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SUMMARY

In an effort to obtain séme understanding of the processes
involved in the rotational motion of a perfect fluid several
particular linearised examples of rotational flow are solved in
detail, The first part discusses some types of boundary value
problem whiéh arise. The solution of the non-linear partial
differential equation by a particular iteration process is
considered and the process 1s shown to converge for an extendsd
version of the problem when the vorticity distribution is
sufficiently smoothe. The first step of the iteration process
may constitute a good spproximation in these cases and is
taken as the basis of linearized sclutions studied in the
remeinder of the work.

The process of straightening & non-uniform velooity profile
by meens of an idealized screen is considered in Part II as a
problem in rotational motion of an ideal fluid with the screen
replaced by en appropriate non-conservative force fielde. The
detailed solution is given for both the linearized problem and
the second approximation. Ths complete second order correction
is less than 6 percent of the local velocity given by the linear
solution for a rather severe cases. The corrections arising from
the various physical processes involved are anaslyzed and found
to exceed 8 percent in some cases but are inherently compensating.

The two=dimensgional rotational flow about a closed body is



obtained gn Part 111 by utilizing the Greeﬁ's function method of
solving the inhomogeneous differential equetion involved; The
conformal transformation which maps the given contour into a
~e¢ircle is used to find the appropriate Green's function for the
contours Solutions are then written down for any body, the
Riemarnn mapping function of which is lnown. The Blasius force
and moment formule are extended to include the case of general
rotational motion, the relatisns of Kuo appsaring as special
forms where the vorticity distribution is uniform.

In the finsl part the theory of the three-dimensional flow
through an axial turbomachine, asscciated with variation of
circulation along the blade length, is described as an extension
of the classieal theory of finite wings and is simplified to a
problem in axially symmetric rotetional fluid motion by consider-
ing an infinite number of blades in each row. The linearized
problem is solved for the radial, tangemtial, and axial velocity
compenents induced by 2 single row of stationary or rotating blades
with finite chord and prescribed loading., The particulsar case for
which the blade chord approaches zero, end the tangential velocity
changes discontinuously, is associated with the theory of the Prandtl
lifting line for finite wings. The complete solutiom is given for
a single stationary or rotating blade row of given loading with
a hub/tip ratio of 0.6 and blade aspect ratio of 2. The correspond-
ing discontinuous approximation is compared with the more nearly

" exact solution and is shown to constitute a useful approximstion



tc the solﬁtion for a finite blade chord when the discontinuity
is located appropriately. An exponential approximetion for the
velocity components, deduced'from the analysis, allows rapid
estimation of ths rate at which the equilibrium velocity profiles
develop shead of and behind a blade row and, using the superposi-
tion principle, provides s simple means of approximating the
voloecity dustribution in a multistage turbomschine and of discuss—

ing mutual interference of blade rows.
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INTRGDUCTION

The growth of the classical hydrodynamics in the middle of
the nineteenth century owed much of its vigor to the realization
that the assumption of irrotationality led to a set of linear
problems similar to those of potential theory which had been
developed to a considerable degree., The physical implications
of irrotationality have proven reasonably valid, except for the
boundary layer on a solld surface, for a great variety of problems
and have served particularly well in ameronautical applications.
However the recent developments in high speed flight, reaction
propul sion, combustion in a moving fluid, etc. have given new
impetus to the study of rotaticnal fluid motion.

From a scientific point of view the principal interest in
rokational flow lies in the fact that it is a non~linear problem
the behavior of whose solutions is not well understood physically
or mathematically. Inasmuch as there is, at the present time,
little chance of sclving the non-linear problem with any degree
of generaliby, the sclutions investigated are of a linearized
type. In fact the present work conslsts essentially in a whole-
sale exploitation of a particular method of linearization where
the transport of vorticity is fixed according to the streamlines
of the irrotatlonal solutlon.

Clearly the most interesting of the problems involved in

rotational fluid motion are left untouched by such an analysis.



However if-is felt that considersble familiarity with both the
mathematios and physics of the problem is to bse gained by consider-
ing these linearized examples in some detail. PFurthermore such

a linearized analysis serves the purpose of isolating thoss features
of rotational flow which are essentislly non-linear in much the
same menner as investigétion of subsonic and supersonic linsarized
flow has tended to emphasize the properties of transonic flow which
are essentially non-linear. Because of the abundance of examples
from which to choose, problems treated in the present work have
been restricted to thosse which have some interesting and famlllar
physical counterpart. This is done not solely to insure technical
interest but also because the physical guldance necessary in work-
ing with epproximste methods comes much‘ more freely from familiar
physical situations.

The work is presented in four nearly independent portions
connected only by the general subject matter and the nature of
linearization employed in the anslysis. As a consequence it is
more readily accessible for one interested in a particular problem
than if it had been made artificially continuous. - the first part
discusses the general problem of plane and axially symmetric
rotational motion with and without a non-conservative force field.
The solution of the problem by iteration is described, the first
step of which is the linearized solution used in the remaining
portion of the paper. The second part applies the first and

second approximations to the problem of straightening a non-uniform



flow by means of an ldealized screen while Part III considers the
general plane rotational flow about arbitrary closed contourse. The
final portion deals with the flow through an axial turbomachine as

‘a problem in axially symmetric rotationsl flow with a non-conserva-

tive foree field. Solutions for the linearized wveloceity field are

obtained with reasonable simplicity.
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ON THE APFROXIMATE SOLUTION OF SOME BOUNDARY VALUE PROBLEMS

IN THE ROTATIONAL MOTION OF A PERFECT FLUID

1. Intreduction:~ The mathematical difficulties sncountersd

in solving problems concerning rotational fluid motion result
from the non-linearity of both the equations of motion and the
boundary conditioms. The non-linearlity in the sequations of
motion arises physically from the dependence of the solution
upon the distribution of vorticity which is determined, in turn,
by the menner in which the vorticity is transported by the final
velocity field. Non-linearity of the boundary conditions appears
when the rate of vorticity generation is determined by the
interaction of final flow with given solid bowmdaries instead
of through the action of known forces.

Unfortunately the physical problem is not completely clear
in general as to just what boundary conditions are prescribed.
it is obvious, for example, that the vorticity may be prescribed
upstream on a transversal to the streamlines and that certain
other information on the flow mmy be given at the upstream boundary
of the region concerned. IHowever it is not quite certain what,
if enything, can physically be prescribed far downstream or, in
fact, just what dovmstream means in come cases.

Physicelly it is of considerable importance to determine a
reasonsble linear approximation to the solution of rotaticnal flow

problems. It is clear that the necessary condition for linearization
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is to negiect the interaction between the vorticity and the velocity
induced by this vorticity which, in bturm, implies finding a manner
of prescribing a priori a vorticity distribution whioh is a good
approximation to the final one. The fact that this is not always
possible suggests an iteration procedure of solution a few steps
of which may lead to a satisfactory approximation.

Hence the problems which are of both physicel and mathematical
interest are to find,'for a particular statement of the physieal

problem,'conditions under which

e) A solution of the problem exists.
b) The solution is umique.

c) The solution may be found by a particular iteration process.

For the non-linear sgquations involved in rotational flow this is not
. a simple matter for although it seems reasonable on physical grounds
that a solution exists, it is equally plausible that it is a
discontinuous one, or one corresponding to instavility. Furthermore
it is quite obvious that the solutions are not wmique under scme
circumstances althcugh festures of the problem on which the wnigueness
depends are not easily singled out. Consequently these questions

are investigated in the following section only to the extent of show-
ing some of the interesting ccmplications_which may arise, In order
that the iteration end approximation have physical significancé, the
process of vortliclty generation and transformation 1s considered

first following which the equatvions describing plane rotational



flow are 's;'rit'ben dovm. ‘the solutioms for several statements of the
boundary value problem are then discussed and an iteration process
is developed the first step of which is denoted the linearized
approximation for the rotational flow problem., A similaer program
is undertaken for the case of axially rotational flow with and

without a tangential veloocity component.



2e Generation and Transformation of Vorticity in a Perfect Fluid: -

The steady motion of a periect fluid is governed by the Eulerian

equation of motion
ajui,zl*'fi'/‘}i = £ /,/: /2.3
and the continuity equation

Wiy = O

whers the W, are the thres velocity components in the cartesian
coordinate system X; ,p and P are the pressure and density, and

F: the components of force per unit mass, rThe process of generating
and transforming vorticity is shown most clearly by taking the

curl of the equations of motion and using equation 2.2

af

T *d big < bges v e P

where the é = éﬁf'? Uy k are the vorticity components in
the %, coordinate system. Now & small closed path in a fluid
possesses a circulation corresponding to the number of vortex lines
pessing through it or, in other words, a circulation equal to the
product of the ares enclosed by the path and the mean value of the
vorticity normal to this area. ‘“hese vortex lines constitute a
vortex tube the circuletion of which is unchanged through all
deformations of the fluid except in the presence of a non-conservative
force field. Deformations which extend or contract the vortex tube

along its length will increase or decrease the vorticity correspond-

2.1

242

243



ingly as £he path around the vortex tube contracts or stretches.
All other deformations merely change the local orientatién of the
tube. This process is expressed mathematically by equation 2.2,

In the case of conservative forces éﬁ? /}Q_k vanishes
and equation 2.3 deseribes the progregsive distortion of a rotational
fluid motion by the rate-of-deformation tensor ch}f. Clearly the
diagonal terms «,/,; represent the rate of increase of the length
of the fluid filaments in the ¥; direotion snd &; &,/  denotes
the rate of increase of f& resulting from this stretching. The
terms “5} (i#}) represent, on the other hand, rates of rotation

of planes normal to 7; and hence the rates of rotation of vortex

filements normal to these planes. Consequently the terms f; Ltg}' (i#d)

denote the kinematioc rates of turning the fj vorticity component
into the 7; direction. If, in particular, the flow is two dimen-
sional and the force field is conservative, the rate of change of
Torticity along a streamline vanishes and the vorticity is a property

of the streamlines.

In a non-conservative force field a rotational motion will be
generated from an initially irrotational one or the vorticity of
an existing rotational field will be modified. For if € is a path

with tangent wvector A; enclosing sn area S§, the curl of the force

vector is
Cisk F1,k = «g‘i‘:o '-‘g*ng' dd;

where the integral represents the unbalanced moment per unit mass

2.4
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tending t;-set up & rotation of the individual fluild elements.
The conditions necessary for linearizing the robtational motions
follow directly from equation 2.3 by considering a known initial
‘rotational motion with velocity and vorticity components U; and
Z;respectively, to be perturbed by another flow u;y §; result-
ing from either & chenge in vorticity far upstream or an additional

set of forces. Then
U}(al"'éi),‘ +u"’(2;*§;)’}“ = (a}'+§})u..’a~‘ ’(ié‘fa“)u“;j.* 6-'}k F}l’k 2,5

which expresses tho fact that the initial and perturbation vorticitiss
are transported and transformed separately by the initial and pertur-
bation velocities. The expression is linearized by deleting the
transport and deformation of the perturbation vorticity by the
velocity associated with perturbation vorticity. Negleoting this

interaction

U;‘,(i‘.;*h)’a; +u.3'.?_’;’a'_ = (23"*%)‘“"3" !»Z.j, Uig v Eijr F}yk 246
and the validity of the linearization depends upon the magnitude
and smoothness of the perturbation as well as on the nature of the
initial flow,
The equations of motion which correspond to this linearized
vorticity transport process are
'gE b= gl (Vg vjpur wizk) o 2.7

where P, the local stagnation pressure is defined in the linearized



“1i=

form as

P opr o (U304 2U343)

and pp is the local static pressure.

