
?-rE·,7 1:ETHODS OJr' SOLVIWG THE EQUArrIONS 

:~'OR THE 2"'101/ OF A OOMPRESSIBL:~ FLUID 

Thesis 'by 

Francis ('Hauser 

and 

:Milton Clauser 

In Partial Fulfillment of the Requirement for the Degree 

of Doctor of Philosophy 

California. Institute of Tecl1nology 

Pasauena, California 

1<337 



(1) 

Summary. 

e usual equatLn1s fo1· the flo··r of e:. oor:Tprass i·o1e 

f'luid are no:n-linear in c11LU'aote1: and difficult t:i Bolve. 

It haa bee.n f'Jund ·ch:i.t ii tl1e c:n1por.snts of v;:;locity a1·e 

t 

ars lin~ar. These equetians are develoned and ne farms 

intxoduced 

A new function, r j s introduced 2.nd 8. method advR need 

for e ff :::ct in: the transf or~.:i8.t ion fro .. the plane wher:; the 
~ ' 

velocity o onents ;i.re cci1'.fr(}i11a.tes 3 t.o tie physicE'.1 pla.ne 

ere x and y are coordinates. 

A new way of finding plansible solutions to investig2te 

1s given <:cn(l tl1e oase of flm1 in E1 curnt:l' is wor1<ed out in 

detciil, rrl1e :t'low is found to have an ano.nmlous behavior, 

the reason for which is exnla.ined. This solution is apnli::d 

to tha flow behind a curved shock \Va.ve. 
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when ~e Binoeraly thank Doctors Theo6or von Y~xm~n and 

Haxry 3ate:man :fur layinJ the founJations of the ;:mthors ~ 

knowledge o:t· com'7Jressi-u1e :flu1d flo-;;1 and for thei1• lcind 

and syropathet ic ;uidarice th1·ou,::;i1out the develmrn1ent of 

th worl< • 

.F'u;r•ther, no s;:1<'111 deut of ::;::i:·.st it ude is due to 

1iii ss GatLar ir1e llan for har n2rt 10 eparinI; thiei 

thesi&. 

J~Ci/YV~~ ct~~ 

1l7 ~ Cfa,uPV 
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XEVl ;,;ETHODS OF SOVll!D THE E~WA l'IONS 

FOR THE FLO\'! OF A CCWPRESSIBLE FLUID 

In the steady flow an inc essible,inviscid.fluid, 

if i:rrotationa,1 motio:n is assumed,, the equa.tions of motion 

'd t..t.. ;;1 ·1r reduce to the simple ecue.tion : 
";;(] ~i;( 

wl1ere u :i.nd v are the co111ponents of velocity a.lon:S the axes 

of' x and y. This equation implies the existence of a 

velocity potentia.l 'f defined by the equations lL-: ·-~-fl J if-:. }.'f.? 
'7' h ~1 f. bl f 1 . d - - 'd x (J . 
J' or t e :r ovr O- a compressi e u1,,, tne above rea.sonin; is 

st ill vali.d if the :pre ssu.re is a s ir:gl e va.lued function of 

the density alone. 

Fox the oase of inoom:p:reosible flow,the equation of 

continuity, ~;- ·r- ::g 'tr= o, may be satisfied ·oy a stream 
~ g ~~ ~w 

function r de:f'ined bv l.,(. = ~ ~v: - ··- However, ; . '()y ; '2JX' 

in the OB,Se of compressi-ole floif, if f is the density, the 

equa_tion of continuity is ti'dx ff u..) + ?Jg (f' ·u-J :::: o 

and the stream function is nov1 defi:ieci by f LA ... = 

and 

Ci¥!. 
(j (/ 

In studying compressible fluids, 

it is convenient to introduce the two components of 

momentumJfl-L and f"'r,as new variables. However, in 01·de1· 

to gain a symmetry that will appear later, we shall define 

~l... ::; - J° ·r ,.....,..,, = J° t..t... • Introducing these in our 

equa.t ions we have o V- _ Cl V-
'(;) (/ ? x 

and the 

e,; .·;;v,.vz....; 

I ""J 1 ::: 
definitions 
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With the assunpt1.:ms int:roduced aoove J it cen be ~:ohown 

ti;at the pressure an0 ctensi.ty caJ1 ea.c~'1 be exnressed ::1.s a 

I ~ --:l: 
fu:wtion of the irelocity.., ty c:: .<. .... ~) only. Ti·1ie1 i;rp1ies 

th2.t () =.. Q.~,,,./'~ is a function of q alone,, (These 

xelatimshiyia bei;;;1een p, f:; q and Q a1·a simply va.rioue forus 

:i.f Be:n~u-ull i 1 :; 

lf' Yre use tlns :L's.ct 1~1 ein att t0 find an equat1on 

f Jl' eauatione are non-linear. 
~' ... ,, ') ) 

For instance the equa.tion for f is -;;ix ( f" ~r) +<$ ( f' ~) = o 

wl1e:r·e i~' 1'.'.lust be rer.;2rded ~ a. c;;iven function of 

J;.;!+ tr,//. ::::: ;"J#)·~~(~f). 2 

Non-linear equations ere n1)t 
(·"'x "1 . 

readily arnena.ble to ancdysis a.nd very li tt1e has been 

accomplished ir1 the vmy of direct solutions. 

