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Summary.

Tane usual equations for the flow of & cowmpreseivls
fluid =zre non-linszar in character and difficult t2 solve,
It has vesn found tnat 17 the compornsntes of valocity ars
teken as indenendent va=risvles, tne réaulting enuations
arz linsar. Thess equations =re develoned and new forus
introduced.

& mew function, /ﬂ is introduced snd & method advanced

for sffzoting the transforuetion fro: the plane whera the

velocity componants zre codréinatzs, to tie physicel plane
vwaere x and vy are cobrdinstas.

A new wasy of finding pleusivle solutions to investigete
ig glven ana ths cass of flow in & cornsr is worked out in
deteil. The flow is found %o have an anozelous beghavior,
tha reason for which is exnlained. This sgolution is apnliizd

to the flow behind a curvad shock wave.
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NEYV METHODS OF SOLVING THE ZQUATIONS
FOR THE FLOW OF A COIPREISSIBLE FLUID

In the sveady Ilow 0F an inaomtressible’inviacid,fluid,

if irrotational motion is assumed, the sqguationes of wmotion
[ _ P

? o X !

where u =nd v are the components of velocity alonz the axes

reduce to the simple scuation

of x and v, This =zquation implises the existence of a
4 v . ) . o . X . . D 50 oe B
velocity potential ’J defined by the equations & = 5% , U= 2
For the Tlow of a compressible fluid, the above reasonin:g is
still valid if the »nressure is a sirgls valued function of
the density alone.

For the case of incoupressibls flow the eguation of
UL Dy

continuity, 5% o = ¢, may be satisfied by a stream
L — ) .
function, ¥ defined by ¢ = ££ u’:vnEQ?ﬂ However,

2 4 o X
in the csse of coupressivle flow if jo is the density, the

equation of continuity is 1;%/]‘“& +'%2 (f”“)z:a

and the stream function is now definsd by fncL = 2Y
- e w - - a 1 - . s -~ 3 3 ¥
and F = iﬂé . In studying compressible fluids,

it is convenient to introduce the two components of
momentum)iﬁﬂ- and lfﬂf,aa new variables. However, 1an order

to gain a symmetry that will eppear later, we shall define

e = - P = P Introducing these in our
equations we have Pu _ o , Doepe | Yo )
”ag X D : X Lo/
and the definitions

= ﬁé%/ a— e OF s E ¥ L '5:—“2—% '
2x D 29X a;

v
{
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Hith the assumptions introduced azovove it csn be shown
tihat the pressure and deaslity can each be expressed as a
function of the vfiucitv 5 j' /g?:f;ﬂ only. Tnis implies
thet }C::-**i; is a function of ¢ alone. (These
relationsning veitwesn p,f‘, g and 4 are siwply various forus
of Bervoulli'ts egquation for compressible flulds.)

if we use this tact in an attsant to find an sguation
for .?? ar }f’we find tne resulting eguations are non-~linsar.

For instancs the squation for )ﬁ ig 2 {fa PR 4 o (/m{?#?':ra
2x X 3}( (}/
whera‘fﬁ mast be regerded as & given function of
FTF 735 % [
AL * oy ::///;4k7 41/%J”). Non-linear eqguations sre not
= ‘

readily smenable to anelysis and wvery l1little has been
accomplished in the way of direct solutions,

However, 1% has been found that if we uss u and v as
independent variables instead of x and y, the rssulting
equatione are lin=ar. In srder to derive thesese equations,

ve eliminste dx and dy froa the following equations

5 - - qrﬂ" . &(l‘ /= X —//Vldy
A o Yy LY 7

(

Thie eliminztion is effected by solving for dx and dy in the

following equations P g??”ﬁémd - ifbu'x R
) D D e s T 25 AT 7
e s T2 g+ B Ay ;
2 X Dy g
or e OV + Dl Ay -
iy = - T (/J 5% . ;;': )
; -~ ST Z
A= 28 un + ff__f"yzﬁ« o
7 x Py where o = 284 ¥
[ D L
: . c)cx,&/
If thess are substituted in the above, we have
o . S P N
4 a/Lp = (\;.’m,,,_f e e (/ cryﬂa/ + ( L ,&t, 4 y.-,xww Py ;
X% 3 ,
J 4 X
s Los
Vol s e PV ey L ; oy -
4 (/{ ;} (/: Bl g - I :M&P) s e ( — A ii.«l:.l“’ e ?;:L/) \;‘{»i Y

74 2 x 2y
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il P b } & »Z)" . g %
L 7 X d «
A\ ,i?—-sff = ’?‘?““’i’-'f‘fi-z’ﬁ L e A :%f/ — - M#Uﬂ% -f ¥ ;”?"b
e 2y ix. Lo 2y 9x

1f we eliminate ‘= de- Py .4 ¢¥  from the avove
Px Dyt g 9
with the aid of the eguatlons 2 _ Ty Yond dos. | Tdre
ey S - L
. i . & Ly ;:,i X &7 i DK
we obtein the desired equations d J N
PN e T P ™ d
A ﬁ” b 2 = e ot G -
i) @ -'Z: -2 d e b
A ?,_.@f I ot @‘lé/ = L wf}w el c g ,.;/}2 3 J
T v Gt gt it
The first of these equations is readily obtained from the
avove eguations but the second is more difficult. The

reverse would have been true if we had used

& i e l g B 7
A e = TNV iy 4 €7EV gl
& )( r,‘;' [Z [

a“ L

ﬂﬂfj
instead of eguatlions 2. However, lhe secwnd equeation could
have been found even more readily by noting the symmetry of
u; v and 7? with m, n and ¥ and interchenging them in the
first equation.