248



3. Plane Rotational Motion: - The rotationasl motion of a perfect

fluld confined to a plane is particularly simple because tha
vorticity 1s transported unmodified along the streamlines., In

this ocase equations 2.3 rsducs to the single relaeblon

“: fal 0 c ,-—2,1 - F;;Z £ z (xi, wi) 3.1

if now the stresm function1p is introduced with the properties
: - nd lin : nstant are d j -
Poe-ta 5 pas Wi o and lines ¢ constant are denoted stremn

lines, then equation 3.1 becomes

_w%v‘zp = %("H%i) Be2

"

w%(f)

where w is the megnitude of the velocity vector Z/u.‘m.* snd s
is the arc lemgth neasured along a stresmiine. <This eguation is
clearly nen-linear and care must be exercized in specifing the
boundary cvonditlons. For comsider the Tuleriem egquations of motion

and the constant equations wnich describe the flow

du. P ‘ r
L, — = — e— & F;
27. T3t T x
. ;E? + Uy %ﬁs + é— j%? = Ff
z’ 3
‘ * 3.3
., . Pua o
2%, 2%2

and consider values of «.(4) , “e(Ad) , p(A) , prescrived along
a curve 1, (A) ,7.(A) -with parameter A. Along this curve the

derivitives ars related



duw Az . 9w Ax, da. ()

2. a2 Xs A2 A2

2_& _iEl " ?&_A_&c = -M

L AP 2%a: A2 A2

e dx , 2e Ax, , AP o
2X, &) Pxa AP A

Hence unique algebraic evaluation of the first velocity snd pressure

derivitives from equations 3.3 and 3.4 is possible if and omly if

)
[V U, © -] — [~}
)
1]
Fo) © “4. Uz o ‘9_
\ © t o © o
(]
‘ ' * 345
X‘ xl (4 ° e ©
o e :l. Xe © o]
o) [~ & [ x %

But if the curve along which these values are prescribed is a stream-
line, an additional restriction is imposed, namely that the velooity

be tangential to tne curve. This relation

assures the vanlshing ol whe determlnant so tnat unlque solutions

do not exlst in the neighborhood of a streamline along which initial
values are given. Physically this is clear, for if velccities and
pressure are given along a streamline the neighboring flow is not

determined unless the velocity gradient normal to the streamline,



wlda

1.8+ the ;orticity, is prescribed also., Consequently the streamlines
are characteristics of the sef of differential equatian§ 343 gnd
hence of equation 3.2, The bomidary conditions must be preseribed
on transversals to the streamlines and cei‘tain of these, namely

the worticity, upon paths which eut the streamlines only once.



4, The Boundary Value Problems: = Clearly the boundary value

problem for rotational flow may take one of several forms and

the first example will consist in the following ph&sical problem:
Consider the flow between two arbitrary walls when the stream
function and the vortielty are prescribed on an upstream transversal

and the flow direction is prescribed downstream, find the stream

function throughout the domaina .

Figure 1.1

Within the scope of perfect fluids this corresponds to the follow-

ing mathematical problem

ur-?—‘vt =0

?s
€- 6.0 om AD; 18 em K, €y $Kq
= K, Ko ow AB, Dc ; Ku?\, 4,1

‘P o “Lx.}) onw AD

LA SN ) %5% - bcr,*a) %’-’- =0 ouw BC
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where S isf the arc—length‘measured along a streamline., If it is assumed
that no stagnation points (i.e, point where wee ) will occur except
on the solid boundaries, then the differemtial equation is emsily
integre.téd and the boundary condition on & employed to g:’wé an equi-
valent problem

Ve o= - tcy)

4

$ = fuwy) ouw DA 4,2

K')K& own ABI D<

) °
aee Bl co o EC

Here the differential equation expresses the fact that the vorticity
reamins constant along the streamlines and hencs depends only on
the streamlfunction ¥ . However f, is defined physically only

for K, 2 ¥ 2K, so that the differential equation V‘Sb-’-f,ub)
'is defined only over that part of the region R for which Y lies
within this range. Physically this means that conditions may arise
where, for exsmple, closed stresmlines appear within the region
(Pigure I.1) for which no vortieity value is preseribed by the

jinitial values ?, » But this clearly involves at least one

Figure l.2



stag/na'tion( point within the fluld field and hence is related %o
the original assumption that the gradient of the stream funetion
has no zeros within i .
For purposes of solution it will be sufficient to extend
the definition of the vorticity on the stresmlines to cover
all péssible values of the stream function by a function _g-, q€))
which agress with !D,(q)) in the range K, 2 ¢ 2 K, and is bound-
ed and continuous elsewhere. Then the solution of the problem
may be divided into two parts: +the solution of the homogeneous
equabtlion with inhomogeneous boundary conditions, and the solutlon
of the inhomogeneous equation with the homogeneous bowndary
conditions. If Y, is denoted the solution of the elliptic
equation w:.th mixed boundary conditions
\ V‘\Pa =0
Yo = K., K. ow AB, Dc
o = $uryd ou AD

] )
&s*;+b?*‘; 20 ou BC

and if P = Yot yy , then ;; is the solution of the problem

with homogeneous boundary conditions.

Vo -- b (pord)

(Z:o on CDAB
Aa_t._‘_b?.f. 0 ou BC
ox 33

But these mixed boundary conditions are still those of an elliptic

4.3

404
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equation so that if '(;(x:%;§,7) denotes the eppropriate Green's

function, the problem 4.4 way be transformed into the non-linear

integral equation

y; :/ﬁ(x.g;&.‘,)i(h:—ﬁ)d&d»?
&

Consequently equation 4.3 and 4.5 constitute a problem equivalent,
wnder the assumption of non vanishing gradient ¢ and the extension
of $, , to the problem 4.1,

The non-linear integral equation 4.5 may be replaced by a

sequence of linear problems

{Z: z //ch.;;ﬁ.",) f_.w.ugo(«,
. K |

:{;nb| B //G(’f?; g.") f_:, ((f.-l» l;,.) JgJ’l’

if the iterated stream functions VY, form a convergent sequence.

Now this iﬁeration process has a very simple physical interpreta-
tion with regard to the linearization of rotational flow mentioned
in paragraph 2, The first approximation ﬂ; corresponds to the
stream function of the velocity field induced by assuming the initial
vorticity to be tramsported along streamlines 1% of the irrotational

flow, This corresponds, clearly, to neglecting the interaction

betwesn the vorticity transport and the velocities induced by this

445
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vorticity.  Then higher linear approximations, say 1‘1“;, , corre-
ponds to assuming the vorticity to be transported by the basio

irrotational flow and the nbh s.?proxima’cion to the rotational part

of the flow,

If the Green's function G(x%Y; £.1) has the property that

’ [[GU-M.*;MH«, < M 4,7
R |

for all values of ¥4 in® , then the Yu are uniformly bounded

‘ QL i b Mw ; w2 VMA«‘ g,‘

Purthermore considering the sbsolute value of the difference between

any two suceessive approximetions

| Puei bu ] = \ ”G(x.‘;;‘;-v)(§,t¢»*$~)-§.wnfﬁ-'))a\gol«,‘
R

4.
M way ‘ Hll Wu"Pu--l

I~

4,8

a—

(11 eee | A1) 15

14l

and this inequality holds wuniformly for all Y in € , Hence if

vaax ‘ %‘ is sufficiently small so that
45
™M —=1 <«
m,g‘ e

the sequence '\P. of iterated stream functions converges to a solution



wR (=

of 4,5 and this solution is unigue. Furthérmore if this solution
ig such that 1y0+\i; = 1‘; has a non-vanishing gradient at all points

and involves only values of Y
Ko 2¢2K,

the résult is a solution of 4.l.

The restrictions which it has been necessary to impose on
the problem are of partienlar physieal significance and interest.
A point at which the velocity or the gradient of ¢ vanishes

corresponds to a saddle point in the region of flow.

Figure I.3

A fluid element moving along the streamlines Y = « ‘toward P
never reaches P because of the vanishing velocity. Hence the
process of vorticity transport does not describe conditions at the
point P since no change of prescrip’éion on the streamline '«P: X can
modify the vorticity at P . Consequently P is a singular point

of the vorticity disbtribution so that if the iteration process of



=Pl

solution(just described leads to internal stagnation points it is
certainly not unique. If, however, it does not lead to stagnation
points and ranges over only the restricted range of ql, then it is
the only sudn solution. 1i, on tne'étner hand, the process leads
to a velocityfield with intermal stagnation points it is neo
indication that a solution frese from these singularities does not
exist, for cleafly a singularity may';rise in the course of the
iteration and remain there. The occurance of such a phenomenom does,
however, suggest that the singularity-free flow might be unstable
to perturbations of sufficient magnitud: %rea‘ce an internal
stagnation point momentarily.

The condition that the initial vorticity distribution be
sufficiently smooth, 1l.e, nnmx‘{iif\ be sufficiently small,
leads to the possiblility of a first order approximation or truly
linearized solution. For the difference between the first and

second approximations to the rotational part of the stream

functions may be bounded wniformly in XY

U - | 4 =
AR V\w%\diﬁ’ﬂ‘l’-l 4,9
so that if wl%% iz a sufficiently small gquantity the

second alteration to the flow pattern produces changes of W of
goecond order with respect to the first. This is actually then

a perturbation solution where

Y= Pt



w2

with any desired accuracy for a sufficientiy small disturbance

‘dk.

Another peint of some interest may be brought out by consider-

ing & slightly modified version of problem 4.1
o) 2
Wwas VY
§- fo(x.4) ow AD  1%cl £w
Y =K ,K. on AB, Dc; K,>K,

22»* b 2%; =0 ou BC

aq: +da—§ ow AD

The formel procedure end restrictions follow similarly as before
but whereas previocusly the curve AD was known to be a transversal
because the stream function was prescribed monotonically on it,
this is no longer clear and it is possible that at any point in
the iteration procedurs the streamlines may loop back and cross

the initial curve again thereby invalidating the assumption that

it is a transversal.

»

Figure I.4

4,10
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The condi%ions wnder which this phenomenom occcurs are related

to all boundary values prescribed and not merely those on the initial
transversal. An investigation shows that the physical situations
‘related to the mathematical problem 4.10 do not make sense with the
vortiecity prescribed as & function of position along thé initial
curve but rather as a function of‘w itself, TFor example in the case
of a channel with two sets of guide vanes which prescribe.the

direction of the veleeity, it is a

D/ ISR NIRRTV IN I RNIIN S IINE NI

ziml

FEENY
Tan

/// 77 77272¢7 7 12727 7777 TP77 771777777777
7

A
P

SN NS

Figure 1,5

distinect physical possibiiity that the presence of the downstveam
sot of wanes may ocause a reversal of flow in the first set of

' vanes without making the flow physically invalid. But it is
~equally clear that in such a case the vorticity must be prescribed
on the streamlines from conditions other than the point or points

at which it crosses the plane of the guide vanes. It is clear,
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therefore; that replacing the condition §°= fo(x,3) in problem
4,10 by the condition §,= fo(y) gives & problem making
physical sense and offering no essential complications over those
offered by problem 4.1,

I+ is interesting to note the influence of the hyperbolie
nature ot rotational flow in the difficulties encountered in
discussing possible solutions. The streamlines are true hyperbolic
characteristics and the terminal stresmlines on the initial curve

cut out a domain of pseudo-dependence in the sense that the vorticity

Figure I,.6

is determined only in this region. The cases for which the iteration
process holds are those where this domain coincides mﬁiﬂz&{. In a
menner similar to that for non-linear hyperbolic equations, the
initial velue problem has a unique solution iﬁ the neighborhood of
the initial curve.

