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SUMMARY

The present paper discusses the principles and appli=-
cations of an iteration method for solving certain problems
involving r@tatiﬁnal motion of an ideal fluid, such as oceur
in the presence of heat transfer, combustion, mechanical work
processes, and non-uniform shock weves. The iteration process
linearizes the essentislly non-linear ecuations for rotational
fluid motlon by assuming a process for the vorticity transport,
namelys the nth approximation 1s linearized by assuming the
vorticity to be tresnsported by the n-1%h ﬁelecity field. 1In
some Important cases, the first order sclutions seem to offer
considerable sccursacy.

Two applicatlons of the procedure are discussed in gome
detail, namely: 1) The process of straighteﬁing & non-uniform
flow in & two-dimensionsl parallel-wsll channel by means of =
screen and 2) The three-dimensional flow in a multisﬁage axial
turbomachine having an infinite number of blades in each blade
row., The second of these, the three-dimensional flow through
a turbomachine, 1s given detailed analysis>bearing some
analogy to the Prandtl theory of finite wings. The results
for the first order solution of velocity and enthalpﬁ |
distributions are gilven explicitly and are shown tc be defined
5y four reiatively simple integrals., The cases of rotating
and ststionary single blade rows are evaluated completely.

The general iteration process for obtaining higher apovroxi-

mations, utilizing the method of Green's functions, 1is given



 iﬁ some detail.

The calculation of the flow field generated by & blade
row of given geometry is 1llustrated by the problem of =
"vortex" turbomachine operating off the design condition.

The problem is found to be essentlally non-linear in some
respects, ﬁspecially as to the approach to periodic solutions

for a succession of similar stages.,



I INTRODUCTION

The motion of a fluid with coﬁtinucusly'd%stri%ut@d
vorticity.hﬁs been studied extensively only in the case of
viscous fluids., The reason for this is twofold: viscosity
is the most common mechanism for generating vorticity,fand
viscous problems often sllow simplifications to be made in
the mathemstlical procedure through deletion of minor inertis
terms. The rotational motion may be generated, however, by
means other than viscosity, principally through the change
of enthalpy during processes involving combustion, heat
transfer, and mechsnical work, or through the development of
an entropy gradient by means of s shock wave or hest transfer
process. There is, of course, a similarity between thé action
of & boundary layer and & shock wave 1n generating the entropy
gradient inasmuch as both processes are predominantly governed
by viscous action. But there is aiso the important difference
that in the case of the shock wave the r@tation:impart@d by
viscosity extends beyond the region where viscous and inertia
forces are of the same order. That 1s, the rotatlion persists
downstream of a shock wave of non-uniform strength while the
rotation generated in s boundary layer becomes, by definition,
‘a permanent part of this layer. The processes of heat and
work sddition likewise generate a rotational motion which
passes beyond the range of the process itself. Thus these

rotational motions of an ldeal fluld possess a real significance
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.aﬁart from the methods of developing the rotation.

The importence of vorticity in s given problem depends
essentially upon both its magnitude and distribution which in
turn depend on the final solution of the problem. That is,
the problem is an essentizlly non-linear one. It is usual,
elso, that the Tate at which vorticity is sctuaslly generated
in a given case depends upon the intersction of the'fluid with
a fixed set of boundaries and hence again upon the fiﬁal
solution. Thus the problem involves non-linearity in two
distinct manners: 1) The mechenism of the'vorticity trensport
is not known until the solution is known and 2) The rate at
which vorticity is generated by fixed boundaries is ndt known
unuil the solution is known. Although the lack of knowledge
concerning the distribution of the vorticity is the underlying
difficulty in both cases, their physical genesis is suf-
ficiently different to justify their separation.

The process of linearization which naturally suggests
itgself is the a priori assumption of distribution and strength
of vorticity and of the 1ntéraction between the fluid and its
boundaries. A well known sbecial example of this assumption
is that of irrotational flow where the distribution of vorticity
is assumed such as to vanish evérywhere. With this kinemétical
felation, the continuity equation may be simplified so that a
solution is easily achlieved in many cases. This simplifica-
tion may take the form of a velocity potential or may be

introduced directly to obtain a linear homogeneeﬁs partial



.differsntial equation for each of the velocity components. If
instead it 1s sssumed that the vorticity components are known
functions of the coordinates,the resulting eguation for esch
velocity componeni is non-homogeneous and its solution
presents only slightly more difficulty.

1he choice of transport mechanism for the vorticity
presents a real difficulty and indeed no real simplification
has been accoﬁplished if this choice can not be msderwith
reasonable facility. The cases of parallel and cylindrical
shear flow furnish clear cut examples of where the VOrticity
distribution msy be stated explicitly and exectly. In this
case the vorticity has only the component normal to the plezne
of the flow and its magnitude depends only on the distance
measured normél to the flow, The particularly simple case
where the rotation is constant throughout the entire plane
has been adventageously by Tsien (Ref. 1) in computing the
flow about symmetrical Joukowski profiles in a shear flow,
This process appears, then, as a sapecial case of the genersal
procedure described here. Other cases where the distribution
of vorticity is not known precisely but where the stfength is
known and the position may be estimated scecurately are
exemplified by the theory of airfoils of finite spaﬁ snd the
'theorybof iightly loaded propellers. In each of these cases
the vorticity is assumed to be transported by the mean fluid
motion cor, in the case of a moving body, is assumed t¢ remain

at the spot where 1t 1z created.
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Determining the rate at which the vorticity is generated
at the boundary may, however, occasion difficulties as severe
as the determination of the transport mechsnism inasmuch as
the former d@termineé in & large measure the ultimate strength
of the distributed vafticity. In cases where the physics of
the sltuation allows the stipulation of the vorticity veriation

at a boundary as well as the position of the boundary, the

problem is gulte simple and is illustrated by the firét problem
of Prandtl's wing theory. Here the distribution of thé trall-
ing vortex strength is known at its origin and it is assumed

to be transported by the free stream velocity. Furthermore

the position of the origin may be assumed known with éufficient
accuracy for most problems although some difficulty may actu-
ally arise in computing the "downwash" velocities close to the
wing. The importance of the r@striction; that the boundary
where the vorticity is generated be known, is illustrated
more foreéfully by the flow near a shock wave of:non—unifcrﬁ
strength. Here the poSition and hence the strength of the
shock (source of vorticity) is not known until the flow itself
1s known and approximgtiOﬁ is exceedingly difficult. The more
usual circumstance is, however, that the position of the
boundary is known but that the strength of the vorticivy
generation is not known in advaﬁce. This mey be illustrated
classically by the second problem of Prandtlis wing theory
where the geometry is known but the coupling between the

geometry and the 1lift distribution depends upon the ultimate



.fiow and thus complicates the direct solution.

The solution of flow processes of this non-linear type
lend themselves naturelly to iteration processes where in
each approximation more asccurate knowledge of actusl vorticity
transport process asnd the boundary interactions are employed
on the basis of the previous approximation. Although the
essential idea is stralghtforward, the mathematical procedures
may become severly Involved unless the iteration proéess is
arranged with some care. Actually the possibility of
generating iteration processes with a reasonably rapid con-
vergsnce impoSes a severe restriction on the cases which may
be treated in this menner. The possible solutions are stili,
howeﬁer, of a sufficiently grest variety to possess important
applications.

.To complete a solution in the manner outlined, it is
necessary to mske logical physical or mathemstical assumptions
concerning the mechanism of vorticity transport and generation
from the given physical data of the problem. In Chapter 1II,
therefore, the general processes of vorticity generation and
transport are discussed from a fluid mechanic and thermodynamic
point of view. Lo illustrate the method of setting up the
iteration procedure, a simple but physically significant
'application is discussed in Chapter IV, namely: the process of
straightening an irregular velocity profile in & parallel-
ﬁalled channel by means of &n idealized screen,

A very striking example where the process described may
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vbe applied to provide important results is furnished by the
axial turbomachine where the axial turbomachine is defined as
an axially symmetric device which changes the state of the
£luid through the variastion of its angular momentum about the
axis by means of stationary and rotating blade rows and in
which the velocities are predominantly parsllel to the axis.
Inasmuch as therwork added by’the rotating blade rows 1is
generally nonéunifcrm, the flow is rotetional and usuélly to
such a degree as to be one of the major influénces of the
problem. +the difficulties encountered in éalculatiﬁg the
three-dimensional flow in turbomachines have caused a guite
general adherence to the special ceses in which the work is
added ﬁniformly over the radius. Then the moment of angular
momentum is constant in any plane normal to the aﬁis of
symmetry and only small radial or axlial veloclty disturbances
arise whieh result from fluid density sdjustments. In this
case the éirculati@n imparted by each blade rowyis constant
with radius and thus the circulation ebout esch blade of a
given row is cohstant along its span. NAlth@ughfthis inflexi-
bility presents unfavorable aerodynamic condlitions at the blade
root and the blads tip, these cunditions need not beeome'
serious untll the tip speed and the tip diameter beéome

items of importance. This i1s the cese in many modern
appliéatiems, especially in aeronsutics, and as a consequence
variastions of cireculation along the blade length must be

introduced. 'he rotational flow which accompaniés this span-
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'wise variation of circulation creates problems which bear
similarity to the problem of finite aiéfoils and their solution
constitutes a generalizstion of the three-dimensional theory‘
of wings. ihe assumptions which suffice for the theory of
finite wings are clearly inadequate here because the vorticity
is materially transported by 1ts own “induced" velo&itfo So
long as these induced velocitles are primarily in the tangential
direction, the influence of the tangentisl transport ﬁay be
removed by sssuming an infinite number of blazdes in each row.
- With this aséumption, the tangential transport of fluid elements
brings them into flelds which are precisely the same as those
from which they left and hence has no influence on thé\fluid
state. rurtherm.re in most practical eéses the rsadial and
axial vélueity disturbances do not sccumulate to any great
proportions In comparison with the axial velocity and hence
the vorticity may be assumed to be transported witn the mean
axial veloclty. ‘the boundary conditions at the blade row,
namely the distribution of vorticity genersted and the axiazl
velocity may be determined from the desired blade loading or
by an iteration process involving the blade géometry end the
Gvérall operating conditions. There are thus seen to be two
mein problems in the serodynamics of turbomachln% blading which
bear a direct analogy to the two wing problems of Prandtl.
They are then |

1. Given the blade loading or the "bound vorticity”,
calculate the three dimensiona. velocity distribution, the

blade shape, 1liftc coefficients, etc.