Equations 5 take on a pﬁrticularly simple

; i1.e. ¢ rg%

form if we use

polar codrdinates in the hodograph plane

. .
— ) Atrirw (Y
3

a@ﬁzﬁ}

P,

AW, E

s 3aw<uém,é9

N,

The equations now become *

9y . 5. v w¥._ 9 zg [7
26 Q7% 24 ;e
4 v |

* During a disoussion with Dr. H, Bateman, the authors
learned that he had obteined the equations in the form
given here. However, it is believed that the form given
in equations 5 has not been given before. /
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These are linsar sguations and hence are much more readily
treated than the non-linesr eguations found before. In these
equatione,q end Q are the vzluss of the valocity and the
momentum while & ig the anyle of their common direction.

@ will ve a given function of ¢ alone; in fao} in the case

of adiabatic flow where fe = cermSr [, we have

gy me——

N 2 )
- - o oy )’ — ﬂ""/ e ) ?"/ N . - [P "’
Rz g Lt Fgp T mere F= e,

the retio of the specific heate and and <, are the

v
e

density end velocity of sound at a point where j Q.

Another interesting snd extremely useful set of
ecuations which have been used but little until now are

a 7
obtained by iniroducing the veriables /t and / by means

of the contact transformnations

)

;,L:: J{X*ng{m% t?

a
/’m - X e :’./ -— 2,!

If we remember that

Q)

[

/

(RN

{

'L'L -

?,f“: ?..('2 R, ré_?té, il =
D g 2 x

we find the interesting relations

VQ
oy

ey T eV
K = ".EA’ o = 5‘./..{" X = '—B——-/—’ 7= ’fT’u
Dl I PV Ly ‘ “
which lead =2t once to the eguations _
r-y — =7 o ~
YAy, B . 2l jf /0,
7w G ot DU 2

If we again go to polar codrdinates in the hodograph plane,

these becone: o ";_.).,.. . ’E«fﬂ i
~ oy |
1‘.3} 4 aﬁ' {9 | .
5007, 2d
el D5
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e have found simple relations ovetwsen £ and /}ﬂand 2lso0

- v 5 ‘V”? * - > n 5
betvieen /L and 7/ ., Further, there exist relations conngcting
these two sets of devendent wvariables. First there are the

relations given by coabining equatione 8 and ¢

oy

Lo = ;i PR A )

"" el ;) o

—y . i/
‘WJ - R = T " e 5} /7 /—“7

/ o

or in the polar coordinates
prpt- L
£ a}y LVAS)
‘%,} W‘* /J/‘-’, /—"
r‘)/?
If we suostitute these in equations 5,we find relzations

betwsen W and 25 and between ?ﬁ and

1

’ = U S 72 P
w 2 -+ L ’?__y/ s L W J /{t + (oS ) ’Ej’ + ol aaf’_ ’)
l:’ 2’ al/b ‘) M t) 1) Y k
/4
/) -
M -—j -+ wH [ - = 5) /—: + fyﬁz Y )l ?,_/,7 e _l,fj
Py "2 ™ ~ O ot
G’Ie‘*b LA Ll L7t

or in polar coordinates
- r“? ¢ .
‘Za W _ 2 Y z
-0 = " T 3
Q °f L & y
Q' e¢ - @ ERA Ve
- 7 o0 P89Q 08

St

o’

30 far, in this snalysis, the equatione have been
presentsd in sets of two, each set containing at least two

dependent variables. Howevar, in these sets, one independent
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equétiozz can we found for sgach o7 the variables f ,?ﬂ Q,Z
and /ﬂ . Thessz indspendent equations cen be found where

U, vV, 1 and n are veriablses, tut the relationshins betwsen
thess vuriavles proves trouvlesome znd the wost useful forms
ars those where g, Q and £9 are varisdbles. The deslired

equations are found to be *

Z(E;.f/aL Q@ TZ o

2§ %) 45
V¥ TAR -2
102 ] %Zé
é?@f;;/f@g]* aﬂ

In obtaining solutions for these equations, it turns out io

i
Q

ve convenient to use neilthsr g nor @ but to introduce a
. “ . ~/ g7
dimensionless variable, T , defined ag T = %—- j/cf

where X and ¢, are the same as previously defined. It

/,’{F/I )r/

It will sinplify matters if we put ), ) "/9 s thpn

we have 7 = O, /.?ﬁv‘ Q Co /5% /,’?73}. (t—7) f/7

The following are exprescions for the local velccity of

follows immealctely that

sound "¢¥%, found in elementarvy acoustics to beg—ﬁ , and for

* In the previously noted discussion, Dr. Bateman mentioned
havinz found these eguations also.
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the pressure and density, all as functions of T

