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ABSTRACT 

At supersonic  and hyper sonic speeds the  location of the boundary 

layer  separat ion point on the  sur face  of a smooth, blunt body i s  not 

fixed 3 pr ior i ,  but i s  determined by the p r e s s u r e  r i s e  communicated 

ups t ream through the subcr i t ica l  base flow. By utilizing the integral 

o r  moment method of Reeves  and L e e s  the separation-interaction region 

i s  joined smoothly to  the near  -wake interaction region pas sing through 

a "throat" downstream of the r e a r  stagnation point. One interesting 

fea ture  of this problem is that the viscous flow over the blunt body 

"overexpands" and goes supercr i t ical .  This flow i s  joined to the near -  

wake by m e a n s  of a supercr i t ica l -subcr i t ica l  "jumpts ups t ream of 

separation, and the jump location i s  determined by the matching con- 

ditions. 

Downstream of the jump the viscous flow separa tes  in response  

to  the p r e s s u r e  r i s e ,  and fo rms  a constant p r e s s u r e  mixing region 

leading into the  nea r  wake. As an i l lustrat ive example the method is 

applied to an  adiabatic c i rcu lar  cylinder a t  M = 6, and the r e su l t s  
0 

a r e  compared with the experimental  measurements  of Dewey and 

McCarthy. This method can be extended to non-adiabatic bodies, and 

to  s lender  bodies with smooth bases,  provided that the radius  of 

curvature i s  l a rge  compared to  the boundary layer  thickness.  
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I. INTRODUCTION 

Our under standing of the flow in the near-wake behind smooth, 

blunt bodies a t  supersonic  and hypersonic speeds has advanced con- 

s iderably a s  a r e su l t  of the experimental  studies of  ewe^") and 

McCarthy and ~ u b o t a ' ~ ) ,  and the theoret ical  analysis  of Reeves  and 

~ e e s ' ~ ) .  The key t o  the solution of th is  problem i s  the s t rong in ter -  

action between the viscous flow originating in the boundary layer  and 

f r e e  shear  layer ,  and the "external" inviscid flow (Fig.  1). Unlike 

the situation in ord inary  boundary layer  theory the p r e s s u r e  d is t r i -  

bution along the wake axis  is not known A pr ior i ,  but m u s t  be obtained 

as par t  of the solution. Viscous-inviscid interaction occur s  through 

the p r e s s u r e  field generated by the induced s t reaml ine  deflection a t  

the outer edge of the viscous layer .  According to  this  "model" the 

compress ion  along the wake axis  i s  a smooth p r o c e s s  r a the r  than the 

sudden compression assumed by and others .  In fact for 

laminar  flow the length of the compress ion  region ups t ream of the 

r e a r  stagnation point i s  s t i l l  about 1. 5 body d iamete r s  at  Reynolds 

numbers  of the o rde r  of l o 6 ,  and near ly  half of the  s tat ic  p r e s s u r e  

r i s e  occurs  downstream of the r e a r  stagnation point (Ref. 3 ) .  

Because of the complexity of the problem, including regions 

of reversed-flow, Reeves  and L e e s  (3 '  5, employ an in tegra l  o r  mo-  

ment  method to descr ibe  the viscous flow. In addition t o  the  usual 

momentum integral they utilize the f i r s t  moment of momentum 

(mechanical energy).  When these two equations a r e  combined with 

the continuity equation and the Prandt l-Meyer  relat ion connecting 

p r e  s su re  and s t reaml ine  inclination in the inviscid flow, one has a 
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complete  s e t  of t h r e e  equations for  t he  t h r e e  p a r a m e t e r s  6 'k(x), M (x )  i  e  

and a n  independent velocity prof i le  p a r a m e t e r  a (x )  (for adiabat ic  flow). 

A s  shown or iginal ly  by ~ r o c c o ' ~ )  and L e e s  a formulat ion of the viscous-  

inviscid interact ion of t h i s  kind l eads  to  the conclusion that  the  n e a r -  

wake flow i s  "subcr i t ical"  a t  the r e a r  stagnation point, but p a s s e s  

through a "throat" into the s u p e r c r i t i c a l  reg ion  somewhere  downstr  earn 

of the  r e a r  stagnation point. At a given Mach number  and Reynolds 

number  the base  p r e s s u r e  o r  flow angle is  uniquely de te rmined  by the 

r equ i r emen t  that  the c o r r e c t  solution m u s t  p a s s  smoothly through the  

throat .  In t h i s  s e n s e  the si tuation i s  analogous to the inviscid  choked 

flow in a converging-diverging nozzle. In fact  ~ r o c c o ( ' l )  h a s  shown 

that  i n  a subcr i t i ca l  flow p r e s s u r e  d i s tu rbances  a r e  fel t  ups t ream,  

while in a supe rc r i t i c a l  flow the adjustment  to  a p r e s s u r e  change can 

occur  only a c r o s s  a supe rc r i t i c a l -  subcr i t i ca l  "jump", o r  "shock". ( 8 )  

In o r d e r  to  obtain a complete  solution t o  the base  flow problem 

for  a blunt body, t he  nea r  wake interact ion region m u s t  be joined to  

the boundary layer  separa t ion- in te rac t ion  reg ion  on the body. Since 

Reeves  and ~ e e s ( ~ )  w e r e  concentrating main ly  on t he  near-wake in t e r -  

act ion zone behind a c i r cu l a r  cyl inder ,  they a s s u m e d  that  the separa t ion  

point i s  held fixed a t  a location 125' around the body f r o m  the forward 

stagnation point. By using s tandard  methods  t he  boundary layer  growth 

up to th is  fixed point i s  calculated on the bas i s  of a known (exper imenta l )  

s t a t i c  p r e s  s u r e  distr ibution.  Reeves  and L e e s  a s s u m e  that  t he  velocity 

prof i le  jumps to  the separation-point  prof i le  ins tantaneously  a c r o s s  a 

discontinuity a t  th i s  location. Since only a sma l l  p r e s s u r e  r i s e  i s  
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requi red  to  sepa ra t e  a laminar  boundary layer ,  they take the "external" 

