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ITHAKA

As you start your journey for Ithaka

wish your trip is long,

full of adventure and discovery.

The Laestrygonas and the Cyclopas,

the wrathful Poseidona - don’t let them scare you:
they’ll never block your way,

as long as your thoughts are free,

as long as rare excitement stirs your senses and your body.
The Laestrygonas and the Cyclopas,

the wrathful Poseidona - you ’ll never face them
unless they ride along inside you,

unless your soul raises them before you.

Wish your journey is long.

Many the summer mornings when,

with what pleasure, what joy,

you enter harbors you're seeing for the first time;
may you stop at Phoeniciens seaports

and get the finest wares,

mother of pearl and coral, much amber and ebony
and sensual scents of every kind,

as many sensual perfumes as you can;

and may you travels reach many Egyptian cities,
to learn and keep on learning from their scholars.

Keep Ithaka always on your mind.

Arriving there is what you’re destined for.

But don’t hurry the journey at all.

Better if it lasts for years, :

so that you are old when you cast your anchor in the island,
rich with all you’ve gained on the way,

not expecting any wealth from Ithaka.

Ithaka gave you the fine journey.
Without Ithaka you wouldn’t have taken the road.
But she has nothing more to give you now.

And if you find her poor, Ithaka did not deceive you.
Wise as you now are , with such experience,

you have already understood what an Ithaka really is.

A. Kavafis (1911).
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Abstract

Numerical simulations are presented for viscous incompressible flows with and
without solid wall boundaries. Our numerical method is based on vortex methods.
The classical inviscid scheme is enhanced to account for viscous effects via the method
of particle strength exchange. The method is extended to account for the enforcement
of the no-slip boundary condition as well by appropriately modifying the strength of
the particles. Computations are possible for extended times by periodically remeshing

the vorticity field.

The particles are advanced using the Biot-Savart law for the evaluation of the
velocity. Computations are made using up to O(10°%) vortex particles by efficiently
implementing the method of multipole expansions for vector computer architectures

to obtain an O(N) algorithm.

The method is used to simulate the inviscid evolution of an elliptical vortex in
an unbounded fluid as well as unsteady separated flows around circular cylinders for
a wide range of Reynolds numbers (40 - 9500). Direct comparisons are made of the
results of the present method with those from a variety of theoretical, computational
and experimental studies. The results exhibit the robustness and validity of the
present method and allow to gain physical insight as to vorticity formation and its

relation to the forces experienced by the body
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CHAPTER 1

Introduction

This thesis is concerned with the development of a Lagrangian numerical scheme,
based on vortex methods, for the direct numerical simulation of unsteady, incom-
pressible, viscous flows. The dynamics of such flows are determined by the evolution
of their vorticity field. In vortex methods all of the vorticity is attached to the com-
putational elements (vortex particles) that are convected with the local fluid velocity.
Unlike grid methods no computational elements are devoted to the irrotational part
of the flow. This is an attractive feature of the method as in many engineering flows
of interest (such as external aerodynamics) vorticity occupies only a small fraction

of the domain.

The straightforward physical interpretation and the adaptive character of vortex
methods have inspired many studies since the pioneering work of Rosenhead in 1931.
The Lagrangian character of the method has made it a viable alternative to finite
difference and spectral methods for simulations of flows around complex configura-
tions. However vortex methods have primarily been used only as an engineering tool
in the past to gain physical insight and a rough estimate of unsteady forces for a
large class of separated flows. A thorough review of the foundations of method and
an extensive account of previous applications of the method may be found in review

articles by Leonard (1980,1985) and Sarpkaya (1989).

Vortex methods have not had much success in the past in competing with grid
based schemes in the arena of direct numerical simulation. The adaptive properties
of vortex methods have been counterbalanced by their cost and their difficulty in
representing accurately viscous effects. This thesis focuses on these limitations of
vortex methods. A rigorous method is developed that alleviates these restrictions

while maintaining the attractive features of the method.
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The velocities of the fluid elements can be computed using Biot - Savart’s law.
For N computational elements this requires O(N?) operations per time step using
the classical algorithm. This has limited in the past the number of computational
elements that one may use to a few thousand even with the recent advent of modern
supercomputers. To circumvent this problem hybrid methods (such as CIC (Chris-
tiansen, 1973)) have been used to compute the velocity fleld. In these schemes a
grid is superposed on the particles and a streamfunction is computed by solving a
Poisson’s equation (with vorticity as the source term) on the grid. The velocity field
is computed (as a curl of the streamfunction) on the grid as well and is subsequently
interpolated onto the particles. The cost is proportional then to O(N + MloghM),
where M is the number of mesh points on the grid. However this scheme carries
along with its efficiency all the drawbacks of grid methods that vortex methods were
designed to circumvent. Otherwise absent, numerical diffusion is introduced in the
computation of the velocity field, the far field condition (built in the Biot - Savart
law) needs to be taken specifically into account and finally the applicability of the
method is reduced to flows around regular geometries. Recent advances have renewed
the interest in using the Biot Savart law for the computation of the velocities. Fast
summation algorithms have been developed, based on multipole expansions (Green-
gard and Rohklin, 1987) that allow computations at an O(N) cost per time step. The
present efficient implementation of these schemes on vector computer architectures

allows for simulations using O(10°) particles at a reasonable computational cost.

The Lagrangian nature of the method encounters difficulties in dealing with vis-
cous effects. The method is faced with the challenge of approximating the smooth
diffusion operator with information gathered from the (possibly) scattered particle
locations. Twenty years ago Chorin (1973) proposed to add a random walk to the
motion of the particles to account for diffusion. This scheme has found extensive
use in the past but has the disadvantage of a low convergence rate (proportional to
1/vN). More recently an alternative scheme has been introduced (Raviart, 1987)
that accounts for viscosity by appropriately modifying the strength of the parti-
cles. This method of particle strength exchange (PSE) has been shown to have good
convergence properties but its accuracy is heavily affected by the distortion of the
computational mesh. In the present work the scheme is complemented with a particle
redistribution algorithm that alleviates this problem and allows for accurate viscous

simulations for extended times.

The grid-free character of the method makes it convenient to simulate flows



around arbitrarily complex configurations. However the use of a vorticity formulation
complicates the enforcement of the (natural) velocity boundary conditions (the fluid
must adhere to the wall) for the governing Navier Stokes equations. In Chorin’s al-
gorithm new vortex elements are inserted at the boundary and subsequently undergo
a random walk to mimic the vorticity generation due to the no-slip walls. However
for this technique there is a large number of parameters that one needs to adjust
to obtain meaningful results and the scheme bears the low convergence rate of the
random walk for diffusion. In this thesis a novel technique for the enforcement of the
no-slip boundary condition is presented. The no-slip condition is shown to be equiv-
alent to a vorticity flux at the wall. This vorticity flux is subsequently distributed
to the particles. No new particles are created but the strengths of the existing ones
are modified so that the velocity boundary condition is enforced. This scheme is
complementary to the scheme of the PSE and presents a natural algorithm for the

creation of vorticity in the fluid due to solid walls.

The result is a computational scheme that is capable of producing accurate direct
numerical simulations for bounded and unbounded flows. The scheme is applied
to the flow resulting from an impulsively started rotating and translating circular
cylinder. This problem is studied as a prototype for unsteady separated flows and has
been the subject of several experimental and theoretical works. Experimental studies
of such flows date back to the works of Prandtl (1925). The problem of the impulsively
started cylinder was first studied by Blasius in 1908 and computations of such flows
started appearing in the late 50’s (Payne, 1958). The flow has been investigated
extensively in experiments of Bouard and Coutanceau (1980) and Coutanceau and
Ménard (1985). Many computational works have appeared on this subject in the
last ten years as well ( Badr and Dennis (1985), Chen, Ou and Pearlstein (1992)
etc.) helping us to obtain information unavailable by experiments. This work adds
to these simulations as the present scheme provides an accurate description of the
vorticity field and helps us gain some insight as to the vorticity production at solid
surfaces and its relation to such quantities such as the drag and lift coefficient of the

body.
The thesis is organized as follows:

Chapter 2 of the thesis presents the governing equations and boundary conditions
and their transformation to a form tractable by the present method. The numerical

method 1s outlined and the basic features of the algorithm are presented. Chapter
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9 describes the fast multipole method for the computation of the velocity field and
its efficient implementation on vector computers. Chapter 4/ addresses the issue of
the treatment of viscous effects by vortex methods. The scheme of particle strength
exchange is presented and is compared to several numerical schemes for the solution of
the diffusion equation to asses its validity and efficiency. Chapter 5 is concerned with
the enforcement of velocity boundary conditions in the context of vortex methods. A
novel algorithm of vorticity creation is presented that rigorously enforces the no - slip
condition. Chapter 6 complements the previous two chapters. It tackles the problem
of particle redistribution so that viscous computations are possible for extended times.
Chapter 7 discusses the application of the numerical scheme for the simulation of
vortical flows. We examine the inviscid evolution of a specific elliptical vorticity
distribution and subsequently focus on the simulations of the early developments in
the wake of an impulsively started/stopped translating and rotating cylinder. These
simulations serve the twofold purpose of validating our method and help us gain
insight as to the generation of vorticity on the surface of the body and its relation to
such quantities as the drag and lift coefficient on the body. Extensive comparisons
are made with previous experimental, theoretical and computational works. Finally
in Chapter § we overview the present work and its results and conclude by suggesting
possible extensions and applications of the method. We also address some issues that

need to be considered in future investigations.
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CHAPTER 2

Navier-Stokes Equations and Vortex Methods

2.1 The 2-D Navier-Stokes Equations

Two-dimensional incompressible flow of a viscous fluid may be described in terms
of the velocity (u(x,t)) and the pressure (p(x,t)) of the flow by the momentum
equation :

%% + u-Vu = —%Vp + vV?u (2.1a)

and the continuity equation :

V-u = 0. (2.1b)

Here v,p denote the kinematic viscosity and the density of the fluid. To define a

certain flow the equations should be supplemented with initial conditions :
u(x,0) = up(x) (2.1¢)

When the flow is around a solid configuration (translating with velocity Up(t) and
rotating around its center of mass (xp) with angular velocity ©(t)), boundary condi-
tions need to be enforced. On the surface of the body (x,) the velocity of the fluid
(u) should be equal to the velocity of the body (Us):

U(XS) - Us (21d)
with :
Us = Up(t) + Q) e, x (x5 — Xp)

and at infinity :

u(x) — Ug as |x| — oo,

where U, is the free stream velocity. For the purposes of the present numerical

scheme equation Eq.2.1a is recast in terms of the vorticity (w = wé):

w=Vxu. (2.2)



Taking the curl of Eq.2.1a and using the definition of the vorticity results in :

%—L: + u-Vw = vV (2.3)

with initial conditions

w(x,0) = V xuy(x) .

Furthermore we associate a streamfunction ¥(x) = Y€, with the velocity field so
that :
u=Vxy (2.4)

Using the definition of the vorticity (Eq. 2.2) and the streamfunction (Eq. 2.4) as well
as the continuity equation (Eq.2.1b ) we may derive a Poisson equation relating ¥

to w as :

VI = —w. (2.5)

Summarizing the above results we may express the mathematical model for the flow

in a domain D by the following set of equations :

Ow

—é—t—+u-Vw:1/V2w in D
VI = —w mn D
u=V x ¥ m D
w(x,0) = wo(x) in D

u = Uyt) + Q)€ x (x5 — xp) on 0D

u— U, at oo

(2.6)

The above set of equations is well-posed and is equivalent to the Navier-Stokes equa-
tions in two dimensions. The vorticity-streamfunction formulation helps in eliminat-
ing the pressure from the unknowns of the equations. However for bounded domains
it introduces additional constraints in the kinematics of the flow field and requires the
transformation of the velocity boundary conditions to vorticity form. Our numerical
method is based on the discretization of the above equations in a Lagrangian frame

using particle ( vortex) methods.



2.2 Particle (Vortex) Methods

Convection-diffusion equations for an unknown field ¢(x,t) are expressed in gen-

eral form as :

1V (e(xt)q) = V-(d(x,1) V) (2.7)

where ¢(x,1), d(x,t) are known vector and scalar functions respectively. In particle

methods the positions (x,) of the computational elements are modified according to

dx
—df = ¢(Xa,t)
so when written in coordinates moving with the particles Eq. 2.7 becomes :
dg
EZ-Z = V- (d(X,L‘) V(]> - q V- C(Xat)

The incompressible Navier-Stokes equations when expressed in vorticity form are
equations of the above type where ¢(x,t) = w(x,t) is the vorticity and c(x,t) =
u(x,t) is the velocity field (with V-u = 0) and d(x,t) = v is the kinematic viscosity
(which is constant throughout the computational domain). After these simplifications

Eq. 2.3 is expressed in Lagrangian form by the following set of equations:

d
C’I;a = u(xa,t)
dw 9
e v Viw
(2.8)

In the context of particle methods it is desirable to replace the right-hand side of
equations Eq.2.8 by integral operators. These operators are discretized using as
quadrature points the locations of the particles so that ultimately Eq. 2.8 is replaced
by a set of O.D.E. ’s whose solution is equivalent to the solution of the original set

of equations

To this effect the velocity field may be determined by the vorticity field using the

Green’s function formulation for the solution of Poisson’s equation (Eq.2.5).

1
u=Kx*w=—-——]Kx —y) xwdy + Up(x,?)
27

where Ug(x,1) is the solution of the homogeneous Poisson equation for the velocity

field and K(x,y) = (x — y)/|x — y|* is the convolution kernel.
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The Laplacian operator may be approximated by an integral operator (Raviart,
1987) as well so that :

Vi ~ G % w = /G(lx-yD [w(x) —w(y)] dy

The boundary condition Eq. 2.1d is enforced by formulating the physical mechanism
it describes. The solid wall is the source of vorticity that enters the flow. A vorticity
flux (—g%) may be determined on the boundary in a way that ensures Eq.2.1d is
satisfied. It is shown (Ch.5) that this mechanism of vorticity generation can be

expressed by an integral operator as well :

/HX~ an( y) dy

Using the above integral representations for the right-hand side of Eq. 2.8 we obtain

the following set of equations.

dxa 1
- = 5o K(xa — y) X wdy + Up(xa,t)
dw

a / G(|xa — yl) [w(xa) —w(y)] dy

dt
n / H(xe —y) 5(y) dy

(2.9)

Note that the first of Eq. 2.9 is an exact equation whereas the second is an approxima-
tion. For the present numerical scheme the vorticity field is considered as a discrete
sum of the vorticity field of the particles, having core radius €, strength I'(¢) and the

shape of their vorticity field is determined by the function 7, so that :

w(x,t) = ZP" Y ne(x —xn(1))
n=1
When this expression for the vorticity is substituted in Eq. 2.9 the singular integral
operators K,G are convolved with the smooth function 7. and are replaced by smooth
operators K, G.. These integrals are subsequently discretized using a quadrature
having as quadrature points the locations of the particles. Assuming that each par-

ticle occupies a region of area h% and that the shape of the body is discretized by A



panels then algorithmically the method may be expressed as :

dx; 1 ¢
—Zlgl = 5, [ K(xi —x;) + Up(xy, 1)
7=1
N
dl;
_d-; =y Z[Fj — Fi] Ge(lxi “le)
g=1
M Ow
+ 7; H(Xi — Xm) 'af;;(xrn)
Pl(o) - W(Xiao)hg 1= 1727"'7N
(2.10)

The characteristic of the present method is the replacement of the differential opera-
tors by integral operators. The advantage in employing integral operators is based on
their stability and efficiency. Integral operators are bounded and smoothing, so that
discrete approximations have bounded condition number as the mesh is refined. The
representation of the convective terms avoids many difficulties associated with its
discretization on an Fulerian mesh such as excess numerical diffusion. However the
accuracy of the method relies on the accuracy of the quadrature rule as information

needs to be gathered from the possibly scattered particle positions.

2.3 Algorithmic Implementation

The present vortex method is implemented in a time stepping algorithm that pro-
ceeds by generating the particle trajectories and appropriately modifying the particle
strengths. The simulations of bounded and unbounded flows are distinguished by the

enforcement of the boundary condition.

2.3.1 Infinite Domain

For the simulation of flows with no solid boundaries, Eq.2.10 are integrated si-
multaneously in time. As it is dictated by Eq.2.8 no fractional step algorithm
1s necessary as the particle locations and strengths may be considered to be the el-
ements of a common vector of unknowns that are updated simultaneously at each

time step.
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2.3.2 Bluff Body Flows - A Fractional Step Algorithm

For flows with solid boundaries a difficulty arises by the implicit enforcement of

the boundary condition (Eq.2.1d) in the present formulation, as it is discussed in

Ch.5. Eq.2.10 is not integrated simultaneously in time but instead a fractional step

algorithm is employed. The governing equations are solved via a splitting scheme

that accommodates the enforcement of the BC.

Let us assume that at the n-th time step (corresponding to time ¢ — ét) the

vorticity field has been computed and we seek to advance the solution to the next

time step (time t). The following two step procedure is implemented :

Step la : Using as initial conditions f(x) = w"(x",nét) we solve :

wy + u-Vw =0 in Dx[t—étt]
w(x,t—6t) = f(x) in D (2.11a)
u-n = Ug'n on 0D x [t — ét,t]

As described in section (1.2), particles are advanced via the Biot-Savart law to
resolve Eq.2.11. The no through flow boundary condition (u-n = Ug-n) is
necessary to obtain a well-posed problem and is enforced by computing a potential

flow correction to the vortical velocity field.

Step 1b : Subsequently the diffusive part of Eq. 2.3 is resolved by the following

equation :
w — Vi = 0 in D x[t—ét,t

w(x,t—6t) = f(x) in D (2:110)

Note that no boundary condition is explicitly enforced in this substep The no-ship

condition is enforced in the following stage.

Algorithmically then Step 1 may be expressed as:

d i

E}ti = u"(x",nét) = Kxw"(x",nbt)
a !

_gftl = V0] = Gxw"(x",ndt)

At the end of Step 1 a vorticity field w] has been established in the fluid.
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e Step 2a : The no-slip boundary condition is enforced in this stage by a vorticity
(not particle) creation algorithm. The spurious slip velocity that is observed on
the surface of the body at the end of Step 1 may be translated to a vorticity flux
(see Ch.5).

Ow
Ugip — . on 0D

e Step 2b : The computed vorticity flux generates vorticity in the fluid. The

vorticity field is modified by this viscous mechanism as described by the following

set of equations :

) )

—gtz — vVewh =0 in D x[t—6t,t]

wy(x,t —6t) = 0 in D (2.12)
Ow?! D

—6—7—12- = F(Uslip(wg)) on 9

Note that the diffusion equation is solved here with homogeneous initial conditions

as the initial vorticity field was taken into account in the previous substep.

The solution at Step 2 is a vorticity fleld w) which we superimpose onto the

solution of Step 1 to obtain the vorticity distribution at the next time step

2.3.3 A Note on the Enforcement of Boundary Conditions

In a time stepping algorithm at the end of the step the no-slip boundary condition
for a stationary body (u = 0) has been enforced. However, this implies the simul-
taneous enforcement of the no-through flow (u-n = 9¥/0ds = 0) and the tangency

(u-s = 0¥/0n = 0) boundary condition as well.

This may be seen by extending the definition of the streamfunction in the com-
putational domain to the region occupied by the body. Eq. 2.5 applies in that region
and since there is no vorticity inside the body the streamfunction satisfies Laplace’s
equation (VZ¥ = 0). Hence inside the body (B) :

/ UV2P0dA = 0
B
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Applying Green’s identity to the above equation we obtain

ov
g .
/ IVI|*dd4 = — — Wds
JB o On
Enforcing then the tangency condition is equivalent to requiring that ¥ = const.
and 90 /0s = 0 on the body surface as well. So as the end of one time step coincides

with the beginning of another enforcing the no-slip condition guarantees that the

no-through flow is explicitly enforced at cach time step.

In a fractional step algorithm the particles ave advanced solving Eq.1.10. When a
single step method {such as Adams-Bashforth or Euler) 1s used there is no need there-
fore to explicitly enforce the no-through flow condition. However when a substepping
time integration is used (such as Runge Kutta ) the no-through flow boundary con-

dition must be explicitly enforced during these substeps.



13

CHAPTER 3
Vectorization of Fast Vortex Methods

Vortex methods, have attracted the interest of many researchers for the study of
unsteady incompressible flows at relatively high Reynolds numbers. In such flows
the vortical structures, which are the key to describing the whole flow field, tend to
be confined in limited regions of the domain and vortex methods inherently adapt
to resolve those regions. In this method the vorticity field is described by a set of N
particles. The velocity field is computed then at each of the particles, resulting in
a set of ODE’s that needs to be integrated in time to determine their trajectories.
This may alternatively be considered as an N-body problem for the particles. The
simplest method for computing the velocities on the particles requires work that is
proportional to N? as all pairwise interactions need to be computed. This renders
the method prohibitive if one wants to use large numbers of particles to resolve all

spatial scales in the flow.

The N-body problem appears in a diverse number of scientific fields (astrophysics,
plasma physics, etc.) and techniques for the reduction of the computational cost have
been addressed in many different perspectives. Solution methods to this problem may
be classified in two broad categories: The hybrid methods (particle-mesh) and direct
(particle only) methods. An extensive survey on hybrid methods may be found in
the book of Hockney and Eastwood (1981). The cost of the hybrid methods is of
O(N + MlogM) (where M is the number of mesh points), but their performance
degrades when the clustering of the particles is highly non-uniform and they tend to
introduce numerical diffusion. The direct methods compute the approximate velocity
field as induced by clusters of particles using a certain number of expansions for each
cluster. This number is determined by the accuracy required in the solution of the
problem and the type of the field that is approximated. A hierarchical (tree) data
structure is associated with the particles and is implemented in order to determine
when those expansions may be used instead of the exact pairwise interactions to
preserve the accuracy of the solution. The tree is used to establish interaction lists

for the particles.
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Originally the direct technique was developed for the simulation of gravitational
problems by Barnes and Hut (1986) and Appel (1985) developed a data structure to
facilitate such computations. The application of direct schemes in vortex methods
has been primarily exploited by Greengard and Rohklin (1987) and Van Dommelen
and Rudensteiner (1989) .They may be referred to as the box-box (BB) and particle-
box (PB) algorithms respectively. Their computational cost theoretically scales as
N or NlogN, respectively, but their applicability and efficient use of available super-
computer architectures (vector/parallel) is what really determines the cost of these
methods. The issue that arises then in the development of these codes is the question
of parallel or vector implementation ? Although this question is usually answered by
the availability of resources it seems worth exploring the possibilities. The nature of
the algorithm was originally thought to be such that it would lend itself easier to a
parallel implementation (Barnes and Hut, 1986) the main constraint being the re-
cursive descent of the data structure. A naive implementation of this algorithm on a
vector computer would require that this recursive scheme is unrolled into a sequence
of iterative procedures. Such an implementation however would result in inefficient

vectorization and no advantage would be taken of the pipelining capabilities.