2. Given the blade shape and the turbomachine
operating conditions, calculste the veiocity distribution,
enthalpy distribuction, blade loading, etc.

ihe general prob.em of the sxisl turbomachine is
liscussed st some length in Parts IV through VIII and in

particular the first of the problems enumerated abouve.



IT THE PRINCIPLES OF ROTATIONAL FLUID MOTION

The Space Distribution of Vorticity.-~ The variation in

magnitude and orientatiom of the vorticity of a fluid medium

is related to the state of the fluld through the Buler

equation | .
(VoWI7 s Fgradp - F 1.

where V is the vector velocity, P and ¢ the fluid pressure
and density réspectively, and F: is an arbitrary vector force
per unit mess, By means of the identity (V°V)V*%8“&VE‘V"‘“"V
eguation 1 may be rewritten to include the vorticit& ex=
plicitly
Vxcurly = SMJ'{: + -é-gmép-e» F ‘ 2,
The dependence of the vorticity upon the thermodynamic state
of the fluid is clarified by introducing the enthalpy h'
defined as A
W= e+ % : 5e
and the firstblaw of thermodynamics ,
 TdS = dh'’- “l"/g 4.
where T 1is the temperature absa;ute, S the entropy snd E
the internal energy of the gas. By entering equati@ﬁs S and
4 info eguation 2 and denoting the stagnation enthalpy P(+'¥}
by h , the vorticity is expressed in terms of the thermody-
namic varisbles
v xcurl v = grad h - Tgmd S- F Se
where several special forms of this relation are well known,

If the stagnation enthalpy is constant throughout the field

and the abplied forces vanish; equation 5 reduces to
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V xcurlv = - T grad § 6.
which was first given explicitly by Crocco (ref. 2) and is of
ﬁaftiéulaf importance in the study of the non—uniformyshock-
wave., When the applied forces are conservative so that they
may be expressed as the gradient of a potential @', é:quation
5 reduces to

Vecurlv = grad(h-§)- Tqrads o 7.
an integral of which is the well known theorem of Bjerknes,
_If both the enthalpy and the entropy remasin constant over the
field, eguation 5 reduces to

VxcurlV s -F 8.
which Is in essence & generalization-of the Kutta-Joukowskl
theorem. In any case for which the right side of eguation 5
dqes‘not vanlsh, the vorticity must differ from zero and the
vector . |
| A= gradh‘TsradS - F
is normal to the plane formed by the vorticitj ahd the velocity

vectors.

The Temporal Variation of Vorticity.- Informatidn of a
more nearly kinematical nature may be obtained by teking the
curl of eguation 5,

curl (vacurlv) = curlgrad h- curl(T grad §)- curl F
The curl of any gradient vanishes and the curl of the cross-
product may be expanded and simplified through use of the

continuity relation V° (¢V)= 0 o give

(\7°V’% = 'é; %‘ = (—?'WV)V- jradegrad S- cuvl F 9,
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ﬁhere the various terms have simple physical interpretations,
The physical significsnce of the curl F  1is clear
inasmich a5 any set of paraliel forces generates vorticity
according to their space variation, an example of which is the
ncn-uniformly loaded lifting line. The meaning of thefterm
(%‘Wv)‘? is clarified by considering the velocity ahd
vorticity vectors at a point of an Iincompressible fluid and
by inquiring how a particular ¥
vorticity component (fig. 1)
is changed by the fluid'

motion., The change is

accomplished in two manners:

- k.
by extending the vorticity
component in the direction
under consideration and by Figure 1.~ Notation for
vorticity and velecity com=
rotating the other two com- ponents,

ponents slightly in this direction. (Such an infinitesimal
rotation had no influence on the projection of the original
vorticity in its own diréction.) Then a path enciosing an
| area Ax is chosen in they-3 plane sufficiently small that
=5 A; . If the circu- 2
lation rémains constant,

the velue of S may vary

2

only through changes of ﬁ"

the area enclosed by the
) x :

path, that is, by acceler- Figure 2.~ Relation of

vorticity and ecirculation.
gtion in the X direction.
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. Then

- Aw = eb‘f% .:-I"
A= § == Sfoz‘
But by continuity Au Ax) =0 s0 that

alx) = 4%
and then

S - Bu at
The varistion of S due to the rotation of the other vorticity

components in the X direction is expressed as

4,8 = 9@ at |
But the angle through which the vorticity vectcr is ‘turned in
unit time is clearly @*;ﬁ; so that
As 5 = "7
and likewise for the component in the‘?,direction
ow
Aj g a? At

Thus the total time variation of the x component of vorticity

_ becomes

§ - ou
:f?r' g 7 33 M g—?>

with similar expressions for the other two components. In

vector form the relstion becomes

= (woV)yvy
1t )
or in the case of varisble density

$(%) - (£-v)¥

Thus the term in question represents the kinematical varistion

of the vorticity components due to the deformastion of the W

fluid element.
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~ The influence of the term 3ro.dT x grad S may be
illustrated by an exemple., ‘lhen a fiuid remains stationary
in the vicinity of a heated plate, the temperature and entropy
gradients are parallel and, as 1s intultively cbvicus, no _
vorticity 1s generated. Now let the fluld be accelerated in
the X; direction by means of an 1sentrowic expansion, so that
the temperature gradient changes its direction (fig. %) while
thekentropy gradient remsins essentially unchanged. ‘Then
inaémuch.as the term gvad'T X grad-s does not vanish,
"equation 9 indicates that vorticity 1s being generated. The
physical basis for this phenomenon is ‘then guite clear; for

since eacii fluld element expands along

) -~ N,

$,<5<85,¢ S,

TITFT T T T T TF T 7 TPV TF7TTI77777

stoktonoyg

Axelorated y?

Figure 5.~ Temperature and 'Figure 4.- Expansion along
Entrony Gradients in Station-~ various isentropes.
ary end accelerated Fluid. ‘

its own isentrope (fig. 4), the lamins near ﬁhe wall attain
greater specific volume and accelerate more rapidly. Through
this generation of vorticity, the veloc.ty profile undergoes

changes as shown in figure b. It is by this process, for
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exanple, that the vorticity in a boundary layer is actually

reduced by a strong negative

pressure gradient. The entropy

gradient in a boundary layer is

directed toward the wall and, in

the same manner as before, the

fluid of higher entropy 1is sac-

celerated more rapidly than

that of ilow entropy so that Flgure 5.~ Vorticity vari-
ations caused by acceler-
the vorticity is reduced. ation.

That such a change of vorticity should take place under an
expansion is quite clesr, for any paraiiel flow of constant
enthalpy becomes lrrotational if expanded to 1ts maximel

velocity.
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IIT FLOW THROUGH AN IDEALIZED RESISTANCE

The following application of the iteration procedure for
solving certain problems of rotational flow involves all of
the characteristic difficulties but retains essential
simplicity and therefore serves as a useful illustration.
The problem is that of the flow of an idesal incompressible
fluid in a two-dimensional channel with parallel walls, where
the fluid poéessés a distorted profile which is straightened
by an ideslized screen. The corresponding mathematlcal problem
is then as follows: |

The Mathematical Problem.-~ Consider a fluid motion

governed by the equations

du v .
T <+ 3?’ = o 10a
oh
T - —
v 3y T Fx - 10D
= -2h
-ul o+ Fy | © 10e
. Qv _ du :
S ox aj tuad
end subjected to the boundary conditions
veo ; yso,d | | . 1la
- 2v '
v )
w = wu(-,y) Xx=-oo
‘ 11lb
h = h(-»,y)
§ = §(-ey)
> = %‘—;30 ) X + oo lic
wlo-,y) = u(ony)
v (oY) = V(oY) Xx=o 114

h(o-4)- h(oe,y) = R{uter?)
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The geometrical arrangement and nomenclsture is shown in

figure 6.

I NN VRN YT N EEN YNNI NEN SRR NN REN

1 y=4 |
| v

'l"r w ‘!

9| |

|
1 X4
RNT VI 777 77?777 7rr 77 7vet st/ 7 /77777 ”
. x

Figure 6,.,- Geometry and Nomenclature for flow through
en idealized screen.

The Modified Ilntegral-Differential Helatlions.- From

equations 10s snd 10b 1t follows that

2 2 )
ov dv Qﬁ
Er T .

whicih 1s valid as long as the differentiation indicated is
possible., ‘his may then be transfurmed into the reiated

integral equation

s
v —,,‘2.!? G(xp;xy) dad 13

where «, 3 are the running coordinates corresponding to the

x &nd Y directions respectively, and the Green's function
G(“»@;de) satisfies the boundary conditions lia, 1llb, llec, on
" v snd has a logarithmic singularity at ¥X= « j Yy @ . The

Green's function may be written as the infinite series

G(“'@ix'%) 2 Z-‘- Sm s.‘.'.‘._l?_‘._l o.nﬂ‘z_“\ 14

nei
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The horizontal velocity component then follows directly from

equation 1lUa, the continuity equation

+°  p
= 2F H.6; x dad 15
w = FP" @i x.Y) B + YY) :
where the new function (4.3 %Y) is defined by the series
wry 9 xea)
Hxp;x4) = Z‘L s *F8 cos '.T% £ 16
wait

rhe drop in total head in passing the screen becomes now

according to the boundary condition 1lld

Ahn:  k(wer?) | 17

so that if the enthslpy or total pressure is known just
upstream of the screen, it is known downstream of the screen
also, . |

The manner in which the enthalpy content ls transported
follows from the eguations 10b and 1lUc. Upon elimination of

the vorticity &, it follows that

1 oh
'u-(gT‘ - Fy) o+ “('a'b‘,“"x) *oe
ao that in the absence of external forces

ah

dh v-oh -

But if the variation of enthelpy aiong an arbitrary path in

the fluid be considered, then

this agrees with equation 18 ir the path along which the
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.enthalpy variation is considered is a streamline, that is

E;% a %1 s aqd if the variation of enthalpy along this path
vanishes, Thus 1n the absence of external forces, the enthalpy
is transported unchanged along the streamlines. ‘his result

is in agreement, of course, with egquation 9 of Chapter II.

