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ABSTRACT

Buckling of circular annular plates with the outer edge
clamped and the inner edge free loaded with a uniform radial com-~
pressive force applied at the outside edge has been studied both
theoretically and experimentally, A differential equation of equi-
librium of the buckled plate has been developed for any general
deflection pattern and solutions corresponding to the buckled form
wn(r) Cosn 6 have been sought, The differential equation has
been solved exactly-for n= 0and n= 1 and approximately for
higher values of n as well as for n= 0 and 1. The solutions in-
dicate that, for small ratios of inner to outer radius, the plates
buckle into a radially symmetric buckling mode, but for the ratio
of inner to outer radius exceeding a certain minimum value the
minimum buckling load corresponds to buckling modes with
waves along the circumference, the number of which depends
on the particular ratio of the inner and outer radii. Tests were
carried out using thin aluminium plates and the results agreed

reasonably well with the theoretical predictions.
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INTRODUCTION

It is well known (1)* that (assuming a radially symmetric buck-
ling mode) the radial buckling load N°cr of a circular plate with a hole

at the center can be expressed as

' . D
NO -k——z— (1)
cr a ~

where k is a numerical factor, the magnitude of which depends on the
b/a ratio. The value of k for various b/a ratios for a clamped outside
edge and free inner edge is shown in figure 1. It is seen that k
reaches a minimum for b/a = 0,2 and for ratios larger than 0.2, k
increases rapidly without bound, This may be explained by noting
that for b/aapproaching unity, the compressed ring with the outer
boundary clamped behaves like a long compressed rectangular plate
clamped along a long side and free along the other. Such a plate will
buckle into many waves. Thus it could reasonably be expected that
in the case of a narrow ring, several waves will be formed along the
circumference and the value; of k obtained by assuming a symmetric
buckling mode will have higher values.

The stability of a thin annular plate under uniform compressive
forces applied at both edges was treated by Olsson (4) and Schubert (5)
for several boundary conditions, but in these investigations, the de-
flection surface was assumed to be radially symmetric. Yamaki (2)
took into account the possibility of waves in the circumferential direc-

tion of the buckled plate, but his calculations showed that for the case

* Numbers in parentheses indicate reference numbers at the end.
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. with the outer edge clamped and the inner edge free, the minimum
buckling load still correéponded to a radially symmetric buckling
mode.

The purpose of this report was to study the buckling mode of
a circular isotropic plate with a concentric hole loaded radially at
the outer edge which was clamped and having the edge of the hole free.
The effect of the b/a ratio on the buckling load was sought and the
possibility of antisymmetric modes of buckling was investigated. A
short series of simple tests were carried out to check the validity of

the theory.
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THEORY

Assumptions

(i) The usual Kirchhoff's hypothesis regarding the variation
of displacement and stresses through the thickness of the plate are made.
{ii) The displacement perturbations are assumed to be small
so that the in-plane Lamé stresses prior to buckling do not undergo
any appreciable amount of change during buckling.
{(iii) The system is assumed to be perfect.

Derivation of Governing Equation

The in-plane equation of equilibrium is

N,-N dNr
- =0 (2)

The Lamé solution for the plane stress case is

az bz
N_= -N_ s (1 - 25) (3a)
r o aZ__bZ 2
2 2 ‘
_ a b
Ng=-N_ —— ({1 + —2-> (3b)
a -b T ,
N .=0 (3¢c)

r0
The strains prior to buckling are
e = e (N --{'N ) (42)
hE YV'r 6"
en = e (Ny-VN_) (4b)
6 hE VG T

The strain energy due to contraction of the midplane before buckling

is given by
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27 a
u =—L—g' S‘(NZ+N2-

1"ZRE ) J, ¢ @

ZerNe)rdBdr (5)

During buckling, the in-plane stresses do further work and the in-

plane strains after bending may be written as

2
— 8u 1,0w
;e;.— o7 '2'(5;) (6a)
et =B LlOv, 1 (a_.)2 (6b)
6 r r a0 er 09

Assuming that the forces Nr’ Ne remain constant during bending, the

strain energy due to additional contraction of the middle plane is

a 27

UZ =S;5‘ [N e' + N ee] rdodr (7)
o
a
N
du 0 ov
S)S.[Nr-é;:"' 9r+—r-— ]rdedr+
a 27r 2 2

g S N (ar) ¥ 29(%‘3’-) ]rdedr

The strain energy due to bending is

a Zwk 2 2 ‘ 5
‘D 1 1 0"w 0wl 0w, 1 0 w
B 2 o ror rZ ae2 ar2 r or rZBGZ
2 2
1 8w 1 9w
+2<1"’)(; D706 ~ _Z ‘56) rddr (8)

