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ABSTRACT

At supersonic and hypersonic speeds the location of the boundary
layer separation point on the surface of a smooth, blunt body is not
fixed 4 priori, but is determined by the pressure rise communicated
upstream through the subcritical base flow. By utilizing the integral
or moment method of Reeves and Lees the separation-interaction region
is joined smoothly to the near-wake interaction region passing through
a "throat' downstream of the rear stagnation point. One interesting
feature of this problem is that the viscous flow over the blunt body
"overexpands'' and goes supercritical. This flow is joined to the near-
wake by meané of a supercritical-subcritical "jump! upstream of
separation, and the jump location is determined by the matching con-
ditions.

Downstream of the jump the viscous flow separates in response
to the pressure rise, and forms a constant pressurer)mixing region
leading into the near wake. As an illustrative examiple the method is
applied to an adiabatic circular cylinder at Mo = 6, and the results
are compared with the experimental measurements of Dewey and
McCarthy. This method can be extended to non-adiabatic bodies, and
to slender bodies with smooth bases, provided that the radius of

curvature is large compared to the boundary layer thickness.
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I. INTRODUCTION

Our understanding of the flow in the near-wake behind smooth,
blunt bodies at supersonic and hypersonic speeds has advanced con-
siderably as a result of the experimental studies of Dewey(l) and
McCarthy and Kubota(z), and the theoretical analysis of Reeves and
Lees(3), The key to the solution of this problem is the strong inter-
action between the viscous flow originating in the boundary layer and
free shear layer, and the "external' inviscid flow (Fig. 1). Unlike
the situation in ordinary boundary layer theory the pressure distri-
bution along the wake axis is not known & priori, but must be obtained
as part of the solution. Viscous-inviscid interaction occurs through
the pressure field generated by the induced streamline deflection at
the outer edge of the viscous layer. According to this "model' the
compression along the wake axis is a smooth process rather than the
sudden compression assumed by Chapman(4) and others. In fact for
laminar flow the length of the compression region Lipstream of the
rear stagnation point is still about 1.5 body diamet’ers at Reynolds
numbers of the order of 10%, and nearly half of the static pressure
rise occurs downstream of the rear stagnation point (Ref. 3).

Because of the complexity of the problem, including regions
of reversed-flow, Reeves and Lees(3’ 5) employ an integral or mo-
ment method to describe the viscous flow. In addition to the usual
momentum integral they utilize the first moment of momentum
(mechanical energy). When these two equations are combined with
the continuity equation and the Prandtl-Meyer relation connecting

pressure and streamline inclination in the inviscid flow, one has a
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complete set of three equations for the three parameters 61*(){), Me(x)
and an independent velocity profile parameter a(x)(for adiabatic flow).
As shown originally by Crocco(é) and Lees a formulation of the viscous-
inviscid interaction of this kind leads to the conclusion that the near-
wake flow is '"'subcritical'' at the rear stagnation point, but passes
through a '"'throat' into the supercritical region somewhere downstream
of the rear stagnation point. At a given Mach number and Reynolds
number the bas‘e pressure or flow angle is uniquely ;ietermined by the
requirement tha},t the correct solution must pass smoothly through the
throat. In this sense the situation is analogous to j_cvhe inviscid choked
flow in a converging-diverging nozzle. In fact Cr occo(7) has shown
that in a subcritical flow pressure disturbances are felt upstream,
while in a supercritical flow the adjustment to a pressure change can
occur only across a supercritical-subcritical "jump', or ''shock', (8)

In order to obtain a complete solution to the base flow problem
for a blunt body, the near wake interaction region must be joined to
the boundary layer separation-interaction region on the body. Since
Reeves and Lees(3) were concentrating mainly on the near-wake inter-
action zone behind a circular cylinder, they assumed that the separation
point is held fixed at a location 125° around the body from the forward
stagnation point. By using standard methods the boundary layer growth
up to this fixed point is calculated on the basis of a known (experimental)
static pressure distribution. Reeves and Lees assume that the velocity

profile jumps to the separation-point profile instantaneously across a

discontinuity at this location. Since only a small pressure rise is
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required to separate a laminar boundary layer, they take the "external
Mach number M, as constant across the "jump''. By using mass con-
servation all quantities just downstream of the jump are dete rmined,
and these values furnish the initial conditions for the constant pressure
mixing region downstream of sepgration. No attempt was made to
match the shear layer angle to the induced angle @(6) of the boundary
layer at separation. With the location of the separation point arbitrar-
ily fixed there are only three unknowns for a given free stream Mach

number and Reynolds number Re (1) length of the constant pres-

o, d:
sure mixing region; (2) length of the wake interaction region or com-
pression zone upstream of the rear stagnation point; (3) value of 61*

at the rear stégnation point, Reeves and Lees(3) join the constant
pressure mixing solution to the near wake interactipn solution by
matching Me for @, u*, and the mass flow above the zero velocity
line.