However , it has been f <:mnd tha.t if we use u and v as 

indepenclent variab1·es ineteacl of ,x and y, thE! result in,; 

equs.tionei are Jin~&r. In nc1er to de:rive these equations> 

t're el irfiina.t e cix c:i.r:d dy f'rcH1 the follo"1ing equa.t ions 

d 1., 1' ~/ ·11./ _- ..-..-.n... -1 x J. ~l al_)f.t: CJ' = (,.<. t?VJC.. -1- -zr ·~f j ~ T r,. V'V'. , 7 

rL'his elimination is effected by solving for dx a,nd dy in the 

follo~ins equations 

:;ir,,c_ "' c) i:-0 k ;. ~ l-'- d "'' 
~x r:ig rl 

Ol' ;l· cl 
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g Ll - Vl :;:" - £,{,,, + d~ 
d "'"-

- ?Jo 

/j -· L1 -} = 

If we e (;I ir c;tr1d from the 
~)( 

the ;::: = 
we obtain trie des equations 

/)\~,{_, + ,..,~ - "2:,.r' I 
~ 

('.,,,;(,,. -I- .~ti - ~·P'.t.r + """;,;r;~w j 
The fi:rst o:f these equations is :readily obta,ined from the 

above equa.tions but the second is more difficult. The 

xeverse if we 

-I ( 

j 
(p, 

-f-

instead of' equations 2. 

)< 

have been found even more readily by noting the symmetry of 

u' v a:nd r with m, n and -¥J and intercn19-n~nr1g 

first equation. 

them in tl1e 

Equations 5 take on a particularly simple form if we use 

pol~tr coordinates in the hodograph pla.ne J i.e. t•<. : .U,!9-0 

= Q u~ .. i1/ 

The equations now become * 
( 

.l 
* During a disouaeion with Dr. H. Bateman, the authors 

learned that he had obtained the equations in the form 
given here. However, it is believed that the form given 
in equations 5 has not been given before. 

'-f 
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These a:re linear eguat ions and .b.enoe a:re :much more readiJ.y 

trea.ted than the non-linec'.r equations found befol'e. In these 

equations~ q and Q are the v2.l ues of the vel tloi ty Rnr'l ·tbe 

momentum while fJ is the e of their cornmon direction. 

Q 11 be a given function of q alone; in fact in the case 
r 

l
o:;; 1..:0

1

ns'T. <" of a.d:i.abat ic flov1 vrher e j ··· , we have 

() - /;)o J LI -- l;J ,if:~/ l-J where Y : L;;/c:· ,r 
1 

'the l'a.tio of' the specific heats and /10 and Co axe the 

densi·ty and velooi ty of sound at a point 'nhere J' = o. 

Another interesting and extremely useful set of 

eriua.tions which have been used but little until now are 

Ol)tained by introducing the Variables rx and /,..-, by means 

of tbe conta,,~t t:rar1sf oxma.t ions 

If we remember that 

~·ti';· d '/ r~_?P C>~tp ) ;;. (..1-"::: t·I --rt.. ::. -1- -r- /,.......Vt.. -· di ~I /( 9// 'J x 

f 
C./ I, 

we find the interesting xelations 

~_.& r): if /.. f ':;::. 
r;;ir 

x ::'.. 'I -== d "' X= (/ 1;)#,•i"L.,.t 

'?.:.t... ~11r 'j!;),~~ 

Vthioh lead B.t once to the equations 
~( ,.... /_, rzi;t 

,,..... ,...-7 l 10. '?.~' ;;:; ~ ~ "''I j -- 't:l -?v 
'jl '"" ~·--.... ~·(.. '-;1·1.r 

If we again go to polar coordinates in the hodograph plane, 

tbese become: 
Q -;1/l 'd /""? 

;;: 

/"a 1 r· I} ~I 

11. ~; 

I r· -·,. ci;[' ;/.l ::;•1 I -J ~~~· - 9:9 
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"1'/e r1ave found simple relations between ~,,. and /',and a.lso 

betvreen ;l a.nd Fu:rthex J there exist relations connecting 

these two sets of dependent variables. First there are the 

1·el&th1ns given by 001,1biHing equa.tions 8 and 9 

,..- 1" o' 
·-;;i .~..,.;.i., 

or in th~ polar ooSrdinates 

or in polar coordinates 
a~ q£ ().~>i·· 
-~-- = 7 ~, i;)J r:itfJ Q 

..(. o2r 
Q '}Cf c; = Q -.. -g. '3ci ,...JlF'd Q 

;; /' 
,::.--­
e;J' ,..;i-i.,, 

J 
l 

d;{ 
'di !J 

,...d I' 
'Jtl 

r 

13. 

l 
f 

10-: 

~. 

( 12. 