Therefore, the total strain energy of the plate is

U=7"0g+0+0;

The first integral of eq. (7) can be written with the help of eq. (2) as
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Nr dNr Ne ov
S‘ S' 1' 31‘ \1(—1:“' + ar ) + T T rdOdr

S. S —-——(urN ) + NG 86} doedr

=27 a 2m

oON
= urN dG + N v dr - 5 —— vdOdr
00
o b %Yo
ON
Since 55 = 0, by using the boundary conditions, the above becomes
27
==S uaNr(a)dG
o ,

which is equal to the work done by the external force. Thus

- i
U2 =W+ U
where W = work done by external force
U =

work produced by the in-plane gtresses due to bending.
o e Total potential energy of the system, V, is given by
V=T - U -Ww.

2
-1-5‘ 5 { ) + — To (BW)Z+D[(32W+ 1ow, —1—___82“’) -
2 2 81‘2 r or r2 892
924 ' 52 2 2
1 aw i w 1 0 w 1 ow

(9)

The differential eqguation of equilibrium may be obtained from eq. (9)

by making the potential energy of the system have a stationary value

§V =0 ' (10)

The variation of the first two terms give
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a 27
N 2 N 2
r 0w G dw

a 27
o~ 2 N 2
= 5 N O W N oW, 0 8w (o d0dr
T 2 0 or T 2
b Yo r 06

2w r=a 2 N 2
+S N ¥ ow d9+§ 8w vl ar
r or b T ¢

b %Yo

The variation of the rest of the term gives

a 27 2 2 2 2
D "w , 10w, 1 0"w\ : O"wfl ow, 1 0w
53 —Ztrer Tz 2) = vt 22
b Yo [\6r r- 00 or r- 00
2
10w 1 ow
+2{1~ v)( 5750 -—z——é-)]rdedr

a 2w 4 3 2 )
=D 8w+26w__1_3w+_1_§l_ﬂ+_1_8w+_2_6
= ! 3. 2 2 3..4 3

Zv 9w 3+ v 2" 9 W+2(1 v)(r"ill___lf 9w +—-1§a——-\y>}6wdrd9

% or ae; > 9> or2o6% 1% oroe® 3 9o
2T a a
2 2 2
+D S gr Ewdbwl 2 2 ¥ew| +12¥ew §+§-—%———a ¥ w
o or b or b b r 06 b
a 2 a 2 3 a
+8w86w +v6w86w +v8w v 0w
3r Or To2ar |22 or o2
ror Iy T ae b r“ 96 9790 b

3 a 2 a
+2(1-v)§--i— W 5w +—%§-——%’5wl }]de

Adding all the variations, we get the Euler equation as
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DViw - N &W N QWL LW (11)
T 2 6 '0r r 2
ar 26
and the boundary conditions
2 : 2 2 a
S‘ D2 + v 22w 30w | 4920
o or 09 b
2n
1 ow 8%w dw , 1 82w . v 82w -2{1-v) 87w -
D\for "z "3t 2tz —
o ror 4 or r® 90° r“ 090 r. 9rde
a
3 2
v Ow gy Hlov) ‘2"’) bw| a6 = 0
T 9ro0 r 90 b

Since in the present case the outer edge is clamped and the inner edge

free
2 a2
rD[a—‘z"- PN N\ A 9-—‘-*-’)] =0 atr=b (12)
T or 2
or ' r- 00 )
and
Dl 5 _~_82W+_1.§_‘Y+__1.____82W-1"’_?_ld2w _Loawyl_
or 2 ror 2 r 00\r 9rod 200/
Or r 00 r .
atr=>b
1 r6 | _ -
or r[Qr--; 56 ]-—0 atr=b>b (13)
We also have:
ow _ _
3r = 0 atr=a (14)
w =0 atr=a (15)

Substituting for Nr and NG from eq. (3) into eq. (11) and defining



Nobza2
= (16)
D(a®-b%)
we get
4 1. 1,02 2 82w
Vi + M + =) Vow = 22 2 W (17)
7t =3 3 7
b Y r™ Or

Try w = An Cos nf as a solution.

