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Abstract

This thesis examines the fundamental behavior of a granular material subject to exter-
nal vibrations. Experiments were designed to investigate the phenomena that appear
in a container filled with glass spheres subject to vertical, sinusoidal oscillations. In
addition, a discrete element computer simulation code was written to supplement the
experimental program.

Experiments and simulations reveal that the behavior of the particle bed can be
classified into two regimes known as shallow and deep beds. For example, when a
shallow bed consisting of less than six layers of glass spheres is subjected to oscillations
with acceleration amplitudes greater than approximately 2.0g where ¢ is the acceler-
ation due to gravity, the particles in the container are fluidized and do not display
coordinated movement. However, when more than six particle layers are used, the
particles move coherently and the deep bed behaves as a single, completely inelastic
mass.

In the shallow bed regime three distinct sub-states are observed that differ in the
degree of coherency in the particle motions. Each appears depending upon the number
of particle layers in the bed and on the acceleration amplitude of the oscillations. The
transitions between the states are gradual and not well-defined.

The transition from the deep bed to the shallow bed state is characterized by a
sudden expansion of the bed that occurs at a critical acceleration amplitude for a fixed
bed ‘depth and particle type. Simulations indicate that when the particle fluctuating
kinetic energy is dissipated completely each oscillation cycle, the bed remains in the
deep bed state. If the energy is not completely dissipated, a shallow bed state results.
A simple model consisting of an inelastic ball bouncing on a sinusoidally oscillating
table reproduces the sudden expansion.

In the deep bed regime, phenomena such as side wall convection, surface waves,

kinks, and kink convection cells appear depending primarily on the acceleration am-
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plitude of the oscillations and, to a lesser degree, the number of particle layers in
the bed. Phase maps of when these behaviors occur were constructed using both
experimental and simulation data.

When the acceleration amplitude is greater than approximately 1g, side wall con-
vection cells appear at the vertical wall boundaries of the container. Particles move
down along the vertical walls of the container and up within the bulk of the bed.
Simulations indicate that the convection cells are the result of the frictional contact
between particles and the walls and the asymmetry of the particle/wall collision rate
over an oscillation cycle. Using the simulations, the width of the boundary layer next
to the walls, the height of the convection cell center from the container base, and
the particle flux in the boundary layer were measured as functions of the vibration
parameters and particle properties. The results from the simulation compare well
with experimental measurements. The simulation indicates that the boundary layer
width is proportional to the container width when the bed aspect ratio, defined as the
bed depth to the bed width, is greater than approximately 0.2. For beds with aspect
ratios less than 0.2, however, the boundary layer width remains constant. Simulation
results also demonstrate that the convection cell height is proportional to the bed
depth and that the flux of particles in the boundary layer increases with increasing
particle/wall friction and decreases for coefficients of restitution near one.

At acceleration amplitudes between approximately 2.0g and 3.5¢, standing waves
appear on the top free surface of the bed. These waves form at half the forcing os-
cillation frequency and are referred to as f/2 waves. A second set of standing waves
appears when the acceleration amplitude is greater than approximately 5.0g and per-
sist up to at least 7.0¢g. These waves form at one-quarter the forcing frequency and are
known as f/4 waves. Experimental measurements indicate that the wave amplitude
expressed as a Froude number increases with increasing acceleration amplitude for
the f/2 waves but remains constant for the f/4 waves. Additionally, measurements
of the wavelength suggest that the waves have a dispersion relation similar to that
for deep fluid gravity waves where the wavelength is proportional to the square of the

inverse frequency.
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Kinks and kink convection cells appear in the particle bed after a period dou-
bling bifurcation occurs in the flight dynamics of the bed. The formation of kinks
can be explained using a simple model consisting of a completely inelastic ball on
a sinusoidally oscillating table. Experimental measurements indicate a minimum al-
lowable distance between nodes that is a function of the bed depth and acceleration
amplitude. The convection cells bracketing each kink are shown to be the result of
the out-of-phase motion of the bed sections and the interaction between fluidized and
solidified regions of the bed.

The effect of vertical, sinusoidal vibrations on a discharging wedge-shaped hopper
was also investigated. When the hopper exit is closed, side wall convection cells
appear with particles moving up at the inclined container boundaries and down at
the centerline of the bed. The same mechanism that causes downward convection
at vertical walls can also explain the upward motion at inclined walls. Experimental
measurements also indicate that the discharge rate from the vibrating hopper scales
with the oscillation velocity amplitude. At low velocity amplitudes, the discharge rate
from the hopper is slightly greater than the non-vibrating hopper discharge rate. At
high velocity amplitudes, however, the discharge rate decreases significantly. A simple
model accounting for the change in the effective gravity acting on the particle bed
throughout the oscillation cycle and the impact velocity of the bed with the hopper
predicts the observed trend.

The experiments and simulations conducted in the present work suggest that
the boundary conditions and the fluid- and solid-like nature of granular materials
are significant factors affecting the response of a granular bed. Additionally, this
work demonstrates the value of discrete element computer simulations as a tool for

complementing experimental observations.
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Chapter 1 Introduction

1.1 Description of a Granular Material

A granular material consists of discrete, solid particles dispersed in a vacuum or an
interstitial fluid. Examples of such materials include sand, stones, soil, ores, grains,
pharmaceuticals, and a variety of chemicals. A distinguishing feature between flows
of granular materials and other solid-fluid mixtures is that in granular flows, the
direct interaction of particles plays an important role in the flow mechanics. Thus,
most of the energy dissipation and momentum transfer in granular flows occurs when
particles are in contact with each other or with a boundary. One parameter that
has been suggested to quantify this distinction is the “Bagnold number.” In shear
cell experiments containing neutrally buoyant spheres immersed in a water-glycol
mixture, Bagnold (1954) found three regimes of rheological behavior that depend on
the ratio of the particle inertial stress to the fluid viscous stress:

o= Prd*(du/dy) (L1)

pr((45)F —1)%

where p, is the density of the particles, d the particle diameter, du/dy the shear
rate, py the fluid viscosity, vas the maximum packing solid fraction, and v the solid
fraction. Bagnold found that when Ba < 40 the momentum transfer is primarily
through fluid-particle interactions and the mixture behaves as a viscous fluid. He
referred to this as the “macro-viscous” regime. When 40 < Ba < 450, known as the
“transition” regime, both particle—pafticle and particle-fluid interactions contribute
to the momentum transfer. For values of Ba > 450, the primary momentum transfer
mechanism is through particle-particle interactions and the mixture behaves as if the
interstitial fluid were removed. Bagnold referred to this granular flow behavior as the

“grain inertia” regime. The resulting granular system can be considered as consisting
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solely of solid particles and interstitial voids.

Although granular materials are commonly found both in natural and industrial
settings, there is no general understanding of how these materials behave. Particulate
systems are unique in that they can exhibit gas-, liquid-, and solid-like properties.
There are, however, important differences with each of these phases that make the
behavior of granular materials even more unusual.

Highly agitated systems of particles are often modeled in a manner similar to
a rarefied gas (see, for example, Haff, 1983 and Jenkins and Savage, 1983). An
important difference, though, is that, unlike collisions between gas molecules, solid
particle collisions are inelastic and dissipate energy. Thus, a granular material “gas”
can quickly reach a zero effective temperature.

Granular materials also have liquid-like properties. For example, a granular ma-
terial can flow as in an hourglass or an avalanche. Furthermore, when particles are
poured into a large container, the assembly conforms, in a bulk sense, to the shape
of the container. Unlike a liquid, though, a granular material can resist shear as in
the slope of a sand pile.

This solid-like behavior is limited only to compressive loads. When subjected to
tensile loads, particles come apart.! The reason granular materials can resist shear
loads is due to the discrete size of the particles. In order for a densely packed assembly
of particles to flow, it must first dilate, a phenomenon known as the Reynolds’ Prin-
ciple of Dilatancy (Reynolds, 1885). The resulting normal strain due to an applied
shear stress is a result of particles moving over one another as the assembly deforms.?
Another unusual result of the material granularity is that load transmission is typi-
cally anisotropic. Forces are transmitted along particle contacts and form long “force

chains” (an example of these is shown in Jaeger and Nagel, 1992).

1 Assemblies of cohesive particles can resist a limited tensile load, however for simplicity, the
present definition of a granular material refers to non-cohesive particles.

2Note that a loosely packed assembly may actually contract when sheared since, as the particles
move, they can fall into neighboring voids.
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1.2 Motivation for Studying Granular Materials

Since granular materials are often encountered in both natural and industrial settings,
understanding how they behave can provide important design information. Natural
processes such as eroéion, sedimentation, dune formation, soil liquefaction, and land-
slides significantly affect the environment and often result in property damage as well
as fatalities. FEMA (Federal Emergency Management Agency) estimates that land-
slides alone result in an annual loss of $1.5 billion and at least 25 fatalities in the
United States (FEMA, 1996). Clearly, having knowledge of the granular state would
help to prevent some the losses associated with these natural phenomena.

Many industrial processes also involve particulate materials. The types vary
greatly ranging from pharmaceuticals to frozen peas. In the chemical industrial alone
it is estimated that half of the products and three-quarters of the raw materials are
in the form of particulates (Nedderman, 1992). The abundance of these materials
implies that there are enormous costs associated with handling them. For example,
a straightforward process such as crushing ores uses approximately 1.3% of the U.S.
annual energy consumption (Ennis et al., 1994). Even small increases in efliciency
can result in tremendous savings.

Even with these incentives, a poor understanding remains of how these materials
behave. Most of the knowledge of how to handle particulates is empirical and no
general approach to analyzing these flows exists. Although models based on kinetic
theory and soil plasticity have shown promise, they have a number of constraining
assumptions that limit their use to extreme flow cases (for a review of these models,
refer to Savage, 1984). As a result, much of the current granular material work
focuses on several “benchmark” flows in order to examine the fundamental behavior

of particle assemblies.
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1.3 Vibration of Granular Materials

An example of a benchmark experiment involves a granular material in a container
subject to external oscillations. Since collisions (and contacts) between particles
are dissipative, kinetic energy is converted to heat in a flowing granular material.
If additional energy is not added to the system, the moving material will quickly
come to rest. This energy can be added by an external force field, such as gravity,
by shearing the material at a boundary as in a Couette flow, or by subjecting the
material to vibrations.

Vibration of granular materials is also of interest for more practical reasons. In
industry, vibration is commonly used as an aid to handling and transporting particu-
late materials such as foodstuffs, coal, and pharmaceuticals. Examples of devices that
often utilize vibration include conveyor belts, hoppers, sorting tables, packing tables,
drying plates, and fluidized bed reactors. Vibration of a granular material may also
play an important role in natural events such as earthquakes and avalanches. Clearly,
understanding how a granular material responds when subjected to vibration can
provide valuable design information.

Experiments have shown that a number of interesting phenomena appear when
beds of granular materials are subjected to external, vertical oscillations. Chladni (1787)
was perhaps the first to systematically study the behavior of vibrated beds of par-
ticles. He found that when sand is scattered on a vibrating membrane, the sand
particles collect in heaps corresponding to the vibration anti-nodes. Faraday (1831)
also examined these patterns and found that particles move in circulation patterns
within the piles. Particles avalanche down the free surface of the pile, are entrained
back into the bed at the base and re-circulate to the peak to repeat the cycle.

Other researchers have found equally interesting phenomena in vibrated beds of
granular material. An important observation made by Bachmann (1940), and later
investigated by Kroll (1954), is that the behavior of the particle bed is significantly
different depending on the depth of the bed. Bachmann found that when the average
depth of the particle bed is less than about six particle diameters, (ho/d < 6 where
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ho is the bed depth and d is a particle diameter), particles bounce around randomly
as in a fluidized bed. However, when the depth is greater than six particle layers,
the assembly of particles acts as a single, coherent, plastic body. Other researchers
have investigated these two distinct regimes of behavior and have found significantly
different phenomena appearing in each.

Thomas et al. (1989) described four discernible states of behavior when shallow
beds of material are subjected to external oscillations. For the shallowest beds (for
example when hg/d = 0.17 - implying that there are fewer particles than is necessary
to fill a single packed layer) they describe a “Newtonian-1” state in which particles
bounce around so randomly that there is little variation in the vertical concentration
profile over an oscillation cycle. At somewhat larger ho/d (at 0.273 for example)
the bed transitions to a “Newtonian-II” state in which a dense layer of particles
accumulates on the surface during one part of each cycle. Thicker layers of particles
(for example ho/d = 1.7) lead to a “coherent-expanded” state in which the particles
all oscillate as a coherent mass. This mass does, however, expand and contract
considerably during each cycle. The last state, referred to by Thomas et al. as
the “coherent-condensed” state is, in fact, the same deep bed regime observed by
Bachmann when hq/d > 6.

These shallow beds have also been studied by a number of other researchers. For
example, Chlenov and Mikhailov (1965) examined heat transfer in vibrated shallow
beds and Lan and Rosato (1995) performed computer simulations of shallow beds
and compared the results with the kinetic theory predictions formulated by Richman
and Martin (1992). The dynamics of the transition between the shallow bed and deep
bed states was examined by Brennen et al. (1996).

Deep beds of granular materials display very different behaviors when subject
to oscillations. These behaviors include heaps and convection cells similar to those
described by Faraday (1831), traveling and standing surface waves, and “kinks” in
the bed with corresponding convection cells.

Heaps and convection cells similar to those described by Faraday (1831) have been

reproduced in a number of experimental devices. Faraday’s experiment used a vi-
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brating membrane with fixed boundaries giving rise to vibration amplitude gradients.
Other experiments using rigid vibrating bases, and with both fixed and oscillating side
wall boundaries have also produced heaps and convection cells. These experiments
are déscribed in papers by Evesque and Rajchenbach (1989), Ehrichs et al. (1995),
Knight et al. (1996), Ratkai (1976), and Zik and Stavans, (1991) to name just a few.
A number of experiments have also investigated how the interstitial fluid affects the
formation of heaps and convection cells (see, for example, Laroche et al., 1990ab,
Evesque, 1990, and Pak et al., 1995). In addition, both behaviors have been stud-
ied with computer simulations by Gallas et al. (1992), Taguchi (1992), Lee (1994),
Rosato and Lan (1994), and Wassgren et al. (1996b) and with kinetic theory models
by Savage (1988) and Goldshtein et al. (1995).

Despite the large number of investigations, few measurements of the heaping and
convection cell behaviors have been made. The most extensive study of the convec-
tion cell phenomenon was made by Knight et al. (1996) in their nuclear magnetic
resonance imaging (NMR) experiments of poppy seeds in containers subjected to
discrete, vertical taps. Most of the remaining experimental and simulation work has
focused on onset conditions for the two behaviors. A number of hypotheses have been
proposed for the mechanisms that cause convection and heaps (Rajchenbach, 1991,
Gallas et al. 1992, Taguchi 1992, and Lee 1994); however, none of these hypotheses
have been supported by conclusive evidence.

Less studied are the waves that appear on the free surface of a vibrating deep
bed. Pak and Behringer (1993) reported the appearance of waves on the surface
of a heap traveling from the heap’s base to its peak. Standing waves have also been
observed on the free surface of a deep bed. Fauve et al. (1989) reported the appearance
of parametrically forced surface waves and mentioned their similarity to Faraday
instability waves which appear in vertically vibrated fluids (see, for example, Miles and
Henderson, 1990). Melo et al. (1994, 1995), and more recently, Metcalf et al. (1996)
and Clément et al. (1996), measured the dispersion relation for the standing surface
waves and also studied the variety of wave patterns that appear on the surface of

beds in wide-mouthed containers. Wassgren et al. (1996a) also studied the dispersion
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relation for the surface waves as well as the wave amplitudes as a function of the
vibration parameters.

Another interesting behavior that appears for vibrating deep beds are “kinks”
and their associated convection cells. A kink is defined as the region of a particle
bed between two sections that oscillate out-of-phase. Bracketing each kink are two
convection cells where particles move down at the kink and up on either side of it.
These behaviors were first examined in experiments by Douady et al. (1989) and have
also been reported in experiments by Melo et al. (1995) and Wassgren et al. (1996a).
The kink behavior is a result of a bifurcation in the flight dynamics of the bed, a
point that will be discussed in detail in chapter 7. Douady et al. hypothesized that
the convection cells associated with kinks are a result of the out-of-phase bed motion
and an interaction between fluidized and solidified regions of the bed. They did not,
however, provide any evidence to support this theory.

As reflected in the previous paragraphs, this simple experiment consisting of a
container filled with granular material subjected to vertical oscillations produces a
surprising number of complex phenomena. Unfortunately, little is understood about
these behaviors. Most of the previous work has focused on showing that these various
behaviors exist. However, detailed measurements of the phenomena and the mecha-
nisms that cause them are lacking. Part of the present work details experiments and

simulations designed to provide some of this information.

1.4 Vibrating Hopper Flows

One common industrial device that often utilizes vibration is the “live wall” hopper.
A hopper is essentially a funnel and storage unit for granular materials. The term
“live wall” refers to the fact that the walls of the hopper are sometimes subjected to
vibration in order to aid in the discharge of the granular material.

Hoppers are usually classified as being either of the mass or funnel flow type. In
mass flow hoppers, the first material poured into the hopper is also the first material

out. When discharging, all of the material in the hopper flows simultaneously; no
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stagnant regions of material exist within the hopper. Although hoppers are usually
designed with mass flow in mind, various factors including geometric constraints and
material-wall {rictional interactions do not always permit this type of flow. Instead,
stagnant regions of material form near the walls of the hopper and the first material
into the hopper can be the last to leave. Flows of this type are known as a funnel
flows.

Funnel flows are problematic for a number of reasons. First, the first-in, last-out
flow pattern is often unacceptable when time-dependent material is passed through
the hopper. Materials such as organic grains can decay in the stagnant regions while
other materials, such as soda ash or cement, consolidate over time and become more
difficult to handle. Another problem with funnel flows is that the flowing material
often crushes the material in the stagnant regions resulting in the production of fine
dust and increasing the risk of explosions. Lastly, a severe form of funnel flow, known
as a “rathole,” may form in the hopper. A rathole is a narrow flow channel that
discharges completely while most of the material in the hopper remains. Ratholes
often end in “flooding” which occurs when a rathole collapses and a sudden surge of
material exits the hopper. These surges can cause structural damage to the hopper.
Problems such as these make mass flow hoppers preferable to the funnel flow type.

One problem that plagues both types of hoppers is known as bridging or arching.
Bridging occurs when a mechanically stable arch of material forms within the hopper
(usually at the exit) and supports the material load above it. As a result, flow through
the hopper is stopped. Flooding typically occurs when the bridge collapses.

One method of alleviating these problems involves vibrating the hopper walls. In
its crudest form, this is accomplished by pounding the walls with a sledgehammer.
A condition known as “hopper rash,” where the hopper walls have a ball-peened
appearance, is often observed when this method is employed. A more common method
of implementing vibration involves attaching unbalanced motors to the hopper walls.
Hoppers utilizing this design are typically known as “live wall” hoppers.

Few researchers have examined the effects of vibrating hopper walls. Most investi-

gations focus on the stress and velocity fields in non-vibrating, mass flow hoppers (for
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reviews, refer to Nedderman, 1982, Nedderman et al., 1982, and Tizin et al., 1982).
A number of experiments and simulations have also investigated non-vibrating, funnel
flows (see, for example, Nguyen, et al., 1980 and Langston et al., 1994).

Perhaps the first work including the effects of vibration was performed by Taka-
hashi et al. (1968) and Suzuki et al. (1968) in their experiments of vertically oscillating
wedge hoppers and flat bottom bins. They examined the trajectories of particles and
discharge of material through an exit orifice and found that convection cells appear
near the wall boundaries and that the discharge rate from the hopper is decreased
significantly at high oscillation accelerations. Evesque and Meftah (1993) studied
the time of discharge for sand in a vertically vibrated hourglass and found similar
results. Knight et al. (1993), although not investigating hopper flows, reported the
appearance of convection cells in experiments using vertically oscillating conical con-
tainers. Experiments and simulations of particle flow in wedge-shaped hoppers were
performed by Wassgren et al. (1995). They also reported the appearance of convec-
tion cells at the inclined container walls as well as standing waves on the free surface
of the material. In addition, Wassgren et al. examined the discharge rate from the
hopper as a function of the vibration parameters.

Chapter 8 describes the experiments and simulations designed to investigate verti-
cally oscillating hopper flows. The work was designed to observe the effect of vibration
on particle trajectories and examine how the discharge rate from the hopper varies

due to the vibrations.

1.5 Computer Simulations of Granular Materials

A resurgence in granular materials research occurred in the early 1980s. Part of this
renewed interest may be attributed to the development of computer simulations to
study granular flows. Prior to the 1980s, computer processing speed and data storage
capabilities were too limited to study systems of thousands of particles. However,
as processor speed increased and hard drive and memory costs decreased, computer

simulations became an increasingly effective tool for studying granular materials.
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Simulations offer several important features for studying granular flows. Perhaps
the most significant is that the state of the particulate system is known at all times
in a simulation. Hence, the interior of a flow can be examined and measurements can
be made that may be difficult to make in experiments. Furthermore, simulations can
model environments that are not easily produced in experiments. For example, many
simulations are performed with altered gravity environments or with frictionless par-
ticles. The insights that these simulations can provide are valuable for understanding
how granular materials behave.

Most granular flow computer simulations are discrete element (DE) methods. The
term “discrete element” refers to the fact that the simulation models the granular
material as a system of individual particles. Examples of DE simulations include
Monte Carlo techniques, cellular automata, and hard and soft particle methods (see
Campbell, 1996 for a review of these methods).

Monte Carlo techniques are statistically based. A particle assembly state is cho-
sen based on the energy of the configuration. For each new state, particles are given
a random velocity or position within some distribution function. The configuration
which gives the lowest system energy is chosen as the new state. The movement of
particles is limited by physical restraints which appear in the state energy. For exam-
ple, two particles occupying the same position can be assigned to have a high energy
making that particular configuration improbable. Simulations using the Monte Carlo
technique have been performed by Rosato et al. (1986) and Hopkins and Shen (1992).

Another discrete element simulation technique is the cellular automata method.
This is a lattice-based, kinematic approach, where particles are constrained to move
on discrete lattice points. At each time step, particles are allowed to move into neigh-
boring empty lattice points with the constraint that only one particle may occupy a
given lattice point at a time. The particle movement is also governed by a probability
function which reflects the physics of the system (refer to Baxter and Behringer, 1991).

Hard particle methods evolved from molecular dynamic simulations of rarefied
gases. Individual particles move in well-defined trajectories (typically ballistic trajec-

tories in a gravity field or in straight lines when gravity is not present) until a collision
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occurs with another particle or a boundary. Particle-particle and particle-wall inter-
actions are modeled as binary, instantaneous collisions and the post-collision particle
states are easily determined from classical particle dynamics (refer to Campbell, 1982
for details). Because of the assumption that collisions are binary and instantaneous,
this-method is most appropriate for low density, highly agitated flows.

Many flows, however, especially those occurring in a gravity field, have multiple,
long duration particle contacts. Soft particle methods are best suited for these situa-
tions. In a soft particle simulation, the forces acting on each particle in the system are
determined. Using Newton’s second law, the acceleration of each particle is found and
the resulting particle states are determined by integrating the accelerations in time to
yield both velocities and positions. New forces are calculated based on the updated
particle states and the procedure is repeated until some ending criteria is reached.
This type of DE simulation is perhaps the most common simulation technique and
was pioneered by Cundall and Strack (1979).

Several features of soft particle methods make them preferable to the previously
mentioned simulation techniques. First, the soft particle technique is exact when de-
termining forces and particle states. Monte Carlo and cellular automata approaches
incorporate probabilistic functions in order to determine particle positions and veloc-
ities. Second, soft particle methods can easily model flows that have long duration,
multiple particle contacts as well as particles involved in binary, near-instantaneous
collisions. Hard particle models break down when long duration and multiple particle
contacts occur. Soft particle techniques can also incorporate a variety of forces in a
straightforward manner unlike the other methods. Lastly, inter-particle force infor-
mation can be examined in soft particle simulations. None of the other methods can
provide this information. The disadvantage to using the soft particle approach is that
they often require more computational power than the other simulation techniques.

Discrete element simulations have often been used to examine vibrating granular
beds and hopper flows. Gallas et al. (1992), Taguchi (1992), Lee (1994), Rosato and
Lan (1994), and Luding et al. (1994a) have examined the side wall convection cells

in vibrating beds using soft particle methods. Shallow bed behavior was examined
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in hard particle simulations by Lan and Rosato (1995) and in, both, hard and soft
particle simulations by Luding et al. (1994b). Rosato et al. (1986) also used a Monte
Carlo approach to study particle segregation in vibrating containers. Lastly, both
soft particle methods and cellular automata have been been used to simulate non-
vibrating, hopper flows in work by Potapov and Campbell (1996) and Baxter and
Behringer (1991) among others. It is clear that computer simulations have become
an invaluable tool for studying granular flows.

In the present work, soft particle simulations were used to supplement the ex-
perimental work. Results from the simulations helped to determine the mechanisms
causing the observed vibration phenomena and allowed for the examination of flow

properties that were not easily studied in the experimental work.

1.6 Topics of Investigation

This thesis examines the fundamental behavior of a granular material subject to ex-
ternal vibrations. Chapter 2 discusses the experiments and simulations designed to
better understand both the shallow and deep bed behaviors described in section 1.3.
The remainder of the chapters examine each phenomenon in detail. Side wall convec-
tion is discussed in chapter 5, surface waves in chapter 6, kinks and their associated
convection cells in chapter 7, and vibrating hopper flows in chapter 8. Lastly, chap-
ter 9 summarizes the current work and discusses the implications of this work to

granular material flows in general.
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Chapter 2 Approach

2.1 Experiments

2.1.1 Shallow Beds

Several experiments were performed to investigate the behavior of a shallow bed of
granular material subjected to vertical oscillations.! The granular material consisted
of A-285 glass beads with a mean diameter of 2.85 mm. The particles were massive
enough so that interstitial fluid and electrostatic effects could be neglected (refer to
appendix I). Various quantities of these beads were placed in a rectangular box with
cross-sectional dimensions of 11 ¢cm by 13.2 cm. The box, in turn, was mounted
on an Electroseis electro-mechanical shaker and subjected to vertical vibration at
frequencies between 4 and 10 Hz with accelerations up to about 2.5g. A Statham
AT73T(C-4-350 accelerometer was used to measure the acceleration level accurately. A
schematic of the apparatus is shown in figure 2.1.