The parallel implementation of the methods has been addressed at various de-
grees of sophistication and for a diverse number of problems (see for example Pépin
(1990), Katzenelson (1989) and Salmon (1991)). Vectorization of the method has also
been successfully addressed in works by Van Dommelen and Rudensteiner (1989) for
vortex methods using the PB algorithm. Recently (1990) Hernquist, Makino, and
Barnes published a series of papers demonstrating that the tree descent can indeed
be vectorized. They applied their strategy to the Barnes - Hut algorithm obtaining
orders of magnitude increase in the computational speed of the algorithm. Usually
the most time consuming part of these schemes has been the building and descending
of the tree in order to establish interaction lists. Once these have been established
the velocity field of the particles may easily be determined. The vectorization of
the BB algorithm for vortex methods is addressed in this work and its efficiency 1s

compared to that of a PB scheme.

A data structure is implemented which lends itself to vectorization, in the con-
struction and descent level, combining some of the ideas presented in the works of
Barnes, Hernquist and Makino. It is applied to both (PB and BB ) algorithms and
comparisons are made as to what efficiencies may be obtained. The timings com-

pare favorably with those reported in the past (Van Dommelen and Rudensteine,
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1989) and it is demonstrated that an efficient implementation of the BD scheme can

utperform the PB one for numbers of particles more than a few thousand.

3.1 Multipole Methods for the Velocity Evaluation

In the context of vortex methods the vorticity field is discretized by a set of
elementary vortices whose individual field is expressed by a cut-off function ¢(z).

The superposition of these fields determines the vorticity w, at any location x, as :

N
w(x) = Z T,é(x — Xx,) (3.1)

n=1

If 6(x) is a é6-function or we are interested in the velocity field (w,v) in a location

(z,y) away from the particles, the velocity field is expressed in complex form as:

. ]\7
. 7 Fn
=5 2777,

n=}

(3.2A)

where Z = 2 + iy and V = w — iv. In order to compute the velocity at each one of
the particles the above sum implies O(N?) operations. To reduce this computational
cost the geometrical distribution of the vortices is exploited. The key observation
is that the velocity induced by a cluster of particles nced not be computed directly
from its individual members. Instead the velocity field induced by a group of M
particles clustered around a centre Zy; may be approximated by a finite number (P)
of multipole expansions. At distances greater than the radius Rpy of this cluster this
approximation converges geometrically. This is the basis for the PB scheme. The
BB scheme introduces one more step. The expansions of a certain cluster may be
translated and computed with the desired accuracy at the center of another cluster.
Subsequently those expansions are used to determine the velocity of the particles in
the second cluster. The derivation of those expansions is based on the following two
identities of complex numbers :

(s @)

1 : :
T = Zz"’; for |z] <1 (*)

FE Y

g . . ro L I; o |
;)CIA:(Z — Z)t = Z (Z (l’k(l)(”"l())k ) 7 (o)

=0 k=l
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Adding and subtracting Zar on the denominator of Eq¢. 3.2A the velocity field induced

by the cluster may be expressed as :

; 1 M r
7Y = v m »
v(z) 27 Z — Zyg gz:l 14 (Zy — Zm)/(Z — Zag)

By expanding now the denominator inside the sumn using (*) and keeping () terms

in the expansions the velocity is determined by :

»

. ? 1 o
V(Z)= — :
(Z) 27 Z — Zag Az_:ﬂ (Z — Zar)*

(3.2B)

The complex coefficients a, express the moments of the discrete vorticity distribution

in the cell and are computed by :

A
ayp = Z P"l(Z'nl - ZAW)A'

m=1

(3.2C)

To make the computations more efficient the coefficients of boxes that belong to
coarser levels of the hierarchy are not constructed directly from the particles. Instead
they are obtained by a shifting of the expansions of their descendants. To obtain then

the expansions of a parent box from those of its children we use identity (%) to get

l
parent __ children ; r7children parenty[—k
@y = E (I.: &y (Z5 —Zy )

(3.2D)

We may obscrve now from Eq. 3.2B, that at a distance R from the center of the cluster
v . . >

the rate of convergence of the expansions would be proportional to (Ras/ RYP*T and,

for example, if R > 2R ;4 this rate is proportional to (1/ 2)P+! implying the geometric

convergence of the series.
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The above expansions are the main tools for the PB algorithm. However one may
proceed one step further and recast the Laurent series into Taylor series and consider
the interactions between groups of particles. These interactions take place in the
form of shifting the center of expansions of one cluster (M) to the center of another
(G). Those expansions are then used to compute the velocity of the particles in each

box. This results in eliminating the logN factor from the work count of the scheme.

To obtain these expansions we add and subtract Z¢g in the denominator of the
expression Eq. 3.2A so we have that the velocity induced by the group M at a point
Z in the neighborhood of Z¢ is equal to :

P

_ L o
V(Z) - I ; (ZG - ZM)k-H(l +§>k+1

where ¢ = (2 — Zg)/(Zg — Zu). Expanding this expression for £ using (%), the
velocity field induced by particles in the cluster M, at a point Z in the neighborhood
of Zg is:

?
:5_2}12 Za)

(3.2E)
where the coefficients §; are determined by :
—1)H*! I+ k-1 o
by = 1) ] Z < : ) . k
(Z(;—-ZM) P k (Zg—Z]\/I)
I=1,...,P
(3.2F)

Interactions are computed at the coarsest possible level while satisfying the accuracy
criterion. However the velocities of the individual particles are computed from the
expansions of the finest boxes in the hierarchy. Hence the expansions of the coarser

level boxes have to be transferred down to their descendants as follows :

P
children __ parent children parentyk—I
5 _§:<k_l gparent ( Zehildren _ gparent)
k=1 '

(3.2G)




18

This shifting uses (**) and, as in Eq.3.2C, does not introduce any additional errors.
One may observe here the different use of the cocfficients ax and é; when computing
velocities on the particles. The cocflicients 6; of a certain box are used to compute
the velocity on the particles of the same ( childless) box whereas the ai’s are used to

compute the velocities due to particles that belong to well separated boxes.

Proofs for the above results may be found in a more rigorous and complete form
in Greengard and Rohklin (1987). They show that the series converges if the distance
between interacting boxes and/or particles is at least twice as large as the radius of
the cluster involved. By using the expansions when clusters are separated by larger
distances one may reduce the number of expansions that are necessary to obtain
the same level of accuracy. This trade-off may be optimized by linking the number
of expansions cmployed to the distance between the interacting pairs dynamically
(Salmon, 1991). However this may result in increased cost for the construction of
the interaction lists and it would complicate the algorithm and reduce its vectoriz-

ability.

3.2 The Data Structure

The two-dimensional space is considered to be a square enclosing all computa-
tional elements. We apply the operation of continuously subdividing a square mto
four identical squares until each square has only a certain maximum number of parti-
cles in it (see Fig.3.1 for an example) or the maximum allowable level of subdivisions
has been reached (the latter requirement seems obligatory when one programs in
FORTRAN and has to predefine array dimensions). This procedure for a roughly

uniform particle distribution results in O(log,N) levels of squares.

The two fast algorithms under discussion, PB and BB, exploit the topology of the
computational domain each with a different degree of complexity and efficiency. The
hierarchy of boxes defines a tree data structure which is conunon for both algorithms.
However its key ingredients and address arrays are implemented in a different way
as explained below for the two algorithms. The tree construction proceeds level by
level starting at the finest level of the particles and proceeding upwards to coarser

box levels.
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Fi1G.3.1 An example showing four stages of subdividing the computational domain.
In the final stage each box contains less than three particles.

Due to the simplicity of the geometry of the computational domain the addressing
of the elements of the data structure is facilitated significantly. As the construction
proceeds pointers are assigned to the boxes so that there is direct addressing of the
first and last particle index in them as well as there is direct access to their children
and parents. This facilitates the computation of the expansion coefficients of the
children from the expansions of the parents for the BB algorithm and the expansions

of the parents from those of the children for the PB algorithm.
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3.2.1 Parameters of the Data Structure

The data structure is used to determine when the expansions are to be used
and when pairwise interactions have to be calculated. Usually this data structure is
referred to as the ‘(family) tree ' of the particles. It helps in communicating to the
computer the geometric distribution of the particles in the computational domain.
The particles reside at the finest level of the structure. Clusters of particles form
the interior nodes of the tree and hierarchical relations are established. The data
structure adds to the otherwise minimal memory requirements of the vortex method.
This extra memory however is the tradeoff for the speed of the fast algorithms. One
may add several features to this data structure trying to relate to the computer
architecture as much information as possible for the particle configuration. However
these memory requirements have to maintain a certain degree of uniformity for all
the levels of the tree. So if one wants to use large numbers of particles (hence several
levels of subdivisions) these memory requirements should be kept to a reasonable

level.

The formation and descent of the tree add to the cost of the algorithms and a
non-refined implementation may result in the degradation of the whole algorithm. A
data structure may be Lagrangian or Eulerian. The former adapts automatically to
the locations of the particles and can be the same for several steps. The latter has
to be reconstructed at every step as the particles change positions in the domain.
There are several ways that nearby particles could be clustered together and some of

the decisions to be made are :

The center of expansions. This can be cither the geometric center of a certain
region in space or the center of mass of the distribution of particles or some other lo-
cation chosen so that the data structure is conveniently addressed and the expansions
converge rapidly. Choosing the center of ‘mass’ implies that for a uniform particle
distribution and a certain number of particles per cluster the minimum radius for
convergence is expected. On the other hand the geometric center (as in the present

work) facilitates tremendously the addressing of the hoxes in the data structure.

The cluster size. Accuracy requirements impose that the cluster size should be as
small as possible while efficieney considerations dictate that clusters should contain
enough particles so that the use of the expansions is beneficial. There are differ-

ent approaches to that as others require the finest clusters to contain fewer than



Lmin (c.g. for the Barnes-Hut algorithm L,,;, = 2) particles where others impose
the finest level of subdivision beyvond which no further subdivisions take place. The
former procedure seems to offer more accurate expansions whereas the latter econo-
mizes in memory and compactness of the data structure especially when more than
one particle resides at the finer boxes and large numbers of terms are to be kept in
the expansions. In the present algorithins we follow a hybrid strategy as we keep at
least Lyin particles per box until we reach a predetermined finest level of boxes. The
number Ly, may be chosen by the user depending on the particle population and

configuration so as to achieve an optimal computational cost.

A related issue is how one subdivides a cluster or box with more than L,,;, par-
ticles. Practical implementations of the method resort basically to two techniques.
One may split the parent cluster into two children resulting in a so called binary
tree. The direction of this dissection depends on the distribution of the particles,
attempting to optimally adapt the data structure to the locations of the particles in
the computational domain. In practice this has the benefit of requiring fewer terms
in the expansions to obtain a certain accuracy (for a relatively uniform particle dis-
tribution). Alternatively, as in the present scheme, one may simply divide the box
into four boxes. This would require a larger number of expansions to be caleulated
and stored to obtain the required accuracy, as the radius for convergence is not min-
imized. However these ‘extra’ terms have a minimal effect to the overall cost of the
scheme as they appear in fully vectorized parts of the algorithm. Moreover the regu-
larity of such a procedure facilitates the logic of the algorithm and the construction

and addressing of the data structure.

Addressing the clusters. A key factor in the computer implementation of the
method, addressing should be such that it does not inhibit the vectorization or the
parallel implementation of the method. Traversing and building the hierarchical
tree is highly dependent on this procedure. A simpler technique would be to store
information (such as geometric location, size, family ties cte.) for the tree nodes in
the memory. Such a procedure may severely limit the number of particles that
can be computed (Pépin,1990) if excess information is stored. DBesides it would
degrade the performance for machines (such as the CRAY-2) where memory access
is computationaly intensive. However both restrictions do not seem to consist major
drawbacks in the present implementation on the CRAY YMP, provided a reasonable

number of subdivisions (less than 10) is allowed.



Another key issue is the addressing of the particles. As particles are usually
associated with a certain box it is efficient to sort the particle locations in the memory
so that particles that belong to the same box occupy adjacent locations in the memory
devoted to the particle arrays. Such memory allocation enhances the vectorization
tremendously as very often we loop over particles of the same box (e.g., to construct
the expansions at the finest level, or to compute interactions) and the loops have an

optimum stride of one.

Place in :

PARTICLE - BOX

Interaction  List

Place its particles in :

PARTICLE - PARTICLE

Interaction  List

Yes
Examine ils
children at LN
the &
NEXT LEVEL -

Fi1G. 3.2 Flow Chart for the tree traversal of the PB algorithm for «ll particles of a
childless bou.

As one can deduce, the possible combinations of the above features may result in
a number of different implementations. Depending on the implementation a different

degree of vectorization may then be achieved.



3.3 Description of the Algorithms
In both algorithms, described herein, we may distinguish three stages:
¢ Building the data structure (trec)
e Establishing the interaction lists (by non-recursively descending the tree)
o Velocity evaluations for all particles in the domain.

The building of the data structure is common for both algorithms but they differ
in the tree descent and the velocity evaluation. Basic requirements for an efficiently
vectorized code are the simplicity of the algorithm, the existence of long vectorizable
loops (i.e., simple loops, odd stride e.t.c) and the reduction of memory referencing.
Care has been exercised at all stages so that the maximum degree of vectorization is
achieved and efficient calculations result. In the present implementation the building
of the data structure consumes about 53— 7% of the time whereas the descent consumes

another 5 — 10% so that the largest amount is spent in computing the velocities.

3.3.1 The Particle-Box Algorithm

The hierarchical structure of the algorithm has a logical complexity that implies

a recursive procedure. The algorithim may be easily described by the following code

subroutine interact (n,C)
IF (particle n 1s well separated from cell C)

velocity = sum of expansions of cell C on n

ELSE

CALL interact (n,children of C)
ENDIF

return
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Note the recursiveness of this subroutine in the ELSE block. A straightforward
approach to the non-recursive programming of this subroutine, in an attempt to
vectorize it, would be to unroll it. Such a procedure would introduce a depth-first
search of the tree. However this is not very efficient because for most applications
the depth of the tree is not long enough to enable optimized vector operations. As
reported by Makino (1990), Barnes introduced interaction lists associated with each
particle and then vectorized by looping over the particles. Every particle had its
own interaction list but increased memory referencing and the additional complexity
of the algorithm resulted in degradation of the performance. In our algorithm we

employ the following alternate procedure:
Step 1 : Building the data structure (tree)

Step la : For each of the squares at cach level that are not further subdivided
we compute the p-terms of the multipole expansions. These expansions are used to
describe the influence of the particles at locations that are well separated from their

cluster. The cost of this step is O(Np).

Step 1b : The expansions of all parent boxes are constructed by shifting the
expansion coefficients of their children. The tree is traversed upwards in this stage.
Rather than constructing the expansions of all the members of a family (that is
traverse cach branch until the root is reached) we construct the expansions of all
parent bozes at each level simultaneously. This enables long loops over the parent
boxes at each level. Care is taken so that the procedure is fully vectorized by taking
advantage of the regularity of the data structure and the addressing of the boxes in
the memory. Moreover the regularity of the data structure allows us to precompute
many coefficients that are nccessary for the expansions. The cost of this step is
O(Np?), as each shifting requires p? operations and there are at most (4N — 1)/3

boxes in the computational domain.
Step 2 : Establishing of interaction lists

In the present algorithm a breadth-first search is performed at each level to
establish the interaction lists of cach particle (cell). This scarch is facilitated by the
regularity of the data structure and the identification arrays of the cells in the tree.
At each level interaction lists are established for the particles (cells) by looping across

the cells of a certain level.
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Algorithmically this operation is represented as follows:

subroutine setlist (n)

Do 11 =1, levelmax
CALL FARCLOSE(Z(n),ds(1),1Z(1),kxm,Lstxm, kfr, Lstfr kels, Lstels)
CALL CLOSECHECK (kels,Lstels,kpp,Lstpp,kxm, Lstxm)
CALL GATHER(kfr,Lstfr kpp,Lstpp,Z2P,GP,ZB .EB)

1 Continue

return

For each particle n the hierarchy of cells is traversed breadth first. The check for
faraway or close boxes is performed within the subroutine FARCLOSE that is fully
vectorized. Initially the addresses of kxm cells that belong to the coarsest level are
stored in array Lstxm. By checking the locations of the boxes at the grid of level
1 and the respective location of the particle on that grid the cells are identified as
either faraway ( stored in Lstfr) or nearby (stored in Lstcls). Boxes that are far
interact with the particle and are placed in a P-B interaction list Lstpp along with
their expansions EB and locations ZB in subroutine GATHER. Boxes that arc close
however are further examined in the fully vectorized subroutine CLOSECHECK.
Those that are childless have their particles stored in an airay Lstpp so that they
interact directly. Those that are parents have their children stored in array Lstxm so
that they are fed back in FARCLOSE at the finer level. Note that at the finest level
all boxes are considered childless and subroutine CLOSECHECK need not be called.
This way the interaction lists for the particles are formed successively and a fully
vectorized force calculation calculates the velocities of the particles at the following

stage.

Note now that this depth first secarch for interaction lists is further facilitated by
the following obscrvation. Every particle belongs to a childless box. It is easy then
to observe that all particles in the same boz share the same interaction list comprised
of members of the tree that belong to coarser levels. This way the tree is traversed
upwards for all particles in a childless box together and downwards separately for
cach particle. It is evident that this procedure is more efficient for uniformly clustered
configurations of particles as there would be more particles that belong to childless

hoxes at the finest level.

The cost of this step scales as O((N/ Lyin)logN) as there are logN levels of boxes



and the tree is traversed (N/ L,y ) times.
Step 3 : Computation of the interactions.

Once the interaction lists have been established the velocities of the particles
are computed by looping over the elements of the lists. For particles that have the
same boxes in their interaction list this is performed simultancously so that memory
referencing is minimized. Morcover by systematically traversing the tree the particle-
particle interactions are made symumetric so that the cost of this computation is
halfed. Care has been exercised to compute the velocities with the minimum possible

number of operations (Section 3.4).

The cost of this step is O(Np).

3.3.2 The Box-Box Algorithm.

This scheme is similar to the PB scheme except that here every node of the
tree assumes the role of a particle. In other words interactions are not limited to
particle-particle and particle-box but interactions between boxes are considered as
well. Those interactions arc in the form of shifting the expansion coefficients of one
box into another and the interaction lists are establishied with respect to the locations

of every node of the tree.

The scheme distinguishes five categories of interacting clements of the tree with
respect to a cell denoted by c.
o List 1 : All childless boxes neighboring c.

¢ List 2 : Children of colleagues of b’s parents that are well separated from c. All

such boxes belong to the same level with c.

o List 3 : Descendants (not only children) of ¢’s colleagues (boxes of the same size
as ¢), whose parents are adjacent to ¢ but are not adjacent to ¢ themselves. All

such boxes belong to finer levels.

o List 4 : All boxes such that box ¢ belongs to their List 3. All such boxes are
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childless and belong to coarser levels.

e List 5 : All boxes well separated from ¢’s parents. Boxes in this category do not

interact directly with the cell c.

Start with Boxes ai ¢’s parents level

NO List 2
Close 10 ¢’s of
parcrflts ¢’s Parents
List 4
of ¢
List 1
of ¢
List 2 of ¢
YES (RAME. LEYEL ROX)
Children close
o ¢ T
List 3 of ¢
JEINE £ LEVELROX

Fic.3.22 Flow Chart for the Tree Traversal of the BB scheme for a cell ¢

If the cell ¢ is childless it may have interacting pairs that belong to all four lists.
However if it is a parent it is associated with boxes that belong to lists 2 and 4 as
described above. These observations are directly applied in our algorithm and we

may distinguish again the following 4 steps.
Step 1 : Building the data structure.

This procedure is the same as for the PB scheme. This fact enables us actually

to compare directly the two algorithms and asses their efficiency.
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Step 2 : Construction of Interaction Lists.

To establish the interaction lists we proceed again level by level starting at the
coarsest level. For each level we distinguish childless and parent boxes. In establishing
lists 1 and 3 we need only loop over childless boxes whercas to establish lists 2 and

4 we loop over all cells that are active in a certain level.

Step 2a : Here we establish lists 1 and 3. We start at the level of the parents of
box ¢ and we proceed level by level examining again breadtl first, until we reach the
finest level of the structure (the particles). The clements of lists 1 are basically the
particles and account for the particle-particle interactions. Care is exercised so that
this computation is symmetric and we need to traverse the tree downwards only. The
elements of List 3 are the boxes and are accountable for the particle-box interactions

in this scheme.

More specifically an algorithmic description of our algorithun is given by :

subroutine Lists1&3(Ipr,kchlds)
Do 1 k = 1,kchlds
Find the colleagues of k’s parents (Lelg)
Place the children of (Lelg) boxes in (Lstrm)
Do 21 = lpr.Jmax
CALL FARCLOSE(ZC,ds(1),IKxm,Lstxin k3,Lst3,kels, Lstcls)
CALL CLOSECHECK((kels,Lstels k1,Lst 1, kxm, Lstxm)
2 Continue
1 Continue

return

The outer loop here is over all childless boxes. The colleagues of their parents are
identified (either by being retrieved directly from an array or by using FARCLOSE)
and subscquently their children are placed in Lstxm. Subsequently a call to FAR-
CLOSE distinguishes between faraway and nearby boxes at different levels. Boxes
placed in Lst1 are to interact directly whereas those placed in Lst3 are to interact

as particle-box.

Step 2b : Here we establish interaction lists 2 and 4 for all boxes in the hierarchy.