Substituting this into (17) and cancelling Cos n8 we get

4 3 2
dAn+_§ dAn »{1+2n2+7t A dAn+§l+2nz+)L+ A dAn
dr4 r dr3 rz ‘bz drz r3 rbz dr
2, 2 .. 2
n {h -A-4) An
+ - A =0 (18)
{ r4 b2r2 } n
Making a substitution of z = VA % gives
4 3 | 2 |
d An+§ d An ”{1+2n2+7\. -1 d An+ 1+2n2+7t+l dAn
dZZI z dz3 ZZ dzz Z3 z dz
2, 2 2
n'(n"-A-4} n R
+§ 24.______. -?}An = 0 (19)

Eq. (19) together with the boundary conditions (12)-(15) properly
transformed poses an eigenvalue problem. When n = 0, the result

is radially symmetric buckling and eq. (19) reduces to

3 2
d 2dy - 1+, dy I+a , 1 _
= 2+(1~--—-—-2)dz"‘(""—'3 +-z-)‘l-‘-0 (20)
dz dz™ z » z
n
wherelp=dz .

A solution of eq. (20) satisfying boundary condition (13) is
=AJ (z)+BJ (= 21
P p( ) _p( ) (21)

p = VA+l
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The imposition of boundary conditions (12) and (14), properly trans-

formed, yield the following equation

ay. a
Jpwx =) J_pr =)
V- . v+
Jp_l(\/X)-!-——Eﬁ Jpwx) J_p(w/JTH——FiW_L )+J_1_p(«/X)

A plot of the result obtained is given in Timoshenko's ''Theory of
Elastic Stability'' and is reproduced here on fig. 2.

n=1

Eq. (19) reduces to

aa
n

dz4

aa

3

2
340 d An

+ > )
z

2 LI
z .

dz dz2

a3 1 N
_{___.4 +-—2-}An =0

Z Z

Substituting

= Ei): )
A = ¢z and il |

n

this reduces to

z

where ¢ is an arbitrary constant and

7\=’p2-4

(22)

(23)

(24)

(25)
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‘The general solution of eq. (25) is

- 1
y=1][a I le)+ BI_(2) +CS__1’p(z)] (26)

where

- J_(z)
Sp” zs;zrlpw [Jp(z) S 'J:“E‘@dz I _plz) S‘ —P—z—dz] (27)

and is called the Lommel function. With the help of eq. (23), eq. (26)
can be written as

d'An
Z —g— - An =z [A Jp(z) + B J_‘p(z) +CS_1’p(z)] (28)

The boundary conditions (12)-(15) reduce to

dA
- n _ - :
A = ==0 at z= YXa/b (29a)
dzAn dA_
dz' +—-—§z P -—An2=0 at z = VA (29b)-
z z
d3An i dzAn 3-v dAn 3.y
ot s =t T3 A =0 atz=VX (29¢)
dz z dz z z

Satisfying these boundary conditions leads to the following equations

a a, _ o
AJ, WWAg)+BJT (g = 0

o

A {(1+v-p) JPNX) + JXde (VX)}+ B{(1+v+p) J_pr) +V’7ZJ_p_1(JX)}=
C=0

For a nontrivial solution of A and B, we must have
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(1+v-p)Jp(m + VA Tpa1 (VX) <1+v+p>a',_p(m+«x T opel (VX)

B
<

a a
T,0K D) 3R

A plot of the result is given on fig. 2.

Approximate Solution (Energy Method)

Assume a deflection pattern
w o= An(r) Cosno

Putting this expression in eq. (9) and integrating over 0, we get

2 N n’A
vaZ\ Inar?d: 9,202 pl{avsla B
2 b r n 2 n n r n 2
v r
. nZAn nA_ nA! Z
o AY - -
.2(1..\;)An (r An > )+ 2(1 ~v){ > = ) ]2rd9dr
T r :
for n# 0 (30)
and
a
2 1 2 Al
Ve N A! +D[(A"+~—A')«-2(1»v)__1lA'] rdodr
pl T ™ n r n T I
forn=0 (31)

where ( )' denotes differentiation with respect to r.
For the purpose of calculation the function An was chosen to be
&2
A_(r)=w (1 - I5)
a
It satisfied all the displacement boundary conditions. From {fig. 2

it is seen that the difference between the exact and the approximate
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solutions for n = 0 and n = 1 is not too large, especially for large b/a

ratio. Hence, in carrying out the approximate solutions for n greater

the same form for An was chosen,

than 1,
(30) and (31) and substituting

Putting this value of An in eqs.