J 

So far, in this analysis, the equations have been 

presented in sets of two, each set containing at least t11110 

deperuient va:ria.bles. Howevel' 11 in these sets .. one independent 
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equatior1. can ·ce fo-:J:nd f'.:tr each :if the va:"iables f , ?JI !l;t 
and. r ' These independent eque,tions CcUJ be :found whe:re 

these V'Jl'ia"oles proves trouolesor:~e ;;: .. nC:. the ,,,:oat useful forms 

are tLnse e q 1 Q and iJ aI·e variables. The desired 

In obtaining solutions for these equations, it turns out to 

ta convenient to use neither q nor Q but to introduce a 

dimensionless variable, 'f , defined as '1'-::.. ',;1 J /c: 
wlrni·e 't and t!.o a:re tLe same as previously defined. It 

follows 1mr:iedie'"t ely that / 

Q-: Clo~ R '1' (1-- 7') ~ 
J ~ i'-1 

It V1ill sh1plify Wc'.tters if we put -f- 1 =- /8 , tbenl" 

1 ~ Co (2/'T' Q:: Co ,P" f.?j57' (1-7'} } 17 Y1e have 

The following are expressions for the local velocity of 

sound 11 0 11 
}j found in eler.1entaxy acoustics to be U , and for d'r 

;t ln the previously noted discussion, Dr. Bateman mentioned 
havin:S found the.se equa.tions also. 



{ 

the pxassuxe dens 1 ty, al 1 as fun ct i ans of 1"' 

It is int to note tbe o:f values of 1' • 

:. 0 the CTiti veloc:ity of 

sound is '; c = 
f-1-1 

the limit velocity corresponding to 
J =o 

is attained , 
•1 1/ .. 2 

:: 1~n c J(,. = ( tJ -·_;__ a11d r-1 'l;;;/ 

Hence:1 in pr a.ot ice , 
,,.. will range from 0 to 1 tbxough 

the point 1 :(' at of 'l-1 I 
a P+1 

:;:;: 
~ ~ 

for iY::; /. 
" 

the normal value for a diatomic gas such ai:: 
'"" 

e.ir. In this oa.se /-

Inserting 

:/fr 
:: 0 

The first two of these equations are essentially t:t1e 

equations obtained by Tschaplygin.* The sirrru.ltaneous sets 

* s. Tsohaplygin - Gas Jets (In Hussiarj Moscow Memoirs 1902 

=o 
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of equat & a.s va.r 11 a.lso 

valuable in er work. They are 

'<!_f- ~ :/ 
~ tJ /- 7') 

·'f'{ I-
:::: 

I 

Solutions of 

obtstined by using 

ions 19 for -¥1 and can be r 

sions of the form 7l.t;;. Tr,,.1') e r " , 
and r) (t9). 

The f ina.1 expressions come out to be 

lf ~ 'i F(a, ?· c · r) 
I J 

-::. 'T' F 
I i I I ") 

( /}.. J~ '1' a. 'l..... 
) .) 

ere n may be assigned any value and 

6(,,-1- fr.. = q 

f 
~., ........ r.vt: /) 
~ 

,,~·u ,...-,.vt.. J 
~ 

I / +Li 
(r = I 

I. 

/i'::. 
I 

and F a.. h-· ·r)' 
J J 

is the hypergeometrio function 

defined by the series 

F (a) Ir.,· Cf1') - I+ f' + 

) 
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The reason for the choice of ~ as one of the independent 

variaoles becomes apparent upon inspecting the above solutions. 

The solutions for f and r do ::10t turn out so simply but if 

desired may be obtained without difficulty by using the 

sin::ultaneous sets of equations (20). 

Howeirer 1 in using these solutions.1 ·t;)1e autlnl's fcmnd 
- f ...... \.-' 

tha.t, in gena:ral, on1y the t'f!7:J functions ~1 a.nd A . .are 

necessary, the first to determine the streamlines and the 

second to effect the tra:nsfo1'mBtio11 :f1·om the hodog:rarJh plane 

():f u and v (or 1' and fJ ) to the physical plane o:f x and. y. 

This latter operation is possible 'because of' the relations 

x = ? ),' 
..-~, ..:.t.. 

~t :: -;;i;t;' ln fact. 1 t is because of (/ ' -J (/' . , 
the ease and 

1·: 
sinrplicy of this return t1·a.ns:formation that 'Ghe 

authors are lead to believe tnat tt1e :t'unct ion ;r (or r) 

vrill :nrove of great value in future v10rk in compressible 

fluids. If only Cf a:nd/or jii are used, as we.a done by 

Tschaplygin, the retuxn to the plane of x and y is tedious 

ancl difficult. 

The value of JI is shovm, in the theory of gasesJ to be 
.;2 equal to / -f' ~i:.- where m ie the number of degrees of freedom 

of the molecules of the gas. The solutions given above 

reduce to oases of the confluent hypergeornatric function if 

ue a.ssurne the gas to be polyatomic i.e. .t"VYl "' 00 and. Y= I 

This oo:rres-ponds to an isothermal type of flow. 1~111en 

/f I oa r = ;T-1 ___,.,.. and it is ueoessa.:cy to 

define a new variable The final forrrs of 

the solutions are 



F 

:.: 

c -:., 

( 12) 

/ / ) 
. /l , t 

J <.. J 

....... ;:.. ' -( ,£ 

/.f . ..-~ 

,, 
F(a~· .~ t) = 

/ '"">'L 
CL ::::. 

