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ABSTRACT

The forces and moments on a moving body partially immersed
in the surface of a deep ocean of heavy fluid are considered in the limit
of small Froude number, F. Asymptotic expressioné for velocity
potential and free surface elevation are developed. The choice of the
first terms of the asymptotic sequence is indicated by the behavior, at
small F, of the classical results of "small disturbance theory" -
analysis starting from the linearized frée-surface boundary conditions.
It is found that the leading terms depend on the local disturbance, which
can be expanded as a power series in F. The wave pattern contrib-
utes higher-order terms which are not analytic about F=0; only
estimates of the order of these terms are obtained. Consequently the
present work does not estimate drag but is confined to consideration of
transverse forces and moments.

Once the asymptotic sequence is assumed, perturbation of the
exact equations and boundary conditions about F =0 is straight-
forward. The zero-order potential is that of the "reflection-plane™
model of Davidson. For a restricted class of shapes, the slender body
theory is applied to the zero-order and first-order problems. A
general method is developed us'ing conformal mapping to solve the first-
order problem for sufficiently slender shapes of arbitrary cross-
section. This method is applied to two particular shapes, viz. a wing
of zero thickness and a half-submerged body of revolution, both in
sideslip. The correction to the reflection plane model is found to be
generally quite small in the range of F for which this theory is

expected to apply.
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I. INTRODUCTION

The determination of the forces and moments on a partially
immersed body is important for the prediction of performance, control
and stability in the design of surface ships and other interface vehicles.
Historically, by far the greatest concentration of attention has been on
the drag problem. The interest in drag is certainly justified by the
fact that commercial and military vessels spend most of their time in '
. steady, rectilinear motion at zero sideslip, and by the direct relation
of drag to the economically and militarily important factors of speed
and fuel consumption. However, for some types of operation more
general motions must be considered.

Interest in sideslipping and yawing motion of ships has been
motivated by considerations of maneuvering and turning character-
istics. Davidson and Schiff (Ref. 1, 1946) is a discussion of maneuver-.
ing problems and a summary of earlier work. It was apparently
Davidson who first suggested the "reflection plane” model, which
appears in the current work as the zero-order theory: the free sur-
face is regarded as a rigid flat wall, in which the submerged part of
hull may be reflected. Advances in the aerodynamics of low-aspect-

" ratio wings and slender bodies have been applied by Tsakonas (Ref. 2,
1959) to calculate hydrodynamic coefficients of ships, still based on
the reflection-plane model. To date no theory has appeared on yawing
and sideslipping which takes intoc account the changes in elevation of
the free surface in the vicinity of the ship, and no theoretical just-
ification has been presented for the reflection-plane model, or its

range of validity. It is the purpose of the current work to make some
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contribution to a clarification of these matters. The present author's
initial motivation came not from any love of modern ships - in fact he
has good personal reasons for a definite aversion to them - but rather |
from problems arising in the design of sailing yachts, considered in a
previous paper (Ref.3,1965). The yacht hull normally operates in side-
slip to develop a side force equal to that of the sails; control problems
demand a knowledge of the yawing moment involved.

The significant dimensionless parameter for motion of geo-
metrically similar shapes near the free surface of a semi-infinite
inviscid fluid is the Froude number F=c?/gy where ¢ 1is a char-
acteristic speed of the motion, g is acceleration due to gravity, and
£ is a characteristic length of the body, taken here as the length
measured at the water-line. Typical upper limits of F are 0.15
for a fast steamer, 0.10 for a fast yacht close-hauled. Plausible
qualitative arguments have been presented by Davidson for the validity
of the reflection model in the limit of vanishing Froude number. (It is
most useful to think of this limit as g becoming very large while ¢,
£, and geometry. are held fixed. ) It was felt, then, that an expansion
of all flow quantities as power series in the small parameter F might
lead to significant results. When this perturbation analysis is applied
to the exact equations and the boundary conditions on the free surface,
on the solid surface, and in the distant field, the zero-order set of
equations and boundary conditions are found to be exactly those of the
reflection model. Order F yields a mixed boundary value problem
for Laplace's equation in the portion of the lower half-space outside

the body., Normal first-order velocity on the plane of the undisturbed
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surface is prescribed by the zero-order pressure on that surface.

In the case of sufficiently slender shapes and small angles of
sideslip, two simplifications emerge: the slender-body theory pro-
vides anaalysis for the zero-order pressures; and the first order
problem can be solved in the cross-flow plane. This work deals
primarily with some general results and some specific solutions of

the second-order problem for slender geometry.

II. EQUATIONS AND BOUNDARY CONDITIONS

The governing relations will be formulated first in terms of a
rectangular Cartesian co-ordinate system fixed in the distant fluid.
The X,Z - plane coincides with the undisturbed surface far away, and
the Y-axis is vertically upward; T is the time measured from some
arbitrary reference. The following assumptions are made:

1) The flow is incompressible, irrotational, and inviscid.

The existence of a velocity potential @ is thus assured,

such that the components of velocity in the X, Y, Z~directions

0o® 0% 0@ tivel
are 5-5'{ » —a—? » —a—z respectiively.

2) The free surface is given by Y = H(X,Z,T), a single-
valued function over the region of the X, Z-plane exterior to
the body. This assumption is uniformly valid at sufficiently
small values of F'; it may break down in the vicinity of the
bow for larger F, depending on the geometry (a breaking
bow wave). Such cases are beyond the scope of this treat-

ment.

3. The surface of the rigid body is given by E(X,Y,Z,T)=0,



with the exterior E>O0.

4) No wave trains are incident, coming from far away. In
other words, the only disturbance present is that caused by

the body's motion.

5) Velocity is finite in the vicinity of a sharp trailing edge.
This is the well-known Kutta condition of airfoil theory, the

only manifestation of viscosity considered here.

6) The Weber number pc?g/(surface tension) is very large,

so that surface tension effects are negligible.

Then the following relations govern the flow: the field eq-

uation, which expresses continuity:
Vi@ =0 in Y<H, E=0; (2-1)

the boundary conditions expressirg tangency of the flow on the solid

surface:

DE/DT‘=:ET+ Eyt @ E 4+ 3,E, =0 on E =0; (2-2)
and on the free surface:
D(H-Y)/DT = Hpt &yHy- &4 ®,H, =0 on Y =H; (2-3)

the dynamic condition requiring constant pressure (taken zero) on the

free surface, using Bernoulli's equation for unsteady flow:

S = 8- 3 (VEP -gY=0 on Y=H (2-4)
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a distant boundary condition far below:
Vé&~-0 as Y ~ -c0 (2-5)

Several difficulties are apparent:

1) Nonlinearity of boundary conditions (2-3) and (2-4)

2) Boundary conditions (2-3) and (2-4) are applied on the
surface Y = H(X, Z,T) which is not known at the outset and
must appear as part of the solution. Indeed, existence and
uniqueness proofs are apparently lacking for such unknown
boundary problems in more than one dimension.

3) A further distant boundary condition is necessary to
satisfy cond‘ition 4) above (no incident wave trains) while

still permitting persistent waves to be generated by the body's

motion. For steady motion in the -X direction,
V&~ 0
as X ~» -0 (2-6)
H-~0

is appropfiate.

This case of steady motion in the -X direction is of special
interest, and it is useful to introduce a moving Cartesian frame
(X;,Y,2,T) where X;=X+cT. The moving body is at the origin of

the moving frame.
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The perturbation potential and free-surface elevation are

it

&, (X,, Y, Z, T) X, Y, Z, T)

Hl(xlt Y’ Zt T)

1]

H(X, Y, Z, T)

(2-7)

(2-8)

The function representing the solid surface is independent of time for

steady motions:
~E1(X1, Y, Z) = E(X, Y, Z, T)
Under this transformation (2-1) to (2-6) become

Vi® =0 in Y<H,, E; 20

9%, OE, , 0& OE, , 8%, 9E, _ -
(c+ %) 3%. * BV a7 * 94 52 - O onE=0

9H 9%,\ 8H, 0®, . 93, 0H
el § 1 1l 1 1 1
ar+(°+ax1 5X, ~B8Y ' B2 9Z

|5

+ %(v1§1)2+g'{=0 on Y =H,

3
7Tt <3

>

1

(2-9)

(2-10)

(2-11)
(2-12)

(2-13)



V1@ — 0 Y~ -0 or X; = -00 (2-14)

. IIL, THE FORM OF SOLUTIONS

The problem described in the previous section, (2-1) to (2-6),
involving a free boundary, is notoriously intractable; not a single

exact solution is available.

The usual approximation, leading to what may be called small-

disturbance theory, assumes vanishingly small displacement of the

free surface and vanishingly small velocity perturbations, so that the

free-surface boundary conditions (2-3) and (2-4) are linearized to

Hp = &, &+ gH = 0 (3-1)

applied on Y = 0. Small-disturbance theory can be derived as a
rational power series expansion (Wehausen, Ref.4) in a small geo-
metric parameter, e.g. ratio of amplitude to length for surface waves;
or thickness ratiol in Michell's thin ship theory, which treats a sym-
metric planar wing penetrating the free surface. The small-distur-
bance solutions are characterized by two different kinds of terms: (1)

a local disturbance, which dies out rapidly with distance from the body,

and (2) a superposition of surface waves of the form
. . 1/
<I>=Asm(KlX-}wlT)sm(KzZ+w2T)exp(K‘71' +x2) /2 Y (3-2)

which follow a traveling disturbance; presumably similar waves would

be present in solutions of the exact equations. The ehergy radiated by
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the waves is provided by work done against "wave resistance", the
calculation of which is the object of mést small-disturbance problems.

In the present analysis quite a different approximation is
made. The parameter which is assumed to be small is the Froude
number F =c?/gg. It is most useful and convenient to think of the
limit F~-+0 as g becoming very large while «c¢,f, and geometry
are held fixed. Then the free surface is clamped very tightly to  Y=0;
a finite H over a finite region of the X, Z-plane would require
infinite energy. Another way to regard the limit F-+0 is to recog-
nize c?/g as the wavelength of the surface waves which keep up with
the disturbance at speed ¢, which becomes much smaller than {.
But since the wavelength appears in the exponent in (3-2), wave
effects become very small at depths below a wavelength., For very
small F, the waves affect only a very thin layer of fluid near the
free surface.