for N_ and N, from eq. (3) and minimising V with respect to W We

get
4 2 2
6
(27+-§.n3)a2 +@nt. 2202 4 2y antiaon®- 5 2
b . a
Wi 4 6"
4 20 2 128 2 2
+(n -5n ) 4 - (—6—- =n +32)—-6- 411 (n ~4)10g T
p Y =
cr 2 2 4
$-HntEr Gha® - DGty g% -9 2y
' b a a
6 2
7 2 2,b 2,a
"-(*2-4—1'1 -~:,;~)~3-+n (**2'-4)10g-5
.a b
forn#+ 0
and
2 4 b,6
L L3 $®2+ 200 (a)
cr
2 1 b4, 1 b6
A M R A M X A
forn=0

Nobza
A.-: 2
D(a™-b"™)
l.o NO =lcr'%(iz*l) = k%
cr a b a
az
where k=X (-—2--—1)
b
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The value of k as a function of b/a has been plotted for n = 0,
1, 2, 3, 4, 5, 6 and 10 on fig. 3. The exact solutions for n= 0 and
n = 1 are plotted with the approximate ones in fig. 2 and it is seen
that they agree reasonably well for high b/a ratio. It is evident from
fig. 3 that the trajectory of the minimum buckling load increases
with b/a ratio without bound. This could be explained by the follow-
ing analogy. It is known that a long rectangular plate with one of its

long edges fixed and the other free has a buckling load given by

t
N, o= 52
Xer d

where d is the width of the plate and k' is a constant.
In the case of a circular plate when b/a approaches unity,
the compressed ring behaves like a plate, as described above.

Therefore, if we redefine a constant k' such that

i §
Ne (@) = k'D 5
cr (a-b)
then k' should approach a finite limit as b/a approaches unity.
2 Z 2
b b b b
{1+ a-2) (1+=>5) (1 -2)
K'= X 2 = k 2
cr P.E. 1 +§
2
a

A plot of k' against b/a shown in fig. 4 indicates that the k' corres-
ponding to minimum buckling load remains finite as b/a approaches
unity. The value of k' for an infinitely long rectangular plate is

shown in fig, 4.



-14-

TEST RESULTS

To check the validity of the theory, some simple tests were
carried out using 0, 041'' thick aluminium plates clamped between
two 0.5'' thick steel rings by means of 12— 1/2''¢ high tensile steel
bolts as shown in fig. 5. The inner diameter of the steel rings was
8'"' and the outer diameter 10'', The following sized holes were used

in the plates:

b b/a

o' : 0
0,5" ‘ 0.125
2" 0.5
2.5" 0.625

The loading was accomplished I;y heating the whole assembly, so
that due to different coefficients of expansions, the steel rings put
a uniformly distributed radial compressive load on the plate, The
effect of the elasticity of the rings on the stress distribution in the
plates and on the assumption of clamped edge condition is dis-
cussed in Appendix A, The tests were done in two parts.

Test Series A

The assembly was placed inside a Missimers environment
chamber in which the temperature could be held at any value for any

length of time. Strain gauges were attached to the two faces of the

1
legs of a Wheatstone bridge as shown in fig. 7. The reading of the

plate and a pair of opposing gauges R, and Rz were connected to two

voltmeter, amplified by a factor of 10, was directly proportional to

the difference between the strains experienced by R1 and R2 and
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gave a measure of the bending of the plate as shown in Appendix B,

Strain gauges were connected both in the circumferential and
in the radial direction for the plates with b= 0'', 0.5 and 2'', and
only in the circumferential direction for the plate with b = 2.5''., SR4.
Baldwin gauges were used for the plates with b= 0'' and b= 0,5'" and
temperature compensated micromeasurement foil gauges were used
for the plates with larger holes. Copper-Constantine thermocouples
were soldered onto a brass washer and several of these brass washers
were attached to the plate as well as to the steel rings. After each
increment of temperature, the assembly was allowed to soak heat
for about 45 minutes to one hour, or until the temperature indicated
by the different thermocouples were the same. This temperature
was checked with the reading of a thermometer placed inside the
chamber. The maximum error in measuring the temperature was
+ 1°F. Derivation of the critical temperature Gc at which buckling
occurs is given in Appendix A,

Tests were carried out to measure the difference in the co-
efficients of expansion of aluminium and steel. A value of 6.6 x 10-6
per °F was used for (aA—aS) for the purpose of calculations.,

Due to the presence of initial imperfections the plates started
to bend from the beginning of loading and a Southwell type plot was
used to determine the buckling temperature TC of the perfect plates.
The reliability of the Southwell plot has been proven for a solid
plate in Appendix B. In plotting the Southwell plot, points near the
origin have been ignored since for small T the percentage error in

measuring T is large; also points corresponding to temperatures that
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are comparable with 8_ have been ignored, since the Southwell plot
does not hold for such large values of T. See Figs. 8-15 inc.