~ 

,, 
c ':,.. 

/-I 

s found that no considerable s ifio ion 

was attained by this specialized ca.se and the more general 

solutions (21) were used. 

As is generally done in solutions of partial 

differential equations, general solutions may be built up 

on the 

x-
In these expressions, the subscript n denotes that the 

corresponding quantity is a function of n. 

If the ooe:f'fioients l:j,'*1.. are knovm, then the coefficients AP1.1 

may be determined by means of equations similar to (15). 



{13) 

Hov1evel', l1e1·e vie a.re confronted ','ii th the pr·oulem common to 

all solutions in the hodo5raph plane, namely that oi' cletermining 

solutions (i.e. the constants A,,, B.~J vrh ioh vril 1 ha,ve a 

mec:mir1g ·when t:ra:nsformed tmck into the physical ·nle.ne of 

x a.:nd y. l t occuxl'ed ·Go the authors to compare the 11.mi ts 

of the above solutions as they approached the oase of 

inoorrrp:ressible flow th the vest quantity of s ions 

alr·eady ob·ta1ned for 1nco1:1pressiole flovro If tlle lim1 tir1g 

vc..lues we:re :readily comparable with know:c so hit ions, the 

comparison :uight give values for A .... and B' . ..._ which would 

result in solutions ths,t might posaibly he,ve a physical 

interpretation. To be sure, thexe is no guarantee that the 

boundarie.s o:r types of flm7 ·nould correspond, but the met 

should indicate likely solutions. 

Since the law giving the state of the gas was assuwed 

' to be p =- c oNS' 7. f" , it follov1a that the incompressible 

case ,corresponding to constant density, is given by 'I-,. c:ici 

In this transition, we shall assume ttat both p a.nd f ramain 

finite. How C0.<. ;:;; I f:,1 and if i'Te insert this in our 
/fl, '" :A. / 

value for 1') we find 

finite as d ~ ....::i 

f' = ]~1 p°1/'~1-G which ren:ains 
I Now p- - - -~ o 

I - J'-1 , and we 

a Ir see that C , the coefficient of the second term of the 

hypergeor.1etric series given in 22, which is equa.1 to 

ap::oroaches 0 as do all the rest of tte terms of' both 

hypergeometric series except for the first terms. Consequently 

tlle solutions (24) approach expressions of the form 
) J 
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/ 
) 

,,., ,,,-
,,.! '-d, 

£Tow" normc..lly, solutions for the incompressible case 

are given in the form 
~ . .l 'I t ·} t t' 

wherE: ~C. :: x ·1' ".:/ - . { . 
and ,~ ..... = ·-· 'J'". thio.t is J V"li t11011t 

";IA ) 

and }/' is de:f'i:1ed by 

tbese components of the velocity. Howeve:r:, since we shall 

be comparing incompressible f 1ori soJ.ut ions ''!here jo is a 

constant, this difference vrill not cause trouble. 

Differentiating equation 26 shows ttat 

. ~ U - ( .,r = L1 _......,,..-" 
... --:1--t, 

!:Jaw normally this series ca.n be inverted, giving 

(In a great many ~oract ical ceses) the series (27) consists of 

only one or two terms,in which case,the inversion is simple.) 

Substituting this in equation 26 gives 
.... r'I,.. 

.£- r''Vl - ,· t:.r) -= 
,..>V 

rte now define the fun ct ions ;t' and r ·oy the re lat ion 

/:{ ..; / 1n = (t( - ,,- ·er) ~2· - f~:-' y1.. '· 'P) which / 

yields ~>t ::. ?l A ".f ·c,r/1 - '-);:' /' 

) /' 

This e.grees 1"1i th our previous definitions except for 

the now constant quantity ,.:, which vrould be needed as a, factor 
) 
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i t enuEttion. lf we substit1::.te equatt:mE' 28 29 

in 30 we 

lr.specticm now Bhi'F7S the close :rese:.i:'bJ ance of equations 29 , 
a.nd ~?f?J to thei limiting case of the compressible 1·101n gi11en 

oy ·::iquations 25. I:u fact; it is by mec:.ns of this close 

reserr1bla.nce tha·c tne au·tlwxs :none ths.t likely solutio:ns <)~ 

·the corr:pressi·cle fluids equations will be o"otair,ed. 

method a. litt1e fuTthe1·> let ns 

consider the case of the unit ci:i.·cula:r cy11nd.e:r. 

i~ the case of inoo~pressible fluids is 

I I 
I - z:<. 

from which we find 
I f7= (u- ( v--) 

< ir) 

7,·',,,';- . ...!.. r· 4 

Simi laxly 

.,,. i 
cf, - l. ,r __ I .".'. •l....-J 

- 2 j / - z ,,,,?- _ ..... - 8 
(,/'"' 

solution 

If the coefficients obta.ined from t£1ese series for J:'1 and ,,.z· 
were UBed to determine tne corresponding comJressible flow, 
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the rei:;ul·t might possibly be the flov1 aroun:-1 an obstacle at 
:/. 