Mach number Me a s  constant a c r o s s  the "jump". By using m a s s  con- 

servat ion a l l  quantities just  downstream of the jump a r e  determined, 

and these  values furn ish  the initial conditions for  the constant p r e s s u r e  

mixing region downstream of separation. No at tempt  was  made to  

ma tch  the shear  layer  angle to  the induced angle @ ( 6 )  of the boundary 

layer  a t  separation. With the location of the separat ion point a r b i t r a r -  

i ly  fixed the re  & r e  only three  unknowns for  a given f r e e  s t r e a m  Mach 

number and Reynolds number R e  ' ( 1 )  length of the constant p res -  
0 , d '  

s u r e  mixing region; ( 2 )  length of the wake interact ion region or com- 

press ion  zone upstream of the r e a r  stagnation point; ( 3 )  value of 6 * 
i 

a t  the r e a r  stagnation point. Reeves and ~ e e s ' ~ '  join the constant 

p r e s s u r e  mixing solution t o  the near  wake interactipn solution by 

matching M [or @, u*, and the m a s s  flow above the  z e r o  velocity 
e 

line. 

Actually the location of the separat ion point on the body surface 

i s  not fixed A prior i ,  but moves in response to  the p r e s s u r e  r i s e  com- - 
municated upstream through the subcri t ical  base flow. A "jump" i s  

required,  a s  we shall  see,  in order  to  connect the supe rc r i t i ca l  vis-  

cous flow over the body with the initially subcrit ical  wake flow, but 

the velocity profile just  downstream s f  the jump is not a separation- 

point profile. To th is  extent the work of Reeves and L e e s  i s  incomplete. 

The main  purpose of the present  study is to  t r ea t  the separat ion-  

interaction region m o r e  carefully, and then to  join this  region smoothly 

to  the constant p r e s s u r e  mixing region and near-wake interaction zone. 
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The actual numerical  example chosen i s  the same  c a s e  of an adiabatic 

c i rcu lar  cylinder a t  a f r e e s t r e a m  Mach number of 6 t rea ted  by Reeves  

and In Section 2 the basic differential  equations of the Lees -  

Reeves  method a r e  writ ten down for  adiabatic flow, except that the 

curva ture  of the solid surface is now taken into account in the Prandt l -  

Meyer relation. These equations a r e  f i r s t  applied to  the calculation 

of the boundary layer around the cylinder for  a given experimental  

s ta t ic  p r e s s u r e  distribution. 

If one t r i e s  to  calculate the subsequent development of the 

viscous layer  including interaction starting f rom some a r b i t r a r y  point 

on the surface,  one finds that the flow goes supercr i t ica l  a t  a point 

about 97' around the cylinder f rom the forward stagnation point. But 

the flow in the near-wake is initially subcrit ical .  Thus a jump i s  r e -  

quired somewhere aft of 8 = 97'.  In Section 3 the laminar  supercr i t ical-  

subcri t ical  jump conditions a r e  derived for both adiabatic and non- 

adiabatic flow, and in Section 4 the equations for the now subcr i t  ical  

viscous layer downstream of the jump a r e  integrated through the sep- 

arat ion point and into the constant p r e s s u r e  mixing region. Section 5 

deals  with the near-wake interaction region in the manner  established 

by Reeves and and this zone is joined smoothly to  the constant 

p r e s s u r e  mixing region. Finally, in Section 6 a typical complete solu- 

tion for the adiabatic c i rcu lar  cylinder i s  worked out, and possible ex- 

tensions of th is  method a r e  briefly discussed. 



11. DIFFERENTIAL EQUATIONS: APPLICATION TO FLOW 

AROUND AN ADIABATIC CIRCULAR CYLINDER FROM THE 

FORWARD STAGNATION POINT TO THE J U M P  LOCATION 

As shown by L e e s  and ~ e e v e s ' ~ )  the well-known integral  or  

moment method can  be successfully utilized to  descr ibe  interacting 

separated and reattaching flows, a s  well a s  attached flows, provided 

the velocity profiles employed a s  weighting functions have the qualita- 

tively co r rec t  behavior. F o r  flows near  a solid sur face  the Stewart-  

son(9)  solutions of the Falkner-Skan equations a r e  shown t o  be the 

s implest  appr opr ia t  e family, including the branch cpr  r e sponding to 

reversed-f low profiles. F o r  wake flows another se t  of solutions of 

the Falkner-Skan equations with z e r o  shear  s t r e s s  on the axis, a l so  

(9 found by Stewartson , is the s implest  appropriate  family. In every 

c a s e  it i s  essent ial  to  "unhook" the profiles f r o m  the p r e s s u r e  gradient  

parameter ,  p, and to descr ibe  them in t e r m s  of an  independent profile 

parameter  a(x),  o r  K(x), that is not uniquely related to  the local p r e s -  

s u r e  gradient. 

F o r  adiabatic flow the th ree  independent p a r a m e t e r s  of the 

problem a r e  M,(x), a (x )  o r  Mx), and hi*(x) The "history" of these 

th ree  p a r a m e t e r s  is determined by three  f i r s t  o r d e r  non-linear, ordi-  

. (3 ,  5)  nary  differential equations, a s  follows. 

CONTINUITY 



MOMENTUM 

MOMENT OF MOMENTUM (MECHANICAL ENERGY) -- 

where  

N ( l+rne)  
h - 

- m e ( l + m  tan 
1 00 

and the other quantit ies a r e  defined in References (3)  and (5)  and in 

the Lis t  of Symbols. 