The box had a thick aluminum base and back but the other three sides were
made of lucite so that the behavior of the beads could be observed. In order to
determine the expansion of the bed of particles, paper lids of various thickness were
placed on top of the beads leaving a clearance of about 1 mm between the edge of
the lid and the walls of the box. When the box was vibrated vertically the bed of
beads would expand and the lid would float on the beads due to particle-lid collisions.
Fortunately, the lid proved to be quite stable and under all of the conditions used in
the present experiments and would remain horizontal and centralized with a roughly
equal spacing all around the periphery. Because this spacing was smaller than the

diameter of the beads, all of the beads would remain under the lid. A strobe lamp

! These experiments were first performed by a former SURF student, Supriya Ghosh, in 1984 and
were later reproduced by the author.
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was used to examine the motion of the lid and the beads during various parts of the
oscillation cycle. By this means it was observed that the spacing, , between the base
and the lid did not vary greatly during the oscillations. The beads would bounce
around below the lid but because of the resistance to the flow of air around the sides
of the lid, the volume of beads and air would remain almost constant during a cycle
of oscillation. Thus, using the strobe and a scale attached to the exterior of the box,
it was possible to measure the expansion or height, h, for each operating condition.

Experiments were conducted by observing the evolution of the bed of beads as the
vibration amplitude, a, was increased from zero to the maximum of which the shaker
was capable at a fixed frequency. Such experiments were conducted over a range of
frequencies (4 — 10 Hz) for various quantities of beads and for lids with different
weights as listed in table 2.1.

It should be noted that a single packed layer of beads resting on the base of the
box would weigh approximately 62 gm. Consequently the masses of beads range from
less than the mass for a single layer to about ten layers. The 45 gm of experiment 7
(table 2.1) was close to the minimum at which the lid would remain horizontal for

the duration of the experiment.

2.1.2 Deep Beds

The apparatus used to study the deep bed behaviors is similar to the set-up used in
the shallow bed experiments (refer to figure 2.1). Boxes of several sizes were filled
with various types of glass spheres and were mounted on an electro-magnetic shaker.
A Ling electro-magnetic shaker (model A-175) was used since it was capable of a
much greater range of frequencies and accelerations than the Electro-Seis shaker used
in the shallow bed experiments. As with the Electro-Seis shaker, both the frequency,
f, and amplitude, a, of the oscillations could be controlled independently. Typically,
though, the experiments were performed at a fixed frequency while the amplitude
was varied to give a specified acceleration amplitude, aw?, where w = 27 f. In these

experiments, the frequencies ranged between 15 and 40 Hz while the amplitude varied
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such that the vibration acceleration amplitude varied between zero and shaker’s limit
of roughly seven gs, where g is the acceleration due to gravity. The precision of the
frequency control was £0.5 Hz while the acceleration level could be controlled to
within £0.1¢g. A Dytran 3126A accelerometer was attached to the mounting base of
the shaker in order to monitor the acceleration level precisely.

Three lucite boxes with rectangular cross-sectional dimensions of 13.5 cm by
1.6 cm, 18.0 cm by 1.6 cm, and 18.0 cm by 4.8 cm were constructed to contain
the granular material. In order to reduce electrostatic effects, the interior vertical
walls of the boxes were lined with smooth window glass. The base of the containers
consisted of a 2.5 cm thick steel plate while the tops remained open to the atmosphere.

Three different types of soda lime glass spheres (with a density of 2.5 g/cm?)
were used in the experiments. Most of the runs, and all of the measurements, were
performed using particles with a mean diameter of 1.3 mm. A few experiments,
however, were run using two different types of 3 mm diameter glass spheres. One set
of the 3 mm glass spheres was much more uniformly shaped and spherical than the
other. The particles are considered massive enough so that interstitial fluid effects on
the bed can be considered negligible (refer to appendix I).

A typical experiment proceeded as follows. At a given frequency, f, data were ob-
tained for acceleration amplitude levels, I' = aw?/g, between zero and the maximum
limit of the shaker (roughly I' = 7.0). Both the acceleration amplitude and fre-
quency were determined from the accelerometer output signal. Using a strobe lamp,
the motion of the particle mass was observed at various phase angles while spatial
measurements were made using a grid taped to the outside of the rear wall of the
box. Measurements of the bed’s time of flight (the time between successive collisions
with the base) were collected using the output from the accelerometer signal. The
collisions between the particle bed and the steel base produced a narrow band of high
frequency noise in the accelerometer output that could be isolated using a high pass
filter. The time between the successive peaks in the filtered signal corresponded with

the flight time of the bed.
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2.2 Simulations

The soft particle method was employed to study the phenomena discussed in the
previous chapter for several reasons. First, the experiments indicate that most of the
particles in the system experience multiple, long duration contacts for at least part
of dn oscillation cycle. This point rules out the possibility of using a hard particle
method. In addition, it was expected that inter-particle forces play an important role

in the formation of the phenomena that are observed.

2.2.1 Issues

Although the concept of a soft particle simulation is straightforward, there are several
important issues that must be considered. First, the simulation environment must
be addressed. This includes whether the simulation is two- or three-dimensional,
how many particles will be included in the simulations, what types of forces will be
considered, and what boundary conditions are most appropriate. Next, consideration
must be given as to how to model the particles and forces and what physical constants
should be used. Lastly, the numerical scheme for integrating the equations of motion

must be addressed.

Two and Three Dimensional Simulations

Most current simulations model flows in two instead of three dimensions because of the
increased number of computations and memory storage required for three-dimensional
simulations. Another reason three-dimensional simulations are not more commonly
used is because it is not clear that the extra spatial degree of freedom is necessary
to reproduce many of the phenomena observed experimentally. A number of two-
dimensional simulations of situations such as chute flows (Campbell, 1982), Couette
flows (Campbell, 1982), shaking containers (Gallas, 1992 and Taguchi, 1992), hopper
flows (Tanaka, et al., 1988), and particle saltation (Werner, 1987) have all produced

results that have been observed in real systems.
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In situations where particle packing is important, three dimensions may be nec-
essary to obtain results consistent with real systems. Particles can pdck more closely
in two-dimensions (a maximum solid fraction of 0.91) than in three dimensions (a
maximum solid fraction of 0.74). Furthermore, in two dimensions particles are more
likely to form the maximum solid fraction packing geometry, a hexagonal close pack
arrangement. This results in a higher shear stress required to dilate the material than
would be expected in a real system.

Furthermore, the number of contacts a particle can have in 3D is greater than
that for 2D. For example, uniform diameter spheres (3D) have a maximum of twelve
contacts while uniform diameter circles (2D) can have at most only six contacts. As a
result, more energy can be dissipated per particle in 3D systems than in 2D systems.
Another effect of the increased number of contacts in 3D systems is that there are an
increased number of paths along which forces can be transmitted. This results in an
effectively stiffer assembly in 3D systems than in 2D because more force paths will
be in parallel in 3D. '

The present simulations are all two-dimensional. As will be discussed later, all
of the phenomena observed in the experiments are also observed in the simulations.
This fact demonstratés that the third spatial dimension is not fundamental to the

vibrated bed behaviors despite the effects mentioned above.

Number of Particles

Since the purpose of the simulation is to provide some insight as to how a large
assembly of particles behaves, using a sufficient number of particles in the simulation
is important. If too few particles are used, the system will not represent a real
granular system. However, it is desired to use as few particles as is necessary to
model the system in order to minimize computational costs. What constitutes a
sufficient number of particles, however, is not clear.

This issue was addressed in the present work by using a number of particles that
reproduced the experimentally observed behaviors. This number depended on which

behavior was to be studied but was typically on the order of 10% particles. Since
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the simulations show good visual agreement with the experiments, it is assumed that

enough particles are being used.

Particle Properties

For a number of reasons, the most commonly used particle shapes in discrete element
simulations are two-dimensional circular disks. First, collisions, or particle overlaps,
are easily detected (this is discussed in more detail later) and the location of the
contact point during a collision is easily determined. In addition, circular particles
are used because the kinetic theories for granular flows assume spherical or circular
particles (see, for example, Jenkins and Savage, 1983). In the present work, circular
particles best represent the spherical particles used in the experiments.

Other particle shapes such as ellipsoids or polygons have been used in simulations
in order to represent more common materials such as sand or grains (see, for example,
Ting et al. 1993 and Cundall, 1988). Particle asymmetries reduce the likelihood
of forming a regular packing structure; however, it also introduces the possibility
of particle “interlocking” (Potapov and Campbell, 1995). The result is that the
irregularly shaped particles have a higher effective shear resistance than spherical
particles. This effect is readily observed when considering the angle of repose of a
pile of material. Typically, piles of spherical particles have lower angles of repose than
piles of irregular particles.

Another effect of using irregular particles is that it is possible to have particle
contacts with lines of action not passing through the centroid of the particle. The
resulting moment acting on the particle causes it to rotate. The consequence is
that particles orient themselves in preferential configurations resulting in anisotropic
behavior of the collection of particles (see, for example, Baxter and Behringer, 1991).

An additional concern with using non-circular particles is that more complicated
numerical schemes must be used to determine when contacts have occurred between
particles and where the contact is located on the particle surface. A considerable
amount of research has been done to produce efficient contact detection algorithms

for this purpose (see, for example, Cundall, 1988).
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Since the experiments described in the previous chapter use glass spheres as the
granular material, the particles in the simulation are modeled as having circular cross-
section. Note that instead of simulating circular disks, the simulation models particles
as spheres constrained to move in two dimensions. The difference between using disks
or spheres appears only in the moment of inertia of the particles. The moment of
1

amr? and for a sphere it is 2mr? where m is the mass of

inertia for a circular disk is 5

the particle and r is the particle radius. The result is that spheres rotate more easily
than disks. The mass of the particles is also based on that for a sphere, m = pimr®.
As will become apparent when discussing the simulation parameters, the mass and
density of the particles can be scaled and will not effect the simulation results since
only inter-particle contact and body forces are considered. If forces due to other effects
are considered, such as electrostatic or interstitial fluid forces for example, then the
mass of the particles could potentially become importanf because these other forces
could significantly affect the momentum of the particle.

Although all of the particles have a circular cross-section, their diameters are
not uniform. Instead, the particles in the simulation have a range of diameters that
are randomly chosen between a specified minimum and maximum giving a uniform
distribution of diameters. By using a distribution of particle sizes, not only does the
simulation reflect the variety of particle sizes in the experiments, but the likelihood

of forming a hexagonal packing structure is reduced.

Forces

One particular advantage of soft particle simulations is that many types of forces
can be simulated to act on a particle: a feature not possible with hard particle
simulations. These forces are generally classified as either body or contact forces.
Body forces typically act on all particles in the flow. Examples include forces due
to gravitational and electromagnetic fields. Contact forces, however, act only when
particles are in contact (or are in contact with a boundary). Examples of these forces
include tractions due to contacting surfaces and cohesive forces. Interstitial fluid

forces are a third type of force that can be included in the soft particle simulations.
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The present simulation includes only a gravity body force and particle-particle and
particle-boundary contact forces. No electromagnetic, interstitial fluid, or cohesive
forces were included. This model is, in effect, simulating a dry, massive granular
material in a gravity field and a vacuum.
The gravitational body force acts on all particles in the system. The force acting

-

on particle 7 due to gravity, F;, acts at the particle’s centroid and is given by

—

Foi = mig (2.1)

where m; is the mass of particle ¢ and § is the gravitational acceleration vector.
Unlike the gravitational body force, the particle contact forces only occur during
collisions; a condition that, in simulations, occurs when particles penetrate or overlap.

For circular particles, overlap occurs when
A= (rj+r)—|Z; -] =20 (2:2)

where A;; is the amount of overlap between particles 7 and j, r a particle radius, and
Z the position vector for the particle center. The amount of overlap allowed in the
simulations is usually small, typically limited to 1% of the smallest particle radius.
The particle overlap is kept small since excluded volume effects become important
when the overlap is too large (Campbell, 1986). During a collision, particles are
considered rigid and do not deform. In real collisions, however, particle deformations
do occur and consist of an elastic and plastic regime (Goldsmith, 1960). For most
particle contacts the size of the deformation is much smaller than the particle size
and so the approximation that particles remain rigid is assumed. An important
consequence of the plastic deformation is that energy is lost during the collision.
This effect is explicitly accounted for in the simulation by including a dissipative
mechanism in the collision model.

The particle contact force is separated into a normal and tangential component.

The normal component acts along a line connecting the center of particle ¢ to the
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center of particle 7 with a normal unit vector, n;;, given by,

— Ed
L Tj — T4
Ny —

The tangential unit véctor, §;; is rotated 90 degrees from the normal component such
that f2;; X 3,5 = k where k is the direction of the third dimension. Figure 2.2 shows
these coordinates.

The normal contact between two particles is modeled as a linear spring in parallel
with a dashpot element (see figure 2.3a). This model was first used in simulations
by Cundall and Strack (1979) and remains the most common form of contact model.
The spring provides an elastic restoration force while the dashpot dissipates energy
during the contact. The result is a collision with an effective coefficient of restitution
less than one. The force acting on particle 7 due to particle j in the normal direction,
ﬁnij, is given by,

Frij = (—koAij + 0885, - AR (2.4)

where k, and v, are the normal spring constant and normal dashpot coefficient and
A;; is the amount of overlap between the particles (see equation 2.2). A more in-
depth discussion of the constants will be given in a following section. The relative
velocity of particle 7 with respect to particle ¢ at the point of contact, 553};’, is given
by

& = T — T — (05 + 0im1) 4 (2.5)

where 7 is the translational velocity of the particle center and f is the rotational
velocity of the particle.

The tangential contact model is slightly more complicated than the normal contact
model. The tangential model consists of a spring in series with a Coulombic friction
sliding element (refer to figure 2.3b). The spring allows the particle to respond elas-
tically while the sliding friction element allows particles to slide against each other.
The magnitude of the tangential force is limited by the sliding element. This simple

model captures important features exhibited in more complicated theories describing
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the micromechanics of collisions (see, for example, Maw et al., 1976). For example,
when a spherical particle collides with a wall, the region of contact may be sticking,
sliding, or may involve both simultaneously. Typically at low impact incidence angles
the region of contact sticks throughout most of the duration of the collision until
the very end when the contact transitions to sliding. For larger incidence angles the
contacts starts with sliding then transitions to sticking and then back to sliding. At
very large incidence angles the contact slides throughout the duration of impact. The
simple model proposed above behaves in much the same way.

The interaction between the spring and the frictional slider has some subtleties.
First, the tangential force due to the spring is examined. The tangential spring force

—_

acting on a particle 7 due to a particle j, F§ spring, is given by,
Fs,sprz'ng = (ksdszg)ém (26)

where k; is the tangential spring constant. The quantity ds;; is a measure of the

tangential displacement between the initial contact points and is given by,

ds;j(t) = /t(&?ij +85)dt! (2.7)

to

where ¢ denotes time and ¢ is the initial value of the spring extension (ds;;(0) = 0).

The contact model, however, is more complicated when the sliding friction element
is considered. When the magnitude of the spring force exceeds the magnitude of the
friction sliding force, !ﬁs, Friction| = ,u|ﬁm-j| < Iﬁs,spring}, the sliding friction element

becomes active and the force applied to the particle is

1

ﬁs,friction = #Iﬁnulw (28)

Iﬁs,spring|

This force is implemented by changing the tangential spring extension (or tangential

displacement), ds;;, to give a spring force equal to the sliding friction force,

8si;(t) = plFis| /s (2.9)
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Thus the tangential force, when sliding friction is active, has a magnitude of ,ulﬁmﬂ
and acts in the same direction as the spring force. Furthermore, the spring extension,
ds;j, is changed in order to give the magnitude of the sliding friction force. If the
spring element becomes active once again, |ksds;;| < u|ﬁm~]~], the initial value of the
tangential displacement, ds;;(to) will be given by equation 2.9.

Real particle contact dynamics are more complicated than what the simple mod-
els given above propose. A number of other, more detailed, contact models have
been suggested in order to model real contacts more accurately (see, for example,
Walton, 1992, Sadd et al., 1993, and Langston et al., 1994). It is not clear, however,
how accurate the contact models need to be to give results similar to real systems.
Certainly the level of detail included in all of the current contact models is still far
from what occurs in real systems. The important aspect of modeling the contacts is to
include the important physics relevant to the problem at hand. For example, if wave
propagation through a system of particles is to be studied, models which include the
effects of surface asperities may be required. For studying the present experiment, the
important physical behaviors were expected to be the vibration dynamics, the system
granularity (the discreteness of the particulate system), and the energy dissipation in

the particle contacts. These features are inherent in the simple models proposed.

Equations of Motion

After the forces on the particles have been determined, the acceleration of each particle
in the system is found using Newton’s second law. The new particle states are then
determined by integrating the particle accelerations in time to give new velocities and

positions. For a particle, 7, the equations of motion are given by

N
mzzi"l = ﬁgi + Z Fcij (210)

J=13%#1

. N
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where # and 0 are the translational and rotational position of particle ¢, N the number
of particles in the simulation, m; and I; the particle mass and rotational moment of
inertia, ﬁgi the gravitational force acting on particle 1, chi the contact force due to
particle j (Fyj; = 0 if the particles are not in contact), and 7 a vector directed from
the center of particle 7 to the location of the contact force.

The particle velocities and positions are determined by integrating in time,

—

1
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A center-difference (also known as a leap-frog) scheme, a method that is often
used in soft-particle simulations (Cundall and Strack, 1979 and Walton, 1992), was
used to numerically integrate the equations. The center-difference scheme is given by,
Tpypl =T, 1+ AtZn,_y

(2.13)
Tpp1 = Tpo1 + At:’cm_%

Predictor-corrector numerical integration routines are also common (Werner, 1987
and Gallas et al., 1992); however, this type of scheme is better suited for very smooth
differential equations instead of the discontinuous functions found in these simulations

(Press, 1992).

Simulation Parameters

The parameters used in the simulation must also be addressed. These parameters can
be classified into two categories according to the method in which they are chosen.
The first catégory is for parameters that are taken directly from the experiments while
the second is for parameters that are based on the force contact models.

The simulation parameters that are taken directly from the experiments include
the gravitational acceleration, g, vibration cyclic frequency, f = w/(27), dimension-
less vibration acceleration amplitude, ' = aw?/|g|, dimensionless container width,

W/d, dimensionless bed depth, ho/d, mean particle diameter, d, particle density, p,
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particle/particle coefficient of restitution, ¢,,, particle/wall coeflicient of restitution,
€pw, particle/particle sliding friction coefficient, p,,, and particle/wall sliding friction
coefficient, fipy .

The values for the vibration frequencies, accelerations, container widths, and bed
depths are similar to what were used in the experiments. Similarly, the mean particle
diameter and density are based on 1 mm diameter soda lime glass spheres (p = 2500

d

kg/m?), used in the experiments. The mass, m = ,0%71‘(5)3, and moment of inertia, I =

%m(%)z, of each particle are determined assuming they are spherical. Furthermore,

the particles in the simulated system have a uniform distribution of particle diameters
between a specified minimum and maximum value. These bounding diameters were
chosen to give a maximum diameter variation of at most, 10% of the mean value,
corresponding to 0.9 mm and 1.1 mm for the 1 mm particles. Measurements of the
particles in the experiments indicate that the actual distribution is Gaussian; however,
this discrepancy between the simulation and experiment was not expected to cause
significantly different results.

The values for coefficients of restitution, €,, and €,,,, and sliding friction coefficient,
Upp and fi,,,, were also based on experimental values; however, a range of values were
used. The baseline value for both ¢,, and €, is 0.8. This value is lower than the
experimental values for these parameters which are ¢,, = 0.97 for two colliding 3 mm
glass spheres and €,,, = 0.83 for a 3 mm glass sphere colliding with a thick aluminum
base (Foerster et al., 1994). The reason for a lower value of € is because less energy
is dissipated per particle in 2D systems than in 3D systems due to the decreased
number of particle contacts in 2D. The sliding friction parameter, x, also had a range
of values varying from frictionless particles, g = 0.0, to highly frictional particles,
g = 1.0. A typical experimental value for p between two 3 mm glass particles is 0.01
while y for a 3 mm glass sphere and an aluminum wall is 0.13 (Foerster et al., 1994).

The set of parameters that are based on the contact model described previously
include the normal particle/particle (particle/wall) spring constant, &, ,p (ks pw ), DOI-
mal particle/particle (particle/wall) dashpot coeflicient, v, pp (¥4 pw), tangential par-

ticle/particle (particle/wall) spring constant, ks pp, (kspw), and the simulation time
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step, At.

The normal spring constants, k, ,, and ky, p, are determined from the maximum
allowable overlap between particles (or a particle and a wall), A,,.,, based on an
assumed maximum relative impact velocity, &’mam,i]‘, particle mass, m, and coefficient
of restitution, e.

For the damped linear spring model, the maximum overlap of a two particle col-

lision is given by

. N m* arctan —a
Amam = (&Umaa:,ij ' nz]) 'k_(eXP —_———) (214)
n o
where @ = m/Ine and m* = m;m;/(m; + m;). If particle 7 collides with a wall,

m”* = m,, since m; — o<.

Rearranging equation 2.14,

} 2
kn (Zrmaw,ij - Mij) /T arctan —a
= ( (D7) (exp - ) (2.15)

The value of k,/m* is important since the collision duration time, 7, is given by

s

= (2.16)
(o)1 + 55)

If a very large k,/m* is used, the collision duration, 7, will be small and the time
step for the simulation, At¢, which is a fraction of 7, will also be small. Thus, a
smaller value of k,/m* is most desirable since the resulting simulation time step will
be larger and the simulation will proceed more rapidly. If the spring constant is too
small, however, particles can overlap significantly and affect the measured material
transport properties. Walton (cited by Campbell, 1986) suggests that the maximum
overlap should be less than 1% of the particle radius at high solid fractions.

The normal spring constant could also be chosen such that the collision duration
is similar in magnitude to the Young’s modulus of the particle material. Another

option is to choose the spring constant such that the propagation of disturbances in
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the system is similar to real sonic speeds. In both of these cases, the magnitude of
the spring constant is large and the resulting time step for the simulation is very
small, for example, on the order of 1 * 1077 seconds. As a result, these choices
for the spring constant are not commonly used except in simulations where sound
i)ropagation modeling is considered.

When a collision occurs between particles, energy is lost due to plastic defor-
mation. The inelasticity of the collision is typically quantified by a coefficient of
restitution, €, defined as the ratio of the relative velocity after the collision divided by
the relative velocity just prior to the collision. Analysis shows that the damped spring
model gives a constant coefficient of restitution. The effective normal coeflicient of

restitution for a two particle collision is given by

€ = exp il 1/2 (217)
(4(kn/m*) _ 1)

(vn/m*)?

4m*k
2

Note that the spring/dashpot system is assumed underdamped (

> 1) since if
the system was critically damped or overdamped, € would be zero and the collision
would be completely inelastic.

In real collisions the coefficient of restitution decreases with increasing collision
velocity (Goldsmith, 1960 and Sondergaard et al., 1990). If the relative impact veloc-
ities in the system of particles have similar magnitudes, the assumption of a constant
coefficient of restitution should be valid.

Rearranging equation 2.17 gives an expression for the dashpot coefficient, v,,

based on the spring constant, k,,, and coefficient of restitution, e

=\ (2.18)

Thus the dashpot coefficient is determined by the choice of spring constant and coef-

ficient of restitution.
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For the tangential spring constant, Cundall and Strack (1979) recommend that

??A

s

<2< ‘ (2.19)

Wit
S

based on Mindlin and Deresiewicz’s (1961) analytical models of tangential contacts.
Cundall and Strack (1979) found that for small values of u the ratio ks/k, did not
change the behavior of the simulated system because the tangential behavior was
governed almost immediately by sliding friction. However as p is increased, the
damped spring element is active for a longer duration and so the ratio ks/k, becomes
more important. All of the present simulations use k;/k, = 1.

The simulation time step, At, was chosen such that the highest frequency in the
system (corresponding to the smallest period), could be integrated accurately. The
highest frequency in a system consisting of identical spheres constrained to movein 2D
is for a particle in contact with six other particles. Assuming that the surrounding

particles are fixed in space, the translational period of oscillation, 7y.qss, for the

[ m .
Tirans = 2T 3%, T 3k, (2.20)

The rotational period for the particle, 7,4, is

I
rot — Y 2.21
Trot = 274 | Sk (2.21)

When ki/k, =1 and [ = %mrQ, Trot = \/thmns. Thus, the smallest period in the

particles is,

system is given by 7,,;. The simulation time step is chosen to be approximately

one-tenth this period in order to ensure integration stability and accuracy.

Boundary Conditions

In addition to modeling how particles interact with one another, the simulation must
also address what types of boundaries are to be used. In the present simulation, two
types of boundary conditions are implemented: wall and periodic boundaries. The

wall boundaries consist of smooth, but frictional, walls (particles are not “glued” to
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the walls) that have prescribed positions and velocities. This simulates the use of
massive smooth walls. The boundaries move, in-phase, in the vertical direction with
a sinusoidal displacement and velocity.
Lateral periodic boundaries are also used in the present simulations. These bound-
aries are implemented by reflecting the workspace control volume to either side of the
workspace (refer to Campbell, 1982). This approach eliminates any effects which may

be due to the lateral wall boundaries.

Initial Conditions

Soft particle simulations are deterministic. If the same parameters and the same
initial conditions are used, the simulation will give the same results each time it is
run. In order to ensure that the observations made in one particular simulation are
not unique to the initial conditions, several Tuns were made with different initial
conditions.

Particles are placed in the workspace in prescribed positions but with random
initial velocities which are chosen to be between a specified minimum and maximum
velocity. In all of the simulations, the behavior of the particle bed after several
seconds was the same despite the initial conditions of the particles. In order to
ensure the initial conditions were not influencing any of the measurements made in
the simulations, measurements were made only after one second of simulation time

had elapsed (on the order of 10° time steps).

2.2.2 Implementation

The simulation code is written in C and is divided into several logical subroutines.
Figure 2.4 shows the flow of the simulation. First the particle and environment data is
read from an input file and then the particle initial conditions are determined. After
these preliminary routines are called, the main loop of the simulation is begun. First
the forces acting on each particle in the system are determined based on the contact

models described in the previous section. After this force subroutine is finished,
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the particle equations of state are integrated using a center-difference method. Next,
appropriate measurements are made and particle states are recorded to an output file.
This loop repeats until an ending condition, usually based on a maximum allowable
time, is achieved.

The coding for the simulation is straightforward and is not discussed in detail here
(a copy of the simulation code is given in appendix III). One computational technique
that is used to increase the speed of the simulation, however, is examined. Since much
of the computational cost in soft particle simulations comes from checking whether
particles have collided, an efficient method for determining contacts is imperative.
Checking to see whether each particle has collided with every other particle is a
time-consuming process. In order to reduce the number of collision checks for each
particle, a neighboring-cell technique is implemented in the present simulation. This
technique works as follows. The workspace is divided into an array of square cells
with the length of a side being just greater than the largest particle diameter in the
system. Each cell is a (' pointer that points to a particle with its center located in that
particular cell. All other particles in the cell are linked together using a double-linked
list of pointers. This use of double-linked lists allows particles to be easily included
and removed from cells as particles pass through them. The advantage of monitoring
the cells in which the particles are located is that a given particle only needs to check
for collisions with particles in the current cell and neighboring cells. Checks do not
need to be made with particles located in cells far from the current cell. Although
there is an increase in the computational cost of the cell book-keeping, the overall
speed of the simulation is increased, especially when the simulation involves many
partides. Other techniques for reducing the number of contact checks exist, however;
this method is straightforward, easily implemented, and robust.

