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ABSTRACT
PART 1

Closed form solutions have been derived for the focal plane
diffraction patterns of (a) a convergent spherical wave illuminating
a segment of a circular aperture and (b) a convergent Gaussian beam
diffracted by an infinite edge. The theoretical results agree with the
experiments showing that the edge produces a spike of Tight with inten-
sity variation inversely proportional to the squared distance from the
center, that the pattern is symmetric in the focal plane, and that in
the case of the uniform i11ﬁmination the intensity has high spatial
frequency components while for the Gaussian case the pattern does not
ring when the edge is positioned symmetrically in the beam.

In addition, the near focus intensity distribution for a conver-
gent uniform amplitude wave illuminating a semicircular aperture is
presented, and it is shown that the fact that the radiation pattern
is symmetric only at the focal plane can be used very effectively

to determine the exact location of that plane.

PART 11

The diffraction of a Laguerre Gaussian beam (TEMP,Q mode of a
Jaser resonator) by a circular aperture is presented here. We cal-
culate the electric field for the Fresnel region, and study the loss
of power as & function of relative aperture size and mode index,
showing that the conventional rule of thumb in selecting apertures

by "going out a few times w_" is not accurate for large mode indices.
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PART I

EDGE DIFFRACTION OF A CONVERGENT WAVE
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

The diffraction of an electromagnetic wave by an edge is a
basic problem in optics. The experimental detection of the observed
patterns as well as the theoretical solution has been a subject of

]'?7), closely related with the evolution

numerous studies in the past(
of the theory of diffraction.

Important motivations for calculating the focal plane diffraction
patterns of a spherically curved wave incident on an edge appeared in

discussions of optical transforms and optical processing(]8), as

19,20) (21).

applied in pattern recognition( , and on 1ine inspection systems

To get a qualitative feeling for the type of transform that we
intend to analyze consider a plane wave of uniform amplitude incident
on a lens. If the lens aperture is unobstructed, then at the focal
plane we will see the conventional Airy pattern (see Fig. 4-3).
Positioning an edge at the lens so as to reduce %he opening produces
a different pattern whose basic characteristics are an intense spike
of energy appearing at right angies to the edge and a high spatial
frequency content. Fig. [4-2] shows the pattern that was produced
when the edge blocked half of the lens aperture.

In the work reported here we obtain approximate solutions for
the 1ight distribution on the focal plane for a) a spherically

convergent, uniform amplitude wave truncated by a segment of a

circular aperture and b) a spherically convergent, Gaussian amplitude
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wave truncated by an infinite edge. The results show that the
truncation produces a spike of high intensity, at right angles to
the edge, with an envelope falling off in orooortion to the sauare of
the distance from the center of the pattern, i.e. the geometricai
focal point. For the uniform amplitude the pattern exhibits hign -
spatiai Trequencies consistent with the ratio of the wavelength to
the aperture opening, while for the Gaussian amplitude the pattern
does not ring when the edge is positioned symmetrically in the beam.
In addition the focal plane intensity distribution is symmetricai
about the origin in the focal plane.

This particuiar property, namely that the pattern has polar
symmetry in the focal plane, provides a useful way of determining
that plane. The determination of the exact Tocation of the focai
plane is of particular importance for systems that perform optical
Fourier transforms, as well as in setting the receiving plane of
image-forming systems.

The field distribution near the focus of a well corrected lens
has been analyzed extensi‘vely@z“:‘4 E. The results show that the
iight intensity is symmetric about the optical axis.Because of this
particular symmetry the exact determination of the focal plane can
be cifficuit.

In this work we analyze the near focus intensity distribution
for a lens of which hal® has been biocked, and show that the
tignt distribution fs symmetric only at the focal plane, and that
this symmetry is very sensitive to the transiation of the lens along

the optical axis. Furthermore we determine the dependence of this
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asymmetry, as we move away from the focal piane, as a function of

the ratio of the diameter of the lens to its focal iength.

7.2 Historical Perspective

Although the first reference of diffraction phenomena appears
in the work of Leonardo Da Vinci (?452»1519)(]), the problem of
the diffracting edge was first introduced by the Jesuit father

Francesco Maria Grimaldi who in his book (1665),"Physicomathesis De

Lumine Coloribus Et Iride”\22 describes the fringes he observed

from a narrow bar. In 1678 Huygens in his book "Traite de la

Lumiere" becomes the first proponent of the wave theory of iignt.
Newton in 1704 in his"Opticks', Book 3, Observation 1, tries to explain
the appearance of fringes due to a diffracting edge in the following
manner: “Are not the Rays of Light in passing by the edges and sides
of Bodies, bent several times packwards anc forwards, with a motion

that of an Eel? And do not the ihree fringes of colour'd Light above-

. o L, (3% , . .
mention'd arise from three such oenq1ngs?”‘3’ Between 1700-1800 the

oroblem of diffraction by narrow bars and rods was principally

(4) (5) (6) (7)

investigated by Deiisie'’™’, Maraldi Mairan anda

A}
. i - ; . , .
Marat<8’u These works were very much influencec by the corpuscular

, Du Sejeour
theories of Newton and “n effect do not improve upon the originai
fringes observed by Grimaidi.

The revival of the wave theory of 1ight was made by 7. Young
who in 1802 in a paper published in the Philosophical Transactions
discusses the diffraction effects of a narrow bar. It was not until

W o ~ -¥ o - o B s -
1818 that Fresnei in his Memoire Couronne established the principies
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of diffraction, and discussed the problem of the diffraction of a
plane wave by a straight edge. His solution was given in terms of
Fresnel integrals which he tabulated for different values of the
upper 1imit. The idea of plotting the integrals and using the graphs

for soiving other diffraction problems was first conceived in 1874

(9)

by A. Cornu and for this reason the spiral bears his name.

Kirchhoff in 1882 put Fresnel analysis on a sound mathematical basis.

The first rigorous solution of the diffraction of a plane wave

by a semi-infinite plane screen was given in 1896 by A. Sommerfe1d(10),

where the wave equation with the appropriate boundary conditions was

solved with the method of images.

(1) (12)

Another approach was developed by Copson and by Schwinger

which involves the formulation of the problem in terms of integral

equations and their exact solution using the Wiener-Hopf method(13}.

More recently, Keller has treated this problem using his geometrical

(14)

theory of diffraction » and he compares his result with Sommerfeld's

exact solutfon. Related boundary- value-problem solutions for

perfectly conducting siits are described by Braunbek and Laukien(]s)

(16)

and Borgnis and Papas Edge diffraction of Gaussian laser beams

3
has been analyzed in the Fresnel zone by Pearson et ai.(17’“

The near focus intehsity distribution for a lens was first dis-
cussed by Lomme1<22) in 1885, who expressed the field in terms of

infinite series of Bessel functions which since have been referred to

(23) (24)

as Lommel functions of two variables Struve'™ ", one year later,

published a similar account and gave some useful approximations.

(25)

K. Schwarzschild in 1898 derived some asymptotic expansions for

the description of the intensity many wavelengths away from the focus.
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In 1909 Debye(ZG) published his solution to the near focus problem
and his method is not Timited to Kirchhoff's approximation but is
based on the fundamentals of wave optics. His solution according to
Sommerfeld,"can claim the same degree of exactness as, for instance,

”{27). F. Zernike

our treatment of the problem of the straight edge
and B. R. A. Nijboer(28) in 1949 developed a different expansion of

Debye's integral but their final results are essentially the same.
The work of E. H. Linfoot and E. Wolf in the early fifties(2%s30)

presented accurate calculations for the intensity distribution in a
meridional plane, as well as some power and phase calculations. Later
these treatments were incorporated in E. H. Linfoot's book on "Recent

31) | Finally Boivin et al. in 1965 and 1967(33-34)

Advances in Optics“(
calculated on the basis of electromagnetic theory, diagrams showing

contours of electric energy density and of energy flow.

1.3 Summary of Research

In the following chapters we discuss the focg? plane diffraction
patterns for the uniform and Gaussian amplitude converging waves,
we experimentally demonstrate these calculations, and finally we
present the near-focus analysis for a convergent, unit amplitude wave,
illuminating a semicircular aperture.

In Chapter 2 we calculate the intensity distribution at the
focal plane for a converging uniform amplitude wave illuminating an
aperture consisting of a segment of a circle. The general solution
is particularized to the semicircular aperture case, and expressions

pertaining to on axis calculations, with the corresponding asymptotic
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expansions, are given. The numerical evaluation of these solutions

is presented and the general features of the pattern are discussed.

In Chapter 3 the focal plane diffraction of a convergent Gaussian
amplitude wave 11luminating an infinite edge is presented. The general

result for the focal plane electric field is given as well as the one

for an asymmetrical slit. The important properties of this class of
diffraction patterns are discussed, and the numerical eyaluation
of the solutions is given.

In Chapter 4 we describe the experimental set-up used for the
recording of the diffraction patterns discussed in Chapters 2 and 3,
and present photographs for the important cases.

In Chapter 5 the near focus intensity distribution patterns for
a semicircular aperture illuminated by a convergent wave of uniform
amplitude are presented as well as the generaiization of the solution
to include the Gaussian amplitude case. Contour plots of constant
intensity for various planes including the meridional and back focal
are shown and discussed.

Chapter & contains a summary of the important formulas involved
as well as the conclusions drawn from the evaluations of these

solutions.
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CHAPTER 2
CONVERGENT WAVE OF UNIFORM AMPLITUDE

2.1 Introduction

In this chapter we calculate the diffraction patterns, at the
focal plane, for a converging unit amplitude incident wave i1luminating
a segment of a circular aperture.

The diffracting aperture is expressed in terms of the conventional

circ and sgn functions, and the incident wave is written in the well-

known paraxial form. Sommerfeld's diffraction theory integral is
used with the Fresnel approximation to generate the electric field
at the focal plane. The general solution is expressed in terms of

infinite sums of Bessel functions. The solution is particularized to

the case of a semicircular aperture, and expressions are derived for

the on axis electric fields, and for their appropriate asymptotic forms.
Nuﬁerica? evaiuation of the solutions is presented showing that

the introduction of the edge causes,an intense spike of energy to

appear in the focal plane at right angies to the edge Symmetric

apout the origin. The intensity has an envelope falling off in pro-

portion to the square of the distance from the center of the pattern;

i.e. from the geometrical focus. Furthermore the pattern exhibits

spatial frequencies proportional to the characteristic dimensions of

the aperture.
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2.2 General Theory

Consider an aperture located in the plane z = 0 haying a

transmittance function T(&,n) given by:

: .
2, 2\
T(g,n) = circ [Lg__gl_)@_] {:%1* 3 n2 'd] s (2.1)

where £,n are cartesian coordinates at plane z = 0, a is the radius
of the aperture, and d is the distance between the point (0,0,0) and

the chord (see Fig. [2-7]). The circ and sgn functions are defined by:

1 = E+n" <
2 2.7 = 1  when 2
circ [4(5—%']—)—-] a? : (2.2)

0 otherwisé

]

and

=1 when £-d> 0
sgn(z-d) , (2.3)
-1 when &-d < 0

The wave incident on the aperture is monochromatic, plane-
polarized spherical wave with radius of convergence s. This transverse,
scalar component U(g,n) of the electric field is written in the well-
known paraxial form, suppressing the time dependence (written for

exp(iwt)) and unessential phase terms as follows:

Ulg,n) = exzvil;}‘;(szmz)] (2.4)

The calculation of the electric field at point {x,y,z) in the

right half space involves the solution of Sommerfeld's diffraction
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Enz% ‘ | "
N AR

(X,y,Z:S)

Fig. [2-1]. Geometry of relationships between the aperture,
consisting of a segment of a circle, and the back focal

plane.
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. . . §1)
theory integral (written for exp(iwt) dependence

o -kR

3
V(X&yaz) = %tﬂ« fful(gonao) %

1
(ik s l—)L dedn (2.5)
1

SVAS

where U' is the aperture distribution, and R] is the distance between

the point (£,n,0) in the aperture plane and (x,y,z) in the observation

screen expressed in terms of ¢,n,Xx,y,z as follows:

Ry = [(e-x)? + (nep)® + 221V2 (2.6)

Assuming that the observation screen is the focal plane and
using the conventional Fresnel approximation, Eq. (2.5) can be rewrit-

ten in the form:

+co
. o . )
V(x,y,z=s) = - eXpisizmS/k) JJ U'exp(- 1% (£-x)% + (n-y)%ldedn
- (2.7)

Furthermore adopting some of Kirckhoff's assumptions namely
that the field distribution across the aperturé is the same as it
would have been in the absence of the aperture, and that the field is
identically zero over the geometrical shadow of the aperture, U' can

be written as
U'(E,ﬂ') = T(«Esﬂ)U(E,ﬂ) e (2‘8)

Combining Eqgs. (2.2), (2.3), (2.4), (2.7} and (2.8) gives
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V(x,y,z=s) = i exp[-i2ns/) - iﬂ(X2+y2)/(XS)J'{I]+12} (2.9)

where

JJ circ| A& expli2n(xe+yn)/(xs)ldedn  (2.70)

and

NI

° 2
j circe sgn(z-d)exp[i2n(xt+yn)/(xs)]dedn (2.11)

We note that the restriction z = s results in the cancellation of
the guadratic terms [exp -iﬂ(g2+n2)/(ks)] and Egs. (2.10) and (2.11)
represent the two-dimensional Fourier transform of the circ function
and the product of the circ with the offset sgn function. The cal-
culation of the first integral is the Airy pattern and is evaluated

(2).

in Goodman The result is:

o Jqley/x Zy?) (2.12)
a:

in which o = 2ra/{xs) and J] is the Bessel function of the first kind

I =ma

and first order. Physically this result can be interpreted as the
focal plane intensity distribution resulting from an open circular
aperture with amplitude transmission of 0.5 across the full aperture.

The second integral in Eq. (2.11) physically represents the
focal plane distribution for an open aperture with an offset phase
mask that varies from 0 to = radians, stepwise, at ¢ = d. In

calculating I, since the Fourier transform of the circ and the sagn
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function is known, one could calculate the convolution of
J](a@)/a(x2+y2)]/2 with iaseexp(i2nxd/(as))/x. This type of
approach, although straightforward from a Fourier analysis point of
view, presents difficult probiems. For this reason we have evaluated
Eq. (2.11) by integrating with respect to the n variable first, and
then expanding the integrand in terms of Bessel functions and inte-
grating term by term. This approach gives a result in terms of
infinite sums of Bessel functions that can be readily adapted for
numerical calculations.

Integrating Eq. {2.11) with respect to n gives

+a
1
I, = %%j sgn(g-d)ﬂn(—i—zl [az-gz}z>exp[i2wx€/(>x5)]d€ (2.13)
-3

Note that because of the definition of the circ function the Timits

of integration for x have been restricted from -a to +a. Further-
more substituting u = £/a in Eq. (2.13), sp?ittiﬁg the integral into
its real and imaginary parts, using the properties for the integration
of even and odd functions within the given interval, yields the

following form:
i

a 2.2, _. ‘ L
sin(ay[1-u“1“)sin{axu)dy - 2

s%n(my[?4u2}~}cos(axu)du

&
&=

{2.14)

Letting u = sine in Eq. (2.14) gives:
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/2
I, = alr ;gy‘ i j sinfay cose)sin(ox sine)cose de-
sin™'(9)
51n'1(g' :
a
"J sin(ay cose)cos(ax sine)cose de (2.15)
0

To evaluate Eq. (2.15) we use the identities that can be derived from
the generating function for the Bessel series A.S. 9.1.43, namely that:

oo

sin(z sine) =2 ] J, 4 (2)sin{(2k+1)0}
k=0

i
[N
o~

i
"
P
_

sin(z coss) (z)cos{(2k+1)e}

Jop+

i

cos(z sine) Jo(z} + 2 kZ]JZk(Z)COS(Zke)

Exchanging the order of integration and summation in Eq. (2.15)
leads to the following form:

*vr,/Z

2 2 .o n - 4 .
I, = a"n v 41 nZQ(-]) J2n+](ay)mZDJ2m+1(ax)~ j cos{(2n+1)etsin{(2m*1)e}
. =1,d
sin (aﬁ
sin™! ()
o0 oo i
-4 73 (~1)nJ2n+}(ay) L1 3, (ax) j»cos{(2n+1)e}cos(Zme)cosede

n=o m=0(T;5;ﬁ) 0

(2.186)

where the Kronecker delta Som = 1 for m = 0 and is zero for m # 0.

Evaluation of the integrals in Eq. (2.16) can be easily made and
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the result is:

2 2 s >
I, = a%p.—% . -1)n ;
2 "y nzo (=10 347 (oy) L4 mEOJZW](aX)-g](m,n) +

v e 1 M. . (2.17)
= 7"‘" - ®
mgo( 7 Som! (=170, (ax)+g, (m,n)]
where 9 and g, are given by
e . =1,d . =1,d
cos[ (2m+2n+3)sin (50] cos[ (2m+2n+1)sin (5)]
gq(m,n) = - mtenta ¥ 2mont]
cos[(2n—2m+?)sin"1(§9] cos[(2m-2n+1)sin-](g9]
+ a’l : X a (2.18)
2n-2mti 2m-2n+1
. . . =1,d . . =1,d
 sin[(2m2n+2)sin (593 sin[(2m+2n)sin (5)]
gz(m’“) = 2mt2n+2 * - 2m+2n
sin[(2n-2m2)sin™ (D)1 sinl (2n-2n)sin™1($)] (2.19)
¥ 2n-2m+2 M 2m+2n

The general result for the electric field, V, is Tound by

substitution of Eqs. {2.12) and (2.17) into Eq. (2.9), as follows:

1 1
xp( -iks)expl-fn(x +y2)/(A$)]waz(b [af Xz*yz‘z/{a(x2+y2)§j

[i]

V(x :ysz-‘"s)

2
ray Nw%wwm zaw (ax)*gy (m,n)

:} 20

c,’;;

£

mgo(? - 2'6om)( -1) JZm(ax)gz(m n)J

where k = 2x/a.
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2.3 Semicircular Aperture, On Axis Calculations, Asymptotic

Expansions

A case of pakticu?ar interest occurs when the edge is positioned
symmetrically, i.e. when d = 0. This corresponds physically to the
focal plane diffraction patterns produced from a semicircular aperture.

In this case Eq. (2.20) reduces to the following:

1 1
Vix,y,z= s) 15 expl- iks)exp[-'in(xz‘ryz)/(xs)]na {J [alx +y2)2]/[a(x2+y2)2]
F B T g () ax)g, (2.21)
oy nZo mo 2n+1' Y /Vopeq lax)g im ")} .

Also since sin”! g~= 0 for d = 0, Eq. (2.19) gives g, = 0
and 9 from Eq. (2.78) reduces to the form in Eq. (2.22) which we

denote by go(m,n)

e A 11, 1
9 (M) = ST ye s T 2m)eT T Z(n-m)FT T 2{men)+ (2.22)

Eq. (2.21) is well suited for numerical calculations since
algorithms for Bessel functions are readily available and since the
summations can be truncated when the index exceeds the argument.

It is of academic interest to present an alternate solution formulated
in terms of Struve functions. Returning to Eq. {2.14) and setting
d = 0 gives

2 2

i
1, = afn 2o 1| sin(ay -0 F)sin(ads (2.28)
0

1/2)

Now we expand sin{ay[1-u ] in an infinite power series and

exchange the order of summation and integration
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]
= pa? 2 .i .
I, E (-1) (§E£:¥§?L; { (1—u2fm+1)'1/zsinaxu du (2.24)

0
By A.S. 12.7.6 Eg. (22) can be written as
o (-wxm)

TT

where g??;+] is the Struve function of order m+1, and T(m+3/2) is
the conventional gamma function.
Using the duplication formula for the gamma function A.S. 6.1.18

we get the result

("54-)
! -——-—;%—-——J/M(ax) (2.26)

and the electric field is given by:
) 1
242
J X“+
V(X Y255 ) = 3e exp(-iks)exp[- in(x +y )/(As)] a“ } 1 (b 3 ) +
alxZ+y?1Z

1“”(

+ ;;-m égg;+] ax)t (2.27)

Although this result iooks simpler than the double sum of Eq. (2.21)
it is not particulariy suited for numerical calculations because it

is a very slowly converging series exhibiting the serious numerical

problem of generating very large initial terms.

However the above expression 1is particularly useful for
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calculating the on x axis intensity distribution namely for y = 0.

Then Eq. (2.27) becomes

'i ‘ o 2 2 sd-ﬁ(OLiX!) .;?‘
V(x,0,z=5) = Xg‘exp(wiks)expa~awx /As)ma §"f;F;r~* 5§1??%(ax)

(2.28)

The Struve function of order 1 is tabulated (A.S. Table 12.1)
so that an axis calculation can be readily performed. Furthermore
for typical cases, i.e. a = .5 cm, z = 20 cm, A = 6328 ﬁ, a v 2,500,
Thus for x = 40 um the asymptotic expansion forg9€§ can be used

A.S. 12.1.31. It follows that:

Vix.0.z=g) ¥ 1 e .2 23“%”1%1
(x,0,z=5) = ;g-exp(—1xs)exp(-1wx /As)na | ¥
21 ) i 3 )
F 2y ] e (2.29)
o X (ax)z (ax)a g

where H%W) is the first order Hankel function of the first kind.
This expression is valid for +x with the use of the jox| argument
in the Hankel function and the property that,ﬁ??(ax) z¢9?§(-ax}.
This form can also be shown from Eq. (2.21) and (2.22) by combining
the Jgn+j(ay)/qy terms, taking the 1imit as y goes to zero, regrouping
the Bessel summatiocn and using recurrence formula A.S. 9.1.27.
An alternative form of Eq. (2.28) can be derived useful for

small values of ax. Using A.S. 12.1.20 Eg. (2.28) can be written as
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‘ J (ax) 43 im
V(x,0,z=5) = exp( iks)exp[-inx /(As)]wa2 ~—§-‘ n;x mal[;m -;] sz(ax)t

(2.30)

~1 8

This expression is useful for small ax since the series can be
truncated at m ~ ox with a few terms added for improved accuracy since
Jn(x) + 0 for n > x (A.S. 9.3.1).