F o r  attached flow the independent parameter  a (x)  i s  given by 

the relation 

a(x)  = 
-+@- 

Y=O 

while for separated flows near  a solid surface 

r 
a(x)  = 

e 
(3)  In wake flows ups t ream of the r e a r  stagnation point , 



e 

and a(x)  = UE 
w- 

e 

downstr earn of the r e a r  stagnation point. 

In these  viscous-inviscid interact ions the  "external" inviscid 

flow M (x)  cannot be specified pr ior i ,  but i s  determined by the in- 
e 

duced inclination @ of the s t reaml ine  at  the outer edge of the boundary 

layer ,  given by Eq. (1). F o r  many flows the Prandt l -Meyer  relat ion 

connecting @ with Me i s  a good approximation, except that the curva-  

t u r e  of the surface mus t  a l so  be taken into account. Thus 

where v ( x  ) i s  evaluated a t  some reference  station, and a(x)  i s  the 
0 

inclination of the local tangent to  the surface,  m e a s u r e d  positive 

clockwise with r e spec t  t o  the surface inclination at  x With the aid o0 

of this  re lat ion [Eq. (5)],  Eqs. ( 1 ) - ( 3 )  completely de termine  the in- 

teraction. 

John Klineberg obtained additional solutions of the Cohen- 

R e  shotko ( l o )  or  ~ t e w a r t s o n ( ~ '  equations both for  adiabatic flow and 

for  the "highly-cooled" c a s e  of Sw = -0.8. By using these  solutions 

he was able to evaluate the quantities, K, J, Z, R, P and the derivative 

d J  - appearing in Eq. (1)-(3)  quite accurately.  He then curve-fit ted 
da( 

these functions a s  polynomials in "a". These functions a r e  plotted 

in F igures  2- 7, and the coefficients of Lhe polynomials a r e  given in 

Tables  1 and j .  k o r  example, = 2 4 ak] 
k= 0 



By regarding Eqs. (1)-(3)  a s  a lgebraic  equations for  the th ree  

unknown f i r s t  der ivat ives  of 6 ':< M and a, and solving simultaneously, 
i '  e 

one obtains the following equations for adiabatic flow: 

d J  d J where  N, (Me, a, h) = (J-Y =) h + (XR-PJ) + (P a - R ) B  

As shown by L e e s  and ~ e e v e s ' ~ )  the point D = 0 is a singular 

point of th is  sys tem of equations. If N. vanishes when D = 0 ( j  = 1,2 o r  3) 
J 

then the other two N ' s  a l s o  vanish and th is  point i s  a "saddle-point" or  

"throat" marking the t ransi t ion between "subcrit ical" and "supercr i t i -  

callf  flow. In fact the situation is s imi lar  t o  the subsonic- super  sonic 

t ransi t ion in a converging-diverging nozzle. If N. # 0 th i s  point i s  a 
J 

turning point and the integral  curve  i s  thrown back. Physically,  a sub- 

c r i t ica l  flow i s  capable of generating i t s  own self -induced disturbance 

interacting with the "external" supersonic  flow in r e sponse  to  a down- 

s t r e a m  event. A supercr i t ica l  flow, on the other hand, cannot "feel" 

dis turbances originating downstream. Thus the t ransi t ion f r o m  a 
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supercr i t ica l  flow to a subcri t ical  flow m u s t  occur a c r o s s  a "jump" 

o r  "shock" somewhat analogous to the normal  shock in the diverging 

portion of a supersonic  nozzle. 

F o r  adiabatic flow the locus of c r i t i ca l  points D = 0 i s  a unique 

function of a and M (Fig. 8). We see  that the Blasius  flow i s  always e 

subcri t ical  and the singularity D = 0 always l i e s  in the range a > a B ' 

corresponding to  a flow with a negative p r e s s u r e  gradient  of a cer ta in  

strength,  o r  a falling p r e s s u r e  applied over a sufficient length in the 

flow direction. The flow around a c i r cu la r  cylinder (or other  blunt 

body) a t  supersonic  speeds i s  an interesting example of a c a s e  in 

which the boundary layer  goes supercr i t ica l .  Of course  the viscous 

layer  is always s u  bcr i t ical  in  the subsonic portion of the inviscid flow 

near  the front stagnation point. Downstream of the sonic point, how- 

ever ,  the value of aCR rapidly dec reases  with increasing M (Fig.  8), e 

while a (x)  grows becau se of the action of the negative p r e s s u r e  gradi -  

ent i n  "filling ouf ' the velocity profiles.  If D = 0 a t  s o m e  point on the 

body then N1, N2 and Ng must  vanish the re  a l so  i f  the solution i s  to 

be continued downstream. This requi rement  leads to  a unique value 

of h a t  the c r i t ica l  point, namely, 

N 
m 

Regih tan  @ = C (l+m ) 
00 e 

where,  for adiabatic flow, 

It tu rns  out that F(a) and P(a) a r e  both > 0 for  a 2 aB; hence @ >  0 a t  

the c r i t i ca l  point, and this  situation i s  ent i rely possible when the flow 

expands because of sur face  curvature.  



