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ABSTRACT

We study the contributioné to the nonleptonic weak Hamiltonian
of Higgs bosons within the context of two typical gauge models of the
flavor interactions and the SU(3) of color strong interactions (QCD),
Processes mediatgd by charged bosons lead to iAII = %3 [ASI = 1 tran-
sitions and |AII =1, IASI = 0 parity violatioms.

The effects of QCD upon the general intermediate spin-zero
boson exchange Hamiltonian are investigated using the methods of
short distance expansions and the renormalization group. It is found
that induced gluonic processes, such as the 'gluo-magnetic' moment
transition s - d + gluon, are dramatically suppressed. On the other
hand, operators containing lighter ‘quarks, such asj suud + gdad, are
found to mix with operators involving heavy quarks, such as chd,
which can occur in the Hamiltonian with large coefficients. We argue
that the purely light quark-involving operators have large matrix
eleménts compared to their current-current Hamiltonian counterparts
and, hence, Higgsons can account for a large part of the |AIl = %
rule nonleptonic decays and nuclear parity violation. We found that
this contribution is limited by the KLKS mass difference, which may
be due in part to second order weak Higgson exchange.

We also investigate the properties of several multi-Higgson

Lagrangians with respect to their symmetry breaking properties, as

are relevant to the models considered here.
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Chapter 1

I.1 INTRODUCTION

‘The past few years have been exciting ones for particle physicists
with the discovery of several new and important phenomena. These include
the observation of neutral weak interaction current effects at various
laboratories [i], the discove;y of the psi and related new mesons and
resonances [2] and the observation of scaling in deep inelastic electro-
production experiments [3]. The importance of these new phenomena lies
in the fact that they were either anticipated or are readily explained
within the context of a new class of theoretical models which embody a
fundamental physical principle, namely, non-abelian local gauge invariance.

The idea of local gauge invariance is not new and forms a salient
feéture of Maxwell's equations of electrodynamics and a cornerstone of

Einstein's theory of gravitation. The non-abelian nature of the new

-models is a manifestation of internal, apparently non-geometrical, sym-—

\
\

metries which describe approximately the laws of elementary particles
and their interactions. Examples of such symmetries are the ordinary
isospin of nuclear physics and the approximate SU(3) invariance of the
ordinary hadronic spectrum. When these non-abelian internal symmetries
are combined with the notion of local gauge invariance one arrives at a
theory first proposed by Yang and Mills [4] with the possibility of
describing the interactions of elementary particles.

Today we recognize the existence of two distinct gauge theories

of this kind which may someday be unified into a grand synthesis of all
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elementary particle interactions. First, we believe in the existence
of a "color" theory of strong interactions based upon the gauge group
SU(3), which is presumably responsible for the coﬁfinement of quarks
within the hadrons [5]. The color theory, also known as Quantum Chromo-
dynamics or QCD, accounts for the apparent scaling behavior of the
electroproduction experiments [6] as well as providing a rationale
for confinement of quarks by means of the infrared divergences associ-~
ated with the on mass-shell amplitudes [7]. The important point we
wish to emphasize here is that the SU(3) of color symmetry is an unbroken
symmetry. Presumably only the color singlet states are observable.
Secondly, we presLme the existence of a "flavor" symmetry which,
when combined with the idea of local gauge invariance, leads to a theory
of the weak and electromagnetic interactions of quarks and leptons.
The flavor éymmetry is built of a gauge group which is essentially un-
determined but which would appear to contain the group SU(2)xU(1l).
This leads to scores of models of which the Weinberg—Salam‘model ié
- the original and best contender [8]. Such a model predicts the existence
of neutral currents and charmed quarks, the constituents of the psi
and related new particles [9]. We emphasize here that the flavor sym-
metry, unlike SU(3) of color, cannot be an exact symmetry and must be
broken in such a way as to preserve the masslessness of the photon while
giving mass to the intermediate vector bosons and lifting the degener-
acies in the masses of the different elementary fermions. Symmetry
breaking is precisely why the exact determination of the complete flavor
group is very difficult, requiring extremely high energies to unfold

the complete particle spectrum. At some future date we may find that



the color and flavor groups are not distinct but merely subgroups of
of a larger unifying gauge group [10]. Clearly, these speculations
emphasize the importance of understanding the nature of the symmetry
breaking mechanisms.

Such a mechanism, which is coﬁmonly invoked to construct realistic
models of flavor interactions,is ;he so-called Higgs mechanism [11].
The Higgs mechanism requires the existence of a new family of elementary
particles which are spin zero scalars or pseudoscalars. One is encour-
aged by the successes of the gauge theories thus far to consider the
possibility that such elementary scalars, or"Higgsons! may at some point
be discovered in high energy exberiments. As we shall see below, a
natural mass scale for Higgs scalars is roughly my = /E.MW’ where Mw
is the mass of the W-boson. This result for my is presumably 5 to 15
Ge& using the expected values of Mw and is not so large as to make the
Higgsons inaccessible in the near future.

It should be mentioned that the Higgs mechanism is not the only
possibility for breaking the flavor symmetries. Many authors believe
in a dynamical symmetry breaking mechanism which, in analogy with super-—
conductivity, provides symmetry breaking without the existence of
elementary scalar fieldsT Such a mechanism suffers from the drawbacks
that a) it has not yet been demonstrated convincingly in four-dimensional
model field theories b) it is doubtful that one could readily perform
calculations with such a mechanism‘[12]. Should such a dynamical mech-
anism be operént it is possible, if not very likely, that it wouid mimic

the simpler explicit Higgs mechanism and may, indeed, display quasi-

+Both mechanisms may be operant at some level, as has been considered
by some authors [13].



elementary Spin-zero excitations.

In this dissertation we have addressed the question what,if
any, are the potential effects in the ordinary interactions of element-
ary particles due to Higgsons? Generally the effects involving leptons
are small since Higgson.couplings to the fermions are proportional
to ﬁhe fermion masses and leptonic\masses are small. Nonetheless, if
the existence of heavy leptons is established [14], Higgson mediated
processes may become important in their decays; induced processes
involving Higgsons such as y + ey may also arise at some level as a
result of Higgson-fermion interactions [15j.

We have primarily focused upon the nonleptonic weak interactions
where Higgson effects may already be operant. This is a rich problem
in that it brings to bear th; full apparatus of the renormalization
group, short distance expansions, and QCD's unique property of being
asymptotically free [6]. We employ these well known techniques in est-
imating the strong interaction corrections which we find in some cases
to be important. The primary effects leading to an enhancement of
Higgson amplitudes are due to a) the involvement of the charmed quark
or other heavy quarks in the intermediate states which can lead to
factors of m b) mixing angle effects as described below which lead
to factors of (tan ©) and may be large c) QCD enhancement effects.r

We have considered two generic models: the standard Weinberg-
Salam model with four quarks and four leptons and multiple Higgs
doublets and a six-quark vectorlike scheme with minimally required numbers

of Higgs multiplets [16]. Both models have the feature of leading to
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charged residual Higgsons and a wider class of Higgson mediated
interactions than one obtains witﬁ only neutral Higgs bosons. We limit-
ed ourselves to models in which the neutral scalars couple only dia-
gonally to the quarks, i.e. no !AS| = 1 and |AC| = 1 neutral scalar
vertices, so as to avoid lASI = 2 and |ACI = 2 processes in lowest order

of the Higgson exchange. This becomes an equally important comstraint

in second order,or double Higgs exchange and Higgson-W exchange processes,

In considering these models we devote considerable attention to
the structure and properties of the scalar self interactions, or Higgs
potentials, which lead to the development of vacuum expectation values
by different scalar fields and the spontaneous breakdown of the sym-
metry. This is a novel area of research and we are led to conjecture a
number of interesting general features about symmetry breaking based
upon our analysis of these potentials, as discussed in Appendix A.

The effects of the strong interactions lead to a standard but
lengthy problem in short distancé expansions. In the language of ﬁhe re-
normalization group we find that we must construct anomalous dimensions
of various basis operators occuring in the short distance expansions
which mix under renormalization. We must then determine the linear
combinations of operators that are multipliéatively renormalized in order
to solve the renormalization group equations and thus determine the
corrections to the Hamiltonian given in the tree approximation. Certain
of the tree approximation operators will be enhanced and others suppressed
by this process. Our treatment of the QCD effects is sufficlently

general that it can be readily applied to any intermediate scalar exchange
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process; In the Appendices we discuss the technical apparatus that
is required in the evaluation of the anomalous dimensions of com-
posite operators.

In this work we have not reported on the purely leptonic and
semi-leptonic Higgsoﬁ induced processes. We have found that these
effects are consistently small éﬁing to the smallness of leptonic
masses. Higher order radiative correction effects have been est-
imated, including mixing angle enhancements, for several of these
processes. The potential sources of concern are the muon anomalous
magnetic moment and the K +un, which could receive large Higgson
contributions. We have found that these are generally arbitrary in
our models and can be separately controlled, with respect to the

nonleptonic processes.

In summary, we find that Higgson processes can be competitive
with the ordinary current-—current weak interactions. By saturating
the constraints imposed by the KLKS mass difference, we may be
able to account for at least a part of the nonleptonic AI = %—rule

in strangeness changing processes, as well as obtaining a significant

contribution to AS = 0 parity violating processes.



I.2 REVIEW OF HIGGSISM'

The prototype example of a model displaying the Higgs mechanism
is based upon the U(l) gauge group and is described by the Lagrangian

[11] of the form:

L = -27 74
4 v

1

1 2
2 9 I

2
2‘“]

(o, - tea 4] + 612 - 3,181 @.n

This is simply scalar electrodynamics with the wrong sign appearing
in front of the m2 term.

This Lagrangian is readily generalized to all Yang-Mills
theories by introducing appropriate multiﬁlets of the scalar fields
and allowing the vector potentials to be members of the adjoint
representations of the various gauge groups. The result of the
unstable classical potential will be to force the scalar field to
dévelop a vacuum expectation value which effectively breaks the
gauge symmetry while preserving Lorentz invariance. The Higgs
mechanism gives a mass to the vector fields corresponding to the
charges in the group that are violated.

We wish to point out that,if we had started without the
quartic self interaction, it would have been forced upon us when we
computed scalar-scalar scattering amplitudes. The double seagull
exchange of Fig(I.l) is of order e4 and requires a quartic counter-
term for renormalization. Once one includes the counterterm, the theory
is fully renormalizable. This is the basis of the standard assertion

that A is to be of order ea. This is essentially a plausi-

+ This section is purely pedagogicéi‘and is summarized in Table I.1



bility argument and cannot be jusgified rigorously since we are
essentially free to specify the renormalized values of coupling constants
arbitrarily.

To zeroth order in o the potential energy density of the vacuum

is given by the éxpression:
1 2 2 A 4
V(g = -5 ufol" + 7 4] (1.2)

where ¢ is shorthand notation for the vacuum expectation value of the
field ¢, i.e. <0|¢|ox

A well defined procedure exists for the computation of the higher
order corrections to the potential energy density of eq.(I.2) in a
perturbation series in powers of Planck's constant. We describe this
procedure here and refer the reader to the major references for details
[17].

One considers the generating functional of single particle ir-
reducible Green's functions, I'(J), where J(x) is an arbitrary external
source for the field ¢. For scalar fields J(x) is also a scalar, but
in general one includes one source per field in I'(J) and each source
has the same Lorentz property as the fieldvrepresented. We are only
interested in scalars here since a vector or spinor cannot develop
a vacuum expectation value without spoiling Lorentz invariance.

One performs a Legendre transform upon I'(J) of the form:

Iy - J%ﬁ} = T(¢) ' (1.3)

where we use:



or  _ - (1.4)
57 - ¢

to eliminate J(x) in eq.(I.3). T(¢) has the following interpretation..

We may choose an.ensemble of vacua all of which have the property
that <0|¢|0> = ¢. These are to be regarded as a set of trial vacuum
wave functionals parameterized by ¢ and an infinite number of additional
parameters. We vary the remaining parameters until we find the wvacuum
state of lowest energy for fixed value of ¢. The energy density
of this state is the value of TI'(¢). Therefore to find the absolute
ground state we must simply minimize I'(¢) with respect to ¢. Generally,
for values of ¢ which do not correspond to the lowest state, T'(¢) will
have an imaginary part corresponding to the decay rate (per unit volume)
of the unstable vacuum.

I'(¢) is known as the effective potential and is usually expanded
in the loop expansion, or as a power series in Planck's constant. The
lowest order term corresponding to B = 0 is the classical energy density
of eq.(I1.2).

Coleman and Weinberg have investigated the Lagrangian of eq.(I.l)
in the limit m2 = 0 [18] using the one loop corrections to the effective
potential. Their perturbative calculation is meaningful only when‘A
is of order az. In this case it is found the massless scalar electro-
dynamics is dynamically unstable and the scalar field will automatically
develop a vacuum expectation value. We have mentioned this phenomenon in
that it allows an alternative to the incorporation of Higgs scalars in

a model explicitly. Many authors have considered the possibility that
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a composite operator suqh as'ﬁw , for example, might play the role
of the field ¢ and a mechanism such as the Coleman-Weinberg phenomenon
might be operant [12]. We have briefly mentioned this possibility in
section I.1 and we reiterate that it is difficult at present to see how
to put dynamical symmetry breaking on a sound theoretical basis.

If m2 # 0 we readily work out the properties of the potential

in eq.(I.2). We find that V(¢) has a minimum when:

- |6m_
¢ =I5 - (1.5)

Returning to eq.(I.l) and shifting the field ¢ by the amount eq.(I.5),
the vector boson is easily seen to acquire a mass. Essentially, the

gradient of the phase of the complex field ¢ becomes the longitudinal
component of the vector boson. This is most easily seen explicitly by

setting ¢ = pele and letting <O|¢l0> = p in (I.5). We find:
M = (0 lelox? (1.6)

There is also seen to be a leftover real scalar field corresponding
to the shift p = <0|¢|0>+ n. We call the field n the "Higgson" and

find that it has a mass:

2 1 2

n? = -2al+ 2 (0lslon? - (1.7)

N
N =
=}

.

It is also seen that a Higgson can couple to a pair of vector bosons

with the effective interaction:

1.2 w1 M
5 e <0|¢|0>AUA n= g eMy p AATN. (1.8)
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In ﬁnified gauge theories‘we\will have MV.B.z Mo the mass
of the intermediate vector boson. Of course, there will be numerical
factors and mixing angles involved, but in what follows weiwill think
of MV.B. as being always of order ¥E7E; for the sake of discussion.

Weinberg has deduced a lower limit for the mass of the neutral
Higgson in the standard Weinberg-Salam model with one scalar doublet
[19]. The argument is essentially as follows.

Suppose we wanted to take my (= m) very small. Then, to hold
MV. . fixed so as not to spoil the strength of the weak interactions,
it is necessary to take A correspondingly small by eq. (I.6). However,
A is bounded by the renormalizability of the theory never to be smaller
than az. Therefore, there must be a lower limit on m. We mentioned
above that the renormalized value of X is really arbitrary. Nonetheless,
if one considers the one-loop corrections to V(¢),it may be seen that
if one tries to take m too small, the <O|¢l0> = 0 extremum becomes: the
physical minimum, This makes rigorous the renormalizability argument.
The lower bound obtained for one doublet is a mass of 3.72 Gev without

specifying the value of the Weinberg angle. Taking O, = 35° gives a ‘

W
lower bound of MH = 4.9 Gev., Again, this result is suggestive of a
natural mass scale of order 10 Gev for Higgsons, though no theoretical
upper limit can be placed at present.

It is interesting to note that the Higgson-V.B.-V.B. coupling

of eq. (I.8), which leads to diagrams such as Fig.(I.2), is of the

same order as the tree diagrams if both divergences are present and
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if my :'MV.B.' Again, this is basically the statement that perturb-
ation theory is notvsensible if mH—is too small.

We have been cavalier in this discussion about large numerical
factors such as 1/16w2, etc. We are simply trying here to convey a
qualitative feeling for the elements of Higgs theory.

The Higgs scalars are used to give masses in the Weinberg-Salam
model to the elementary fermions. This will also occur in the vector-
like theories, though singlet mass terms are also needed which may or
may not arise from scalars (section II.2 ). A typical Yukawa interaction
will be of the form (using the above developed U(l) model, we ignore

the fact that ¢ is actually complex for the sake of illustration):

Lyskawa = 8% WV - (1.9)

Hence, the fermion mass will be of order m =~g<0|¢|0>3 and the

£

coupling to the leftover Higgson, n, is written:
~ /E;; mfr@—‘p' (1.10)

This is the basis of the standard remark that the Higgson couplings
to fermions are proportional to the fermion masses.
It is to be noted here that if additional Higgsons contribute

vacuum expectation values to the vector boson masses, we will have:

Mv.é.z = e2(<‘¢>12 +,<q>>22 + ...+ <¢>n2). (1.11)

Hence:

45

<p> = =B sin © (1.12)
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and if only\¢n couples to @;wn, we will get a Yukawa interaction of

strength:

- e o (et gyl |
1:'Yukawa - JE; mf(51n:@) nyy (1.13)

which can easily be substantially enhanced for small values of the
mixing angle ©. This indicates the poséibility that Higgson exchange

effects can be important when a) m_. is large, e.g. m_. = m, b) sin 0

i f

is small, e.g., @ = QCabbibo'

tActually, it will be seen that when we rewrite the Higgs fields in

terms of the physical mass matrix eigenfields, the factor of sin
in (I.13) becomes a tanf.
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TABLE 1I.1 -
SUMMARY OF HIGGSISM
2
m 2 A 4
V) = -3 l¢]% + 7ol
| 6m2
Vacuum Expectation Value <0l¢|0> = =
Vector Boson Mass Mw = e<0]¢|0> ~ em/VA
Higgson Mass MH 2 m
Natural Higgson Mass Scale Mﬁ a a/ﬁ;
V.B.-V.B.-Higgson Vertex L' = echpquu 1HYJJ

Fermion Mass m & g<0|¢|0> = ng/e

(in theories with many Higgsons = g(tan@)MW/e)

Higgson-Fermion-Fermion Vertex goPP = /Efmf¢$¢\\r//

(~ JE;hfcotO)
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Fig. I.1

eM,; eM,,

eM,,

Fig. 1.2
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1.3 THE |AI] = -21— RULE

In the present section we review modern attempts to explain the
puzzles of the AS = 1 weak nonleptonic processes within the context
of the unified gauge theories.