Considerations so far have been restricted to the cases where

the force field 1s conservative and hence does not change the



rotational character upon a streamline, Isia.ny of the most inter-
esting problems, however, deal with a non-conservative field of
forces which depends not only on position but also upon the local

values of the derivatives of ¢ + This problem may be posed in the

form
W )
. 3¢

to

Y = K,,K. ow AB,cD

¥
a9 ,2% ., ou Bc
X a;

vy = - g 3.5

—

o)  ouw AD

n

"

-hx.'é) ow AD

where for l gj’-:-" N. 3 l %l ¢ N the function 7 vanishes out-
side of a closed domain DC® and is bounded within this domain.
With the provision that wto in® , the differentiasl equation
and the bowndary conditions on 6, may be transformed into an

integro~-differential equation

"¢
- 2
vy = - £, y) - (g 555 ds

¢
= -hw-/?(x'si%“f*%%’*s
Y

where $ is the arc length measured along a streamline and the
integra’sion is carried ocut along a stresamline 1’/ : constant from

the initial curve to the point l,'a, » As in the previocus example

4.11

4.12
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if VY, denotes the solution of the homogensous problem 4.3 with in-
homogeneous boundary conditions, then (p = Yot ¢ where \;i is

a solutlen of

vq»--&,cqn /7 (x.9, ?“"’*“’, a“"'*"’).x

Yo sy
\p s o ow CDAB €13
a.ﬂ 3“, ow BC
kN
This, in turn, is easily transformed formally to an integral
equation
5.7
? w D Yot
I{G(xu &) g Ly '-7(§7, % —Q—)Asio\‘;o\a( 4,14
Yot
where G(x.ta;sn,) is the appropriate Green's function. The
solution 4.14 may be found as the limit of a sequence of linear
problems §f7
/{Guz £3){ £ b+ 31 (49, 25 a a;)o\s}o\ﬁo‘vg
Vou = [|G € ww 4ot & 418
A (xts ‘;“1) ((‘l,f‘{)..)# g g,? ot Yu o’? ")AS Jk‘l’z
Yot the
7 5eni
if the limit exists. But even though the function 7(5’7, s ‘A: gaﬂb)
is bounded in D and vanishes outside of 2, it can not easily be
A
shown that the integral / #'ds is finite for all » and all %.4

Y
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in D, It is not clear, for instance that the path of integration
within D remains of finite length for there appears no reason why,
upon successive iterations, the particular stresmline may not wind

about in the region as long as it pleases.

Figure 1.7

This implies, however, that the streamline is either reentrant,
that is closed in D, or comes arbitrarily close to one point an
infinite number of times, In either case an intermal stagnation
point ococurs. The difference between the limitations on this
solutlon and on that where only initial vorticity wes present liss
in the existence of the limit of the iteration process. When only
initial vorticity was present the process could be made convergent
by extending o to éi end then the final solutions checked for
singularities. In the present case, however, the iteration process
is not known to be convergent even for the extended problem. It
seems physically probable, however, that the sequence 4,13 will

converge if the forces are small enough and the distribution

smooth snough.
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5« The Distribution of Energy and Pressure: -~ The local wvalues of

. - P P
the static pressure P and the energy ?/? = F‘ + b_l_ag__ may easily

be found by considering the marmer in which the energy is transport~
ed and changéd by the flow process. Scalar multiplication of

equation 2.1 by the veloecity gives ths result

Uiuqg
(C80), 0§ R s

or

o “d4d = £ -
“( > +F)ji—ua(g),;~ﬁu; 541

where tL;(%;xi represents the rate of change of energy in pass=-
ing with the streem along a streamline V= constant, Clearly then
when the forces wvanish, the energy remains constant along a stream-
line and its value along each streamline can be determined, except
for a constant, from equations 2,1 and the initial values of the
vorticity. Consequently the'derivatives of the total energy

distribution are
P
—_— = - H C
g )i hi Sece 542

from which the energy distribution /L(,W) follows directly and also

the static pressure distribution from the definition of the energy

per unit mass.

Where the forces per unit mass F; do not vanish identically

egquation 5.1 gives its variation to be equal to the rate of work

done on the fluid by this set of forces. That is



wpOm

2 (PY . - . ‘
“’53(9)"":'“‘ 5.3

which may be integrated directly to give

I‘DX‘
P(XIJXL) = —P—g(w) + u'.Fl, J 5'4:
¢ s w 2%
Y

Thus the energy at a point consists of the sum of that transported
from the initial line according to equations 5,2 and that generated
by the force field as the fluid passes along the known streamlines
to the point X, , X, , corresponding to the integral in equation
Sedes Again the local static pressure follows from the lmown

velocity components and the ensrgy distribution caleculated above,
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6. Axially Symmetric Rotatiomal Moticn: - It is to be expected

that plane rotational motion will prove to be a special case of
axially symmetric rotational flow. The manner of treating the

_latter bears much resemblance to that for plane flow but involves
ecomplications both from the less simple geometry and from the
additional degree of freedom: the tangential velocity. Consider
the flow to be described in a cylindriéal coordinate system v ,1% ,
¥, with corresponding velocity components & , U7, W, The existence
of the tangential velocity does not obviate the use of the streanm

function with the properties

L

. oo oY ‘
“ 2% A 7~

whoere because of the complete axial symmetry, the continuity

equation
or ¥ 3

and hence the stream function does not involve the tangential

velocity #~, The motion is governed by the Bulerian equations

of motion Y
rb-wy = - A 5Z
arf-u.f = - fp

o4
wy-vf = -+ 5T

where the vorticity components are defined as

6.1
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In anslogy with the case of plane motion, the component of

equa’cien 2.3 normal Yo the plane through the axis of symmetry is

considered
2 - | - 2. - 2F; 25
as(vé w?) (u7-¢f)_ F. 20

where from the continuity equation 6.2 it follows that

2 23 9_'_"‘.5.. v 2 F_ 9Fg
“ o EViwe o (Tet B3 )¢ 55 5

But if it is noted that ¥ ZJ:;( ) (a—z ?)‘} ?J it is clear

that if the differentiation is carried out along a stream surface

where —3%_: = i“ s the right side of equation 6.6 may be re-

written to give

— =

2vf 20§ 3F_ 21,
(%):!;( v '-;3 + 3& ars)

(ur'—‘+l¢"‘ (7)_’-' Vd-é"s

Eguation 6.7 may be integrated slong a stream surface 'y a constant
and, employing the veloeity and vorticity components in terms of

the stream function, the integro. -differential equation becomes

”
ovf 2§
P L3¢,V Feyy, L. 1_:____:’_2_4~
-"'-[3{:& Yar = ozt )' v (P

¥

This relation bears close analogy with that obtained for plane

64

645

647



flow except for the terms involving the tangentiel wvelocity. Inas-
much as the differential uperator on the left denotes the tangential
vorticity at any peint of a stream surfaceZ the first term on the
.right represents the transformation of the initial vorticity. Be=
sause of axial symmetry any deformation of a tangential vortex
ring-consists_only in changing its radius and hence in chenging

its length. But.according to the effect of stretching a vortex
filament deseribed iﬁ paragreph 2, this deformation incresses the
vorticity of the vortex line according to the ratio of the
instantaneous and initial radii. The third term on the right of
equation 648 corresponds to the summation of the tangential
vortiecity generated along each stream surface by the non-con-
servative’force fisld and to its modification by the rutio of

the instantaneous radius to the radius at which it was génerated,
For zero tangential velocity the remaining integral vanishes so
that plane and axially symmebric rotational flow become formally
identical., The naturs of the second integral on the right side

of equation 6.8 may be seen by writing the numerator of the

integrand in the form

- 2 vt
g% 0'§4-§%‘v'§ = 53. (‘7?)

which represents the curl of the centrifugal force and depends
only on the tangential veloclty. Consequently the second integral
is similar to tho third except that the foree field is génerated

by the centrifugal field rather than by the prescribed forces,
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Because of the axial symmetry, the tangential velocity

enjoys a deogree of independence from tho other velocity components.

For according to the second equabtion of motion 6.3

61 g%;4-a>5%w)rzr = rhs

where if the differentiation is carried out along a stream surface

4 (ve) = F
v Ads ¢

which states the physically obvious result that the rate of change
of moment of momentum with time is equal to the moment of the

tangerrttial force. Upon integration along a streamline

As in the case of plane robational motion, the stream surfaces
are again characteristiec surfacss and the boundary conditions
must be arranged so that the initial vortieity components are
preseribed ohly once on each of these surfaces., It is to be

noted that the initial tangential velocity of equation 6,11 is

determined, except for a constant, by the axial vorticity

component,

649
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7. The Boundary Value Problems: -~ In stu@fing same of the boundary

value problems which arose in plane rotational motion they were
divided into two main classes accordingly as the auxiliary force
field was or was not conservative. In axially symmetric rotational
flow the same division may logically be made but in addition the
effects of the force field must be considered in the part result-
ing directly from the forces and that resulting from the centrifugal
forces set up by the 'Eangential velocity which, in turn, is caused
by the tangential forcss.

In the case of axially syxm:xet;ric rutational flow with neither

forces nor tengential velocity, the problem is

VLT @S &G -

Y= K.,X2 ew AB, cD | Ka > K,
Y = $vri3) ow AD

2 ? -
a-a%ﬁrb;'g“o ow B¢ . Tel

:':':-5' L—(W) o AD; \%“4"; Kzzszl

Ve

T PRI T T 77 7

Figure 1.8
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This corresponds, for ezample to the physical problem of the
longitudinal motion of a solid of revelution in an axially

symmetric jet of varying entropy. Clearly the problem is

s . o ¢ 10
formally the same as problem 4,1. Thus if ﬁar/ +75§/¢ £ o
the solution may be represented in the form @< @,+ g  where

v ?, = 0

q’o

Yo < {(7-5) omw AD

n
R
=
'
>
=
o
v’

and
v - //zG(h;;«.F} -’,?‘—'-(p,ﬁﬁ)al«,((g
R
where G(r,;;“,{s) is the appropriate Green's function satisfying

the homogeneous boundary conditions. Equation 7.2 is simply an

elliptic problem with mixed boundary conditions whereas 7.3 repre-

sents the limit of the seguence

‘;: z /AG(K;;a,(Q) ‘?,,':'(%)Aau(ﬁ
R

1;7.,,' s «KG(r3;x.8) @é,(w&.) J«AF
R

T3

Tl
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if the limit exists and the limiting solution involves only values
of § over which %:(W) was defined. The linearized solwtion
(]

corresponding to the first step in this iteration process gives

4 7
dp W

good approximation to the true result for e)
suffioienfly smalle

The case of axially symmetric rotational flow with non-
conservative forces and no tangential wvelocity is illustrated by

the axislly symmetrically distorted flow through a straightening

screen. The problem is clearly given for non-vanishing velocity

at all points [ 25

z ¥/ "— '
V?:-V—FE-(P)‘ dsg

v JI25) /,—,é’,

= K«,K‘ Oow AB’CD

fwagy ow AD

1]-’ < <
"

= 2o (¢ o= AD; | lew 5 Kazg2k,
[4

a a—k + b?i = O ou BC
v 23
when Fu , FS- are fumetions of #, 3, ?a—q:—’ ab'% and vanish

outside of a domein D C ® . Again this is formally identical
with problem 4,12 plane flow and exhibits all of the similar
difficulties when it is attempted to demonstrate existence or find
conditions on Fe Fa wnder which solubtions do exist.

The final and most involved case is that where the tangential



force dif;f’ers from
a non-conservative
exemplified by the
 COmMpPIessor with an
example, where the
by the motion of &

propeller.

function and the tang'en-hial velocity component ¥ (£ %) .

becomes

v ql =~y -'UI') v
W 2Ly (,:f,)

2 BT

zero and the radial and axial forces constitute
field, This type of flow is thoroughly

flow through any axislly symmetrical pump or
infinite number of blades. Another special

radisl and axial foreces are sbsent is provided

body of revolution in the slipsitream of a

The mathematical problem now involves both the strean

Thus it

ng

/ ra; )

Bz,

ds

F

T3y = l‘oiw) r’o Jde
3(0 ¢
r'Ja

LP: K”K‘_ ow AB K2 >¥,

g = fndd om AD

Yo - », '

s 1',5(41) ow AD Tefew ; K, 2¢2¢,

v—cyo = v“ P0< w) ow AD ‘VoVa‘ & ‘t ; Kz z‘sz!

