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NOTE BY THE AUTHOR

Because of a logistics problem, the '"theoretical frameworks for
analyzing relativistic theories of gravity" portion of the thesis oc-
curs in Part IT. while the "analysis (Newtonian) of time-dependent
accretion disks" portion occurs in Part I. In actuality, the research
for Part 11. was undertaken and completed first. The explanation is as
follows: After beating his head against the wall in the process of
probing the inner recesses of modern-day gravitation theories (in an
effort to isolate the correct theory of gravity), the author inadvert-
ently stumbled upon Newton's theory. Although Newtonian theory has a
few slight disagreements with solar-system experiments, it lends it-
self to calculation somewhat more than most 'modern'" theories of gra-
vitation (e.g.,General Relativity) and was therefore cheerfully and
immediately snatched up by the author in his research, eventually re-

sulting in Part I. of the thesis.

Omnia Tristia

Post Eggplantum Sunt
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ABSTRACT
Part I.

The theory of time~independent accretion disks around compact ob-
jects is developed, generalizing the stationary models of various au-
thors to allow time dependence on the radial-flow time scale. Equations
are derived for the time evolution of matter surface densityég and for
implicit expressions of relevant disk variables in terms of 5. Analy=
tic and numerical studies of these equations yield numerical models of
mass accretion from a disk onto a compact object and a discovery of
the unstable nature of the "inner region" of the disk, causing a break-

down of current accretion disk models.

Part II.

Theoretical frameworks for analyzing and testing gravitation
theories are developed for both nonmetric and metric theories. Highly
precise experimental confirmation of the Weak Equivalence Principle is
shown to be deadly if not fatal evidence for ruling out all nonmetric
theories of gravity. For the class of metric theories we demonstrate
the necessity for going beyond current frameworks of analysis (e.g., the
PPN framework) by constructing a new theory of gravity identical to
GRT in the Post-Newtonian limit. As a first step in transcending cur-
rent frameworks, we develop a formalism for delineating and testing
all metric theories of gravity on the basis of their gravitational-wave
properties and thereby emphasize gravitational-wave observations as a
future tool for testing gravitation theories. We also investigate con-
servation laws and some common properties of Lagrangian-based metric

theories of gravity.
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INTRODUCTION TO PART I.

Accretion disks are currently thought to play important roles in
various binary star systems, either powefing emission or regulating
mass flow onto a central compact object (e.g. a white dwarf in U-Gem
systems, a neutron star in Her X-1, and probably a black hole in Cyg
X-1).

The detailed accretion disk models of Pringle and Rees (1972),
Shakura and Sunyaev (1973) and Novikov and Thorne (1973) are time-
independent; they assume a constant (in time and radius) mass flux
through the disk, deposited near its outer edge by the companion star.
It is of considerable interest to also study the properties of time-
dependent disks. Such a study can investigate, among other problems,
the stability of time-independent disks and variability of mass depo-
sition rate as a possible explanation for various phenomena.

In this Part of the thesis we develop the theory of time-dep-
endent disks (allowing variables to change on the radial flow time
scale), and we construct numerical models, with speculative applica-
tions to astrophysical systems. In Section A (Paper I) we give a brief
overview of the most important results: implications for black holes
of an instability in the inner region of the disk. Basic equations
governing the structure and evolution of the disk are set forth in
Section B (Paper I1). The time evolution equation for disk surface den-
sity (the sole independent variable characterizing the disk) is solved
numerically in Section C (Paper II1). Also discussed in this Section
is an instability of the "inner region" of the disk -~ an instability

causing a breakdown of current accretion disk models.
INTRODUCTION TO PART 1II.

Several years ago Thorne's research group initiated (Thorne a?d
Will 1971) a project of constructing theoretical foundations for ex-
perimental tests of gravitation theories. In the first couple of years
of that project (with principal contributions made by Will and Ni at

Caltech and Nordtvedt at Montana State) it was found very fruitful to
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restrict attention to metric theories of gravity, for which it wés
possible to develop a simple and elegant formalism (PPN) delineating
the significant differences of such theories for purposes of typicél
solar-system experiments.

At first it was hoped that each metric theory of gravity was u-
niquely characterized by its form in the PPN limit -- solar system
experiments could then home in on the '"correct'" theory (if that theory
were in the class of metric theories). Counter examples, however, soon
began to arise (one of which is in Section C) -- different theories
with identical forms in the Post-Newtonian limit. It therefore became
apparent that theoretical formalisms and experimental tests extending
beyond the Post~Newtonian regime had to be developed to probe more
deeply into those theories which agreed with each other and with the
data in conventional solar-system experiments.

New investigations also opened upon another front -- the murky
morass of nonmetric theories. Nommetric theories of gravity, in the
literature for more years and with greater fecundity than their metric
counterparts, did and do not have the simplifying feature of metric
theories: identical equations of motion for matter in a given gravi-
tational field (represented by the metric). It appeared that each non-
metric theory had to be treated on an individual basis, with no pos-
sibility of a systematic formalism such as PPN to encompass the entire
class of theories. Then a crucial idea, first conjectured by Leonard
Schiff around 1960 and then vigorously reasserted by Thorne a decade
later -- that nonmetric theories might violate the experimentally ver-
ified (Dicke et al. 1964, Braginsky and Panov 1971) Weak Equivalence
Principle (WEP) -~ offered a new foothold and column of attack into
nonmetric theories as a class of theories. Along those lines, we began
our investigations.

The two fronts of investigations referred to above -- a formalism
beyond PPN for comparing metric theories of gravity, and a considera-
tion of WEP as a tool for ruling out nommetric theories ~- constitute
the principal subject matter of this Part of the thesis.

Since our investigations have led us through the realms of both
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metric and nonmetric theories, we require some foundations and-cémmon
ground of definitions, basic concepts, and viewpoints from which to
discuss gravitation theories in general. Such a foundation is the sub-
ject of Section A (Paper IV). In this Section we also present a theo-
rem delineating the overlap between Lagrangian-based theories and met-
ric theories, a theorem whose results are exploited in Paper X of Sec-
tion C.

In Section B we give a treatment of the Equivalence Principles
(Weak and Einstein) and their implications for gravitation theories.
More specifically our treatment consists of a partial proof that the
Weak Equivalence Principle is consistent exclusively with metric theo-
ries of gravity (Paper V), and a detailed analysis (Paper VI) of a
particular nommetric theory, the Belinfante-Swihart (1957) theory,
which is a prototype of theories ruled out by experimental verifica-
tion of WEP. In actuality we first studied the Belinfante-Swihart
theory in order to build up our intuition and understanding of non-
metric theories. With some knowledge of the possible structure of such
theories, we then studied other similar theories and slowly catalyzed
the approach and methodology to be used in our partial proof of the
"Schiff Conjecture." Beginning with complete ignorance in the complex
class of nonmetric theories, our program was largely one of trial and
error.

In Section C we turn to metric theories and our second front of
investigation. As an outgrowth of our study of the Belinfante-Swihart
theory and in an attempt to construct a theory with the same Post-
Newtonian form as General Relativity, we devised a new Lagrangian-based
metric theory of gravity (Paper VIL). The aims of such a construction
were to determine how contrived such a theory would necessarily be and
to identify possible new theoretical and experimental tools for testing
relativistic gravity. In the course of our analysis of the new theéry,
two key ideas emerged: (1) the presence of cosmological effects on lo-
cal scales in theories with "prior geometry" and (2) the richness of
gravitational-wave structure in metric theories of gravity. (Our new

theory turned out to have the most general gravitational wave possi-



ble in metric theories of gravity.)

Further investigation of (2) above resulted in a formalism for de-
lineating all possible polarizations of gravitational waves in metric
theories and a systematic procedure for cataloguing theories on the ba-
sis of their gravitational-wave structure (Papers VIII and IX). Central
to the analysis is a discussion of experimentally testing such theories
on the basis of their gravitational-wave properties.

All of the theories of gravity which are now viable competitors
with General Relativity are Lagrangian-based metric theories. In Paper
X we analyze some of the common properties of such theories and, in
particular, focus upon the conservation laws which are usually found

in their structure.
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A. Overview of Most Important Results -~ Black Holes
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ABSTRACT

We have tested the stability of a thin, orbiting accretion
disk near a black hole. Under conditions appropriate for a
binary X-ray source, with the usual (EQ_EEE) assumptions about
viscosity, the disk is always secularly unstable on timescales
of a few seconds or less. Therefore current thin-disk models
for such X-ray sources are self-inconsistent. We mention pos-
sibilities for alternative models; perhaps the secular instabil-

ity explains chaotic time-variations in Cygnus X-1.



Current models [Pringle and Rees (1972), Shakura and Syunyaev (1973),
Novikov and Thorne (1973)] for binary X-ray sources powered by accretion
onto a black-hole companion envisage the gas flow near the hole as either
a thin, orbiting disk or a thick, perhaps chaotic cloud. If the X-ray

ED

%
luminosity L exceeds the Eddington limit, L~ ~ (10“8 ergs/sec) (MBH/¥?>,

where MBH = mass of black hole, then the cloud picture is more likely.

Moreover, even at luminosities somewhat lower than the Eddington limit,

say L z 10‘2 LED (all figures quoted will be for typical parameters of

accretion models), thermal instabilities caused by optical thinness (Pringle
et al. 1973) may disrupt the inner region of a thin disk, transforming it
into a thick cloud. We wish to point out in this Letter that, with the

usual (ad hoc) assumption about the viscosity, detailed thin-disk models

are always secularly unstable over the whole '"inner region' (that region

where radiation pressure dominates gas pressure, PR > PG’ and the dominant

opacity is electron scattering). Such an inner region exists near the
> 194 (ED : ; !

hole when L & 10 L77. Therefore these models are inconsistent. The

observational consequences are great since most of the X-ray luminosity

originates in the inner region.

The current thin-disk models [Pringle and Rees (1972), Shakura and
key assumptions:

(a) Accreting matter forms a thin, orbiting, non-selfgravitating disk

drifting inward on a slow timescale t (slow compared to thermal and Kepler

drift
timescales). The drift is caused by viscous stress removing angular momentum.

(b) Although the viscous stress t@§ arises from intricate processes

(e.g., turbulent motions on fast timescales, or magnetic fields), it may
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be approximated on slow timescales - t and longer by

drift

= 1)
58  Proe s (1)

= P_ + P, and (¢ is a number believed to lie between 1005 and 1,

where Ptot R c

To investigate stability of the above models we generalize them to
allow time~dependence in the radial disk structure on the slow timescale
tarife (a few seconds at the outer edge of the inner region; a few milli-
seconds at the inner edge). We shall sketch the development here. TFor a
complete discussion of the stationary models, see Novikov and Thorne (1973),
Shakura and Syunyaev {1973). For a complete discussion of the time-dependent
generalization, see Lightman (1974).

Variables describing the local, instantaneous state of the disk are
surface density ={r,t) (g cm’e), total inward mass flux M(r,t) (g sec"l),
mean half-thickness h(r,t) (cm), mean pressure P(r,t), mean temperature
T{r,t), radiative flux F(r,t) (erg em™2 sec‘l) from top of disk (= same from
bottom), and vertically-integrated viscous stress W(r,t) = 2h th {dyne cmﬁl)
(means are vertical averages)., The structural equations relating these
variables (ignoring relativistic corrections) are:

Equations of radial structure:

~ oy
[ M . .
= conservation of mass o
2xr 3¢ = 5% ( ), (2a)

2
d(ar”) o 9 2 ; : ob)
—g M= s}'(EMr W) {conservation of angular momentum); (7b)

1
here O = (GMBH/rS)E. Equations (2) are exact,

Equations of vertical structure (specialized to inner region):

F = %—Qw (conservation of dissipated energy), (%Za

;



12~ R

2 L : o . . . -
F=zacT /(KCompt 5) (vertical radiative diffusion, Compton opacity),  (3b)
1 2 . . .
P o= E-hgl v (vertical pressure balance against out-of-plane gravitational
forces of black hole), (3c)
P=P, = }-aTh (equation of state, P_ >> P_) (3d)
R=3 7 'R G’
W = 2ahP (source of viscosity, equation (1)). : (3e)

Equations (3) are only approximate, because of uncertainties in averaging
over vertical structure.

The stationary models are obtained by setting ¥ /3t = 0 in equations
(2), (3)-

For time-dependent models, it is best to choose n(r,t) as the sole
independent variable characterizing the local, instantaneous state of the
disk. Then, at each (r,t), one solves equations (3) algebraically for h, P,
T, F, and W as functions of {(g,r). It is essential to determine W(r,t) self-
consistently in this way, rather than to fix W through equation {(2b) from a
given M, as one does in the stationary case. Equations (2) yield, as the

evolution equation of £(r,t),

-1
2
T2 o[ o)

The instability arises in the inmer region for the following reason:

Equations (3) give

W(y,r) = const./s . ()
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(To justify this paradoxical result: Since By >> P

directly by p {p = &/2h), but only by T; and in fact T and P turn out to be

, P is not determined

independent of ©. Equation (3c) implies h « z~1; then equation {3e) shows
We s }.) The integrated stress W is here a decreasing function of I; hence
the nonlinear diffusion equation for %, equation (4), has a negative
effective diffusion coefficient. As a result an initially stationary disk
tends to break up into rings Ar > h, on timescales ~.(Am/r)2 tapipes alter-
nate rings have high-y/low~W and low-f/high-W. The density contrast grows
because matter is pushed into regions of minimum viscous stress W. Eventually
the low-f reglons become optically thin and hence thermally unstable (Pringle
et al. 1973). As ¥ grows in the high-y regions, eventually a regime is
reached in which the disk cannot radiate as much energy as it is generating
and the vertical structure equations fail to admit a solution. Therefore the
growing instability causes a complete breakdown in the thin-disk picture,
assumption (a). These conclusions are supported by detailed analytic and
numerical calculations which one of us (APL) will report elsewhere {Lightman
1974).

Definitive models must therefore await a better understanding of
viscosity: we mention two quite distinct possible alternatives to current
models:

(1) Assumption (a) fails because (b) is roughly correct. Around the
hole forms a cloud, which is 10 to 100 times larger than the hole. 1If
dissipation is efficient (expec;ed, aince accretiné matter must still lose
its angular momentum), the cloud may emit X-rays as & hot, thin plasma with
Comptonization probably important [Felten and Rees (1972), Illarionov and

Syunyaev (1972)]. Alternatively, synchrotron cooling may be important.
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Gross time variations, both in intensity and in spectrum, are expected on

the hydrodynamical timescale of the cloud ~ tens to hundreds of milliseconds
and longer. If the cloud is optically thick to Compton scattering, time
variations on timescales shorter than the random walk time of a photon through
the cloud ~ 1r/c {71 = optical depth) may be lost (F. K. Lamb, private communi-
cation). 1In particular, submillisecond time variations in signal, originating
very near the hole (Syunyaev 1972), might be hopelessly smeared out by
scattering in the translucent cloud.

(2) Assumption (b) is seriously wrong. With & a function of 5 rather
than a constant in the time-dependent case [eq. (1)], a stable, stationary,
thin disk is possible if & falls at least as fast as 2_1 in the inner region
(less efficient viscosity). Such an o leads in turn to a 5(r) that increases
steeply towards the hole. For example (Cunningham 1973), equation (1) might
be replaced by

t. =8P, p = const. , (6)
&t

even when PR >> PG' (Perhaps this relation is preferable for a self-limiting
magnetic viscosity, since gas is frozen to the B-field while radiation is
not.) The stationary, thin-disk model resulting from equation (6} is stable
and is much like current models except that ¥ is much greater in the inner
region (typically 25 times greater at r = 10 GMBH/CZ)' The thickness, 2h, is
still £ 2 -lO5 cm. This dense disk is quite optically thick and is probably
immune to thermal or magnetic disturbances on length scales ~ h; hence,
chaotic variations in the X-ray signal are likely to be negligible.

Observations (Schreier et al. 1971) of Cygnus X-1 (and similar sources

which have been advanced as black-hole candidates) favor alternative (1),



since the observed signal is chaotic on all timescales from tens of seconds

to ~ 50 milliseconds (instrumental limit). For either alternative, we believe
that the prospects of seeing characteristic (< msec.) time variations origin-
ating very near the hole are poorer tham has been generally supposed on the
basis of current models (Syunyaev 1972).

The same instability arises in a disk around an unmagnetized neutron
star. For a magnetized neutron star, a disk does not extend inside the
magnetosphere (Pringle and Rees 1972); there is no inner region, hence there
is no instability.

We are grateful to colleagues at the California Institute of Technology

1

for discussions, especially K. S. Thorne.
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B. Complete Details ~-- I. Theory and Basic Equations
(Paper II; submitted to Astrophys. J., 197L)
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ABSTRACT

We consider accretion disks around compact stars and black holes,
generalizing the stationary disk models of various authors to-allow
time dependence on the radial-flow time scale. The structure and
evolution of the disk are governed by an "evolution equation"” for
matter surface density £(r,t), plus a set of implicit algebraic equa-
tions determining various thermodynamic and radiation variables in
terms of £. The analytic structure of these equations is studied.

It is shown that there exists a maximum permigsible walue of the

surface density ¢ - at which gas and radiation pressure are

crit(r’

approximately equal, and beyond which viscosity generates more energy

than radiative transport can remove.



I. INTRODUCTION

When a star or black hole accretes matter with high relative angular
momentum, the matter probably goes into an approximately circular orbit about
the central star. With gravitational attraction providing the centripetal
acceleration in the plane of rotation, a thin "accretion disk’ is formed.
1f wviscous stresses are present in the disk to transport angular momentum
outwards, the matter in the disk can spiral inwards.

Accretion disks are currently thought {Pringle and Rees 1972, Shakura
and Sunyaev ("8S") 1973, Novikov and Thorne ("NT") 1973] to play important
roles in various binary X-ray sources -~ e.g., in Cyg X-1 (HDE £06B08), where
the observed X-rays are probably emitted by a disk, and in Her X-1 (HZ-Her ),
where a disk presumably produces much optical emission and X-ray absorption.
Disks may also be important in the regulation of accretion in U-Gem systems
(Smak 1971).

All of the accretion disk models of the above authors are time-
independent. A constant mass flux from the normal star inte the disk is
assumed. It is of considerable interest to also study the properties of
time~dependent accretion models. Such a study can investigate, among other
things: (1) the stability of time-dependent disks and {I') variability of
the mass deposition rate as a possible explanation for the observed 5l-day
cycle of Her X-1 (Pringle 1973, McCray 1973), or as an explanation for the
“extended lows" and "offs" in the X-ray heating of HZ Herc (Jones et al.
1973) or in the X-ray emissions of SMC X-1 (Schrejer et al. 1972},

In this paper we develop the theory of time-dependent disks, The

underlying physics is essentially the same as that of the stationary models



above, except that we allow variables to evolve in time on the '"drift”

(radial flow) time scale [see (v), §II}. We follow the general format of

NT {1973). Our principal results are a nonlinear "evolution equation™ {of
the form of a diffusion equation) for surface density of the disk and a
complete set of auxiliary equations for determining all of the other disk
structure variables in terms of surface density (§Vil), and an analytic and
physical investigation of the solutions of the dependent variables for given
surface density and radius (§VIIT).

In a companion paper {Lightman 197%), hereafter referred to as Paper 17,
we solve our evolution equation and auxiliary equations numerically, and
apply our results to the investigations (1) and (?) mentioned above. Some
of our conclusions have been published previously in abbreviated form

{Lightman and Eardley 197h),

11 ASSUMPTIONS AND APPEOXIMATIONS

(i) The analysis coes not attempt to treat the outermost regions of the
disk, where the gravitational pull of the normal star and interac-
tion with gas streaming off the normal star are importapt. Instead
the analysis is confined to the innmer portions of the disk (v < 1/10
T outer edge)’ where the influence of the normal star and streaming

matter are negligible.

(ii) Relativistic effects can be neglected. This assumption is valid

everywhere for disks around neutron stars and white dwarfs and

everywhere except at r £ 5 for disks around black holes.

T,
inner edge

The relations required axe

v/e <« 1 and iﬂ% <« 1,
&

rc



(ii1)

(iv)

(v)

where v and M are a typical gas element velocity and mass of the
central compact object respectively. (See NT 1973 for a completely
relativistic treatment of time-independent disks.) ALl of the
results reported in this paper and Paper II would be qualitatively
unchanged in going from our Newtonian calculations to fully rela-

tivistic ones.

The disk is thin. If h is the half thickness of the disk and r

the distance to the compact object,

h
T << 1.

The gas of the disk moves in nearly circular Keplerian orbits, on

which 1s superimposed a small radial flow. This assumption requires

the gravitational force of the central object to be much greater
than internal stress and pressure gradients inside the disk, and
the gravitational energy of the disk gas to be much greater than
its internal energy. It therefore requires (cf. §L.0 of NT)

r CS
<< 1, = << 1,

Vi

7‘<'<I<

where Vr, v

and C_ are the radial, Kepler (orbital), and sound
K’ 8 2 P 5

velocities of the gas in the disk.

The time scale for gas to drift radially inwards is long compared

to the time scales for energy (heat) and sound waves to travel

vertically through the disk:

drift N Toas ¢t thermal
time scale] ¥ 'p ¥ vF TTT F Atime scale ’

h (hydrodynamical)

[ S )
s time scale
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(vi) The principal sources of opacity are free-free and Compton scattering.

o]

For typical temperatures (106 K), densities (1077 g/cmé), and

s G) in the gas, free-free emissivity dominates

magnetic fields (10
cyclotron emissivity. Furthermore, for a fully ionized plasma [see

{wiii) below] bound-free and bound-bound processes are negligible.

(vii) The optical depth is large everywhere in the disk. Stated more

precisely: 1If Teg and T,g 8T€ the free-free and electron scattering

optical depths respectively, then (cf. Felten and Rees 1972)

Teg >> 1 when Teg > Toos

Pl

(Tff1es) = (root mean optical depth) >> 1

when 1 >> T .
es ff

Rees has pointed out (see Pringle et al, 1973) that failure of the
above requirement leads to a thermal instability: 1If the root mean
optical depth becomes small, the disk has difficﬁlty radiating, so
its temperature rises. The higher temperature increases the disk
thickness and lowers its density. Both these effects result in
further decreasing Teg (see eq. [17]) and thus further lowering the
root mean optical depth, further raising the temperature..... The
disk quickly "blows up.”

(viii) The gas is a fully ionized plasma. This assumption is true for the

3
typical disk temperatures of 10 % in hydrogen gas. 1t can be
relaxed easily if necessary., For simplicity we assume a specific
value of the mean molecular weight: 0.5 (gas almost all hydrogen).

(ix) Radiation emitted from either the disk or the compact object does

not reimpinge on the disk. This assumption, which may be relaxed
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in future work, certainly has only limited validity. (Narrowly
beamed radiation from the poles of a neutron star may not influence
an equatorial disk at all. Radiation exceeding the Eddington limit

in luminosity, L 16°8 ergs/sec (MC/M:), from an unmagnetized

ED ©

neutron star might disrupt the disk completely,)

(x) Energy generated in the disk is transported to the surface by radia-

tion rather than by convection. At a future date, if one has a more

detailed understanding of viscosity in the disk {cf. §IV), convective
transport of energy due to turbulent mixing might replace the above

assumption. See §VIII,b) for further discussion.

In §VI, after the equations of disk structure have been formulated, we
will examine the consistency and validity of the various assumptions of this

section.

III. FUNDAMENTAL EQUATIONS OF DISK STRUCTURE

The fundamental variables we will use are’:

e are working in standard cylindrical coordinates,

o(r,z,t) = density of mass, {1a)
p(r,z,t) = vertical pressure, (1b)
twr(r,z,t) = shear stress (coordinate component), {1c)
T(r,z,t) . temperature, (14)
q(r,z,t) = vertical flux of energy, (1le)

i

F(r,t) . energy flux at surface of disk, (18)
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Vv'(r,z,t) = radial velocity of gas, (1g}
Vz(r,z,t) = vertical velocity of gas, (1n)
nir,t) = half-thickness of disk, (1i)
w(r,z,t) = Rosseland mean opacity, (1)
M = mass of central compact object. (1k)

The laws governing these variables are delineated below:

a) Local Equations

Conservation of mass

a 10 3 \ s
0=+ 2 (V) + 52 (o) (2a)

Conservation of angular momentum

From assumption {iv) of §I1, the angular momentum per unit mass of a gas
}
element at radius r 1is approximately (GMr)''. Thus, equating the total time
derivative of the angular momentum density to the torque per unit volume,

one obtains

19 r _‘_1) S z % :l) Qp 19 I
}AS;—[rpV (GMr) ] + 5710V (oMr) ’ + {GMr) i (1t¢r,

If the equation of mass conservation {Pa) is used, the above equation simpli-

fies to

p(GMr)é Vie-2s (re ). {ob)

Conservation of energy

Energy is generated locelly by viscous heating through action of the

shear stress t " 1f o,, and t,, are the components of fluid shear and
P

ij 13



shear stress, the rate of generation of energy density is

R
ij or

At this point we do not need any details of the shear stress (e.g., nature
of magnetic viscosity or nature of turbulent viscosity). The fluid shear is

simply derived from the assumed Kepler (orbital) velocity of the gas

1

1 .
or 1o () 10 femy 5 fomy
o =5Er\r/) T 5 0¢ 3 R )

Because we assume internal energy to be small compared to released gravita-
tional energy [assumption (iv) of §IL}, and because we assume thermal time
scales are much shorter than gas drift time scales [(v) of §I1I], we may equate
the energy generation rate to the divergence of the energy flux (assumed to

be in vertical direction because of disk thinness)

1

dq 3 [GM}? (r
S5 (-;5) tr - (2c)
Equation of state
P = Pgas ' Pradiation ’ (ed)
Pgas ~ gg::i r Prad T ‘514 ot (2e)

In equation (2e), m, k and b are the proton mass, Boltzmann constant, and

familiar radiation constant respectively. The factor.of 2 in the expression

for the gas pressure comes from (viii) of §I1.