The only appearance ‘of the parameter F in the governing

relations is in the pressure boundary condition (2-4), which can be
written -

H= -F C% [@T + %(‘7@)2:] (3-3)

: Y=H

F appears as the ratio of typical inertial forces to the gravitational
force, or the ratio of typical fluid accelerations to gravitational acc-
eleration. In the limit F-+0 gravity dominates. If this is true
uniformly throughout the flow, the appropriate first approximation is
to neglect the right-hand side of (3—3), which now becomes H=0,

Consequently (2-3) becomes §Y=0 on Y=0 and the fieldequation



(2-1) is validin Y <0, E>0. This is the reflection-plane model, on
which there will be some further discussion in later sections. A
further approximation could be calculated by using the reflection-plane
potential to evaluate the right-hand side of (3-3), arriving at a first
approximation for H; wusing this H the full set of equations be-
comes linear and can be solved for a second approximate @. This
iteration process repeated will generate an asymptotic expansion of @,

In this analysis the equivalent and more systematic pertur-
bation procedure is used. The choice of an asymptotic sequence for
the expansion is guided by results of small-disturbance theory, ex-

panded for small F. The simplest choice - a power series in F -
q§~@(0)+ FQ(I)'PFZ Q(Z)__l_.. . (3_4)

is at first discouraged by the frequent appearance of nonanalytic terms,

e.g. e_zﬁ/F/F3

in the wave resistance of a submerged cylinder as
given by Lamb, Art.249 (Ref.5); or F%Sin JYF in Havelock's
results for resistance in thin ship theory (Ref. 6,1923). In fact, it
quickly becomes apparent in carrying out the expansion in powers of
F that no wavelike behavior appears at any order and, consequently,
no wave resistance shows up at all.

The distinction between local disturbance and wave pattern is
important here, and another aspect of it will be pointed out by consid-

eration of the fundamental source-like solution, for a source of

strength m at depth f, as given by Havelock (Ref. 7,1951).
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P k(Y-£)
.2 KOmS‘ sec? BS e cos(KXLcos2 0)cos(KZsin 0) dkd®
K ~-Kg 8€cC 0

t
=
o

/2
-flsec?
+ ZKomf eko(Y-f)sec efsin(xoxlsec B)cos(KyZ sin Bsec? 0)sec? 0d0
) . (3-5)

where Kk, = g/c?, -Ri = le + (Y+£)2 ¢ 22, and
RZ = X% 4+ (Y-£)? + 22 .

The first integral, representing the local disturbance, is readily ex-
panded in powers of F =1/k.1 :
2 o

mg S [1+FK1COSG+FZKZIZCOSZB+O(F3)}
-nf2 ©

1l

HK(Y-£), os(kX,;cos0)cos(kZsinB) dxdo ,

while the second integral, representing a superposition of plane
surface waves, cannot be placed in this form. The same conclusion
holds for more complex flows resulting from superpositions of sources
and other singularities derived from the source by differentiation and
integration: while waves do not appear in an expansion in powers of F,
such an expansion is a valid representation of the local disturbance.

It is interesting to see where the waves do appear. If (3-4)
were a uniformly valid asymptotic representation of @, and wave-
like terms did not appear in (3-4), then wavelike terms, and hence

wave resistance, would have to be smaller than any power of F;
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this conclusion, however, is at variance with the results of thin ship
theory (for example, Ref.6) where terms in the powers of F do
appear. The nonuniformity occurs in the vicinity of stagnation points
on the free surface - for instance, at the bow and stern of a ship -
where acceleration is no longer small compared with that of gravity,
and the right-hand side of (3-3) is no longer negligible. In the ex-~
pansion v(3-4) successive terms become larger and more singular.
By using expanded co-ordinates it is possible to make a

closer investigation of the region of nonuniformity. If, in a steady
motion, the choice of inner variables is x=X,/Ft, y=Y/F4, z=Z/Fi,
h =H/Ft, ¢=% /Fic, the first-order set of equations and boundary

conditions from (2-10) to (2-15) are

Vig =0 y <0 (3-6)
(c ~l-(px)ex + (pyey t¢@,e, =0 on e =E =0 (3-7)
chx-(py:O on y=0 (3-8)
(px+h=6 on y=0 (3-9)
Vg —~ 0 y = -0 or X~ -0 (3-10)
h — 0 X =~ -0 (3-11)

which are the small-disturbance equations. The solutions depend
strongly on the details of the shape of the body described by the
function e near the singular point, but always involve the typical
free wave pattern downstream, far outside the region of nonuniformity.

This picture of waves being generated at the singular point and
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propagating into the rest of the solution is in good agreement with a
general result of thin-ship theory, due to Inui (Ref. 8,1962). By con-
sidering the wave pattern due to a continuous distribution of sources,
Inui has demonstrated that for small F the waves all originate at the
ends of the distribution, and that the strength of the waves is strongly
dependent on the details of the distribution near the ends. It should
also be pointed out that in those cases of wave motion that have been
carried out for completely submerged bodies, where no singular stag-
nation points occur, (particularly, the entirely general case of Lamb,
Art. 25a (Ref.5) ) the wave resistance is exponentially small.

The question that must now be considered is the extent of
effects of the wavelike part of @ on the transverse force distribution
on a body. Within small-disturbance theory, the only component of
force on a body due to its waves is a drag, since infinitesimal waves
can carry away energy but not momentum. This consideration does
not, however, rule out pure couples due to waves; a pitching moment
is present in general and has been treated by Lunde (Ref.9). The
simplest case thaf might involve yawing moments is that of a planar
wing of zero thickness penetrating the free surface. (The thickness
case, which can be superimposed, is called "thin ship theory.") The
lifting surface is replaced by a distribution of elementary horseshoe
vortices, whose potential is calculated in Appendix I, having density
proportional to the wing loading. |

The co-ordinate system and variables setup for steady motion
are used - see (2-7) to (2-15). The lifting wing is represented by a

vortex distribution over the plane Z =0, of strength ¥(X;,Y), so
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the pressure difference between the two sides of the wing is pcy.

The potential associated with such a vortex system is

0 ©O . _ »
2 (X,,Y,2) = 5 S‘ Y&, ) VI(X,, Y, Z;€,m, 0; 7/2)dEdn (3-12)
-0 - 00 "

where V is the elementary vortex potential derived in Appendix L. If

w(X,, Y) is the downwash velocity on the plane Z =0, defined by

w(X,, ¥) = [g—;i]
Z =0 (3-13)
then
0 ©o
w(X,, Y)=S S Y(gan)l:'a?'z‘ VX, Y, Z;Esmy 0;'”/2)1 d§ dn . (3-14)
-00 -00 =0
Defining the kernel function
K(X,;, Y;&,m) = [—gz VJ : (3-15)
7, =0 .
we write (3-14) as
0 0o
wi, v = ({0 vemx, vie g an (3-16)
-00 ~00

which is in the form of the fundamental integral equation of lifting-
surface theory, except that the kernel is more complex in this case.
The kernel can be written as the sum of two parts: KI arising from
the first three terms of V, representing the '1oca1 disturbance, and

Ky arising from the last term, the wave disturbance. For the

present purpose of investigating the magnitude of the wave effects, the
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interest is in K :
W
/2

2
K (X, Yi€,m) = 2k2 S‘ sin2@ secspe o (YEN)sec ecos[Ko(Xl-g)sec 6] de
-7/2 (3-17)

~and in the associated component of the downwash

WW(XI’Y) = 5 S‘ Y(grn)Kw(Xle3gnﬂ)d§ dn (3-18)
-0 -00

We investigate the behavior of Kw for large values of

=g/c? by the method of stationary phase. Since cos[KyX;-£)sec8]
is a rapidly oscillating function, the principal contribution to the in-
tegral (3-17) comes from the vicinity of points for which the phase
Ko(X, -g)sec & 1is stationary. The only stationary point in the range
of integration is 0=0; however, the point 6=0 1is a zero for the
rest of the integrand, so the ordinary method requires modification.
The required treatment is carried out in Appendix II. In this case we
Chave  £(0) = Ko(X;-£), £"(0) = ko(X,-£), £7(0) = 0,¢"(0) =
¢"0) = ZeKO(Y-m) | and (3-—17) become s approximately
K (X}, Y56m)~ vark o e Ak {cos k(X g)— sinky (X;-€) }  (3-19)

1s E——‘T 0\4>] 0\ <4+1

where the - sign is the sign of (X;- £). This expression has a
nonintegrable singularity at X,;=§£; however, the application of stat-
ionary phase is valid only if ko(X;-§) is large. At X;=§, (3-17)
gives /2

2
K_(X1,Y; X;,n) = 2Kp S sin2 @ sec’ g efo(Y#nlsec® 6 44 (3-20)

-7/2
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For large Ko this integral canbe evaluated approximately by the
method of steepest descent, done in a fashion guite analogous to the
method of Appendix II. Again the principal contribution is from values

of © near the stationary point 0 = 0; the result is

(0 o]
2 1 Ko(Y+m)
K_(X,Y;X;,m)~ 2K eKO(YM)S‘ 02 KA VNP gg = i 2 £

S (3-21)
[ Yin |72

- Q0

so the kernel is finite and integrable.
Assume |y(X;,Y)|sM for O<X;<¢ and vy(X;,Y)=0

outside that region. Then from (3-18)

o 4
w,, < S‘ S Mk, 72 Kol Y¥) g ) at) dn (3-22)
J0 0

where f(X;-£) is finite and integrable. So

]
w, < 4 oY S‘ £§X,- £) dE (3-23)
K;/Z 0
and using F = kol »
£
W, S (F!)I/Z eY/F‘eM S f(X,-€) d§ . (3-24)

0
The contribution to the downwash from the wave part of the kernel in

(3-16) is exponentially small at any finite depth Y below the free
surface. Any integrated effect of this downwash from the free surface
downward is of order Fa/z. The oscillatory behavior of f£(X;-§),
displayed in (3-19), indicates fhat integrated forces and moments

3
connected with the wave part of the kernel are even smaller than F /za
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This result of small-distribution theory is used to justify
neglecting the wave term in the kernel while calculating forces and

moments of order unity and order F.