Thus by calculation of the stream function
‘{J= u.dcj -vdx ' 19

the distribution of enthal,y is known throughout the fluid.
For ﬁhe boundary condition at xz - o associates an enthalpy
value with each streamline and this associatlon is masinteined
up to the screen. Now the jump of enthslpy across the screen
is kﬁown and hence another boundary conditlon on the enthalpy
is known just downstream of the screen. This enthalpy
distribution now assoclates another value of enthalpy with
each streasmline, usually different from the first, and the
association is maintained downstream of the screen. This

condition may be expressed mathematicelly as follows:
Peoy) = gy

. e . 20
h(~=,y) = ?4-%: .‘-,!4--42--((«,)

Therefore hi-=o%4)= ¢[Pe=.9 ]  and inasmuch as the enthalpy
is transported slong the streamlines,
hix.y) = ¢ L=y ] 21

upstream of the screen. Immedlately downstream of the screen

the enthalpy may be computed sas
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h(ot1y) = h(o-y) - R (ur+v*)

Then again h(0+y)-= «-f[‘?whtj)] gc that downstream of the

screen
hauyys § Le(ag] 22
The knowledge of the enthalpy distribution now aliows
the calculation of the vorticity dlstribution, for sccording
to equation 10b
R
st points other than the screen. The X derivitivé of this,

however, 1s exactly the unknown function in the Integral

eguations 13 and 14,
The Iteration Procedure.- It appears that the relations

just developed allow the construction of an iteration process

in the following manner

(h')h - (“\z)h =k (u':-a + Vnzou) 23a
PYuixy) = [dn, dy - vy, dx 23b
"\..(X.‘ﬂ s ‘P [4’0\--“"”]
= 4 [ et ] = (- y) 23c
2 @ [pualondT = h(ony
254

e _Bhu-.

&“ = [Ty 31



oo 4
Vn = ‘i‘i‘).. Glx.8;x.4) de dp 2%e
e b
oo f
Un * .g—f-‘)“ H(«.8;x.4) dadg + y(y) 25f

The zeroth approximation 1s then essentially one which
sstisfies the boundsry conditions on w and v and in which

the pressure drop across the screen vanlshes; that 1s

(Jﬂ.l, - LJ, = ° 24a

Yo (X.4) s const. : 24b
o txy) = my) 24c
fo (x,9) s g l-eoy) | 24d
Vo (X4 z o Dhe
wo (X.Y) = ueny) 24f

The first approximastion follows directly from the above values

through the application of equations 235:
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k (U) 2ba

lll

().- ()

v, Y | | 25b

Y. (x.4)

o lry) ;, x<o
. (x.y) = o 25¢

.L.(Lq)- k() 3 x >e

»;'-"ga (x:4) y X <o

bixyg) = 284
po x4y - 2k '9'%' ) X>o
4
vi(x.Y) * [&L Gla,pixy) dp 2oe
‘o .
THELIE /[(]‘ H(ap;xyq) dg + vep 25f

The higher appfoximations follow in & direct mannef, each

involving progressively more calculastion. By virtue of the

~Green's function solution, much of the work may be carried

out numericslly once the Green's functions‘have been computed.
The first approximstion constitutes the sclution

linearized by the assumption that the vorticity is transported

by the velocity given et X« -eo | that is, by the velocity
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corresponding to the zeroth approximation. In general, then,

the nth approximation constitutes a solution linearized by the

assumption that the vorticity is transported by the velocity

field corresponding to the n-1 th approximestion.

This property 1s characteristic of the present method.
The first spproximetion remains somewhat arbitrary, and
intuitively, the rapldity of convergence and perhaps even the
convergence itself, depends upon the choice of the zeroth
approximstion. 1n many cases it will suffice to choose as the
zeroth approximation, the potential flow corresponding to the

same boundary conditions.
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IV FLOW¥ THROUGH AN AXIAL TURBOMACHINE

Using the exampie of the last chapter as a model, it is
ncw possible to set up the solution for the flow through a
multistage axisl turbomachine. The axial turbomachine will
be considered (fig. 7) to have inner and outer boundsries
consisting of coaxlal circuler cylinders and to possess
consecutive rows of either stationary or rotating sirfoil-
shaped blades, the blades in eny one row being ldentical. It
is the function of the moving blades to add energy to the
fluid by means of the forces exerted by the blsdes on the
fluid; and it is the function of the stationary blades to
direct the air in such & manner, and by means of a similar
set of forces, as to allow the most favorable action of the
moving blades. In modern practice it is usual, wilch the
rossible exception of the first snd last s£ages, that con-
secutive blade rows impart opposite angular momenta to the
fluid.

The Physical Problems.- There are two basic problems

Involved in axial turbomachines which besr close anslogy to
two of the problems of rrandtl in the theory of wings of
finite span. These are

1. Given the blade losding or the "bound vorticity",
éalculate the three-dimensional velocity distribution, the
blade shape, lift coefficlient, etc.

2. Given the blade shape and turbomschine operating
conditions, celculate the veloclity distribution, enthalpy

rise, blade loading, etec.
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The Mathematical Problem.~ In setting up the corresponding

mathematical problem it is assumed further that

1. All veriations with respect to the angle about
the axls vanish.

2. The applied force in the radial direction vanishes.

3. The fluid is non-viscous and incompressible.
The first assumption has the physicsal counterpart Qf an infi-
nite number of blades 1n each blade row; the second,-ﬁhat the
normal to the blade surface lies substantially tangent to the
cylinder through the point; the third is explicit. It may now
be asked whether the problem, thus simplified, maskes physical
sense, It 1s clear that it does make sense so long as the
threé-dimensional,flow resulting from the variastion along the
blade of the fate at which work is added is the phenomenon of
interest. For this the results should be substantia;ly
correct and the true approach to reality will of course
depend upoh how closely the above assumptions arq fulflilled
in any particu}ar case,

The flow pfocess for each of the problilems is governed by:

The continuity equation

17y [T} dw _ :

The equations of motion

v-g-w7 = -_— | 26Db

wg—ug = -Fy ' >2'60
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uy -v§ = -f + -g-; 264
The definition of the vorticity components

S = - %E; Z6e

y = %—‘;—- %% 26f

¢ = ’%%*lr’:" 26g

The definition of the stagnation enthalpy for an

incompressible fluid

A - % + 5 (wteriew?)
The boundsry conditions for the two problems differ only

at the blade surfaces and these will be treated separately.

The boundary conditions common to the two problems are the

following

u = o ; r=va, 278

ou
%3
= v(w,~oo)

=0

ou '
w = Ta = 0 33 4+ 00 2‘,0
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In the case of an infinite number of blades, that is,
where the forces have uniform tengentisl distribution, a
simple relation exists between the blade geometry, the
direction of the velocity, and the direction of the blade
force at each point of the blade row. This relation is: the
force shall be normal to the blade surface and the velocity
shall be tangential to the blade surface. Hence the
veloclities VY and W may be considered as the local ﬁelocity
components or as the direction numoers of the blade surface
with respect to axes fixed in the biade.

For the statlonary blade the condition that the force be
normal to the blade surface 1s

ulFi t+VFy =o0
1f the blade row moves with a tangentlsl velocity wer , the
condition 1s modifled to

wfy + (v-wrjfy =o0
If it be required that the sxial and radial velocity components
remain continuous throughout the fluid field (sdmitting
discontinulties in only the tangential velocity) the boundary
~conditlons at the blades becume
(v-wr)Fy + urFa 30
(w = gngular velocity of the blade row) 2va

w , w continuous

The Integral-Differential Relations for the First Problem.-

To proceed with the solution of the first problem, the partial

differenclial equations 26a and 26f are transformed into s psir
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of Integral equations., By differehtiating 26a with respect to
r , 26f with respect to % and adding, there results the non-

homogeneous partial differentisl equation

du w .9:5.:?-1
'ST**%?'P"' 38 33 €8

which may be transformed into the integral egusastlion

+ Ou 4
9
w = 3%6(“-(5;!‘.3)0!«&(; 29
-0 Va

for the radisl velocity. From equation 29 and the continuity
equation 26a follows the related integral equation for the

axial velocity

. + 00 'U
. w =//§%-H(«.@-,r.3)d«d@ * Y _ oO

-~c0 1

The Green's function G(%:8; V. 3) satisfies the boundary
conditions 2%a, 27b, 2% onw and 1is =& solution to the
homogeneous equation related to equstion 28. The function
H(“-@;V.g) is derived simpiy from G(“-(’;V.a) and ¥ , as yet
unknown, must be determined so as to satisfy the conditions on
w . The forms of the Green's functions will be determined
later. ,

Inasmuch as the Stokes stream function depends only on
the axlal and raedlal velocities and is independent of the

axlally symmetric tangential velocity, it may be calculated
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directly from the values of the rsd.al snd axial velocities.