All of the simulations were run on one of the following machines: a Sun Sparc-
station 20 with two 50 MHz processors, a Sun Sparcstation 5 with a single 110 MHz
processor, a PC with a Pentium 90 MHz processor (using the Linux operating system),
and an IBM RISC 6000. Table 2.2 shows the CPU time required for a benchmark

simulation to run on each of these machines. The benchmark simulation parameters



are given in table 2.3.
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Tables and Figures

Experiment | Bead Mass | Lid Mass
No. [gm.] [gm.]
1 250 3.44
2 125 3.44
3 125 7.17
4 375 3.41
5 125 17.06
6 625 3.44
7 45 3.51
8 125 28.14

Table 2.1: Bead and lid masses for the various shallow bed expansion experiments.

Machine CPU time [hrs|
Sparc 20 (50 MHz) 8.1
Sparc 5 (100 MHz) 6.6

IBM RISC 6000 8.9
Pentium (90 MHz) 8.0

Table 2.2: The CPU time for a benchmark simulation to run on various computer
systems. The benchmark simulation uses the parameters given in table 2.3,
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N 1000
I 2.0
f 20.0 Hz
number of cycles 60 cycles
W/d 100
€pp 0.80
krop 5.289 * 10> N/m
Vpp 8.337 % 107 N/(m/s)
kspp 5.289 * 10* N/m
Hpp 0.1
lateral boundaries walls

K pw 1.058 + 10" N/m
Vpw 1.667 x 1072 N/(m/s)
ks pw 1.058 * 10° N/m
Ppw 0.1

d 0.9-1.1 mm

P 2500 kg/m?

At 2.552 x 107° sec

Table 2.3: The simulation parameters used in the benchmark simulation.




34

Box of Granular Material

Strobe Lamp
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Accelerometer

Filter, Oscilloscope, and
: ' Frequency Counter

Shaker

Shaker Controller

Figure 2.1: The experimental apparatus used in the deep bed experiments. Note
that the precise experimental set-up differs for the shallow bed experiments but the
concept remains the same.
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particle i

Figure 2.2: The coordinate system used in the simulations.
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(b)

Figure 2.3: The simulation contact model in the (a) normal direction and (b) the
tangential direction.
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Initialize simulation environment and particle states
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Integrate equations of motion
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Figure 2.4: The simulation flow chart.
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Chapter 3 Phase Map

3.1 Experiments

Two distinct regimes of bed behavior are observed in the experiments depending upon
the dimensionless bed depth, ho/d. For ho/d < 6, particles bounce around randomly
in the container and little coherent motion is observed. This fluidized regime is the
shallow bed state. The deep bed state occurs when hg/d > 6 and is characterized by
coherent particle motion where the bed of material moves as a single, plastic mass.
In the shallow bed regime, three states, similar to those described by Thomas et
al. (1989), were observed depending on the dimensionless acceleration amplitude of
the vibrations, I' = aw?/g, where « is the vibration amplitude, w the vibration radian
frequency (w = 27 f), and g the gravitational acceleration, and the dimensionless
bed depth, ho/d. These states are called the “Newtonian-I,” “Newtonian-II,” and
“coherent-expanded” regimes and are differentiated by the degree of coherency in the
bed motion. The “Newtonian-1” state is characterized by energetic, random particle
motions such that the vertical density of particles changes little over an oscillation
cycle. Thomas et al. reported that this state occurs for small bed depths and large
accelerations. For slightly deeper beds or at lower accelerations, a “Newtonian-11”
state appears. This regime also has considerable random particle but during part
of the oscillation cycle particles form a dense band near the base. At even larger
ho/d or lower I', a transition to a “coherent-expanded” state occurs. In this state the
bed of particles oscillate en masse but the mass expands and contracts considerably
throughout the vibration cycle. The transition to the deep bed regime (Thomas et
al. refer to this as the “coherent-condensed” state), occurs at even deeper bed depths
or lower accelerations. The transitions between the two Newtonian and the coherent-
expanded states are gradual but the transition from the coherent-expanded state to

the deep bed state is sudden and repeatable.
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Thomas et al. (1989) reported that the transition from the coherent-expanded
state to the coherent-condensed, or deep bed, state was sudden and repeatable for
large‘ particles. Bachmann (1940) reported this transition occurring at approximately
ho/d = 6 for glass spheres. The transition in the present experiments with all three
types of particles was found to also occur when ho/d =~ 6 for ' ~ 2.0. Prior to
the transition, the particle bed, expands and contracts considerably throughout an
oscillation cycle. After the transition, however, the change in the bed density over an
oscillation cycle is much smaller.

The response of deep particle beds is much different than what was observed for
shallow beds. In the deep bed regime, phenomena such as convection cells, heaps,
surface waves, and kinks are observed depending on the dimensionless acceleration
amplitude of the oscillations, ', and the dimensionless bed depth, ho/d. Although
each of these behaviors is discussed in detail in the following chapters, a brief descrip-
tion of each follows as an introduction.

For acceleration amplitude levels greater than lg, convection cells appear in the
bed. Particles move down in a boundary layer along the vertical walls of the container,
re-circulate within the bulk of the granular bed to the free surface, and then avalanche
toward the walls to repeat the cycle. Figure 3.1 shows an illustration of the convection
cell motion for a vertical slice through a granular bed.

The heaping behavior is characterized by a mound of material that forms in the
container as shown in figure 3.2. For sufficiently large particles (typically d > 1 mm)
the mound is rounded in appearance with the lowest points occurring at the wall
boundaries and the highest point located in the center of the bed. When smaller
particles are used (for example, d = 0.1 mm), a sharp peak is reported to form in
place of the rounded mound (refer to Pak et al., 1995).

Another phenomena that appears in vibrated deep beds are surface waves. Two
regimes of standing waves appear for different values of the acceleration amplitude,
I', and they differ in both formation frequency and in shape. In the first regime, the
waves, referred to as f/2 waves, form with a frequency that is one-half the forcing fre-

quency. The waves in this regime typically have smooth, rounded peaks. The second
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regime of waves, known as f/4 waves, appears with a frequency that is one-quarter
the forcing frequency. These waves have a sharper, cusp-shaped peaks. F igures 3.3
and 3.4 are photographs of the f/2 and f/4 waves, respectively.

For acceleration amplitudes greater than I' ~ 3.6, “kinks” are observed in the
particle bed. A kink is defined as a region of the particle bed between two sections
that oscillate out-of-phase with each other. The resulting bed motion appears as if
arches form and collapse in time. Figure 3.5 shows a photograph of a granular bed
with three kinks.

Bracketing each kink are a pair of counter-rotating convection cells. The orienta-
tion of the convection cells is such that particles move down at the kink and up to
the free surface just to either side of it. An illustration of the particle streamlines for
a bed with three kinks is shown in figure 3.6.

As mentioned previously, the appearance of the various phenomena depends on
two parameters, the acceleration amplitude of the oscillations, I, and the depth of
the particle bed, ho/d. The frequency of the forcing oscillations did not significantly

affect the onset of the phenomena for the range of frequencies examined here (between
15 and 40 Hz).

Using the 1.3 mm particles and operating at 20 Hz, a phase diagram was con-
structed showing when the various behaviors appear as a function of I' and ho/d
(refer to figure 3.7). When using the 3 mm particles, the transitions between phe-
nomena occurred at lower values of I'. The general trends, however, remained the
same.

The mapping procedure was performed in the following manner. The container
was filled with granular material to a prescribed hg/d and the frequency of the os-
cillations was set to a fixed value (here, f=20 Hz). The vibration amplitude was
increased in increments corresponding to I' = 0.2 from zero to an amplitude such
that I' &~ 7 and then back to zero. Little hysteresis is observed in the transitions from
one phenomena to the other. At each value of T, the bed was observed both in ordi-

nary lighting conditions and with the strobe lamp in order to observe whether waves

appeared. The output signal from the accelerometer was also examined to determine
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the flight time of the bed. This procedure was repeated for several values of hy/d.

Below 1g, there is no sustained bulk movement of particles within the bed. Par-
ticles are observed to occasionally fall into neighboring voids resulting in an increase
in the bulk density of the bed (see, for example, Ben-Naim et al., 1996).

When the acceleration level is greater than approximately 1.2¢g (for all ho/d),
particles move down along the vertical walls of the container in the side wall convection
cell pattern described previously. For I' close to 1.2, the particle velocity is small and
1t is necessary to observe the evolution of the bed over a long period in order to
discern the convective motion. This convection behavior appears for all ' > 1.2 with
the particle velocities increasing as I' increases. The heaping or mounding behavior
also appears when I' > 1.2, Unlike the convection cells, however, the mounds observed
in these experiments no longer appear when I' > 2.0.

At T' &~ 2.0 (for all ho/d) the first set of standing surface waves, the f/2 waves,
appears. The onset of these waves was difficult to determine precisely since the waves
have small amplitudes at low acceleration amplitudes. The wave amplitude increases
with increasing I', however, making the observation of these waves easier at larger
acceleration levels. The side wall convection behavior persists along the container
walls and does not interfere significantly with the wave formation.

The f/2 waves continue to form as I' increases until a period doubling bifurcation
in the flight time of the bed occurs. For I' < T, where Il is the value of the
acceleration amplitude when the bifurcation occurs, the particle bed collides with
the container base after a flight time, At, that is less than the period of the forcing
oscillations, 7. At a fixed I', this flight time does not vary from cycle to cycle and so
the bulk motion of the bed repeats every oscillation cycle. For T > I", however, two
flight times are observed, At; and Aty, where At; > T', Aty < T and Aty + Aty < 27,
As a result, the bed motion repeats every two oscillation cycles, hence the term period
doubling. As I' increases, the first flight time, At;, increases while the second flight
time, Af, decreases until a single flight time that is greater than the forcing oscillation
remains. This second transition occurs at I'j. The period doubling and flight time

behavior was observed by examining the accelerometer output signal as described in
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section 2.1.

The critical acceleration amplitude, I'j, decreases with increasing bed depth. For
example, when ho/d = 10, I = 4.2, but when ho/d = 40, I'} is 3.0. For I' > I},
waves would occasionally appear on the free surface of the bed, however, they formed
aperiodically and were often “smeared” due to fluidized particle motion on the free
surface.

For I' > T'| to at least I' = 7.0, kinks and their associated convection cells are
observed. Although a kink may not actually form after the bifurcation, it has the
potential to appear. The period doubling bifurcation is a necessary condition for the
formation of kinks, however, it is not a sufficient one. This point is discussed later in
chapter 7. When kinks did form, the side wall convection pattern observed for I' > 1
disappeared in the region neighboring the kink. The convection cells associated with
the kink were stronger than the side wall convection pattern and were the dominant
particle motion.

The second set of standing surface waves, the f/4 waves, appear for I greater than
approximately I'7, the I' at which the flight time of the bed returns to a single flight
time after the bifurcation, and persist to at least I' = 7.0. The value of I} decreases
as ho/d increases; similar to what was observed for I}, The difference between the
two, I'] — I}, remains nearly constant, however.

The onset of f/4 waves is much easier to determine than for the f/2 waves since
the f/4 waves have much larger peaks. Additionally, kinks and f/4 were observed to
occur simultaneously in the same particle bed. The f/4 waves, though, only appeared

in regions of the particle bed not strongly influenced by the kinks.

3.2 Simulations

A similar deep bed phase map was constructed using the simulations. In order to
determine when the behaviors appeared, a fundamental property of each phenomenon

was measured in the simulation. A visual observation was also made as an added

check.
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The downward particle movement at the vertical walls of the container is used as
an indicator for side wall convection. The procedure for determining this quantity
is as follows. First, the simulation workspace (the container) is divided into a grid
of squares with a side length of just greater than a particle diameter. The mass-
averaged particle displacement per cycle for each square, or cell, over an oscillation

cycle is determined by

1 n=N(i,j)
Af(i:j)ac =375 Z mn('i:n,c - i:n,c-l) (31)

() B——
where (7, 7) refers to a particular cell, ¢ is the oscillation cycle, AZ(; ;). the mass-
averaged particle displacement for cell (4, j) from cycle ¢ — 1 to cycle ¢ (at the same
phase angle), M(; ;) the total mass of particles in cell (3, 5), N ;) the number of parti-
cles with centers located in cell (7, ), m, the mass of particle n, and # the particle’s
position vector. In order to determine the mean motion over several oscillation cycles,

the displacements are averaged over many cycles,

AZ(ij) = 77 D AT (3.2)

where (' is the total number of oscillation cycles. This displacement quantity can be
thought of as a long term velocity.
For the side wall convection behavior, only the cells next to the walls are consid-

ered. The average vertical displacement over one cycle at the walls, Ay,, is found

by

| ki

Ayw = = ) (AZn-7) (3.3)

w

where N, is the number of cells bordéring the walls, and J is the unit vector in the
vertical direction. When Ay, is less than zero there is a net flow of particles down
along the walls indicating that side wall convection is present.

To determine whether the f/2 or f/4 waves occur, the frequency spectra of the

average vertical and horizontal particle velocities are examined for various regions of
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the bed. The average velocities are determined in a manner similar to the method
described above. The workspace is divided into bins extending in the vertical direction

with a horizontal width of approximately 5d. The mass averaged particle velocity for

a bin, fb(t), where b refers to a particular bin and ¢ is the time, is found by

- 1 =N .
Zy(t) = i > mada(t) (3.4)

where M, is the total mass of particles in bin b, N, the number of particles with their
centers in bin b, m,, the mass of particle n, and :f'n,b(t) the velocity vector for particle
n in bin b at time . The average velocity is sampled twenty times per oscillation
cycle for many cycles and the Fourier spectrum of the velocities is calculated for both
velocity components. When f/2 waves appear, a large magnitude peak appears in
the frequency spectra at one-half the oscillation frequency. Similarly, a peak appears
at one-quarter the forcing frequency for the f/4 waves. These subharmonic peaks are
the result of the coherent particle “swaying” motion caused by the waves.

The flight time of the bed is determined by examining the normal force acting on
the floor as a function of time. When the particle bed is in flight, the force on the
floor is zero since there is no contact with the base. At impact, however, the force
increases suddenly. The time between these impacts is the flight time of the bed.
This information is used to determine when period doubling occurs.

The baseline simulations used for determining the onset of the various phenomena
have the parameters listed in table 3.1. The acceleration amplitude of the oscillations,
I', was varied between zero and 7.0 in steps of 0.2 at an oscillation frequency of
J = 20 Hz for a dimensionless bed depth of hg/d = 20. The results of the simulations
are shown in figure 3.8.

All of the phenomena appear in the simulations for values of [' similar to those
found experimentally. Side wall convection appears for all I' greater than one and the
mounding behavior is observed for 1.0 < ' < 1.6, a range slightly lower than that
found in the experiments. When 1.6 < I' < 3.6, f/2 waves appear. AtI' =T, ~ 3.6 a
period doubling bifurction is discernible. For I' > I'}, kinks appear in the bed and at
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I' = I'x; = 4.8 the bed returns to a single flight time. Note that when I} < I' < I'},
poorly formed f/2 and f/4 waves appear intermittently on the surface of the bed.

The f/4 waves appear in a consistent manner for I' > ['t = 4.8 up to at least I' = 7.0.

3.3 Discussion

In the shallow bed regime, three different bed states are distinguishable. Thomas
et al. (1989) referred to these as the Newtonian-I, IT and the coherent-expanded
states. In the present experiments, the appearance of the various states depends
primarily upon the dimensionless bed depth, hg/d, and the acceleration amplitude
of the oscillations for 0.0 < I' < 2.5. As ho/d increases, the degree of coherency
in the particle bed motion also increases, presumably due to the increased number
of particle interactions. The transitions between the various shallow bed states is
gradual. The transition to deep bed behavior, however, is sudden and repeatable and
occurs at ho/d ~ 6 in the present experiments. Thomas et al. and Bachmann (1940)
also report a similar result. This sudden transition is examined in further detail in
chapter 4.

The behavior of the particle bed in the deep bed regime is significantly different
than that observed for shallow beds. Phenomena such as side wall convection cells,
mounding, surface waves, kinks, and kink convection cells are observed depending
upon the acceleration amplitude of the oscillations, I', and the dimensionless bed
depth, ho/d.

The experiments indicate that side wall convection and mounding occur for I
Just greater than 1.2. A number of other researchers have found similar values (see,
for example, Evesque and Rajchenbach, 1989, Clément et al., 1992, and Fauve et
al., 1989). In the simulations, these béhaviors appear for I' > 1.0, a value slightly less
than that found in the experiments. This discrepancy may be due to the observational
difficulties associated with determining when these phenomena first occur. Since the
motion of the particles is very slow at T' near one, it is easy to mistake that no

movement is occurring unless the bed is observed over a long period of time. The
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simulations are able to detect these small displacements although they may be difficult
to determine visually.

Taguchi (1992) also studied the onset of side wall convection in simulations. He
measured the average particle displacement per cycle in the container using a method
similar to the one used here to determine when convection appears. The primary
difference between the two methods is that Taguchi averages the particle motion
over the entire container while the method used here examines only the particle
movement along the walls. Taguchi’s results indicate that convection first occurs
when 1.0 < I < 1.2, similar to the present results.

The mounding behavior also appears when I' > 1.2 in the experiments and for
I' > 1.0 in the simulations. As is discussed in chapter 5, mounding is a result of the
side wall convection behavior. Note that although side wall convection persists for
oscillation acceleration amplitudes greater than one, mounding is not observed for
greater than approximately 2.0. Two factors may contribute to this effect. First, as '
increases, the convection speed and the magnitude of the bed/base collision impulse
increase. Both act to destabilize the slope of the mound on the free surface. The
formation of surface waves for I' > 2.0 may also contribute to the disappearance of
the mound.

The f/2 waves first appear for I' ~ 2.0 and persists to a value of I}, the accel-
eration amplitude at which period doubling occurs. The latter value of I' decreases
with increasing bed depth, ho/d. Melo et al. (1995) and Metcalf et al. (1996) also
examined these f/2 waves in experiments and, in particular, the transitions between
the various wave patterns observed on the free surface of particle bed in cylindrical
containers. Melo el al.’s experiments used beds of 0.15-0.18 mm bronze spheres with
7 < ho/d < 12. They found that f/2 waves appeared for 2.4 < I' < 4.4 and that
this range did not vary with oscillation frequency. Additionally, they report the ap-
pearance of kinks, an indication that the period doubling bifurcation has occurred,
for I' > 4.4. These results are consistent with the observations made in the present
experiments.

Metcalf e al’s experiments used beds of 0.5 mm diameter glass spheres in an



47

evacuated container with ho/d ranging from four to eight. They found that f/2
waves first appeared for I' between 3.0 and 4.0 and persisted to a value of I' between
4.5 and 6.0. The range of ' over which the waves appeared decreased with increasing
frequency and shifted to higher values of T for increasing bed depth. For the thinnest
bed, ho/d = 4, the range of I' at which the surface waves appear is a strong function
of the frequency. In fact, for frequencies greater than approximately 25 Hz, the waves
cease to appear.

This frequency dependence at hyo/d = 4 may be due to the fact that the bed is
near the boundary between the shallow bed and deep bed regimes. Metcalf et al.
also report that the range of I' is sensitive to moisture and other impurities on the
particle surfaces. These effects become less significant as particle size increases.

The f/2 waves also appear in simulations for values of I' similar to those observed
in the experiments. The onset of the waves occurs for lower T' in the simulations but
the I' at which the waves disappear, corresponding to the I' at which period doubling
occurs, is consistent with experimental observations.

The critical acceleration amplitude at which period doubling occurs, I}, decreases
as ho/d increases in the experiments. For example, I} = 4.2 when ho/d =10 but at
ho/d = 40, I'; = 3.0. This observation is contrary to what is reported by Douady et
al. (1989). They found that I'| increases with increasing hq/d and attribute this
behavior to the effects of the interstitial fluid. The reason for this discrepancy is not
clear. Indeed, drag on the particle bed will cause the critical value of I' to increase.
Since Douady et al. used smaller particles (d = 0.63 — 0.80 mm) than those used in
the present experiments (d = 1 mm), a greater sensitivity to interstitial fluid effects
1s expected. One effect that may also be an important factor is the dilation, or
expansion, of the bed. A study of this effect was not made however.

Kinks and the convection cells associated with kinks appear for I' > I'] in both
the experiments and simulations. The period doubling of the flight time is critical for
the formation of kinks and is discussed in detail in chapter 7. Note that a degenerate
case consisting of zero kinks exists where the entire particle bed oscillates in phase.

The last behavior observed in the experiments and simulations are f/4 waves.



48
The T' at which these waves first appear in the experiments decreases with increasing
bed depth. For example, at ho/d = 10, the onset value of I' is 6.0. When ho/d = 40,
however, the critical I is 5.0. These waves persist to the maximum I' investigated
here, I' = 7.0. Melo et al. (1995) also examined the onset of these waves and found
that the f/4 waves appeared for I' > 5.8 to at least 8.0 (note that hy/d ~ 7 in their
experiments).

Several important conclusions can be made regarding the phase map of the phe-
nomena that appear in a vertically vibrating bed of granular material. First, the
key parameters that determine the appearance of the behaviors are the dimensionless
bed depth, ho/d, and the dimensionless acceleration amplitude of the oscillations,
I' = aw?/g. For small ho/d, (less than six), fluidized bed behavior is observed. When
ho/d is sufficiently large, the particles in the bed move coherently and the bed moves
as a single, plastic mass. In this regime, convection cells, surface waves, and kinks
appear depending on both I' and hg/d. Another important point regards the use of
simulations as a tool to study these behaviors. Not only did the simulations repro-
duce all of the experimentally observed phenomena, but the onset values of I' were

similar to those found experimentally.
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Tables and Figures

f 20 Hz
w/d 100
ho/d 20
N 2000
€pp 0.80
En pp 5.289 % 10> N/m
Vpp 8.337 %« 107% N/(m/s)
Es pp 5.289 % 10° N/m
Hpp 0.1
lateral boundaries walls
Fon o 1.058  10° N/m
Vpw 1.667 x 1072 N/(m/s)
Es pu 1.058 * 10* N/m
Ppw 0.1
d 0.9-1.1 mm
p 2500 kg/m?
| At 13504 1076 sec

Table 3.1: The simulation parameters used to examine the phase space for deep beds.
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Figure 3.1: An illustration showing the particle trajectories in a bed exhibiting side
wall convection cells. The drawing is for a vertical slice through the interior of the

bed.
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Figure 3.2: A photograph of a rounded mound using 1.3 mm glass spheres. The other
experimental parameters are I' = 1.6, f = 20 Hz, ho/d = 18, W/d = 104.
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Figure 3.3: A photograph of f/2 standing surface waves using 1.3 mm glass spheres.
The other experimental parameters are T' = 3.3, f = 20 Hz, ho/d = 18, W/d = 104.
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Figure 3.4: A photograph of f/4 standing surface waves using 1.3 mm glass spheres.
The other experimental parameters are ' = 6.2, f = 20 Hz, ho/d = 18, W/d = 104.
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Figure 3.5: A photograph of a bed with three kinks using 1.3 mm glass spheres. The
other experimental parameters are I' = 8.5, f = 30 Hz, ho/d = 18, W/d = 104.
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Figure 3.6: An illustration of the long duration particle streamlines for a bed with
three kinks. The arrows indicate the location of the kinks.
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Figure 3.7: The phase space diagram of when the deep bed behaviors appear as a
function of the oscillation acceleration amplitude, I' = aw?/g, and the dimensionless
bed depth, ho/d. The experiments were performed with 1.3 mm diameter glass spheres
in the W/d = 104 container at 20 Hz.
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Figure 3.8: The phase space diagram of when the deep bed behaviors appear as a
function of the oscillation acceleration amplitude, I' = aw?/g for ho/d = 20 and
f = 20 Hz. The remainder of the simulation parameters are given in table 3.1.
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Chapter 4 Shallow Beds

4.1 Experiments

The three shallow bed states consisting of the Newtonian-I, Newtonian-1I, and coherent-
expanded states were observed in the experiments but were not examined in detail.
Instead, the transition to the deep bed regime from the coherent-expanded state was
investigated. During the course of these experiments it was observed that the bed
appeared to expand considerably beyond a critical value of I' for values of T’ be-
tween one and two. This expansion is the transition from the deep bed state to the
coherent-expanded state. In order to quantify the expansion, a lightweight paper lid
was placed on the top surface of the bed as described in section 2.1.1. The difference
of the spacing between the base and lid, %, and the spacing at rest, Ag, is a measure
of the bed expansion, (h — ho).

For reasons which will become clear, (h — ho) is presented both as a function of the
non-dimensional acceleration amplitude, I', and as a function of the vibration velocity
amplitude, aw. The typical behavior of the bed is best illustrated by the results from
experiment 7 which are presented in figure 4.1. Recall that table 2.1 lists the mass of
particles and lid mass for the shallow bed experiments.

The bed expands at an acceleration amplitude of roughly 1¢ and this expansion
gradually increases until a critical value of the acceleration amplitude, I',, is reached.
This‘ critical value is independent of frequency but varies with both the mass of beads
and the mass of the lid. At the critical acceleration amplitude the lid rises quite
abruptly and then settles down at a substantially larger spacing, k. As illustrated in
figure 4.1, further increase in the acceleration results in further bed expansion but this
is more grddual than the expansion encountered during transition. The top graph in
figure 4.1 illustrates the fact that the critical conditions appear to occur at a given

dimensionless acceleration amplitude regardless of the frequency. On the other hand,
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the bottom graph in figure 4.1 illustrates the fact that the supercritical conditions
correlate with the velocity amplitude, aw, rather than the acceleration amplitude.

Using the strobe, it was observed that for I' < T'., the beads move as a mass
which collides once per cycle with the base and the lid. The collision with the base
seemed quite inelastic and it appeared that the mass only left the base again when the
acceleration of the base exceeded some critical value. These motions are characteristic
of the deep bed regime. For I' > T'., however, the motions of the particles are fairly
uncoordinated as in the coherent-expanded state.

Experiment 7 was chosen to illustrate the transition between the two states be-
cause it does so most clearly since it used the smallest mass of beads. As the mass of
beads is increased (for the same lid weight) the critical transition becomes less dis-
tinct in the sense that the expansion at the critical acceleration becomes smaller and
less abrupt. The same trend is manifest as the weight of the lid is increased. Both
effects are illustrated in figure 4.2 Whiéh presents data from experiments 4 and 5. The
critical acceleration, I';, also increases with both the mass of the beads and the mass
of the lid. These trends are shown in figure 4.3.