IV. PERTURBATION EQUATIONS
To obtain the perturbation expansion, the potential and the

free-surface elevation are expanded in power-series form:

$(X,Y,2,T) = 8Nx,v,2,7) + F &%, v,2,7) + F2e®)(X,v,2,T) + - (4-1)

H(X,z,T) = HOx,2,T) + Fa¥(x,2,T) + FZH(Z)(X,Z,T) 4o (4-2)

Throughout this paper the notation of superscripts in parentheses is
used to denote the coefficients of powers of F in similar series
expansions for various quantities.,

When (4-1) and (4-2) are substituted into (2-1) to (2-5)
and the coefficients of the various powers of F are collected, there
result sets of equations and boundary conditions for the é(i) and H(i)=
The conditions on the surface Y = H must be transferred tothe Y= 0
plane, by expanding @ inthe form of (4-1), and its derivatives, in

Taylor series about Y = O:

®(X,H2,T) = °(%,0,2,T) + F {dx,0,2,T) + 3% x,0,z, 1) Hlx,2,1)}

+F2 {29(x,0,2,T) + 89x,0,2, 1) H®)x,2,T)

+ 2Phx,0,2,1) H¥x,2,7) + § elix, 0,2, 1) (1%, 2,12 )

+ O(F3?) etc (4-3)
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4,1 Zero Order

v2ad = o in Y<0, E>0 | (4-4)
E o+ vd”  YE =0 on E=0 (4-5)
@‘2}:0 on Y=0, E=0 (4-6)
HY = 0 | (4-7)
VZ A (4-8)

Together with a further distant boundary condition on V@(o)
near Y = 0, and the Kutta condition on trailing edges, these relations
determing @(0). They are precisely the relations governing the
motion in an unbounded fluid, of a body (called the "reflected body")
whose surface is given by E(X,Y, Z,T) =0, Y<0, and its reflection
inthe Y =0 plane, constrained to move on that plane. So the reflect-
ion-plane model of Davidson emerges, as expected, as the limit for
vanishingly small Froude number.

Heaving, rolling and pitching motions produce changes in the
geometry of the reflected body, while for translations inthe Y =0
plane (forward motion and sideslip) and yawing motions the body's
shape is time-invariant. The zero-order problem with fixed geometry
is a familiar and fundamental problem in aerodynamics, and much
attention has been given to its solution. The zero-order problem with
variable geometry is not so well developed; however, most of the
techniqﬁes developed for unsteady motion of bodies having fixed geo-

metry are suitable for extension to time-variable geometry.
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Equations (4-4) to (4-8) with an additional distant boundary
condition have a unique solution if the potential is assumed single-
valued. That solution, however, in general involves infinite velocities
around the trailing edges, if any are present. Satisfaction of the Kutta
condition requires the presence in the fluid of free vortex sheets, sur-
faces across which <I>(°) is discontinuous - the familiar trailing
vortex sheets of wing theory, essential to the development of lift.

The zero-order forces and moments are calculated by in-
tegrating pressures derived from the zero—ordervapproximation to

Bernoulli's equation (2-4):
, 2
o= oa) e . (4-9)

The term -gY is omitted, since it contributes only the uninteresting

hydrostatic force and moments.

4,2 First Order

vz @1 =g in Y<0, E>0 (4-10)

Ve YE=0 on E=0  (4-11)

&)= 5l ) ) 4 O Hl) . ) B0 (4-12)
 on Y=0

e [@S}h %(V@“’)z] (4-13)

val .o as Y- -0 (4-14)
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H(l) can be eliminated between (4-12) and (4-13) to yield

" a single condition on CP(;{) in terms of @(0). From (4-9) it is
apparent that the quantity H(l) is directly related to P(O): free-
surface height, to order F, is precisely the head of fluid supported
by the zero-order pressure occurring on the reflection plane.

So Q(l) is a harmonic function of the space variables, with
normal derivatives given on the solid boundary and on the plane Y =0
and derivatives vanishing far ahead. Again the continuous solution
fails in general to éatisfy the Kutta condition, and vortex sheets must
be present in a lifting problem. Now in the exact problem there is
only one vortex sheet from each trailing edge; its position should
respond to all orders of perturbation velocities. Strictly, it should
be treated as another free surface which is slightly perturbed from its
strength and position in the zero-order solution. However, the avail-
able wing theories for solution of the zero-order problem neglect even
the inductions of the bound vortices in locating the trailing vortex sheet;
compared to these the velocity contributions from Q(l) are O(F). '
It is consistent with the accﬁracy of vﬁng-theory solutions for ¢>(°)
to allow the vortex sheet for all orders to coincide with the zero-order
sheet.

In the most general case this first-order problem does not
admit of easily computed solutions, on account of the complex shape of
the boundary on which the normal derivatives are specified; however,
for a.certain class of sufficiently slender shapes the problem becomes
a two—dimensAional one and can be approached by complex ana.lysis.

When <I>(1) has been found, first-order forces are computed from the
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pressures given by the first-order Bernoulli's equation:

(1)
P (1) () . (1)
—p—— = - @,i-. - v@o VQ (4-15)

4.3 Second and Higher Orders

The first order problem is typical of all the higher-order ones.
All are governed by Laplace's equation YV? Q(i) = 0 in the lower half-
space outside the body, with the same condition VE-V@(i) =0 on E=0
and Vi’(i) vanishing far ahead. The normal velocity over the Y =0

plane is prescribed by a functional of the @(J) and H(j), j<i; for

example
2) _ ( ( ) ) 1)
(I,(Y) - ,i,)+ @}0{) H(}?‘() (I’(}lc) H(1 @(o H)é g @(:})YH(Z)
! ¢(°) Y(H(l)) @(1) 1Y, <15(1)H(1) <1>(°) H(l) (1) , (4-16)
where

) < L Laf) s o) W)y ) ga) . gaf) 9 a) . e b (g

c?

on the plane Y=0. The methods developed for the first-order
problem are equally applicable to higher orders, since the problems
fall into the same form; the computations are apparently more com-

plicated.

V. SUBMERGED CYLINDER

The perturbation equations in Section IV have been especially
developed to deal with transverse forces. It would be reassuring at
this point to find them in agreement with the results of small-distur-

bance theory under circumstances where both are applicable.



21

One case in which transverse forces have been calculated by small-
disturbance theory is that of the lift on a submerged cylinder normal to
the stream (or more accurately, a submerged line doublet pointed up-
stream) treated by Havelock (Ref.10, 1928 and Ref.1l, 1936). The
result is valid for any speed provided the depth of submergence is
sufficiently great, compared to the radius.

Using the present method it is possible to compute the 1lift
on a cylinder at any submergence, total or partial, provided the speed
is low enough. To do so would only be an uninteresting exercise; for

purposes of comparison we want to calculate the combination of deep

submergence and low speed.

|

Partial submergence, f< a c

i

Fig. 5.1

Deep submergence, f>> a
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In this case the cylinder of radius a 1is represented by a doublet of

strength M = ca?. The co-ordinates used in this section only are

shown in Fig. 5.1, F is referred to the typical dimension of the

m

body, a: F = c?/ga.

First, the zero-order force is calculated by the reflection-
plane model. In this approximation an image doublet of strength ca?
is located at (0, + f) and it is necessary to calculate the force on one

doublet due to the other. The force on a doublet is given by Milne-

Thompson (Ref. 12) as:
X +iY = 27p Mel®' (2 ) (5-1)

where @ 1is the inclination of the doublet's axis (here zero) and f(z)
is the velocity with the doublet at 2z, removed. In the present

application this becomes

_ du
Y =27pM 3y (5-2)

The velocity gradient 8u/dy is calculated from the potential of a

doublet, with the result
v = Lapcza(2p . (5-3)

The first order is calculated from the perturbation equations

(4~10) to (4-14), wusing for the zero-order potential

o0 ) = Mgt METe T o (5-4)
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From (4-13) it is found

2 _ 2
W)= Zi\da [(f_fz+ ;{Z)z:l (5-5)
then from (4-12),
(b(;)(x,O) = 4 Max [é%%%] (5-6)

This condition, prescribing the normal velocity over = y=0, is satis-
fied by a source distribution along the x-axis with strength

m(x) = 290 (x, ), or

_ x? - 3f2
m(x) = 8Max TR AL (5-7)
m(x)
IR i ol T - T e X

Fig.5.2 First-order Problem

Now it is necessary to find the velocity gradient au(l)/ay at (0, -f)
due to the source distribution m(x). The contribution to du/dy

from the part of m between x and x+dx is

ault sin 0 cos ©
dlay) = - —mr— mdx (5-8)
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Consequently au(l)/ay is found by integrating (5-8) from -oo0o to

+ oo; or, using x=ftanb,

/2
(1)
%u - . 8Mal S sin? Bcos® 0 (tan? 6-3)d0 (5-9)
y b f4
-7/2

The integration is done with the help of Dwight (Ref.13), No.858.514,

with the result

(1)
9 3 M
Putting this in (5-2), we {find
1) _ 3 fay
1 a
Y = —ZWPCZa (}:—) . (5-11)

Combining the results (5-3) and (5-11),

y~yO)y pyl) o 1 wpcza[<%)3 + 3F (%)4 ] (5-12)

Havelock's result is given in the form (Ref.10)

2.4 - . 2
Y= - TBETR 04 2kf+ 4k - 80P e 2KE §;(e2KE) (5-13)

where Kk = g/c? and i is the logarithmic integral. Using the
identity between the logarithmic integral and the exponential integral,
and using the asymptotic expansion of the latter given by Jahnke and

Emde (Ref.14):

2Kt
., 2Kf . ' 11 21 31
Il(e K ) = el(sz) ~ %{T (1+ Z_Ef + (ZKf) + (2K.f)3 + '°'> (5"14)

(5-13) can be represented for large kf by

4

Y~ - ’iggi -1 - % = -g-pcza' Ta;- [1+ 314“?‘-] (5-15)
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which is gratifyingly identical with the present result (5-12).
No sufficiently simple solution involving a trailing vortex sheet is

available for comparison.

V. SLENDER BODY APPR OXIMATION

In the slender-body theory (see, for example, Adams and
Sears (Ref.15,1953) and Sacks (Ref.16, 1954) we have an analytic
approximate solution for the zero-order problem for '1>(°), for a
general class of bodies, denoted as "slender”, and motions restricted
to slow maneuvers and small angles c;f attack.‘ To fit into the ordinary
slender-body theory, a shape must have its lateral dimensions small
compared with distance from the nose, slopes of its surface small
compared with unity, and curvatures in the streamwise direction small
compared with the reciprocal of distance from the nose. Under these
circumstances, conditions change so slowly along the length that in
each "crossflow plane" normal to the body the flow is essentially the
two-dimensional flow past a cylinder having the same cross-section as
the body.

