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ABSTRACT 

Buckling of circular  annular plates with the outer edge 

clamped and the inner edge f ree  loaded with a uniform radial corn- 

pressive force applied a t  the outside edge has been studied both 

theoretically and experimentally. A differential equation of equi- 

librium of the buckled plate has been developed for any general 

deflection pattern and solutions corresponding to the buckled form 

w ( r )  Cos n 8 have been sought. The differential equation has n 

been solved exactly for n = 0 and n = 1 and approximately for 

higher values of n as well a s  for n = 0 and 1. The solutions in- 

dicate that, for  small ratios of inner to outer radius, the plates 

buckle into a radially symmetric buckling mode, but for the ratio 

of inner to outer radius exceeding a certain minimum value the 

minimum buckling load corresponds to buckling modes with 

waves along the circumference, the number of which depends 

on the particular ratio of the inner and outer radii. Tests  were 

carr ied out using thin aluminium plates and the results  agreed 

reasonably well  with the theoretical predictions, 
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LIST OF SYMBOLS 

a = Outer radius 

b = Inner radius 

h = Thickness of plate 

N = Radial compressive force at the outer edge 
0 

No 
= Critical radial compressive force a t  the outer edge 

Gr 
E = Modulus of elasticity of aluminium 

E = Modulus of elasticity of steel 
S 2 

= Stiffness of plate = Eh" 
1 

v = Poisson's ratio, assumed equal to 1 /3 

Nr 
= Radia l s t ress  resultant 

Ne = Circumferential s t ress  resultant 

Nre = Shear s t ress  resultant 

ee = In-plane radial and circumferential s train prior  to 
buckling 

e '  e '  = In-plane strain during buckling r '  B 

U = Strain energy 

V = Potential energy 

U s V  = In-plane radial and circumferential displacement 
perturbations 

w = Transverse displacement perturbation 

T = Temperature r i se  above ambient 

ec  = Theoretical buckling temperature 

Tc = Experimentally observed buckling temperature 

(Is' a~ 
= Coefficients sf thermal expansion of steel and aluminium 
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INTRODUCTION 

It i s  well known (l)* that (assuming a radially symmetric buck- 

ling mode) the radial buckling load No of a circular  plate with a hole 
c r  

a t  the center can be expressed a s  

where k is a numerical factor, the magnitude of which depends on the 

b/a ratio, The value of k for various b/a ratios for a clamped outside 

edge and f ree  inner edge i s  shown in figure 1. It i s  seen that k 

reaches a minimum for b/a = 0.2 and for ratios l a rger  than 0.2, k 

increases rapidly without bound, This may be explained by noting 

that for  b/a approaching unity, the compressed ring with the outer 

boundary clamped behaves Pike a long compressed rectangular plate 

clamped along a long side and f ree  along the other. Such a plate will 

buckle into many waves. Thus i t  could reasonably be expected that 

in the case of a narrow ring, several waves will be formed along the 

circumference and the values of k obtained by assuming a symmetric 

buckling mode will have higher value s . 
The stability of a thin annular plate under uniform compressive 

forces applied a t  both edges was treated by BPsson (4) and Schubert (5) 

for several, boundary conditions, but in these investigations, the de- 

flection surface was assumed to be radially symmetric, Yamaki (2) 

took into account the possibility of waves in the circumferential direc- 

tion of the buckled plate, but his  calculations showed that for  the case 

* Numbers in parentheses indicate reference numbers a t  the end. 
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with the outer edge clamped and the inner edge f ree ,  the minimum 

buckling load st i l l  corresponded to a radially symmetric buckling 

mode, 

The purpose of this report  was to study the buckling mode of 

a circular  isotropic plate with a concentric hole loaded radially at 

the outer edge which was clamped and having the edge of the hole free. 

The effect of the b/a ratio on the buckling load was sought and the 

possibility of antisymmetric modes of buckling was investigated. A 

short series of simple tests  were carried out to check the validity of 

the theory. 
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THEORY 

Assumptions 

(i) The usual Kirchhoff' s hypothesis regarding the variation 

of displacement and s t resses  through the thickness of the plate a r e  made. 