In order to help understand the fundamental dynamics behind this expansion,
the data is presented in non-dimensional form. The dimensionless expansion is given
by (h — ho)w?/g and is plotted as a function of the non-dimensional acceleration
amplitude, ' = aw?/g. Examples from experiments 2 and 3 are shown in figure 4.4
in which the subcritical and supercritical data clearly form two distinct groups of
points. Indeed the two groups of points both appear to lie close to quadratic curves
implying that each group of points corresponds to a roughly constant value of the

inverse Froude number based on the bed expansion and vibration velocity amplitude,

lg(h — ho)}*"2

aw

Frt = (4.1)
To examine this further, the inverse Froude number is plotted versus the accelera-
tion, I', in figure 4.5 for the typical data of experiments 2 and 3. It seems particularly

noteworthy that the subcritical data corresponds roughly to an inverse Froude num-
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ber, F'r=!, of between 0.5 and 1.0 and that the supercritical values corresponds quite
closely to Fr~' = 1.5 (recall that the values of (h — hg) and a for some of the sub-
critical data are quite small and this may account for the larger scatter in that group
of points). The specific values for F'r~! decrease significantly as the mass of beads is
increased and as the mass of the lid is increased. The subcritical data shows similar

trends though they are less distinct due to greater scatter in the data.

4.2 Theory

This expansion behavior can be explained using a simple model consisting of a par-
tially inelastic ball bouncing on a flat plate performing vertical, sinusoidal oscillations.
Modeling the bed of particles as a single, partially inelastic mass could be considered
appropriate since the agglomeration of particles moves coherently and collisions be-
tween particles (and between particles and the base) are inelastic. To first order,
the resulting motion of the particle assembly would be similar to that of the single,
inelastic particle.

The dynamics of the ball bouncing problem have been previously examined and
are a classic example of the occurrence of bifurcations (see, for example, Holmes, 1982,
Mehta and Luck, 1990, and Luck and Mehta, 1993). These bifurcations seem to be

the probable explanation for the experimentally observed sudden expansion.

The model is as follows. The base moves with a sinusoidal trajectory given by
b(t) = asin(wt) (4.2)

where b is the vertical position of the base, a the vibration amplitude, w the radian
vibration frequency, and t the time. The ball has a ballistic trajectory when not in

contact with the base,

p(t) = —1/29(t — taoy)* + P (1 — tno1) + Paca (4.3)

where p is the vertical position of the particle, g the acceleration due to gravity, ¢,-1
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the time of the last contact with the base, pf_, the particle velocity immediately
following the last contact with the base at time ¢,,_y, and p,_y the particle position
at ;. |

The interaction between the base and the particle is characterized by a coefficient
of restitution, e. The coefficient of restitution is defined as the ratio of the relative
velocity between the particle and base after the collision to the relative velocity prior
to the collision, _

€= —M (4.4)
p(t;) —b(ty)

Note that values for € range from 0 to 1; a completely inelastic impact has a value of
¢ = 0 while a totally elastic one has € = 1.

These equations can be written in dimensionless form using the following param-
eters: B = bw?/g, P = pw?/g, T = aw?/qg, B= 6&)/9, P =pw/g, and ¢ = wt. After

non-dimensionalizing and re-arranging, the discrete mapping becomes,
[ (fn-a, Pn—l) = (Pn, Pn) (4.5)

—%(an — 1)’ + P (bn — bn1) + Tsing,_y — I'sing, = 0 (4.6)
PF = —ePr | 4 e(dp— pn1) + (1 + ) cos d, (4.7)

The fixed point trajectories for this mapping are periodic,

Op = ¢p_1 + 2m (4.8)

P A P A (4.9)
where m is a positive integer. The solution (¢*, P*) is given by

mm(1 — ¢)

['cos g™ = 0+

(4.10)

P*=mn (4.11)
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where (¢*, P*) are the fixed points. Note that only those fixed points that are sta-
ble will be observed. The stability of the solutions is determined by examining the
eigenvalues of the linearized Jacobian of equations (4.6) and (4.7) and is discussed
in detail in Luck and Mehta (1996). Holmes (1982) does a similar analysis for an
approximation to the map.

The resulting analysis gives two critical values for T,

_mm(l —¢)
I, = ———(1 9 (4.12)
and
P mm(l—e€)., 201+ €%) \9y1/2 -

These I' are bifurcation values at the first of which a pair of fixed points appears in
a saddle-node bifurcation and at the second of which a change of stability occurs. At
the saddle-node bifurcation, two fixed point trajectories appear, only one of which is
stable. At the stability bifurcation, the stable fixed point solution becomes unstable
and a period two motion appears instead (refer to Holmes, 1982). Particle and base
trajectory examples are shown in figure 4.6 for three values of I'. The {rajectories
were calculated using equations (4.6) and (4.7) for a coefficient of restitution, €, of
0.25. For this €, the first saddle node bifurcation occurs at I'j = 1.89 and the first
period doubling bifurcation at I'} = 2.32. This value of € was chosen in order to give
a value of I'y that coincides with the critical I, at which the sudden expansion occurs
in experiment 2. The top figure is for I' = 1.8, the middle for I' = 1.9, and the bottom
for I' = 2.5. In the top plot, the particle collides with the base after a flight time that
is less than the oscillation period and bounces several times before effectively coming
to rest on the base. This same motion is repeated every oscillation cycle. In the
middle plot, the periodic fixed point trajectory is apparent where the particle motion
repeats after every collision. The bottom plot shows the particle motion exhibiting a
period two motion.

Another result of the bifurcation is that the maximum rebound velocity of the

particle off the base changes significantly at I';. The result is that the maximum
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separation height between the particle and the base also suddenly increases. This
same eflect is observed in the present experimental data. A plot of the calculated
dimensionless expansion, h, using a value of € = 0.25 is plotted against the dimen-
sionless acceleration amplitude, I', in figure 4.7 and is compared with the data from
experiment 2. This analogy between the bed and an inelastic ball is qualitatively
consistent with the experiments since the effective € for the mass of particles may be
as low as 0.25 because of the large number of collisions occurring between all of the
particles.

Thus, the model is consistent with the following explanation of the observed exper-
imental behavior. Below 1g, the particle bed does not leave the base. Just above 1g,
however, the particles in the bed bounce around; yet, the individual particle motions
settle down prior to the next oscillation cycle. The motion repeats every oscillation
cycle similar to the single particle with ¢ = 0.25. When the acceleration approaches
the critical or bifurcation value of I'} a sudden expansion of the bed occurs as the
particle mass repeats the same motion every two oscillation cycles and the rebound
velocity suddenly increases.

Note that the analysis predicts additional bifurcations occurring at higher values
of I'. The second period doubling bifurcation is predicted to occur at I'; = 3.77 and
a third occurring at I's = 5.66 when ¢ = 0.25. The experiments, however, did not
examine values of I' greater than 2.5 due to shaker limitations. Thus, these other

bifurcations could not be investigated experimentally.

4.3 Simulations

Several simulations were run to determine if this expansion could be reproduced in a
2D bed of particles with high coefficients of restitution, e. One hundred frictionless
particles were placed in a container with periodic lateral boundaries and a rigid base
oscillating with the sinusoidal trajectory, y, = asin(wt), where vy, is the base vertical
position, a the oscillation amplitude, w the oscillation radian frequency, and ¢ the time.

The container width, W, was twenty-five particle diameters giving a dimensionless
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bed depth of four, ho/d = 4. All of the particles had the same diameter (and mass)
and the coefficients of restitution for the particle-particle and particle-base collisions
was € = 0.80. A summary of the remaining simulation parameters is given in table 4.1.
In order to determine whether the simulated bed suddenly expands at a critical
acceleration amplitude, the average separation, h.,,, between the vertical component
of the bed’s center of mass, Y., and the base, y;,, was examined for various I'. The

vertical position of the center of mass is determined by

Yem(t) = NZyé(t) (4.14)

where N is the number of particles and y; the vertical location of particle i. The aver-
aging process started after five seconds of vibration, a duration sufficient to eliminate
any initial transients, and continued for five more seconds.

The average non-dimensional bed expansion, mw2 /g, where hgp, ¢ is the
vertical component of the bed’s center of mass for a static bed is shown in figure 4.8
as a function of the oscillation acceleration amplitude, ' = aw?/g, for a frequency of
20 Hz. A sudden expansion clearly appears at a critical ' between 1.7 and 1.8. Note
that no other expansions appear for values of I' up to 6.0. The experiments were only
able to investigate accelerations up to 2.5g due to shaker limitations.

Particle motion within the bed was also examined. When I' < I'., particles move
coherently as in the deep bed regime. However, for I' > I';, the bed has a structure
similar to the coherent-expanded state discussed in section 3.1. The other shallow
bed states were also observed in the simulations, however, a clear transition between
them was not evident.

One measure of the random particle motion in the bed is the granular temperature
per unit mass, v, defined as the kinetic energy per unit mass in the bed due to the

particle fluctuation velocities,

7= 53 > ma((@) + (4a')) (4.15)
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where M is the total mass of the particles, N the number of particles, m,, the mass of
particle n, and @], = 2, — ¢y, and ¥, = Yn — Yom are the fluctuating particle velocities
where ,, and ¥, are the velocity components of particle n and @, and ¢, are the
bed’s center of mass velocity components. Figure 4.9 shows the granular temperature
per unit mass as a function of time for a bed with a pre-expansion I' of 1.7 and
a post-bifurcation I' of 1.8. The sudden increase in the granular temperature once
each cycle corresponds to the particle bed impacting the base. The temperature then
decreases in time as collisions between particles occur and the degree of coherency in
the particle motions increases. For I' = 1.7 the fluctuating kinetic energy in the bed
is completely dissipated before performing the next oscillation cycle. When I' = 1.8,
however, the granular temperature is not dissipated before the next cycle.

Several parameters, including the number of particle layers, ho/d, the coefficient
of restitution, €, and the inter-particle friction, u,,, were varied in order to determine
their effect on the response of the bed. The critical transition occurs for higher I’
when ho/d and p increase and when e decreases, all of which act to increase the energy

dissipation in the bed.

4.4 Discussion

The simulation results are consistent with the simple model described in section 4.2
of a single inelastic ball bouncing on a vibrating base. A ball with a low coefficient
of restitution bouncing on a vibrating table at low I' dissipates all its kinetic energy
in repeated impacts with the base before repeating the next oscillation cycle. This
situation occurs for I' < I'.. When I' > I, the energy in the ball is not completely
dissipated in the impacts and the expansion is observed.

Lan and Rosato (1995) determined an effective coefficient of restitution for a
simulated bed by dropping the bed onto a fixed base and taking the ratio of the
bed’s center of mass vertical velocity after the collision to the velocity prior to the
collision (refer to equation (4.4)). A similar measurement for the present simulation

gives €,p = 0.11. This value is close to € = 0.27 which results from equation (4.13)
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using a value of '] = 1.8, the critical I' at which the sudden expansion occurs in the
stmulations.
It is interesting to note that the simple model predicts other bifurcations at higher
I' yet the simulations show that only one sudden expansion occurs. The simulations
by Lan and Rosato (1995) also produced only a single expansion for accelerations up

to 30g. The reason only a single expansion occurs is not clear.
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w/d 25
ho/d 4
N 100
€pp 0.80
Enpp 5.289 % 10° N/m
Vpp 8.337 % 1073 N/(m/s)
ks pp 5.289 x 10° N/m
Hop 0.0 \
lateral boundaries periodic

En pw 1.058 * 10* N/m
Vpw 1.667 * 1072 N/(m/s)
ks pu 1.058 * 10* N/m
Hpw 0.0

d 1.0 mm

p 2500 kg/m?>

At 3.504 * 107° sec

Table 4.1: The parameters used in shallow bed simulations.
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Chapter 5 Side Wall Convection

5.1 Experiments

In deep beds, the inception value of I' for side wall convection is I' & 1.2, a value
that is independent of particle and container size as well as oscillation frequency. As
mentioned previously, the convection cell pattern is such that particles move down
along the vertical walls of the container and up within the bulk returning to the free
surface of the bed (refer to figure 3.1). By observing the motion of tracer particles,
it was found that as particles moved down along the wall, they would enter the
upward flow at various depths from the free surface. Note that these are the long
term motions of the particles and not their instantaneous motion. The instantaneous
motion is, in fact, up along the walls for a range of oscillation phase angles (discussed
below); however, the long term motion is down at the boundaries.

Since measurements of the particle velocity were not made in these experiments,
it was not possible to determine quantitatively how the convection velocity at the
walls of the container varied with the vibration parameters. Qualitatively, however,
the convection velocity increases with both increasing I at a fixed frequency and with
decreasing frequency at a fixed I'.

The effect of wall friction on the convection behavior was examined by using three
different wall surfaces. When smooth glass walls were used, the convection velocity
was essentially zero. Lucite walls produced weak, but observable, convection cells.
Although these walls were smooth, static electricity effects between the walls and the
particles were significant. Thus, the effective friction with the walls was greater than
with the glass walls. The greatest convective motion was observed when sand paper
was glued to the wall boundaries. For this last wall condition the particle motion
at the walls could not be observed but the magnitude of the particle motion could

be determined by examining the free surface of the bed. The faster the downward
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motion at the walls, the greater the particle flux at the free surface.

By combining wall conditions, a vertical slice of the convection cell motion was
observed. Using a narrow container with sand paper lined lateral walls and smooth
glass front and rear walls, the structure of the convection cells was examined. Particles
move downward along the sand paper walls in a boundary layer of approximately five
to ten particle diameters thickness that extends from near the free surface to the base
of the container. The thickness of the boundary layer does not vary significantly with
the vibration parameters or with the container width for the containers used in the
experiments.

The motion of the bed was also examined using the strobe lamp. The frequency
of the strobe was tuned to approximately the forcing vibration frequency. Since the
frequencies were not exactly equal, the state of the bed could be observed while the
oscillation phase angle increased. This technique showed that the entire particle bed
lifts off and re-collides with the base of the container once each oscillation cycle -
an observation corroborated by the accelerometer output signal. Closer inspection
revealed that the regions of the bed closest to the walls do not lift off the base as far
as the regions at the center of the bed indicating that an effect at the wall boundaries
is retarding the vertical movement of particles there.

A heap or mound also appears when I" > 1.2 and is present until I' & 2.0. The
mound forms in the following manner. When I is just greater than one, the granular
bed begins to deform near the wall boundaries and the disturbances slowly propagate
toward the center of the container. The steady state behavior consists of a bed with
a rounded free surface with the lowest points occurring at the walls and the highest
point located in the center. Figure 3.2 shows a photo of a typical mound.

The stability of the formation was checked by perturbing the bed with a stirring
rod. After the bed reached a steady state, the rod was immersed in the bed and stirred
vigorously. The mound quickly reformed its original shape after the perturbations
ceased.

An asymmetric heap observed by Evesque and Rajchenbach (1989) was not ob-

served in the present experiments when care was taken to ensure that horizontal
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vibrations were not present. When the experiments were first conducted, a peak
similar to the one reported by Evesque and Rajchenbach was observed. The for-
mation of the peak always appeared to one side of the container regardless of the
initial conditions of the bed and despite perturbations with the stirring rod. In order
to determine whether the container construction was affecting the results, the box
was rotated 180°. The peak continued to appear to the same side of the container.
Further experimentation showed that the location of the peak changed to the other
side of the container when the oscillation frequency was below f < 17 Hz. Above 17
Hz the peak would reform to the other side. Thus, the peak location appeared to be
dependent on the forcing frequency.

An additional accelerometer was mounted in a lateral orientation to the side of
the container to determine whether horizontal vibrations were present in conjunction
with the vertical vibrations. Indeed, significant horizontal accelerations, up to 1/3g,
were recorded occurring with a frequency equal to the forcing vertical vibrations.
The source of the horizontal vibrations was traced to the shaker base construction.
The Ling electromagnetic shaker has a trunnion style base that can rotate about
a horizontal axis. When the container was mounted on the shaker such that the
width (the longest dimension) of the box was perpendicular to the shaker’s rotation
axis, the asymmetric heap formation appeared. However, when the container was
mounted parallel with the rotation axis, a symmetric rounded mound formed. A
small asymmetric heap formed toward either the front or back wall of the container
but its effect on the remaining bed behaviors was negligible. All of the remaining
experiments were conducted in this configuration.

The depressions that form near the wall boundaries in the symmetric, rounded
mounds are due to the downward motion of the particles at the walls. Particles
leave the free surface at the wall as they move toward the base of the container. A
depression forms since the particle bed has an angle of repose and particles do not
fall into the depression until the local slope of the bed is greater than this angle. The
critical angle is much less than the bed’s static angle of repose because the oscillations

affect the stability of the slope resulting in a lower effective angle of repose. As the
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acceleration amplitude was increased, the slope of the mound at the walls decreased.

5.2 Simulations

In the simulations, side wall convection and mounding occur when I' > 1. The
qualitative appearance of both the convection cells and the mound is the same as that
observed in the experiments. A snapshot from a simulations with a rounded mound
is shown in figure 5.1. The long term particle velocities (refer to equations (3.1)
and (3.2) in section 3.2) for the same particle bed are shown in figure 5.2.

The asymmetric mounds described by Evesque and Rajchenbach (1989) were never
observed when horizontal oscillations were not included in the simulations. In order
to check whether lateral vibrations were indeed the cause of the observed asymmetric
peak, a simulation was performed that included both vertical and horizontal oscilla-
tions. The simulation employed a rectangular container that oscillated in the vertical
and horizontal directions with acceleration amplitudes of ', = 1.5 and ', = 0.3, at
the same frequency, f = 20 Hz. The remainder of the simulation parameters are
given in table 5.1. A peak and circulation pattern formed similar to those found in
the present experiments with horizontal vibrations. Figure 5.3 shows the steady state
shape of the particle bed and the long term particle velocities. When the horizontal
vibration was removed and only vertical vibration remained, the preference for the
material to form a peak to one side of the container was eliminated. The remainder
of the simulations utilize only vertical vibrations.

The simulation convection cell structure is similar to the experimentally observed
structure. Particles move down along the vertical walls of the container in a narrow
boundary layer and up within the bulk of the bed. Figure 5.4 shows the average
particle displacements per oscillation cycle for a bed with W/d = 50, ho/d = 75,
' =1.6 and f = 20 Hz. Note that two distinct convection cell centers, about which
the particles move, are apparent.

In order to investigate the convection behavior quantitatively, three properties of

the bed were measured based on the long term particle velocities. The three quantities
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include the height of the convection cell center from the base, h, the width of the
boundary layer, w, measured at height h, and the average number flux of particles,
Jd, passing downward through width, w, at height 2. Both w and h are determined
by examining the vertical and horizontal particle velocities. The number flux of
particles moving down in the boundary layer, 74 (with units of particles/m/cycle), is
found by counting the number of particles that cross the plane extending from the
wall boundary to the convection cell at height h each cycle. The definitions for w and
h are illustrated in figure 5.4.

The parameters used in the baseline simulation for examining the convection cell
behavior are given in table 5.2. The range of acceleration amplitudes, ', is restricted
between 1.2 and 2.0. The lower bound is due to the very slow movement of particles
at I' near 1.0 and the upper bound is in order to avoid any f/2 wave effects. The
experiments by Knight et al. (1996), with which many of the simulation results are
compared, used discrete, sinusoidal taps as their forcing vibration signal. Since waves
and kinks do not appear with this type of forcing, they were able to investigate
convection behavior up to an acceleration of roughly 13g. Although the shaking style
and range of accelerations are different between the simulations and experiments,
the results from the two are consistent. Note also that a high coefficient of friction,
p, of 1.0 is used in the simulations. This point is addressed in further detail below
when discussing the effect of friction on the behavior of the convection cells. Fewer
oscillation cycles are required for averaging when a high value of p is used since the
velocity fluctuations in the convection cells are much smaller than the mean velocities.
The three measures, w, h, and j3, were examined as functions of the oscillation
acceleration- amplitude, ', and frequency, f, container width, W, bed depth, ho,
coefficient of restitution, €, and coefficient of friction, p.

The vertical and horizontal velocity profiles corresponding to planes passing through
the right convection cell center for the bed in figure 5.4 are shown in figure 5.5 and 5.6.
Note that the aspect ratio of the bed, defined as the bed depth divided by the con-
tainer width, ho/W, is 1.5. The width, w, of the boundary layer and the convection
cell height, h, are determined from these velocity profiles. The shape of the profiles is
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also of interest. The vertical velocity profile shows that considerable shearing occurs
in the downward flow of particles near the wall. The upward flow of particles in the
interior of the bulk is more plug-like. Furthermore, the width of the boundary layer
does not vary significantly with depth from the free surface. Knight et al. (1996)
measured the vertical velocity profiles in experiments and found a similar qualitative
shape as well as the w depth independence. They found that the vertical velocity
profile was approximated equally well with a hyperbolic cosine or a first-order modi-
fied Bessel function. The solid and dashed lines in figure 5.5 are least squares fits to

the functions
w

Y_%a Bt oT

7= 4 + d(l cosh( o )) (5.1)
and w

i _da, By 1Y

where y.1, B1, Ta, Ye2, B2, and ., are adjustable parameters. The axial velocity is
given by Y. and g2, the parameters By and B; are the amplitude of the curvature
term, and z, and z., are radial or horizontal width scales. Clearly the simulation
velocity profile is fit well with these functional forms.

Three important observations are seen in the horizontal velocity profile (figure 5.6).
First, particles enter the upward flow in the bulk at all depths below the convection cell
center. Furthermore, the velocity at which the particles enter the upward flow is nearly
independent of depth indicating that the flux of particles entering the upward flow
is also independent of depth from the free surface (note that the density of particles
crossing the vertical plane separating the downward and upward flowing remains
nearly constant with increasing depth). Lastly, there is a small region extending from
the free surface to the convection cell center where particles leave the upward flow
and enter the downward flow. This l;cmst observation is a result of mass conservation
of the particle flow.

The fact that the flux of particles entering the upward flowing region, 7., is inde-

pendent of depth,

je = Je (53)
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where j. is a constant, implies that the downward flux of particles, j;, increases

linearly with height from the base (see figure 5.7) since

wialy) = / jod€ = Guy (5.4)

where y is measured from the base of the container and the bulk density of the bed
is assumed to be constant. Note that the upward flux of particles (and centerline
velocity) is proportional to the downward flux. Knight et al. (1996) measured the
upward centerline particle velocity in their experiments and found that it increased
exponentially with height from the base. They proposed a simple model in which the
flux of particles scattered from the walls into the upward flow, j.(y), is directly pro-
portional to the number of particles available to be scattered, ji(y). If the probability
of scattering from the walls, p, is assumed to be independent of depth, the upward

and downward flux of particles increase exponentially with height from the base,

Ju(y) o< Jay) o< e (5.5)

The apparent discrepancy between the experiments and simulations, however, may
be due to the different values of I' examined. Knight et al. used values of I' between
3.0 and 12.0 while the simulations examined I' < 2.0. Note that the scattering
probability p may decrease with decreasing I" since the particle bed is in the air for a
shorter duration of time. Furthermore, when py is small, the exponential function can
be approximated by a linear function and the experimental and simulations become
consistent.

The width of the downward flowing boundary layer, w, at the convection cell
center height, h, is determined from the vertical velocity profile. The simulations
indicate that w is independent of oscillation acceleration amplitude, I', and frequency,
[, as well as the wall friction coefficient, .. The boundary layer width decreases
with increasing coefficient of restitution, € = €,, = €, however. The width also

varies proportionally with the container width in containers where the bed aspect
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ratio, ho/W, is greater than approximately 0.2. But remains nearly constant for
ho/W < 0.2. These observations are clearly seen in figure 5.8 which shows the results
from simulations conducted with various container widths and bed depths (top figure).
The bottom plot of figure 5.8 shows, for clarity, the variation of w with W for a bed
with depth hg/d = 30. Knight et al. (1996) found that the width of the boundary
layer is proportional to container width in their experiments using beds with aspect
ratios of order 2.0. This result is in agreement with the simulation results since Knight
el al. performed their experiments with high aspect ratio beds. Note also that in the
high aspect ratio beds, ho/d > 0.2, the convection cells interact with each other (refer
to figure 5.4) while in low aspect ratio beds, ho/W < 0.2, the convection cells do not
interact (figure 5.2). This suggests that the interaction between the convection cells
may be the mechanism affecting the boundary layer width.

The height of the convection cell center from the base of the container, h, is
found to vary linearly with the bed depth, hq as observed in figure 5.9. Simulations
performed for various container widths, W, wall friction coefficients, pi,,, and coeffi-
cients of restitution, € = €y, = ¢, indicate that the convection cell center height is
independent of these parameters. The height does decrease, however, with increasing
oscillation amplitude, @, and oscillation velocity amplitude, aw. The height, A, scales
equally well with both @ and aw indicating that the oscillation frequency does not
affect h significantly for the vibration parameters examined here. The height plotted
against oscillation velocity amplitude is shown in figure 5.10. The decrease in h as
aw increases may be a consequence of mass conservation since the downward flux of
particles, j4, also increases with increasing oscillation amplitude and velocity (shown
in figure 5.11), and the boundary layer width, w, remains constant.

The dependence of the particle flux, jq, on the coefficient of wall friction, fipu,
and coeflicient of restitution, € = €,, = €, was also examined. Figure 5.12 shows
that the flow of particles past the convection cell center each cycle, wj,, increases
with an increasing coefficient of wall friction, ppw. Note that the flow of particles
approaches zero when p,,,, & 0.1. Thus, the coefficient of wall friction is found to only

affect the flux of particles in the convection cells and not the boundary layer width or
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convection cell height. Additionally, when periodic boundaries are used j; = 0 and
no convection is observed.

The flux also varies with the coefficient of restitution, ¢ = ¢, = €5, as shown in
figure 5.13. The flux decreases with increasing ¢ and rapidly decreases when € > 0.7.
A possible reason for this trend is discussed in the next section.

These trends suggest that particle/wall interactions as well as the vibration pa-
rameters are significant to the convection cell behavior. The precise mechanism that
causes convection, however, has not yet been examined. As a result, the detailed
motion of the bed over an oscillation cycle is studied. Since the particle/wall inter-
actions appear to be fundamental to the convection mechanism, the forces acting on
the walls due to the particle bed are examined.

The average total normal and shear forces acting on the particle bed due to the
floor and vertical walls is plotted as a function of oscillation phase angle in figures 5.14
and 5.15 for a bed oscillating at I' = 1.6 and f = 20 Hz. Figure 5.15 shows the same
plots but for the range of phase angles where the bed is in flight. Forces acting on the
walls due to particle bed (and, conversely, the forces acting on the particle bed due to
the walls) are determined by summing particle/wall contact forces determined using
the contact model described in section 2.2. The force profiles are consistent from
cycle to cycle and the figure shows the forces averaged over 100 oscillation cycles. For
0 < ¢/(27) < 0.20, where ¢ is the oscillation phase angle in radians, the bed rests
on the oscillating base as reflected in the forces acting on the container walls and
base. As the acceleration of the base approaches —1g¢ the effective gravity acting on
the particles decreases and the forces on the base and walls decrease proportionally
with the effective gravity. When the particle bed leaves the floor the total vertical
force on the floor is zero. The shear force acting on the vertical walls, however, is
small but non-zero due to particle collisions. Measurements of the contact duration
for collisions between particles and the walls indicate that nearly all of the contacts
occur as binary collisions; particles are not “pressed” into the walls as has been
suggested in previous studies (see Gallas et al. 1992 and Taguchi, 1992). Since the

motion of the walls relative to the bed is down, particles contacting the walls are
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retarded in their upward movement. When ¢/(27) = 0.54 the bed begins to fall
back toward the base and the motion of the walls is now upward relative to the bed.
Thus, collisions with the walls act to reduce the downward movement of the particles.
However, fewer collisions occur with the walls as the bed falls back toward the base
than when the bed moves up relative to the base as illustrated in figure 5.16, which
shows the collision rate with the walls, N, (with units of collisions per second), as a
function of phase angle, ¢. As a result, the upward acting shear force on the bed is
smaller than the downward acting shear force and a net downward acting shear force
acts on the particle bed while it is in flight. When the bed re-collides with the base
at ¢/(2w) = 0.64, a large normal and shear force peak occurs on the floor and walls.
For the remainder of the cycle the bed rests on the floor of the container and the
forces acting on the walls and floor are proportional to the effective gravity.