For a further restricted subclass of slender bodies the same
reasoning leads to a treatment of the second-order problem in the
cross flow plane. The restriction is that the zero-order pressure
distribution P(o)(X,O,Z,T) be also effectively "slender"; that is,

1} the lateral extent of significant press’.ure disturbances
must be small compared with distance from the nose, and of the same
order as the lateral dimensions of the body; and

2) pressure disturbances must change slowly along the length.

If these conditions obtain, then the boundary condition (4-13) changes
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slowly along the length; appealing to the continuous dependence of
Q(l) on its boundary conditions, we conclude that the second-order
flow changes slowly along the length and so is essentially the two-
dimensional flow in the cross-flow plane.
The geometrical restrictions that will guarantee satisfaction
of restrictions 1) and 2) on pressure are not immediately clear,

and their investigation is postponed until later in the paper, when some

analysis relating to slender configurations has been carried out.

VII. STEADY SIDESLIP - BODY-FIXED COORDINATES

For the special case of steady forward motion and sideslip,
two factors result in a simplified treatment:

1) Geometry of the reflected body is fixed.

2) The free-surface boundary conditions assume simple forms
in body-fixed co-ordinates.

A rectangular Cartesian co-ordinate system (x,vy,z,t) fixed
in the body and translating with respect to the (X%,Y,Z2,T) sys‘tem is
introduced (Fig.7l). At T=t=0, the two systems are co-incident.
The origin of the (x,y,z,t) system is chosen to be the foremost point
of the intersection of the body surface with Y=0; i.e., the nose of
the reflected body.

The x-axis is chosen more or less along the length of the body.
In cases where the body has a vertical plane of symmetry, the x-axis
will always ?'oe taken in that plane. The origin has the steady velocities

~ccos@, -csin® inthe X - and Z - directions respectively. Then

the transformation between moving and stationary frames is
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csing

Z

Fig. 7.1 Moving Co-ordinate System
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f

x = X+ccosgT
VT

z = Z+csina T

t = T (7-1)
.

The following functions are introduced for the perturbation potential,

free-surface elevation, and pressure:

(p(xs')’: z,t)

= ¢ (XY,2,T) (7-2)
h(x,z,t) = H(XZ,T) (7-3)
p(*y,z,t) = P(X,Y,Z,T) | (7-4)

under the transformation (7-1). By this definition ¢ is the "pertur-
bation potential"; its derivatives are the "perturbation velocities" -
the fluid velocity components at a point (x,y,z,t), minus the free-
.stream components. ¢ and h are assumed for the present to be

functions of t; whereas the function representing the solid surface
e(?c’Ysz) = E(XY,7,T) (7-5)
is independent of t for the motions considered.

7.1 Zero Order

The zero-order relations (4-4) to (4-8) now become
vzq,v(” = 0 in y<0, e >0, (7-6)
\Y, 0. Ve = -ccosa e -¢ sina e, on e=0 (7-7)

¢$)= 0 on Y=O’ e?O (7-8)
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(p(o) ~0 as Xx== -0 Or y= -0 (7-9)
ch(o)finite, trailing edge (7-10)

It is to be observed by differentiating (7-6) - (7-9) with respect to

time, that the problem for ga(to) :

Vz(pg)) = 0 in y<0, e=0 (7-6')
V(pg;o)' Ve=0 on e=0 (7-7")
©) _ = '
q)ty =0 on y=0 (7-8")
qo?) ~+0 X~ -0 or y--m (7-9")

is homogeneous, and has only the solution q)io) =0 in y<0, e=20,
Thus the zero-order solution (p(o) is independent of time, and so the

variable t is omitted in the following.

Now for slender geometry (p(o) is approximated by

It

go(o)(x,y,z) (p(o)(z + iy x)

1]

os;x) (7-11)

where the complex variable s = z + iy has been introduced. ¢(0) is
a real function of s, with x ‘appearing as a parameter labeling the
cross-flow planes. In the approximation of slender-body theory, (7-6)

becomes



Pyy = O (7-12)

which is satisfied by requiring ¢(0) to be the real part of an analytic
function of s, called the complex potential f(o)(s;x) = (p(o)(s;x)
+ i\p(o)(s;x), where lp(o) is also real.

- The problem for qy(o)

then reduces to finding the harmonic

real function ¢(o) in each cross-flow plane, subject to the conditions:

iy

% .

R zZ
C(x) C(x)
9 (0) (0)
Lan = ¢Y =0 on y=0 (7-13)
ag(") :
3. = -n,csina on the body cross-section €(x)(7-14)
¢(°) - 0 z + iy =+ oo (7-15)

n=n + iny being the outward normal to C(x). This is a well-posed

mixed boundary value problem for Laplace's equation in a simply

connected region of the plane.
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It will be useful at times to consider the problem in the whole
s-plane exterior to the reflected body cross-section. Noting the

Cauchy-Riemann conditions expressing the analyticity of f(o) :

¢i°> = 4,;” (7-16)
¢;o) - SZO) (7-17)

we observe that (7-17) with (7-13) requires that qJ(ZO) vanish along
the real axis; hence np(o) = constant on z =0 and we take that con-
stant to be zero., Then f(o) is purely real on the real axis and may
be continued into the upper half-plane by f(o)(_s-) =—f(0)(s) + The region
is now doubly connected; however the circulation about the interior
boundary vanishes by virtue of (7-13) and the symmetry of (7-14)
about the real axis.,

The form of Bernoulli's equation (4-9) appropriate to slender

body theory, in the moving co-ordinates, is

(0) |
B = cqlM-acql- %[(cpf’ )’ + (g )Z] (7-18)

where p(°)= p(o)(s;x) is now a function of s, and cos@, sina@ have
been approximated by 1,a respectively. On the plane y=0, (7-13)
reduces (7-18) to

2,0, z)

5 = -c i°)~accp(°) - %(cpio) )z . (7-18")

b4

7.2 First Order

The following relations are found by expressing (4-10)-(4-14)

in terms of the new variable:



Vi W20 in y<o0, e=o0 (7-19)
V(p(l) * Ve=0 on e=0 (7-20)
,(,1) = cnlM 4 (ac+q7(°))h(1) }(ry b on y=o0  (7-21)
p® - -fz {c<@§°)+ accpf) —((p;))} on y=0 (7-22)

vcp(‘)»o X = =00, Y~ -00 (7-23)

" The 'h(l) of (7-22) can be substituted into (7-21) to give (p}(rl) dir-
)

ectly in terms of ¢ (using (7-12) to replace (p(;; with ‘QDLOZ)):

o) = - L] ctof) 4 2actgf) 4 ateroll 4 ool gl)

<2
() () ©) o) 3, (0,2 ()
+ 3acq) (pzz t2cq, Oy 2( ) @, , (7-24)
y=0
Since (p(o) was found to be independent of time, we may differentiate

(7-19)-(7-23) with respect to time and arrive at the same homogenzous
problem as (7-6")-(7-9') for (pt(l); hence it is concluded that (p(l)
is likewise independent of time.

If the cross flow analysis can be applied to the second-order
problem, as discussed in Section VI, then it will be useful to introduce

a notation similar to that used in the zero-order analysis. We define
oW(six) = oWz + iy3x) = oWz, y,2) (7-25)

in analogy to (7-11), while (7-19) requires that qb(l) be the real
part of an analytic function f(l)(s; x) .

The boundary conditions on the harmonic ¢! in the whole
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s-plane are

9 !(1)

S = 0 on the reflected body cross-section C(x) (7-26)
AL B

5 pr = - sm(z;x) on y=0 (7-27)
oM~ 0  far away (7-28)

Here the line-source distribution m(z;x) has been introduced to

satisfy the normal velocity requirement on the =z-axis. The strength

of m is minus twice the normal velocity d)}(’l) as given by (7-24)

.YA

C(x)
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The first-order Bernoulli equation (4-15) expressed in the new var-
iables, and simplified consistent with slender-body theory, is

() s. |
) (ps,x) - -Ccp)(:) . accp(zl) _ GOS)QDS) - 903(:))@}(;1) (7-29)

VIII. SYMMETRY CONSIDERATIONS

The calculation of the pressures p(o) and p(l) is further
simplified, in fact to the point where some analytic results can be ob-
tained for specific shapes, if the body under consideration is sym-
metric about the z=0 plane; this means the reflected body has two
planes of symmetry. Then any term in the pressure equations which
is an even function of 2z does not contribute to the side force; also
the even part of the source strength m(z;x) will produce the even
part of (p(l), while the odd part of rn.‘ accounts for the odd pa_rt of
(p(l). By an "even function of z" is meant a function £(z) or £(s)
with the property

f(-z) = {(z)
or £(-8)=£(-z +iy) = f(z + iy) = £(s)

whereas for an "odd function of z", g(z) or g(s),
g(-z) = -g(z)

or g(-s) = -g(s).
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Now consider the symmetry properties of the various terms of the

zero-order Bernoulli equation:

(0) : 2 2
B - g cacgl -4 [( o 4 (e ] S (119
y Yy
A A
ac z ;‘ac )_.Z

BP0

It is clear that (péo) has the same value at corresponding points
(iz + iy} on the two sides, so the second term of (7-18) is even in

z. Immediately, -then, ((p(o))z must also be even. Furthermore

z
(p}(’o) is odd, so ((p(o))z

Yy
zero-order side force is

is even. So the only term that contributes to

Pc(,oc;d (x,y,2) = Péod)ld (s;x) = - pcqbgg) . (8-1)

Now the source strength distribution entering into the second-order
problem is determined by (7-21). For this purpose h(l) (7-22) is

broken into odd and even parts:

h(c;lld-z - % <P;(f)(x,0’z) (8-2)
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hven =~ o {awf’(x,o,z) . [cpﬁ")(x.o,z)]z} (8-3)

and the odd and even source distributions are derived from them:

modd(Z;x) = _z[c(hgéd)x tlac+ ())(hélv)'en)z * (pz(oz) éI\Zen:] (8-4)
y=0

mpon®) = 2l ), e r gy, s )] ees)
y=0

Now the first-order Bernoulli equation (7-29) is investigated,

(1) (1) + oW

with @' = Poven Podd * We separate out the odd pressure terms:
(1)
Podd _ ) (1) o) (1) T
p = - APoaalx ~ 2 @eyenls - P (Fevenls - ((peveny

which are the only ones that contribute to first-order side force.