0= “'a i”i’—-‘?‘

© = (1-*7‘) /8
;o /+/6
[ = [Co /—-’7“‘)
It is interesting to note the range of values of 7 . 'When
.= €, pbviously T=€ . When the critical velocity of

14

| ,, 2 e . Y T
sound is reached , g = C = [y3= Co whog T = fe b

U Yrr 97
Then the limiting velocity, corresponding to F=o
J—
i G o= L an - ¢ ,...’_2—» 7=/ a
is attained |, K'/% ;f ox o /;,“/ and 7=/
Hence, in prectice, ? will range from O to 1 passing through
the point where j,;c gt a value of 3_’.“.:..’ = é

oy
for J=/ 4 , the normal value for a diatomic gas such as

Lo #f A
gir. In this case /- =LA,

Ingerting the new variable T ; we hsave

fans o

9 RPN 1 —T o 7 Gy R
&l )L gm0
ww o7r EXa 24
@., _7 ‘-/@ ‘2}4/ o C:Z' g i R
o (/ / / # L Ir e 'W:m
{ T)/ﬁ'V/ @(ﬁd

y -
Ci Z,;E'W"/m?} 9/?; -+ (71— 7‘) / 12844 7] 5%
o 4 fgwﬁ (' =

o2 P o P

i ’”"/ &?rﬁ\ éf -~ “‘--'"“"""“’"/ A 9 /“’
Gr (1= 1)1 Gee)r) 9 7 2701=7)" 5

The first two of these equations are eséeﬂtially the

equations obtained by Tschaplygin.® The simultaneous sets

* 3, scha;plygm - Gas Jets (In Russian Moscow Memoirs 1808
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of equations with T and & as variables will also nrove

veluable in leter work., They are
g _ 27 oy )
94 o (0 =T} a o7
S
=) g’,ﬁj T 1= T) B
I syl T S
~ J =P , 20
v V i
”Eﬁi A 27 7 B
F
a sl - : /f
- wd SO {4
S— gy / 9 /
e ﬁ a’ P

Solutione of equations 19 for ¥ and [ can be readily
obteined by using expressions of the form W= /7 (7) ﬁ?fﬁﬁ/
and /%f/: ,Z:fﬁf)*ﬁﬁ (&),

The final expressiona eome out to be '
v s 4

Y= 7T F (& bre)T) e Zl
v f:“' /;, f/fl {%& ’f/) W P (P [J/ /
where n may be assigned any value and J
at bz g as as PR,
: ‘ / ‘ ;S 7 d; o i
@ [f = - /‘f%ﬁ ('fm,vfﬁ) lr = U /d
V] ‘ o
¢ = ¢
C= »+/

Fla, by ;T
defined by the series

F(a,b:¢7)

and

J

is the hypergeometric function

A

@& g
c

a(arss) (40 T
o{C+1) /&

+ @l

T

/ +
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The reason for the choice of P as ons of ths independent
varisvles vecomes apparent upon inspecting the above solutions.,
The solutions for ?ﬁ and /7 do not turn out so simply but if
degired mzay be obtained without difficulty by using the
sirulteneous sets of equations {20).

However, in using these solutiomns, the authors found
thel, in genzral, only the two functions |/ and;Qf gre
necegsary, the first to determine the sireamlines and the
second to effect the transformstion frow the hodogranh plane
of wand v (or T and & ) to the physical plane of x and v.
This latter operation is possible because of the relations

. —_

X = Z}ﬁ? 5? = 15%% ) In fact, it is because of
the sasge and simplid? of this return trensformetion that the
authors are lead to pelleve that the functicn'}{ {or /)
will wrove of great value in future work in compressivle
fluids. If only @ and/or £/ are used, as wes done by
Tschaplygin, the return to the plane of x and y is tedious
and difficult.

The value of a/ is shown, in the theory of gases,to ve
equal to /+ jgg wvhere m is the number of degrees of freedon
of the molecules of the gas. The solutions given above
reduce to ceses of the confluent hypergeometric function if
we assums the gas to be polyatomic 1.8. ~2¢= °¢ ang =7 .
This corresvonds to an isothermal type of flow. 'hen

J=1 » f=p; — °=° and it is necessary to
define a new variable t - 7>6 . The final forws of

the sclutions are
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L P d e !
;%, = 7 S SR ISR o R . J \om o
}”» A,
B S N
where = E (A a =z /
AR > |
oz it -
4
P 4 ’ ) =
ol L oy &g s RLE T e
L(acc, )= o’ clety Ix

However, the asuthors found that no considerabls simplification
was attained by this specialized cese and the more general
solutions (21) were used.