Lee and Gaillard and Altarelli and Maiani [20] offered an

explanation of the apparent enhancement of the lAIi = %-operators
(and/or suppréssion of the IAII = g-operators) occurring in the

weak nonleptonic current-current Hamiltonian within the context of
the SU(3) color étrong interaction picture. The nonleptonic Hamil-
tonian is constructed in the tree approximation as a short distance
product of weak currents. The distance scale is set by (MW)—l and
is small compared to a conventional hadronic length scale, e.g.
(1 Gev)—l. The authors of ref.[20], using the techniques of short
distance expansions and the renormalization group, as discussed in
chapter III, computed the QCD radiative corrections to the operators
appearing in the weak Hamiltonian. It was found that the octet com-
ponents are enhanced relative to the 27 pieces that contain the
|AI| = %-operators by a factor of approximately 5.

We can readily enumerate a series of‘difficulties and objections

to this result. These are as follows:

a) The desired enhancement factor is about 25 based upon the
fact that K° +-2ﬂ/K+ -+ 2m (rate) is = 625. The K° decay is both
. .1 3 + . . .3
isospin §~and 7 whereas the K decay is pure isospin 3¢

b) In the limit of exact SU(3) symmetry the arguments of
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Gell-Mann [21]\indicate that the K decay amplitudes must vanish
due to the charge conjugation properties of the Hamiltonian.

c¢) The Lee-Sugawara relations [22]f which appear to be
experimentally sound for both the p-wave and s-wave Hyperon decays,
are only obtained for the s-wave amplitudes in the current-current
Hamiltonian (thié is no doubt related to (b)). (Acfually, one may

note that both results are obtained with PCAC and current algebra [39]).

We should point out that the analysis of Lee, et. al.[20]
is still somewhat incomplete in that the charge radius corrections
have not been fully accomodated. It turns out that these cor-
rections are probably not important due to the GIM cancellation,
but the technical details are very intricate [23].

In attempt to remedy some of the alleged shortcomings
of the previous analysis, Fritzsch and Minkowski [24] proposed
an alternative explanation to the problem (also DeRujula, Georgi
and Glashow) within the context of the vectorlike models of
the flavor interactions. These authors call for a new operator
of the form EsquAuvadL (or sPPd) which describes processes of
the form s + d + gluon and, it was hoped, may be present with
sufficient strength to account for the experimental situation.
-Such an operator is apparently nice from the point of view of
item (b) having the correct charge conjugation to give the K
decay in the continued SU(3) symmetry limit. Such an operator

could occur in the vectorlike theory if there was an EyucR_cur .

tOnly the s-wave '"triangle" relation can be derived from the rent-
current Hamiltonian [21]. The p-wave relation is observed exr ment-—
ally, though the original "derivation'" of ref.[22] incorporal

extra assumptions.
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One may criticize the vectorlike explanation of the |AI| =-% rule
from the following point of view.
First, one hopes to start out with the attractive picture of

the flavor currents of the form:

However, the arguments of Golowich & Holstein [25] indicate that the

mixing angle between s_ and dR must be less than .07 so as to

R
maintain the purely left-handed chiral structure of the isospin
transformation of the weak Hamiltonian. Furthermore, the observ-
ation of parity violation in the neutral current processes involving

nucleons indicates that either dR or u,2 must be taken to have singlet

R

components (otherwise the neutral current is purely vectorial [26]).
Wilczek and Zee, using the techniques we employ in Section II.4,

[29] have studied the QCD corrections to the operators such as

- - AuvA . s .

SPPd and SOUVG ¥ d as they appear in short distance expansions

These authors find that these operators are suppressed by factors

2, 2.-1/2 .

of order (log Mw/u ) 2 1/3. Furthermore, the matrix elements

of these operators can not be argued convincingly to be large (the

argument given by Fritzschand Minkowski relies on the ratio of

two body to three body phase space in comparing s - gluon + d to

s > duu . This is hardly a believable estimate). A better

estimate would be to compare s - duu (via gluon) to s > duu (via

weak currents). This is of order unity.
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There are mahy other proposed mechanisms for the |AIl = %-rule
in the life;ature relying upon different ideas [30]. Recently C.
Schmid has proposed an interesting idea which we mention only
because it illustrates that the effect may not be a "short-distance"
enhancement at all. Schmid relies upon the finite size of the
hadron to determine the approximate peaking in the quark wavefunctions
for zero separation. Of course, the value of the enhancement is
sensitive to 6ne's choice of wavefunction, for which Schmid employs:
"charmonium-like'" amplitudes for the relative separations of quarks
within baryons (this approach only deals with baryonic decays and
evidently fails for meson processes). This same kind of argument,
though attractive, does not seem to work in the ''bag" models [43].

It is a common feature to all of the enhancement mechanisms
known to this author that they are basically undecidable in that they
lead to no alternative measurable quantities one may use as a
check on the mechanism. Actually, we may find that parity violation
in the [AS| = 0 processes may affbrd such a "second handle' on the
problem (Altarelli, et. al. [31]).

In this dissertation we take a completely different tack and
propose that Higgs scalars may be responsible, through a combination
of effects, for the observed enhancement in nonleptonic(AI|= %-weak
interactions. Our'approach is decidable in the sense that the discovery
of Higgsons and the subsequent analysis of their decay properties
would reveal a host of independent checks upon the hypothesis. Higgson
decay modes would directly yield information about such parameters

in the theory as the ratio of vacuum expectation values, etc.
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Our poiﬁt\of view will be that Higgsons contribute in part to

the nonleptonic interactions, but we will find that this requires
saturating limits, such as the KLKS mass difference, which will
effectively require taking certain mixing angles small. In the end,
we would require the independent information that would determine

the absolute values of these parameters.

In the next section we give a brief summary of our work.
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I.4 SUMMARY

We find that charged Higgson exchange leads to an effective

Hamiltonian that contains a |AI| =-%, |AS| = 1, piece of the form:
GFmi 2 = -
H = ;% ) 51n@ccosectan X (chRcRdL + h.c.) (I.14)
"

where X is a mixing angle associated with the scalar vacuum ex-
pectation values (more generally, we simply regard tany as rep-
resenting all of the mixing effeéts). With other heavy quarks

of charge 2/3 there will be additional terms involving Eqad. The
structure of the entire nonleptonic Hamiltonian is, with the excep-
tion of the specific values of the parameters.and numbers of quarks,
model independent.

Induced gluon processes of the form s -~ d + gluon, as described
by the operators §oquAquAd, sPPd, etc., are found to be dramatically
suppressed by the effects of QCD by factors of order 10—1, as well as
by the coefficients of their parent operatdrs, ERCLERdL’ which are
found to be of order mi/mﬁ.

We find that the mixing angle contribution, tanzx’, can assume
large values without violating the smallness of the KLKS mass dif-
ference, e.g., we can tolerate factors of order tanzx ] 101mH/mc
(or perhaps even -larger).

The effects of QCD are striking in this example as they lead

to a mixing of the operators in the Hamiltonian of eq.(I.14) with

operators of the form gLuRGRdL + s,d,d.d.. These new operators
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have severél deéifable features a) they are of the correct chirality
so as no£ violate the constraints of Golowich and Holstein [25]

b) they enter the Hamiltonian with reasonable coefficients (of

order 10-lc)they are seen to have large matrix elements between
ordinary hadron states, e.g., we show in section IV.2 that the
matrix element of this operator between K and m states is of order

~ mTZT/mdmS - (ordinary current—current matrix elements).

If we use this estimate for these matrix elements and saturate

the bounds imposed upon our Hamiltomnian by the K

LKS mass difference,

we find that we can almost accommodate the observed enhancement of

. .1 . . . .
the 1sosp1n~5-processes in the nonleptonic weak interactions.
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Chapter II

ITI.1 WEINBERG-SALAM MODEL WITH MULTIPLE HIGGS DOUBLETS

The Weinberg-Salam model [8] employs the standard left-handed
doublets of quarks and leptons with the right-handed fields as
singlets under the gauge group SU(2)xU(1). All quark fields are
SU(3) color triplets and leptons are singlets. With four quarks
and four leptons the model is free of axial vector current anomalies.

We will make use of the following notation:

e H
Xl:{v} X2= v}
L e’ L 1L

L
(1) _ (2) _ 1 _ (2) _

PL,R 7 "L,k PL,R T °L,R ’QL,R = eL,R ‘QL,R - ML,R (IT.1)
(1) _ n _ (1) _ (2) _

L RTLR MMRTSLe Y T Ve YTV

One may introduce a single Higgs doublet which is sufficient
to break SU(2)xU(l) invariance, giving mass to the W and Z bosons
and arbitrary masses to the quarks and leptons. There is then a
single left-over neutral Higgs scalar which couples diagonally to
all flavors with coupling strengths proportional to the masses of
the individual fermions.

This model is in good agreement with present experimental
evidence regardiﬁg the weak and electromagnetic interactions, with
the following few exceptions: a) it is impossible to introduce CP
violating phases into the quark and vector boson sector b) the

!AI[ = %> rule has not yet been satisfactorily explained c) we
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may require additional leptons and additional quarks to account
for experimental observation [14]d) there may exist difficulties
with parity violation in IAS| = 0 nonleptonic processes such as
p+n-~>D+ vy [32].

These difficulties are not necessarily unrelated. For exam-—
ple, by including additional leptons and quarks (this must be done
symmetrically to maintain the cancellation of anomalies ) one remedies
(¢c) as well as allowing the possibility of introducing complex phase
angles for the purpose of violating CP as in (a). For the sake of
the study of possible Higgson interaction effects in the weak
Hamiltonian we will not further consider the question of more heavy
fermions in the context of the Weinberg-Salam model.

It has been suggested by Weinberg [33]that by including ad-
ditional Higgs multiplets one can account nicely for the problem
of CP violation. After incorporating two or more doublets there
remains an arbitrariness as to how they will couple to the ordinary
fermion fields since there are more coupling constants than cons-
traints which determine the values of the coupling constants.

There is also the possibility of inadvertently introducing strangeness-—
changing and charm-changing neutral Higgson -~ fermion vertices which
could lead to |AS| = |AC| = 2 processes in lowest order (single
Higgson exchange). Such unwanted processes could be suppressed by
taking the neutral Higgson mass heavy, e.g. of order 30 Gey,ignoring
the possibility that such processes may also receive enhancement

factors, which would require m, even heavier.
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Weinberg and Glashow [34] have suggested a general principle
that "naturally" eliminates the off-diagonal neutral vertices and
which completely determines the values of all the coupling constants
in terms of the quark and lepton masses. Essentially, one requires
that there be at most one Higgs doublet for each right-handed charge

group in the model, i.e. one doublet for both s_ and dR; one doublet

R

for Up and Cr This would force the neutral Higgson corresponding

to the pair s, and dR to couple to the diagonal operator mdaﬁ + msgé.

R
This principle is implemented by building a discrete symmetry of the
form Sp 7 ~Sgps dR > —dR; ¢ > ~¢ (where ¢ is the Higgs doublet cor-

responding to s, and dR) into the model. With the principle described

R
here we can accommodate no more than four Higgs doublets into the
standard model with four fermionic doublets. One should not, however,
take the naturalness assumption too seriously. TFor one, it rules

out vectorlike theories for which one cannot incorporate discrete
symmetries of this sort. Secondly, it is easy to construct a model

in which the strangeness-changing and charm-changing neutral Higgson
exchange processes are absent in lowest order and well within the
bounds of tolerability that does not embody the suggestion of Weinberg
and Glashow. The appearance of discrete symmetries does, however,
lead to the absence of the strangeness and charm-changing processes

to all orders of perturbation theory which may be of interest
theoretically.

The most important comsequence of incorporating additional

Higgs doublets into the Weinberg-Salam model is the appearance of
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left-over charged, as well as neutral, Higgsons. These can easily
connect light quarks to heavy quarks and can have large coupling
strengths.

For simplicity,consider just the quark sector of the model
which, invoking the natural elimination of the neutral strangeness
and charm changing couplings, can have only two Higgs doublets. It
is not possible to introduce CP violating phases with only two doublets
and the discrete symmetries described above [33]. One can incorpotate
additional doublets for the leptons subsequently at which time it
is possible to introduce the CP violation, or alternatively, one
could abandon the discrete symmetries and employ a mechanism for
eliminating the lASl = IACI = 2 processes in lowest order only,but
which does afford the possibility of introducing CP phases.

We define the two doublets as:

4] b ¢

o, = | = ¢ = (II.2)
¢ ¢, -

<¢i> =n <¢c2)> =p (11.3)

where we have also introduced the charge conjugated scalar field

and defined the vacuum expectation values. The vacuum expectation
values are determined by the Higgs potential which is discussed in
Appendix A. We have assumed that the neutral fields will have non-—
zero vacuum expectation values so as to maintain the conservation

of electric charge. This is the the '"ferromagnetic" solution to the

minimization of the potential and can be guaranteed only if it



-27-

happens to be the solution with lowest energy. There will be three
left-over real neutral fields which are linear combinations of
Re ¢l, Im ¢l, Re ¢2, and Im ¢2. There will also be a charged Higgson
which is a linear combination of ¢; and ¢;. The other charged
linear combination and neutral linear combination are the goldstomne
bosons which are.eaten by the Wi and Z bosons to give them mass.
The precise form of the linear combinations and masses thereof can
be found in the Appendix for the most general Higgs potential in-
volving two doublets.

The most general Yukawa couplings that we can construct with the
quark fields and the two doublets, disregarding the discrete sym-

metries, is of the form:

a— ,a a —. ac
L = Z(r..xp.cp P + 2567, ) (11.4)
i ij'i jR ij jR

where Pij and Aij are arbitrary complex numbers.
If we invoke the naturalness assumption of Weinberg and Glashow
we must require that rf%) # 0; PF?) = 0; and Ag%) = 03 Ag%) # 0.
ij ij ij ij
It is then verified that oL is invariant under the discrete sym-

1) (1 (), -¢(2). It should be

metry: p > -p, ¢ > ¢ ;0> -n,d
noted that the Higgs potential must also be invariant under these
reflection symmetries if the absence of neutral strangeness

and charm changing processes is to be maintained to all orders. Of
course, these effects do occur to second order in the weak interactions
and, as we shall see in section II.5, the Higgson contributions

can be comparable to the second order W-boson exchange processes.
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An alternative to the naturalness assumption is to choose:

N

L. II.
1] rij 1] A1j ¢ >)

which will also lead in lowest order to the absence of direct
IAS] = |AC| =2 processes from neutral Higgson exchange. The factors
fP and fA are arbitrary.

After the scalar fields develop vacuum expectation values as.
in eq.(II.3) the fermions acquire masses. We may solve for the values
of the numbers Tij and Aij necessary to give the correct quark mass
spectrum. In this way the Yukawa interaction may be rewritten in
terms of the physical quarks, and by using the masses and physical
linear combinations of the Higgson fields, in terms of the physical
massive Higgsons. We also use the fact that the W-boson mass is

given in terms of the vacuum expectation values by:

MW = (l)__g__~ /nz + p2 (1II.6)

in ©
27sin W

where Gw is the Weinberg angle. We also introduce the vacuum

expectation value mixing angle, X, by:
tan X = Tn0/p, (1I1.7)

This angle is important for the charged Higgsons since the charged
Goldstone boson and the charged massive Higgson are always of the

form:

dcp = $71 °S X + 99 sin y MZ 0 (11.8)

= - i = 2 II.9)
¢Higgs ¢151n x + ¢2cos X M MH‘ (
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Incorporating the discrete symmetries into the Yukawa inter-

action eq.(II.A) and using eqs. (II1.6 - II.8) we obtain the following

Higgson-fermion interaction Hamiltonian:

L

G
_F cot x ,-
\/E ——-——~—2 ¢H {mdcos 0 c

dRuL

+ in® s
mssul e SRuL

GF tan X -
+ 2 ¢H m cos 6
2 u c
- msin 6 d_c
c c
+ .C.
Hneutral h.c

diug

LR

m.sin 6
c

m cos 6
s c

m sin 6
u c

m cos 9
c c

We have not written the coupling of the neutral Higgsons

(11.10)

since they

conserve parity and couple to the quarks diagonally and therefore

cannot be discerned in nonleptonic processes.

physical charged Higgson.