Actually the location of the separation point on the body surface
is not fixed 4 p‘:;‘_'iori, but moves in response to the pressure rise com-
municated upstream through the subcritical base flow. A "jump' is
required, as we shall see, in order to connect the supercritical vis-
cous flow over the body with the initially subcritical wake flow, but
the velocity profile just downstream of the jump is not a separation-
point profile. To this extent the work of Reeves and Lees is incomplete.
The main purpose of the present study is to treat the separation-

interaction region more carefully, and then to join this region smoothly

to the constant pressure mixing region and near-wake interaction zone.
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The actual numerical example chosen is the same case of an adiabatic
circular cylinder at a freestream Mach number of 6 treated by Reeves

(3)

and Lees In Section 2 the basic differential equations of the Lees-
Reeves method are written down for adiabatic flow, except that the
curvature of the solid surface is now taken into account in the Prandtl-
Meyer relation. These equations are first applied to the calculation
of the boundary layer around the cylinder for a giver:1 experimental
static pressure distribution.

If one tries to calculate the subsequent development of the
viscous layer including interaction starting from some arbitrary point
on the surfacé, one finds that the flow goes supercritical at a point
about 97° around the cylinder from the forward stagnation point. But
the flow in the near-wake is initially subcritical. Thus a jump is re-
quired somewhere aft of § = 97°. In Section 3 the laminar supercritical-
subcritical jump conditions are derived for both adiabatic and non-
adiabatic flow, and in Section 4 the equations for the now subcritical
viscous layer downstream of the jump are integrated through the sep-
aration point and into the constant pressure mixing region. Section 5
deals with the near-wake interaction region in the manner established
by Reeves and Lees(3), and this zone is joined smoothly to the constant
pressure mixing region. Finally, in Section 6 a typical complete solu-

tion for the adiabatic circular cylinder is worked out, and possible ex-

tensions of this method are briefly discussed.



II. DIFFERENTIAL EQUATIONS: APPLICATION TO FLOW
AROUND AN ADIABATIC CIRCULAR CYLINDER FROM THE

FORWARD STAGNATION POINT TO THE JUMP LOCATION

(5)

As shown by Lees and Reeves the well-known integral or
moment method can be successfully utilized to describe interacting
separated and reattaching flows, as well as attached flows, provided
the velocity profiles employed as weighting functions have the qualita-
tivelry correct behavior. For flows near a solid surface the Stewart-
son(g) solutions of the Falkner-Skan equations are shown to be the
simplest appropriate family, including the branch corresponding to
reversed-flow profiles. For wake flows another set of solutions of

the Falkner-Skan equatiéné with zero shear stress on the axis, also
found by Stewartson(g), is the simplest appropriate family. In every
case it is essential to "unhook'' the profiles from the pressure gradient
parameter, [3,; and to describe them in terms of an independent profile
parameter a(x), or ¥(x), that is not uniquely related to the local pres-

sure gradient.

For adiabatic flow the three independent parameters of the

problem are Me(x), a(x) or ¥{(x), and 6i*(x), The "history' of these

three parameters is determined by three first order non-linear, ordi-

nary differential equations, as follows:(3’ 5)
CONTINUITY
3¢ %
Bi_a_i__+5*§¥_§3+f6i dMe=(3Ch (1)
dx i da dx Me dx



MOMENTUM
as.% 6% dM
i . dy da i e_ pPCP
¥ g P8 max VWD ° < (2)
e Re61*

MOMENT OF MOMENTUM (MECHANICAL ENERGY)

3 *
S d6i>- ' o a7 & da +3J6' dMe_ BCR )
dx i dy da dx M dx =~
e Reéi*
where
1+rne
B = ¥ + = (4a)
© 2
m -1
3 ytl e ) <3y—l> e
£ = <2+y-l-l+m MIS-T/) T m(TFm ) (4b)
- (l+me)
h = :Reé:;{< W tan@ {4c)
Reé.* = o Meﬁi"< (4e)
i 00
Pe %o
¢ = (wu )/r/T,) and p= 5o (46)

and the other quantities are defined in References (3) and (5) and in
the List of Symbols.

For attached flow the independent parameter a(x) is given by

the relation

8<U/Ue>

R C7)

Y=0

while for separated flows near a solid surface

[Y/6i] 0/u =0

In wake flows upstream of the rear stagnation point

a(x)

(3)

>



U, _
a(x) = U* = e ,
(S
U
and a(x) = —UE-E—
e

downstream of the rear stagnation point.

In these viscous-inviscid interactions the "external' inviscid
flow Me(x) cannot be specified 4 priori, but is determined by the in-
duced inclination @ of the streamline at the outer edge of the boundary
layer, given by Eq. (l). For many flows the Prandtl-Meyer relation
connecting @ with Me is a good approximation, except that the curva-

ture of the surface must also be taken into account. Thus
vix) - v(x ) = - a(x) - @), (5)

where \)(xo) is evaluated at some reference station, and a(x) is the
inclination of the local tangent to the surface, measured positive
clockwise with respect to the surface inclination at X e With the aid
of this relation [Eq. (5)], Eqgs. (1)-(3) completely determine the in-

teraction.