Furthermore when we consider the radiation pattern for the semi-

circular aperture along the y-axis {with x = 0) we have the result:

2 J1(Q1YI)

V(o,y,z =s) = 5 exp(-iks)exp[-iny?/ (xs)Ina Talyl . (2.31)

This result physically is interpreted as the intensity distribu-
tion at the focal plane of a circularly symmetric aperture with
amplitude transmittance of 1/2 across the aperture.

Finally because of the semicircular symmetry of the problem it
is interesting to express the electric field for the semicircular
aperture in cylindrical coordinateé. We will present the final resuit

only, since the derivation is very similar to the one presented in

Chapter 5.
2 {3,588
V(,,¢,28) = ‘Xg exp(-iks)exp(-inp /As)na ~ZE§§S-+
o
z22\" 5 9 o\l
. (-k ,JL.) sin[(2m1)9] o (/“k % a) :
¢ 21 (koa) T s 7’

(2.32)
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2.4 Numerical Calculations

In this section we present the numerical evaluation of Eq. (2.21)
for a number of interesting cases. First we plot the intensity along
the x axis for y = 0, and along the y axis for x = 0. Then we plot
the intensity as a function of x and y (three dimensional plots) for
the neighborhood of the focus and for an area at larger values of x.

The important points in the calculation of VV* from Eq. (2.21)
are outlined below:

For a given value of ox and ay the number of terms in the m and
n summations was calculated. The criterion for truncation was that
the last term in either sum be smaller than 10"25° Consequently
a function subroutine calcuiaced in double precision the sequence of
Bessel functions for the given argument. The functions were multiplied
by the weighting factor go(m,n) and a function subprogram sorted the
terms in 43 groups and summed them in doublie precision. Double
precision was used throughout the program to mini@ize the inherent
errors that can occur when an intermediate partial sum is much larger
in magnitude than the final sum or when the intermediate sums become
much Targer in magnitude than individual addends but not larger than
the final sum.

The subroutine used to caiculate the Bessel functions in double
precision was obtained from the Argonre computer library facilities.
The function subprogram for the calculation of the summations is a
modified version, that we have developed, of an algorithm generated

by M. A. Malcom (Stanford University)(S), The complete program is
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included in Appendix A.

Fig. [2-2] shows the intensity distribution along the major lobe
of the radiation pattern. Curve (A) is for the semicircular aperture
showing the log of VV* from Eq. (2.30) normalized by fwaz/(%s)jz
versus 2nax/(xs). Note that at the origin I, = 0.5 and I, = 03
hence the normalized intensity peaks at the value of 0.25.

From Eqs. (2.9) and (2.12) we see that for a circular aperture

ks
the intensity VOV0 is given by

2
5
R rae 91{ay/x7y7) (2.33)

00 AS ?
. /x2+y2

where by Eq. (1) this implicitly assumes that the amplitude transmission

2

is only 0.5 across the full aperture. Curve (B) shows vovg from Eq.
(2.33) normalized by [naz/(xs)]2 versus the same normalized x abscissa
and with y = 0.

Comparing (A) and (B) in Fig. [2-2], we note that the nulls are
filled in when the edge is present, the intensity at iarge x is orders
of magnitude higher, and that the relative maxima occur at approxi-
mately one-half the frequency of that for the open aperture.

We also note that Eq. (2.31) gives an intensity identical
to Eq. (2.33) when x = 0. The significance of this is that the curve
{(B) in Fig. [2-2], introduced for comparing the departure of the x-axis
pattern caused by the edge, serves also to describe the intensity
along the y-axis when the edge is present.

Three dimensional computer plots are shown in Figs. [2-3],

[2-4] for a semicircular aperture illuminated by a converging wave of

uniform amplitude. Specifically in Fig. [2-3] the center point of the
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Fig. [2-2]. Normalized transmitted ifradiance In is plotted
logarithmically vs ax with y=0 for a semicircular
aperture curve (A), illuminated with a convergent wave
of unit amplitude, and for a circular aperture, curve
(B}, ij?uminated with a convergent wave with amplitude

equal to 0.5.



-24-

Fig. [2-3]. Normalized transmitted irradiance I, is plotted

logarithmically vs ax and ay with d=0, for-a semi-
circular aperture illuminated with a convergent unit
amplitude wave. P corresponds to a novmalized
Trradianée of 0.25, the range in oy is from -10 to +10

and in ox from -20 to +20.
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radiation pattern (geometrical focus) is labeled Po and is also shown
on Fig. [2-2]. Likewise, to provide orientation, the second relative
maximum along x is labeled PZ' A Togarithmic intensity scale is used,
as labeled, with PO corresponding to a normalized absolute intensity
of 0.25. Contour intervals in ax of 0.5 and in ay of 0.25 are used.
Thus, in Fig. [2-3] the entire plot encompasses the region
-20 < ox ¢ 20 and -10 < ay < 10.

The details of the radiation spike at larger values of ax are
shown in Fig. [2-4]. Again a logarithmic intensity scale is used,

and P9 corresponds to a normalized intensity of 1.4 x 10'4.

The span
in ax encompasses the relative maxima from Pg through P15; the interval
along the y axis is again from -10 < ay < 10. The contour intervais

in ax of 0.5 and in oy of 0.25 have been used as in Fig. [2-3].

To create the 3-D pliots Tog of VV* normalized was calculated as
described previously, and the data stored on a disk. This way various
parameters, such as viewing angies, contour intervals, etc. could be
changed at will. The subroutine that performed the transformations
was the one developed by D. L. Nelson {University of Maryiand)(4).
The compiete programs of these subroutines are included in

Appendix B.
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2.5 Summary and Conclusions

We have analyzed several cases of edge diffraction of convergent
waves of uniform amplitude. The electric field in the focal plane
for the case of an infinite edge, positioned off-center in a circular
aperture is given in Eq. (2.20). The corresponding result for a
O-n radian phase plate can be written directly from Egs. {2.9) and
(2.16). The particular case of the semicircular aperture is
presented in Eq. (2.21).

The dominant feature of the focal plane pattern due to the edge
is the large spike of energy diffracted at right angles to the edge.
The intensity in the spike falls off asymptotically as T/x2 where x
is the distance from the focal point. This can be seen directly from
Eq. (2.29). In addition to the fall-off there is a fractional ripple
of the spike even at large values of x, but without sharp nulls.
Quantitatively, the fractional ripple is seen by Eq. (2.29) to be of
the order of {H§E)(laxl}izu

Ancther important aspect of the patterns is;the ringing at an
angular spacing consistent with the ratio of the wavelength 2 toc the
aperture opening.

Finally we note that the intensity VV* computed from Eg. (2.21)
for the offset edge has polar symmetry. This follows from noting by
Egs. (2.10) and {2.311) that I4+1, is the Fourier transform of a real
valued function. This polar symmetry can also be shown by a direct

calculation using Eq. (2.20).
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CHAPTER 3

CONVERGENT WAVE OF GAUSSIAN AMPLITUDE

3.7 Introduction

The calculation of the focal plane diffraction patterns for a
convergent wave of Gaussian amplitude, diffracted by an offset infinite
edge, is presented here.

In this case the incident wave, in addition to the converging
term, has a quadratic amplitude distribution, and the diffracting
screen can be written in terms of a displaced sgn function. The
application of Sommerfeld's integral, within the Fresnel approximation,
produces focal plane electric fields that can be expressed in terms
of w functions. An asymptotic form for this solution is derived and
the electric field for an infinite slit is also presented. It is
shown that the Gaussian amplitude taper produces a radial spike of
high intensity perpendicular to the edge, having symmetry (in intensity)
about the origin in the focal piane, and an inverse-squared-distance
dependence of intensity similar to the case of the unit ampiitude
wave. However when the edge is positioned symmetrically in the

Gaussian beam no ringing cccurs.

3.2 Theory

Consider an infinite edge located at plane z = 0 offset by the

distance d along the z axis. For a transmission function we write
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T(g,n) = %-[? + sgn(e-d)] . (3.1)

The incident wave is again monochromatic, plane polarized but with

a Gaussian amplitude variation and it can be written in the form

Uglean) = explin(s%4n’)/0rs) = (PP 71 (320

where W is the radius at which the incident intensity has dropped
to its 1/e2 vailue. The assumed field distribution U' is given by
the product of Eq. (3.1) and (3.2). As in the previous chapter
Kirchoff's assumptions have been used for the aperture distribution.

Substitution of U' = TUg in Eq. (2.7) gives the following result:

Vg(x,ygz=5) = ZAs exp{-~i2rs/r)exp(- in(x2+y?)/ (as) -
too too

f | son(-lexpl- (%n%) /w, “JexpLizn(xetyn) Jdedn +

-0 OO

Ao oo

:
-
o«

.

exp[-(£%n )/wozleXp[iZw(xa+yn)]dadn : (3.3)

Using A.S. 7.4.6 the integration with respect to n can be
performed, and using Zg. (2.3) the above expression can be written as:

W

[ Z
2 . . | O) 2.
) G) 17 oo | (322 v

i . . 12
Vg(xsysz=5} = 5%5'exp(—iwds/x}exp(naw(x +y

d
~ f
exp(-z‘/woz)exw(%waa/(xs))da - J exp(«az/woz)exp(izwxg/(xs>)da

e (3.4)

Oy §
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Eq. (3.4) is integrated with the use of A.S. 7.4.32 and A.S. 7.1.16.

The result is givyen by:

V (xsy,z=s) = 5 exp(~iks)exp[- in (x24y?)/ (2s)]-

jxw

2 (%222 d 0
A expl < ) (x-+y )] 31 - erf[wo < ]

(3.5)
where erf z is the conventional error function as defined by A.S. 7.1.1.
The above expression is applicable for positive and negative values of
d. As a consistency test of Eq. (3.5) letting d » -=, j.e. no edge,
we note that erf( ) - -1; and Eq. (3.5) reduces to a well known
result. Also, this expression is functionally similar to the result
of Pearson et al. who studied the diffraction of Gaussian beam by a

(1)

semi-infinite plane Specifically, Eq. 8 in Ref. 1 can be
considered in the Timit at z - =, i.e., the transform or back focal
plane distribution is a scaled far-zone radiation pattern.

