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At superorbit& reentry veboeities radiative heating is the 

dominmt mode of heat t r a n s f e r  Lo the stagnation region of blunt  

reentry vehicles, The radiative heat transfer rate at the w a l l  is 

detemined by the tenperatwe profile %hsrough t h e  shock layer which 

depends on the net radiative $ransport through both %he d s e o u s  inner 

region adjacen$ Lo the w a l l  md the outer region vhere eon~eetion and 

radiati-re trmsport processes dsniinate $he enera transfer, \$hen 

a%omsi.c line %ransitions are included a very small s c a l e  1enp"bh for 

radiant enerm t r m s ~ o r t  is intraduced which r e s d t s  in characteristic 

changes in the shock layer f low.  The inclusion of atomic line transi- 

Lions necessitates eonsideration 09 self-absosagstion of radiant enera 

and results in the e o q l i n g  sf radiant energr trmsport m d  c o n ~ ~ e c t i o n  

a d  eonduetion transport processes even f o r  relatively smdl vehicle 

nos e radf i . 

In the fomdation of  this problem no restrictions are placed 

on %he v a r i a t i o n  of %he absoq"s ig  coefficient ~f the mediu with  

wavelength. 11s cn illustrative exmple the e f f e c t s  of nose rafim, 

w a l l  refiectidty, and massive blowing have 'been coraputed for t h e  shock 

Sayer f l o w  f i e l d  o f  a s@erfed$y blunted vehicle a% 50,008 feet per 

second md 280,888 foot altitude in air, 
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For atmospheric cn%ry veloei$fes above escape speed thema1 

radiakion signifieanm%ly alters the flaw field about b1mt enLry 

bodies. The predominant effect of the radiance sf the hot gas eap 

is the d.n%ro&uetion of ent"na1py gradients in the outer shqck layer, 

Thus, when radiative transfer is important, the flow field can no.$ be 

sepwated in to  the usual isoenergetir inviseid ou%er shoek lwer and a 

non-adiabatic viscous boundug layer, This effect has bean %rested by 

others using either the gray gas approximation"' or polynomial expres- 

sions for the velocity and eoncentration profiles and nmar iea l  ia%e- 

pation over &equeneg of radiation'2'. It is now well knom that use 

of the g a y  gas approximtisn in radiative transfer c8leulations for 

high-taperaewe air results in serious error, Also the difficulties 

associated with inlegrati~ over frequency while also integrating .$;he 

eonsemak ion equations are obvious ( ~ o s h i  zaki and Wilson were limited 

to abou% 28 frequency points).  

As a rasul% of these difficulties maw approxba%e tecBBniques 

b v e  been developed to solve rdiative gssmmic problens (31 9P+1961 

In general the accmscy o f  t he  vmious so1uLlons is u&n 

f ligb% ewerbents have been made above 36,080 fps (EASA~ s WoJect 

PIRE) where couplianrp is  ra%;\zar weak, I n  lieu o f  e w e r b e n  data for  

shoek layer tempera%ures of  approximate^ $5,00O0K and Pwge physical 

s%xe, more exact ce%.lcdakfons ra lsfnfng complete spectral detail with 

as few flow field approxba%ions as possfble are required, I n  pm%icu- 

lar atmfc l i n e  eds s i sn  nust be included since, clue t o  the  very large 



values of absorption coefficient at the center of these lenes, an 

e*remely ma11 scale lengkh for the radiant e n e r a  transport is 

introduced, 

Inject ion into %he b ~ u d a q  layer is unavoidable i n  the  flight 

regime considered here since the heat transfer rates eweotm$ered - on 
3 the order of 10 vatts/cm2 - will necessitate either ablative heat 