Str ict ly  speaking the development of the boundary layer  s tar t ing 

a t  the forward stagnation point should be calculated taking into account 

the interact ion with the external  flow. In the supersonic  region, for 

example, such a calculation involves a coupling between the cha rac te r  - 

i s t i c s  net and Eqs. (1)-(3).  Since th i s  problem i s  a formidable one in 

i tself ,  and since the main  in t e res t  in the present  paper l i e s  in the sep-  

arat ion and wake phenomena, it was decided to  adopt the procedure  of 

Reeves  and ~ e e s ( ~ )  and r ega rd  M (x)  a s  given up to  the "jump" loca-  
e 

tion. The p r e s s u r e  distribution on the forward pa r t  of the cylinder 

was  taken f rom ~ c ~ a r t h ~ ' s ( ~ )  measurements ,  and the variat ions of 

Me and d(hle)/d(x/r)  were  computed assuming isentropic  flow around 

the cylinder. We can therefore drop  the continuity equation [Eq. ( I ) ]  

and consider  only Eq. (2)  and (3 ) ,  which can be rewr i t ten  in t e r m s  of 
a tji* 

the var iable  6,* = ( ~ r ) ( )  and solved for  the der ivat ives  
00 

d6r* d a  
~ / 7  and -r , yielding, d x  r d x  r 

Pmaoo - ( I t m e  ) o v - l ) / 2 ( y - l )  where  p-l = - - 
Pe ae l f m  

00 

The initial conditions on 6--'# and "a" a r e  given by the conditions of 
r - 

boundedness on d6r  "< da 
a t  the forward stagnation point, 

d a n d d w  
X where Me = 0 and- = 0. This  condition r equ i re s  that the numera to r s  
r 

on the R.H.S. of Eq. (11) and (12) vanish. By eliminating 6 * we 
r J  



get  the condition 

3 JP = R(2Y t 1) , for which one obtains 

= 1, according t o  McCarthy 's  data,  and Mm = 2 . 5  

(neck Mach number for a f r e e  s t r e a m  Mach number of 6. O ) ,  one finds: 

a = 2.967 
stag. 

One can show by a l inearizat ion of Eq. (1 1)  and (12) around 

a and (b r  that the stagnation point i s  a saddle point in the 
stag. 

( a  - 6 hk) plane; therefore  one has  to  s t a r t  the integration of Eq. (11) r 

and ( 12) by "kicking ' I  the solution off the c r i t i ca l  point by a sma l l  

amount. The integration of these  equations was per formed on an IEM 

7090 computer using a Runge-Kutta method s ta r ted  with Milne 's  method. 

The distribution of a, b r*  and the normalized physical boundary 

layer  thickness  a r e  shown in Fig. 9, where: 

One can see  that at  (x / r )  = 1.20, 'la'' exceeds the maximum value (3.90) 

obtained f r o m  the s imilar  solutions of the Falkner-Skan equation in the 

adiabatic case ,  indicating that the method of local  s imi lar i ty  fa i l s  down- 

s t r e a m  of that point and that the profi les  a r e  rea l ly  non- s imi lar .  How- 

ever ,  in o rde r  to  continue the solution with th is  family of velocity pro-  

fi les,  i t  was  a s sumed  that "a" s tays  constant and equal to  3.9, and that 



a l l  the in tegra l  functions keep the i r  value a t  a = 3. 9, which i s  to  a s sume  

that the profiles take a constant shape for  (:) > 1.20. ~ q .  (12) was  

X 
then dropped and Eq. (11) integrated downstream of / = 1.20; this  r 

equation becomes 

At ($) = 1.2,  the outer flow i s  a l ready supersonic  and we calculate 

the angle of the s t reaml ine  a t  the edge of the boundary layer  with the 

wall, , f r o m  the continuity Eq. (1) rewr i t ten  a s :  

~ 4 - 1  
l t m e  )2- ~ l ( ~ i * / r )  hi* dM 7 

tan @ = (T+T;;- m e { ~ w t f r M ,  dT;;j;)~ (15) 
rn 

because "a" i s  held constant. 

Suppose now one t r i e s  to  calculate the subsequent development 

of the viscous layer  including inter action starting f r o m  some a r b i t r a r y  

point, a t  which the solution i s  a s sumed  known f r o m  Eq. (11)-(15). 

Returning to  the ful l  equations [Eq. (1)-(311 one finds that the viscous - 
X 

flow goes supercr i t ica l  fo r  Me = 2 . 4  (Fig. 8)  corresponding to  - = 1.69 r 

[a = 3.91. But the wake flow i s  initially subcr i t ica l .  In o rde r  to  con- 

nect these  two regions the flow mus t  experience a sudden "jump" on 

the body surface f rom a supercr i t ica l  to  a subcri t ical  state, followed 

by a smooth compress ion  and flow separat ion leading into the nea r  

wake region. 



111. LAMINAR SUPERCRITICAL-SUBCRITICAL JUMP CONDITIONS 

In rea l i ty  a super c r i t ica l  flow has  a high but finite "impedance" 

to  the propagation of dis turbances ups t ream through the subsonic por-  

tion of the boundary layer ,  s o  one expects the t ransi t ion f r o m  super-  

c r i t ica l  to  subcri t ical  flow to occur over a few boundary layer  thick- 

nesses .  However, within the framework of the present  theory we 

rega rd  this t ransi t ion a s  discontinuous (Fig.  lo ) ,  and allow for sudden 

"jumps" in the; fluxes of m a s s ,  momentum and mechanical  energy. 

The flow ups t ream of the jump i s  charac ter ized  by four quantities, 

namely M 6.* ,  a(or  a() and Tx< (for non-adiabatic flow), and four jump 
e' 1 

conditions a r e  requi red  to de termine  the flow downstream of the jump 

uniquely. Three  of these relations a r e  der ived f r o m  the known conser -  

vation laws f o r  m a s s ,  momentum, and total  enthalpy. In general  the 

fourth quantity, namely the mechanical energy, o r  moment  of momen-  

tum, i s  not a conservat ive quantity. In the l imit  of Axl and A x ,  both -) 0 

(Fig.  10) the volume dissipation vanishes and we can wri te  approximate 

jump conditions for this quantity a s  well. The jump conditions a r e  

writ ten down for non-adiabatic flow, but the final re lat ions a r e  special-  

ized to the c a s e  of adiabatic flow to fi t  in with the r e s t  of this  paper.  