For calculation purposes Eq. (3.5) can be rewritten in terms of

the w-function defined by w(z) = exp(-zz)(1 - erf(:iz)), as follows:

v (x,y z=s) = exp( iks)exp[~in(x2+y2)/(xs)]exp[i 2nxd/(xs)]-

*ﬂ’wozexp {—[nwox/(xs)]z - [d/wojz} W£WWOX/{XS) + id/wOJ

(3.6)

To demonstrate the 1/x dependence of the electric field (Eg. 3.6)

we use the following approximation:

. ( 0.5124247 0.05176536
wiz) = iz 5 +

’ (3.7)
z7-0.2752551  z7-2.724745/
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If we assume that Wy = 5 cm, s = 20 cm, A = 6328 A, then
the above expression is valid for x = .5 mm by A.S. p. 328.
Furthermore we notice that the contribution of the second term in

Eg. (3.7) is less than 10% so that Eq. (3.6) can be written as:

y (x,y z=s) = exp( iks)exp[-in(x2+yz)/(As)]exp[i 2mxd/{(xs)]-

ﬁwozexp {-[ﬁwox/(xs)jz bidwg = 1) {256/ Lnugs 051}
‘ (3.8}
Finally for an infinite siit, i.e., an aperture extending from
£ = dy,to £ = dy with dy < dy, by Eg. {3.5), it is readily shown that
the electric field ng is given by:

Vg (x,y z=s) = 2xs exp(- iks)expi—iw(xzwg)/(xs)]-

2 ‘ .
W, .\ TTXW d fmXw
W 2exp[ ( > (x2+y2)] gerf{ £ = 91 - erffal - 9
Yo 0
(3.9)

3.3 Calculations

it can be seen from Eg. (3.6) that the back focal plane diffrac-
tion pattern for a Gaussian beam depends primarily on the behavior of
the w function. Therefore, in this section, we first examine some
interesting aspects of the w function (namely the isocontour diagram
and the complex zeroes) and their physical consequences. Then we
plot the intensity along the x axis, for y = 0, for various values
of the displacement of the edge, and finally we present a three
dimensional plot of the intensity as a function of the x and y

coordinates.
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In Fig. [3-1] the contour Tines of the modulus and phase of
the w function are presented. We note that for positive values of
the real and imaginary argument the function has a monotonic behavior.
However when the imaginary part becomes negative, zeroes are expected
for certain values of the argument. These zeroes lie above the 45°
ray and approach it asymptotically as n » ». As it can be seen from
Eq. (3.6) nwox/(ks) sets the real part of the w function, while the
displacement d/wO the imaginary. Thus as d/wO becomes negative,
the edge is exposing more of the Gaussian wavefront and interesting
nulls are to be expected at the zeroes of the w function. It is
furthermore noted that the electric field can have at most one null
for a given value of d/wO regardless of how large the wwox/(xs)
coordinate becomes. In Table [3-1] we show the first seven zeroes of
the w function.

The calculation of the zeroes of the w function was made using
the downhill method develioped by J. A. Ward(2>, and improved by
H. Bach(s) in 1969. This method, theoretically, always converges
toward a root; however because of the fact that |w(z)| >~ 0 as |z] > =
the search moves towards infinity and no roots are found. For this
purpose we multiply the w function with exp(k|z|). This way the
problem of the search moving towards infinity is eliminated but the
valleys of the zeroes become {nfinitely narrow especially for large
values of z. This necessitates the generation of a table so that
expedient choices of starting points can be made. The computer

programs for the above calculations are included in Appendix D.



d/wg WX/ (2s)
~1.3548] 1.99147

-2.17704 2.69115
-2.78439 3.23534
-3.28741 3.69731
-3.72595 4.10611
-4.11964 4.47681

-4,47982 4.81849
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Table [3-1]

Nulls of the radiation pattern for a
convergent Gaussian wave diffracted by

an offset edge, Eq. (3.6)

Fig. [3-11"

Contour lines for the amplitude
and phase of the w function.
Dashed lines indicate that the
choice of wwox/As = 1.0, and
d/wo = -.95 gives |w| = 2.0.
From this to get ]Vgi we must
multiply |w| with

exp{-[wwqx/(}\s)]2 - (d/wo)z}.

*Reprinted from A.S. Fig. 7.3.
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The variation in intensity versus normalized displacement along
X, with y = 0 and for the parameter d/wo, is shown in Fig. [3-2].
Plotted logarithmically is the intensity VQVZ(X = 2ﬂw0x/(xs), y =0,
z =s), for d/w0 = 0, #0.25, £0.50, #0.771, =1 and -1.35, normaiized
to sz (x = 2ww0x/(xs), y=0,2z=s) with d/w, = 0. This type of
normalization results in a straight line plot for the case of d/w = 0.
Values of negative d/wo, exposing more aperture, are seen to have larger
centrai intensity, peaking in the 1imit to a normalized value of the
intensity equal to 4. Asymptotically, the curves for + d/w0 merge as
2ww0x/(xs) exceeds 6.

Fig. [3-3] shows a three dimensional plot for the diffraction
of a convergent wave by an edge symmetricaliy positioned. VV* is
calculated from Eq. {3.8) normaiized by [wwoz/ZAs]z and plotted versus
anOx/(As) and 2ww0y/(xs). The interval along the normalized x axis is
-80 = 2mW x/As € +80 and along the y from -10 = 2mi_y/as < +10.

In the above calculations of the electric fieid the w function
was generated using the existing algorithm for the computation of tne
compiimentary error function. These programs are included in
Appendix C.

It is of academic interest to present an alternate way of
calculating the w function with arbitrary precision using the backward
recursion formula for the repeated integrais of the error function.

¢
W.,Gautschi\Q)

has discussed the recursive computations of the repeated
integrals of the error function. Using the method of backward
recurrence discussed in his paper we have written a subroutine that

calculates i"erf cz for a given n and z where i"erf cz is defined in
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to negative values of ;di/wo.



-37-

.i$ s 7 ﬂq?’\/ )

T HHHIT ] N N ‘
W
-, T HH NN ‘ ‘
lll',l ‘ -'~.......'i.'l§'.".~"~i$~§“\‘$’“
, | T A >
N
~ A l.'n.'n.~u.'~.'~€~..--.~#.-‘-3~\
e /,// ""5"3Fi§@§?§§§55§ﬁ§§5§?‘
| PN NS _
-0 | MO =0
! Db Scale :o%\ ..".."i :
X 0.25
- - 20 \ / )

Fig. [3-3]. Normalized transmitted irradiance In“is plotted
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A.S. 7.2.3. Using the identities that

"‘] 2}

erfcz = ié-exp(-z (3.10)

T

i

and
2

Z

i erfcz = w(iz)e™™ (3.11)

w(z) can be determined within the desired accuracy. A copy of this

function subroutine is included in Appendix E.

3.4 Summary and Conclusions

The optical transform pattern for a convergent Gaussian wave
diffracted by an offset edge has been analyzed. The singularities
which customarily occur in diffraction pattern problems without an
aperture are absent in this case, as is to be expected with Gaussian
beams. The general result for the focal piane electric fiéid is
given by Eq. (3.6) while that for an asymmetrical s1it is presented
in Eq. (3.9).

Characteristicaliy the pattern produces a sp}ke perpendicular to
the edge and the intensity in the spike falls off with an inverse
square distance dependence as can be seen from Eq. {3.8). In
addition, with the Gaussian illumination, there is no ripple, although
interesting nulis are predicted at large offsets of the edge as given

in Table [3-1].
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CHAPTER 4

EXPERIMENT

4,1 Introduction

The purpose of this experiment was to demonstrate the diffraction
patterns that were calculated in the previous chapters.

The Fourier transform patterns recorded for a semicircular
aperture with uniform amplitude illumination, and for an infinite
edge illuminated with a Gaussian wave, are presented here. The
experimental set-up for taking the Fourier transforms is described,

and some of its limitations are discussed.

4.2 Experimental Set-Up.

The total experimental layout is illustrated in Fig. [4-1].
An argon laser (SML) operated in the single mode fashion was the
illuminating source. The mirror {M1) directed the laser beam through
a shutter (S) that could be opened for time periods ranging from a few
milliseconds to an hour. Consequently the beam péssed through a
series of glass neutral density filters (NDS), used for intensity
modulation, and then redirected by mirror (M2) into a spatial filter
comprised of an objective Tens (M0) and a pinhole (P) located at the
focal point of the objective. The collimating lens (CL), with the
curvy side towards the film plate, was slightly misaligned such that
instead of producing a collimated beam it focused the radiation with
an effective focal length of 10.67 m. This was done so that the

.diffraction patterns could be directly recorded on a 10.16 x 12.7 cm
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(4" x 8") film plate eliminating the use of a microscope with a camera

attachment, thus sparing us the problem of ghost images and multiple
reflections. Following the collimating lens a circular aperture (A)

was located symmetrically in the beam and an edge (E) was mounted

on a vertical micrometer translation stage so that a. razor blade
could be positioned accurately in the beam. Subsequently the diffracted
beam traversed the 1ength‘of the room and was reflected by a large
rectangular mirror (M3) onto the film plate (FP). Thé angle of
incidence of the diffracted beam and mirror M3 was very close to 90°

so that pattern distortion resulting from phase retardations would

be minimized.

4.3 Photographs and Discussion

To generate the diffraction pattern of the uniform amplitude
wave by the semicircular aperture, (Fig. [4-2])a 40X Wild objective
was used coupled with a 12 um pinhole. This way the light incident
onto the collimating Tens was greatly overexpanded resulting in  an
amplitude variation not greater than 4% measured across the 1 cm
aperture (A). To position the razor blade accurately in the center
of the beam two micrometer readings were taken; one at the position
of no light on the film,and another at the point where edge diffraction
effects were totally absent from the Airy disc pattern. Then the
edge was positioned at the half way setting. The distance between
the diffracting edge and the film plate was 10.44 m. The value of
the neutral density filters was 2.5, resulting in a power level,

measured at the center of the pattern and averaged over a 1 cm
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Fig. 4-2. Back focal plane radiation pattern of a convergent uniform
amplitude wave diffracted by a semicircular aperture shown

in the inset.
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Fig. 4-4. Actual size back focal plane pattern of a lens with a

semicircular aperture having a 1 m focal length and a

.5 cm radius, illuminated by a uniform amplitude wave.
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aperture, of .50 yw. The exposure time was 10 seconds and the film

used was the Kodak Ektapan 4162 thick estar base. To get a qualita-
tive feeling for the difference between this transform pattern and
the one for a circular aperture we present Fig. [4-31. This figure
shows the Airy disk pattern and was made in the exact same configura-
tion as for Fig. [4-2] except for the fact that the edge was removed
from the system, and the exposure time cut by a factor of 2.

To get a recording of the overall pattern for the semicircular
aperture case (Fig. 4-4) the focai length of the system was reduced
t6 1.27 m and the distance between the diffracting edge and the film
plate was set at .04 m. At the same time the neutral density filter
vaiue was increased to 3 and the exposure time was kept the same.

To generate the focal piane patterns for a Gaussian beam
diffracted by an edge [Fig. 4-6], a coliimator wes introduced,
in the reverse order, between mirror (M2) and objective (M0O}. The
objective was changed to a Lietz 2.5X, and the pinhoie was enlarged
to 1.6 mm so as to eliminate only the very high frequencies and not
affect the Gaussian profile. The 1/92 noint was estimated from the
peam profile curve to be 3.1 mm. To measure the amplitude distri-
bution at the diffracting edge a 1.2 KHz chopper was introduced
between the neutral density filters (NDF) and mirror {M2). The
signal was read using a lock-in amplifier and the scanning aperture
was 50 ym in diameter mounted on a U.D.T. PIN i0C detector. Fig.
[4-57 shows the beam profile measured and the one calculated for
w_ = 3.1 mm. To eliminate high frequency components all the mirror

o
and lens surfaces were thoroughly cleaned. The exposure time for
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the photographs was 10 sec with a neutral density filter value of 3.6,
so that the average power on the center of the diffraction pattern

was .5 uw.
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CHAPTER 5
NEAR FOCUS DISTRIBUTION OF A CONVERGENT WAVE

5.1 Introduction

During the course of our experimental investigation an interesting
way for finding the position of the back focal plane of a lens has
been developed. Conventionally the intensity distribution, for unit
amplitude and Gaussian waves, near the focal plane of a lens is

symmetric about the optical axis(1’2).