Test Series B

An attempt was made to measure the number of waves along
the circumiference of the plates during buckling by rheans of an in-
ductance pickup. The plate clamped by the rings was placed on a
turn table; the pickup was attached by means of an arm to a graduated
optical bench and could be raised or lowered by means of a turning
knob as shown in fig. 16. The assembly was heated by means of a
1000 watt quaftz iodine photographic lamp. The general test setup
is shown in fig. 17. The lamp was connected in series with a rheostat
so that the current through it could be controlled. The pickup was
fixed at a given height from thé plate and the current through the lamp
was increased in steps. At every step, sufficient time was allowed
to let the assembly reach an equilibrium state and then the plate was
rotated by tu*ning the turn table and the output of the pickup was
plotted directly on an X-Y plotter. Fig. 18 gives the calibration
curve for the pickup and the effect of temperature on it. It is seen
that the effect of temperature on the calibration curve is small and
- for the purpose of measuring the number of waves around the cir-
cumierence it was adequate. It was assumed that, though the temper-
ature distribution in the plate was nonuniform, it would only deform
the shapes of the Waves around the circumference and would not
cvhangev the number. The test results from the different sized plates
are given on figures 19 tb 23, A thermocouple attached to bthe plate

gave an average véflue' of thel’ temperaturé of the plate.
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DISCUSSION OF EXPERIMENTAL RESULTS

The theoretical buckling temperature OC for each case has
been indicated together with the experimentally observed buckling
temperature Tc in fig. 8 to fig. 15. The values of k computed from
the experimentally observed buckling temperature have been plotted
in fig. 3. The difference between the theoretical and the experimen-
tally observed values of k are of the order of 10%. This discrepancy
is mainly due to the inaccuracy in measuring the temperature and
also due to the slight temperature variation in the platé and the steel
rings which could not be avoided. Another possible source of error
lay in the fact thaf. though the voltage output from the strain gauges
was amplified 10 times, its magnitude was very small and thus
small error in measuring the V;oltage resulted in considerable rela-
tive error. A direct displacement measurement of the plates under
loading would be more desirable, but setting up displacement meas-
uring devices inside the furnace was inconvenient because of lack of
space as well as giving temperature problems. By using two strain
gauges on the two faces of the plates as two legs of a Wheatstone
bridge, the effect of temperature on the voltage output was minimised
because both strain gauges were heated to almost the same tempera-
ture and any effect of temperature on the resistance of the strain
gauges was balanced out.

In test series B, the calibration curve for voltage vs. distance
varied slightly with temperature and so the distance given on figs. 19
to 23 are not very accurate., But, since the purpose of the tests was

to measure the number of waves around the circumference only, the
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effect of temperature on the calibration curve did not affect the
results. The plots in figs. 19 and 20 for b/a = 0 and 0.125 show ;
the buckle pattern to be radially symmetric, as expected. In

fig. 21, for the case of b/a = 0.5 the buckling mode is seen to be
radially symmetric, i.e., n= 0, According to the approximate
analysis, whose results are shown in fig. 3, the buckling mode
should be n = 1 though the curve corresponding to n = 0 lies closely
above it. In fig. 2 whefg the exact solutions are drawn, the curves
forn=0 a.nd n =1 intersect at b/a = 0.5. The fact that the exper-
imental resu}t showed n = 0 could be explained by observing that
the plate had more initial imperfection in the n = 0 mode than in
the n = 1 mode, which agrees with the physical intuition that im-
perfections with longer wavelengths are more probable than with
shorter wavelengths and that axisymmetric imperfections are most
predominant. For the case with b/a = 0.625 (fig. 22) the plate
first starts to deflect in the n = 0 mode, but with rise of temper-
ature it goes into the n = 2 mode. "According to fig. 3, the curves
for n= 2 and n = 3 almost intersect at b/a = ,625. For the case
‘with b/a = 0.75 (fig. 23), the plate first starts deflecting in the
axisymmetric mode»,‘ but with rise of temperature goes into the

n = 5 mode, which agrees with the theoretical wave number given

in the figure. These

tests conclusively prove that, for clamped
i S 2

outside edge and free inner edge, the plate buckles with waves
along the circumference for b/a exceeding a certain minimum

value close to 0.5,



~19-
CONCLUSION

(1) The energy method using just one term gives a reasonable
approximation to the true buckling load, particularly for large b/a
ratios.

