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ABSTRACT

The constant-pressure laminar mixing of an initial shear
layer with a quiescent fluid is studied theoretically. The line of
singularities at the starting point is removed by abandoning the con-
ventional restriction that the dividing streamline must coincide with
the x-axis. Instead, the shape of this streamline in the '"mear~field"
is determined by properly matching inner and outer flow regions so
as to cancel any additional induced normal velocity and pressure
disturbances in the outer flow, The "far-field" is obtained by apply-
ing the momentum integral technique beginning with the profiles
determined by the near-field solution some distance downstream of
the start of mixing. Universal functions are obtained that enable
the progress of the mixing process to be followed both for a Blasius

initial profile and an initial profile with a finite slip.
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I. INTRODUCTION

In recent years considerable effort has been devoted to the
study of wake flow problems. Since the wake region is very complex
it has been found useful to divide this region into various important
subregions, such as the '""outer inviscid wake' generated by the bow
shock, and the "inner viscous wake' near the axis formed by the
coalescence of the free shear layers shed from the body (Figure 1).
When the inner wake becomes turbulent it can diffuse into the outer
wake and swallow it completely before the outer wake has cooled
appreciably. This phenomenon has been investigated by Lees and

(1)

Hromas and others.

We can also make a useful distinction between the "near wake'",
which includes the recirculating base flow bounded by the free shear
layers, the recompression region and the wake shock-;and the ''far
wake', in which some form of self-similar flow has been established.
The present study is concerned mainly with the mixing problem in the
free shear layers, and, more specifically, with the portion of the free
shear layers near the base and not too close to the neck in which the
static pressure is virtually constant.

Charters(z) and Thomas' shadowgraph of spheres indicated that
for Mach numbers greater than 3 the flow in the base region and free
shear layers is laminar at least up to the neck over a wide range of
Reynolds numbers. Chapman(3) first investigated the constant pres-
sure free shear layer theoretically and obtained a similar solution by

considering the simple case of zero initial boundary layer thickness.

In most cases a laminar boundary layer of appreciable thickness exists
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at the point where mixing begins, and Chapman's similar solution can
only apply to the region ''far downstream', where the mixing layer
has already swallowed the original boundary layer.
Laminar mixing at constant pressure with a finite initial bound-
ary layer thickness in a compressible streamn with a dead-air region
has been studied by several investigators. Kubota and Dewey(4) and

(5)

Reeves used a momentum integral technique to describe the non-
similar growth of the constant pressure-laminar free shear layer with
finite initial thickness. They divided the shear layer into two parts,
one above and one below the dividing streamline. Denison and Baum(é)
introduced a shear function and employed an implicit finite difference
method to find the shear layer flow field, starting from a Blasius ini-
tial velocity profile. Toba(7) solved the same problem by applying the
method of inner and outer expansions for the ''mear field'' and a per-
turbed asymptotic solution for the 'far field'. N He represented the
initial velocity profile as a polynomial with finite slip. But his outer
solution has a line of singularities at the starting point, where no
singularity should occur in the outer solution.

The purpose of the present investigation is to remove the line
of singularities at the starting position by permitting the dividing
streamline to deflect away from the conventionally assumed straight
line, in order to cancel the pressure disturbances in the outer solution.

Matching of inner and outer regions is used to obtain the proper initial

development of the mixing layer into a non-uniform vorticity field.

% The terms ‘'near field' and 'far field' are based on a non-dimen-

sional parameter of the form y(x,-L)/6 ©, which measures the degree
of mixing. ©
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The ''far field" is obtained by applying the momentum integral tech-
nique beginning with the profiles determined from the near-field solu~
tion some distance downstream of the start of mixing. If the distance
from the base of the body to the rear stagnation point is within the re-
gion of convergence of the near field solution, the momentum integral
solution becomes unnecessary.

‘In the case of the flat wall (Figure 2) the initial profile is taken
to be a Blasius profile. But in the case of a slender blunt-based body
at hypersonic speeds the boundary layer on the body surface undergoes
a rapid expansion around the sharp corner of the base (Figure 3). Thus
the initial velocity profile is no longer of Blasius type. A modified pro-
file of arbitrary shape in terms of a polynomial with a finite slip at the
corner is used by Toba and also in the present study. Universal func-
tions are obtained that enable the progress of the constant pressure

mixing process to be followed in both of these interesting cases.
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II. FORMULATION OF THE PROBLEM

When a two-dimensional stream leaves a flat surface at a sharp
corner, it will start to mix with the quiescent fluid at the base (Figure
2). The flow is assumed to be laminar and the pressure in the quies-
cent fluid is constant. The coordinate system is chosen so that the
x; -axis is in the direction of the outer inviscid flow and yy lies in the
perpendicular direction; the origin is at the leading edge of the semi-
infinite body (Figure 2).

The boundary layer approximation is assumed to be valid every-
where in the mixing region except at the point x;, = L, y, = 0, where
there is a singularity. Thus gfg = 0 to the first order. Since p= P
everywhere in the quiescent fluid it follows that the static pfessure
must be uniform in the outer inviscid flow as well, and the additional
velocity component in the y,-direction induced by mixing must vanish

“as y, “ . This boundary condition takes the place of the usual condi-
tion that the dividing streamline coincides with the x; -axis.

The boundary conditions are as follows:

0<% <L w = U_(y) v, >0
uy =0 v, <0
h =h_(y) yp >0
h-‘—‘hw y1<0
¥ >L y = U
Yy T
h =h
[+¢}
wy =0
yi 7 -0
h -=h
[
P ~pP ~ as yy = oo
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The fluid is assumed to be homogeneous and no chemical reac-
tions or ionizations occur. Prandtl number is unity and viscosity u is
linearly proportional to absolute temperature. Body forces are neglect-
ed.