A a—*-+lc7-)-—qf— zo ou BC

v 23
where Fv , Fp Fg are prescribed functions of v, %, %—%,%

which vanigh ontside of a closed domain D € R and have at most

integrable singularities in W% within D, This clearly requires

an iteration on both ¥ and v~ inasmuch as each formula involves the

78
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other as a wvariable, Therefore if again the solution“p is express-

ed Y=< Yo+ \;’ ~ where Yo is a solution of problom 7.2 and

- 1r (X, (5)
| lP z GLv,s;u.(s) .« _.(w) « ?‘@ o ) ds
& £ 56"
(saf,‘ 3FG)

JS AK‘(& 7 +6

-
¢ 2. 40 2
U[.a;) ()

//G(r; ro.() ‘77(41(3 ’a,?ﬁ 2}3 v(x.,g))a(aj(s

where G(v.s-,a_p) is the appropriate Green's function associat-

"

ed with the homogeneous boundary conditions, the iteration process

// G(r3;x,@) 7(«(5,;0., g“, ap"’)“"‘((s

"3 ap. 2
vy = o"a(¢a)*/ rFo(l’: ar s Tg’) d
r * apﬂ 3 o‘

q_).,,, 2 //G(V.Z;“.@) 7(4{,(5‘ ty;}[.,a_‘!-nl«, 2 Yot dl.. )o\acl(s
A o @ To7

ns
Uy, = YoVo(For fu) r/-'(r; 9!’o+¢4 9%*#'-! .
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II, - THE EFFECT OF AN IDEALIZED
SCREEN ON THE NON-UNIFORM FILOW IN

A TRO-DIMENSIONAL PARALLEL WALLED CHARNEL



THS EFFECT G? AN IDEALIZED SCREEN ON THE NON-UNIFORM

FLOW IN A TWO-DIMENSIONAL PARALLFEIL WALLED CHANNEL

I. Introduction: = The problem of straightening s non-uniform

fiaﬁ in a channel is encountered not only in wind turmels bub in
the design of any duct system whish is required to deliver fluid
with & wniform velocity profile. Sereens, honeycombs, and similar
arrangements are the most usual devices for accomplishing this al-
though considerations have been given (Ref. 1) to the use of freely
rotating windmills to counteract the disturbance imparted by the
driving fan and the natural velocity profile set up by the chamel -
walls. |

If the effects of turbulence and viscous shear are neglected
(Ref. 2) the fundemental action of the screen is to redistribute
and to reduce the local vorticity of the fluid which approaches
the screen. Consequently, if the walls are parallel, the general
reduction of vorticity and vorticlty gradients will promote a
uniform velocity profile. As pointed out previously by Batchelor
(Refs, 3) the manner of generating this vorticity need not be
considered in detail but is simply_rslated to the local pressurs
difference across the screen or, as will be shown, may be replaced
by a distribution of forces which are dependent upon the local
velocity components at the screen,

The effect of e screen on the overall change of velocity
Qrofile from & station far upstream to one far downstresm has been

considered by Collar (kef. 4) and by Batchelor (Ref. 3) who arrive



at similar resulﬁs by making similar but noﬁ identical approxima-
tions on the magnitude of the velocity component parallel to the
plane of the screen. In neither case is an attempt made to correct
for this velocity component by & higher approximation., Another
feature which has not been previously investigated in any approxi- |
mation‘is the rate at which these changes actually teke place, that
is the nature of the flow field in the transition range in the
neighborhood of the screen. This is of considerable practiecal
importance in the actual application of soreens for straightening
purposes particularly where several screens are to be installed

in tandem. |

The problem is of considerable theoretical interest, however,
because it affords possibly the simplest case for detailed investi-
gation of a rotational flow procasé by the method of iteration.

In this case all of the complicating difficulties are present but
in a very much simplified form so that the nature and magnitude
of all of the non;linear effects may be observed and invsstigated
with comparative ease.

In the present section the géneral physical and mathematical
problems are formulated for the flow through an idealized screen
and the general linear approximation to the solubtion is written
down. The simplieity of this solution allows the second approxi-
mation to be carried through in detail for one particular case
and an analysis of the second order correcbion terms is made. Final-

ly a method is discussed by means of which the first approximation
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mey be iz;zprovéd. The determination of the force distribution at
the gereen is improved by considering tha flow far dcwnst?eam of
the sersen in a manner similg.r to that in which the inverse problen
of wing theory is solved by considering the flow in the Treffts

plane,



2s ‘'he Physical and Mathematical Problems: - In order to formulate

a definite physical problem consider a two-dimensional parallel-
walled chamel of infinite length, and with walls separated by a
distance .ﬂ, The general geometry and location of the coordinate

system are shown in figure II.l. Physically it is supposed that
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Figure IT.1

the veloecity profile is given far upstream of the screen, that is
to say the distribution of velocity parallel to the walls is a
known function of the distance from the channel floor and the
velocity normal to the walls vanishes. Far downstream it is
supposed, on physical grounds, that the flow becomes parallel to
the walls so that the vertical velocity vanishes. It is to be
emphasizod that this is a definito assumption whieoh has rather
important consequences, namely that it rules out the case where

the flow becomes unstable in space and tends toward some sort of



turbulent motion far downstream. All that can be sald strictly
of the flow far downstresm is that a certain quantity of fluid
and momentum are transported over ény oross section and that the
velocity noml to the wall must vanish at the wall. This point
of view emphasizes the hyperbolic chargcter of the problem where-
as the ?oint of view to be taken in the present analysis, namely
that the velocity directlon can be prescribed far downstream,
tends to emphasize the ‘elliptic nature, As far as the screen is
concerned it will be assumed that the pressure loss across the
sereen is proportional to the local velocibty, that is that it is

essentially a laminar resistance. The physical function of the

screen is to set up a certain horizontal force field which depends

upon the local flow and is generally a non-conservative fisld.
The corresponding mathematical problem is governed by the

Bulerien equation of motion and the continuity equation

? .
vf = o ( 9) fr
- _ 2 P+ F
wb <-3 3 (3 J ¢
2u 2
x 24
where « , v~ are the velocity components in the ¥ and ¥ directions
respectively, é - gi;- g? is the local vorticity and P the
2 3
stegnation pressure is defined as P= § =+ p where PP

is the local static pressure. If ¢ is defined as the usual two-

2.1

2.2

2,3



" dimensional streem function, then by teking the partial derivitive
of 2.1'by'y , the partial derivitive of 2.2 by X , adding, and

applying the continuity equation 2.3 it follows that

_9_, _9___ & - _a_ft 'aF"
(u. ax ”’a;W‘P TPy 3x

This is the fundemental differential equation of the problem and
states that the variation of vorticity elong a streamline results

only from the sction of the force components imposed by the screen.

Fow according to the physieal conditions imposed upon the problem
Jktl y HX=e

°© ; x#o

Fo =

Fy = %4

where Jbis a constent depending on the nature of the screen and the
fiuid. The boundary conditions are essentially prescribed on the
velocities, namely that the vertical velocity component vanishes
both upstregm and downstream as well as upon both solid boundaries,
and +the horizomtal velocity is prescribed upstream. The homogeneous
boundary conditions on the vertical velocity suggost a formulation
of +the problem using V" as the dependent variable. This can be

done by integrating equation l.4 along a streamline and differentiat~

ing by X » Then the problem may be stated in the form

.4
oboe
Vo = - -;Q; g.cd) ‘3‘; ‘ {('Q_i’.)z+§_t_z]¢ ?a—'.-'*sv
é
k4
2w . D
DX 2%
U= 0 —u-:a,;.o,.? vV =0; X = oo

Kz- o
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where f. (¢) indicates that the initial vborticity is transported

slong streamlines and the initial verticity is clearly

fO = - va‘ u.(-,o,#) 2@7

24
¥ow if G(g.ao) §7) is the appropriate Green's function

satisfying the homogeneous boundary conditions on v, then the

problem becomes

| £ .
v - /G‘(x.g;g.a,)[- % f,uy)*%;/” [ GareGY] “%%"Js].duq(
i |

X

oz

w - u(-w.&” =- (3J)d£ + r(;)

~ o0

2.8

where K indicates the infinite strip oty ¢ B .



3¢ Solubion of the Linearigzed Problem: = The methematical problem

‘2.,8 may be linearized by approximating the stream fumection occcur-
ing within the integrand to be' the streasm function corresponding
to the flow ﬁndisturbed by the screen. then if Uo represents i:he
mean horizontal veloeity component the linearized problem is

)
v /G"‘fif""?) ‘é‘(%“““"ﬂ)d?

[

®, - u(~aa;) s - /.?_75.)0(5 I r(g,)

The Green's function for the problem 2.8 may be written as the

infinite series

G(‘_az g',‘,) = a_w gm___i J !'X El

LY 1}

which may clearly be summed to gi&e

_ T‘l“r&l (3 ~zrr{§§i2
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Using one form of the Greem's function or the other the velccity
components are easily evaluated for any particular initial upsitream

velocity profile. With the representation 3.2 it is convenient to

3.1

3e2

343
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assume that the velocity profile may be expressed as

U(-o2,9) = V,(ﬂ Zé... “,"_41'7 Bed
"z
wheore only the cosiné terms are required since the interval o,]
is a half period. Then the vertical velc)city component is
- uny
Viingl _ Z-{:U. ““u]‘j £l 2 R S ?‘“"1'14?
Vs we g A

which is easily evaluated as

oo warr
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U ) 345
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The corresponding horizontal velocity components then follow accord-
ing to 3.1 by direct integration
oA wd uhy
. E %?— b, ¢ ]{:e>—]_ ~ ¥,
W=y .
u;.(x.y)’- “u(-e0,4)¢ 3.6
or wiry
“d 3 '
é 'ik"" "9-1 Ce0 2 e ¢ + Yo
[V & ¥

where Y, follows from the initial conditions and Ya from the condi-

tion that the two solutions join continuously at X=o . Therefors
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XY, = o
= whn
Yz""UoE ‘-J‘(Zh“mj

W=

The distribution of axial velocity may then be written in the form

' = o
1 wn
I+ Z (- e ' )by w ™ X €0

Uo
u.(x,y) w2
Uo ~ ~uwn2
-~a wh
H-Z' ((--—‘&--»-Z‘-%;e "‘)b..uoj;“ x%o

The general velocity distribution is then completely determined by
the Fourier coefficients of initial velocity distribution and by
-the perameter 7, » The physical significance of this parameter

is seen if the pressure difference across the screen is writtem

L
AP-‘A(A: .({QC _vé; Co R
as s - Z o « Hence zo(.ﬂ' z where Cp is
the conventional drapg or pressure lesg coefficient for the sereen.

For the welocity profile far downstream, (o2 g) , this linear

approximation gives

u.(&.;)«-u(-n,y) i : _:—L_ o

-

uc-qu) - Us

3.7
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I+ is sufficient to consider in detail only the two simple cases where

the initial velocity profile is symmetrical and where it is wnsymme-

trical.
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Caso l, = Symmetrical Distribution: oLL-o".}) = {, (l- a wo 1"1)
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It is to be noted in general that, according to this first linear
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approximation, the distribution of vertical velocity is symmetrical
about the screen; Consequently the variations in axial voloeity
resulting from these vertical velocity components take place one
half on each side of the screemn. Thus the velocity profile
variation 1s half accomplished upstream of the sereen by the
pressuie field built up by the flow through the screen or from

the point of view taken in the anelysias, by the force field which
has replaced the screén;

Since the vertical velocity compoments are potential solutions
except on‘tne1é,axis, it is clear that the solutions may be
expressed conveniently as the sum of potential and non-potential
portiens, Using the complex notation 3 x4 it follows

from 3.5 and 3,8 that
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Consequently, as is obvious from the manner in which the problem
was linearized, the non-potentiasl portion of the flow ahead of the
screen consists in the velocity induced by the initial vorticity
whileo tho non-potential portions downstream of the scoreon consists
in the velocity assoclated with the initial vortiecity and the

increment of vorticity generated by the sereen.