We start at the coarsest possible level and proceed downward until reaching the
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Jevel of box ¢ to establish the interaction lists. To do so for a certain box we start
by examining boxes that are not well separated from its parents (otherwise they
would have been dealt with at the coarser level). Subsequently the children of those
boxes are examined to establish interaction lists. Algorithmically this operation is

represented by:

subroutine Lists2&4(Ipr,kbox)
Do 1k = 1.kbox
Do 21=10.Ipr
Bozes close to parents (¥j(use FARCLOSE)
Close to parents - Childless(? {use CLOSECHECK)
Close to parents and Childless - Close to boz (?)(Use FARCLOSE)
2 Continue
1 Continue

return
Step 3 : Computations of the interactions

In this scheme we consider three kinds of interactions: the box-box, particle-box
and particle-particle interactions. The latter two categories were discussed in the
previous section. For the box-box interactions once the respective interaction lists
have been established (with members of lists 2 and 4) we need to transfer those
expansions down to the ones of the children and add them to the existing ones. This
procedure is vectorized by looping over the number of boxes at each level. The use
of pointers to access the children of each box enhances this vectorization. Note that
an arbitrarily high number of expansions can be calculated efficiently by unrolling

the loop over the number of expansions into the previously mentioned loop.

3.4 Practical Formulas for Velocity Calculations

Once the interaction lists have been established the velocities on the particle
locations need to be caleculated using formulas 3.2(A-F). Because this is the most
time consuming part of the algorithm an cffort is made to reduce as much as possible
the computational cost. A possible increase in the computational speed may be
obtained by some ASSEMBLY programming for the velocity evaluations. Following

are some of the formulas employed to reduce this computational cost.
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Particle-Particle Interactions : In order to achieve higher convergence rates in the
vortex methods more complicated functions than the delta functions are usually
necessary for the description of the vorticity field. This will reduce the efficiency
of the algorithm but to minimize the extra cost one could make use of look up
tables. In these look up tables in order to get the accuracy required we should
not only store the values of the function but its derivatives as well. Using the
MATHT7 scientific libraries of the CRAY would help reduce this computational

cost.

Particle-Boz Interactions : Formula 3.2B may be calculated using recursive re-

lations. By computing separately real and imaginary parts for the velocities we

have that for a particle located at z = x + ¢ y the contribution from a box located
at Xy = X + ¢ Yy having expansions «p = Ap + ¢ j, may be computed with

the following algorithm.
r— Xy : y — Yy

rog = , fo = s - —,
O - Xu)? 4 (y—Yu)? fo (0 = Xp)?2 + (y— Yu)?

YE = Th—1"T0o — fk—1 ‘fo
fe = re—1-fo + fom1-10

and the velocities (1,v) would be given as :

Purent Cell Ezpansions : The expansions of parent cells are computed from the
expansions of their children. This procedure does not introduce any errors and it
helps in economizing computer time compared to a direct calculation using the
particle locations. The amount of necessary calculations is reduced by exploring
the regularity of the location of the children boxes with respect to the parents.
Thus in formula 3.2D we have

—1 + ¢, for Box 1;

—1 — 2, for Box 2:

1 -1, for Box 3;

1 4 <, for Box 4.

children parent
Z = Zz\[ Z,\[

oy
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where d is the size of the child cell. Hence we may calculate explicitly the powers
(D ZF for all values of Lk thus speeding up the computations inside the loop

for the boxes.

Cell-Cell Interactions: A procedure similar to the one for the particle-cell inter-
actions is followed here. If §; = 1 + i6; are the coefficients of a box located at
Za = X¢ + 1Y which are contributed by a box located at Zyy = Xy + 1Yy

then these coefficients are computed with the following scheme :

X — X . Yo — Yy

s o ey oo o R LIl s QS VS CRIN s RIS TR

e = Thk—1"To — fk—«l ‘fo

o = =1 fo + fr—1 70
and finally:

R = — Z Aok — g fr

B o= Z/\k'.fk + e Tk

k=0
m=r R — fi- B

fo=rm-F+ fi- Ry

Children Brpansions : Cell-Cell interactions are performed at the coarsest possi-
ble level. Then the expansions of the parent boxes are transferred down to the
expansions of their children and are added to the existing ones until the finest
level at any branch of the tree is reached. Those expansion coefficients are com-
puted using formula 3.2G in a similar way as for the expansions of parent cells

discussed above.

Cell - Particle Interactions : Once the expansions of all childless boxes have been
obtained they are used to compute the velocities on the particles. Formula 3.2E i1s
used and a procedure similar to the one discussed above is followed. Vectorization
is achieved by looping over all particles in a certain childless box. This may be

inefficient if only a small nunber of particles is contained in this box.
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3.5 Performance of the Algorithms

Comparisons were made for the two fast algorithms and the Q(N?) in terms of
efficiency and computational speed. We require that the fast algorithms produce the
same results as the N4 scheme with minimum accuracy of six significant figures in
the velocity field of a random uniform distribution of particles in a square. We allow
up to eight levels in the hierarchy of the boxes and use ten terms in the multipole

expansions at all levels.
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F1G. 3.3 Performance in Mflops of the PB and BB algorithms on the CRAY/XMP-18

In Fig. 3.3 we show the efficiency in the vectorization achieved for the fast al-
gorithms on the CRAY/XMP-18. The PB algorithm is much more efficient than
its BB competitor in regards with vectorization. This 1s a result that was expected
because of the stimplicity of the PP scheme versus the algorithmic complexity of the

BB scheme.

This is not the whole story however, since in applications we are mainly interested
1 the overall speed of the algorithm and not necessarily 1 its Mflps efficiency. Fig. 3.4
shows the CPU time required on a single processor of an XMP-18 in cach of the three

methods for an evaluation of all N velocities for N elements with a minimun accuracy
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FiG.3.4 Computational Cost of the PB, BB and direct suunmation algorithms

of 107%. Note that fast methods become advantageous for computations involving
only N = 500 particles with the BB method breaking even with the PB method for
N = 4400. Note that the CPU time required on a YMP processor is about 2/3 of the
time required on an XMP. A timestep requiring one evaluation of all velocities for
a million particles requires about one minute on single processor of a CRAY YMP

while the N? algorithm would require roughly 24 hours.
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CHAPTER 4

Diffusion Schemes for Vortex Methods

Lagrangian methods are numerical schemes well suited for simulations of physi-
cal problems governed by hyperbolic equations. In incompressible fluid dynamics a
class of Lagrangian methods, the vortex method, is an efficient tool for the study of
inviscid flows. The dynamics of such flows are determined by the evolution of their
vorticity field and vortex methods are designed so that the computational elements
automatically adapt to resolve the regions containing vorticity, without resorting to
averaging and smoothing introduced by an Eulerian mesh. However in order to solve
the full Navier-Stokes equations the method needs to be enhanced to account for
viscous effects. The method is faced with the challenge of approximating the smooth
diffusion operator with information gathered from the distorted (due to convection)

Lagrangian elements.

We may distinguish three broad categories of Lagrangian methods used for the
simulation of viscous incompressible flows. Mowving grid methods, pure particle meth-
ods, and the hybrid methods. As to moving grid methods we refer to the moving-point
method (Farmer, 1985) and the free Lagrange method (Fricts, 1985). Methods of this
type are close relatives of finite difference schemes distinguished from them by the
fact that the mesh is not fixed but it is changing in time due to the convective mo-
tion of the points. The diffusion equation is then solved by appropriately integrating
the equations using an integral (averaging) approximation of the vorticity and its
Laplacian on this mesh. Although these methods are quite popular for the simula-
tion of compressible flows they have not been used extensively in the simulations of

incompressible flows. For more details the reader is referred to the works cited above.

Particle (vortex) methods resort to the replacement of the governing differential
equations by integral operators that are subsequently discretized using as quadrature
points the locations of the particles. The convection equation is solved by following
the trajectories of the particles. The diffusion equation is solved by employing its so-

lution in the integral form (Friedmann, 1964). This integral form may be interpreted
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in a number of different ways resulting in various numerical schemes. Chorin (1973)
allows the particles to undergo a random walk so that their locations when sampled
statistically approximate this integral. Leonard (1980) observed that individual par-
ticles having a Gaussian core are exact solutions of the diffusion equation and one
may use a superposition of their solutions to simulate viscous effects. Raviart (1987)
and his coworkers (Cottet, Huberson, Mas-Gallic, (1987)) developed a method (here
called the method of Particle Strength Exchange) that approximates the Laplacian

by an integral operator that is subsequently discretized on the particles.

Algorithms that use only particles are ususally hampered by the fact that the
computational elements beconte too distorted (due to convection) to accurately ap-
proximate the diffusion equation. Hybrid methods attempt to alleviate this problem
by employing a grid along with the particles. A viscous splitting algorithm is em-
ployed where the convection is solved by advancing the particles and the diffusion
equation is solved on the grid. An intermediate step is used to couple the two steps
by transferring information between the grid and the particles (Jolles and Huber-
son, 1989) An alternative hybrid scheme employs a domain decomposition technique
(Cottet, 1990) where a grid is used to solve the Navier-Stokes equations where viscous
effects are important and a particle method is employed to solve the Euler equations

where the flow is dominated by convection.

In the present scheme particles are used for the solution of the convection and
diffusion equation without resorting to a viscous splitting algorithm (for unbounded
flows). The particles are convected using the Biot-Savart law to compute their veloc-
ities and the scheme of Particle Strength Exchange (PSE) to account for the viscous
effects. Accurate computations are obtained for large times by not allowing the La-
grangian grid to become too distorted as the particles are remeshed when deemed

necessary.

In this chapter we review some of the techniques applied to particle methods
for the solution of the diffusion equation. We compare the results of these schemes
as they are applied to some simple one dimensional problems for the convection-
diffusion equation. Finally we describe some recent developments of the method
of particle strength exchange for the treatment of viscous boundary conditions for

simple geometries and we propose a novel scheme to this effect as well.
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4.1 The 1-D Convection-Diffusion Equation Model

We examine the techniques that account for diffusion in the context of particle
methods (particle strength exchange, random walk, core expansion) by applying them
to simple one dimensional problems governed by the following convection diffusion
equation for the “vorticity’ w :

2
Ow Ow O w

+u =

Ot Jx Ja?

(4.1)

where v is the diffusion coefficient and u(z,t) is a given velocity fleld. In a Lagrangian
formulation we follow the characteristics of the equation (described by the particle
trajectories, z,) by solving :
da,
At

Then on those characteristics Eq. 4.1 reduces to

u(ay,t) (4.2)

2
dw d*w (4.3)
—_— = Vv .
dt da?
Particle methods approximate the vorticity field by a linear superposition of the

vorticity field of N particles as:

N
w(x,t) = Zfi(t)m(m — (1)) (4.4)

where I';(1) is the circulation assigned to each particle and (2 — (1)) is a function
describing the vortex field, per unit circulation, induced at @ by a particle located at
z;. The characteristics of the equations are determined by following the trajectories

of the particles and the diffusion equation is solved on the particle locations.

It is interesting to observe here that in order to solve the diffusion equation the
various particle methods apply on the different parameters of the expression of the
vorticity as given in Eq.4.4. For example, the random walk applies on the particle
locations, x;(t), the particle strength exchange on the particle assigned circulation,
I’;(¢), the core expansion technique on € and another deterministic scheme (Fishelov,

1990) on ), to mention the most notable ones.
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4.1.1 Test Cases

We examine the method of random walk, core expansion and particle strength
exchange as they arc applied to the solution of some one-dimensional problems for
which exact (w®) solutions exist. These problems are described by their initial and
boundary conditions for w and the imposed velocity field u. For all cases the viscosity
(v) of the flow is taken to be equal to 1073, Solutions are obtained for 0 < 2 < oo

for the bounded cases and for —oo < 2z < oc for the unbounded ones.
Problem 1 : The initial condition is :
w(@,0) = fla) = ve™*

The boundary Conditions w(0,#) = 0 and a homogeneous velocity field w(x.t) = 0

define the problem.

Problem 2 : {Forced Collision of two Gaussian layers (IXambe, 1983)). The initial
conditions 1s:
) Y ()2
w(z,0) = flz) = "D _ = 2)

The flow is considered to be unbounded with a forcing velocity field u(x,t) = —aa

where o an arbitrary constant (here o = 1).

Problem 3 : {Rayleigh problem of an immpulsively started plate). The problem is
defined by homogeneous {u,w) initial conditions and boundary conditions :u(0,1) = 1

nu

We compare the numerical solutions «w™ using as an error measure: RMS =

S ety
A : ; N)

~ where w 1s computed at the particle locations (v, ¢ =1,.., N

4.2 Random Walk

To outline the method of the random walk we consider its application to the

solution of Problem 1. An integral form solution to this problem is given by :

wa,t) = /(G(:z},y,t) — Glu, =y, 1)) fly)dy (4.5)



alx, T}

w{x,T)

39

T ¥ ———T"exoct woln, -4 v ¥ el gxpCt BOLN.
(-] resmerfasl acin. o nuverioal soin.
©
o
e 4 3t 4
L ° e ©
o
° )
F
o 1 ¥ -2t E
3
° ° o o
[+
L - PR E
o o
o D
o
() ()
L L o s :
° 1 2 ] 4 0 1 2 3 4
x x
4 T el axg0t 01N, 4 4 ¥ ———I."axact woln.
° mamericel soln. o twewer-icsl soln.
o
A S 1 ]
o
° -~
° =
b “ 3 . b
° 3
-]
o]
° o
A "
[} 1 2 a3 4 4
x x

FI1G. 4.1 Random walk solution of Problem 1. Number of particles used 1s (clockwise
starting from the bottom left) 500,1000,2500 and 5000 respectively

where
Glx,y,t) = ......}......_e—(li“y)z/-’iut

a4t

The above integral may be calculated explicitly to give:
W (2, ) = x (f._'x?/(l'H”t)/(l + 4ut)/?

In the context of the random walk the integral solution may be interpreted proba-
bilistically as follows: Place N randomly spaced particles on the line & > 0, in the
computational domain and at positions x?,7 = 1,.... N and assign to each particle a
strength of f(x;)/N. Let then the particles undergo a random walk by changing the

positions of the particles at each time step 6t under the following rule :

:(L+l — .'7?7~l “r‘le

€, Ty
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where £8' are Gaussian independent random variables having mean 0 and variance
2,6t. Now as we let the number N of particles go to infinity we may observe that
the expected distribution of the particle strength on the x-axis would approximate

Eq.4.9

ZM fla) (e <ai<a4de, t=T, ;M>0)

i=1

lim

= w(x,t 4.6
N 00 Ndz w(z,?) (4.6)

————— -1/2 slcpe
Random walk

Log R.M.S.

N)
O
he
o

3.0 3.5 4.0
«og N

F1G. 4.2 Random walk solution of Problemn 1. Sampling every 20/N points. v =
1074, &t = .1, T = 10.

In order to satisfy the homogeneous boundary condition for the vorticity we as-
sume an odd extension of the function f(z) on the line & < 0 and we perform the
random walk on the whole line. We may mention here that the homogeneous bound-
ary condition could have been satisfied by the generation of particles at the boundary
as is a common practice for the two-dimensional application of the method on more
complicated domains. However this doesn’t seem to affect the purpose of these ex-
periments which is the evaluation of the general method. In Fig. 4.1 the results of
the computation for several numbers of particles, using a time step 6t = 0.5 and a

sampling interval of dv = .175, are shown. One may obscrve the slow convergence of
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the method which has been estimated to be of O(1/ VN ) by Milizzano and Saffman
(1977). In order to check this estimate a series of numerical experiments was per-
formed for several numbers of particles and the rms error of these experiments is
plotted versus the number of particles in Fig.4.2 The characteristic law of —1/2 is

observed.

.25

20 -

wlx,T)

.10 -

.05

F1G. 4.3 Random walk solution of Problem 1. Variation of results due to sampling
interval change

It is evident from these results that to get a reasonable accuracy large numbers
of particles are necessary. Moreover as the viscosity of the flow increases the solution
deteriorates further as the variance of the random variables becomes larger, resulting
in less accurate solutions for high viscosity flows. The scheme of random walk 1s
usualy implemented in a fractional step algorithm for the solution of the convection-
diffusion equation. The particles are advanced so as to resolve the Euler equations and
subsequently undergo a random walk to account for the viscous effects. In addition
to the problems the method is facing in merely solving the diffusion equation, when
used in a viscous splitting algorithm, it imposes a strict tune step for the convection
equation so that the random walk solution is not dominated by the inaccuracies

in the solution of the convection step, especially when solving flows of vanishing
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viscosity. This fact is common to all numerical methods that treat convection -
diffusion problems and the random walk should not be considered as ‘munerical

diffusion’’ free when it is considered in that context.

We may mention here that the way one performs the sampling of the particles
affects the presentation of the results. In Fig.4.3 we plot the results for sampling
increments of dr = .073 and da = .292 for 5000 particles spread over 0 < 2 < 3.5 It
is evident from the computational results shown lere that although the method of
the random walk is an attractive technique for the solution of the diffusion equation,
because of its simplicity, its slow convergence make it a questionable alternative for

computations using a reasonable number of particles.

4.3 Core Expansion

The core expansion method is based (Leonard, 1980) on the linearity of the dif-
fusion cquation. As expressed by Eq.4.4 the vorticity field may be represented by a
linear superposition of elementary Gaussian vorticity fields. When these individual
fields satisfy the diffusion equation so does the total vorticity field that they repre-
sent. The diffusion of each particle is achieved by assuming each one of them to be

a model of an Oseen’s vortex so that the core radius (€) at time (t) is defined as :

e(t) = €(0) + 4vt (4.7)

This guarantees an accurate solution of the diffusion equation ( the only error
introduced being the approximation of the initial condition by the particle method).
However the continuous expansion of the vortex cores hurts the convection step as
the error introduced by the particle approximation is of O(e*) Moreover it has been
shown by Greengard (1984) that this method does not lead to a consistent solution
of the Navier-Stokes equations. A plausible alternative may be the remeshing of the
vortex field after each diffusion step. Such an approach would fall into the category
of hybrid methods and would introduce additional munerical diffusion due to the
remeshing process. In the past, the method has been used with some success by

Meiburg (1989) for the simulation of the two-dimensional fingering instability.
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FIG. 4.4 Forced collision of Gaussian shear layers. (v = 107%, T=1)

To examine the validity of the method we use it to simulate the forced collision
of two opposite signed Gaussian shear layers (Problemn 2). In Fig. 4.4 the results
of the computation are shown. We observe that the vortex calculations develop
slower in time (note here that a similar observation was made by Meiburg in his
simulations). Further computations have shown that by increasing the resolution the
method does not reproduce the exact solution. The computational results presented
here complement the argument that the method does not converge to solutions of
the Navier-Stokes equations The method provides an mexpensive model for diffusion
effects (especially for flows of vanishing viscosity) but it should not be used (at least
without a redistribution step) if consistent solutions of the Navier-Stokes equations

are sought.



44
4.4 Particle Strength Exchange (PSE)

In this method the diffusion equation is satisfied by modifying the strength of
the particles used to describe the flow. If the particles occupy regular positions on
a grid the method may be shown to be equivalent to a second order finite differ-
ence approximation (H.Cottet, 1990). In general the method simulates accurately
the diffusion process provided a minimun particle overlap is maintained. For most
flows of interest however the convection distorts the particle locations, due to the
accumulated strain of the fluid clements, and the scheme needs to be complemented

by a particle redistribution algorithm to produce accurate results.

We examine the method in more detail and we consider first its application to the
solution of the diffusion equation on an unbounded domain and then its application
in solving the diffusion equation with boundary conditions for simple one dimensional

geometries.

4.1.1.1 Infinite Domain

The method for the whole space has been introduced by Raviart (1987) and his
coworkers (Cottet (1987), Huberson (1987), Mas Gallic (1987)). It is based on the
idea of approximating the Laplace operator A with an integral operator A° and
applying a quadrature rule to this integral using as quadrature points the locations

of the particles.

More specifically we define:

] 1 » ,
Afw = -67(776 * W — Cu) (4.8)
where 7.(x) = ;“777(){/ €), is a regularization (smoothing) function. If n(x) (with

X = {xy,x2)) is chosen so that there 1s an integer m > 2 such that:

/;z:? n(xydx = 2, /x“ nx)dx = 0, 1<]a|<m+1
e 2>

then it can be shown that :

Afw = Aw 4+ O(e™) (4.9)
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The diffusion equation is replaced by the following integro-differential equation for
the vorticity

Jw Y
% = : [wly) = w(x)]n(x — y)dy (4.10)
R2

The integral operator is discretized using as quadrature points the locations of the
particles. This discretization introduces an additional error of O(h* Jek 1y where T
is a representative inter-particle spacing and k is dependent on the properties of the
function 1. So finally, employing the expression Eq.4.4 for w, the solution of the
diffusion equation is reduced to the equivalent problem of solving a set of coupled
ordinary differential equations for the strengths (I';(#)) of the particles. The method
has been shown to be stable (Degond & Mas-Gallic, 1988) provided that there is a
positive constant Cy such that

v < Cy el

The total error introduced by the approximation of the Laplacian and the discretiza-
tion on the particles is

O(e™ + REJer ),
The method may be expressed algorithmically in 1-D or 2-D formulation as :

dT’; vhe & e e ‘
o= <z (T~ =T nelxi = x5), d=1,2 (4.11)
i=1

Pépin (1990) observed that when one uses a Gaussian regularization function and

an Euler integration in time with time step

the results of the computations are independent of the number of particles one uses

to resolve the equation provided they overlap. In this case Eq.4.11 becomes :

N
n FIR h d NI n— —(x;—x; )2 /dvbt ; :
M=+ (T Y (D7t =T )em i g =12 (4.12)

The above result may be explained noting that the exact solution of the diffusion

equation for an unbounded (1-D) domain is expressed as :

, " eap - \/4/(57‘
wlx,t+6t) = /“])( A t) dy (4.13)

4wt
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FIG. 4.5 Particle Strength Exchange solution of Problem 1. T =100, ,6t =.5, N =
80

The kernel is such that total circulation is conserved so we may write

wlx,t 4 6t) — w(z,t) = /ca:p(—(\:;i—_g_%%/‘&z./M) (w(y,t) — w(x,t))dy (4.14)
ViamTybt

Setting the strength of the particles to be equal to
T, = w(a;) kY, d=1,2

and discretizing Eq.4.14 using as quadrature points the locations of the particles
results in Eq.4.12. This justifies the existence of an optimum step for the method of
particle strength exchange as then the only error is that of the quadrature rule that

is known to vanish provided the particles overlap.