shields or  transpiration esoXim for thermal protection, Pngection of 

foreign gas greatly eomplica&es the analysis proeedwe because $he 

absorption coefficient of %he gas-sir mixtwe, on which $he radiative 

transport processes critically depend, is a strong fuwc%isn of t h e  

species present and %heir concentrations, However, the first order 

effects of injection on the sheek layer $ 1 ~  field s%ruetme can be 

dekemined by considering air as the injec$ed gas, and this approach 

will be used here, 

In the present investigakion of these phenmena the p r h a ~  

mphasis has been on r e t s f n i ~  as eomplete spectral dekail as posefble, 

thereby m&ing f u l l  use of existing knowledge of radiative mechanisms, 

The shock layer flow i s  considered to be in local chemical and thsmo- 

ie equilbbrim for  the entry conditions chosen, The e n e r a  

equation is satis%fer% by using a n  ftera%lve techiqua axid assming one- 

dbensisnality of the radiation field, Molecular heat conduction and 

viscous monaentw transpofi are retained across the  en%ire shock layer, 

The solutions sb-abained reveal $he de%ails of the shock layer flaw field 

struckwe and rdiakive transport processes as well as Lhe convective 

a d  radiative heat transfer rates, 



11. DIPFEWEliTIU EQUATIONG: APPEICATIBB TO TEE 
FORWmD STAGHATIOM REGION OF A 

SPEmICGLY BLUmD VEHICLE 

Consider t h e  shoe% layer B 1 m  field about the forward stagna- 

tion point of 8 blunt body shorn schematically in Figwe 1, In order 

Lo =count for  radiative transport  of enerm %he edfre shock layer 

mwt be considered, 

For ~-8aaa~-s ta te ,  axismetric flaw $ha t h i n  shock layer 

(1) equations are the following 

60ntfnuity 

asg a u l a  a~ + + pvc -- = u 22 + P ( ~ )  + + (rlt ---I - v e F Puep IG P 3~ ax 33- 

-+ 
where F is the radiative flux vec$or, The coupling be%;ween the radia- 

t ive  enerw %rawsport and the okher processes is evidenced by the 

-+ 
inclusion of $he net radiative energy loss per unit volwa,  V * F ,  in 

the  energy equation, The evaluation of this t e r m  is considered in 

Seetion 111, 



These aquakisns can be reduced t o  ordinary differential  

equatisns valid near the stagnation s%remPine by noting tb&L t o  firs% 

order in x 

The continuity equakion then becomes 

Substi tuting Eq, 5 in the momentm and snerm e q a t i o n  aria neglecting 

terms of order x yields the fo l lming :  

Msmen%m and Con%inui%y 

T d 
p - """ - d"% 

P w d~ ( A , , - * f  (7) 

where, after Referenee 1, %p/ax, has been replaced by its value imedi- 

ately behind a spherical shock nem the sLagnatisn stremline,  

The boundmy conditions on Eqs . 6 and -re at y -. O 
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where 6, the shock s$md-off distmee, i s  t o  be deternine& eom t h e  

solu%ion, 

For cases i n  which blowing is  absan% i n t a p a % i o e  of Eqs,  6 

and 7 is  started at t he  d l  by assming values f o r  $he convsc-$;fve 

heat trwsfer rate an& shew stress and continues away from the  wall 

~ % i l  %be shock (QV - -OPm~w) i s  ~ e a c k l e a ~  "6"8b~lkl.$. V ~ ~ $ U B B  %he B B ~ %  

mfesion as a fmet ion o f  pv a r e  uses i n  t he  solut ion of the enerm 

equa%ion to obtain soku%ion C W V ~ B  for the tempera%me. Boundary eon- 

di t ions on T and -a at the shock are matches by repea%ed adgustment of 

$he esnvec"$ivs heat transfer rats and shew at "$e wall, 

men  mssive blowing i s  considered some modificstfon t o  this 

procadme is required, In%egrd  s01utions 0-2 both the rnmanem and 

e n e r a  equations can be eas i ly  obtainede For instance,  the  solukion of 

the e n e r a  aquation i s  

where 



This equation shows %hat small errors in %he ehsfea of ~ ( o )  cause the 

computed v d u e  of ~ ( y )  t o  depmt ewonen t i a ly  from the correct v d u e  of 

&(y) I n  regions where p v  is greater than zero, Since pvc /A is of the 
P 

order o f  P Lo 1 0  for the case considered here, the error grows very 

fast. The situation i a  mactly %he a m @  when %he momsntu equation is 

considered, In general the requirment that both o f  these equations 

be in%egrated simUtaneous1y means %ha% v s y i n g  initial v&ues of $ha 

convective he& transfer rate and the  she= streso a$ the wall is not 

a practical way t o  satis* boundmy conditions imposed 8% %be shock, 

I n  order to overcone this difficulty, nmerical integra%ion fs started 

at pv = 0 (i,e,, away from the w a l l )  and proceeds in both directions,  

mile this procedwe eibhinakes the nmer i ca l  integra%ion instability 

i n  the b;lbom region, it reqdres that fom i n i t i a l  V ~ U C S  be f%era%ed 