(2) For small values of b/a ratio the radially symmetric mode
gives the lowest buckling load. As b/a is increased, an unsymmet-~
ric mode with waves in the circumferential direction gives a lower
buckling 1oad than the symmetric mode and the number of waves
increases with an increasing b/a ratio.

(3) The theoretical buckling load increases beyond bound as b/a.
approaches unity, but it must be remembered that as b/a approaches
unity, the thickness h becomes of the same orde‘x; of magnitude as
(a-b), and hence the theory which is based on the assumption that h
is very small compared to the other dimensions of the plé,te is no
longer valid, | |

(4) It would be interesting to measure the initial imperfection
of the plate and do a Fourier analysis on it and experimentally
measure how the coefficient of each component grows with the load.
(5) For large b/a ratios, the 'buckiing curves for different n's
are crowded together. Thus for any given b/a ratio in this range,
the plate will probably start to buckle in that mode in which the
maximum initial imperfection is present. To check whether the
plate bifurcates into another mode at higher load, a full ndﬁlinear

‘analysis has to be carried out.
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APPENDIX A

Derivation of Buckling Temperature

_ 1
er'_HE‘(Nr B VN9)+°‘AT
e, = (N, -VN )+a, T
-0 hE 0 r A
Alternatively
hET
_ hE oA
Nr_1 Z(er+vee)- 1-v
-v
a, hET
N, = hE (e, +ve ) - A
0 l-vz 0 r 1-v

Since displacements are radially symmetric

=22 and e, ==

er T ar’ 0 r

Letting g = hEZ and Y = ﬁf‘

l-v
_ .du u ' '

Nr = 5(—d—r+ v ?) -yT ‘ (32a)
- At du

Ne—ﬂ(';'{‘ V-(Tf -'YT (32b)

The in-plahe equilibrium equation is

dN N.-N
r 9 T r
- =0
dr T

Substituting for N, and Ne in terms of uand T

' u du

o, vpauw _ ,,u  PIVE-g)
B== r dr =3~ T =
dr T

or
dZ
_._l.“.:-i-_]'_i‘i..}lb.: 0
erk r@r r2_
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The solution is
u=Ar+ B/r

Case I, Plate without hole‘
B=90

anduatr = ais asTa, neglecting the elastic deformation of the rings,
. e =q Tr
8

Putting the value of u in equation (32)

T - I Y (O’A"“' ) (33)

From eq. (1)
3 hE©

kEh c,.
N = = (a,~-a )
2
k h 1
o e 8 === —5 T— (34)
¢ 12(1+v) aZ ap=a

Case II., Plate with hole

In this case the boundary conditions are

u = aSTa at r=a (35a)

Nr~= 0 at r=b (35b)
or Aa + B . a Ta

a ]

a,hE

E_(A-£+vA+z§)___A_..T=o

1_.‘,2 bZ bZ lav
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Solving for A and B and substituting for these in the solution for u

2 2
_ aa (1-v)+o.Ab (1+v) (1+v)a2b2 T
u= ) ) Tr - — ) (ag~ag) T
a (1-v)+b~(1+v) a (1=v)+b“(14v)
Substituting this value of u in eq. (32)
2 2
N, = - Rt (ap-ag) (1 - )
a (1-v)+b ™ (1+v) T
2 L2
Ny = - =y (ay-ey) 1+ 25)
a“(1-v)+b (1+v) r
From eq. (1)
‘ 2
kEh3 _ hEGCa 2

N

]

o 7272 ) (ap-ag) (1 ”E'z‘)
cr 12(1-v7)a a (1~v)+bT{1+v) a

Kk a®(1-v)rb2(14v) h% 1

c 12(1-v%) a%-p? g% GpTg

D
I}

(36)

Effect of elastitity of ring on prebuckling stress distribution

In fig. 24, let p be the pressure on the plate applied by the
ring., Then the pressure on the ring = %}13.

o . Radial displacement of ring
h a
= agTat ‘%r Et
Then the boundary condition (35a) should be replaced by
2

- ph a -
—usTa+b, Est atr=a

A +.§.-—a'ra+2.ll.f‘_z_

or avta T % bT E_t

and the other equation is as before



wdf -

a, hE

BE a-Srvary . L T=0

l-v b~ b
Solving

o a%(1-v)te, b(1+v) 3
A= s_z_ Z{& T + ph a”(1-v) (37a)
a%(1-v)+b%(1+v) b'E,_t {2%(1-v)+b2(1+v)}
and
2.3 a?b?(a, -a )(1+v)T
B = phb~a” (1+v) A s (37b)

b'Est{aZ(l -v)+b2(1 +v)} ) az(l -v)+b2(1+v)