As is generally done in solutions of psrtisl
d;fferantial equations, general solutions may be built up

by summlng on the arblitrary parameter n

—V/ @ A ”n/é/c-/:”?mlé;,j mj

, iWﬂ‘ )
9(, g—' ﬁw% ’i«- F(ﬂ éim,) (—m, 7\/%‘»@4 ,#fﬂf

,%.._m

/) Do Y ﬁ
24

In these expressions, the subecript n denotes that the
corresponding quantity is a function of n.
If the coefficients f3 are known, then the coefflcientsf3

s

may be determined by means of equations similar to (15).
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Howevser, herse we are confronted with the nroulem common to
all solutiong in the hodograph plane, namely thet of determining
solutions (i.e. the constants H’, BW) which will have a
neaning when trangformed vack into the physical nlane of
% and y. It occurred tc the authors to compare the limits
of the above solutions as they approached the case of
incompressible flow with the vest guantity of solutions
already obtalned for incompressible flow. If the limiting
velues were iaadily gomparablse with knowr solutions, the
comparison might give values for An ana  &.. which would
result im solutions that mizht possivly heve a physical
internretation. To e sure, thsre is no guarantee that the
voundariecs or types of flow would corresnond, but the wsthod
should indicate likely solutions.

Since the law giving the state of the gss wes assuued
to be F = c?oA/J7:/0X, it follows that the incomnressible
oase,corresponding to constant density)ia given by ;== =

In this transition, we shall assume trhat both p and f‘remain

s y < ' /0 P . .
finite. How O, = J/;U and if we insert this in our
[ B P
. : PR (5 o , .
value for T)we find r= 77 Jf;l%a which rewains
finite as J —= = . Now S = L =0 » and we
/ 6}/“"
a -

see that Yol » the coefficient of the second term of the

: X G
hyperzeouetric series given in 338, which is equal to -~ﬁ%%%“-¢
apnroaches O as do all the rest of the terms of hoth
hypergeonmetric series except for the first terms. OConsequently

the solutions (84)’approach expressions of the form
)
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L™ * o
&) ',/ - “ < St . - Lol r A
gl Cowsr FU 4 F e s / B
; 0

g o'

Wi,

,».«%A . ) ] k:::—m/ o - . :}bb;ﬂ; ) P ,;( }
/L - L OMST 2 ﬁ,gf G &

Now, normelly, solutions for the incompressible case

are given in the forwm

i " . ST — Ni;;”" R ',ﬁ;_::; b .t 5»"(}7‘ (£:
A S A A
r £ T J »
) ) . -, . . . o T Lo
where £ = R*#K?f and g is defined by ¢ = =5
" i ;:;h -;:«"/
- "/ 5 5 « N 7
and {7z - iy ; thet is, without thes quantity © rmaltinlying
|
K

these components of the valocity. Howsver, since ws shall
be comparing incompressidble flow solutions where ; is a
constant, this difference will not cause trouble.

Differentiating equation 286 shows that

ey =f .
i < R I A
H — ¢ v = ,M/ ot L oy e / i /

pres

How normally this s=ries can be inverted, giving
! N . G e Y
Z= 2 L, (e JC 24

o,
(In a great many oractical csses, the series(27)consists of

only one or two terus,in which case,the inversion is simmle.)

Substituting this in eguetion 26 gives

N L T et S P s
L. = ’ A = - 3 - Lo 1S fﬁ’ﬁﬁ’
?;J,/L(, W = s .ZL.Z‘. (el o 0’7 = 5;; f(
' s, e i o - ;ﬁ
< 7

e now define the :functions/‘% and /—"oy the relation

/f{” b (T ) E e Y which /

yields U= sexs g - o
L ¢ i
VA éécy;”' ¢ )

This zgrees with our »revicus definitions except for

the now constant gquantity f“«' which would be nseded as a factor
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i the last eauation. If we substitute eguations 28 and 20

in 30 we heve o, Py amd) |
- / ‘y,_ ( g, .“'»y‘ .{
g - L g e L
Vo7 <7 ‘,:x (e S UY=L "7*& u}/ (ce -7
/L 7 :_M___/ o i 4

Inspection now shows the close rssesblance of eguations 29
and 3% to the limiting case of the compressivle flow given
vy souations 85, Iu fact,it is by means of this clogs
resemnplance thet the authore nome tihet 1likely solutions of
the coupressicle fluids equations will be ;a”m’cai’zted.;

To 1llustrate the method a 1ittle further, let us
congider the case of the unit circular coylinder., The solution

in the czse of incoxvreseible fluids 1ls
’(pf(”}& - = oy L

= Z
s f ) e / /
K- (Y = J— T
from which we Tind
3 S + [1- (-
sp 4O Y= W:/"*’“"WM”M
(7=l )
- ~"“J‘& - :_‘JI,& e "‘/ Nt (I‘ld’
-Zqﬁ_’&'*ﬁ - L g & 4 = {?5 # SEC
T ey < g s ¢
i h G i BI e 2 G gD I = IE g e T
- T = F "
or ¥EF 3 s 7
Similarly Y ; x —d co f
R, et - Ao S A
e 4 ‘~/. I’w.—-»;'—.' -" (& — e d
Vred ' =% / < z‘r & s
.
. L A A, i
s 7/ ") tg} - £ LZ; o ":ﬁ/ J o Lﬂv"
- - — /2 / Ve é’- 7& Do g o .
¢ /{‘ = & o w

-

If the coefficisnts obteined from these series for J’ and -/

were used to determine the corresponding compressible flow,
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the result mizbt posslbly ve the flow around an ovstacle at
leest vaguely resembling & sg#fma:f:»:‘-z.QL‘J Unfortunately, time did
not permit the authors to investigate this solution further.
Insteau, they have investigezted znother case which will naow
ve desorived in detail.