IX. SOLUTIONS BY CONF ORMAL MAPPING.

Solutions of the two potential problems with boundary condit-
ions (7-13)-(7-15) and (7-26)-(7-28) may be obtained by conformal
transformation of the s-plane into another complex plane in which the
boundaries assume shapes suited to the necessary computations. Since
we are interested in qb(l) and its derivatives only on the interior
boundary, it seems natural to consider a transformation that maps the
interior boundary and the real axis, where the sources are located,
onto a single line (say the real axis) in the mapped plane. The trans-
formation of this type that leaves the plane unchanged at infinity will be
chosen. The mapped plane is called the ¢-plane (o = ¢ +in), and

the transformation is represented by
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S A (x)
o =vy(s;x) =8+ z -—pn——- (9-1)
n=1 8
with the inverse
< B_(x)
s =gloix) =04 ) (9-2)
n=1 o ‘

The complex potential is the same at corresponding points in
s- and o-planes; so a potential ?(u’;x) = 6(0‘;:{) +iy(o;x) is

introduced in the o-plane, defined by‘

Flosx) =Ely(s;x)sx] = f(s;x). (9-3)

~

If the mapping (9-1)-(9-2) is conformal then f is an. analytic

function of o, and so ¢ is harmonic.

9.1 Zero Order
It is useful to consider a slightly different zero-order probem
from the one posed in (7-13)-(7-15). Rather than deal with the rigid
boundary moving in the negative z-direction with speed ac, it is
preferred to solve the altogether equivalent problem of a fixed
boundary in a stream which far away has velocity ¢c in the positive
z~-direction. Call the potential in the latter problem f(lo) = gbl(o)-ki\pl(o).

Its boundary conditions are

20

3o = 0 on y=0 (9-4)
(o)
2L =0 on clx) (9-5)

¢(1°) - QCZ z + iy = oo (9-6)
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7 ® 4 ®
C(x) as C(x)
/ — J
—% z
\ - \
—
O
©) —+ QCZ
1
Fig.9.1. Equivalent zero-order problems.
" The potentials for the two problems are related by
f(o)(s;x) = f(lo)(s;x) -acs. (9-7)
Now the problem for qf)(lo) is mapped into the o-plane,
where the solution is trivial:
?(f)(cr;x) = aco . (9-8)
e e
ac A ac ’
—- —p
—3p I
: C A D
c D Y — — —
B g
B —
» B i
‘»b(o)-"ac z '}(0)=ac¢
Fig. 9.2. Mapping of zero-order problem.
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BY (9’“1))
f(?)(S;X) = acy(s;x) , ‘ | (9-9)

and )
£99s;x) = acly(s;x) -8} . (9-10)

Let sy = zy + iy, represent a value of s on the interior boundary,

where ¢(°) has been taken equal to zero. Then

¢(o)(soix) = aclv(se;x) ~ 2] vv (9-11)
and, by (8-1),

éc{d(%”‘) -pclay(soix). (9-12)

The force on a differential length dx of the body is obtained by an

integration:
dS +idL = 1 dx § P dd( dy +idz) = —dx § d(so;x)dso (9-13)

C(x) C(x)

y
C(x)
i/
s
0
-pdy
pdz
Fig. 9.3 Force resolution
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Here dL 1is the force along the y-axis due to which inte-

Poae’
grates to zero by symmetry about the real axis. The fraction —é— is

to make dS represent the side force on the actual body, that is, on

the lower half of the reflected body. Using (9-12),

dS(o} = - %— dx * pcla § Y, (803%)dsg (9-14)
C(x)

Alternatively, dS(O) can be obtained from the virtual momentum
considerations of ordinary slender-body theory, or from integrations
in a complex plane other than the ¢-plane.

Next the conformal mapping is used to investigate the dist-
ribution of p(o) over the surface y=0 - to see whether ingeneral
thhis distribution is effectively "slender". The imaginary part Lp(o) of

f(o). has been taken equal to zero here, so, from (9-10) and (9-1)

An\(x)

n
z

78

¢(0_)(Xooiz) = Qc (9-15)

1

jo]
1l

Differentiating and substituting into (7-18) we find that p(o)(x,O,z)
has the form of a i)ower series in inverse powers of 1z, starting
with -pc?a %_A;L -15 The préssure disturbance dies off rapidly
with increasing z; and so we may expect that the lateral extent of

the major pressure disturbance is small, of the order of dA,/dx.

9.2 First Order

The mapping to the o-plane was especially chosen to sim-
plify the first-order problem. Under the conformal transformation
(9-2), the source distribution m(z;x) maps into a source distri-

bution
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weix) = mlg(Lix) ;=] g (L5x) (9-16)

along the {-axis (shown in Appendix III).

In the o-plane now there is the distribution

n A ®
a)l)(o"x)
’ Mg x)
————— = — -+ bbb e
1 4
“C L 4L, dg!

Fig. 9.4. Mapping of second-order problem.

. p{¢;x) of sources along the ¢-axis with |¢}= ¢,, and the

potential ('5(1) need be calculated only on the ¢{-~axis with |¢I<¢;.

Poisson's integral reduces to a cne-dimensional integration over ('

outside (-{;,4;):

‘ -4 .
g ix = werin tog(e-gnag + {weinogte-ag (9am
-0 L1
00)
- [p(-;';xnog(w L) + m';x)log(;'-g)]d;' (9-18)
6 |

where the latter form has been obtained by substituting -Z' for '

in the first integral of (9-17). When u is expressed as P=Heven

+ Modd» there results
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(e o]
qb(l)d(é,x) ‘ —217; g Bogqll's x)log(é,ﬂ.) ag'. (9-19)
§1
Poyentbix) = 17, P-even(é';X)log(g'z-g?-)d;' (9-20)
&1
m a4 and

are given by (9-16) applied to

Here Fodd and Peven
equations (8-4) and (8-5) respectively.

m . i
even
Since the integrals containing logarithms are hard to dealwith

useful to obtain algebraic forms by differentiating (9-19) and

it is
(9-20) with respect to' §:
© .
(¢((,2d = -—i—g ogald's *) -g—,%% (9-21)
L) |
- '
(qb(-(:lxzen = WAS H'even x)%—gz— (9-22)
Ly
The results of (9-21) and (9-22) can be integrated to find d)(lzren(g’ )
and $(l)d(§,x) ; the constants of integration are immaterial constant

potentials.
¢(1) on the boundary is obtained by the mapping (9-1)
(9-23)

~(1
oWs0ix) = M vsoix);x]
so that the first-order side force is obtained through the first-order

Bernoulli equation (8-6) integrated by (9-13)
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(1) -
_1‘; %%_ = - 3‘2- c § (¢(()3d) dso - _2' ac § (¢égen)z dso
C(x) C(X)

B % 5 [:d)(O)(d)c(al\Zen ) d)(o*qbg\)fen Y]dso . (9-24)
C(x)
Since (j)(l) was calculated only on the boundary, it may appear that
the z- and y- derivatives in (6-24) are not determined; however
knowledge of c[)(l) on the boundary plus the vanishing there of
8¢)(1)/8n (7-26) suffice to determine qb(l) and (,‘b}(rl) R

z

X, SLENDER WING OF ZERO THICKNESS

The first specific geometry considered is a flat plate wing of

arbitrary slender plan form is given by y = -a(x).

The reflected body is the flat plate wing with span 2a(x) .
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The interior boundary C(x) 1inthe cross-flow plane is the

cut from ~-ia(x) to +ia(x). Under the

T4 )

+ia @ : @

\{
||

z -a +a ¢
~-ia
transformation
2 1 2 %
s=yis;x) = 2 {s2+[a(x))] }2 = s[1+2-5] (10-1)
with the inverse
, & Rt
2 2
s = g(o;x) = .l {e2 -[a(x)] } = o-lil— g‘_—z—J (10-2)

~the boundary C(x) maps into the cut from -a(x) to +a(x) in the
o-plane, the z-axis maps into the y-axis with |[f|>a, andthe
plane is unchanged at infinity, The sign of the square root is chosen so
that o is in the same quadrant as s .

The complex potential is, by (9-10),
3 1
f(o)(s;X)= ac {i(s2+a2)3~s} (10-3)
and on the boundary, where sy=iy, the real potential is, by >(9—11),

1
2

¢(°)(1Y?X) = L ac(a?-y?) (10-4)
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The zero-order side force distribution is given by (9-14)

o aa
d(Six =‘LPCZQ'§ X d4s ___chza aa_’ S‘__lfl.z_.[— Tpc aa,a, .
Z (S _FaZ)z (az Z)Z
(10-5)

This is the familiar result of the Jones slender wing theory (Ref. 17,
1946). The section of maximum span is treated as the trailing edge,
and x = is its location. ‘

The next step is to calculate h(l) from (8-2) and (8-3).
The real potential on the surface y=0 is, from (10-3), (with

. sign z)
(p(o)(x,O,z) =Qc {i(zz-i-at‘2 )%-z } (10-6)

Consequently,

aa
X

h(l)
—
#z?+a?)z

d(x, z) = -0/ (10-7)

al

h(l) Z1al (10-8)

- af
evcn(xfz) T2 L

These expressions are used in (8-4) and (8-5) to determine

the source distributions in the physical plane:

_+ 1- \ a? 3 at
m —-21cai}a2+aa S -(af- @ty - S P
odd X XX (zz*‘ az)-—z— X (ZZ+ az)3 2 2 ( 2+ az)s 2

Z
(10-9)
m = 24ca?a [__3___“ _ _2a

"Slenderness™ of this source distribution, as required for a crossflow
analysis of the first-order problem, demands that a_, notchange

2
too rapidly in x: axxx << J’{C .
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The source distribution in the o-plane is found by (9-16)

to be
a’4aa_ ) (a2 - g?)a?
" dd(g;x)=i210(2l: x xxI X -2 __efal ](10-11)
o (CZ_aZ)‘i gZ(gZ_aZ)E 2 44(cz_a2)§
%) = 24ca? [ 32 2 ] 10-12
even B 2 By G128z y((2-a?)3 ( )

