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ABSTRACT 

The constant-pressure laminar mixing of an initial shear 

layer  with a quiescent fluid i s  studied theoretically. The line of 

singularities a t  the starting point i s  removed by abandoning the con- 

ventional res t r ic t ion  that the dividing streamline must  coincide with 

the x-axis. Instead, the shape of this s treamline i n  the "near-field" 

is determined by properly matching inner and outer flow regions so 

a s  to cancel any additional induced normal velocity and p ressure  

disturbances in  the outer flow. The "far -fieldft i s  obtained by apply- 

ing the momentum integral technique beginning with the profiles 

determined by the near-field solution some distance downstream of 

the s t a r t  of mixing. Universal functions a r e  obtained that enable 

the progress  of the mixing process  to  be followed both for  a Blasius 

initial profile and an  initial profile with a finite slip. 
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I. INTRODUCTION 

In recent years  considerable effort has been devoted to  the 

study of wake flow problems. Since the wake region is very complex 

i t  has been found useful to divide this  region into various important 

subregions, such a s  the "outer inviscid wake1' generated by the bow 

shock, and the "inner viscous wake" near  the axis formed by the 

coalescence of the f r e e  shear  l a y e r s  shed f rom the body (Figure  1). 

When the  inner wake becomes turbulent it can diffuse into the outer 

wake and swallow it completely before the outer wake has cooled 

appreciably. This phenomenon has been investigated by Lees  and 

~ r o m a s '  l' and other s. 

We can a l so  make a useful distinction between the "near wake", 

which includes the recirculating base flow bounded by the f r e e  shear  

layers ,  the recompression region and the wake shock- -and the "far 

waket\ in  which some f o r m  of self- s imi lar  flow has been established. 

The present  study is  concerned mainly with the mixing problem i n  the 

f r e e  shear  layers ,  and, m o r e  specifically, with the portion of the f r e e  

shear  l aye r s  near  the base and not too close to the neck in  which the 

s tat ic  p ressure  i s  virtually constant. 

charters")  and Thomas'  shadowgraph of spheres  indicated that 

fo r  Mach numbers g rea te r  than 3 the flow i n  the base region and f r e e  

shear  l aye r s  is laminar  a t  leas t  up to the neck over a wide range of 

Reynolds numbers. chapman0) f i r s t  investigated the constant p r e  s -  

s u r e  f r e e  shea r  layer  theoretically and obtained a s imi lar  solution by 

considering the s imple c a s e  of z e r o  initial  boundary layer  thickness. 

In m o s t  c a s e s  a laminar  boundary layer  of appreciable thickness exists  



a t  the point where mixing begins, and Chapman's s imi lar  solution can  

only apply to  the region "far downstream", where the  mixing layer  

has  a l ready swallowed the original boundary layer .  

Laminar  mixing a t  constant p r e s s u r e  with a finite initial bound- 

a r y  l a y e r  thickness i n  a compress ib le  s t r e a m  with a dead-air  region 

has  been studied by seve ra l  investigators.  Kubota and  ewe^'^' and 

~ e e v e s ( ~ '  used a momentum in tegra l  technique to  desc r ibe  the non- 

s imi l a r  growth of the constant pressure- laminar  f r e e  shea r  l aye r  with 

finite init ial  thickness. They divided the shear  layer  into two par t s ,  

one above and one below the dividing streamline.  Denison and Baurn (6) 

introduced a s h e a r  function and employed an implicit  finite difference 

method to find the shea r  l aye r  flow field, starting f r o m  a Blasius  ini-  

t i a l  velocity profile. ~ o b a ( ~ )  solved the same problem by applying the 

method of inner and outer expansions for  the "near f ie ldt '  and a per -  
* 

turbed asymptotic solution fo r  the  "far field". He represented  the 

init ial  velocity profile as a polynomial with finite sl ip.  But his  outer 

solution has  a l ine of singularit ies a t  the s tar t ing point, where  no 

singularity should occur i n  the outer solution. 

The purpose of the present  investigation is  t o  remove the line 

of s ingular i t ies  a t  the s tar t ing position by permitt ing the dividing 

s t reaml ine  to  deflect away f rom the conventionally a s s u m e d  straight  

line, i n  o rde r  t o  cancel  the p r e s s u r e  dis turbances in  the outer solution. 

Matching of inner  and outer  regions is used to  cjbtain the proper  ini t ia l  

development of the mixing layer  into a non-uniform vort ic i ty  field. 

* The t e r m s  "near field" and "far field'' a r e  based on a non-dimen- 
sional pa ramete r  of the f o r m  V ( X ~ L ) / $ ~ ,  which m e a s u r e s  t h e  degree  
of mixing. 
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The ''far f ie ldtf  is obtained by applying the momentum in tegra l  tech- 

nique beginning with the  profi les  determined f r o m  the near-field solu- 

tion some distance downstream of the' s t a r t  of mixing. If the distance 

f r o m  the base of the body to the r e a r  stagnation point is within the r e -  

gion of convergence of the nea r  field solution, the momenturn integral  

solution becomes unnecessary. 