The basic conservation equations can be written as

9. 0 N o
5“};1‘(("11)‘*’5;;;((3"1)-0 (1)
P T TPy T T (@)

oh 3 _ 8 (k 0h (8u1>8

= + = + Ule— 3
PR o, T oy \gcpah Moy, 3)

By applying the Stewartson transformation

Vi
X = x v=(" 2o | (4)
(o] [¢.¢]

introducing a stream function ¥ such that

9%
U = Poo/P %1

8T
V1 =~p°o/P %1

and utilizing the relations [Eq. (4)]

a) 9 aY) 3
ax. - X 0%, oY
Yy , Mty
3-) -p 2

Wity Py 9Y

the momentum equation [Eq. (2)] becomes

8y 8%y 8y 97§ _ *y - ’
%aan-%aya—'vma-? (3)



or ‘
du, du, 9%u,
ot Y BT T Ve 5vE (52)
where v =...(§Y)
90X
Y
In the same manner the equation for the total enthalpy
S = h+ %u,_a, namely
- as 95 0 ( oS,
-+ = e o 6
Yy 9%, PV ‘5’;,‘1 3y, Uayl | (6)
is transformed to
8f 85 _ 8y 85 _ 9°s5
BYEX-%{ Y © Vo py2 (7)
or ,
95 , = 8 S
Uy 5% + v 3% = VOOS‘F (7a)

Nondimensionalize the above equations with proper reference quanti-

ties, as follows:

Let oy
“ =3
\V I~ __.I_._
| | UL
< = Z-L R = Vo
L
S
H = ———
y = }E)R Hoo
Then equations (1), (5), (7) become
ou v _
5= * 5 0 (8)
a N -
u g—:—+ v -g—-‘il- = u l; (9)
y dy



’ a
Qo8 . JeH _ 9'H (10)
ox 8Y aya

Equations (9) and (10) indicate that H= A + Bu is a solution of the
energy equation (10), where A and B are constants. This solution is
admissible only if the initial and boundary conditions permit. The

momentum equation {3) is now independent of the energy equation (10).
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I1I11. NEAR FIELD SOLUTION

Similar solutions for this kind of mixing problem exist only in
two cases: (1) Chapman's model, with zero initial boundary layer
thickness, in which the dividing streamline is assumed to lie along
the %, ~axis and interaction effects are ignored; (2) mixing between a
uniform shear flow and a fluid at rest. Thisy problem has been inves-
tigated by Rott and Hakkinen(s). For incompressible flow, their re-
sults show that no lateral displacement is induced at infinity because
of the laminar mixing, providedthat the dividing streamlineisa cubic curve
lying above the x axis. In the present case the vorticity in the outer
flow is not a constant value as x increases; thus a similar solution for
all x does not exist. A similar problem, the mixing in the wake behind
a flat plate with initial Blasius velocity profile, was worked out by

(9)

Goldstein ; in his case the flow is symmetric about the x, -axis.

One éxpects that the initial discontinuity in vorticity at x; = L,
y, = 0 is smoothed out by viscous action, and rapid variations in flow
quantities are confined to a narrow "inner' layer near y;, = 0. When
the initial veloci.ty profile at x, = L is a Blasius profile this inner layer
grows into a region of uniform vorticity at first. In that case it is well-

i
known [see Goldstein ( 9 )] that the thickness of the inner layer ~ x°

k)

L
and the proper normal distance in the inner layer is of the form n= y/x3,

where x = x; - L. On the other hand, when the initial velocity profile

has a finite "slip', i.e. u(L, 0) # 0, the flow near the axis behaves lo-

: 1
cally like a Chapman flow initially, and the inner layer grows like x?°

i
at first. In this case the proper normal distance is n = y/x2.
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In all cases the outer viscous shear layer is unaffected at first
i 1
outside of a thin sub-layer of thickness ~ x3 (or x?) and it continues to

develop in the downstream direction as if the wall were still present.

The inner flow is determined by imposing the conditions

VINNER YouTER
n = 0 y =0
and
&) et u
INNER OUTER )
n = o y=0

where the outer flow is determined for x, > L by analytic continuation.
Of course this representation of the near-field is only an asymptotic
expansion valid '""sufficiently near' the trailing edge.

(1) Blasius Initial Velocity Profile

In the thin sub-layer near the axis the normalized stream func-

tion is represented as follows:

viey) = 87 H(E,m) (11)
where & = xl/n n = y/&
- _ zm-1
=Yy = E n

v o= -y, = -2 €% % (mi+ Bty - )

du _ 1 _m-n-1
= - 1) -
5% = =8 [tm-1)6, +8fg - nf ]
ou _ m-2
3y = °© fom
8% u m-3

—— g

f
3Y9 nnn
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where m and n are constants to be determined. By substituting these

relations into Egq. (9), the momentum equation becomes

grn-3[f 4+ 1gm-n+1(

-~ -{m 1}f3+gf

g fy Sfgnfnhd = 0

In order to make the convection terms of the same order as the vis-

cous term, we must have

Then

nf _ + mff - (m- l)f +Ef_f

0 : 12
nm mm (12)

f. f
g o™ Blen'y
In the region near the base of the body where x is small or g is small

the new stream function £(§, n) can be expanded in terms of a power

series in E:
£(8,m) = £_(n) + By (n) + E25(n) +~--= + E"{ (n) +--- (13)

By substituting (13) into (12) and making use of the fact that the sums

of the coefficients of the individual powers of € must vanish identically,

one has
nf "+ m f f"-(rn-l)f"2 = 0
0o oo o

nf,+ mfofl”-(Zm-l)fO' f,_'+(m+l)fo”f1 = 0

| (14)
nf ™+ mf 7. (2mtr-2)f £+ (m+r)f "¢
T or o'r o'r
r-1
= -3 [(m+3)ff"—(m+3 l)ff J] rz 2,
=1

The series expansion [Eq. (13)] is valid for small x or E (pro-
vided n > 0) and y should be of same order of €, so the solution is con-

fined to a narrow layer near y = 0. One boundary condition at the lower
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edge of this mixing layer is u, = 0, which corresponds to

fé: f1'=f;=-—-- =fr"=0 as 7 = -o0

Since the differential equations of fr('q) are third order, two additional
boundary conditions are needed. They will be supplied by matching
with the outer solution.

For small x the outer solution is determined by usinga Taylor's
series expansion of the Blasius solution for x > 0 or x;, > L.. For our
present purposes the Blasius solution for flow past a flat plate can be

written in terms of a power series for small Y:

il

- 3 8
V= FomU(§ e - 2y B+ i g C® oo )

-y [ I
¢ = Yo Co = YT =7

Then the Taylor series expansions around x = 0 are

where

]
= Xl 32-
VouTter = Vo= W _o* % a“;}z‘l —<

- 9_ Q‘G 3 11 9._3_ 8 ___._

=) ooLU [ZQO Z':gigo +T 81 go ]
X1 a.3,0% .5 77d° _g
o VUL -38, v 578 “a87 G0~

+-—-Y—'L'U[ €3 -578 0ot T 9ol

Since(;o:y
_ _a =2_ a 5 4. 11 8% e ____
f}"LGTU-iY"TaV.*A Ty
«Q a® g 17 38 ___.)
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Now in terms of the inner variables, y = En, so

2
n‘%g3n9+g’___€5 B Taian8+___)

+ &7 57
+§2.n (;3‘9- gz 2 _ 14 o2 gs 5 +11 47 aBE8 8 4+ o)
21 '8 N T ETEY 1681 n

From (11) the inner stream function is

£(g,n) = €L (n) + & f(n)+ € falm) + 3 fyfn) + ---- ]

it

A

By matching

Vinner = Vouter
n = w0 y=
We obtain m= 2 n=3

) )

a 2
folml~ Zzm

f{(n)= 0

faln) = 0

fa(n) ~ _2_?_35_!“5_%“2 & as m = o
fan)= 0

f.n)= 0

o~ e r s 2
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one has

fo’('n) ~ ar }

£'(n) = 0

fa' (m)= 0

f"’(n)"“’i%a”&' zn > as m =
f,/(n)= 0

f5'(m)= 0

11 a3 o?