The integrations of (9-19) and (9-20), using thesé source

distributions, are carried out in Appendix IV, with the results

i - 1_2
~) _ 2 -1 L 2 a-(a?-¢%)% a3 a a_(az_ z)z
Poaq = Lc{ -a(altaa  )sin 2 +aqal ] ;

AR
~ fcata 2 z% 3 2 z%‘z (o-13)
R B e Sl B

-

with a constant term ignored in the latter. Transforming back to the

s-plane by (10-1):

3 a4l
¢(()3d(x,y,0) = -%lcazax {log a—'ié]—y—‘ +3 2+1y]|} (10-16)

The first-order Bernoulli equation (8-6) gives the spanwise loading:

(1)

Podd = 0a_a -1 3y - 2a -1
pcly xxx[3 cos™ XL 4 }+aaa [cos y—:l
a 2 2%y 5 XXX =%
(a_ _Y)Z
2 2 _
+ ga? Y ~ | -%0a%a y" - 2ay (10-17)
X 2_ 22 * X 2(.2_,2)5
. a(aty)(a®-y®) 2 (aty)®(a-y©)2

The side force is given by the integration (9-13) '

» i
S - 25' ) ay. (10-18)
0
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The necessary integrals are worked out in'Appendix V, with the

result

___dS(l) 2ga ( 2(6-maa_a__ + 2 ata +(4-7r)a3+(1-7r/4)a2a (10-19)
ax - P¢ , X XX XXX\ x T %% _

pc?y {a[(é}.-n‘)aa;-{o Zazaxx]x+ i‘_}-_zr_ a3ax} . (10-20)

Further comment on this result and its application to specific plan

forms is reserved for the concluding Chapter XIL

XI. HALF-SUBMERGED BODY OF REVOLUTION

The second specific geometry considered is a slender body
whose submerged portion is half of a body of revolution, so that the
reflected body is a slender body of revolution, The x-axis is along
the line of centers of the body cross-sections, whose radii are given

by a(x). If the body has a base, it must be approximately normal to

e X
a(x) £
X

the x-axis.

AY

Z
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The interior boundary C(x) in the cross-flow plane is the circle
Isl = a(x)

vi n4

O) G)

a4
0

. Under the transformation

= y(s;x) =8 + [—-———a(sx)]z (11-1)

w ith the inverse

2 2 1
s = glo;x) = % + {(%) - [a(x)] }2 (11-2)

the boundary C(x}) maps into the cut from -2a{x) to 2a(x) in the
o-plane, the z-axis maps into the ¢-axis with |{|>2a, and the
plane is unchanged at infinity., The sign of the radical is chosen so

s and o  are in the same quadrant,

The complex potential is, by (9-10)

2
©)s; %) =ac (11-3)
and on the boundary, where s, = aele, the real potential is, by (9-11)

qb(o)(so;x) = gca cos 0. (11-4)
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The zero-order side force distribution is given by (9-14)

S(o) i ZaLa.X
B = 2 = 2 -
= - 5 pcta § 5, dsg TP C .aaaxi, (11-5)

‘which is the famous result of Munk in the original work on slender body
theory (Ref.18, 1924).

The real potential on the surface y=0 is, from (10-3),
(0) = a
@ (x;0,2) = ac— {11-6)

Putting this into (8-2) and (8-3):

hg()id(x,z) = -250a 2 (11-7)
2 4
h(;z,en(x, z) = Q0@ [:::‘z" - % .2.;..] ) (11-8)

These expressions are used in (8-4) and (8-5) to determine

the source distributions in the physical plane:

1 a? a.
o) = 2 1 327 | 63
modd(z,x) 21c[2a(ax + aaxx) ~ + 2q = 603 =— + a013 J
(11-9)
(z;x) = 8gca? 2 42 11-10
even ix) = 84ca x| ZF 23 (11-10)
Slenderness of the source distribution requires 3 ex << 1/12.
By differentiation of (11-12) it is found
2 L
4a%)? :
g (Lix) = + &1 (g7 4a%) (11-11)
(¢ - 4a?) z

1

z = glLix) = %[U(é a"')z] (11-12)

Then, by (9-16)
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.2 _
1 + 801‘7'——--—-———————2Z

(x) =2 2(a?
p‘odd(z':’ x) Lea { (ax+aaxx)m (QZ 43_2)2

2 a.4 -4 2 a6 -6 .
-9602—2 727" 4 19202 —2— 27 (11-13)

The last three terms are eventually found to make no contribution to the
pressure; so they are carried along in the form:
2
‘p.odd(g;x) = 2fcd {Z(af{ + aaXX) —-——-l-—-—_l: + Cla- f (-é%) . (11-14)
(¢%-4a%)2
Also, by (9-16)
' a -1 al -3
(t;x) = 164ca’a -—Z 48— , (11-15)
even X (gz -43,2)5 (42 ‘432)_2—

1
where Z stands for ¢ + (¢2-4a?%)? .

The integrations over sources are carried out by (9-19) and

(9-22). The necessary integrals are worked out in Appendix VL

5(()301(:;;:{) = -2fca {(ai+aaxx)sin"1 _2% 4 a2f1<—2%)} (11-16)

. 2 _.2y2
(:ﬁ(l) ) - _ légc ata L. yrat-2¢ 4 3a2-22g2 log 2a+¢
even ¢ Ta x)]a 8 a?(t? -4a%)Z 8a 2a-{
(11-17)

The first-order Bernoulli equation (8-6) gives the pressure
around the circumference. It is convenient to write this pressure as a
function of the angular position @, since on the boundary {=2acosf
and 8q§/86 = -2asinf 8&5/8 {- Also on the boundary we have
ad¢/8y = cosfd 8¢/88 and ad¢/dz = -sinfd 8¢/30 .

Thus,

(¢(1) = 2sm29(¢ (11-18)

ven 4 even i;
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(1) = g (A1)
( ¢even)y = -2 cosf 51n6(¢even) ¢ (11-19)
and using these results and (11-4) in (8-6) we have
P(léd
o - 2 T .
— = 2icca {(3axaxx+ aaXXX) ( 3 ag)
+ 40%a sin’g | 16 cosf - (7-8cos?f) cos 8
' X a n sinff
1 2 l+cos@
+ -7-?(3-8COS 9) ].Og T—:——C—E)—S——BJ} (11-20)
The side force is given by the integration (9-13):
/2
astt) (1)
= - 2 poddcose a dg . (11-21)

0

The necessary integrals are worked out in Appendix VII, with the result

ast)
o = 4pciia {(3aaxaxx-lb a? axxx)-EfZaZaX} . (11-22)

Further developments are treated in the following Chapter XIIL

XII. CONCLUSIONS

A principal conclusion of this study is that the local part of the
disturbance caused by a moving body is representable as a power series
in Froude number F, exceptin small regions of nonuniformity near
stagnation points on the free surface. Equations are presented for the
calculation of the coefficients of the power series, to arrive at in
asymptotic expansion, for small F, for any flow quantity. The mag-
nitude of wave effects is investigated with the conclusion that they may

be neglected in calculating at least the first two terms of the exparsions.,



52
A method of solution is presented for partially submerged,
sufficiently slender, bodies of arbitrary cross-section. The method is
applied to calculate the first two terms in the expansions for side force
distribution for two specific cross-sections: the planar wing of zero

thickness, for which the result is

1 ds _ A | 4 raaz s 2a2 4= 53 : -
%TD_C_Z I= 27raaa;{+2F1 {a &[(4 7r)aax+ 2a axx:]+ 7 o a_ ) (12-1)

and the half-submerged body of revolution, for which the result is

1 ds _ 2 3
%—p_cz_cf}_c Zﬂaaax—{- 8F ¢ [a(3a.axaxx+a aXXX)+2a ax] . (12-2)

These formulas are now applied to a few specific shapes.

1. Delta Wing. This is the case of a flat wing
y

$

Z \
X

of zero thickness having triangular planform: a(x)zaXx, where a
X

is constant, the tangent of the half-angle at the nose. The side force

distribution is

1 ds 2 4-7 2 2
To0t dx 2rqaix + ——Faa (4al+a)4 (12-3)

The net side force is
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~ L 292 2 4 Lea . 2 2 - -
S~ 5pcey [Wozax + 3(4 'IT)Faa.X(4.a.X + o ):} . (12-4)
The yawing moment about the y-axis is
~Ll_ 2,212 2, 4-7 2, 2 -
2 pcd [3 7r0zaX+TFaaX(4ax+a ):} (12-5)

and the center of pressure is at

2 2
_ Z+F,4-7T4ax+a
7~ ar__ 2x (12-6)
4 | 42p - A7 Aaztoz
4 a_

sothatif a —~0 with @ and F fixed, X~+g/2. The firstorder
side force is uniformly distributed along the length. As a, becomes
small [O(Fa2 )]  the entire wing is very close to the free surface, and
free-surface effects are felt strongly; the coefficient S(l) can thenbe

(0)

large compared with SV’ .

2. Cone. The body is a circular cone haﬁng

. radius a(x) = a_x, where a is a constant, the tangent of the

half-angle. The side force distribution is
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1 ds

— =2 N 2 -
T @ 2raalx +16F (o a_, (12-7)
so the net side force is
~ Lo 2,2 2 3 -
S~ 5pcy [wa al +16Fa a};, (12-8)
The yawing moment is
~ L .22 r4 2 3 -
M~ 5pcey [37raax + 8Fa aX] (12-9)

so the center of pressure is at

38

)
R

2 4

ESPT
|
(18

|

(12-10)

WlQ Q)!

F
F

35 aloo

1+

]

Again, the first-order side force is uniformly distributed and for very
small ax[ O(Fa?)] the first order term may be comparable to the
zero-order term.