In the c a s e  of the flat  wall  (F igure  2 )  the init ial  profile i s  taken 

to  be a Blasius  profile. But in  the c a s e  of a slender blunt-based body 

a t  hypersonic speeds the boundary layer  on the body sur face  undergoes 

a rapid expansion around the s h a r p  corner  of the base (F igure  3 ) .  Thus 

the init ial  velocity profile is no longer of Blasius type. A modified pro-  

f i le  of a r b i t r a r y  shape i n  t e r m s  of a polynomial with a finite s l ip  a t  the  

co rne r  is used by Toba and a l so  i n  the  present  study. Universal func- 

t ions a r e  obtained that enable the  p r o g r e s s  of the constant p r e s s u r e  

mixing p rocess  t o  be followed i n  both of these interest ing cases .  



11. FORMULATION O F  THE PROBLEM 

When a two-dimensional s t r e a m  leaves a flat sur face  a t  a s h a r p  

corner ,  i t  will  s t a r t  to m i x  with the quiescent fluid a t  the base (F igure  

2 ) .  The flow is assumed to be laminar  and the p r e s s u r e  i n  the quies- 

cent  fluid is  constant. The coordinate sys tem is chosen s o  that the 

xl -axis  i s  in the direct ion of the outer inviscid flow and yl l i e s  i n  the 

perpendicular direction; the  origin is a t  the leading edge of the semi -  

infinite body (Fig ur e 2 ) .  

The boundary layer  approximation is  assumed t o  be valid every-  

where  i n  the mixing region except a t  the point % = L,  yl = 0, where  

there  is a singularity. Thus - = 0 to  the f i r s t  o rder .  Since p = pa a~ 
everywhere in  the quiescent fluid i t  follows that the s ta t ic  p r e s s u r e  

m u s t  be uniform in  the outer inviscid flow a s  well, and the additional 

velocity component i n  the yl- direction induced by mixing m u s t  vanish 

as yl -, m. This boundary condition takes  the place of the usual condi- 

tion that the dividing s t reaml ine  coincides with the xl -axis.  

The boundary conditions a r e  as follows: 
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The fluid is assumed to be homogeneous and no chemical reac-  

tions o r  ionizations occur. Prandtl number i s  unity and viscosity p. is 

linearly proportional to  absolute temperature. Body forces a r e  neglect- 

ed. 

The basic cons ervation equations can be written a s  

By applying the Stewartson transformation 

introducing a stream. function 3 such that 

and utilizing the relat ions [Eq, (413 

the momenturn equation [Eq. (Z) ]  becomes 



where 

In the same  manner the equation for the total enthalpy 

L a S = h t  fu ,  , namely 

i s  transformed to  

NsndimensienaZize the above equations with proper reference quanti- 

t ies,  a s  follows: 

Le t  % u = -  
U 

X-L x = -  
L 

Then equations ( I ) ,  (51, (7) become 



Equations (9) and (10) indicate that H = A 4- Bu i s  a solution of the 

energy equation ( lo) ,  where A and B a re  constants. This solution i s  

admissible only i f  the initial and boundary conditions permit. The 

momenturn equation (9) is now independent of the energy equation (10). 



111. NEAR FIELD S O L U T I O N  

Similar solutions for  this kind of mixing problem exist  only in  

two cases :  (1) Chapman's model, with ze ro  initial boundary layer  

thickness, in  which the dividing streamline is assumed t o  l ie  along 

the x, -axis  and interaction effects a r e  ignored; (2)  mixing between a 

uniform shear  flow and a fluid a t  r e s t .  This problem has been inves- 

tigated by Rott and ~ a k k i n e n ' ~ ' .  F o r  incompressible flow, their r e -  

sul ts  show that no la tera l  displacement is induced a t  infinity because 

of the laminar  mixing, pmvided that the dividing streamline i s  a cubic curve 

lying above the x axis. In the present  case  the vorticity in the outer 

flow is not a constant value a s  x increases ;  thus a s imi lar  solution for 

a l l  x does not exist. A s imi lar  problem, the mixing i n  the wake behind 

a flat plate with initial Blasius velocity profile, was  worked out by 

(9 )  Goldstein ; in  his c a s e  the flow is symmetr ic  about the xl -axis. 

