanced, rightly or wrongly, by use of Atwood's empirically-
determined scaling variable

X = (8-20)

S

hJ@EiJ

-1
ZQ;Q ;
q q
. 2 2 s . 4
with MS = 1.42(GeV)~. The data are fit quite well by (l—xs) and not
nearly as well by (l—xs)z. It is interesting that simple power behavior
holds over a very wide range of x._.

Accepting X as the correct variable expressing prococious scaling,

these data show a possible violation of the Drell-Yan-West relation, as

the asymptotic proton magnetic form factor follows ; > reasonably

(a)
well [3]. For the proton, a rough argument can be made that the form
factor, proportional to g4 in our model, should actually show a logarith-

mic dependence on qz.

1
Gy ° 2 (521
@H?[1+b ¢ m|%]

u
The logarithmic factor is borrowed, without benefit of a renormalization

group derivation, from the effective coupling constant

g2 - g | (8-22)

where g is the coupling constant at the renommalization point M, and b

depends upon the number of flavors, Ng.
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2
16n°b = 11 - £ Ny (8-23)

In the structure function calculation, the gluons carry (momentum)2

of order - 4 mz/(l—x), so one might similarly expect

3
Wy o (1-x) =7 (8-24)
[1 +b g2 In —EEEL——]
M (1-x)

If this view is at least qualitatively correct, form factors and
structure functions should fall off faster than the simple powers of q2
and 1-x predicted by our model, with the largest effect appearing in the
structure function, which is proportional to g8. Expression (8-24) can
mimic (l—x)4 over an appreciable rahge of x.

The choice

NF = 6 flavors
£ .1

47 3

M= 2 GeV

gives a reasonable fit to the data over a rather wide range of quark
masses. As shown in Figure 8.3, the preferred quark mass is in the
neighborhood of 300 MeV. It can be readily verified that (effective
coupling constant)2/4ﬂ is less than unity over the range of the data
in Figure 8.3.

One must ask whether the expected logarithmic dependence of the

form factor should be visible in present data. The data on GM for the
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Data for proton transverse structure function as
presented by Atwood compared to Expression
(8-24) with m = 250 and 350 MeV
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Figure 8.4

Experimental data for proton magnetic form factor
presented by Atwood compared to expression (8-21)



135

proton [3] show approximate 1/Q4 behavior over the range 10 < Q2 < 33 GeVz.

The logarithmic factor of (8-21) drops by 30% as Q2 increases from 10 to
33 GeVz. This additional predicted fall-off of the form factor is of the
order of the experimental error, as Figure 8.4 shows. The 33 (GeV)2
data point may have a large systematic error, as the empty and full target
signals were nearly equal. It is an interesting possibility that asymp-
totic freedom may be more easily diécernible in the x-dependence of struc-
ture functions near threshold than in scaling violations, where it is
often sought.

Atwood summarizes data on the neutron/proton cross-section ratio in
inclusive electroproduction [3]. The data tend toward a ratio near the
' isospin selection value, 1/4, as x approaches unity. According to our
spin selection rule, the threshold ratio should be 3/7. Considering the
smearing corrections made for neutron motion in the deuterium nucleus,
the data may be consistent with the value 3/7. For example, at

-2

- 5%76-3 0.85, nucleon motion smears the true x-value, measgred with
respect to the neutron rather than the deuterium nucleus, over the range
0.7 - 1.0. The structure functions change rapidly over this interval,
and the correction factor applied to the neutron cross section is on the
order of 0.8 with a systematic uncertainty of order 10% [4]. The correc-
tion factor becomes rapidly smaller and the uncertainty larger as X is
increased, so the possibility that the neutron/proton ratic is approaching
3/7 cannot be ruled out. The value 3/7 is only supposed to hold for the
ratios of transverse structure functions whereas the data are presented as

total cross-section ratios. At large angles (50° and 60°), about 2% of

the events are due to longitudinal photons, assuming WL/WT = .2, so the
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ratio 3/7 should hold accurately. Data at the smaller angles could have
up to 15% contamination due to longitudinal photons if WL/WT ~ .2. Data
on WL/WT are very poor and we are unable to estimate the degree to which
longitudinal photons break the spin selection rule. In principle, longi-
tudinal structure functions of the neutron and proton can provide a test
of the spin and isospin selection rules. A better test may be possible

in the near future using neutrino data from hydrogen bubble chambers.
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Appendix A