upon ( ~ ( p v  = o ) ,  u ( p v  = 01, d~/dy(pv = 0 )  and the shew stress at 

pv = 0 )  and $ha% %he boundaq conditions on T and u be m&ched at both 

the  w d l  and the shock, The addition of two more initial values quad-- 

r u p l e ~  the complexity of the i terat ion procedwe required since there 

are  now sideen deriva%ives sf the end vdues i n s t e a  of fom as when 

integration is s ta r l ed  a% the w a l l ,  



+ 
In order to evduake the net raaiant energy emission, B * P, 

the s c t u d  shock layer g e m e t v  is replacad by a plane pwalPe1 layer, 

i n f in i t e  in extent, w i t h  properties vmying only in the y-arection, 

The net emission from this layer is then given by 

where F denotes the f l u  of r&iant enera in the y-afrection, This 

approxiaatien is in accord with the resvlts of who computed 

the f lux  in the x-direction employing the gray gas assaption but not 

the plane pwallel shoek lwer approxhatfon, E i s  reaul$s indfca$e 

+ 
that %he contssibu%ion $0 V * P f i g s a n  the  x-dirsctfon flux 2s smll, B e  

plane pmalLel shock layer approx-tion is mare valid when a$omic 

l ines  and d t r ~ v i o l e t  photsionizatfon eontinurn are include8 since that  

p& of %he radiation s p e ~ % r m  behaves i s % .  an opaque mmner (except new 

the bomdmlss) and odg radiation from newby poin%s is hportane, 

Splitting the flux into positive and negea;$ive y-cmponen%a reslnlts i n  

F(Y 1 = ~'(y) - ~-(y) ( 9  1 



In Eq, 10 8 is $ha angle between a line sf sight pa%k fron the 

edge sf the Payer to the y-sta%ion an& the y-seetor along the stagnation 

st~e~line (see Figme 1). I is the specLsa1 i n t ens i t y  of ra&%alion at 
@ 

y traveling i n  the 8 direction and is given by integration of the 

Wbert-Bouguer l a w  for a nsn-scattering medim 

where a denotes distance slow the l i n e  o f  sight path, 

The bomdav conditions on Eq, 11 depend on the optical proper- 

ties sf the m P 1 ,  T h e e  E i m P t i w  w d 1  conditions are considered hers, 

The usual condition bposed is $ha% %be mB1 is perfectly transpwent. 

This b p L i e s  that  

I ~ ( o , B )  = 0 for  all w and 0 '8 5 n / 2  (l2a> 

The o%her two limiting eases are a perfectu black w a l l  or a perfectly 

reflecting w a l l .  The radiative bornday conditions for  these two eases 

w e  as f 0110~s ;;: 

black wall 

lo(0 ,8)  = B ~ ( T ~ )  f o r  all w and O 2 8  c n / 2  

ref leet ing w a l l  

I ( 0 , 8 )  = 1 ~ ( 0 , n - 6 )  for  allwand 0 f3 312 
W - - (3-2e 1 

Eqs, P2a, b, e set the  i n i t i a l  conditions for  the  intensity of 

radiation leaving the wall. The bomdasy csndi%fons for the radiation 

traveling Loward the w d b  are usually set by the conditions of a trans- 

pmen% shock and no mission from the breestrem &he& of t he  shock. 

Bowever, it should be recognized that some Braetion of %ha radiat ion 



L h s b  leaves the shock Payer will be absorbed by the freestrem thus 

raising its temperatme and increasing i t s  emission, A quantitative 

esLima%e sf this effect has y e t  to be made and the assmplion of no 

emission from the F r e e s t p e a  .%rill be re%ained for  hi^ investigation. 

The boundary condition for the radiation traveling toward the  wall i s  

Lhus 

I ~ ( S , B )  = 0 for  all o and r / 2  8 - c n . (13) 