One expects that  the initial discontinuity i n  vorticity a t  xl = L, 

yl = 0 is  smoothed out by viscous action, and rapid variations in  flow 

quantities a r e  confined to a narrow stinner" layer  near  yl = 0.  When 

the initial velocity profile at  q = L is a Blasius profile this inner  layer  

grows into a region of uniform vorticity a t  f i rs t .  In that c a s e  i t  i s  well- 

Q known [see Goldstein ( 9 ) ]  that the thickness of the inner 'layer w x , 
A 

and the proper normal distance in  the inner layer  is of the form y= y / ~ 3 ,  

where x = xl - L. On the other hand, when the initial  velocity profile 

has a finite "slip", i. e. u(L, 0) # 0, the flow near the axis  behaves lo- 
1 

cally l ike a Chapman flow initially, and the inner layer  grows like xT 
1 - 

at  f i rs t .  In this  case  the proper  normal  distance is q = y/x2. 
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In al l  c a s e s  the outer viscous shear  layer i s  unaffected a t  f i r s t  
L 1 

outside of a thin sub-layer of thickness N x3 (or  x3) and i t  continues to  

develop i n  the downstream direction a s  if the wall were  still present.  

The inner flow is determined by imposing the conditions 

and 

where the outer flow is determined for  xl > L by analytic continuation. 

Of course  this representat ion of the near-field is only a n  asymptotic 

expansion valid 'fsufficiently near" the trailing edge. 

(1)  Blasius Initial Velocity Profi le  - 
In the thin sub-layer near the axis  the normalized s t r e a m  func- 

tion is represented  a s  follows: 

where 5 = x 1 /n 

- - !m- 1 U = 
tY 

f 
rl 

- 1 m - n  v = -$* - - - 5  
n (mf + sf5 - rl fq) 

a u  = - 5  1 m-n-1 
E n [(m- l ) f  +gf 

ST - rl:ql 
au  - !m-2 
ay 

- f 
rlrl 



where m and n a r e  constants to be determined. By substituting these 

relations into Eq. (9), the momenturn equation becomes 

!m - 3 1 m - n t l  
[fq,,q + iTC (mff - [ m - l @ ' t ~ f  f - 5 f  f )] = 0 

r117 'l s rl'l s'l rl 

In order to make the convection t e rms  of the same order a s  the vis- 

cous term, we must have 

m =  n-1 

Then 

nf t m f f  - ( m - l ) f a + q f  f - 5 f  f = 0 
'l'l'l 'l'l 'l 5 rl'l Crl 'l (12) 

In the region near the base of the body where x i s  small  or 5 i s  small 

the new s t r  earn fmcticrn f(5, r() can be expa~ded  in  terms of a power 

se r ies  in  5: 

By substituting (13) into (12) and making use of the fact that the sums 

of the coefficients of the individual powers of 5 must vanish identically, 

one has 

The se r ies  expansion [Eq. (13)] i s  valid for small x or 5 (pro- 

vided n > 0) and y should be of same order of s, s o  the solution i s  con- 

fined to a narrow layer near y = 0. One boundary condition a t  the lower 



edge of this mixing layer  is % =  0, which corresponds to  

Since the differential equations of f (q) a r e  third order ,  two additional 
r 

boundary conditions a r e  needed. They will be supplied by matching 

with the outer solution. 

F o r  smal l  x the outer solution is determined by using a Taylor 's  

s e r i e s  expansion of the Blasius solution for x > 0 or  xl > L. F o r  our 

present purposes the BZasius solution for flow past  a flat plate can be 

written in  t e r m s  of a power s e r i e s  fo r  smal l  FI; 

where 

Then the Taylor s e r i e s  expansions around x = 0 a r e  

Since &= y 
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Now in terms of the inner variables, y = cq, so  

From (1 1) the inner s t ream function is 

By matching 

We obtain m =  2 n = 3  

and 

Similarly by matching u inner 4 %uter 
"O0 ~ " 0  



one has  

Thus we can rewrite Eq. (14) as follows 

3 f ! ' I +  2 f  f t f -  f; = 0 
0 0 0 

and fl fa E 4 =- fg P 0 (Appendix A) 



The f i r s t  two differential equations for  fo  and fa were  solved 

numerically, and the resul t s  a r e  tabulated and plotted i n  F i g u r e s  

(4A)- (4D). A special numerical  method for  solving the nonlinear th i rd  

o r d e r  differential equation for  fo  is  introduced in the Appendix. 

The variation of the velocity component in  the y direct ion i n  the 

shea r  layer  can  be obtained by differentiating the s t r e a m  function with , 

respec t  to x, that is, i n  the outer layer  for  smal l  y 

In t e r m s  of the inner variable 

In the inner layer  

By substituting the asymptotic values of fd, fo, fl: fi --  -- as 4 ~o into 

the above equation, or by utilizing the relations 



one can s ee  that 

v. J v inner outer 
' q " W  y-00 

This  resul t  implies that no additional displacement i n  the y direction 

at the outer edge of the shear  layer will be induced because of the 

presence  of the mixing layer .  Also i t  i s  consistent with the assump- 

tion made at the beginning that the static p ressure  p i s  constant to 

the f i r s t  order  throughout the shear  layer .  