The ¢Hfie1d is the

If one included additional Higgs multi-

plets it would be necessary to include the interactions of additional

charged scalars which would be linear combinations of the various

charged members of the multiplets.
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I1.2 VECTORLIKE MODEL

We will consider a six quark, six lepton vectorlike model
which will exhibit the general Higgson interactions in this class
of models. The quark sector of this model is similar to that of
a model proposed by Ramond [35]based upon the exceptional group
E7. Although vectorlike models are intrinsically free of axial

vector current anomalies, we will, nonetheless, maintain a

lepton hadron symmetry and define the quark fields to be:

u c u c
by = . by, = . Xy = o Xy = . (I1.11)
6/ L \ "0/ L x/R X, R
w3 = bL ¢4 = hL X3 = dR X, = Sg- (11.12)
The most general SU(2)xU(1l) invariant mass and Higgson
coupling employing one real triplet and one complex ‘doublet
may be written:
- - a_.a
zm..w.x. + z g.. V. T X, ¢ +
— Ramws i ~
13 1] 1] i,j= ' 73
(1,2)
(11.13)
2 h, 9.0x, + z h, .. $x
i=(,2 9 i=(3,4 95
j = (394) j - (1,2)
+ h.c

Note that there is an ordinary Cabbibo rotation in the SL. and dL
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fields, as'weli'as a rotation in the bR and hR fields by the angle
X ¢a is a real triplet and $Lis a complex doublet.

The most general Higgs potential that is a function of a
real triplet and a complex doublet is studied in Appendix A. We
derive the physical mass spectrum and the mass matrix eigenfields
in terms of theAparameters appearing in the potential. It should
be noted that this is the minimal Higgs scheme required in a
vectorlike flavor theory based upon the gauge group SU(2)xU(1).
We cannot replace the singlet mass term of eq.(II.13) by a Higgs
field with a U(1) charge of the SU(2)xU(l) gauge group, because
such a singlet would be electrically charged and cannot develop
a vacuum expectation value. We can, however, enlarge the gauge
group and treat the singlet term in eq.(II.13) as arising from
a Higgson which breaks a part of the larger symmetry as well.

An interesting feature of the most general Higgs potential
depending upon a real triplet and a complex scalar is that the
conservation of electric charge is 'matural'. As discussed in
Appendix A, we cannot find solutions for the Higgs vacuumvexpect—

ation values such that:

<0]¢?|0> # <o|$*|o>Ta<o|$|o>. (I1.14)

We therefore choose:

<0]¢%]o> = p <0|8%°l0> = n and  tan x = n/p. (II.15)

Since the z=component of the triplet is neutral, this corresponds
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to a conserved electric charge.
We méy completely determine the Yukawa couplings in terms of
the quark masses and GF’ as in the case with the Weinberg-Salam model.

We find the following interaction Lagrangian for the charged Higgsons:

G

at = 7_F— (—_-1-:%1-1-—8-)— ¢+ {muﬁbRcos X + mut_lhRsin x +
2
mccthos X - mcch51n x + muuchos Gc +

muusLs:Ln ec + mccchos 6C - mcchs:m ec}
G
_F (cot B) ¢+ m,ud_cos 6 - m,cd sin 6 +
/7 2 d R c d" R c

m us.sin 6 + m cs
s R c S

RCOS ec - mbch31n x +

mbiLcos x + ththos x + mhﬁthin ;}

+ h.c.. (11.16)

Though we are not explicitly considering the neutral Higgsons
here, it deserves mention that when we depart from a model with the
natural discrete symmetries forbidding the off-diagonal neutral
vertices from occuring, such as the present vectorlike model, we
run the risk of developing such terms in higher orders of perturbation
theory. We wish to briefly comment upon this problem.

One might consider that the worst offending diagrams would
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be the W-boson radiative corrections to the neutral Higgson vertex:

w
S s

¢9

- . = o

Clearly, these diagrams always involve a chirality change if there

3/2 2

are no right-handed currents and are proportional to G m m_, which

F
is too small to be important in‘ASl= 2 processes that lead to KLKS
mass differences.

If the theory involves a right-handed current, e.g. EYUCR’
then this will contain a logarithmic divergence and would appear
to be a problem. But, note that the physical particle mass also
receives a new logarithmic divergence which, to second order in
perturbation theory, is equal to the vertex correction (this is not
a Ward identity, but rather just an obvious result). Hence, the
mass renormalization will also renormalize the vertex and maintain the

absence of off-diagonals. Diagrams such as these are a potential

source of trouble:

4 w,c
s — d s i d.
\ J
4 -
¢ \‘,ll¢ ‘w'l' w-
HIFC -
°
, P ' ¢
. . . 3/2_3 . :
The first is automatically small (GF m~) and the second is small

q
by the GIM cancellation [ 9] between u and c quarks! Therefore,

induced off-diagonal effects in Higgson exchange (of neutrals) is

not a real problem for mass scales greater than 1 Gev.
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I1.3 NONLEPTONIC HIGGSON EXCHANGE HAMILTONIAN

In the Higgsified Weinberg~Salam model and the simple vector-
like model considered above we may summarize the largest effects
due to the direct exchange of charged Higgsons. The result is
an effective nonleptonic weak Hamiltonian which,aside from very
few parameters, appears to be almost universal. We will ignore
in this discussion the heaviest quarks, b and h considered in the
vectorlike scheme, and we will also assume mo=my = isin2€L = (.

d

We then obtain the following effective Hamiltonian:

2 - -
(AB m_m cos ec) (ISRCLCRSL + h.c{) . (11.17)

Several interesting features regarding the above expression
require comment. First, we see from eqs.(II.9) and (II.10)

that the parameters A and B take on the values:

Weinberg-Salam - Vectorlike -
A = (cot x)/2 A = (cot B)/2
B = (tan x)/2 B = (-tan B8)/4, (II.18)
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Apart from these‘variations in parameters, however, this structure
would seem to be common to all models with the usual light quark
pattern and weak currents.

Secondly, we note that, depending upon the particular values
of the parameters A and B, certain terms in this Hamiltonian can,
in principle, be quite large. For example, if Bz(mcimH2)>>0, then
the term ELcRcRdL would be enhanced and could contribute to the
]AI[ = 1/2; 'AS{ = 1 decays. Likewise, for small B and 1arge+
A, we could obtain AB(mcmS/mHZ) >>0 and the term of the form
ERCLERdL becomes important in contributing to the same processes.

Note the interesting fact that no term in this expression
contains the dR quark. In fact, if we had written down the full
Hamiltonian with my # 0, we would find terms that are lAIl =1/2
and IASl = 1 occuring with a strength of md/mS compared to
the terms with purely dL. It is important that this be so as
Golowich and Holstein have pointed out that the effective weak
Hamiltonian must involve purely dL in order to obtain the results
of current algebra for the kaon and hyperon decays [25].

One might argue that operators of the form sccd cannot con-
tribute substantially to the weak decays of hyperons and kaons due
to the suppression of charmed quarks inside of the low-lying
states. In fact, this is not the case as has been argued by Witten,
Wilczek, Zee and others [29]. These operators have matrix elements
between low-lying states such as s ~ d + (gluon) that arise by

Higgson radiative corrections to gluon vertices with intermediate

charmed quarks. The appearance of additional operators involving

+ This does not occur for our models since AB €1, but it may occur
in certain "unnatural' models.
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gluon fiel@é is discussed in the next section and is based upon
the suggestion originally due to Fritzsch and Minkowski [24] that
effective anomalous’gluo—magnetic moments may occur in the ef-
fective Hamiltonian for the nonleptonic weak interactionms.

Finally, we wish to observe that the Hamiltonian of eq.
(IT.17) is derived in the tree approximation by considering the
effects of single Higgson exchange. In section II.5 we consider the
potentially harmful IASI = 2 processes occuring by way of W-boson
and Higgson exchange as well as double Higgs exchange. Furthermore,
in Chapter III we must deal with the technical problem of evaluating
the QCD corrections to eq.(II;l7) in the one-loop approximation
making use of the renormalization group and short distance expansion

techniques.
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IT.4 INDUCED GLUONIC PROCESSES

In addition to the Hamiltonian involving only quark fields
of eq.(II.17) we must consider processes that are induced by rad-

iative Higgson corrections of the form:

44 *’qz 39 * 4, + gluon 9 > q, + 2 gluonms. (11.19)

These processes are represented by the Feynman diagrams appearing
in Fig II.1 and can be described by the gauge invariant dimension
five and six operators [29]:

A A
X

0, =sDpDd" ; o.=35.0 6"
v L v Z

1~ °r 2 R%u d, ., 03= sp¥Bd, (I1.20)

where Du is the covariant derivative, Du = Bu - igAAxA/Z. We have
specifically written down the IAII = 1/2, |AS| = 2 operators for
the sake of example. In the Weinberg~Salam model with only four
quarks these will be the most important induced gluonic operators.
In the vectorlike theories ﬁe have the possibility of processes such
as ¢ > u + gluon, etc. as ﬁay be seen by studying the Higgson coupling
Hamiltonian of eq.(I1.16).

Operators of the form ngL’ for example, may be ignored since
they may be absorbed by a redefinition of the fields and a corres-
ponding mass renormalization. Furthermore, processes such as q1 >

q, + N gluons, where N > 2, are problematic and are generally ignored on
q, : 2

-t
the grounds that they involve higher powers of the gluon coupling.

Y There is a common fallacy in the literature [39] that these higher
dimensional operators are suppressed by extra factors of (m,)” 1, when
in fact, they involve usually factors of (m )~l. We have verified that
these contributions are unimportant in our %ase, generally of order mg/mg
for the largest effects (mo is of order 500 Gev).
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The operators of eq.(II.20) are not independent and are re-

lated by the algebraic relationship:

- 1
0, = 0 )0,. (I1.21)

We have evaluated the diagrams of Fig. II.1 in the limit of
vanishing external quark and gluon momenta (external momenta are taken
small compared to mc). The diagrams are all proportional to m,.

We obtain:

G s.d A
S
(L =iff _Empz_li_L_ [8]
12 c 2 2
2 16x mH
G s, 0 X d
@ = iff, —E-gmcqueYJiiﬁL—EL-[S]ﬂ ? (11.22)
2 l6ﬂ2mH
G s.d A B
3 = if f, = g'm et X, Xy6]
2 16x )

where:

-1 -2 2, 2
[68] (1 - o) - (1-90) "'Ino ; a= m /mH . (11.23)

Here f. is the s_c. Higgson fermion coupling constant; f

1 RL 2

is the ERdL coupling. We have, referring to eqs.(1I1.18,II1.16 &

11.9):
Weinberg-~Salam - Vectorlike-
£, = SOX m _cos 6 f, = “tan 8 m cos 0
1 2 s c 1 4 s (11.24)
_ _ tan x . _ —cot B .

f2 > mc81n ec f2 - — mc31n Gc.

Hence, in general, f. = Am cos 6 , and £ = -Bm sin 6 . In the
1 s c 2 c c

specific models comnsidered, we always have !AB] < 1, and hence we
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Fig. II.1
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see that these oﬁerators do not contribute very strongly in the

Hamiltoﬂia;. More general models would allow AB to be arbitrary
(such as the parameter C in eq.II.17) and these operators could

appear with arbitrary strength.

It has been emphasized by Witten, Wilczek and Zee [29] that
the operators of I11.20 need not appear in the Hamiltonian to have
effects that are essentially of the same form. Witten has shown that
the operator ;RCLERdL has matrix elements between single quark
and single quark, single gluon states that are proportional to
m, and which are essentially of the form of the matrix elements
directly associated with the operators 01,02 and 03. In fact, it
is shown by Wilczek and Zee that the operator 02, suggested by
Fritzsch and Minkowski [24],does not even occur in short distance
operator products of currents, but that the matrix elements of
the current-current operator gRYucRELYudL between s and d + gluon
states mimic the effect of O2 between on shell quark states.

We shall see that the operators, Oi’ are suppressed further

by the effects of gluon radiative corrections.
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I1.5 KLKS'MASS DIFFERENCE

A classic problem of weak interaction physics comes into
play if we attempt to enhance the coupling strength of charged

Higgsons to operators such as s Crs and ERdL' The effects of

R
double Higgson exchange and Higgson-W boson exchange threaten to
give, to second order in the weak coupling constant, too large a mass

difference to the KL and K, CP eigenstates of the KO,KO complex.

S
We may use the constraint that the new Higgson exchange diagrams

of Fig.II.2b&c be of the same order of magnitude as the usual
W-boson diagrams of Fig.I1.2a to place constraints on the‘parameters
A, B and C, of the effective Hamiltonian eq.(II.17).

The Higgson box diagrams are automatically second order weak
because of the four vertices, each carrying a factor of4ﬁ§;, Higgson
W-boson box diagrams, as in Fig.II.2b are second order weak because
the two Higgson vertices supply a factor of G

F
is of order waz. Recall that the Glashow, Iliopoulos,Maiani [9]

, and the loop integral

mechanism is responsible for the double W-boson diagrams being
second order weak as opposed to the superficially, GFa one would
obtain without thé u—c quark cancellation. Of course, there can
be no GIM cancellation in the Higgson diagrams because the verticgs
are proportional to m, (or m in the case of u-quark intermediate
states).

We will use only the dominant terms and the lightest four quarks
in cvaluatiﬁg the box diagrams (heavy quarks such as b,h in the

vectorlike model can contribute to the DLD mass difference, which

S
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is not sufficiently well established to place limits on second
order weak processes, but which would appear to be light [28]).

We have carefully evaluated the diagrams of Figs.(IL.2a ,
b,& ¢) where it is extremely important to keep track of signs as
well as magnitudes. Since we are interested in putting constraints
én large values of B (see II.18), it is possible to ignore the
Higgson-W boson exchange processes which are proportional to AB
in our standard models and we see from eq.(I1.18) that AB « 1.
Hence, we need consider only the Higgson-~Higgson and W-W box
diagrams of Figs(II.2a,c). As is essential for the success of the
model we find that the Higgson-Higgson diagrams have the same
sign as the W-W diagrams!

The resulting effective Hamiltonian describing the KLKS trans-

ition is:
o\ o o o "
Heff =-11 + 5 B 5 sin Occos Oc sLyudLsLY dL.(II.ZS)
4mH 16w

, —0 o .
We estimate the <K |, |K > matrix elements of the above Ham-

iltonian in the usual way:

2
0| - U o 1 ~O = - u o
<K [sLyudLsLy dLlK > = (5) <K lSYSYud|O><0|SY5Y d|K">
- 1.2 2
= % fK mK. (11.26)

Following Gaillard and Lee [36], we find that:

(o]

T T n%K<EO!HefflK > (11.27)
s
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Combining (II.26) and (II.27) yields:

N

m - m m2 sz m2 sin20 cosze
L s _ 1 ¢ 4 K c c c
v C S 5

mH 16w

|o®

m
2 x 10716 (1 + —}:
My

Experimentally, the left hand side of (I1.28) is equal to .7 x 10—l

B‘*)' ©(11.28)

]

4

and we find, therefore, that we can tolerate:

2
2 _ ftan"x
B —( A )ws 2 10('““51—;\), (11.29)

Actually, we can tolerate even a larger value of B2 than this

since the QCD effects upon this effective Hamiltonian are to
suppress the Higgs contribution substantially (similarly, we

may well have underestimated the W-W contribution).

Our estimates have been performed in the Feynman-t'Hooft gauge. We
have actually normalized our results by the Lee~Gaillard calculation
for simplicity. It should also be mentioned that the operators of
the form sdsd (as opposed to Sy d§ypd) do not lead to enhanced matrix
elements as in our estimates of section IV.2. These operators arise
in the Higgson-W boson graphs of Fig.II.2b.
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Chapter III

ITI.1 ANOMALOUS DIMENSION EVALUATIONS

- Higgson exchange processes involve the short distance product
of scalar and péeudoscalar densities. By 'short" distance we are
always referring to lengths that are small compared to the length
scale defined by a renormalization group invariant mass, mo,typifying
the quark momentum in a hadron. Hence, our unit of length is ef-
fectively, mgl.

This mass scale cannot be given precisely since short distance
effects depend, generally, only logarithmically upon it. It should
be regarded as a simple parameter in the theory with which we hope

to describe the matrix elements of operators. It is generally

taken to be of order:
.3 Gev < mo< 1 Gev. (I11.1)

With Higgson masses of order five to ten Gev we are justified in
considering short distance expansions.

The short distance effects are calculable due to the remark-
able property of the SU(3) color gauge theory of strong interactions
being asymptotically free. [1]. In addition to the radiative gluoﬂ
corrections of operators'such as appear in the Higgson exchange
Hamiltonian of eq.(II1.17), there are also Higgson radiative
corrections to gluonic vertices, as discussed in section 1I.4, which

must be included in the analysis of short distance products.
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Higgson radiative corrections lead to two different effects.
First, in the operator products of the form (aRqL)(aRqL)’
there will appear the gluon "anomalous magnetic moment' term, or

operator O, of eq.(II1.20). Of course, we will also find the

2

operators Ol and~03 since none of the diagrams of eq.(II.22)
vanished. This is in contrast to the case in vectorlike theories
where one encounters operator products of the form (ﬁRYuqR)(ELYqu)
and the gluon "anomalous magnetic moment', 02, does not occur.
We carry out the analysis of the short distance products including
these operators in analogy to ref.[20}]. We find a substantial
suppression of the operators Oi.

Secondly, there will occur ''charge radius' contributions in
the operator products of the form (anR)(anR), which are operators
such as aYuquavGuvA. We will use the equations of motion to relate
these to the four quark operators aYuquaYuqu. The appearance of
these operators leads to substantial complications in the computation
of the anomalous dimensions. This sort of complexity does not
occur in the current-current products in the limit ms=m because
of the GIM mechanism [9], but interestingly enough, the m #m
corrections to the usual current-current énalyéis may be important
[23].

The methodology is, by now, well known for treating the strong
interaction corrections to short distance operator products [20]. To

the best of our knowledge, this is the first treatment of scalar

exchange processes. For that reason, we make every effort to keep
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the results mode1>independent so that they may be taken over to
any fundaﬁegtal scalar mediated interaction.