These equations permit the  evduation sf the net emission from 

an elmental unit volme of gas, provided the temperature profile is 

hewn, Since the temperature depends on the value of the net emission, 

which i n  t u n  depends on $he %emperra$ure profile across the entire shock 

layer, an iterative technique is mployed in this invesliga%ion, Assmad 

tabular vdues of the net miss ion  as the fiiammction of p v  are used in the 

solution of the conservakion equations $0 obtain solution cmves for the 

taperhue. The first set of these vduea i s  obtained 'by empuking 

+ 
B F $OF the -coupled kemperature profile, i,e,, the solution of the 

+ 
conserva%ion equations wi%h V P f 0 ,  With the temperature profile 

computed, Eqs ,  8, 9, 10, and 11 are used with the appropriate boundmy 

conditions a% $he w i p l l  to compte new values for %he net emission, 

Eq. 11 is solved using second-order Rugge-Ku%$a for the most p&, 

However, d e n  %he Intensity at any frequency becmes close to the black- 

body value, the s s p p t o t i c  form of Eq, 11 

is used, The use of this ~ s ~ p t o t i ~  egression for the intensity 

allows luge integration intervals to be used, tmically about 1/100th 

the shock layer thicitness, rather than intervals of the order l /ko  



required Psr  integration stability if the  f u l l  equa%ion were retained, 

The intensity for eight different s%a& directions $bough t h e  Payer is 

found by integration along each path; f l u e s  are then  delemined by 

Gaussim quadratwe. This cycle is repeated u n t i l  the  input and output 

net emission curves converge, 



EV, TYPICAL SOLUTION6 FOR ATMOSPHmIG 
Y Vm = 50,000 i p s ,  h -- 200,000 ft 

me method8 described in Sec"$Ions II and III have been used t o  

obtain sslu%fons for atmospheric e a Q q  at 50,000 feet per second and 

200,000 feet altitude with a m11 $emperatwe o f  2000°K, The air prop- 

erties used are described in the Appendix, $aPsnspod of r d i a n t  energy 

by a%omic l ine  transitions i a  included, In the following discussion sf 

the resdLs obtained pmtfcular atten$ioir% is paid t e a  the effect of the 

inclusion of a%omie line radla%ion, 

Flow Field Solutions 

The effec$s of radiwt enerm transpork on the shock 1ayer 

stmctme for mrious nose rdif and a tranapmant w d 2  are shorn in 

F i w e s  2, 3 ,  h-,  and 4 ,  b i s s f s n  of themd radiation results in s 

eoa%-$inuak deerewe i n  temperaewe as the gas Blows  towwd the wall, 

ma sharp decline i n  temperatme near $he shock i s  due to the b d l d  up 

of intensity in the vacum aLrav is la t  speekrm to the black bow limit, 

This oecms a v e q  s d l  distance behind t he  shock wave due to the lmge 

v a u e s  of the ku for the atomic l i ne s .  The lmrr tempcaratma throughout 

the shock Payer r e sd t s  in higher density and a earresponding deerease 

in %he shock s$and-off distance, Shear s%ress a% the WE&% i s  increased 

and the velo~itg bomdaq layer thickness decreased due to the coupling 

of radia%ion and cog%vec%ion enerm transport modes, 

m e  r a i a n t  e n e r a  trwsport Is shorn i n  Figme 4 fo r  a 10 foot 

nose radius, The net emission at the shock is only slfghtLy lwgea than 



the Lranspwent emission into 271 steradians, i , e , ,  2 ( T  '. A s  the kp s )  aTs - 
f l u  travebiw toxwd the wall, F i" builds up, the net emission fal ls  

+ 
rapiug due %s self absorption, The efiremely large value of V * F at 

3 %he shock (about 250,000 waLts/cm ) produces the steep declines in tem- 

perature at the shock wave evidenced in t he  flow field aolu%isns, Since 

the temperatwe decreases con%inuoualy as the gas flows toward the bo43-, 

F- does not increwe monolsnieally with increasing distance from the 

shock* The absorption spike close Lo the  wall is due entirely to ab- 

sorption of the  F- flux in the boundary barer, Because of the small 

Lhichess  sf the bomdary layer, however, the reduetion of t h e  radiative 

heat transfer rate at the w a l l  is sml%, For large nose radii the eon- 

version of r d i a t i v e  to eonveetive enerw in the boundary Sayer has a 

significant effect on $he ssnveetive heat Lransfer rake, 

Figmes 7 and 8 present the spectral radiakion incident- normal 

to the w a l l  for nose radii of" 1 and 16 feet, respectively, The centers 

of" the vbeum ultraviolet lines are seen to be strongly self-absorbed 

while the wings contrfbute s i g n f f i c a n t u  to %he flux at the  w a l l ,  The 

infrared and visible lines, thwgh no% self-reversed, w e  somewhat 

self-absorbed at the lmger nose radius, 

Figme 9 shows %he contribution to the  net emission from %he 

flux in the negaLive ;y-direction at a position O , 1 1  cm  frm the w a l l  for 