(ii) The displacement perturbations a r e  assumed to be small  

so that the in-plane Lam4 s t resses  prior  to buckling do not undergo 

any appreciable amount of change during buckling. 

(iii) The system i s  assumed to be perfect. 

Derivation of Governing Equation 

The in- plane equation of equilibrium is 

The Lam6 solution for the plane s t r e s s  case is 

The strains prior to buckling a r e  

P 
e r  = E(Nr-vNe) (4a) 

P 
e g  = - (No-vNr) h E  (4b 

The strain energy due to contraction of the midplane before buckling 

is given by 



During buckling, the in-plane stresses do further work and the in- 

plane strains after bending may be written a s  

Assuming that the forces Nr, Ne remain constant during bending, the 

strain energy due to additional contraction of the middle plane i s  

The strain energy due to bending is - 

2 B a w  - - - - -  
P Brae 2 ae rdedr 

Therefore, the total strain energy of the plate i s  

The f i rs t  integral of eq. (7) can be written with the help of eq. (2) a s  



aNe Since = 0, by using the boundary conditions, the above becomes 

which i s  equal to the work done by the external force. Thus 

where W = work done by external force 

U' = work produced by the in-plane $tresses due to bending. 

. . Total potential energy of the system, V, is given by 

The differential equation of equilibrium may be obtained from eq. (9) 

by making the potential energy of the system have a stationary value 

The variation of the f i r  s t  two t e rms  give 



The variation of the rest s f  the term gives 

Adding all the variations, we get the Euler equation as 



and the boundary conditions 

Since in the present case the outer edge i s  clamped and the inner edge 

f ree  

and 

We also have 

fi= 0 a t r = a  a r  (14) 

w = O a t r = a  (1 5) 

Substituting for Nr and N8 from eq. (3) into eq. (1 1) and defining 



we get 

Try  w = A Cos n8 as a solution. 
n 

Substituting this into (1 7 )  and cancelling Cos nB we get 

Making a substitution of z = 6 I gives b 

Eq. (1 9) together with the boundary conditions (1 2) - (1 5)  properly 

transformed poses an eigenvalue problem. When n = 0, the result 

i s  radially symmetric buckling and eq. (19) reduces to 

dA n where $ = - dz 

A solution of eq. (20) satisfying boundary condition (13) is  
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The imposition of boundary conditions (1 2) and (141, properly t rans  - 
formed, yield the following equation 

A plot of the result obtained i s  given in Timoshenko's "Theory of 

Elastic Stability" and i s  reproduced here on fig. 2. 

n =  1 

Eq. (1 9) reduces to 

Substituting 

A = @z and n 
%'= + 
dz 

this reduces to 

This could further be reduced to 

where c i s  an  arbi t rary  constant and . 

b p Z - 4  
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The general solution of eq. (25) i s  

9 = 1. [A J ( z )  + B J (z) + CS z P -P - 1  , P  (26 1 

where 

and i s  called the Lornmel function, With the help of eq. (23), eq. (26) 

can be written as 

The boundary conditions (1 2)-(E 5) reduce to 

Satisfying these boundary conditions leads to the following equations 

For a nontrivial solution of A and E3, we must have 



A plot of the result is given on fig, 2 .  

Approximate Solution (Energy Method) 

As sume a deflection pattern 

w = An(r) Cos n 9 

Putting this expression in eq, (9) and integrating over 8 ,  we get 

for n;F 0 

and 

for n = 0 

where ( )' denotes differentiation with respect to r .  

For the purpose of calculation the function An was chosen to be 

1t satisfied all the displacement boundary conditions. From fig, 2 

it is seen that the difference between the exact and the approximate 



solutions for n = 0 and n = 1 is not too large, especially for large b/a 

ratio. Hence, in carrying out the approximate solutions fog n greater 

than 1, the same form for  An was chosen. 