In Appendix B we present a systematic review of the methods
that directly apply to our analysis as well as several example
calculations. We shall proceed in this chapter to consider the
two distinct classes of operator products. We shall refer to

these as follows:

(class T)  (q;dp) (q;9p) (class TT) (qpq;)(q;ap) (IT1.2)

Note that the orders of the chirality indices of the form RLRL

and LRRL are easily obtained by hermitian conjugation of these
two classes. The quarks, q, may be of any flavor and we will only
be considering the products of color singlet bilinears.

Class I is essentially trivial, though the appearance of the
gluonic operators of section II.4 must be dealt with. The analysis
and computation of the anomalous dimensions of the operators 0i
of 11.4 is distinct from the analysis of the dimension 6 four
quark operators of class I and has been carried out for the vector-
like theories with right-handed weak currents by Wilczek and Zee [29].
We will be able to borrow their results presently,

The operators of class II are considerably more complicated,
In computing the anomalous dimensions we have found a trick that
enables us to simplify the problem. We resolve any four quark op-

erator with the class II chiral structure, e.g. ELCRERdL’ into
a sum of four quark operators that transform as irreducible flavor

representations. For example, for SU(4) we may write sced as a
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singlet plus an édjoint (15) plus an operator that is a mixture of
higher représentations (20 + 84). We then compute separately the
contributions to the anomalous dimensions from each of these terms.
The essential simplification that we discover is that the mixed
representation operator is quite trivial to treat, and it will
receive no net enhancement in QCD. The 1 and the 15 operators in
SU(4) receive different amounts of enhancement in QCD, i.e. they
have different anomalous dimensions.

The fact that the different irreducible representations are
énhanced by different factors leads to an interesting consequence.
An operator such as sccd of class II will be mixed with operators
such as suud + sddd, etc. Hence, although our Hamiltonian of eq.
(II.17) involves heavy quarks in the tree approximation, the cor-
rected Hamiltonian will contain terms that involve only light
quarks. In Chapter IV we argue that these light quark operators

have large matrix elements.
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III.2 QCD ENHANCEMENTS AND MASSES
The different operators which we will be studying receive dif-

ferent enhancement factors from the effects of QCD. These factors

are always of the form:

ke, /2b_ 6P My
X where X = (1 + o7 1n,'?) (I1I1.3)

where M is the operator renormalization mass and k(m) is the cor-
responding value of g2/4w at m. bo is the g3 coefficient in B(g)

and is given by bO = (11 -2 nf) where n,. is the number of flavors.

3 f

We discuss ki below.

Ideally, we would like to choose m equal to the value m of a
typical quark momentum in a hadron, since then we would expect the
matrix elements between hadrons to be of order unity. Unfortunately,
with %uvmoﬂ'SOO Mev, the strong coupling constant k() is becoming
infinite. Therefore, we must compromise, for the sake of perturbation
theory, and choose m of order 1 to 2 Gev where (") is between 1 and
1/3, but which is hopefully sufficiently close to m_ so that matrix
elements canvstill be roughly estimated.

Note that we have been speakiqg of several mass scales here.
There is a renormalization group invariant mass, u, as defined in
Table III.1. % is the characteristic of the trajectory (M) and
represents the mass at which ®W(M) diverges in perturbation theory
(45 Gevis equiﬁzalent to a value of ®= % at M = 2 Gev). Secondly,
there is a mass m typifying the hadronic world which may be thought
of as the characteristic quark momentum, or hadronic mass (.3 - 1 Gev).

There is also the mass scale m at which we choose to normalize the

operators (the "compromise' mass %1 to 2 Gev). We also use a sliding
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scale mass M which can take any value. Quark masses are functions of
M and aﬁy;qther renormalization group invariant (RGI) mass, and are
therefore not physically measurable (see IV.2). Finally there are
other RGI masses that are physically measurable, e.g. mH, mp, fﬂ, etc.
These are summarized in Table III.1.

The quantity X is derived by solving renormalization group eq-
uations for the coefficient functions Ci(x,hO of a given operator Oi'
The Hamiltonian density is constructed by integrating the operator
product over x, multiplied by DH(x), the Higgson propagator. DH(x)'is

peaked strongly about [x|< _l, though it has a tail for larger [x|.
Ty

Hence:
k./2b
i""o 4
X = d'x DH(X) Ci(x,ﬂo. (I11.4)
The quantity ki emerges as the coefficient of g2/161r2 in the anomalous
dimension Yol + YOZ - Yoi (where, for example, 01 = sc, kl= -8; O2 = cd

k2= -8; and Oi = sccd, ki)' The problem of computing ki is the subject
of the remainder of this chapter.
Some typical values of X are, form = 1 Gev and k = 1: X = 3.37

for m, = 6 Gev, X = 4.05 for my = 10 Gev, and X = 4.59 for'mH= 15 Gev.

TABLE III.1

ol . -
M RGI mass defined by: 1lim Mexp—(wz—“—*) as M=o (450 Mev)
bok (M)
m Typical quark momentum (RGI) (.3 to 1 Gev)
m RGI "compromise' operator norm. mass (~1 to 2 Gev)
< M sliding scale mass (non-RGI) -

mq(M) quark mass (non-RGI) ' -

mH,mp examples of other RGI masses (Higgson, proton; ~10,=1 Gev).

\
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ITT.3 OPERATORS OF THE FORM d; 9gd; dg

III.3A We have computed the anomalous dimensions of the operators

A= qrdpq;dg (A = dpq;dgd;), and B = g0 dpqjo” g (B

= - MV . . .

qLouqungu qR) as an exercise in Appendix B. Presently, the symbol
q stands for a quark field of any flavor, e.g., included in this

class of operators are the following; SLCRCLdR’ SRuLCRdL’ SRSLSRdL

etc. For example, included in this class of operators is ERCLERdL
which occurs in the Higgs exchange Hamiltonian of eq.(II.17), and
therefore this class is of direct physical interest.

The result of the evaluation of the diagrams in Fig(III.1)

is the anomalous dimension matrix:

A 2 -16 0 A
¥ ) . (1I1.5)
B 16w 1/3 16/3 B

The eigenvectors and eigenvalues of this matrix are:

2
V.= A + .0158B = -8 _ (-16)
1 2
16m .
2 , (I11.6)
v, = B = —3——2 (16/3)

167

These linear combinations of operators, V1 and VZ’ are multiplicatively
renormalized to second order in QCD. In practice one could always:
assume that Vl = A, since the effects of mixing are so small, but

as a simple illustration of the methods to be employed here, consider

a Hamiltonian that in the tree approximation involves only the

operator A, e.g.,

m
= < -
H o= Cp mH2 £ [:vl .015 Vz]- (111.7)
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The renormalization group-scaling equation when applied
to the short distance expansion used to construct this Hamiltonian

instructs us to multiply each of the operators by a factor of

-b .
{1+ %;Qink}kl/Zbo where A = mH/%L, i.e., we multiply by a factor
of (X)ki/Zbo. The parameter ki is given by inspection of eq.(III.5)
to be:
k, = k + k- koi, (111.8)

We have already computed the anomalous dimensions for the scalar

and pseudoscalar operators in Appendix B and we obtain from

eq.(I11.18), kl = k2 = -8, Likewise, from eq.(III1.43) we see
- - 16 .
that kV1 = 16, and ka 3 Hence, our QCD corrected version
of the example Hamiltonian of eq.(III.44) is:
2

e -.76
Hcorrected - GFmHZ £ Vl - 015 VZ(X)

'f [Vl - .032 VZ:] (I11.9)

" = aa - = GHV

n

(1}

This is not a substantial modification of the original Hamiltonian
that involved only the operator A. We see that the effects of
QCD are to introduce a 2% mixture of the operator B. [?n eq. (III1.9)

we have used the value X = SJ
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IT1.3B In section II.4 we found the contribution to the non-

leptonic ﬁamiltonian from operators of the form O, = q_D Dqu,

1
LVA A

02 = qROqu X qL/Z, and qRﬁﬁqL = 0 These operators will

3°
arise in the operator product expansion of scalarsand pseudoscalars

and are associated with the operators we have just discussed by

is

the similar chirality. We may work with O 3

1 and 02, since O
given by eq.(II.21) in terms of these.

Wilczek énd Zee [29] have discussed the anomalous dimensions
of these operators in the current-current operator product expansion.
We may readily take their work over to our case. The anomalous
dimension matrix is found to be:

0 2 1 +71/24 +7/16 Ol
v = _liii (1I11.10)
0, 16m° | -23/4 161/24 0,

and the multiplicatively renormalized operators are found to be

given by:

35 g2

V3 = O1 - .500 02 v(g) = 3 X

16w

(I11.11)

2

= - - 23 8
v, = 0, - .1520, (g = 3 P

Therefore, in constructing the Hamiltonian, one should supply

the operator V,_, as it appears in the tree approximation with an

3
additional factor of (X)~3:3%2 = 0277 (+3.32 = c§§-+ 16)/(25/3)).
Likewise, V, will receive an extra factor of(X)_z'84 = .O43T

4

There will also be an extra suppression which we have not

discussed due to the fact that these operators are proportional to

+We have taken X = 3 in these examples for definiteness.
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m, as they‘enter the Hamiltonian. Color invariant mass terms

are seen to be suppressed, and freated as coupling constants, they
tend to zero at short distances in analogy with the effective
coupling constant. We need not include this effect here since

the principal source of suppression is simply the one described

above.

Hence, we may summarize: Gluonic operators are not important

in Higgson exchange processes as they are severely suppressed by

QCD.

XXX
AR R

Fig. III.1
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ITI.4 OPERATORS OF THE FORM 4, 939,

III.4A We‘now tﬁrn to the more difficult analysis of the short
distance products of the form (anR)(aRqL). This analysis is

complicated by the appearance of the operators aLyuquLBUGuVA and
aRYpXAqRavGuvA’ which were not permitted previously by chirality.

Actually, a more convenient expression of these operators is obtained

by making use of the equations of motion to write:

GuvA

Ty = B3y PeahA
v, X qav 2 v X aay x q- (I11.12)

We prefer to use strictly the four quark operators and the above
equation confirms that this is always possible.

The diagrams that lead to the appearance of this new operator
are the quark-antiquark loops of Figs(III.Z & ITI.3). We will make
use of the Fierz identities to rewrite all four quark operators
without the appearance of the color generators xA. The required
formulae are stated in Appendix B.

Though we will make our analysis general enough to be taken
over to any scalar-pseudoscalar operator product, it will be con-
venient to describe certain procedures in terms of SU(4), e.g.,
we will often think in terms of the four quark Weinberg model in
describing the representation content of certain terms. When a
result that is easily generalized to SU(N) is encountered, we will
specify N instead of 4 in the formula.

Of course, the value chosen for N in any given application
requires some care. We are considering the strong interaction
corrections to short distance products with separations of the

product operators of order (mH)_l. Therefore, in computing B(g)

P
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and the ;noyalous dimensions, y(g), of the various operators, we
must includé the effects of only the quarks with masses lighter
than m,. HeaVy quarks do ﬁot enter the renormalization group or
scaling equations until the distances involved are small compared
to the heavy particle's Compton wavelength. This is the content
of the Appelquist-Carrazone theorem [38].

In prac;ice we always treat m, perturbatively. The leading
effects of mass insertions are to introduce the operators such as
O1 and O2 of section III.3B. Treating the charmed quark as a
heavy quark in this analysis would, presumably, only slightly
modify our results, but it drastically complicates the technical
problems. The primary complication in treating m, as large is
to make the anomalous dimension matrices depend upon m, the
sliding scale renormalization mass. This makes the relatively
simple problem of diagonalizing the anomalous dimensions to find
the multiplicatively reﬁormalized operators impossible, since
the multiplicatively renormalized combination now depends upon
m, and we cannot write simple solutions to the renormalization
group equations. We will assume in practice, then, that there
are only four quarks whose masses are significantly less than the
Higgson mass and that only these should be counted in the comput-
ation of the various renormalization group functiomns.

Examples of different flavor representations that will

occur in our analysis are operators of the form:

(D) uLdRSRCL (1I1) SLCRcRdL’ uLcRcRcL(III) SRS1S1L.5R* SLCRCRSL:
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We have liéted tﬁese categories because each leads to a distinct
mixing probiem. Categqry (I),.corresponding to an SU(4) 84 rep-
resentation, is essentially trivial because only the diagrams of
Fig. (III.1) occur, and there are no quark-antiquark loops.
Category (II) will involve at least one fermion loop, and category
(I11) involves two such loops. These radiative corrections are
depicted in Figs.(I1I.2 & III.3) respectively.

We can organize our treatment of the different categories of-
operators by noting that any four quark operator with arbitrary

flavors, a,b,c, & d, can be written in the form:

-3 b-c d 1B
2% = Tt el Zc A4y (gstt Zchl )
A B
=<f Tqlqddqt + f z q qukqllkJA (111.13)
1 24 A
j=j k,ijA Z klAkJB:Ll
+f3.ZAqqqqA +f4A Aquq )

where AijA are the generators of the flavor group, SU(4) (SU(N))
and the c, are coefficients which, for our purposes, will always
lie in the root space of the group, i.e., only Cqs Cgs Cygs =o-
will be nonzero. This is the advantage of choosing the above
linear combinations as a complete set of basis operators with respect
to flavor, as opposed to operators such as anaAq, etc.

The first operator on the second line is a singlet with
respect to SU(N). The mixing of the singlet flavor representations
is the first non-trivial problem we will discuss. It wili be
necessary to choose a complete set of basis operators of the form

qTqql'q which also transform as singlets and which will mix only
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amongst‘themselves. This problem will present a 7 X 7 anomalous
dimension matrix, which will be diagonalized with the assistance of
a computer to find the multiplicatively renormalized operators.

The operators of the form aiqjﬁkqikij and EiqjajqkhikA
form two sets of operaﬁors which transform as 15 (the adjoint)

representations under SU(4) (SU(N)). We will find by choosing

the linear combinations:

T MA 1 Fhgigigka A (III.14)
that our problem will be reduced to two inequivalent 5 X 5 anomalous
dimension matrices which are also easily diagonalized with the aid
of a computer.

The operators aiqjakqlkilAAij would superficially appear to
pose the most difficult mixing problem, since this operator is
actually a mixture itself of the 15, 20, and 84 representations
of SU(4) (or a similarly complicated mixture in the case of SU(N))f
In fact, however, this turns out to be as trivial a mixing problem
as the case studied in III.3A. This is due to the fact that the

quark-antiquark loops would lead to a tr}\A or a trAB, which is

zero, and therefore we need only consider the diagrams of Fig.(III.1).
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III.4B We define the following basis operators for the treatment
of the SU(A) (SU(N)) singlet mixing problem. The indices a, b,

etc. refer to flavors and repeated indices are, as usual, summed.

A - -a b-b a AC . -a A b-b A a
1 41,989R9;, 1 9 X 9RIRX 9y,
A - b—bouv a AC _ -a A b-b uv A a

2 qL"uuqRqR q, 2 9,0 uvx 9gdp% X "‘L
N a-b u b AC - a=b u A b

3 QLY quRY ag 3 qLY e quRY X ag
A, = qiv qiqgvuqz Ai = ClLY X quLv“quE (I11.15)
A - aaY qaabYu AC - A a-bpAbD
A - q Y qbqu q AC - A b~b u A a

6 L L35 L 6 qLY X quLY X qL
A, = Ty, qngY“qR A5 = apv,X Aqpaory e

We may use the Fierz transformations and the identities amongst the
. . C .
color matrices to rewrite the Ai in terms of the Ai' These

identities are tabulated in Appendix B. We obtain:

Ai = ‘%Al'A3 Ai = ":23'A4+2A6 \
AS = —%Az Ag ='-%A5+2A7 (1I1.16)
>.
AS - -%—AB-z.Al A = —%A6+2A4
A(; = 24+

(It is useful to observe that the color octet current products may

be expressed conveniently in terms of these operators as follows:
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A A 2 N
E = = -
1 h ‘ 3A4+2A6
_ A A 2,
By, = Ju R 3 Ag ~ 44 g (I11.17)
_ A A _ 2
E3 - JuR JuR - 3 AS + 2A7

where jﬁi,R are‘the left or right handed colqr octet vector currents
(jt/Z couples to the gluon field)).

To compﬁte the anomalous dimension matrix we may successively
insert the operators, Ai’ into the diagrams of Fig.I1I1.2. We follow
the standard procedure of extracting the coefficient of the-%
singularity. The result of this tedious but straightforward cal-

culation is:¥t

8 <

20 0 12 2 2 8 8 ’Al'\
—%— —1—2- o 0 0 0 o0 A,
2 1 1 4 4

-3 0 2 3 3 3 3 Ag

2 | 1 7 14
v =-+%,1"3 ° 0 3 0 -3 0 < Ay > (111.18)
167

1 7,

-3 o o o I o A4 A
1 0 0 -7 0 -2 0 A,
1 0 0 0 -7 0 -2 A

- J U7,

It is possible to reduce the problem to a 5x5 anomalous dimension

matrix and a 2x2 matrix by choosing linear combinations A6 i‘A7

+ .
and A4 __A5

4 These results are true for SU(4) in this and the other matrices
described in this section.
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We fipd that the multiplicatively renormalized operators are

given by (we include the anomalous dimension eigenvalues):

v;(8) = -l‘i-z—kl
k, = -20.400 Vl = .997 A; - .013 A, + .036 A, + .004 K4 - .053 Zé\
ky = = 5.475  V, = .574 A; - .018 A, - .184 A, + .364 54 + .568 Ke
ky = 1.625 Vy = -.560 A + .050 A, -1.012 A, - .093 KA + .025 Ké
k, = 5.333 v, = A,
k= 6.583 V.= -.267 Aj - .071 A, - .152 Ay + .527 Z4 - 461 K6
ko = - 5.946 Vo = -.347 RS - .615 K7
_ _ (I11.19)
k, = 6.279 V, = .550 A; - .465 A,
where we employ the definitions:
K4= A4+A5;KS= AA—AS;K6= A6+A7;K7=A6—A7.