N 250 375 500 750 1000
Log R.M.S. -5.24204 -5.24343 -5.24579 -5.24666 -5.24689

TasLE 2.2.1 Couvergence study for h/e = 1.
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This theoretical estimate is indeed verified by the results shown in Table 1 for the
solution of Problem I using various numbers of particles. The error remains constant
for large enough N. It is not exactly zero as during the diffusion process we used
axed locations of particles and we did not add particles to pick up the vorticity that
has diffused to the outer parts of the domain at time T. If one wishes not to operate
on the optimum overlap ratio then the behavior of the error is shown in Fig.4.6 for
different values of e. As we can observe the error decreases rapidly as we decrease the
overlap ratio. When for each e the number of particles N, is such that the overlap
ratio becomes equal or less than one then the error curve reaches a platean . We have
reached the minimum error and increasing the number of particles doesn’t improve
our solution. The results shown on Fig.4.6 may be compared with those of Fig. 4.1
for the random walk solution of Problem 1. One can observe then that for the same
number of particles and the same time step the results of the P.S.E. method are more

than two orders of magnitude superior to those obtained using the random walk.
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FiG. 4.6 Particle Strength Exchange solution of Problem 1. v =107% ét=.1,T =
10

Note also that the method does not require a viscous splitting algorithm for the

solution of the convection-diffusion equation. Eq. 4.2 and Eq.4.11 may be integrated
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simultaneously to account for convection and diffusion by modifying the particle
location and strength respectively. This observation helps reduce the computational
cost of such methods as the smoothing kernel (7.(x)) nceds to be calculated only

once at the particle locations.

4.5 What if Particles are not Uniformly Distributed 7

The accuracy of the scheme of particle strength exchange is highly dependent
on the particle overlap as theoretical analysis and practical results dictate. Such a
requiremnt is necessary of the convection step as well when one uses smooth vortices

for the solution of the Euler equations.

The distribution of the computational elements is strongly dependent on the flow
map. The local strain may generate a substantial clustering of particles in one di-
rection accompanied by an expansion in another direction. An initially uniform
distribution of overlapping particles may become totally distorted as a flow map
rearranges the particle positions. When overlap is lost information cannot be trans-

ferred between the particles and the accuracy of the simulation deteriorates.

These facts are demonstrated by the following simple one-dimensional computa-
tional experiments. At first we repeat the simulation of Problem 2. For this case the
particles overlap at all times and the overlap (» = éa/8t) remains uniform through-

out the computational field (r(¢) = r(0)exp(—2at)) at all times.

The solution obtained from the particles is indistinguishable from the exact so
in Fig.4.7 we show the error of the simulation as a function of time. Note that the
error decrcases with the progress of time as the overlap is increased. This case is
optimally solved by the particle method as the uniformity of the particle distribution

is maintained throughout the course of the computation.

The simulation is repeated now but this time a velocity field of the form
sin(dmx)
1+ 28

is used to convect the particles. Due to the time independent stagnation points

ulz) = «a

induced by this velocity ficld particles accumulate around these points, requiring a
smaller time step for the integration of the equations, whereas (if no local re-griding

takes place) other regions of the domain are devoid of particles.
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Log (R.M.S.)
I
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8]l

Time
Fi1G.4.7 Collision of two Gaussians. Particle Strength Exchange Solution error

Since no analytic solution exists for this problem we compare the results of the
particle method ( using the PSE scheme for the diffusion step) with the results
obtained from the careful integration of a finite difference scheme using the method

of lines with cubic Hermite interpolation.

In Fig. 4.8, Fig. 4.9 we show the results of the computation and we monitor the
particle overlap for different times. Note that although initially at certain regions the
particles do not overlap the agreement is excellent. However the situation deteriorates
with time and later unphysical oscillations arc observed in the solution due to the
loss of particle overlap. A remedy could be a regridding procedure that restores a
uniform particle distribution when deemed necessary conserving the properties of the
ficld. Such a procedure is described in Ch.6 for the application of the method in a

two-dimensional domain.
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4.6 Boundary Conditions for 1-D Convection - Diffusion Equations

As we have used the one-dimensional world to test numerical schemes for the rep-
resentation of diffusion it seems appropriate to formulate the problem of enforcing
boundary conditions as well, in 1-D domains. The task of enforcing boundary condi-
tions in the context of a particle method is not a trivial one. The difficulty is twofold.
In the Lagrangian world the boundary conditions may be seen as a process where
information (values of the field variable) needs to be transferred from the boundary
to the particles. This requires that particles resolve the region near the houndary.
However the irregularity of the particle distribution makes the process cumbersome
and difficult to analyze. Moreover for physically interesting problems the bound-
ary conditions arc in terms of variables other than those that are resolved on the
particles (e.g., the no-slip boundary condition for vortex methods). The bhoundary
conditions (e.g., on the velocity) need to be transformed to equivalent ones (e.g., on

the vorticity) to be implemented in a particle scheme.
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The issue has not been satisfactorilly resolved in the past and research is active
in this area. Here we describe some recent efforts in deriving boundary conditions
for some simple one dimensional geometries. In addition we propose a new scheme
that accurately resolves boundary conditions of the Newmman and Dirichlet type for
simple geometries. The extension of this scheme to higher dimensions is discussed in

Ch.b

Method I :The Particle Strength Exchange method has been recently extended
to cover boundary conditions for simple 1-D geometries by S. Mas-Gallic (1990) and

B.Luquin and S.Mas-Gallic (1990) in a conservative formmulation.

For the sake of completeness we repeat here the basic ideas of the derivation of
the method : Let w be the vorticity field in a domain © with boundary 9 and define

I —€e? A and f such that:

the operator £

Lw = n Q2

w — €Aw = f



(1
o

We convolve the above equation with G, where G, is the Green’s function for the

infinite domain of the operator L.
wxG - AwxG, = f*G, (4.15)

Using now Green’s identities on the left hand side of the equation we obtain :
g |

. , [ OG Ow
wHG, —wx AG. +¢8 | w “ds — /G( ds = f*G, (4.16)
) on an '
oL o0
By definition G, — € AG, = §, so that :

, [ OG. ; . Ow
w o= —€ «/waﬁ(n ds + € /G(b—;ds + f* G

582 af

However solving Eq. 4.15 for Aw and assuming f = w we obtain the following integral

approximation for the Laplaciau.

1 .
Ao = S(w*xGe—w) — /w

€

1( a/
ds + /G’6 0:? ds (4.17a)

a0 a2
Now this equation may be complemented by the equation that gives the values of w

on the boundary 02

~1-w = ,(wxG —w) — OC ds + /GC(‘?—wds (4.17D)
2 ¥ on On
o0 BIY
to give us the full set of equations to solve. Now given the vorticity (w) or the flux of
vorticity (Jw/0n) on the boundary we solve Eq.4.17b for (Ow/On) or w respectively
and substitute in Eq.4.17a to obtain the approximation for the Laplacian operator
when boundaries are present. The function G, is not known a priori for all the do-
mains 2 with arbitrary boundaries 02. However it can be approximated by functions
n in £ and ¢ on 9Q where the functions 5, ¢ are related appropriately in order for

the method to converge and to be stable.

For example for the solution of the heat equation on the half space R3 the set of

equations may be expressed as (Mas-Gallic, 1990)

Au(x) = = | (wly) —w(x) gy —x)dy
i

' oC, . . Ow
- /w(x—y)—Ly)dy + /éf(x—y)—dy
v dy . Jdy
R

R

(4.18a)



for x = (x1,22) in R% and

S9x) = 5 [ (wly) = w(x) ¢y = x)dy
RY
— / w(x — y)—-————a/’gi,}’) dy + / Ce(x—y)ag(yw dy
R R

for x = (21,0) on R where 7 obeys Eq. 4.8 and is related to ¢ by

(4.18D)

R2
yanlyr,ys +8)ds = ————— [ ((z,8)dz  foralls>0
/yzn(yl Y2+ 5) ¢ Tc(z.07dm /é( ,8) ¢ or all s >
R} R R

This method has been shown by S.Mas-Gallic (1990) and B.Luquin and S.Mas-Gallic

(1990) to converge to solutions of the diffusion equation with boundary conditions in

the Dirichlet or Neumann form.

1.0 [ ! ' T L exacl soln. !
i numerical solin. i
8 .
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0 ) 2.5 3.0
x / 2Y/(vT)
FiG.4.10 Particle Strength Exchange solution of Problem §. (v = 1071, T =

1., N =100)
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Returning now to the 1-D space we may apply this method to the solution of the
test problems already posed. If we pick ((#) = () = 8(x) = e712/¢/2¢ then
the Laplace operator may be expressed as

oc
Al(z) = = / (wly) — o)) (Bulx —y) + Bule ) dy —2

0

9w (0,1)

x

f.(z) (4.19a)

2}

for the Neumann boundary conditions on the vorticity or

f.(z)

€

(w(y) —w(@)) (Bl —y) — b(x+ y)) dy + «(0,t) (4.191)

e

S

b

il
n:\'.‘l =

for the Dirichlet boundary condition on the vorticity

In Fig.4.10 the solution of the Rayleigh problem (Problemn §) is shown using the
Neumann boundary condition after the steady state has been reached. One may
observe the good agreement of the method with the analytic solution using a small

number of particles.

Method II : An alternative technique has been proposed in the context of the
deterministic particle strength exchange for the treatment of the boundary conditions
by Pépin (1990). We examine this method and analyze its accuracy and consistency
by repeating at first the derivation of the method for the solution of the 1-D diffusion

equation.
Convolve the diffusion equation with the smoothing function 7, in order to get

OOOw

Sy nle ~y)dy = /a (Wl = ) dy

0
Applying now Green’s identity and assuming that the time derivative of the smoothed
vorticity field is approximately equal to the time derivative of the real vorticity ficld

results in the following equation :

9ale) _ %)) —/‘a‘ﬁ v+ 2)znf]) d= (4.20)

ot Ox

where z =y — 2.



ot
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Expanding Ow(x + z)/0z around x using a 2nd order scheme yields :

Ow 3 1
et 2) ~ Sl 4 2) = wla)] + lele — ) — (o]

and substituting in Eq. 4.20 we get that :

Ow(z) Ow v OO§
5 = —1/8(7:(0)1/((&,) + Zg/ 2[ w(@+z) —w(@)n]z])d
‘. (4.21)
1 ;
+ 2| Slote = 2) = wl@lndle]) de

Comparing now the above equation Eq. 4.21 and Eq.4.10 that expresses the method
of the particle strength exchange for the unbounded domain it seems reasonable to

make the approximation:

/[w(:n —z) —w(@)n(lz|)dz = /[ (z + z) —w(2)]n|z]) d= (4.22)
0 0

and express finally the method as the following integro-differential equation for the
vorticity

dole)  Bw 2w ;
) = 20 + 5 [t —e@hnda—uhdy (623)
0

We recover then. the expression for the unbounded domain (at least away from the

boundary) and get also an additional term to account for the boundary condition.

Note that the approximation as expressed by Eq.4.22 is an exact relation when
the integration is carried over the whole real line (i.e., the limits of integration are not
[0,00] but [—o0,00]) as z is a dummy variable. It is also a good approximation for
points (z ) away from the boundary as the smoothing function decays rapidly for large
values of z. However close to the boundary (x = 0) the above approximation does not
lead to a consistent approximation of the Laplacian by an integral operator, similar
at least to the one given by Eq. 4.8 This observation may be alternatively expressed
by the following argument. Consider as a smoothing function the Gaussian. Then
in order for the method to be consistent and conserve the total circulation we need

that

o8

1 RC I
Jre // Ny =

OO
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On the other hand for the bounded domain we get

o0

. . 11
/6""(15‘“31)2/62 (llj = :_; -+ 3(’7f(’ﬁ'/€>

Ve

Ea

0
Note now that as x /e > 3 then er f(x/¢) = 1 and hence we obtain the correct behavior
of the function. However as we keep a finite € and @ — 0 then er f(2/e) &~ 0 and the

method is not a consistent one.
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F1G. 4.11 Particle Strength Exchange solution of Problem §. (v =107, T =1., ¢ =
107?*). Number of particles used (N) and respective overlap ratio (dz/e€)
is (clockwise starting from bottom left): 60 (.99), 75 (.80), 120 (.50), 300
(.20)

In Fig.4.11 the results are shown for the solution of Problem § using different

numbers of particles. We observe then that for a small region (= 3¢) close to the



57

boundary the method fails to solve accurately the diffusion equation. Increasing the
number of particles reveals a trend of the method to resolve a thin ‘boundary-layer’
like solution. This inaccuracy seems not to affect the solution at distances farther
away from the boundary and seems to be minimized when the ‘optimum’ time step

(6t = €*/4v) is employed.

Summarizing, the above method is a conservative onc as can be verified by
Eq.4.23, in the sense that it gives to the fluid the correct amount of total circulation.
It is consistently solving the diffusion equation at points away from the boundary.
However close to the boundary the method fails to give an accurate solution of the
diffusion equation. The implications of this defect cannot be readily analysed and
one can only speculate about the error introduced merely by examining the accuracy

of the results.

Method III : We present here an alternative approach for the solution of the
diffusion equation with boundary conditions, in the context of particle methods. The
method involves the solution of the diffusion equation for an even vorticity field in the
unbounded domain and the use of appropriate Green’s functions in order to satisty

the boundary conditions.

Consider again the diffusion equation for the vorticity with Neumann boundary

conditions ( a similar analysis applies for Dirichlet boundary conditions as well ).

%?u = v g;: (4.24a)
, , Ow X ;
w(x,0) = g(a) (x >0), 5;—:(0, t) = f(t) (4.24b)

In order to solve the above equation and obtain the solution at time ¢ + 6t after
having solved for time ¢ we decompose the problem into two sub-problems. Then at

each time step we perform the following two substeps :

1 _(?_\:J_[- - (7')'&/‘1 5 Ow‘g — Ozwz
ot Ox? 9t D2
wi(2,0) = w(x.t—ot) &5 walx,0) = 0
—L(0,8t) = 0 2(0,6t) = f(#) = const.

Ja Ox
The solution at time (¢t +0t) is given by the superposition of the solutions of substeps

1 and 2.
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In order to solve Step 1 we have to satisty the homogeneous Neumann boundary
condition. This is achieved by extending evenly the vorticity field (w). To solve then
the diffusion equation one of the previously discussed methods for the unbounded
domain may be implemented. In the current computations we used the particle
strength exchange technique so that for the 1-D case we may express the solution of
the problem as the solution of the following integro-differential cquation:

>0
dolz) _ v / (1) —wr()) (melle —y1) = nlle + ) dy (4.25)

dt €2
0

Applying again a quadrature rule to the above equation we may reduce its solution
to the solution of a system of differential equations for the strength of the particles.

Note that this step may be solved also by the random walk technique.

exact soln.
numerical soln.

w J{(mvT)

LAABANALADNAAAAAAAAAAN

2.5 3.0

X / 2/(vT)

F1G.4.12 Method III solution of Problem §. ( v=10"% T=1., N = 1()0)

In order to solve Step 2 we need now to obtain the Green’s function for the
diffusion equation with Neumann boundary conditions. For the 1-D case there is an

analytic solution to this problem expressed as :

46t

w

(T et a(l — erf(a/4vét))



The final solution of the 1-D problem is given then as:

wlax,t) = w; + wo

= ;é’ / (o1 () —wi(2) (ella —y]) + nellz +yl)) dy
0

+ 47/&(%_“72/"“’6“ — (1 — erf(a/dvot))
s
For the 1-D case the convergence of this method is governed by the convergence of
the particle strength exchange for the unbounded domain. In Fig.4.12 the results
of the present method are shown for the solution of the Rayleigh problem using the
same parameters as the results shown in Fig.4.10. Computational and analytical

results arc in excellent agreement

Note however that the scheme requires the existence of particles in the imme-
diate neighborhood of the boundary so that the effect of the boundary condition
is accurately transferred to the domain. Moreover the employed even extension of
the solution in the domain (method of images) makes the extension of the present
scheme to higher dimensions a difficult one especially for complex geometries. In
Ch.5 we discuss a viscous splitting algorithm that enables us to extend the method
to higher dimensions by incorporating the idea of obtaining an analytic solution for

the Neumann problem with homogeneous initial conditions.
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CHAPTER 5

Boundary Conditions for Viscous Vortex Methods

Consider a two-dimensional body (whose surface is defined by the unit vectors
s,n), translating with velocity Up(t) and rotating with angular velocity §)(#), in an
incompressible viscous flow field induced by a uniform flow (Us(?)) and vorticity
(wg(x,t)) in the wake. The boundaries of the body are the source of vorticity gener-
ation in the fluid. This physical mechanism is based on the experimental fact that the
velocity (u) of the fluid at immediate contact with the body is equal to the velocity

of the body (Uy), the ‘no-slip’ boundary condition:
u(x,) = Us (5.1)

with
Us = Up + Q(f) €z X (Xs - Xb,)

where x, denotes the position of the surface of the body and x; the location of its

center of mass.

Vorticity may be considered equivalent to the rotation of fluid elements implied
by velocity gradients. As the velocity of the fluid far from the wall is not directly
influenced by its presence, velocity gradients are established that result in vorticity
generation in the fluid. The ‘no-slip’ boundary condition enters in the mathematical
formulation of the Navier-Stokes equations usually in the form deseribed by Eq. 5.1.
However numerical schemes that rely on the vorticity formulation of the Navier-
Stokes equations need an equivalent boundary condition for the vorticity field. Such
a boundary condition has to be consistent with the kinematics that relate the vorticity
field and the velocity field and model the physical mechanism of vorticity creation at

the boundary.



5.1 Vorticity Boundary Conditions

The velocity field and the vorticity field are related by the following two kinematic

relationships :

Vxu=w (5.2)

with :

V.ou=0 (5.3)

As the boundary conditions are in terms of the velocity the respective vorticity field

(and the vorticity boundary condition) has to obey the above two kinematic restric-

tions.

The above equations may be replaced by an equivalent Poisson’s equation for the

velocity (resulting by taking the curl of Eq. 5.2 and using Eq.5.3) :
Viu = -V x w (5.4)
or introducing the streamfunction (V) (with u = V x ¥e;)

VIP = —w (

74
<t
N’

We may distinguish two types of numerical schemes that are used to resolve the above
equations. The differential formulation (Roach (1972)) relies on the direct discretiza-
tion of the above equations using a finite difference scheme. In this formulation the
far field boundary condition dictates a computational domain that is larger than the
rotational part of the flow. This might be viewed as contradicting the benefits of
choosing the vorticity field as the primary variable in the compurtations but it does
not pose an unsurmounted obstacle for the practitioners of the method. Alterna-
tively one may consider the equivalent integral formulation of the above equations.
In this approach the velocity field is determined using the Green'’s function solution
of Eq.5.4 (the Biot-Savart law). An advantage of this formulation is the implicit
enforcement of the far field boundary condition making it suitable for vorticity based

formulations as there is no need to solve for the non-vortical part of the domain.
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The form of the appropriate boundary condition relies on the choice of formu-
jation to determine the solution in the rest of the computational domain. To solve
the equations resulting from the discretization of the differential forms, the value of
the vorticity ficld on the boundary is necessary. One-sided difference formulas may
be used to determine the boundary vorticity (see Roache (1972)). In the past first
order formulas have been implemented to ensure stability and consistency of the nu-
merical scheme. However as it is discussed and demonstrated by Wu (1976) such
computations are of low accuracy and fail to account correctly for the effects of the
pressure gradient on the boundary. Recently Hou and Wetton (1992) have devised
finite difference formulas of higher order to compute the vorticity ficld on the bound-
ary that are both stable and consistent and permit highly accurate computations. In
the integral formulation approach the equations to be solved are complemented with
a boundary condition that may involve the boundary value of the vorticity (Wu and
Thompson (1973), Chorin (1973)) or the vorticity flux (Kinney and Cielak (1974)).

In the present scheme we follow the integral formulation and employ the model
of vorticity creation originally devised by Lighthill (1963) and further formulated by
Kinney and his coworkers (Kinney and Paolino (1974), Kinney and Cielak (1974),
Schmall and Kinney (1974), Taslim, Kinney and Paolino (1984), Hung and Kinney
(1988)). This formulation is considered in the context of vortex methods and accounts
for vorticity generation at the solid walls due to the no-slip condition. Unlike previous
vortex schemes, no new particles are generated in the vicinity of the boundary, but
the strength of the existing ones are modified (based on the vorticity flux at the wall)

so that the ‘no-slip’ condition is enforced.

5.2 Vorticity Creation at a Solid Wall - Lighthill’s Model

The basis of the present formulation was originally proposed by Lighthill (1963).
The key observation is that once the vorticity field is known then the entire flow field
may be determined (via the Biot-Savart law of velocity induction). The vorticity field
is convected and diffused in the fluid but in the presence of solid boundaries one has
to account for the vorticity production on the solid walls as well. Lighthill models this
vorticity creation process by cousidering the body surface as a collection of vorticity
sources and sinks. To calculate these (unknown) vorticity strengths he proposes that

the velocity field must be computed on the solid boundary from the known vorticity
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field. From kinematic considerations in order to ensure the no-through flow boundary
condition a potential flow correction needs to be superimposed to this velocity field.
The resulting velocity field would have (in general) a non-zero tangential velocity
component and one may view the surface of the body as a vortex sheet. To ensure
the no-slip condition and model the vorticity creation process on the solid boundary
this vortex sheet has to be related to the vorticity production at the wall. Lighthill
concludes the description of his model by stating that the vorticity per unit area has
been created and is equal to the negative of this vortex sheet strength. What remains
incomplete in this model is how this vorticity enters the fluid adjacent to the wall
or how the vortex sheet strength may be incorporated in a vorticity type boundary

condition.

One may observe that the strength of the vortex sheet has dimensions of veloc-
ity (or length over time). To obtain an appropriate (dimensionally correct) vorticity
boundary condition this vortex sheet strength can be manipulated so that a Dirichlet
type (vorticity with dimensions 1/Time) or Newmnann type (vorticity flux with dimen-
sions of acceleration) may be obtained. This is basically the point of diversion of the
various formulations involving vorticity boundary conditions. Chorin (1973) divides
the strength of the vortex sheet by a length equal to the elementary discretization
length on the body surface, whereas Wu (1976) divides it by the distance from the
wall to the first mesh point in the computational domain, to obtain the vorticity on
the body. Kinney and his coworkers envision this vortex sheet as equivalent to a
vorticity flux over a small time interval (thus dividing the sheet strength by time to
obtain units of acceleration). An integral constraint is imposed on all formulations
on the vorticity created at the wall so as to satisfy Kelvin's theorem of production

of circulation.