The solution of the energy equation can be obtained easi ly by 

the following relation 

Boundary conditions for  the enthalpy distribution a r e  as follows: 

(i) F o r  a "cold" wall 

For  x <  0 H =  l as y1 J 00 

F o r  x 9  0 H =  l as yl oo 

I t  i s  reasonable to assume H = Hb. 
W 

Thus 

Then 



(ii) F o r  an adiabatic wall 

W 1 is the solution where Hw = Hc = H and 
m ' 

Finally the s t r e a m  function and x-component of velocity in  the 

mixing region ar e given by the expressions 

2 

)(x, y) = X q f o  (q) t x f3(T,) 4- xa $(q) + - -- 
and 

a 
where T, = y / ~ 3  

Since fo(q) vanishes a t  q 3 0.9 (Fig. 4A) the dividing streamline l i e s  
1 

above 1;he xl -axis and has the shape y = const. x5 initially. This r e -  

sult  ag rees  with the resul t  of Rott and ~akkinen'". The shape of the 

dividing streamline in the next approximation is found f r o m  the relation 
fob) 

"=-m q+=o inc reases  slightly with increasing x. The value of 

u = u* along the dividing streamline can then be found, and is plotted 

in  Fig. 6 up to  x = 0.5, the joining point with the far-field (Section IV). 

The growth of the mixing layer  and some typical velocity profiles a r e  

shown i n  Fig. 7. 

( 2 )  Arbi t ra ry  Initial Velocity Prof i le  With a Finite Slip 

In this c a s e  the initial  velocity profile has a finite s l ip on the 

dividing streamline. Instead of using f r e e  s t r e a m  velocity as reference  



velocity we choose the s l ip velocity ut to non-dimensionalize the 
s 

velocity field, 

Then 
'3. 

X-L x = -  
L 

The normalized s t ream function for  the inner sub-layer i s  

where 

The matching procedure is similar  to  that of case  1, but the inner 

s e r i e s  expansion i s  assumed to  be of the following fo rm  for conven- 

ience l a te r :  

f(5, q) = ft, (TI -e a5ft (q) + b 5" f (q) 

In order  to  calculate the subsequent development of the "outer" 

viscous flow, not only uouter (0, y) must  be specified, but a lso  v(o, y), and 

a% al l  the part ial  derivatives - ( . By referr ing to Eq. (8) and (9) one 
ax  
k 0' Y 

sees  that these equations reduce to a single f i rs t -order  l inear differen- 

tial equation for v(o, y) when u(o, y) i s  specified. Therefore the value 

of v(o, y )  a t  only one location y = y* i s  sufficient t o  determine the initial  - 
au 

v-distribution and a lso  - (0, y) B q .  (811. Similarly, by differentiating ax 

Eq. (8) and (9) s - t imes  with respect  to  x one can easily show that the 

resulting equations reduce to a f irs t-order  l inear differential equation 



aSv fo r  (G) , s o  the value of - (0, y) at only one point i s  requir ed 
ax X=O axS 

to determine a S + l  u 
1 (0, y) uniquely. 

As an il lustrative example, suppose we consider the special, 

simple case  i n  which u(o, y) # 0, but v(0, 0) = a S~ ( )  =(F) - 0 ,  a11 s. 
030 0, 0 

The calculation i s  ca r r i ed  out most  conveniently by substituting a n  ex- 

pansion of the form 

xa 
v outer (x, y) = - Cvsl(y) + xMsa(~) + - ~ ) S , ( Y )  + - - - I  

into the boundary layer  equations. By collecting t e rms  of order  xr, 

r where r = 0, 1, 2 - - -  and equating the sum of the coefficients of x 

to zero, one obtains the following equations for cp s1 c?~g --- 

I f  / f  I 

ePso - Ms, Ys, + Ms,'~s;' = 0 

U 
/ 00 I / Since u = qso (y) - - a s  y - m , we must  have 9 = rps2 (y)  

Uls s1 - - --- 0 a s  y -) 00. Inspection of Eq. (21)  shows that this condition 

? P / / I  i s  automatically satisfied i f  rpso , Mso , etc. -. 0 sufficiently fas t  a s  

y 4 m .  However the condition that v(o, o) and all  partial x-derivatives 

of v vanish a t  x = 0, y = 0 means that [ ~ q .  (20)] cpsl(0) = vSdO) = - -  = 0. 

By employing these boundary conditions Eq, (2 1) a r e  solved by quadra- 

ture: 



etc. 