DETAILED EVALUATION OF BORN
DIAGRAM FOR PION STRUCTURE FUNCTIONS

Electron-positron annihilation into a pion-plus-anything iﬁ this
model is described by the diagram of Figure A.1l where the lepton pair
is not shown and the dotted vertical line denotes taking the real, delta
function part of the quark propagators, corresponding to the parton

‘model assumption of nearly free quarks in the final state. The defini-

tion of va is

Wy = fd“xelq'xq,pwu ()3, (0) |7, p> (A-1)

and the most general gauge-and Lorentz-invariant decomposition is

q,4
1A e 2 _.
Mov = (guv q° J wl(q P q]

1 P‘ClC{]J p+qq,,
*T[Pu Er L e P! (a-2)
Lo q q
Figure A.l contains an unknown mass parameter, Ug» owing to the
fact that two free quarks are not really the same thing as one pion. In

the correct treatment, these powers of mass are supplied by the pion

wavefunction. Wl and WZ are the usual dimensionless structure functions,

but it will be more convenient to compute the following invariants:

m2 2
4

2
_ (p-q)
wg = - 30, + {1 - -P—q-—}w?_ (A-3)
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Figure A.1

Born diagram for pion structure functions
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. 2
pupv _ S[I_M_][w - [ %ﬁ%—}wz} (A-4)
m

Experimentally, the longitudinal and transverse structure functions

are convenient quantities.

W, =W (A-5)

(A-6)

=
I
=
[
——
—
1
2 E
-
[N
A )
=
N

We see that puvaﬁv is proportional to WL. Furthermore, if WL << WT’
o . .
Wa is proportional to WT.

The struck quark has mass m; and the unstruck quark has mass m,.

We will actually assume

but keep the labels for convenience in later calculations. The mass
assumption forces the free quarks that mimic the pion to have precisely
%-the pion mass and-%—the pion four-momentum, p. This somewhat awkward

assumption will not be necessary when a more realistic pion wavefunction

is used, but it is helpful here in permitting use of the completeness

relation

. o e

In spite of appearances, this is a spin-zero combination of u's and

v's. A spin-zero combination of u's alone would have the difference of
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the direct products. Equation (A-7) will make it possible to use traces
in computing pion diagrams, and the symbol m will be kept distinct from
my and m, in recognition of its later appearance as a general wavefunc-

tion parameter. Omitting overall powers of v-1 and the gluon and photon

coupling constants,

a*x ﬁ[kz-mz 8 kz-mZJ
W o 1 220k (A-8)
pv 0 21.2 2121.2(2 uv
E (2m) [kl—mlJ tkSJ
With gluon propagator —igpv/(kz}z ,
Tuv = Tr(p-4m)(k4fm2)(ﬁ-4m)(kl+ml} .
. Yu(szl]Yz(,klml} | (A-9)

The free quark picture used here will only be taken seriously in

the scaling region
2 -
q ,p°q > ®, w finite.
The scaling variable w is defined for time-like photons as

W= S (A-10)

and ranges between 1 and «. The "threshold'" region near w = 1 will be
of primary interest to us, but w = 1 cannot be approached too closely

. . . . 2
without entering the resonance region. We will always assume W2>> m

where

W2 = (q-p)? = 2p-q(u-1) (A-11)



142

A change of integration variables will be made from klu to the
Sudakov variables, u, vy, Ty ry defined by

k1 =up +yq+r
(A-12)

prr = qer =0

These new variables are convenient because, as will appear, -u is very
nearly equal to w. Furthermore, r is the quark transverse momentum in

the photon rest frame, where we take

P =Py 05 0, Py

q=Q,0,0,0

0

T 0, r

1’ rz’