As it is evident from the above discussion there 1s not a unique and mathemat-
ically rigorous formulation relating the strength of the vortex sheet to the vorticity
boundary conditions. The jury is still out as to whether Dirichlet or Neumann type
conditions are more appropriate. It is interesting to include here some statements to

this regard from Hung and Kinney (1988) :

“lt seems clear that a greal deal of commonality, as well as diversity, exists between
those various treatments of boundary conditions. It is perhaps disappointing
that even in the light of such evidence, one cannot still resolve rigorously such
a fundamental issue as to whether Dirichlet or Neumann boundary conditions
are the correct ones. There are nevertheless strong indications that whatever
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Fic. 5.1 Sketch showing the different contributions to the flow field of a body in
translation and rotation immersed in a viscous incompressible flow field.

the precise form may be, they must be integral in character rather than local.
Purthermore, it is the opinion of the present authors that theses must involve
Neumann boundary conditions, since these occur most naturally in practice. It is
unlikely that numerical experiments will ever resolve this question, and perhaps
it is not important to do so. Clearly, plausible and even excellent results can
be obtained by any of the several methods discussed when used with consistent
and convergent numerical formulations on good grids. Tor that reason, perhaps
these should be classified as models for the vorticity production which occurs
at solid boundaries rather than rigorous mathematical constraints or boundary
conditions.”

In the present work the Newmann type vorticity boundary condition was chosen.
This choice was mainly dictated by the use of vortex methods for the resolution of the
vorticity transport equation. A Dirichlet type condition would explicitly involve in
the scheme the wall vorticity. The computation of such a quantity is prone to inter-
polation errors that are further augmented by the use of a Lagrangian grid. Moreover
this vorticity field needs to be discretized with blobs of finite core size. The existence
of such blobs on the boundary introduces a physically absent simoothing region for the
vorticity region on the boundary that significantly increases the numerical diffusion
of the scheme. Moreover according to Chorin’s model this would imply a continuous

increase to the number of computational elements that enter the fluid at cach time
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step thus increasing the cost of the computations. On the other hand the present
use of a Neumann type condition does not require additional computational elements
(vortex blobs) on the surface of the body. Based on the implementation presented
here in this vorticity flux is distributed by diffusion to the existing blobs thus altering
their strength but without increasing their population. The technique presented here
in is also consistent with the scheme of Particle Strength Exchange (PSE) for the
diffusion of vorticity in the flow field as all viscous effects in the computations are

resolved via the modification of the strengths of the vortex particles.

5.2.1 Mathematical Formulation

We consider a body translating with velocity Up(t) and rotating with angular
velocity (Q(t)) immersed in a flow field induced by a uniform flow (U ) and vorticity
in the wake (wy(x,t)). In the present formulation the solid body is represented by
suitable vorticity distributions determined so that the entire flow field follows the
prescribed solid body motion. The interior of the body is replaced by a uniform
vorticity field (ws) with strength equal to twice the magnitude of the angular velocity
(wp = 2Q), while the surface of the body is replaced by a vortex sheet (bound

vorticity ) with strength v(s) (Fig.5.1).

As discussed by Lamb, ((1932), Ch.ii) the kinematic velocity field is uniquely
determined from the vorticity field if the no-through flow boundary condition {((u —
U,)-n = 0) has been enforced on the surface of the body. A vortex sheet appears
then on the surface of the body and the enforcement of the no-through flow boundary
condition is equivalent to determining the strength of this vortex sheet. The strength
of the vortex sheet is computed using the streamfunction of the flowfield as discussed

in Section 3.3. The resulting integral equation is given by :

x(s) — x(.s')[] &'y ds' = =2 h(x(s))

i

1[0
v(s) =~ f 5, Lo

where :

x(s)) — Ug ' n (5.7)
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The solution properties of the above equation were originally studied by Prager (1928)
who first introduced the concept of replacing the body surface by a continuous vortex
sheet. Equation 5.10 is singular as it admits a non-unique solution and requires that
an extra constraint be imposed on the strength of the vortex sheet. This property
of the equation is a fortuitous result however, as it allows for the coupling of the

kinematic description of the flow field with the viscous wall production of vorticity.

The model presented herein relies in the nullification of this spurious vortex sheet
at the body surface so as to enforce the no-slip houndary condition. As this vortex
sheet is a constituent of the flow field its strength should account for the modification
of the circulation of the flow field. Hence when it is climinated from the body

surface in the interval [t, ¢ + 6t] the circulation (T') of the flow ficld would be modified

t+6t
; drl’
%7(3) ds = /z W dt’ (5.8)

according to:

On the other hand by Kelvin’s theorem the rate of change of circulation in the flow
field is defined as:
dr’ Ow dQ

o b s ds = -9 — 5.9
dt ! ) 671(5)(% dt An (5.9)

where Ap is the area of the body. Integrating now Eq. 5.9 in the interval [t, t + 6]

we obtain that :

4561 drl t+6t
/ S = / it 7{ Sisids = ~24p[Q +81) - A (510
¢

Comparing Eq.5.8 and Eq. 5.10 the strength of the vortex sheet may be related to

the vorticity flux at the body surface as:

(81 v
It = —~(s
[T i = ot

(5.11)

or if we consider this vorticity flux to be constant over the small interval of time (6%)

Ow |
" on () =

—~(s)/ot (5.12)
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This constitutes then a Neumann type vorticity boundary condition equivalent to the
no-slip boundary condition as expressed by Eq.5.1. The above formulation allows

then to impose an integral constraint on the strength of the vortex sheet ~

f’y(s)ds = =2 Ap[Qt + é6t) — Qt)]

and provides a closure for Eq. 5.6 that admits now a unique solution. *

A few observations should be made here as to the behaviour of the above formu-
lation in the limit of ét — 0. First note that at the end of a time step the spurious
vortex sheet has been eliminated. The strength of the vortex sheet is dependent on
the external flow field and at the limit of a vanishing ét, there would be accord-
ingly a vanishingly small change for v as well so that the vorticity flux would remain
finite. The numerical vorticity flux should be consistent with the actual vorticity
flux as computed by applying the momentum equation on the wall. In body fitted

coordinates this results in

du 1 0p Ow

L = ey 5.14
S dt[ all p 03 bvan + Van' all (5.14)

Vorticity is generated in the fluid due to the tangential component of the pressure
gradient and a possible acceleration of the body surface. In the present fractional
step algorithm (Ch.2) this pressure gradient is manifested by a spurious slip velocity
observed on the body surface. We may consider this slip velocity as an acceleration
‘equivalent’ to a vorticity flux generated at the wall, so that at each time step (0t)

Eq.5.11 is satisfied.

Once v has been computed (solving Eq.5.13 and Eq. 5.6) the vorticity flux is
determined at the surface of the body according to Eq.5.11. This vorticity flux is
subsequently distributed to the particles (by appropriately modifying their strength)
as described in Section 5.4 so that the spurious slip velocity is nullified and vorticity is
generated in the fluid. This technique of enforcing the no-slip boundary condition is
consistent with the scheme of PSE (Ch.4) that accounts for diffusion. In the present
method all viscous effects are resolved by appropriately modifying the strength of

the particles.

* Note that in Hydrodynamics the equivalent constraint would be a Kutta type condition
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5.3 Computation of the Surface Vortex Sheet (v)

This section deals then with the computation of the potential part of an unsteady,

incompressible, viscous flow around an arbitrary configuration.

The boundary may be considered as a surface of discontinuity (vortex sheet)
(Prager, 1928) and boundary elements (panels) may be used for its discretization.
The inviscid boundary condition is then applied in a Neumann or Dirichlet form on
the streamfunction, to determine the unknown vorticity distribution. However the
solution to this problem is not unique and the additional constraint of conservation
of total circulation needs to be imposed. The resulting sets of equations are not
numerically well conditioned and the accuracy of the solution deteriorates as the
thickness of the body is decreased and/or the number of the panels increases. Here
a rigorous approach is presented (similar to the one used in Baker and Shelley, 1986)
involving the application of the internal Neumann boundary condition, in which the
resulting system of equations is well conditioned, permitting an efficient and accurate
solution with direct or iterative matrix inversion techniques. The method does not
increase the computational cost and it is found to improve the conditioning of the
system by several orders of magnitude, the improvement being more pronounced as

the number of panels increases.

The streamfunction in any location of the domain (x) is expressed at any instant,
as the linear superposition of the streamfunctions induced by the constituent vorticity

fields of the present formulation as :
U(x) = U (x) + ¥o(x) + Pr(x) (5.15)

where :

1 f o
Uy(x) = —5 %Log|x——x(s')[7(5')(15' (5.16)

i

is the streamfunction induced by the bound vorticity (vortex sheet),

Q@
Ua(x) = _,.(_.l/ Loghe —x'! dx’ (5.17)
£

s

is the streamfunction induced by the solid body rotation (i.e. the vorticity field
interior to the body, B). and finally
17

Ui(x) = ~5 wy(x")Loglx — x'| dx" + (Us(t) x x) - €. (5.18)
’ A



is the streamfunction induced by the vorticity in the wake (region A) and the free

stream velocity.

In order to determine the flow uniquely the strength of the surface vortex sheet
needs to be evaluated. This may be achicved by enforcing a Dirichlet or a Neumann
type boundary condition for the streamfunction of the flow. Taking into account the
additional constraint that the total circulation cjected from the surface of the body
to the fluid is equal to the respective change in circulation inside the body (6I'p)

results i :

c = L Log|(x(s) — x(s")] y(s") ds’
2

+ W p(x(5) + To(x(2) + (Use — Up) x x(s5)) - €& — Qx(s) - x|
(5.19a)
7/[7(5') ds' +éTg = 0 (5.19h)

for the Dirichlet type boundary condition and in :

1 (9 : I VA ! b4

v(s) — = o [Logix(s) — x(s W] (") ds' = =2 h(x(s)) (5.20a)
™) On

7{'}/(3') ds' +6Tp =0 (5.20b)

for the Neumann type boundary condition (with hi{x(s)) given by Eq.5.7). As dis-
cussed in the previous section the change of circulation of the wake at any instant is
defined as :

Tp = 2Ap [0t + 6t) — Q(1)] (5.21)

where Ap denotes the area of the body.* These sets of equations may be solved
to any accuracy by a pauel method. Discretizing the body with M vortex panels
results in a system of equations for the M unknown strengths. The two linear sets of

equations may be expressed in matrix form :

Kf=yg (Dirichlet B.C.) ; Gf =" (Neumaun B.C.).

* 1 numerical computations the circulation of the wake, as computed by the linear superposition
of the circulations of the vortex clements, would not equal the theoretical value given by Iq. 5.21.
For example in actual computations around a non-rotating hody the computed circulation would
not be zero but would have some small value that needs to be accounted for in §I'g in order to
obtain conservative computations.



Systemn K f = g has M+1 equations with M-+1 unknowns (the M+1th unknown be-
ing the constant ¢). However for thin bodies or hodies with cusped trailing edges two
panels can be very close to each other while corresponding to opposite normals. This
would result in the matrix K having two nearly identical rows and therefore being
nearly singular. System Gf = & has M+1 equations but with only M unknowns,
the strengths of the panels. In order to solve this latter system of equations several
approaches are plausible (Hess, (1975, 1990)): source method, least squares solution,
introduction a new unknown. elimination of one equation ctc.. However these ap-
proaches rely mainly on empirical criteria which become more important than any
details of the numerical implementation. Moreover in the case of thin bodies , two
panels can be separated by a distance much smaller than either length ( e.g., in high
curvature trailing edges ) resulting in the existence of two nearly equal but oppo-
site signed rows in the matrix G producing an ill-conditioned system of equations
(Morchoinse ct. al., (1987)). In practice this anomaly is more pronounced for source
methods because the solution source strength increases without bounds as the body
thickness goes to zero. Our method consists of an application of the Fredholm al-
ternative to the solution of Eq.5.20. This results in a system of equations which is
well behaved, independent of the thickness of the body and the size of the pancls and
therefore improving the accuracy of the calculations especially when large numbers

of panels are necessary for the description of the body.

5.3.1 Mathematical Formulation

By setting

10 ,
G(s,s'") = —=|Log|x(s) — x(s'
(s,8") = === [Loglx(s) = x(s)]]
then Eq.5.20 may be expressed equivalently as :
y(s) — % G(s.s')y(s') ds' = h(s) (5.22)

The Eq. 5.22 is an integral equation of the second kind with a nontrivial homogeneous
solution (Prager (1928), Martensen (1959)). According to the Fredholm alternative
(Mihklin, 1964) a solution to Eq. 5.22 exists if

% I(s')(s")ds' =0
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o

where 1(s) is the solution of the eigenvalue problem for the transposed equation with
A =1, 1e.,
7{ G(s',s)(s") ds" = \p(s) (5.23)

For the kernel G(s,s') considered w(s) = const. is the solution for A = 1 so the

%h(}s') ds' =0

The above condition is equivalent to:

necessary condition is:

y{uo -dl = %[Ub + Qf) e x(xs — Xb.)] -~ dl

(with u, = V x ((¥; + Pg))é.), which is indeed the case. The solution of Eq. 5.22
is not unique since if yg(s) is a solution then an arbitrary number of solutions ~(s)
of the form:

.‘> P ,,\ .y
1) = qo(s) +a ¢ls)
may be obtained, where « is an arbitrary constant and ¢(s) the solution of the
following eigenvalue problem for A =1,

%G(s,s') B(s") ds' = \o(s) (5.24)

However uniqueness of the solution for our problem is guaranteed by the the appli-

cation of Kelvin's theoremn.

Fats)ds =T (5.25)
or equivalently « is uniquely deternuned by :

‘5 Yo (.5 ) ds

o = w'(SPB + (ﬁ g)(b) ([q 26)

~
W7

Note here that for multiple bodies Kelvin’s theorem should be enforced for each

individual body and its corresponding circulation.



5.3.2 Proposed Scheme

An alternative way for the application of the inviscid boundary condition is pro-
posed here based on the spectral decomposition of the kernel G(s,s'). This kernel

may be decomposed as :

oG

G(s,s') = ZAi(f?i(S)f!’i(S’) (5.27)

=5

with Aj, #i(s), eigenvalues and cigenfunctions given by the solution of Eq.5.24 and
¥i(s) eigenfunctions of the transposed kernel given by the solution of Eq. 5.23. Thesc
eigenfunctions are normalized so that equations Eq.5.23 and Eq.5.24 are valid for

the decomposed kernel defined in Eq. 5.27. Hence :

ot = { L, ifi=j; (5.280)

0, otherwise.

and

P1(s) = const. = 1/L (5.28Dh)

where L is the perimeter of the shape considered. Note that the cigenfunction ¢,(s)
corresponding to the eigenvalue A; = 1 is a solution of Laplace’s equation satisfying

the inviscid boundary condition in the absence of any external flow field.

Now the condition imposed by Kelvin’s theoremn may be substituted by an equiv-
alent one, by multiplying both sides of Eq. 5.25 with A\j ¢;(s) ¢ (s'), so that the new

set of equations 1s :

() — ]’A G(s, s )y(s") ds' = h(s) (5.29a)
b1 (s 5008
G’lé )%q(s') ds' = _9)11(; ) ol'p (5.29b)

Adding Eq.5.20b to Eq.5.29a results in the final form of the integral equation that

needs to be solved for the unknown function v(s) = dI'/ds :

'

(s)

(s) = f (Gl ') = =] () ds' = h(s) = == 0T (5.30)
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In this form the new kernel is just the kernel given by Eq.5.27 but with the first term
in the spectral decomposition eliminated. Hence the singularity associated with the
kernel G(s,s') is annihilated and Eq. 5.30 is well-posed. This equation is solved using
panel methods and the resulting system of equations is a well conditioned one. Note
that in the above formulation of the problem it is necessary to know a priori the form
of the eigenfunction ¢,(s), which is not available in general for arbitrary shapes.
For elliptic bodies (including the cylinder and the flat plate) this eigenfunction was
determined analytically and is given as a function of the eccentricity € of the ellipse

and the polar angle 6 :

$1(8) = (1 — ecos?(6))71/?

Eigenvalue
o

_10 § i 1. I
0 20 40 60 80 100
Eigenvalue Index :

F1G. 5.2 Eigenvalues of ellipses having thickness (t): 50%, 10%.

For arbitrary configurations (e.g., a NACAQ0012 airfoil), ¢;(s) may be obtained by
solving the eigenproblem (Eq. 5.24) using panel methods. The eigenfunction is then
obtained using as collocation points the eigenvector of the resulting matrix. This
adds to the computational cost of the method, but this eigenfunction needs to be
computed only once for the considered shape. For the case of a cylinder (of radius R),
¢ = 0, so the unknown function f(s) may be obtained directly as (Eq.5.30) reduces

to :

v(s) = h(s) — —2—%—1—{ oI'p (5.31)
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In Fig. 5.2 the eigenvalues for two ellipses are shown. Calculations for various ellipses
exhibit an interesting oscillatory behavior of the eigenvalues and a broadening of the

spectrum as the thickness of the body decreases.

5.3.3 Numerical Application - Results

In order to compare the various methods for the application of the boundary
conditions the possibility of ill-conditioning in the numerical solution to the resulting
linear systems of equations was examined. This ill-conditioning is in the sense that
the results of the computation depend continuously on the data with a proportionality
constant that is not very large (Isaacson and Keller, 1966) That is, considering the
system Az = b, small changes in b result in large changes in x. Conversely the
underlying requirement for a well-conditioned system is that a small perturbation e
of the position of the vortices in the wake of the body resulting in a small change 6b
on the right hand side, should not result in a significant change 6z on the results of
the computation. As a measure of this change we consider the condition index & of

the matrix A defined as :

k=r(d)= HA—I H ]

so that

sof | [loY]

lell = {fel]

In the present caleulations of s the 1-norm has been implemented.

In Fig.5.3 and Fig. 5.4, the condition index for the system resulting from the
application of the Dirichlet boundary condition and the condition index of the system
resulting from the proposed scheme are shown for the potential low around ellipses

of different thickness and a NACAQ012 airfoil, respectively

As can be seen from these figures, as the number of pancls is increased and
the thickness of the body is decreased the Dirichlet boundary condition results in a
system that is ill-conditioned. For a small number of panels , using computers with
8 or 10 significant figures this anomaly is not seriously affecting the results. When
large numbers (in the order of thousands) of panels are necessary for the description

of the boundary this ill-conditioning becomes important.
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Fic. 5.3 Condition Index resulting from : the classical approach (solid lines) and the
proposed method (dashed lines) for ellipses of different thickness(7).
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F1G.5.4 Condition Index resulting from : the classical approach (solid line) and the
proposed method (dashed line) for a NACA0012 airfoil.

For example, in the context of using vortex methods for the description of the fow,



=1

-1

in order to obtain accurate results one must always keep the ratio of the distance of
the vortex from the panel to the length of the panel less than unity. So when boundary
layers are resolved with vortices, their small distance from the body dictates the use
of very large numbers of panels. However this would result in higher computer cost
and would deter the accuracy of the solution. Ou the other hand the application of
the present scheme results in a very well conditioned system of equations that tends

asymptotically to a small value as the number of panels is increased.

The advantage of the present formulation is more pronounced as the number
of the panels is increased and/or the thickness of the body decrcases. When we
solve the system of equations by direct elimination the conditioning (and the size)
of the system is such that it does not pose any numerical difficulty. However as
the number of unknowns increase direct methods become prohibitive and we have
to rely on iterative techniques such as conjugate gradient. The conditioning of the
coefficient matrix is a key factor to the convergence of these techniques and as it may
be observed from the above figures, the present formulation is advantageous for such

computations.

5.3.4 Computation of the Tangential Velocity on the Body

In the present scheme a key element for the enforcement of the boundary con-
dition is the computation of the tangential velocity on the surface of the body. In
computations with vortices this quantity is usually prone to numerical errors and
noisy results appear when the distance of the vortices to the panel is smaller than

the panel size.

To alleviate this difficulty the tangential component of the velocity on the bound-
ary due to the free stream and the vortices in the wake is computed using the potential
(u = V&) of the flow field. The use of the potential to compute the slip velocity on
the body ensures that the flow field remains divergence free throughout the domain.
The average slip velocity between two locations on the body is:

1 [ 0d
(Us)ab - T — ds

os Jo, Us

So a panel having size d, between the points ¢ and 2 + 1 of the boundary would
experience an average tangential velocity equal to :
Piy1 — P

dp

(U,)i =
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Note here that the potential induced by a vortex (of strength I', and lo ated at

(0, yv)) at a point (x,y) 1s computed™® as :

T, Yy — 1
%(z,y) = 5-TAN ‘(H)

The use of this average velocity allows for accurate computations without having
to worry about the distance of the vortices from the body surface. The potential
field due to the vortices is computed by a linear superposition of their potentials.
This implies that if we discretize the body with M panels the cost of computing the
influence of N particles in the wake would be O(AM N). This cost can be prohibitive for
large numbers of particles as the slip necds to be computed at each time step. In the
present scheme a fast algorithm (similar to the one presented in Ch.2) is implemented
that uses the multipole expansions of the vortices in the domain. Direct interactions
are computed for the small fraction of nycqr vortices that are close to the boundary
and multipole expansions are computed for those that are sufficiently removed from
it. This results in a scheme that scales as O(M nyeay + M logN) so that efficient

computations are possible.

5.4 Distribution of the Vorticity Flux

Once the vorticity flux has been computed {(via Eq. 5.14) it has to be distributed
to the particles in the domain so that vorticity enters the Huid. As it was described
in Chapter 1 this is achieved in the context of a fractional step algorithm by the
solution of a diffusion equation with homogencous initial conditions and a Neumaun

boundary condition.

A note should be noted here as to the computational difficulty when employing the ATANZ
function in the computer. When the branch cut of a vortex intercepts a panel then the coordi-
nates of the vortex should be rotated by 1802 so as to account for the average tangential velocity
properly.