Thus

1}”!‘,3): ruol;— rwdr 31

Because of the axial symmetry of the flow, the tangential
velocity enjoys a certain degree of Independence from the
other velocity components and hence a simpler determi‘nation.
By substituting firom equations 26e and 26g the values of 3
and § into the equation for tangential equilibrium, 26¢, it

follows that

or
w | ov v ov
RI1EE =)+ 2Y .
w br+r) 33 = Fo

Multiplying by the radius v , this relation assumes the form

(V ) a rfe 52

But the total varigtion of v # may be written

( d{vr) _J_p aum)
or d3
where the left side of the equation 32 1s recognized as the

divn =

“w, .

variation of vr 1in the direction %l_;', = that 18, along s

stream surfacef(r.g) constant. Then

- rku
d% w

sconst.

al(erJ r Fo 83
.?
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which states that the rate~of~change of angular ﬁomentum along
the stream surface 1s equal to the moment of the applied force.
The tangential velucity component then follows directly
through integration of equation os

v

v s v(r,-o®) st -E—E"—’Jg 54

where the integration is carried out along a stream surface.

The enthalpy distribution may be calculated by means of
a similar device, for slong any stream surface the change of

stagnation enthalpy is

» 35
db = (%._9;_ ‘5'5,“"5‘3')43

- (34334

‘the values of é&& and 2! are given, however, by equations

0%
26b and 26d. Substituting these into the above relation gives

clj\a (%E-‘- & -u7+u7-v5¥ l'-"z)J3

30 that

= (Fwt-whery) dy

5 19)

I
dh=(LFe F)d3
1’) » constant
The two force components Fo and Fa are generated by the
blades and therefore are not independent but are subject to

the boundary conditions that their vector sum.bc normal to the

blade surface and hence to the relative velocity. For a fixed

/32
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 blade row, condition 27d reduces to v Fy '-uwﬁb = 0 so that
dh = '\‘F (‘VF;g*wFa,)J%. = o 36

Thﬁs 1t follows that for forces imposed by s fixed biade row

or in the absence of forces, the stagnation enthalpy remains

constant along any stream surface. When the blade row iotates

with an sngulsr velocity e , however, the enthalpy variation
slong a streem surface is
. wr
dbh = 2 Fo da | 87
which is the intuitively obvious relation that the work done

per unit mass is equal to the product of the torque snd the

- Fo

angular velocity of the impeller. DBut the value of TS

is

given by equation 3u and therefore

dh = c»SLﬂﬁﬂi 43,
dy
} . *z court. »
Thus by integrating along a stream surface WP = constant, the

enthalpy distribution becomes

4

he hir-oy+ o™y a8
(v,~ o) w d} 3 | |
- 0o

where the expression is left in the integral form because the
angular velocity w 1s a discuntinuous function of % .
Equations 20b and 264 have st1ll not been eﬁployed inde-

pendently of each other, hence equation 26b may be solved for

'7 as
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snd thus

B"[ - i ( §) ' b‘.& + » dw o-h
09 T w ag Warb} w? 39 dv

39

It 18 quite sufficient to leave the result in this form but
it will prove advisable to introduce some modifications.
Differentiating equation 264 with respect to r gives

- K
avay 2 2 (wry- 5)* Fg

But from the boundary condition 27d and equation 26c

40

%%%?- = -'§17'- (v-wr)Fp

) :r w (v-or)(w-uf)

OFy 41
oY

Thus using 40 and 41, equation 5Y becomes

d 2
o (v wr)s-—a? % W-wn ¢

4

T B (Fep e eny)

- (- 7 2w o4
M T A S ) i e A LI

Solution of First Problem by Iteration.- The original
set of differential equations 26 and the boundary conditions
27 has now been transformed into a set of integral and
differential equations whicn are suitsble ss the basis ot san
iteration process. Collecting the transformed equations, the

iteration process may be arranged in the following msnner:



"

1]

dv,.,

- _a_;'_
—a-L‘.—““ d w.,
0 P v

31:--.-. Vet
ovr v

34.

458

45¢

454

4 5e

45f

4og
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+%

43h

. A rFs
Vn -‘ ",A("vn-n (\'.})) “""; —u—'-:' A?

~eo Pw-, * const.

b = P (Paatny) ;0 3 <3

?
"f (.‘P‘h-l U'.})) + w%(-';:lda 3 5%3,6 ; 451

Y const.
A

q (Yot 3)) 3<3

To i1llustrate the use of the iteration procedure, the
basic, zeroth, and first approximations will be tabulated.
To begin the process by obtaining the basic set of conditions,

assume that the forces Fg and ‘F, vanish. ‘lhen

"
o

]
o

= wv,- 00)

= (v, ~ ©0) 44

t ? (r.- o)

e _h(r,-o

v (r, - o)

ds-éwdwg'sglz
1]
o
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Likewise for the zeroth approximation, the application of the

equations 46 gives, allowing the forces to sact

3 . o
83, °

Uo F o0

wry * w(v,- )

(T, 8
-]
”
Q

f(r,-o0)

5
o
"y

~ | rw(r,~o) dr 45

S

= (r-e ; 9 <3
F 4
r N

Air,-00) + u—‘}[-;;'_“)"o dq y js3cs

5
3 J .
Mir-e) s [Z2 Fo%3 ; G cq

wr(v,~00)

? 3

- F
Ve 2 v(r,-o00) “-r-(gr'"w) J'}

- ol

The first spproximatio.. then sssumes form in sll of the

quantities:
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_31). P S {a’(v.(a""-\-_!)) g.(wré.‘.’&}

wr(r,~ 00)

‘ e 1,
w, z // ) G(d(a,rg)JuA(s
~o0 I

a
400 rb

w. s 3 ) Hie pirig) dedp s v

-od Ya

¢ 2%

- e

d

46
% 3 - wir,-)

2% , v
v r

bt 2
"

rwi(v,-oo) dy

=

=
>

From this point, the continuastion or the iteration 1s straight-
forward and obvious but becomes very laborious as higher

approximations are attempted. In the general case, numerical



methods must be used, of course, and here the Green's functions
perform the great simplification. Fror the Green's functions
need be computed only once inasmucii as they do not change

from one gspproximstion to the other. The dlstributlion function
under the integral changes, but in a manner which may be

computed easily.

The Second Problem.- The procedure for the second problem,

tnut 1s the case in which the blade contour is given, differs
only in a few details from that for the first problem. The
main difference between the two is the rapidity of donvergence;
the approximation for.the second problem must be carried
essentially one iteration farther than that for the first
problem to achieve a given accuracy.

The given data 1n the second problem is then

Fy -
'F("os) = y PR add
Fo w
or the equivalent. That 1s, the slope of the surface of &
typical blade 13 a known function of » and 1} « The tangentisl

velocity may then be expressed in the form

v cors w£(r3) | | 47
This relation is now used both as s determinstion of the
tangential velocity and In the relstion for determining the
variation of staegnation enthalpy. Then equastions 45h and 4ol

will be replaced by the equations
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Vo = % A (Y- (7 3)
outside blade row
43h!
v, s wr#u}',,-,{(':3)
inside blade row
e = P (Paalny))
outsido blade row
3 4551

>~

lp('{lu-.('-ﬂ)* (z.w"r + 533 Wiy F firng) ds

insrtde blado row

It 1s worth noting here that becgsuse of the difference
1n‘thc definition of the tangentlial velocity inside and out-
side of a blade row, there will usually exist a dlscontinulty
in the tangentisl veloclilty where the two regions join. This
corresponds to a vortex sheet normal to the axis of symmetry
and 1s accompanled by & discontinuity in the enthalpy when the
blade row which the fluid enters is a moving row. It will be
seen later that this ‘vortex sheet, In the cese of an infinite

blade number, corresponds to the increase of vorticity



distribution in the neighborhood of the leading edge of a
thin airfoll normally observed when the angle of attack is

increased.,

40.
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V  DETERMINATION OF THE GREEN'S FUNCTIONS

The Green's functions for the radial and axial velocity
disturbances are determined by the two partial differentisl
equations satisfied by the velocity components

3‘u d w Su - 7 7 o8

O AL T TR

du M. dw 26a
T Yy |

and by the boundary conditions imposed upon these velécity

components

w2 o vz ¥Vaj) Yo . o271

Thg npn—homogeneous equation 28 will be solved by considering
first a discontinuous variation of‘7‘ s 80 that the équation
becomes>homogcneous in the.regions between the discontinuitiés,
and then allowing the dlscontinuitles to coalcscé into a
continuous variation. These discontinuities correspond to
vortex sheets normal to the axis of symmetry and of sfrength
which‘varies with the radius. This procedure is of particular
interest not only as a means of obtaining an insight into the
nature of the solution, but also to obtain rclafions describing
the flow nedr these discontinuitles. It will be remembered
that such discontinuities can occur in the second problem at

the leading edge of each blade row.
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Solution of the Homogeneous tguation for the Radial

Velocity Component.- The homogeneous psrtial differentisl

equation
Sht 9 [’y s“
ru*ﬁ(')‘ gt = °

has a general solution of the form

| Z [ALT. (eur) + B"Y (E“”][a“ "’b 05,3]

nes
where J.(e.. r) and Y,(z..r) denote Bessel functions of the flrst
order, of the first and second kinds respectively, and of
real argument. The characteristic values ‘E“ must be de-~
termined to satisfy the condl tions that the radial veloclty
vanish at the inner and outer radii of the paséage. The
constants K.., éu. aw , by , are then available fqr satisfying
the boundary conditions at ¥ ¢ and at the discontinuities,
Inasﬁuch as there are two radii st which the radial veloclty
must vaniéh, the problem of determining the characteristic

values of &€w 1is considerably simplified by writing the

solution in the form

o0
ZU.(@..\-)(A.. PLLY B,i£'3) L

where

Uar) = J.(6ar) Ylent) = Ji (Eura) YcEnr) 48

and Ya &nd Yo sre the inner and outer radii rgspectively-of

the region, lnasmuch as the value of U.(tur) is identically
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zero, the characteristic values of the problem are determined
from the condition that the function vanish at the outer

radius, that 1is

UiCeury) * Jotenm) Yicara) = Jiteare) Yteary) = 0 49

Approximete values for the first six roots of this equdtion
are tabulated in reference 3.