$he PO foot nose radius, A t  %his position the a a l m i i e  Pines have already 

been self-reversed and the dominmt mode of radiant energy transport  is 

d t rav io leL  merged-Sine and photoionization continurn absorption, 



Heat Wansfer Rates 

The dependence of the radiative and convective hea%ing rakes on 

nose radius wikhout blmfng i s  ahom in Figwe  10, The dashed lines 

indicate the ucoupled heating rates, obtained by ignoring the radiation 

tern In the enerw equation. There are two conpensating effects tending 

to pertmb the convective heat transfer rate; the reduced enthalpy 

po%entid due Lo radiazive cooling tends to decrease $he convective 

heaking rate, while radiant anera absorption in the boundary layer 

tends to increase it, m e n  atmic lines are eonsidereel the  latter 

effect domf nates except at small nose r&ii where boundary layer abserp- 

t i o n  i s  smll. Eowever, if atomic line radiation is neglcctedthaae 

effects tend to cancel as shorn i n  Referenee 2 ,  

As discussed pre?f~iously, the radiative flux a% the wall i s  

reduced due to radiative cooling, shock layer absorption, and b o u n d a ~  

l ~ a r  absorption; boaaaadmy layer absorption i s  relatively unimportant 

except when large blowing rates are considered, These mechanisms pro- 

vide subs$antial reductions i n  the radiative flux to the s w f a e e  ss 

shorn in Figwe $1, Were the reduction in radiative heat transfer rate 

i s  correla%ed with .g, the ratio of total weoup%ed energy loss 

$0 the to%a41 available freestrem enerm, The inclusion of atmic 

lines is seen to enhance the reduction in radiative heating t bough  the 

mechanism o f  increased tempera%ura drop -edfa%ew behind the shock 

of the heat transfer rates obtained for all cases in- 

vestigated is given in Table 1, 

A s  shwn in Figwe 10 the rebeliative heat transfer does no% in- 

crease mono$oniealFky with increasing nose r d i u s ,  Radiative heating is 



m a x i m w  for apprsxhate1y an II foot nose radius at the f l i g h t  eondi- 

%ions eonsidered here, Figme 12 shows tha t  t h i s  r e su l t  is due $0 a 

deerease I n  the F l u  from %he strong lines and ul%raviolet portion sf 

reaching the wall. This effect  can be $raced to the  lower 

tmperatwe at %he edge of the boundary Payer with increasing radius due 

to sadiatbe cooling, 

The influence of wall reflectivity is shorn in Figwe 13, The 

kernperatwe profile for %he PO foot nose radius shock lqyer w i t h  a 

totally ref lect ing wall (wall is perfectly r e f l ec t i ng  at all wave 

lengths) is compared to %ha% of a traospment wall, The to%all'y ra- 

fleeting wall is $%%a limit ease and ilPus%ra%es the m u h m  e f f e c t  due 

to wall reflectivity, The erithalpy potential across the boundary layer 

i s  increased due Lo absorption of $he refleeted f1m and the eenveetlve 

heat LransEer rate i s  increased, Since auos t  half of the radiant 

enerm ineiden* on the w a l l  i s  v a e u ~ - u ~ % r ~ v i o P e t 3  for whieh all materi- 

a l s  are newly black, the Lotally reflecting xa91 does no% represent 

any r e d  su~face.  O f  more practical concern is %he affect of totally 

black walls, Calculation of the net radiant emission assming a t o t a l l y  

black w a l l  results i n  values iaenticaab (x i th in  the accuracy sf t he  ca$- 