3. Parabolic meridian. The body is a figure of revolution

with radius a(x) = 8x{4-x)/ 4, so fB4 1is four times the maximum

radius. Then a_ = B(e-2x)/4 , a_ = -28/1, a_ =0

A
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1 4as

?;E?a;'“ZWQBZX(f'XNi'ZXW%2+8F‘[-6a6%41-xx1-2xw%2+2a§B(1-2x[],
2

(12-11)

so the net side force integrates to zero as expected for a shape with no

base or trailing edge. The moment is

M~ -dpc? i3 [37%0:62— F(—g—ﬁz-%a2>a6] . (212

The small size of the first-order correction for moderate
values of the parameters is noteworthy. For a=0.1, a, = 0.1 and the
fairly high Froude number of 0.1, the correction to side force is less
than 2% for the delta wing and about 5% for the cone; the correct-
ion to center of pressure is about 0.2% ¢ and 1.0% { respect-
ively. In the case of the closed, nonlifting body of revolution treated,
however, the correction to the moment is considerable; with f= 3

and a = 0.1, the correction amounts to a reduction in moment of
about 33% at F = 0.1.

The shapes calculated here do not have any practical value in
naval architecture; however, they do have qualitative similarities to
practical shapes, and so they might provide qualitative indications of
the Froude number effects for practical shapes.

Perhaps fortunately, no experimental data is available for
comparison. Tsakonas (Ref.2) gives data for towing-tank tests of
model hulls and flat wings; however, all his data are at one Froude
number, F = 0.02, and he concludes that the zero-order results are
adequate. A major value of the present theory is its suggestion of
certain simple shapes for which the calculations are easy, as the three

special shapes considered above, Towing-tank tests of these simple
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shapes would provide an interesting test of the theory.

The calculations of this theory could be applied to other
slender shapes, either by direct but tedious analysis starting from the
mapping functions and following the same course as Chaps. X and XI,
or by numerical methods. For shapes that do not qualify as slender in
the sense of this theory, the perturbation equations of Chap. IV can

be applied by numerical methods.
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APPENDIX I
THE POTENTIAL OF AN ELEMENTARY SUBMERGED

HORSESHOE VOR TEX?

The fundamental lifting solution for free-surface flows is
derived from the fundamental source-like solution. If y is vertically
upward and the stream velocity is ¢ in the positive x-direction, the
potential of a source of strength m located at (0, -f, 0) is, in the form

given by Havelock (Ref. 7):

mH(x, y, z;0, -f, 0) = _}r_?_ - —IE—;—
™
2 o uly-f) ,
. %%om S sec? g g e cos(%xcosez)cos(nz sing) dnds
_11'/2 5 ® - n sec 3]

Ve
+ Zu,om Sﬂ e
-7 (I-1)

where n_ = g/c®, r,® = P+ (y+£)? +2%, and r,® = x® + (y-f)® + 22, The

2
no(y-f)sec 9sin(noxsece)cos(nozsinesecz B)sec® 6dB

first term gives the sourcelike behavior at (0, -f, 0); the second term
and the first integral (of which the principal value is to be taken) are a
local symmetric disturbance; and the second integral is the super-
position of free surface waves that make up the wake. The entire ex-
pression satisfies the linearized free-surface boundary condition,

Py + Mocpy = 0, ony= 0. Consequently derivatives and integrals of

I has been pointed out to the writer that the submerged lifting singu-
larity has been presented previously, first by Wu (Ref. 21, 1954) for
the case of B = 0 in the present notation, and later by other authors
for general B. The appendix is included because the approach is quite
different from Wu's and because the present writer has not been able
to locate another derivation.
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H also satisfy this condition and can be used to construct solutions
corresponding to different singularities at (0, -{f, 0).

The fundamental lifting solution is a bound vortex element of
infinitesimal span ¢ and infinite strength T" such that I'c is constant
and equal to the lift force L divided by pc, the product of density and
speed, according to the Kutta-Joukowsky lift theorem. To satisfy
Helmholtz' theorems the bound vortex filament is continued into a

y y

$

?</ 5

pair of free trailing vortices of strength T and separation ¢, which
extend parallel to the x-axis to infinity. |

The horseshoe vortex flow is identical with the flow induced
by a line doublet extending from (0, -f, 0) to infinity parallel to the
x~axis, the doublet axis pointing opposite to the lift vector. This can
be thought of as a pair of line sources of strength " T and separa-
tion €, or as a distribution of doublets of strength/unit length Te. The
potential of one doublet at (0, -f, 0) having strength me and axis point-

- ing opposite the lift direction is

meD(x, y, z;0, -f, 0;B) = me (sinﬁ -;z— - cosP 5%) H(x, y, z;0, -f,0) (I-2)
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Using the expression for H above (I-1),

emD(x, y, z;0, -f, 0;B) = -

em[zsinp-(y+f)cosp] + em[zsinp-(y-f)cosp

r,® ry®
Y [0
2 u(y-f)
+ %Koem S sec?d S e cos (;;xcosG)
_.1\'/2 Y n-n sec 8

[sinBsinfsin(#zsinh) - Cosﬁcds(%zsine)]nde

7

3

- 2% “em S [sinﬁsinesin(noz sinE)secz9)-cosﬁcos(nozsinesecz9)]
Ky
-2

2
euo(y-f)sec 8 sin(nox secB) sect ado. (I-3)
By changing coordinates it is easily established that
D(X, Y, Z;g: -f, O’B) = D(X-g, Ys Z;O, 'f: O’ﬁ) (1'4)

is the potential of a similar doublet at (€, -4, 0).

The next step is to integrate over a distribution of such doublets
along the line y= -f, z = 0. In order to obtain convergent integrals it
is necessary to consider the desired uniform distribution as the limit-
ing case of a broader family of distributions. A family of potentials

is defined by
%
V, x5y, 230, <£, 0ip) = { e7*8 D, y, 738, £, 0)az (1-5)

o]

Then the desired vortex potential is
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E'C— V(x,y, 230, -f, 0;p) = pI; 1im V_(x,y,2:0, -f, 0;p)
a—

. __L zsinp-(ytflcosp {1 + X }
pe (y+£)® + 2° x2+(y+£)°+2°] 2

+ L zsinB- (y-f)cosp {1+
pc (y-£)® + 22 [x+yf +23]

TT

/2 o uly-1)
. 2 " L sec?®B S sin(uxcosB) sech
mooec y n - % _sec?H
- 2 (e} (o)

[sinfsinfsin(#zsinb)~-cosp cos(nz sinB)]du db
7
+ 2 no-%-(-: &I [sinP sinf sin(noz sinb sec®f)-cosp cos(uoz sinfseq)]
= /2
e”o(y'f)secgecos(nox sech) sec®6d 0 (1-6)

where the strength has been identified with L/pc. Again, this expres-
sion is to be regarded as composed of the submerged vortex repre-
sented in the first term, the local disturbance of the second and third
terms, and the free wave pattern of the last term. The free wave

pattern at a distance downstream can be calculated from the last term

according to

b ECPX‘FO

A
= 2%0 —15—5 sin S sinf sec*fe
c ™
P - /a
cos {%osecae(xcose + z sinB)} db

-% fsecs 8

o
/2

- 2n L cos B S sec®f e
pc? Vi
= /2

sin {no sec® B(xcos 8+ z sin8)}dg (I-7)

-n fsec?® 9
o
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Using this result the wave resistance can be calculated by the methods
of Havelock (Ref. 19). It is interesting to note that for the case B = 0
(lift vector vertical) the wave pattern and resistance are identical with

those of a submerged sphere whose volume is 2L/3u,opca.
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APPENDIX II

MODIFIED METHOD OF STATIONARY PHASE

This appendix deals with the approximate evaluation of inte-

grals of the type
b
u = g w(x) o) ax (II-1)
a

with speciallattention to cases in which ¢(x) has a zero at a stationary
point of f(x). The notation and treatment are similar to Lamb's

(Ref. 5, Art. 241). o(x) and f(x) are required to be analytic at a
stationary point a such that f’(a) = 0. Then, writing € = x - a, we

have
f(x) = f(a’ + %- £2 £ (a) + é—ga f”’(a) + v (II-2)

ox)= Ep(a) + 322 0" () + 282 9" (a) + " *+

Z-;f-

gt (I1-3)

x=a
since ¢(a) is assumed zero.
. . " " % . N
Provided the quotient { (a)/lf (c.)| is small, so that the third
term in (II-2) can be neglected, the important part of the integral,
coming from the neighborhood of a, is approximately

Z (n) S gn zlf” ). €3 de (II-4)

For odd n the integral in (II-4) vanishes by virtue of the integrand
being an odd function of §. For even n we have the integral, for a

a positive integer,
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o0

1 V a ‘ - . L[] . L ] . . '
S gZa, éf‘maga ae = <i 21{_) S e;{:11r/4 1- 35 — (Za-1) (II-5)
m

-0

which is established by repeated differentiations of

S e:i:imgfgs dE = ﬂ_ eii'rr/‘l (I1-6)

m

with respect to m. The principal contribution to (II-4), then, is from
the lowest even derivative of © that does not vanish at a. If this is

the derivative of order 2a, we have by (II-5)

- 1a NES 1 e i[f(a) £mw/4] cp(Za) (a) (11-7)
(£2i)7al  [f(a)]|"" 2
where the * sign is taken according to the sign of f'(a).
If o coincides with one of the limits of integration in (II-1), the

limits in (1I-4) must be 0 to @ or - to 0. In that case we use the

formula for odd n

g by a+l

2a+l *=imPeg?® _ 1 a #im®u, _ 1< 1) al
S g e dg = > S u e du = —2- £ ‘1— I;zm— (II—S)
0 0

The principal contribution to (II-4) is now from the lowest derivative
of  that does not vanish at a. If this derivative is even the result is
half of (II-7). If the lowest nonvanishing derivative is odd, the result
is

121l pa ., Gifle) (2a+1)
u~ (* T) (ZaFIN o jatl @ (a).
|£"(a)|

(I1-9)
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APPENDIX IiI

MAPPING OF A SOURCE DISTRIBUTION

Under a conformal transformation a source of finite strength
located at a conformal point of the mapping goes into an equal source
at the mapped point (Milne-Thompson, Ref. 12). To see how a con-
tinuous source distribution‘along the real axis, of strength m(z;x), is
mapped, consider a small rectangular region near the z-axis -- a

two-dimensional '"pillbox'" of height d and length 6z.

® ©

3 D (}2 r‘/A\
+ A4 A+ F R+ e i e e e i e o L e o - N
H
- )

C}’z (L5 x)

D maps into the closed region A in the g-plane, symmetric about the

(-axis. The net efflux through 8D is g)d\l/ = m(z;x) 6z + O(6z3).