5.4.1 Mathematical Formulation

We consider the diffusion equation for the vorticity w(x,t) with homogeneous

initial conditions and boundary conditions of the Neumann type:

wy — vVie = 0, in D x[t— ot
w(x,t—6t) = 0 in D
Ow

— = F(x,t) on JD x [t — &t t].
on

where D denotes the computational domain bounded by the surface of the body (9D).
The solution of the ahove equation may be expressed in integral form (Friedman,

1964) as :
t
w(x,t) = / /G(X,t;f,-r)/z(f,r)(155 dr (5.32)
t—6t 0D

where p(x,t) is determined by the solution of :

1“ (x,1) / / (x,4,€,7) (&, 7) dse dr = F(x,t) (5.33)

t—6t 0D

with :
x — §?
dp(t—71)

1
Gx156,7) = T ol

)

The resulting expressions for the vorticity ficld involve integrals only over the
surface of the body. Those integrals may be discretized with a boundary integral
method by assuming the surface of the body as being composed by a set of discrete
panels (straight or curved) and assuming a certain variation (constant, linear, etc.)
of the unknown function pu(x,t) in space (over the panels) and time. For the present
formulation we assume that p(x,?) remains constant in time (for the small interval

ot in order to facilitate the evaluation of these integrals.
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X=R{osa € +smal)

e

Fi¢. 5.5 Definition Sketch.

5.4.2 Geometrical Definitions

In order to explicitly evaluate the above integral let us consider the geometric

representation of the body. From Fig. 5.5 points on the body are defined by:

2
T3,
- e P Y[ 33
y = Xo + ap,e — =—h + Ofa,).
2p !
where (p = 1/x) the local radius of curvature of the body. Points in the domain
are defined as:
X = Xo + Rsin(a)é + R cos(a)n

Based on the above definitions we have also that:

dy = dz,e — ﬂ)—d:vpﬁ
P
and the distance body-point is then:
. . . . . I cos(a). . .
| x —y |[‘) = R* — 2R sin(a) ¢, + (1 + -—————( ));1?; + O(.L;

The evaluation of the integrals in Eq.5.32 and Eq. 5.33 is further simplified if we
choose to neglect the terms associated with the local curvature of the body or equiv-
alently describe the body with tangential flat pancls. A panel approximation to the

body (Fig. 5.5) then introduces points

Yp = &pe + Xp



on
—_

with:

dyp = dv,e
and the distance from the field points to the body may be approximated by the

distance panel-point

| x — yp Hz = R* - 2R sin(a) x, + .-1';“))

5.4.3 Vorticity Evaluation

§

Substituting now the above approximations for the swface of the body in Eq. 5.32

we have the following representation for the vorticity field at point x:

i

) 1 —-R? + 2R ain(a}a:}, - &y
w(l,a) = / m%() dvit=7) po(x,) dxy dr
; —
t—&t av

Assuming furthermore a constant strength p; for the heat potential over each panel

(of size 2d) we may alternatively express the above equation as :

M M
w = E wil;, = E Wi
=1 1=
where
t ~R? ;
e T (i=7) d 2n singe) 2y - a2
Ii = — dr & dv(t=7} (1171)
drv(t — 1) iy
t— 6t

The integral over the panel may be calculated explicitly so that the vorticity field

induced by a panel, 1, may be expressed as an integral over time :

t
wi{x,t) = '/'155 o(t —7)dr
Y
with )
S : [+ 1—
o{t —7) = — [(’El‘f(“‘——(-i—‘}—'—“) + <~.‘rf(.____(____l___>]

drv(t — 1) av(t — 1) 4v(t — 1)
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with (z,y) = R(sin(a),cos(a)) (Fig. 5.5). Taking the derivative of the last equation

in respect with time we find:

t
Ow; 15 . do(t — .
% = %— / —-C'—?La—z————-) dr + ¢(0) — ¢(6t)]
(-4t
JE5 N P .
= —.2‘{265(0) — 2¢(6t)]
Now since ¢(0) = 0 for points away from the boundary , we obtain finally that
Ow;
—5;1“ = —; ¢(0t)
_y2 5.34
= mi( ) + erf(

4rrd l \/4_% \/M)]

Using an Fuler time stepping to integrate the above equation and assuming for the
& 1 &

strength of the particles that T'; = w(x;) h?
I = T = > bt 6(61)h7 (5.35)
=]

In the next section we present an efficient way to compute the values of the surface

density u; on the panels by a fast evaluation of the double heat potential.

5.4.4 Evaluation of the Surface Density

To complete the evaluation of the vorticity field in the domain we need to com-
pute the distribution of the surface density p. Here Eq.5.33 is solved explicitly by
exploiting the local character of the Green’s function G and its normal derivative on

the body.

Consider the double layer heat potential which is defined as :

Hu(x,t) f/anfé(),uEdﬁdr

8D t—6t

If s is the coordinate along the boundary of the body, the body may be locally

deseribed as:
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Using a Taylor’s expansion for the shape of the body we have that
1 . K .
y = y(0) + ys(0)s + Syss’ = 58

i

Ys = ys(o) + y35(0)5 = RS (5'36)

’ 1 9
o= p(0) + pe{0)s + 5 HassT

where £(s) is the local curvature of the body. The unit normal to the houndary is

given by:
lys(s), —wals)] _ [ws(s), —1]
Differentiating the fundamental solution kernel we find that:
oo [P2e-6, =2y =)

4v(t — 1)

Using the above expansions (Eq.5.36) for the description of the curve and the vari-

n =

G(x,t,€,7)

ation of the surface density along 1t we obtain:

z+u

€ v {t—171) Q’(Iq P,
= Is d
Hu = / fﬁlrz/t—v")/lz/( )/1( s) ds dr

t—56t 0D

To evaluate now the above integral we use the following transformations
2= du(t—1), s = zr

so that Hu becomes :

2VvE

1 ' /AR k 2,
Hy = — / / (Qg = —(-/5) e et p(zr) dr dz
v T

%

Substituting now the Taylor’s expansions (Eq. 5.36){or i and p in the above equations

we obtain that:

&

Hy i‘”’;—“) Vavet + 0(@&)3/‘2)

So substituting the above result in the equation for the heat potential Eq.5.33 we

find:

((s) =~ po(s) = =2 F(s) (1 — r(s)Vwrdt)™! (5.37)
Note that for the case of a cylinder of radius R, the curvature is constant (v = 1/R)

and for the case of a flat plate the curvature is zero so that the surface potcntlal 15

only a function of the vorticity flux.

Substituting Eq. 5.37 in Eq. 5.35 we obtain an algorithm for updating the particle

strengths in the domain so that the no-slip boundary condition is enforced.
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5.4.5 A Test Case

We test our numerical algorithm for the enforcement of the no-slip boundary
by simulating the flow induced by a cylinder oscillating about its axis with angular
velocity @ sin(ot). An analytic solution to this problem may be constructed by
assuming the streamfunction of the flow to be of the form (Gray and Mathews,
1952):

U= H(r) e’

Under this assumption the vorticity field of the flow is given by :
w(r,t) = Acos(ot) [keiy(¢) K (er) — keri(c) Kt(er)]
— Asin(ot) [keiy(¢) KT (er) — keri(c) K (er)]

with the definitions

K*(er) = ker(er) £ kei(er)

/— A Qc 1

(22
TV T VB kerde) + keil(e)

where kery(x), keif(a) and ker(a), kei(a) are the Kelvin’s functions of order 1 and

0 respectively.

1'0 T T T T T T T T H T T
: — Exact :
MZX A Numerical B
0.5
P e Vet 5 WY W & v

0.0 .

Vorticity

=10 b bl e
1.0 1.5 2.0 2.5

x/R

F1G.5.6 Vorticity field around a purely rotating cylinder with (¢ = 1, ¢ = 1.
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In Fig. 5.6 we show the results of the computed and analytical vorticity field for
T = 1 and v = 0.5. In order to avoid the computation of the transient solution the

initial vorticity field is computed from the analytic solution at the end of a period.
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CHAPTER 6

Remeshing Schemes for Vortex Methods

In order for vortex methods to converge to solutions of the Navier-Stokes equa-
tions, the particles should overlap at all times. A computation is bound to become in-
accurate once the particles cease to overlap. Computations involving non-overlapping
finite core particles should be regarded then as modelling and not as direct numer-
ical simulations. Excluding case specific initial particle distributions (e.g., particles
placed on concentric rings to represent an azimuthally independent vorticity distri-
bution) the loss of overlap (and excessive overlap) is an inherent problem of purely
Lagrangian methods. The cause of the problem is the flow strain that clusters parti-
cles in one direction and spreads them in another in the neighborhood of hyperbolic
points of the flow map, resulting in non-uniform distributions. At the onset of such
particle distributions no error is usually manifested in the global quantities of the
flow such as the linear and the angular momentum. However locally the vorticity field
becomes distorted and spreading of the particles results in loss of naturally present
vortical structures whereas particle clustering results in the appearance of unphysical
ones, on the scale of the interparticle separation. The method is not able then to
accurately resolve a smooth vorticity ficld. A characteristic example of this pathology
is the simulation of the evolution of an axisymmectric Gaussian vortex using parti-
cles initially distributed on a rectangular grid. Although the linear and quadratic
diagnostics of the flow do not exhibit any unphysical behaviour after almost two
revolutions of the Gaussian an examination of the vorticity field reveals unphysical

non-smooth vortical structures that eventually destroy the whole calculation.

This clustering and spreading of the particles has the following consequences for
the present numerical scheme. For the convection step, it implies that a variable
time step is necessary for the integration in different locations as it is desirable that
particles do not travel more than one core radius at each time step For the diffusion
step, the scheme of particle strength exchange imposes a further requirement on
the particle distribution. In order to model diffusion properly cach particle should

be surrounded by others, so that it exchanges its circulation (see Ch.4) with them
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according to the PSE scheme. These requirements imply an upper bound for the
particle overlap equal to one. However, although one is tempted to use a value
as close to one as possible, practice dictates that a computation with marginally
overlapping particles would become inaccurate in shorter times. On the other hand a
sensible value should be used for the lower bound to keep the nuber of particles to
a minimum. Additionally, care should be exercised in the boundaries of the vortical

regions 50 as to carry enough particles to accurately resolve the diffusion equation.

In the present mumerical scheme we face the above issues with an adaptive com-
putational strategy. The distorted (strained) net of vortices is mapped (remeshed)
onto a uniform one by locally redistributing the strength of the vortex particles. This
redistribution takes place once the particles cease to overlap at any location of the
computational domain or they cluster in some region or there are not enough parti-
cles to properly resolve the diffusion step. To this effect the following algorithm is

implemented:

A uniform grid of prescribed size is placed in the computational domain so as to
cover the particles and extend far enough to capture diffusion effects in the boundaries
of the vorticity distribution. The particle locations are examined with respect to the
grid and we can identify the number of particles in cach cell as well as examine if
neighboring cells contain particles. Hence in cells where more than a certain number
of particles exist this implies particle clustering and the vorticity field of its residents
needs to be redistributed. On the other hand in regions where neighboring cells do
not contain particles it is necessary to introduce new ones to ensure proper overlap
and description of the diffusion scheme. This remeshing procedure is performed in

O(N) operations and is vectorized.
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6.1 Theoretical Considerations

The advantage of Lagrangian methods over classical Eulerian schemes is the adap-
tivity of the employed grid (the particles). However, a Lagrangian grid may become
highly strained limiting the time to which a purely Lagrangian computation may be
taken. We are interested then in replacing this (occasionally) strained grid with a
new Lagrangian regular grid and simultaneously transport accurately the global flow
quantities (such as the total circulation and impulse) from the old grid to the new. In
the present scheme on the old particles we overlay a regular grid (the new particles)
and the issue is how to interpolate the old vorticity field (w) and (distorted) particle
locations (z) to the new grid (particle) locations (&) and obtain a new vorticity field
(@) such that :

(2} = wx)

or if I', T denote the new and old particle strengths respectively then we are interested

in determining an appropriate interpolation kernel A so that:

M
Di(z) ~ Y Tia;) AlE — )

=1

The process is not of the usual interpolation type as it is complicated by the fact
that the particles are disordered. The basic analysis of interpolation of this type is
given by Schoenberg (1973). He has developed mnterpolation formulas that attempt

to minimize the effect of the grid disorder on the interpolated quantity

6.1.1 Interpolation Kernels

We may distinguish between two types of interpolation formulae: the collocation
type interpolation where I'(z;) = T(w;), and the smoothing interpolation where
T(x;) # D(x;). If his the spacing of the new grid setting v = [z]/h then

interpolation kernels of the first type are:

Lincar Interpolation

1 — w, if0 < u < 1
0, otherwise.

Aflu) =
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Second order Interpolation

1 — u?, if0 < u < 1/2;
Ap(u) = ¢ (1 — w)(2 —w)/2, H1/2<u<3/2;
0. otherwise.

(1 — u)(2 — uw)/2, 0 < u < 1
Ag(u) = ¢ (1 — w)(2 — )3 — w)/6, 1 < w < 2
0, otherwise.

Thesc kernels may be constructed in a systematic way (sce below) so as to ensure
conservation of as many moments of the vorticity field as possible. They do not have
continuous derivatives and second and higher order kernels are not even continuous.
This implies that when interpolating quantities having large fluctuations for small
particle separation they might introduce large interpolation errors from small errors in
the actual particle locations. The second type of interpolation attempts to minimize
such effects. Schoenberg (1973) has introduced a set of such interpolation kernels the
central B-Splines, (M,,). The formulae for the first four members of this family are

given by :
o1 0 < u < 12
Mi(u) = {(), otherwise.

which is the nearest grid point(NGP) interpolation,

) _J1 —wu, 0 < uw < 14
Mp(u) = {(), otherwise.

which is the lincar interpolation (A (u) and is usually the choice in CIC (Cloud In

Cell) algorithms,

CH2 = w)/2, 0 < w o< 1/2
My(u) = ¢ (3/2 — u)?/2, if 1/2 < u < 3/2;

0, otherwise.

which is the first function to have a continuous first derivative aud is usually referred

to as the TSC (Triangular Shaped Cloud) function, and finally :

2/3 — w? +1/2, if0 < u < 1
My(u) = ¢ (2 — u)*/6, ifl < u < 2
0, otherwise.
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Note that with increasing order the interpolation is less sensitive to the disorder of

the particles as information is sampled from a larger area.

The analysis of those schemes is further facilitated by considering their form
in the transformed Fourier space. Returning to the realm of vortex methods and
for simplicity to the one dimensional case we consider a particle of unit strength
having core radius o located at (xg) having a shape-function ¢((x — x9)/0). We
arc interested in replacing this particle by M particles at equally spaced locations
(&), having strength ( T..) so as to obtain an ‘equivalent’ vorticity distribution.

The vorticity at a location z is given as :

w(z) = d({a —z0)/0)

M .
~ Y Do (e =dm)/o) = ()
m==1

(Note that ¢ should not be confused with the mterpolation kernels.) It is obvious
that one can never expect an ‘exact’ solution to the above equation for the unknown

values T',,,, for all locations . However one may try to :

e Conserve as many moments(T,) of the vorticity , (T, = [w(z)a® dx), as

possible (¢ = 0,1,2,...) and

o Minimize the error at distances larger than the mesh size.

Taking the Fourier Transform of the previous equation we have :

FT{w@)} = e FT{o(2) |

(22
. M
~ FT{é(Z)} > T e™om
a
==

or equivalently we ask that the new particles have to satisty the following equation:

M

§ I"” eZk([O'—l"rn) ~ 1

m==]

Defining Ay, = 2o — &, and expanding the left hand side for small values of
Tom = KkAgn, (as the sinoothing kernels decreases exponentially with k) we obtain:
A 1
E : = ; 9 A3 .
Pm (1 + ITom  — :.;T()zn. - 0( FOm )) ~ 1

m=1
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Having M as the free parameter in the above equation we see that we can ap-
proximate the vorticity field to the extent possible by requesting that M terms are
satisfied in the above equation. Note that these equations are independent of the
shape function ¢ and the core radius 0. We may systematically construct then in-
terpolation kernels that obey the above requirements by employing more and more
mesh-points. However computational cost becomes a factor and one usually avoids
using M > 4. For M = 1 we can conserve the circulation only by assigning the
circulation of each particle to its nearest mesh point (the NGP scheme). Solving the
above scts of equations for M = 2.3,4 we obtain respectively the interpolating ker-
nels A1, Ay, Ay, which conserve respectively the first, second and third moment of the
vorticity field by using 2¢, 3¢, 44 nesh points (with d the dimension of the problem).
Those interpolation schemes act then as low pass filters removing all the high order
harmonics that arise from the irregularity of the grid. Simultaneously they determine

the smaller scales of the vorticity field we expect to resolve in our simulations.

The B-Splines act as better low pass filters (their Fourler transform is given by
(sin(wkh)/mkh)"), however they conserve only the circulation and the linear momen-
tum of the vorticity field. B-Splines have an accuracy of O(h?*) so they can interpolate
exactly only linear functions. Monaghan (1985) presents a method to improve their
accuracy while maintaining their smoothness. In general B-Splines are able to ac-
curately interpolate smooth functions but they fail to represent functions with steep
gradients. Higher order harmonics introduced by the particle disorder are dampen

at the expense of additional numerical dissipation.

An extensive survey of the Fourier space analysis of these schemes may be found
in the book of Hockney and Eastwood (1981).

6.2 Practical Considerations
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6.2.1 Choice of interpolation kernel

In the present simulations the A type kernels were employed. One reason is that
in the present scheme a regular Lagrangian grid is restored every few time steps
and so that the interpolation does not occur from a highly disordered set of points.
Moreover their ability to interpolate functions with steep gradients make them more
attractive when one needs to consider remeshing in the presence of a solid boundary
(see 6.2.4). B-splines seem more appropriate for simulations where the Lagrangian
grid 1s not regularized every few time steps but is continuously employed and we need
to mterpolate flow quantities onto a regular grid (like in CIC and SPH schemes). The
smoothness of these functions helps in minimizing the crror arising from a highly

distorted grid, however at the expense of significant numerical dissipation.

6.2.2 Vectorization

Although the remeshing procedure does not take place every time step it is impor-
tant for a fast code to have a vectorized procedure. This issuc is even more important
in PIC codes where this particle-grid interpolation is an important component of the
algorithm (Haddard et al. (1991)) In the present code vectorization is achieved by
a two-step procedure. First we map the locations of old and the new (candidates)
particles onto an index array. The active indices of the array are determined from
the old particles and subsequently the mapping is reversed to obtain the new particle
locations. At the expense of additional storage (two sets of particle locations and
strengths plus the index array) this procedure avoids overwriting and permits an
efficient vectorization on vector machines with gather-scatter capabilities such as the

CRAY/YMP. The remeshing algorithm scales as O(N) and is fully vectorized.



94

6.2.3 Remeshing in an Unbounded Domain

In the present simulations we chose to conserve the circulation, lincar and angular
momentun of the vorticity field In a two dimensional domain this would require 6
mesh points for each particle and such schemes may be easily devised (Hockney and
Eastwood, 1981). However in order to maintain the properties of the one dimensional
schemes and avoid the complicated programming , two dimensional schemes which
are cartesian products of their one dimensional counterparts are employed. The

interpolation kernel is defined then as:

Alz,y) = Alz)A(y)

Using A, cach particle located in a cell (1,J), affects 9 mesh points presented as
shaded arcas in Fg.3.1. Here a rectangular grid was used to re-initialize the particles
but similar schemes may be devised for other tvpes of grids as well.

o Old particle

X New particles

J+1 X X
] X X
J-1 X X

X X X X X

Fi1G.6.1 Detail of the re-initialization grid. The shaded cells are affected by the
pre-remeshed particle, denoted by a bullet in the sketch
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6.2.4 Remeshing in a Bounded Domain

When boundaries are present the remeshing procedure is complicated as the new
mesh-points have to be outside the body. It is obvious then that the schemes em-
ployed for an unbounded domain have to be modified for particles that are located in
an (1,J) cell which is adjacent to the boundary. Here we devise a scheme to account
for this difficulty. It requires again 9 points and conserves the same quantities as for
the unbounded case. In Fig. 6.2 the nine cells affected by a cell adjacent to the wall
arc depicted. The interpolating kernel 1s again the product of two one dimensional

forms but now

Az,y) = A(2)As(y)

with Ay = A, and
1 —3/2v +1/20%, for cells I;
A, = v (2 — v), for cells T + 1;
' v(v — 1)/2, for cells T + 2:
0, for all other I
where v = (@ — 2')/h and I here denotes the off-boundary direction.

@ Old particle

X New particles

J-1 ] T+1

1+2 X X
I+1 X X
X

=

F1G.6.2 Detail of the re-initialization grid adjacent to a wall. The shaded cells are
affected by a particle adjacent to the wall, denoted by a bulles in the sketch.
Note the region of influence compared to that in Fig.6.1
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6.2.5 Time Stepping After Remeshing

In our simulations an Adams-Bashforth scheme was used to integrate the trajec-
tories of the particles. This requires at each time level (¢,,) the knowledge of the
velocity field on the particle at instants (£,—1) and (#,). However as the Lagrangian
grid 1s restored every few time steps the velocities of the newly created particles
are not readily available. One may avoid to face the issue by integrating using an
Euler time step inunediately after remeshing (if we wish to avoid the complications
of the present algorithm when using a multi-step scheme such as the Runge-Kutta).
An Adams-Bashforth scheme may still be used however if along with the particle
strengths we interpolate the velocity field (U) of the particle as well. For the newly

restored Lagrangian particles at time level (¢,,) we would have that :

M
U@ ytuo1) = Y Uslajtaor) MA@ — aj)
j=1

The use of such a scheme has the drawback that the relation w = V x U is violated

for the remeshed vorticity field.

Alternatively then the following two-step procedure may be implemented: At
time level (t,_;) the particles are mapped onto a regular grid and the velocity field
is computed on these mesh points (#) via the Biot-Savart law. The velocity field on
the particle locations (z(¢,-1)) is computed as well and the particles are advanced
according to the AB scheme to new locations (2(t,,)). There again the particles are
mapped onto the same mesh points which become now the new Lagrangian particles
for our simulation. They may be advanced then using an AB scheme using the
velocity field computed in the previous stage. This procedure although it is more
time consuming and results in more complicated programming it helps to maintain

the sccond order accuracy in the tine integration throughout the simulations.