The variable y will turn out to give a measure of how far from mass shell
T

virtual quarks and gluons are. Doing the integration over ¢ = tan"! ;i ,

fd4kl = 1 peq/ drldudy (A-13)
Because

k§ = uzmﬁ + 2u(y+l)peq + r+1)%a% + 1 (A-14)
we have

s d(kg-mf]drz =1 (A-ls)

The two mass-shell conditions kg = mf , ki = mg, give
m2
u=-w+y(ld-2w) +0 —Eq (A-16)
q
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= mg - (w-l)szT + 2prq(w-1)y (1+y) (A-17)

The transverse momentum four-vector r is space-like so (A-17) expresses

kinematic limits on y. For w-1 << 1, the limits set by rz < 0 are

2

2
e (A-18)

m
-1<y<..

. : ' 1 .
The maximum transverse momentum occurs for y = E-and has the magnitude

2 . . . .
-r2 = l-w . In actuality, the transverse momentum is limited to values

4
of order m2 by the quark and gluon propagators. The squared momenta of

the virtual quarks and gluons are, respectively.

2 2 2 '

k1 =m, - (1+2u)mﬂ - 2yp*q (A-19)
2 2 3 2

k3 =m, - [Z + Zu}mTr - ¥yp*q (A-20)

These denominator factors accentuate the small -y region, so that

Y = Opq@D (A-21)

22 . 0[’“2 (A-22)
(2
my

u=-w+0 -5 (A-23)
\a

Most important is the fact that the virtual quarks and gluons have

2
2 2 _ o{’“z} : (A-24)
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If mg is not too small, all virtual particles are far off-shell,
giving hope that our perturbation approach makes sense for w > 1 in an

asymptotically-free theory.

With this look at the magnitude of things, it follows that, for q2

large and w >~ 1 ,

2 2 _ 1 : e
fﬁ(k4-mz}du = —2'-15-.—q— (A‘ZS)
uz N
: 0. ~[- dy .
W = - e T - (A"Zb)
—mz
—2
W
Turning to the trace, Tuv’
oo .2 2 2 2
T, = 8p°q kj [4m+m1) - my + (w-1)kg (A-27)
WV g —4'k23(1+) (A-28)
PP Ly T PTA Y -

The leading approximation to TZ depends on the wavefunction mass
parameter m. The unstruck quark mass, m,, also enters through the kine-

matic limit (A-18).

Doing the y-integration, the structure functions are

-

Ug( -1) 2 2
W= - — m + (4m+m1] (A-29)
a ™
2
2
H 2
pupkuv = ?g- -1+ 1In Ef (A-30)
m

2
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In terms of these quantities, the transverse and longitudinal

structure functions are

6]
(Wa + WL} (A-31)

'
N =

W

PR,
Wy, P (A-32)
(pra) /9" - m

A glance at expression (A-31) makes it apparent that we have cheated

a bit in discussing the region

12
w-1<% (A-33)
W

in Chapter II. The issue is whether
Wy (w-1)°

in this region or whether WT also contains an w-independent, non-scaling

piece comparable to WL. In the first case,

w=>1

»fghis
¥
8

q2 fixed, large

while, in the second case, WL/WT approaches a finite, non-zero value in
this 1limit. There is no problem here with the order of limits w -+ 1,
q2 + o, because (A-33) can be readily satisfied for finite q2 with W2
well above the resonance region.