John Klineberg obtained additional solutions of the Cohen-

10) (9)

Reshotko( or Stewartson equations both for adiabatic flow and

for the "highly-cooled' case of SW = -0.8. By using these solutions
he was able to evaluate the quantities, &, J, Z, R, P and the derivative
% appearing in Eq. (1)-(3) quite accurately. He then curve-fitted

these functions as polynomials in ""a'". These functions are plotted

in Figures 2-7, and the coefficients of the polynomials are given in

k
Tables 1 and 2. [For example, ¥ = 2 G @ :\
k=o
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By regarding Eqgs. (1)-(3)

unknown first derivatives of 61*,

as algebraic equations for the three

Me and a, and solving simultaneously,

one obtains the following equations for adiabatic flow:

6F dAM, ¢ Ny (M, 2, h) "
Me dx Reéi* D(Me, a)
g x W _ _C N2 M, 2 ) (7)
i dx Reé.* D(Me“ a)
1
g ¥ _ N3 (M, a, h) (8)
dx ﬁ—é6i* D(Me: a')
dJ dJ

where N; (Me, a, h) = < Ndﬁ[

>h+(W-PJ)+ (P——-R

)B

dy

Ng(Me, a,h) = JW-1)h + (PJ-#R)f + [(2¢+1)R-3JP] B

Ng(M_,a, h) = |—(z;v+1

w9

D (M_,a)= \(J T

J)f+

As shown by Lees and Reeves

point of this system of equations.

3J]h+ R p & f+\:3JP (22[+1)R]

- 3J:IB

the point D = 0 is a singular

(w-1) J + [(zzm)
(5)

If Nj vanishes when D= 0 (j= 1,2 or 3)

then the other two N's also vanish and this point is a '"'saddle-point' or

"throat' marking the transition between ''subcritical’ and '"'supercriti-

cal'' flow,

transition in a converging-~diverging nozzle.

In fact the situation is similar to the subsonic-supersonic

If Nj # 0 this point is a

turning point and the integral curve is thrown back. Physically, a sub-

critical flow is capable of generating its own self-induced disturbance

interacting with the

stream event.

disturbances originating downstream.

"external'' supersonic flow in response to a down-

A supercritical flow, on the other hand, cannot 'feel'

Thus the transition from a
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supercritical flow to a subcritical flow must occur across a "jump"
or '"shock'" somewhat analogous to the normal shock in the diverging
portion of a supersonic nozzle. |

For adiabatic flow the locus of critical points D = 0 is a unique
function of a and Me (Fig. 8). We see that the Blasius flow is always
subcritical and the singularity D = 0 always lies in the range a > ap,
corresponding to a flow with a negative pressure gradient of a certain
strength, or a falling pressure applied over a sufficient length in the
flow direction. The flow around a circular cylinder (or other blunt
body) at supersonic speeds is an interesting exampleé of a case in
which the boundary layer goes supercritical. Of coﬁrse the viscous
layer is always subcritical in the subsonic portion of the inviscid flow
near the front stagnation point. Downstream of the sonic point, how-
ever, the value of 2GR rapidly decreases with increasing Me (Fig. 8),
while a(x) grows because of the action of the negative pressure gradi-
ent in "filling(vouﬂ'the velocity profiles. If D= 0 at some point on the
body then N;, N, and Nz must vanish there also if the solution is to
be continued downstream. This requirement leads to a unique value

of h at the critical point, namely,

N m
Reg tan @) = C(1+moo)[F(a)+ l+r;e P] (10)

1

where, for adiabatic flow,

F(a) = ( R>/N——- - J (10a)

It turns out that F({a) and P(a) are both > 0 for a = a; hence @> 0 at

B)

the critical point, and this situation is entirely possible when the flow

expands because of surface curvature.
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Strictly speaking the development of the boundary layer starting
at the forward stagnation point should be calculated taking into account
the interaction with the external flow. In the supersonic region, for
example, such a calculation involves a coupling between the character-
istics net and Egs. (1)~(3). Since this problem is a formidable one in
itself, and since the main interest in the present paper lies in the sep-
aration and wake phenomena, it was decided to adopt the procedure of
Reeves and Lees(3) and regard Me(x) as given up to the '"jump'' loca-
tion. The pressure distribution on the forward part of the cylinder
was taken from McCarthy's(Z) measurements, and the variations of
Me and d(Me)/d(x/r) were computed assuming isentropic flow around

the cylinder. We can therefore drop the continuity equation [Eq. (1)]

and consider only Eq. (2) and (3), which can be rewritten in terms of

a 5. %
the variable 6r* = (—\—)—OP— Moor)<—}£—-) and solved for the derivatives
m N
£
d6r da s 13
I=/7) andm , yielding,
dM
. dJ ) _ dJ * e
2 \"a&w T
dMe
M (Ry-PJ)+ J(1-¥) &6 _*
da B =75
dx/7) - wM 5 * O (N aJ ;> =5 (12)
e r da dav
-1 Pooeo l+nr1e (3y-1)/2(y-1)
where f = = ( >
p_ a 1+m
e e 00