Because of this symmetry the
exact determination of the focal plane of the lens is difficult.
However, if half of the lens is blocked, then the intensity patterns
are symmetric only at the focal plane (as was shown in Ch. 2 and 3)
and the above symmetry is very sensitive to the translation of the
lens along the optical axis.

In this chapter we will calculate the intensity distribution,
near the focal plane for a converging unit amplitude incident wave
illuminating a semicircular aperture. ,

In the analysis that follows we use the approximate form of
Sommerfeld diffraction theory integrail that has been developed for
the calculation of aberration-free diffraction images. The solution
of this integral is expressed in terms of rapidly converging infinite
series. Expressions for the on axis fieids are alsc given.

The solution is evaluated numerically and isodensity contour
plots are presented showing the lines of constant intensity for a
number of planes including the meridional and back focal. The results

agree with the experimental assertion that the back focal plane of a
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lens can be accurately determined by blocking half of the lens.

5.2 Theoretical Analysis

Consider a monochromatic unit amplitude plane polarized spherical
wave with radius of convergence s incident on a semicircular aperture

of radius a (see Fig. [5-1]. Defining

ar sin o X =p sin e

g =
(5.1)
n = ar cos 8 y =0 c0s 8
and
2
o _ 2m ;a4 21 @
v“'fz"(g)z , v=~f-(§)9= ap (5.2)

Sommerfeld's diffraction integral (Eq. 2.5) can be approximated for

our particular case as follows:

1 n/2
. 2
V{v,¢,u) = %§~exp[(—i(s/a)2u]- j J exp{i[(vrcos(6-¢) + %—urzj}rdr de
0 -n/2

(5.3)

Eq. {5.3) can be obtained by using Eq. 8.81. (11) in Ref. 3 and setting
A/f = 1, f=s, p=r, v=¢, i= -1, and changing the limits of integration
over ¢ so that the contribution from only half of the aperture is
considered. Note ihat the above changes result in a + iuwt
time dependence and unit ampiitude incidence in agreement with our
previous notation.

To solve Eq. (5.3) we first expand the exponent in terms of
infinite series of Bessel functions using A.S. 9.1.44 and 9.1.45.

Exchanging the order of integration and summation we get:
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1 /2
ia’ 2 N
V(Vsp,u) = = exp[-i(s/a)"ul- J Jo(vr) j dg + 2 ] (-1)7dp (vr)-
0 “’T[/Z k'—".]
”? /2
‘| cos[2k(¢-9)]de + 21 Z (~1) 9k+§(vr)- [ cos[ (2k+1)(¢-9)ds exp(i~% rz)rdr
-n/2 k=0 ~W72
(5.4)
Integration with respect to e gives the following result
1
V(V,0,uj = exp[ i(s/a) u} JwJQ(vr)exp(i g-vz)rdr +
0
1
. w cos{2k+De [ - , cu L2
—41k§0-—§E;T~l$-J 32k+}(vr)exp(3~§ r“Irdr {5.5)
0

We note that the first term in Eq. (5.5) is similar to the
integral analyzed by Lomme! and expressed in terms of Lomme! functions
of two variab1es(4), Since we do not wish to restrict our analysis
to real u,we instead express the result of the first integral, 47:s
in terms of a single series by expanding the Bessel function using
A.S. 9.1.10 and integrating term by term. This gives

o s=1U m \ /
xp(iu/2) m~1(m§M) J,(v) (5.6)

Qg% =

I e
U
To evaluate the second integral, Z., we expand the exponential

term into an infinite series and exchange the order of integration

and summation. This gives the following expression for dgé



cos(2k+1) %
S, = -4 l 2R L

1
{
r o lvr)rde (5.7)
& 2k+1
=Q om0 mi %

We note in Eq. (5.7) that the integration with respect to the Bessel
function can be carried through and the result written in terms of
Lommel's polynomials SZm,Zk(5)° However, series expensions for the
above polynomials exist only when the sum or difference of the indices
is an odd integer. For this reason, we prefer to expand again the
Bessel function in terms of a power series using A.S. 9.71.10 and
axchange the order of summation and integration. tﬂé can then be

written in the form:

 cos(2k+1)¢ + (%E)m vy 2K T (:%E)ﬂ 1 2n._2k+1 2n
Sp =2Vl et L T @7 L sz T [” r o edr
k=0 m=0 n=0 5
(5.8}
Integrating and combining terms gives:
e dum = Ve e vz)k y
("79 y ("1*/ y (7 cos(2k+1)¢
S = -2t e Lo _, (ZKFT)(2kn+ )T (2ke2me2n+3)
m=0 n=o¢ k=0 (5.9)

The summations in Eq. (5.9) have been written in this order to
indicate the convergence of the series.
Combining Eq. (5.9), (5.8), (5.5) gives the following general

result for the - electric field,
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2 ° .
ot 57 oLt o8- 0
m "‘Vz LU 2k
= g ) (£7) cos(2k+1)o }
! Z i (k¥ T) T(2kHT) (2kr2mt2n+3) (5.9)

For u = 0 i.e., focal plane calculation, the above expression

reduces to:
2 n 2 k

| » , |
TCRYCINST N fa LN AT SN N s Mot L }
e AT v = AT (L T2 T T2k (2kF2ne3)

(5.10)
This result (except for a phase factor) is identical to the one
presented in Chapter 2, Eq. (2.32).
The case of v = 0, that is on z axis calculation, can be reduced
from Eq. (5.9) in the following way. We set the second part of Eg. (5.9)
equal to zero and use the following limiting form for Bessel functions

of small arguments (A.S. 9.1.7)

3. (V) = (& V)"/mi (5.11)

Taking only the first term of the sum we write
- 2 1
V(0,p,u) = — exp[-i(s/a) u]n E'[1 - exp(iu/2)] (5.12)

We note that this result is independent of ¢ and in agreement with
Eq. 8.8.2 (26) in Ref. 3, as expected.
Finally for ¢ = zn/2, cos(2k+1)¢ = 0 and Eq. (5.9) reduces to

the form:
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1a’ 2 T iy
V(v,+r/2,u) = igu-exp[-1(s/a) uln cexp(-iu/2) Z?("V"& Jm(v) (5.13)
m:

This Tast case is the near focus light distribution for & circular

aperture with transmission of 0.5 across the full aperture.

5.3 Numerical Calculations

The representation of the intensity distribution as a function of
coordinates for a fixed value of the third is presented in this
section. The planes we have selected are the (x,y,z=0) (focal plane),
{x,0,z) (meridional plane), {0,y,z} (plane parallel to the edge} and

the plane (p,¢ =T, %EEZ). We use isodensity contours for various

4
levels of intensity since conventional three dimensional plots are not
suitable for plotting functions of oscillatory character over large
regions.

The calculation of Eg. (5.9) was done in the following way. A
double precision subroutine was generated to calculate the doubie sum
over the n and k indices, as a function of m. Paéticu?ar attention
was paid in keeping terms of the same order together so as to eliminate
precision and overflow problems common in calculations involving
large factorials and powers. The sums were truncated for values of
the index n and k of the same order as v with a few terms added for

"25). The return from

improved accuracy (last term of the order of 10
the subroutine was then used to generate an array of complex numbers
which was consequently sorted and summed in double precision by a

function subprogram.
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The calculation of the first sum of Eq. (5.9) presented the
problem that whenever u >> v the series would converge very slowly. The
problem was solved with the use of the generating function for the

Bessel series A.S. 9.1.41, namely that for |t] > 1 we use

o

! "9 _(v) = exp[«‘zi (t- .1_)] - Jo(v) - ?i (%]_)

m
J
m=1 m=1

ntv) (5.14)
The computer program used for these calculations is inciuded in Appendix
F. To generate the contour plots, the program developed by Lawson
and B]ock(6) (J.P.L.) was used.

Fig. [5-2] shows the intensity distribution of (x,y,z=0) i.e.
the back focal plane, plotted as the normalized coordinates ox and
oy defined by Eq. 5.2 and 5.1. The central maximum corresponds to
point Ps in Fig. [2-1] and Fig. [2-2], the second maximum along the
aXx axis corresponds to P2, and so on. The intensity VV* from Eq.
(5.10) normalized by (%§~) is plotted 1inear1y and the central
maximum corresponds to an intensity of 0.25. Thé intensity values for
the different contours is given by the legend accompanying the figure.
The entire plot encompasses the region -20 = ax = 20 and
-20 S qy < +20.

The intensity distribution in the meridionai plane (x,0,z) is
shown in Fig. [5-3]. This plot shows the change of the symmetry,
that is characteristic of the focal plane pattern, as a function

of the displacement along the normalized coordinate. Plotted is the
22

*
intensity VV from Eq. 5.9 normalized to (ﬂ§§0 as a function of the

normalized coordinate ox and the normalized z coordinate u.
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Contour iines in the meridionai piane {x,0,z) of the
normalized intensity plotted vs. ax and 2w/x(a/s)%z.
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£ = 0.0200 J = 0.0005
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The interval in ax is from -20 £ x £ +20 and in u from -10 < u = 10.

We note that at the focal plane, the plane perpendicular to the line
u = 0, the distribution is symmetric about the geometrical focus
(0,0,0). However if we move either closer (in the -u direction) to
the aperture, or further away from it, the distribution about the
optical axis is changing asymmetrically. We note that the asymmetry
for planes close to the focal plane is more pronounced for large
values of ax. To get a more qualitative feeling assume that s = 35 cm
a=>5cacm, A= 6328 A. Then each unit in u corresponds approximately
to .05 mm. Furthermore from Eg. (8.2) we see that the degree of the
asymmetry for a given z is proportional to the square of the ratio
a to s.

Fig. [5-4] shows the intensity distribution contours of the plane
(%‘—;{)2

from Eq. (5.13) versus u and ay. This plot is identical (except for

*
paraliel to the edge (0,y,z). We plot normalized intensity VV /

a scaling factor, and choice of contour values) %o the one presented
in Ref. (3) page 440 describing the light distribution in the meridional
plane for a full aperture. The plot is cver the region -20 Sox = 20
and -10 5 u 5 10. As expected the intensity is symmetric about the
optical axis and the distribution on the u = 0 1ine is the Airy
pattern.

To demonstrate the change from the (0,y,z) plane to the (x,0,z)
Fig. [5-5] 1s presented. Plotted is the normalized intensity
VV*/(%%*') for ¢ = %@ %E'versus u and v. The range in u and v is

identical to the one in Figs. (5-2) and (5-3), namely -10 < u ¢ 10
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and -0 S v < 20. The (v, %ﬂ', u) plane lies above the dotted z

axis and the (v, %3U) below. We note the asymmetry of the pattern,
with the intensity exhibiting a number of interesting minima for

negative u and v.

5.4 Summary and Conclusions

The analysis of the near focus intensity distribution of a
converging unit amplitude wave diffracted by a semicircular aperture
has been presented. The general result for the electric field in
the vicinity of the geometrical focus is given by Eq. (5.9). It is
shown that the result for z = 0, i.e. back focal plane produces the
intensity distribution evaluated in Chapter 2. The on z axis case
Eq. (5.12) as well as the case of ¢ = = /2 (plane parallel to the
edge) Eq. (5.13) are also given.