Equation of energy transport

From our assumption of radiative tramsport [{x) of §11] as the cnergy
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transport mechanism and assumptions (vi, and (vii), the radiative transport is
described by the radiative diffusion equation
R (1 .L) ‘g s
4 o Oz \3 cot ’ Y
where ¢ is the speed of light,
L I LT (2g;

electron scattering opacity) and

= free-free opacity, Ko

ol

(Fee
cmil/'g N

CGush <107 (—‘-’ ((;r)
g/ cm’ K

= 0.40 /g, Heg

(see, e.g., NT 1975, p. 378, for a standard derivation of these opacities).

Because of assumption (v) 411, we may assume that the vertical structure

adjusts itself instantaneously to slow changes in radial structure and is
always in hydrostatic equilibrium

pGMz

- R

e
3z ° E
T

b) Vertically Averaged Equations

We now average all equations wvertically by integrating them over the
Define the following new variables:

thickness of the disk,
h
(0

s{r,t} : surface density = f ¢ odz
-h

-1
integrated shear stress = f T t(rdz
1
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We will continue to use the same symbols Vr, T, p, ® for the vertically
averaged velocity, temperature, pressure, and Rosseland mean cpacity, although
these variables are now functions of only r and t. All of our vertically
averaged equations below will be approximate up to factors of order unity
because of uncertainty in vertical averaging. A much greater uncertainty,
however, is an explicit form for W (cf. §IV) so that a more precise vertical
averaging procedure is not justified. Using the facts that p{z = +h) =

plz = % ﬁ) = 0 and F(r,t) = q{z=h,r,t) = q(z=-h,r,t), equations (2) and (3)

may be integrated over the disk thickness to yield

3

I 1 r
ﬁ‘f?x(rzv)—;o, {ba)
T 2 5] °
Vo {GMr)? = - 2 5 (r" Wy, (45)
1
3 [GMY c e
Fop (§> W, (5e)
» T
kT 1 .k -
P = hm * SVbT ’ (5d)
2/3 et
F = T ) (be)
Ik

where

-7
. y . T,
o 0. cme/g + 050 « 1020 ~blb7A ?} cm' /g (£}
g/cm K

2
T

h /GM [P
() "

Equations (S5a)-(Sc) are "radial structure equations' and equations (5d)-{5g)

are ‘'vertical structure equations.” It should be noted that the radial
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structure equations are exact — in particular, equations {S5a) and (5b) allow
us to define a physically meaningful conserved mass and angular momentum of
the disk, which are useful in calculations (see Paper II).
Equations (5) represent six equations for seven unknowns &, W, F, V', p,
T, and h. The final equation comes from a model for viscosity, i.e., the
viscous stress which defines the variable tmr and subsequently the variable W.
Note in equations (5) that the only variable on which a time derivative

acts 1s the surface density £. The time variation of all other variables

is enforced implicitly, through their functional dependence upon ). Thus §

is a natural choice for the sole independent variable characterizing the state

of the disk at each instant of time.

IV. MODEL FOR VISCOSITY AND RESULTANT EOUATIONS

The dominant sources of viscosity are probably turbulence in the gas and

chaotic magnetic fields (see SS). Letting B, V C, be the strength of

t}

magnetic field in the gas, turbulent velocity, and sound velocity respectively,

8S and NT estimate

-1 .
(r twr) = p, (6a)
where
v 2
a< . B ()
2
s hn pC,

The first contribution to the dimensionless parameter & is from turbulence;
the second is from magnetic stress. As pointed out by the above authors, «
is almost certainly less than unity: supersonic turbulent velocities

generate shocks which heat and éxpand the gas, thus raising the sound speed;

magnetic stress exceeding the thermal pressure causes magnetic field lines
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to bulge out of the disk, reconnect, and escape.

in all previous calculations involving stationary disks (e.g., S8 and
NT) the dimensionless viscosity parameter & has been assumed to be constant.
This assumption probably becomes increasingly tenuous as an increasing degree
of time dependence is allowed in the problem and as one looks at shorter and

shorter time scales. We shall make the assumption that & is constant in

radius and time on the drift time scale, t, = r/vr [see (iv) of §I1 and §VI
below]. On the thermal and hydrodynamical time scales, tT and tH’ v is
almost certainly not a comstant. (Situations can develop in which energy
generated by the disk must be transported vertically by sonic convective

elements, requiring « to vary in time and space. See §V11I,b) for further

discussion.) We assume (cf. eqs. [ia] and [h1])

Wa~2hap , {7a)
a<l, (7b)

and & = const. for At 2, tD.

1f equation (7a) is now substituted into equations (5), the resulting

equations, in dimensionless form, are

oL -3
4 10 5] r N
L el {ta)
DI T, 51”{‘ (r“ Z); v.) i a)
2 >

i} 3 2 s
2y Ve (M*rs) ~0.2 N ere hgplo), (85)

1

0.3 My
Fop = 0.3 bg0py0] —= (8e)
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I, T
L °s5 -5 L \
Po = 83 e + {2.5 x 1077) T, (8d)
F, = (1.5 x 107 )T.J‘ (s, 7)) (8e)
21 I S | ’
M
8 %
Pio = (2.0 x 107) hy 5y (*'3') , (8f)
r
6
_ 3 -1
£) o= 0.k + (1.0 x 107) zy Tg} hy ™, (8g)
. Iy -2 5
where we have used the notation: o) = (£/10" gem ), T = (r/107 em),

Pl = (p/loig dynes

- - - o .
cm 2), Fol = (F/lO21 ergs cm 2 gec 1), Ty = (T/lO5 %), ® = (k/cm” g 1).

V3r = (V/10° em sec™}), M= (W3 M), b = (h/10° cm),

1f the time derivative of § in equation (8a) is set to zero, equations

(8) reproduce the results of NT (1973) for their stationary disk.

V. APPROXIMATE REGIONAL SOLUTIONS FOR DEPENDENT VARIABLES

Equations (8c)-(8g) represent four algebraic relations for the four
dependent variables F, T, h, p; as such, they can be solved {in principle,
although the equations are very implicit) in terms of the independent vari-
able . It is useful to consider their approximate solution i; three physical

regimes (these regimes defined in the stationary disk models of S5 and NT):

Quter Region (Kff > Hyg Py >> pr>

Using §III and equations (Bc)-(8g)

o/7 3
T, = (1.9 ¥ 109) n/ b /1 ul/?

O

(9a)

o 5 7L V/i 1/
Py = (5.6 % 107) 27 £, /ey (9b)
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h. = (2.8 x 107°) 0 8/7 zi/w A s (9¢)

Foy = (3.7 x 102) 09/7 250/7 a8/7 , (94)

Middle Region (Kés >>Fep s Py >> pr)
T, = (8.7 x 102) 91/3 zf/é a1/3 , (10a)
po = (1.2 x 10%) /8 M3 e (10b)
10 4
hg = (6.0 x 10-3) 3—5/6 2&/3 al/g , (10¢)
F, = (2.2 x 105) Qu/s 25/3 Qu/s s (10d)
21 )
Inner Region (Eés > Kep 5 Pp 2> pg)
) Lo L1/}
T, = (2.5 x 10%) AT , (1la)
b -1
P, = {9.8x10)aa , (11b)
10
hy = (4.9 x 10'1‘) ot 22:1 ot , (11c)
F,, = (1.l x 10) ¢ sttt {11d)
21 = N\ 4

Note that T and p are independent of 5 in the inner region, and that h
decreases with increasing £. The units in which the above equations are

written are given in and below equations (8) and we have used the notation

M, \2 2 0
Q ,=<~—*~> ~ (2.0 x 10" sec™})7} (9‘) R 5«-%_? ()

T -
2 X 10 sec
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VI. DISCUSSION OF CONSISTENCY AND VALIDITY OF APPROXIMATION

a) Sound Velocity Versus Kepler Velocity

From the equation of vertical pressure balance {(cf. eq. [5g])

i
e
ol
o

~ () (&) ~7 (13)

=

Thus the sound velocity is much smaller than the Kepler velocity, CS/VK < 1,
part of the assumption (iv) §II, as long as the disk is thin, h/r «< 1,

assumption (1ii) of §II.

b) Hydrodynamical and Drift Time Scales

The hydrodynamical time scale, tys is

h r
C, o {ia)

H CS VK

The drift time scale, tys is (cf. egs. [5b] and [8b])
(z/n) . !

r 5 r - N
tp e~ ap s (O ~(5) @ (ko)

where we have used equations (13) and (lha). Thus

t v 2
T
~2~-17>>3A if(r) >> : (the)

Equation {1lic) establishes consistency between assumptions (11i), (iv), and

{v) of §1I.

c) Optical Thickness

The free-free and electron scattering optical depths, Tee and Tos
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respectively, are

Ter T T B ; es =L Fgge (15)

(The expressions given in eq. [15] are for the frequency averaged optical
depths, since we are using the Rosseland mean opacities. Thus our relations
are only approximately true. For a complete discussion of frequency dependent
optical depths, see Felten and Rees (1972) or Illarionov and Sunyaev (1972},)

The root mean optical depth is then (cf. eq. [5f])

ES 7 i
T= (tgp 1057 = (2.0 % 10%) 552 (v, /%) (1)

while the optical depth due to free-free opacity alone is
7y . 2 1/2,~1
Ter = (1.0 x 10") I, (hu T ) . (17)

For our radiative diffusion equation (2f) to be valid, we must require (see,

e.g., Felten and Rees 1972)

Tee > 1 in outer region of disk, (18a)

£

T, >> 1  in middle region of disk, (19a)

T, >> 1 in inner region of disk . ("’0a)

Using equations (9), (10), (11,), (16), and (17), we then must require
RN

[al
(b x 10) (ZJ'fl o ) >>1  in outer region, : (18b)

(2 x 10) (Q_lih{a-h)l/B >> 1  in middle region, (19b)

(6 x 102) xm?nl/lb ald/l@ >> 1 in inner regilon . (00b)
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In our explicit models (see Paper 11), equationms (18), (19), and (20) will
turn out to be satisfied, except in the evolution of the perturbations of
certain stationary disk models; there, however, the inner region of the disk

goes unstable and nearly all of our assumptions become invalid.

d) Thermal Time Scale

In the middle and inner regions, where electron scattering is the
dominant source of opacity, photons generated in the interior of the disk
must random walk their way to the surface of the disk. The time it takes
for a photon to random walk from z = 0 to z = h is an upper limit to the
thermal time scale tT. If N is the number of scatterings such a photon
undergoes, and Aes the mean free path between scatterings, then

N Mg

< “1a)
te 2 . (1a)

But since the process is a random walk, N is related to the optical depth

T,g In the standard way

oot . (°1b)

1f we substitute equation (21b) into equation (©1a) and use the fact that

A =h/ and equations {2h) and (15), then equation (2la) becomes

T
es es’

S °
te S (0.13 SeC)ZMhG . (21e)
Thus, using equations (10}, (11), equation {21lc) implies the relations
! 5/ h/7 £
to < (7.8 x 10 * sec) O o/ Zﬂ/’ wl/ in middle region, (i0a)

-t - -1
ty % (6.0 < 1077 see) u 1(1 In Inner region . (i h)
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Note that equation (22b), together with equations (12) and (1ka), shows that

in the inner region

rt
4
R
o

—
e}
1

Note also that ty is independént of £ in the inner region.
In summary, we can conclude (cf. eqs. [12], [lhkb], [22], [23]) that as

long as the disk is thin, h/r << 1, the three time scales t t t, satisfy

T "D’ H

t,>> t,, (Cha)

t, >t

b > tp s (2hib)

where the last relation holds as long as Zy, is not many orders of magnitude

larger than unity.

e) Thinness of Disk

As can be seen from the above discussion, most of the assumptions of
§11 are satisfied as long as the disk is thin. By using equations (9¢), (10c),
and (1lc) we can obtain approximate criteria for disk thinness in the three

regimes of §V.

ol 1//7
. T :
g = (2.8 x 10-3) Zi/lu al/lh ~§?< << 1 in ocuter region, (25ha)
M;
%-: (6.0 x 10—3) 22/3 al/b M;J/lg ré/u <« 1 in middle region,  (PSb)
py
h A1 1T
—= (4.9 %x 10 )« ] << 1 in inner region. (25¢)
r i M,

z

For typical values of the parameters involved, i.e., 1077 << 1, M~ 1
yp p 2 k) s Ed

-3 I
107 ¢« s 10, 1 Z 50 in inner region, r <« 5 x 10" in middle and outer



regions, equations (25) are all satisfied — except when I becomes too small
in the inner region. There will be more discussion of this last possibility
in Paper II, where £ is evolved dynamically in time. Equations (18b), (19b),
(20b), (22a), (25a), (25b), and (25c¢c) are a minimal set of criteria for

validity of the model.

VII. REDUCTION OF EQUATIONS

In §V we gave approximate solutions, in various regimes, for the variables
F, p, h, and T in terms of the single independent variable 5. In this section
we give exact, although implicit, solutions for these variables in terms of 5,
which are valid in all regimes and which will be used in future numerical work
(see Paper II). We also put the dynamical equation for ¥ into a new, more
useful form and thereby complete our specification of the equations governing
disk structure.

In this section and henceforth, except where indicated otherwise, we

drop the units subscripts on variables, with the units shown in and below

equations (8) to be understood.

a) Equations for Dependent Variables

1f equations (8c) and (8e) are equated, then equations (8c)-(8g) can be
reduced to 3 equations for the three unknowns p, h, T. (Remember, we are
solving for dependent variables in terms of the independent variable 5; & is

not considered an unknown here.):

h = Clp (['ha/
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-1/2

L T
T = ph (Ch s Cs) , (26¢)

where
¢, = (5.0 x 10’9) 5t , (27a)
C,=8.5L s (27b)
C 2.5 X 10’5) 27¢)
5 = (0.0 B (27¢)

" 11 2 ”

¢, = (2.0 x10) oz , (£74)
¢ = (8.0 x107) uxa ) (07e)

Equations (26a), (26b) can be solved for h and p in terms of T (quadratié

equation in p):

1 U
p = 5(C15 T + X) s (°8a)
where
he, 1
X = (CETa ——VE . (28b)
3 C1

Note that we have chosen the plus sign in front of the radical in our solu-
tion to the quadratic equation for p so that p will be positive.

1f equations (28a), (28b), and (26a) are now substituted into equation
(26c), a single equation containing only the dependent wvariable T is
obtained:

2c
-7/ 1 ; o =My I
-3 ¢r e (CBT* £ X) - b e (c,;'f8 bt T s CLTR) = 0 (29)

L
T .
¢ 3

H(T) =

Equation (29) gives implicitly the temperature T(r,I). From equations (28a)
and (26a) one then can determine h{r,») and p(r,n), and from equation (8&c),

for example, one can then determine F(r,).



b) Nonlinear Diffusion Equation for Surface Density

If equation {8b) is used to eliminate V' on the RHS of equation (Sa),

one obtains the equation

¥ (2.0 x 10‘1*) d
B T dr

Bl

1
(%)‘ 55; [a 2 h(r,Z)p(r,Z)}% ) (30)

Mathematically speaking, equation (30) is a nonlinear diffusion equation for
the surface density z(r,t); when proper boundary conditions have been speci-
fied (see Paper II), it, together with equations (29), (28a), and (26a)},
constitute a complete set of equations for the dynamical evolution of the
disk variables.

One may think of the system of equations in the following way: For
given r and t, there is a given 5(r,t); equations (29), (28a), and (26a) may
then be used to compute T(r,r), h(r,r), and p(r,»); b and p may then be

substituted into equation (30) to determine 5 (r,t+ At), and so on.

VIiII. THE TEMPERATURE FUNCTION AND SOLUTION REGIMES

Without considering the dynamical equation (30) at all, one can learn
a considerable amount about the nature of the physical problem b§ investigating
the solutions of equation (29) for fixed r and I.

At large T, H(T) goes as -T8 and at small T, as _T—S (cf. eqs. [28b] and
[29]). Further investigation reveals that for typical values of the para-
meters involved (¢ and M for each model, 5 and r for each solution of eq. (29]

in a given model) H(T) can have two, one, or no zeros.
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a) One and Two Solution Regimes

Let us restrict our attention to a given model (fixed o and M). For
values of (r,n) such that H(T) has two zeros, the high-T zero always has
radiation pressure providing the dominant contribution to the total pressure
{second term on RHS of eq. {26b]) and the low-T zero always has gas pressure
providing the dominant contribution to the total pressure (first term on RHS
of eq. [26b]). These two roots are illustrated, for typical values of (a,

M, T, Z), in figure la; we shall refer to the high temperature solution as
the radiation root and the low temperature solution as the gas root. The gas
root yields (from our experience in computing models) an h satisfying

h/r << 1, but the radiation root may yield an h such that h/r > 1 if » is
too small or r too large, providing an inconsistent [see (iii) §11 and §VI1]
and therefore unacceptable solution. This behavior of the radiation root is
somewhat expected, since the inner region (see §V) of stationary disks (see,
e.g., NT) if it exists at all, occurs only at small radii as its name implies.

If one kept fixed the radius r of figure la, but plotted H(T) for in-
creasingly greater 5, the peak would continually decrease and the gas and
radiation roots would move closer together, until a 5 was reached at which
the curve would become tangent to the T axis and the two roots would coalesce.
Further increase of 5 lowers the peak of H(T) below the axis and there are

no solutions.

b) No Solution Regime

As was mentioned above, for a given r, if ) cxceeds a critical value,

'crit(r)' there are no zeros of H{T) and thus no temperaturc at which the

vertical structure equations (26) have a solution. In order to understand
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physically what this situation corresponds to, one must return to equations
{8c) and (8e), expressions for the energy generation rate and energy transport
rate respectively. Equating H(T) to zero is equivalent to equating the energy
generation rate to the energy transport rate, satisfying the equation of
pressure balance, and satisfying the equation of state (cf. egqs. [26]). 1f
equations (26a) and (£8a) are substituted into equations (8c) and (8e), then
one finds, for fixed r and I, that the generation rate G(T) and the radiative

transport rate R(T) satisfy

G T (%1a)
8 small T,

Ro T (31b)

¢t (30a)
I large T.

R « (32b)

Since G(T) has both a shallower slope at small T and a steeper slope at

large T, G(T) > R(T) for all T when there is no intersection of the G(T) and
R(T) curves. The situation is illustrated in figure 1lb. The solid-line
graphs correspond to the graph of B(T) in figure la, while the dotted-line
graphs correspond to & situation in which 3 > % and there are no solutions.

crit

In conclusion, for & > % (r) the model breaks down: the viscosity

“erit
in the disk generates energy more rapidly than radiative diffusion can
transport it away.

The subsequent evolution of the disk cannot be analyzed within the
framework of our assumptions. We can only speculate, on physical grounds,
that the disk's internal temperature will rise rapidly (perhaps violating

assumption (iv) of §I1), the disk will expand vertically (perhaps violating

assumption (111) of §11), and the temperature gradient (cf. eq. [2f]) will
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become sufficiently superadiabatic to drive convective energy transport at

the rate necessary to counterbalance the energy generation (violationm of
assumption (x) of §II). In the inner region, where radiation pressure domi-
nates, the convective elements are forced to travel with sonic velocities [in
éontrast with the usual assumption of subsonic velocities in convection — see
e.g., Cox and Giuli (1968) or Aller (1954)] in order to effectively transport
energy, and the problem becomes quite complicated. (Subsonic velocities would
allow pressure equilibration and hence temperature equilibration, between the
convective element and its surrounding medium.) A better understanding of
viscosity (and the associated variation of ) on short time scales and as a
function of height is almost certainly required for the proper treatment of
the above problem — until such an understanding is developed, we can deal only

with radiation as the mechanism for energy transport.

¢) Boundary of the No Solution Regime

We can find an approximate analytic expression for the boundary of the

‘*no solution regime," (r), by noting that as ) is increasing the radia-

>:crit
tion and gas roots coalesce just as the peak of H(T) dips below the T axis.
Since for models of X-ray sources the radiation root always yields solutions
such that Kés >>»E£f, such a situation must also hold when the radiation and
gas roots are equal. Thus the boundary is given approximately by equating

any of the variables of the inner region to the same variable in the middle

region. Equating the two temperatures, for example, yields

/16
pel
e -7/6
Zcrit(r) - O.1K>( MM) r

By considering the full #{T), rather than its limiting form in the two
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regimes, one can get a better determination of the overall numerical factor
in the previous equation:

3 1/16
~ x -7/8
zcrit(r) ~ 0.07 ( M) ! . (33)

Thus T (r) changes by less than a factor of ten as r ranges over five

crit
orders of magnitude, whereas it is much more sensitive to the viscosity para-

meter . Models with more efficient viscosity (higher values of «) have a

smaller range of allowed surface density.

IX. COMPARISON WITH STATIONARY MODELS

The purpose of this section is principally to reconcile the onc, two,
and no root phenomena of the previous section with the structure of the
stationary disk models of 8S and NT, since the latter models always have a
unique temperature which is consistent with all of the eguations. We should
be able to understand such time-independent models within our formalism since
they are a special case of time-dependent models.

In the stationary disk models equation (30) is replaced by the statement

that the mass flux be constant,
M = harhrV- = comst., {conventional units) {3k

91]%2@1}3¥E£SL}¥¥£,5¥39 throughout the disk. With such an equation, the disk
variables, including ), become functions of only radius and the constant M.
In our language, we may regard the stationary disks as corresponding to a
situation in which: (1) our independent variable ; assumes a specified
functional form

(r,t) » Z(r),
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and (2) using £(r), roots of equation (29) are chosen that yield values for

R

ry

the disk variables h, p, etc., satisfying constant mass flux (cf. eq. [2
The boundary radius, Tps between the middle and inner region of the
disk (cf. §V) occurs at (cf. NT or SS)

L/s

2/21 _1/3 M e
(ry) =~ 18 o2/2h al/ R S — (35)
B 107 g sec

and exists only if the inner edge of the disk can extend within this radius.
(The inner region typically exists for stationary disks around black holes,
but not for disks around magnetized neutron stars where the Alfvén surface
occurs outside of rB.)

Stationary models with no inner region correspond to situations in which
the radiation zero of H(T) (cf. §VII and §VIII) always violates h/r << 1 and
is therefore unacceptable, Hence, in such situations, the gas zero of H{T)
is always chosen as the solution of equation (29). Stationary models in
which there is an inner region correspond to situations in which, for r ¢ Y
the radiation root of equation (29) not only yields h/r «< 1, but also is

(r)

required for satisfaction of equation (34). 1In such situations ) (r)/
Vi et

increases with decreasing radius [peak of H(T) falling closer-to T axis; gas
root chosen] until the transition from middle to inner regions at rB Ipeak
of H(T) just tangent to T axis; gas and radiation roots coalesce] at which
(r) begins decreasing with decreasing radius [peak of H{T)

point }‘,(r)/}jcrit

rising after tangency at LY radiation root chosen]. The transition from
gas root to radiation root is thus a smooth one and the peak of H{T) never
dips below the T axis, i.e., the no solution region is never reached.

Whether such a situation is stable under perturbations will be favestigated

in Paper 11.
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In the actual literature on stationary disks, the function H(T) and
consequently the multiple and no root phenomena are not encountered because
the equations are solved under the imposed restriction of equation {34) and
done so not exactly, but only approximately, by dividing the solutions into

outer, middle, and inner regions as in §V.
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FIGURE CAPTIONS

Fig. la. A plot of the temperature function H(T) for the model M = 1,
@ = 0.01 at v = 5 x 1(‘7, } = 10, The two roots are indicated by
A and B; at root A, Py >> p_ and h/r << 1 while at root B

/
P, >> pg and h/r > 1.

Fig. 1b. Plots of the generation and radiation functions G(T) and R(T®.
The solid line graph corresponds to the same graph as fig. la
with the two solutions indicated. The dotted line graph
corresponds to different values of r and y such that v > ﬁcrit{rf
(see eq. [33] of text), and there are no intersections. The

scale in the y direction has been compressed by a factor of =

for clarity.
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ABSTRACT

Using the theory of time-dependent accretion disks developed
in a previous paper, we numerically solve, for various examples,
the time evolution equation for disk surface density 3; from §
all other variables of the disk may be calculated by algebraic
equations. From both analytic considerations and numerical
results we find that the "inner region'” of a disk around a
black hole is secularly unstable against clumping of the gas
into rings. This invalidates the standard steady-state theory
of such disks. Possible revisions of the theory are suggested.
For accretion onto a magnetized neutron star, we study how the
evolution of the disk is affected by time varying deposition
of gas into the disk, and by changes in location of the Alfvén
surface (magnetosphere-disk interface). Finally, we describe
briefly some possible implications of our results for models of

the binary X-ray sources Cyg X-1, Herc X-1, and SMC X-1.



I. INTRODUCTION AND SUMMARY

This is the second of a sequence of papers which develop and apply the
theory of time-dependent accretion disks. In Paper I (Lightman 197k) we
indicated the astrophysical setting in which accretion disks around compact
objects probably play an important role and then proceeded to develop the
basic theory and equations of disks that are nonstationary on the radial
flow time scale. 1In this paper, using the results of Paper I, we solve the
time-dependent equations, investigate stability of stationary disks, and
numerically build disk models. It would be very helpful to the reader to
be familiar with Paper I, as we shall frequently borrow results from there.