It should be noted that these are not normalized eigenvectors. We
have tabulated the groups in ascending anomalous dimension which
corresponds to descending contribution at short distances.

Our next task for the computation of the corrections to the
Hamiltonian would be to rewrite the operators in terms of the Vi'
However,&we are only interested in the corrections to the operator

Al’ which is the only object that contributes to the tree approx-
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imation to the Hamiltonian. Notice, however, that the operator

V1 is equal to the operator A

sufficient for our purposes to choose V1 = Al with the indicated

1 UP to 5% accuracy. It is certainly
eigenvalue -20.4. This is justified in part by the fact that the
solution to the renormalization group equations requires we must
compute the coefficient function for an effective coupling constant
evaluated ath} Gev, which to lowest order can be no more accurate
than 5% anyway. We see that with the eigenvalue of -20.4, this
operator will actually be very slightly enhanced in the short distance
product by a factor of (X)'24 where the exponent is k/2b, (k =

20.4 - 16). (See Table 1IV.1).

Fig. III.1 +

Fig. III.2
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III.3C To .treat the adjoint representation of SU(N), corresponding

to the 15 of SU(4), we find that we must introduce the following

basis operators in analogy with the preceding case:

Bﬁi - aiqgaﬁgi(éadhch + SbcxadA)

Béi _ ai uvng; “ng(sad ch + GbcxadA)

Bgi = ELYquiRYuKAqR t ELYuKAqLERYuqR

B‘Zi = ELYquELYuAAqL + ERYuqRERYuAAqR

B = @y abapy S 0PAEY = By abagy, a2

cbA ad

)

> (I11.20)

7

where we have already chosen linear combinations that simplify the

problem to two distinct 5x5 anomalous dimension matrices.

We find:
(III.21)
(18 0 12 2 4] (1'3"‘1*\ 18
IR
S AN
oo pallel |
1 0o o 7 0‘\3?4—) 1

12

W= o

Wi~

N (LA
-4 B1
A_
0 B,
2 A-
- 3 < B3 >¢
16 A-
3| [Ba
0 'l
J U5/

Again, this has been computed in the usual way, but the diagrams of

Fig.II1.3 contain only one quark-antiquark loop as opposed to two in

the preceding case.
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The multiplicatiﬁely renormalized operators are:

+ *
, kl = -17.993 Wi = .99831 -
+ +
k2 = - 4.929 W2 = -T-.249Bl +
+ +
k3 = 1,809 W3 = t.6l4B1 ¥
+
k4 = 5.333 W4 =
Lk +
k5 = 7.446 W5 = .06831 +

.014B, + .018B

.008B

+
o
e
[OY]
=]

.058B, +1.007B

=
NH N NDH NN+

.0103_ + .035B

W i+

3

*

3

+

I+

.002B’

.595B

S~

0958~
-0728,

7228
1228,

I+

055B—
*7- "5

7958
- 1985

029B>
0455

(I11.22)

688B-
-688B,

where we have suppressed the adjoint representation 1abel(A).

As in the preceding example of the singlet operators it

suffices to take W1 = Bl with the corresponding eigenvalue, -17.993,
This leads to an enhancement of (X)'lz, or about 1.14, choosing
X = 3, and about 1.21 with X = 5.
Fig. III.1 +
+

Fig. III.
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ITII.4D The femaining operators are mixtures of 15, 20, and 84 for
SU(4) and more general mixtures for SU(N). One might think it
would be necessary to write out the specific representations and
perform the same analysis as above. This would be a very tedious
procedure, but it»is not necessary and, in fact, this case is easy
to treat.

Our basis operators are:

AB _  ~-a b-c d ,cbA adB
Dy = apdpdpip A A
. (I11.23)
AB _ -a b-c uv _d,cbA, adB
Dy = 4o, 93%% A A

It is easily seen that there are no quark-antiquark diagrams in
the computation of this anomalous dimension matrix due to the
tracelessness of the A-matrices. Therefore, the relevant diagrams
here are those of Fig.I1I.l. We readily obtain the anomalous

dimension matrix as before:

AB
2 -16 0 D1
—3—16ﬂ2 116 [ anp- (II1.24)
3 3 2

_ 1
k, = -16 Uy = h 64 D2
1w, . (1I1.25)
2 3 2 2

To be consistent with the preceding analyses, we should approximate
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Ul = Dl’ with the>eigenvalue -16. Since this eigenvalue is just the

opposite of the contribution of the scalar and pseudoscalar oper-
ators that make up the tree approximation, we see that this operator
will not be enhanced at all in the short distance product, i.e.

it receives a factor of (X)0 = 1.

One interesting consequence of the fact that both the

singlet and adjoint representation operators receive factors of about
1.3, whereas tﬁe mixed operator receives no enhancement, is that
we would expect the flavors of the operators that appear in the

tree approximation Hamiltonian to become mixed when we comnstruct the

corrected Hamiltonian. For example, we will see that the operator

sced will mix with the operator suud + sddd.
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Chapter IV
IV.1 THE QCD CORRECTED HAMILTONIAN

Previously we obtained a parameterization of the Hamiltonian
due to Higgson exchange in two sample models, eq.(II.17). 1In the
preceding chapter we have described the calculation of the cor-
rections to eq.(II1.17) due to the effects of the strong interactions
in the SU(3) color picture. Now we wish to discuss the implications
of this for the physical processes that are contained in the
corrected version of the Hamiltonian.

The operators that occurred in the tree approximation were of

the following form:

S_C.C_S

R'L'LR
SLCRCRSL sRchRdL
> (class I) (class II)
chRcRdL sRchRsL
s_c.c.d .
RLL R) (Iv.1)

as well as the hermitian conjugates of these.

There were additional operators which we have ignored since
they had coefficients that were of order m > My, OF mssinet. of
course, one might be concerned that these operators have larger
matrix elements than the set we have included above, but the discussion
to follow will alleviate this concern.

We found that the class II operators were not substantially

enhanced by the effects of QCD in section IITI.3 and III.5. This
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then justifies~simp1y ignoring these operators for the class of
"typical" models which we have studied since an inspection of
eq.(I1.17) reveals that these operators occur with a coefficient
of order GFABmémS/mHZ. (1I1.18) shows that AB £ 1, and only
models with unnatural conservation of charm and strangeness are
expected to violate this constraint. Furthermore, there is no
good reason to believe that these operators will have large matrix
elements as, d) they involve charmed quarks and we expect that the
charm quark content of low lying states is rather small, b) the
induced s-+d + gluon processes are all suppressed in QCD by small
factors of order 10-.-l The primary source of suppression of these
operators is the factor of mshﬁ1“'015’ which would be hard to
overcome in any model without violating the KLKS mass difference.
Henceforth we will only be concerned with the class I operators.
Naively, one might dismiss these oﬁerators on the groﬁnds
that the charmed quark content of the light mesons and baryons
is small. However, as was noted in the previous analysis, the
effects of QCD will be to introduce operators such as gLuRGRdL+
ELdRaRdL by way of the charge radius diagrams involving quérk—antiquark
loops such as in Figs.(III.2 & 3). Technically, the way these
new operators enter is by the fact that the singlet four quark
and adjoint four quark operators receive different amounts of
enhancement than the mixed operators. Therefore, the linear comb-
inations of basis operators that initially represent the operator
_LCRERdL is altered by the different emrhancement factors of the

different basis operators, and one ends up with new linear combin-
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ations, representing operators with terms like suud + sddd. These

new terms can have very big matrix elements, as we will see below.
Let us first see what we are dealing with by writing the class

I operators in terms of the basis operators of Chapter III.

We find by simple algebra (hereafter we suppress the chiral labels

which are understood to be either LRRL or RLLR)

ﬂ
Sces = —=|A. - Ag P -4 8+44_D158—2D1515
16 1 1 52 1
’ -
~ 4_
== _ 1 - 15 2 =15 15,3
decd = 7o |A /6 B 2 B + Bz+32+21'6Dl

=3
Lt 1 2.3
+ 246 015’3 - 212 Dis’s -2 1)15’15]
(1IV.2)
sccd = 1[:54 - 1B 46(1)15 o Dl5’5)],

81 2 2 1

Of course, as we have seen, the last operator only occurs with d

since the dR is down by a factor of md/mS in the Hamiltonian.

—A A .
In eq.(IV.2) we have introduced the operators Bi and Bi which

x .
are defined in terms of B? in section III.3C by:

gA = Lght

1 —A 1, _A+ A
i 21

+ B BE B, = 3(B; - B ) (1Iv.3)

The different operators A and B? are enhanced in Q€D by different
factors of the form xP. These factors are reproduced in Table IV.1
A,B
for different values of X. Recall that the operators Di’ are not.

enhanced, i.e., p = 0.
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The effect of this disparity in the enhancement factors of
the two sets of basis operators is to bring into the nonleptonic

Hamiltonian the following four operators:

.-t-
X, = i%-[93'315 + ;é Bi} )
3
_ -1 15, ,33 _ 238 6215
X, = 16[‘J€ B)” + 2 B - 7 By ~ 3 B] >' (1V.4)
_ 1l (=h =5 _
X3 = 73 [Bl 131] X, =4

Xl’ and X2 do not change strangeness and are mixtures of isospin
0,1 and 2. These operators may, in general,induce parity violation
in the strong interactions and may be of interest for that reason.

X3 is isospin 1/2 and changes strangeness by one unit. These

operators will occur with a numerical factor of (XP - 1) in the same
location in the nonleptonic Hamiltonian as their respective
parent operators, eq.(IV.1).

The new induced operator X_ is easily seen to be of the form:

3

e (5B 5 i B s B e d
X3 = 7 Uspvpupdpt s dpdpdpt spsgspdt SLcRcRdLJ (IV.5)

where we have restored the chirality labels to emphasize that only

dL will occur in the Hamiltonian. Of courée, the constraints imposed
upon the structure of the nonleptonic Hamiltonian by current algebra,
as emphasized recently by Golowich and Holstein [25], require that

it transform as I = %—with respect to the left handed charges

only, and one can readily verify that (IV.3) is I = %-and I_=0.

L R

We note the appearance of the uu + dd structure.

The effective &I = %-nonleptonic Hamiltonian becomes:

1LRecall that the subscript (1) denotes the Dirac structure.
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2 2
- B mc
51nG)Ccos®c (3) m; X3 + h.c., (Iv.6)

xP - 1 and these values are seen in Table IV.1

St |

where we take §
for the various values of X (note that we will be talking exclusively
of the operators B? henceforth, and these have p = .26).

The operator X, also contributes to the effective Hamiltonian

2

and is AT = 0 and 1 and leads to parity violation in nuclear proc-

esses. The effective Hamiltonian is:

GF 2 Bzmi
— gin OC(G) 5 X2 + h.c., (Iv.7)
/2 my

We reemphasize that all of these operators have the chiral structure
LRRL. The operator Xl will also enter the Hamiltonian, but it leads

to the term:

GF 2 A2m2
— cos“0 (8) 25 X, + heoc. (1V.8)
V2 ¢ m

We may write out the operators Xl and X2 as follows:

16X

R P _—
~46 g.ccqm - =(uq.q u + dq.qd - 25q.q's)
1 i 3 i i i ] (1IV.9)

16X

- - - -
9 s q;ccq + 4(dqiq d - Al).

If we ignore the heavy quarks, s and ¢, we find that we may write

X, = - —1% (duou + 5ddu + duud + dddd)
(Iv.10)
S
X2 = A (duud + dddd).

From the standpoint of the suppression factors of eq.(IV.8) and the

factor of 1/12 in (IV.9a), we will henceforth ignore Xl contributions.
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p is derived from the anomalous dimension.
factors of X that we have chosen are discussed in Section

I1I.2.

TABLE IV.1

X 2.18  2.79  3.37  4.05  5.00
. xP = x-264 1.23  1.31  1.37  1.44  1.52
. xP = x 119 1.09  1.13  1.15 1.18  1.21

The various
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Iv.2 ESTiMATING MATRIX ELEMENTS

In the pfeceding section we argued that operators involving
only the light quarks, such as suud + Edda,~can_be introduced into
the effective nonleptonic weak Hamiltonian by the effects of QCD.
Dépénding upon the vélues of the mixing angle factor, B, as well as
the QCD enhancement factors and the Higgson mass, these operators
can occur with coefficients of order GF (and usual Cabbibo angle
factors). In the present section we wish to argue that the matrix
elements of these light quark operators are actually large compared
to the matrix elements of the corresponding light gquark operators
appearing in the current-current Hamiltonian.

First,it is necessary that we digress to consider the defin-
itions of these operators and their relationship to the renormali-
zation group. The operators occurringin the effective Hamiltonian
are normalized at masses of order m~ 1 Gev, i.e., for incoming
quark lines carrying momenta of order imity (Gev)these operators
will take on their free field theory values.(see the discussion of
Appendix B on the definition of composite operators). Strictly
speaking, this is not a desirable feature as we would prefer to
normalize the operators at a mass scale, m s which we believe to be:
a typical value of the quark momentum in a hadron, e.g. 300 Mev to
1 Gev (see III.1). With operators normalized according to the latter
prescription we would expect that the matrix elements taken between
low-lying mesons and baryons would be of order unity, whereas with

the former mass scale, m.~ 1 Gev, it is not so clear as to how to
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compute the matrix elements. However, with the latter mass scale it
is not possible to define the operator in perturbation theory since
for these lower masses, the effective gluon coupling strength is

very large, i.e. k,, for M of order 500 Mev is effectively infinite

M
(actually, all weAreally know is that here the perturbation theory
does not work). This is effectively a "short blanket" situation;
on the one hand with M large we cannot compute matrix elements and
on the other, ﬁith M small, we cannot compute the operators. This
problem arises in any analysis of the glubnic effects upon a flavor
interaction and is generally skirted by simply adopting the larger
normalization mass scale and assuming that the matrix elements can
be estimated approximately. By choosing the larger value of the
normalization point, i.e. M = mor 1 Gev, we will be in a domain
where the effective coupling constant is of order 1 to 1/3.

All of the four quark operators that appear in our effective
Hamiltonian (e.g. eq.(II1.17)) are multiplied by the square of
a quark mass. For example, in eq.(IV.6) we see that the light
quark operators suud + sddd will occur with a coefficient of the
form: fGFmi, where fGF depends only upon physical parameters such
as my, and mixing angles. Quark masses are not directly physically
observable (they are probably not in any sense a physical pole in
a propagator) and are functions of the renormalization sliding
scale mass M. Since we have now agreed to normalize all quark
involving operators at the mass scale of 1 Gev, we must be
careful to insure that the values chosen for the quark masses are

those appropriate to this normalization point. This poses the
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problem of»détermining the values of the quark masses as functions
of the renorﬁalization mass.

The ratios for asymptotically large values of the renormalization
mass of the light quark masses can be determined by PCAC considerations
in terms of physical mass ratios. The renormalization group equations
satisfied by the effective masses are readily obtained in analogy to
the equation for the effective coupling constant (see Appendix B). In
the large M limit the PCAC evaluations are essentially unmodified
by the gluon interactions since the effective coupling constant is
vanishing, and the ratios obtained will remain relatively constant
until M approaches 1 Gev. At this point the behavior cannot be
determined since a) the effective coupling constant rapidly rises
and b) the light quark approximation is no longer valid. For
values of M larger than a Gev or so, we may write the quark masses

as.
n 00 = TN /(10 B4/Po (1v.11)

The PCAC ratios are then ratios of the coefficientsqvkland.are

given by:

’)hu:’md: ?rg = 5:10 : 150, (IV.12)

Prior to the development of the modern QCD picture of strong inter-

actions, specific values of the quark masses were often quoted[40], e.g.,
/

one might argue that my - my ¥ mo- mp (proton-neutron mass differ-

ence). Combined with the ratios given from PCAC, we could state all

three masses absolutely, but one recognizes that this is a renorm-
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alization group honinvariant prescription. Siﬁilarly, PCAC implies

relations such as m%r';: 2m FL mlz( ~ ZmSmo where m is again the typical
’ hadronic mass scale of~l Gev. It is clearly not possible in these

statements to know,a priori, what the normalization mass M should be.

Therefore, in the modern language of QCD it is meaningless to state

an absolute value'for a light quark mass, though for a large range

of asymptotic values of M>> 1 Gev, the absolute values of m o= 5 Mev,

my = 10 Mev, ms/= 150 Mev are approximately the same as the effective

masses. These considerations are developed by Georgi and Politzer in

ref.[53].

The story of the charmed quark mass is slightly different. Since
the charmed quark mass is large and of order the region at which the
effective coupling constant begins to shrink, one is inclined to
believe that this mass might be more directly defined. Indeed, it is
possible to use an alternative prescription to define this mass
without resorting to PCAC, although a rough PCAC estimate seems to
be valid. The alternative technique is to recognize that there
exists a definite charm threshold in e+e_ annihilation at about

"4 Gev. We may then use this as a boundary condition on the sliding
1

=M

scale mass by defining: m (M, 10140 = 5 Menreshola’

hence m
c
1.5 to 2 Gev. This may be regarded as an absolute value of the
charm quark mass, though a formula such as eq.(IV.11l) still describes
the effective charm quark mass at any value of M.
PCAC implies a similar result as described above. In this case

a typical charmed meson, such as the D meson, should have a mass given

2 . ~ . .
by nb'x 2mcmo, which for m, % 1.8 Gev, this agrees roughly with the
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alternative method of evaluation.