Expressions (A-30, 31, 32) show that there is an w-independent,

non-scaling contribution to WT coming from pupVWﬁv. Furthermore, the
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non-scaling contribution to!&g from diagram A.1 is suppressed near
threshold, offering no hope of a cancellation from this source. We

find, however, that the other diagrams of fourth order give cancelling

terms such that

Wy = @12+ 0 ﬁ’_;lﬂi

q
Furthermore, these additional diagrams give no new contributions to ﬁL’
and WL/WT > o as w+ 1. The additional diagrams of order g4 are shown
in Figure A.2. We have omitted diagrams of the forms shown in Figure
A.3.as these make no provision for the struck quark to absorb the mozen-
tum of its partner and so do not contribute for w = 1. Explicit calcula-

tion of the diagram of Figure A.2a shows that it can be forgotten as it

contributes pieces

Wy (w—l)mzlq2

2 2

n
WL o (w—l) ——2
q

For A.2b and ¢ we find that the contribution to WL falls off as [I/QZJZ
and can be forgotten, while the contribution to WT just cancels the 1/q

piece coming from A.l, as asserted above.
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(a) (b} (c)
Figure A.2

s 4 .. . .
Additional order g diagrams for pion structure functions

Figure A.3

Some diagrams that do not contribute
to the pion structure function in the limit w ~> 1
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Appendix B

DETAILED EVALUATION OF BORN DIAGRAMS
FOR NUCLEON STRUCTURE FUNCTIONS

In performing the phase space integral of Expression (8-4), two

sets of Sudakov variables will be used.

k, = X;P+y;at+ry B TP =Ty°q = 0 (B-1)

k, = X, Pt Y, k1 + T, s r,'p = rz-k1 =0 (B-2)

2

The integration over k; will be done after the integration over k,. It
is convenient to express k2 in terms of p and kl’ rather than p and q

(compare (B;l) and (B-2) ) because the propagators and traces are most

2
1

terms of q2 and p*q. Erasing part of the diagram as in Figure B.1,

simply expressed in terms of the invariants kI and p-.k, rather than in
one can think of the first integration as a calculation of the structure
function for a nucleon to emit a quark of momentum kl' The transverse
momentum of the lower two quarks is r, and, as in the pion calculation,
the azimuthal integration over tan'erX/r2y can be done '"for free." Ex-

pressing this result in terms of the invariants k2 and kl-p, the d4k

1 1
integrand is independent of tan_lrlx/rly. The integrations over ri and
rg can also be done trivially thanks to the mass-shell delta functions.

2 2 2] _ 2 2 2 _
Jar:, 6[k2-m } = fdrld[(k1+q} -m ] =1 (B-3)
Using

2.2 1
fdx2 G[ks-m ] = ETETEIT (B-4)
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T
&N

Figure B.1

The first phase space integration viewed as a
calculation of the structure function for nucleon - quark + anything
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the non-trivial integration is

Yo wig = jff%-fdyz dx, dy, Mii (B-5)
T
The main task is to determine the limits imposed by kinematics on
the integration variables Yos Xq and Y1 It is also important to deter-
mine which regions of integration are accentuated by dynamics, that is,
which regions have large values for the gluon and quark propagators.
It will prove advantageous to change variables from Xy and y; to w? and
w;, where w2 is the invariant mass of the unstruck quarks in the final
state and wi is the maximum value of w2 at fixed Y- These variables
range over values of order m2, which makes it possible to extract the
power behavior in q2 and 1-x without actually doing the final integration.
The mass shell conditions for the two unstruck quarks can be used

to obtain the relation

X, = g(l + 2y2] +1+y, (B-6)
where
-ki + mli :
£= ——r (B-7)
2p'k1—2‘mN

- As in the pion calculation, the kinematic limits on y, are imposed

by the positive definiteness of

22 - v aso] 2pepr22esini] + ()2 nl - n?  (B-8)
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It will be assumed now, and shown later, that kz

1 and p-k1 are large

compared to all squared masses, giving

-« 2 |
E=no + O (B-9)
1

2 2 22 2
-1 = - yz[y2+1]w + (1+8my - m (B-10)

where
W = [p-kl]z (B-11)

is the invariant (mass)2 of the unstruck quarks. Positivity of w2 and

2
-T

2 then gives the constraint

2 L] 2
1 1 m 1 1 m
'E'VE';'Z<V2<”2'+ 777 (B-12)

In writing (B-12), the condition
W = Oan] ' (B-13)

has been assumed. The condition for the validity of (B-13) is discussed
later in this Appendix.