Supmose, thaet instesd of suwming on n the solutions given
in {(21), 2 siugle fractionszl value of 72 had been chossn, A4
little dinvestigeticn shows that the corresvonding
incompressible fluids solution is the'oass 2f flom in a

zorner, Before vis procezd to discues the solution obteinead,

let ug firet review lhe r=sulis obteined for the incormressivle

fluid. This complex potdntial ,/ ‘]

is 90 s (Y s A ;Z /y*kw,ao///ﬂ,wmw

,«//MWA
wvhere O ie the angls shown in / — ey

figure 1. If we put /// P
X = ,nn Coo e y e W //’ // —

77/0( ~7w /
then we have yp /:/i::;/

The strearlines ovtzined from the last equations ars shovn in
figure 1. The velocitiss are obtained by differentiating the
complex potential and they are w- (v = /%5? JzZEagﬁ "
At very great distances from the origin, the velocitizs become
guite large. Here, we should expect to find a difference
from the compressible fluids case where only finite velocities

are possible. e mow eliminate lf and find ‘fp*‘ }V
l
in terms of U= v Zf c

-~ e / -
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iy - e

- o

M-

9{)1‘&}'/‘-/4]2 = |

7/ il . /

) o < A % LD Vi ’
HENCE / , where o

“M‘l T e /’/ Q,’:d "‘C’d'/""i;'\‘ ot ’)}l

i

[

™

Flotted in the hodogreph v
plane, the gtreszmlinses aposer as
shown in figure 4. 1t should s
remenvered that the direction of
flow is not given by the slope
of the streamlines in the ﬂ;,,%

i

hodogreph plane but vy the 178

direction of a lins through the Pig. 5

origin. Finally, we Tind that
- T

e . T
Yoel = A(TS) Z 7 g umiv)”

v o d
whenoe /2/ = A f Cod 33
4 -
ol
J7 - A Va et
where 2 -;7-7'{-—-’-;;‘ , the same as in eguestions 33,

Now we turn to the solution for the compressible fluids

case. le have

-

V- 5 7% Flabe7) som #Y / 54
x- B 7 Flalt ) e 7

where we shell use the hint given by equatfons 32 and put
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(o mﬁ_ « ﬁblnu the expressions given in 33, we find
that . i
P _'i..f' o+ ff - f/:?’&f # "2“""“}‘15 : )
a et Z . TTTZOTT
) Jom e
4 [ J
Wom e E oA
/‘ - s ¢ .

7T

i

Throughout the rest of this work, J/ will be agsumed o have
the normal valus for air of 1.4 and ;%? T e |
Wle can now plot a, b, ¢, a', v', and ¢! as funciions of §E.a“
the angle of the corner. These are shown in figure 3.

1f either of the first two parameters of the hyper-
geometric function are negative integers,’the gseries ié 0o
10ngar iﬂfinite, but bEGOmes a polynomial. Now figure 3
shows that both a and a' pess through negative integral

values and hence vy chosing suitavle values of ©f , either

w g
B

or X could be made to be a finite polynomial in T .
Such a éhoioe would greatly simplify calcul&tian,bﬁf the
question immediately rises zs to whether thesa Qpeaial values
mizht not give types of flow differing a great deal from

that of the mdre general case. The authors chose & special
value of & to perféﬁm the preliminary investigation and then
studied the @ifféi@nges from the more general case and

these results are'given later in this work,
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The value of o/ decided upon was o= Ty

. S P AN Py fi -
which gives @& :=-3%,4:3.8  ¢=C°~ 3.0, 4, &=63,
These values lead to an infinite series for the hypergesometric
geries involved in the ¥ function, but the hynerzeometric

function of the Agvfﬁﬁﬂiiﬁn is-a @01yn9mia1 of the first

g;

egree., Theese functlions are!

,/f PN SRRy R - i H
Fla,e:5T) = /¢ P&
. ) - &7 7 ]
. f- 3.TTT o F 22 ;
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In discussing this solution, we shall first discuss
the results in the hodogranh plane with the ¥/ function as
our principal tool. Then we shall discuss the transformation
to the physical plane, using the A function to effect this
transformation.
The stream function can be writien in the form
PO d ’y""ﬁ"? )
Ve T(r) oo (L )
F7
s &7 _ g {
“-":7",_5"“ ‘7’\ #";L' l/""s’ ?ﬂ/
where /(7)) = : i § 3
557 +5.3757 -2/ 85T+ st )
- L

A streamline can be plotted up by assigning a given value
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to }9 end varying 7 and 4 according to equations 37. In
practice, the way this was done wae 1o plot 77(77 » BE B

function of 7 (shown in figure 4), then choose a range of
e NP SURP

valuss of , find the ‘ e
valuss 01‘27/79 from o4 /' AN

fizure 4 and solve for the o \
T /

0z 4 | N\
‘.\\\\

>

, ‘ . % o /
written in the form v = \\“\ ;.