Solution for a Finite Number of Discontinuities.- To

complete the soclution for & finite number of vortex sheets
normal to the axlis of symmetry, the distance along the E}
axis is divided into m<+t .regions by m discontinuities
occurring at 4= a.,a,, @y, - ay,~ &wm WwWhere each vortex sheet
corresponds to a local distribution of g(r) and s vanishes
elsewhere, Each vortex sheet will, in general, correspond to

a8 discontinuity in the tangential vorticlty component '7 ’

nemeLy [7]k' (See Figure 8,)

a. a, aj ﬂ.‘ Oyt Gy Qyy Q- Gw
¢ 1213 & . e _junt . m_| el
[yl . O, D, I I, .. [l

Figure 8.~ Notatlion for the Finite Number of
Discontinuities,
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Thus a solution

Z U, (€wr) (A: o}, gt e t3)

holds for each of the wal regions. In addition to the known
Jump of the tangential vorticity across each of the discon-
'tinuitives, the boundaz_'y conditions 274 state that the éxial
and tangential velocity components shall be continuous ascross
each vortex sheet, Therefore the folléWing three rclétions

" ,
hold at the kt’ vortex sheet:
k = Res ‘ :
R o me R
w l;=¢n = w ]}‘ an . 50b
- 2 dw dw
L23e = L35-5vle L35]
Res
dw )

23 '3:ay 23 )3'% ,
The vanishing of the term [%7"'] in the condition b0c¢ 1s

zQ
3%%n o0¢

implied by the continuity of the axial velocity, 50b.
Ingsmuch as 5Ca 1s sn identity for all radii, the following

relstion exists between thc coefficients

R

- h'l- [
An e‘ Ch‘B otﬂ‘

- :-“

Egquation oVUc provides a further relation between the coefficients

’

. . . o g h ‘. .
ZU.(C.J') (E"A: E"ah snAu ¢.‘~) (t‘t Bn. ¢ Cl: u "‘E an%.E?]ohﬁz

whereupon substituting from equation 51 into 52, there results

kes ' 3 |
ZU.(&J) {E.A: om0k _ E“Akee..au} = 5[9)a, 80
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If the quantity E’l]dk i1s treated s& a known function of the
radius, the expression for the constant term may be determined
through the orthogonal properties of the Bessel functions

U.(Cn r) . Thus if Ya 1s defined as the norm of the function

U (tur) | r
L : 2 2 2 ,t

Va2 [rU(earrdr = "o Uo(éure) - 1 U, (Euta)

Yo

W
The difference equation between the coefficients Aw becomes

then Yo
"Euak ‘
A:N - A: = A rU, (€nr) [%] dv ‘ . b4

2V Enw
P&
: k
and likewise for the coefficients B.,

]

Yo
Euly

2.7’: én

k
Bn“'B: ol rU.(énr) M dy - 55

r
Equations 54 énd 55 c;nstitute recurrence relations for the
constants A: and Bnk so that it is necessary f;o stipulate
only one of each in order to determine the entife ‘set, By
inspection of equation 4%, however, it is evident that for
the radial velocity ﬁo remain finite at large dis'pances up-
s‘trea_m and downstream from the terminal discontinuities,

mel ' K :
A, B, ® © . The coefficients Aw may then be tabulated:



mat
An ] L]
- | JEeam
A ‘ s ) w? d
" 2.9“ £ rU, (&a¥) [-"{]w- r
ot ~£uam|
Ar : (Enr) Codpe-, dr
s . Z'vu €n rU K
] Fa  ro | 56
o qam
- r
2%y €w /u'u.n L"IJ'“"
m p "‘nam.
AP I rU(e..r)[«,JM v
o .
Similarly‘ the coefficients B: may be tabulated:
Ba : °
, Yo
Ba : B Sl (€nb) [%3, dv
" 2"’“‘ E“ L » '7 [}
Ya
Ba . ) eeuao i d ‘ » ‘.
" 27& En V‘U.\Snv‘) [‘IJ\ v /
, o

Y
e‘na; .
T e.ﬁ"’““" [41, dr

Ya

i

Oha i
Z rU (Cur) E"]JJ-I JV’

J:l

by
(¥~ ]
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Now if Eﬁ];is assumed to be known or is calculated by the
iteration process described previously, then equation 44
togethier with the constants given by 56 and o provides a
complete solution for the radial velocity component,

The corresponding solution for the axlal velocity is
found by integrating eouation Z26a and vy determining the
arbitrary funciions by condition bUs: that the axial velocity

be continuous scross each of the vortex sheets., Then

w = - -éé‘-:-—t—‘%)dg + ¥Y(r)

and by using the sclution just cobtalined for the radial

velocity component,

3 .
R =0 Uieart ) Ad oEn3 B ““3)ol v
w s - Z(ul(anr)'*—m-‘)("e_‘: e + ""e—:'e g‘ (Y)

= - Zvo(cnr) (Ame™d B¢ ™)+ M

ns o8

By eguating axial velocities across the vortex sheet,

,urk"s w¥ , the recursion formula for the function

is obtained

-

Yk“(r)--\'k("') . Zuo(f-n') (A}.‘-A.‘f").i ;( B:' B:u,;!-dn} 59

s
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where the A\n end EB. values are given by equations 56 and
[] []
57. Inssmucu as Bn =0 , the value of ¥ {¥) 13 determined
. .
from the initisl axial velocity far upstresm, Y (r)zwW(r- o)

The functions of integration are tabulated below

'y = w (r,- )

00
YR 5 w(e-0) Zu,u.v) {(A: -Av) et 2. B2 f""a_'}

o
Y = wr(r-oe)a Z UsLEu?) ’(A:-A:.)e"“'- B.,’e“"“'.% .

- fu,(t.r) {(A:-A:!ez'a'-(B." B:)eﬁ"‘“'}

nsi

ket o®

s wlree)s ) }:‘u.(e-v){ (akad)ei. (el Bi)e " %
33! nss
rquations o8 and 6U therefore complete the solution for the
axlal velcecity disturbances csasused by & series of discontinuous
changes in the teangential vorticity. The results for a finite
number of discontinulties may be put in a more convenient
®

!
form. Lf the values for the coefficients Aw and B. are

entered into eguation 4%, the solution for the radial velocity

component becomes

m.k - !“m.:

- ZU.(!;P) Z’-‘I’: = 96..3,. U, (ExP) E'?Jm-o dv

Yo

wae ‘.. r‘
K Yo
Enli-
*. Z:"‘": e."’ru,(e,v) [3'731'-, dv

1:! Y.
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80 thst
w o0
| £ e Ui tur) Ultag)  -Eal3- 2l "
“s T r 2&a Put 6l
izo Yo YL

Here thé term in curly brackets represents a sort of Green's
function except that one varisble of summation has discrete
ingtead of continuous values. The velocity pattern associsted
with each discontinuity is clearly symmetrical with respect

te that discontinuity and the influence of esch discontinuity
dies off exponentlally both upstream and downstream. It is
8180 to be noted that the same expression holds for sll

values of R by virtue of writing the absolute value of the

argument of the of the exponential.

The same process may be undertaken for the axisl velocity

Lo give
: " |
. | 3 -Ey|{3-aql|
w e W rs ey . Z [ﬂi Z au.itza:,liguw)e 3241 | o
j:o nst " :
Yo
%
o) -0 _
Vil€ua)Ug LEu F) - &ulg~a4l
*2y L4 Z“ z;.fv:' (1-e b 1) 422
J.. Nee :
Ya

The Green's Functicn Solution for the Hadial snd Axisl

Velocities.- In the forms ol and 82, the expressions for the

redial and axisl velocities, terms in curly brackets exhibit,
in each case, the nature of a Green's funetion. In this form

the transition tc & continuous distribution of vorticlty be-
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comes gquite obvious, Thus aj-a @8 and becomes the running

coordinate in the direction of thé axis of symmetry. Likewlse
. ?