[Note that cp (m), rpsa(m), etc. a r e  all f 01 
s1 

Suppose that the initial velocity profile with slip U a t  y = 0  is 
P s 

assumed to be of the following form a s  y 4 0: 

where A, B, C and D a r e  constant coefficients describing the shape of 

the initial velocity profile. As y 4 0  (Eq. 2 l a )  

By substituting these expressions into Eq. (20) one has 

By changing to  inner variables ( y  = Cq, x = cn), we obtain 



The inner expansion i s  

J I  q = tm fo(q) + a 5 m t l  
f,(q) + b 5 m t 2  

fa(q) + - - -  

where n = m t l .  

-b BY matching YiItner qou we get rn = 1 and n = m t l  = 2. 
n a, v -% 

Thus 

where a = A , b =  B 

Similarly by matching uinner 
and Uouter we obtain 

fJq) - 1 

fl'tq) - q a s  q - 0 0  

fd (q)  qa + 2 

After substituting [4 , (5 ,  q)]. into the momentum equation and col- 
inner 

lecting te rms  of order trn we obtain three sets of differential equations, 

with the corresponding boundary conditions: 



2 f;" t fof& 2 f i f ;  + 3 f i ' f ,  = -2  fl f," + ( f 9 ) @  

The final formula for  the velocity profile in the mixing region is given 

while 
P - 3 

4'. inner = X' fo(q) + A x f,(q) + BxZfB(q) + ---  

The velocity profile depends not only on these universal functions 

fo, f l ,  fa and so  on, but also on the parameters A, B, - -  - of the initial 

profile. A tabulation of the universal functions i s  given at the end of 

this paper and these functions a r e  plotted in Figs. ( 5 8 )  through (5H). 

The progress of u* with X/E i s  shown in Fig. 6 for quadratic initial 

profiles, where the triangles indicate the junctions with the f a r  field 

solution (Sec. IV). 

The solution fo r  the enthalpy field is similar  to the case of the 

initial Blasius profile. 
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Now the y-component of the velocity in  the inner sublayer mus t  

match the corresponding velocity component in the outer layer.  

In t e rms  of inner layer variables,  

In the inner layer 

Since 

s o  that 

v. inner " v outer 

This resul t  te l ls  us that i n  the s l ip case  there  i s  no additional la tera l  

displacement produced by the mixing process. 
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As x 4 0, u f i (-q)  and qinner 4 x 2  f o (q), according to Eq. (.23). 

Now the differ ential equation for f is identical with the corresponding 
0 

equation for  Chapman's problem, but the boundary conditions on fo(q) 

a r e  slightly different. Because of our insistence that the  additional 

induced normal  velocity component should vanish in  the outer layer ,  

the Chapman condition fo(0) = 0 is replaced by the condition fo -+ q 

a s  -q 3 m. By refer r ing  to Fig. 5A, one can see that in  the present  

solution fo vanishes when q = - 0.5273, and Fig. 5B shows that 

f ' = 0.587 along this parabola. In other words the dividing streamline 
0 

l ies  below the x-axis a t  f i r s t  when the initial slip velocity is not ze ro  

(Fig. 8), but the velocity normalized by the. s l ip  velocity is  the  same 

function of $/)ff- a s  in Chapman's solution. On the xl -axis  i tself  

u 3  0.68 and +/,)%-4 0.3 a s  x 4  0. 

According to  Table 11, fo ( 0 )  = 0.3378 and fl(0) = 0.8457, so  
1. 

$(x, 0) = 0. 3x7 - 0.84A.x + ---  and the dividing streamline c r o s s e s  

'* l3 For  example, for  an initial  the xl -axis again when x = xo z -7. 
quadratic profile with % = 0.4 , A z 0.6, so  x 2 0. 38 (Fig. 8). 

s 0 

This  behavior of the dividing s t reamline  can be understood on the basis  

of simple physical considerations. When the initial profile has a finite 

s l ip velocity the x-component of velocity drops instantaneously t o  a 

value of 0. 68 u1 along the xl -axis. As the mixing region grows with 
S 

increasing xl the m a s s  flux defect contributed by the mixing increases  

at  f i r s t  (Fig. 8), s o  the contribution to  the displacement thickness is 

initially positive and increasing. Thus the dividing streamline mus t  

have a negative slope and must  l ie  below the xl -axis  initially i n  o rde r  

to counterbalance the normal  velocity component induced by the mixing 



region. However, the velocity on the xl -axis inc reases  with down- 
1 - 

s t ream distance [u(x, 0) -t 0.69 + 0.58 A,xa + 1.03 Bx] + --- 
F o r  smal l  initial s l ip  velocity u(x,O) soon reaches  and then exceeds 

(Fig. 61, and the mass flux defect in  the mixing region changes 

to a m a s s  flux surplus.  Thus the slope of the dividing str earnline 

mus t  change sign f r o m  negative to  positive, and the dividing s t ream- 

line must  c r o s s  the xl -axis and l i e  above i t  in  order  not to dis turb the 

s t reamlines  i n  the outer shear  layer.  The smal ler  the value of uIs the 

sooner the dividing streamline c r o s s e s  the xl -axis. 