e Z0 = VT e

corrssponding vaeluss of 19

by mzang of equations 37

This process can be repeataed to find different streanlines
corresponding to different wvalues of }9 . The resulting
strgamlines 2re shown in figure 5. Comparirg figure B
viitlh figure 2, w2 see that nssr the origins the stresrlinss
are sgimilar as we should expect sirce the effects of
compressibllty are small for smsll veloclties. However,
figure 5 shows that the veloscities no longer become very
large vut are limited by the value j}‘:;f/nuwm.
corresponding to 7T =/ . PFurthermore, the streamlines
are closed curves passing smoothly through the critical
velocity of sound.

e shall now consider obriefly what would have happened
to this picture in the hodograph plene if a special valus had
not been chosen for a'., Referring to figure 4, we see tnat

7(7) =0 fer 7=/, Investigstion showed thet
this was not generally true. For velues of & vetween 0 and

T, two other general shapes were possible, namely (1)
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end (2) of figurs 6. The
end point 7?(73f}i 

can be found as a funotion
of % by mesns of the

relation (@067 )=

f”ﬁ£~'ﬁJ/”?i" ¥/ and
‘is shown in figure 7.
These different shapes
for the function ZT_giv&
different patterns for the
streamlines in the hodograph
plene. Type (1) of figure 8
lesds to a streamline pioture
similar to that shown in
figure 8, while type (2)
corresponds to that in
figuxe 9. In both cases, we
heve some streamlines which
are no longer ciased but end at
ﬁ'b {/?(wmw gorresponding to
T=¢ For these streamline ‘
the flow starts off with zero

density.

We shall return to a
discussion of these casss laler,
vut now we turn our attention to

the transfcrmation to the
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,pnyslcdl ﬁimﬁa 5 x 3n& y. As previbusly mentioned, this
transf&rmetlen will be effact@d by mezns of the relations

X = ;?’ﬁ ,;fwfﬁ L which in terms of 7 end &
Sl d aue FTEn

4,,._-1 Vi

arg

- . : - - , N
o s -~ ),' /7 ;, ,j/{: wd & s Mm..

As would Ve expected from dimensionsl considerations, there
are no data in the provlem from which we could detvermin

a scale of lengths. Hence we shall drop the factor =

g e

3 f'-"
[ e
peso

in equations 38. Substitution of the exvresgsion for from

eqgustions 34 in equetions 38 leads t0 the following result.

-
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If we insert the numerical of our case of &= 7 , these

expressions become : ‘
(7 cew & cov /‘gﬂ # o (7D g & gan.
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N . Lo, - . .
Toe functions /7, . 7, anc /y:.7, are shown in figure 10,

: Yz T
e are novw in a e Tl

' SN \/r!/""'
position to nlot the \ -
RN

streamlines of figure ~ X\ . N
5 in the plere of x and ol AN

v. These are ehown \\
in figures 11 and 18, Feo, 10 :

The results were most unexpected and gave the autlors no
grell amount of worry at firest., The streemlines apveared
to overlap and to double back on theuselves in a most
disconcerting mannzr. Let up trace the course of = typical

stresmline couwpering the corresponding points of figures

¥

end 11. Let us start 2t »oint A in the subsonic region of

[

figure 5. In figure 11, the voint A is loceted in the
region in the lower right hend corner. As we pass along
the streanmline, we pass the point B 2% which the sonic
velocity is reached. 8o fer all is well, However as ve
progress a small finite distance further we arrive at the
point C where the siresmline touches the dotted line
(labeled "line of singularities®) of figure 11. Hsre tie
gtrearline doubles back on itsel? without a corresponding
discontinuity in 7T or # , indicating that the dirsction
of the streamline has not suddenly cnanged by 180°.

The stresemline now goes back throuzh the region frow vhioh
it has just come, crossing one of the walls of ths corner
vhich was previously a boundary of the flow. I1 rext

arrives at the point D on another line of singularities
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whefe it agzeln dwubles back on iteelf. Frowm here it croeses
the axis of symuetry a2t E and reneats thig above process
pymeetrically at the pointe D' C' and B'. In passing from
D to D', it should ve noted thet the sirearline crossed the
extensions of both walls of tus cormer, The detaile of the
fiow in the esVwosonis Tezlon are shown 1O z grester scsle ir
figure 13,

Hext came the probles of exolaining thie apnarent
tomfoolery. Investigation showed thet the doubling basck
could pe traced to the maxima of the curves of figurs 10 and
that where these cusp~like singularities occurred, dx and dy
were poth zero, This indicested that there wes & bresak-down
of the mapping bsiwssn the hodogranh olane and the physical

DX,

nlane as exnressed by the condition Ao o)

52
in terms of the,Zf function, ’%: f{é?’ (/ )
U DR 9“2”
If the veriables 7° and # are introduced in place of u and

v, efter considsrable simplification and rearrangement,

this condition becomses,

e

Ny S P g BN s YN

17 we use tne differential equation for ;Zf in the form

<
1 & L4 (=7 24 i
2z 92‘3 +9¢ - /6_,,)/~ [ * ?1\97»«’/ /42

this equetion becomes

2
n 4] = 2 [ 2L _ 24
/'?If’ 947 "“Z B i [f” 202 7 73

27
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Ingerting the exprzssions 34 and

| g7
using the value < = 7 , this can be put in the form

s A j‘; " y e LI 1‘ et
(L /'-'““‘b{ et T 4_{.,4““{?‘."3 /j’qs.__m_./“ oy '4'
ot - CLE LT j

£ gD g 7/ 4

These lines of tae singulerities have cvsen plotted in the
nodogrann plane in figure 13 and nave already been
mentionsd as the dotted lines in figures 11 and 13.