The initial conditions on 6_* and 'a' are given by the conditions of
dé_*
r da : .
boundedness on I&/7) and&-(m at the forward stagnation point,

where Me =0 and-};(- = 0. This condition requires that the numerators

on the R.H.S. of Eq. (11) and (12) vanish. By eliminating 6r*, we
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get the condition

3JP=R(2¢ +1) , for which one obtains

B M P
(5.%) -
stag. (2x+1) [dMe/d(X/r)]X/rzo

~ dM
: € - : ' —
Since ‘—m:\x/rzo_ 1, according to McCarthy's @ata, and MOO = 2.5

(neck Mach number for a free stream Mach number of 6.0), one finds:

a = 2.967
stag.

(6_%*) = 26,97

r ‘stag.

One can show by a linearization of Eq. (11) and (12) around
astag. and (6r*)stag. that the stagnation point is a saddle point in the
(a - 6r"") plane; therefore one has to start the integration of Eq. (11)
and (12) by "kicking' the solution off the critical point by a small
amount. The integration of these equations was performed on an IBM
7090 computer using a Runge-Kutta method started with Milne's method.

The distribution of a, 6r* and the normalized physical boundary

layer thickness are shown in Fig. 9, where:

y+1
a M 14+m
g © N . ( © )ZY'l [me(l+2[)+ 1+z—? /6r* (13)

\Y) I+m
oo )
One can see that at (x/r) = 1,20, "a" exceeds the maximum value (3.90)

obtained from the similar solutions of the Falkner-Skan equation in the
adiabatic case, indicating that the method of local similarity fails down-
stream of that point and that the profiles are really non-similar. Ho&—
ever, in order to continue the solution with this family of velocity pro-

files, it was assumed that ""a' stays constant and equal to 3.9, and that
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all the integral functions keep their value at a = 3.9, which is to assurne
that the profiles take a constant shape for (%) > 1.20. Eq. (12) was
then dropped and Eq. (11) integrated downstream of x/r = 1,20; this

equation becomes

&.%) - 5. * dM -
d("i /r) _ 1 P i 1 e
d(x/r) QLB Re6i>:< - (2x+l) r M_ d(x/T) _‘ (14)

At (;—E) = 1.2, the outer flow is already supersonic and we calculate

the angle of the streamline at the edge of the boundary layer with the
wall, @, from the continuity Eq. (1) rewritten as:
1+m ytl 5% dM

N\ m——— §5.%
_ e \2(y-1) d("i/r) i 1 e
tan @ - ( 1+mw> e {B d(x/r) +f r M dix7r),r (15)

because ''a'

is held constant.

Suppose now one tries to calculate the subsequent development
of the viscous layer including interaction starting from some arbitrary
point, at which the solution is assumed known fromb Eq. (11)-(15).
Returning to the full equations [Eq. (1)-(3)] one finds that the viscous
flow goes supercritical for Me = 2.4 (Fig. 8) corresponding to ?: 1.69
la= 3.9]. But the wake flow is initially subcritical. In order to con-
nect these two regions the flow must experience a sudden 'jump' on
the body surface from a supercritical to a subcritical state, followed

by a smooth compression and flow separation leading into the near

wake region.
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III. LAMINAR SUPERCRITICAL-SUBCRITICAL JUMP CONDITIONS

In reality a supercritical flow has a high but finite "impedance'
to the propagation of disturbances upstream through the subsonic por-
tion of the boundary layer, so one expects the transition from super-
critical to subcritical flow to occur over a few boundary layer thick-
nesses. However, within the framework of the present theory we
regard this transition as discontinuous (Fig. 10), and allow for sudden
"jumps' in the fluxes of mass, momentum and mechanical energy.

The flow upstream of the jump is characterized by fbur quantities,
namely Me’ 61*, a(or &) and T* (for non-adiabatic flow), and four jump
conditions are required to determine the flow downstream of the jump
uniquely. Three of these relations are derived from the known conser-
vation laws for mass, momentum, and total enthalpy; In general the
fourth quantity, namely the mechanical energy, or moment of momen-
tum, is not a conservative quantity. In the limit of Ax, and Ax,; both =0
(Fig. 10) the volume dissipation vanishes and we can write approximate
jump conditions for this quantity as well. The jump conditions are
written down for non-adiabatic flow, but the final relations are special-
ized to the case of adiabatic flow to fit in with the rest of this paper.