6.3 An Alternative Remeshing Scheme

An alternative technique for the rezoning of the distorted grid associated with
the particles may be devised based on a technique initially applied to the Arbitrary
Lagrangian-Eulerian (ALE) method. In this interpolation the regridding procedure

may be carried out using an integral formulation for the remapping of the vorticity

I = // w(F) d7
Al

where T'; is the circulation assigned to the particle in cell A; of the new mesh and

field which 1s :

w(Z) is the vorticity of the old (distorted) mesh. The above integral may be expressed

. Ayj
T = ZPJZI—’
; .

where A;; denotes the overlapping arca of the old cell ¢ and the new cell j (the

in discrete form as

shaded area in Fig.3.3). This remeshing procedure involves then the computation of
those overlap arcas. An efficient algorithm for a piecewise constant vorticity field is

presented in Dukowicz and Kodis {1987 )

X New  particles

® Ol particles

cell

F1a. 6.3 Remitialization of a distorted Lagrangian grid. The shaded region denotes
the fraction of the circulation associated with the particle of the old cell
contributing to the circulation of the particle in the new cell.
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. 4 . . ) . . . . . .
Using the identity V°¥ = —w the surface integral is translated into a line

f‘l‘ - }é i - (/f
JCy

along the contour € that defines the overlap region of the old and the new cell. This

integral

integral may be efficiently computed by traversing first the cells of the old erid and
& ¥ 3 3 g g

then the cells of the new grid and accordingly add the contributions.

In comparison with the method of choice described in the previous section the
ALE technique is more complicated , hard to vectorize and it introduces additional
numerical dissipation as it conserves only the circulation of the flow. However it
seems advantageous when one is dealing with remeshing of a vortex field around a
complex configuration. There the interpolations described before encounter problems
near the boundaries as they have to be modified for each geometry. The ALE method
does not care about the specifics of the boundary as it deals directly with the particle

cells that may have any geometric configuration.

6.3.1 Summary

In conclusion the present remeshing procedure allows for the progressive inclusion
of particles in the computation that arve activated by the diffusion process. Such
particles would have to exist a priori to account for proper diffusion but that would
burden the simulation with extra particles that are activated only at a few time
steps. The procedure also maintains a minimum level of resolution at all stages of

the computation in the regions of vorticity.
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CHAPTER 7

Simulations of Vortical Flows

In this chapter we discuss the application of the method described in the pre-
vious chapters to the simulation of unsteady vortical flows. First we discuss the
application of vortex methods to the infinite domain. More specifically we consider
the inviscid evolution of a particular elliptical (2:1) vorticity distribution. Then we
focus our attention to the simulation of unsteady scparated flows behind a circular

cylinder.

7.1 Inviscid Evolution of a 2:1 Elliptical Vortex

As purely Lagrangian methods for the simulation of vortical incompressible flows
we may characterize the point vortex method (Rosenhead, 1931) and the method of
contour dynamics (Zabusky et al., 1979). Point vortex methods rely on the point-
wise approximation of the vorticity field whereas contour dynamiecs resolve regions
of piecewise constant vorticity by tracking the evolution of its boundary. These
methods are inherently inviscid thus providing a superior alternative to Eulerian
schemes for the sinulation of inviscid flows. However inviscid flows are distinguished
by the wide range of scales they develop and they require an increasing number
of computational elements with the progression of time to resolve them. Moreover
Lagrangian methods are faced with the challenge of grid distortion and the formation

of unphysical structures.

Whercas vortex methods are faced with the problem of particle clustering and
scattering (Ch.6). contour dynamics are faced with the problem of singularity forma-
tions on the contours (“wave breaking’, ete.). The art of removing such singularities
and introducing more computational elements when deemed necessary consists the
method of ‘contour surgery’ (Dritschel, 1989). A series of computations have heen
performed (such as vortex merging, filamentation, vortex equilibria ete.), using these
methods, for a variety of intial conditions and the interested reader is referred to the

review article of Pullin (1992) for further details.
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F1G.7.1 Diagnostics for the inviscid evolution of a 2:1 elliptical vortex

Our scope is to demonstrate that, in their present implementation, vortex methods
offer a viable alternative for Lagrangian simulatious of the viscous/inviscid evolution
of arbitrary continuous vorticity distributions. To demonstrate the validity of our
approach, for simulations over extended times, we consider the evolution and fila-
mentation of an elliptical (2:1) vorticity distribution. The initial vorticity profile is
determined by:

0, otherwise.

) = A {1 — fulr(0)/Ro(9)), ifr < Ry.
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where:

fqla) = e e
In the present simulations the values ¢ = 2.56085 (so that f, = 0.5) and A = 20/%
and Ry = 0.9 were selected. This idealized initial profile was suggested by Melander
et al. (1987) and it is characterized by steep vorticity gradients as about 90% of
the vorticity variation occurs in the interval [0.20, 0.70]. For our computations a
core radius € = 2.5107°, an overlap ratio of 0.90 and a cutoff circulation limit
between 1077 and 107° were selected. During the course of the computation we
-aried scveral parameters of the computational scheme (such as time step, remeshing
intervals, number of the multipole expansions etc.) to examine the robustness and
detect problems of our numerical code. A time series evolution of this configuration
is presented in Fig. 7.2 and Fig. 7.3. One may observe the progressive filamentation

of the ellipse and the appearance of smaller scales in our computations (Fig. 7.4).

In Fig. 7.1 diagnostics of the simulation are presented. One may observe the con-
servation of the circulation and the linear momentum of the flow demonstrating the
accuracy of our simulations. On the other hand one may observe the appearance
of asymmetries in our computations. Such asymmetries should be attributed to the
reduced number of multipole expansions used during some intervals of the present
simulation. As more complex structures appear, due to the evolution of the ellipsc,
our code automatically generates (through remeshing) new particles to resolve such
regions. Initially two major filamnents appear due to the differential rotation of the
ellipse that subsequently reattach to the ellipse and extract further vorticity. The
interplay of these filaments with the main vorticity distribution is reduced with the
progression of time as the filaments become elongated and their local strength is
reduced. At the end of the simulation (corresponding to about three rotations) we
observe that the main elliptical distribution continuous to evolve surrounded by a
fair number of passively advected, weak vorticity structures (filaments). The present
computations present no evidence of axisymmetrization. The ellipse continues to
shed filaments and its shape oscillates without ever attaining a circular stable config-
uration. Although the evidence is such that owr simulations are accurate we should
not try to conclude more than what the exploratory nature of these computational
experiments allows. A more systematic study of the evolution of the elliptical config-
uration is in order with carefully chosen initial conditions so as to compare the results
of the present method with results of the method of contour surgery (Dritschel, 1989)

and the pseudo-spectral simulations of Melander et al (1987).
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F1G.7.2 Time frames for the inviscid evolution of a 2:1 elliptical vortex
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FiG.7.3 Time frames for the inviscid evolution of a 2:1 elliptical vortex
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F1G. 7.4 Vorticity field of an elliptical (2:1) vortex. Frames are from left to right and
top to bottom (T= 6.0, T = 12.0, T = 18.0, T = 24.0).
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7.2  Simulations of Unsteady Flows Past a Circular Cylinder

This section discusses the application of the vortex method described in previous
chapters to unsteady bluff body flows. The flow behind a circular cylinder started
impulsively in rotation and/or translation is investigated as a prototype of unsteady
separated flows. Computations are presented for Re = 40 to 9500 in order to validate
our nuwmerical method and gain some insight into the physical mechanisms present

11 such flows.

7.2.1 Brief Review of Experimental and Computational Results

Here we review some of the experimental and computational studies for the early
stages of the development of the wake of an impulsively started translating and or
rotating circular cylinder. We specifically discuss the investigations the results of

which will be compared to those obtained by the present scheme.

Experiments : Works on unsteady flows resulting from an impulsive accelera-
tion of a cylinder date back to the Prandtl era (1925). However the most extensive
experiments to date seem to be those presented by Bouard and Coutanceau (1980)
(referred to as BC from here on) for the translation only casc and Coutanceau and
Menard (1985) ,( CM), for the rotating and translating cylinder. They used a specially
designed apparatus to produce quasi-instantancous starts and analyzed photographi-
cally the flow field visualized by solid tracers uniformly put in suspension in the fluid.
Instantaneous velocity fields and streamlines are presented in their works which they
use to analyze in detail the topological structure of the flow. However quantities
such as drag and lift coefficients were hard to obtain with this technique and are not

presented in their papers.

Analysis : Theoretical investigations of an impulsively started flow were first
undertaken by Blasius in 1908 who obtained the first two terms of a time series so-
lution of the boundary layer equations. Subsequently there have been many works
attempting to obtain higher order terms and advance the solution beyond the sepa-
ration stage but the most notable ones arve those of Collins and Dennis (1973) and
Bar-Lev and Yang (1975) (referred to as CD and BY respectively from here on). In
CD they formulate the problem in boundary layer variables and obtain expansions

in powers of time. These expansions are corrected to account for finite Re effects
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and they are adjusted to match the uniform How far from the cylinder. In BY the
vorticity equation is solved by the method of matched asymptotic expansions. Inner
(rotational How) and outer (potential flow) solutions are obtained to third order in
time and a composite solution is formed. Both works provide extensive information
for flow quantities of interest (such as vorticity field, strecamlines, body forces ) that
arc valid for short times. Their region of validity increases with increasing Re. They
arc the vardstick which many investigators use to test their numerical scheme at least

for the initial stage of the flow.

Computations : Impulsively started flows present a scrious challenge for the
numerical method. Difficulties exist in the formulation of the boundary and ini-
tial conditions of the problem. High resolution simulations are necessary for high
Reynolds numbers to adequately resolve the singular (due to the impulsive start)

character of the flow.

The first computations were presented in the late 50’s by Payne (1958) for rel-
atively low Re numbers (40 to 100). Numnerous computations have been performed
in the last 30 years on this How but there are still open questions as to whether
the numerics do not overwhelm the physics of the problem especially for high Re
flows. The problem is usually formulated in vorticity - streamfunction variables and

Eulerian, Lagrangian and hybrid methods have been used for their discretization.

Ta Phuoc Loc (1980) ( TL from here on) uses a fourth order scheme to resolve
Poisson’s equation for the streamfunction and a second order finite difference scheme
for the vorticity transport equation. He presented computations for a range of Re
numbers (550 to 9500) and detailed diagnostics and comparisons with experimental
results (see also Ta Phuoce Loc and Bouard, (1985)). Lecointe and Piquet (1985) have
tested several high order compact finite difference schemes as well and they present
accurate computations for Re up to 550 and tentative simulations for higher values
of Re. Their diagnostics however are limited and not conclusive. A more recent
work is that of Wang and Dalton (1991). They use a predictor - corrector finite
difference scheme for the vorticity transport equation and a Fast Poisson solver for
the streamfunction. They present results for impulsively started and stopped flows
for Re of 102 and 550.

In vortex methods the most notable works are those of Smith and Stansby (1988)

(95 ) and the more recent ones of Chang and Chern ( CC). Both schemes use the
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method of CIC (Christiansen . 1973) to convect the vortices but use different tech-
niques to account for viscous effects. SS use the method of random walk whereas C'C
use a finite difference scheme on the grid used by the CIC technique to resolve the
diffusion equation. Both works take advantage of the stability properties of vortex
methods to extend their computations to very high Reynolds numbers (up to 10° in
CC). However it appears that the increase in the Re simulated is not followed by an

adequate increase in the resolution.

Also CC present results for the case of an impulsively started rotvating circular
cylinder. By far however the most extensive and accurate results on this flow are
those presented in Badr and Dennis (1985) and the combined experimental and com-
putational work of Badr et al. (1990) for Re up to 10*. They use Fourier analysis to
reduce the governing partial differential equations to a set of time dependent equa-
tions in one space variable. By truncating these Fourier series to a finite number of

terms a set of differential equations is obtained that is used to compute the flow.

The above mentioned experimental, theoretical and computational investigations
are not at all a complete list of the available literature. They are however representa-
tive works with which we compare our numerical scheme to obtain an understanding

of its validity and capabilities as it is discussed i the following sections.

7.2.2 A Note on Impulsively Started Flows

One may recognize that there cannot be experimentally such a thing as a truly
impulsive start, although sufficiently rapid starts may be considered as producing a

quasi - instantaneous motion of the body.

In theory an mmpulsive start may be formulated using the potential flow field as
the initial condition. At time ¢ = 0% a potential flow exists and a slip velocity

(vortex sheet of zero thickness) is observed on the swiface of the body.

Numerical schemes encounter difficulties with impulsive starts as well as it is
difficult to resolve the initially developed thin boundary layers. Flow features such
as streamline patterns ave fairly well described by several numerical schemes and are
in good agreement with experimental visualization. However most schemes encounter
difficulties in accurately deseribimg the vorticity field and calculating quantities such

as the drag coefficient that exhibits a 1/v/t singularity.
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7.2.3 Diagnostics

The Reynolds number (Re) of the flow is defined based on the diamecter of the

cylinder (D), as : .

Y%

Re =

and the time (t) is nondimensionalized based on the radius (R = D/2) of the eylinder

as :
po U
R
The angular velocity (€2) of the cylinder is nondimensionalized by :
QR
o = 7

The principal variable of our scheme is the vorticity field which is described as the
linear superposition of the vorticity ficld of the individual particles. One may compute
diagnostics such as the streamlines, body forces and velocity field using the strength

and locations of those vortices.

Body Forces : The net force exerted on the body from the fluid (of unit density)

may be expressed as :

d

dt
fluid

Fo = udx

In order to carry out the integration over the whole domain, covering both the body

and the fluid we add and subtract the term :Tlt j udx so that :

body
d ' d f
Fy, = —— udx + — u dx
dt . dt |
fluid + body body
The velocity field inside the body 1s defined by:
uibody - Ub + Sze: X (X - Xb)

where x; denotes the center of mass of the body and Uy, = dx;/dt. By extending

the definition of the vorticity field inside the body (assuming a constant vorticity

distribution with strength w;, = 2} we may write for the force on the body that:

d

Fp, = ——
b t

' 1 .
/ (w x xX)dx + —(17 / (Up + Qeé. x (x — xp)]dx
dt

fluid + body body
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which reduces to :

(_.1
dt

dUy
dt

Fp = / (w x Xb) dx + Ap

fluid 4 body

where Ap denotes the area of the body. Furthermore the integral involving the vor-
ticity over the arca of the hody may be computed explicitly so that a final expression

may be obtained for the force on the body :

d AU, a . |

= —- x\d A - 245 — (06 . 7

Fy 5 (w x x)dx + Ap pF i dt( €. X Xy) (7.1)
fluid

The vorticity in the wake is described in our method by the superposition of the
vorticity field of the individual particles so the mntegral over the domain occupied by
the fluid may be computed in our method by: to :
N
d d < ,\
— wxxdx:-——-EFixixe:
dt dt « 1
P

fluid

where x; = (2y,y;) is the location and T'; the strength of the vortices i the wake.

The drag and lift coefficients (¢p and ¢, respectively) of the body are given then

hv:

) oy = 2Fy, - e,
T Uz
' 50

where D is the characteristic length of the body.

A note should be added here regarding the above formula for the computation
of the drag coefficient. As was mentioned in Ch.6 a remeshing step is periodically
performed as the particles become distorted and the simulations fail to be accurate.
In this remeshing step the lincar impulse is conserved however its time derivative
(the drag) is not necessarily conserved. One must be caveful then how the time
derivative of the linear impulse is discretized. A reasonable approach is to use a
backward difference scheme to compute the drag at the time of remeshing, a forward
scheme after remeshing and a central differencing scheme at all other time steps. This
approach avoids differentiating across remeshing steps thus avoiding the problem

induced by remeshing. Alternatively a Box - Cearr type smoothing may be applied
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to the linear momentum. The smoothed impulse may be subsequently differentiated
in obtain the drag coefficient. Both approaches have been used and they result in
almost identical results. However the effects of remeshing are more prominent at
higher Re as it is performed more often and this process produces the small glitches

observed in the drag curves.

Streamlines : The strecamlines of the flow may be computed as a linear super-

position of the streamlines induced by the individual particles.

1 &
U(x,) = —5= » Tilogx, — x,* (7.2)

7=
Note that the point vortex streamfunction is used. This approach is dictated by the
presence of the body. The use of smooth vortices near its surface would imply a non
constant streamfunction inside the body thus vieolating the impermeability condition.
In order to compute the streamfunction on a grid a fast algorithm is implemented
similar to the one presented in Ch.3. At each grid point the influence of the nearby
particles is computed using Eq. 7.2 and multipole expansions are used to compute
the influence of particles sufficiently removed from that point. This helps reducing
the cost from O(MN) to O(N + MlogN) where M is the number of grid points on

which the streamfunction is computed.

Body Vorticity : The computation of the vorticity field on the body has been
traditionally a puzzling issue for vortex methods. Here we use a technique borrowed

from the finite difference community. The vorticity on the body is given by :
= VY
Whody =

As the streamfunction may be computed on a grid around the body a finite difference
operator may be applied to the Laplacian so that the vorticity is computed as ( Gresho,
1992) :

Whody = (7\11(1 - S\I;} ‘%‘\I’Q)/Q]),z

where, if y = 0 describes locally the body swface, ¥ is the value of ¥ on the body
and W, ¥, the values at grid locations y = h,y = 2k respectively. Note that
the spacing h for the computation of the streamfunction should be larger than the
smoothing core of the particles as the point vortex formula is used for the comnputation

of the streamfunction.
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Velocity Field : The velocity field is computed using the Biot Savart law. The
smooth Biot-Savart kernel is used to avoid spurious results at locations near the
centers of the vortices. Qur fast algorithm for the convection step is used herein to

compute efficiently velocities at arbitrary locations in the domain.

7.2.4 Results

As discussed in previous sections the flow behind an impulsively started cylinder
has been the subject of a large number of experimental, theoretical and computational
works. Experiments can be truly two - dimensional for the carly stages of the flow
providing results with which theoretical and computational works may test their

validity and approach.

7.2.4.1 The Impulsively Started Translating Cylinder

The key features of this flow are extensively discussed in the experimental work
of Bouard and Coutanceau {1980). The flow is known to remain symmetric, at least
for small times, for Re up to 9500. In our computations no symmetry constraint
is imposed. Perturbations introduced by roundoff errors could trigger an asymmetric
flow however. Qur computations follow the experimental trends as the flow remains

symmetric for longer times with lower Reynolds numbers.

In Fig. 7.5 and Fig. 7.6 the drag coefficient as computed from the present method
is compared with the theoretical values of BY and CD. At the onset of the flow the
drag exhibits a square root singularity, a challenging indeed behaviour for numerical
schemes. The accuracy of the present vortex method is exhibited as it is able to
capture this trend for all values of Re. It is interesting to observe that for all compu-
tations a remarkable agreement is found for times up to T &~ 0.20 beyond which the
theoretical and computational results diverge. Note also that a discrepancy appears
in the two theoretical models for a wide range of Re. It is at this value of T that
the drag coefficient starts to recover from the sudden drop due to the impulsive start

and the effects of convection become important.
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s Re = 40

Vortex methods have heen used in the past as a tool for the simulation of large Re
number Hows producing questionable results when applied to flows of large viscosity.
This is mainly attributed to the problem vortex methods had in dealing with diffusion
and the no-slip boundary condition. This difficulty is alleviated with the present

approach and highly viscous simulations can be indeed handled.

At Re = 40 the flow is known to reach a steady state. In the present scheme
the wake is still continuing to grow at the end of the simulation. Our goal was to
terminate the computation when the drag coefficient (Fig. 7.7) has closely approached
the value it would assume after infinite time has eclapsed. Our computations were
stopped at T = 10 when the drag coefficient had reached a value of 1.71, which
is close to the experimental value of 1.68 (Tritton, 1959). A time step 6t = 0.02
was used in these simulations and at T = 10 approximately 30000 vortices existed
in the wake. A cutoff vorticity value of 107°% has been used. The drag exhibits a
significant drop at the onset of the impulsive flow but does not change significantly
after the appearance of sccondary vorticity. The unsteady computations exhibit the
generation of the secondary vorticity at T =~ 1.5 (Fig.7.9). The secondary vortices
initially grow and subsequently remain unchanged as they arc confined by the primary
vortices. Each primary vortex (Fig.7.10) is passively convected by the free stream
velocity and as viscosity acts its vorticity is spread-out and does not create further
secondary separation cffects. Although its core is diffused cach primary vortex is
never detached from the body as a thick shear layer continuously feeds the primary

vortex uninterrupted by the sccondary separation effects.

In the second stage of this simulation the cylinder is impulsively stopped. The
initial condition for this flow is the vorticity field as established at T = 10 by the
previous impulsive start. As one may observe in Fig. 7.8 this impulsive stop induces a
large inertial force on the body in opposite direction to the drag. A square root type
singularity is exhibited by this flow as well. The body force eventually decreases to
zero remaining always negative after the impulsive start. In Fig. 7.11 one may observe
that immediately after the impulsive stop a strong vortex layer of the same sign as
the secondary vorticity is developed on the surface of the body. This new layer then
separates the primary vortex from the body and as it grows the magnitude of the
drag is reduced. The pair of primary vortices forms a dipole that starts to move

upstreamn. However its strength is not sufficient for it to travel far and the pair is
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eventually stopped as it diffuses and is stabilized by the presence of the vortex layer
of opposite vorticity. At T = 15 the vortex field has reached a configuration that
essentially does not evolve further by convective effects and is subsequently eroded

by diffusion.
e Re = 550

As the Re increases the flow structure becomes more complicated and new features
of the vorticity field are exhibited. In Fig.7.16 the streamline history of the flow
field is presented. Note that only half of the domain 1s plotted, but no symmetry
was imposed in our computations. One may observe the appearance of a small
secondary region as well as the development of the dividing strecamline of the flow.
The development of the flow is alternatively described by the equivorticity plots of
Fig. 7.15. Although at streamline patterns show the appearance of a secondary vortex
at T = 3 sccondary vorticity is already visible in the vorticity plots at T = 1. After
its initial appearance the secondary vorticity remains confined and its evolution is
mainly affected by the dynamies of the primary vortex. As the seccondary vortex grows
it penetrates the primary vortex but it is never able to rcach the outer irrotational
flow field. The primary vortex moves away from the body and its strength is reduced
by diffusion stopping the growth of the secondary vortex. Initially the layer that
feeds the primary vortex changes angle of orientation in respect with the body but
it seems that a stable configuration ( the so called o - phenomenon in BC) has been

reached beyond T = 5.