By refer r ing  to  Fig. 10, one s e e s  that as Axl and A x ,  -+ 0 the 

effects of skin fr ic t ion and heat t ransfer  vanish, as well a s  the volume 

dissipation. Also the effect of the "external" s t reaml ine  inclination 

d rops  out of the continuity equation. 



With these  observations the th ree  jump conditions der ived f rom 

the conservation laws a r e  a s  follows: 

MASS - 

MOMENTUM ---- 

-4 = (peue2 ) (6, - $ I  - 62 (Pa -PI ) 
1 

TOTAL ENTHALPY - 

where 

and 

m - - pudy = pma,Me 6i* Z 

where 

The fourth jump condition, for mechanical energy or  moment  

of momentum, i s  derived f r o m  the differential equation for  continuous 

flow by passing to  the l imit  of a finite change in  flow quantit ies occur-  

ring over a very shor t  distance. By integrating the mechanical energy 



equation a c r o s s  the boundary layer  one obtains 

d6 dp and the r a t e  of change In a supercr i t ical-subcri t ical  jump - dx ' - d x  

of mechanical energy flux a l l  -, m, while the dissipation t e r m  and the 
B 

t e r m  ( p ~ ) ~  (fg) aris ing f r o m  the s t reaml ine  inclination r emain  

finite, and a r e  therefore  neglected in comparison to  the other t e r m s .  

Then Eq. (22 )  takes a f o r m  quite s imi lar  to  the integrated momentum 
6 

equation, except that 6 i s  replaced by udy  = K. When Eq. ( 2 2 )  S o  
i s  multiplied by Ax = A x l  t A x ,  and Ax -, 0, we find 

MECHANICAL ENERGY (MOMENT O F  MOMENTUM) 

where 

and 

Strictly speaking some average  value of K should be used in Eq. (23), 

but we employed % h e r e  by analogy with the momenturn equation 

[Eq. (17)], and the difference i s  very  sma l l  in any case .  



As i t  t u r n s  out, the re la t ive  change in Mach nurnber Me a c r o s s  

a laminar  supercr i t ica l -  subcri t ical  jump i s  small ,  s o  the p r e s s u r e  

change i s  connected to  the velocity difference by the approximate 

relation 

By substituting the express ions  fo r  &, I, G, K and 6 into 

Eq. (16)-(18) and Eq. (23), one obtains the relation 

f r o m  the continuity equation [Eq. (16 ) l ;  by utilizing this  relat ion in the 

momentum and mechanical  energy equations, the s e  equations become 

and 

6 ." 
Eliminating f rom Eq. (27)-(291, one obtains 

6 i*e 
1 



- [(l + p ) ( Z 2  - J2)- 2 Ue, Uel + P e, Ue2 
U u 
el Pea e, 

)(m, ~2+z2)]?4) (30) 
el 

and 

These  equations furnish two relat ions between ld(z (or a, ) and M 
e2 

The method of solution is descr ibed in  the Appendix. 

In the limiting c a s e  of an infinitesimal "jump" the quantity 
u 

( 1  - ) 4 0 and Eq. ( 2 8 )  takes the  f o r m  
el 

while Eq. (29) becomes 

Now, by rewriting the two basic differential  equations for continuous 

(non-adiabatic) flow [Eq. (2) and (3)], in the f o r m  

and 



d"e 1 due and making use of the relat ion - - = - 
M l+me  

, one s e e s  that the u 
e e 

l a s t  two equations a r e  identical t o  the two corresponding jump equa- 

t ions in the l imit  Ax -. 0 with the R. H. S. -) 0. One can show a l so  that  

the continuity relat ion [ ~ q .  (16)  and ( Z l ) ]  fo r  an infinitesimal "jump" 

reduces  to  the continuity equation for  continuous flow [Eq. ( I ) ]  in the 

l imit  Ax - 0, with i t s  R.  H. S. -) 0. In other words the equations for  an  

infinitesimal jump correspond to the equations obtained f r o m  Eq. (1) - (3)  

by multiplying by Ax and passing to  the l imi t  Ax -, 0. 

Now the equations for an infinitesimal jump correspond exactly 

to the homogeneous f o r m  of the continuous flow equations, s o  that non- 

t r ivial  solutions exis t  only when the determinant  of the  m a t r i x  vanishes, 

i. e. when D = 0. We conclude that an inf ini tesimal  jump can occur - 
only a t  the c r i t ica l  point. The analogy t o  a normal  "shock wave" of -- 

infinitesimal s t rength in a nozzle i s  complete; such a standing shock 

wave occurs  only a t  the "throat". 

By rewriting Eq. (30) slightly one f inds that for  adiabatic flow 

A s  one can  see  f rom Fig. 2 and 3, in the region of in t e res t  6 -2) $ 0 

> J1 
when %11 =< g2. Also it is cer ta in  that - > J2 when %11 > Yz. Therefore,  

Ul 

Eq. (30a) shows that a compression or  a dec rease  in Mach number M e 

a c r o s s  the jump i s  always accompanied by a dec rease  in a(. When 

ac, = Kcr9 we obtain relat ions a c r o s s  an infinitesimal jump analogous 

to the expression f o r  an  ord inary  acoust ic  wave, e. g., 



Thus the flow on the downstream side of a sma l l  compressional  jump 

i s  always subcri t ical .  

One other interesting point of resemblance between these  

jump relat ions and an  ordinary gasdynamic shock wave is the phen- 

omenon of "hypersonic freezing". 'When M -)a one finds that  the 
el 

Mach number drops  out of Eq. (30) and (31), if these equations a r e  
u 

regarded  a s  relat ions for (1  - $) and%,. In other words .yZ 
el 

(and J,, a,, etc. ) i s  a unique function of a(, in the hyper sonic l imit .  