/ ~ = m? 4 _3_0:.

Thus we can rewrite Eq. (14) as follows

100 " ¢
3f0 +2f0f>0 ...fo = 0
a
fo~'2-n3
f0~ an
fo’=° n = -

o L
36+ 25 g - 5108 + 588, =0

fa(n)~-z‘%-,n5 - %na '
fa'(n),... %, n* - % . } asm-—oo (16)
fa(n) = 0 "= -
38"+ 2 6oty - B &) £ + 8 £g" fo = 4(,)° - 5 I 5"
fn) ~ %?‘i‘naﬁr"%f;-ﬂs £32 g2y
fe'(n)~%2§’-n7+gﬂ4+%9_n} as m oo (17)
faln) = 0 n--o
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The first two differential equations for f, and f; were solved
numerically, and the results are tabulated and plotted in Figures
(4A)-(4D). A special numerical method for solving the nonlinear third
order differential equation for fg is introduced in the Appendix.
The variation of the velocity component in the y direction in the
shear layer can be obtained by differentiating the stream function with

respect to x, that is, in the outer layer for small y

- 8 ._.;.0'8 2a2 77 a .8
v = -3—,‘%— Ay -y Vs trmp e v T

3 3 9 ‘
'%X[z-aya - 5 a®y® +4—.-ge’aay8 + ---]

In terms of the inner variable

In the inner layer
v = - 2 (87 £(5, )]
x ’ ;
_ 1 N -1
= 3 Unf, - 2f )8

+ B (nfy’ - 5f5) + ~--- + E3(nf - 8E)] 4 ---

By substituting the asymptotic values of fol, fo, flf f; =--- as - o into

the above equation, or by utilizing the relations

nfy - 2f5 = O
nfa’ - 53 = %anz N~ o
; .
4 . a - B 3 2
niy - 8fy = -3[gyn tgn° ]
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one can see that

v, - v
inner outer
'q b [v'e] y L o

This result implies that no additional displacement in the y direction
at the outer edge of the shear layer will be induced because of the
presence of the mixing layer. Also it is consistent with the assump-
tion made at the beginning that the static pressure p is constant to
the first order throughout the shear layer.

The solution of thé energy equation can be obtained easily by
the following relation

H= A+ Bu

Boundary conditions for the enthalpy distribution are as follows:

(i) For a "cold" wall

For x<0 H=1 as y; — oo
Hw
%)
For x>0 H=1 as y, = o
H
H= I'_I‘t')‘ Yy 7 -0
o0
It is reasonable to assume H = H,.
w b
Thus
HW
A = H'———-
%)
Hoo-Hw
B = 1-A = i
%)
Then
1
H = T [Hw + (H‘)0 - Hw)u] (18)

o0
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or
T Tw TW y-1 3 y-1 2 .3
T = T‘*E“T“‘* z Moo]“‘ 7~ My ¢
[+4] [+.¢] o0

(ii) For an adiabatic wall

H =1 is the solution where HW =H = Hoo’ and

T - X-l 2 3
T—:o = 1+ 5 MOO (l'u )

Finally the stream function and x-component of velocity in the

mixing region are given by the expressions

Vi, y) = xE[£ () + xtoln) + 2 £ 0m) + === |

and
u(x, y) = x%[fo'(n) + xf)(n) + x® £/(n) + -_-]
L
where n = y/x3

Since fo(n) vanishes at n= 0.9 (Fig. 4A) the dividing streamline lies
above the x; -axis and has the shape y = const. x% initially. This re-
sult agrees with the result of Rott and Hakkinen(g). The shape of the
dividing streamline in the next approximation is found from the relation
X = - f—ig(%.]-y) ; '”q,:o increases slightly with increasing x. The value of
u = u* along the dividing streamnline can then be found, and is plotted
in Fig. 6 up to x = 0.5, the joining point with the far-field (Section IV).
The growth of the mixing layer and some typical velocity profiles are

shown in Fig. 7.

(2) Arbitrary Initial Velocity Profile With a Finite Slip

In this case the initial velocity profile has a finite slip on the

dividing streamline. Instead of using free stream velocity as reference
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velocity we choose the slip velocity uls<,t° npn~dimensionalize the
velocity field.
Then

U
3 R —

— s
Vqu Y*K—- )IulsL\)oo
15 8 u’lsL
x=-—-—-——X-L Rs = v
L ©0
y= L YR H = 'ﬁ§’”
L s o0

The normalized stream function for the inner sub-layer is

Y (x, ) = €7 £(E,n)

where
1/n
E = x / n = % .
The matching procedure is similar to that of case 1, but the inner

series expansion is assumed to be of the following form for conven-

ience later:

£(E, m) = fo(n) + aBfy (n) + bE® & (n) (19)
In order to calculate the subsequent development of the "outer"

viscous flow, not only uouter(o’ y) must be specified, but also v(o, y), and
3 ;i (o, y). By referring to Eq. (8) and (9)one

ox
sees that these equations reduce to a single first-order linear differen-

all the partial derivatives

tial equation for v{o, y) when u(o, y) is specified. Therefore the value
of v(o,y) at only one location y = y¥* is sufficient to determine the initial
v-distribution and also g—}% (o,y) [Eq. (8)]. Similarly, by differentiating

Eq. (8) and (9) s-times with respect to x one can easily show that the

resulting equations reduce to a first-order linear differential equation
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s

s
for (2—\5’-) , so the value of —a-—;i (o, y) at only one point is required
Ox x= s+l ox

. u .
to determine g—;rm) (o, y) uniquely.