The kinematic limits on x, and Y1 follow from

1

- rf >0 , (B-14)

and

w2 > 4m? (B-15)
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In the dynamically-favored region

2
y; = 0[%} | | (B-16)

the limits (B-14) and (B-15) can be expressed, respectively, as

2 2
n-hy
xl > m + X[l'l'yl} (3-17)
3m2+m§
< - - — -
Xy yl(Zx 1) + x g (B-18)

where x is the usual scaling variable

o

_ _1 '
X = == | (B-19)

2p°q
Inequalities (B-17) and (B-18) confine Xy and Y1 to a narrow wedge-
shaped region in the Xys ¥q plane as shown in Figure B.2.
As in the pion calculation, the amplitude M;% will contain inverse
powers of Y1 favoring the region given by (B»iﬁ). In this region,

X, =x -0 [Zp (T x)] (B-20)

Replacing x; by the integration variable

2 _ 2 2 2 v o N i
Wo=mo+m -2x1mN-2(xl-x}pq 2p-q y, (1-2x), (B-21)

the limits on the wz integration are, at constant, Yy

an® < WP g w; (B-22)
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X4

Dynamically Favored

Figure B.2

Allowed and favored regions for the final phase space
integration in the nucleon structure function calculation
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where
W’ = -y 2peq(1-x) (B-23)
m 1

serves as an integration variable replacing Y1

Expression (8-4) can now be written as

- [ 2
2 1 1 m
Z ¥ “z‘* 1'7
4 .. . w
uo Wi% = 3 1 ,/” dy2 dw dw
256mprq(1-x) 4, w\/Ji———
4m
(B-24)
. . . . .. . . e 1 . UV
We will be interested in evaluating W  and p'p wuv. The diagrams

to be considered have M;J of the form

3% = ) (poky) ()" (v2) (B-25)

with a similar form for P p M J In principle, i,‘m and n vary from

diagram to diagram and should carry subscripts i and j. Noting that

w2
Jpek. = k2 & - B B-26
peky =k = -1 (B-26)

one obtains

-1 n-1
4 i (prq)™” [2(1 x)
Yo wuv -

128ﬂ

[

1 (W)an? au? (B-27)

where



() - #r,)r, e

The integrands in (B-25) do not involve x or p.q, so one can see that
Mija“P'q if the diagrams "scales' and Mija o« ( -kl)'4 if the diagram
has (l-x)3 threshold behavior.

We will close this section with some expressions useful in reducing

M;J“ to the form (B-25).

2,°q = - qz-kf + m2 (B-29)
Pk, = y, pk, + 0(m’) (B-30)
2
p.k3 = "(1"')'2)p.k1 + O(m ) (B"Sl)
k;*ky = v, Pk + 0m%) (B-32)
Kook, = 0(n%) (B-33)
273 ,

Tracing through the approximations made in this section, a suffi-
cient condition for their validity is that w2 be restricted to values of
2 . ij, 2 2 2
order m". The function I"7(w”) tends to a constant for w™ >> m”, so the

final integration is restricted to small wo if

n-4>2 (B-34)
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Most of the diagrams considered in the next section have L = 0, n = 4
and satisfy the above condition. (Actually, some Iij(wz) tend to in-
finity logarithmically as w2 + ©, as can be seen from (B-28) and the
results to follow. This does not alter condition (B-34) however.)

The conventions and approximations used in evaluating the Mig will
be introduced with reference to the sub-diagram below, a frequently-

occurring component of the diagrams we wish to consider.

o ! 8
f ki i B (2 2]
. -~ 1 | -
Si Zip e } >2ip sl = n(i)2ﬂ6 ki-m (B-35)
228 T BK Q E:I§§i. ) (B-36)
1) YHY =27 3

As before, the spinor normalization u u = %—mN is used. The input
and output spins are assumed to be the same, as the spin flip amplitude
is non-leading. Quark mass is neglected and the spin projection opera-
tor is approximated by the chirality projection operator. Even though
the incoming and outgoing quark lines carry different momenta, the spinors
are taken, as before, to have the same rest frame as the nucleon. For
the forward Compton amplitude, the incoming and outgoing nucleons have
identical momentum and spin.