The jump equations [Eq. (30) and (31)] were  solved on a n  IBM 

7090 computer utilizing the method discussed in the Appendix and the 

polynomial curve-f i ts  to  p, J and Z discussed in Section 2; the r e su l t s  

for  some typical c a s e s  a r e  i l lustrated in F igure  11.- One s e e s  that 

the reduction in Mach number a c r o s s  these j ~ m p s  is ilideed very 

small .  Even for Mel = 6 and al = 1 m a x  
= 3. 90 the relat ive change 

in Me i s  about 36, and the corresponding s tat ic  p r e s s u r e  r a t io  i s  

about 1. 24 a c r o s s  the jump. On the other hand the  change in the 

shape pa ramete r  "a" i s  considerable,  especially when M >> 1, 
e l  

but the minimum a, i s  about 2. 0, st i l l  f a r  f rom separation, and 

indeed above the Blasius flow. F o r  a l l  the jump conditions investi- 

gated the boundary layer thickness dec reases  a c r o s s  the  jump, and - 
m a s s  flux i s  lost  to  the "outer" inviscid flow. However, the physical 

displacement thickness inc reases  slightly a c r o s s  the jump, which is 

ent i rely consistent with a compression occurr ing over a downstream 

distance of one o r  two boundary layer  thicknesses.  



As we have a l ready observed, the behavior of these  jumps i s  

strikingly s imi l a r  in many re spec t s  to  the ordinary gasdynamic shock 

wave. F o r  example, the m o r e  strongly super c r i t ica l  is the s ta te  up- 

s t r e a m  of the jump, the m o r e  subcri t ical  is the s ta te  behind the jump. 

Also, conditions downstream of the jump become virtually independent 

of Me for M > 6 (Fig.  11). 
1 el 

Since the flow downstream of the jump i s  always subcri t ical ,  

but f a r  f rom separation, this  flow must  generate  a self-induced 

p r e s s u r e  r i s e  along the body surface which produces separat ion and 

the beginning of the mixing region in the near  wake (Section 4). 



IV. FLOW FIELD DOWNSTREAM O F  THE JUMP, THROUGH 

SEPARATION AND INTO THE CONSTANT PRESSURE MIXING REGION 

X 
Between the c r i t ica l  point on the  cylinder a t  - = 1.69 and the r 

X p r e s s u r e  minimum a t  - = 2. 18 we know a l l  the quantit ies lji*, a ,  Me r 

[Fig.  (9)], s o  we can compute a possible jump to subcri t ical  conditions 

X at each location - . Also the s t reaml ine  inclination just  upstream r 

of the jump i s  obtained f rom Eq. (15), and @, i s  calculated f r o m  Ql 

by adding the turning angle a c r o s s  the weak compression.  Thus a t  

each  location (x/r) ,  = ( ~ / r ) ~  we know a l l  the "initial" conditions 

6 .* , a,, Me2 and @ z  required to  s t a r t  the computation of the in te r -  
1 2  

action between the now subcri t ical  viscous flow and the outer flow. 

These subcri t ical  t r a j ec to r i e s  a r e  calculated by integrating the full - 
equations [Eq. ( 1)-(3)],  making use of the Prandt l-Meyer  relation 

including the effect of surface curva ture  [Eq. ( 5 ) ] .  Downstream of 

the separat ion point ( a  = 0 )  we utilize the curve-f i ts  to  a/, J, P, R, Z 

shown in Fig. 2-6 in  the region marked  "separated flow", where 

In Fig.  12 we show a subcri t ical  t ra jec tory  to  separat ion and 

beyond for  the eigen-soli13:ion found in Section VI. Downstream of 

separat ion the positive p r e s s u r e  gradient d e c r e a s e s  rapidly, par t ly  

because the body surface i s  "falling away" f rom the tangent t o  the 

local s t reaml ine  a t  the outer edge of the boundary layer .  If the loca- 

tion of the beginning of the "p res su re  plateau" i s  identified by ( x / r )  , 
P* P. 

then the angular turn measured  around the cylinder sur face  f r o m  the 



jump location to  (x / r )  i s  about 13' in a typical c a s e  (Re  - 4x104), 
P. P* 0, d- 

and the angular turn  f rom separat ion to  (x/r  ) i s  about 7' .  
P* P* 

Downstream of (x / r )  we enter  the constant p r e s s u r e  mixing 
P* Pa 

region t rea ted  by Reeves  and ~ e e s ' ~ ) .  In this  region the basic  equa- 

dMe tions a r  e considerably simplified by dropping the t e r m  containing - 
dx 

and ignoring the continuity equation [Eq. ( l ) ] .  These  reduced equations 
d(6 ,'IC/r) 

were  solved fo r  and d*) and integrated up to  a value of 
da  da 

a = 0. 7, corresponding to u* = 0. 56. mixing 



V. NEAR WAKE INTERACTION REGION 

AND JOINING CONDITIONS 

Since the location of the separat ion point on the body and the 

length of the constant p r e s s u r e  mixing region a r e  unknown 3 pr ior i ,  

i t  i s  m o r e  convenient t o  begin the  calculation of the near-wake in ter -  

action solution a t  the r e a r  stagnation point, where a = 0. Starting a t  - - 

6 . * ~  
1 

this  point with a given value of 
( ~ ) r .  s .  p. 

and a given value of Re,, d, 

Reeves  and ~ e e s ' ~ )  have shown that t h e r e  i s  only one value of Me a t  the 

r e a r  stagnation point that allows the solution t o  go through the down- 

s t r e a m  c r i t i ca l  point o r  "throat" in the wake. The procedure adopted 

was to  integrate  the basic equations [Eq. (1)-(3)]  downstream of the 

r e a r  stagnation point with var ious t r i a l  values of until one 

solution i s  obtained that passes  a s  c lose to  the singularity a t  D = 0 as 

possible,  Here  P = 0 in Eq. (2), and the curva ture  t e r m  a(x)  in the 

Prandt l-Meyer  relat ion [Eq. (511 i s  absent. It i s  m o r e  convenient to  

take the re ference  point " f a r "  downstream, so 9 = v(M,) - v(Me). 