0

As an illustrative example, suppose we consider the special,

s
simple case in which u(o, y) # 0, but v(0, 0) = (8v> = (8 V) =0, all s.
9% xS
0,0 0,0

3

>
The calculation is carried out most conveniently by substituting an ex-

pansion of the form

2 3
Wsouter(x’ y) = q)So(y) + stl(}’) + z?:;—Q'CFJSE(Y) + %{Tmsa(Y) 4 oemn

u (x )=¢'()+ '()+§?- (y) + g Ay) + == (20)
outer'™ ¥ soWV! T g \V) T 5T P V) T 37 @5, 1Y
. XQ‘
vQuter(x’ y) = - [msl(y) + XCPSE(Y) + :’:TCOSB(Y) + -]

into the boundary layer equations. By collecting terms of order xr,
wherer = 0, 1, 2 --- , and equating the sum of the coefficients of %

to zero, one obtains the following equations for stl, Pgys Psy === -

7 ¢ ¢ ”"
Psy, -~ ¥sg ‘3951 +°Pslmso = 0

tr PR 7 ¢ re e
Bsy = Psy ~PguPs, TP5 P, + 905, P55 =0 (21)

ire

’ ’ 7 ’” i '
Psa ~Psgp ¥y ™ 36@51@324.@51@32 +2°Psﬂ°9s1 +C053°Pso =0

u
Since u = cpso'(y) - _‘;1025 as y - o , we must have cpsl' = CPS;(Y)
--- = 0 as y »ow. Inspection of Eq. (21) shows that this condition

is automatically satisfied if m,sc)',’ Cpsé", etc. = 0 sufficiently fast as

Y = o0 However‘ the condition that v{o, o) and all partial x-derivatives
of v vanish at x = 0, y = 0 means that [Eq. (20)] cpsl(O)chséO) = === 0,
By employing these boundary conditions Eq. (21) are solved by quadra-

ture:



msl(y) Cpso 2, 4 dy'
° pg, (v)
Y g, g v ©s y 95”7
wsgybwso{g o dy’+g — dy’ S — Y'],
o CPSO 0 ¥s, 0 ¥g,
etc,

[Note that s, (o0), Cpsg(“’)’ etc. are all # 0]

Suppose that the initial velocity profile with slip U1s aty=0is

assumed to be of the following form as y = 0:
u (y) = @g (y) = 1 + Ay + By® + Cy® + Dy* + ---

where A, B, C and D are constant coefficients describing the shape of

the initial velocity profile. As y = 0 (Eq. 21a)
QPS,_(Y) - 2By + 3Cy® + y® (4D-AC + 2 B3 + ---

Psy(y) = 6(4D-AC)y + --~-

By substituting these expressions into Eq. (20) one has

3
[V ole ¥)guter = Pod¥) + % 9y (0) + F 0gyy) + ===

y
A B C D
AR S ALE D ALE AR S ARtk
+ x [2By + 3Cy® + (4D - AC + £ B?)y® + --- ]
x ~ '
+'Z‘![6 (4D - AC)y + =«==] + -==

By changing to inner variables (y = En, x= gn), we obtain
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A B C D
[V (B.m] = En+ 3 €70 + S 8%n° + 2 8%n* + 2 E5rP + -

+ g87[2BEn + 3CE®n® + (4D - AC + €B?) €3¢ + - ]

in
+ 5 [6(4D - AC)EN + === ] + ---

The inner expansion is

m+l m+2

Ve(Bom) = B E(m+a 87T fi(m) + b BT gy (n) 4 -

where n = m+1.

By matching ¥, weget m=1 and n=m+l = 2.

~Vou
nlgner YQ.‘.'-’:(?T
Thus

ws(g, n)

Bf (n)+aBhn)+bE® fr(n) + --- (22) .

where "a=A , b= B
and fo{n)wﬂ
fi(n) ~3n° as 1~ o

Similarly by matching W her and U ter Ve obtain
/
f(n)~1
£,'(n) ~ as M = o

f(n)~n° +2
After substituting [\VS(E, n)]inner into the momentum equation and col-

lecting terms of order Em we obtain three sets of differential equations

2

with the corresponding boundary conditions:
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f/~0 m= -0
Y r ’ e
2 £ + 16 -fo'fl t2f] f; =0
14 n il

f,7~n

fl, = 0 n- -0
28 2 v 3 =21 1) 4+ (£)°

o o o
n-ew

£~ 42

fa' =‘ 0 n - -0
The final formula for the velocity profile in the mixing region is given
by

u= fo'(n) +Ax3 £,'(n) + B x £3ln) + O(X%) (23)

while

3
2

i
= x2 fo('q) + Axfy(n)+ Bx®fz(n) + ---

Winner

The velocity profile depends not only on these universal functions

fy, £, fz and so on, but also on the'parameters A, B, --- of the initial
profile. A tabulation of the universal functions is given at the end of
this paper and these functions are plotted in Figs. (5A) through (5H).
The progress of u® with x/L is shown in Fig. 6 for quadratic initial
profiles, where the triangles indicate the junctions with the far field
solution (Sec. IV).

The solution for the enthalpy field is similar to the case of the

initial Blasius pr ofile.
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Now the y-component of the velocity in the inner sublayer must

match the corresponding velocity component in the outer layer.
AL
VE 35 T "QPsl(Y)'XQPsQ(Y)"’“‘ s OF
ve-[2By+3Cy®+---]-x[6(4D- AC)y + -=-]+ ---
In terms of inner layer variables,

v=-2BEmn - 3CE2p°

In the inner layer

_ 8y _ 3 .3 _ 1
ve-ghe - B Ix® HE M) = - gg (£4 8L - 0l

= zlg-if'nfo' (n)-£_} + Alny' (n)-2£, (n)} E+B (nfs'-3£5)8° + ---]

Since
e () - £ =0 h
nfy(n) - 2f,(n) = 0 $ as n =0
nfe - 3fp = -4n
v - - 2BEN + --- as 1= w
so that |

V. - v
inner outer
n - oo y—o
This result tells us that in the slip case there is no additional lateral

displacement produced by the mixing process.
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1
As x= 0, u- fo'(n) and ¥ - x* fo(n), according to Eq. (23).

inner
Now the differential equation for fo is identical with the corresponding
equation for Chapman's problem, but the boundary conditions on fo(n)
are slightly different. Because of our insistence that the additional
induced normal velocity component should vanish in the outer layer,
- the Chapman condition fO(O) = 0 is replaced by the condition fo -n
as 1 = w. By referring to Fig. 5A, one can see that in the present
solution fo vanishes when n= - 0.5273, and Fig. 5B shows that
fo' = 0.587 along this parabola. In other words the dividing streamline
lies below the x-axis at first when the initial slip velocity is not zero
(Fig. 8), but the velocity normalized by the- slip velocity is the same
function of \;//Y;;— as in Chapman's solution. On the x, -axis itself
u-—0.68 and ¥/fx = 0.3 as x = 0.