In Fig. 7.13 we compare the instantaneous streamlines obtained from these com-
putations with the streaklines obtained by CB. The results are in good agreement.
However such good agreement in the streamline pattern has been observed m the
past by other computational schemes as well (e.g., those of TL, §§ cte.). In Fig. 7.14
the computational results of CC, TL and S§S are presented. They are in good agree-
ment with the experimental results as well (note however a smaller secondary region
computed by CC and some discrepancies with the S5 computations). However if one
examines the drag coefficient obtained by different schemes there are several discrep-
ancies. In Fig. 7.12 the drag coefficient obtained by the present numerical method is
compared with the results of CC and TL as well as with the theoretical predictions
of BY and CD. The present method accurately captures the transient behaviour and
is in good agreement with the results of CC. However a large discrepancy is observed

with the results of TL especially at early times. This may be attributed to the initial
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flow condition T'L uses for the impulsively started flow. Instead of the potential flow
the viscous steady state solution at Re = 5 has been used. So initially in this ap-
proach vorticity is present throughout the domain contrary to a truly impulsive start.
The moral of the story is that diagnostics such as streamlines allow for deviations
from the correct solution. as they are a smooth function, and should not be blindly
trusted as indications of the validity of an approach. On the other hand vorticity
fields and drag coefficients are diagnostics that are two derivatives less smooth than
streamlines and their accurate capturing substantiates the robustness of our code.
Lecointe and Piquet (1984) found that the vorticity is not accurately tracked by their
high order finite difference schemes even when a relatively accurate description of the

streamlines is obtained.

The interplay of primary and secondary vorticity is manifested in the drag curve.
After the initial drop in the drag the appearance and growth of the secondary vortex
increases the drag coefficient as it pushes outwards the primary vortex layer. This
increase reaches a maximum at T = 3 beyond which the strength and the size of
the secondary vortex are reduced whereas the primary vortex is further convected by
the free stream and the drag decays to its steady state value (asswming syminetry

persists).

At the a second stage of this computation the flow is impulsively stopped.
However, in contrast with the Re = 40 case, the primary and secondary vortices are
stronger resulting in a more complicated flow configuration. In Fig.7.18 the time
history of the vorticity field after the impulsive stop is presented. Due to inertial
effects a strong layer of secondary vorticity is formed on the vicinity of the boundary
that carries along the secondary vortex already present in the rear of the cylinder.
Simultaneously the dipole of the primary vortices is moving upstream due to the
absence of the balancing velocity component of the free stream. Selected vorticity
fields from this flow are presented in Fig. 7.19 and Fig. 7.20 In Fig. 7.17 the drag co-
efficient initially becomes negative but increases rapidly enough to reach a maximum
at T = 6.0. After this point most of the vorticity field has been carried upstream of
the cylinder and tertiary vortices are formed on its surface. The secondary vortex
is rearranged and eventually at T = 9 reaches the outer flow and at this point the
drag coefficient reaches a minimum. Subsequently new dipoles are formed around
the cylinder and the vorticity field decays by the act of diffusion, as essentially no

new vorticity is generated on the swface of the cylinder, and the drag decays to zero.
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One may observe that although such dramatic changes occur in the vorticity field the
flow remains symmetric and this symmetry is not sensitive to roundoff errors present

in the computations.
¢ Re = 1000

The time history of the streamlines for the case Re = 1000 is shown in Fig. 7.23.
Phenomena similar to the ones observed in the previous case are present here as well.
The primary vortex is formed at the rear of the cylinder and the secondary vortex,
although stronger in this case, remains confined by the primary vortex. As it may
be observed in Fig. 7.22, showing equivorticity lines, the secondary vortex attempts
to reach the outer flow field but is strained by the primary one before cutting the
feeding link of the primary with body. At the end of the siulation a tertiary vortex

is discerned on the surface of the body.

The parameter to observe here is the drag coefficient shown in Fig. 7.21. For this
particular Re several computational results are available to be compared with the
results of the present scheme. The present vortex method captures fairly well the
initial square root singularity of the drag cocfficient and is in agreement with the
theoretical results of BY. The agreement with the method presented in CC is still
satisfactory although some discrepancies appear around the minimum and maximui
of this curve (when vorticity is most active). This discrepancy may be attributed
to the additional viscous dissipation present in the scheme of CC that reduces the

actual strength of the vortices.

Large discrepancies appear however with the results of the present method and
those presented by TL and SS. The effects of the initial condition selected by T'L
become more pronounced at this higher Re. The flow of TL seems to never recover
to that corresponding to an initially impulsively started cylinder. On the other hand
the scheme discussed by S presents an erratic behaviour as well. The initial transient
behaviour is not captured ( giving even zero and negative drag) demonstrating the
problems of the algorithm to simulate vorticity gencration due to solid walls and
the low convergence rate of the random walk approach to model viscous effects. At
later times the drag cocfficient oscillates signifying dynamies not present in all other

computations.

¢ Re = 9500
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The case Re = 9500 is the highest Re for which simulations were carried out
in this thesis and by far the more interesting and challenging one. The time step
used 1s 6t = 0.0125 . the cutoff vorticity limit is kept to 10~° and at the end of
the simulation at T = 4.0 more than half @ million vortices ave used to capture all
the scales present in the flow. The flow eventually becomes asyminetric due to the

accumulation of roundoff errors.

In Fig.7.28 the streamlines of the flow are presented for a series of times out-
lining the complex structures present in the flow field. The picture becomes more
vivid however if one examines the vorticity field of the flow as presented m Fig. 7.29.
Initially a very thin layer of vorticity resides around the cylinder as it is introduced
by the initial potential low. This thin layer continues to grow while maintaining a
relatively invariable form. In the same time the square root singularity is observed
in the drag coefficient. However after T = 1.5 a bulge of vorticity forms at § = 45°
that modifies the dynamics of the wake. This bulge constitutes now the center of the
primary vortex under which a secondary vortex is formed. However this secondary
vortex is formed at a much larger angle from the rear stagnation point than in lower
Re. As it is also stronger it penctrates the feeding vortex sheet of the primary vortex
and reaches the outer flow. The primary vortex then rolls up and detaches eventually
from the body carrying along a part of the sccondary vortex as shown in Fig. 7.29d.
As the secondary vortex is severed its strength reduces and a new positive bulge of
vorticity, created by the shear layer, comes to suppress it. This new vortex is formed
at higher angle yet extracting some positive vorticity from the body as well so that
the secondary vortices have a wave like shape. As the new vortex moves downstream,
it reaches the primary vortex and merges with it reestablishing the link of the primary
vortex with the body. The resulting vortex evolves and as its strength has not been
diminished significantly by diffusion, spins around itself therefore reducing again the
width of the vorticity link with the body. During this process tertiary vortices appear
on the surface of the body but they are relatively weak and do not seem to affect

significantly the evolution of the secondary vortex that confines them.

The interplay of the primary and secondary vortices do not remain unnoticed
by the drag coefficient. The dfag after its standard initial drop increases as the
primary vortex continues to grow. This increase is stopped however at T =~ 2.0
when the secondary vortex reaches the outer flow and the primary vortex is detached

(Fig.7.30). It remains relatively constant for a short time and continues to increase
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when the feeding of the primary vortex is reestablished. It reaches a maximum and
then drops as new vorticity is created on the surface of the body. The discrepancy of
the present results and those presented by C'C'is more pronounced. More specifically
the scheme of CC does not predict the drag plateau that appears at T ~ 2.0. It
seems that the additional numerical diffusion present in that scheme suppresses the
communication of the secondary vortex with the outer flow and allows the feeding of
the primary vortex and the drag increase. The double bump in the drag coefficient
seems to be present at simulations at lower Re numbers (Re = 3000) as reported by
Pépin (1990) and may be associated there as well with a similar interplay of primary

and secondary vorticity.

7.2.4.2 The translating and rotating cylinder

In this section the flow resulting from a cylinder set into translation and rotation
simultaneously is discussed. The initial stages of the flow are examined to validate
our numerical approach and determine its ability to simulate general unsteady flows.
When « is nonzero a lift force is exerted on the cylinder and non zero circulation
enters the fluid. The cylinder movement plays an important role in the formation of
the wake. The mechanics of the boundary layers are different on the top and bottom
side of the cylinder as on top the newly created vorticity is initially convected counter

to the free stream and on the bottom is pushed farther by the cylinder rotation.

The results presented in this section are concerned with the wake formation at
very early times for Re = 200 and « = 0.5. They are compared with available compu-
tational and experimental results to validate our method. In Fig. 7.33 equivorticity
contours of the flow are presented. The wiggles that appear on these curves may be
attributed to the distortion of the Lagrangian grid as a relatively large time step of
6t = 0.025 was used in these simulations, as well as with the sporadic remeshing
that has been performed. The flow at this early stage appears to be nearly symmet-
ric, however one may discern the rotation of the secondary vortices on the rear of
the cylinder and larger vorticity gradients at the top part of the flow. In Fig. 7.34
the computed streamlines are presented. The initial symmetric pattern has been
broken and fluid from the lower part of the domain is pushed upwards due to the
cylinder rotation. Subsequently a rotational and a hyperbolic point are manifested

in the streamline pattern at T = 2 and a second vortex appears forming at T = 3.0.
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The results of the present computations are compared with computational results
in Fig.7.35 BD and with flow visualization in Fig.7.36 CM. It may be seen that a
remarkable agreement exists between these results. In Fig. 7.31 the drag coeflicient
is presented. It is shown that the rotating cylinder exhibits a larger drag mainly
due to the larger vorticity developed on the top of the cylinder. In Fig. 7.32 the lift
coefficient is presented and is compared with the analytic results of CD. At the onset
of the flow the computed results are not capturing very well the transient of the lift
coefficient as a sign of poor discretization. A time step of 6t = 0.02 (as that for a

non-rotating case ) has been used for this simulation.

A final quantitative comparison is made in for the u velocity component in the
rear axis (6 = 0) ant at the y* axis (§ = 90°) of the cylinder in Fig.7.37 and
Fig. 7.38 respectively. The results of the present computation are indistinguishable
from those presented by BD and are in excellent agreement with the experimental

results of CM.
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F1G. 7.5 Linear plot of the early time history of the drag coefficient for an impul-

sively started circular cylinder. Solid line (BY), dashed Line (CD), symbols
(present computations)
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FIG. 7.6 Logarithimic description of the early time history of the drag coeflicient for
an impulsively started circular cylinder. Solid line ( BY), dashed Line (CD),
symbols (present computations)
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F1G.7.7 Drag Coefficient for an impulsively started circular cylinder. Re = 40. Solid

line (BY), dashed Line (CD), symbols (present)



Drag Coeff.

10

=10

POTTT T

Time

10

F1G.7.8 Drag Coefficient for an impulsively started and impulsively stopped ( at T

= 10) circular cylinder for Re = 40.
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F1G. 7.9 Equi-vorticity contours for an impulsively started circular cylinder for Re
= 40. Solid lines : negative (clockwise) vorticity. Dashed lines : positive
vorticity.
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cylinder for Re == 40.



F16.7.11 Equi-vorticity contours after the impulsive stop (at T = 10) of an impul-
sively started circular cylinder for Re = 40.
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F1G.7.12 Comparison of the drag coeflicient of an impulsively started circular cylin-
der for Re = 550 as computed by several numerical schemes. Dashed line
. analytical results (BY).
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F1G.7.13 Present computational results (equi-vorticity lines and instantaneous stream-
lines) and comparison with experimental results (streaklines) of BC for an
impulsively started cylinder for Re = 550 at T = 5.



Fi1G.7.14 Computational results of T'L (top), CC (middle), and S (bottom) for an
impulsively started circular cylinder for Re = 550 at T = 5
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F1G.7.15 Equi - vorticity contours for an impulsively started circular cylinder at Re
=550. (a) T=1,b)T=3,(c) T=5(d) T=7
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F1G.7.16 Streamline time history for an impulsively started circular
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F1G.7.17 Drag coefficient for an impulsively started and impulsively stopped (at T
= §) circular cylinder at Re = 550
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F1G. 7.18a Equivorticity plots after the impulsive stop (at T = 5) of an impulsively
started circular cylinder (a) T = 5.5, (b) T = 6.0
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F1G.7.18b Equivorticity plots after the impulsive stop (at T = 5) of an impulsively
started circular cylinder (¢) T = 7.0, (d) T = 8.0
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F1G.7.18c Equivorticity plots after the impulsive stop (at T = 5) of an impulsively
started circular cylinder (e¢) T = 9.0, (f) T = 10.0.



Fia. 7.19 Vorticity field of an impulsively started circular cylinder at Re = 550. T

= 1.0 (top), T = 3.0 (middle), T = 5.0 (bottom)
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F1G.7.20 Vorticity field after the impulsive stop (at T = 5) of an impulsively started
circular cylinder at Re = 550. T = 6.0 (top), T = 8.0 (middle). T = 10.0
(bottom)
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F1G.7.21 Comparison of the drag coefficient of an impulsively started at Re = 1000 as
computed by several numerical methods. (dashed line : analytical results
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F1G. 7.22a Equivorticty lines of an impulsively started circular cylinder at Re = 1000.
(a) T =1.0,(b) T = 2.0, (¢) T=3.0
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F1G.7.22b Equivorticty lines of an impulsively started circular cylinder at Re = 1000.
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F16.7.23b (d) T = 4.0, (¢) T = 5.0, (f) T = 6.0. Instantaneous streamlines for
ISCC at Re = 1000

an
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F1G.7.24 Comparison of the Drag Coefficient of an impulsively started circular cylin-
der as computed by the present method and that of C'C. Dashed line: An-
alytical results of BY
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F1G.7.25 Equivorticity lines (top) and instantaneous streamlines from computations
(middle) and experiments (BC) (bottom) for Re = 9500 , T = 2.0
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F1G.7.26 Comparison of computational (present) and experimental results (BC) for
Re = 9500, T = 2.5
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FiG.7.27 Comparison of computational (present) and experimental results (BC) for
Re = 9500, T = 3.0.
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F1G.7.28 Instantaneous streamlines for an impulsively started circular cylinder at
Re = 9500
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F1G.7.29d Equivorticity lines of an impulsively started circular cylinder for Re =
9500. (g) T =3.5, (h) T =4.0



151

®
\
A
¢

FiG.7.30 Vorticity field of an impulsively started circular cylinder at Re = 9500. (T
=10,T=20,T=25,T =3.0,T = 3.5 T= 4.0 : Frames are from top
to bottom and left to right).
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F1G.7.32 Lift coeflicient for an impulsively started translating and rotating cylinder.
Re = 200, a = 0.5. Solid Line (BY).
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F1G.7.33 Equivorticity contours for an impulsively started translating and rotating
cylinder. Re = 200, a = 0.5



F1G. 7.34 Computed instantaneous streamlines for an impulsively started translating
and rotating cylinder. Re = 200, @ = 0.5
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F1G. 7.35 Experimental (from CM) instantaneous streamlines for an impulsively started
translating and rotating cylinder. Re = 200, o = 0.5



F1G.7.36 Computational (from BD) instantaneous streamlines for an impulsively
started translating and rotating cylinder. Re = 200, « = 0.5
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CHAPTER 8

Summary and Conclusions

A Lagrangian numerical method, based on vortex methods, has been developed
and implemented for the direct numerical simulations of viscous incompressible flows.
The classical vortex method (Leonard, 1980) has been enhanced to properly account

for diffusion effects and vorticity creation at solid boundaries.

Vortex methods have several inherent computational advantages, namely their
adaptivity, the explicit exact treatment of the far field boundary condition and the
ability to obtain physical insight by directly dealing with the vorticity field. In this
thesis we concentrated on the major difficulties of vortex methods, namely their
computational cost, the accurate treatment of viscous effects and the distortion of
the associated Lagrangian grid. The developed numerical method has retained the
inherent advantages of vortex methods and it is free of the impediments mentioned

above. The key features of the method may be summarized as follows :

~  Of paramount importance in the use of vortex methods is the development of a
fast algorithm for the evaluation of the velocity field. In order to maintain the
capability of the method to treat flows around complex configurations and to
explicitly enforce the far field boundary condition we use the scheme of multi-
pole expansions (Greengard and Rohklin, 1987) to determine the velocities of the
particles. The cost of the method is reduced to O(N) as opposed to the O(N?)
computations when employing the classical form of the Biot-Savart law. We de-
veloped an accurate and robust algorithm and we were able to employ an O( 10%)
vortices for our simulations. In order to compute the velocity field of 10° particles
1 minute of CPU on the CRAY-YMP is required as opposed to the 24 hours of

CPU that would have been required by the classical scheme.
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A robust scheme to account accurately for viscous effects was developed. We
employ the scheme of Particle Strength Exchange (PSE) (Raviart, 1987) and
complement it with an algorithm that maintains a minimum level of resolution
throughout the computational domain thus permitting the accurate description
of diffusion effects. Simulations are possible for extended times by periodically
restoring the distorted Lagrangian grid while minimizing additional numerical

dissipation.

A novel technique for the enforcement of the no-slip boundary condition in the
context of vortex methods has been developed. We follow Lighthill’s (1963) model
for vorticity creation on a solid surface. We formulate the problem by replacing
the surface of the body with a vortex sheet whose strength is determined by the
enforcement of the tangential velocity boundary condition. Using a fractional
step algorithm this vortex sheet is subsequently nullified resulting in a vorticity
flux on the surface of the body. This vorticity flux is diffusively distributed to the
vortices in the domain and modifies their strength so that the no-slip condition
is enforced. Unlike other vortex methods no new particles are generated on the
surface of the body but the strength of the existing ones is modified to model
vorticity creation in the fluid due to solid walls. The validity of our approach is

validated by comparing its results with known analytic solutions.

The robustness and accuracy of the present scheme is demonstrated through a

series of direct numerical simulations of incompressible vortical flows.

Simulations are undertaken to exhibit the capabilities of the method for extended
times. The inviscid evolution of a 2:1 elliptical vorticity distribution is considered.
By monitoring diagnostics such as the linear and angular impulse we present
detailed simulations of the evolution and demonstrate the ability of the method
to resolve a wide range of vorticity scales and describe detailed phenomena such as
filamentation. The present scheme provides an especially powerful (if not unique)

tool for simulations of inviscid vortical flows.

We focus on simulations for flows around a circular cylinder impulsively started
in translation and/or rotation for a wide range of Reynolds numbers (40 - 9500).
For the early development of the flow we compare our results with those obtained
by analytical solutions (by Bar-Lev and Yang (1975) and Collins and Dennis

(1973)). Our comparisons show that the present scheme is able to capture the
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initial (1/ VT) behaviour of the drag coefficient as predicted by the theoretical
works. Comparisons are made for moderate times with the experimental works
of Bouard and Coutanceau (1980), for the translating cylinder, and Coutanceau
and Ménard (1985), for the rotating and translating cylinder, as well as with a
variety of other numerical methods. Our comparisons are based on diagnostics
such as instantaneous streamlines, velocity profiles and drag coefficients. Through
our computations we consider the relevance of such diagnostics and their impor-
tance in assessing the validity of numerical simulations. It it is observed that the
present method is in excellent agreement with the experimental and (at least qual-
itatively) most computational works for Reynolds numbers of up to 550. However
as the Reynolds number increases discrepancies appear between the present re-
sults and those of other computations. It is believed however that due to the
high resolution simulations and the accurate resolution of diffusion effects and

boundary conditions the results of the present simulations provide an accurate

qualitative and quantitative description of the flow field.

Based on the vorticity description of the flow we analyse the role of the primary
and secondary vortical structures in the development of the early stages of the
flow and their relation to the drag experienced by the body. It is observed that
the main source of drag is the primary vortex formed behind the cylinder. The
role of the secondary vorticity is instrumental however as it acts to reduce or
enhance the feeding of the primary vortex from the vorticity created on the sur-
face of the body. The secondary vorticity appears to be more active for higher
Reynolds numbers as it acts to rearrange the topology of the flow and subse-
quently affect the drag experienced by the body. Observations are made as to the
role of the numerical diffusion to suppress the activities of the secondary vorticity
and evidence is given as to the sensitivity of such simulations to the numerical
diffusion. Finally preliminary simulations are presented for lifting flows mainly to
exhibit the accuracy of the method and its ability to handle a variety of unsteady

separated flows.
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Suggestions for Future Investigations

A few observations are in order for future investigations for the numerical method

and physical problems tractable by it.
As far as the numerical method is concerned :

—  Many of the developments described herein for two-dimensional flows can be read-
ily extended to three dimensional simulations. In particular the present method
of enforcing the no-slip boundary condition is easily extended to three dimen-
sions and is well suited for vortex methods as it was shown in this work. On the
other hand, the scheme of PSE has already been demonstrated to yield accurate
results for unbounded three dimensional simulations (Winckelmans, 1987). This
representation of viscous effects when complemented with a proper remeshing
procedure and a fast algorithm for the velocity evaluation should yield a power-
ful tool for numerical simulations of unsteady separated three dimensional flows.

Work in this direction 1s already in progress.

— The use of vortex blobs of same size and shape throughout the computational
domain is what truly limits the applicability of the method. It would be very
beneficial to devise a scheme that would allow for a fine discretization of the vor-
ticity field near the body but allow larger computational elements to represent
distant parts of the flow field thus reducing the number of computational elements
required. For the evaluation of the velocity field such a scheme is available (Hou,
1992). One may try to extend the techniques developed then to the scheme of
PSE thus developing a superior Lagrangian method. Some thought should be
given however to the logistics of this approach and the additional difficulty in
devising fast algorithms. Alternatively one may consider, for relatively accurate
computations, to abandon the requirements for overlap at distances removed from
the body thus not increasing the number of elements required to describe the re-
mote flow field. Such an approach however would require extensive and thorough
research to determine the parameter space and remove the term ’direct numerical’

from the simulations.

A plethora of interesting physical problems may be investigated using the present

numerical method
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A more systematic study of the evolution of vortical structures in an infinite
domain would be in order. The ability of the scheme to simulate inviscid and
viscous flows may be explored to provide us with an understanding of the effects

of viscosity on the development of such flows.

Without major modifications to the existing algorithm more complicated un-
steady separated flows may be considered. The cylinder may be forced to un-
dertake rotary oscillations besides translating and steadily rotating and it would
be interesting to perform computations for the experiments of Tokumaru and
Dimotakis (1991).

With a few modifications of our code (the formulation is already developed), flows
around more complex configurations may be examined. Flows of particular inter-
est would be those behind a flat plate. We may validate previous computational
and experimental works and examine the role of the secondary separation for
flows where the primary separation points (such as the tips of the plate) are well

defined.

Finally the present algorithm may be used to examine control mechanisms for
unsteady separated flows. As its primary variable is the vorticity field, one may
easily gain physical insight for the passive development of the flows at hand and

devise active control mechanisms for flows around arbitrary configurations.
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