least ''a~uely resembling a sphere. 
7 

Unfortuna.t ely ll time did 

not permit tha auth:irs to inv~stigate this 1rnlut ion fu:rtl"le:r. 

lnsteau, ·they have investigz.ted another case 71hicb wi 11 no'v 

~e descxi~ed in detail. 

f:r.::wt io:ne.l value of n had bee:::i ell. A 

little inveetigatlcn shows that the oorres~onding 

incom.::iress i ble fluids solution is the oei ae ::if flo1':7 in a 

·Jorner. Before n::i proce9d to discuss the snlution obtetnec1, 

let iJS fix st r·evie.r., t1.te i·,:isul ts obtained for the inco,··mress~b"J-9 

fluid. Tbis co~plex potentie.l 
. 71"/ot 

cp~,p:Az is 

t en we have 

Tl1e strearr:lines o·otained from the last equations a:re sh::rvm in 

figure 1. 'fhe velocities are obtained by differentiating the 

co:mple.x potential and they are u..,- i 7J"' :. A TT z 7T~ °' 
°' 

At very e;xeat distances fror;; the origin, tte velnnitia::i become 

quite le,rge. Here, we should expect t:~ find a d ifferenae 

fxorn the oompressible fluids case VThere only finite velocities 

are possible. 

in terms of 

~,1e now eliminate Z and find 
. _,·1 

u-tv=Je 
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/ -»-
, 77"-i:;;.;· 

- A J .~ 

whence 

P1otted hi th£ },odJLl'c.ph 

shown in 2,. lt should 

xemei:iOered that the di1·ection of 

flow is not given by the slope 

of the st:rearnlines in the 

where 

I 
'lF 

// 
/ 4';, 

l -~, .-, 
/' ,.;;) . .c:. 

( 
I 

hodogrs.ph plane but by the 

\, \,,, 
~ '----lL..---~----.:::::::::::::::==:=::=_~~~~ 

direction of a line through the 

origin. Finally, we find that 

} 33. ;("'A.ff .... ~--! 

r = - A., ..... ~- ti 
whence 

where ""l '=-~ , the same as in equc:.t ions 32. 

Now we turn to the solution fox the oon~press ible fluids 

case. \7e have 

Br~ F(a.1~.cir) ~ /.HtJ 

8 ''1' "'Ya F (a; 1-,.' c_,.f) ~ ht ~ 

where we shc:.11 use the hint given by equat:i".'ons 32 and put 
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22, we :t: 

that 
/ 

+ 

= 

the of the corner. These are shown in figure 3. 

If either of the first two parameters of the hyper-

function a,re no 

infinite, but becomes a polynomial. Now figure 3 

that both a and a• pass through negative integral 

values and hence by ohosing suitable values of , either 

or could be made to be a finite polynomial in r . 
Such a choice would 

ion 

not give 

that of more 

eatly s ify oalculation,but the 

rises as to whether these special values 

s of flow differing a great deal 

case. The Emthors chose a soecial 

value of ol to perform the nreliminary in11estigation a,nd then 

studied the cliffe:renoes f:rom the more general case and 

these results are given later in this 



4 

i 
l 
i 

2 t-----------
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I 
I 

c -C. 

~--
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value of at.. decided upon was 

whioh gives - 3 /.e J i-:: .,3. 8 ; 

These values lead 

series 

r / .. 
I a Cr· 

( ; .I 

the 

our 

T') = 

-= I 

/ 

a.n infinite es for 

is a. 

/ 4- f: 3~jl}'. ~) 1' + 
8 

I -l 
(-

_ / - /, 6 

this 

h 

we shall discuss 

f irat souss 

funct as 

to the physical plane, using the function to effect this 

transformation .. 

The stream function can be written in the form 

where 
r) 

A streamline can be plott a given.va.lue 
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to P \:i.nd va:rytrig 1' and tP accord to equations 37. In 

practice, the wa.y this wa.s done was to plot T,(T) , as a_ 

function of 'l' (shown in figu:re 4) .. then choose a. range of' 

s of 1' , find the 

valt:.es of [/'1') from 

f i~ure 4 and solve for the 

COI'l' f.Erpond:l.ng va.l ue s of ~ 

by means of equations 37 

written in the form 

~ /;."' = ¥/-r;('l'} 
'fhis proness ce.n be I'epea:ted tei find differe1~t stra":rnJj:nes 

corresponding to different values of JLl . The result 

in figure 5. Oor:ipru' ir:.g f iguxe1 5 

I 

vritlJ figure .8, we see ths.t neax the origins the stre8r!:1iner:, 

are similar as we should expect si:r:oe the effects of 

compressibil ty a.re small for sm?ll velaoi ties. Hov1eve1'; 

f ib'i.l:re 5 shows tha.t the velooi ties no longer become very 

la:rge but a:re lii'ti ted ·oy the value 

cori·esponding to 1' = I Fu.Tthexmore 6 the streamJines 

a:re closed curves passing smoothly through the critical 

velocity of sound. 