Now one knows that u(x, 0) will not exceed the final asymptotic 

value of 0. 573U in any event, s o  when the initial slip velocity is la rge  

enough (y > 0. 573U, roughly) then u(x, 0) $ qs and the dividing s t r e a m  s 

line always l ies  below the xl- axis i n  the near field. 
P 

On the other hand when the initial velocity profile i s  a no-slip 

profile the velocity along the xp -axis begins to increase  immediately 

af ter  the flow leaves the edge. The contribution to the displacement 

thickness made by the mixing region is negative, and i t s  magnitude 

inc reases  with increasing %. One concludes that the dividing strearn- 

line must  have a positive slope in  this case ,  and must  l ie above the 

xl -axis in the near  field, as shown in  Fig. 7. 
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IV. FAR FIELD SOLUTION: MOMENTUM INTEGRAL METHOD 

The momentum integral method is a very useful and convenient 

approximate method fo r  treating boundary layer  and separated flow 

problems. F o r  the constant p ressure  mixing problem, Kubota and 

Dewey(*) applied the integral  method in a d i rec t  and simple manner.  

They represented the velocity profile by a simple analytic function 

containing severa l  pa ramete r s  that a r e  allowed to vary with x. They 

divided the shear  layer  into two portions above and below the dividing 

j streamline. By multiplying the momentum equation by u ( j=  0, 1,2, 3 - - )  

and integrating a c r o s s  the shear  layer ,  coupled ordinary differential 

equations a r e  obtained which descr ibe  the variation of the velocity pro- 

f i le  pa ramete r s  in the x-direction. Boundary conditions a r e  a l so  ap- 

plied a t  the extremit ies  of the shear  layer .  The total number of bound- 

a r y  conditions and moment equations must  be equal to the number of 

pa ramete r s  appearing in  the velocity profile. Kubota and Dewey inte- 

grated the differential equations numerically,  starting with an  assumed 

velocity profile a t  x = 8. The calculation is continued until a s imi lar  

profile corresponding to  x -+ co is reached. 

In the present  problem the velocity profile changes rapidly 

with distance in  the x-direction just af ter  the flow leaves the edge. 

Thus the momentum integral  method is not expected to give good resu l t s  

in  the near-field. But af ter  a certain distance the velocity profile 

changes slowly and the momentum integral  method should be applicable. 

Integration of the equations i s  s ta r ted  f rom some x > 0 where the new 

initial profile is determined by the near-field solution. 
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The shea r  layer  is divided into two layers:  region (A), 6% >y>O 

and region (B), -b,Cy<O. Now integrate  equation (9) separately in  the 

two regions  

and 

where v can be replaced by v = - dy. Upon integration the 

above two equations can be written as 

and 

where 

f ( ~ )  = u for y > 0 

g(q) = u 5 =  f for y < o 

We take the velocity profiles i n  the two l aye rs  t o  be of the fol- 

lowing simple forms:  

where u* i s  the normalized velocity along the dividing streamline,  and 

n and r a r e  a r b i t r a r y  constants. 



The shear  s t r e s s  mus t  be continuous a t  y = 0, so  

F r o m  equations (24) and (25) 

and Eqs. (23a) and (23b) become 

Three  unknowns S1, 6, and u* a r e  determined by the above th ree  

equations and the corresponding initial  conditions. 

where n and r a r e  determined by the shape of the initial  velocity pro-  

files. Kubota and Dewey used n = r = 2 and Reeves used n = r = inte- 

g e r s  > 1. In the present  problem n and r may be any positive numbers  

g rea te r  than unity. 

A relation between 6, and U* can easily be dbtained by d i rec t  

integration of Eq. (27), namely 

F r o m  equation (29) if we le t  6, /6 -+ m, the limiting c a s e  of 

Chapman's s imi lar i ty  solution should be reached. Hence 

( n t  l ) ( n - r ) ~ * ~  - n ( ~ r + l ) ( n t 2 ) u * ~  -n(2r+l)(n- l)u*tna ( 2 r t l )  = 0 



The f a r  field region f o r  the Blasius initial profile was solved 

by using the above method starting f rom x = 0. 5. It is found that 

n = 1.5 and r = 2. 7 in  order  to fi t  the velocity profile a t  x = 0. 5. In 

this particular c a s e  u* = 0.579 a s  x -+ oo, which is very close to Chap- 

mang  s value of 0.587. 

u10 For  a par t icular  slip c a s e  with - u = 0.4 the numerical inte- 

gration is s tar ted f rom x = 0.5, Here  n and r a r e  found to be 2.4 and 

2. 5 respectively, and U* = 0.594 a s  x oo. 