According to Table II, f,(0) = 0.3378 and f;(0) = 0.8457, so

i
Y(x,0) = 0.3x2? - 0.84Ax + --- , and the dividing streamline crosses

o 94'—15531. For example, for an initial

quadratic profile with u, = 0.4, A=0.6, so x = 0.38 (Fig. 8).

the x; -axis again when x = x

R

This behavior of the dividing ‘streamline can be understood on the basis
of simple physical consideratiéns. When the initial profile has a finite
slip velocity the x-component of velocity drops instantaneously to a
value of 0. 68 uy along the x, -axis. As the mixing region grows with
increasing x; the mass flux defect contributed by the mixing increases
at first (Fig. 8), so the contribution to the displacement thickness is
initially positive and increasing. Thus the dividing streamline must

have a negative slope and must lie below the x, ~axis initially in order

to counterbalance the normal velocity component induced by the mixing
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region. However, the velocity on the Xq. -axis increases with down-;
stream distance [u(x, 0) - 0.69 + 0.58 Ax% +1.03 Bx] + --- .
For small initial slip velocity u(x,0) soon reaches and then exceeds
Uy (Fig. 6), and the mass flux defect in the mixing region changes
to a mass flux surplus. Thus the slope of the dividing streamline
must change sign from negative to positive, and the dividing stream-
line must cross the x; ~axis and lie above it in order not to disturb the
streamlines in the outer shear layer. The smaller the value of Uy the
sooner the dividing streamline crosses the x, -axis.

Now one knows that u(x, 0) will not exceed the final asymptotic
value of 0.573U in any event, so when the initial slip velocity is large
enough (u.‘ls > 0.5730, roughly) then u(x, 0) > u and the dividing stream~ -
line always lies below the x;- axis in the near field.

On the other hand when the initial velocity profile is a no-slip
profile the velocity along the x; -axis begins to increase immediately
after the flow leaves the edge. The contribution to the displacement
thickness made by the mixing region is negative, and its magnitude
increases with increasing %, . One concludes that the dividing stream-

line must have a positive slope in this case, and must lie above the

X, ~axis in the near field, as shown in Fig. 7.
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IV. FAR FIELD SOLUTION: MOMENTUM INTEGRAL METHOD

The momentum integral method is a very useful and convenient
approximate method for treating boundary layer and separated flow
problems. For the constant pressure mixing problem, Kubota and
Dewey(4) applied the integral method in a direct and simple manner.
They represented the velocity profile by a simple analytic function
containing several parameters that are allowed to vary with x. They
divided the shear layer into two portions above and below the dividing
streamline. By multiplying the momentum equation by uj(j= 0,1,2,3--)
and integrating across the shear layer, coupled ordinary differential
equations are obtained which describe the variation of the velocity pro-
~file parameters in the x-direction. Boundary conditions are also ap-
plied at the extremities of the shear layer. The total number of bound-~
ary conditions and moment equations must be equal to the number of
parameters appearing in the velocity profile. Kubota and Dewey inte-
grated the differential equations numerically, starting with an assumed
velocity profile at x = 0. The calculation is continued uritil a similar
profile corresponding to x - o is reached.

In the present problem the velocity profile changes rapidly
with distance in the x-direction just after the flow leaves the edge.
Thus the momentum integral method is not expected to give good results
in the near-field. But after a certain distance the velocity profile
changes slowly and the momentum integral method should be applicable.
Integration of the equations is started from some x > 0 where the new

initial profile is determined by the near-field solution.
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The shear layer is divided into two layers: region (A), 6,>y>0
and region (B), -65<y<0. Now integrate equation (9) separately in the
two regions
Sil u?‘-dy+ Szl vgl‘-dy_ Sil g—-z-—dy

and

o o O a2
S u-a—‘idy-rg v—a—}%dy':S audy

y
~where v can be replaced by v = - S (%:%-) dy. Upon integration the
o

above two equations can be written as

[a,_ S £(1-£)d :l ¢ (81,1 | ., (23a)
and |
Sl §eol-2 G,
where
f(n) = u 'n=§’; fory§>o
gin)=u €=-§{; for y < 0

We take the velocity profiles in the two layers to be of the fol-

lowing simple forms:

£(mn)

1 - (l-u*)(1-mp"
n,r=1 (24)

g(€) = ux(e+1)"

s

where u¥ is the normalized velocity along the dividing streamline, and

n and r are arbitrary constants.
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The shear stress must be continuous at y = 0, so

&) - ),

From equations (24) and (25)

= ¢ i - (26)

and Egs. (23a) and (23b) become

d {1 1-u* _ n(l-u¥) .

(00 (gy - ) ] 2 - @)
2

d u* _ ru*® ,

Three unknowns §,, 65 and u* are determined by the above three

equations and the corresponding initial conditions.
6y -'610 63 = 6, u*-’ug as x = x

where n and r are determined by the shape of the initial velocity pro-
files. Kubota and Dewey used n= r = 2 and Reeves used n = r = inte-
gers > 1. In the present problem n and r may be any positive numbers

greater than unity.

A relation between 8, and u™ can easily be obtained by direct

integration of Eq. (27), namely

l-u*® ru*
1 o
6, _ (1~u0*) (n+l h 2n+f> n(l-u,* ){2r+1)
T = Oz (29)
10 (1-u) (= - 1“¥>~ Lus
nt+ 2n+1l n(l-u¥*)(2r+1)

From equation (29) if we let 61"/610 - 00, the limiting case of
Chapman's similarity solution should be reached. Hence

(n+l)(n~r)u*3 ~n(2r+l)(n+2)u*2 -n(2r+1)(n-1)u*+n®(2r+1) = 0
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The far field region for the Blasius initial profile was solved
by using the above method starting from x= 0.5. It is found that
n=1.5and r = 2.7 in order to fit the velocity profile at x = 0.5. In
this particular case u* = 0.579 as x = o0, which is very close to Cha?-
man's value of 0.587.

“10 N

For a particular slip case with - = 0.4 the numerical inte-
gration is started from x = 0.5. Here n and r are found to be 2.4 and
2.5 respectively, and u®* = 0.594 as x - .

The growth of u* in the far field is shown in Fig. 6. The results
for the slip case are in good agreement with Kubota and Dewey's quad«;
ratic integral solution and Reeves' high shear integral solution. The
" Blasius case almost identically coincides with Denison and Baum's
solution for Blasius initial velocity profile.. Since the velocity along
the dividing streamline is larger for the finite slip case than for the
non-slip initial profile, the vorticity is larger and u* increases much
faster with x (Fig. 6).

Although the momentum integral method gives good results for
u* and shear layer thickness it is not expected to furnish highly accu-
rate velocity profiles. For this reason no attempt has been made here
to match the y-component of velocity and the location of the dividing
streamline with the near field solution at the junction point. By includ-
ing interaction with an "external" supersonic flow (for example) one
could determine the correct shear layer flow approaching the Chapman
solution as an asymptotic limit as x = o, either by using an integral

method or by using a finite-difference approach.
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V. SUMMARY AND CONCLUSIONS

1. The present theoretical study shows that the constant-
pressure laminar mixing of an initial shear layer with a quiescent
fluid occurs without developing a line of singularities at the starting
position (x = 0). The only singularity lies at the originx=0;, y= 0
itself. The line of singularities is removed by abandoning the con-
ventional restriction that the dividing streamline must coincide with
the x-axis.