Using the condition that N . ~-phatr=a

hE
hE [ B VB] oy
mis t VA + 5| - ——= T = =ph
1_v2 az aZ 1wy
where A and B are given above,
Solving for p
a,-a_) (a-b%)
p = 7 P T
haf{a -b )+ a“(l-v)+b“(1+v)
'b‘t;ES E

This value of p substituted in eq. (37) gives the value of A and B in
terms of T,
2 2
a2 (1~v)+aAb (1+v)

A= T +
a%(1-v)+b2(1+v)

(1-¥)T (ch-'u.s)(a.z--bz)ha,3

2 2 =
a“(1-v)+b™(1+v) ha(az-bz)“"b'tfg‘{az(l—v)*‘bz“*")}
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2,2 .
B=- 2(1+v)a. b2 (aA-a. )T +
a“(1-v)+b“(1+v) S

2 .2 3,2
(aA-us)(a b N l+v)ha b™ T

E
[ha(az-b2)+b't + a1 -v)+b2(1+v}]{a2(1 _vHbE(1+v)}

The second term in the expression for A and B give the correction

due to elasticity of the ring., The magnitude of the correction has

been calculated using the following data

i

a = 6.7x 1078 per °F, ap = 13.3x 10°% per °F

n

~E§ 3 b'=1"" t=1", v=,3

For a=4", b= Q"
_ -6 =6
A=6,7x10 T+ .465x10 ~ T

% error in A for neglecting elasticity of ring

.465 100
= %
7.165

= 6.6

B = 0 for both cases,
For a=4'%" p=2"

8.8 x 10'6T+ .16<3x10'6 T

A

% error in A for neglecting elasticity of ring

.169 100 _ .
8.969 X v"log

B=-33.3x10°T+1.25x10°0T
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e % error in B for neglecting elasticity of ring
. 1.25 100 3.9
= 32,08 % =

The errors involved are seen to be small,

The effect of the twisting of the steel ring on the buckling load of

the plate

Considering the ring acted on by the twisting moment Mt per
unit length as shown in fig. 25, it can be shown (3) that the moment-~

rotation characteristic is given by

M, = 1.0
t 3
) E b'
where L = T%é—— log (1 + t/a)

Consider a solid circular plate loaded radially and clamped by elastic
support with moment-rotation characteristic given by
Mt = L0

The equation of equilibrium is

2 2 2
DL+l d)(dw, ldw), Ny d¥W,n ¥
,er r dr T dr o

o4 (_dz..._.+ l_é_.) (dzw s ;.gzr)+ Adlw, etaw g
duz u du duz u du duz u du
d dw -
or udu [ {u du (u du)}] u du (u ) 0

The solution of this equation is

¢ = AT (w)+ B Y () +C5)

~where ¢ = g—g and S, , is the Lommel function.
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Since ¢ is finite atu = 0, B, = (31 = 0, The other boundary condition
is
dzw v dw dw
\dar a dr r
r=a r=a
d v L :
or -d-‘?+(-6+—D-a)¢=0 atu = aa
N v L _
or Jo(ua)s-EJl(aa)+ (Ea-.' + ET)—) Jl(o.a) = 0
1, l-a ~
or J'o(o,a) + = (—]5- - T) Jl(/a) = 0
For the specimens used in the test
D= 501bin I, = 105 lbs
L~ 2000/ = = 4"
5] in v=,3, a=4

. 1, .7 _
A 30(4“”;(2000“?) J1(4a)v-—:0

The solution is

4e = 3,83

or N = ¢978bD
1 Ocr

For a perfectly clamped plate

N = ,9788D
o
cr

Thus for the specimens used the assumption of perfectly clamped

edge condition is justified and can reasonably be extended to plates

with holes.
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APPENDIX B

The pair of radial strain gauges used in test series A measures
the difference in the radial strains and a pair of circumferential
strain gauges measures the difference in the circumiferential strains

between the top and the bottom surfaces of the plate.

t
E- 2
, 2 rd”w v dw
o (top) = —2% {dW , v dwy
T l-vz drz r dr
t
E = 2
2 1 dw d"w
o,(top) = {-—-———l- v—-—-—}
0 1-v2 dr dra
. cr(top) oqltop)
»Te Spltop) = —p— v —5¢
- b dzw
2 er
Lt ldw
egltop) = 3 T 37
. dzw
. e e (top) - €_(bottom) = t — (38a)
T o 2
dr
L b odw
ee(top) - Ee(bottom) == I (38b)