The growth of u* in  the fa r  field is shown i n  Fig. 6. The resu l t s  

for  the slip case  a r e  in good agreement with Mubota and Deweyfs quad- 

r a t i c  integral solution and Reeves'  high shear  integral  solution. The 

Blasius case  almost identically coincides with Denison and Baurn's 

solution for Blasius initial  velocity profile. Since the velocity along 

the dividing streamline is l a rge r  for  the finite s l ip c a s e  than for  the 

non- slip initial profile, the vorticity is l a rge r  and u* inc reases  much 

fas ter  with x (Fig. 6). 

Although the momentum integral  method gives good resu l t s  for 

u* and shear  layer  thickness i t  is not expected to furnish highly accu- 

r a t e  velocity profiles. F o r  this reason no attempt has been made he re  

to match  the y-component of velocity and the location of the dividing 

streamline with the near  field solution a t  the junction point. By includ- 

ing interaction with an "external" supersonic flow (for  example) one 

could determine the c o r r e c t  shear  layer flow approaching the Chapman 

solution as an asymptotic l imit  a s  x -r oo, either by using .an integral  

method or by using a finite-differ ence approach. 
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V. SUMMARY AND CONCLUSIONS 

1. The present  theoretical study shows that the constant- 

p r e s s u r e  laminar  mixing of an initial shear  layer  with a quiescent 

fluid occurs  without developing a l ine of singularit ies a t  the starting 

position ( x  = 0) .  The only singularity l i e s  a t  the  origin x = O,, y = 0 

itself. The line of singularit ies is removed by abandoning the con- 

ventional res t r ic t ion  that the dividing streamline must  coincide with 

the x-axis. 

2 .  F o r  an  initial  Blasius velocity profile with no slip the 

progress  of the inner mixing layer  in  the near-field is  described by 
2 

the s t r eam function $(x, y) = x5[fo(q) t xf3 (q) + xa fa($ + - - -  ] where 
h 

q = yAx3) and the functions fo, f, a r e  given i n  F igures  4A-4D, and Table I. 

F o r  a n  a rb i t r a ry  initial  velocity profile with finite s l ip of the 
U1 

fo rm - = 1 t Ay t B~~ % Cy3 + - - -  a s  y 4 O4 the inner  mixing layer  
U= s 

i n  the near-field is described by the s t r e a m  function 

1 - 3 

JI(x, Y )  = xa f (q) t Ax f, (q) t ~ x " f , ( ~ )  t - - - 
0 

where fo, f i ,  fa a r e  given in  Figures  5A-5H, and Table 11. 

3. F o r  the  Blasius initial  velocity profile the dividing s t r eam-  

line l ies  above the x-axis in the near  field. For  the a rb i t r a ry  initial 

velocity profile with finite slip the  dividing streamline always l ies  be- 

low the x-axis a t  f i rs t .  When the s l ip velocity < 0.573 U (approx. ) the 

dividing streamline l a t e r  c r o s s e s  the x-axis a t  some location and l i e s  

above this axis;  the crossing point is c loser  to  the origin the smal ler  

the initial s l ip  velocity. When the s l ip velocity > 0. 573 U the dividing 

streamline s tays  below the x-axis in the near-field. This behavior 
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i s  quite plausible on the basis of simple m a s s  flux considerations, 

4. The far-field development is obtained by using a momentum 

integral method starting a t  an  appropriate downstream location, where 

the velocity on the dividing streamline and the shear  layer thickness 

a r e  joined to the new field solution. In this manner the progress  of 

the mixing over the whole field can be followed i n  any particular prob- 

l e m  for an a rb i t r a ry  initial velocity profile. 

5. All of these resul ts  a r e  readily transformed to a compres-  

sible flow by using the Stewartson transformation. 
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APPENDIX A 

The differential equation for fl and i t s  boundary conditions are :  

3f11' + 2 f f;' - 3 f; f; + 3 f d f f X  = 0 
0 

f, (q) = 0 q 3 "  

fa'(q) = 0 T4@3 

fa'(q) = 0 q " -Oa 

Since the above differential equation i s  l inear  and homogeneous, we can 

wri te  the general  solution in t e r m s  of three linearly independent solu- 

tions 

fa tq) = A g(q1 f B h(q) + C p(q) 

Now match (aU)  with (e) 
inner outer 

k) = f = ~;'(QI + 5 fll'(q) + 5f<1(l.l) + g3 fdl(ll) + - - -  a~ inner ?-IT 

"") 2 3 )  
F l n n e r  
'll- 

ay outer 
Y40 



33  

F r o m  the f i r s t  two boundary conditions fi(q) = 0, f;(rl) = 0 a s  q 4 a, 

and the above new condition f,"(r\) = 0 a s  rl 4 a, we can wri te  

equation ( A l )  a s  

Since g(q) , h(q) and p(q) a r e  three  l inearly independent solutions 

and the Wronskian does not vanish, we must  have A = B = C = 0, or  

fl(q) 5 0 i s  the unique solution. 