We may use the PCAC evaluation to fix the asymptotic ratios of
- the charmed quark mass to the other light quarks. For example,

we would expect something of the order:

m,
.I.n.._ > -—-—2— as M > o, (IV.13)
<™

This method is used by Georgi and Politzer [53] who construct solutions
tovthe renormalization group equations in which the charmed quark

is not treated as a light quark. The resulting renormalization group
equations are then numerically‘integrated for the values of M up to

1 Gev, at which point the masses tend to infinity while M tends to

u, the characteristic mass at which k(M) diverges.

The point we have been attempting to emphasize in this discussion
is that amplitudes involving the quark masses must be dealt with most
carefully. No physical amplitude can depend upon the normalization
point, M. A corollary of this statement is that all physical amplit-
udes must depend only upon dimensionless ratios of quark masses for
large values of the normalization point, M. These ratios are known
by the PCAC results we have discussed above.

This leads to an important criticism of the work of Shifman,
Vainshtein and Zakharov [23] in their approach to the nonleptonic
weak Hamiltonian, as has been emphasized by G. Ross [37]. These
authors obtain effective '"enhancements'" of AI =-% processes of the
= 10 Mev, ms = 150 Mev. It

d

is clear by the discussion we have presented above that this is not

2
form’mK/mde » and they assume that m

a valid representation of any physical amplitude.
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In our work, as in any process that is induced by or involves
Higgsons,'Wé‘encounter operators of the form méaqaq, e.g., miguad.

We may use the current divergence relations to rewrite these as:

2 - - mZ
m_ suud =
c (mS— mu)(mu— md)

(Bugyuu)(avﬁyvd), (IV.14)

Hence, our work will always involve dimensionless ratios of the
quark masses. The operator ipvolving the current divefgences is
similar to a product of two partially conserved currents, which is
not renormalized and is therefore independent of M (this is not
strictly true due to operator mixing and the subtleties of defining
composite operators, but it is readily seen that the dependence upon
M is very slight and reflects the perturbative nature of the calculat-
ion). The quark mass ratio is understood té be taken at the norm-
alization point, m , for our operators. Actually, we may take the
ratio at any point at which equation (IV.11l) is valid, and thus the
ratio is given in every case we shall consider by the PCAC arguments
reviewed above.

These PCAC ratios are:

m:m,:m :m: ¥ 1 :2: 150 : 1500% (IvV.15)
u' ' 'd’ s’ ¢

based upon the mass equations, e.g. mﬁ = 2msm0.

In our estimates of matrix elements we are going to compare the
operators such as 3u§yuuavﬁyvd occuring in the Higgson exchange
Hamiltonian to the operators such as Efruﬁfvd occuring in the current-
current Hamiltonian (we have suppressed the chirality labels L, R in

this discussion). The matrix elements we will compare will be those

‘As usual, the n-p mass difference is used to fix my-mq.
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.c.
P |ﬂ>, relevant to

the light mesons and baryons, such as <KIH
Kaon decay.

For the sake of comparison we employ two very crude approx-—
imations, a) the insertion of intermediate vacuum states b) the
so~called factorization approximation (for baryon decay and parity
violation). We certainly do not believe that these give very

credible values for the matrix elements, but for the sake of comparison

they may not be so bad.
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IV.2A K - 27 Decays. It is, perhaps, the most striking aspect

of the AI = %—rule that the ratio of the decay rates for K® -+ 2m

+ .
to K - 27 is approximately 625, i.e., the amplitude for the pure

is enhanced relative to the AI = %-by about a factor of

N

AT =
25.
The application of PCAC to these decays modes requires a

symmetric treatment of the pioms [42] and leads to the following

result:
+oy - 1 1
AR->mTTm) = T [/~ aK+“+ + a 0 o ]
m 2
A(Ko+ W+ﬂ—) = /2 A(KP+ ﬂ+ﬂ-) = 1 a.+ + (Iv.16)
s J7E Kw
i
A(K°+ wowo) = /2 A(K°+ ﬂoﬂo) = -1 0.0
s /2£
T
where:
_ 3 +i.p.Cc. |t
aK+n+ = (2m) V2poko < |H |K">
(1Iv.17)
3 o +C. .0
ago o = (2m) v’2pok0 <m IHP |&™>

Since our Hamiltonian is pure AI = %-we will simply set A(K++ w+ﬂ°)

= (0. We must then have:

- _1
a0 0 = 5 aK+“+ (Iv.18)

Unfortunately, our estimate of the matrix elements will not respect
this condition. The estimate that we will make will comsist ofk
inserting the vacuum state between the four quark operators as we
did in the discussion of the KLKS mass difference. This method

cannot be regarded as very reliable, but it does seem to indicate
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in eVery example that we will consider that the four quark operators
appearing in the Higgson exchange Hamiltonian are actually’énhanced
relative tokthe current-current operators appearing in the ordinary
weak Hamiltonianf It should be noted fhat our procedure of inserting
the vacuum intermediate state is roughly equivalent to using a

"wave-function" model, such as the bag model [43] to perform the

estimate.

We will presentl& be concerned with the aY5an5q piece of the
Hamiltonian which is all that contributes in the insertion of the
intermediate vacuum states. Furthermore, we need consider only the
EYSuGYSd piece between K+ and w+ since isospin relétes this to the
Ko, 7° matrix element (they are simply of the same order of magnitude
for either I = %3 where the relationship is given in (IV.18), or
for 1 = g).

We can write,with the help of the current divergence relation-
ships:
augyuysuavﬁYvysd
(mS + md)(mu + md)

2- - 2 -
uuy,.d e m . Iv.l
W SYsUuY g c ( 9)
We will compare the matrix elements of this operator between the
+ + - - .
K and m to the matrix elements of the operator syuysuuyuysd which
occurs in the current-—current Hamiltonian between the same states.

Inserting vacuum states we find:

F—l

+- - + + - -
<K Isysuuysdlﬂ > q;q:<K |syuysu‘0><0‘uYVY5d

-1 2 2
Pt eme (IV.20)

- - - + + = - +
<K ‘syuysuuyuysdln > = <K lsyp75u|0><0|uYuY5d|ﬂ >
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2 V
= fan mK/2 (Iv.21)

whgre we have used F = (ms+ md) (mu+ md) and the fact that A q,=
mi/z since the 7 is the decéy product of the kaon decay, K » 2.
We may use these estimates and return to the full Higgson

Hamiltonian, which leads to the renormalization group invariant

1

expression for ﬁhe matrix element involving the factor miF-
We may then compare the Higgson amplitude for the K decay to the
current-current amplitude. Actually, we may compare our Al = %
amplitude to the AI = g-current-current amplitude. We recall

frpm the work of Lee, et. al.[20] that the AI = g‘amplitudes are
actually suppressed by a factor of about 2/3, and there are also
Clebsch-Gordon coefficients which cause roughly another factor of
two suppression relative to the Al = %-Higgson contribution (this
is simply the fact that the ordinary current-current Hamiltonian
is split equally between the Al = %— and AI = %-components). T
We may saturate the KLKS mass difference bound, B2 = 1OmH/mc
obtained in II.5, and use the renormalization group invariant values
of the quark masses, as well as the appropriate choice of the
strong coupling censtant as a function of M to obtain a rough est-
imate of the Higgson contribution to kaon decay relative to the
usual I = %-current—current contribution. The result is plotted
in Fig. IV.1 as a function of the Higgson mass. With this figure

we should offer the appropriate apology that it represents a

crude estimate.
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10 p
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for Hyperon and Kaon decays (using Lee & Gaillard assumption

~
of Kl Gev"l)

Fig.IV.1
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In this discussion we have ignored the effects of operators
such as gcad on the grouﬁds that they will be suppressed due to
a) the lack of a substantial number of ce pairs in the kaon or
pion b) fhe QCD suppression of the operators describing s-»d + gluon
as discussed in II1.4 and III.3. (except, of course,for the charge
radius corrections which lead to the appearance of the light quark
operators).

We have also ignored the effects of other intermediate states,
such as two pi states, which will certainly invalidate the above

estimates for the absolute values of the matrix elements, but which

may not drastically affect the evaluation of the relative values

of the matrix elements.

Furthermore, the estimate is always subject to the criticism
mentioned earlier that the construction of the operator is carried
out for M % m & 1 Gev, where we believe that the effective coupling
constant is small, whereas the typical quark momentum in a hadron

is really of order 500 Mev or so.



-85~

IV.2B Hyperon Decays. As in the preceding example we may estimate

the hyperon decay amplitudes by first applying the PCAC to relate
the amplitudes forbBi > Bj + 7 to the matrix elements <B1|H|Bj>'
Unfortunately, we must then use baryon intermediate states and the
simplest order of magnitude estimates are difficult to perform.

As an alternative, we will use an equally crude method of
evaluation, the so-called "factorization approximation' [41].
Consider for concreteness the decay A° ~ pw_, though we could apply

this to any hyperon decay and obtain the same result:

- — — — — . - - u -

<A|sLuRuRdL+ sLdeRdLlpw > 3 <AlsyuuLuY dL!pﬂ > (1v.22)
We approximate these amplitudes by:

<A'|§LuR|p><O|GRd!1r—> ; <A|§Yuulp><0|ﬁyudlw > (IV.23) .

hence, we obtain for the parity conserving (p-wave) and parity violating

(s-wave) amplitudes in both cases:

: 2
m, - m - f m N
m - m gV(q ) ET“Ifﬁa p.C.
(Higgson) s v u
2 2
x(a™) fm .
m +m m +m p.v.
s u u d
> (IV.24)
m -m) fg (a2 p.c.
A P mov
(Current)
2
x€a™) £ pP.V.
o/

‘ 2, .,
where gv(qz) is the vector current form factor and x(q~) is the
form factor for the divergence of the axial vector current matrix

elements.
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Again we see that the Higgson amplitudes are large compared
to the current-current case. Inserting into the full Hamiltonian
givgs a net enhancément‘of roughly the same order of magnitude as
in tﬁe preceding example (see Fig. (IV.1)).

We wish to emphasize that we are reluctant to believe that this
is a reliable estimate for the absolute value of the matrix elements,
but that it may be reliable for the relative éizes. Furthermore,
the parameter B need not bé so large, in which case the Higgson

contribution would be unimportant.

IV.2C TInspection of eq.(II.17) reveals a term of the form dced which
will mix via QCD with terms of the form duud + dddd. These terms are
multiplied by a factor of sinzec and have isospin 0, and 1. Such
terms can contribute to parity violation in nuclear processes.

We have evaluated the isospin-1 parity violating w-nucleon

vertex which is of the form:

c N(r x T)ZN. (Iv. 25

Our evaluation makes use of the factorization approximation and
follows that of Schulke [41]. If we use the maximal value of B,
and X = 3 and my = 6 Gev, we find that the value of ¢ is approx-
imately 3 x 10—8. This is to be comparéd with the standard cur-
rent-current estimate of 4 x 10—8. Hence, the Higgson effect can
be comparable to the current-current effect. With larger values
of B we éan have Higgson effects dominating those of the standard

Hamiltonian.



-87-

IV.2D Higgson Decays. We have followed the work of Ellis, Gaillard,

and Nanopoulos [45] in studying the expected properties of the single
vneutral Higgson in the Weinberg model_and‘estimating some of the
features of the decays of our charged Higgsons. We expect a total
width of order 1 to 10 Mev for masses of order 10 Gev. We are

most interested in the properties of the decays that would tell us
directly about the parameter B.

A) Decays to Mesons: We expect a dominant decay mode into
the charmed mesons (or heavier quarks). An inspection of the Hamilton-
ians of eqs.(II.8 & II.16) reveals that the mixing angles (corres-—
ponding to the B parameter) determine parity violation in the decays.
A standard test of parity violation for a scalar that has two and
three meson décay modes is to see if the Dalitz distribution for the
three body mode vanishes on the perimeter of allowed phase space.
Nonvanishing perimeter contributions denote parity violation [46].
With sufficiently many decay modes one could, in principle, determine
B.

B) Decays to Baryons: The asymmetry parameters in these decays
(polarization measurements) to pairs of hyperons or nucleons would
givé direct information about a) the value of B b)the values of
gv(mé) and X(mé)-

C) Decays to Leptons: Though this is not ruled out, it would
slightly complicate the simple picture we have presented here. There
would then occur additional mixing angles than the parameter B, though
we have found that even in these more complicated cases the nonleptonic

Hamiltonian is still parameterized by a simple constant B/mﬁ. It is
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interesting to note that onevmight be able to account for the recent
pe events at SLAC [14] in terms of a three body decay mode of a
charged Higgson, via the ordinary weak interactions [47]. Such a
Higgson Qould_probably have to be a "hadronic Higgson" of the sort
we have been describing or one would observe many more muon events.
Assuming it has a mass of order 2 Gev (= mc), and taking B2 = 10,
and X = 2, we find that the [AII =-% Higgson mediated processes are
about 8 times enhanced over the ordinary current-current processes.
If we supplement this effect with the results of Lee, et.al.[20], we
are certainly in the correct order of the observed enhancement.
Therefore, we find this suggestion very attractive and suggest defin-

itive tests of the spin of the observed objects.
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Appendix A

FACTS ABOUT POTENTIALS

In this éection we wish to discuss some of the properties
of the Higgs potentials relevanf to the models discussed in Chapter
II. There is very little literature available on this subject,
some of which has errors, though it would appear that the study of
Higgs potentials is an exceedingly important subject, especially
where general statements about symmetry breaking can be made. We
will attempt to deduce some general results about the physical
spectra of Higgs potentials, though we will not attempt universal
proofs. We will work only with the potentials that occur in the
tree approximation, and forego treating the difficult problem of
the general properties of the effective potential evaluated in
higher order perturbation theory.

Let us consider the most general Higgs potential occurring
at the level of the tree approximation in the Weinberg-Salam model
that is a polynomial of degree four so as to preserve renormaliz-—
ability. The most general §U(2)xU(l) invariant polynomial of this
kind that is a function of two scalar doubleﬁé is:

A A
2 2 2 2 1 4
Po,.0,) = uleg)? + wlile,7 + et + SEe, 18

A
2 2 T 2 5 t 2 ia
Mlog17le 17+ A 000,17 + 520(40)%™ + hoe.d +

‘ A . A .
6, T 2 7,1 2
{T“b{%w e Fnle e 4 h} (A1)
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To find a minimum of the potential, one simply shifts the
fields by their vacuum expectation values and then determines the
necessary conditions on the variables n,p,x%,8,&, such that a)
there aré no "tadpoles" i.e., linear terms in the fields after
shifting b) the resulting mass matrix of all the fields that are
leftover after shifting and satisfying (a) must have positive
real eigenvalues. There will be at least three massless fields
after finding the minimum of the potential; one neutral and two
charged. If there are more than three "Goldstone bosons", then
we did not choose the most general Higgs potential and the one we
did choose has an extra continuous symmetry.

If a solution for the minimum exists of the form (A.2) such
that n,p,X # 0, we will call it"hybrid". In general we will refer

to the two other kinds of solutions as follows:

n ]
<0l¢110> = H <0l¢2|0> = (ferromagnetic)
0 0
(A.3)
n 0
<0l¢1|0> = s <0|¢2|0> = (antiferromagnetic),
0 X

The ferromagnetic solutions are the ones that’are physically desir-
able as they conserve electric charge. i.e., out of the four gener-
ators of SU(2)xU(1l) we can find a linear combination that annihilates
the <0|¢1l0> and <0|¢2|0> which is a conserved charge. There is
no a priori reason why antiferromagnetic solutions that violate all
of the four group charges should not occur. One would simply hope

that the ferromagnetic solution is of lower enmergy than the anti-
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ferromagnetic one unléss a sophisticated symmetry argument exists
which would require the ferromagnetic solutions exclusively. Such
an argument, as we shall see, may indeed exist for certain potent-
ials.

We may construct the constraint equations for the variables
<0|¢l|0> and <0|¢ZIO> for the potential in eq.(A.1l) as described

above. We obtain:

2 .3 2, 2 2
¢l tadpole: 0 = Hyn + kln + ABn(p + x7) + A4np
A
2 i(p+sS 7 2 2, i(y+$§
+ gpn (B 5L o6 + e (y+6)
Y 2 _i(g+o)
+ S ene (A.4a)
ie -i8 18 * 2 ig
0 = xe A4npe + Asnpe + Zne
A7 o9 24
+ 5"+ e Y (A.4b)
¢, tadpole: 0 = uzpe16 + A (p2 + )(2)pel(S + A nzelap
2 2 2 5
2 18 2 —is " 3 -ig
+ A,n pe + A.n pe + e (A.4¢)
4 5 2
A2 2 iy AJ 2 _(yk6)
+ —2——n(p + x)e + -Z-—(np e + h.c.)
o def 2 2 . 2 2
0 = xe {}2 + Az(p + x7) + A3n
A7 Si(y+e)
+ E—(npe + h.c.)), (A.44d),

Superficially, eqs.(A.4a) and (A.4c) by themselves appear

to be four separate equations written in complex form. But if we
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write out the real and imaginary parts we find that there are only

three independent equations:

2 3 2, 2 2 2
0 = ulnv+ Aln + X3n(p + x7) + A4n o + Asnp cos(28)

A A
+ Eé-pnzcos(8+5) + —z-—zp(p2 + Xz)cos(y+6) +

+ A6pn2cos(8+6) (A.5a)
2 2 2 2 2
0 = Hop o F Azp(p + x) + Agne + Ane 4
2 " 3 A 2 2
xsn pcos(28) + 70 cos(B+8) + 7 n(p”™ + x7)cos(y+§)
2
+ A7n ncos (&+y) (A.5b)
(A.5¢)
A A
_ 6 2 . . 7, 2 2, .
0 = (Agnpsin( 8) + Fn7sin(Bel + (o7 + x7)sin(sty)X.