The reason fewer collisions occur with the walls as the bed flight progresses is
because the bed dilates when it is sheared and particles move away from wall. Fur-
thermore, the bed, while in flight, can dilate in the vertical direction since the floor
boundary no longer restricts the movement of particles there. Thus, the shearing by
the walls causes particles to move toward the centerline of the bed, which in turn
dilates in the vertical direction to accommodate the incoming flux of particles. This
particle motion is clearly seen when examining the instantaneous particle velocities
in the bed at various phase angles of oscillation. Figure 5.17 shows the instantaneous
particle velocities relative to the bed’s center of mass (averaged over 20 oscillation cy-
cles) at six oscillation phase angles. For ¢/(27) = 0.16 the bed rests on the container
base and moves with it. At ¢/(27) = 0.40 the center of mass of the bed moves up
relative to the base. Note that the particles near the container walls move down with
respect to the center of mass of the bed due to interactions with the wall. Particle
movement away from the walls is also evident. As the bed falls back toward the base
at a phase angle of ¢/(2m) = 0.60, the particle flux away from the walls is easily
observed. Furthermore, the velocity vectors at the top and bottom free surface of
the bed, especially near the walls, show that the bed dilates in the vertical direction.

Note that near the walls the separation distance from the particles and the base is
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not as great as it is at the centerline. As a result, these regions near the walls collide
with the base first as is shown at a phase angle of ¢/(27) = 0.72. A consolidation
wave is observed to propagate up through the bed as particles continue to collect on
the base as is seen at phase angles of ¢/(27) = 0.74 and ¢/(27) = 0.76. The waves in
the bed quickly dissipate and the bed moves with the base once again and the cycle

is repeated.

5.3 Discussion

Side wall convection and heaping have been the most extensively studied vibrating
bed behaviors. A number of experiments, simulations, and theoretical works have
been performed in order to understand these phenomena better.

Zik and Stavans (1991) examined diffusion in vibrating beds and reported be-
havior similar to that reported in the present experiments. Clément et al. (1992)
examined a single layer of monosize spherical glass beads constrained to move in two
dimensions. They observed a large mound formation that forms as particles slip along
dislocation zones. These effects are most likely the result of the strong tendency for
particles of the same size in 2D to arrange themselves into a hexagonal packing struc-
ture. Ratkai (1976) examined beds in a container with fixed walls and a modulated
vibrating base where the largest amplitude of vibration occurs in the center of the
base and is zero at the walls. He reported the appearance of convection cells as well.

Simulations by Gallas et al. (1992) and Taguchi (1992) were not able to reproduce
the rounded mounds, however; they used an unusual tangential interaction term in the
simulations which may account for this discrepancy. The simulations by Lee (1994)
did produce rounded mounds using a tangential interaction similar to that used in
the present work. He found that inc;reasing the inter-particle friction increased the
slope of the mound but a sharp peak never formed.

This last point is a significant one. In all of the simulations and experiments
performed here (not including those with horizontal vibrations), the mounds that

appear consist of rounded, shallow peaks with the lowest points occurring next to
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the wall boundaries. In experiments performed by Laroche et al. (1990) and Pak et
al. (1995), sharp-peaked heaps appeared when I' > 1, even when wall boundaries were
not present. This discrepancy is most likely a result of the interstitial fluid effects on
the particles. Laroche et al. and Pak et al. found that the sharp peaks only formed
for small particles (d < 1 mm) in air. When large particles were used or when the
experiments were performed in a vacuum, the sharp peaks disappeared. Both groups,
however, observed mounds and convection cells similar to the ones described in the
present experiments next to the container boundaries. To further support the idea
that interstitial fluid effects produce the sharp peaks, the simulations performed here
and elsewhere (see Lee, 1994, for example), which do not include interstitial fluid
effects, produce only rounded mounds and never sharp peaks.

The asymmetric peak and convection cell observed by Evesque and Rajchen-
bach (1989) for I' > 1.2 appears to be the result of vertical and horizontal vibrations
as opposed to just vertical vibrations, which is consistent with the present experimen-
tal observations. The reason the coupled horizontal and vertical vibrations produce
the asymmetric heap is straightforward. The mechanism is the same as that used for
transporting material on vibrating conveyor belts (see for example, Evesque, 1992).
Assuming that the base moves in a sinusoidal vertical and horizontal trajectory at
the same frequency, the bed of material will move to the left or right depending on
the flight time of the bed which, in turn, is a function of I'. The assumption that
the bed oscillates horizontally and vertically with the same frequency is made based
on the accelerometer signals in the experiments. This matching of frequencies is a
result of the vertical vibrations forcing the horizontal vibrations. At low vertical ac-
celeration amplitudes the bed leaves the base once each oscillation cycle (assuming
[' > 1). When the bed leaves the base, it has a horizontal velocity due to the lateral
velocity of the base at take-off. Furthermore, while the bed is in flight, the base
moves horizontally as well as vertically. When the bed re-contacts the base, it can
be in a different horizontal position, either to the left or right of its original position,
depending on the acceleration level of the bed. The dependence on frequency in the

present experiments may be a result of slippage with the base since at a given I' the
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velocity increases with decreasing frequency.

The experimental work by Knight et al. (1993, 1996) and Ehrichs et al. (1995)
have, perhaps, the most quantitative experimental examination of the side wall con-
vection phenomenon. Using magnetic resonance imaging (MRI) they examined the
convection behavior in narrow cylinders (of order of 12-50d) filled with poppy seeds
for 1.5 < T' < 13.0. Due to the constraints imposed by the MRI apparatus, they
were not able to examine larger containers. Furthermore, since MRI requires some
time to form an image, the applied vibration consisted of discontinuous, sinusoidal
taps as opposed to the continuous oscillations used in the present experiments. They
indicate that these taps produce convection patterns similar to those observed for
continuous vibration. Note though that they do not report the appearance of other
phenomena such as surface waves or kinks which may influence the convection cell
behavior. The reason they do not see these other phenomena is most likely due to
the style of shaking employed in their experiments. Nevertheless, the velocity profiles
from the simulations compare well with their experimental results.

Previous studies have also used computer simulations to examine the convection
phenomenon. Gallas et al. (1992), Taguchi (1992), Rosato and Lan (1994), Lee (1994),
and Luding et al. (1994a) have all reported the appearance of convection cellsfor I > 1
in two-dimensional simulations of circular particles in containers subject to vertical,
sinusoidal vibration. Care must be taken when interpreting the results since various
boundary conditions were used in the simulations. For example, Gallas et al. (1992)
used fixed vertical wall boundaries as opposed to wall boundaries that move in phase
with the oscillating base. Surprisingly, none of these simulations were used to extract
mubh quantitative information about the convection behavior. Most of the work has
focused on examining the onset of the phenomenon and the effect of wall and inter-
particle friction. Nonetheless, several interesting results have been found. First, the
strength of the convection behavior, measured by Taguchi (1992) as the sum of all
the particle displacements over one oscillation cycle, increases with increasing I' for a
fixed frequency. Second, the convection strength decreases as the coeflicient of wall

friction decreases. Third, Rosato and Lan (1994) observed that the convection cells



90

remain close to the wall boundaries when very wide containers are used. All of these
results are consistent with the observations made in the present experiments and
simulations. One other interesting observation made in the simulations by Gallas et
al. (1992) is that when the wall friction is zero, convection cells with particles moving
up at the walls are sometimes observed. This behavior is never observed in the present
simulations and may be a result of the unusual tangential particle interaction model
used by Gallas et al..

The convection behavior has also been observed in theoretical work by Gold-
shtein et al. (1995) and Savage (1988). Both works use a kinetic theory approach
to determine the particle trajectories in vibrated beds. Several concerns about the
assumptions used in both analyses are readily apparent. First, from the experimental
and simulation work indicate that particles in the bed are in long duration con-
tact with several neighboring particles during a large portion of the oscillation cycle.
This clearly violates the kinetic theory assumption of binary, instantaneous contacts.
Additionally, since particle velocities in the downward moving boundary layer vary
significantly over a length of a few particle diameters, the continuum assumption in
the kinetic theory approach is questionable. Although these kinetic theory approaches
still provide interesting information and results, these issues must be addressed.

A number of hypotheses have been offered as to the cause of the side wall convec-
tion behavior. Rajchenbach (1991) suggests that heap formation causes convection.
His argument is based on the idea that particles located deep in the bed have a greater
confining pressure than particles in shallow regions and, as a result, tend to move less
readily than particles in these shallow regions. Furthermore, particles with a given
random kinetic energy (supplied by the vibrations) will have a tendency to migrate to
regions that have less random energy. This argument has a number of difficulties. For
example, it does not explain why particles should not always move toward the base of
the container although the confining pressures there would be the greatest (assuming
the bed is less than a few container diameters deep). Furthermore, in the present
experiments when the bed was perturbed with a stirring rod such that one side of the

container was considerably deeper than the other, the original, symmetric convection
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cells and bed shape quickly reformed. According to Rajchenbach’s hypothesis the
perturbed formation should be stable.

Taguchi (1992) has also offered a mechanism to explain the appearance of the
convection cells. His hypothesis is that during the part of the oscillation cycle in which
the bed rests on the base of the container, the lateral wall boundaries, the base, and
gravity induce a vertical and horizontal stress in the bed. When the bed is in flight, it
can release this stored vertical strain energy by dilating in the vertical direction since
the confining base no longer prevents particle movement. In the horizontal direction,
however, the particles are still constrained by the walls and so the horizontal stress
induces a horizontal flow of particles toward the center of the container. When the
flowing particles collide at the center, their motion turns in the vertical direction. The
flow cannot turn downward, however, due to the base and so particles move toward
the free surface. The vacancy formed at the bottom of the bed, due to particle
movement to the free surface is filled by horizontally neighboring particles. Although
it would have been possible to examine this stress field in Taguchi’s simulations, he
did not do so. One problem with Taguchi’s hypothesis is that it does not offer a
mechanism that can explain the effect of wall friction on the convection strength.
In fact, the mechanism is independent of wall friction and predicts convection even
for frictionless walls contrary to what is observed in experiments (as in the present
experiments using very smooth glass walls) and in simulations.

One other hypothesis that has been offered was first suggested by Gallas et
al. (1992) and examined briefly in simulations by Lee (1994). Gallas et al’s ar-
gument is as follows. When the bed first lifts off the base during an oscillation cycle,
it is densely packed and exerts a strong pressure on the walls of the container which in
turn results in a significant frictional force. Since the motion of the bed with respect
to the walls is upward, the particles near the walls experience a downward acting drag
force due to the boundaries. When the particle bed falls back to the container base
and has an upward velocity relative to the walls, the bed packing is much looser and,
as a result, the pressure on the walls is less. The lower pressure results in a smaller

upward drag force acting on the particle bed near the walls. Thus, the bed experi-
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ences a net downward acting drag force due to the walls. The force measurements
from the present simulations indicate that this is indeed what is occurring during an
oscillation cycle. Note though that the simulations indicate that particles are not
“pressed” into the walls as suggested by Gallas et al. but instead are involved in
binary collisions with the walls while in flight.

This asymmetric drag mechanism also explains the effect of increasing wall friction.
If the wall friction is large, the velocity difference between particles at the walls and
at the center of the bed will be larger than if the wall friction is small. At the limit
of p1py, = 0, the particle velocity difference is zero and no convection occurs.

The decrease in the downward particle flow rate, w3y, with increasing coefficient
of restitution may be due to the fact that highly elastic particles will have a greater
rebound velocity after a collision with the wall than if a lower coefficient were used.
Thus, high ¢ particles will have a larger momentum away from the wall than low €
particles and will be less likely to remain in the immediate neighborhood of the wall
boundaries. As a result, fewer collisions occur with the walls throughout the entire
cycle of oscillation when high e particles are used and the convection cell flow rate 1s
reduced.

The asymmetric drag mechanism may also explain the effect of the bed aspect
ratio on the boundary layer width. When the aspect ratio is large, ho/W > 0.2,
particles moving away from the walls toward the center of the container have a large
effective “ambient” pressure into which to move. Since convection cells interact in
high aspect ratio beds, particles moving away from the walls collide in the center of
the bed. This, in effect, increases the ambient pressure into which the particles move
avvay from the walls. Thus, the narrower the container, the greater the convection
cell interaction, and the greater the effective ambient pressure. The result is that
particles are forced to turn in the vertical direction after a short distance from the
wall and, consequently, the boundary layer width is reduced.

Three different mechanisms can produce mounds and convection cells in beds
subject to vertical accelerations greater than 1g. When horizontal oscillations and

-interstitial fluid effects are negligible, an asymmetric drag mechanism causes the
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convection cell behavior. The rounded mounds that appear are the direct result of
particle movement at the wall boundaries of the container. Measurements from the
simulated bed correlate well with the experimental and simulation results of others.
In addition, the present simulations were used to investigate the side wall convection

behavior in more detail than has been done previously.
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Tables and Figures

Iy 1.5

r, 0.3

f 20 Hz
w/d 100
ho/d 10

N 1000

€pp 0.80
K pp 5.289 * 10° N/m
Vpp 8.337 % 107® N/(m/s)
ks pp 5.289 * 10° N/m
Hop 1.0

lateral boundaries walls

[ S— 1.058 * 10* N/m
Vpw | 1.667 % 107 N/(m/s)
ks pw 1.058 * 10* N/m
Hpw 1.0

d 0.9-1.1 mm

p 2500 kg/m?

At 3.504 % 107° sec

Table 5.1: The simulation parameters used to examine the asymmetric heap observed
when the container is subject to vertical and horizontal oscillations.
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W/d 50
ho/d 20
N 1000
Epp 0.80
K pp 5.289 * 10° N/m
Vpyp 8.337 % 107 N/(m/s)
kspp 5.289 x 10° N/m
Hopp 1.0
lateral boundaries walls
kn pw 1.058 x 10* N/m
Vpw 1.667 * 10~2 N/(m/s)
ks puw 1.058 * 10° N/m
Hpw 1.0
d 0.9-1.1 mm
p 2500 kg/m?
At 3.504 * 107° sec

Table 5.2: The simulation parameters used to examine the side wall convection be-
havior.
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Figure 5.1: Simulation showing a particle bed after 821 oscillation cycles (approxi-
mately 42 seconds) at I' = 1.5 and f = 20 Hz. The container width is W/d = 100 and
the bed height is hg/d = 20. A rounded mound is clearly observed on the free surface
of the bed. The remainder of the simulation parameters are given in table 5.2.
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Figure 5.2: The average displacement per cycle vectors (long term velocities) for
particles in the bed shown in figure 5.1. The direction of the convection cells is down
along the vertical walls and up in the interior of the bulk. The velocity vectors are
averaged over 800 oscillation cycles. Note that the velocity vectors have been scaled
and so appear to extend beyond the container walls.
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Figure 5.3: Top: A particle bed subject to vertical and horizontal oscillations. Bot-
tom: The long term particle velocity vectors for the same bed. The method for
determining the particle velocities is described in the text. The figures show the bed
after 100 oscillation cycles and the velocity vectors averaged over 50 cycles. The solid
circles at the end of the vectors are the vector arrowheads. The simulation parameters
are given in table 5.1. Note that the velocity vectors have been scaled and so appear
to extend beyond the container walls.
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Figure 5.4: The average displacement per cycle vectors (long term velocities) for
particles in a bed with W/d = 50, ho/d = 75 (N = 3750), I' = 1.6, and f = 20 Hz.
The velocity vectors are averaged over 130 oscillation cycles. The remainder of the
simulation parameters are given in table 5.2. The direction of the convection cells is
down along the vertical walls and up in the interior of the bulk. Note that the velocity
vectors have been scaled and so appear to extend beyond the container walls. The
definitions for the boundary layer width, w, and convection cell height, h, are also
illustrated for the right convection cell.
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vertical "velocity' (disp./cycle) /
mean particle diameter, y /d

o simulation ©

horizontal position / container width, x /W

Figure 5.5: The vertical velocity profile measured at the plane that passes through
the center of the right convection cell for the bed in figure 5.4. The solid and dashed

lines are least squares fits to the functions y/d = ya/d — B1/d * (1 — cosh(%))

and y/d = ye2/d — By/d * (1 — IO((JU;—;‘}#)), respectively where g is the center line
position of the container. The two curve fits lie on top of one another and are

indistinguishable. The adjustable parameters are: y./d = 0.14, B;/d = 0.0030,
ZL’Cl/d - 386, ycg/d = 014, Bg/d = 00055, and Zch/d = 3.56.
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Figure 5.6: The horizontal velocity profile measured at the plane that passes through
the center of the right convection cell in figure 5.4.
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Figure 5.8: Top: The boundary layer width divided by the particle diameter, w/d,
plotted against the dimensionless container width, W/d, for various container widths
and bed depths. Bottom: The boundary layer width divided by the particle diameter,
w/d, plotted against the dimensionless container width, W/d, for a bed with ho/d =
30. The data points are the average for the two convection cells in each simulation.
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Figure 5.9: The height of the convection cell center, h, as a function of the bed depth,
ho for a container of width, W/d = 50. The data points are the average for the two
convection cells in each simulation.
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Chapter 6 Standing Surface Waves

6.1 Experiments

Surface waves appear for two separate regions of I'. The first set occurs when 2.2 <
I' < 4.2 when hg/d = 10 while the second set appears for 5.8 < I to at least ' = 7.0
for the same value of ho/d. Recall that the range at which the waves appear shifts to
smaller I' with increasing ho/d as discussed in section 3.1. The mound observed when
I' is just greater than one is no longer observed although the convection cells are still
present at the walls when the lucite or sand paper walls were used. The smooth glass
walls were employed for the remainder of the experiments to eliminate the effects of
the side wall convection.

The wave motion on the free surface was difficult to discern under normal light-
ing conditions, especially for waves with small amplitude. However, when a strobe
lamp, tuned a frequency nearly equal to the wave formation frequency, was used to
illuminate the bed the waves could easily be observed.

The two sets of waves are referred to as f/2 and f/4 waves based on the wave
formation frequency. The f/2 waves appear at the lower values of I' and form at
one-half the forcing oscillation frequency. At the higher range of I are the f/4 waves
which appear at one-quarter the forcing frequency. The reason for the change in the
wave formation frequency is that between wave regimes, the flight motion of the bed
undergoes a period doubling bifurcation. This behavior is explored further in the
next chapter.

Measurements of the the bed’s flight time show that for both sets of waves there
exists a single flight time. The f/2 waves have a flight time that is less than the
oscillation period of the forcing vibrations while the f/4 waves have a flight time
greater than the oscillation period. Consequently, the bed flight motion repeats every

oscillation cycle for f/2 waves and every two oscillation cycles for the f/4 waves.
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Figures 6.1 and 6.2 show illustrations of the wave motion for both f/2 and f/4 waves.
Note that wave anti-nodes always appeared at the boundaries of the container.

At low oscillation amplitudes and velocities, for example at I' = 3.3 and f =20 Hz
corresponding to a/d = 1.6 and aw/+/gd = 2.3, rounded, nearly sinusoidal waves are
observed (refer to figure 3.3). These rounded waves are only observed for the f/2
waves in the present experiments. At higher vibration amplitudes and vibration
velocities, for example at I' = 6.2 and f = 20 Hz corresponding to a/d = 3.0 and
aw/+/gd = 4.3, sharp, cusped shaped waves are seen (refer to figure 3.4). These wave
shapes are observed with the f/4 waves at all frequencies.

Due to the nearly two-dimensional container shape, there was typically no vari-
ation in the wave shape along the short axis of the container. Occasionally more
complicated wave patterns were observed for the f/2 waves. These included “slosh-
ing” waves where the wave sloshes from the front wall of the container to the rear
wall, and cnoidal waves in which the wave peaks along the long axis of the container
alternated between the front and rear walls. These wave patterns appear more readily
in containers that have cross sectional dimensions on the order of several wavelengths.
Melo et al. (1994, 1995) and Metcalf et al. (1996) examined these wave patterns in
more detail and reported patterns, when viewed from above, consisting of stripes,
squares, pentagons, and hexagons. Both groups also found that the appearance of
these patterns depends on both the oscillation frequency and acceleration amplitude.
These waves patterns were not investigated in the present work but it is interesting
to note that at high accelerations and low frequencies, for example when I' = 7.0 and
J = 20 Hz, the f/4 wave peaks begin to sway from side to side, alternately leaning
towards and away from one another.

Particles are in a fluidized state at the free surface of the bed. For the round-
shaped waves the fluidized layer was typically only a few particle diameters deep.
A greater depth was fluidized when cusp-shaped waves are present. Additionally,
particles are ejected from the peaks of the cusp-shaped waves resulting in a significant
amount of particle mixing at the bed’s free surface.

In contrast to the top free surface, the bottom surface of the bed remains relatively
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flat with small regions of curvature occurring near the wall boundaries. The least
clearance between the base and the particle bed is at the walls. The bottom surface
has a more irregular shape for the cusp-shaped waves. Unlike the round-shaped waves,
cusp-shaped waves influence the motion of particles within the entire bed. When a
wave peak forms, the particles below it move up with the peak leaving caverns or
pockets with large radii of curvature along the bottom surface of the bed. Clément
et al. (1996) also reported this observation noting that the depth of these pockets
decreases with increasing oscillation frequency.

Measurements of the wave amplitude and wavelength were made for both sets of
waves for varying vibration parameters. All of the measurements were made using
the 1.3 mm diameter glass spheres in the 13.5 by 1.6 cm container with ho/d = 18.
A grid scale was taped to the outside, rear wall of the container in order to make
vertical and horizontal scalar measurements. The strobe lamp, operating at close
to the wave formation frequency, was used to illuminate the bed from behind while
a video camera recorded the wave motion over many oscillation cycles. Recordings
of the waves were made for oscillation frequencies between 15 and 40 Hz in 5 Hz
increments and acceleration amplitudes between 2.6 < T' < 46 and 6.0 < T < 7.8
in increments of [' = 0.2. The wave amplitude, 7, is defined as twice the maximum
distance between a wave peak and a neighboring wave trough while the wavelength,
A, is the distance between neighboring wave peaks. Determination of the peak and
trough locations was made visually. Determining the lateral location of wave peaks
was easier for the cusp-shaped waves than for the round-shaped waves since the round
wave amplitude gradient was small. Five amplitude and wavelength measurements
were made at each set of vibration parameters with several oscillation cycles passing
between each measurement. »

The amplitude data divided by the particle diameter is shown in figures 6.3 and 6.4
as a function of I'. Typical error bars are shown only for the data collected at
30 Hz. Note that the wave amplitude increases with increasing I' and decreasing f.
Additionally, the data for the f/2 waves at f = 15 and 20 Hz shows a maximum at

I' = 3.6 and ' = 4.0, respectively. As shown in figure 6.5, the wave amplitude for
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both the f/2 and f/4 waves is proportional to the oscillation amplitude, a.
The wave amplitude is also plotted in terms of a Froude number based on the

vibration velocity amplitude, aw, and the measured wave amplitude, 7,

(6.1)

where g is the gravitational acceleration. The Froude number can be interpreted
as a measure of the maximum kinetic energy of the waves, (aw)?, to the maximum
potential energy of the waves, gn. The wave amplitude data plotted in this form as a
function of I' collapses to a single curve for both the f/2 and f/4 waves as shown in
figures 6.6 and 6.7. The Froude number for the f/2 waves increases from Fr ~ 1 at
I' =2.6to Fr = 1.5 for I' = 4.6 while the Froude number for the f/4 is approximately
1.3 for all T.

The wavelength data divided by the particle diameter is shown in figures 6.8
and 6.9 as a function of I'. Again, only the scatter bars for f = 30 Hz are shown. The
data indicates that for a given frequency, the wavelength changes little as a function
of I'. The data for the f/4 waves at f = 20 Hz, however, shows an increasing trend
with .

In order to facilitate comparison with the measurements of Melo et al. (1995),
Metcalf et al. (1996), and Clément et al. (1996), the wavelength data is also plot-
ted as a function of the inverse oscillation frequency squared, 1/f? and is shown in
figures 6.10 and 6.11. The results of Melo et al., Metcalf et al., and Clément et al.
indicate that the dispersion relation relation for both sets of waves at low frequency
is similar to that for gravity waves in deep inviscid fluids, A o< g g/ f2%, where Jeff 18
an effective gravity term. The data for the f/2 waves does not clearly exhibit this
trend and is scattered instead. The f/4 waves follow the linear trend more closely.
Note that the data corresponding to f = 20 Hz (1/f? = 0.002552) also shows the
increasing wavelength trend with increasing I'. Figure 6.12 shows the data for I' = 6.8
for the f/4 waves with a least squares fit to the equation, A/d = Ao/d + (gog/d)/ f*.

The minimum wavelength, corresponding to the wavelength occurring at infinite fre-
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quency, is Ao/d = 20.6 and the effective gravity for the fit is g.g = 19.85 m/s?,
roughly 2g.

6.2 Simulations

The f/2 and f/4 waves also appear in the simulations for values of I' similar to the
experimental values (refer to section 3.2). The range of ' over which the waves are
observed increases with decreasing inter-particle friction, p,,. For example, when
ppp = 1.0, a bed with ho/d = 20 exhibits f/2 waves for 1.8 < I' < 3.6. However,
for frictionless particles, u,, = 0, the f/2 waves appear for 1.4 < T' < 3.6. A similar
trend is observed for the f/4 waves. Note that for 'y < T' < I'}, poorly formed f/2
and f/4 waves appear intermittently.

Measurements of the wavelengths were made with the simulationfor I' = 1.6 — 3.6
in steps of I' = 0.2 at f = 15 Hz, and for frequencies of f = 8, 9, 10, 11, 12, and
15 Hz at I' = 3.0. The remainder of the simulation parameters are given in table 6.1.
Note that the coeflicient of restitution for particle collisions, €,,, is 0.5. The low value
of €,, was used to reduce the amount of saltation occurring at the free surface of the
bed.

The wave amplitudes were not measured in the simulation due to difficulties de-
termining the peak amplitudes. Qualitatively, the trends were the same as those
observed in the experiments. The wave amplitudes increased with increasing I' at
a fixed frequency and for decreasing f at a fixed I'. Both round- and cusp-shaped
waves were observed for the f/2 waves (as shown in figure 6.13) while only cusp-
shaped waves appeared for f/4 waves.