In §11 we show, first analytically with approximate solutions and then
numerically, that the inner region of a disk (region where radiation pressure
is much greater than gas pressure and the dominant opacity is due to electron
scattering) is secularly unstable. Because of this result, the standard
models of disks around black holes {e.g., Pringle and Rees (1972), Novikov
and Thorne ("NT") (1973), or Shakura and Sunyaev ("SS") (1973)] must be refor-
mulated.

In §11I, we numerically construct models in which the "inner reglon"
does not exist, so there is no problem with the instability discussed in
81I. Such models would be typical, for example, of magnetized neutron stars,
in which the external magnetic field prevents the inner edge of the disk
from extending to a radius so small that radiation pressure dominates gas
pressure.

Accretion disks may play crucial roles in binary X-ray sources. The
extra-disk physics of such systems, however, can be qulte complicated and

is as yet poorly understood, e.g., precession of the compact object (Brecher
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1972) or regulation of accretion rate at the Alfvén surface by a magnetic
gate (Pines 1973) or regulation of accretion rate by X-rays impinging onto
the companion star [McCray (1973), Arons (1973), Alme and Wilsom (1973)] or
forced precession of the disk itself (Katz 1973). Consequently. our point
of view — rather than attempting to fit the detailed observed properties of
observed X-ray sources with a time-dependent disk model — will be to do a
parameter study of disks that are time dependent on the radial flow time
scale and to investigate their properties. In short, we would like to find
out what such disks can do and what they cannot do.

In §V we discuss implications of various of our results and indulge in
some speculation as to future model building. Boundary conditions appro-
priate for the different physical situations considered are discussed in
§1v, and a brief treatment of the numerical methods used 1s given in the

Appendix.

II. INSTABILITY OF INNER REGION

In this section we consider only the inner region of the disk (radiatiom
pressure dominant over gas pressure, electron scattering opacity dominant
over free-free opacity), which may or may not exist, depending upon physical
conditions. (For accretion disks around black holes, the inner region typlcally

exists; for disks around magnetized neutron stars it typlcally does not.)

a) Analytic Analysis

The time evolution of the disk is governed by the nonlinear diffusion

1
equation for surface density © (cf., egs. [I-30], [1-7a])

1Equations from Paper I will be referred to as l-equation number.




a -k r.\1/2
L 10 3 6 9 . 2
ot 1, org (ﬁ;) arg LTS ] (1a)
le 22 O hs(r,Z) Plo(r92> » <1b)

together with implicit algebraic expressions for disk half thickness, h, and
pressure, p, in terms of ¥ and r (cf., egs. [I-26-29]). [In equations (1)

h W, . to denote 5 (disk surface

6 Per 16
density)/lOh g cm—g, r(radius)/106 cm, M(mass of compact object)/3 LI

we have used the notation Ty Tgs M,
h(disk half thickness)/106 cm, p(pressure)/lOlO dynes cmqg, and W(integrated
shear stress)/lol6 dynes cm-l, respectively. Here unlike Paper T we will
always use subscripts to indicate the above units.] In the inner region of
the disk, one has approximately (cf., eqs. [1-11b] and [I-1lc)) for the inte-
grated shear stress W

W ()b (2)

[ The parameter Q appearing in egs. (1b) and (2) is a dimensionless measure

of the viscosity — see Paper 1.] Hence, from equation {2)

1

M/or = (Wfor) (a)or) « - o ‘5 2(an/or) (3)

and the effective diffusion coefficient in equation (la) becomes negative.

(Compare it with the linear equation
2, 2
anfot pa ot ()

where u is the diffusion coefficient.) The result of a negative diffusion
coefficient is for material to clump rather than to smooth out as happens
for "normal" diffusion equations with positive diffusion coefficients. High

density zones get higher In density; low density zones get lower. and the



material clumps into rings. Since the clumping is secular and occurs at all
wavelengthe (see discussion below), there is nothing to prevent the high &
zones from eventually achieving T > orie (see SVIII of Paper I) and thus
causing & breakdown of the model. At the same time, the low r zones eventually
become optically thin and the model again breaks down.

We can estimate the time scale of the instability in the following
simple way. For modes of wavelength A solutions to the linear diffusion
equation (4) have form

mt
T ~ cos(r/A) e R

where m = -u/xz (positive for negative pu). On the other hand, the drift

time scale, t is the time it takes 5 to diffuse a distance r and is thus

D}
tD ~ rg/p. Therefore, the time scale for growth of an instability of wave-
length ) is

Yinse. = w e (3/0)? tp (=)

Both the existence of the instability discussed above and the time scale on
which it occurs have been arrived at by considering approximations to the
equations and by analogy with the linear diffusion equation. Validation of
our results is given in §IT.c, where equations (la) and (1b) are solved
numerically under conditions in which the inner region exists; there we
graphically observe the clumping phenomenon and consequent breakdown of the

model.

b) Physical Explanation

To understand why the instability of §II.a exists, we first must under-
stand the puzzling result of equation (2): that integrated stress decreases

as surface density increases. From equations (I-8c) and {I-8e) we have that



the energy generation rate and the energy transport rate (radiative diffusion

toward disk surface) are, respectively,

G e« hp

oo -
Re T ()} .

But in the inner region, where radiation pressure dominates and electron

TR
scattering opaclty dominates, P <« T, « const., so equating G to R gives

Since p « £h for hydrostatic equilibrium (cf., eq. [I-8f]), we have the
result that pressure is independent of surface density and thus W « hp « Y‘l
Physically, low stress in high-5 regions and high stress in low-y reglons
means that matter 1s pushed into regions of low stress and thus the density
contrast grows, forming rings of gas.

Let us turn for the moment to the time scale of the clumping phenomenon.
Equation (5) suggests that infinitely short wavelength modes grow infinitely
fast. However, there is a physical lower cutoff on the size of the wavelength.
Because of the likelihood of turbulent mixing (one of the contributions to
viscous stress) on length scales of the thickness of the disk ~ Qh, any
structure in the disk must have wavelengths approximately satisfying ) > h.

Therefore, equation (5) should read

= 2 . )
st - (n/r) LN {6

X -1 2 2
Since t ~ « (r/h) ty - (r/n) tr, where t, and t, are the hydrodynamical

T

and thermal time scales (see §VI of Paper I), equation (€) can be rewritten

in the form

>a e e . (7)



Again, we should point out that estimates such as equation (7) must be inves-
tigated and refined by actual numerical calculations, as is done in the next
subsection.

It is worthwhile to point out that, according to the above analysis (and
in actual numerical calculations), the middle and outer regions of the disk
are stable against the clumping phenomenon discussed in this section (W

increases with & in both middle and outer regions ~ see egs. [1-9], [1-10].)

c) Numerical Analysis

We now illustrate the clumping instability of the previous subsection
by considering perturbations of the inner region of the statiomary disk
model. In our model we take a 3 %ﬁ central object and an initial density
profile of

7o« r3/2 ) (a)

in accordance with the functional dependence of 5 in the inner region of the
stationary models (cf., SS or NT). We assume that the central object is a
nonrotating black hole so that the inner edge of the disk extends to the
innermost stable circular orbit of 3 Schwarzschild radii (rH . 2.6 for

M, = 1). The appropriate inner boundary condition on the diffusion equation
is that surface density, 5, vanish {see §IV for discussion). The outer
boundary condition in the inner region (where it joins the middle region of
the disk; see Paper I) is not crucial for purposes of investigating the
clumping instability since the time scale of the instability {s shorter

than the drift time scale. For simplicity, we therefore use ¥ 0O at the
outer boundary also.

In accordance with the discussion of the previous subsection we choose
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radial zone widths to be the thickness of the disk. (By egs. {8] and [1-11¢)
the disk thickness and hence radial zone widths are approximately independent
of radius in the inner region.) This necessarily prevents structure on
length scales smaller than 1s physically allowed by turbulent mixing. It
is not necessary to explicitly introduce a perturbation onto the initial
density distribution, because of the automatic round-off errors of tﬂe com-
puter.

The results are depicted in Figures la-1d for o = lO_2 as a typical

example. As can be seen, on a time scale ty ~ 0.1 sec the density dis-

nst.
tribution becomes irregular, the density contrast grows, radial zones become

optically thin in the low-r regions, eventually one of the high-y zones

reaches the "no solution region" [§5 > 7

¥ (r)] and the computation cannot
crit

proceed any farther. Actually, the model partially breaks down as soon as
a radial zone goes optically thin, since the diffusion equation for radiative
transport [ see assumption (vii) and eq. (I-2f) of Paper 1] is no longer
strictly applicable. 1In order to continue the time evolution as far as pos-
sible, however, we continue to use the radiative diffusion equation even in
optically thin zones.

Figures la-1d numerically validate the "clumping instability!’ discussed
previously. The time scale of the instability agrees with that estimated in

the previous subsection, since

= 1077 sec for v« A, M Lo,
and
1

- o -~
. ¢ s~ 1C < 10 0.1 s
tinst tT ~ X tH 10 10 ). 1 sec

We should point out that superimposed upon the time evolution of 7 as

depicted in Figures la-1d are local fluctuations orginating from thermal
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processes, occurring on approximately the same time scale, tinst T tT-m we
have neglected such local fluctuations because our initial assumptions and
equations restrict our attention to time scales >> tT. The overall instability,
however, cannot be affected by the thermal fluctuations because it occurs on
wavelengths A >> h as well as A ~ h (cf., eqs. [5], [6], and [7]) and thus

on time scales much longer than tT. The time scale tT only estimates the
time of growth of the shortest allowed wavelength perturbations. Thus the
clumping instability persists even after a time average over many thermal

time scales.

ITI. NEUTRON-STAR~LIKE MODELS

When the inner edge of the disk occurs at a large énough radius, typlcally
the case for magnetized neutron stars and white dwarfs, the inner region of
the disk does not exist (gas pressure always greater than radiation pressure)
and the clumping instability discussed in the previous section never occurs.
In such cases, the density distribution may be evolved to completion, i.e.,
until all of the mass in the disk has flowed inwards onto the compact object
or outwards to infinity or until the disk has reached a steady state in the
case of a constant mass deposition rate into the disk.

In order to allow mass deposition into the disk as well as mass flux out
of the disk at its inner and outer edges, we generalize the density diffusion

equation, equations (la), (1b) to allow a source function s{r,t):

Q}:h 10 a <r6>1/(> P
R AR Ta

(r‘_y;‘)wl(;) ios(r,t) . (9)

The source function s(r,t) may, for example, be the result of variable mass

deposition into the disk from a normal companion star. For simplicity we



consider only the cases

i} s(r,t) =0

v]constant © Brrg 0< t <At
s,

i) s(x,t) _'O, t>at

where T, is a radial zone near the outer edge of the disk (ro ~ 2/3 rmﬂx).
The constant multiplying the Kronecker delta in ii) is chosen so that in
time At, 102h grams are deposited in the disk. Thus in case 1i) s{r,t) is
determined completely by T, and At. In case 1) the initial distribution of
5o at t = O 1s chosen so that there are 1022‘l grams in the disk and all of the
mass is in a narrow annulus.

Figures 2 and 3 are typical illustrations of the time evolution of ¥

for the cases ;) = 1.0 and 1 = 0.1, where

___Alfvén radius A (10)
T # Corotation radius - r, '

Once 5(r,t) is known, all other variables may be easily calculated by alge-
braic equations (see Paper I). We will now define the parameter 1.

The corotation radius, L is defined as that radius at which the Kepler
period equals the period of rotation of the compact object. The Alfvén radius,

r is that radius at which the magnetic pressures originating from the mag-

A)
netic field of the compact object exceed the internal pressures in the disk

and thus force gas to leave the disk and follow magnetic field lines onto

the compact object. The inner edge of the disk thus occurs at r = 1 For

A"

Ty >, the compact object spins up the disk (transfers mechanical energy

A

and angular momentum into the disk). For Ty T the disk produces a mechan-

ical torque on the compact object. Tt is likely that accretion from the

disk onto the compact object can occur only If T, . L (Lamb, Pethick, Plnes



5]

1973), so we consider only 5 < 1.0.

The principal impact of the value of n is to determine the boundary con-
dition at the inner edge of the disk T, (see §IV). Since that boundary con-
dition is actually a function of o z (1 - qs/e), (eq. [17a] below), we can
explore essentially the full range of possible cases by considering for
values of 1.0 and 0.1.

In reality r

A and hence 7 do not remain constant in the evolution of a

nonstationary disk. Rough estimates (see, e.g., Lamb, Pethick, Pines 1973)
show that 7 depends upon such time changing quantities as mass flux and

disk thickness at the inner edge of the disk. To simplify a very complex
situation, we fix the mass and period of the compact object (M = 1/3, T = 1.2

sec in Figs. 2 and 3), thus fixing T and we assume that rn remains constant

during the evolution of the disk (assume T, remains constant). This simpli-

fication, although not quite correct, does allow us to investigate the effect
of different inner boundary conditions (different q) on the time evolution of
% and on the mass flux M onto the compact object.

As can be seen from Figures 2 and 3, the effect of different values of
n is to change the curvature»cf the 7 distribution at the inner edge of the
disk — values of 1 increasingly smaller than unity require an in;reasingly
steeply peaked T at Ty in order to transport into the disk the angular
momentum required for accretion at T,- See 8IV.b for a further discussion
of this point.

Figures b and 5 give the mass flux M from the disk onto the compact
object (see §IV.c for a calculation of mass fluxes) for various values of
@ and At for the two cases n = 1.0 and 5 = O.1. The intrinsic effect of
different values of 1 on ﬁ(t) can be seen by comparing the B curves of Flgures

% and 5 {where At = Q; source law (1) above). For 1 = 1.0, the mass flux



peaks sooner, has a higher maximum, and a faster fall off than for n = 0.1.
" This can be understood in terms of the different boundary conditions (and
associated ¥ distributions) at the inner edge. (See Figs. 2 and 3 and dis-
cussion in previous paragraph.) The positive slope of the n = 0.1 5 dis-
tribution at LI reflects the effective resistance to accretion due to the

‘requirement that stress transport angular momentum outwards at r, — consequently

A
ﬁ is not as sharply peaked a function (and consequently has a smaller maximum
for the same total mass) as the corresponding function for n = 1.0, where the
5 distribution has negative slope at T, and angular momentum does not have to
be transported outwards at T, for accretion to take place.

The mass fluxes of Figures 4 and 5 may be converted to luminosities L

of the compact object by consideration of the released gravitational energy.

In order of magnitude, the relations are

L

L~ 107 ﬁcz for white dwarf | (11a)

L~ 10" #c®  for neutron star . (11b)

In Figures 2-5, the time evolution is carried nearly to completion
—.i.e., in Figures 2 and 3 curves F and E represent late time shapes and in
Figures I and 5 curves are continued (with the exception of the-A curves)
until at least 99.9% of the mass put into the disk has escaped onto the com-
pact object or outwards through the outer edge of the disk. The outer edge
of the disk in Figures 2-5 is located at r& = 30,000, a typical value for
models of compact X-ray sources.

It is interesting to note that curves F and E of Figures 2 and 5,
respectively, which depict the density distribution after it has equilibrated,

fall off with power laws consistent with those calculated in the stationary
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models. For example, curve E of Figure 3 has the form

5 . 0. 7h2

’

and a mass flux so low that the entire disk is in the "outer region" (e.g.,
free-free opacity dominant over electron scattering, gas pressure dominant
over radiation pressure — see Paper I). The calculated functional form for

% in the stationary models, in the outer region of the disk is (ss, NT)
-3/h
)::o(rs/

Therefore it is fairly clear that, for parameters such that the "inner region”
of the disk does not exist, stationary disks of the form currently in the
literature can be built up from nonstationary disks.

An important feature of the M curves (Figures I and 5) is the spiral
time, ts’ defined as the time required for an initial ring of matter near the
outer edge of the disk to diffuse inwards and yield an appreciable (e.g.,

ﬁ ~ 0.01 of maximum subsequent value) accretion rate onto the compact ob ject.
The spiral time depends strongly on (tr and less strongly on the average value
of ¥ in the outer regions of the disk during the initial stages of diffusion
~ which we denote by $. A fairly good analytic fit to the numerical results
for an initial ring at radius r = 2 X lOlO cm and for At = 0O {éase (1) above;

no matter fed to disk after t = O] is
s -0.5
e~ (2.3 x 10° gec. ) o[l'2<w-—~——é~—-~) } (12)

There is good theoretical basis for the form of equation (12). The spiral
time ts should be closely related to the drift time scale, tD (see §V1 of

Paper I for definition of t From Paper I,

D)'

tp - (x/0)" u’l(r:/’/cm)l/;’ , (1%a)
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and, in the outer region of the disk, where time scales are longest, we have

the approximate relation
3/1 1/1h 7
b 5/ B w3 (13b)

So, neglecting the r and M dependence, which are fixed in the examples of

Figures ! and 5, we should have approximately
ts o« tD LS a'8/7 2_3/7 . (1)

Within the degree of approximation, equation {1L) agrees well with the
empirically determined equation {12). We will return to a brief discussion
of the spiral time in the next section.

Note that the case a = 1.0, 1 = 0.1 is not depicted (cf., Fig. 5). This
is because regardless of how slowly mass is deposited into the disk (regard-
less of At), the surface density always builds up until 5 > Zcrit at the
inner boundary of the disk, for = 1.0, 1 =~ 0.1. Thus for such a case the
inner radial zones of the disk eventually create an inner region of the disk,
the clumping instability sets in, and the computation can proceed no further.

F‘
Such a situation also arises for @ =~ 0.1, 1 ~ 0.1 unless at 2 10” sec. We

will return to a brief discussion of these results in §V.

IV. BOUNDARY CONDITIONS AND MASS FLUX

In this section we discuss the appropriate boundary conditions for our
diffusion equation in surface density (cf., egs. [1], [9]) and the calcula-

tion of the mass flux through the inner and outer boundaries.
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a) Outer Boundary Condition

In a realistic accretion problem, the location of the outer edge of the
disk, T ax’ is determined by a balance of the gravitational pull of the com-
pact object and the centripetal acceleration of the inflowing gas. Gas
flowing by the disk at r > Thyax has too much energy and angular momentum to
be captured into orbit and siphons off the angular momentum of gas moving
outwards through LI Since the evolution of the interesting small-r regions
of the disk is relatively insensitive to the outer boundary condition on T,
we set ¥ = 0 at r = Thax for simplicity. (The principal effect of variations
of this boundary condition is to change by a factor of order unity the ratio

of mass escaping outwards through the outer edge to mass accreting inwards

through the inner edge of the disk.)

b) Inner Boundary Condition

The inner boundary condition on ¥ at the inner edge of the disk, TMin
£

{ = T, for magnetized compact objects), is more important than the outer

boundary condition, since it is near the regions of largest energy produc-
tion and has a direct influence on mass accretion from the disk onto the
compact object.

For accretion onto a black hole, the inner edge of the disk is at the

it falls rather

innermost stable circular orbit; after gas reaches Tuin’

directly into the hole, providing little contact with gas just outside of

r . Thus the transferred stress at r in this case vanishes and the
Min Min

proper boundary condition is ¥ = O at r - TMin (insures that stress, W,

vanishes at r = r_, ).
Min

For accretion onto a magnetized compact object the shear stress, W, may

or may not vanish at the inner edge of the disk, depending on whether the



magnetic fileld lines are rotating at the same rate as the gas at r = Ty
Although the detailed interaction of the magnetic field and the accreting

gas may be quite complicated at the Alfvén radius r the stress at r, may

A’ A
be calculated just from the basic conservation laws. In addition to the
quantities M, M, Ty and r, which have been previously defined, let us define
the following quantities:

wy = angular velocity of compact object and it magnetic

field,

IB = specific angular momentum of gas after it has
accreted onto magnetic field lines at Tps

£ = spexific angular momentum of gas in disk at Ty

Then, equating the torque to the time rate of changr of angular momentum

across r,, we get

(2nr2w)r:rA [IZ’I(ID - za)}r,:rA ; (15)

We may use further relations among the quantities atove

. 1/2 .
ID = (hMrA) s (1ca)
2)
[B = Wl s (16b)
NN X
uy = (onfr Y2 (16¢)
to rewrite equation (15) as
(2cP0) - (i) Y2 (- P (17a)
T A T
A A
where
n = rA/rc . (17b)

Since W is a functien of 3, and M is a functlion of © and its spatial deriva-

tive (sce §1V.c belew), the boundary condition ef ejuations (17) 1s a lincar



lation between T and its first derivative with respect to r at r Note

A
at 1f Ty F T we have the same inner boundary condition, i.e., 5 = O at Ty

used for a disk around a black hole.

c) Mass Flux at Boundaries

The diffusion equation for surface density has the form (cf., egs. {9],

[1ey) )
5= r—l(aF/ar) +5 (18a)
where
e (Y20 Puten)) (18b)

The mass of the disk, MD’ is
MD = /‘EKerr . (19)

Combining equations {18) and (19), we get
r
. ., Max ,OF
M - an‘[r (ﬁ; + rs) dr
Min

= 2 - -
2r(F FMin) 4 2ﬂ.f rsdr . (20)

Max

The first and second terms in equation (20) are the negatives of the mass
fluxe; out of the disk at the outer (to "infinity") and inner (énto compact
object) edges. It is the second of these expressions which is used in cal-
culating ﬁ in Figures Lk and 5. For the initial mass distribution given in
Figures 2 and 3 and for mass fed into the disk near its outer radius, typi-
cally half of the disk mass escapes to infinity and half accretes onto the
compact object.

The third term in equation (20), which may be zero in some applications

(e.g.. Fig. 1 and curve A in Fig. h), represents the mass flux {nto the disk.
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Since this mass, in our computations, is deposited a few radial zones in
from the outer edge of the disk (see discussion in §III), it can be easily

distinguished from mass leaving the disk at its outer edge.

V. DISCUSSION OF RESULTS

a) Implications of Instability of Inner Region of Disk

The "inner regilon' of the disk typically exists for disks around black
holes and, under certain conditions (see, e.g., discussion at end of §III),
for disks around neutron stars. Because of the instability of the inner
region, discussed in §II, a revision of current disk models must be made.

In this subsection we discuss the three most likely revisions: (1) departure
from thinness in the inner region, (2) reformulation of model of viscosity,
and/or (%) reformulation of model of energy transport. Items 2) and ‘7} may
not be completely Independent.

One of the principal assumptions going into the model 18 that the disk
is everywhere thin. This may not be true in the inner reglon of the disk;
the secular instability of §I1 may produce around the compact object a cloud
tens to hundrede of times its size. If dissipation is efficlent {expected,
since accreting matter must still lose its angular momentum), -the cloud will
emit X-rays as a hot, thin plasma with Comptonization probably lmportant
[Felten and Rees (1972), Illarinov and Sunyaev (1972)1. GCross time variationms,
both in intensity and in spectrum, are expected on the hydrodynamical time
scale of the cloud [~ tens to hundreds of milliseconds {for black hole) and
longer]. 1If the cloud is optically thick to Compton scattering, time varia-
tions on time scales shorter than the random walk time of a photon through

the cloud may be lost. Recent results obtained by Rothschild et al. (1973)
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suggest, however, Cyg X-1 has time variations on time scales € 1 msec.,
significantly shorter than the shortest expected time scale if Cyg X-1 is
surrounded by an optically thick cloud. The inner region of the disk around
Cyg X-1 may still be thin,‘therefore, but with a different model of viscosity
and/or energy transport than is currently used (see discussion below). The
role of a disk and the nature of its inner region for the exciting case
(probably a black hole!) of Cygnus X-1 must await further taking and analysis
of data.

Another likely possibility is that the disk is everywhere thin, but that
the standard simplified model of viscosity (e.g., eqs. [I-6], [I-7)) is not
correct. For example, the viscous stress might not be proportional to the
total pressure. With the viscosity parameter & a function of ¥ rather than
a constant, equation (2) shows that if « falls at least as fast as 5% . in the
inner region (}§§§_efficient viscosity) the effective diffusion coefficlent
for v (cf., eqs. [3], [4] and accompanying discussion) will be nonnegative.
Such a functional dependence would therefore prevent the clumping instability
and consequent breakdown of the model. For example (Cunningham 1973), equa-

tion (I-6) might be replaced by

-1 ,
(r tqm) = BB, , B = comst. (21)

greatly exceeds gas pressure, P,. Using

even when radiation pressure, P, C

R"
equations (I-5), one can easily show that equation (21) corresponds to an

effective @ satisfying, in the inner region,

o 57"“/3

The thin-disk model resulting from equation (21) is stable and much like
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current models except that © is much greater in the inner region of a
stationary disk.