Thus the pair of radial strain gauges measure the radial curvature
of the plate and the pair of the circumferential gauges measure the
circumferential curvature of the plate,

Imperfect plate

Consider a solid circular plate with radially symmetric initial
imperfection wo(r). The equation of equilibrium is (for small w and W)
V4w+§-94 72 (wt+w)=0
D o
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Since the deflections are radially symmetric

La [ af1a,aw) Nopa (2w
rdr drir dr dr D r dr dr

. 4yl d awml, o " o
o rdr{r dr(rdr)}+Dr = ° %

Since there is no lateral load C1 = 0,
dw - 2 N,
Letting == = ¢ and substituting ar = u, where o~ = N

2 dw
2 d°¢ d¢ 2 _ 2 o
u S 2+udu + (u”-1)¢ = ~au TR
u
Let Jl(aa) = 0 have roots Qs Grs seees
1 dwo - c"n. = 1
CLet S99 m =Z.anJ1(T u) = Eanl(anr) ﬁ
n=1 on=l
dwo
where qbo =I5
The equation reduces to
2s'f?+ui‘é+<u2-1) = - 2200: IR )
u duz an ' ¢ = o.un=lan1 - u

with boundary conditions ¢p= 0O at u= 0 and ¢ = 0 at u = aa,

The Green's function for this operator is

T €)Y, (aa) ‘
1’-25[1'1(6’) I et ]Jl(u) for 0<u <€

J; (aa)
G(u,E) = :
¢ 3,(6)Y (aa)
-'%— [Jl(g)Yl(u) - Jl((la-) Jl(a) for g$u<aa

Using the Green's function the solution of the above differential equa-

tion can be written as
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ad 'B'ﬂ-a.
o= T—T}— 032 0) { ¥, @7 00)-Y (07, ()}
n=1 2{(=2) -1

: ot 7rbn
or ¢ = Z ——5— ar Jla 1) {Yl(ar)JZ(ar)—Yz(ar)-Tl(ar)}
n

=1 2{=*) -1}
@ (39)

For small load No’ this can be written as

had bJ(o.r) N 2 N_ 6
6= 2 [ o) h of 2 e 1]

n=1 {(—-—-) -1}
Taking only the first two terms of the series
N 2 N 2
1 o, .4 1
¢ =  bl(l - '1—“‘92"('5'—) r ) J‘ (q r) + 2(1"' 192 (D ) ) J‘ (a r)
a, 2 1'71 a, 2 172
=) -1 (a-—) -1
‘ No 2 2r,4 No
bl{l-.071(-N-;—,——) (3- } bz{l--‘)?l(N ) (—")}
- cr cr
= No ‘ J'l(o.lr) + No , Jl(azr)
cr cr
N - ]. 3-4 N bt 1
o o
3.8 7.01
(using a; = == and a, = ——)

Coefficients of b1 and bz together with the first order correction are

tabulated on the following page for r = a/2,
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N0 ' Coefficient of bl
N°c Oth order Correction
T
.1 '0644 -.0000
.2 1450 -. 0006
3 . 2500 -, 0017
o4 .3800 L~ 3046
[ 5 » 5800 ™) 01 04
.6 .8700 -,0220
* 7 1.3334 "00470
38 ZQ 32 il ) 1055
Thus for N << 1,0, the relation
Ocr
b
dw D 1
¢_a-£ o= A Jl(alr)
Ocr -1
N

is quite accurate,

Differentiating eq. (39) it éan be shown that

o0
dw
22

Coefficient of b

Oth order

. 0047
. 0082
.0136
.0188
. 0242
. 0300
. 0364

« 0431

] [anr.]l ! (anr) {Yl (ax ).Iz(ar)

n=1 2[(—--) -1
-Yz(o.r)Jl(o.r)}]
dJ . {a_r)
where .T'l((lnr) = -—-—%—r—n—“
defining
dzw
xo.':.—-——-—zg- abJ‘(ar)=ZCJ'(a1‘)

2

Correction

-. 0000

. 0000
-, 0001
-.0002
-.0004
-, 0007
-.0013

“e 0020

(40)
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the above reduces to

2 b 7C

:';‘-f’,_l’zz ——-—-—-’-‘-2—-— ar T (a_r) {¥ | (ax)] (ar)-Y ,(ar)7, (ar) }
" on=12{t) -

and as before for small loading

and also for

2 C
dw _ 1 1
Z 5N I3 (o, x) (41)
. dr o)

is quite accurate.
Thus from eqs. (38a), (38b), and (40) and (41) we conclude that a

Southwell type plot may be used with the test data to find the buck-

ling load.