2. For an initial Blasius velocity profile with no slip the
progress of the inner mixing layer in the near-field is described by
‘the stream function Y(x,y) = x% [fo(n) + xfy(n) + x° fe(n) + ~-- ] where
n = y/(x%) and the functions f,, f; are given in Figures 4A-4D, and Table I.

For an arbitrary initial velocity profile with finite slip of the

u

%
form ol 1+Ay+ By® + Cy® + --- as y = 0, the inner mixing layer
s

in the near-field is described by the stream function
i 3
Yix,y) = %% £ (n) + Axf, () + Bx? foln) + ---

where fo’ f,, f3 are given in Figures 5A-5H, and Table II.

3. For the Blasius initial velocity profile the dividing stream-
line lies above the x-axis in the near field. For the arbitrary initial
velocity profile with finite slip the dividing streamline always lies be-
low the x-axis at first. When the slip velocity < 0.573 U (approx.) the
dividing streamline later crosses the x-axis at some location and lies
above this axis; the crossing point is closer to the origin the smaller
the initial slip velocity. When the slip velocity > 0.573 U the dividing

streamline stays below the x-axis in the near-field. This behavior
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is quite plausible on the basis of simple mass flux considerations.

| 4. The far-field development is obtained by using a momentum
integral method starting at an appropriate downstream location, where
the velocity on the dividing streamline and the shear layer thickness
are joined to the new field solution. In this manner the progress of
the mixing over the whole field can be followed in any particular prob-
lem for an arbitrary initial velocity profile.

5. All of these results are readily transformed to a compres-

sible flow by using the Stewartson transformation.
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APPENDIX A

The differential equation for f; and its boundary conditions are:

1ot i P Y -
3 v2f g -3¢l 8 +38/8 = 0

f(n) = 0 n = oo
f,'(n) = 0 = o0
fi'(n) = 0 n = -

Since the above differential equation is linear and homogeneous, we can

write the general solution in terms of three linearly independent solu-

tions
f(n) = Ag(n)+ B hin) + C p(n) (A1)
du du
Now match ) ith -——-)
(5_ inner b (By outer
9 3 11 o® 2
R R SR S e L
Youter ay? :
3
X 11
+ 3l at-an]

21 4
%) = £ =1+ E5"n) + 86" (n) + 826 (n) + ---
Y/inner m °

by matching

du - du)
W 9y outer
y—o

inner

f5(n) ~ a
‘ fln(ﬂ)
f2''(m)

it
[

as 1 - oo

it
(=]
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From the first two boundary conditions f,(n) = 0, fl'(n) =0asn=ow
and the above new condition fl"(n) = 0 as 1 - we can write

equation (Al) as

f1(00) = Ag(oo) + Bh(w) + Cp(ew) = 0
f, (00) = Ag(o0)+ Bh (o) + Cple0) = 0

£ (0) = Ad(00) + BH'(w0) + CP(0) = 0

Since g(n) , h(n) and p(n) are three linearly independent solutions
and the Wronskian does not vanish, we must have A= B= C= 0, or

f;{n) = 0 is the unique solution.

APPENDIX B

Numerical Integration of a Third Order Nonlinear Ordinary Differential

Equation with Boundary Condition at Positive and Negative Infinity

The differential equation for fo is nonlinear and third order,
and the three boundary conditions are unfortunately all at infinity. A
closed form solution for the O. D. E. could not be obtained. A special

numerical method was employed here for solving this particular prob-

lem.
The method is illustrated as follows:
. . . 147 77 7 2
Differential equation 377 + 2ff° - (f)) =0 (B1)
Boundary conditions - f(x) ~ Z %P

2 X = 0 (Bla)

f{ix)~ ax

filx) =0 X = =00 (B1b)
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Procedure

1. Transform the above equation into a set of three first

orders. With £/ = u’ we get

vl = -E2fv+id®
u' = v (B2)
£ = u

2. Integration for an estimated set of initial conditions at x = 0.
For given initial values £(0) = £, £40) = u(0) = u, f"(O):v(0)=v0,
integration in both negative and positive directions can easily be done
by a Runge-Kutta method. A few test integrations will give u-curves
of the kind shown in the accompanying sketch.
The values of Ui C and B depend on the chosen initial values
- of fo’ ug and v They can
[ Y be obtained from the results
of the integration (list of the
functions f, u, v) by realizing
that B is identical with V(x)
and C = [u -%(—) - x] for large

positive values of x. The

u(x) R

u min-— 74 c

boundary conditions are satisfied. The boundary conditions (Bla) de- .

‘ problem is now to find a set

of initial values such that the

mand B = a and ¢ = 0, while the boundary condition (Blb) requires

u . = 0(u_.
M mi

min = 0 means that at the same x value u= 0 and u’'=v=0

n

and thus, because of the first equation of (B2}, all further derivatives

of u are also zero).
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3. Systematic improvement of the initial values:

i), [3(1) withi= 1, 2, 3, 4 be

Let £ 1) (B () ()
(¢} (8}

o ’ “min
4 sets of 6 values each, where the first three were chosen and the last

three resulted from the integration.

If the first three values were reasonably estimated such that
the last three values are not too far away from the desired values
U in = 0, c= 0, B= a, then improved initial values fo*, uo*, vo* can

be obtained from the following system of linear equations

(1 au (D adD adD ) en u vy
min o o ©
of ki ou ¥ ov Gl
(2) 2) (2) o i °
1 Au AC( Aa Ta (au ) <8u
min min min
) ) . afo 3¢ auo 3 avo ]
1 (8C> ( dc > ( oc )
oOf Xx gu ¥ ov_ X
" (4) o 2 =
1 " bha 5_(‘-gfl_-) (8ﬁ ) ( 9p )/
(A am o m)
o (o] o
2y L (2) +\2)
o o o
= (B3)
f(3) " it
o
(4:) 19 1!
LfO 7
with ’
(i) _ (i) = o (1)
BUnin = Ymin © %min = “min
act o el L oes o Ie (B3a)
AB - ﬁ(i) - ‘3*

One can consider f , u_and v_ as functions of u_ , , ¢ and B. If the
o’ "o o min
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() ) g

setu_'. ,
min

is sufficient close to the set u*min’ c*, pB*, the

values of fél), uc()l) and vcgi) can be approximated by the linear term of
the Taylor series
. of x . af .
(i) x o (i) * ) (1) _ %
fo ~ fo +(5u . ) (umin-umin)+(8c>(c c¥)
min ;
of .
i
+(52) 6% - g7

du *®

g (e T -t (e

o) o min c
min

+ () 69 b

. ov ® . ov .
(i) (i) 0 (i)
vcl ~ vg‘ + (Eu;in) (urlnin - u?nin) * (\ ac )‘C - c¥)

¢ (%ﬂ) 1) - )

withi= 1, 2, 3, 4, then this is a system of 12 linear equations which
can be written in the matfix form as (B3).