By referring to Fig. 10, one sees that as Ax, and Ax, — O the
effects of skin friction and heat transfer vanish, as well as the volume

dissipation. Also the effect of the "external'' streamline inclination

drops out of the continuity equation.
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With these observations the three jump conditions derived from

the conservation laws are as follows:

MASS
rhy -y = (peue)1 (65-64)
MOMENTUM
L-I = (Peueg) (62“61) - 63(p2-—p1)
1

TOTAL ENTHALPY

Mea (65_*)2 Ty *

e = 1
Mel "6i>{<)3‘ T, *
where
6
m = Bpudy=paM86*Z
(o)
&
('5
= < = = -
I = B pu“dy pooaoou M §.¥%(Z-%)
and
aP
& = 2 5% (m B+ Z)
a_ p i e
e' e
where
l+nr1e :
B o= w () 09
e

(16)

(17)

(18)

(21)

The fourth jump condition, for mechanical energy or moment

of momentum, is derived from the differential equation for continuous

flow by passing to the limit of a finite change in flow quantities occur-

ring over a very short distance. By integrating the mechanical energy
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equation across the boundary layer one obtains

8
2l @] @) | £, ()

=0
6 6 3
_ dp > /8u >
= - (‘a;r Sudv- ulzy) dv (22)
o o)
L " . dd dp
In a supercritical-subcritical jump % dx and the rate of change
of mechanical energy flux all = o, while the dissipation term and the

u
term (pv)6 <_Z_> arising from the streamline inclination remain

finite, and are therefore neglected in comparison to the other terms.
Then Eq. (22) takes a form quite simila% to the integrated momentum
equation, except that 6 is replaced by g udy = K. When Eq. (22)

o

is multiplied by Ax = Ax, + Ax, and Ax - 0, we find

MECHANICAL ENERGY (MOMENT OF MOMENTUM)

Gz'Gl (Pe uea )1 (52'61) - ZKz (pz"p:_) (23)

where

Q
1
[ ]
Eel
[«
[)
Q.
<
)
©
8
o
[
3]
o
*
N
1
A

(24)

and

A
0

P
S udy=-—2-a M 6.*El+m)(Z+S T*)
P w € 1 € w

[
© - me(Z—J)] (25)

Strictly speaking some average value of K should be used in Eq. (23),
but we employed K, here by analogy with the momentum equation

[Eqg. (17)], and the difference is very small in any case.
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As it turns out, the relative change in Mach number M_ across
a laminar supercritical-subcritical jump is small, so the pressure
change is connected to the velocity difference by the approximate

relation

P2-Pp = -%[(pe ue),L * (pe ue)2:| (uez_ uel> (26)

By substituting the expressions for m, I, G, K and § into

Eq. (16)-(18) and Eq. (23), one obtains the relation

M 6% Pe_ U P u
€z 1 p €p e2> _ "€y "€y

M. O5F (M B, +(1 i Zz]* T e, B (27)
el 1 1 ez 61 61 el

from the continuity equation [Eq. (16)]; by utilizing this relation in the

momentum and mechanical energy equations, these equations become

1\/1632 U-ez
—M—;—*‘—fe‘— Ko ‘%._I - ][M__ Wz
1
P e +p u
+ ( e, , 1 Pey 82> (m B, + zg>] (28)
44 u €z
€a €
and
B e
_I\./If_z__élg J. =T = -iiz_][g_e_?;_a_.,.l 21{(1+E_>(J -7 )
M &5 2 71 - u M 6.
ey i, e, e, 1,4 e
u P.. U, +p. u
e, €, e, €s e2> s ]
+ 2 (u ) < I El+rnea)5W T, -i-mesz+Z2 (29)
€ €a €3 ,
5%

. . . 2 .
Eliminating 3 from Eq. (27)-{(29), one obtains
1
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T e ‘ pe Ue, T Pe, Ue -
[_Jzﬁﬁ -Jy 3[2] = Ll - '-—2-_1‘{[ - 1 1u 2 2 ><m Bz+Z2>] J,
pez €5 2

[<1+ES_><Z J> 2 Zez (Pelzust: ie: uez><mee J2+ZQ>Z‘M} {(30)

e
€1 1 2 €3

and

Ue +pe Ve,
[ B, - meBli{zj El————][ T Zp - 2 ><me2B2+Zz>]melB1

€2

_[zel e ][m B, +Z ]Nl (31)

These equations furnish two relations between #; (or as) and M

€g.

The method of solution is described in the Appendix.