These equations could, in principle, be solved for fixed x. One
would then be forced to find the values of ¥ that then sclved the

the additional four constraint equations, (A.4b) and (A.4d). Clearly,
X = d is a solution, and note that the phase & is completely
unspecified. With the exception of certain degenerate cases in
whiéh the coupling constants take on specific values, this will

be the only solution. ¥ =0 correspondsto a ferromagnetic sol-
ution in which the electric charge is naturally conserved. We there-

fore seem to have a theorem: The most general Higgs potential involv-

ing two doublets conserves electric charge except for certain

special values of the Higgs coupling constants.
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. It is possible to give an example of a case in which‘the
antiferromagnetic solutions are not forbidden, and this is an
important case.- We have only considered models in this thesis in
which the conservation laws of charm and strangeness are upheld
by discrete symmetries, i.e., "ﬁatural conservation laws'". If
such discrete symmetries are fundamental in nature, than they must
be built into the Higgs couplings as well as the Yukawa interactions.
The independent discrete reflection symmetries of the form ¢1 > —¢1
and ¢2 +——¢2 require that the coupling constants A6 and A7 be
zero.

In this case, A6 = A7 = 0, one readily sees upon studying
eqs. (A.5c¢) that a possible solution to the tadpole equations,
(A.5a,b) is p = 0 and then X and n must satisfy the remaining two
equations, which are no more difficult to solve than were the

constraint equations for the ferromagnetic case. We may summarize

the two cases by the following pairs of equations which are readily

solved:
. 2 2 2
Ferromagnetic: 0=y, +2x,n + O,+ A, + 2 )p
1 1 3 4 5
9 2 9 (A.6a)
x = 0 0= uz + sz + (A3 + A4 + As)n
Anti- ‘
0= ui + Alnz + A3x2
ferromagnetic (A.6b)
2 2 2
0=wu,+ A x + A,n",
: 2 2 3
p = 0

Note the logic of this peculiar result. If we restrict the sym-

metry group of the potential to be SU(2)xU(1) and do not allow any
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additional discrete symmetries, we find that the conservation of
electric charge is "natural".b If, on the other hand, we allow the
independent reflecﬁion symmetries of the two scalar doublets,
which amounts to allowing one new discrete symmetry since we are
free to reflect both scalar fields simultaneously and then perform
one of the discrete reflections, we find that the conservation of
electric charge ceases to be natural! We are impressed by this
fact and believe it to be a special case of a more general theorem

about potentials: As one increases the symmetries of a potential,

one increases the amount of symmetry breaking that can occur in

the solution to the potential's minimum.

When the equations (A.6a, b) are solved and one computes the

actual value of the energy of the lowest vacuum state, one finds:

1p22 « 2,2 2
E = -5y * uz(p +x)), (A.7)

‘which turns out to be true for any Higgs potential and is easily
generalized to any number of Higgs doublets (or multiplets in a

more general gauge group):

1 2 2
B = -3 Youil<ole o]’
i

It should be emphasized that we are only working in the tree

approximation with the classical ground states of quartic potentials

and we have not considered the more general problem of the prop-
erties of the effective potential.
We have worked out the mass spectrum for the Higgs potential

in the case k6 = X7 = (0. Since we are not interested in CP
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violating effects we will simply ignore the phase angle & in eq.
(A.1). We are also onlybinterested here in the ferromagnetic case,
though the antiferromagnetic case is easily constructed as well.
The important difference between these cases is that the antifer-
romagnetic case will have four Goldstone bosons (an extra one

gives the photon its mass) whereas the ferromagnetic case has only
three. It is extremely important after constructing solutions to
the tadpole equations to construct the mass matrix of the leftover
Higgsons to make sure that it is positive definite (positive
definite eigenvalues) since this is precisely the condition that one
has located a minimum of the potential and not a saddle point.

The mass spectrum and mass matrix eigenfields are described in
Table A.1.

We wish to mention that even in the case A6 = A7 = 0, there
is not, in general, a hybrid solution to the tadpole equations
unless the special condition 14 + 2A5 = 0 is satisfied. Such special
cases are probably not renormalization group invariant, i.e., they
may not be fixed points of the renormalization group equations, and
are therefore not physically acceptable symmetry breaking solutioms.
of éourse,'testing to see if these are fixed point conditions begs

the question of what are the general properties of the effective

potential when one goes beyond the tree approximation?
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VECTORLIKE MODEL POTENTIAL

In aﬁy vectorlike scheme the minimal Higgsification with respect
to fhe gauge group SU(2)xU(1l) requires at least one real triplet and
a complex doubiet. Singlets of this group cannot have vacuum
expectation values without spoiling electric charge conservation
since they are charged fields themselves. Of course, one could always
extend the gauge group by having additional U(l) structures to
incorporate scalar Higgsons that are uncharged SU(2)xU(l) singlets
as are needed to completely specify the fermion masses.

The most general potential involving a real triplet and

a complex doublet is:

A A

P, ) = %) - w6 + RO+ 2T’
+ o 2%y oTe + A4¢+Ta¢®a. (A.9)

We may always choose the vacuum expectation values to be:

n ,

<0|¢IO> = =n <0|¢a|0> = pa (arbitrary vector),
0

(A.10)

The resulting tadpole equations are:

n n
( -uz + A nz + A pz) = - A0t
2 2 3 0 4 0
. (A.11)
2 a 2 a 2 a ta,
~HUyP + Alo o+ A3n p + A4n T A =-0.

One can easily see that the solution to these equations must

be of the form:



P = nTn . (A.12)
‘whichbfor our choicg of the spinor requires px =p =0 and

pz # 0 (let us refer to pz as simply p). It follows that electric
charge is "naturally conserved". We obtain the resulting two

tadpole equations:

2 2 2
—uz + 2A2n + A3p + A4p

Il
o

(A.13)

+ A nz + A

il
o

2 3 2
“UyP + ZKlp 3P 4"

(note that this is dimensionally sound as the dimensions of A4
are those of a mass).

The mass spectrum is given in Table A.3

An important constraint that the solutions tabulated in these
tables be actual minima of the potentials is that the various m2
values given in the adjacent column for the linear combinations
representing the physical fields must be positive. As we have re-
marked above, if any of the m2 values vanish, besides those that
are already designated as vanishing, then the model contains a
hidden symmetry in addition to the SU(2)xU(1l) that is a continuous
symmetry which is being violated. The massless bosons are simply
the Goldstoﬁe bosons corresponding to this extra broken symmetry.
- If any of the m2 values are negative, then we are at a
saddle point of the potential. If all of the m2 values are negative
we are clearly at a maximum value and the potential is effectively
ﬁupside down''.

To obtain the physical Mﬁ for a particle in a field theory
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. from the values given in our tables, note that it is necessary to

1 . .
multiply by a factor of o5 We have not included the usual numerical
factors that are useful from the standpoint of quantum field theory

2 1
!

(e.g. %>m , or A ) simply to avoid the necessity of repetitive

printing.
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TABLE A.1
P60 = 1o 12+ 21012+ Lo 4w 2112+ ale 24, 12
1°%2 Hp1®g Hy 1%9 2 191 2 1% 3191 2
o lete 2+ 3 {@e)?+ b
417172 2 ‘ 172 e

has the following '"physical" fields:

n P
I. Ferromagnetic, <0|¢1|O> = [ ] s <0i¢2|0> = [ ]
0

0

Field m2

* * + * . 0

¢l = ¢lcosx ¢231nx

+_E + oF (A+X)2
¢2 = —¢131nx ¢1cosx 4 5 K
¢3 = Im¢;cosw + Im¢gsinw 0

o . o 2

¢4 = —Im¢151nw + Im¢2cosw ZASK

¢5 = Re¢icosm + Re¢§sinw M2+
) o o . 2-

¢6 = —Re¢lcosw + Re¢231nw M

2+

P

where tany = -2 3 Kz = (Tl2 + 02); M
_ 2 2 _ 2 2 _ 2
A= AlK sin"x , B = AZK cos X 5, C (A3 + XA + As)K sinxcosy

tanw = —MZ_/ZC.



: . n 0
II. Antiferromagnetic, <0|¢1|0> = [ l s <O|¢210> = [ J
: 0]
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TABLE A.2

p
Field m2
_ 0
¢l = Im ¢1 0
)
¢2 = Im ¢2 0
o} - .
¢3 = Re¢2cosx + Re¢131nx 0
_ o, - 2
¢4 = Re¢231nx + Re¢lcosx (A4 + XS)K
= Im¢o osy + Im¢°sin 0
s COSX 18inx
o, o 2
¢6 = —Im¢251nx + Im¢lcosx (A4 AS)K
o -, 2+
¢7 = Re¢1cosw + Re¢231nw M
= -Re¢ sinw + Re¢, M2~
¢8 e¢1s nw e¢2cosw

where we employ

the same definitions as in Table A.1l, except:

C = (A3)Kzsinxcosx.
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TABLE A.3

For the Vectorlike theory Higgs potential of eq.(A.9) we obtain
the following physical fields:

‘ n
<0|¢]o> = [ ] s <0je®lo> = p%s??
‘ 0
Field m2
+ + +
¢l = ¢ cosx + @ siny 0
+ + +
¢£ = —-¢ siny + @ cosy A4K/p
by = Tmg’ 0
+
¢4 = Re¢ocosw + o’sinw M2
bg = -Re¢®sinw + ©°cosw M2~

where we employ the same definitions as in table A.l, except:

A

A= ZKZAZSinzx , B = 2K2Alcoszx - 5 ksinytany
A xé Z
C = —«“sin2y + =— siny , tan = p /n.

2 2
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Appendix B

B.1 OPERATOR PRODUCT EXPANSIONS

Operator product expansions are a conjecture of Wilson [48]
about the structure of interacting field theories that has been
abstracted ffom free field theory and perturbation theory and
applied to strong coupling constant interacting theories. If Ol(x)
and OZ(X) are two locél operators, then we assume that the expres-

sion:

0, ()0, (0) = ZCH (x)0" (0) (B.1)

n

hoids if x is not too large. Equation (B.1l) is assumed in theories
that have arbitrary coupling constants and On(x) are a complete

set of local operators. The definition of '"local operators" in
interacting field theory is part of the problem. The Cn(x) functions
are either singular as x tends to zero, or well behaved depending
upon the dimensions of the operators involved and the possible
introduction of logarithms by the interactions.

It is most important to realize that the operators, 01’ 02,
On,‘must be renormalized (defined) after the effects of the inter-
actions are included. This implies that the operators depend ex-
plicitly upon a renormalization mass, M, which enters as a parameter
for each finite local operator. We will be interested in operators

4

defined with M ¥ mor 1 Gev, where it is hoped that reliable estimates
of matrix elements might be performed and at which point the gluon

coupling constant is not large.
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Thisﬁmeans essentially‘that when we compute matrix elements of the
operatﬁrs between physical hadrons, the values should be of order
unity. More precisely, we require that the single particle irreducible
matrix eleﬁents of the operators be approximately equal to their free
field theory values when the quark momenta are given by p2 = (1 Gev)?
Note that we generally define the operator with leg momenta that

are "euclidean'" so as to avoid possible bhysical particle poles

that might upset the unambiguous definition of the operator for
positive p2,

Operator matrix elements between physical states cannot be
determined due to the complexities of hadronic structure. None-
theless, by defining the operators that appear on the right side
of eqn.(B.1l) with a renormalization point equal to the typical
hadronic quark momentum, we hope that, in principle, naive estimates
of the matrix elements might correspond to reality.

Operator product expansions are of interest to us because we
are constructing nonleptonic Hamiltonians,such as eq.(I1.17), due
to Higgson exchange which involves the short distance product of
scalar and pseudoscalar quark densities. For example, in analogy
with éq.(III.Z), we have terms in our Hamiltonian density of the

form:

@ [ G-y Gpegt0) Gd o))
(B.2)

(D) a*x Dy (x - ¥) (Bpey (0) (Gpd, ()

where DH(x ~ y) is the Higgson propagator. DH(x - vy), in config-
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uration space, is peaked around a distance of order (mH)-l; which
is émall compared toﬂnfl. Therefore, the operator product expansion
is justified in evaluating the structure of eqn.(II.17), etc.

We mﬂst order the operators appearing in a short distance
expansion in terms of increasing mass dimension. For example,

in the operator product:
1a(®3a(0) = € + ¢ ()q0) + €, (x)qq(0) + Cy(x)ao qc™

+ c4(x)aqaq(0) + ... (B.3)

we include first the c-number contribution which will, if present,
be associated with the most singular coefficient function. Of
course, each term in the series must have the same flavor represent-
ation as the left hand side, and hence a c-number piece would not be
present in eqn.(B.1) (even if it were, it would merely represent
an overall vacuum energy contribution). Next follow the d = 3
operators, d = 5 operators, and d = 6, etc. The functions as-
sociated with the d = 7 and higher operators will be well behaved
as x tends to zero since they must be associated with positive
powers of x to balance the dimensions of both sides of the equation
(of course; this statement might be modified by interactions in a
strong coupling constant theory, though it certainly remains
true in an asymptotically free field theory in which perturbative
treatment is valid).

In construéting a Hamiltonian, operators of the form aq or

aysq may be dropped from the discussion as their effects are
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simply to redefine the quark masses, and they are renormalized away
by the inclusion of counterterms. Similarly, the operators of
dimension greater than six will not be important as x tends to
zero sinée they require extra powers of x in their coefficient
functions. Actually, in practice, this reduces their effect by
factors of mé’/mc2 relative to the d = 5 and d = 6 operators.
Therefore, having completed this preliminary discussion, our
next task is to treat the contribution of the dimension five and
six operators in the construction of the Hamiltonian. For this
purpose, we follow the standard methods[20] of first constructing
a renormalization group equation for the coefficient functions of
these operators. We can then convert this into a scaling equation
which gives the short distance behavior of Cn(x) in terms of com~
putable functions in the asymptotically free SU(3) color theory.

This problem is discussed in the next section.
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B.2 DEFINITION OF COMPOSITE OPERATORS

The definitidn of composite operators in interacting field
theories is highly nontrivial. We will give only an operational
definition and supply several examples which are best suited for
our computations. We will not enter into the lengthy discussion
necessary to clarify potential ambiguities in calculations of
higher order or within the context of other applications than the
ones we have in mind. We refer the reader to[49] for an extensive
discussion of these matters.

We employ the method of dimensional regularization, first
introduced by t'Hooft and Veltman[50] as a convenient method of
evaluating Feynman integrals in a gauge theory. We will begin by
considering the problem of defining a fermionic kinetic term or
current to second order in the strong coupling constant in QCD.
These operators will not be renormalized when we correctly define
the field renormalization const;nt of the fermions.

Renormalization is a two step process for operators. One
begins with the free field theory expression for the operator in
question expressed in terms of unrenormalized fields. We then re-
normalize the fields by multiplying by the appropriate scale fac-
tor of /Ef for each fermion comprising the operator. Then we take
the second step of computing the radiative corrections to the op-
erator in renormalized perturbation theory by evaluating diagrams.

The diagrams will require subtractions which are performed at the
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' . . 2 2 .
subtraction point, p =-» . We define the operator for momenta hav-
- ing these values to be equal to the value it would have in free field

theory. This completes the renormalization prescription. We have

schematically:

l!’oiwo ” Z2 mriwr N 222' :ﬁriﬁwr:

(B.4)

Here we have generalized the free field theory notation for
normal ordering to include Zimmerman Normal Ordering as discussed
in ref.[7]. This is simply the operation of defining a finite
operator, though to give a precise statement of this procedure
is complicated by the fact that in an interacting field theory
a given operator has many different kinds of non-vanishing matrix
elements. For example, the operator aqaq will in general have
matrix elements between single quark states as well as quark and
glud;'states. This is analogous to the phenomena of mixing which
we discuss in section B.3 , but is a mixing between operators
of different dimensions and will always be accompanied by div-
ergences that are more severe than logarithmic. The process of
defining a finite operator, such as :aqaq:,involves the sub-
traction of these divergences. Unlike logarithmic divergences, the
more severe quadratic and quartic divergences that would be
associated with the mixing of aqaq with the operators aq and 1,
fespectively, will be subtracted away for all values of the norm-

alization mass, m. Operators that mix with logarithmic or finite
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factors will have finite contributions to the single particle
irreducible matrix elements of aqaq for momenta other than p2 =4m2,
in the case of iogarithmically divergent mixings, and all momenta

in the case of finite mixings.