Putting this value of An in eqs. (30) and (31) and substituting 

for Nr and No from eq. (3) and minimising V with respect to wo, we 

for n # 0 

and 

From eq. (16) 

a 2 
where k = A,, (7 - 1) 

b 
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The value of k a s  a function of b/a has been plotted for n = 0, 

1 ,  2 ,  3,  4, 5,  6 a n d  l o o n f i g .  3 ,  The exact so lu t ions fo rn=  Oand 

n = 1 a r e  plotted with the approximate ones in fig. 2 and it i s  seen 

that they agree reasonably well for  high b/a ratio. It is evident from 

fig. 3 that the trajectory of the minimum buckling load increases 

with b/a rat io without bound. This could be explained by the follow- 

ing analogy. It is known that a long rectangular plate with one of its 

long edges fixed and the other f ree  has a buckling load given by 

where d is the width of the plate and k' i s  a constant. 

In the case of a circular plate when b/a approaches unity, 

the compressed ring behaves like a plate, as described above. 

Therefore, if we redefine a constant kt such that 

k'D Ne (a) = - 
cr (a-b)' 

then k' should approach a finite limit as b/a approaches unity. 

A plot of k' against b/a shown in fig. 4 indicates that the kt corres-  

ponding to minimum buckling load remains finite as b/a approaches 

unity. The value of k' for an infinitely long rectangular plate is 

shown in fig, 4. 
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TEST RESULTS 

To check the validity of the theory, some simple tests  were 

carried out using 0.041" thick aluminium plates clamped between 

two 0.5" thick steel rings by means of 12- 1/2"$ high tensile steel 

bolts as shown in fig. 5. The inner diameter of the steel rings was 

8'' and the outer diameter 10". The following sized holes were used 

in the plates: 

b - b/a 
0' ' 0 

0.5! ' 0,125 

2 ! '  0 . 5  

2. 5 Is  0.625 

The loading was accomplished by heating the whole assembly, so 

that due to different coefficients of expansions, the steel rings put 

a uniformly distributed radial compressive load on the plate. The 

effect of the elasticity of the rings on the s t ress  distribution in the 

plates and on the assumption of clamped edge condition is dis- 

cussed in Appendix A, The tests were done in two parts. 

Test Series A 

The assembly was placed inside a Missimers environment 

chamber in which the temperature could be held at any value for any 

length of time. Strain gauges were attached to t h e  two faces of the 

plate and a pair of opposing gauges R1 and R were connected to two 2 

legs of a Wheatstone bridge a s  shown in fig. 7. The reading of the 

voltmeter, amplified by a factor of 10, was  directly proportional to 

the difference between the strains experienced by R1 and RZ and 



gave a measure of the bending of the plate a s  shown in Appendix B, 

Strain gauges were connected both in the circumferential and 

in the radial direction for the plates with b = 0" , 0.5 and 2' I, and 

only in the circumferential direction for the plate with b = 2.5". SR4 

Baldwin gauges we r e  used for the plates with b = 0" and b = 0.5" and 

temperature compensated micromeasurement foil gauges were used 

for the plates with larger  holes. Copper -Constantine thermocouples 

were soldered onto a b rass  washer and several of these brass  washers 

were attached to the plate a s  well a s  to the steel rings. After each 

increment of temperature, the assembly was allowed to soak heat 

for  about 45 minutes to one hour, o r  until the temperature indicated 

by the different thermocouples were the same. This temperature 

was checked with the reading of a thermometer placed inside the 

chamber, The maximum e r r o r  in measuring the temperature was 

+  OF. Derivation of the critical temperature Bc a t  which buckling - 
occurs is given in Appendix A. 

Tests were carried out to measure the difference in the co- 

- 6 
efficients aE expansion of aluminium and steel. A value of 6.6 x 1 0 

per  OF was used for (aA-%) fo r  the purpose of calculations. 

Due to the presence of initial imperfections the plates started 

to bend from the beginning of loading and a Southwell type plot was 

used to determine the buckling temperature Tc of the perfect plates. 

The reliability of the Southwell plot has been proven for a solid 

plate in  Appendix B. In plotting the Southwell plot, points near the 

origin have been ignored since for  small T the percentage e r r o r  in 

measuring T is large; also points corresponding to temperatures that 



a r e  comparable with Bc have been ignored, since the Southwell plot 

does not hold for such large values of T. See Figs. 8-1 5 inc. 