The wavelength plotted as a function of the acceleration amplitude, T', is shown in
figure 6.14 for f = 15 Hz. The data i.ﬁdicates that the wavelength is independent of T'.
In figure 6.15, the wavelength is plotted against the square of the inverse oscillation
frequency, 1/f?, for I' = 3.0. The solid line in the figure is a least squares fit to the
equation A\/d = Ao/d + (g9.g/d)/ f*. The value of the minimum wavelength, Xo/d, is
19.3 and the effective gravity is g.q = 4.7 m/s>. It is interesting to note that the
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wavelength values in the simulation are quantized. Since the wavelength is determined
by dividing the container width by the number of wave peaks, the wavelengths will

be equal to W/n where n is a positive integer.

6.3 Discussion

Fauve et al. (1989) were the first to point out the similarities between the stand-
ing waves observed in granular beds and the those observed in vertically, vibrated
fluids. The latter waves, called Faraday instability waves, were first reported by
Faraday (1831) and have been examined in a number of works (see, for example,
Miles and Henderson, 1990). Both types of waves form as a result of the coupling
between the base oscillations and the particle motion. The two relevant time scales
in the formation of the waves are the forcing oscillation period and the free fall time
of the particles. This resonance condition selects the wavelength and amplitude of
the waves since the particles must recover from one wave to form a neighboring wave.

The Froude number scaling for the wave amplitude is not unexpected since the
Froude number can be interpreted as a measure of the maximum kinetic energy of the
waves, (aw)?, to their maximum potential energy, gn. The significance of a Froude
number greater than one suggests that some of the kinetic energy supplied by the
oscillating base is not being completely converted into potential energy in the waves.
The horizontal particle velocities and inelastic particle collisions may account for this
energy deficit.

Clément et al. (1996) also measured wave amplitudes in their experiments using
a two-dimensional layer (the container cross sectional dimensions were of order 100d
by d) of 1.5 mm diameter aluminum spheres operating in the f/2 wave regime (3.0 <
I' < 4.2 for hg/d < 16; the range of‘ frequencies is not clear). They found that the
wave amplitude varies linearly with vibration amplitude ( o a) which is consistent
with the present data for the f/2 wave amplitudes. If the Froude number (refer to
equation (6.1)) varies linearly with I', the wave amplitude will be proportional to the

oscillation amplitude and inversely proportional to I' ( o< a/T'). Thus, for a fixed T,
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n is proportional to a. The experimental f/2 wave amplitude data plotted in terms
of a Froude number against I' is shown in figure 6.6. The trend can be certainly be
considered linear for 3.0 < I' < 4.6.

The experiments (for the f/4 waves) and simulations (for the f/2 waves) show
that the wavelength of the surface waves has a weak dependence on the oscillation
acceleration amplitude, I'; and varies proportionally with the square of the inverse
oscillation fréquency, 1/f2. The experimental data for the f/2 waves does not show
this trend and instead is roughly constant with 1/f2. The reason for this trend is not
clear.

The experimental data for the f/4 waves and simulation data for the f/2 waves,
however, show that A increases linearly with 1/f2. A high frequency minimum wave-
length of Ag/d = 20 is also observed for both the experiments and the simulations.
The experimental work by Melo et al. (1995), Metcalf et al. (1996), and Clément et
al. (1996) have all indicated a similar dispersion relationship. The comparison with
fluids is often made since the wavelength for gravity waves in a deep fluid is also
proportional to 1/f%. Note that the effective gravity for the scaling at T' = 6.8 is
approximately 2g while the simulations at I' = 3.0 give g ~ 0.5g. The experiments
by Melo et al. and Metcalf el al. give a value of g, = 0.3g for a I of 3.0 and 3.5.
Clément et al. report that g.g ~ 0.1g for 3.3 < I' < 4.2. Note that in determining
the dispersion relation for the fluid case, the wave amplitude is assumed to be much
smaller than a wavelength. In the present experiments, the f/4 wavelength data fol-
lows a similar dispersion relationship yet the wave amplitude is on the same order as
the wavelength.

Just as viscosity has an effect on the onset of the Faraday instability waves in fluids,
the inter-particle friction, u,,, affects the onset of the waves in granular materials. The
critical I' at which the waves appear in fluids decreases as the fluid viscosity decreases
(refer to Bechhoefer et al., 1995). A similar effect is observed in the simulations with
inter-particle friction. When Upp 1s decreased, the critical onset I' for both the f/2
and f/4 waves decreases suggesting that inter-particle friction in granular materials

contributes to the effective viscosity of a granular fluid.
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These results for the f/2 and f/4 waves imply that vibrating granular beds have
many similarities with a fluid. Parametrically forced surface waves are observed for
both vibrating granular materials and fluids. The amplitude of the granular waves
scale with a Froude number based on the oscillation velocity amplitude while the
dispersion relation for the granular waves can be approximated by a relation based
on that for gravity waves in a deep fluid layer. Additionally, inter-particle friction

contributes to the effective viscosity of granular materials.
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Tables and Figures

w/d 200
ho/d 15
N 3000
Epp 0.50
K pp 3.602 x 10°> N/m
Vpp 2.092 %1072 N/(m/s)
ks pp 0.0 N/m
Hpp 0.0
lateral boundaries periodic
€pw 0.50
[ — 7.203 x 10° N/m
Vpw 4.184 % 1072 N/(m/s)
ks puw 0.0 N/m
Hpw 0.0
d 0.9-1.1 mm
P 2500 kg/m?3
At 4.337 % 107° sec

Table 6.1: The simulation parameters used to examine the surface wave behavior.
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Figure 6.1: An illustration showing the motion of the particles for f/2 waves over
two oscillation cycles.



123

Figure 6.2: An illustration showing the motion of the particles for f/4 waves over
four oscillation cycles.
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frequency squared, (1/w)? for the f/4 waves at I' = 6.8. The solid line is a least
squares fit to the equation, A/d = Xo/d + (geg/d)/ f* with Ao/d = 20.56 and gog =
19.85 m/s?.
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Figure 6.13: Simulations showing f/2 round-shaped waves (top) and cusp-shaped
waves (bottom) for a container oscillating at I' = 2.0 and f = 25 Hz (top) and
f =10 Hz (bottom). The simulation uses a container with W/d = 200 and ho/d = 40
(N = 8000). The remainder of the simulation parameters are given in table 5.2.
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Chapter 7 Kinks and Kink Convection

7.1 Experiments

When the flight time of the bed is greater than an oscillation cycle, another interesting
phenomenon, referred to as a “kink”, can form in the particle bed. Kinks are the
regions of the particle bed located between two sections of the bed that oscillate
out-of-phase with one another. A photograph of a bed with three kinks is shown in
figure 3.5 and the motion of the bed is illustrated in figure 7.1. Note that kinks are
never observed at wall boundaries.

The experimental measurements of the bed flight time (interpreted from the ac-
celerometer signal and from observations) indicate that kinks only appear after the
flight time of the bed undergoes a period doubling bifurcation. This bifurcation oc-
curs after a critical I, '}, which decreases with increasing bed depth. For example,
when hg/d = 10, the experimental value for I'} is 4.2 but T} = 3.0 for ho/d = 40.

Another interesting observation regarding the kink behavior is that different num-
bers of kinks can exist for the same particle bed and vibration parameters. Further-
more, kinks can be added or removed from the bed by perturbing the bed sufficiently.
A simple experiment was conducted where a bed exhibiting two kinks was stirred
with a mixing rod (for example, I' = 6.5, ho/d = 18, and f = 20 Hz). After the
perturbation ceased, only one kink remained. Further agitation with the mixing rod
produced three kinks. Subsequent experimentation found that for a given bed depth
and container size, there is a maximum number of kinks that can be appear in the
bed. This observation corresponds with the observations by Douady et al. (1989) that
there exists a minimum distance between kinks, [, that is a function of both the bed
depth, hg, and the vibration acceleration amplitude, I". Thus, the number of kinks
for a given bed depth, container width, and vibration parameters is not necessarily

unique.
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Measurements of this minimum distance were made using the 1.3 mm particles
in the 13.5 by 1.6 cm container for acceleration amplitudes, I', between 4.0 and 7.0
and bed depths, ho/d, between 5.5 and 46.1. The experiments were ‘conducted in the
following manner. The bed starts with a given number of kinks and the acceleration
amplitude is slowly decreased while the frequency is held constant. The I' at which
a kink suddenly disappears is recorded. The distance between the kinks just prior to
the transition is the critical kink separation distance. Note that the measurements are
insensitive to frequency for 15 < f < 40 Hz. The measured transitions were sudden
and repeatable and the results are shown in figure 7.2 for f = 30 Hz where the
vertical axis is the particle bed depth, ho/d divided by the measured minimum node
separation distance, [/d, and the horizontal axis is the acceleration amplitude, I'. The
ratio, ho/l, clearly increases with increasing I' indicating that for a given container
width and I, the maximum number of kinks decreases with increasing ho/d. Similarly,
the maximum number of kinks decreases for a fixed ho/d as I' decreases. The plot
also indicates that ho/l approaches zero when I' &~ 4.0, the approximate value at
which kinks first appear. Douady et al. (1989) made similar measurements using
0.63-0.80 mm diameter glass spheres and found that the ratio hg/l varied linearly
with I' where ho/l = 0.16(I' — 4.2). A linear fit to the current data gives a slope of
0.27.

Bracketing each kink is a pair of counter-rotating convection cells. The motion of
particles, when averaged over several oscillation periods, is such that particles move
down at a kink and up on either side of it. An illustration of the long term particle
motion is shown in figure 3.6 for a bed with three kinks. The rotational speed of
the convection cells increases with increasing I' and as the number of kinks increases.
When kinks are located near wall boundaries, particles move up at the walls (note that
kinks are never observed at the walls) implying that the kink convection is stronger

than the side wall convection.



139
7.2 Theory

In order for kinks to form, a period doubling bifurcation in the bed flight dynamics
must occur. This effect is illustrated in a simple model consisting of two totally in-
elastic balls separated by some horizontal distance and constrained to move vertically
on é sinusoidally oscillating base. This model is very similar to the one used to in-
vestigate the sudden bed expansion observed in shallow beds in section 4.2. The only
differences with the present model are that two balls are considered and each ball is
assumed to be completely inelastic. Modeling the bed (or sections of the bed) as a
completely inelastic particle is a valid assumption since the large number of collisions
that occur between particles during a collision with the base quickly dissipates all of
the kinetic energy in the bed though individual collisions between particles are nearly
elastic.

For a totally inelastic particle, the mapping equations 4.6 and 4.7 reduce to

1

—5(% — p-1)? + Prf_l(qﬁn —¢p_1)+sing,_; —sing, =0 (7.1)

PF =T cos ¢, (7.2)

Since the collision is completely inelastic, the balls assume the velocity and position

of the base after a collision until the acceleration of the base is less than —g,
—I'sin¢, < —1 (7.3)

The bifurcation analysis performed in section 4.2 indicates that saddle node bi-
furcations occur at

Iy =mnm (7.4)

and change of stability bifurcations occur at

I =+vm2n?+4 (7.5)
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where m is a positive integer.

For I' < Ty (I' < ), only a single trajectory is possible with a flight time, At, less
than an oscillation period, 7. The motion of the ball repeats every cycle. Thus the
stable motion for the two balls is identical and synchronous. In the upper left corner
of figure 7.3 the trajectory for the balls when I' = 2.0 is shown. The corresponding
flight time can be determined from figure 7.4 which shows At as a function of I'.

When I < ' < I} (3.1 < T < 3.7), two trajectories appear with flight time
At = T. The two are 180° out-of-phase but only one of the trajectories is stable. The
stable motion of the balls for I' = 3.4 is shown in the upper right of figure 7.3 and
the flight time is indicated in figure 7.4.

For Iy < T < T3 (3.7 < T < 6.3), the ball has a single trajectory but with two
flight times, At; > T and At; < T, the sum of which is less than two oscillation
periods, Aty + Aty < 2T. Thus, the ball motions can be out-of-phase. Furthermore,
each trajectory repeats every two oscillation cycles as is shown at the bottom right
of figure 7.3 for I' = 4.0 (refer to figure 7.4 for the flight times). The two possible
particle trajectories are indicated in the figure.

Another interesting trajectory occurs when I'f = 4.6. For I'; < I' < I'}, the ball
has a single flight time (figure 7.4). As I increases from I’} to '}, the first flight time
At increases and the second flight time, At; decreases until at I'j, only a single flight
time remains with At < 2T. The ball motions still repeat every two oscillation cycles
as seen at the bottom left of figure 7.3. Note that other period doubling bifurcations

occur at higher values of T.

7.3 Simulations

Kinks and their associated convection cells are also observed in the simulations. A
snapshot from a simulation with two kinks is shown in figure 7.5 with the long term
convective motion shown in figure 7.6.

The convection cells form as a result of the out-of-phase motion of the bed (possible

only after the period doubling bifurcation) and the dilation of the particle bed during
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flight. When a section of the particle bed collides with the oscillating base, particles in
that region consolidate and, in effect, become “solidified.” The particles that are still
in flight avalanche over these solid-like regions of material. This effect is clearly seen
by examining the average instantaneous particle velocity vectors for various stages of
the kink evolution. The method for determining the averaged instantaneous velocity
vectors was described previously when discussing side wall convection. Figure 7.7
shows the av‘eraged instantaneous particle velocities relative to the base at a phase
angle of zero radians for a bed exhibiting two kinks. The solidified region of particles
is clearly seen in the center of the figure as the region with small magnitude velocity
vectors. Particles avalanching down and away from the solidified region are also
apparent. A similar velocity field is observed for the same phase angle during the
next cycle except the in-flight and solidified regions of the particle bed are switched.
Particles still avalanche toward the base at the kinks but the horizontal velocity
component is opposite that for the previous cycle. The average particle motion over
several oscillation cycles produces the pairs of counter-rotating convection cells that
bracket each kink.

These convection cells appear whenever kinks occur, even when u — 0.0 - counter
to the case for side wall convection. Additionally, the two convection mechanisms
compete when wall boundaries are included in the simulations. At the walls, the
side wall convection behavior forces particles to move down at the walls while, if
a kink is present near the wall (recall that kinks never appear at wall boundaries),
the kink convection results in upward particle movement at the walls. In all of the
simulations observed here, the kink convection mechanism is stronger than the side
waﬂ convection mechanism and as a result, particles move up at the walls when kinks
are near wall boundaries. However, when kinks are far from the walls, the side wall

mechanism dominates and particles move down at the walls.
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7.4 Discussion

The observation that I'} and I'{ decrease with increasing hy/d is different than what
1s reported by Douady et al. (1989). They found that the critical values increase with
increasing ho/d and attribute this behavior to the effects of the interstitial fluid. The
reasbn for this discrepancy is not clear. Indeed, drag on the particle bed will cause
the critical values of T' to increase. One effect that may also be an important factor
is the vertical dilation of the bed but this was not studied in the present work.
Douady et al. (1989) proposed a mechanism that explains the trend for the min-
imum kink separation distance as well as the observed convection cells. Their hy-
pothesis emphasizes the differences in the packing structure of the bed and is best
explained using the series of illustrations shown in figure 7.8. Recall that kinks appear
because sections of the bed oscillate out-of-phase with each other. When a region of
the bed comes into contact with the container base, the particles in that region con-
solidate and “solidify.” The particles in the dilated, fluid-like regions avalanche down
the slopes of the solidified region toward the base and also become solidified. The
minimum separation distance, [, is the width achieved by the solidified region before
it leaves the container base. The convection cell behavior is also produced. Particles
avalanching down the solidified region’s slopes have a downward motion away from
the solidified region. However, during the next oscillation cycle, the solidified and
fluid-like regions are switched and so particles have a downward motion toward the
formerly solidified region. Since mass must be conserved, particles at the center of
the fluidized regions are forced upwards. This particle motion, when observed over
several oscillation cycles, produces a pair of counter-rotating convection cells where
particles move down at the kinks. The simulations indicate that this effect is indeed

occurring.
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r 6.0
f 25 Hz
W/d 200
ho/d 40
N 8000
Epp 0.70
v pp 4.701 % 10°> N/m
Vpp 1.251 * 1072 N/(m/s)
s pp 0.0 N/m
Hop 0.0
lateral boundaries periodic
Epuw 0.70
kv pw 9.402 * 10> N/m
Vpw 2.502 1072 N/(m/s)
ks pw 0.0 N/m
Hpw 0.0
d 0.9 - 1.1 mm
p 2500 kg/m?
At 4.337 % 107° sec

Table 7.1: The simulation parameters used for the simulation shown in figure 7.5.
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Figure 7.1: A series of illustrations of the bed motion with three kinks (indicated by
arrows) over two oscillation cycles.
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Figure 7.5: A particle bed with two kinks for I' = 6.0 and f = 25 Hz. The remainder

of the simulation parameters are given in table 7.1.
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Figure 7.6: The long term particle velocity vectors for the bed in figure 7.5. Particles
move down at the kinks which are indicated with arrows. The velocity vectors are
averaged over eight samples.
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Figure 7.8: Illustrations showing the mechanism proposed by Douady et al. (1989)
to explain the minimum kink separation distance and the convection cells associated
with kinks.
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Chapter 8 Vibrating Hopper Flows

8.1 Experiments

The experimental apparatus for examining vibrating hopper flows is similar to that
described in section 2.1.2 for studying the vibrated, deep bed behaviors. A two-
dimensional wedge hopper was mounted on the Ling electromagnetic shaker that
provided vertical, sinusoidal vibrations. The acceleration level and frequency of the
oscillations could be controlled independently and were monitored with an accelerom-
eter mounted on the base plate of the shaker. The front and rear hopper walls were
lined with smooth window glass and the lateral inclined boundaries consisted of lucite
with a milled surface. The distance between the front and back walls of the hopper,
Wy, was 1.27 cm (approximately 10d) deep and had an exit width, W,, of 4.0 mm
(approximately 3.1d) with walls angled 45° outward from the vertical centerline of
the hopper.

The hopper was filled with approximately 200 gms of 1.3 mm diameter glass
spheres giving an average free surface height above the exit plane, hg, of 24We. For
the non-vibrating hopper the total time of discharge for the material was 21.8 seconds
resulting in an average mass discharge rate of Dy = 9.2 gm/sec. The discharge time
was determined by recording the time it took for the hopper to completely discharge
after the exit was first opened. The discharge rate is constant during most of the
discharge period except for a short initial transient period when the hopper exit is
first opened and a final transient when the head of material is less than roughly W,
(see, for example, Nedderman et al., 1982). The initial and final transient effects did
not significantly affect the average discharge rate.

During discharge without vibration, the free surface of the material formed a V-
shaped valley. Particles avalanched continuously down the sloped surfaces toward

the centerline of the hopper. Next to the inclined walls, two stagnant flow regions
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were observed characteristic of funnel-flow conditions. As material discharged from
the hopper, the stagnant flow regions became smaller until all of the material in the
hopper flowed:

When the exit was closed and the hopper subjected to vertical oscillations, a
circulation pattern formed similar to the one described in chapter 5 but opposite in
direction. A boundary layer of particles moved up to the free surface along the inclined
walls of the container and down at the centerline of the hopper as shown in figure 8.1.
A small region near the exit of the hopper always remained stagnant, however. When
the hopper exit was opened, the convection cells were no longer apparent and mass-
flow behavior resulted instead of the funnel flow behavior observed for the static
hopper. Using a strobe lamp, f/2 surface waves were observed on the free surface of
the bed when the dimensionless acceleration amplitude, T', was greater than 2.5 up
to I' = 4.0, the maximum I' examined in these experiments. The waves continued to
form as the material discharged until the bed height in container was approximately
5W, above the exit plane.

The mean discharge rate from the vibrating hopper was also measured. The dis-
charge rate divided by the static hopper discharge rate is plotted in figure 8.2 as a
function of the dimensionless oscillation velocity amplitude, aw/+/gd. For dimension-
less velocity amplitudes less than approximately 0.40, the discharge rate from the hop-
per is greater than that for a non-vibrating hopper. For example, at aw/+/gd = 0.3,
D / Do ~ 1.05. As the velocity amplitude of the oscillations increases, however, the
discharge rate decreases. When aw/+/gd > 0.7, the vibrating hopper discharge rate
is less than the static hopper discharge rate and at aw/\/gd = 2.8, D/Do ~ 0.75.

8.2 Simulations

The soft particle method described in section 2.2 was also used to investigate the
vibrating hopper experiment. The baseline simulated hopper consisted of two walls
angled outward from the centerline of the hopper at 45° with an exit width of 10d.

The remainder of the simulation parameters are given in table 8.1.



154

Simulations were first run for a vibrating hopper with a closed exit. Convection
cell patterns similar to those observed in the experiments were produced. Figure 8.3
shows the long term particle velocities for a bed oscillating at I' =2.0 and f =5 Hz
(the remainder of the simulation parameters for this simulation are given in table 8.2).
The convective motion of particles is clearly seen with particles moving up at the
walls and down in the center of the hopper. The convective motion is weaker at
higher frequehcies and smaller I' similar to the trends observed in chapter 5. On the
free surface of the bed f/2 waves are also observed.

The discharge rate from the hopper was also examined for varying vibration pa-
rameters. In order to examine the discharge rate from the simulated hopper over
long periods of time while keeping the number of particles in the simulation small,
particles discharged from the hopper were recycled back into the top of the hopper.
When particles were greater than an exit width, W,, below the hopper exit plane,
their vertical position was changed such that they were placed just above the free
surface of the bed. The particle velocities were also set to zero in order to reduce the
impact magnitude with the bed. Since the free surface of the bed was approximately
6.5W. above the exit plane, the refilling procedure had little effect on the particle
behavior near the hopper exit. As a check, the discharge rate for a simulation where
particles are not recycled was compared with the discharge results compared with a
refilled hopper and the results were similar. The discharge rate results for the simu-
lated hopper using the parameters in table 8.1 are shown in figure 8.2. Note that the
discharge rate for the simulated hopper is non-dimensionalized by the discharge rate
for a simulated non-vibrating hopper. The simulation discharge rate also decreases
With increasing vibration velocity amplitude but the small increase at low vibration
velocities is not observed.

The instantaneous discharge rate was also examined using the simulations. Fig-
ure 8.4 shows the instantaneous discharge rate, d, non-dimensionalized by the mean
d.ischa,rge rate for a non-vibrating hopper, DO, as a function of the dimensionless oscil-
lation phase angle, ¢/(2m), where ¢ is the phase angle in radians. The instantaneous

discharge rate was determined by counting the number of particles that pass the exit
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plane of the hopper over a specified period of time. The data suggests that the dis-
charge rate from the hopper varies with the effective gravity acting on the bed. Thus,
when the hopper walls are accelerating upwards, the effective gravity acting on the
bed is greater than g and the discharge rate increases. When the bed is decelerating
and the effective gravity is less than g, the discharge rate decreases. Note, though,
that when the bed is in-flight and the effective gravity is zero (the bed is in free fall),

the particles continue to discharge from the hopper.

8.3 Discussion

The side wall convection up at inclined walls can be explained using the asymmetric
drag argument proposed in section 5.2. When the bed leaves the floor in the inclined
wall container, few particle collisions occur with the walls since the walls slope away
from the bed (refer to the top of figure 8.5). Thus, the downward acting shear force
on the bed is nearly zero. While the bed is in flight, it dilates since it is no longer
constrained by the container walls. As a result of the dilation, when the bed falls back
to the container base it contacts the inclined walls of the container prior to impacting
the base (the bottom of figure 8.5). These collisions result in an upward acting shear
force on the bed since the walls of the container are moving up relative to the bed.
Thus, the net shear force acting on the bed due to the container walls is in the
positive vertical direction over an oscillation cycle and the upward moving boundary
layer at the walls is produced. This convection behavior at inclined walls has also
been observed in experiments by Takahashi et al. (1968) and Knight et al. (1993).
The decrease in the discharge rate from hopper may be attributed, in part, to
the effective gravity acting on the bed over an oscillation cycle (refer to Suzuki et

al., 1968). The instantaneous discharge rate from the hopper, d, is given by

d o py, /gei:sz/2 (8.1)

where py is the bulk density of the granular material, g.g the effective gravity acting
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on the bed, and D), the hydraulic diameter of the exit orifice (refer to Nedderman
et al., 1982). The effective gravity varies over an oscillation cycle since the bed rests
on the accelerating hopper walls, is in free flight, and impacts the hopper walls at

different times in the oscillation cycle. The values for the effective gravity are given

bY? '

g(1 = Tsin(wt)) 0< 1t <t the bed rests on the hopper walls

o lo <t <t the bed is in flight
Jefl = dy,/dt ty <t <t + At the bed impacts the hopper walls
| 9(1 —Dsin(wt)) 1+ At <t <T the bed rests on the hopper walls

(8.2)
where 1, is the time at which the bed starts to free fall, dy,/dt the acceleration of the
bed during impact with the hopper walls, ¢; the time at which the bed first contacts
the hopper walls, At the impact duration, and T the oscillation period. The mean

acceleration of the bed during impact is given by,

Yp(ts + At) — p(t1)
At

dy,/dt = (8.3)
where g,(1; + At) = aw cos(w(t; + At)) and g,(t1) = —g(t1 — to) + aw cos(wty). Note
that if I' <1, the bed does not leave the hopper walls and

Joff = 9(1 — I'sin(wt)) (8.4)

over the entire oscillation period. Additionally, it is also assumed that particles do
not re-enter the hopper exit during free fall.

If the time of impact is assumed to be small such that, ¢; + At ~ #;, the mean
discharge rate over an oscillation cyclé, D, non-dimensionalized by the mean discharge

rate for a non-vibrating hopper, DO, for I' > 1 is given by
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- %o
DE = 51;(/ V1 —T'sin¢de + /T cos ¢ — L' cos ¢o + b1 — pov/ A+
Ly 0
27
/ /1 = T'sin ¢d) (8.5)
4]

where ¢ = wt. The phase angles at which the bed leaves the hopper walls, ¢g, and
re-contacts the walls after free-falling, ¢,, are functions of I' and can be determined

from equations (7.1), (7.2), and (7.3). I T <1,

D _ L ( / " \/mdcb) (8.6)

Do

Suzuki et al. (1968) also derived equations (8.5) and (8.6) but included an empir-
ically derived expression for the bulk density of the bed as a function of I' (p; is
assumed constant in the present analysis). Suzuki et al. also assumed that the di-
mensionless impact time, A¢, remains constant for all operating conditions. Thus,
the mean discharge rate given by equation 8.5 depends only on I'. Figure 8.6 shows
the experimental and simulation data for D / Dy as a function of T for the frequencies
examined here. The solid line is equation (8.5) and (8.6) using a value of A¢ deter-
mined from the experimental data for I' = 2 and f = 20 Hz. As is evident in the
plot, the experimental data clearly does not collapse to a single curve when plotted
against [' as suggested by the model. Several problems with the model may account
for this discrepancy. First, the model assumes that no particles discharge from the
hopper while the bed is off the hopper walls. The simulation results clearly show
that this is not the case (refer to figure 8.4). Particles continuously discharge from
the hopper even at high I'. Second, the dimensionless impact time, A¢ is assumed
to be a constant and small compared to the flight time of the bed. However, at high
frequencies the impact time may comprise a significant portion of oscillation period.
Lastly, the model presented here does not include the effects of changes in the bulk
density of the material as a function of the oscillation parameters. The simulations

suggest that when the bed is in flight, the bed dilates and as a result, the bulk density
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decreases. Hence the discharge rate will also decrease. Despite these deficiencies, the
model does a reasonable job of predicting the discharge rate trend for the range of I'
and frequencies examined here.