[’7]1 becomes -5%- d@ . Therefore the relations for the

continuocus distribution of bound vorticity (or blade forces)

become
® _pr,
W= - /_:_‘9!. G(«.¢63v.3) dad 6%
- 00 V‘¢
: o e :
W= (¥,~00) = H (%.6;r.3)da de+ 2// F(e, (!,r,g)elael(s
-0 ¥y - Yo o4

where G(l.p',v-.z) y H(u.e;v.g), and F(a.mv,g) represent the
Green's functions of the problem. These are given explicitly

by the relastlions

= ~e13-Bl
G (ap3n3 - Z & U'z(e_;:z'i““" e fFl 652
i wnat
o0 ’ :
~H(“'@;v‘3)= Z KU;(:-“‘):’.(E\‘" e "“3"@[ 65b

na

Fla.pyn3): Z au.u-«)u.u-v)( FIPy  ese

nae
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VI SOLUTIONS IN THE FIKRST APFPROXINATION

An inspection of the eguations 44 involved in the
iteration procedure and of eguations 46 for the first
appreximation indicates that the errors invoived in the first
approximation are of the order -{% as compared to unity if
the distribution of veloclty is substantielly smooth, that is
if the first derivatives of the veloclties are of the same
order as the total velocity variation divided by the charac-
teristic length (Yp-~¥a) . More precisely, the first approxi-
mation is in error because the vorticity, enthalpy,.moment of
momentumn, etc., are assumed to follow cosxial circuler
cvlinders instead of the true stream surfaces. For small
radial velocitlies this first epproximation should give
Iinformation of both qualitati&e and gusntitative accuracy and,
because of its simplicity rejative to higher order approxi-
matlions, merits more detailed consideration. Only the problem
of the first kind will be considered, that 1is, the problem in
which the blade forces or the blade vorticity is given,

The Modified Filrst Order Solution.- The first order

solution may be given in an arrangement differing slightly
from that given in the iteration process but more convenient
for application

| |

v: v(vr,~e)s

= v(y-o)- éd}

-0
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v .
T 3y 670
§ = 215 +':;' 6'vc
30' - ' —a_- - 2- . ‘
2% T wr(y,-e.) 23 4 2 a'(.wrg)} 64
o
w = 27 Z"j aULer Uilena) S Ea13-81 f, J g
a@ - 2 £n Pw 57
-8 1 oo "b
KU (tu®) Vol lul Y Vol Lur) -g. -
w - w(r-o): "“L‘::’- W0l adg
w Ny "o
37 2 wuce ) Up CEu) £e13-0! |
Y2[ (36 2uT 2eawe e ) dadg 6
-0t 178 3‘
J\ = ‘2‘('.“"”7 ~ [eoré d
: g 3 org

~ o

The expressions for the Green's functions have been included
explicitly in the formulas to aliow for the case where inter-
changling the order of summstion and integration allows o
simple guadrature. "Then the resulting series will be
considersbly more rapidly convergen. then the series for the
Green's function and the amount of numerical work is reduced

to & minimum. In general, of course, the simple quadrature is

not possible,
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Separation of the Vorticity Distribution.- In most cases

of practical importance the inltial tangentisl velocity vanishes
(v(m+~®) =20 ), the initial axiel velocity distribution is
uniform (w(ve~-«#) z0 ), sgnd the initial enthalpy distribution
is constant (Jh(r-00) e k,). Furthermore, inasmucn -as the blade
vorticity or the blade forces may be stipulatéd at will in

the first problem, it is usual that these guantities be
arranged Independently in the radial and axisl directvion. This
means, physically, that the vorticity patterns are similar in
all planes normasl to the axis of symmetry and that ﬁhe
vorticity distribution are similsr in all coaxial cylinders.
Mathemetically this atlows the tangentlal velocity to‘be
written in the form Ve we R*2 where R and Z denote
respectively functions of v énd 3, alone. Then equatlons 6%

assume the form

g s - uq,i?-z' 68
ve w,R2 ' 69
§ = w(rRvH)z ' 10

The relation for the radial velocity component may then be

written in the form
oo vy,

ws Gu.g;rpw, |(2R2- =5 )(RY B—,)z'}d« dg

-0 Va
or inserting the expression for the Green's function
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Likewise the axial velocity masy be written as
V'. oo
S Vol ) » -£u13-6l
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¥inally the enthalpy change is

F
A-L, = w,gz'dag D wRrLil
- 00 |
where the summetion is carried out over the moving blade rows.
It is observed that the expressions for the radial and axial

velocities introduce two new cnaracteristic integrals of each
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of two kinds. <these inteprsls are defined in the following

manner
. Yo
Q )
T,._ T [R(R%4RIV, (g &) da . 74
Ya
Y
L2y
Tw ¢ -:-‘b(tzk*ﬂ)u.(t.u)clu : "
Ya

F

) ’ "‘Q‘ b ‘

Vo (P laz’e e 46 , 76
-0

V! 2 vt (oo

2

Vnt(;]: 2’ -Ew 3 ("cl(i o
- O

V“u.) = v“u.) ( 00)

y 3 ) e 1. i
The integrals u.‘ and Vu exhibit the same inherent

difficulty in evalustion ez did the treen's functions, that is,
the Integrel must e evsluated separstely upstream snd down-
stream of the point (3: 3 - In practical cases they must

a180 be evaluated separastely in each of the regions where

has a particulsr functional representation.
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By mesasns of these integrals, the expressions for radisl

end axial velocities are simplified to the following form

© ow
h(tur) ) ) hilar) (e Y
—u— - S — I - "- Ly
we - *&azeowr Tt OVt Z 2EaPt Vel s

st

2 . ‘ ']
—--' 3 zZ "zzl;: T “ {v“‘ ,‘ZV“‘ ,(3)-& Z‘\;)(
[ 3

9

- wV" Z (tu"’ T“u"{V\' -LV" (3)4' 2(3)§
— Zih')’n

The Use of Asymptotlc Expansions.- The evasluation of the
L) tu
Ta ,

Integrals is always possible by graphicai means if
analytical procedures become unduly complex. In thls form,
however, it is difficult to proceed with an snalytical
discussion of the solutions without actually carrying out
laborious genersl calculatiahs. A large peart of this difficulty
1s due to the Bessel's functions Uitter) gand UolEu¥) which
arise naturally in the solution of the problem., ' These
functions are not tabulated and only the first six zeros are
tabulsted (ref. 5). Therefore the chsrscteristic values are
not essily found. 4 erude method may be emploved which
utilises the asymptotic expension of the functions.

I'ne use of ssymptotic expaensions need not be restricted
to calculation procedures but may be introduced into the
general relations to simplify the analysis in svecisl cases.
The accuracy of the asymptotic expansicns for the Bessel
functions improves, of course, with increase in the argument,

The minimum magnltude of the argument &€w¥ occurring in any
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case depends upon the ratio of cuter to inner radius and is
agulte large when this ratio does not excsed 2.50. #ithin this
renge small errors are incurred vy retaining only the first
terms of each of the asymptotic expensions, This limit on
the radius ratio sdmits most of the axial compressor and
turbine applications but clearly excludes the problem of the
ducted propeller,

These expressioné for the Bessel functions of the zeroth

and first order and first and second kinds are

: i
S Joltur) ¢ —— (cos(t,.r)-t $iv u.n)
Ew—voo 1‘"8."

!
Jiw Yo (Eur) sin(g..r)-cos(tnr)]

J(.Vh -T.(tu V) !

En-»o00 'V-‘H_S_T ( Sin (Euw)=- ‘O%(EuV‘))
" .

80

L Y. (2uw) -

IR Y ] ﬁ;:; ( Sm(fur) + ““g“”

Thus the limiting forms of the functions U(&u?) aiid Uglta?)

become

j\'M Uo‘&n?) - 2
¢

wmree ’r’é'nr-l'.."a

cos £u(v- V)
=51

Liwm  Ui(enr) =z Sin Euq(¥= ¥a)

Ewntoo W;Zu"tﬂrﬂ

"

The cheracteristic values, &€y , are determined from the
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condition thet U(€u¥pYvanish for all vaiues of v . 1In the
asymptotic expression, these values nay be written down ex-

plicitiy as

L

Nz 3\, 2,8, -ooee

The sgquare of the norm may also be egsily determined

o

J&m »3 = Mo P U (eur) dv =

S .2
£ oo Ew=oo ELTN, | S Cutvy-va)dr

Vo

Yo va

2(Vy- Ve)
1‘.‘ "o. (u.'
The ssymptotic gpproximstion to the fundamentel integrals
for the radisl and axial velocity components msy be written

down directly:
!

(£} - R o~ -
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where f denotes the radius ratio ) and the variaebles with

a, .
bars denote division by the blede length, e.z. ¥ = ::-r; H
- ¥ o-Ya
3" v . The expressions for the radial and axlal
-3l 7% . :

velocities may now be writbten as trigonometric series with

variable coefficients:

..lﬁ- = ZZ(—L“) yrb°b‘a swune T, u) :-)_ ‘_f_’rb Z{J—u) ,“b “Sm“?LVBS

ns nas

o0
_:'_.’.E’-”z_ “3 '\’"coauan Vol 2V, (3)+n'ﬂ‘2 (‘5).{

na

oo
3 v = 2}
- ‘::b (—;"-n) 1} "Dv", coguuy T\? Vuu,-an (3,)*"“ Z&’D% 89
..2 :
[, % {! .

These expressions are of fmore use than mere spproximations
to the more nearly precise ones involving the Bessel functions.
The Bessel functions are tabulated in conventional tables,
references 3 and 4 , to values of the argumeni not exceeding
16,00, For arguments exceeding this value, the first terms of
the asymptotic expansions provide an excellent approximat ion
and indeed the most direct means of extending the calculations
to nigh arguments, i.e.,, to high characteriétic values, inas-

much as the same problem 1s encountered in calculeting the
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higher terms of the Green's functions, the asymptotic forms

of the CGreen's functions are given below:

Gla.g;v3) = ), % snie! MnunF smile

I T : “_1_1/"‘ -wrl3-8) 5 e o=
.0,9‘.3) Z Wit % @ conity suqnha 89
"nas

%o = =
Fla.gyv) = Z % 1/;(,9-"“\3' ® ‘) COSMMY Sumnl
ns, .