A third related possibility (which also requires a better understanding
of viscosity for proper treatment) is that the method of energy transport is
different from the simplified model of radiative transport (cf., §II and

eq. [I-2f] of Paper I). Convection probably sets in at 5 < 5 since

crit’
the radiative temperature gradient becomes superadiabatic there (see §VIII.b
of Paper I) and may be effective enough as an energy transport mechanism to
. prevent the inner region from entering the '"no solution" region (8§VIII of
: Paper 1) — the disk may then remain thin. There may actually not even be a
need for energy transport, if the energy generation is near the surface of
the disk.
In summary, the existence of the inner-region instability discussed in
§II depends upon the assumption that the energy transport is radiative, that
the energy generation occurs in an optically thick region and must therefore

be transported, that the standard model of viscosity is valid, and that the

disk is everywhere thin. One or more of the above assumptions may be invalid.

b) Implications for Extended Lows in Compact X-Ray Sources

As can be seen by comparing Figure 2 with curve A in Figure L (repre-
senting same values of parameters), substantial mass does not accrete from
the inner edge of the disk onto the compact object until the peak of the 5
distribution has moved from the outer to the inner edge of the disk. Both
the spiral time scale tg and the "turn-on" time (rise time of ﬁ in Figs. b
and 5) are sharply decreasing functions of & A fairly common feature for
disks which are not fed with mass after t = O is that the time scale for

fall off of mass flux onto the compact object is about 100 times the spiral



time scale. This fact may be important in explaining phenomena which are
regulated by quasiperiodic loading and unloading of mass in an accretion
disk.

As an example, one of the various explanations for the peculiar 35-day
periodicity in the X-ray flux of Her X-1 is that the 24 day off time occurs
while gas is spiralling in from the outer edge of an accretion disk, and
the 11 day on time occurs while the accumulated mass of the disk is unloading
onto the neutron star (McCray 1973). In this model, while the disk is
unloading, radiation pressure from the emission of the neutron star prevents
further deposition of gas by the primary into the outer edge of the disk.
From the results Iindicated in Figures I and 5 it is clear that, in order to
yield a spiral time of the order of 24 days, O must be less than or of the
order of 10—2. For such a value of &, however, the decay time of the mass
flux is far longer than 11 days. Thus, it seems unlikely that the 3%-day
periodicity of Her X-1 is regulated by this type of loading and unloading
of an accretion disk. [Actually, the evidence (Forman et al., 1972) for
almost constant X-ray heating of HZ Herc during the 30-day cycle 18 more
crucial in ruling out McCray's model.]

Another example in which disk dynamics may be important is in the
1972b), HZ Herc (Jomes et al., 1973), or SMC X-1 (Schreier et al., 1972a).
It is conceivable that the =~ 20 year quasiperiodicity in HZ Herc could be
explained by a very slow (0 = 10~h, see A curves in Figs. 4 and 5) unloading
of an accretion disk.

Finally, the existence of an "inner reglon'” in neutron-star-like models
for large values of the viscostty parameter v and with 4 0.1 {see discusaion

fn §111) indicates that clther such values of the paramcters are not realized,
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or that some reformulation of the model must be made, as discussed in §V.a.

c) Future Work

Future work on accretion disks should be along the lines discussed in
§v.a. A more detailed model of viscosity is needed particularly strongly.
Such a model must awalt a better understanding of turbulence and chaotic

magnetic fields.
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APPENDIX I

NUMERICAL METHODS

In this section we give a brief discussion of our numerijical techniques
for solving the time evolution equations of the disk. The equations reduce to an
implicit algebraic equation for T(r,r) and a nonlinear diffusion equation

for 5(xr,t), (see Paper I, §VII).

a) Algebraic Equation for T

After each time step, one has a r{r). With this %, one then solves in

each radial zone

H<T72’r) =0 , (A'l)

where H is an implicit nonlinear equation in T (see eq. [I-29]). Egquation
(A-1) is solved for both the gas and radiation roots T and T (see SVIII of

paper 1) by Newton's method, using as initial guesses for IC and TR thelr
values at the previous time step. The iteration procedure 1is continued
until convergence of about 0.0l percent is achieved. From T all other disk

variables may be calculated by explicit algebraic equations.

b) Nonlinear Diffusion Equation for §

In problems with widely differing time scales (e.g., drift time scale
tD in different radial zones) it is advantageous to always take time steps
in accordance with the ongoing dynamical processes rather than with the
shortest time scale in the problem {which may describe processes which have
already equilibrated). To do so, one must use implicit differing methods
(e.g., lsaacson and Keller 1966) in order to avoid numerical instabilities.

In nonlinear equations, some linearization procedure must be used in
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order to solve the implicitly differenced equations, and such a procedure
must not introduce enough "explicitness” to cause numerical instabilities.
In our case the implicitly differenced equation, before linearizationm, is

(Here we let n denote the time step label and suppress spatial zone indices.)

-k
At =TT

Za " Ip1 10

‘a-a; (—ﬁ)l/e—aa}- [rewn(r,zn)] 8, (A-2a)

and we Taylor expand wn about the previous time step

wn 1 wn 2
WomW o+ (e Lw ), (A-2b)
n n-1 zn_l - 2n—2 n n-1
where
W o=2chp . (A-2¢)

When spatial indices are put in, equations (A-2) can be solved for z:n(r)

by standard matrix techniques (see, e.g., Isaacson and Keller 1966).
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Fig. 2.
Fig. 3.
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FIGURE CAPTIONS

Time evolution of surface density in the inner region of a
disk around a black hole beginning, at t = O, with the distri-
bution of a stationary disk. Parawmeters of this model are

M, =1, a= 10-2. Circles indicate optically thin zones and
the square in Fig. 1d indicates a zone having gone into the
"no-golution region." The peak value of ¥ in each plot is
indicated by Zyax”

Time evolution of surface density of disk for "nmeutron-star-
like" models. In this model M, = 1/3, @ =0.01, n = 1.0.

The various curves are A: t = O, TMax = 0.76; B: t = 3.5 X 105,
Trax * 0.19; C: t = 5.8 % 105, TMax © 0.20; D: t = 6.6 X 105,
TMax © 0.22; E: t = 8.0 X 105, Ipax = 0.37; F: t = b.3 x 107,

ZMax = 0.03. (Time is measured in seconds.)

Time evolution of surface demsity of disk for "neutron-star-
like" models. 1In this model M, = 1/3, a = 0.01, n = O.1.

The various curves are A: t = 0, 7 = 0.1; B: t= 8.1 X IOJ,

‘Max
5 5
= 0. ; G = I, = 0.09; D: .6
Tax 0.089; C: t 9.0 x 10, xMax 0.09; D: t = 9.6 x 107,
7
= ; E: = 2.2 .36,
Tmax 0.18; E: t 3 x 10, xMax = 1.36

Mass flux from disk onto compact object for various values of
and of time interval, At, over which mass is deposited into
outer extremities of disk. 1In this model M, = 1/3, y = 1.0.
The various curves are A: o = 0.0001, At = O; B: a = 0.01,

At e 0 € a= 1.0, At IO6 sec; D: @ = 0.1, At = O;

E: = 1.0, At = 0. (Recall: for At = O the disk has mass in

it, distributed over several zones, at t =0, For /it ;50 there



Fig. 5.
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is no initial mass content.)

Mass flux from disk onto compact object for various values of
« and time interval, At, over which mass is deposited into
outer extremities of disk. In this model M, = 1/3, 5 = O.1.
The curves are A: o = 0.0001, At = 0; B: = 0.01, At = O;

C: a= 0.1, At = 106 sec,
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I1. THEORETICAL FRAMEWORKS FOR ANALYZING AND TESTING GRAVITATION
THEORIES

A, DEFINITIONS AND BASTIC CONCEPTS
a) Foundations for a Theory of Gravitation Theories (Paper
IV; collaboration with K.S. Thorne and D.L. Lee, published
in Phys. Rev. D, 7,3563,1973.)




Reprinted from:

PHYSICAL REVIEW D VOLUME 7, NUMBER 12 15 JUNE 1973

Foundations for a Theory of Gravitation Theories*

Kip 8. Thorne, David L. Lee,’ and Alan P. Lightman'
California Institute of Technology, Pasadena. Californis 91109
{Reccived 10 January 1973)

A foundation is laid for future analyses of gravitation theories. This foundation is apphcable to any
theory formulated in terms of geometnic objects defined on a 4-di ional spacetime ifold. The
foundation consists of (i) a glossary of fundamental concepts, (i) a theorem that delineates the overlap
between Lagrangian-based theories and metric theorics: (i) a conjecture {due to Schiff) that the weak
equivalence principle implies the Einstein equivalence principle: and (iv) a plausibility argument
supporting this conjecture for the special case of relativistic, Lagrangian-based theories

1. INTRODUCTION out by the group of Nordtvedt at Montana State
University are summarized in several recent re-
Several years ago our group initiated' a project view articles.*™* Those results have focused al-
of constructing theoretical foundations for experi- most entirely on “metric theories of gravity” (rel-
mental tests of gravitation theories. The results ativistic theories that embody the Einstein equiva-
of that project to date (largely due to Will and Ni) lence principle; see Sec. III below).

and the results of a similar project being carried By January 1972, metric theories were suffi-
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ciently well understood that we began to broaden
our horizons to include nonmetric theories. The
most difficult aspect of this venture has been com-
munication. The basic concepts used in discussing
nonrmetric theories in the past have been defined so
vaguely that discussions and “cross-theory analy-
ses” have been rather difficult. To remedy this
situation we have been forced, during these last
eleven months, to make more precise a number

of old concepts and to introduce many new ones.
By trial and error, we have gradually built up a
glossary of concepts that looks promising as a
foundation for analyzing nonmetric theories.

Undoubtedly we shall want to change some of our
concepts, and make others more precise, as we
proceed further. But by now our glossary is suf-
ficiently stabilized, and we have derived enough
interesting results using it, that we feel compelied
to start publishing.

This paper presents the current version of our
glossary (Secs. II-IV), and uses it to outline some
key ideas and results about gravitation theories,
both nonmetric and metric {Secs. V and VI). Sub-
sequent papers will explore some of those ideas
and results in greater depth.

Central to our current viewpoint on gravitation
theories is the following empirical fact. Only two
ways have ever been found to mesh a set of gravi-
tational laws with all the classical, special rela-
tivistic laws of physics. Onre way is the route of
the Einstein equivalence principle (EEP) - (i) De-
scribe gravity by one or more gravitational fields,
including a metric tensor g,q; and (i1} insist that
in the local Lorentz frames of g, all the nongrav-
itational laws take on their standard special rela-
tivistic forms. The second way of meshing is the
route of the Lagrangian - (i) Take a special rela-
tivistic Lagrangian for particles and nongravita-
tional fields, and (ii) insert gravitational fields in-
to that Lagrangian in 2 manner that retains gener-
al covariance. The equivalence-principle route
always leads to a metric theory. (Example: gen-
eral relativity.) The Lagrangian route always
leads to a “Lagrangian-based theory.” |Example:
Belinfante-Swihart theory (Table IV, later in this
paperH Thus, in the future we expect most of our
attention to focus on metric theories and on La-
grangian-based theories; and in the nonmetric
case we might be able to confine attention to theo-
ries with Lagrangians.

Since metric theories are so well understood,”
it would be wonderful if one could prove that all
nonmetric, Lagrangian-based theories are defec-
tive in some sense. A conjecture due to Schiff®
points to a possible defect. Schiff’s conjecture
says® that any complete and self-consistent theory
that obeys the weak equivalence principle (WEP)

must also, unavoidably, obey the Einstein equiva-
lence principle (EEP). (See Sec. III for precise
definitions.) Since any relativistic, Lagrangian-
based theory that obeys EEP is a metric theory,
this conjecture suggests that nonmetric, relativ-
istic, Lagrangian-based theories should always
violate WEP.

The experiments of E6tvds ef al.® and Dicke et
al,,” with modifications by Braginsky ef al.® (ED
experiments), are high-precision tools for testing
WEP. Hence, the Schiff conjecture suggests that,
if one has a nonmetric Lagrangian-based theory,
one should test whether it violates the ED experi-~
ments. {Such tests for the Belinfante-Swihart and
Naida-Capella theories reveal violations of ED and
WEP.®)

In this paper, after presenting our glossary of
concepts (Secs. II-IV), we shall (i) derive a crite-
rion for determining whether a Lagrangian-based
theory is a metric theory {"principle of universal
coupling,” Sec. V), and (ii) discuss and make
plausible Schiff's conjecture (Sec. VI

1. CONCEPTS RELEVANT TO 5PACETIME THEORIES

This section, together with Secs. Iil and IV, pre-
sents our glossary of concepts. To understand
these concepts fully, the reader should be familiar
with the foundations of differential geometry as
laid out, for example, by Trautman.’* He should
also be familiar with Chap. 4 of Anderson’s text-
book'! (cited henceforth as JLA), from which we
have borrowed many concepts. However, he
should notice that we have modified slightly some
of JLA’s concepts, and we have reexpressed some
of them in the more precise notation and terminol-
ogy of Trautman'® and of Misner, Thorne, and
Wheeler (MTW). ¥

The concepts introduced in this section apply to
any “spacetime theory” (see below for definition).
In Secs. Il and IV we shall specialize to “gravita-
tion theories,” which are a particular type of
spacetime theory. To make our concepts clear,
we shall illustrate them using four particular
gravitation theories: the Newton-Cartan theory
(Table 1), general relativity (Table II), Ni's theo~
ry {Table II1)," and the Belinfante-Swihart theory
(Table IV).'*'" Of these theories, general relativ-
ity and Ni's theory are metric; the Newton-Cartan
and Belinfante-Swihart theories are nonmetric.

Mathematical representations of a theory. Two
different mathematical formalisms will be called
“different representations of the same theory” if
they produce identical predictions for the outcome
of every experiment or observation. Here by “out-
come of an experiment or observation” we mean
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TABLE I, Newton-Cartan theory.

1. Reference for this version of the theory:
Chapter 12, and especially Box 12.4 of MTW?
2, Gravitational fields.

a. Symmetric covariant derivative (affine connection)
b. Spatial metric.
¢, Universal time

3. Gravitational field equations:

a. vdi=0,

b, ®R(n, mMu=0,
where ® is the curvature operator {formed from V; u and 7 are arbitrary vectors; w is any spa-
tial vector ({dt,ux) = 0.

¢, By, uy=0
for every pair of spatial vectors, v, u. [Note: a,b,c guarantee the existence of the metric, y or
“er, defined on spatial vectors only, such that

v
for any u and for any spatial w, v.]

d. v ($u, D] =ws (e, n)v]

for all spatial v, w and for any u,n, where
S,y p= HR(p, nyu +RUp,udni .

=dnpdt & dt
where Rieci is the Riccl tensor formed from ¥, and p is mass density.

Yylw = 2) = (V) v+ (

4. Influence of gravity on matter:

a. Test particles move along geodesics of ¥, witht an affine parameter,

h. Each test particle carries a local inertial frame with orthonormal, parailel-transported spatial
basis vectors (g7 * €3 =0y, Y,ey =0} and with ¢§=d/d¢ = (tangent to geodesic world line).

c. All the nongravitational laws of physics take on their standard, Newtonian forms in every loecal
inertial frame,

the raw numerical data, before interpretation in
terms of theory. Any theory can be given a vari-
ety of different mathematical representations.
[Example - The Dicke-Brans-Jordan theory has
two “standard representations: (i) the original
representation,'® ' in which test particles move

on geodesics but the field equations differ signifi-
cantly from those of Einstein; and (ii) the confor-
mally transformed representation,'® in which the
scalar field produces deviations from geodesic
motion but the field equations are nearly the same
as Einstein’s.] A theory can be regarded as the

TABLE II. General relativity theory,

1. Reference: Standard textbooks, e.g,, MTW

2. Gravitational field:

The metric of spacetime, ., ... ..., . .......

3. Gravitational field equations:

G=8rT

where G is the Einstein tensor formed from g, and T is the stress-energy tensor.

4. Influence of gravity on matter:

a. Test particles move along geodesics of g, with proper time 7 an affine parameter.
b, Each test particle carries a local inertial (“local Lorentz”) frame with parallel-transported, or-
thonormal basis vectors e, and with e =d/d7 = (tangent to geodesic world line).

c. All the nongravitational laws of physi

take on their standard, special-relativistic forms in ev-

ery local inertial frame (aside from delicate points associated with “curvature coupling”; see

Chap. 16 of MTWY),
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TABLE MII. Ni's “New Theory.”

1. Reference: Ni¥
2. Gravitationa] fields:

a. Background metric (signature 12},
b. Universal time, ... .. ... ..
c. Scalar field. ... .. .. ..
d. One-form ficld. .
e, Physical metric. .

3. Gravitational field equations:
a. Background metric is flat,
Riemann(n) = 0 .
b. “Meshing” of 1, {, ¢

Lap=0,
tigtipn™8=-1,

tigbgn®f=0,

d.

where “," denotes covariant derivative with respect (o g, and 9| is the inverse of | 7 Gl

&=L Ualo) - f1l@) d1 @ di -y dl - dtes g .
Here f () and f,{@) are arbitrary functions to be determined finally by experiment,
Field equations for ¢ and $ Tollow from the action principle

éf Ld'x=0, where £ =Ly 1 £ ,

131 e
£ “%s?{ + oty ¥ais 1P 00 0 5 1 /(01 uw‘aha""”'z% e

e is a constant to be determined by experiment, £y; =Ly V=g, and L nG is the standard Lagran-
gian density of special relativity with the metric of special relativity replaced by g.

4. Influence of gravity on matter:

Governed by action principle

6] Ly d'x=0,

where particle world lines and nongravitational fields arc varied.

equivalence class of all its representations. Ta-
bles I-IV present particular representations for
the theories described there.
Spacelime theory. A “spacetime theory” is

- any theory that possesses a mathematical repre-
sentation constructed from a 4-dimensional space-
time manifold and from geometric objects defined
on that manifold. (For the definition of “geometric
object,” see Sec. 4.13 of Trautman.”®) Henceforth
we shall restrict ourselves to spacetime theories
and to the above type of mathematical representa-
tions. The geometric objects of a particular rep-
resentation will be called its variables; the equa-
tions which the variables must satisfy will be
called the physical laws of the representation.
[&ample —general relativity (Table II): The

physical laws are the Einstein field equations,
Maxwell’s equations, the Lorentz force law, ete.)
| Example - Belinfante-Swihart theory {Table IV):
The physical laws are Rie n (1)=0, and the
Euler-Lagrange equations t follow from Ojbild'?\
= 0.1

Manifold mapping group (MMG). The MMG is
the group of all diffeomorphisms of the space-
time manifold onto itself. Each diffeomorphism
A, together with an initial coordinate system
¥{@), produces a new coordinate system

X P) R TR (1)

{Events are denoted by capital script letters.)
Kinematically possible {rajectory (kpl). Consid-
er a given mathematical representation of a given
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TABLE IV. Belinfante-Swihart theory.

1. References: Summary and analysis of the theory by Lee and Lightman!!; original paper by Belinfante
; orig

and Swihart.!®
2. Gravitational fields:

3. Nongravitational variables:

a. Electromagnetic vector potential, ,

b. Electromagnetic field tensor (aecond rank, antisymmetric).

c. World line of particle J, parametrized in an arbltrary MAANET. oottt iiiiaaaarnnasan z, (/\J)
{in a given coordinate system, world line is x% =25 (A ],
d. Velocity vector of particle J (defined along world Hne), ..........uirinnenenenneeeannn. a

e. Momentum vector of particle J (defined along world line)

4, Gravitational field equations:
a. Metric is flat; Riemann(n)=0

b. Field equation for k follows from varying ke in 0 [ £d% =0, where £ is given below.

5. Influence of gravity on matter:

Equations for 4, H#, 2, a;, 1, follow from varying these quantities in [ £d% =0.

6. Lagrangian density:
a, £=L¢ +L&yg

b. L6 =—(1/1600°B ¥ 0Pk, oy o is 0 e hp o)=Y,
where “| ” denotes covariant derivative with respect to n; @ andf are constants to be determined

by experiment, and n= det | k.
¢ Eng=(L/AMGH H,, ~HYF A, -m'

*eo
+§) j lemyby v gy —e; ANZY ~15,a516% 5 — 2,0 ),

ro
ATV Ry, +x};,f m by Py 84x — 2 (A A,

d. Here ¢; and m are the charge and rest mass of particle J; 25 = dz§/dx,; b, = (-aSa,, SV K s
a constant to be determined by experiment; indices are raised and lowered with 1,4; and

THY = (1/4m)(HM Hy Y ~ Y H OB H )

Z}f ayn¥otlx — 2, (A, NdA, .

e. In the action principle one varies &
holds 7y, fixed.

wus Ags Hyy, 23000, as(A,), 7,0,) independently; but one

spacetime theory. A kpt of that representation is
any set of values for the components of all the
variables in any coordinate system. A kpt need

not satisfy the physical laws of the representation.

{Example ~ general relativity (Table I1): A kpt is
any set of functions {g,a(x) =gao(x); Falx)
==Faolx); 281y ...} in any coordinate system,
which — if they were to satisfy the physical laws —
would represent metric, electromagnetic field,
particle world lines, etc.) (Example — Belinfante-
Swihart theory (Table IV): A kpt is any set of
functions { 11,5(x) = 154 (%), Hgalx) =Ry x), 4 5),
Hoolx)= —Hg (x), 2840, af(An), 732,)} in any co-
ordinate system.)

Dynamically possible trajectory (dpt). A dpt is

any kpt that satisfies all the physical laws of the
representation.

Covariance group of a representation. A group
$ is a covariance group of a representation if (i)
9 maps kpt of that representation into kpt; (ii) the
kpt constitute “the basis of a faithful realization
of §” (i.e., no two elements of § produce identical
mappings of the kpt)'®; (iii) § maps dpt into dpt.
(Example ~ MMG is a covariance group of each of
the representations of theories in Tables I-IV.)
(Example ~ Electromagnetic gauge transforma-
tions, A, ~ A, +¢ ,, are a covariance group of
the representation of Belinfante-Swihart theory
given in Table IV.) By complele covariance group
we shall mean the largest covariance group of the
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representation. By generally covariant represen-
tation of a theory we shall mean any representation
for which MMG is a covariance group. {An argu-
ment due to Kretschmann®® shows that every
spacetime theory possesses generally covariant
representations.) By internal covariance group
we shall mean a covariance group that involves no
diffeomorphisms of spacetime onto itself. (Ex-
ample -~ Electromagnetic gauge transformations
are an internal covariance group.}) By external
covariance group we shall mean a covariance
group that is a subgroup of MMG. The complete
covariance group of a representation need not be
the direct product of its complete {i.e., largest)
internal covariance group with its complete exter-
nal covariance group. It may also include trans-
formations that are “partially internal” and “par-
tially external” and cannot be split up. |Example ~
When one formulates Newton-Cartan theory in a
Galilean coordinate representation (see the Appen-
dix, which should not be read until one has fin-
ished this entire section), one obtains a complete
covariance group described by Egs. {A5). The
complete external covariance group consists of
(Aba) and (A5b). There is no internal covariance
group. The transformations (A5c) are mixed in-
ternal-external transformations that belong to the
complete covariance group.|

We shall use the following notation to describe
a particular element G of the covariance group,
and its effect. G consists of a diffeomorphism A
[Eq. (1), above] and an internal transformation H:

G=(h,H). (2)

If G is an external transformation {(element of
MMG), thenH must be the identity operation; if &
is an internal transformation, then’ is the iden-
tity mapping; if G is a mixed internal-external
transformation, then neither k nor / is an identity.
Denote the variables of the representation {geo-
metric objects) by y, and their components at a
point @ in a coordinate system | x°} by v, (&, {+"}).
The set of functions

vu®, 1 x%}), @ varying and { x“} fixed (3)

constitute a kpt. The diffeomorphismk maps this
kpt into v,(@, {x“}), where {x“} is the coordinate
system of Eq. (1). The internal transformation
converts y into a new geometric object,

yally. (4)
The net effect of G on the kpt (3) is
G 4@ {2 ya@, {2 h. )

It is often useful to characterize G by the functions

DAVID L. LEE,
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Bal@, (D =ya@, (3 = a7 )
=V cvatuated a1 x0 19
~ ¥ alevaluated at x %o 60 - {6)
Note that these "changes in v” satisfy the relation
By, P, (X0 W=y, L, n

where a comma denotes partial derivative, and
also the relation

By =(H @, {2 1) = e, (x0T, (8

where iy is the geometric object obtained by
“dragging along with &~ (see p. 86 of Trautman'®).

Of particular interest are the infinitesimal ele-
ments of a covariance group. |{From them one can
generate that topologically connected component®'
of the group which contains the identity. The other
connected components, if any, are typically ob-
tained by bringing into play a discrete set of group
elements (space reflections, time inversions,
ete.).] Let G.=(h ,H,) be a one-parameter family
of elements (curve in group space parametrized by
), with G, the identity. Denote by £ the infinites-
imal generator of the diffeomorphismi, :

£=(dh,®)/de, . @

Then, to first order in €, Eq. (8) reduces to

By, (1)) ] (Lo, (7))

(10

where £5 is the Lie derivative along £ (Sec. 4.15
of Trautman'®). -

Equivalence classes of dp!. Two dpt are mem-
bers of the same equivalence class if one of them
is mapped into the other by some element of the
complete covariance group. (Example - When
MMG is a covariance group, all dpt that are ob-
tained from each other by coordinate transforma-
tions belong to the same equivalence class.) Ifa
generally covariant representation possesses no
internal covariance groups, then there is a one-
to-one correspondence between equivalence clasg-
ses of dpt and the geometric, coordinate-indepen-
dent solutions of its geometric, coordinate-inde-
pendent physical laws.

Confined, absolute, and dywamical variables.
The variables of a generally covariant represen-
tation split up into three groups: “confined vari-
ables,” “absolute variables,” and "dynamical vari-
ables.” The confined variables are those which do
not constitute the basis of a faithful realization of
MMG. {(Examples — All universal constants, such
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as the charge of the electron, are confined vari-
ables. The world line of a particle is not a con~
fined variable, as one sees by this procedure: (i)
Characterize the world line by the scalar field

(0 , if @ is not on world line;
7{®) = proper time of particle, (1)
’ if @ is on world line.