Similarly other sets of nonlinear ordinary differential equations
appearing in the previous section can be solved in the same manner.
This system is set up and solved by using a 7094 I‘BM computer,

Magnitude of allowable error is of the order of 10_6.
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TABLE I (a)

Blasius Initial Velocity Profile

no £ £y ty
0 -. 32775 .29227 . 14534
.25 -.24998 .33052 . 16078
.50 -, 16215 .37272 ‘ . 17688
.75 -. 063279 .41900 . 19342
1.00 . 04768 . 46944 .21013
1.25 ‘ 17179 .52405  .22670
1.50 . 31006 . 58276 .24280
1.75 . 46350 . 64539 . 25809
2.00 . 63306 L71171 .27225
2.25 - .81963 .78140 . 28498
2.50 1.02401 .85407 . 29609
2.75 1.24688 . 92930 . 30546
3.00 1. 48884 1.00666 .31308
3.25 1. 75036 1.08570 .31902
3.50 2.03180 1.16605 .32347
3.75 2.33346 1.24733 .32664
4,00 ~ 2.65553 1.32928 .32879
4.25 | 2.99814 1.41167 .33018
4.50 3.36139 1.49433 .33102
4.75 3. 74532 1.57715 .33150
5.00 4. 14997 1.66006 .33176
5.25 4.57356 1.74302 .33189

5.50 5.02149 1.82601 .33195



6.00
6.25

6.50

6.75

bt} 25

-1.00
-1.25
-1.50
-1.75
-2.00
~2.25
-2.50

-2.75

-3.00"

-3.25
-3.50
-3.75
-4.00

“4- 25

TABLE I (a) Continued
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f

o
5.48837
5.97599
6. 48437
7.01349
7.56337

8.13399

-. 39643
-. 45693
-. 51012
-. 55678
-. 59764
-.63337

-. 66457

. *™e 67178

-. 71548
-. 73611
-. 75405
-. 76964
-. 78317
- 79492
-.80511
-.81395
-.82161

fo'
1. 90900
1.99200
2.07500
2. 15800
2.24100

2.32400

. 25778
. 22683
. 19918
. 17458
. 15276
. 13347
. 11646
. 10151
. 08838
. 07689
. 06683
. 05805
. 05040
. 04373
. 037927
. 032879

. 028492

. 13071
11702
. 10433
. 09267
. 08204
07242
. 06377
. 05602
. 04911
. 04298
. 037558
. 032775
. 028567
. 024874
. 02163
.01881

. 01634
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TABLE I (a) Continued

n g £y £y’
-4.50 -. 82824 . 024682 .01418
4,75 -.83399 .021376 . 01231
-5.00 -. 83897 . 018507 .01067
-5.25 -. 84327 016019 . 00925
-5.50 -. 84700 . 013863 . 00802
-5.75  -.85023 .011994  .00695
-6.00 -.85302 .010374 . 00602
-6.25 -. 85544 . 00897 . 00521
-6.50  -.85752 . 00775 . 00451
-6.75 -.85933 . 00670 . 00391

-7.00 -. 86089 . . 00579 . 00338



.25

.50

.75

4.00

4.25

4.50

4,75

5.50
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TABLE I (b)

Blasius Initial Velocity Profile

f3

-. 009719
-. 03006
-. 05527
-. 08626
-+ 12409
-. 16997
-. 22528
-. 29161
-. 37076
-. 46478
—.57603
-. 70723
-.86149
-1.0424
-1.2543
-1.5017
-1.7904
~-2.1267
-2.5178
-2.9718
-3.4978

-4.1062

-4.8080

f3'
-, 07276
-.09053
- 11173
-, 13688
-. 16655
-, 20140
-. 24217
. 28967
-. 34486
-. 40886
-. 48296
. 56869
. 66785
. 78253
. 91515
-1.0684
-1.2455
-1. 4496
-1.6843
~-1.9537
2. 2616
-2.6125

-3.0107



7. 50

8. 00
8.25

8.50

9. 00
-. 25
-.50
-. 75
~-1.00
-1.25
~-1.50
-1.75
-2.00

~2.25
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TABLE I (b) Continued

£
"5. 6158
"6. 5432

-7- 6051

-8.8175

-10.198
-11.765
-13.540
-15.544
-17.801
-20.335
-23.173
-26.344
-29.879
-33.808
. 00656
. 01947
. 02958
. 03741
. 04337
. 04782
. 05106
. 05334

. 05485

f3'
-3.4609
-3.9681
-4.5372
-5.1736
-5.8828
-6.6704
-7.5423
-8.5048
-9.5641
-10.727
-12.000
-13.390
-14.904
-16.551
-. 05795
-. 04568
-. 03558
-.02732
-. 02060
-. 01519
-.01087
-. 00744

-. 00476

A5
-1.9115
-2. 1491
~2.4075
-2.6874
-2.9896
-3.3151
~3.6647
-4, 0393
-4,.4397
-4.8668
-5.3214
-5,.8044
-6. 3167
-6.8591
-. 05390
-. 04451
-, 03652
-. 02977
-. 02408
-, 01933
-. 01538
-. 01212

-. 00943



-2.50
-2.75

"‘3- 00
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TABLE I (b) Continued

V4
fs £5
L05577 -. 00268
.05623 -.00110
. 05635 . 00007

o
f3

-. 00724
-. 00546

-. 00403



n
0

.25
.50
.75

1. 00

1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4. 00
4.25
4.50
4.75
5.00

5.25

fo

. 33782

.51670

. 70686

. 90748
1.1176
1.3360
1.5616
1.7931
2.0296
2.2698
2.5130
2.7583
3.0052
3.2532
3.5020
3.7512
4.0008
4.2505
4.5004
4.7503
5.0002
5.2502
5.5002
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TABLE II

Initial Velocity Profile With Finite Slip

P
o
. 69202
. 73856
. 78219
.82213
. 85779
. 88881
. 91507
. 93668
. 95396
. 96738
. 97749
. 98488
. 99011
. 99372
. 99612
< 99767
. 99864
. 99923
- 99958
499978
- 99989
- 99994
. 99998

fé’
. 19080
. 18090
. 16760
. 15153
. 13353
. 11456
. 09558
. 077512

. 061041

. 04666 -

. 03460
. 02489
. 01736
. 01174
. 00769
. 00489
. 00301
.00179
. 00104
. 00058
. 00031
. 00016