Test  Series B 

An attempt was made to measure the number of waves along 

the circumference of the plates during buckling by means of an in- 

ductance pickup. The plate clamped by the rings was placed on a 

turn table; the pickup was attached by means of an a rm to a graduated 

optical bench and could be raised o r  lowered by means of a turning 

knob a s  shown in fig. 16. The assembly was heated by means of a 

PO00 watt quartz iodine photographic lamp. The general test  setup 

i s  shown in fig. 17. The lamp was connected in ser ies  with a rheostat 

so that the current through it could be controlled. The pickup was 

fixed a t  a given height from the plate and the current through the lamp 

was increased in steps. At every step, sufficient time was allowed 

to let  the assembly reach an equilibrium state and then the plate was 

rotated by turning the turn table and the output of the pickup was 

plotted directly on an X-Y plotter. Fig, 18 gives the calibration 

curve for  the pickup and the effect of temperature on it. It i s  seen 

that the effect of temperature on the calibration curve i s  small and 

for the purpose of measuring the number of waves around the c i r -  

cumference it  was adequate. It was assumed that, though the temper- 

ature distribution in the plate was nonuniform, i t  would only deform 

the shapes of the waves around the circumference and would not 

change the number, The test  results from the different sized plates 

a r e  given on figures 19 to 23. A thermocouple attached to the plate 

gave an  average value of the temperature of the plate. 
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DISCUSSION OF EXPERIMENTAL RESULTS 

The theoretical buckling temperature Bc for each case has 

been indicated together with the experimentally observed buckling 

temperature Tc in fig. 8 to fig. 15. The valwsof k computed from 

the experimentally observed buckling temperature have been plotted 

in fig. 3 .  The difference between the theoretical and the experimen- 

tally observed values of k a r e  of the order of 10%. This discrepancy 

is mainly due to the inaccuracy in measuring the temperature and 

also due to the slight temperature variation in the plate and the steel 

rings which could not be avoided, Another possible source of e r r o r  

lay in the fact that,  though the voltage output from the strain gauges 

was amplified 1 0 time s , its magnitude was very small and thus 

small e r r o r  in measuring the voltage resulted in considerable rela- 

tive e r ro r .  A direct displacement measurement of the plates under 

loading would be mo r e  desirable, but setting up displacement meas - 
uring devices inside the furnace was inconvenient because of lack of 

space a s  well a s  giving temperature problems, By using two strain 

gauges on the two faces of the plates a s  two legs of a Wheatstone 

bridge, the effect of temperature on the voltage output was minimised 

because both strain gauges were heated to almost the same tempera- 

ture and any effect of temperature on the resistance of the strain 

gauges was balanced out. 

In tes t  ser ies  B, the calibration curve for voltage vs. distance 

varied slightly with temperature and so the distance given on figs. 19 

to 23 a r e  not very accurate. But, since the purpose of the tests  was 

to measure the number of waves around the circumference only, the 



effect of temperature on the calibration curve did not affect the 

results.  The plots in figs. 19 and 20 for b/a = 0 and 0,125 show 

the buckle pattern to be radially symmetric, a s  expected. In 

fig, 21, for the case of b/a = 0.5 the buckling mode i s  seen to be 

radially symmetric, i. e. , n = 0, According to the approximate 

analysis, whose results a r e  shown in fig. 3 ,  the buckling mode 

should be n = 1 though the curve corresponding to n = 0 l ies closely 

above it. In fig. 2 where the exact solutions a r e  drawn, the curves 

for  n = 0 and n = 1 intersect a t  b/a = 0.5. The fact that the exper- 

imental result  showed n = 0 could be explained by observing that 

the plate had more initial imperfection in the n = 0 mode than in 

the n = 1 mode, which agrees with the physical intuition that im-  

perfections with longer wavelengths a r e  more probable than with 

shorter  wavelengths and that axisymrnetric imperfections a r e  most 

predominant. F o r  the case with b/a = 8.625 (fig. 22) the plate 

f i r s t  s ta r t s  to deflect in the n = 0 mode, but with r ise  of temper- 

ature i t  goes into the n = 2 mode. According to fig. 3 ,  the curves 

for n = 2 and n = 3 almost intersect a t  b/a = .625. F o r  the%case 

with b/a = 0.75 (fig. 231, the plate f i r s t  s tar ts  deflecting in the 

axisymmetric mode, but with r i se  of temperature goes into the 

n = 5 mode, which agrees with the theoretical wave number given 

in the figure. These tests  concllusively prove that, for clamped 
/* ' 