(ii) Verify that an element of MMG can be charac-
terized uniquely by the manner in which it maps
the set of all kinematically possible world lines
[all functions r(x”) that are zero everywhere ex-
cept along a curve, and are monotonic along that
curve| into each other. (iii) Thereby conclude
that a particle world line does constitute the basis
for a faithful realization of MMG, and therefore
that it is not a confined variable.) To determine
whether an unconfined variable B is absolute or
dynamical, perform the following test: Pick out
an arbitrary dpt, and let B ,(x®) be the functions
which describe the components of B for that dpt.
Then examine each equivalence class of dpt to see
whether these same functions EA appear some-
where in it. If they do, for every equivalence
class and for every choice of the arbitrary initiai
dpt, then B is an absolute variable. If they do not,
for some particular choice of the initial dpt and
for some particular equivalence class, then B is
a dynamical variable. Some dynamical variables
contain absolute parts, and some dynamical and
absolute variables contain confined parts. |Ex-
ample ~ Belinfante ~-Swihart theory (Table IV): 7,4
is an absolute variable; /& .4 and all the nongravi-
tational variables are dynamical.] [Example - Ni’s
theory (Table II): 7 and { are absolute variables;
¢, @, and g are dynamical. Although y is dynam-
ical, it contains an absolute part —the projection
of y ondi (i.e., P,t,;3n*"). The remaining, “spa-
tial” part of Yy +dut 1" ﬂ(it) is fully dynamical.
Although ! is absolute, it contains a confined part ~
its “origin,” or equivalently, its value at some
fixed fiducial event ,. One can remove this con-
fined part from ¢ by passing from { to the l-form
field dt.] [Example — general relativity (Table II):
All the unconfined variables are dynamical, and
they contain no absolute parts. It is this feature
that distinguishes general relativity from almost
all other theories of gravity (see JLA'; also
Chap. 17 of MTW, where absolute variables are
called “prior geometry”).] (Example ~ Newton-
Cartan theory: In the representation of Table I,

t and y are absolute variables; V is dypamical.
As in Ni's theory, the origin of ¢ is a confined
variable and can be split off by passing from ¢ to
11[. Although the covariant derivative ¥V is dynam-
ical, it contains absolute parts. A decomposition
of ¥ into its absolute and dynamical parts is per-

formed in the Appendix {Eq. {(Ale)]. After that de-
composition the theory takes on a new mathemati-
cal representation with absolute variables f, v, D,
and dynamical variables ¢ and V)

Irrelevant variables. A set of variables of a
generally covariant representation is called irrel-
evant if (i} its variables are not coupled by the
physical laws to the remaining variables of the
representation, and (ii) its variables can be elim-
inated from the representation without altering the
structure of the equivalence classes of dpt and
without destroying general covariance. A variable
that is not irrelevant is called “relevant.” Some
variables contain both relevant and irrelevant
parts. (Example ~ The gauge of the electromagnet-
ic vector potential is irrelevant. So is any other
variable that can be forced to take on any desired
set of values by imposing an appropriate internal
covariance transformation.) [Example —In Ni's
theory {Table IV) and the Newton-Cartan theory
(Table 1) the origin of universal time / is an irrel-
evant variable. |

Fully veduced, generally covariant representa-
tion, A generally covariant representation is
called “fully reduced” if (i) it contains no irrele-
vant variables, (ii) its dynamical variables con-
tain no absolute parts, and (iii) its dynamical and
absolute variables contain no confined parts. |[Ex-
ample — Newton-Cartan theory: The representa-
tion of Table I is generally covariant, but not fully
reduced. To reduce it one must follow the proce-
dure of the Appendix: (i) Remove the irrelevant
origin of ¢ by passing from { to §=dt; (ii) split ¥
into its absolute and dynamical parts. The result-
ing representation is not quite fully reduced be-
cause it possesses the internal covariance trans-
formation (A3'a) with an associated, irrelevant
“gauge arbitrariness” in D and &. When one re-
moves that irrelevance by fixing the “gauge” once
and for all (e.g., by requiring, for an island uni-
verse, that {‘5,}=0 in any Galilean frame where
the total 3-momentum vanishes), then one obtains
a fully reduced representation. |

Boundary conditions, prior geomeiric con-
straints, decomposition equations, and dynamical
laws. In a given mathematical representation of
a given theory, the physical laws break up into
four sets: (i) boundary conditions - those laws
which involve only confined variables; (ii) prior
geometric constraints®™ - those which involve ab-
solute variables and possibly also confined vari-
ables, but not dynamical variables; (iii) decom-
position equations -~ those which express a dynam-
ical variable algebraically in terms of other vari-
ables; {iv) dynamical laws - all others. [Ex-
ample — Ni’s theory (Table I): Equations (3a)
and (3b) are prior geometric constraints; Eq. (3¢)
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is a decomposition equation; and the equations
that follow from the variational principle are all
dynamical. If one augments the theory by cosmo-
logical demands that ¢ and @ go to zero at spatial
infinity, those demands are boundary conditions. |
[Example ~ general relativity (Table II): All phys-
ical laws are dynamical.] [Example - Belinfante-
Swihart theory (Table IV): Riemann (1)=0is a
prior geometric constraint; the equations obtained
from the variational principle are dynamical. |

| Example ~ Newton-Cartan theory (Table I): In
the mathematical formulation of Table I, Eqgs.
(3a)—(3d) are all dynamical laws. One has the
feeling, however, that they ought not to be dynam-
ical, because they involve only gravitational
fields; they make no reference to any source of
gravity. Only (3e) contains a source, so only it
“ought to be” dynamical. The failure of one’s
“ought-to" intuition results from one’s failure to
split V up into its absolute and dynamical pieces.
Such a split (see Appendix) results in a new math-
ematical formulation of the theory, with just one
dynamical gravitational law: (Alf), which is
equivalent to (3e) of Table I. Of the other gravi-
tational equations in the new formulation,
(Ala)-(A1d) are prior geometric constraints, and
(Ale) is a decomposition equation. ]

Symmetry group. Let G be an element of the
complete covariance group of a representation.
Examine the change produced by G in every vari-
able B that (i) is absolute, and (ii) has had all ir-
relevant, confined parts removed from itself. If

5B ,®,{x"})=0 at all @ and for
all coordinate systems {1*'}

(12)

for every such B, then G is called a symmeltry
iransformation. Any group of symmetry transfor-
mations s called a symmelry group; the largest
group of symmetry transformations is called the
complele symmetry group of the representation.
[Note: That component of the complete symmetry
group which is topologically connected to the iden-
tity is generated by infinitesimal transformations.
One can find all the infinitesimal generators by
solving Egs. (10) and (12) for £, and for (dH /
de), 0.] | Another note: If the absolute variables
B are all tensor or affine-connection fields, then
3 B are all tensor fields, so

{68,=0 for all ® in one coordinate system)

= (8§ B, =0 for all ¢ in every coordinate
system). [$ %))

Hence, in this case one can confine attention to

90~
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any desired, special coordinate system when test-
ing for symmetry transformations.| |Example —
Belinfante-Swihart theory (Table IV): The com-
plete symmetry group consists of the Poincaré
group (inhomogeneous Lorentz transformations)
together with the electromagnetic gauge transfor-
mations. One proves this most easily in a global
Lorentz frame of n; one can restrict calculations
to this frame because the absolute variable nis a
tensor. | [Example - Ni's theory (Table I} Sym-
metry transformations are analyzed most easily
in a coordinate system where A" -/ (universal
time), and 1, , has the Minkowski form. Any
symmetry transformation must leave d7,. =6/
=8(n*® o 45)=0. Thus, the symmetry transfor-
mations are (i) electromagnetic gauge transfor-
mations; (ii) spacetime transiations, +°
with a” a constant; (iii) time-independent spatial
rotations, x" i

= ea”

ax"and x? = R x* with 1R a
rotation matrix; (iv) spatial reflections.| [Ex-
ample ~ general relativity (Table II): There are
no absolute variables, so the complete covariance
group and the complete symmetry group are iden-
tical; they are the MMG plus electromagnetic
gauge transformations, | (Example -~ Newton-Car-
tan theory: See Appendix.) An external syvmmelry
group is a symmetry group that is a subgroup of
MMG. Aninternal symmeltry group is a symmetry
group that involves no diffeomorphisms of space~
time onto itself. The complete symmetry group
need not be the direet product of the external sym-
metries and the internal symmetries; it may also
include symmetries that are partially internal and
partially external and cannot be split up. |Ex~
ample ~ Newton-Cartan theory in the representa-
tion of the Appendix: Transformations (A5c) are
partially internal and partially external.]

11i. GRAVITATION THEORIES AND
EQUIVALENCE PRINCIPLES

We now turn from general spacetime theories
to the special case of gravitation theories. We
cannot discuss gravitation theories without making
somewhat precise the distinction between gravita-
tional phenomena and nongravitational phenomena.
There seem to be a variety of ways in which one
might make this distinction. Somewhat arbitrari-
ly, but after considerable thought, we have chosen
to regard as “gravitational” those phenomena
which either are absolute or “go away” as the
amount of mass-energy in the experimental labo~
ratory decreases. In other words, gravitational
phenomena are either prior geometric effects or
effects generated by mass-energy. This means
that the flat background metric y of Belinfante-
Swihart theory is a gravitational field; the metric
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of general relativity is a gravitational field; but
the torsion of Cartan’s modified general relativi-
ty;?® which is generated by spin rather than by
mass-energy, is not a gravitational field.

We try to make the above statements more pre-
cise by introducing the following concepts.

Local lest experimient. A “local test experi-
ment” is any experiment, performed anywhere in
spacetime, in the following manmner. A shield is
set up around the experimental laboratory. When
analyzed using the concepts and experiments of
special relativity, this shield must have arbitrar-
ily. small mass-energy and must be impermeable
to electromagnetic fields, to neutrino fields, and
to real (as opposed to virtual) particles. The ex-
periment is performed, with freely falling appara-
tus, in the center of the shielded laboratory. in a

“region so small that inhomogeneities in all exter-
nal fields are unimportant. One makes sure that
external inhomogeneities are unimportant by per-
forming a sequence of experiments of successive-
ly.smaller size (with size of shield and external
conditions unchanged), until the experimental re-
sult approaches a constant value asymptotically.
(Examples - The experiment might be a local mea-
surement of the electromaghetic fine-structure
constant, or a Cavendish experiment with two lead
spheres, or a series of Cavendish experiments in-
volving lead spheres and small black holes.)

Local, nongravitational, lest experiment, A
“local, nongravitational test experiment” is a lo~
cal test experiment with these properties: (i)
When analyzed in the center-of-mass Galilean
frame, using the Newtonian theory of gravity, and
using all forms of special relativistic mass-ener-
gy as sources for the Newtonian potential ¢, the
matter and fields inside the shield must produce
a ¢ with

@ (at any point inside shield)

- (at any point on shield){= 1.

(i) When the experiment is repeated, with succes-
sively smaller mass-energies inside the shield
{as deduced using special relativity theory) - but
leaving unchanged the characteristic sizes, intrin-
sic angular momenta, velocities, and charges
(electric, baryonic, leptonic, etc.) of its various
parts - the experimental result does not change.
(Examples: A measurement of the electromagnet-
ic fine-structure constant is a local, nongravita-
tional test experiment; a Cavendish experiment is
not.)

Gravitation theory. A “gravitation theory,” or
“theory of gravity,” is any space-time theory
which correctly predicts Kepler’s laws for a bina-
ry star system that (i) is isolated in interstellar

space (“local test experiment”); (ii) consists of
two “normal stars™ (stars with [¢ << 1 throughout
their interiors); and (iil) has periastron p large
compared to the stellar radii, p> R. The theory's
predictions must not deviate from Kepler’'s laws
by fractional amounts exceeding the larger of

:® . and p/R. (Note: To agree with experiment
in the solar system, the theory will have to repro-
duce Kepler much more accurately than this.)
(Examples — The theories in Tables I-IV are all
gravitation theories.)

In the absence of gravity. The phrase "in the
absence of gravity” means “when analyzing any
local, nongravitational test experiment for which
the shield is spherical, has arbitrarily large radi-
us, and is surrounded by a spherically symmetric
sea of matter.” “To turn off gravity” means “to
pass from a generic situation to a situation where
gravity is absent.” “7To furn on gravity” means
“to pass from a situation where gravity is absent
to a generic situation.”

Gravitational field. In a given representation of
a given gravitation theory, any unconfined, rele-
vant variable B is a “'gravitational field” if, in the
absence of gravity, it reduces to a constant, or to
an absolute variable, or to an irrelevant variable.
In particular, every absolute, relevant variable
is a gravitational field. |Example - general rela-
tivity (Table II): For local, nongravitational test
experiments, analyzed using Fermi-normal coor-
dinates, one gets the same result whether one uses
the correct £ or one replaces it by a flat Minkow-
ski metric n (absolute variable). Thus g is a
gravitational field.] [Example ~ Newton-Cartan
theory (Table I): ¢ and y are already absolute, so
they are gravitational fields; V can be replaced
by the Riemann-flat I of the Appendix without af-
fecting local, nongravitational experiments, so it
is also a gravitational field.| (Example — Cartan’s
modification of general relativity, with torsion®®:
The torsion is generated by spin. Therefore, it
must remain a dynamical variable in analyses of
local, nongravitational test experiments. It is not
a gravitational field.)

Dicke's” weak equivalence principle (WEP) 77
The weak equivalence principle states: It an wn-
charged test bodv is placed at an initial event in
spacelime, and is given an initial velocity there,
then its subsequent world line will be independent
of its internal slructuve and composition. Here
by “uncharged test body” is meant an object (i)
that is shielded, in the sense used above in defin-
ing “local test experiments”; (ii) that has negligi~
ble self-gravitational energy, when analyzed using
Newtonian theory; (iii) that is small enough in size
so its coupling {via spin and multipole moments)
to inhomogeneities of external fields can be ig-
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nored. These constraints guarantee that any test
of WEP is a local, nongravitational test experi-
ment.

WEP is called “universality of free fall” by
MTW, ' and is called “equality of passive and in-
ertial masses” by Bondi.?®

The experiments of EStv8s ef al.,® Dicke ef al.,”
and Braginsky ef al.® are direct tests of WEP.
Braginsky, whose experiment is the most recent,
reports that the relative acceleration of an alumi-
num test body and a platinum test body placed in
the sun’s gravitational field at the location of the
earth’s orbit is

(relative acceleration) < 0.9 x 107*(G AL /¥upu®)
=0.5x10"*2 ¢m/sec?
(95% confidence).

If WEP is correct, then the world lines of test
bodies are a preferred family of curves (without
parametrization) filling spacetime ~ with a single
unigue curve passing in each given direction
through each given event. But WEP does nof guar-
antee that these curves can be regarded as geode-~
sics of the spacetime manifold; only if these
curves have certain special properties can they
be geodesics.?”

Einstein equivalence principle (EEP). The Ein-
stein equivalence principle states that (i) WEP is
valid, and (ii) the outcome of any local, nongravi-
tational test experiment is independent of where
and when in the universe it is performed, and in-
dependent of the velocity of the (freely falling) ap~
paratus, (Example ~ Dimensionless ratiosof non-
gravitational physical constants must be indepen-
dent of location, time, and velocity.) The experi-
mental evidence supporting EEP is reviewed in
Secs. 38,5 and 38.6 of MTW.™

Dicke's? strong equivalence principle (SEP).
SEP states that (i) WEP is valid, and (ii) the out-
come of any local test experiment - gravitational
or nongravitational - is independent of where and
when in the universe it is performed, and indepen-
dent of the velocity of the (freely falling) appara-
tus. {Example — The Dicke-Brans-Jordan theory,
with its variable “gravitational constant” as mea-
sured by Cavendish experiments, satisfies EEP
but violates SEP.)

Two types of effects can lead to a breakdown of
SEP: “preferred-location effects” and “preferred-
frame effects.” Perform a local test experiment,
gravitational or nongravitational, If the experi-
mental result depends on the location of the freely
falling experimenter, but not on his velocity there,
the phenomenon being measured is called a pre-
ferred-location effect. I it depends on the velocity
of the experimenter, it is called a preferred-

Jrame effect.*® |Examples — A cosmological time
variation in the “gravitational constant” {as mea-
sured by Cavendish experiments) is a preferred-
location effect. Anomalies in the earth’s tides
and rotation rate due to the orbital motion of the
earth around the sun and the sun through the gai-
axy®" are preferred-frame effects.}

A theory of gravity obeys SEP if and only if it
obeys EEP, and it possesses no preferred-frame
or preferred-location effects.

Any theory for which the complete external sym-
metry group excludes boosts will presumably ex-
hibit preferred-frame effects. But preferred-
frame effects can also show up when boosts are in
the symmetry group. (Example -~ The vector-ten-
sor theory of Nordtvedt, Hellings, and Will*® ex-
hibits preferred-frame effects but possesses MMG
as a symmetry group.) For further discussion
see “metric theory of gravity,” below.

1Y, PROPERTIES AND CLASSES
OF GRAVITATION THEORIES

Completeness of a theory. A gravitation theory
is “complete” if it makes a definite prediction
{not necessarily the correct prediction) for the
outcome of any experiment that current technology
is capable of performing. {Standard quantum-
mechanical limitations on the definiteness of the
prediction are allowed.) To be complete, the the-
ory must predict results for nongravitational ex-
periments as well as for gravitational experiments.
Of course, it can do so only if it meshes with and
incorporates {perhaps in modified form) all the
nongravitational laws of physics. If a theory is
complete so far as all “classical” experiments
are concerned, but has not yet been meshed with
the quantum-mechanical laws of physics, we shall
call it classically complete.

Self-consistency of a theory, A gravitation theo-
ry is “self-consistent” if its prediction for the ouf-
come of every experiment is unique ~ i.e., if, when
one calculates the prediction by different methods,
one always gets the same result.

Reference 2 discusses completeness and self-
consistency in greater detail, and gives examples
of incomplete theories and self~inconsistent theo~
ries.

Relativistic theory of gravily. A theory of grav-
ity is “relativistic” if it possesses a representa-
tion {“'relativistic representation”) in which, in
the absence of gravity, the physical laws reduce
to the standard laws of special relativity. (Ex-
amples - General relativity, Ni's theory, and the
Belinfante-Swihart theory are relativistic; the
Newton-Cartan theory is not, por is Cartan’s tor-
sion-endowed modification of general relativity.*®)
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Melric theory of gravity. By “metric theory”
we mean any theory that possesses a mathematical
representation (“metric representation”) in which
(i) spacetime is endowed with a metric; (ii} the
world lines of test bodies are the geodesics of
that metric; and (iii) EEP is satisfied, with the
nongravitational laws in any freely falling frame
reducing to the laws of special relativity.*® Any
theory or representation that is not metric will
be called nommefric, {Examples - General relativ-
ity and Ni’s theory are metric theories, and the
representations given in Tables II and III are met-
ric; the Belinfante-Swihart theory is nonmetric,’™
but can be made metric by suitable modifica-
tions.'*** The Newton-Cartan theory is nonmet-
ric. The Dicke-Brans-Jordan theory is metric;
the representation of Ref. 16 is a metric repre-
sentation; the representation of Ref. 18 (“confor~
mally transformed representation”; “rubber meter
sticks”) is nonmetric. |

In any metric theory, the metric that enters in-
to EEP is called the “physical welric.” All other
gravitational fields are called “anxiliary yraviia-
tional fields.” Relevant auxiliary scalar fields
typically produce preferred-location effects; other
relevant auxiliary gravitational fields {(vector,
tensor, etc.) typically produce preferred-frame
effects. This is true independently of whether or
not the auxiliary fields are absolute variables or
are dynamical ~ i.e., independently of whether the
complete external symmetry group is MMG or is
more restrictive,

Clearly, every metric theory is relativistic,
but relativistic theories need not be metric {ex-
ample: the Belinfante-Swihart theory|. Ni*' has
given a partial catalog of metric theories. Will
and Nordtvedt™ have developed a “parametrized
post-Newtonian formalism” for comparing metric
theories with each other and with experiment.

Prior geomelric theories. Any gravitation theo-
ry will be called a “prior geometric theory"” if it
possesses a fully reduced, generally covariant
representation that contains absolute variables.
(Examples ~ The Newton-Cartan theory, Ni’s the-
ory, and the Belinfante-Swihart theory are prior
geometric; general relativity and the Dicke-
Brans-Jordan theory are not.)

Loventz-symmetvic represenlations and theo -
ries. A generally covariant representation is
called “Lorentz symmetric” if its complete exter-
nal symmetry group is the Pcincard group — with
or without inversions and tim:2 reversal. We sus-
pect that, for any theory, all fully reduced, gen-
erally covariant representations must have the
same complete external symmetry group. As-
suming so, we define a theory to be “Lorentz sym-
metric” if its fully reduced, generally covariant

representations are Lorentz symmetric. (Ex-
ample - General relativity is not Lorentz symmet-
ric; the complete external symmetry group of its
fully reduced, standard representation is too big -
it is MMG rather than Poincaré.) (Example - Ni's
theory is not Lorentz symmetric; as with the New-
ton-Cartan theory, the complete external svmme-
try group is too small.) (Example — Belinfante-
Swihart theory is Lorentz symmetric.)

Elsewhere in the literature one sometimes finds
Lorentz-symmetric theories called “"Lorentz~in-
variant theories” or “flat~space theories,"”

Lagrangian-based representations and theorigs.
A generally covariant representation of a space-
time theory is called Lagrangian-based if (i) there
exists an action principle that is extremized with
respect to variations of all dynamical variables
but not with respact to variations of absolute or
confined variables, and (ii) from the action prin-
ciple follow all the dynamical laws but none of the
other physical laws. The issue of whether the
other physical laws {boundary conditions, decom-
position equations, and prior geometric con-
straints) are imyposed before the variation or
afterwards does aot affect the issue of whether
the representation is Lagrangian-based. A theory
is called Lagrangian-based if it possesses a gen-
erally covariant, Lagrangian-based representa-
tion. (Examples - General relativity, Ni's theory,
and the Belinfante-Swihart theory are all Lagran-
gian-based.)

The Lagrangian density £ of a Lagrangian-based
representation (which appears in the action prin-
ciple in the form 6/ £d*y =0) can be split up into
two parts: £=£.+8y;. The gravitational part
£, is the largest part that contains only gravita-
tional fields. The nongravitational part Ly is the
rest.

V. UNIVERSAL COUPLING

We turn attention, now, from our glossary of
concepts to some applications. We begin in this
section by analyzing the overlap between metric
theories and relativistic, Lagrangian-based theo-
ries.

As motivation for the analysis, consider any
relativistic representation of a relativistic theory
of gravity. In the absence of gravity that repre-
sentation reduces to special relativity - so, in
particular, it poussesses a flat Minkowski metric
1.3 By continuizy one expects the representation
to possess, in the presence of gravity, at least
one second-rank, symmetric tensor gravitational
field ¥, 5 that reduces to 1, as gravity is turned
off. Indeed, this is the case for all relativistic
theories with whith we are familiar. (Example ~
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general relativity: The curved-space metric gqs
reduces to 7,4 when gravity is turned off.) (Ex-
ample — Ni's theory: There are a variety of sec-
ond-rank, symmetric tensor gravitational fields
that reduce to n,5. They include the flat back-
ground metric 7., the physical metric gq5, any
tensor field of the form [ 1+ f(¢)ln. s, where f{¢)
is an arbitrary function with f(0)=0, etc.) [Ex-
ample - Belinfante-Swihart theory: f.s, Mas *Haa,
ap(l +3k,") = 1Th,*h,® all reduce to 7,, when
gravity is turned off. |

Next consider any Lagrangian-based, relativis-
tic theory. Being relativistic, it must possess a
generally covariant, Lagrangian-based represen-
tation in which, as gravity is turned off, the non-
gravitational part of the Lagrangian £y; ap-
proaches the total Lagrangian of special relativity.
Adopt that representation. Then, in the presence
of gravity £y will presumably contain at least one
gecond-rank, symmetric, tensor gravitational
field ¢, 4 that reduces to 7,4 as gravity is turned
off. Roughly speaking, if £4, contains precisely
one such 3,4 and contains no other gravitational
fields, then the theory is said to be “universally
coupled.”?

More precisely, we say that a Lagrangian-based,
relativistic theory is universally coupled if it pos-
sesses a representation (“universally coupled rep-
resentation”) with the following properties: (i)
The representation is generally covariant and La-
grangian-based. (ii) £y contains precisely one
gravitational field, and that field is a second-rank,
symmetric tensor ¢,, with signature +2 through-
out spacetime. (iii) In the limit as gravity is
turned off y,, becomes a Riemann-flat second-
rank, symmetric tensor field n,5; and whenever
Yqa is replaced by such an 1,5, £5 becomes the
total Lagrangian of special relativity. (iv) The
prediction for the result of any local, nongravita-
tional experiment anywhere in the universe is un-
changed when, throughout the laboratory, one re-
places ¢, by a Riemann-flat second-rank, sym-
metric tensor.

The following theorem reveals the key role of
universal coupling as a link between Lagrangian-
based theories and metric theories: Consider all
Lagrangian-based, relativistic theovies of gravity.
Every such theory that is universally coupled is a
metric theory; and, conversely, every metric
theory in this class is universally coupled.