Factors :_J:T normally appearing in vertices and propagators are
omitted along with factors g and %-e, - %—e at the gluon and photon
vertices.

Carrying out the trace,
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{i)oB _ %{Poa B, B B

Ki+p +isis°‘BY6p k ] (B-37)

a Q
ki-pk;g vis

This appears twice in the first diagram of Equation (8-3). Using é:to

denote equality to within phase space integrals defined in equation

(8-4), diagram (11) is:

) z’b
p— i — - ——
zZ, j ] g K, ll ,% | ; !
M" A ’ (B-38)

y Zp— =] —— Zzp
H K,
| | ,
In finding the transverse structure function, (B-38) is cohtracted on
U and v.
1111 _ 1 ' (3)ad_(2)By
DM V= 2 T byl YYkl(k;ﬂ(]leBIYa[1+Slvs]n n (B-39)

where D11 is the denominator due to propagators. Throwing out terms

2

proportional to L

(3)o8 4 oo aBYS
n Yo¥Yg = P KaB+iS e Y By gp Ko

This can be simplified by using the identity

eaBYGY Ay, = 2iy (asz-aayY] (B-40)
o 'B )
which gives
(3)as _4 .
n Y BY5 = 3 Prkg (1+53Y5]¢ (B-41)

The spin selection rule S1 = - 53 is obeyed. To leading order,
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1 and 1' in (B-39) can be replaced by - k3, because the difference be-
tween these momenta is a multiple of p, which gives non-leading terms
proportional to mﬁ, owing to the factor g in (B-41).

With a second use of relation (B-40), and using the approximations

listed at the end of the preceeding section, one arrives at the result

DHM;N - 512 (P X ] (1*’}’2)3 v, 2p-q (B-42)

with the additional spin selection rule

S, =8 | (B-43)

Including propagator denominators, the final result is

Mﬁlu - : 4p-q (B-44)

i
2722222323(1 z )(1 22)Y2(1+Y2)(P'k1)

Recalling the results of Equation (B-27), it follows that diagram
(11) scales and is proportional to (l—x)s, with quark spin selection as

predicted by the spinology rules.

Diagram (33) has a less stringent quark spin selection rule, so the

derivation of MSSp will be sketched. First, the two lower quark lines

will be treated, the product of the two traces being denoted pue, where,

excluding phase space integrals again,

e §
|
84 3 ; § 2 (B-45)

Muv s

&
11e

1+S‘Y
D M = - 2 Teprgh ek DK T P (B-46)
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1+8 )y
ag _ 1 B, .o 2'5 (3)y$
P = g Trdvg(B-2{B-K )Y Ky (B-28-K )Y, —5— 0
(B-47)
Taking the trace and making the usual approximations,
32 20,8 . .o O
o - 5 Pk, [k2k§+xgk§-1sse Broy skon] (B-48)
with the selection rule
S, = -5, (B-49)
Inserting (B-48) into (B-46)
33,330 _ 512
DM, 2pq(p-k,) (1+y2) Yy (B-50)
Either spin choice S1 = S3 or Sl = - S3 giVes the same result, in agree-

ment with the selection rule derived heuristically. After calculating
the propagator denominator factor, the final result shows scaling and
(l—x)3 threshold behavior:

4p.q y
M33u - 2

v (B-51)
" 272,25 (1-2,) 2a1- -2%) (1+y2)(p kl)

Diagram (22) is essentially the same as (11) and (44) is essen-

tially the same as (33). Permiiting the lower two quark lines is

equivalent to 22+ﬂ-23, zz++-zs, y2+ﬁ-1 + y2.