To gelr 2 clesrer ineight 1into what is pehind all of
thie, let us find the slope of the streawlines in the
hodogzreph planes where they cross these lines of
singulerities. (It should be notad that here,as prsviously,
these conditions are first worked out meaking no assumntions
g8 to the form of the gensral function.ﬁf and hence are
applicable to all ceses of irrotstional inviseid flew.) By
corovininz egusticns 11 and 13 and introducirzg 7 in plesce »f

g and § we find , :
° 2 2 v i
?%5 [ /= 7) [mr 2700 “%
07

S TA 2T A
R I
0" ‘ ;

g =y

ltow along a streamline

Yy ’9 / rX/'f’ T ¥ S =

or for the polar slope, wie have



{30]

!
t

{ LINE °r
f‘?.ﬁlGULAR‘T'ES

i
5‘"5‘”

Fig. /3




e e = i
, R - S
‘?/// . - T 54 w2 P eT L < b,
L [T ot TR - )
7T oA 4' o~ V-}A i
A 4 PP S [
ey 27 T4 oI T

There the streamline crosses a line of singularities given

by ecquation 43 this oxoressaion for the slone becomes

!

/'J’r"h ;’;,v"; o 7 L },l/ 7
‘A‘.w - / «-~:"‘"’ <7/
FAY 55 T /

which is simply the slope of the characteristics of the
differentiel equations for the flow of a cornressible fluid.
This weans that the singularities esre the points at which
the streamlines are tangent 10 the characteristics. To
those who are familisr vwith the fundamental nature of the
characteristics of a partial differentizl eguation of the
hynerbolic tyne, this fact explaine to & great degree the
possiblility of the existence of a flow pattern which is
unheard‘of in the solutions of the normal elliontic tywpe
potential flow equation.

To those unfamilisar with the theory of
chzracteristics, let us say just a word. The differential
equetion for the characteristics are the saums for all 4 of
equetiong 19 and is essentially equation 47. Integration
of equation 47 gives epicyclolds, portions of which zre

shown in Tigure 13. In the Prandtl-leyer type of flow™

#* ¢f, Th. Meyer =~ Forschungserbeit, Heft 62-1808
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it was found that if a stresmline coincided with a
charactsristic, a line in the hodograph plane manped into a
couplete region in the physical plane., Purther, in the
tiegry of partisl differential equetions, the characteristics
congtitute an esgentizal tool in the solution of squatinns of
the hyoerboliz tvpe such as the wave equation. An account

of the mathemetical theory 18 given in Riemann~Jeber.

Jifferentialgleichunzen der Phyesik Bd I, 8, 508 Braunschwelg
1925, Théﬁapplication of the methid of cheracteristics to
the solution of problems in supersonic flow is discussed by
Busemann in Handbuch der Exnerimentalphysik IV 1, Teil 8, 421
Akademische Verlagsgesellschaft MBH Leipzig 1931.

Kow 1% us re€xamins our flow nattern. Fizure 13 shows
tiat the lines of singularities divide ths gector into four
rezions., One of these regions (thst which includes the
suvsonic portion of the fisld) touches both of the redial
lines which bound the sector and which correspond to the walls
of the cormer, Two of the regions touch one of these
bounding lines each, while the fourtih rezion has no line of
contact with eithser vounding lins. 1In tae physicel plans of
figure 11, these four regions map intoc four regions which
overlep one another., The first region meps into the exnected
flow in & corner. The second and third regions contzin a
flow which hzeds the vpresence of one wall but crosses the
other wall, while the flow in the fourth region crosses
both walls.

8o what we have obtained is in reality four distinct
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flow patterns, every ong of wailen is »ossivle in 1tselfl, out
whose hodograph petterns unite to form a continuous pattern.
The question arises, mow that we have four "pieces" of flow
patierne with sireanlines ending epoarently in space, can
tneee solutions e gxtended g0 as to glive phvsically concelvavls
tyres of flow? The mathematical theory of cherscteristics
answers ves, it is qguite nossivle %o =dd on to any ons of
tigge solutions; asll that is necessary is t0 know tha sghenz
of one bounding wall for eny given eddition.