The curve-f i ts  t o  the functions a(,R, J, Z for  wake flows given in Ref. 3 

were  utilized in the integration. In o rde r  t o  f ix  the downstream condi- 

t ions we selected M = 6.0, o r  (M ) = 2.5. f r e e s t r e a m  00 wake 

Once the c o r r e c t  value of (Me) i s  determined fo r  a given 
r. s. p. 

choice of ( 6 i x )  and Re Eq. (1)-(3)  a r e  integrated in  the up- 
00, d' - 

r .  s o p .  
s t r e a m  dir ection away f r o m  the r .  s. p. in order  to genera te  a family 

of possible wake solutions. 

At some point in the  near-wake region the cons tant -pressure  

mixing solution m u s t  be joined to  the  wake interaction solution. F o r  a 



given value of Reo ,  and Mfrees t r em the boundary layer  growth on 

the cylinder up to  the jump location i s  determined, but the jump can be 

placed a t  any point on the body downstream of the c r i t i ca l  point (yr= 1.69). 

F o r  a given jump location the flow is determined completely up to  the 

beginning of the "p res su re  plateau", but the length of the constant p r e s -  

s u r e  mixing region i s  a rb i t r a ry ;  any point on the mixing solution curve  

corresponding to a cer ta in  u* is a possible joining point t o  the wake 

interaction solution. F o r  a given value of the length of 

the wake interaction ups t ream of the r e a r  stagnation point is a l s o  a rb i -  

t r a r y .  Thus, four conditions a r e  requi red  a t  the matching point in - 
orde r  to de termine  the complete solution uniquely. 

Three  conditions a r e  m o r e  o r  l e s s  obvious: continuity of M e' 

of u*, and of the m a s s  flow above the dividing s t reamline,  which i s  

proportional to  M 6 Z {Eq. (19)l .  The fourth condition is a geo- 
e i 

m e t r i c  constraint;  the length of the constant  p r e s s y e  mixing zone and 

the wake thickness Yr a t  the joining point m u s t  be so  determined that 

the angle @ of the dividing s t reaml ine  is compatible with the Prandt l -  

Meyer turning angle fo r  (Me) , i. e. (Fig.  1 ), 
P* P- 

- 3; ) o r  = v(Mm1 - v(Me) 
P* P* 

mzxing 
where 

These four joining conditions uniquely de termine  the complete solution 

for  a given pair  of values of R e  and Mm. 
009 d 



VI. TYPICAL SOLUTION FOR SEPARATION 

AND NEAR WAKE INTERACTION REGIONS: 

ADIABATIC CIRCULAR CYLINDER AT Mo = 6 

In o r d e r  to  i l lus t ra te  the method of solution descr ibed  in Sec- 

t ions 111-V, a typical c a s e  i s  worked out for the adiabatic c i rcu lar  cyl- 

inder a t  M = 2 . 5  and R e  = 8000, corresponding to f r e e s t r e a m  values 
cO m, d 

of M = 6 and R e  = 4 x 1 0 ~ .  A useful d iagram employed in matching the 
0 0, d 

wake interaction and constant-pres  s u r e  mixing regions i s  shown in 

F igure  13. F o r  every  choice of ( )  the wake interaction eigen- 
r. s.p. 

solution i s  integrated in  the upstream direct ion away f rom the r.s.p. 

t o  produce a locus of p a i r s  of values of M and U*; these  cu rves  a r e  
e 

labelled "wake solution1' in F igure  13. Every  point on each of these 

cu rves  a l s o  cor responds  to  known local values of 6.*/r and Z .  
1 

Now, for a given t r i a l  jump location on the body sur face  the 

separating flow i s  determined up to  the p r e s s u r e  plateau, so  Me= (Me) 
P-P- 

i s  known in the constant - p r e s s u r e  mixing region. The horizontal 

dashed lines i n  F igure  % 3  rep resen t  the constant p r e s s u r e  mixing solu- 

t ions for U* a s  a function of bi*/r, for  a given jump location. At the 

intersect ion of these dashed l ines  and the full curves  calculated f rom 

the wake interaction solution M and U* a r e  automatically matched. 
e 

The c o r r e c t  choice of the remaining two unknowns (x/r  ). 
and (T) J-P r.s.p 

i s  determined by matching m a s s  flow above the dividing s t reamline,  

and satisfying the geometr ic  constraint  embodied in Eq. (37) and (38 ) .  

Figure  14 shows a comparison between the predicted s tat ic  

p r e s s u r e  distribution on the c i rcu lar  cylinder a t  R e  = 4 x 1 0 ~  and 
0, d 
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M c  Car thy ' s  ")' ( exper imenta l  m e a s u r e m e n t s  at  two nearby Reynolds  

n u m b e r s  of 3. 2 x 1 0 ~  and 4 . 7 ~ 1 0 ~ .  Evidently the computed base  p r e s -  

s u r e  [p(180°)] i s  somewhat  low, but the location of separa t ion  on the  

c y l i n d e r  i s  predicted quite accura te ly .  Of c o u r s e  in  p rac t i ce  the jump 

i s  s m e a r e d  out over a d i s tance  of one or two boundary l aye r  th icknesses .  

The constant p r e s s u r e  and n e a r  wake in te rac t ion  reg ions  f r o m  

t h e  p r e s s u r e  pla teau to  a point nea r  t he  neck a r e  shown in  F i g u r e  15. 