\'le shall now oonside1· -briefly what 11ould have happened 

to this picture in the hodograph plane if a special value had 

not been chosen fo1· a• • Refer1'ing to figu:re 4, \Ve see that 

T,f '7') -.::: o f"r "/':::.I Investigation showed that 

this was not generally true. For values of ~ between O and 

""ff ~ two other general shapes were possible, na.mely ( 1) 
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can be 

Of 
F(;;;;t.; · / = 

and 

is 7. 

These different shapes 

f o:r T; 

Type (l) o:f figure 6 

to a streamline 

corresponds to that in 

f 9. In both cases, we 

some streaml which 

are no longer closed but end 

7~ tf- ,-,_,,_,,~ oo:rrespond 

at 

to 

-"f'::;. I For these streamlines 

the :flow star Off Vii tb zero 

density. 

shall return to a 

discussion of these ca.see later, 

but now we turn OU!' attention to 

CA if(/) 

v-

Ci\$€ 

1T 
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ical of x y ioned,, 

tr an v1111 be effected by mea.ns of the relations 

which in terms o! 'T and 

are 

X= 

I 

As cons ions» 

a:r·e no V/6 

F 

F 

If we insert nu.~erical of our case of these 

expressions 

where I 

I - / 
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,r:- -
Ti:1e fur:.ot ions 1 1 , , ,, and. /~ 1 i: axe shown in :fi;;ure 1(). 

position to plot the I 

,.........- =:::Z_ .,_ ... I 
.,c- :::.... ~ . I 

-~ ~rr; I 
"","" "'·-- l 

~ 
"., F/7'1 "j 
\''' ' 

~o \ I . \\ l I ·, 
I '\ 

I \~ 

'\7e are nov1 i1:i a 

sti·eamlines of :figu:re 

5 in t11e ple.ne of x and 

y .• These a1·e sr.ow11 

in f e£i 11 a.nd 12. 

i 1he :results were moat unexpected and gave the autho:rs no 

smz~ll amount of ''rorry at first. The stxeamlines apneared 

to overlap and to double back on themselves in a most 

disccncE:rting manne1·. Let us trace the course of a. tynical 

stxeernlina comparing the co:rresponcli:ng: points of figures 5 

a:rt e.t -::?oint A in the subsonic region o:f' 

figui·e 5. In figure 11, t:i1e point A is looeted in the 

·t,h.e t:rtr eair.l ine, we pass the point B at 1Nhioh the sonic 

velocity is reached. So far all is well. However as we 

progress a, small finite distance fui'tter we a:rrive at the 

point C where the streamline touches the dotted line 

(labeled 11 1 ine of sin,;ulari ties 11) of figure 11. Here tLe 

sti'eardine doubles baok on itsel: vrithout a correspondint,£ 

discontinuity in 1' or fP , indicatinJ that the direction 
• of t:ne stree.rr.line has not sudder:ly cna.nged by 180 • 

Tlle strseJnline now goes back th:rou;h tbe :region fro:i1 vrhioh 

it has just corae 1 crossing one of the walls of the corner 

which was previously a boundary of the flow. It r:ezt 

ar1·ives at the point D on another line of sin.sula.rities 
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7ihere it a.~;a.i::1 d ·Mble::i baclc on its elf, Fro~'J here 1 t crnP seis 

tl:e axj.s of syrnrnetry at E and :reneat s 'the above process 

symn.etr ically at the points D' C' and B' • In passing fr0m 

D to J* it should be noted that the streatiline crossed the 
i 

extenai0ns of both walls of tne corner. The datailE the 

tomfoolery. Investigation showed that the doubling back 

could he tr~wed to the maxh::ia of the cu:rves of figure 10 and 

that 11J"here these cusp-like singularities ocrni.1rred, dx and dy 

·r1ere both zero. Tb is indicated tha,t there ·;ias a. break-down 

of tirn ::nappin:; betwt:~m the hodo'-.:;ra_oli plane and tria :Jhys:Lcal 

nlane as exnressed by the condition "O>~~ ~ ;:;:::: o o:r 
-Y <i:tZ -; 7 ~ ::1 v .z 

in terms of tlle fa fun ct ion, - _ _ l;:J ,,,c_,, ) :::: o 
? u_:L "'&) y:Z. ( ~pV 

I:t' the v2,xiables ?' and ~ :=c:re introduced in p1ace of u anr1 

v, &,ft er considerable sirnplif ioation and rea:r:re,ngerrient, 

this condition becomes, 

If we use the differential equation for Z in the :fo1·m 

this equEtion becomes 

tlJ/43. 
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Inserting the expressions 34 and 
r.!I" using the value C( .~ /,.:::; , this oa.n be put in the form 

.. :/:: 
J 

.~ 

These lines of t.ae si:ngula:r· ies h.:we en plotted ~n ~he 

he>uoe;rar:ih plane in fit;;u:re 13 and have al1'ea<iy been 

ioned as the dotted lines in fi5,lres 11 and 12. 