Solution for Vanishing inner Rgdius.- An important special

case of thé foregoing general analysis is that where the inner
radius becomes vanishingly small. This corresponds to the
ducted or shrouded propeller with smell driving shaft. For
vanishing inner radlus, the Bessel function of the first kind
automatically satisfies the conaition that the radiél velocity
be zero at the axis of symmetry. Since for intggral order,
the positive and negative orders of Bessel's functions are not
lineariy indebcnd@nt, the solution will involve-only Bessel
functions of the first kind snd the first (positive) order.
The resulting radiel and axial velocity distributions then

reduce to

R b? = P J.,(lnd)]..((nl‘) ~ Culg-
wir //E,? “Z"‘ 2 LuPy? b el dad@ 90
- 0D o ' ’
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All other relstions may be simplified for the vanishing inner
redius simply by replacing Uitte¥) gnd Usl€u¥) by J.Ctev) gng
J;(z,r) respectively. This case has the distinct advantage
of allowing direct use of tabulated values of the functions

a8 well as characteristic values,
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VII FIRST APPROXIMATION SOLUTIONS

FOR A SINGLE STATIONARY OR ROTATING BLADE ROW

As an‘illustration of solutions in the first spproximation
the problem ot ihe single statlonary or rotating blade row
brings out most of the interesting features of the'an@iysis
and physical interpretation., +the blade loading or vorticity
distribution will be assumed of such a form that the method
of the characteristic integrals may be applied. The solution
resuiting from the considerstion of an actual chord-wise
distraibution of vorticity may then be compared With‘the corre-~
- sponding solution for the case where the tengentisl velocity
is imparted dlscontinuously, that is, where the blade row is
replaced by a vortex sheet normal to ihe axis of symmetry.
this comparison corresponds to the analogous comparison of
the downwash generated by en actual wing with distfibuted
vorticity and that associated with the lifting line

approximation,

the Distribution of Vorticity.- Consider the spanwise

and chordwise distribution of vorticity given by the relation

§= L0 Tas &

which is typical of a load distribution giving significant
radial velocity components and producing a marked distortion
of the axiel velocity. ithe chordwise distribution of
vorticity decreases sharply toward the trailing edge of the

airfoil and hes an infinity of low order st the 1eading»edge.
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At any exial position the vorticity increascss with the blade
radius parabolicelly from a value of s.(‘*'(“),(" &) at
the blade root to 5.(|+("vb)‘)(;§“1)"’t at the blade tip. 'To
give the distribution more physical significance, the spanwise
distribution of circulation may be celculated directly. uhe
circulation about & corresponding physical blade is identical
with the sum of all radiel vorticity inecluded in a wedge of
2%

thickness equal to the blade chord and of vertex angle =5

where mn 1s the number of physical blsdes. ‘hen the circulstion

T = / /gvo(@d}

whicn may be evalusted in terms of the assumed vorticity

is

distribution.

+

-

Fom s gef (e & e ) d( )

-
P 3

- 4.&,1'"" | ‘ 95
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Yhe first approximations to the tangen£1a1 velocity snd the
vorticlty components corresponding to this may now be
computed for use in evalusting the cnsracteristic integrals,.
The tangentlial velocity in each of the three regions, consist-
ing in tnat upstream .f the blade row, that within the blade

passsge, and thet downstreem of the blade row i1s then
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v =0 ;.4-51
o !
v / f et (Foz)"ey
: ) L 04
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The distribution or axial vorticity shed from the blades is

also easily calculated for eaci. of the three regions

£ = 3

<l¢
"
0

- £
><" 3

= e (Zes) e ) Se3cs

= goq,.(lvz(-%)") 3> &

The Charascteristic Integrgls.- The values of each of the

characteristic integrals, equstions Y4 through Y7, may be
celculated through use of the foregoing results. the functions

R and EE are easily recognized from the expression for the

tangential velocity to be

R = (1+(£1%) 96

Z = 2§ ¢ (13:* )‘:’i 7 9

“Wo

[0
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Consider first tne integral 1; + From équatlou ‘4 it

follows that

iy /(H ") (25) o1+ (S ) U Eur)d e
Y ,

%
== | (e &K 1 3&%7) Utenr) diewr)
Yo

which masy be integrated directly as

Y
Tm . A [‘-4(—) - 3(—"— (—) ]U (&a7)
%) b Ew akl (-4 -
Pd.
Y
o . ‘ .
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Inserting the limits of inctegretio.., the final form of the

.
integral Tw . becomes

T e g (Eae )@ - i)+ (0pcany et

98
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3 { e tucava- (2 ”"“""’)E

The integral 'rwl’may be evaluated in a similar manner slthough

the result is not quite sc convenient inssmuch as it is not in

a closed form. From equation 75

Yo
T (z) _ v .
“w = (-;b)(erw.u..r)dv
v

Y
= £ [ () (13 Uleerrde
©
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Through repeated integration by parts
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The integrals Va (3} and Vuw(‘s\ must be evaluated in
three cases sccording to whether 3 is upstream, within, or
downstream of the blade row.

Case I. 2<%

v.,m&g) : o ~ 100
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Case II. -5 €3¢S
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Case III. 3 7%
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The integrsals Va “(3) and Ya' ! must be evaluated in & .
similar manner except that the integrstion is not so direct.

The integrals involved are of the type

‘__ ] ) l t'((‘ S’J(i e"‘: (—g—*--';).?e.‘“@d(i

eiu(ﬁ"‘t)" (B )’;' éu(g*“{)é(g_

e"(’*%)ﬂ‘- /[ct..( 5 4, el . d euelfey)

Inasmuch as the integration over @ extends from - % to 3
the varisgble _g_ ++ is always positive. Therefore the sub-

stituation )c"=£\,c [g""il is appropriste which gives

-4 E(3+$Y [ .2°
(Logi%e dgr 2VE e VB[ e

Therefore the results the integrstions Iinvolved in evaluating
(e) (€3} \
Vi (3) and VA will be given in terms of integrals related

to the incomplete error function.
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Case III. 3 ? -‘i-
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Hence the explicit solution for any of vhe three regions of
flow, 1l.e., upstream, within, or downstresm of the blade row,
way be written down through insertion of the appropriate

velues of the above integrals into equstions 8 and 79
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Sotution for the Vortex Sheet.- To obtaln the corre-

sponding solution for a vortex sheet, it need only be noted
that the jump of the tangentisl vortic.ty may be written in

the form
[f7] = 1ﬁo( au; Lo ) v (LYVo) 1lo

snd then apply the procedures considered in Part V; The
appropriate constants Alu R A: , B... , and B: may be
calculated directly from equations &6 and b7 through uée of
the equatlion 113 and the relatlions already calculeted in the

consideration of the solution of the problem with chordwise

vorticity distribution. Then

Ac: z = 298 ( gﬂ‘) /R(VR"’R)U-(iuV)dV‘ 4+

2 iuvu f'k—"‘-e “;t’ (Q?'-l— R)x' U-(‘ur)d\‘
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116
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The solutions for the radial velocity component upstream snd
downstream of the discontinuity may then be written down

directly in the form

£ -(ﬁac) Z Usllar) T ) €3

2 Lu Ve
3 <o
o
+ go‘ w iy, Uiléur) T €3 o
We Wo 2 £V _ ilse
wnae .
Uettuw) W -g.
( 2, Tty Y€ 3 3%0
LY 1 .
oo
+ ko‘ Wiy, Uil€ur) T. (2 -(,3 117
wo Wo  Z VS

wat

Clearly the radial velocity component is symmetrical sbout
the discontinuity so that ittis to be expected that half of
the change in axizl velocity distribution will take»place up=
stream of the discontinuity and half downstream. This result
is in agréemqpt with the well known theory of the actuator disc.
To determine the axial velocities, only the values of the
functions ¥ {¥) need be calculated in sddition te the infor-

mation already availaeble. From eguation b9 it follows that

Y' 2w,

¢ = (tuw) )
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Thus the axlial velocity components in each of the two regions

may be written down directly as

g' < )l Z‘ U ‘:V’ .r‘:l’ P €u “
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Inspection of these relatlons verifies the assertion that
the distortion of axial velocity distribution is hsalf
aécémplished by the time the fluid has reacned the plsne of
the dlscontinuity. |

Comparison of the Two Solutions.- The comparison of the

solution involving chordwise distribution of vorticity with
thet asssuming a tangentisl discontinuity is simple, and hence
particularly illuminating, in the case of a'stationary blade
row. Inasmuch as the radial velocitlies gre symmetricsl with

. respect to the center of the blade row in each distribution,
only the csse where })o need be discussed. Here the two
expressions for the radisl velocity may be written explicitly

in the form
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Tangential Discontinulty

Thus the expression associasted with the blade of finite
chord differs from that ssscciated with the vortex sheet
only by the insertion of the factor

Swly _‘—2-‘

¢une

F

Furthermore the expression for the blade of finite chord

reduces to that for the vortex sheet as C-vo 5 provided
that g,: ~ blade circulation remsins cénstant during the
process., : A

The dependence of this'faétor upon the geometry of the

system 1s clarified by inserting the asymptotic approximations
w T

for the characteristic values. That is &Eun=® v .
. o~ Va
‘Then E:t-ﬁ, ".‘2!.‘ ’V\—iv‘h: -’-_'1{'-8 where AR denotes the aspect ratio
of the blades. Also the parameter 8..;-0 wh -Z-V and
“VYoa

hence is & measure ot the distance from the blade center

line in terms of the blade length. Therefore the factor
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Sivh E%E — Stw i%&i
Euc nn
= zaeQ

is indicative of the rate of decay of the n'h Bessel component
of the disturbance generated by the blade of finite chOrd in
compar;éon’with the rate of decay of the same component
generated by the vortex sheet., The asymptotic values of this
expression are tabulated below for various blade aspect ratios

and component orders.

AR —» '
"l 5 3 !