A s  observed by Reeves  and ~ e e s ' ~ )  the pred ic ted  r e a r  stagnation point 

is located somewhat aft  of Dewey's m e a s u r e d  location. P r e s u m a b l y  

t h e  accu racy  of the wake interact ion solution c a n  be improved,  e spe -  

c i a l l y  a t  low Reynolds number s ,  by utilizing the  two-pa rame te r  veloc- 

i t y  profi les of Reference  12, r a the r  than the one -pa rame te r  prof i les  

employed  he re .  

This  i l lus t ra t ive  example  shows that  the theore t ica l  app roach  

employing a n  in tegra l  o r  moment  method i s  fully capable of predict ing 

t h e  location of separa t ion  and the  en t i r e  near  wake in te rac t ion  reg ion  

f o r  l amina r  flow, without the  introduction of addit ional ad hoc a s  sump-  

t i o n s  o r  floating p a r a m e t e r s .  It  would be in te res t ing  t o  extend the 

ca lcu la t ions  t o  show the effect  of f r e e  s t r e a m  Reynolds number  and/or 

a cool su r f ace  on the  locat ion of separat ion.  This  genera l  method i s  

appl icable  not only t o  blunt bodies, but a l s o  to  s lender  bodies with 

smoo th  bases ,  provided only that  the  r ad ius  of cu rva tu re  a t  the base  

i s  l a rge  compared  to  the boundary l aye r  th ickness .  
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APPENDIX A 

SOLUTION O F  THE JUMP EQUATIONS 

The two algebraic  relations for K2 (or  a 2 )  and M a r e  given 
2 

by Eq. (30) and (31), Section 111. Since these equations involve the 

differences between quantities which a r e  near ly  equal, it is useful to 

expand the downstream quantities, w2 and Me2, in t e r m s  of the i r  up- 

s t r e a m  values. Defining the quantit ies 'q and p a s  follows; 

one can expanc? the jump equations, Eq. (30) and (31), in powers  of 

these quantities, where, for example 

and 

Retaining t e r m s  to  second order ,  Eq. (30) and (31) can  be expressed 

in the f o r m  

where,  for adiabatic flow, 



and 

B1 = l t m  
e 

where  a l l  quant i t ies  a r e  evaluated a t  the u p s t r e a m  sta t ion and hence 

a r e  known. The solution of the two a lgeb ra i c  re la t ions ,  Eq. (A3) and 

(A4), using the definitions given above, is now st ra ightfor  ward.  Some 

typical  jumps a r e  shown in  F i g u r e  11. 







T A B L E  2-A 

- -- 
S = -0 .8  

W 
S E P A R A T E D  P R O F I L E S  - 

SF +# C1 C 3  C4 C 5  '6 
1 . 2  1 370 -. O634K -1.82056 10.55762 -37 .08205 57 .61391 -31.35775 

j b ( 2  . 78866  -3 .04566 3.93969 - 1.70572 - - - -  - - - -  - - - -  
1 . 3 1 9 4 3  -. 19173 -. 86790 3.43592 -15.76816 2 8 7 4  -16 .52933 
2 . 74968  -2 .04855 1.03298 1 .45265 -1.22712 - - - -  - - - -  

Z 3 .85886  -. 55378 -. 28422 -6 .23556 12 .58922 -6 .47769 - - - -  
1 .51990  -. 03461 -1 .17385 9.95019 -40.19250 73.8 -52.87887 
2 . 4 4 4 2 4  -2 .24455 5 .83444 4 .44263 - 17.39677 9.89966 - - - -  

R 3 1.46008 -. 39010 28 .23864 - 174.51371 - 579. 14401 -831.39551 449.01662 
- - - -  -. 67296 1.8'7130 -18 .26659 32.78362 -13 .05966 - - - -  i . 292  12 -4 .39870 4.26208 4 .77737 -5 .10503 - - - -  - - - -  

1 . 8 2 6 0  -. 04372 2 .56044 -25 .88076 111. 73742 -239.12252 174.28324 
a 2 5.4207; - 10.54094 - 12.75293 39.05220 -21. 53288 - - - -  - - - -  

1 -. 14158 -. 73754 -. 63091 6.  22963 -66. 14745 190.67465 - 148. 91834 
&/da 2 -4 .79632 13 .56027 - 3 .  0'7824 ' -8 .65383 - - - - - - - -  7. 10104 
dJ/dw 1 1.47875 - 1.08822 6 .76658 -27 .62517 3434tT73 - - - -  - - - -  

l/d~/djb( 2 -5 .04616 25. 17297 -24 .65823 -15 .64807 21. 39078 - - - -  - - - -  
dE/& 1 .50746  . 15517 -15 .60179 54.93670 -74 .33704 -35 .40025 - - - -  

l l / d ~ / @  2 -6 .26050  23 .56503  -30 .39277 13.34383 - - - -  - - - -  - - - -  I 
N O T E :  1. 0 < a s 0 .6  

2. 0.6 s a s 0 .8  
3. O s a s 0 . 8  





FIG.  I. SEPARATION AND NEAR-WAKE INTERACTION REGIONS FOR 
A B L U N T  BODY AT HYPERSONIC SPEEDS (SCHEMATIC) 















FIG.8. LOCUS OF CRITICAL POINTS 







FIG. 11.  TYPICAL LAMINAR SUPERCRITICAL - SUBCRITICAL JUMPS 



DISTANCE ALONG CYLINDER x/r 

FIG. 12. INTERACTION IN VICINITY OF JUMP 





- MEASURED STATIC PRESSURE 
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--- PRESENT THEORY 

FIG. 14. COMPARISON OF THEORY 
WITH Mc CARTHY'S EXPERIMENTS 



FIG. 15. NEAR \NAKE INTERACTION REGION 