In the limiting case of an infinitesimal "jump' the quantity
u

€
(1 - -u——2> -0 and Eq. (28) takes the form
S
Aue o
(Meo#w) = (Mg 50x) = - 2 (4me, ) +1-8,) (32)
1
while Eq. (29) becomes
: Aue o
(nr, 8% J>2— (M5, J)l.m_ 2 5= (Mme, WSy To+ ) (33)

Now, by rewriting the two basic differential equations for continuous

(non-adiabatic) flow [Eq. (2) and (3)], in the form

d(S % d;'&[ dMe - dMe
[_ 2[ + Meéi"‘ = +2\(6 * ax ]+(5&[+1—e) o= = (R.H.S.)Me (34)
and
dﬁ * 4T dMe ClMe
= ¢ *) = =
T607 8 |+ 2045y T £ = R.HLSIM,  (35)



dM du

and making use of the relation = = , one sees that the
Me 1+r1r1e u,

last two equations are identical to the two corresponding jump equa-

tions in the limit Ax = 0 with the R, H.S. = 0. One can show also that
the continuity relation [Eq. (16) and (21)] for an infinitesimal "jump"
reduces to the continuity equation for continuous flow [Eq. (1)] in the
limit Ax = 0, with its R.H.S. = 0. In other words the equations for an
infinitesimal jump correspond to the equations obtained from Eq. (1)-(3)
by multiplying by Ax and passing to the limit Ax - 0.

Now the equations for an infinitesimal jump correspond exactly
to the homogeneous form of the continuous flow equations, so that non-
trivial solutions exist only when the determinant of the matrix vanishes,

i.e. when D= 0. We conclude that an infinitesimal jump can occur

only at the critical point. The analogy to a normal "shock wave' of

infinitesimal strength in a nozzle is complete; such a standing shock

wave occurs only at the ''throat''.

By rewriting Eq. (30) slightly one finds that for adiabatic flow

G- G @] o

J; Jo\ =
As one can see from Fig. 2 and 3, in the region of interest(,—yl _i[_z_> 20
1 2

> J.
when %, 2 ¥z. Also it is certain that Q—l > J, when &, > #,. Therefore,
1
Eq. (30a) shows that a compression or a decrease in Mach number Me
across the jump is always accompanied by a decrease in%. When

¥ =¥ ., we obtain relations across an infinitesimal jump analogous

to the expression for an ordinary acoustic wave, e.g.,
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N\
(o) = ) | gy ke %)
Ei?-i? cr

Thus the flow on the downstream side of a small compressional jump
is always subcritical.

One other interesting point of resemblance between these
jump relations and an ordinary gasdynamic shock wave is the phen-

omenon of "hypersonic freezing''. When Me - o0 one finds that the
1

Mach number drops out of Eq. (30) and (31), if these equations are

u
)

regarded as f‘elations for <1 - > and ¥,. In other words &/,

u
€1
(and J;, ay, etc.) is a unique function of %; in the hypersonic limit.

The jump equations [Eq. (30) and (31)] were solved on an IBM
7090 computer utilizing the method discussed in the Appendix and the
polynomial curve-fits to%, J and Z discussed in Section 2; the results
for some typical cases are illustrated in Figure 1., One sees that
the reduction in Mach number across these jumps is indeed very
small. Even for Mel = 6 and a, = 2 ax - 3.90 the relative change
in Me is about 3%, and the corresponding static pressure ratio is
about 1. 24 across the jump. On the other hand the change in the
shape parameter "a'' is considerable, especially when Mel >> 1,
but the minimum a, is about 2.0, still far from separation, and
indeed above the Blasius flow. For all the jump conditions investi-
gated the boundary layer thickness decreases across the jump, and
mass flux is lost to the "'outer' inviscid flow. However, the physical
displacement thickness increases slightly across the jump, which is

entirely consistent with a compression occurring over a downstream

distance of one or two boundary layer thicknesses.
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As we have already observed, the behavior of these jumps is
strikingly similar in many respects to the ordinary gasdynamic shock
wave. For example, the more strongly supercritical is the state up-
stream of the jump, the more subcritical is the state behind the jump.
Also, conditions downstream of the jump become virtually independent
of Mel for Mel > 6 (Fig. 11).

Since the flow downstream of the jump is always subcritical,
but far from separation, this flow must generate a self-induced
pressure rise along the body surface which produces separation and

the beginning of the mixing region in the near wake (Section 4).
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Iv. FLOW FIELD DOWNSTREAM OF THE JUMP, THROUGH

SEPARATION AND INTO THE CONSTANT PRESSURE MIXING REGION

Between the critical point on the cylinder at —if— = 1,69 and the
pressure minimum at %— = 2.18 we know all the quantities 6i*’ a, Me
[Fig. (9)], so we can compute a possible jump to subcritical conditions
vat each location %-(" Also the streamline inclination@l)1 Just upstream
of the jump is obtained from Eq. (15), and @2 is calculated from @1
by adding the turning angle across the weak compression. Thus at
each location (x/r)2 = (x/r)1 we know all the '"'initial" conditions
61*2, a,, Mez and @2 required to start the computation of the inter-
action between the now subcritical viscous flow and the outer flow.
These subcritical trajectories are calculated by infegrating the full
equations [Eq. (1)-(3)], making use of the Prandtl-Meyer relation
including the effect of surface curvature [Eq. (5)]. : Downstream of
the separation point (a = 0) we utilize the curve-fitstoy, J, P, R, Z
shown in Fig. 2-6 in the region marked ''separated flow', where

a(x) = (Y/6i"‘)U:O .