Although the analysis has been restricted to a unit amplitude
case, the extension to a Gaussian amplitude one could be made as
follows. In Eq. (5.3) an additional term exp(~a2;2/w02) would be
included in the integral. Since the solution is independent of
whether u is real or imaginary, in Eq. (5.9) instead of u we use a new
variable t = (%ﬁ(g)zz + iaz/wgz)» The modification in the computer
program {s simple and straightforward.

The analysis shows that the intensity distribution, except for
the focal plane and the plane paraliel to the edge, is non-symmetric

with respect to the optical axis. Furthermore the asymmetry of

the pattern as we move away from the focal plane depends on the square

of the ratio of the aperture radius to the radius of convergence.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

In the work reported here several cases of edge diffraction of
convergent spherical waves have been analyzed. We have presented
solutions for the electric field at the focal plane as well as for
arbitrary planes near the geometrical focus. The property that the
focal diffraction patterns are symmetric was shown to be a very
useful way of determining the location of the focal plane of an
optical system.

For the case of an infinite edge, positioned off center in a
circular aperture Eq. (2.20) gives the focal plane electric field
for the uniform amplitude illumination. The corresponding result
for a o-n radian phase mask can be written directly from Eq. (2.9)
and (2.16). The above solution has been particularized to the semi-
circular aperture and the electric field is given by Eq. (2.21).

On axis calculations indicating the spatial frequency dependence

of the patterns have been presented in Eq. (2.28) and (2.31).

To illustrate these calculations we have shown 3-D plots of the
intensity for a region near the origin and out along the spike.

The intensity profiie along the x and y axis has been presented, and
an isophote diagram of the back focal plane is also included. The

dominant feature of these patterns is the large spike of energy

diffracted at right angles to the edge, having an intensity envelope
falling off in proportion to the square of the inverse of the distance

from the focal point; the fractional ripple of the spike is of the
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order of }Hg])(}axl)]g The intensity along the x and y axes rings at
an angular spacing consistent with the vatic of the wavelength and the
corresponding dimension of the aperture. This analysis should be
useful in problems of image quality enhancement as appilied to photo-
grametry, pattern recognition, and on-iine inspection systems using

optical transform methods.

The simpler case of the convergent wave with a Gaussian amp1itude
dependence diffracted by an offset edge has also been presented.
Eq. (3.6) gives the general result for the focal plane electric
field and Eq. (3.9) represents the Tight distribution resulting
from an asymmetrical slit. The dominant feature of this pattern
is again the large spike of energy perpendicular to the edge, with a
%'intensity fall-off (x is the distance from the focal point). The

basic difference between this optical transform and the one for the
uniform ampiitude illumination is the absence of the high frequency
components and the extinction of the ripple. 7o illustrate the
above points we have presented 3-D plots and line drawings showing
the dependence of the intensity profiie on the dispiacement of the
edge. The tabulation of the zerces of the w function and the methods
employed for the calcuiation of the repeated integrals of the error
function should be usefui in the area of heat conduction and dif-
fusion, where the w function most commonly appears.

in Chapter 4 we nave presented photograpns of the diffraction

patterns for the uniform amplitude case as well as for the Gaussian
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one, and we have discussed a relatively simple set-up for obtaining
magnified Fourier transforms of given aperture functions.

The near focus electric field for the convergent uniform
amplitude illumination of a semicircular aperture is given by Eq. (5.9).
This result was also shown to be applicable to Gaussian amplitude
ilTumination with the redefinition of one of the variables. Solutions
for the x-y plane (Eq. 5.10), y-z plane (Eq. 5.13), and on axis
(Eg. 5.12) are also presented. To illustrate the change of symmetry
as a function of displacement along the optical axis Fig. [5-3] and
[5-5] are shown . The degree of distortion in the pattern is found
to be directly proportional to the square of the ratio of the lens
aperture to the focal length. The above analysis demonstrates a
simple way of accurately determining the focal plane of a Tens in
the Taboratory. By blocking half of the lens we transiate a card
along the optical axis until we find the location where the pattern
is perfectly symmetric. Furthermore since the construction of a
symmetry detector is not difficult this analysis .should be useful

in systems employing'self focusing"techniques.
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DETFRMINATION OF WiNRjy THE SMALLEST OF will.

IFim(1)-W{3}) 545906
TFEWiL)-Wl2)) 74848

TFini2i-Wl3)) 8+8,9
NR=] :

GQOT10 10

NR=2

GOT0 10

NR=3

TF{wd-WINR}} 1112412

GOTO [13414,15) 4K
K=}
=0

FORWERD DIRECTED WALK PATTERN.

Ax{0.TIT,0.,70T)
V=(ZINR}-L0) /H
WO=W{NR}

10aZ (NR}
IF(wWC~DM) 1841844
K=2

REDUCTION OF STEP LENGTH.

iFIH.LTLHM} GOTO 18
H=H%0,.25

G0TC 3

K=3

RESTGRATION OF STEP LENGTH.

Hativh,
5010 2
=+

RCTATION OF WALA PATTERN.

TF{I-T) 16416517
v=ully
G070 3

RECUCTION OF STEP LENGTH.

IF{H.LT.HM} GOYO 18
HxH¥0.25

i=0

GOY¥0 2

LE=20

HE=H

DE=WG

RETURN
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APPENDIX E

IMPLICIT REAL*B(A-G,0-2)
DIMENSION Y{S0UO0)}
N=8
P=6.C0
N2=N+2
CC 10 I=2411
X=l-1
CALL RINERF{XyNyP, Y}
WRITE (6,100) (Y{J)ed=1yN2]

100 FORMAT(IOQULIX,E 1l.4))
10 CONTINUE

10

20

SToP
END

SUBROUTINE RINERF({XeN,P Y}

IMPLICIT REAL#BIA-G,U~2)

DIMENSION Y(5000), W{50G0)

DATA P1/3.14159265358979300/

A=1,0~10 .
XMA=2,DO*DSQRT {2 + DO*N) *X+P*DLOGI 10.D0 +DLOGI 2.00)
XMC=2,00%DSQRT {2.D0) *X

Ml AFN®XMN/ { XMO#*XMD) §

N2zNaZ

M3=M+3

M4=M3e]

M5=N4]

N2=N+2

W{M4)=0.00

GC Y0 2

A=A/100.D0

W{K3)=A

D0 10 J=1,M2
WIM3=J)=2,D0%{M3~J ) *W(M5=J) +2, DO*XEN{Me—J}=
IF (W{M3-J} .GT. 1.D60) GO ¥O 1

CONTINUE

WT1=2, DO*DEXP{~X*X)/OSQRT(PI}

C=nT1i/M(1)

DO 2C X=1,N2

YiIK)=C*WiK)

RETURN

END
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PART II

DIFFRACTION OF LAGUERRE GAUSSIAN
BEAMS BY A CIRCULAR APERTURE
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CHAPTER 1

INTRODUCTION

The diffraction of an electromagnetic wave with & Gaussian
amplitude profiie by a circular aperture has been an important problem

in optics because the TEM mode of laser resonators produces a beam

0,0
whose variation in the transverse direction is Gaussian.
In addition to the general diffraction theory references of Part I

p. 7, selected references pertinent to Gaussian resonator modes are
given(1'4).

F. Kauffman(s) and A. L. Buck(s) first calculated the far zone
diffraction patterns, resuiting from the truncation of a Gaussian
beam by a circular aperture, by solving numerically Kirchhoff's
integral. The near zone patterns were calculated by Campbell and

De Shazer(7) using digital techniques. F. 0. OTaofe(B), R. G. Schell

and G. Tyras(g)

were the first ones to evaluate the diffraction
integral analytically in the near and far zone region, their solution
expressed in terms of infinite sums of Bessel functions.

In the work reported here we have extended these analyses to
include any higher order Gaussian beams using the associated Laguerre
polynomial to describe the radial distribution of the electric field.
This type of representation of the ejectric field corresponds to

(]O)’(2—4). In addi-

the general TEMp,z mode of an opticai resonator
tion we present calculations of the loss of power as a function of
aperture size and mode index showing that the conventional rule of
thumb in selecting apertures by "going out a few times Wo" is not

accurate for large mode indices.
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Specifically in Chapter 2 we analyze the diffraction of a high

order Laguerre Gaussian beam (TEM ) by a circular aperture, and

Psk
discuss the behavior of the generai solution, the case of restricted

radial dependence (TEM mode), and we present some interesting

0,8
aspects of the minima of the Towest index mode (TEMo,o)'

in Chapter 3 we study the Toss of power as & function of the
aperture size and mode index for Laguerre and Hermite Gaussian beams,
and in Chapter 4 we present a summary of the important solutions and

the conclusions thereof .
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CHAPTER 2

DIFFRACTION OF LAGUERRE GAUSSIAN BEAMS BY A CIRCULAR APERTURE

2.1 Introduction

In this chapter we present the calculation of the Fresnel region
diffraction patterns of a high order Laguerre Gaussian beam truncated
by a circular aperture.

In the analysis that follows circular polar coordinates are
used and the incident field has a cosine or sine angular dependence
whife its radial distribution is given by the associated Laguerre
polynomial multipiied by a weighting factor. Sommerfeld's diffraction
integral is solved with the Fresnel approximation, and the diffracted
field is expressed in terms of converging power series and series
invoiving the incomplete gamma function. Some speciai cases are
considered resulting from the restriction of the radial or anguiar
dependence, and corresponding expressions for the electric field are
given. It is shown that for the high crder modes, the irradiance
on the z axis is zero when the mode index associated with the radial
dependence, ¢, is different than zerc. On the other hand when 2 is

zero the central lobe {s always a maximum.

2.2 Analysis

Consider a circuiar aperture of radius a,iocated in the plane

z = Q,having a transmittance function T(p',6'} given by

T{o's0') = circ(p') = 1 (o' = a) (2.1)

a () otherwise.
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The wave incident on the aperture .is monochromatic and plane

polarized. The following scalar function Upl(p',¢i) is taken to

*
describe the transverse component of the illumination at z = 0(])

1/2
U (o' 9" = 2 f—p! 1
o (1+6,,)17% Lalasp)t]
3 /f)ﬁ 'QLQ(Z .2‘) . (COSM')eX 2. 2
— (= e pl-0""/w ) (2.2)
Yo (Wo Pt wo2 sings’ P Mo

where the Kronecker delta 808~ T for ¢ = 0 and zero for & # O, L; is
the associated Laguerre poliynomial, and Wy = spot size of Gaussian
wave at plane z = 0. We have chosen this type of representation of
the electric field because we are concerned with special filtering
{truncation at the focal plane). In this case it can be shown, for
example with the use of the Collins chart(z), that Eq. 8-4 (7) in
Ref. 1, which describes the field at an arbitrary point (p'¢',z)
reduces to the form of Eq. {2.2). Furthermore, the generalization
of the analysis to include truncation for expanding and converging
waves can be easily made by changing w, to w(z), including a spherical
wavefront in the Gaussian amplitude term, and multiplying with a
phase factor that is a function of z.