#e now return to the problewn of the limitetions added
by the selection of a spacial value of @ . First, our
selsction gave /[ as a finits polynoaial in 7 . It is easy
Yo werify taat if/fj had not been & finlts polvnonmial, the
resulting hypergeometric series would heve besn divergent ait

,

T=1 . 8ince all of the derivatives of A gonld have
been likewise divergent at 7 =/ , this iwplies that x =and
v would become infinite for 7 =/ . This means that the
soiution would heave sxtended to infinity instead of heing
confined to the finite part of the physical plane as it did
in the case illustrated. Furthaermore, in connection with
figures 8 and 9 the streamlinss that start with maximum

velocity and zero density would come in from infinity. The

lines of singularitieg for these two nseea are ghnwvm in

figures 14 and 15. 1In casel) .
figure 14, the sector is v \\\Q%j%MW&
st111l divided into four
. =C /;/:\
regions., Howsver in . e
- ,./o’;/

figure 15, the sector 1is ‘ //L,Ng‘of

 ‘ i/'

Fia’'4 / :
. | w
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divided into seven regions. AN ~
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Unfortunately, time did not v / { . )
| . f T
» o] \
. 4 13 s A
nermit an extensive g:e hﬁﬂf’ 7 NG F
- \ GU‘,P‘ - g %
) . . . N %5}‘“ \\
investigation into the N J é \
AN i 5
e AN X o
mapping of tness cases in // NS ; \
toe plasne of = and w. / \ ‘\% %
% H w
However it was found that e, 15

in all caszs the mapping of the first rsgion, which includes
the subsonic portion of the field, was guite sinllar to the
case 1llustrated.

The golution which has peen presented nere lends itself
to an interesting avplication, In fact, this application
was the orizginal provlen which the authors set oul to solve.

lMeyer®, in treating the csee of an obligue shock wave,

found taat, with a given

kA
N - 37
anzle of flow aftar tie .ﬁP
o
gliogk, tnere was a :fg////,/wfy
limiting supersonic Zi///’/////’
velooity, below which, i V B
his sol 1 7 -
, J* 59
is solution was no longsr hl;ﬂ//i;::;/{/
applicable, An examination Léfﬂx/ﬁ” -
i
. . . /7 7
of phoitographs of projectiles Fiz. 15

in flight showed that for high velocities an oblique shock

came off directly from the wnoint of the nrojectile, while for

* Th, Meyer. loc. cit,
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velocities only slightly

zreater then that of

13
55 L
sound, the shock wavs stood wgl p
. et -~ {‘;v/, ,/ /’/, y
J i { e 4 yard
out in front of the z q.xfjiﬁgf‘
" /»’X /,, ~f/{
projsctile and was curved S — S «

a8 suown in figurs 17.

It is known tunat for a

normal shock such as

exists directly in front of
the projectile, the Flp. 17

velocity vehind the shock i1s subsonic, in fact the nroduct

of the velocitysin front and behind are egual to thes square
of the velocity of sound. Hence, since thne velocity in

front in greater than the sonic velocity, the velocity

behind is suvsonis. This suggests that we znoly our solution
for the flow in a corner to the region behind the shock

wave., The difficulty i1s that the fluid, when it passes
through the curved shock front gains a rotation or vorticiiy
which is not a vwroperty of the flow which was previously
illustrated. At first it wes thought that the rotation

would be small and could be neglected. However, subsequent
investigation showed that this is not the case. The next
step wes to try a flow in front of the shock wave which had

a distrivution of vorticity such that after the fluid has
passed throuzh the shock, it will emerge without rotation.
Such & flow is physically possinle and while it is not quite
the solution originally sought, it is belisved that it will

give a good idea of what hanpens in the desired flow,
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Thae authors nave not been able completely to cerry aut
the process of fitting a shock wave to their solution,but
will cutline the elements in the method of such a solution.

In the firet place, we shall heve to consider six
verisbles alonzg the shock, namely x, ¥, 74 (tue velucity in
front of tae shock, wnich will vary,aue to the zssumed
T , 0 (chavacteristic of the flow afier the

vorticity)

shock) and éﬂ,the anzgle of inclinstion of the shock. Our

gequatione 39 furnish us x and y as functions of 7 and & R

which wa shall write

x=/("*i::0/ | 8

4 - Oﬁ’f (7,9 J

In Busemann's articls (sez page 33) cn page 436 is found the
“ . 5 L
relation , W
A (L/(“ ‘y TR A
S W — —
/ hand 7L - L[

wners v and v are the components of velocity behind the

shock and w* is the critical velocity of sound. In our

notavion, this bscomes
e

vhere / = o
,/ Ol AL

Furthermore, we s8hall hsve the relstion
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%as&‘tlff, we shall have i
pr T

/ jjzﬁ along ths shock

From thege fTive equations we should be able to find any one

of the six variavles as a funciion of any other variavle
guch ae x as & function of y and thus determine the shepe

of the shock wave,

However ,the analysis is quite complex and hes not besn

carried ous, but it is comparatively eesy to find an

expression for the radius of curvsiure of the shock ﬁirﬁctlv-

in front of the projectile.

The expression is

i\

y

Z@ N / ij ~l --{/ ’1'* i
K ‘,‘_ ﬂ{l’

&

where R is the radius of
curveture, A,is the distance
from the point of the
projectile to the shock / - . 5
and Tp is the value of T just bebind the eenter”of'iﬁé
shock. As mentioned above, we have the relation A=

just behind the center of the shock. This leads to the

relation
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{47 / "8

3 e EREEARE R
4 has been plotted s & function of .

In figurs 18,
Ho experimenial work has besen found as yet which might be

used to cheok thesge uredictions.