.12
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4, Solution of the Second Approximetion: =~ Since the linearized

first order solutions of the channel problem have such a simple

form, the calculation of the second spproximation is not at all

a prohibitive task, It will be carried out now for the particularly
simple asymmetric case, the first order soclutions of which are

given bj equations 3.11., According to the general statement of the
problem 2.8, it will be necessary first to calculate the stream func-

tion corresponding to the first order solution, this gives

goo wlprdalr 2T ae

2Us 2Us

- 4.1
wlordetrahe T am] oo

Clearly the second order spproximetion of the force exerted by the

sereen is
T3
Fo=de Vs (14 U-zﬁ%o)awo,g) 4,2
The second approximation corresponding to problem 3.1 then, from
248 r=
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The Green's fumction is not changed for the new problem, but the
initiai.vorticity is transported along first order streamlines.
Furthermore the fbrces exerted by the screen have been changed and
the vorticity generated by them is transported along the first

order sbtreamlines.
2&,C¥

The value of '5}"" is most easily calculated by consider-

dé, dé where f, is a known fumection of ¥, . Conse~

8 I A€

quently upstreem of the screen

W—
™2 amt} ( -«’eae-iiswﬁ‘?)

33 = (——j‘w, I+a@__.1 4,5

feeno

and downstream of the screen

-
-

2§ (¥ af,.‘ 2%
CH dy,
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atl i 7, %B = G }fawv( 7{“1) 4.6
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The second integral in equation 4.3 represents the vorticity

generated by she action of the new force system
. T3
T Try, (g, Tyt
(—,&a’q&qu)-& (2“14 _ﬂ)

which denotes the initial rate of vorticity production plus the
increment due to the change of local veloecity. Tne values of the

terms in the second integral then become
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where the first term represents the influence of vorticity genserated
by the first order zpproximation to the forces and transported along
the tirst order streamlines and the second represents the effect of
the vorticity generated by the increment of force and transported
alsoc along the first order streamlines. The second order éolution
follows tnén from substituting the knewn Green's function and the
results of 4;5, 4.6, 4,7 into the integral relation 4.3 and carry-
ing out vhe indicated integration. This tedious but, for the most
part, straightforwerd computation gives the following results for

the vertical velositles:
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The first term of each of the ekpressions 448 and 4,9 is the first
approximation solution while the second term represents the effect
of transporting the additional vorticity due.to the increment of
force along the old streamlines, that is, along horizontal lines.
The third texm represents the change of vertical velocity due to
transporting the vorticity of the first approximation along the

first order streamlines while the fourth term denotes the change
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of vertical velocity due to transporting the additional vortiecity
along the first order streomlines.

The calculation of the axial velocity from the known values
of the vertical velocity is straightforward and the makncwn'
functions are determined from the initial conditions and the
condition of continuity at the sereen. The axial velocities
arranged in a similar fashion with regard to the significence of

the terms are
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The first and second approximations to the axial and vertical
velocities have been caloulated for an initial veloclby prufile
having what is considered to be a rather severe disturbance, namely:
20, %¢¥end a- 0.2 corresponding to & 20% initial velocity distortion
end a sereen giving a pressure drop of one dynamic pressura. 'The
first 6rder solution follows simply from squations 3.1l with the

'proper numerical velues inserted, The items of main interest are
the wvarious second order correction terms enumerated above, These
relative corrections are shown as functions of position in figures
I1.2, 11,3 and 11,4 in terms of the corresponding first approxi-
mation velocity at the ssme point., The quantities %'E‘! . 9_—5;? R ﬁ‘g_.'.”
denote respectively the produets of the second, third, and fourﬁh
terms of egquation 4.8, 4.9 by —({)’_‘l whore v; is the corresponding

first approximation velocity at the same point; Ay deu Qre

[T s e

denote similarly the products of the second, third and fourth terms

of equations 4,11, 4.12 by '%- . The relative corrections denoted

by the various terms are:

A.L) ; Transport of second order vorticity increment along
the initisl streamlines.

A.CY :; Transport of initial vorticity along the first order
streamlines,

Ail) & Transport of the second order vorticity increment

along the first order streamlines.

The corrections A.() eare shown in figure II.2 for both the vertical
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and horizon%al velocity components. The second order vorticity is
oreated by the interaction of the first order veloeity prdfile
distortion with the screen and consequently is proportional to
first ordér vorticity field generated by the initial velocity
profile. As a result the corresponding relative corrsction to
the vertical velocity component is a constant (.25)2 or 6.25%
of the first order vertical velocity. Similarly sscond order
correction to the horizontal veloecity component is proportional
to the horizontal vwelocity disturbances induced by the first order
veloclty fislde The divislon by the first order velooclty fisld
which includes the mean horizontal velocity as well as the
disturbance velocitys. As & consequence the curves representing
’the relative error have the spread shown in figure II.2. It
should be noted however, that the second order vorticity field
has a strength proportional ‘to the square of the first order
field so that if the latter is a small quantity the second order
correction will be reasonably small.

The corrections A,C) shown in figwe 11,3 are not of such
a simple variety. Considering first the correction to the vertical
velocity component, this quantitj is caused by the transport of
the initial vorticity with the first order vertical velocity
caméonent. Hear the bottom of the channel this motion of the
vorticity tends to teake it out of the region where it is distort-
ing the veloecity profile and hence relleves the distortion even

more than the first order solution would indicate., This is
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indicated by the inereased vertical velocity and decreased horizontal
veloclty near the boblLom of the channel. Near the top of the
channel, the vorticity of opppsite sign {low into the region

where it is éausing the velocity distortion and hence aggrevate

the distortion. This is reflected in the negative wvertiecal weloecity
induaeé against the general trend of the stream end the correspond-
iing reduction of horizontal velocity near the channel top. The
composite result of these two motions is to accelerate the stream
slightly in the oentral portion of the channel.

The corrections Ag(), figure I1.4 are essentially the most
complex of all. It is clear that the vortieity distribution is
modified only downstream of the sereen by this correction, Further-
more the process bears the same relation to the correction in
figure II.2 as the corrsction in figure II,3 did to the first order
velocity disturbances with the exception here that the vorticity
here is of the opposite sense, Consequently for points downstream
of the screen, the correction Azl ) acts like a reflection of
correction Oyt ) about the‘center line of the chennel.. As a
consequence the horizontal velocity is retarded at the center of
the channel, In a general qualitative sense, correctioms 4z2¢)

and Asl) act so as to cancel each other downstream of the screen.
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5. The Direct Calculation of the Forces: - The determination of

the second order corrections in the last paragraph have shuwn that
the largest errors are incurred by the approximation made in
estimating the forces exerted on the fluid by the screen. Inas-
much ag thig error is due direestly to the approximation of the
axial velocity at the sereen, it appears possible to meke marked
improvement in the linear solution by a closer estimation of

the velocity as the scféen. By using the faet that the linearized
sclution shows one-half of the axial velocity variation to have
Yaken place by the time the fluld encounters the screen, the velocity
at the screen may be calculated by a device very similar to the
calculation of dowrnwaesh from the veloeities induced at the Trefftz
plane. Then having estimated this veloeity, the force estimation

in the linsarized solution may be improved.

Far downstream of the screen ths vertical velocity component
dies off exponentially and consequently the vorticity distribution
is given by
feo = ?__}___:"»‘a) 5.1
Prom the second egquation of motion 22 however, it follows thab

this vorticity component may be expressed in the form

o - ! 2 P (o0,
§<o°.a) - u(a.o,a) a\a ? a) 5.2

that is, it is directly related to ths vertical distribution of

total pressure., Bub according to the observation that the vorticity
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and hence the total pressure are transported along streamlines, then
according to the linearized solution, the total pressure ét a given
13coordin_ate far downstream differs from the total pressure at the
same value of Y far upstresam only by the pressure loss across the

sereen at the same value of 3.. Hence

P E '

whore the loeal loss of pressure acrcss the screen & —r—(‘}) is

given by
A ..gt(.«a)_g ,,k (u.(o.;))

5.4
and «(o.4) is the local horizontal velocity component. This loesl
velocity consists in the initiel velocity plus one-half of the over-
all change of velocity or the mean of the upstream and downstream
velocities

a.(a.}} = ;{»[ubao,;)-pu(ao.;)“ 5.5

Consequently from the foregoing relations the equatioh for the hori-

zontal velocity far downstream is

w(® y) 3?-3 “wio0.g) - é?‘-; I wC-o ) .—_lg_(u(wo.a)aru(w;y))]

E S

or upcon integration
[uu.g).uc-.q.p]zo- 2 (uv«ﬂ)Jz)lu(n.;)-u(.-n.a)]-(;J¢u.c~ao.a)+b)=o 546

where D is a constant of integrastion to be evaluated from the



wf2=

condition of continuity.

This relation determines the welceity far downstresm in terms
of the initial velccity and the screen characteristics and may be
golved exectly or in various approximations, If it is assumed, for
example, that «W(®my)+ u-wy) & 20k and that w(~», a).‘.k x Us

it foliows ﬁpon applying the continuity integral relation that

U, (o.y) - q.c-.o.;) ’k

2 - L e———

ZUO 5v7

k(-0 4) ~ Vo

which is identical with the approximation found in the linearized
solution of paragraph 3. This cen be rewritten in the more

convenient form

«®, (o, a') - Vs ‘é_
- [~ 20,
«,(-00,4) - Vo 908
If, in a similar fashion only the squares of the terms (U.(-o,;)-'(/o)
and «(~ay)-Uo are systematically neglected, then the relation
corresponding to 5.8 is
Koo y) - Uo /"2:%;
- 5.9
“. (-0 y)- Vo 7+ & *

which is identieal with the result obtained for the overall effect
of the screen by Collar (Ref, 4) and Babchelor (Ref. 3). It is

possible, of course, toc solve the quadratic 5.6 sxactly if it is

desirsble, so that if
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u.uo.ta) - Vo ) u(_-—o.g)-k - Z—L @ (-, 3)49

X = - A (3 F ; =~
w(-o,4) - Uo «(-e4) - Vo (a (-0, 9) ~ Co)*

tﬁan

>K-(=-@(|"V—l‘—€‘:)

5,10
= Ly _ L X ‘+-~-

@ (:. Ga. - (c:) )
where the value of the constant D may be determined to suit the
particular approximation used. From this general relation it is
clear that the value of Fz , equatioil 2.5 may be approximated
with better accuracy

+& ~ o

[‘XQ (—-——'uc-ova)-r ‘-—z—(ja) ' o x=o

) 5.11
The corresponding linearized problem is, similar to problem 3.1,

A
+% .EL -
v, = ch,g;a,'y) "& (L£3) 55 @t~ "7""7
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THE ROTATIONAL FLOW OF A PERFECT FLUID

ABOUT A CLOSED BOUNDARY

le Introduction: - The simplest case of the rotational motion of

a perfeei; fluid is that where no non-conservative force field is
applied to the fluid and as a consequence the initial vorticity
prescribed far upstreé.m is merely transported along the stream-
lines. This process is well illustrated by the rotational flow
.about an arbitrary closed contour, for example an airfoil moving
in the wake of some blunt body where the wake may be idealized
to & rotational veloclty field. Examples of this type with
considerable technological importence have become more abundant
in internal serodynamics where large emergy and velocity gradi-
ents are relatively common and the problem of computing pressure
distribution around and forees acting on bodies in this rotaticnal
flow must be considered.