Proof: Let ¥ be a Lagrangian-based, relativis-
tic, universally coupled theory. Adopt a univer-
sally coupled representation. Use that represen-
tation to analyze any local, nongravitational test
experiment anywhere in spacetime.. Use the
mathematical tools of Riemannian geometry,
treating the unique gravitational field ¢, that ap-
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pears in £y as a metric tensor. In particular,
introduce a Fermi-normal coordinate system (i .q
=78 %, =0 at the center of mass of the labora-
tory). Condition (iv) for universal coupling guar-
antees that the predictions of the representation
will be unchanged if we replace ¢, by 7,:
throughout the laboratory. Do so. Then condition
(iii) for universal coupling guarantees that £y is
the total Lagrangian of special relativity. The dy-
namical laws that follow from

5 [+ £yt =0

by varying all nongravitational variables also fol-
low from

5f£NGd~x=o;

in this representation and coordinate system they
are the laws of special relativity. Thus, the out-
come of the local, nongravitational test expert-
ment is governed by the standard laws of special
relativity, irrespective of the location and velocity
of the apparatus. This guarantees that theory ¥ is
a metric theory.

Proof of converse: Let § be a Lagrangian-based,
metric theory. Adopt a Lagrangian-based, metric
representation. Since all unconfined, nongravita-
tional variables are dynamical, they must all be
varied in éfsd *x=0. Moreover, since they appear
in £y but not in £, their Euler-Lagrange equa-
tions are obtained equally well from

6f£NGd‘x=0.

Call those Euler-Lagrange equations (obtained by
varying all unconfined, nongravitational variables
in bf.BNGd ‘x =0) the “nongravitational laws.” Let
a freely falling observer anywhere in spacetime,
with any velocity, perform a local, nongravitation-
al test experiment. Analyze that experiment in a
local Lorentz frame of the physical metric g5 us-
ing the above nongravitational laws. Because the
theory is metric, the predictions must be the same
as those of special relativity. Hence, the nongrav-
itational laws - in any local Lorentz frame of g,
anywhere in the universe —~ must reduce to the laws
of special relativity. This is possible only if {1)
those laws — and hence also £y — contain no refer-
ence to any gravitational field except g5, and

(ii) £y is some version of the total special rela~
tivistic Lagrangian, with 7, replaced by g,..
These properties of £, plus the definition of
“metric theory,” guarantee directly that the four
conditions for universal coupling are satisfied.
Hence, theory § is universally coupled. QED.
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Vi, SCHIFF'S CONJECTURE

Schiff’s conjecture® states that any complete
and self-consistent gravitation theory thal obeys
WEP must also, unavoidably, obey EEP,

General relativity is an example. It endows
spacetime with a metric; it obeys WEP by pre-
dicting that all uncharged test bodies fall along
geodesics of that metric, with each geodesic world
line determined uniquely by an initial event and an
initial velocity; it achieves completeness by de~
manding that in every local, freely falling frame
the nongravitational laws of physics take on their
standard special relativistic forms; and by this
method of achieving completeness, it obeys EEP.

The Newton-Cartan theory is another example.
It was complete and self-consistent within the
framework of nineteenth century technology. It
endows spacetime with an affine connection; it
ocbeys WEP by predicting that all uncharged test
bodies fall along geodesics of that affine connec-
tion, with each geodesic world line determined
uniquely by an initial event and an initial velocity;
it achieves completeness by demanding that in
every local, freely falling frame the laws of phys-
ics take on their standard nongravitational New-
tonian form; and by this method of achieving com-
pleteness, it obeys EEP.

Before accepting Schiff’s conjecture as plausible,
one should search the literature for a counterex-
ample —i.e., for a theory of gravity which some-
how achieves completeness, and somehow obeys
WEP, but fails to obey EEP. Several Lagrangian-
based theories which one finds in the literature
might conceivably be counterexamples, but they
have not been analyzed with sufficient care to al-
low any firm conclusion. Subsequent papers™'
will show that the most likely counterexample,
Belinfante-Swiliart theory, actually fails to satisfy
WEP, violates the ED experimental results, and
is thus not a counterexample at all.

One can make Schiff’s conjecture seem very
plausible within the framework of relativistic, La-
grangian-based theories (the case of greatest in-
terest; see Sec. I} by the following line of argu-
ment.*

Consider a Lagrangian-based, relativistic theo-
ry, and ask what constraints WEP places on the
Lagrangian. WEP probably forces £y to involve
one and only one gravitational field (and that field
must, of course, be a second-rank symmetric ten-
sor g, which reduces to 7,4 far from all gravi-
tating bodies). If £y; were to involve, in addition,
some other gravitational field ¢, then to satisfy
WEP g, and ¢ would have to conspire to produce
identically the same gravitational accelerations
on a test body made largely of rest mass, asona
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body made largely of electromagnetic energy, as
on a body made largely of internal kinetic energy,
as on a body made largely of nuclear binding ener-
gy, as on a body made largely of ... . This seems
implausible, unless g, and ¢ appear everywhere
in £yg in the same “mutually coupled” form
flp)g. s —in which case one can absorb f(g) into
g8 and end up with just one gravitational field in
£yg- Thus, it seems likely that WEP forces £¢
to involve only g,s. This means that the theory is
universally coupled — and, hence, by the theorem
of Sec. V, it is a metric theory.

This argument convinces us that Schiff’s conjec-
ture is probably correct, when one restricts atten-
tion to Lagrangian-based, relativistic theories.
And it is hard to see how the conjecture could fail
in other types of theories.

A formal proof of Schiff’s conjecture for a more
limited class of theories will be given in a subse-
quent paper.®

APPENDIX: ABSOLUTE AND DYNAMICAL FIELDS
IN NEWTON-CARTAN THEORY

In order to separate the absolute gravitational
fields of Newton-Cartan theory from the dynamical
fields, one must change mathematical representa-
tions. In place of the representation given in Ta-
ble I, one can adopt the following.

1. Gravitational fields,

a. Symmetric covariant derivatives (two of
them): Dand V.

b. Scalar gravitational field: &.

c. Spatial metric [defined on vectors w such that
{ Ey @) =0]Z Y-

d. Universal 1-form: 8.

{Note: { has been replaced by 8 in order to remove
irom the theory the “irrelevant” choice of origin
of universal time; see “irrelevant variables” in
Sec. IIA. D and ¢ will turn out to be absolute and
dynamical parts of V; see below.)

2. Gravitational field equations.

a. B is perfect: dg=0. (Ala)
b. B is covariantly constant: Df=0. (Alb)
c. D is flat: Riemann (D)=0. (Ale)

d. Compatibility of D and y:

Dy #)=(D, ) -w+v - (D, ) for any vector n, and
for any spatial vectors v, w. (Ald)

e. Decomposition of ¥:

V=D+A®LBS, where A is the spatial vector
“dual” to d&: (d&,w)=A-w for all spatial w.

(Ale)
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f. Field equation for &:

D - A =(divergence of A) =4np. (A1)

3. nfluence of gravily on maller. Same as in
part 4 of Table I where ! is any scalar field such
that g=dt.

Toﬂptove that this and the formalism given in
Table I are different mathematical representations
of the same theory, we can show that they become
identical in Galilean coordinate frames. The re-
duction of the formalism of Table I to a Galilean
frame is performed in Exercise 12.6 of MTW."
The reduction of the above formalism proceeds as

“follows: (i) Let { be any particular scalar field
such that g=di. (ii) At some particular event in
spacetime pick a set of basis vectors {gn} such
that (a) e,, ¢, e, are spatial, (8,¢,)=0, and or-
thonormal, ¢;-€,=0.; (b) g, is not spatial, {3, e,)
+0. (iii) From each vector ¢, construct a vector
field on all of spacetime by parallel transport
with D). The resulting field iz unique because D is
flat; and it has De, =0. Hence, the commutators
vanish:

{eweal=Dags~ Do, =0-

This guarantees the existence of a coordinate sys-
tem { x} in which e, =8/8x°. (iv) The condition
(valid in any coordinate frame) (dx° e;» =0, when
compared with (di, ¢;) =0, guarantees that the sur-
{aces of constant x° and constant / are identical,
j.e., t=f(x%. Moreover, because the connection
coefficients of D vanish in this coordinate frame,

O _gen -
{ﬁy§:<£x yQy!?‘s)‘O: (A2a)

the condition Dd! =0 becomes 37t/8x “ox 8=0; in
particular, 8%/ax%x°=0, so {=ax"+b for some
constants a and b. Renormalize x° so f=x° (v)
In the resulting coordinate frame B, y, and A have
components

Bo=1, By =0, Yin=04ns

A°=0, Al=8@/ox!; (a2e)

so the field equation for & is Poisson’s equation

P

axlax! (A2¢)

=4mp;
and the connection coefficients of V are I'%y,
=A%t 4t ,, Le.,

all other I'“ 5, vanish. (A2d)

¢
r ’00 = 'a'x-j 3

This Galilean coordinate version of the above
formalism is identical to the Galilean coordinate
version of the formalism of Table I, as given in

~98.

LEE, AND ALAN P. LIGHTMAN 7

Chap. 12 of MTW." Thus, the two formalisms are
different mathematical representations of the same
theory.

In the above formalism it is easy to verify that
D, 3, and y are absolute gravitational fields,
while ¢ is a dynamical gravitational field. In fact,
D, 8, and y are the absolute parts of V; & is its
dynamical part; Egs. (Ala)-(Ald) are the prior
geometric constraints of the theory; Eq. (Ale) is
the decomposition of V into its absolute and dynam-~
ical parts; and Eq. (Alf) is the dynamical field
equation for &.

The covariance group for the above mathematical
representation of Newton-Cartan theory is slightly
larger than that {or the representation of Table L
For Table I the covariance group is MMG. For the
above representzzion it is the direct product of
MMG with a group of infernal covariance transfor-
mations. In a Guillean frame the internal trans-
formations are

boal_y b

. ! it
Yooy Ty 00; “jooy 0=

$—-d =P —a ({)x’ +constant, (A3}

all other variables, including T'¢..,
left unchanged .

In coordinate-free form the internal transforma-
tions are

D-D'=D+c®3s,
(A3'a)
$~d' b b,
where « is any vector field which is covariantly
constant in the surfaces of §,

b,a=%,a= 0 for all spatial vectors w;
(A3'D)

and where ¥ is any scalar field such that

{db,w)=a-w for all spatial vectors « .
(A3'c)

The complete symmetry group for the above
mathematical representation of Newton-Cartan
theory is best analyzed in a Galilean coordinate
system. [Because the absolute objects are all ten-
sors or affine connections, one can resirict atten-
tion to a single coordinate system; see Eq. (13)
and associated discussion in the text.] The sym-
metry transfor:mations are those which leave

67/1»:6&1:( \ =0, (A4)
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Clearly, the symmetry transformations include
(i} spacetime translations

o

¥y e x40, (A5a)

whete ¢ are constants, and (ii) spatial rotations

; i N
WX =R

(A5b)

i{R!*{l a'constant rotation matrix. They also in-
clude (iii) the combination of an arbitrary time-
dependent spatial translation with a carefully
matched internal covariance transformation
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X'~ x? =x?4c’(t), where ¢’ are arbitrary

functions of ¢,

ARSI A (A5¢)
100f " )00j =gy el o die

! . . where ((“('1
G0 =@ -1 y

Note that these symmetry transformations are
precisely the transformations that lead {rom one
Galilean coordinate system to another {cf. Sec.
12.3 of MTW'™).
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GRAVITATION THEORIES

a) Restricted Proof that the Weak Equivalence Principle
Implies the Einstein Equivalence Principle (Paper V;
collaboration with D.L. Lee, published in Phys. Rev.D,
8,36L,1973)
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Restricted Proof that the Weak Equivalence Principle
Implies the Einstein Equivalence Principle*

Alan P. Lightman' and David L. Lee!
California Institute of Technology, Pasadena, California 91109
{Received 5 March 1973)

Schiff has conjectured that the weak equivalence principle (WEP: free-fall trajectories independent of
test-body composition) implies the Einstein equivalence principle (EEP: all nongravitational laws of
physics the same in every freely falling frame). This paper presents a proof of Schiff’s conjecture,
restricted to (i) test bodies, made of electromagnetically interacting point particles. that fall from rest i
a static, spherically symmetric gravitational field; and (i) theories of gravity within a certain broad

Y

i} class that includes almost all

relativistic theories that we have found in the literature,

but with each theory truncated to contain only point particles plus electromagnetic and gravitational
fields. The proof shows that every “nonmetric” theory in the class (every theory that violates EEP)
must violate WEP. A formula is derived for the magnitude of the violation. Comparison with the
results of Eétvos-Dicke-type experiments rules out various nonmetric theories. including those of
Belinfante and Swihart and of Naida and Capella—theories that previously were believed to agree with
all current experiments. It is shown that WEP is a powerful theoretical and experimental tool for

constraining the manner in which gravity couples to

L. INTRODUCTION

In a previous paper' we have discussed the con-
tent and significance of Schiff’s conjecture. In
brief, the conjecture states that all theories of
gravity which satisfy the weak equivalence prin-
ciple' (WEP), i.e., predict a unique composition-
independent trajectory for any test body at a given
point of spacetime and with a given initial veloc-
ity through that point, must satisfy the Einstein
equivalence principle (EEP), i.e., must show that
the nongravitational' laws of physics are the same
in every freely falling frame. When specialized
to “relativistic theories of gravity”' (as will be
done throughout this paper), Schiff's conjecture
says that every theory satisfying WEP is neces-
sarily a “metric theory.”! Plausibility arguments
(e.g., Refs, 1 and 2) have frequently been given
for the conjecture, but there have been few de-
tailed calculations that bear upon its validity or
invalidity. Indeed, the conjecture is so sweeping
that it will probably never be proved with com-
plete generality. (Such a proof would require a
moderately deep understanding of all gravitation
theories that satisfy WEP-—including theories not
yet invented, and never destined to be invented.
Such understanding is well beyond one’s grasp in

in gravitation theories.

1973.)

On the other hand, one can gain useful insight
by proving restricted versions of the conjecture,
and by searching for the most general versions
that are provable. For example, one might first
analyze test bodies with purely electromagnetic
internal interactions and thereby attempt to show
that particles and electromagnetism must interact
with gravity in the manner of metric theories
(EEP) in order that WEP be satisfied; next ana-
iyze purely nuclear systems and attempt to show
that nuclear fields must couple to gravity metri-
cally; ete. Unfortunately, for our purposes, nu-
clear interactions have not been given an adequate
mathematical representation even in the absence
of gravity; and the nonmetric theories known to
us make no attempt to write down nuclear force
laws. Hence our present program must end one
way or another after the first stage. Even a gen-
eral proof of the first stage {Schiff conjecture for
bodies with internal electromagnetic interactions)
is too much to expect. To make it manageable.
one must assume some restricted {but hopefully
quite general) form for the interactions. This we
shall do in the present paper—with an interaction
form general enough to include all metric theories -
plus almost all nonmetric theories we have found
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in the published literature. As a byproduct of our
proof, we can rule out several nonmetric theories
in the literature.

In order not to prejudice ourselves, the lan-
guage and concepts used in the calculation will be
those employed in standard classical field theory
with gravity treated as just another ordinary field.
In particular, we will not use such phrases as
“rurved spacetime” and will not make any co-
ordinate transformations to real or pseudo- “free-
ly falling frames.” The concept of gravity as a
metric phenomenon should be forced upon us by
WEP.

As spelled out in Sec. II, we shall take a non-
quantum-~mechanical approach and shall use a
particle rather than a fluid picture for the test
body. Since the gravitation theories with which
we attempt to tie in are largely classical theories,
we feel that a classical approach is completely
justified and perhaps essential. There are two
reasons why a particle approach has been taken:
first, more often than not, classical fieid theories
formulate the interaction of gravity with matter
in the form of point particles; second, a charged-
particle approach allows one to deal with the ex-
act “gravitationally modified Maxwell equations”
of a given theory, rather than with their smeared-
out averages.

Our calculation is not the first of its type. For
several particular theories, and at lower orders
of approximation, the acceleration of electromag-
netic test bodies in a gravitational field has been
previously calculated. Nordtvedt® and Belinfante
and Swihart® have both done calculations, to first
order in the gravitational field potential and
squared particle velocities; Nordtvedt for general
metric theories, and Belinfante and Swihart for
their theory of gravity. In addition, Post® has
done a calculation, at post-Newtonian order, of
the acceleration of a confined quantity of electro-
magnetic energy in a gravitational field. Had his
calculation been carried to higher order it is con-
ceivable he could have obtained part of our resuit:
that € =p [cf. Eq. (21)].

Section II of this paper gives an outline of the
assumptions, procedure, and techniques of our
calculation, including the results; Sec. III pre-
sents the details, Section IV compares the pre-
dictions for WEP viclation with the results of
Edtvis-Dicke-type experiments, and thereby rules
out the nonmetric theories of Belinfante and Swi-
hart,*+® Capella,” Naida,® and Whitehead.® Also
discussed is the manner—both quantitative and
qualitative—in which WEP is an experimental
probe of the “gravitational-Maxwell equations,”
as contrasted to previously recognized experimen-
tal tests of those equations.

. GENERAL FRAMEWORK AND RESULTS

In calculating the center-of-mass acceleration
of an electromagnetic test body, we would like to
set up a formalism which includes as many types
of gravitation theories as possible, but which is
not too complicated. In particular, our formalism
should be able to deal with scalar, vector, tensor,
scalar-tensor, etc. theories.

We have found that ail of these different types
of theories can be put into a somewhat universal
form when describing a static, spherically sym-
metric (SSS) gravitational field—providing their
dynamical law' for particle motion is derivable
from a Lagrangian. (The restriction to 5SS fields
is cerfainly a limitation in principle, but it allows
us to handie many different theories at once; and.
as discussed in Sec. IV, is not a limitation in
practice.) The quasiuniversal description of par-
ticles and electromagnetism in an SSS field is as
follows:

The motion of charged particles under the joint
action of gravity and the electromagnetic field
A, can be derived from the Lagrangian'®

Z:Ef]—mn,,(T-—HG,sz+e.ANv[,‘Jdt, (1)
F)

where we have used the bar above the L to indi-
cate that I may be only a part of the total Lagran-
gian, and where the various symbols will be de-
fined below. The “gravitationally modified Max-
well equations” (GMM: Maxwell's equations in

the presence of a gravitational field} are of the
form

T (eE)=dnp, 2)
§x(u"§):4ﬂ3»§7(£§), (3)

Definitions of the guantities in Egs. (1) - {(3) and
of other quantities that will be used in the calcula-
tion are given below:

x'=spatial coordinates; they are nearly Carte-
sian when gravity is weak,

{=a time coordinate associated with the static
nature of the SSS field, nearly equal to proper
time {or slowly moving particles when gravity is
weak,

nig, = rest mass of particle &, a constant,

¢,=charge of particle 4, a constant,

v =world line of particle &,

v =dxf/dt,
0 t,
£0,,u5 vl with 6, the 3-Kronecker 5,

Y

{/{r)=a gravitational potential equal to M, 7,
where M, is a constant (“active gravitational
mass”) characterizing the source of the SSS field,
and r is coordinate distance, [(x - x ) +(y =y P
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#(z —2,)]""?, from source of field point,
¥, ¥« =the usual differential operators of gravity
free Euclidean space,

g= FU = the gravitational acceleration to be ex-
pected if the theory in question were Newtonian
theory,

7, H, €, 1 =functions of the gravitational potential
U; functions that are arbitrary in this calculation
but that have a specific form in each théory of
gravity when the coordinate system has been suit-
ably specified,

A¥ =components of an electromagnetic vector
potential, a four-vector,

(A)' =A, = spatial part of vector potential,

@=-A,,

EEDITRALCES NN (4a)
&

p=Y) € 04X - %,(1), (4b)
k

E=Va,-0k/0t, (4c)

B=UxA. (4d)

Although in most theories the form of I in Eq.
(1) is typical only of SSS fields, it turns out that
all of the results we shall obtain hold even if U
is an arbitrary, but time-independent function of
position.

For an 888 field in a given theory, 7T, H, ¢, and
o will be particular functions of U (and hence of
position). Here we assume thal T, H, ¢, and p
have been given and we seek the velations among
them, if any, that are rvequired for compliance
with WEP. It is clear from Eq. (1) that we have
sacrificed general covariance of the particle La-
grangian in order to encompass a wide range of
theories.

Note that Eqgs. (2)~(3) can be reinterpreted (dif-
ferent physics; same mathematical representa-
tion) as the usual M. xwell equations for a perme-
able medium in which the free sources originale
from charged particles labeled by £ Thus ¢ and
w play the role of “gravitationally induced di-
electric and permeability parameters,” respec-
tively. We require that T, H, ¢, u all approach
unity as U vanishes so that the special relativistic
limit is maintained,

Given the SSS restriction, one may ask how gen-
eral are Egs. (1)~{(3). Except in the most general
(nonmetric) case of Jordan's theory,'' which is
incomplete' in the sense that it involves unspeci-
fied processes of particle creation, all theories
we know of which are complete enough to formu-
late the interaction of the electromagnetic field
with gravity have GMM equations of the form of
Egs. (2)~{3)."* In fact, the “c-p formulation” of
the sourceless Maxwell equations in metric theo-

ries has sometimes been used in calculations, ™
The particle Lagrangian L [cf. Eq. {1)] also ap-
pears to be fairly general, except for a class of
theories discussed by Naida® which includes the
theory of Capella.” We treat the Capeila-Naida
theory on an individual basis in Sec. IV, using the
methods developed in this section. We point out
that it is sometimes necessary to perform a re-
formulation {same theory; new “mathematical
representation”) of a theory in order to pat it into
the form of Eqs. (1)~(3) (see, for example, the
Belinfante-Swihart theory as analyzed in Ref. 14).
Finally, we should emphasize that, even more
important than the generality of Egqs. (1)-(3), are
the technigues and methods developed in this sec~
tion, since they can also be applied on an individ-
ual basis to that handful of theories which is not
included in Eqs. (1)-(3). We now proceed with

an outline of our calculations.

Variation of Eq. (1) yields an expression for
the acceleration of the kth particle, which, togeth-
er with Eqs. (2) and (3) constitutes three coupled
equations. We seek a perturbation solution.
There are two obvious, small dimensionless quan~
tities in which one could expand: the gravitational
potential U/ and the squared particle velocities ¥}
Since we prefer a result correct to all orders in
the gravitational potential, we expand only in ¥/
and leave T, H, ¢, and y as arbitrary functions
of U. We do, however, expand these latter func-
tions in a Taylor series about the instantaneous
center of mass of the test body (defined below),
ie.,

T=To+{E-R)Th+ -, (5)
where
T =dT/dU and To={(dT/dU)3.,. (6)

We shall assume that the body is small enough
so that second derivatives of I/ make negligible con-
tributions. Indeed, this is part of the definition
of “test body” (Ref. 1) and is a necessary and in-
tegral qualification in Schiff's conjecture.

We define the center of mass for the test body
by the following sequence of equations:

ny =mgdd + FLUGE N + S 0,40 ClUEDN

heyTelRal L KUE) s SUED

+O(mgr?), {7}
(8)
ME § oy,
*
)Z\'m_ﬁ,\l"zmkik_ (9
3

Here F, G, K. 5 are again arbifrary functions of the
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potential U. (Whenever two indices, e.g., i and k, center-of -mass acceleration

gccur in terms, in double or single sums, it is - - - R R
always assumed that i # & in the sum.) Any cred- Ao =M (? ’”'x'd?'”""** b i), (10

ible result should be independent of the particular
definition of the center of mass as long as it re- . .
mains inside of the body, that is, the resultshould A = dK o sde
not depend on the specific forms of the functions ,=d¥,/dt,
F, G, K, and 5.

We now assume that at =0, the center of mass mysdm,/dt, ete.
of the test body is momentarily at rest, at the
origin of the coordinate system,

where

Return for a moment to the details of the expan-
sion scheme. Qur expansion is in the quantity

Kemdemo=dXp /dl) ., =0. (10} % = (typical squared particle velocity) ¢ v,
By differentiating Eq. (9) twice and combining {12a)
with Egs. (10), we obtain for the instantancous The virial theorem guarantees that
(typical charge of a particle)® ey

v (typical mass){typical separation of neighboring particies) < m,,ii‘v,,; !

Thus, without serious error, we may treat both terms on the right-hand sides of Egs. {12a) and {12b) as
O(v*) when ordering the terms in the expansion.

Besides the dimensionless quantity ¢* in which we <o expand, and the dimensionless quantity I’ in which
we do nol expand, there is a third, less obvious dimensionless quantity:

gs=[E|(size of test body) < |§{{%,1. (13}

We shall expand in this quantity —independently of the v* expansion—but, in practice, by examining powers
of g rather than gs.

Now, if Km‘ is to be body -independent in general, *it must be so for each order in 1* and each order
&, independently. Surprisingly, perhaps, it will be sufficient to work to first order in 1? and to first order
in g. The imposition of WEP at this order will force the dynamical equations (1)—(3) to take on metric
form, thereby guaranteeing that EEP {and lience WEP a fortiori) is satisfied at all orders.