To calculate the scalar component of the electric field ampli-
tude at {p.,9,z >0), see Fig. [2-1]. We use the usual Fresnel-zone

approximation of Sommerfeid's formuia(3}s
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V(p.r) = %%-e‘fk”-jf U(o" 29" YexpL-ik(s?/2r - 221COS(8120)7, gy gy
' s

(2.3)
Combining Eqs. 2.7, 2.2, and 2.3 gives
. 1/21 jr_z
V_(p,r) = AZ exp(-ikr)—2 [ p! ] .._.(__2_)
e o (1+5,) /2 Ln(arp)t d Yo\ ¥g
2 a
[ % 29'2 2, 2 ~ike'2 (cosiﬁ) ikop 'cos(¢-¢")
" J Lp(wz exp(-0'“/w “)exp(—5—) singe'/ €XP = .
o 0 0
o 22+1dpid¢' (2.4)
(4)

Using the relation
™
| explik(op'/r)cos(4=)- ing'Idp'  (2.5)
c

——t

l

explin(n/2-4)3d, (K2-) =

N

m

and integrating (2.4 with respect to ¢' we get

iz exp(-ikr) igmy [OS%\ 4 11 {2V
Vo Gour) = exp(lgn) (5 Ll 1 (N
0% >\rz 2 ' \singg (1+602)1/2 (2+p)! W, \ W,

a 2

t ]
. jp|£+1‘} (kgg )LZ (29 ) exp[_p.z( 1 + 'ik)]dpa (2.6)
Lt r Py 2 W 2 2r
o 0 o

The integral with respect to o', which we call ng can be evaiuated

as follows. We first substitute o' = g-and then expand the Bessel
function and the Laguerre polynomial in terms of power series A.S. 9.1.10
and G.R. 8.970 and exchange the order of summation and integration,

getting



- e T (1) el

o n=
' ‘[ AL ['_Xz(a2 . ikaz)} " (2.7)
) ;;7? 2y .
0

The integral in Eq. (2.7} can be evaluated by A.S. 6.5.2 in terms of
2 L2
2,a ika
(= + 50

the incompiete gamma function with the substitution u = x

2 \n
(—‘i)”(w)!(z“‘z >

4y
= 5~ ) L .
2 er a2+]n=o {2+n)1 (p-n)Ini m=o mi{m+e)!

giving

v (metntl ,a)

{2.8)
. 2
_ &, dma
where o = =5 + —= . (2.9)
Wa
Defining
2 2
Woa /zwo

and combining Egs. {(2.10), {2.9), (2.8}, {(2.6) we get the following

generai result for the electric field:

2 1/2 COSLo
_ s e¥m atz | 1{a+p)! {am ( 1
Vpeloor) = 157 5% 4 [ 43, ] n*exp(~ikr)exp(“5") sinz¢) el

mY(2+m+n+1,a)
m! (m+2 )1 (2.11)

~18

z 4 .
(etn)l(p-n}inl = Lo
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Restricting the radial dependence to p'lexp(—p'z/woz) by setting
p = 0 one gets

-~1/2
2 j . COSLd
foy g 2/ atz ] I i | L A iam <“ 1
VO,Z\Q,V‘} i 5 rz wo o (1+60£)_! h exp(-?kr)eXP( 2 ) S"inlq) a2'+1

o= gkuﬂMYf)
m=o ml{m+e )l

(2.12)

Using A.S. 6.5.4 and 6.5.29 Eq. (2.12) can be written

2 =1/2 A cos£¢>
L3 2/ a%z 1 1 2 . iom
Vo pleom) = 15 2 WE{;!(1+502)J h™exp(-ikr)exp(—5™) (cosz¢
LM - n
LA (2.13)
e ]l pho RATmETHNET)
m=g M

Now exchanging the order of summation and using A.S. §.1.10 one can
show that

2 i/2 . COS%¢
a 1 } Lot igm (
2 w0i£!(1+601)J 8" exp{-ikr)exp( 5 ) sin2¢>

; " {(2.14)
where d = b/2a, 8= /i'a/wo.

Finally setting « = 0, p = G we get the following result for
the Towest order Gaussian beam: ¥
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(2.15)

We note that this result is eguivalent with the ones in Ref. 3 and 5.
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2.3 Numerical Calculations

In this section we will discuss the numerical evaluation of
Eq. (2.11) and present graphs of the important cases discussed in
the previous analysis. Specifically we will show the variation of
intensity for a TEMS,G mode as a function of the aperture size,
demonstrate the Tobe structure and nigh frequency components for the
diffraction of a TEMQ’4 wave, and finally we will display the varia-
tion of the minima of the TEMo,o mode as a function of the truncation
parameter.

The numerical evaluation of Eq. (2.71) involved basically the
calculation of the double sum of the incomplete gamma function of
complex argument with the appropriate powers and factorials. To
avoid the repeated computation of the incompiete gamma function a
double precision table was generated using the A.S. 6.5.29 series
for each calculation. Subsequentiy,the values of the table were
used in combination with the binomial coefficients and the appropriate
powers to produce doubie precision compiex arrays which were con-
sequently sorted and summed. As is the case with problems invoiving
factorials and powers particular care was exercised in grouping and

operating with terms of equal magnitude. The criterion for trunca-
-60

tion was that the last term be of the order of 10 compared with
the total sum. This type of truncation was considered necessary
because of the highly oscillatory nature of the result. The programs
for these calculations are included in Appendix A.

An illustration of the radiation patterns for the high-order
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modes is shown in Fig. [2-2]. We plot Ve Gvg g from Eq. (2.11)
normalized to Iyo VS x(i.e. ¢=0) for a/wO = 1.0 and 0.8. Ioo is the
irradiance of the TEM mode at point (o,z), in the absence of the

aperture and is given by:

4 2.2

1 = 2nw02/(ﬁ2w +.222) (2.16)

00

For a/w0 = 1.0 only about 12% of the total power is transmitted
through the aperture. By way of contrast we note that with same
aperture size 86% of the power is coupled for the TEMO’0 mode. For
a/w, = 0.8 as shown in Fig. [2-2], we see that the power transmitted
in the TEMS,G mode drops sharply to a mere 2.5% of the incident
power.

In Fig. [2-3] we plot Tines of constant intensity v0,4v3’4
from Eq. (2.74) normalized to I, given by Eg. (2.16) versus normalized
coordinates §%§~x and %%3 y. The center of the pattern has zero
intensity and this fact can be seen from Eq. {2.14) by taking the
Timit of b » 0. In addition the intensity has zeroes along the
Tines of ¢ where c0524¢ is equal to zero. In the absence of the
diffracting aperture the irradiance would have had only the eight
central lobes (compare this figure with Ref. 1 page 332). The
introduction of the circular aperture causes the higher spatial
frequency ringing limited in the sectors where cosz4¢ # 0. For this
configuration a/w0 was taken to be equal to 1.0. The intensity
values for the different contours is given by the legend accompanying

the figure. Tocalculate Eq. (2.14) and draw the isophotes we

employed the same techniques and programs that were discussed in
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Part 1, Section 5.1.

To illustrate the minima of the radiation pattern for the TEMS &
mode we present Fig. [2-4]. The solid curves represent the minima

of the function

(2.17)

while the dashed ones the zeroes of the J1(b) function denoted by

j?,i for the first zero,j1,2 the second and soc on. The Tocus of

the zeroes of J1(b) do not depend on the parameter a and are therefore
straight Tines. The minima of Eq. (2.17) do depend on o and their
deviation from j],n (n=1,6) can be determined from this figure. In
these calculations o« was taken to be real since from Eq. (2.9) it

can be seen that for aperture values of @ ~ 10 um the imaginary part
of this expression is of the order of 5 x 10‘4,for z =100 cm,

A = .6328 um. Then Eq. (2.17) has exactly the same minima as the

expression for the intensity of the TEM0 mode so long as

»0
(a/wo)z >> %%E-. The range in o is 0 <a <4 and inb 0 b = 20.
This plot indicates that for spatial filtering appliications
(a/w0 ~ 2} the minima of the radiation pattern are within a few
percent of the zeroes of the 31(b) i.e., plane wave illumination.
Furthermore, for moderate values of a, the minima of £q. (2.17)
as b goes tec infinity approach asymptotically jl,n n - «. However
as o goes to infinity, i.e. Gaussian wave, then the zeroes of

Eq. (2.17) merge asymptotically at very large values of b.
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and the zeroes of the Jw(b)/b pattern, dashed curves

plotted vs a and b.
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To generate Fig. [2-4] a table of the 10910 of Eq. (2.17) was
constructed. Subsequently a contour diagram was made for function
values ranging from -6 to -9. This established the valleys of the
minima. The actual determination of the minima was made using
bivariate linear interpolation between the two closest contours of
the same value.
in summary from Eq. {2.711) it can be seen that if 2=o0,
Vp,g(o,r) =0, (p=0=>h > 0 —> h* > 0), so the irradiance is zero
on the z axis. The only case that this does not happen is when
2=0 and then the pattern has a maximum at p=o. In addition for

the simpie case of the TEM mode the minima of the intensity dis-

0,0
tribution have approximately the same spatial distribution as the

minima of the Airy pattern.
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Note:

!
A square root has been incorporated in the term E{%iBTT

so that the eigenfunctions would be normalized to 1.
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CHAPTER 3

APERTURE MATCHING FOR HIGH ORDER MODES

3.7 Introduction

In this chapter we calculate the loss of power as a function of
the aperture ratio a/wo, for high order modes. The input electric
fieid is written for the first case examined,in the form of Eq. (2.2)
i.e. in the Laguerre-Gaussian representation resulting from the
solution of the resonator integral equation in cylindrical coordinates.
We compute the ratio of the transmitted to the incident power and piot
it as a function of a/wou In the second case the input field is
written in terms of the Hermite-Gaussian representation appropriate
for a solution of the resonator eduation in Cartesian coordinates.
Again the dependence of the ratio of the transmitted to the incident
power is calculated and the resuits are piotted as a function of the
rectangular aperture size a'/wo. The results ind1§ate that relative
aperture sizes greater than five are required in order to achieve

transmittion efficiencies greater than 90% for high order modes.

3.2 Laguerre Gaussian Matching

To study the joss of power as a function of the aperture ratio

for the Laguerre Gaussian incident field we must evaluate
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2 A
r 2 ] ] 1
_flU |p'dp*do
T R |
r
= 3.1)
P, 21 o (

mn f [lU Izp'dp'd¢'
I S 2
0 0

where the incident and transmitted powers are denoted by Pin and Ptr
respectively and where Upl is given by Eq. (2.2).

We note that the denominator in Eq. (3.1) is equal to 1 by virtue
of the fact that the eigenfunction solutions Upz have been normalized
to 1, or by directly caiculating the integral using G.R. 7.414.3.
Combining Eq. {2.2) and (3.1) and using the above property we get

the following result:

g &7 2
tr _ 4 : pi) ( ] )( 2 ) | (cos “V)d¢‘
P (EY I 0= N 2 | L2
in oL W W 3 sin 4¢
a I EZ
J o'& L;’;(%) exp(-2p'2/w02)p'dp' (3.2)
) ' Wy .

in Eq. {3.2) the integration with respect to ¢' gives 7, and the sub-
stitution of u = Zp'z/wo2 gives:
.2, 2
2& /wO

P
tr _ 1 p! { 2, 2 2 -u

= . . L d 3.3
piL = e e+ | WL e (3.3

o]

Eq. (3.3) was solved numerically in the following fashion. A
function subprogram calculated the associated Laguerre polynomial for

a given p,%, and x using the forward recursion formula G.R. 8.971.4.
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This process is sufficiently accurate for indices not exceeding 25.
Subsequently the integrand was formed and integrated using the Simson
approximation, for a given initial guess of the upper limit of inte-
gration. The returned value multipiied by the weighting factor was
compared with the desired value of Ptr/Pin‘ If the difference was
not within one percent the 1imit of integration would be modified
accordingly and the process repeated until the desired accuracy was
achieved. The computer program for this caiculation is included in
Appendix B.