APPENDIX B 

Numerical Integration of a Third Order Nonlinear Ordinary Differential 

Equation with Boundary Condition at  Positive and Negative Infinity - 
The differential equation for f is nonlinear and third order ,  

0 

and the three boundary conditions a r e  unfortunately al l  a t  infinity. A 

closed form solution for  the 8. D, E. could not be obtained. A special 

numerical method was employed he re  for  solving this particular prob- 

lem. 

The method is i l lustrated a s  follows: 

a 
Differential equation 3f'" + 2ffI0 - (f l )  = 0 

Boundary conditions f(x) - : xa 
x400 

f '(x) N a X 



Procedure 

1. Transform the above equation into a se t  of three f i r s t  

I orders .  With f '  = u we get 

2. Integration for an estimated se t  of initial conditions a t  x = 0. 

For  given initial  values f(0) = * 0' f ((0) = u(0) = u 0' f"(0)=v(O)=vo, 

integration in  both negative and positive directions can easily be done 

by a Runge-Kutta method. A few tes t  integrations will give u-curves 

of the kind shown in  the accompanying sketch. 

The values of umin, C and p depend on the chosen initial values 

of fo, uo and v . They can 
0 

be obtained from the  resul ts  

of the integration ( l is t  of the 

functions f ,  u, v) by realizing 

that f3 is identical with V(x) 

(XI and C = r u -  - x] for la rge  
B 

positive values of x. The 

problem i s  now to find a set  

of initial values such that the 

boundary conditions a r e  satisfied, The boundary conditions (B l a )  de- 

mand p = a and c = 0, while the boundary condition (Blb) requires  

U - - 0 (urnin = O means that a t  the same x value u = 0 and u ) = v = O  
min 

and thus, because of the  f i r s t  equation of (BZ), all further  derivatives 

of u a r e  a l so  zero). 



3.  Systematic improvement of the initial values: 

4 s e t s  of 6 values each, where the f i r s t  three  were  chosen and the l a s t  

three  resulted f rom the integration. 

If  the f i r s t  th ree  values were  reasonably estimated such that 

the l a s t  three values a r e  not too f a r  away f rom the des i red  values 

u = 0, c = 0, p = a, then improved initial values f *, u *, v * can min o o o 

be obtained f rom the following system of l inear  equations 

with 

(i) = (i) - u *  = u 
A Urnin 

(i) 
m i n  min  min  

One can consider f uo and vo as functions of u 
0' min' c and p, If the 



se t  u (i) c ( ~ ) ,  B(i) i s  sufficient close to the se t  u * ~ ~ ~ ,  min ' c*, P*, the 

values of f (i), u ( ~ )  and vAi' can be approximated by the linear t e r m  of 
0 0 

the Taylor se r ies  

(i) 
a f q - fz + j (Ugin NO i) 

0 
- urnin) + (=) (C(  ' c*) 

rnin 

o min m i  n 

avo 
* 

v (i 1 (i 1 (i) - c* )  
o FJ V: + (Fa min ) (urnin - + ( -)(c 

with i = 1, 2, 3, 4, then this i s  a system of 12 l inear equations which 

can be written in the matr ix  form a s  (B3) ,  

Similarly other se ts  of nonlinear ordinary differ ential equations 

appearing in the previous section can be solved in the same manner. 

This system is se t  up and solved by using a 7094 IBM computer. 

-6 
Magnitude of allowable e r r o r  is of the order  of 10 . 
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TABLE I (a) 



TABLE I (a) Continued 

f 
0 

f ' 
0 

5.48837 1.90900 



TABLE I (a) Continued 



TABLE I (b) 



4 1 

TABLE I (b )  Continued 





TABLE 11 

Initial Velocity Profi le  With Fini te  Slip 
_I - 

7 f 0 f '  0 0 f l  fl ' f '' 
0 .33782 .69202 . I 9080  -. 84571 e57922 

.25  .51670 .73856 , 18090 -. 68023 e74713 



TABLE I1 Continued 



TABLE 11 Continued 
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TABLE I1 Continued 
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TABLE I1 Continued 
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FIGURE 48 fb vs I) 







FIGURE 5 A  fo vs 7 





FIGURE 5 C  f; vs 9 



FIGURE 5D ti ws 9 



FIGURE 5E f; vs 7) 



FIGURE 5F f: vs q 
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FIGURE 5H fg vs 9 