Since the stream-function ¥ has the same value at corresponding
points in the two planes, the integral d{y must be also equal to
m(z;x) 6z + O(6z°). Now the height d ca%x be made arbitrarily small,
in which case the boundary 9A converges toward the segment &6 while
the integral dy is constant. This shows there are sources along the

(-axis, say with the strength u(({;x) where { = y(z;x), such that

m(z;x)6z = u[y(z;x);x]éc + O(62®)



65

Now taking the limit as 6z - 0,

m(z;x) = uly(z;x)x]y_(z;x) (III-1)

Here the subscript partial derivative notation is extended to deriva-
tives of the mapping functions with respect to their complex argu-
ments, just as in (6-12) it was used for a derivative with respect to
x. By substitution of z = g({;x) and use of the identity o= y[g(o;x);x]
and its derivative with respectto o, 1= ys[g(o;x);x]gg(o;x), (III-1) is

put in the form

u(CsX) = m[g(C;x);x] g(Cix). (11I-2)
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APPENDIX 1V
PLANAR WING: INTEGRATION OVER SOURCES.

The following integrals are required:

L (g = Sa (ngaz)_;_ log (£7f) dt
Ly - f-g-;;gi—;)r log (£55) d
L (0 = f E‘Eff:;)—_g log (£5D) a
L (1) = Sjgs(giaa; log (£2-¢2) d
L (g) = goo——z—a—z——l log (£2-¢7) dg
L g(g2-a2)2

A useful transformation is:

£ =asec® » df =asecOtan® de

1 =
(2-at)f = atane | G130y
2
We also use { = qga lql<1.
Then I, - Iy become:
7/ 2

= 1 1- 0

I = —_— ——4cos®

1 (aa) g cos © log l+gcos 6 ) 48
0
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/2
l-qcos 6
I, (ga) = cos 0 log (-i—_l%a—ss—é—) de
0
/2
b (o) = | cos0tog (1225228 0o
0
/2

cos? 0 loga? (sec?6-g?) do

Fa
3
1l
ol

/2

Iy (qa) log a%(sec?0-g?%) do

il
OQ/)

I, is tabulated in Dwight (Ref.13) No. 865.37:
. =1
I,(qa) = -msin "q.

I, is first written

/2 /2
I, = S‘ cos B6log (1-qcos 6) d6 - g cos 0 log(ltgcos 6) d6 ,

0 0
then in the second integral #7=0 is substituted for ©0:

U
I, = S‘cos 6 log(l-qcos 6) dO .

0

Now substituting q = E%IET (k<1 since g<l1)

T T

I, = -log(l+k?) § cos 6 do + Slog (1-2k cos 0 + k?)cos 6d6.
0 0
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The first integral vanishes, and the second is tabulated in Dwight,
No. 865.74 with m=1:

I,(gqa) = -7k = - -1—————lq;-cﬁ——

I, 1is similarly put in the form

U
I, = 5‘ cos3 0 log (1-qcos 8) d6
0
T
S‘ log (1-2kcos 6 + k%) cos? 6 d6
0

and, using cos*@ = % cos30 + 3 cos 0,
' 7

Q
I; = %—S‘ log(l-2kcos © +k?) cos 8 d 0 + 3 51 log(1l-2k cos 0+ k?)cos30d6.
' 0 0

Again Dwight, No. 865.74 with m =1,3:

2+43¢%-2(1+2g* W 1-g*

-7k
L(qa) = T (9+k?) = -7 25

I; 1is.-broken up as

/2 /2 /2

Iy = S‘Zloga de + Slog(l-qzcosze) dB-SZlogcosedB.
0 : 0

Using Dwight No. 865.34 (with p=-g?) and No. 865.11 :

Is =7loga + wlog(l ++v 1-q2).

I, 1is split up similarly :
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/2 /2 /2

I, =2loga S‘ cos?6de -2 g cos? 6log(cos 8)d6 + S‘ cos?0log(l-g*cos?6)de
0 0 0

Using 865.25 on the second,

/2
L = 5loga - g(l-2log2) + § cos?Blog(l-g*cos?6)de .
. 0

The last'integral is called

T
I, =3 S‘ cos? 6 log(l-q%cos26) do
0

. 1
Now using cos?0 = 3cos 20 + 3 ,

U U T
La=% S‘ log(l-g?cos?0)do+ %S‘cos 201log(l-gcos 6)do+ %S‘cosze
0 0

0
log(l+gcos 6)de6
- The first term is evaluated by Dwight No. 865.34:

7T 1+4+v1-g?
-—zlog ——-—ZJ— .

The second and third are put in tabulated form by substituting g = ]-—_FZI{I%,
2k .
9= - 17z respectively:
U u
3 g log(l~-2k cos 6 + k%)cos 20d6 + -}S\ log(l-2k cos 0+ k2)cos26d6
0 0

which are in the form of Dwight No. 865.74 .

T2 = _p 2-92-2vV1-q2
41{ = -7 rp
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So finally, collecting terms,

T T T q? -2/ 1-q2
14(qa)=-§10ga-—4 + —2-log(1+w[l—q2) -z 3 a4 .

APPENDIX V
PLANAR WING: SPANWISE INTEGRATION
Two of the integrals are tabulated: Dwight (Ref.13) Nos. 520.,

320,01, 321.01 a

-1y _
S‘cos a.dy--a

0

g 22-3Y g4y =(x-3) a

az.. y‘z
The remaining two are
a /2
P _5 v2dy _ ag sinZ @ de
1z = T+ sinf
) (a+y),r—_——a2-y2 ) 1+ sin®
a /2
5 (2ay - y?) _ g (2sin 6 - sin?0) d6
) (a+y)2az - y2 az_yz (1 + sin 0) 2

where the latter forms have been obtained by substituting y =asin6.

J, is multiplied inside, top and bottom, by 1 - sin0:

/2 :
S (sin? 6 - sin3 @) d6
= a
cos2 6

0
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With the help of Dwight Nos. 452.22, 452.32

72
I, = a[tane- - cos 6 - secBZl = (2-3)a
0

since tan(—g- - €) - sec (% -€)=cot€ - csc€ = Q(€).

J, is treated similarly, being multiplied inside, top and

bottom, by (l-sin©)? :

/2
P _S“ 25in0 - 55in%0 + 4sin3 0 - sin? 0
, =

cost 0 do

0

Then, using Dwight Nos. 452.14, 452.24, 452.34, 480.4:

/2

Jz = [tan6-4sec9-2tan3‘6+ Zsec36:J —12{-=2-—72£
0
. _ 1 1 1 1
Since cot3€ =¢3 - ¢ *t O€), cscle = e + 5z + Ofe),
cot€=—l+O(€) d € =2 O ity i
= < an csc€ =& + (€), the quantity in
brackets is O(€) at —g— - €, and the integral is finite.

APPENDIX VI
BODY OF REVOLUTION: INTEGRATION OVER SOURCES

The following integrals are required:

o0

I = 1 _g;é dg .

' ‘§2a (£%-4a2)2 B3 :
o al dg

I = 1 1
-, (=40 | & 4 (62 -4t 2

/
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a’ dg

o)
2a (€2 -43«2)% [gz_.{laz)%:r(gz_gz)

I; =

I, 1is identical with the I, of Appendix , except for 2a

replacing a . Consequently,

I, and I; are transformed by
§ = 2acscb , df = -2acscBcot0db
Y
(£2-4a%)2 = 2acot
We alsouse q= {/2a . fql < 1.

Then the integrals become

/2

(l-cos 0) dO
1-g?sin2 0

oo

/2
L = L (1-cos )3 de
3 32 sin2 B(1l-q2 sin2 0)
0

I, is written in two parts, and in the second the substitution

u = 8in 8 1is made:

v /2 1

, =+ 4\ _—d6 1. { _du
2 ~ 3 l1-q2sin2 @ 8 1-q2uz
0 0
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Using Dwight (Ref.13) Nos. 858.541, 140.02

Ta a 2a +
I, = ——— - = log T_—é'
2 8443‘2_@2 8; a-g

I; 1is expanded as follows:

/2
L = L 4 -3+4q® ; (-4 4 sin®0)cos O 46
3 T 32 sin2® ' 1-g2sinZ® = sinZ0(l-g2sinz0)

0

/2 /2

7 1
-3+4g2 do 1 a0, 1 (-4+u?)du
32 I-g°sin26 8 sin2 § = 32 uz (1-qzu2)
0 0 0

where u =s8in © has been used in the last. The last two terms have

infinities at the lower limit which cancel each other off, as they must;

since the integrand of I, is certainly regular evenat 6 =0,

Hence,

using Dwight Nos. 140.02, 152.1, and 432.20:

I. =L _ 3a%-¢? 7r o1 tE-a? log 22+%
3738 32a m 32 al g 2a -~ {

APPENDIX VII

BODY OF REVOLUTION: CIRCUMFERENTIAL INTEGRALS

All the integrals are straightforward, excepting

w2
- . l+cos ©
= 2 - 2
J= S/ sin®* 6 cosB (3-8 cos?0) log T—cos5 9©-
0

First the sin%®6 is replaced by 1l-cos?6:
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/2

(3 cos O - 1lcos36 + 8 cogh ) lOg l4cos 6

l-cos 0

(-
]

de
0

/2

(3cos® - 11¢os30 + 8 cos’0) log (1 + cos 8) d6

fl
oL

/2

- 5 (3 cos® - 1llcos®8 + 8cos®0) log (1-cos 8) dO
0

Now in the second integral © is replaced by # -0, and the integral

assumes the form

Y

o
fl

g (3cos® - 11cos® 0 + 8 cos®0) log (1 + cos B) de .
0

i

it

S‘ (3cos® - 11 cos®0 + 8 cos®0) log (2 + 2 cos 6) db
0

U
- log 2 S‘ (3 cos® -11cos®0 + 8 cos®0) deé
0
The second integral is zero. By writing thepowers of cos ® interms

of the cosines of multiple angles:

T

J = § (-% cos®-%cos 30+ 3 cos50) log(2+2cosB)de
0 .

the integral is put in the form of Grobner and Hofreiter No. 338.13a
(ref. 20) with r =1:
T

T M-t F(-5) = 3

8

O
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