Fig. [3-1] shows dashed lines of constant efficiency, Ptr/Pin
for values of 0.5, 0.7 and 0.9 with 2=5 plotted versus p and a/wo.
Range bars are shown on each curve to permit interpolation for mode
indices from £=0 to 2=10. As an example, to get a transmission effi-
ciency of 0.7 for the TEM7,9 mode the aperture ratio is calculated

from the graph to be 4.8.

3.3 Hermite Gaussian Matching

The determination of the transmission efficiencies for a
rectangular aperture of dimension 2a‘ x 2a' involves the solution of

an equation similar tc the one presented in Section 3.2, namely

? a
32 1 i
| el
= (3.4)
.;n r 2 .
j f !Um’n{ dx'dy
(.-

where U is defined by
mn

]
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Fig. [3-1]. Transmittance Pi/Ps, as a function of relative

aperture size and mode index p. The dashed curves
are for 2=5; range bars are shown on each curve to
permit interpolation for mode indices from 2=0 (0)

to 2= 10(*).
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L 7y J e f gt
U n(xn ’y| ,Z=0)= [ m+n] ]é/z‘{v'ﬂ' Hm(véx )H (}/2)' > exp[_(xlz+y|2)/w02]

my 2 mlnl 0 W AW
(3.5)

0 0

Hm and Hn are the Hermite polynomials of orderm and n respectively.
Using the same arguments as in section 3.2 Pin can be set to 1

and upon substitution of Eq. (3.5) in (3.4) we get

+a 2
P. 2 2
tr 1 1 (/Zx (5__ :
in ZM+H 1m'n' ™ 2 j Hm Y ) = W 2>dx
T o -a | 0
+a
i " l2
[ H, v, exp(w 5 )dy (3.6)
—a o
Using the property that }Hm(-x)i = {Hm(x)] and substituting u = ﬁ%&_
1 0
and v = !%1_ Eq. (3.6) can be rewritten
0
Yo Yo
P . ,
tr _ [ ]H (u)lzex 2 [ 2 2
= — p(-u)du- [IH (v)]|“exp(-v“)dv
Pin  m2™p1p1 J MMy n
0 0 (3.7)

Eq. {3.7) was evaluated numerically for given values of Ptr/Pin in
a similar way as Eq. (3.3) was. A function subprogram generated
the Hermite polynomials for a given index and argument, using the

forward recursion relationship; then the integrand was formed and a

special subroutine controlled the upper 1imit of integration until
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the solution was achieved within the desired accuracy.

In Fig. [3-2] lines of constant efficiency are drawn as a function

of n and a‘/w0 with m?5,__The_Rtr/Pi values are 0.5, 0.7 and 0.9 for

n
comparison with Fig. [3-1]. Again range pars are drawn to permit

interpoiation between mode indices m=0 and m=10.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

In this part of our work we have examined the diffraction of a
Laguerre Gaussian beam by a circular aperture, and we have studied the
transmission efficiency as a function of mode indices and relative
aperture size for)Laguerre as well as Hermite Gaussian beams.

The general result for the electric field for a diffracted TEMP’Q

mode is given by Eq. {2.11). If the radial dependence is restricted

to p“zexp(*p'z/woz) the corresponding result for the TEM mode is

0,4
Eg. (2.14). The electric field for the fundamental mode is given by
Eq. (2.15). To illustrate the variation of the intensity distribution
for a TEM5,6 mode as a function of the distance from the z axis and
relative aperture size we have presented Fig. [2-2]. The two-
dimensional lobe structure and the high spatial frequencies of the
distribution for a TEMO’Q mode are shown in Fig. [2-3]. The calcula-
tion of the deviations of the minima of the TEMQ30 mode from the zeroes
of the Airy pattern can be made using Fig. [2-4]. We note from the
above analysis that in general the diffraction pattern for a TEMp’g
mode is always zero on the z axis fof values of 2#0. When 2=0

then the central lobe is a maximum. In addition the intensity drop
for a small change of relative aperture size is much larger in the
case of the higher order modes. Finally the zeroes of the fundamental
TEM090 mode for practical values of a/w0 are in close proximity to

the zeroes of the Airy pattern and the greatest deviations occur near

the first zero j1 1°
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The eyaluation of the transmission efficiency for Laguerre and
Hermite Gaussian beams was done numerically and the results are shown
in Fig. [3-1] and Fig. [3-2] respectively. We have plotted constant
values of the ratio of transmitted to incident power, as a function
of relative aperture size and mode indices. These plots can be
effectively used to calculate the necessary aperture size for a
given transmission efficiency and set of mode indices. In general
the results indicate that higher order modes require aperture sizes,
much larger than what was thought necessary, in order to achieve

efficient mode coupling.
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Diffraction of Laguerre Gaussian
Beams by an Aperture*

Avrexanpar C, Livanos aNp Nickonas GEORGE
California Institute of Technology, Pasadena, California 91109
(Received 19 April 1972)
Inpex HEADINGS: Diffraction; Filter,

In recent articles the problem of the diffraction of the lowest-order
gaussian beam truncated by a circular aperture has been treated. !
We have extended these analyses to include any higher-order
gaussian beams, using the associated Laguerre polynomial to
describe the radial distribution of the electric field.

Consider an aperture located in the plane at z=0 having a
transmittance function 7'(p,¢) given by

T{p¢)=circ(p)=1 (p<a)
=0  otherwise, (1)

with cylindrical coordinates p and ¢. The scalar function U ,i(p,¢)
is taken to describe the transverse component of the illumination

at 3=0,%
2 #! (\’2
Upilpy@) = i} b
si(p,9) (1+5o!]i[W(I+P)I 700 wo)p
2p*N (Coﬁlq& 2
XLy ( = W sinsg ) ¥R (=P, ()
where
dau=1 for [=0
=0 for %0,

Lyt is the associated Laguerre polynomial, and we=spot size of
gaussian wave at plane z=0.

A transverse scalar component of the electric-field amplitude
at {p',¢",5>0) (see Fig. 1) is given by the usual Fresnel-zone
approximation of Sommerfeld’s formuia,*

von=Zen=itn [ U6
Xexp[:~jk(p'2 o COS(¢ ¢))J dodb. (3)

In order to have the result applicable for large values of p’, we
expand
=t~ 200 cos(e~4) 1,
factoring r= (p'*+2%)%, instead of simply z. Combining Eqs. (1)-{3}
and integrating with respect to ¢ gives

, js exp(— jkr) ( ﬂl)(co%’ 4/m
V(') = i ol sinlg’ ) (T4 o)t

xi_(z+p)x ) / o7 )
o)l AL B

'

P’(p',¢>'.z)§

y ¥

F16. 1. Geometry of relationships between aperture and observation plane.
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» mm
16, 2. Normalized transmitted irradiance Vs oV s* vs x'; a/we=0.8,
1.0 are dashed and solid curves, respectively, for A =0.6328 ym, 2 =0.1 m,

and ¢’ =0,

where J; is the Bessel function of order I. Expanding J; and L}
into infinite series, Eqs. (8.440) and (8.970) in Ref. 5, respectively,
and integrating term by term gives the general result

2¢/x atz 1 p!(l+p) .
Suh Sl e l — 7k
Volp',r N w[ T o it exp(— jkr)
il (COW’
XcW( ) sinlg’ e
Kmp K e gy (m+ K41, o)
NI e ‘. )
K=o \f+}\) Hp—K)! mmo mi(m-1)!
where v is the incomplete « function and
Ko'a a*  jma® 20 — b2 ab
Bl S NP S AN St g e fme—
b r 7 owe W o & woler g ;% vZwe

Restricting the radial dependence to o' exp(—p?/wy?) by setting
p=0 gives

2\/1r a“z 1

A n W

«-q —a

B exp(— k)

“(1+5oz)
s len(b)

]ir)(cow‘«b
Xexp( sinlg’ m_, Tdm

where d=b/2a, 8=Via/w,.

For comparison to Refs. 1 and 2, reducing to the singie-lobe
case,i.e., p=0and =0, in Eq. (5) gives the equivalent unnormal-
ized result

Vo (P 17/ =

(6)

Ir)iaz 1 &« e J o (B
Voolp',r) = &) ”) = — exp(—jkr) 3 _,_(.2 o
7w a el

An illustration of the radiation pattern for the higher-order
modes is shown in Fig. 2. Vs sVs.6*/700 from Eq. (5) for Vi,
normalized to Joq, is plotted vs #’ for ¢/we=1.0 and 0.8. Iy is
the irradiance of the TEM g, mode at any point (0,z) in the absence
of the aperture, given by

[oo 27rwo‘/ (7{LLU "—u‘-)\’zz) (8)

For a/wo=1.0 only about 129, of the total power is transmitted
through the aperture. By way of contrast, we note that with
same aperture size 867, of the power is coupled for the TEM,. o
mode. For a/we=0.8 as shown in Fig. 2, we see that the power
transmitted in the TEM;, ¢ mode drops sharply to a mere 2.5%,
of the incident power.

Also, we note the zero of irradiance at p’=0; this is character-
istic of each of these modes for any p when /5£0. On the other hand,
when /=0, the central lobe is a maximum.

To study the loss of power as a function of the aperture ratio
a/wo, we compute

i a
Pu/Pia= [ ] | U 1% dp do, (©)
Q ]

where the incident and transmitted powers are denoted by Py,
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Fic, 3. Transmittance Pu/Pin as a function of relatlve aperture size
and mode index p for A =0.6328 um, 2=0.1 m. The dashed curves are for
§=$; range bars are shown on each curve to permit Interpolation for mode
indices from i =0 (QO) to 1 =10 (»).

Py, respectively, noting that

ir o
Pin=f / [Unl% do do
] [

is unity. Substituting Eq. {(2) in Eq. (9) gives

202 fug?
;}i‘_‘f g%ll)-l: f % (L, ()¢ dx. (10
in ‘ 0

Equation (10) was solved numerically and resuiting curves for a
wide range of modes TEM,; are shown in Fig. 3. The dashed lines
show reclative aperture, a¢/ws, plotted vs the mode index p for
constant efficiency, Pu/Pin, for values of 0.5, 0.7, and 0.9 with
i=35.

* Research supported {n part by the Electronic and Solid State Sclences
Division of the Alr Force Office of Scientific Research.

1 G, Q. Olaofe, J. Opt. Soc. Am, 60, 1654 (1970).

2 R. G. Schell and G. Tyras, J. Opt. Soc. Am. 61, 31 (1971).

t A, E. Siegman, An Iniroduction to Lasers ond Masers {McGraw-Hill,
New York, 1971}, p. 330.

s For example, see Eq. (3) in Ref, 2. )

1. 8, Gradshteyn and I. M. Ryzhik, Taebie of Integrals, Series, and
Products {Academic, New York, 1965).

~-116-

Vol. 62