The motion of bodies through a perfect fluld with constant
vorticity has been considered by Ray (Ref. 1), Tsie;z (Ref. 2),
Kuo (Ref. 3), and Richardson (Ref. 4). This case of constant
vorticity is a particularly simple singular case because inas-
much as the vorticity is uniform, the transport mechanism is of
no consequence and the exact problem reduces simply to the solu-
tion of the Poisson egquation with a constant inhemogenous part.
The results, however, are of considerable interest, eapecially
the gemeralized Blasius equations which were extended by Kuo

to the case of shear flow or uniform vorticity.
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When the wvorticity is not wniformiy distfibuted, the problem
can not be solved in general but meay be reduced with considerable
accuracy to a linearized problem when the vorticity is either small
or does not differ greatly from uniform. In the following analysis
and diseussion this linearized solution iz developed for a general
class of closed contours, actually the class which may be mapped
conformally on to a circle. The corresponding Blasius force and
moment relations are wriften'dcmn for the more general rotational

flow field,
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2. Plane Rotaticnal Motion ebout & Contour: -~ In the absence of

s non-conservative force field the plane rotational motion of a
prefsct fluid is described by the second order, non-linear partial

differential equation

VAR | | 2.1

where { 1s the stream funetion with the usual properties

W
€

iy
|

R | 2.2
2 x

[V
Q-

4 and v being the veloclty components 1n the cartesian coordinate
system 7.4 . The function §, gives the distribution of vortieity
over the streamlines according to the values presoribed far upstream
end the relation 2.1 has the physiecel meaning that the vortieity

§z %%: %? remains constant along any particular streamline.

The problem of finding the rotational flow about a given closed
boundary consists then in solving equation 2.1 consistemt with

the conditions

a) The value of { is oonstant alomg the given contour (2.

b) The flow far upstream of the contour consists in a
parallel rotational motion.

o) The flow at large distances from the contour is not

digturbsed,

Beeauss of the non-linearity of equation 2.1 it is not likely that

exact solutions will be found for any very gemeral contours .
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Consequently if, &8 will be the case in most physical problems en-
countered, the velocitles induee& by the vorticity are sma.li compared
with those induced by the min.»stre‘am, then a good linearized
approximation to the solution of equation 2.1 will be obtained by
assuming tho vorticity to be trasmsported along the streamlines of
the corréspondingvirrotational flow.

If the velocity far upstream is U(}4) , then this may be ex-

pressed in the form

243
U( }) = (o * “o(‘&)
whers
A
Ua 5 .j'\;\"” ' 2.4
Ae oo Uty) lt&
-A \
The linearized solution will then consist in two parts ¢ = Yo+ ¢,
where Yo is the potential part of the solution such that
L 8
V (:Vo = O
%—&=Ua at x = ~o0 2.5
¢
W’ = o oun e,
and ¢, is the solution if the inhomogeneous problem
Vg, = - 8.
2y, :
5‘::;'-‘ “wedy o, x = - e® 246
- 2.«
go = - > ;‘6) ' x = - o2

41' = 0 on e,
Problem 2.5 is solved easily by the well lmown metheds of funotion
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theory whilé the inhomogensous equation of problem 2.6 may be solved
by the method of Green's functions. Now if G(.r.t&, Qﬂ,) is the
Green's function which gives the value of P induced at the point

X4 by & unit of vorticity at the point f %  such that the value

of ¥ is maintained zero on the contour ¢

13 \.

Figure III,1l

then the solution of problem 2.6 may be written simply

Ve - /‘o(p,q,,;) Gyt dfd
P

where the integration is extended over that portion of the plane
exterior to the contour @ . The solution of 2.7 is then essentially
that of determining the Green's funcilons G(Xﬁé ) f”;) for the
appropriate contour.

The linearized solution satisfies completely the boundary

2.7



conditions on the original non~linear problem but as has been
pointed out, it does not satisfy the differential equation 2.1
which says that streamlines and lines of constant vorticity should

coincide. Consequently the situation is somewhat as shown in figure

IIT.2

f-‘ constaut

Figure III.2

If the deviations of the two sets of curves are slight, that is if
the streamlines of the irrotational and rotational flow are nearly

the same, then the approximation should be quite sufficient for

technical purposes.



3+ The Green's Functions and the Formal Solution: - The represen-

tation of the Green's functions may be written down directiy for

some particularly simple contours. For example in the case of a

plane wall

’xn‘Ao : KO\ ‘&0

AAALAANA AN M AN VAV ANE VLALLMV A A WY

Filgure III.3

the Green's function corresponds to the real part of the function
& U, Qo;’ ( 3'_3") |
2% 3_450 3.l

where 2 = x+i‘ 3 3o is the location of the source of the

disturbance and §, is the complex conjugate. This satisfies the
condition that ﬁ(v&) vanishes on the boundary and has s
logarithmic singularity at the vpoin’c 330 « Furthermore /oql
is an enalytic function of 3 so ‘that this property remains umder
conformal transférmation of the ¥ plane. Tor example consider
the homographic transformation

23k 3.2
cysd

): /‘H‘V s
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"in the particular instance where

so that

where & is a real positive constant. Then the imaginary axis of

the 3 plane is mapped into a circle of radius « about the origin

of the A plane. Then since iy

. Ae

Figure 1I1,4

3 may be expressed as

A+

2-&

3_:'

it follows upon direct substitution in 3,1 that theJ& funetion

beocones

,&m s ;EHEA‘%‘T{;(

33

344
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In-case the boundary region is a circlé, the value of

Ribm) = Ry (22 |

nay be substituted for (>(x.4; &%) in equation 2,7 and the

integrai formula reduces to that of Poisson. Purthermore the
irrotational portion of the flow about the e¢ireular contour is

known, for if W, is the complex potential function, then
ye (a+ 2
= (-Yo‘\' \‘\{)o = Ua T 38

Consequently if ¢, (¥) represents the distribution of vorticity
far ahead of the circle, the linear apprqximatioﬁ for the rotational
flow is

Z

‘4}: ’[I)n-b’!,lll - {/o/& (/(—/“*_’;t)

/(U/((‘/uw‘ W«ag

Numerical solution then requires, formally, only the integration

%O(/AA’V

of 3,9.

Now that the aﬁ (3} is known for the circular contours, it is
a simple matter to find-Ag(éﬁ and hence the Green's function
G(a,b,06.3) for any other contour whose conformal transformation

into the eircle is known. For if this transformation is given by
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with an inverse

= Fca \
A ) Sell
then the potential for the irrotational part of the flow is
Wi = UG =)
Ay
= o (Feays 25
K Fm‘) 3.12
8o that
Yo < T {(A(Fm*———) 3413
F2)
Furthermore the functionqéjbecames
A Fcay- Fay
Loy - & g 2 3.14
_ F o) Faay~ &

and the Green's function is the real part of this. Then in analogy

with 3.9 the stream function for the rotational flow asbout the new

31
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contour is
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As a result of the relationship between the conformal
transformation of a given contour into & cirecle and the Green's
funetion for this contour, all_of the highly dsveloped techniques
and methods of approximation are available for computing the Green's
funotions and hence the rotational flow in any case for which the
transformation exists. It is olear also that a similar method
may be used for boundaries other than closed contours; for example,
in the analysis of the progression of a rotational velocity profile

in a divergent channel. Such flows may easlily be analyzed by
using the principles indicated in the foregoing examples and
applying a Schwarz-Christoffel transformation to the function 3.l

in order to find the Green's function of the problem.

In comnection with the problem of airfoils with the Kutte
condition must be employed to fix the circulation it is impossible
t¢ fix the ciroculation when the irrotational paft of the flow is
first calculeted. As a consequence, the streamlines over which
the initial vorticity is transported are known only to & parameter

[, the circulation required to satisfy the Kutta condition.
Therefore this paremeter appears both within the integrand and in
the stream functions of the irrotational part of the flow (see
equation 3.15). 4s a rule, this expression will involve ' in a
rather complex manner after integration so that the evaluation

nay be carried out numerically.
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4, The Force and Moment on a Solid Body: - The force and moment

exerted on a body by the robational flow of a perfect fluid are
calculated by considering the flux of momentum across and the
pressure distribution on & conteur which completely encloses

the body in question 4

W/ x
e

N

Figure III.5

The increment of the x force camponant)( ceused by the momentum

 transport and pressure at a given element of the contour is given by

(wdy-vdr)pu +pdy = L(-X)

so that the)x component of force is obtained by integrating this

expression about the contour

X_-' - (u,clisvw(x)f&-f'ool\}
e
Now the local static pressure p is related to the local values of

the x and a_velocity components and the local value of the total

4.1



pressure or the Bernoulli function B(X'g) ,
P+ _Zz («‘+1}-‘) = .th.y) 4,2

where it is known that both the vortieity and the Bernoulli funetion
remain aonstant on stresmlines and, to the present appreximation,

on s’créamlin'es corresponding to the irrotational flow. Consequently
| the value of B(x-g) nmay be evaluated from the condition prescribed
far upstream of the bo&y and then taken to depend on only the strean
function of the irrotational valoéity field. |

Negleocting an arbitrary constant; the Dernoulli fuaction far
upstream is

By = L (U-acmyy®

But the distribution of the irrotational stream function at

is simply
‘.lpo (‘ °°Aa) = Ua_
so that the Bernoulli function is written in general as
kN
‘B(.x‘.a" = —qu)a) = _g_( U.t-u(‘ o, \po ‘x\%‘)) 4.5

Consequently the X force component may be written

. : 2 4e4
X = - (uda-v*d,)fu(# %/[U"’“(‘”t q)_:%'_%))]..ul-vi)dt“}.

and in a similar manner the Y force component becomes



S

Y;" (“4?-11-0‘«)5’0'~—§_-([UL- ®k (~e0, “L—Sm)zi&""“‘)d«

4.5
Writing this foree in the complex form it follows that

-1 . .;_—r- 5 1
X‘ RANR R fu\—;us‘ (hesidgy~ § ‘{[U\-u(-oo,w%ﬁﬂa(dand«) &

The velocities w and v~ may each be expressed as the sum of irrotational

end rotational components such that if «w-iv=  (uo-iwg) +(«-/7;)
then
d e
Uo =i 2PN = A% 4 7
and
e = 2%, 2¢
Wy v, S a‘a‘\‘\'g-;( 4.8

where the stream function ¢, is determined from the general integral

formula 3.15. 7Then the force law may be written
X-iY = "Z"/(a( ydy v S’){ )”‘%

+ (Ff 2, . - ¢y i * J

which is a generalization of Blasius first law. When the motion is



irrotational, the last three integrals venish and the formula is
reduced to the usual statement., When the rotational part is the
particuler distribution of constant vortioity, the stream function
for the rotational part of the flow may be written

Yos - R

where & is the constant value of the vorticity., In this case the
result simplifies direcfly to
X

A R A Mo 2 .
X1V 3 g () Ase ks Tmpg A% 4y

which is identical with the result obtained by Tsien (Ref, 2) and

Kuc (Refs 3).

The expi‘ession for the moment on the body may be written down

in a similer fashion

M = fgk(u&a-%dvx)’g+ rvs(o;&xw«&g)-x; /P ( xdx *6"43’)

- o

2

N | R (.“';VBaSA& s _g_ [ U+ w(~ e, w‘.&gj))] (xdxr ‘6A"&\

Again separating the velocities into their irrotational and rotational

compenents the moment becomes

4.10

4,11

4,12
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M- -$R (o\\ua) Jg - YRf B‘ll gy,bo\}

——

Z

2y,
- %R{( 24 )SA&* "‘{U*M- V ]uo\w-‘a.@ 18

which reduces again to the usual formula for irroteational flow

end to the Tsien and Kuo results for the case of shear flow.
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THE FLOW CF A PERFECIT FLUID THROUGH AN AXIAL TURBOMACHINE

VITH PRESCRIBED BLADE LOADING

ls Introduction: - Those aercdynamic problems of axlial-flow turbo-

machine theory which are subject to treatment by the theory of
perfect [lulds may be classifled under wthe I1cllowing two general
problems:

l. Given the blade loading, blade speed, and the fluld state
far shead of all nlades, determine the threseedimensiensal
velocity field, blade shape, and distribution of energy
in +the fluid.