To first order in ¢* and g, after solving Egs. (1)-(3) for 3, and substitution into Eq. (11), we find (de-
tails given in Sec. II)

Ko = =BT H, ™ + gMO"[é(Hé H Y Dmg v i b ,,,.,] LMD ‘z; Dot MO g (F V), (14)
. i i " i
where :
My= ‘E Moy s . {15a)
RE{To H, B b6, 2 4 T 1o Ho™Y, (15b)

WEHTM H )G T H, Mg+ 5 Ty To leg ™ = Hy Hy e ™Y

s (La P Py T8 H T e, ™ = 51+ Gp) T TP H, e 7, (15¢)
O=Ty Ty ' ~HJHT w21 s FY T FY - 5o G 72 1,7, (15d)
LIPETICN - IR (15¢)
G“seie,(;‘;';‘(‘,)ﬁ‘,1‘%’(,h, (150)

Equation (14) becomes much simplified when we use some gravitationally modified virial relations (see
Sec. I1 C for details):

<E MmUY + (T B H e T T egey x;",,xfkl,\,,l""/\/ LM gsY, (%
i ik /

where m, p refer to to components of the appropriate vectors and {; denotes the usual time average. Using
Eq. (16), Eq. (14) becomes



~106~

ALAN P. LIGHTMAN AND DAVID L. LEE 8
<Kc.m4>:” ~LE(Tg Hy™) - FEMTHT H e T Hy™' - 2e) €7 = T € “0H3_1)<E T’i:>
ik
MY T H, T H T, - €0u0)<z 3‘,,> . am
R3
~
The first ter_m ‘o{ this acceleration is body-in- -3 f g dsy+ €A dxy (22)
dependent (satisfies WEP); the second term de-~ X
pends on the body’s self-electromagnetic energy; Fo8  _4ng° (23)
the third term depends on the electromagnetic en- ® ’
ergy, the shape of the body, and the orientation In this metric form
of the body with x;espect ?o the gravitational field ds® = g g dx agyx® (242)
gradient, Thus (A ; will always be body-in-
dependent only if the second and third terms al- 80=T, (24D}

ways vanish, i.e.,
H{/Hy~2€]/€q— Toeohto/Hy =0, (18a}
Hy/ Ty~ €qthg =0 (18b)

(the other factors in the body-dependent terms
must be nonzero for correct Newtonian and spe-
cial relativistic limits), or equivalently,

€ /o= SHY /Ho= T3/ Ty, (192)
1o = Ho/{Toeo) - (19b)

Since we have not specified the initial location
of our test body with respect to the external grav-
“itating source, and Egs. (19) should be satisfied
at any point we choose to deposit the body, the
naught subscript can be removed from quantities
in those equations, yielding, upon integration,

e=CH/TV?, (202)
u=CHH/ TV, (200)

where C is a constant. Since, “in the absence of
gravity,”* we must have e=H =T =1, C must also
be unity. Therefore we finally obtain, as a nec-
essary condition for our electromagnetic test
body to fall with a composition-independent accel-
eration:

€=p = (H/T)?. (21)

It is worth noting that, using heuristic argu-
ments (see, e.g., Ref. 15) about the electromag -
netic energy content of atoms and the expression
for the fine-structure “constant” a in a dielectric
medium

a = (e n)2e?/(eh)

one can see why WEP should require constancy
of the ratio (e/p).

Comparison of Egs. (21) and (1)-(3) with the
discussion in Sec. TIIE reveals that Eq. (21)is a
necessary and sufficient condition for the dynami-
cal equations (1)-(3) to take on the familiar met-
ric form

gy = ~0,H (spherical coordinates

turn out to be “isotropic”),  (24c)
; denotes the covariant derivative

with respect to g.q,

FePzgogbi(a, , ~A. 0, (24d)

7= [ edx -2 (se ) ) s
{24e)

Note that all dependence on the arbitrary func-
tions used in the center-of-mass definition, Eq.
(7), has vanished by the time one reaches Bq. (17).

Higher-order calculations [v* or (gs¥, for ex-
ample] could only yield resuits consistent with
Eq. {21), since WEP af first order tmplies that
gravity has a melric-theory description (auto-
matically satisfying WEP) lo all orders.

Our theoretical results can be summarized by
the following statement: Consider the class of
gravitalion theories thal possesses a mathematical
representation of the form of Eqs. (1)={3}. For
that class, with each theory wyitten in thal vepre-
sentation,

(WEP)«==[Eq. {21)}e={the theory is metric with
the metric given by Egs.

(24b)—(240)].

1. DETAILS OF THE CALCULATION
A. Single-Particle Equations of Motion
Variation of Eq. (1) with respect to the coordin-
ates of particle k yields

. AHW

GO, + 7, S w2 5 AR,

dt
(25)
where

W (T -Hr,2, (26a)
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X,‘(i,)f Lorentz acceleration of particle &

= (2,/ M) s V(p(x* +V[» A{ 8

? 7!
7 A(x,)$ s (26h)
and all functions of U are evaluated on the par-
ticle’s world line, e.g., #=H(UIZ())). Using
Egs. (5)-(6) and the discussion following Eqs. (13},
we can write, to the order of our calculation,

VH=H,E, etc. (2m)

We shall regard § as spatially constant [see dis-
cussion following Eq. (6)]. Equation (25) can then
be written as

=W, - TOH, ™
VG BNHH, ™ - 3T - v, )W 2]
Ty (VB HW % 4 (W”_X)KL ] (281

Note that whenever functions like H,7.¢, etc.
occur in terms multiplied by g, we may evaluate
them at naught, i.e.,

Hé" Hoé H
because we work only to first order in g.

We further expand W in a power series in v? and,
since we are only working to O{v?), we can set
W—‘J;“’2 in Eq. (28). This follows from the.fact
that A; ~ O(v®) and from the explicit velocity depen-
dence of other terms in Eq. (28). [It should be
mentioned that when a term is considered O{v?)
it is not necessarily intended that the term is
dimensionless, but only that v* (or the expression
in Eq. (12b)) is a multiplicative factor in the term.
The same applies to the notation O(g).!

By dotting ¥, into both sides of Eq. (28}, solving
for (I,-¥,), and substituting the result back into
Eq. (28), we obtain

Zh: 1"2??(”(’»”»2 - TA)HO“l
ST BN Ty~ HyH ™Y
+H(TY 2K, + 0w+ 0(g?) . (28)

My Modi

B. The G

Maxwell Eg

We must now sglve Maxwell’s equations and com-
pute the quantity A; which occurs in Eq. (29). If
Eqs. (4c) and (4d) are substituted into Eqs. (2) and
(3) and one uses the gauge
BY -
(en) 22 +3-h=0, (30)
the result is

- = a
V"’(p—au —dnpe” —e"Ve~<V¢+»£>, (31a)

dlz

. azg - T T
VA:EpW—4ﬂuJ+((u) (V-A)V{c )

+u'l(€XK)X6uA (3ihy

We can now do a perturbation solution of these
equations by expanding simultaneously in powers
of v*and g, treating rormally v?~g:

Q=P @, (32a}
AR+ A +Aenee, (32b)
Vi = ~4ne~lp, {33a}
Vo s eplahe, 0/ —e, e [E- (T, xmn 3y,

{33by

Vo, =eul@ly, 817 —-6(\.&"\[@‘(“5;7‘ +:’)R1 XS IR

etc. . (33c¢!

VZKO: —4rud . (34a
Vzi‘\l = tp(BZK(,xEH N+ e ;L)‘,"(k»;'gn?%u, o]

e ,Q(exﬁ IXg, etc. (3400

(One should not confuse the perturbation order of
A, A,, with the kth component of the vector 4,

The solution of these equations is far simpler if
we remember from the beginning that since the
particle acceleration is required only to () and
O g) we need KL only to the same order. Remem-
ber also that &, = O(v?) + O(g) whenever the solu-
tion of Eqgs. (33)~(34) requires a particle accelera-
tion as a source term (right-hand side of equa-
tions).

We solve the equations for A first. Clearly,
from the expression for T [cf. Eq. (4a)],

A R,) Z:‘ AT ¥ (35)

Equation (35) gives the lowest-order vector poten-
tial at particle k due to all other particles {i# k).
Kote that ;{X,) is considered to be a constant with
respect fo the d’ Alemhernan operator acting on
functions of X,. The above AO can produce terms
of the desired order in &L For example,

€y (xy) = L" e, n &R (38a)
‘Zc QEUEIRT e, (36D)

where we have substituted 3, =g+ 00" + O(g 9.
The indicated term in Eq. (36b) is bilinear in ¢*
and g and is therefore acceptable. However it can
be shown that no higher orders of A after XU can
contribute. For example, the second source term
on the right-hand side of Eq. (34b) makes the con-
tribution

A -0l ~ ool



~108~

ALAN P. LIGHTMAN AND DAVID L. LEE 8

KL~%\?1 +€(‘7-KJ: Olge™)+ Ol g%®) .

From the expression for p [cf. Eq. (4b}], we can
write down the lowest.-order solution for the sca-
jar electromagnetic potential:

e = e MENK, T an
i
The source term proportional to aiﬂ/'al in Eq.

(33b) doesn’t contribute to our order of calculation.
Now, define a “superpotential” x by the equation

iy =g, (38)

Using x we can write Eq. {(33b) as, to appropriate
order,

Y 32)( - = /8%y
Vi, = V3<eu F>— 2\7(5;;)~V<b—l§)
- Ve, e E V). 39

Using Egs. {37) and (38), we obtain

X&) = 525 ee HE )R, (40a)
%% = A e TR e ED R T
i

5 e Ve E e Rl (40b)
i

2
%‘IX: = “%‘Zegﬁa’iu)é'l(i&)&n‘—l +0@" . (40c)
where we have carefully interpreted the partial
time derivative on functions of &, as acting on co-
ordinates of particles labeled /| with iz k. From
Eq. (40c) it is clear that the second source term in
Eq. (39) does not contribute and the remaining
equation is trivially integrated to yield

9% e )
w,:eua—}— e eE Ty 4n

Using Eqgs. (40a) and (40c), Eq. (41) becomes
Py = —%mZh('@‘ﬂ.)limi”
i
- éfn'zéégé’,(é'f(“)li“’"’ (42)
i
and, using Eqg. (29) for 3;,
@ = (G T Hy ™ ~ by %) 7 e, (BR, W&yl 70
i
(43}
In the same manner as with the vector poten-
tial, one can show that ¢,, ¢, ete. do not con-
tribute to the Lorentz acceleration at the desired

order. Using Egs. (26b), (35), (37), (43), one
obtains

R ) = (ea/mod) D {[Raie (70 K] = TnlR)Ry 7 lesh + 50 ToioH, ™ —0™%€0) Sl ai — (60 moneiRa, 1]
1] i

(44)
where @, is as defined in Eq. (15f). From Eqgs. (29) and (6) we obtain the relations
A= ~HToH, IE + 00, (452)
€)= e+ (EReq, 145b)
which, when substifvted into Eq. (44), yield
- R€, "t €he, HERDR 3Ty ) - _ e
AL (Ry) "Z(L’t“n/mon)[ < Op ~ gc(gp 2t T ?“0 2= g} + é(i TonoHo ™ €. 3wy,
; 1%, [y, R ;
{46)

€. Wiriat Conditions

We now have enough information to derive some usefu} virial conditions. Substitution of the expression

for K:, {ef. Eq. (46)] into Eq. {29) reveals
(e )? = T o, o el PR ol

:
where p denotes a particulur vector component

d(xt i)

L Lo
MonXally = Moy =7 = Moy Uplly

Y T P D VY I {3
=T A H T e, T 2 eieal ) a7
7

{47y

Multiplication of both sides of Eq. [47) with (1,} vields

(48)
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1f we sum Eq. (48) over the index k, use the antisymmetry of X,,, and take a time average, the result is
_Eq (16}, Summing Eq. (16) on [ and p produces another useful virial relation:

.
(z:mmv.u ST, D el ) 205 000 (49
g : i

D. Center-of-Mass Acceleration

we now have all of the necessary tools at our disposal for calculating the test-body acceleration, We
begin with Eq. (7). To the required order

= o, LFUEF) + (14 GI(E,Fy) + 3 0,°GHE T
+§Z‘)e,e,{K{)(g‘vi +S5ET) ~ K&, + (& J& o X ] ‘2Hiul_l y (50}

oMol FLEE) + @201+ G 513

In obtaining Eqs. (50)--(51) we have, as before, used the fact that &, ~ O(g) + O(r?). To be exact, Eqs. (29)
and (46) show that

A= “EE(TIH,™) +T0”2H0"€O"Z(e‘eh/mm))'(nli“:” +0(gr?). (52}
Using Egs. (50)-(52), the first two terms in the expression for Acm [ef. Eq. (11}] become

M“Em,,x,,: ‘Z'Man()—lec—lTo“ AF - (L4 GIT H,™ E Way » {532}

ZM x}jm,x, 2MF) - H1+G T H, '*}}_‘,mo. Vo)V (53b)

Again using Egs, (29) and (46) to get the O(gv*) contribution to §, [ef. Eq. (52)]. the third and last term
contributing to Ko is )

M SmE, =M™ g%_gmorgn FFH, ™+ S H T H (14 Fo) = T30 + Gl o mgpra+ 57, zm,{'
& L] 1]

(1 FTLT, ™ —H(’,HO“)M";mm(?.-é)ﬂ+3TZM"“Z::)“ , (54)

where '
TETY T 1+ Bl €20+ 5 ThugHy ™) = $TLH, (1 + K, +8,) (552
ST (4 FOH M Th o = €0 HY + €7 F) + 31+ Feg M T T, (55b)

With M, 71, Wy, defined in Eqs. (15).
Now; expand the expression for M ™' using Egs. (7) and (8);
i - 1 (1+Gy) 11+K,+S, X
t. 1 -1 - o 4 3
M =ML+ FY l: 2M(1+F>Em“""’ Z o +I' En‘n}ﬂ»()(z Y+ O(8) . (56)
With Eqs. (53)—-(56), the expression for Au,,‘, Eq. (11), becomes that given in Eq. (14). Use of Egs. (16}
and (49) then yields Eqg. (17), and subsequently Eq. (21).

U ——
E. The'e-u" Formulation for Metric Theories relativity.) For the problem at hand we can re-
gard g,, and f as functions of U=3_/r rather than
In any static, spherically symmetric, locally as functions of ». In such a coordinate system,
‘I:nrer.ltz manifold with metric, one can introduce the standard metric-theory Lagrangian for the
spatially isotropic coordinates.” for which motion of charged particles reduces to
Boo = 8ool7) s (57a)
gm0, (570) =S [ (gasdssand sre, [ a,axe]
&
Hip==0,, S (1) -~ -y .
v =5 [ Lol = 702 2 e ot far, (59)
[~ a2 - x B (- 2RV (5T0) D

(For proof, see any standard textbook on general and the metric-theory Maxwell equations read
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F”w:(~g‘)'X/2{FaB(—g)l/2J,5=47!J°‘, (59a)

where
Jo=Nle, j(dx‘:/ds,)é‘(ﬁ - )~g)"V Hds,
&
=T ey(~g) " 2O E ~ ) (dx 5 /dh) (59b)
]

Here g=determinant of g5, and commas and
semicolons denote partial and covariant differen-
tiation, respectively. Combining Eqs. (59) gives

2578 Fry () 2] g = 40 L e, 0@~ Ry)dr S /dD)
5
(60)

Equation (60), when written out for the diagonal,
spatially isotropic metric of Eq. (57), has the
“¢.” form of Egs. (2} and {3}, with

E,;=Fo, ete.
and
€= = /80)'" (61)

Conversely, for a theory with GMM equations of
the'form of Egqs. (2) and (3) and with

€= (62)

one'can define an “effective electromagnetic
metric” by

Boo=¥, (83a)
8y, =—€¥,,; (63b)

then the GMM equations will take on metric-theory
form. In Egs. (63) ¥ is an arbitrary function and
reflects the well-known conformal invariance of
Maxwell's equations. If, in addition to satisfying
Eq. (62), the effective metric determined by Egs.
(63) is correctly related to the functions appearing
in the particle Lagrangian [cf. Egs. (57)-(58)],
then the entire theory of particles and electro-
magnetic fields can be consistently put into metric
form.

1V. CONCLUSIONS AND APPLICATIONS

A. Theoretical Implications of the Results

We have shown that, in a spherically symmetric
gravitational field, a theory of gravity described
by Eqs. (1)~(4) can be put into metric form (with
regpect to the dynamical equations for particles
and electromagnetic fields) if and only if it satis-
fies the weak equivalence principle.’® Equivalent-
1y, if such a theory is nonmetric then Eq. (21) will
not be satisfied, the acceleration of test bodies
will have body-dependent contributions {ef. Eq.
(17)], and WEP will be violated. The result has

far-reaching consequences if one accepts WEP as
a valid principle; Having proved, from WEP, the
metric nature of the GMM equations inside of an
electromagnetic test body, one knows how to de-
scribe all gravitational-electromagnetic phenom-
ena-—e.g., the bending of light by the sun, electro-
magnetic radiation in a gravitational field, etc.

There are two potential weaknesses of our cal-
culation. First we have assumed a spherically
symmetric gravitational field. Now, it is concelv-
able that a theory could be of “metric form” for
spherically symmetric gravitational fields, but
nonmetric in other cases. Such theories would
have to be analyzed on an individual basis, to see
whether their non-SSS fields violated WEP. How-
ever, we feel that such a theory would be difficult
to formulate and, in fact, have seen no examples
in the literature. In practical applications, one
considers a particular nonmetric theory, solves
the spherically symmetric problem, and finds
that Eq. (21) is not satisfied, thus constituting a
violation of WEP at some order. Examples will be
given below.

A second possible weakness, discussed previ-
ously, is the limitation to the types of equations
discussed in the beginning of Sec. II. However,
except for the Naida-Capella nonmetric theory,
discussed below, Eqs. (1)=(4) appear to be quite
general among “complete” theories. (There are
many theories which are not explicit as to the
formulation of the GMM equations, and we must
require that such theories be completed before
given further consideration.)

Finally, we point out that WEP and Eq. (21) de-
mand that the center -of -mass acceleration be
body-independent at each order in the external
gravitational potential U. As will be seen below,
a given theory violating the WEP will do so at
some order of U. To be more explicit, suppose
that one expands the functions H, T, i1, € appearing
in Eq. {17) in a power series in U/, i.e,,

H=1+2yU +36U%+- -, (84a)
T=1-2aU+280%+-- -, . GE
exlreUteU%+ e, (84c)
poElag U, U e, (64d}

Then, Eq. (17) can be written in the form
(B = =3I H) 18,7 ( 2 o
XAT, + T, U+ T,U 2+ 0)
= .w(;*<‘§ 5‘,>

AT + T =TT+ o), (65)
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where (Aor) =B pun MO_‘<E n,.n>

T2y €, +a, (66a) ir

To=0, (66b) EIEPES SIIAWER TR

T, 22036 -2y~ €, - B+ /

= Fn M, ) [Ty =T U0
iye, raly, =5y e, —a), (66¢) Eaun My \,:;"">{ om Tyl
T =29 +2a-€, - 4y, (66d)

ete,

{For the correct Newtonian limit, one must re-
quire that o =1, but we leave o arbitrary here.)
Each theory will yleld certain values for the I''s
and T’s. We have shown that nonmetric theories
must have some of the I'’s or T’s nonzero—the
first nonzero I' or T determines the order at
which the theory violates WEP,

B. Experimental Verification of WEP and
Applications of Our Calculati

Thus far, our results have been completely
within a theoretical context., We now investigate
the experimental and practical applications.

Experimental support for WEP comes from the
type of experiment developed by Edtvds in the
iate nineteenth century, and redesigned extensively
by Dicke in the 1960°s."” The particular Edtvds~
Dicke (ED) experiments of highest reported preci-
sion are the Princeton experiment of Roll, Krot-
kov, and Dicke,'” and the Moscow experiment of
Braginsky and Panov.'® These experiments mea-
sure the relative acceleration toward the sun of
two different substances (gold and aluminum in
the Princeton experiment; platinum and aluminum
in the Moscow experiment). The reported results
are

(B cmn = Bonnl o K& endn = Eendn |

[(& cal H
<1071 {67a)
(& e | jomie
! 1074, £7h)
(& (

Our calculation involved a test body dropped in
a static field. The following argument justifies
direct comparison of our calculation with the re-
sults of the above experiments:

(i) The 24-hour component of the acceleration
can easily be isolated so that the sun can really
be considered as the sole external source of grav-
itation (see page 173 of Ref. 17). To make this
more clear, if one uses the Z4-hour period varia-
tion to select out §yn from o, + Eeay. then Eq.
(17) has body-dependent terms of the form

since Uwn> 100U 0 -

(ii) The fact that the earth is rotating rather
than at rest can only contribute /neriial accelera-
tions; in particular no relalive accelerations be-
tween the two test bodies can be introduced in
this manner.

(iii) We have considered ounly electromagnetic
test bodies; but we wish to apply our resulis to
the actual atoms used in the experiments, atoms
which have nuclear as well as electromagnetic
interactions. Thus the complete equation for
(A.c.m,) for realistic atoms has, in addition to the
terms shown in Eq. (17), terms which involve
nuclear energies. Is it pessible that the nuclear
and electromagnetic terms would cancel each oth-
er? The only mechanism by which the terms
could be combined and related is through the vir-
ial relations; yet an examination of Eq. (17) re~
veals that u, does not even occur in the electro-
magnetic portion of the virial relations. In partic-
ular, given the combined virial relations for both
eiectromagnetic and nuclear interactions one
could construct an infinity of different theories
merely by changing u {and thus changing the body-
dependent terms in {A__ 3. Thus there is no cred-
ible mechanism by which nuctear and electromag-
netic body dependent terms could conspire to can-
cel each other. The “electromagnetic violation”
of WEP thus counstitutes a lower limit to the total
violation (allowing for possible nuclear violations).

We can now ask to what order does Eq. (67) test
the GMM equations of a theory. Equation (17) has
the form

electromagnetic energy”

(A )~ f| e ERERY
A g’{ total mass

x F(Ho' T €05 Moy H(’)- TZ)V (é))
+body ~-independent term , (68)

where F is a function of the indicated variables.
Now, the largest contribution to the electromag-
netic energy of the total atom certainly comes
from the nuclear protons and for platinum or gold
this amounts to. using the semiempirical mass
formula,'®

electromagnetic energy
total mass

=5% 1077,
Plor Au

(692}
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For aluminum, the corresponding quantity is
em energy
total mass |

(22470 [em energy
(Z*A™¥3) 5 o au L total mass

] =2x1073,
»

(69b)
Noting that U, has the magnitude
U, = potential of sun at earth ~107°

and using Eqs. (65) and (67), we see that current
experimental accuracy bears upon the ', and T,
only for k< 1. The accuracy 2 of the experiment
must go up by a factor of 107 to require that Ty
and Y, vanish. Equations (66) show that the ex-
periment thus measures H, T, and € to O(U?),

but ¢ only to O(U). We expect that almost all theo~
ries will do well enough to have Iy=0.

Before continuing with direct applications to the-
ories of the current experimental verification of
WEP, let usg return to Eq. {17) and analyze the
specific way in which it constrains the GMM equa-
tions of a gravitation theory. The second body-
dependent term in Eq. (17)~the “directional Cou-
lomb energy” term-involves the GMM equations
only through the product €u. This particular pro-
duct ig also equal to the square of the index of re-
fraction, n%, and is tested by light-bending and
time-delay experiments {see, e.g., Ref. 21 for a
discussion of these experiments—although in the
context of metric theories). In fact, exploiting
the “e-u’* analogy for the GMM equations and tak-
ing the geometrical optics limit, one sees that
the current experimental tests, with the exception
of WEP, are sensitive only to the product ey —
and only to first order in U of that quantity. On
the other hand, the firsf body-independent term
in Eq. {17)—the “nondirectional Coulomb energy”
term-samples the GMM equations in a deeper
manner, both qualitatively and gquantitatively. Not
only is € distinguished from u {magnetic and elec-
tric effects distinguished) but also is € explored
to second order in U {cf. the ¢} for the current
experimental verification of WEP. Thus WEP
is revealed as a powerful tool for probing the
GMM equations—the most sensitive probe of those
equations existing in 1973.

On purely theoretical grounds one can require,
as we have previously remarked, thai the I's
and T’s vanish independently. However, in prac-
tical experimental applications, the second body-
dependent vector in Eq. {65) has some particular
relation to the first for any given experiment.
Since the nuclei of the atoms in the ED experiment
are approximately spherical,

<§ Ty = %§<‘22 m,> . (10)

Usings Eqgs. (65) - (70), one finally obtains, for
a =1 (correct Newtonian limit)

Bandnse=Remlat + 3x107(r, 10T, - § ).
1

€. Applications to Specific Nonmetric Theories

In this section we discuss WEP for three partic-
ular nonmetric theories. The Belinfante-Swihart
and Whitehead theories have equations of the form
of Egs. ()~-{(3). As an illustration of the formal-
ism of Sec. IVA and IVB, the WEP violation is
calculated explicitly in the case of the Belinfante-
Swihart theory. The Naida-Capelila theory, which
is an apparently rare example of a theory nof
having a particle Lagrangian of the form of Eq.
(1) in the S8, limit, is treated on an individual
basis, using the technigues developed in Secs. O
and HI.