The effect causing the slight increase in the discharge rate at low velocity am-
plitudes is unclear. One possible mechanism that may account for this trend is the
decrease in the effective viscosity of the granular material as a result of the oscillations.
The vibration causes particles to oscillate in their local neighborhoods - continuously
forming and breaking contacts with surrounding particles resulting in more fluid ma-
terial. Indeed, the experimental measurements by Zik et al. (1992) show that the
mobility of a particle in a vibrating bed is much greater when I' > 1 than for I' < 1.
It should be noted though that Zik et al. also indicate that the mobility decreases
with increasing frequency. Thus, for a fixed I', the mobility decreases with decreasing
velocity amplitude since aw = gI'/w. However, as the velocity amplitude decreases,
the maximum height that the bed reaches above the hopper exit also decreases and
the effective gravity mechanism becomes less significant. Hence, the two mechanisms

may compete at low velocity amplitudes.
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Tables and Figures

f 20 Hz
W, /d 10
0. 459
i 6.5
N 5000
-~ 0.80

Fnon | 5289 % 10° N/m
Vpp | 8337 %1072 N/(m/s)
Fspp | 5289 %10° N/m
Pepp 0.577

€pw 0.90

kn pw 1.181 * 10* N/m
Vpw | 8.334% 1072 N/(m/s)
Fopw | L1181 #10° N/m

Popw 0.577
d 0.8-1.2 mm
p 2500 kg/m?
At 3.310 * 107° sec

Table 8.1: The simulation parameters used to examine the vertically vibrating hopper.
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r 2.0
f 5 Hz
W./d 25.0
0., 25°
N 513
€Epp 0.90

Fnps | 5.904 % 10° N/m
Vpp | 4.167 %1072 N/(m/s)
ks pp 5.904 x 10°> N/m
Fpp 0.5

€pw 0.90

Fnpe | L.ISL%10% N/m
Vpw | 8.334 %1073 N/(m/s)
ks p 1.181 * 10* N/m

Epw 1.0
d 0.8-1.2mm
p 2500 kg/m*
At 3.310 % 107 sec

Table 8.2: The simulation parameters used to examine the closed vertically vibrating
hopper.
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s

Figure 8.1: An illustration of the side wall convection cells in a vertically vibrating
wedge-shaped hopper.
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Figure 8.3: The long term velocity vectors for a wedge-hopper with a closed exit.
Particles move up along the walls and down in the center of the container. The
velocity vectors were averaged over 20 cycles and the circles at the end of the vectors
indicate the vector arrowheads. The remainder of the simulation parameters are given
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f = 20 Hz and the remainder of the simulation parameters are given in table 8.1.
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Figure 8.5: The particle bed in figure 8.3 at a phase angle of ¢/(27) = 0.30 (top)
and ¢/(2m) = 0.80 (bottom). The simulation parameters are given in the caption to

table8.2.
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Chapter 9 Summary and Conclusions

9.1 Summary of the Current Work

The results of the experiments and simulations with granular beds subject to vertical,
sinusoidal oscillations are summarized. Shallow and deep beds have significantly
different behavior. In experiments using 1 mm and 3 mm glass spheres, the critical bed
depth differentiating the two regimes was found to be approximately six particle layers
when the acceleration amplitude of the oscillations is approximately 2¢g. Discrete
element simulations indicate that the transition between the two states depends upon
the dissipation of rando‘m kinetic energy in the bed. When the energy is dissipated
prior to the next oscillation cycle, deep bed behavior results and the particles in the
bed move as a single, coherent mass. However, if the random kinetic energy is non-
zero at the start of the next oscillation cycle, the bed remains in a fluidized, shallow
bed state.

Shallow beds are characterized by particle fluidization in which particles have
random motions and do not interact significantly. Four bed states, differing in the
degree of coherency in the particle motions, were observed similar to those described
by Thomas et al. (1989). The appearance of the various states in the experiments
depends primarily upon the dimensionless bed depth, ho/d, where hg is the bed
depth and d a particle diameter, and on the acceleration amplitude of the oscillations,
I' = aw?/g, where a is the oscillation amplitude, w the oscillation frequency, and g
the acceleration due to gravity.

In the shallowest beds, particles bounce around randomly and the structure of
the bed changes very little during an oscillation cycle (the Newtonian-I state.) For
slightly deeper beds, particles continue to bounce around randomly during most of
an oscillation cycle, however; a dense band of particles forms near the base of the

container once each cycle (the Newtonian-II state.) In the third state, referred to
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as the coherent-expanded state, the particles move as a coherent mass, however; the
mass expands and contracts considerably during an oscillation cycle. The last state,
known as the coherent-condensed or deep bed state occurs when ho/d = 6 for glass
spheres. In this state, the particle bed moves as a coherent, completely inelastic body.
The transitions between all but the last two states are gradual. The transition from
the coherent-expanded state to the deep bed behavior is sudden and repeatable.

The transition from the deep bed state to the coherent-expanded state is char-
acterized by a sudden expansion of the bed. For a fixed bed depth, this transition
occurs at a critical oscillation acceleration amplitude of approximately I' = 1.9 for
glass spheres. Furthermore, the inverse Froude number based on the oscillation ve-
locity amplitude and the bed expansion can be used to quantify the expansion of the
bed in both the sub-critical and super-critical regimes. The expansion is a result of
the elasticity of the bed. A simple model consisting of a partially elastic ball bouncing
on a sinusoidally oscillating table exhibits a similar sudden expansion (defined as the
maximum height between the ball and the base) at a critical acceleration amplitude.
The sudden expansion occurs due to a period doubling bifurcation in the flight dy-
namics of the bed (or ball). Simulations indicate that increasing the rate of energy
dissipation in the bed, for example by increasing the friction coefficient or decreasing
the coefficient of restitution, causes the critical acceleration amplitude to increase.

The behavior of deep beds (ho/d > 6) is significantly different and is character-
ized by the coherent motion of the particles which move together like a single, plastic
mass. In the deep bed regime, a number of interesting behaviors are observed depend-
ing primarily upon the acceleration amplitude, I'. The depth of the bed is also an
important parameter since the I' at which the various phenomena appear decreases
with increasing ho/d. These phenomena include side wall convection, mounds, surface
waves, kinks, and the convection cells associated with kinks.

The side wall convection behavior appears for I' > 1 and consists of particles
m.oving down along the vertical walls of the container, subducting back into the bulk
of the bed at various depths from the free surface, and returning to the free surface in

an upward flow within the bulk. The width of the downward boundary layer is inde-



169

pendent of depth and is on the order of ten particle diameters, when the bed aspect
ratio (defined as the bed depth, ho, over the container width, W) is less than 0.2.
For this range of aspect ratios the convection cells at opposite walls of the container
do not interact. However, when ho/W > 0.2, the convection cells interact and the
boundary layer thickness is proportional to the container width. The height of the
convection cell center above the base, h, varies linearly with the depth of the bed, ho.
The ratio, h/hg, decreases with increasing acceleration velocity amplitude; an effect
that is due to mass conservation. The downward particle flux in the boundary layer,
j4, also increases with increasing oscillation velocity amplitude. Computer simula-
tions indicate that increasing the particle/wall friction increases j4, while increasing
the coefficient of restitution decreases the downward flux in the boundary layer.

The mechanism causing the side wall convection behavior involves particle inter-
action with the boundaries and the dilation of the particle bed during flight. When
the bed first leaves the base, it is densely packed and collisions occur with the walls
of the container. Since the walls are moving down relative to the bed, particles that
contact the wall are retarded in their upward movement compared to the remainder
of the bed. In addition to affecting the particle vertical velocities, the shearing at
the walls causes the particles to move away from the walls toward the center of the
bed. This action, coupled with the fact that the bed is free to dilate in the vertical
direction, means that fewer collisions occur between the particles and the walls as the
flight time of the bed progresses. Thus, as the bed falls back toward the base, fewer
collisions occur with the walls, which are now moving up relative to the bed. As a
result, over an oscillation cycle a net downward shear force acts on the bed creating
the downward boundary layer observed at the vertical walls. This same mechanism
is also able to explain the upward movement of particles at inclined walls such as in
a vibrating wedge-shaped hopper.

Rounded, symmetric mounds form as a result of the convective motion at the
V\;alls. Particles at the boundaries move down along the walls leaving the free surface
of the bed. The depression that remains is not immediately filled by the neighboring

particles since beds of granular materials have an angle of repose. The slope of this
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mound is much less than the static angle of repose due to the de-stabilizing effects of
the forcing oscillations.

At least two other mechanisms have been shown to form mounds and convection
cells. Interstitial fluid effects, important when small particles are used, produce sharp
peaked mounds and convection cells far from the influence of wall boundaries (Pak et
al., 1995). Additionally, horizontal vibrations coupled with vertical vibration can
form asymmetric mounds and convection cells as a result of a vibrating conveyor
mechanism (FEvesque, 1995). These behaviors emphasize the sensitivity of the bed
behavior to external oscillations and fluid effects.

Parametrically forced standing surface waves are another phenomenon observed in
deep beds subject to vertical oscillations. Two regimes of waves appear depending on
the acceleration amplitude of the vibrations. The range of the acceleration amplitude
at which the waves appear increases with decreasing inter-particle friction which plays
a role similar to that of viscosity in fluids. The first set of waves, known as f/2 waves
form at a frequency that is one-half the forcing oscillation frequency. The second set
of waves form at one-quarter the forcing frequency and are referred to as f/4 waves.
The Froude number for the waves, based on the velocity amplitude of the oscillations
and the wave amplitude, is nearly constant regardless of oscillation frequency or
acceleration amplitude. Furthermore, the wavelength of the standing waves scales
with the inverse oscillation frequency squared, the same as that for gravity driven
surface waves.

For acceleration amplitudes beyond a critical value, kinks appear in the particle
bed. Kinks are the regions of the bed between two sections that oscillate out-of-phase
with each other. The simple model used to examine the sudden expansion in the
shallow beds, consisting of a single inelastic ball on an oscillating base, can be used to
describe the kink behavior. One key difference for modeling the kink motion, however,
is that the bed is considered to be completely inelastic. Using this approach, period
d;)ubling bifurcations are observed to occur in the flight dynamics. When the first
such bifurcation appears, the kinks can appear.

The number of kinks that may appear for a given operating condition is not nec-
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essarily unique. Experiments indicate that the number of possible kinks is limited
by a minimum kink separation distance which is inversely proportional to the oscil-
lation acceleration amplitude and proportional to the depth of the bed. The physical
mechanism limiting the number of kinks also explains the pairs of counter-rotating
convective cells that bracket each kink. The mechanism consists of solid-like regions
of material forming during impact with the oscillating base and the remaining fluid-
like particles avalanching over them. The resulting motion averaged over several
oscillation cycles produces the convection cell motion.

Many of the same phenomena observed in vertically vibrating boxes are also ob-
served in vertically vibrated wedge-shaped hoppers. Side wall convection cells appear
along the inclined walls of the container with particles moving up along the walls and
down in the center of the bed - a direction opposite that for vertical walls. Surface
waves are also observed on the free surface of the bed, even as the material in the
hopper is discharging. The discharge from the hopper is also significantly affected by
the external vibrations. At low oscillation velocities, the mass discharge rate from
the hopper increases slightly, while at high oscillation velocities the discharge rate
decreases significantly. The cause of the discharge rate dependence on the oscillation
velocity is not entirely clear. At low velocity amplitudes the effective viscosity of the
bed may be reduced resulting in the increased discharge rate. The decrease in the
discharge rate at higher oscillation velocities is due, at least partially, to the change
in the effective gravity acting on the particle bed. Examination of the discharge ve-
locity as a function of oscillation phase angle indicates that the flow from the hopper
decreases when the effective gravity acting on the bed decreases, but does not go to

zero as i1s expected when the effective gravity is zero.

9.2 Broader Issues

These experiments and simulations illustrate some of the important issues regarding
the behavior of flowing granular materials in general. First, the boundary conditions

can play a significant role in the behavior of beds of particles. Not only do parti-



172

cle/wall properties such as friction or coefficient of restitution affect the response of
a flowing material as is scen with the downward particle flux associated with side
wall convection cell, but the style of the input of energy at the boundaries also is
important. The coordinated movement of the particle bed as a result of the vertical,
sinusoidal movement of the base gives rise to periodic bed motions such as standing
surface waves and kinks. It is not clear that these behaviors would appear if this
boundary were modeled as an input of random kinetic energy. Thus, an accurate
representation of the boundary conditions is important when modeling a system of
granular material. |

A second important issue concerns the interaction of particles in a flowing granular
material. The phenomena observed in the present experiments indicate that the fluid-
and solid-like nature of a granular material as well as the interactions between the two
are important to the behavior of the bed. For example, the convection cells associated
with kinks are caused by such a fluid/solid interaction. Additionally, the observed
surface waves show many fluid-like properties while the mounding behavior can form
a stable slope, a solid-like property. This fluid/solid interaction is also evident in the
transition between the deep bed and shallow bed states. Current modeling techniques
such as the kinetic theory or soil plasticity methods do not address these fluid/solid
interactions.

The work performed here also reflects some of the limitations of current experi-
mental techniques and demonstrates the value of computer simulations. For example,
all of the observations in the present work have been limited to observing the behavior
of particles at boundaries. As is evident with the side wall convection behavior, what
occurs at the boundaries may not be representative of what is occurring within the
bulk of the material. Additionally, measurements of properties such as inter-particle
forces or particle-particle contact duration may provide useful information but are
not readily obtainable using current experimental techniques. Computer simulations,
h(;wever, can provide such information. Furthermore, the trends observed in the
experiments are reproducible in simulations suggesting that simulations can also be

used qualitatively as a valuable predictive tool.
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Appendix I: Remarks on the Effect of the Intersti-

tial Fluid

“When I' > 1, the particle bed lifts off the base of the container. As a result, the
interstitial fluid (usually air) percolates through the particle bed from the atmosphere
to fill the gap between the bed and base. Conversely, when the bed falls back toward
the base, the interstitial fluid in the gap is forced back through the particle bed into
the atmosphere. The motion of the fluid relative to the particles in the bed may
affect the observed deep bed phenomena. In order to quantify this effect, a simple
analysis is performed below comparing the pressure gradient acting on particles due
to the percolation of the interstitial fluid through the bed to the pressure gradient in
the bed due to the weight of the particles.

The pressure gradient due to the fluid effects can be estimated from Darcy’s Law,
which in 1D, is given by
(dp/dy); = %v (9.1)

where (dp/dy); is the pressure gradient in the bed, u; the viscosity of the interstitial
fluid, x the permeability of the bed, and v the velocity of the fluid relative to the
bed. For the present analysis, the permeability of the bed, x, is assumed to follow
the Ergun relation (refer to Nield and Bejan, 1992)

d*®3

"= 50 o (9:2)

where d is the particle diameter and @ is the bed porosity (® = 1 — v where v is the
solid fraction of particles in the bed). Additionally, a representative velocity in the
system is the velocity amplitude of the oscillations, v = aw, where «a is the oscillation
amplitude and w is the oscillation radian frequency (w = 27 f where [ is the cyclic
oscillation frequency).

The pressure gradient in the bed due to the weight of the particles is simply the
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hydrostatic pressure given by

(dp/dy)n = psgess ‘ (9.3)

where p, is the bulk density in the bed (p, = (1 — ¢)p, where p, is the density of
an individual particle) and g.fs is the effective gravity acting on the bed. For the
vibrating bed this can be estimated as the oscillation acceleration amplitude, aw?.

Taking the ratio of the two pressure gradients and simplifying gives

(dp/dy); _ 150p;(1 — @)
(dp/dy)n prd? ®Pw

(9.4)

For a bed of glass spheres (p, = 2500 kg/m?) in a random packed arrangement
(¢ ~ 0.4) in dry air (gy = 1.80 * 107> N-s/m), the ratio becomes

(dp/dy)f . 1.0%10°°
(dp/dy)r ~  dPw

(9.5)

For frequencies between 10 and 20 Hz this ratio is one when d is approximately
0.3 mm. In all of the experiments performed here, the particles have diameters on
the order of 1 mm diameter, well above this critical diameter. Thus, interstitial fluid
effects are not expected to significantly affect the particle bed behavior for these
parameters. A more detailed analysis of the effects of the interstitial fluid on the bed

behavior can be found in Pak et al. (1995).
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Appendix I1: Remarks on the Choice of Particle/Particle

Simulation Interaction Parameters

The particle/particle interaction parameters used in the simulations include the

o coefficient of restitution, €,
e sliding friction coeflicient, g,

e normal spring constant, k, ,,,

e tangential spring constant, ks p,.

e normal dashpot coefficient, v,

The procedure for determining these parameters is described in chapter 2, section
“Simulation Parameters.” The effect of varying these parameters on the simulation
results is discussed here.

Most of the simulations use the same value for the parameters: €,, = 0.8, u = 1.0,
knpp = Kspp = 5.289 % 10°> N/m, and v, = 8.337 x 10~ N/(m/s) as indicated in the
tables at the end of each chapter. Overall, the deep bed phenomena did not differ
significantly in a qualitative sense over the entire range of ¢,, and y,, investigated.

The sensitivity of the behaviors on the normal and tangential spring stiffnesses,
knpp and k,p,, and the normal dashpot coeflicient, v,,, was not examined in the
present work. The value of k, ,, was chosen such that the typical overlap in a parti-
cle/particle collision is less than 1% of the smallest particle radius in the system. The
results are expected to be insensitive to the spring stiffness as long as &, ,, is suffi-
ciently large so that dense assemblies of particles overlap less than 1% of the particle
radius . When the overlap is greater than 1%, the excluded volume (or area in 2D) is
large enough to affect the measured values of the transport properties (see, for exam-
ple, Campbell, 1986). The ratio of the tangential spring stiffness to the normal spring
stiffness, k, pp/kn pp, should be between 2/3 and 1 according to the analytical results
of Mindlin (1949). In the present work k; ,,/knp = 1 for all of the simulations. Cun-

dall and Strack (1979) determined that this ratio is significant when particles are in
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constant contact and the friction coeflicient is large. For the simulations performed
here the particles are not in constant contact during a considerable portion of the
oscillation period and consequently it was expected that this ratio ‘would not signif-
icantly affect the simulation results. Lastly, the normal dashpot coefficient, v,,, was
not varied independently in the present simulations since it is an explicit function of
knpp and €pp.

The effect of changing the particle/particle sliding friction coefficient, p,p,, and
the coeflicient of restitution, €,,, on the observed deep bed behaviors was examined
qualitatively and found not to be fundamental to the deep bed phenomena.

The side wall convection behavior appeared for p,, = 0.0 as well as for pp,, = 1.0
as long as frictional walls were used in the simulation. The effect of ji,, on the side
wall boundary layer characteristics was not studied quantitatively, however. Since the
side wall convection behavior appears to be caused by frictional particle/wall inter-
actions, the sensitivity of the side wall convection phenomenon on the particle/wall
sliding friction coefficient, yy,,, was examined. The particle flow rate in the boundary
layer along the wall, wj,, decreases with decreasing p,,,, and is zero when pg,, = 0.
Additionally, wj; decreases for coefficients of restitution, €, and ey, greater than
approximately 0.8. In the many of the simulation used to investigate the side wall
convection behavior, pp, = 1.0 and €,, = €5, = 0.8. The high value of u,, was
chosen because it gives a high flow rate in the boundary layer. Consequently, fewer
oscillation cycles are required over which to average in order to determine the mean
motion of the particles. The value of €,, was chosen since it is a representative value
of €,, for glass spheres.

The surface waves appeared throughout the studied range of 0.0 < p,,, < 1.0. Two
qualitative changes were noticeable in the wave behavior. First, the waves appeared
over a wider range of I' when p,, was decreased and, second, the degree of saltation
on the free surface of the bed increased as p,, decreased. The effects on the wave
amplitude and wavelength were not examined. The qualitative effect of the coefficient
of restitution, €,,, over the range from 0.3 < ¢, < 0.98 was also examined. The waves

appeared over the studied range of ¢,, but the degree of saltation of particles at the
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free surface of the bed increased with increasing €,,. The benchmark simulation for
studying the wavelength of the surface waves in the simulations used p,, = 0.0 and
€pp = 0.5. The value for y,, was chosen in order to reduce the number of simulation
parameters and €,, was chosen to decrease the degree of saltation on the free surface
of the bed and allow for easy determination of the surface wave peaks.

Kinks and kink convection also appeared over the studied ranges of 0.0 < p,, < 1.0
and 0.3 < ¢, < 0.98. As with the surface waves, decreasing p,, or increasing e,,
resulted in an increase in the degree of saltation of particles.

In summary, the particle/particle interaction properties such as y,, and ¢,, do not
appear to be fundamental to the formation of the deep bed phenomena investigated
here. The detailed appearance of the behaviors, such as the degree of saltation at
the free surface of the bed, however, is affected and increases with decreasing energy
dissipation in the particle contacts. A more quantitative investigation of these particle
interaction parameters is needed to determine what value of these parameters is most
appropriate for simulating real materials. The vibrating bed simulation, however,
may not be the best environment to determine the appropriate parameters since the

phenomena appear to be robust to changes in p,, and €p,.
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Appendix III: Simulation Code

Following is the C code for a soft particle simulation of a vertically oscillating con-

tainer. The code was written by the author.
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/*

Program: bench.c

This is a 2D soft-particle discrete element simulation.

The simulation is set upsimulating a

two-dimensional box with vertical walls subjected to

vertical sinusoidal vibrations. WALL BOUNDARIES AND FRICTION.
*/

# include <stdio.h>
# include <stdlib.h>
# include <math.h>
# include <time.h>

# include <malloc.h>

# define PI (3.14159265)

/* gravity acceleration */
# define g (9.81)

/* ratio of overlap to the smallest particle radius at which a warning
is printed. */
# define MAX_OVERLAP (0.03)

/* maximum number of contacts per particle */
# define CONTACT_MAX (8)

/* function to tell the sign of a variable */
# define sgn(x) (x)>=0.0 ? 1.0 : -1.0)

/* input data file name */
# define filename_in ("bench.in")

/¥
the data structure for all particles in the simulation:
num: the particle identifying number (between 1 and N where N is the
total number of particles
cellx, celly: the cell in which the particle is located
contact[]: the numbers of the particles that are currently in
contact with this particle
X, y, thetaz: the transiational and rotational positions of the particle
xdot, ydot, thetazdot: the trans. and rot. velocities of the particle
Fx, Fy, Tz: the forces and torques acting on the particle
r, m, I: the particle’s radius, mass, and moment of inertia
deltas[]: the tangential displacement for each particle in contact with
this particle
*prev, *next: pointers to the previous and next particles in the
the cell in which the current particle is located
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*/

struct state

{ '
short int num, cellx, celly, contactf CONTACT_MAX+1];
double x, y, thetaz, xdot, ydot, thetazdot,

Fx, Fy, Tz, r, m, I, deltasf CONTACT_MAX+1];

struct state *prev, *next;

} *particle;

/* the structure for the cell pointers */
struct element
{
struct state *next;
} **cell;

/*

Define global variables.

N: total number of particles

x_wall_flag: the flag that tells whether wall boundaries (1) or
periodic boundaries (0) are being used

cellmax_x, cellmax_y: the total number of cells in the environment

wall_num: the total number of wall boundaries

Gamma: the oscillation acceleration amplitude

a: the oscillation amplitude

w: the oscillation radian frequency

gx, gy: the gravity acceleration components

deltat: the simulation time step

t: the time

tmax: the time at which the simulation will end

x_width, y_width: the rectangular container dimensions

k_pn, nu_pn: the particle/particle normal contact spring constant and
dashpot coefficient

k_ps, mu_p: the particle/particle tangential contact spring constant
and coefficient of friction

k_wn, nu_wn: the particle/wall normal contact spring constant and
‘dashpot coefficient

k_ws, mu_w: the particle/wall tangential contact spring constant
and coefficient of friction

cellsize: the length of the square cell

dmax: the maximum particle diameter

rmin: the minimum particle radius

deltat: samp_recordstate: the time between successive recordings of the

particle states
t_samp_recordstates: the time at which the next recording of the particle

states will be made
*/
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int N, x_wall_flag, cellmax_x, cellmax_y, wall_num;
double Gamma, a, w, gx, gy, deltat, t, tmax, x_width, y_width,
k_pn, nu_pn, k_ps, mu_p,
k_wn, nu_wn, k_ws, mu_w,
cellsize, dmax, dbar, rmin,
deltat_samp_recordstates, t_samp_recordstates;

[k REEXE K

void main (int argc, char **argv)
{
void read_data(FILE *outfile);
void calculate_forces(void);
void integrate_eqns(void);
void record_states(FILE *outfile);
FILE *outfile;
extern int N;
extern double t, tmax, w,
t_samprecordstates, deltat_samp_recordstates;

/* make sure enough arguments are given in the command line */
if (argec < 2)
{
printf("Command line error.\n");
printf("Format: bench state.out\n");
exit(1);

}

/* Open the output data files */
if ((outfile = fopen(argv[1], "wb")) == NULL)
{
printf("Cannot open outfile.\n");
exit(1);

}

/* goto the subroutine that reads in the input data. */
read_data(outfile);

/¥ start the simulation. */

t=0.0;
record_states(outfile);
do
{
* ,
goto the subroutine that determines the forces acting on each
of the particles
*/

calculate_forces();
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/* record the particle states */
if (t >= t_samp_recordstates)
{
printf("states: cycles = %.3f (%.1f percent completed)\n",
w*t/(2.0*PI), 100.0*t/tmax);
t_samp_recordstates += deltat_samp_recordstates;
record_states(outfile);

}

/* goto the subroutine to integrate the equations of motion */
integrate_eqns();

} while (t<tmax);

calculate_forces();

record_states(outfile);

printf("cycles = %.3f (%.1f percent completed)\n",
w*t/(2.0*PI), 100.0*t/tmax);

fprintf(outfile,"#\n");

/* close the output file */
fclose(outfile);

}

/* Fkkkk k/f

void calculate_forces(void)

/*
This routine initializes the particle forces with the gravity force and
then determines which particles could be in contact. It calls other
routines to actually do the calculations for the forces.