2. @iven ths blade shape, hlads speed, and the fluld state
far shead of all blades, determine the three-~dimensicmal
veloelty fileld, blade loading, and the distributicn of
emergy in the fluild,

These are designated respectively the inverse and direct problems
of turbomechine theory in anslegy with the corresponding classical
problems in the theory of finite wings.

The inverse problem, which is deéinitely the less difficult of
the two, derives this adventage from the fact that it may be separate
ed into two indepemdent problems. The first of these consists in
determining the velocity field corresponding to the prescribed blade
loading by replacing this blade loading with an equivelent force
systen distributed over some definite surface or region. In the
second step the two-dimemsional theory of airfoils or airfeil lattices

is appiled to find the radial distribution of blade shape and



orientation providing the prescribed loaed distribution when placed

in +this particular velocity field. Recent investigations into the
theory of aivfoil lattices (ee.ge Garrickd, Lighthill?, and A. Goldstein
and Jerison®) have reduced most cases of the second step to one of
numerical osleulation. The present paper is concerned with a gquanti-
tative descoription of the three-dimensional velocity field that
prescribes the mean flow in which esch vlade element is situated

and indicates the accuracy with which the two-dimensicnal airfoil
theory may be applied to each element of the blade.

For a periect fluld the soluilon to the three—dimensiwnal problem
is simple only when the distribution of tangential velocity in any
plene normal to the turbomachine axis is that or a vortex situated
on the exis.4 TUnder this condition no radial or axial disturbenass
are induoed, the circulaticn about each blade element is constant
aleng its length, and the blade behaves very much like an infinite
wing. JIn spite of the inecreased complexity of the flow under more
general conditions of varying circulation along thae blade, the approxi-
mate difference between the axial velocity profiles far upstresm and
far dovmstrean of the blade row is easily caloulated {s.g. Traupelb,
SizmetteS, and Eckert and Korbacher?) by mneglecting the radial trans-
port of vorticity shed from the blades. From considerations of the
simplified vortex system (e.g. tudenB) it follows that one half of
this axial velocity change has taken plece by the time the fluid
raaches the blade row. 7The vslocity distribution in the rest of the

flow field, which is of importance in answering suoh practical
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guastlons as the interference of adjacent blade rows in & multistage
turbomachine, can not be found seo simply.

For the discussion of the three=-dimemsional flow in the present
paper, the physical problem is simplified ny considering a non-viscous
and incompressible fluid, inner and outer boundaries consisting of
concentric cylinders, and by assuning an infinite number of blades in
sach blade row su that the flow possesses axial symmetry. Therefors
the vorticity shed frem each blade row is no longer concentrated in
sheets but is continuously distributed over the region downstream of
the blade row. The diffioulty of this problem lies in the non-linear
portial differential equations which deseribe the rotational fluid
motion. By the approximatiomn that the vorticity i1s transported by
the mean velccity and not oy its own induced velocity, the problem
reduces to the solution of & well imown non-hamogeneous linsar partial
differentisl equation. Uhe resulving solutions provide the lineér
approximation te The radial, tangemtial, end axial velocities associ-
ated with any loading of a blade of finite chord or of an infinitely
thin olade row corresponding to & discontinuous cheange of tangential

vglocity.
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2. Formulation of the Mathematical Problem: - [he flow is described

(figure IV.l) in a cylindricel coordinste system /., , %, by the
velocity components & , 2~ , W, respectively. <The corresponding

radial, tengential, and axial vorticity components are

¢ . -2
29 za1
au ow
7 = L - X
& or 2.2
= 0
f ror (rr) 2.3

Because of the axial syvmmetry only the tangentiel vortlelty is associ-
ated with the radial and sxiai velocitles while the radial and axial

vorticity components are associated with the tangential velocivy.
Consequently informaticn conoerning tane radial and axial velocities

is obtained by considering (cf. . E. Meyer?) an emnular vortex ring
of small oross section (figure IV.2) which consists always of the

same fluid elememts. In particular the circulation [T about the ring

ig given by [ = % x cross section ares and remains constent through-
out all deformations in & conservative force field. <The only deforma-
tion of this ring consistent with the assumption of axial symmetry is

a8 radial stretohing and, ineasmuch as the volume of the ring rmuet remain
constant, the cross sectional aree varles as the ratio -& where f, aud
p are tne initial aud finel radii. Under such a deformation the
somstency of ciroulation demands that the initisl and final vorticities

N satisiy the relation

2. 2

2. = constant 2ot
r rc



Hence as the ring moves along the stream surface in a conservative
force field, the rate of change of%—v&nishas.

ihe eirculation about the cross section of the mmnular vortex
will vary, however, in the presence of a nem-conservative foroe fleld.
Since the pressure is a scalar quantity and consequently generates a
conservative force field, the clirculation may be chauged only by the
action of the centrifugal force and the forces applied by the blades

in the radial snd axial directions. The rate of change of circulation

is easily found from the equations of motion

vé-wy = -F,+—§7(—§P—) 245
wi-uf = -Fy 2.6
w? -v'é L %(—g‘) 2.7

where P is the local stagnation pressure of the fluid and Fy , F; s
and F%f are the applied forces per unit mess in the radial, tangentiel,
and axiasl direction respectively, By subtracting the partial deriva-
tive by P of equation 2.7 from the partial derivative by % of equation

245 end simplifying by neans of the continuity equation

u L u  Ow 2.8
rr 3

it follows that

2 oF. 3 F
u% - E;"uwé-z.- %vg+%—&(vg) +—é—§-—-a—;¥

Finally by dividing by r , simplifying the term on the left and applying
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the definition of the vorticity components ta the term on the right,

it follows Lthew

(P4 - C @ F(HE )

249

where $ is the distance measured along & strean surface,

The gperator u2-+w occuring on the left side of squation 9

%%
ropresents the time rave of variation takenm while moving with the
stream. 1f W] <<W so thet the stream surfaces sre very nearly co=
axial cylinders and il the tangentisl vorticity has a smooth ragial
distribution, thwm |u.%3’,l % iw'%gl o If furthermore the radial
variation of axial velocity is small wath respect to the mean valus
W, 5 isoe I “{—;%’5’ << |, thon this operator may be taren with goed
approximation wo be %-g—.s_ « Fron definitlon of the tangential

vorticity and oy applying the equation of continuity (equation Z.8)

au a
2 )(%) ~ 4 27 . 12 (% yr2e =) 2.10
(K% -Hlfﬁ)( v Y 2% or: L o3

For caloulation oif the centrifugal tforces which ccour in eguatiom
2.9 it will oe sufficient to approximase ths tangential velocity in

the following wenner. The second eguation of motion, squation 2.6,

may be rewritten

(u.a +w—-—)vr = rf 2.11

in which from 1t states that the rate of change, along a stream
surface, of the moment of momentum about the turbomachine axis 1s

equal to the moment of the tangential force. To the same approximetion
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as above

QU o ua,EE:

0% 2%
= - Wy g
whers g corresponds to the density of "bound” radial vorticity

associated with a particular point of the blade row. From equation

2412 the approximmte tangential velocity becomes

¥ 2
U (r3) - Uil = —-/n é(,,,@)d(. - rﬁou:r.@) 4e
A A

where U (v) is +he initial tangential weloeity far ahead of
the firsy blade row.

The forces applied to the fluid by the blades ars rslated
through the conditlon that their resultsnt must sct normal to the
blade surface. Furthermore the blade surface is parallsl to the
relative velocity of the fluld and consequently the forces exerted
by the bladss are normel to the relative veloocity of the fluid. If
the blades move avout the axis with an angular velocity w, this

Y T R T PR
UL VLU LD UAPITIBOU VIO MEIL LIS
uFp + (rwr)fg+w Fy =0

But since the radial force is usually of smaller crder than the

tengential and axial forces, this becomes very nearly

(U&-w")Fv + (,();Fé' = 0

inasmuch as i %’, celf ,’ U-T—;%%’;‘; U";,t:p cel o

2.12

2413

2.18
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Now eguations 2,12, and 2.15 may be used to express che right

hand member of equation 2.9 In terms of imowm functions

2 (v 1 (DFy_ OFy 1@ - L2
+ 53 07 - a{"‘a—v) TF}{("’ w7 ov“"""*"'} 2416

Thus squaticn 2.9 is reduced, within the approximetions stated, to

the non-homugensous linear partial differeutial equation

.
w 2 (& +.3._°." - 3_{ o, XX -’-—.Q.(V,r};-f.l’.}
e -"ﬁ,(T) 33; 33 ( wo)v\b g{(v,a) 2.17

P

(78 U -
= » are denoted « , v, ,

whnere non-dimensional veloelties 4y ,
and when the blade forces are prescribed, Vs is knowvm from equation
24138,

The axial and tangential velocities correspending to this radial
velocity follow fron the equation of continuity and the second equation
of motion respectively. Through integration of eguation Z.8 the axial

volocity is 4

-l 2 Wy = S
Wy r?.(rv.)f,l{?.

av 2.18

sls

while by the appropriate approximation that |U-Vol¢e | , the tangensial

velooity 1s, from equation 2.1l

F
= 5 =
—:—f’- -a-—v‘('v'ol‘)olg 2,19

S
L}

V-
~ o0
The complete mathematical problem of ocslculating the linearized

radial, sangential, and axial veloecity components in a turvomachine
with prescrived blade loading is given by equations 2.13, 2.17, 2.18

2018, together with the following boundary conditions



fé_: b W = H ;: _—-"-]
w =0} _ 2.20
and either Fotn3y , Frungy or Vo (h3) |, Fo(¥3) 2.21

prescribed throughout the anmnular space occupied by the fluld,.



3. lLinearized Solutions for the Velocity Components: - The line-

arized solution for the radial velocity component will be obtained

by Tinding the appropriate Green's function; that is, a solution
G(w3;«.8) wnich gives the radial velocity, consistent with the
boundary conditions, induced at any point of a circle "HFoy a

unit ohange in tengential vorticity of a vortex ring of radius &

at an axial coordinate $ . The complete radial veloocity is simply
the sum of such solutions corresponding to all changes of tangential
vorticity. TFrom the mammer in which the problem was linearized

it is clear that tone solution G(V;S; M(S) may also be interpreted

as the velooity induced at & point ¥, % by a oylindrical surface
mede up of amnular vorticles with radius « extending from the axial
coordinate (5 o o , 1t will be of particular interest to find the
Green's function by considering the case (figure IV.3) where all
foraes are conoentraved in a plane 3= @ so that the mean tangemtial
velocity chenges discontinuocusly from Ve to vt . mhis plane
corresponds to a sheet of radial and tangential vorticity normal

to the turbomachine axis. Clearly g—;-ﬂﬂz)so when g #8
equation 2,17 becomes homogeneous and may be sclved directly, using
the given boundary conditioms, for independent solutions on either
side of the discontinuity. Now it is clear from the left side of
equation %.17 and the symmetry of the powmdary conditions that any
solution of egwation £417 corresponding to a wlt disturvance at
3:@ must be symmetpical in 2 abou’c@ « Therefore both radial and

axial velocity components are continuous at =@ - If the nota-



tion [hn;x] 8 is used to denote .%u« (‘kv @u)-‘f(r. *s)) the jump
-0
in the value of f(mg) across the discontinuity at 2 s , then

the jump in tangential vorticity may be written as

Qu 3“" - ow
[35-20, [ 3], - @[ fwnl,

3 — [(va “"’) (Vor)“‘ Fr]@

inasmuch as the axial velocity is contimuocus at 3: e - Thus the
conbinuity of vthe radial veloeity togothor with the presoribed dis-
continuity in tengential vorticity at 323 {equation 3.1) are
sufficient to join the independent solutions at 3= (3 .

| If the applied forces, and hence the discontinuity in tangential
vorticity, be limited to the neighborhood of a ocircle ¥ =& and
vanish for other radii ths solution obtained corresponds to the desired
Green's function or wmit solutiom. If, on the other hand, there exists
a finite jump of tangential worticity for all radii, the solution
bears the saume relation to that for a continucus axial distribution
of forces as the lifting line solution for finlte wings does %o the
solution for conbinuous chordwise load distrivution.