M22H . 4p*q 7 (B-52)
o 272,242,25 (1-25) (1- -25)y, (1+y,) (pr k)

44 4prq(l+y,)
MM "2 (B-53)

2 2 4
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Unsymmetrical interference diagrams are a good deal more difficult
to evaluate directly, but they are equal to an obvious mean of the

appropriate symmetric graphs. For example, we have evaluated

A

(B-59)

LT ¢

2
¥ $ $ 3

directly using traces, but omitting the chifality projectors %—(1+SY5)

— v —

to simplify the calculation. The result is

. 4pe .
M131411 = _ 5 'pzq : ; (B-55)
27(1—z1) (1-21) 2322(p°k1)

The same result could be gotten simply by taking the geometric mean

33u 44u

of the numerator factors faqr Mu and inserting the appropriate

and
denominator factors. The direct calculation without chirality projection
operators gives a result four times larger owing to counting of the four

leading spin configurations

> > < o«
€ + - >
+ <+ > -

This factor of four has been removed in (B-55).

We have not suceeded in doing the remaining phase space integra-
tions defined in equation (B-27) and (B-28). In principle, these can
be done independently of the wavefunctions and then, given a wavefunc-
tion, the magnitude of the structure function can be determined using
the convolution discussed in Chapter VII. For the present, the main

conclusions to be drawn are that WT should scale with (l-x)3 threshold
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dependence and that the struck quark should always have spin parallel

to the nucleon.

Several diagrams of order g8 do not make leading contributions to

HT. These will be disposed of without appealing to the spinology rules.
M
@
' I
P P
= f i
[
1

The diagram
Vv,

g

(B-56)

atavil

will be shown to be non-leading in the Feynman gauge. Following steps

analogous to those used in evaluating Mzzu

1+S_ vy
55,550 _ 2 1'5] af
DM = - 3 Tx x‘vslélﬂklva[————-—z ]q (B-57)
148 Y
ap _ 1 B a _ "2'5 _(3)Y$
q - K3 TrﬁY (Kz'Zéﬁ+K3)Y6k2YY(k2‘23¢+K3)Y 2 n
. (B-58)
(3)y$6 =4,
n YGKZYY - 3 P k2(1+33Y5)K3 (B'Sg)
When (B-59) is inserted in (B-58), and k§ = m2 terms are thrown

out as non-leading,

o 4

q®® = 3 pek, Tr By S ,y,) (B-60)
with the selection rule S, =-83. Im (B-60), terms containing pa and
p6 have also been removed, as they give m; terms when inserted in expres-

sion (B-57). Finally,

K HHy = 0mAK, + 0 )k, (B-61)
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according to the expressions (B-29) through (B-33). With a power of m2
appearing, one can see that Wisu must fall off at least as fast as
(l-x)4 in the Feynman gauge, although it will make a leading contribu-
tions in other gauges as does the corresponding form factor diagram.

The spinology rules say that

£ 4
Mll.nz;_‘% 2 { < ; g 5 2 (B-62)
= | =

should be non-leading owing to conflicting demands on the spins of the
two lower quarks. The asymmetry of this diagram makes it difficult to
evaluate, but disposing of the spin projectors shortens the labor in-
volved, while hiding the details of spin selection. We have carried
thi; calculation to the point of finding that Wtﬁ falls faster than

(l-x)3 and scales.

Much more important than either of the above diagrams is the

"Class c" diagram % k+0Q z
< —= —
P
= .' =

This diagram destroys the purity of the spin selection rule for
the struck quark, unless it fails to scale or has fallcff faster than

(l—x)st If no cancellations occur when traces are taken, it is apparent

that
0
MO o _(pra) (B-64}
L D 3%

In comparison to the leading diagrams calculated so far, a power of peky

in the denominator has been replaced by a power of peq, because q flows
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through two additional fermion propagatoré. In the notation of expres-
sion (B-25), 2 = 0, n = 3, and condition (B-34) is satisfied, giving
W36u « (1-x)2/p'q. If cancellations occur in the traces, powers of p:q
or p'k1 in the numerator will be replaced by powers of m2 or w2, but

condition (B-34) will still be satisfied. It can be concluded that the

contribution of diagram (66) does not scale.