\ l.otb L.o4as 1.460
2 (.0b% (.192 2.69

3 1S5 1.45 1. 67
4 .235 1.92  41.8

The influence of the chordwise vorticity distribution is
predominently smell for the high espect ratios and the com-
ponents of low order. For mcdium and small aspeét ratios as
well as for ceses of sharply distorted flow patterns where the
higher order Bessel components are of considersble magnitude,

the chordwise load distribution will merit consideration.
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VIII THE SECOND PROBLEM:

VORTEX COMPRESSOR OFF DESIGN CONDITION

The appfoximate analysis'involvlng only one iteration be-
comes exact for the case where the clrculstion is constant
along the blade length.because then the fileld is essentially
irrotetional and there sre no variations of the sxizl
velocity. Inasmuch as the solvfion of the second prodlem
converges more siowly than does the solution of the first
problem, 1t is avuropriate to investigate the former for =
case where the approximacvions are known to be relatively gcod.
Such an example is furnished by the vertex cormpressor
operating off the design condition where by "vortex" cémnressor
the case of con%tant ecirenlation along the blade length 1is
‘tmplied. As the operation of the machine departs from the
conditions for which it was Gesigned, the cirdulation veries
slightly along the blilade length and the motion of the fluid
departs slightly from irrotationsal. '

The Boundery Condiftions gt the Blades.- lnssmuch as the

circulstion about esch biade and hence sbout the turbomachine
axls 1s indeperndent of the radius, for the design condition,
the tangential veloclity component may be written

«* .
n, T R

2V
v 27y

and the gxuisl velocity iz a constent.

wres W’

-
ny
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the starred osuantities (r',otc) denote the vaiunes of the.
variables at the design conditiona. The gecmetry of the
guiding surfsaces with respect to a set of axes fixed in the

blede row under consideration is then given by

120

(¥ *» M7
20 r we

¢l

the tangent to the surface of a ststionary blade is then

given explicitly by equation 120 and is, of course, independent
of the speed of rotation. For the roteting biade rows the
situation 1s more involved. The tangentilal velocity with

resvect to the rotating wheel 1s then st design condition

* -
for ™ -
a2mr

et
4]
62}

inasmuch as the tangential veliocities of the fluid and the
wheel are considered positive in the same direction. The

actual geometry of the rotating blade row is

”®
* —-—-r— - w*r ST
( v’w) FX L4 L'
p—— =
w w

which gives the tangent of the blade sngle with réspect to the
rotor 1ltself. Inssmuch as it has been assumed that there are
an Infinite number of blades in each blade row, the direction
of the velcecity vector ié uniquely determined by the blade
contours (equations 12b and 127) at conditions slightly

different from design. Herce for the stationary blade row

——

v (2)": )
w wr

2nvr W™
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and the tangential velocity becomes

»
w73 ]
ve £, G 128

For the rotating blade row, similar conditions prevail snd

in particulsr

Vwy o - wr *'—:..-(r *(3))- w’r
() = 2= = (F2)- "

86 that the tungentiai veloclty in the rotating blade row

may be written as

e 2, (E29 _wre)sw -

Y

To spscify further the velocity outside of the blade rbws, it
is assumed, according tc the first eporoximation, that the
filuld leaves each blade tangentislly end continues with the
same moment of momenﬁum until 1ts tangential velocity is
changed through contact with the succeeding blade row, Wow

at the design condition the fluld from one blade row meets

the succeeding blades tangentially and hence suffers no sbrupt
tangential smcceleration. When the machine operates at con-
dltlons other than design, however, the fiuid 1s fofced o

te

Ite

change direction suddenly and in the case of an infin
number of blades there exists a tangentlal discontinuity or
vortex sheet at the leadlng edge of each blade row. Consequentiy
the vorticity associated with the blade is modified not only
by the equations 128 and 129 but slsc by the abrupt lncrease

of vorticity at the leading edge. This 1s the counterpart,.



79.

for the case of an infinlte number of blades, of the normal
Increase of vorticity at the nose of a thin alrfoil with
increase of angle of attack.

Calculatieh of the Vortieity Distribution.- For

calculation only equaticn 129 need be considered since 1t
~reduces to ecustion 128 by deleting the angular velocity,
‘Starting with thls expresslon for the tangential velocity
and using the first order assumption thét -%25 is small, the

radial and axisl vorticity components become

S' dv W or® N
&: %%.-5% = z(w--&:—’.w“) )

To determine the radlal veloclity 1t 1s necessary to find the

value <%3'. #ithin the blade chsnnel this funcition is in

firset spproximation

d
'5% < "J‘;(%(‘Vh + -a;';(wvg)\

. (w-Hwr) ar*
rr w® °% 132

inasmuach as %(Qp&)so. For the discontinulty at the leading
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edge of the blads row the function Efz- must be replaced by

[71 » However
[2] - [zb. L 289

wr Logliy - 2
]

= w[“"&]‘-!u;[%%':l 103

Thus in the form used previously there is the correspondence

-g—{(v&) — [vi] = C“"%%“‘%)J
and
-g;(wvg) — -[%“; . -%[h]-%rwtﬂ

assuming that the enthalpy distribution is continucus both
upgtream and downstresm of the discontinuity of tangential
velocity. The magnlitude of the jump may be computed from the
tangential velocitles given according to equation 128. The
velocity leaving the statlonary blade row is

v X (__I'_':_t_u) | | 154

while that entering the fcllowing rotating blade row is

simply

3

2T

v Y ( - “,g,,)_.,,,w 135
w

”
It is clear that [ (S)Temains constant in the space between

the blade rows so that 1t follows from eguation lsd that
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-[-v-g'l = 2r(w-w® :’")z 136

in a similsr manner it follows that
dh - ) 2 - o A
SHEE SLe

. x L
= zrw(w"w w.)

Then from equation 153 the jump in tangential vorticaity
component becomes

o W
~2v ™ (w- w™ T

['7] ® w | 138a

From the preceeding analysis it is clear that just the’
opnosite is true when passing from a rotor to a stator, that

is

'[:7] = lPOO*(cn-u”?%%;)

- 138b

Ewmations 1lo2 and los now give the distribution of the
disturbance in g vortex turbomachine operating off the design

condition.

The Radisl and Axigl Velocities,- Using these values in
the integral equatiocn for the radial velocities, the radial

velocity becomes

/(w-Lw') ar¥ A VP, ( Eux) e'fu\‘;-(!ld“d(s

T w*a 23 Z Lu PVt
- oD r‘ nee
: § | 2% (W~ co® Tow ) (=1) Zau.u..rw.(t.a) -E\3-p1
. @ .
wr Z £u1’n‘ &*d@
Ve ne
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The difference between the actions of the discontinuity sheets
and the blades themselves is pasrticulariy worthﬁ of note., The
discontinuities occurring at the leading edge of consecutive
blade row are of opposite sense and of very nearly the saﬁm
megnitude. Consequently the rsdisl and axlal velocity changes
induced by each are of opposite direction and as a fesult there
is only a small cumilgtive effect due to the variation iﬁ
strength of the discontinuities., The first term, however,
which represents tﬁe continuous influence due to the change

of the effective angle of the blades, differs from zero only
for the rotatiﬁg blade rows and these terms are aiways of the-
same aign. fherefore they contribute to a2 cumulative
distortion of the veloclty profiles, particularlﬁ the axisl
velocity. (Rigorously, the preceeding calculation will be in

ow

eryOor a8 soon as -1;; becomes of appreclsble size).

- To complete the solution, the eguations for the sxlal

velocity are given below
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The Essentisl Non-Lineafitz.- The radiasl and axlal

velocity components, given by equations 189 and 140 respectively,
exhibit the non-linearity of the boundasry conditions with
particular force in the term (w- -‘-"“-’-;w“) within thé integral.
The influence of the non-lincarity may best be shown by an
attempt to solve a particular problem of physicsal 1mpoftance,
ﬁamely:

-Consider a vortex turbomachine which consilists of con-

»
secutive similsr stages, that is Y is a periodic function

of known period. when operating st a c@nditibn different from
‘the design point, does the Tlow pattern become periodic in 3,
and if =0 how rapidly does it approech this periodic state?

If the problem is linearized by taking the ratio -EE‘
equal to the guotient of tne actusl to design flow rate,
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that 18, neglecting the varistion of sxial velocity within
the integral, then the "welight function" of the integral

equations becomes a constant, The periodicity i1s clearly not

obteined except for the case where -« r‘-‘:—’-r‘. This condition

we
represents one which 1s dynamically similar to the design

condition., This indicates that the eguations, even in their
approximate form, are exact in the limiting cases. wxcept
for these cases, however, tne axial velocity profile becames
continuously distorted until even in the crudest approximetion,
the radiael variation of axial velocity can not be néglected
in the integrand. Thus the apprrosch to the periodic solution
is completely dependent upon the variation of axial velocity
within the integral, as intuitively it must, since this term
represents the change of blade angle of attack due to the
change 6f operating conditions. By using the Gre@nfs functions
it‘is possible to arrive at a reasonably accurate solution by
going to higher order solutions.

The cumu;ative axial velocity disturbance is given by
the second integral and the second summatlion in equation 140.
In‘principle, then, theseltwo terms may be represented in the
integral form

T M
e
w

we (-q"' N %-;.) Lev.3) Kia, 8;r.3) dad §

we

141

If this possesses & sclution periodic in 3 , the other terms



85,

vOf egquation 14U will likewise have perlodic solutions. But
the period in 3 1is known to be (say) T where T 1is the
distance glong the 3. axls between similasr positions on
consecutive stages. rurthermore LAWE) must be of this same

period snd hence for periodicity

T , Mo
/ (D~ S (a.540) K(x, S+ ;7.3 dadp =0
(-4 'u. ’
so that from the integral eguation
w w =
Pt R M 143
this, together with the asuxilisry condition thsat
@ - y
s

constitute the existence conditions for & periodic solution,
the actual existence is clearly not dependent upon the form
of ke so long as it is perilodic, but only on the expression

@« | w and the kernel oi the integral eguation.
ws wrs . i



REFERENCES

Tsien, Hsue Shen: Symmetrical Joukowskil Alrfoils in Shear
Flow, Quarterly of Applied Mathematics, Vol. I, No. 2,
July, 1ly4s. |

Croceo, L.: Eine neue Stromfunctian fir die Erférsénung
der Bewegung der Gase mit Rotatlon, ZAMM B.17, H. 1,
Februsry, 1957, | '

Jahnke, E., and Emde, F.,: Functionentafeln, Teubner,

1909.
Watson, G. N.3 A Treatise on the Theory of Bessel

Functions, Cambridge, 1922.