culations) Lo those obtained for tranepwent walls, Thi s  result i s  not 

swpr is ing  since the radiative P 1 n  emikted fromthe cold -wall i s  much 

less khan %he f lux from the high temperature shock layer,  1% can be 

concluded $hen t h a t  %he raBia%ive boundary conclitions a t  the  wall have 

a negligible e f feeL  on the gas cap radia%ive transfer and the t r anspa-  

ent wall assup t ion  is sufficient for eonputing the flow field solution, 



Strong blming sslutisns are especially important 8% high entry 

velscities because radiative heating will induce massive ablation sf the 

vehiele surface, Thus, it is imperative to understand %he affects of 

large blmiw rates on the shock layer flow field strucLure and the 

attendant changes fn radiative and eonveetive hea% transfer rates, 

I d e d l y ,  of eowse, one woad Like to csrm out this investigation using 

radiative and transporx properties for %he blown gas nixture which 

correspond to the complex molecu%ea present in the ablat ion proaucts of 

most %beat shield material, 

The blowing rate used in %he present study corresponds Lo wha% 

would be a classical shear 1wer ( p  v 
W W  

9-Vm >> 1) solu%ion if 

raaia%ive coupling were neglected, T h i s  is ilPus"h;r%ed f n  P igwe  14 

which shows the temperature and tangential velocity profiles obtained 

+ 
by integrating the conservation squations with V F set  to zero, The 

region Prom the wall Lo a'oou% y = 00,9 em has the  properties of constant 

non-zero shear (as also fmnd in Reference 7) and temperawre; %he 

region of maBm shear is displaced from the wall by the sme mount, 

sen r a a a n t  enerw $ransport is included strong reabsorption 

by tihe cooler in jectad gas r e s d t s  in the flow fields shorn in 

F i w e s  15 and 16 for  1 foot and LO foot nose radi i ,  respectively, 

For the 90 foot case eonveclive heat transfer is increased from zero 

2 (fox- the uncouple& profile) $0 135 wa%ts/cm and the radiative heating 

2 reauced about ~ 8 %  to k322 w&t%s/cm . If the blom gas were emposed of 

abla%ion products including complex molecules which have sus%an%fally 



bmger absorption coefficients than air, the conversion of radiative $0 

convective e n e r u  would be enhanced and %he radiative heating fwther 

reduced , 

The radiative energy transport  for  this case i s  s%ao~m in 

Pigme 17, It is seen that there is a net absorption s f  rad ian t  enerm 

through the injected gas region causing F- to decrease significantly 

from its maximw value at y/6 approximately equal %o one-half, A corn- 

pmison sf t he  integral sf the f l u  inefden% on t h e  wall as s fmction 

of w 

for %he blowing and no-blowing ten-boot nose radius eases is shobrn i n  

Figwe 18, It is evident from these curves $hat the reduckion in t h e  

radiat ive heat transfer to the w a x 1  for the blowing case is due to 

absorption o f  radia%isn in t he  merged ultraviolet lines and photoioniza- 

tion eoai%$inum by the b l m n  gas, 



Toe stagnation-pain% shock-%eyer equations have been solved 

using detailed speetrd  caleula%isn s f  t h e  rdiative-convective 

soupling. Atonic lines are included in the  description of the  absorp- 

tion coefficient and their spectrd structure i s  retained twoughout 

%he c a l e d a t i o n  prscedme, The so1utions obtained indieate Lh& the 

inclusion of atomic lines efianees the  rarsbiative cooling effect 

resulting in decreased radiative flux at the w a l l ,  Hmever, sl igh%ly 

5ncreased absorption in the bomdary Payer causes the convective he&% 

transfer ra%es to increase above the nomind value that qmuld be 

obtained if radiant e n e r a  ZransporL were neglected, 

The solutions obtained wi th  strong blowing indieate %ha$ radi-  

an% enerm transport can s&rongly modify the flow f i e l d  strue%we 191 

"$he b%okm gas region through absorption in the ul%saviole% portion o f  

the speetrm, Signif icant  reductions in &he rad ia t ive  heat transfer 

ra%e ocew due t o  t h i s  absorption, 

me affect of r s d f d i v e  boundary cond%tlon~ a$ the &;pa11 on 

shock $apes sdructme wss considered and f m n d  to be s m d l  f o r  rara_bistic 

e n t q  body properties, 
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Appendix A 

GAS PROPmTEES 

The s p e c t r d  line= absorption eoefficienk i s  of eri$ieal 

&porLanee for accmate calculations of the radiadive heat transfer to 

(8 1 e n t q  vehicles. The values use& in this study a r e  those of Thomas 

In that work a complete description of the spectsd absorption coeffi- 

cient was made including band radiation, photodissociation, photoioniza- 

tios, photodetacbent , atomic lines, and brebsstrahlung Atomic l i nes  

belongiw to md%iplsts were grouped together, since for tnicsab ra- 

entry con&itiona he found the spacing be$;ween lines of a particulm 

multfplet "$ be usually of the s m e  order as the line half widths. The 

f-numbers for  the ultraviolet lines were taken from NBs'~' and for the 

visible lines *om ~riem'"). Thomas used the hydrogenie model of 

Steward and matt to define lines close to the photoelectric edges. 