In Fig. 12 we show a subcritical trajectory to separation and
beyond for the eigen-solution found in Section VI. Downstream of
separation the positive pressure gradient decreases rapidly, partly
because the body surface is ''falling away'' from the tangent to the
local streamline at the outer edge of the boundary layer. If the loca-
tion of the beginning of the '"pressure plateau' is identified by (x/r)p. g

then the angular turn measured around the cylinder surface from the
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jump location to (x/r)p b is about 13° in a typical case (Reo & 4x10%),

2

and the angular turn from separation to (x/r)p is about 7°.

Downstream of (x/r)p p we enter the constant pressure mixing

region treated by Reeves and Lees(3). In this region the basic equa-
dM
<
dx
and ignoring the contir;uity equation [Eq. (1)]. These reduced equations
d(6.*/r)

were solved for —-—(—i——-—-—— and ng_/_l‘_) and integrated up to a value of
a a

a= 0.7, corresponding to u¥*_. .
m1X1ng

tions are considerably simplified by dropping the term containing

= 0. 56.
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V. NEAR WAKE INTERACTION REGION

AND JOINING CONDITIONS

Since the location of the separation point on the body and the
length of the constant pressure mixing region are unknown 4 priori,
it is more convenient to begin the calculation of the near-wake inter-

action solution at the rear stagnation point, where a = 0. Starting at

§ . %,
1

this point with a given value of ( and a given value of Re_ q’

)

r /r.s.p. ’
Reeves and Lees(3) have shown that therelzs only oﬁe value of Me at the
rear stagnation point that allows the solution to go through the down-
stream critical point or ''throat' in the wake. The procedure adopted
was to integrate the basic equations [Eq. (1)-(3)] downstream of the
rear stagnation point with various trial values of (M >r . until one
solution is obtained that passes as close to the singﬁulari.ty.:t. D=0 as
possible. Here P = 0 in Eq. (2), and the curvaturé term a{x) in the
Prandtl-Meyer relation [Eq. (5)] is absent. It is more convenient to
take the reference point "far' downstream, so @ = \)(Moo) - \)(Me).
The curve-fits to the functions ¥, R, J, Z for wake flows given in Ref. 3

were utilized in the integration. In order to fix the downstream condi-

tions we selected Mf = 6.0, or (M ) = 2.5.
reestream 0 wake

Once the correct value of (Mg) is determined for a given
r.S.p.

S.
ES
choice of (6i/r> and Rec>o a Eq. (1)-(3) are integrated in the up-

T.S.P. s
stream direction away from the r.s.p. in order to generate a family

of possible wake solutions.

At some point in the near-wake region the constant-pressure

mixing solution must be joined to the wake interaction solution. For a
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given value of Re and M the boundary layer growth on

o,d freestream
the cylinder up to the jump location is determined, but the jump can be
placed at any point on the body downstream of the critical point (71': 1. 69).
For a given jump location the flow is determined completely up to the
beginning of the ''pressure plateau'’, but the length of the constant pres-
sure mixing region is arbitrary; any point on the mixing solution curve
corresponding to a certain u™ is a possible joining point to the wake
interaction solution. For a given value of <6i*4> the length of
r.s.p. :

the wake interaction upstream of the rear stagnationioint is also arbi-
trary. Thus, io_xlx_- conditions are required at the rn_,-’ia,tching point in
order to deterrﬁine the complete solution ﬁniquely.

Three conditions are more or less obvious: continuity of Me,
of u¥*, and of the mass flow above the dividing streamline, which is
proportional tc? Meéi* Z (Eq. (19)]. The fourth condition is a geo-
metric constré‘,i:nt; the length of the constant pressur e mixing zone and
the wake thickri?ss }7r at the joining point must be so determined that
the angle @ of ’the dividing streamline is compatible with the Prandtl-

Meyer turning angle for (M) b i.e. (Fig. 1),
p. L]
7—<d1/"- 175——r) = VM) - V(M) (37)
)7r [s.¢] ep. p° |

mixing
where

= (1052 e -0r), ]

These four joining conditions uniquely determine the complete solution

for a given pair of values of Re and Moo'

w,d
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VI. TYPICAL SOLUTION FOR SEPARATION
AND NEAR WAKE INTERACTION REGIONS:

ADIABATIC CIRCULAR CYLINDER AT M = 6

In order to illustrate the method of solution described in Sec-
tions III-V, a typical case is worked out for the adiabatic circular cyl-

inder at Moo: 2.5 and Re a4 8000, corresponding to freestream values

)

of MO= 6 and Re & 4x10*. A useful diagram employed in matching the

2
wake interaction and constant-pressure mixing regions is shown in

§.%
Figure 13. For every choice of <—-1-—> the wake interaction eigen-

solution is integrated in the upstream x;iii'.é)c;tion away from the r.s.p.
to produce a locus of pairs of values of Me and U*; these curves are
labelled '""wake solution'' in Figure 13. Every point on each of these
curves also corresponds to known local values of 61%;/r and Z.