- 00008

£
-.84571
-. 68023
-. 47101
-.21498
. 09030
. 44667
. 85541
1.3175
1.8335
2.4041
3.0299
3.7117
4.4502
5.24653
6.1009
7.0148
7.9889
9.0236
10.120
11.277
12. 497
13.779

15.123

fl'
.57922
. 74713
. 92864
1.1212
1.3223
1.5295
1.7411
1. 9557
2.1729
2.3924
2.6147
2.8400
3.0686
3.3008
3.5365
3.7754

4.0172

- 4.2613

4.5072
4. 7545
5.0028
5.2517

5.5011

f{’

. 64136
. 70045
. 74990
. 78894
. 81799
. 83859
. 85302
. 86384
. 87339
. 88339
. 89479
. 90771
. 92168
. 93589
. 94945
. 96165
.97201
. 98034
. 98671
. 99135
. 99458
. 99673

. 99810



-.25
-. 50
- 75
-1.00
-1.25
-1.50
-1.75
-2.00
-2.25
-2.50
-2.75
-3.00
-3.25

-3.50

f
o)

5.7502
6.0002
6.2502
6.5002
6.7502
7.0002
7.2502
7.5002
7.7502
8.0002
. 17085
.01617
-, 12607
-. 25597
-.37381
-.48006

-. 57532

-. 66028

-, 73572
-. 80242
-.86119
-. 91281
-. 95803

-. 99755
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TABLE II Continued

£
o
< 99999
1. 0000
1.0000
1.0000
1. 0000
1. 0000
1. 0000
1.0000
1.0000

1. 0000

. 64347
. 59387
. 54416
. 49522
. 44782
. 40257
.35995
.32028
. 28375
. 25042
.22026
.19318
. 16902

. 14759

£
0. 00004
0. 00002
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
. 19694
. 19923
. 19784
. 19315
. 18567
. 17600
. 16475
. 15249
. 13974
. 12692
. 11437
. 10236
. 09106

. 08058

£

16. 529

17.998

19. 530
21.123
22.780
24.499
26. 280
28. 124
30. 030
31.999
-. 97115
-1.0607
-1.1189
-1. 1503
-1.1594
-1.1507
-1.1280
-1. 0950
-1.0548
-1.0099
-. 96240
-, 91406
-.86616
-.81965

f;
5.7507
6. 0005
6.2504
6. 5003
6. 7503
7.0003
7.2503
7.5003
7.7503
8. 0003

. 42710
.2924
. 17600
. 07807
-. 00197
-. 06529
-. 11347
-. 14835
-. 17190
-. 18604
-. 19260
-. 19324
-. 18938

-. 18225

f;'
. 99894
.99943
. 99971
. 99986
. 99994
. 99998
1.0000
1.0000
1.0000
1. 0000
. 57451
. 50254
.42849
. 35537
. 28579
.22182
. 16483
. 11554
.07411
. 04025
.01336
-. 00733
-. 02270

-. 033617



. =3.775
-4. 00
-4.25
~-4.50
-4.75
-5. 00
-5.25
-5.50
-5.75
-6. 00
-6.25
-6.50
-6.75
-7.00
-7.25
-7.50
~7.75

-80 00

f
o}

-1.032

-1. 0621
-1.0882
-1.1109
-1. 1307
-1.1479
~1.1628
-1.1759
-1.1872

~1.1971

-1.2057

-1,2133
-1.2200

-1.2258

-1.2310

"1‘ 2356
-1.2397

-1.2434

£
o
. 12866
. 11202
. 09745
. 08473
. 07366
. 06405
. 05572
. 04852
. 04231
. 03695
. 03233
. 02836
02495
. 02202
.01951
.01736
. 01551

. 01393

45

TABLE II Continued

7
(o}
. 07097
062268
. 05443
. 04744
.04124
. 03576
. 03095
. 02674
. 02307
. 01987
.01710
.01470
. 01263
. 01084
. 00929
. 00796
. 00682

. 00584

R [

i ] i ] I ] ] i ]

fl
. 17522
. 73333

. 69426

. 65814

. 62499
. 59478
. 56738
. 54266
. 52045
. 50056
.48281
. 46701
. 45299
. 44058
.42961
.41994
.41142

. 40394

f{'
-. 17287
-. 16205
-. 15044
-. 13851
-. 12666
- 11513
-. 10412
-. 09375
-. 08408
-. 07515
~. 06697
-.05951
-.05275
-. 04666
-.04118
-. 03628
-. 03190

-. 02800

144

1
-. 04088

f

-. 04525
-.04736

-. 04776

. 04691

. 04516

. 04282

. 04011

. 03720

-. 03422

. 03126

. 02840

. 02567

]

.02311

. 02072

. 01853

. 01651

.01468



. 25

‘50

.75

1. 00

10 25

1.50

2. 50
2.5
3. 00
3.25
3. 50
3.75
4,00
4.25
4,50
4,75

5. 00
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TABLE 11 Continued

fZ
0.69900
0.99891
1.39167
1.89539
2.52944
3.31453
4.272776
5.,42780
6.80507
8.43181
10.33702
12.55117
15.10589

18.03350

2136660

25.13770
29.37902
34.02240

39.39931

45.24090

51.67816
58.74196
66.46319

74.87274

fz'
1. 03667
1.37371
1. 78045
2.26218
2.82405
3.47139
4,21017
5. 04706
5.98927
7. 04403
8.21794
9.51637
10. 94298
12. 49968
14. 18678
16. 00348
17.94832

20. 01972

22,21631 .

24.53710
26. 98154
29. 54946
32.24094

35. 05620

£
1.21641
1.48386
1.77351
2.08376
2.41467
2.76803

3.14667

©3.55330

3.98922
4.45328
4.94163
5.44822
5.96592
6.48784
7.00842
7.52413
8.03350
8.53678
9.03526
9.53070
10,02474
10.51867
11.01330

11.50898



"Oc 25
-0.50
"00 75

"10 00

-1- 25

"'1. 50
"‘10 75

-2.00

fZ
84, 00162
93.88086
104. 54158
116.01493
128.33210
141. 52431
155. 62280
170, 65879

186. 66354

0.475259

0.31251
0.19736
0.11821
0. 06539
0.03107
0.00912

0.00507

TABLE II Continued

fz'
37.99552
41, 05916
44,.24735
47.56025
50.99797
54,56058
58, 24814
62,06066

65.99817

0.76343
0.54745
0.38152
0.25810
0.16964
0.10900
0.06968
0.04609

”
fZ

12,00577

12, 50354

13.00208

13.50117
14. 00063
14.50032
15.00015
15. 50005

16.00000

0.97382
0.75887
0.57362
0.41880
0.29361
0.19588
0.12239

0.06937
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