The current operators, or the kinetic terms, are used to define

the values of the fermion wave function remormalization constant,

22. Conserved currents, or pieces of the Lagrangian, must not be
renormalized since they are conserved quantities and cannot change

as the interaction is adiabaticallyswitched on. Therefore, we are

led to define:
Z = Z . . (B.5)

Let us calculate the QCD quark wave function renormalization
constant by way of this preécription. Consider the current operator
expressed in terms of renormalized fields, but not yet Zimmerman
Normal Ordered. The one loop corrections in renormalized per-
turbation theory are (to this order there is no difference between

renormalized and unrenormalized perturbation theory):

p§+ +. /"':(W\

A A
= uyu - u % 4 42 (g - ““E*?U
K (2m) (k + p) 'k k
(B.6)

where we have ignored the effects of the fermion masses.
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Terms of the form Gpuu are finite and will be proportional
to tﬁe mass2 of the particle (p2) for on-shell quarks, and lead
to the anomalous gluo-magnetic moment by makiﬁg use of the Gordon
decomposition. ‘The terms of the form Gyuu are divergent, aﬁd we
find by using the method of dimensional regularization to evaluate

the loop integral in 4 - e dimensions:

2
(ar1.s) = syu(1 - EQ=D 34 4 24,00 @)
H 16w €

Hence, the condition that the current take on its-' free field theory

value for p~ = —m2 gives the values of the renormalization constants
immediately:
\
2 2 2
54 542
s (.8)
- - Bgz(k -1 _ 4g> (A - 1) 1n-n?
Zp = 1 2 2
54w 547w J

which satisfy eq.(B.5) to second order in g.

We will now anticipate our discussion of the renormalization
group equations in section B.3 and define the anomalous dimensions
of the operators and fields. If 0" is a local composite operator
made out of n fermion fields, it will receive in the first step of
renormalization, eqn.(B.4), a factor of (Zz)nlz. In the second
step, it will receive a factor of ZOn, in accordance with the pre-
scription that the single particle matrix elements of 0" be equal

2

to the free field theory values for p2 = -m~. We define the "total

. . n
anomalous dimension' of the operator O to be:
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dln Zon

Yo = . B.9)
0 51n m (

This quantity is gauge dependent until we subtract the effects of
the fermion wave function renormalization. We define the fermion

field anomalous dimension by:

dln Z
- (%)___2_ ) (B.10)
dln m

Hence, the proper anomalous dimension for On, which will be

gauge invariant () independent) if o" is a gauge invariant operator,

is defined by:

n/2
3ln (22) ZOn

Yon - = Y0n+ nYF’ (B.li)
dln m

In particular, we see by this definition that the anomalous dimen-
sion of a conserved (or partially conserved) current vanishes, as does
the anomalous dimension of a kinetic term or of an entire Lagrangian.
The anomalous dimension of the fermion field may be written
down from eqs.(B.10 & B.11)
4 2
Y, = =1 -2 B, (3.12)
F 3 2
16
We will find as a general rule that the total anomalous

dimension of an operator will be simply the negative of the co-

. 1 . s
efficient of the E-dlvergence of the one loop correction to the

operator in renormalized perturbation theory. Of course, we must

emphasize that this is only true in the approximation of ignoring
the mass corrections to the anomalous dimensions, which will be just-
ified so long as the mass scale of the short distance expansion is

sufficiently large compared to the quark masses.



-112-

- We shall illustrate this rule with the following two. examples.
First, consider the computation of the anomalous dimension of the
quark bilinear, 6mqq, which is a simple mass term (this result

will also hold for EYSq). The one loop correction to this operator

is the diagram:

b - | ;I"J:\

. 2 4
=:ﬁ%h%£4awYﬁ(ﬁ+wm@+K) A

(21) (» + k)*K? v

U, V
" - ———Akg )u(p), (B.13)
k

where we have again ignored the fermion masses, which would not
otherwise contribute to the divergence. In 4 - ¢ dimensions we

obtain:

4
= m&ﬂ~i— S G-I e+ ue
(2m)
8 2 1-
= m (G -0 S, S ukeuk) + o). (B.14)
- 16w

Hence, the total anomalous dimension, which is just the negative of
- 1 .
the coefficient of~g , is:

2
8 g - - -
-3 l61r2(4 ) = y_ nygp, (B.15)

aq

=<
|

where we have employed eq.(B.11). Using eq.(B.12) we obtain
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the (proper) anomalous dimension:

2

= -8 iz , (B.16)
16

whieh is the well known result.

In general,operators of the same dimension Will mix under
the effects of the interaction which will lead to anomalous
dimensions that are matrices instead of simple numbers. To
illustrate this phenomenon we will compute the anomalous dimension
of the operator anRanR' The chiral structure of this operator is
such that its mixing is particularly simple; it will only mix with
the operator aLouquqLouqu, in the limit of neglecting quark
masses. If we include the effects of quark masses, we will have
mixing with the operator 02 of section II.4, but this may be
ignored as these gluonic operators will only mix amongst them-
selves.

To evaluate the anomalous dimensions we must evaluate the
diagrams of Fig.(IITI.1l). This amounts to an exercise in Fierz
transformations after performing the simple four dimensional
integrals. The reader is referred to Appendix B for the relevant
ideﬁtitieS'used in this calculation.

Diagrams (1) and (2) of Fig(III.l) are equal and their sum
is:

2

-ig A+ $) A
(LD +(2) = .I‘(z 4 QY X & + o'x 2YoX dpd; dp

v AkMEY
g™ - _;5_))' - (B.17)
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Upon evaluating the integrals we have:

2

16
B.17) = 28 w-niiow. . @i
3 2 e
16w
We find for the remaining diagrams:
, 2 ' vV N
_ _ ig - A uv ATk 1
(3) + (&) 5 qLYuxAKqRquvkx qap (8 “;5- ) 6
) A L ) (B.19)
- +18 |} ¢ = v Ak"KY 1
(5) + (6) + = qLYuxAKqRqLKva qR(g kz ) 6
/
The sum of the two terms above leads to:
G)+ )+ G)+ (6 = 230 a0 = O (B.20)
3 L uvRL R ¢ ‘

where we have made use of eq.(C.16 & C.17) in performing the
Fierz transformations over the Dirac and color indices.

A straightforward calculation gives the proper anomalous

2
dimension of the operator qcuvqaouvq to be & 16 . Hence, we

23
16w
may assemble the results of the above diagrams together to write

the anomalous dimension as a matrix for the two four quark oper-

- " a0 o - HV .
ators, A = 9y 9p919R > B qLcuquqLo qp» as follows:

A 2 -16 0 A
g (B.21)

B 16w 1/3 16/3 B

=2
1}
N
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B.3 RENORMALIZATION GROUP EQUATION

We now returﬁ to the operator product expansion of eq.
(B.3) and let us assume initially that the operators are renorm-
alized at p2'= —m2 in accordancg with the prescription described
in the preceding section. We begin with the operator product
expansion for x = (m)_l. and consider the effect of scaling x
to smaller distances, i.e., x ~> A‘lx. We may write the rescaled
short distance expansion as:

0, (x/10,(0) = 2 e s, .22

n

where we have displayed the dependences upon m and the renormalized
coupling constant, g(m), explicitly.

To learn about the behavior of Cn(xlx) as A » o we first
obtain the renormalization group equation and then convert it to
an equation in the scaling variable, A. [51].

Pure dimensional analysis informs us that c” must depend upon
m in the following way (we ignore the fermion masses in the present
discussion):

' n I R e
C (x/X, m, g(m)) = (m) ‘ C (x/\, m, g(m)), (B.23)

where di is the ordinary mass dimension of the operator Oi'

=n . . . e . .

C is a dimensionless function of the indicated variables. We
. . , . . =n

will be interested in the scaling behavior of C .

Recall from the description of the renormalization process

that the definition of the renormalized operator,:0 :, is given by,
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AL -n/2 n L
:0: 22 Z0 Oun. - (B.24)

The unrenormalized operator Onun is completely independent of the

normalization mass, m, used to define the renormalized operator

n .
:07:. This fact is summarized by the statement:

d n _ .
 dm 0 un 0. (B.25)

We see that this translates into the result:

d,n/2, n,
m am Z2 ZO.O S 0
3 ] N n
= (m m + B(g)sg + nYg + 'YO).O :
= (m2 4 Bl + vy):0™: (8.26)
om og (0

which is the familiar renormalization group equation [51] employing
the definitions of the anomalous dimensions as well as the usual
definition of the g(g) function, i.e., B(g) = dgr/d(ln m). As is
well known, the renormalization group equétion expresses the invar-
iance of the theory under the choice of a renormalization point, m.
We may derive a renormalization group equation for the
coefficient functions appearing in the operator product expansion
of eqn.(B.23). We simply apply to both sides of that equation the
oPerator §% + B(g)g%-and introduce an anomalous dimension for

the coefficient function, Y cn? such that [11]:

P 9 =

£ + + C = . (B.27)
m2+p@ L+ v O =0 ,
Then one readily obtains:

- T
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~Here we have ignored the phenomenon of mixing. If we applynthe

operator D = mS%- +~B(g)5§» to both sides of the operator product

expansion we obtain:

(g + ¥ )0, (x)0,(0) = :E: (vg' €"x)0"(0)) +
1 2 n,m

€ )y 07(0)),  (B.29)

using the renormalization group equations (III.28), suitably
generalized for mixing. In this case one obtains the result as

a matrix equation:

nm _ nm - mn ,
e = ¢ (Yol+ Yoz) (ygn) - (B.30)

Note that the contribution from the opérators, On, is the trans-
pose of the anomalous dimension matrix, as computed in eq.(B.21).

To solve the renormalization group equations when mixing
occurs, it is necessary to diagonalize the anomalous dimension
matrix and work with operators and coefficient funétions that are
eigenvectors - of the matrix. Such eigenvectors, if we are referring
to the operators, are known as multiplicatively renormalized
operators. It should be noted that if the effects of finite mass are
included in this analysis, it is not in general possible to diagon-
alize the anomalous dimensions for all values of m by the same
transformation. Then the solution to the renormalization group
equation bécomes quite analogous to the solution of a field theory
with a Hamiltonian that does not commute with itself for succes-

sive times, i.e., we must express the solution in terms of m-ordered
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exponential integrals, which must be numerically integrated on
a computer in general.

As ma& be seen in équation (B.23), the anomalous:..dimension
for the dimensionless coefficient function, En,,will be related

. R n
to the anomalous dimension of C by the form:

. aam

Ye - dn)ﬁnm (B.31)
where di are the naive "engineering' dimensions of the various
operators.

The renormalization group equation is of interest because it
allows us to construct a scaling equation [51] in terms of the
variable A. Note that the dimensionless function En(x/k,m,g(m))
can depend upon x only through the dimensionless combination
xm and implicitly upon m by the‘dependence upon g(m) (recali that
g(m) also contains a cutoff dependence, but that the cutoff only
appears in g(m) after renormalization and the function c® does
not depend explicitly upon the cutoff). Therefore, to rescale x by
A is equivalent to rescaling m by Aﬁl only where it appears

explicitly in c®. Therefore, we have the following relations

between the partial derivatives:

m = Clx/A,mgm)| = -2 =C"...). (B.32)
g(m)

This relationship allows us to write the scaling equation for

-n
C as:

3 =n nm =m _
A — - B(g) S ) ¢ - Iyg € = 0. (B.33)
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The solution to eqn.(B.33) of physical interest is easily

verified to be:

In)
@G, gm) = T, m EWexp + [ yon(EE)ae
| 0
(B.34) .
where g(t) is defined by:
& _ .
it B(g(t)). (B.35)
This solution can always be rewritten as:
g(})
P (x/A, my, gm) = TCx, m, B())exp + fﬁg—% dg .
g(1)
(B.36)

In an asymptotically free theory, such as SU(3) of color
with the numbers of quarks prescribed by the models considered
in Chapter I, we will always have the forms for the renormalization

group functions:

2
(@ = —E K+ o@h
16m 3 (B.37)
Be) = -—Ep_+ 0(e)
16w

Using these definitions we may rewrite the solutions to the scaling

equations in a more convenient form:
—n -n _ Kbo +s</2b0
C (X/}U m, g(m)) = C(x, my g(M))| 1+ E’F Ini

(B.38)
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where k = g(@)2/4ﬁ.

The magnificence of this result may be described as féllows.
The physical coupling constant ié a parameter with which we would
hope‘to describe amplitudes involving the strong interactions and
is just gOn)2/4ﬂ; evaluated at the renormalization group invariant

mass ‘M. One may solve (B.35) and deduce that:

K

boK ’
1 +-—1In A
2m

k(A) =

(B.39)

and since bo is by definition greater than zero for an asymptotically
free theory, we see that k (or g)tend to zero as A tends to infinity.
We are instructed in eqn.(B.38), to evaluate the coefficient on

the right hand side, namely En(x, m, g(X)), in a field theory

with an effective coupling constant, E(A), that is very small.

Hence, this coefficient is computable in free field theory for
sufficiently large A.Furthermore, the quantities enclosed in the
brackets in eqn.(B.38) are, in principle,determined. Conventional
wisdom dictates that the value of k is of order unity. With only
four light quarks we must always take bo = 25/3+[ 6], and we

obtain:

FOM /) = 107t (B. 40)

which is reasonably small and would tend to justify the assertion
that the coefficient can be estimated in free field theory. Of
course, kK 1is sometimes taken to be of order .33 and this would further

reduce the size of the result in (III.42). This question of the

' - 2
1 bo = (11 3 nf), where ne

Choosing n = 3 changes all enhancements, etc., by roughly 8%.

is the number of light quark flavors.
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sizes of these parameters will not be so important since the values
- of the anomalous dimension coéfficients, ki, will be small in our
applications. We fbllowythe choices adopted by Gaillard and Lee
[20] in their analysis of the short distance corrections to the
current-current product. With the mass scale of the Higgsons

of order Va MW’ we should take:

Kb
o ~
(l + o7 In Mﬁ/L)—- 5 to 6 . (B.41)

With this choice for the sizes of the various parameters we can
directly compare the Higgson enhancements with the current-current
enhancements. The enhancement or suppression of a given operator.
appearing in the Higgson exchange Hamiltonian will therefore be
of order (X)ki/Zbo.

In the Chapter IIT we treat the operator mixing problem
for the operators occurring in the short distance product of
scalars and pseudoscalars. We compute the anomalous dimensions of

the various operators as a matrix, which we subsequently diagonalize

to find the multiplicatively renormalized linear combinations.
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Appendix C

DIRACOLOGY AND USEFUL FORMULAE

We employ the representation of the Dirac algebra as defined in
the textbook of Bjorken and Drell [52]. It is important to note that
the definition of the totally antisymmetric e-symbol is:

€9123 = +1 (C.1)

and therefore:

e0123 = -1 ¢ euvpx = -6g A-

oo {C.2)

The Yg matrix is defined by:

_ .5 _;0123_ 101
YS-Y—iYYYY—[IO] (G.3)
and we have the trace rule:
TrYSYvaYpYo = 4leuvpc' (C.4)
From the usual identity:
TrY Y Yo Ys = l*(gu\,gp0 * 8,08 T gupgw) (C.5)
and eqn.(C.4), we obtain:
g
= + - + i C.6
YYo= BuuYo BT T BTy g 065y (C.6)
and:
uvpao - o}
€ VoYY bivy Y. c.7)
From equatidn (C.6) one readily obtains:
Iy vor 1. Iv®y®yY1, = 100y ‘ Y, + 60yey 1, [vy%]
o' By ij kl a“1ij kl 5"a"1j kl 6.8)

TR TN CA el NS I a0 TN Ol ] e WY o o Y

Henceforth, in writing equations such as (C.8) we will suppress the

latin (Dirac) indices 1,j,k,... etc.
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With the usual definition:

= 1/2 , (Cv‘g)
Cv i/ [yp Yv]
one obtains:
= 1 - — P
caBYYYS l(gBmeYG guyyﬁyd) eaBYDYSY s
- P (C.10)
= i - +
Yo ¥g%s (gBYYaY6 gBYYaYY) Sayso5YoY
Combining the above results leads to:
aB M _Vy _ u v _oB
A T o AN B A ACAPY R AR S
a B a B ;
= - C
6 ([vy¥g IY™Y"1 + [yvgv ¥ llvsy v 1} (C.11)

= 24 (111011 + 171050} + 6( Lo 17" + [ygo 1vgo™1 5

[canqu][YvY“c“B] = [YvyucaB][y“chas]
= 6([YQYB][YBYQ] + [YSYaYB][YSYaYB]) (C.12)

= I - u\) p\)
24 ([1101] + [vg51ivgl) - 6( Lo, J[o™") + [vgo Hlvg0™ ]
Further Dirac identities employed in the text are:

Ho_ of. af _ C.1
YucaBY 0; OaBYuo 0. (C.13)

In our choice of Dirac representation we will also require

the Fierz identities. We will define the following operators:

T 0 = Ty vt s 0L = To b o™
Op = Wydp¥glys Oy = Uy, Yol ¥ s Og = Y0 Voo™,

= T m H . = T -
0f = W Y5 Y ¥o¥3¥sY ¥, 5 05 = ¥ Y5 ¥s¥sy, . (C.14)
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These operators are ordered according to 1,2,3,4; we define a second
set of 6;, identical to the above, but ordered 1,4,3,2 (equivalently

we could order the second set 3,2,1,4). Then the Oi are related to the

6; by the Fierz identity:
0, = M,.0 (C.15)

where:

M,, = =1/8 |24 0 -4 0 24 (C.16)

(the overall minus sign is due to the anticommutation property of
the field operators).
The Fierz rearrangement on the Dirac spinor indices must always
be accompanied by a rearrangement of the color indices when dealing with
quarks. The general relations involved in Fierzing color indices
follow from:
1

- (C.17)
3

A A )
RESLS T 20847184 ( \61j6k1]

where XA are the SU(3) color generators (equivalent to the Gell-Mann

A -matrices). We readily obtain:

ABA 2\ B A A
o = -GhE 5w = st (€.18)
A A
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