Now, for a given trial jump location on the body surface the
separating flow is determined up to the pressure plateau, so Me= (Me)p.p.
is known in the constant-pressure mixing region. The horizontal
dashed lines 1n Figure I3 represent the constant pressure mixing solu-
tions for U* as a function of 61*/1', for a given jump location. At the
inter section of these dashed lines and the full curves calculated from
the wake interaction solution Me and U* are automatically matched.

6;*
The correct choice of the remaining two unknowns {x/r). and <__1—>
Jump T

r.s.p
is determined by matching mass flow above the dividing streamline,
and satisfying the geometric constraint embodied in Eq. (37) and (38).

Figure 14 shows a comparison between the predicted static

pressure distribution on the circular cylinder at Re0 qa°: 4x10* and
£
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Mc Carthy's (2), (11) experimental measurements at two nearby Reynolds
nurmbers of 3.2x10* and 4. 7x10%. Evidently the computed base pres-
sure [p(180°)] is somewhat low, but the location of separation on the
cylinder is predicted quite accurately. Of course in practice the jump
is smeared out over a distance of one or two boundary layer thicknesses.

The constant pressure and near wake interaction regions from
the pressure plateau to a point near the neck are shown in Figure 15.
As observed by Reeves and Lees(3) the predicted rear stagnation point
is located somewhat aft of Dewey's(ll) measured location. Presumably
the accuracy:of the wake interaction solution can be improved, espe-
cially at low Reynolds numbers, by utilizing the two‘-parameter veloc-
ity profiles of Reference 12, rather than the one-parameter profiles
employed here.

This illustrative example shows that the theoretical approach
employing an integral or moment method is fully capable of predicting
the location of separation and the entire near wake interaction region
for laminar flow, without the introduction of additional ad hoc assump-
tions or floating parameters. It would be interesting to extend the
calculations to show the effect of free stream Reynolds number and/or
a cool surface on the location of separation. This general method is
applicable not only to blunt bodies, but also to slender bodies with
smooth bases, provided only that the radius of curvature at the base

is large compared to the boundary layer thickness.
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APPENDIX A

SOLUTION OF THE JUMP EQUATIONS

The two algebraic relations for &, (or a,) and Mee are given
by Eq. (30) and (31), Section III. Since these equations involve the
differences between quantities which are nearly equal, it is useful to
. expand the downstream quantities, ¥, and Mez, in terms of their up-

stream values; Defining the quantities n and u as follows;

n = My - (A1)
Me,
= -1 (A2)

one can expand the jump equations, Eq. (30) and (31), in powers of

these quantities, where, for example

3m
L e =(1 >u+ 1 [1_ e, ]ug+___
Ue, 1+mel I+m ey 2(l+m el)

and

nn =@ (5) L

Retaining terms to second order, Eq. (30) and (31) can be expressed

in the form

At Ayn® + Agnut Ay u+ A u®

n
o
>
W

Byn + Bz’ﬂz + Banu + By u + Bsug

1l
o
o>

2

where, for adiabatic flow,



30

_ dJ
Moo= TNy (A5)

_ 1 d3J
fe T T NG

dJ
Ay = WG -
Ay, = (1)
Ag = N\‘Zm J+J+Z][ 1 ~]-J(1-g{)r1+, Te ]
L e (1+me)3 N ;ZH+me}
M 21
1 I e
+ *Z—E(ZN-J)Z - (1+me—me£{) J]Lmzj
and
B = ldmg f (A6)
B, = 0
M 21

— dz e

B, = [1+me+me;vw dy][ l+me] § [:l+me-me y:]
Mee-l
B, = (1+¥)[ 14me-me¥] -¥[1+m +m +Z] _W:\
B. = (1+)]3m % - (l4mg+m m(1+ Te ﬂ
° | e eie Z(Trmg)/J

3Ine s (2y-1 Mo 5 1
- N[HmeJ’me%“Z]‘: B 2{T+m ) + Me <_y—l I+m B T)J[ l+me]
f A [l+m + 1+mg)(1 Z-%) [Meg_l ]
5~ l+mg m & ] [(1+me ) (144) - (Z-%)] (TFmg)?
where all quantities are evaluated at the upstream station and hence
are known. The solution of the two algebraic relations, Eq. (A3) and

(A4), using the definitions given above, is now straightforward. Some

typical jumps are shown in Figure 11.
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¥ 2 . 78866 -3.04566| 3.93969| -1.70572 ——-- - -
] T 31943 TI9173]  -.86790|  3.43592 T15.76816| 28.64974 | -16.52933
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