To gaiL a clearer insight into WJ:Lat is ·oeb1r:id a.11 of 

this, let us fir,d the slo1;e of i:;he stxea.mlir,es in the 

hodo,3:raph plane where they cross these lines of 

singula:rities .. (It should be no1:,ed that he1·e,aa p:revjously, 

these oonai t L:ms are fix st vrorked out rn~.king no assunmt ions 

as to the for~ of t general function ;( a.nd hence a.re 

a.pnlicable to all ce8es of irrotfltional inviscid flow.) By 

cor:lbining equ&.tions 11 and 13 a.nd introduoir:g 1' in place ')f 

q and Q we find 

j 
Dow along a streamline 

or for the polar slope, v;e have 
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Where the streamline crosses a line of singula:ritieB gtve:n 

by equation 43 this ex)reaaion for the slone becomes 

/ --· .. 
v / ·- '/· 

/ ' -----­
.''·:'.!:iil)f-1 

( ..,!. _,. 

which is simply the slope of the chara.cte1·isti·".}S of the 

differentic-:.1 equations for the flow of a corrpressible fluirl. 

Thie means that the singularities e,;ce the points at which 

the streamlines are tangent to the characteristics. To 

those who i:1.re familiar '!!,fitb the fundawental nature of the 

che.:ra.cteristics of a. pa1·tial differential equation of the 

hy~erbolic tyne, this fact explains to a great degree the 

possibility of the existence of a flow patte:rn which is 

unheard of in the solutions of the normal elli-:::itic type 

potential flow equation. 

To those unfamiliar with the t:O.eory of 

oha.ractel'istios,, let us say just a word. 'fhe differential 

equc.t inn for the chai·actexist ios axe tbe same for all 4 of 

equ&.tions 19 and is essentially equation 47. Integra.ti::m 

of equation 47 gives epicycloids, port ions of v1hich are 

shown in f iguxe 13. In the P1·and tl-lieyex type of flovt* 

*of. Th. Meyer - Forsohungscrbeit, Heft 60-1908 
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it vu1s f ou.nd that if a stxea£:1line coincided vri th a 

characte1·ist ic, a li::1e in the hJdograph plane mapped into a 

001:iplete l'egion in the physical plane. Further .. in the 

theory of pa=tisl differential equations, the characteristics 

constitute an essential tool in tl1e sol11ti1Jn of equations of 

the hype:r·bolic type sucll as the wave equation. An acooui1t 

of the rn::i.thema.-:ical tlleol'y is given in Riemann-\7eber. 

Dif'f e1•entialgleiohun;ern de:r Physik Bd I, S. 505 Braunaoh'V:'e 
~ 

1925. The application of the metlnd o:f' chc:.racte:ristics to 

the sol'...ttion of problems in supersonic flow is discussed by 

Busemann in Handbuch de:r Ex:nerimentalphyaik IV 1. Teil S. 421 

Akademische Vexlat!:sgesellschaft J,lBH Leipzig 1931. 

r;o 1'1 is~~ us :reexamine our f'low ;Jattern. ~'ir;p.1re 13 sho~ns 

tl-.a.t ·che lines of singule.rities divide t}·1e sect::>x into f:Jul' 

regions. One of these regions {that which includes the 

su·osonio pol'ti:m of the fi.eld) touches both of the re.dial 

lines which bound the sector and which correspond t0 the wa,lls 

of the corner. Two of the regions touch one of these 

boundinJ lines e.:toh, ·while the fourt11 region has no line of 

contact v1i tr" either ·001;:nding line. In t:ne nhysical plane of 

figure 11, these four regions map into four regi'ms vrhich 

overlap one another. The first region me,ps into the exneoted 

flow in c:. corner. The seco11d and third regions oonte.in a 

flow vhioh heeds the p:resence of one wall but crosses the 

other wall, while the flow in the fourth region crosses 

·oath walls. 

So l'That we have o·otained is in rea.lity four distinct 
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fl ter~s, every one of is ssible in its f 1 cut 

a hodogxaph pH tterne uni i:;e to f :)rm a continuous pc;.tte1·n. 

The question Etl'ises, now that we have four 11 pieces 11 of floVT 

patt exns with sT.reardines ending Etp-oarently in space, can 

t:1ese solutions be extended s~ as to give physically conceivable 

ty ·,es of fLn-rl' The I1:a:the~1ic:1tical theJl'Y of che.racte1·istics 

ans~ere yesj it is quite possible to add 0n ta any one of 

these solutions; all that is necessary is to the shBne 

of \.me b;)undin,s wall for any 

IVe now return to the pro bl am of the 1 imi te,t ions added 

by the select i·)n of a special value of Cl • :t'irst, cm.1• 

selectLm gave /l as a finite polyno:'.:lial in '71 • It is easy 

·t,) veri:f'y tiiat if' ,,2',, had n~1t been e_ finite polynornii:~l, ·the 
" 

resultinJ hypergeometrio series would have bean divergent at 

Since all of the derivatives of X ;'!ould ll::>ve 

'/ =-I • this impl1' e"' tl'iat ..,, "'Tid been likewise divergent at • .u ~ A ~ 

y wc;uld becor:'l8 infinite for "!" : I This means the.t the 

solution would ha.ve extended to 1nf1nity instead of being 

confined to the finite pa1·t of the physical plane e.s it did 

in the case illustrated. F1.u~t:1ermo:re, in connection 'iii th 

fie;,"Ures 8 and 9 the streamlines th<;:.t start wi.th maximum 

velocity and zero density VJould come in frorn infinity. The 

lines of singularities for these tino 

figures 14 and 15. In 

figure 14, the sector is 

still divided into four 

regions. However in 

figure 15, the sector is 

CA!bJdi) 
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divided into seven regions. 