*/

{
void x_wall_forces(int i, int j);
void y_wall_forces(int i, int j);
void particle_forces(int i, int j, double pj_dx);
int i, j, cellx, celly, x, y;
struct state *particlej;
extern int N, cellmax_x, cellmax_y, x_wall_flag;
extern double gx, gy;
extern struct state *particle;
extern struct element **cell;

/* initialize particle forces with gravity force */
for (i=1; i<=N; i++)

{
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particie[i].Fx = gx*particle[i].m;
~ particle[i].Fy = gy*particle[i].m;
particle[i].Tz = 0.0;
}

/* check for collisions with the bottom wall */
celly = particle[N+1].celly;
for (y=celly; y<=celly+1; y++)

{
for (x=1; x<=cellmax_x-1; x++)
{ ;
if ((particlej = cell{x][y].next) '= NULL)
{
do
{
y_wall_forces(particlej->num, N+1);
} while((particlej=particlej->next) '= NULL);
}
}
}

/* check for collisions with the top wall */
celly = particle[N+2].celly;
for (y=celly-1; y<=celly; y++)

{
for (x=1; x<=cellmax_x-1; x++)
{
if ((particlej = cell[x][y].next) = NULL)
{
do
{
y_wall_forces(particlej->num, N+2);
} while((particlej=particlej->next) '= NULL);
}
}
}
if (x_wall_flag == 1) /* wall boundaries */
{

/* check for collisions with the left wall */
cellx = particle[N+3].cellx;
for (x=cellx; x<=cellx+1; x++)
! [
for (y=particle[N+1].celly; y<=particle[N+2].celly; y++)

{
if ((particlej = cell[x][y].next) != NULL)
' {

do
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x_wall_forces(particlej->num, N+3);
} while((particlej=particlej->next) = NULL);
: }
}
}
/* check for collisions with the right wall */

cellx = particle[N+4].cellx;
for (x=cellx-1; x<=cellx; x++)

for (y=particle[N+1].celly; y<=particle[N+2].celly; y++)

{
if ((particlej = cell[x][y].next) = NULL)

do

x_wall_forces(particlej->num, N+4);
} while((particlej=particlej->next) != NULL);
}

}

/* check for interparticle collisions */
for (i=1; i<=N-1; i++)
{
cellx = particlefi].cellx;
celly = particle[i].celly;

/*
check for collisions with cells around and including current
cell

*/

for (x=cellx-1; x<=cellx+1; x++)
{

for (y=celly-1; y<=celly+1; y++)
{

if ((particlej = cell[x}[y].next) != NULL)
{
do
{
if (particlej->num > 1)
, particle_forces(particle[i].num, particlej->num, 0.0);
} while((particlej=particlej->next) != NULL);
}
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if (x_wall_flag ==0) /* periodic boundaries */
{
if (cellx==1)
{
for (y=celly-1; y<=celly+1; y++)
{

if ((particlej = cell[cellmax_x-1][y].next) != NULL)
{

do
{
if (particlej->num > 1)
particle_forces(particle[i].num,particlej->num,
-x_width);
} while((particlej=particlej->next) '= NULL);
}

}
if (celix==cellmax_x-1)
{
for (y=celly-1; y<=celly+1; y++)
{

if ((particlej = cell[1][y].next) '= NULL)

{
do
{
if (particlej->num > 1)
particle_forces(particle[i].num,particlej->num.
Xx_width);
} while((particlej=particlej->next) != NULL);
}

}
}

J® RERAKK K[

void x_wall_forces(int i, int j)
/*

This routine first determines if a particie is in contact with either the

left or right vertical wall boundaries and if so, calculates

the forces acting on the particle.
*/
{ 3

intk, q;
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double dx, /* the particle separation in the x-direction */
overlap,  /* amount of particle overlap */
nx, sy, /* direction vector components */

fnmag, fsmag, /* normal and tangential forces */
dxdot, dydot, /* relative velocities in the x and y directions */
ndot, sdot; /* relative velocities in the n and s directions */
extern double rmin, k_wn, nu_wn, k_ws, mu_w, deltat;
extern struct state *particle;

/* determine the amount of overlap between particles */
dx = particle{j].x-particle[i].x;
overlap = particlefi].r - fabs(dx);

if (overlap >= 0.0) /* is there contact? */
{
if (overlap/rmin > MAX_OVERLAP) /* is there too much overlap? */

{
printf("WARNING: t=%.3e sec\t%d/W%d", t, i, j);
printf("\toverlap/rmin=%.3e\n", overlap/rmin);

}
/* determine the direction vectors for the contact */
nx = sgn(dx);
Sy = nx;

/* determine the relative contact velocities */
dxdot = particle[j].xdot - particle[i].xdot;

dydot = particle[j].ydot - particlefi].ydot;

ndot = dxdot*nx;

sdot = dydot*sy - particle[i].r*particle{i].thetazdot;

/* determine the normal force */
fnmag = -k_wn*overlap + nu_wn*ndot;
particle[i].Fx += fnmag*nx;

/¥
determine if the contact between these two particles is a
continuing contact or if it is a new contact

*/

/* go through the contact list */

k=1;

while ((particle{i].contact[k] !=j) &&

- (k <= CONTACT_MAX))

k++;

if (k <= CONTACT_MAX) /* this is an old contact */
q=k;

else /* this is a new contact */

{
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k=1;
while (particle[i}.contact[k] != 0)
-kt
q=k;
particle{i].contact{q] = j;
particle[i].deltas[q] = 0.0;
}

/* update the tangential spring extension for this contact */
particle{i].deltas[q] += sdot*deltat;

/* _
check to see if there is slip between these particles, if so
adjust the spring extension appropriately
*/
if (mu_w*fabs(fnmag) < fabs(k_ws*particle[i].deltas{q]))
particle[i].deltas[q] = sgn(k_ws*particle[i].deltas[q])*
mu_w*fabs(fnmag)/k_ws;

/* determine the force in the tangential direction */
fsmag = k_ws*particlefi].deltas[q];

particle[i].Fy += fsmag*sy;

particle{i]. Tz += particle[i].r*fsmag;

}
else
{
/*
remove reference to particle j in particle[i].deltas since
particle i and particle j are not in contact
*/

for (k=1; k«<=CONTACT_MAX; k++)
if (particlefi].contact{k] == j)
particle{i].contact[k] = 0O;
}
}

JE EEEFE K/

void y_wall_forces(int i, int j)

[*
This routine first determines if a particle is in contact with either
the horizontal top or bottom wall boundaries and if so, calculates
the forces acting on the particle.

*/

{
intk, g;
double dy, /* the particle separation in the y-direction */

overlap,  /* amount of particle overlap */
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ny, sx, /* direction vector components */
fnmag, fsmag, /* normal and tangential forces */
dxdot, dydot, /* relative velocities in the x and y directions */
ndot, sdot; /* relative velocities in the n and s directions */
extern double rmin, k_wn, nu_wn, k_ws, mu_w, deltat;
extern struct state *particle;

/* determine the amount of overlap between particles */
dy = particle(j].y-particle[i].y;
overlap = particlefi].r - fabs(dy);

if (overlap >=0.0)  /* is there contact? */
{
if (overlap/rmin > MAX_OVERLAP) /* is there too much overlap? */
{
printf("WARNING: t=%.3e sec\t%d/W%d", t, 1, });
printf("\toverlap/rmin=%.3e\n", overlap/rmin);

}

/* determine the direction vectors for the contact */
ny =sgn(dy); .

$X = -ny;

/* determine the relative contact velocities */
dxdot = particle[j].xdot - particle[i].xdot;

dydot = particle{j].ydot - particle[i].ydot:

ndot = dydot*ny;

sdot = dxdot*sx - particle[i].r*particle[i].thetazdot;

/* determine the normal force */
fnmag = -k_wn*overlap + nu_wn*ndot;
particle[i].Fy += fnmag*ny;

/*
determine if the contact between these two particles is a
continuing contact or if it is a new contact
*/
/* go through the contact list */
k=1;
while ((particle[i].contact[k] !=j) &&
(k <= CONTACT_MAX))
ktt;
if(k <= CONTACT_MAX) /* this is an old contact */
q=k;
else /* this is a new contact */
{
k=1;
while (particle[i].contact[k] != 0)
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k++;
q=k;
- particlefi].contact[q] = j;
particle[i].deltas[q] = 0.0;
}

/* update the tangential spring extension for this contact */
particle[i].deltas[q] += sdot*deltat;

/*
check to see if there is slip between these particles, if so
adjust the spring extension appropriately
*/
if (mu_w*fabs(fnmag) < fabs(k_ws*particle[i].deltas[q]))
particle(i].deltas[q] = sgn(k_ws*particle[i].deltas[q])*
mu_w*fabs(fnmag)/k_ws;

/* determine the force in the tangential direction */
fsmag = k_ws*particle[i].deltas[q];

particle[i].Fx += fsmag*sx;

particle[i].Tz += particle[i].r*fsmag;

}

else
{
/*
remove reference to particle j in particle[i].deltas since
particle i and particle j are not in contact
*/

for (k=1; k¢<=CONTACT_MAX; k++)
if (particle[i].contact{k] == j)
particle(i].contact[k] = O;

}

JE kEEEE *®/

void particle_forces(int i, int j, double pj_dx)

/*
This routine first determines if two particles are in contact
and if so, calculates the forces acting on them.

*/
{
intk; q;
double dx, dy, /* the particle separation in the x and y directions */
dij, /* the distance between the particle centers */
overlap,  /* amount of particle overlap */
nx,ny,  /* the direction vectors in the norm. direction */

SX, SY, /* the direction vectors in the tang. direction */
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fnmag, fsmag, /* normal and tangential forces */
dxdot, dydot, /* relative velocities in the x and y directions */
ndot, sdot; /* relative velocities in the n and s directions */
extern double rmin, k_pn; nu_pn, k_ps, mu_p, deltat;
extern struct state *particle;

/* determine the amount of overlap between particles */
dx = (particle(j].x+pj_dx) - particle[i].x;

dy = particle[j].y - particle[i].y;

dij = sqrt(dx*dx+dy*dy);

overlap = (particlefj].r+particle[i].r) - dij;

/* Contact forces. */
if (overlap >=0.0) /* is there contact? */
{
if (overlap/rmin > MAX_OVERLAP) /* is there too much overlap? */

{
printf("WARNING: t=%.3e sec\t%d/%d", t, i, });
printf("\toverlap/rmin=%.3e\n", overlap/rmin);

}
/* determine the direction vectors for the contact */
nx = dx/dij;
ny = dy/dij;
$X = -ny;
Sy = nx;

/* determine the relative contact velocities */
dxdot = particle[j].xdot-particle[i].xdot;
dydot = particle[j].ydot-particle[i].ydot;
ndot = dxdot*nx + dydot*ny;
sdot = dxdot*sx + dydot*sy -
particle[j].r*particle[j].thetazdot -
particle[i].r*particle[i].thetazdot;

/* determine the normal force */
fnmag = -k_pn*overlap + nu_pn*ndot;
particle{i].Fx += fanmag*nx;
particle{i].Fy += fnmag*ny;
particle(j].Fx -= fnmag*nx;
particle(j].Fy -= fnmag*ny;

/*x
determine if the contact between these two particles is a
continuing contact or if it is a new contact

*/

/* go through the contact list */

k=1;
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while ((particle[i].contact[k] =) &&
(k <= CONTACT_MAX))
-k
if (k <= CONTACT_MAX) /* this is an old contact */
- a=k
else /* this is a new contact */
{
k=1;
while (particle[i].contact(k] '= 0)
k++;
9=k
particle[i].contact[q] = };
particle[i].deltas[q] = 0.0;
}

/* update the tangential spring extension for this contact */
particle[i].deltas[q] += sdot*deltat;

/*
check to see if there is slip between these particles, if so
adjust the spring extension appropriately
*/
if (mu_p*fabs(fnmag) < fabs(k_ps*particle[i].deltas[q]))
particle[1].deltas[q] = sgn(k_ps*particle[i].deltas[q])*
mu_p*fabs(fnmag)/k_ps;

/* determine the force in the tangential direction */
fsmag = k_ps*particle[i].deltas[q];

particle[i].Fx += fsmag*sx;

particle[i].Fy += fsmag*sy;

particle[i]. Tz += particle[i].r*fsmag;

particle[j].Fx -= fsmag*sx;

particle{j].Fy -= fsmag*sy;

particle[j].Tz += particle[j].r*fsmag;

}

else
{
/*
remove reference to particle j in particle{i].deltas since
particle i and particle j are not in contact
*/

for (k=1; k<=CONTACT_MAX; k++)
if (particle{i].contact[k] == j)
particlefi].contact[k] = O;
}
}

[ kK kf
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void integrate_eqns(void)
/* :
This routine integrates the equations of motion for the particles and the
moving boundaries.
{
void remove_from_cell(int X, int y, int i);
void add_to_cell(int x, int y, int 1);
int i, cellx, celly;
extern int N, wall_num, x_wall_flag;
extern double t, deltat, a, w, x_width, y_width, cellsize;
extern struct state *particle;
extern struct element **cell;

/* update time */
t += deltat;

/* update wall boundary positions and velocities */
for (i=N+1; i<=N+wall_num; i++)
particlefi].ydot = a*w*cos(w*t);
particle[N+1].y = a*sin(w*t);
particle[N+2].y = particle[N+1].y+y_width;

/* update particle positions and velocities */
for (i=1; i<=N; i++)
{

/* this is a "leap frog" integration scheme */
particle[i].xdot += (particle[i].Fx/particle[i].m)*deltat;
particle[i].ydot += (particle{i].Fy/particle[i].m)*deltat;
particle[i].thetazdot += (particle[i]. Tz/particle[i].I)*deltat;
particle[i].x += particle[i].xdot*deltat;
particle[i].y += particle[i].ydot*deltat;
particle[i].thetaz += particle[i].thetazdot*deltat;

/* keep rotational position between O and 2*PI */
if (particle[i].thetaz > 2.0*PI)
particle[i].thetaz = particle[i].thetaz -
2.0*PI* (int) ((particle[i].thetaz)/(2.0*PI));

[*
if using periodic boundaries, check to see if the particle has
wrapped around in ihe horizontal direction
*/
if (x_wall_flag == 0)
{
if (particle[i].x < 0.0)

particle[i].x += x_width;
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if (particle[i].x > x_width)
particle[i].x -= x_width;

'}

/* check to see if the particle has changed cells */

cellx = (int) (particle[i].x/cellsize)+1;

celly = (int) ((particle[i].y-particle[N+1].y)/cellsize)+1;
if ((particle[i].cellx != cellx) Il (particle[i].celly != celly))

{
remove_from_cell(particle[i].cellx,particle[i].celly,1);
add_to_cell(cellx,celly,i);

} .

}

[E EEEEE */

void read_data(FILE *outfile)

/* ‘
This routine reads in the input data file and calls a routine to
initialize the simulation.

*/

{

void initialize_states(void);

int 1, j; /* temporary integers */

double cycles, /* total number of oscillation cycles to perform */
f, /* cyclic frequency [Hz] */
theta_g, /* the gravity vector angle from the vertical */
r, /* temporary radius */

e_wn,e_pn, /* particle/particle and particle/wall
coefficient of restitution */

ddev, /* the deviation from the mean diameter */
dmin, /* the minimum particle diameter */
rho_m, /* the particle mass density */

overlap=0.01, /* the expected maximum ratio of the overlap to

the mean particle radius for a collision with */
xd_r=1000.0, /* arelative impact velocity equal to

(xd_r)*(mean particle radius)*(1 sec) */
tau_tp, tau_rp, /* the translational and rotational periods

for a particle in contact with six other

fixed particle contacts */

rbar, /* the mean particle radius */
mbar, /* the mean particle mass */
Ibar, /* the mean particle moment of inertia*/
alpha, /* temporary variable */

samps_per_cycle; /* the number of samples to record per cycle */
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FILE *infile; /* input file pointer */

extern int N, x_wall_flag, wall_num, cellmax_x, cellmax_y;
extern double Gamma, x_width, y_width,
k_pn, nu_pn, k_ps, mu_p,
~ k_wn, nu_wn, k_ws, mu_w,
dbar, dmax, deltat, a, w, gx, gy, tmax,
t_samp_recordstates, deltat_samp_recordstates,
cellsize;
extern struct state *particle;

extern struct element **cell;

/* set up the pointer for the input data file */
if ((infile = fopen(filename_in,"rb")) == NULL)
{ .

printf("Error opening input file.\n");
exit(1);
}

/* read in the input file data */
fscanf(infile, "%lg", &Gamma);
fscanf(infile, "%lg %lg %lg",

&cycles, &f, &samps_per_cycle);
fscanf(infile, "%lg %lg %lg %d",

&x_width, &y_width, &theta_g, &x_wall_flag);
fscanf(infile, "%d", &N);
fscanf(infile, "%lg %lg %lg",

&e_pn, &k_ps, &mu_p);
fscanf(infile, "%lg %lg %lg",

&e _wn, &k_ws, &mu_w);
fscanf(infile, "%lg %lg %lg", &dbar, &ddev, &rho_m);
fclose(infile);

wall_num = 4; /* the number of wall boundaries */
/* make room for *particle */
printf("%d bytes required for *particle.\n",
(N+wall_num+1) * sizeof(struct state));
if ( (particle = (struct state *)
calloc(N+wall_num+1, sizeof(struct state))) == NULL )
{
printf("Not enough storage for *particle.\n");
fclose(outfile);
exit(1);
} N
/*

randomly choose the particle radii and then determine the
particle mass and moment of inertia, note that mass and moment of
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inertia are based on that of a sphere
*/
srand((unsigned) time(NULL)); /* initialize the random number generator */
for (i=1; i<=N; i++)
{
particlefi].r = 0.5*dbar*
(1.0+2.0*ddev*(0.5-(double) rand()/(double) RAND_MAX));
particlefi].m = rho_m*4.0/3.0*PT*
particle[i].r*particle[i].r*particle[i].r;
particlefi].I = 2.0/5.0*particle[i].m*particle[i].r*particle{i].r;
particle[i].num = i;
}
rbar = 0.5*dbar;
mbar = rho_m*4.0/3.0*PI*rbar*rbar*rbar;
Ibar = 2.0/5.0*mbar*rbar*rbar;
dmax = dbar*(1.0+ddev);
dmin = dbar*(1.0-ddev);
rmin = 0.5*dbar;

/* determine particle/particle spring constants and dashpot coefficient */

alpha = Pl/log(e_pn);

k_pn = (0.5*mbar)*(xd_r/overlap*exp(-atan(alpha)/alpha))*
(xd_r/overlap*exp(-atan(alpha)/alpha));

nu_pn = sqrt(4.0%(0.5*mbar)*k_pn/(1.0+alpha*alpha));

k_ps =k_ps*k_pn;

/* determine particle/wall spring constants and dashpot coefficients */

alpha = Pl/log(e_wn);

k_wn = (mbar)*(xd_r/overlap*exp(-atan(alpha)/alpha))*
(xd_r/overlap*exp(-atan(alpha)/alpha));

nu_wn = sqrt(4.0*(mbar)*k_wn/(1.0+alpha*alpha));

k_ws =k_ws*k_wn;

/* determine the simulation time step */

/*
translational period for a particle in contact with six other (fixed)
particles with no damping

tau_tp = 2.0*PI*sqrt(mbar/(3.0*(k_pn+k_ps)));

/*
translational period for a particle in contact with six other (fixed)
particles with no damping

*/ .

tau_rp = 2.0*PI*sqrt(Ibar/(6.0*k_ps*rbar*rbar));

/* choose the smallest period and make the simulation time step
one-tenth that period*/
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if (tau_tp < tau_rp)
deltat = tau_tp/10.0;
else
deltat = tau_rp/10.0;

/*
determine the oscillation radian frequency and amplitude from the
the cyclic frequency, £, and the acceleration amplitude, Gamma

*/

w = 2.0*PI*f;

a = g*¥Gamma/(w*w);

/* determine the gravity acceleration components */
gx = g*sin(theta_g*P1/180.0);
gy = -g*cos(theta_g*P1/180.0);

/*
determine the maximum time for the simulation based on the specified
number of cycles, cycles, and the cyclic frequency, f

®

tmax = cycles/f;

/* determine the container widths */
x_width *= dbar;
y_width *= dbar;

/*
determine the next time a recording of the output states will be
made and the time between successive recordings

*/

t_samp_recordstates = 0.0;

deltat_samp_recordstates = (2.0*PI/w)/samps_per_cycle;

/*
make room for the cell list pointers, note that the cellsize is
just larger than the maximum particle diameter, dmax
cellmax_x = (int) (x_width/dmax)+1;
cellsize = x_width/(double) (celimax_x-1);
cellmax_y = (int) (y_width/cellsize)+1;
printf("%d bytes required for **cell.\n",
(cellmax_x+1) * sizeof(struct element *) *
(cellmax_y+1) * sizeof(struct element));
if ((cell = (struct element **)
calloc(cellmax_x+1;sizeof(struct element *)))==NULL)
{
printf("Can’t assign cell row pointers.\n");
exit(1);
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}
for (1=0; i<=cellmax_x; i++)
{
if ((cell[i] = (struct element *)
calloc(cellmax_y+1, sizeof(struct element)))==NULL)
{ .

printf("Not enough storage for cell columns.\n");
exit(1);
}
}

/* initialize cell list */
for (j=0; j<=cellmax_y; j++)
for (i=0; i<=cellmax_x; i++)
cell[i][j}.next = NULL;

/*
call the routine to determine the initial conditions for the
simulation

*f

initialize states();

/* print the input data to the screen */
printf("\nGamma=%.2f\n", Gamma);
printf("cycles=%.2f f=%.2f Hz samps_per_cycle=%.2¢ theta_g=%.3e deg\n”,
cycles, f, samps_per_cycle, theta_g);
printf("tau_tp=%.3e s tau_rp=%.3e s deltat=%.3¢ s\n",
tau_tp, tau_rp, deltat);
printf("x_width=%.3e m x_width/dbar=%.3e\n", x_width, x_width/dbar);
printf("y_width=%.3e m y_width/dbar=%.3e\n", y_width, y_width/dbar);
printf("theta_g=%.3e deg x_wall_flag=%d\n",
theta_g*180.0/P1, x_wall_flag);
printf("N=%d\n", N);
printf("k_pn=%.3e N/m nu_pn=%.3e N/(m/s) e_pn=%.3f\n",
k_pn, nu_pn, e_pn);
printf("k_ps=%.3e N/m mu_p=%.3f\n",
k_ps, mu_p);
printf("k_wn=%.3e N/m nu_wn=%.3e N/(m/s) e_wn=%.3f\n",
k_wn, nu_wn, e_wn);
printf("k_ws=%.3e N/m mu_w=%.3f\n",
k_ws, mu_w); ‘
printf("dbar=%.3e m ddev=%.3e rho_m=%.3e kg/m"3\n\n",
dbar, ddev, rho_m);

/* print the input data to the output file */
fprintf(outfile," %e\n", Gamma);
fprintf(outfile," %e %e %e %e\n",

cycles, f, samps_per_cycle, theta_g);
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fprintf(outfile," %e %e %e\n",
tau_tp, tau_rp, deltat);
fprintf(outfile," %e %e %e %od\n",
. x_width, y_width, theta_g, x_wall_flag);
fprintf(outfile,"%d\n", N);
fprintf(outfile," %e %e %f %e %f\n",
k_pn, nu_pn, e_pn, k_ps, mu_p);
fprintf(outfile,"%e %e %f %e %f\n",
k_wn, nu_wn, e_wn, k_ws, mu_w);
fprintf(outfile,” %e %f %e\n", dbar, ddev, rho_m);
for (i=1; i<=N; i++)
fprintf(outfile,”%e %e\n", particle[i].r, particle[i].m);
}

Jx REERk %[

void initialize_states(void)

/*
This routine determines the initial conditions for the simulations.
The wall conditions are initialized and then the particles conditions
are assigned. Note that particles are placed in the container at
prescribed positions (in a grid) but with random initial velocities.

*/

{

void add_to_cell(int x, int y, int i);

int 1, Xxcounter, n, cellx, celly;

double deltan;

extern int N;

extern double x_width, y_width, cellsize, dmax, dbar;
extern struct state *particle;

extern struct element **cell;

/* initialize wall states */

for (i=N+1; i<=N+wall_num; i++)
{

particle[i}.x = 0.0;

particle[i].y = 0.0;

particle[i].thetaz = 0.0;

particle[i].xdot = 0.0;

particle[i].ydot = 0.0;

particle[i].thetazdot = 0.0;

particle{il.r = 0.0;

particle[i].num = 1;

} .

particle[N+1].y = 0.0;

particle[N+2].y = y_width;

particle[N+3].x = 0.0;
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particle[N+4].x = x_width;

/* put the walls in the proper cells */
for (i=N+1; i<=N+2; i++)
{
particle[i].cellx = 0;
particle[i].celly = (int) ((particlefi].y-particle[N+1].y)/
cellsize)+1;
}

for (i=N+3; i<=N+4; i++)
{
particle[i].cellx = (int) (particle[i].x/cellsize)+1;
particle[i].celly = O;
}

/* initialize particle states */
srand((unsigned) time(NULL));
n = (int) (x_width/(1.05*dmax));
deltan = x_width/(double) (n);
xcounter = 1;

for (i=1; i<=N; i++)
{
particle[i].x = deltan*(xcounter-0.5);
particle{i].y = deltan*((double) ((int) ((i-1)/n)+1));
particle[i].thetaz = 0.0;
particlefi].xdot = 50.0*dbar*
(0.5-(double) rand()/(double)RAND_MAX);
particle[i].ydot = 50.0*dbar*
(0.5-(double) rand()/(double)RAND_MAX);
particleli].thetazdot = 0.0;

/* put the particles in the proper cells */

cellx = (int) (particle[i].x/cellsize)+1;

celly = (int) ((particle[i].y-particle[N+1].y)/cellsize)+1;
add_to_cell(cellx,celly,i);

xcounter++;
if (xcounter > n)
xcounter = 1;

}

[* FEEkk */

void remove_from_cell(int X, int y, int i)
/*
This routine removes a particle from a cell.
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*/

extern struct state *particle;
extern struct element **cell;

if (particle[i].prev == NULL)
cell[x][y].next = particle{i].next;
else
(particle[i].prev)->next = particle[i].next;
if (particle[i].next != NULL)
(particle[i].next)->prev = particle[i].prev;
}

Jx FkkEK k)

void add_to_cell(int x, int y, int 1)
/*
This routine adds a particle to a cell.
*/
{
extern struct state *particle;
extern struct element **cell;

if (cell[x]}[y].next !'= NULL)
(cell{x][y].next)->prev = &(particleli]);

particle[i].next = cell[x]{y].next;
particle[i}.prev = NULL;
cell[x][y].next = &(particle[i]);
particle[i].cellx = x;
particle[i].celly = y;

}

[® REERk */

void record_states(FILE *outfile)
/*
This routine prints the particle state data to the output file.
*/
{
int i;
extern int N;
extern double t;
extern struct state *particle;

fprintf(outfile,"* %.5e\n", t);
for (i=1; i<=N; i++)

fprintf(outfile,"%.5e %.5e %.5¢ %.5¢ %.5¢ %.5¢\n"
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particle[i].x, particle[i].y, particle[i].thetaz,
particle[i].xdot, particle[i].ydot,
particle[i].thetazdot);