9 4= 
Lines from E, N , 0 ,  and 0 are included, 

Thomas has generaged the spectral l inem absorption coefficient 

for air at approximg%%ely 2000 spectral points for Le~peratwes from 

2080°K %Po 6 0 ~ ( 3 0 0 ~ ~  and pressme% from 0,603 to 300 atmospheres, The 

values used in the preseaa$ investigation were sealed aceording to 

pressme from the values calcdated at P atmosphere, Pigme $9 shows 

the values of Bw Thomas obtained st 15,000°~ and 1 atmosphere pressure. 

The themodynmic properties of air used here are those 

obtained by Martinez"" from solution aE the chemical equilibrium 

(13) equations bg. the method of Cruise 



The t ransporl  properties were eslcaa%ed by the method described 

f n R e f  erenee 14 at the actual stagnation pressure ( 8 .&6 atmospheres 

Equil ibr im eoneentrations of 18 air species were used and t h e  effects 

of charge exchange encounters were considered, The viaeosiLy and 

cqui l ibs im thermal conductivity were ealeula%ed $0 the second+riEer 

including the effects sf' LhermP diffusion, 



SUltfi4bB:WY OF CASES STCiDIED 
V - 50,000 f t / s ee  h = 298,OOC) ft 

03 

Ty = 2000°1: 

10,O Black C 600 5296 5896 

- .. 2. Mulurl?crs i n  parenthesis refer' t a  antrcou?_icc" h6a-k tr .::sfe~ 
rwtes . 



FIGURE 1 .  COORDINATE SYSTEM AND SHOCK LAYER FLOW FIELD 
(SCHEMATIC ) 



FIGURE 2. SHOCK LAYER FLOW FIELD FOR 1.0 FOOT NOSE RADIUS 
WITH NO BLOWING 



FIGURE 3. SHOCK LAYER FLOW FIELD FOR 2.5 FOOT NOSE RADIUS 
WITH NO BLOWING 



FIGURE 4 .  SHOCK LAYER FLOW FIELD FOR 1 0 . 0  FOOT NOSE RADI3S 
WITH NO BLOWING 



TRANSPARENT WALL 
S = 13.85 cm 

F I G U R Z  5 *  SHOCK LAYER FLOW F I E L D  F O R  1 5 . 0  FOOT NOSE R A D I ' J S  
W I T H  NO BLOWING 



FIGURE 6. VARIATION OF NET EMISSION AND ONE-SIDED FLUXES 
ACROSS SEOCK LAYER WITH NO BLOWING 
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F I X R E  9. INTEGRATED v*F FOR SI-IOCK-LAYER RADIATION TRAVXLING 
TOWARD THE WALL, EVALUATED 0.11 CM FROM THE WALL 
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F I G U R E  10. H E A T  T R A N S F E R  R A T E S  A S  A  F U N C T I O N  OF 
NOSE R A D I U S  WIT2 NO BLOWING 



FIGURE 1 1 .  REDUCTION IN RADIATIVE FLUX TO WALL 
DUE TO RADIATIVE AND CONVECTIVE COUPLING 





FIGURE 1 3 .  SHOCK LAYER TEMPERATURE PROFILES 
SHOWING THE EFFECT OF WALL REFLECTIVITY 



FIGUHE 1 4, UNCOUPLED FLOW FI&LU SOLUrI'IOM F O R  1 0 . 0  F O O T  
NOSE R A D I U S  WITH BLOWING 



F I G U R E  1 5 ,  SHOCK LAYER FLOW FIELD F O R  1 .0  F O O T  
NOSE R A D I U S  WITH BLOWING 



FIGURE 16. SHOCK L A n K  FLOW FIELD FOK 10.0 FOOT 
NOSE RADIUS WITH BLOWING 



TRANSPARENT WALL 

FIGURE 17, V A R I A T I O N  O F  N E T  E M I S S I O N  AND O N E - S I D E D  FLUXES 
A C R O S S  SHOCK LAYER W I T H  BLOWING 



NO BLOWIBG 

TRANSPARENT WALL 

FIGURE 18,  SPECTRAL CONTRIBUTION TO '1'HE RADIATIVE 
-HEAT TRANSFER RATE FOR 10.0 FOOT NOSE RADIUS 



FIGURE I 9 ,  ABSORP'I'ION COEFFICIENT OF AIR AT I ATN 
PRESSURE AND 1 5000 " K 