Unfortunately, time did not V 

permit an extensive 

investigation into the 

H:xnever it was found that 

in all cas~s the mappin; of tbs first regi0n 1 which incl~des 

case illustrated. 

The solution whio1:1 has -been p:rese.nted l1exe lends itself 

to an in-terest ing a;pplicati )n. In fact .1 this applicatLm 

was the ori,~inc.l pro'ole:._ 1rrhici'1 the auth:;:t•s set out to solve. 

Meye:r*, irj t1'eat inu; the case of an oblique shook wave, 

found that, with a given 

an~le of flow after t~e 

shook. there was a 

limiting: supersonic 

velocity, belovr which, 

his solution was no longer 

ap~olioe.ble. An examination 

of photographs of projectiles 

in fli~bt showed that for high vel~oities an oblique shook 

came off directly fxorn the noint of the nrojectile, while for 

* Th. Meyer. loo. oit. 
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velocities only slightly 

~re er than that of 

sound, the sh•)Ck wave stood 

out in front of the 

:projectile and VTa.s cu1·vad 

as in e 17. 

It i e; known tha. t f ,)l' a, 

normal shock such as 

exists ~ixeotly in front of 

the projectile, the 

,x 

velocity bahirid the shock is subsonic :1 in fact the p1'oduct 

of the velooit~in front and behind are equal tQ the aquare 

of· tlle velooi ty of s·nmd. Herice, since tile veloci t.:1 i:n 

frunt in er than the sunic velocity, the velocity 

behind is subsonic. This sug,;ests the.t we a.::-;ply our solution 

for the flow in a corner to the region behind the shook 

wave. The difficulty is t11at the fluid, when it passes 

throu5h the curved shock front gains a rotati:::m or vorticity 

~hich is not a property of the flow whic~ was previously 

i llust:rated. At first it rre.s thought that the rotation 

11·1ould be sma.11 and could be neglected. HoVJevex, subsequent 

investigation showed that this is not the case. The next 

step v1as to try a flow in front of the shock wave whiob had 

a. distribution of vorticity such tria.t after the fluid has 

passed thxou$h the shock, it will emerge without rota.t ion. 

Such a flow is ph~/sically possible and while it is not quite 

the solution originally sou;ht, it is believed that it will 

give a good idea of hanpens in the desired flow. 
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The authors ha.ve not been able co.mpletel:;l to oa:'ry out 

the proc•sss of fitting a shook 7fave to their solution# but 

will outline the elements in the meth~d of such a solution. 

ln tl1e first place. vie shall he.ve to consider six 

v2.riables al on.; the anock, namely x, y ·' ti ( ti1e veloo i t,y in 

11 vary 1 due t:, the e:ssurned 

vo:etici ty) (characteristic of the after the 

c· 
snook) and GLJ 1 the an5le of inclinE1tion of tJ1e shook. Ou:r 

equa.tions 39 furnish us :{ and y as functions of 'r and 19 

wh icl1 we sl:ic.11 V7r 1 t e 

)(-;; /'t~IJ) 

y :: J (~' (;) 
In B1.1sen:ann' a a;;t io1 e (see _ra>5e 32) on page 436 is found the 

l'elation ~ :.<. 
>V 

1.~L ---·-

..2.' ~ ~ - l /+I , . 

v1nexe u and v are tbe components of velocity behind the 

shock and v'i"lf- is the critical velocity of sound. In our 

notation, this becomes 

. ., 
"< 

/~(!,{)/.} IJ) 
(t1 Th. { 

-----_-;:y, ;-,_ I 
.;;J' / . t.. 1' CQ:;i) ) 

~-

·~·""',.-

where / ·-

Furthermore, we shAll heve the relEtion 
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we 

/ 
these five 

l 
we should be able one 

of the s 

as x as a :funotiun of y 

of the wave 

lfo'\vever ,the sis is quite en 

ce.rx 1ed ou't" ·but it is easy an 

e~preaeion tor the :radius of cn.1rvsi.tu:re of the shock dir.eotly 

in front of the projectile. 

ession is 

)( 
0 

·7 r 

I -.I _ lj / / -
·~vl+I To L 

L VJ~ 

R 
E is the radius of x .. 

the int of the 
T 

projectile to the shock 

and 'f'o is tbe value of "f' just behind the center of the 

shook. As mentioned above, we tbe relation ;: 

just behind the center of the shock. This leads to tbe 

r ation 
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