outside edge and f ree  inne plate buckles with waves 

ference for b/a exceeding a certain minimum 

value close to  0.5. 
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CONCLUSION 

(1 The energy method using just one t e rm gives a reasonable 

approximation to the true buckling load, particularly for large b/a 

ratios. 

( 2 )  F o r  small  values of b/a ratio the radially symmetric mode 

gives the lowest buckling load. As b/a i s  increased, an unsyrnmet- 

r i c  mode with waves in  the circumferential direction gives a lower 

buckling load than the symmetric mode and the number of waves 

increases with an increasing b/a ratio. 

(3)  The theoretical buckling load increases beyond bound a s  b/a 

approaches unity, but i t  must be remembered that as b/a approaches 

unity, the thickness h becomes of the same order  of magnitude a s  

(a-b), and hence the theory which is based on the assumption that h 

i s  very small  compared to the other dimensions of the plate is no 

longer valid. 

(4 1 It would be interesting to measure the initial imperfection 

of the plate and do a Fourier  analysis on it and experimentally 

measure how the coefficient of each component grows with the load. 

(5) For  large b/a ratios, the buckling curves for different n 's  

a r e  crowded together. Thus for any given b/a ratio in this range, 

the plate will probably s tar t  to buckle in that mode in which the 

maximum initial imperfection i s  present. To check whether the 

plate bifurcates into another mode a t  higher load, a full nonlinear 

analysis has  to be carr ied out. 
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APPENDIX A 

Derivation of Buckling Temperature 

Alternatively 

Since displacements are radially sy-mmetric 

e = -  u du and e = - r dr ' 8 r 

hE dhE and y = - Letting P = - a -V l -v  

The in -plane equilibrium equation i s  

Substituting for Nr and No in terms of u and T 



The solution i s  

Case I. Plate without hole 

and u at r = a i s  aBTa, neglecting the elastic deformation of the rings. 

* 
@ u = aBTr 

Putting the value of u in equation (3 2) 

From eq. (1) 

Case 11. Plate with hole 

Xn this case the boundary conditions are 



Solving for A and I3 and substituting for these in the solution for u 

2 2 
asa (1 -v)+aAb ( l t v )  2 2 

u = T r  - (1tv)a b T 
2 (aA-a*) ;. a2(1 -v)+b2(l+v) a ( ~ - v ) t b  ( l tv )  

Substituting this value of u in eq. (32) 

From eq. (1 )  

Effect of elas ticity s f  ring on prebuckling stress distribution 

In fig, 24, let p be the pressure on the plate applied by the 

ring, Then the pressure on the ring = f$ 

, . Radial displacement of ring 

h a 
2 

= a  s Ta+%= 
s 

 hen the boundary condition (35a) should be replaced by 

and the other equation is as before 



Solving 

and 

2 3 2 2 
phb a ( l t v )  a b (aA-ae)(ltv)T 

B = - 2 (3 7b) 
b ' ~ ~ t ( a ' ( 1  -v)+bZ(l t v ) }  a (1 - v ) + b t ( l + v )  

Using the condition that Nr = -ph at r = a 

where A and B are given above. 

Solving for p 

This value of p substituted irm eq, (37) gives the value of A and B in 

terms of T, 



2 2 3 2 (aA-os)(a -b ) ( l tv)ha b T 

2 2 Es 2 2 
-b )+blt F{a (l-v)-i-b ( ~ - v ) + b  ( ~ t v ) }  

The second term in the expression fo r  A and I3 give the correction 

due to elasticity of the ring. The magnitude of the correction has 

been calculated using the following data 

-6 0 a s = 6 . 7 x 1 0  per F, ~ = 1 3 . 3 r l 0 - ~ ~ e r O ~  

For a = 4 " , b = O W  

% e r r o r  in A for neglecting elasticity of ring 

B = 0 for  both cases. 