I+ G end a‘® are the non-dimensional radial veloeities up-

stream and dowmstream of the discontinuity at 3= (3 2 this new prove
lem may be formulated as

3“_() 9 (a(ﬂ) " AL

e

s k: t, 2 8.2

with the boundary conditions
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o
u.‘ 2 O 5 34=—~eo

E"z’ = O 3 3, s 4 e
3.3
a(h\ = 0 ; re k“:z
and the auxiliary conditions at the discontinulty
a 3 —_
(rgy = a®ng)
AW ai."’) = w F. 3.4
23 ] Ex [W’. -;,:-) (VV')+ " ] [-}wa)
¢ 3= 8 P
A soluticn o equation G+8 of the form
~ (R w (R) -3
“ ’ ZU llqr) 3&} B n}.) 35
wxy
holds on esch side of the discontinuity vnere Utear) is the
linear combination of Bessel functions of order onse
U teary = Jsum \_(.(;,,;ggx, - J' (5.7 Y(gﬁy) 348
and the eharacterigtic values €. are shne roots of the transcen=-
dental equation
2.7

U tear) + Jiteat Ytzary - Jitaary Yiearay

The conditioms 3.4 relate the solutions wend & ana conseguently

<) )
AL, AP, B L BT

>t a et (ATAT) -k [o], g

wie

E Uienee 8 (B2 BY) - s[toe ],

e
In order to satisfy the conditions that the radial velocity venish

at large distances upstream and downstresm of the discontinuity
(l)

(bowndary condition 3.4 at £ oo ) AL = B, . Hence by applying
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the orthogonality relations of the Bessel fumctions te equation 3.8

the coeffleclents are "
13 '5»\@ a U, (Eux) "_
= - —_— x.2y| d«
A. € 2 Y2 & [ s ]p

v
6’. 3.9

B:n . _65.9/_5_}1-_&{:_5_1 [f(43;] da

2. €u
v

where &« is introduced as the variable of lntegratlon and », 1s the

norm of the function Uil&u¥) over the interval v, v,
v

%t PR ]
N / a U lean) Ao i U‘“""’:‘ Uo (248 3,10

v,
The corresponding solution for the axial velocity follows from equation

2!18 bo
) -¢.
“',-‘k,)_, - - E U (Eu¥) (A ‘MS’ B‘ ‘s) + \’Lh}wl 3.11
" %-X1
whers
Ugteaws = Joteam Yeaary - Jtewny Y teur 512

and the fumations ((k)(v') are determined vy the initial distribu=-
tion of axial velosity and the continuity of axial velocity at 3’ : (3 .
Thus

i %= - e

-~ Ce)

w (r @) & ""(r (3) 3013

and applying these relations

X vy = o s

o d
N U|( “ ) 3'14
Y = E UsLeav) ‘:_7,;:' [{(“-3’34"‘
¢

nx

v,



The linsarized solution to the tengential velocity distribution is
found shrough integzrating the known value of ﬁm) in equation 2.18.
Bubstituting the imown values for the constants and interchanging
the order of suwmmation and integration, the complete solution for

the single discontinulty beocomes

v .
) aUilter) U, (1) = 8136 3415
w = /[‘hu.z)]? § : 2 tu Pt € de

r,

ns

"2

aUp 't Uitewt) -2u13-0)

w-1 = [ wg] Z 25 P d« 5.16
¢

w=sis

¥

v oo

) X Upléur) P, LEux) -£.12-681
+ P [7("‘4‘)](, ZZ 2 .92 (1-e™E) 1 da
v,

n=

%

¥
s - L1578
- e “Uq (tuv) v;‘lnﬂ)
v-7Y - _/—:— (22%) H(K.;)} € dd}ﬁ.l?
rov e wa
é r

where

o l’ 3.4(3
{ H 3_)(5’

An exesnination of thess solutions shows tnat they consist essentially

,9:

in walt solutions of welght [ fix.3y ] ¢ gumned over tae radius from
Y, o ¥, ; the expressions in curly orackets represems solutions

whicn give tae velocitles consistent with the boundary condistions



induced at a circle P, 3 by e wit disturbance on tae circle of

radius o &t the coordinate 3= @ » These functions sre denoted
”°>

, ) 2 U t2av) Di(sua) S241370)
Gw"‘“‘fn ) Z 2¢, 748 €
Z": X Uo teu?) U, (4uu) e“-d%’ﬁ
Hdi vy 2z, P" 3.18

o0
Lqu) Us( - -"i‘ -
K(v,};“,@): ZE:“Uazaj’tid} (‘_e }@‘)
g w?w

The discontinuous approximations (equations 3.15, 3.16 ana 3.17) are
solutions of & linear problem and may be superposed with the convention
[fewnn]g
that Aa’c each value of @ be Interpreted not as the sum of the superposed
discontinnities but as the discontinuwity corresponding to the sum of
the individual tangential velooities (see equation 3.,1). This is
necessary inasmuch as the approximate tangential velooity enters nop=-
linsearly in evaluating the jump across the discontinuity. the solution
for a continuous blade loading follows either by considering the limit
of such e superposed sun of discontinuous jumps in which E)ltd.S)}e
becomes %{W~@A(3, or by considering the original equations 2,17, 2.18,
2419 in reletion to the unit soluticns, equations 3.18, which have

been found. Hence for sny continuous loading

2. 3419

°¢

-]

f.g) Gr.g;«.8) Aad (3
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4s Special Forms of the Blade Loading: = The case whers the blade

loading is similer ot all radii and tne effect of the radial foroe
somponent may be neglected allows simplifioation of the expressioms
for tne velosity components. Let K end £ ve non-dimensional funo-
tions of ¢ and 3 alone end !oc bve a parameter indiocative of the
total circulation about a blade of chord € + The radial and axial
vorticities and the tangential velooity may be expressed in the form
$§ - - §cRZ’
§ . (R+B)z2 4.1
Vo = §&c R2

where the prime denotes differsnblation with respect to the appropri-

ste variable. 7Then according to equaticon Z2.17

2
¢ ¢ (73 ) 4 ’ 4
%{m,,= (%,‘) ZR(R‘*B;)ZE-;—C-‘ B.2R)z e

Using this relation in the solutions (equations 3.19, 3.20, 3.21)

and interchanging the order of integraticn end summation, the follow-
ing four fundarental lntegrals appear

r; r&

..r“m: R(R'GC*R)U\(E-W‘)A‘( ' T,‘“)z 2‘_&: (R;HR)U-“““)‘L“

r, r'

J J %as

W , - ta13-6! () , ~“dal3 8l
V. ¢h=[z2'e 3?4@ Ve () 2 e de

/

- -y

- o0
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The linearized approximetion to the velocity componemts may then e
separated into the velocity associsted with a stationary dlade row
and the additlional velocity resulting from roteting a blade row of

the same loading with an sngular wveloocity @W. Hence
- - w ¥y ol

w = uc + —— “'l
$.c
D1 = -l + BN W, 4.4
;oc
T s T wr

£ "

U. (Eut) u) v ¢ oy
2 28, ‘P-. “ *

(%1—)‘ azs

whore

(-4
- o0
Wy - N (;.l.zl-:;:‘)‘ _r‘at) :;1(’0)
(S ) =
A U°“""" S VI % 445
' = -2 V3
(Fet) zz 2tovd 1" (03-2 Vi (142
@,
— o0 Vot w) sy (a) ca) Z
w’i - Z _._g.__.-:—- T“ “ Co0)- 2 Vu (S)“'Z
($ecp S znend
wWh
%
- - o° ' [} ]
U, -V _ 2 Oicea)  (Ry) T w2z Vn‘ (o) o\}
‘ ) 2.4 v "
L“g“f}& wa “ ~o00
E 2
v . Uigun) (Rv) ' cay ) oy
v. - - zz ‘912 v T“ ZVu (o0) 3'
(&c wae ) - o0

Therefore when the series 4.5 have been evaluated for a given type of

plede loading, the welocities induced by any steticnery or rotating



blade row of similar loading follow directly from equaticns 4.4. It
should be noted that as the sngular veloclty is changed, the blade
loading and not the blade shape is preserved.

This flow may be approximated by a discontinuous solution or,
more convenlently by two discontinuous solutions, one associated with
the velocities induced by the stationary blade row, the other with
the effect of rotaticm. If these two disoontinuities are located at

3= @ and 3 @+ respectively, the sclutions follow from equations

4.4 and 4.5 by the correspcndence

3
v (»)‘“) (Zu)) _ (Zv)l e- F A% l%'@c'
n ' 2
) ' - -
V. oy — 2® - i“ e '? fa
" 3@
V. 30 —= (2“’) @«n* & V3 el 355,
. ¢ @B,
(&) <z) <) - 1“‘3‘90‘ ’ & @ .8
V. 3y — _%____-__%_..-——- e : 37 P
5 3< ¢
Zz -— (2“))3 (2_"\)& Y 3~, (sl
hd ) 3 <G
2' - { «2) L)
2" -2 ; 3 @

wheore 2% and 2! are defined vy the approzimate tangentisl wvelocity
upstresm and downstream of the nlade row

v, - g, R2Y

4,7
1}’,“’ & go‘ R Z“)
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and S,c, the circulation parameter remains comstent as c—o ,

The walues of (3. and (3;. are chosen such that eaoh of The
disecontinuities scts at the centroid of the leading they replsace.

Thus (S. and @; are solutions of the equations

(A
22 (3-@r4d3 : o
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Se  Single How of Stationary or Rotating Blades: - In the following

example the velocitiss induced by a single stationary or rotating
blede row aée caleulated, assuming that the radial force vanishes,
using both a partioular continuous chordwise loading and the corre-
spending discontinuous approximation. In addition to illustrating
the general procedure of application, the numerical results provide
& direct comparison of the sontinuous distributicn and the discon=
tinuous approximation.

Consider & single row of olade chord € and prescribe the
vorticity distribution S(iﬂg) a8 shovm in figure IV.4., This
distribution is similar at all radii and increases linearly from
the btlade root to tip. I the corresponding physical blads row is
supposed to hava:'blades » the linear vorticity distribution of the

blade at any radius v is givem dy

§uwgy - ?:%—tgmg)

and the corresponding total circulation is

i y
T, = %—; §°C('i-,‘)

The tangential velocity becomes, from equation 2.13

Vo = o0 -5 23
Vo - goC(‘;C*"z‘)‘% - £ ¢3¢0
Vo 7 éof—(%‘(“i’ %)1)‘% 0¢3 ¢S
Vo = % §,c (‘rﬁ} 32 &i

Sl

a2

Ded
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and ‘the parameters R and 2 are

= »
R= r 5.4
2 = © -5 z 3
SRR ARC “ % €3¢0
2 =-§;-("i-:§)l oﬁ&&c—i
545
2 = -’; lzt/b

The basio integrals, equations 4.3 are then evaluated by straight-

forvard calculation and the results are tabulated in the appendix.
Using the tabulated relations the velocity perturbations associ-

ated with the stationary or rotating blade row follow directly from

equations 4.5. For the case where 1;,— =06 ,%2V_ o5 , and the

2 c
vorticlty distribution is of the form given in figure IV.4, the
induced velocity distribution has been calculated for wvarious distances
from the center of the blade row. lhe results are presented in figure
IV.5

Figures IV.ba and IV.5b indicate that, for the blade loading
under ocnsideration, an appreciable change in the axial velucity profile
takes place both before the fluid enters and after it leaves the blads
row, the coordinates %’ =+ 0.5 marking the temini of the blade row.
These