- 6 
A =  8 . 8 ~  10 T t .169x  l o m 6  T 

% e r r o r  in A for neglecting elasticity of ring 



. O/o error in B for neglecting elasticity of ring 

The e r ro r s  involved a re  seen to be small, 

The effect of the twisting of the steel ring on We buckling load of 

the plate 

Considering the ring acted on by the twisting moment Mt per  

unit length as shown in fig. 25, it can be shown (3) that the moment- 

rotation characteristic is given by 

Mt = L0 
E bt3 

s where L=- 1 2a log (1 + t/a) 

Consider a solid circular plate loaded radially and clamped by elastic 

support with moment-rotation characteristic given by 

Mt = Le 

The equation of equilibrium i s  

N 
0 2 Let = a and or = u, the above reduces to 

The solution of this equation is 

where @ = - dw and S is the ~ornrne l  function. du 1,1 



Since # i s  finite a t  u = 0, B1 = C1 = 0. The other boundary condition 

i s  

F o r  the specimens used in the test  

( t )  a d r  

The solution i s  

F o r  a perfectly clamped plate 

dw = - L -  dr  

r=a 

Thus for the specimens used the assumption of perfectly clamped 

r=a 

edge condition is justified and can reasonably be extended to plates 

with hole s , 



The pair of radial strain gauges used in test series A measures 

the difference in the radial strains and a pair of circumferential 

strain gauges measure sr the difference in the cixcumfe rential strains 

between the top and the bottom surfaces of the plate. 

dLw . . er  (top) - E (bottom) = t - 
dr 

2 

It dw 
ee (top) - E @(bottom) = - - 

r dr 

Thus the pair of radial strain gauges measure the radial curvature 

of the plate and the pair of the circumferential gauges measure the 

circumferential curvature of the plate, 

Imperfect plate 

Consider a solid circular plate with radially sylnmetric initial 

imperfection wQ(r). The equation of equilibrium is (for small w and w ) 
0 



Since the deflections are radially symmetric 

1 d d l d  No 1 d d(w+w* -- r d r  [ r ~ f ~ Z i r % i } ]  'T T F  (' d r  ) 

Since there is no la tera l  load C = 0. 1 N 
0 Letting = @ and substituting hr = u, where a2 = 

Let J l ( o a ) = O h a v e r o o t s a l ,  aZ, ..... 
dw 00 

an a J (- U) = n l  a - b  J (a r)  a n l  n 
n = l  n=l 

dwo where #o = - dr 

The equation reduces to 

with boundary conditions,+= 0 at u = 0 and @ = 0 a t  u = aa. 

The Green's function for this operator is 

J, ( e ) ~ ,  ( M )  
Jl(a) for & ' ~ u 4 a a  

J1(aa) I 
Using the Green's function the solution of the above differential equa- 

tion can be written as 



For small load No, this can be written as 

Taking only the first two terms of the series 

- 3 . 8  (using al - a 7.01 and a2 = - ) a 

Coefficients of bl and b2 together with the first order correction are 

tabulated on the following page for r = a/2. 



N Coefficient of bl Coefficient of bZ 
0 - 

No 0th order Correction 0th order Correction 
Cr 

N 
O <.C 1 .0 ,  the relation Thus for 

is quite accurate, 

Differentiating eq. (39) it can be shown that 

-Yz(ar)J1 ("'1 

dJ1 b,r) 
where ~ i ( a ~ r )  = dr 

defining 



the above reduces to 

and as before for small loading 

N 
0 and also for - e< 1 . 0  

No cr 

i s  quite accurate. 

Thus from eqs, (38a), (38b), and (40) and (41 ) we conclude that a 

Southwell type plot may be used with the test data to find the buck- 

ling load, 