1. Belinfante-Swihari Theory'’

An analysis of the Belinfante-Swihart theory in
Rei. 14 reveals that its parficle Lagrangidn can
be put into metric form with

& (1 - Kh) [7uB tRap + Mg Ry »Oh )lv
(72)

where K is an arbitrary constant, h=n°%h_,, and
T4s 18 the Minkowski metric. The GMM equaiions
are of “e-p” form {i.e‘, have the form of Egs.
{2)~(3)], with, in the SSS limit,

€= {1 gl + 1, )7, (73a)

po= (sl + ). ) (73b)
In the $88 limit, A, has the form

hoo =Gl 4 (74a)

hy=0,CU, (74b}

hoa=0, (74c)

where C, C, are arbitrary constants, but with
the implicit relation

2K(3C, = Cg)+Co=2=0 {15)

in order to satisfy the Newtonian limit (gy, = -1
+ 20+ »++). Defining T and H by comparison of
Egs. (72), (74) with Egs. (24) and then evaluating
the various T, and T, [cf. Egs. (64) and (66)},
one finds

T,=0, (16a)
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I =T, 2 =4 Cy(Cy+C) 0. (76b)

In order to predict an amount of light bending and
perihelion shift compatible with experiment, one
must require that C and C, satisfy

0.9<3C,+C, ~2)s 1.1, (T72)

(7o)

The combinations of C,and C, occurring in Eqs.
("7ma) and (77b) correspond to the ¥ and g param-
eters, respectively, of the “PPN formalism”#
and the experimental limits indicated above are
* discussed in Ref. 21,
Using Eqgs. (71) and (77), we {ind that the non-
metric theory of Belinfante and Swihart predicts

ot e |Kendriorns =Eemdn]

Acm,
(Acm) 18)

If one requires the light-bending and perihelion-
shift predictions of the Belinfante-Swihart theory
to be same as in general relativity, Eq. (78) be-
comes

(Xcm.) Auorpr ™ (‘Kc.m. At

(Acm)

Thus, the Belinfante-Swihart theory violates seri-
ously both the Princeton and the Moscow versions
of the ED experiment.

2. Whitehead's Theory’

0.8<3(C,+1)<1.3.

=6x1074 (79)

Synge analyzes only the motion of uncharged par-
ticles and the sourceless GMM equations in White-
. head’s theory:

6 [ (gapdx®ax®)2=0 [Bq. (1.7) of Ref. 8]
(80a)

(g™g%"F,,) a=0 [Eq. (1.9) of Ref. 8]  (80b)

Fuboy +Foy.a + Fras=0 [Eq. (1.9) of Ref. 8}.
(80c)

A straightforward generalization of these equations
to include sources shows that the GMM equations
have “e~-u” form in the 888 limit, with

€=(~gof)7", (81a)
wef? (81b)
[in the notation of Eqs. (57)]. Using Egs. (17),
(57), and (81), one can then show that
31_1’*( Xﬁ:‘;“‘wﬁ'ﬂ <107 L im0/,
(82)

so that, for experimentally acceptable values of
&oo and 3, this version of Whitehead’s theory vio-
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lates WEP at the order of 107, [Note that in
Whitehead’s theory the product € is the same as
in metric theories, so that the coefficient of the
second body-dependent term in Eq. (17) vanishes
identically. In some sense one can say that, with
respect to the light bending and radar time-delay
experiments, Whitehead’s theory is a metric
theory.]

3. Naida-Capella Theory

The nonmetric theory of Capella” as completed
by Naida® has the following Lagrangian [cf. Eq.
(2.1) of Ref. 7}

L :mof ds = (Mgp u®uPY? 4 xh g 1, u u®) V2|

—efAudx”, (83)
where 7,4 is the Minkowski metric and

ds = (1 5 dx*dxB)H2,

x= (T2,

u® = (dx“ /ds).

The GMM equations are of “¢-u” form [cf. Eq.
(3.7) of Ref. 7} with

(84a)
(841m)

€=14yxlhog+hy,),
p=ll =yl + Ry

Solutions to the SSS gravitational field equations

yield
hoo=Cox ™', (85a)
hy=Cix"'US,,, (85b)

where C, and C, are arbitrary constants. Vari-
ation of Eq. (83) and use of Egs. (85) gives the par-
ticle equation of motion [analog of Eq. (29)]
Ty =BlC, — ColCy+ 20 W+ €12
= Uty (2040, + C + 2C D))
—25,, BNCy+ €, = 2C{Cy+ €U,
A L ~ulc, +2¢))]. (86)
Using Egs. (84)-(86), the GMM equations give
A &) =(my) (1 -Cly+ C’l/oz)? e,e, Rl P X,
*;(mm.r*[c,~z;0<2c2-coc\>ié§ i
~3 (g ) MGy = € = U207 « L“WCK)]“E D
g ) O - ZCUD)? FRRCEENIE PN TN

(87)
with C=2Co+C .
Using the same center-of-mass formulas as
given in Egs. (7)-(9) and the virial theorem



~-11k-

ALAN P. LIGHTMAN AND DAVID L. LEE B

<E (v P (0P + 31 - U,(3C, + ZCO)]‘ZEe,e,(X“Y“(x“)ﬂ[x“,]"> =0+0(g) (88)
[ : E

one finally obtains

(Xc‘m):gco{l +Uo(-2C, + Co” - 5*\40_]\(co2 +3C 08 <:E "7(*>+Mo—l(% + %Cx ~5C* -t~ 4C,COU, <E ‘Eu> .
2

Now, with Eqs. (69)—(?1) we get
Eem.) pror s —(Am Ja
g1

=107 (1 +3C, - 19C% - 5C 2

L&

(89)

-8C,C,). (90)

‘The correct Newtonian and light-bending results require, respectively,

€,71,
0.9<3(C + st
Equations (90) and (91) indicate then the relation

<Kc.m.>Au or PU™ <Xc.m.>Al

2%10710 5 =
(Kem)

<4x10710,

(91a)
(91b)

(92)

Thus the Naida-Capella nonmetric theory seriously violates both the Princeton and Moscow versions of the

ED experiment.

ACKNOWLEDGMENTS

We wish to thank W.-T. Ni, K. Nordtvedt, Jr., K. S. Thorne, R. V. Wagoner, and C. M. Will for their
helpful comments. We also thank K. S. Thorne for edition of the manuscript.

*Work supported in part by the National Aeronautics
#nd Space Administration under Contract No. NGR 05-
002-256 and by the Natjonal Sclence Foundation under

“Contracts No. GP-28027, GP-36687X.

{National Sclence Foundation Predoctoral Fellow during
& portion of this work.

TImperial Oil Predoctoral Fellow,

For a di {on of various pte and terms used
in this paper, see K. S. Thorne, D. L. Lee, and A. P.
Lightman, Phys. Rev. D 7, 3563 (1973).

2!( 8. Thorne, Invited paper presented in honor of
Leonard Schiff at the 1972 American Physical Society
meeﬁng in San Francisco, 1972 (unpublished).

. Nordtvedt, Jr., Int. J. Theor. Phys. 3, 133 (1970).

F. J. Belinfante and J. C. Swihart, Ann, Phys (NY) 2,
196 (1957).

g, 4. Post, Ann. Phys. (N.Y.) 70, 507 (1972),

%, J. Belinfante and J. C. Swlhart Anmn. Phys. (MY 1,
168 (1957).

A, Capella, Nuovo Cimento 42, 1961 (1966).

fo. N, Naida, Dokl. Akad, Nauk SSSR 186, 560 (1969)
ISov. Phys. Dokl. 14, 475 (1969)].

e refer to the “early” version of Whitehead’s theory
as given by J. L. Synge, Prot. Roy. Soc. Lond. A211,
303 (1952).

1o this paper Greek indices take on values 0-3,

Latin indices 1-3, the signature of spacetime is
(+1,-1,-1,-1), and we choose units such that ¢ =G =1

Mp, R. Brill in Evidence for Gravitation Theories,

edited by C. Méller (Academic, New York, 1962).

2yye apologize to authors of theories we have overlooked.

A, M. Volkov, A A, Izmest’ev, and G. V. Krotskil,
Zh, Eksp. Teor. Fiz. 59, 1254 (1970} [Sov. Phys.~JETP
32, 686 (197LH].

YD) L. Lee and A.P. Lightman, Phys. Rev.' D 7,3578(1973).

R, H. Dicke, in Evidence for Gravitation [hcovze@
edited by C. Méller (Academic, New York, 1962).

%We wish to point out that one should be cautious in extra-
polating our resuits (see subsequent commenta in text).
The possibility always exists that one could invent a
gravitation theory not fitting into any preconceived
general framework. However, at the current stage
of testing and analyzing gravitation theories (see
Ref. 21) we feel that work such as ours s valuable
as a gulde post and testing ground.

'R, H. Dicke, in Relativity Groups and Topology, sdited
by C. DeWitt and B. DeWitt (Gordon and Breach, New
York, 1964), p. 165.

%y B. Braginsky and V. 1. Panov, Zh. Eksp. Theor.

Fiz. 61, 875 (1971) [Sov. Phys.—JETP 34, 493 (1972)}.

PR B, Lelghton Principles of Modern Physws
{McGraw-Hill, New York, 1959}, p. 554.

201t {5 Hkely that there is a limit, in principle, of
measuring the acceleration to no greater accuracy than
a part in 10, See V. B. Braginsky, Physical Experi-
ments with Test Bodies, NASA Technleal Translation
{NASA TT ¥-672, Houston, Tex., 1872}, p. 59.

“o. M Will, Lectures in Proceedings of Course 56 of
the International School of Physics “Enrico Fermi,”
edited by B. Bertottl (Academic, New York, to be
published), also distributed as a Caltech Report No.
DAP-289, 1972,



-U5-

b) Analysis of the Belinfante-Swihart Theory of Gravity
(Paper VI; collaboration with D.L. Lee, published in
Phys. Rev. D, 7, 3578, 1973)




Reprinted from:
PHYSICAL REVIEW D

VOLUME 7,

~116~

NUMBER 12 15 JUNE 1873

Analysis of the Belinfante-Swihart Theory of Gravity*
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We show that the Belinfante-Swibart (BS) theory can be reformulated in a representation in which
uncharged matter responds o gravily in the same way as in metric theories. The BS gravitationaily
modified Maxwell equations can also be put into metric form to first order in the deviations of the
physical metric from flat space, but not to second order; consequently, the theory is nonmetric except
in first order. We also show that the theory violates the high-precision Eotvis-Dicke experiment, but
cannot be ruled out by the gravitational precession of gyroscopes.

1. INTRODUCTION AND SUMMARY

This paper analyzes the most complete and ex-
tensively developed nonmetric theory that exists:
the 1957 theory of Belinfante and Swihart.!™®
Belinfante and Swihart {BS) constructed their the-
ory as a Lorentz—symmetric* linear field theory
which would be easily quantized. However, as we
shall show, in terms of measurable guantities the
theory has all the nonlinearities of typical “curved—
spacetime” theories. Moreover, it is nearly a
metric? theory: We construct a new mathematical
representation which has metric form to first

order in deviations of the physical metric from
flatness, but does not have metric form to higher
orders.

Section II gives a brief summary of the original
BS representation. Included are discussions of
nonlinearities and the behavior of rods and clocks.
Section III presents our new mathematical repre-
sentation of the theory. Section IV gives a pre-
scription for obtaining the post-Newtonian limit>®
of the theory, and Sec. V considers various exper-
imental tests. Contrary to previous calculations’
it is found that both the geodetic and the Lens-
Thirring precessions of gyroscopes® cannot dis-
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tinguish-the BS theory from general relativity
{for a particular choice of adjustable parameters).
However, using results of another paper,’ we show
that the failure of the theory to be metric at second
_ yrder causes a violation of the EStvds -Dicke!® "
experimental results. Our calculations confirm the
the Helinfante -Swihart conclusion that their theory
agrees with the three classical tests of gravitation
theories (perihelion shift of Mercury, bending of
light by the sun, and red shift of light), and also
_agrees with the weak equivalence principle® (WEP)
to first order.

where

H. THE BELINFANTE-SWIHART REPRESENTATION
OF THEIR THEORY

A. Lagrangian and Equations of Motion

The original representation of the BS theory is
Lagrangian-based,” but is not in generally covari-
ant form.* In this section we generalize, ina
trivial manner, the original representation so that
it is generally covariant. The dynamical equations

are obtained by extremization of the following
action:

I= [.Bcd‘,r)rf,ﬁ,d’,\ +f£,d‘,x’ . mn

Lo — (BT 0} 0P 7 (@l p1a ol + S Ry o Rpot 6) (- 1)1, 2

dx* . ’ .
S":Z f [—VNAIJA«}(“M +eAA‘,);%;-upaﬂ -z dny + (AT HMH - HRA L) (AR ()
" A

£,=4T"n, +fom,\bm,\*o* (-2, 00 ) dry . (4
A
TH - (am) (HHY - 0t HOH ) (—n)”HZfa‘;\Ilﬁ’\ B (x-za(0) dAy | (50)
)
bpmay, ah . {50

Equations (1)-(5) describe the interactions of a
collection of charged particles (labeled by A)
with the electromagnetic and gravitational fields.
Conventions and definitions for the above are the
following:

(i) We use units such that ¢= G=1.

(ii) 7n4¢ i5 2 Riemann flat background metric
(absolute gravitational field®). In some coordinate
system, it therefore takes on Minkowski values,
Ngp = dlag{~1,1,1, 1} Al tensorial indices
occurring in Egs. (1)~(5)are raised and lowered
with 745

(iii) Greek and Latin indices run through 0-3
and 1-3, respectively.

{iv) a,f, K are adjustable parameters.

(V) h,, =hy, is a symmetric second-rank dy-
namical gravitational field.?

{vi}) The world line of particle A is paramet-
rized by an arbitrary, monotonic parameter A,
which varies from -« to +=, Particle A is de-
scribed by its coordinate z| and its “‘velocity and
momenturn variables” a¥ and {1}, which are all
functions of A,.

(vil}) The electromagnetic field is described by
the tensor fields A, and H,, = -H, .

(viti) T*"is a “stress-energy tensor” for par-
ticles and electromagnetic fields. (The bar above

‘ B

is used to distinguish it from a different "stress-
energy tensor” defined in Sec. IV.)

(ix) Slashes denote covariant derivatives with
respect to the flat background metric ..

(x) p=determinant of n.,.

Equations (5a) and (5b) are decomposition egua-
tions® for T*” and b,. The dynamical variables
which one varies independently in the action are

By () 250000 @A), TV A0 and H ().
Variation of the matter variables vields the follow-
ing dynamical laws'?:

ma (1 -Kiy =01 -5, "1 1BS. 1 29)], (8

dzi/dny, =al -z )at [BS. L (30) - (D)
Fypeao, =An,
S H AV =S Ho BN = H b
IBS. I (31, (8
3 " P
”Mp"é’nz‘k f((%‘ﬁ B x -z dr =) T
T A

8BS, 1. a0, (®
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dib,u dzy
.;f—’\;—“ =eatuy E)T; +zaR I8 hoot o+ Kmpb by

{BS, 1, (5)], (10)

where h=h,”.
Variation of &, vields

@Dk, g+ MasTh

= 40T gg ~ 80K 0, [ maby, 6Mx~ 2, )d0 s .
E

(11
Here we have used the symbol [k, =n*h, ale-

B. Nontinearities in the Theory

Linear gravitational field equations do not pre-
clude a nonlinear form for the response of parti-
¢lés to gravity. The BS theory is an example:
Equations (6) and (7) endow the canonical vari-~
ables a4 and 14 with gravitational contributions.
Conisequently, the equation of motion for a parti-
¢le, Eq. {10), is nonlinear in the gravitational
field h,, . Indeed, although the BS theory is often
ealled a “linear” theory, its linear first-order
matter Lagrangian produces qualitatively many
of the nonlinear effects of general relativity (GRT),
for example {see Secs. IIl and IV). Hence one
should be cautious in the labeling of theories as
linear or nonlinear on the mere basis of the linear
forms of their gravitational equations.

C. Behavior of Rods and Clocks

In the third paper of their series,® Belinfante
and Swihart quantize the theory and obtain a
gravitationally modified Dirac theory. We remind
the reader that all nonmetric theories must ex-
hibit explicitly the manner in which all the laws of
physics are changed in the presence of gravity:
Belifante and Swihart find that, in the case of a
static spherically symmetric (888) gravitational
Source, the standard solutions to the unmodified
Dirac equation are related to those in the pres-
ence of gravity in the following way:

GolXo o= Nep(X, 1), (a2)
X,=Cx [BS, I, (78)], (13}
to=(1-0)t, (14)

mavel ‘_I—U ~3/2 -
N=CTE= (1—U/Za> t18)

Here the subscripted quantities are those in the

absence of gravity, ¢ is the electron wave function,
U is the Newtonian gravitational potential for an
SSS source, and a is the previously mentioned
adjustable parameter. The coordinate system is
one in which 1, =diag (~1,1,1,1). The energy
eigenvalues, i.e., E in ¢{X,1)= ({X) exp(—iE t/h),
are shifted in the presence of gravity:

E.=(1+U)  [BS, O, (82)] (18
-a result following essentially from Eq. (14). It
is Eq. (16) which produces qualitatively the correct
red shift. Equations (12) and (13) alse indicate
the effect of gravity on the coordinate sizes of
atoms. Consider the expectation value of the
coordinate size of an atom:

) =f|w(i,t)|2r s . an

Using Egs. (12) and (13) we obtain

@)= fN"S%(:ZD. P €7 €% x, = Cry)

1-U/2a
BN
{1-U(Fa™ =1} {ry) (18)

According to Eq. (16}, the coordinate ticking
rate of an atomic clock decreases in a gravita-
tional field:

w=(1-U)w, .

According to Eq. {18) the coordinaie size of a
rod made of atoms decreases in a gravitational
field:

I={1=Ua - 1) 1, .

Since @ ~ ; to agree with the light bending experi-
ment {see later sections), the above results are
the same, to first order in U, as one obtains in
GRT, using an “isotropic, post-Mewtonian”
coordinate system.®

HL. ATTEMPTS TO PUT THE THEORY
INTO METRIC FORM

The BS theory is a Lagrangian-based relativistic
theory of gravity.® Therefore, according to a
theorem proved in Ref. 4, it is a metric theory if
and only if the “nongravitational part” of its
Lagrangian,



-119-

v ANALYSIS OF THE BELINFANTE-SWIHART THEORY OF GRAVITY*
Enc=8y+ Ly, Then, from Eq. {7), obtain the relation

ean be put into universally coupled form.* Let us a’ =a,"dz"/dx . 21

try to achieve universal coupling by a change of

yariables, i.e., by introducing a new mathematical Equation (21), which is obtained after variation of

représentation of the theory. the Lagrangian, suggests that one define a new

variable v* to replace ¢* in the Lagrangian:
A. Particle Part of Lagrangian

Begin with the terms in £y¢ that refer only to a'=a,"v" . (22}
particles and define the following tensors:
Then, the relation v* =de*/dx will presumably

A,P=8," -3kt (19) turn out to be an Euler -Lagrange equation. Using
_ B Egs. (19)-(21), bring the particle portion of the
8.2 =(B.0), te., B ag7=0,". (20) Lagrangian into the form

'

y - E[fﬂ,,d‘x+[£,d‘x]w‘ {23)

dz} dz}y
3 S [0 e, b (BB e i AL
A

u u
f{_mA[_(x-Kh)=A,,“Awu;v;1 ‘“+e,,A,,Z~§—'L+HM<Z—i—"—a u;)} dxr, . (24)
A A

In obtaining Eq. (24) from Eq. (23) we have performed the integrations over d*x and, thus, all of the space-
time functions should be evaluated at the particle position z§.
If we now define an “effective metric,”

Bas=(1=KRP AL B, g=10p(1~2KR) +hog+ OF) (25)
Eq. (24) takes the universally coupled form, with g,, being the only gravitational field occurring in Jpen.
Varfation of I, then ylelds the desired relation

4 dz*
AT v (26)

To make our results look simpler, we explicitly introduce Eq. (26) into Eq. (24), thus eliminating {I,
completely and obtaining

def dz§\*"? dz*
- - b TA puindiy
gt ”};J‘ [ MMy ( guad“ d)\A) +ephy dn, ]d)\a- 27

Variation of Eq. (27) yields equations of motion which, by the use of Egs. (6), and (19)-(21), can be shown
to be identieal to the BS equations of motion, Egs. (10). Equation (27) is the familiar “metric theory”
action principle describing the interaction of charged particles with the gravitational field g,, and the
electromagnetic field 4 .

B. El ic Part of L

It will now be shown that, to first order in h,,, the electromagnetic Lagrangian can also be put into
metric form. Change variables from H,, to an antisymmetric tensor F,, by

Hyy = Fyy (14300300 $ 2F, (hy " (L) = 2F g,y 1%, = 2F3 i byt + O(FR) (28)
Equation (28) is simply the result of an inversion of Eq. (8). Bquare brackets around indices denote anti-

symmetrization of indices (with the usual normalization of a factor of 3). Variation of F, in the new La-
grangian presumably will yield the relation
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Fuv=Au ~Auw - (29)
Substitution of Eq. (28) into the electromagnetic portion of the action yields
L= (407 [T ol (50 (1= 30 + B )1 = A, Hag ™0} (-0 /2 d
:(4n)"f{-5[ﬁ"aﬂ(1 +30) 4 2F, (g ) [Fuu(1+ 50+ 2P g M g T
= A1y 1 [ Faall v 3h) +2F (ohig N} (=) /2 d%x (30)
:(417)“](/4[“”] +;~FW> Fon[n®n™ (14 5h) ~hn® ~h® ] (—n)2d*x + O0P) | (31)

where
e =inP (- 4h) + k5
If one now uses the inverse of Eq. (25), i.e.,
%% =0® _h®P L 2KAN P 4 O(K?)
and
(=gl = (=m) (1 +h(z - 4K)] + OGP,
one finds Eq. (31) can be written as

Lan= (407 [ gy +F0)

X Fop 8 g™ (- gP 2 d*x + Lo .
(32)
where

Lmns(‘lﬂ)"ff‘w( § Fop~Agara TP P dix

= Ol (33a)

and
T Hows o % hnnu aan“ hn““h”a
+30PROR " 3RS (33b)

Thus L, has universally coupled form at O(h); at
O(h*) deviations occur, arising from the L, term
in Eq. (32). Variation of F,, in Eq. (32) yields the
desired relation between F,, and A, i.e., Eq.
{29). Completely equivalent equations are obtained
if Eq. (29) is now substituted into Eq. (32), yield-
ing

Lo =~ (1671)'1]17” Fuw €48 (=)' d°x + Loons
(34a)

= (1607 [Fap P20+ Lo -
(34b)

r
The relation given in Eq. (28) is now understeod to
hold in Eqs. (34). Since we now have constructed
a second metric g, (the “physical metric”),
indices on all quantities except the constituents of
Fas Masr Bas, D qa) henceforth will be raised and
lowered with g,5. Equation (34), aside from the
O(k*) correction term, is recognized as the elec-
tromagnetic Lagrangian for metrie theories. Thus
the BS theory is a metric theory at first order,

but nonmetric at all higher orders {in k).

C. Summary of Our New Representation

Our new representation of the BS theory is
summarized succinctly in Table L. In particular,
one sees that for uncharged particles the theory
is metric to all orders in h, with g5 playing
the role of the “physical” metric.* When electro-
magnetic phenomena are included, and when one
goes beyond first order in &, the theory is non-
metric {¢f £, in Table I}

1V. THE POST-NEWTONIAN LIMIT
OF THE THEORY

We now proceed to calculate the post-Newionian
(PN} limit of the theory. The PN limit is a per-
turbation solution of the gravitational field equa -
tions — expanding in the small quantities occurring
in the solar system, e.g.,

v = (macroscopic velocities of bodiesY = Oe®),

U= Newtonian gravitational potential = O(e?),

= pressure
P proper density of rest mass

=0(e?),

. densi
= internal energy density = 0le?) .

rest-mass density

We refer the reader to Ref. 5 for further details
of the expansion Scheme.
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A. The Metric-Theory Approximation first term= {total energy density)x€*

>

while the second term is of order (see Table I)

second term = (electromagnetic energy density)Xe?.

oy, [ Since the electromagnetic energy of a substance
6Lmee  Don is typically s_maller than the total mass-energy by
=-( o * ) a factor = 107°, the second source term in Eq. {(35)
L4 L can be neglected at PN order, by comparison with
B (&xgm_ ag,, +6£wn) the first. Similarly, one can make a metric-the -
o bg,, ohy, | Ohy, ory approximation for the response of matter to
(—g)‘/e ag 680 gravity., For metric-theory (i.e., universally
:_(—2— ™ 5#—"— + —bh———> R (35) coupled*) Lagrangians, one always has
Hy By
av
where we have used the usual definition (as in =0 81
metric theories) when the matter field equations are satisfied,
. where the semicolon denotes covariant differen-
i :_im ﬁ&ﬂ.‘.‘lﬁ ., (36) tiation with respect to the physical metric gqp.
(-8 0,y In the BS case
To PN order, the first term on the right-hand THY o O<6£m" h v)( (38)
side of Eq. (35) is of order e it Y

TABLE 1. A new mathematical representation of the Belinfante-Swihart theory.

1. Gravitational fields:

a. Absolute field... .. ............. ... . ... ..
b. Dynamical symmetric second-rank tensor. .
€. PhYSICA]” MEELIC. (ot en ettt e e e s

2. Nomgravitational variables:

a. Particle coordinates....................... ... e e 2a
b. Electromagnetic vector potential ................. LA
c¢. Affine parameter of particle world lines. .. ........ e e e e Ay

3. Gravitational field equationa:

a. Flatoess of 5: Riemann (1) =0

b. Field equations for h obtained by variation of h, 5 in Lagrangian below

¢. Decomposition equation forg: gug =] - Kh)ZAa"A“a where we have defined AO(E(:S s —thgT)=a,T,
K is an arbitrary constant, A =n% k.5, and indices are raised and lowered on hyp, &g With 1.5,

. Influence of gravity on matter:
Equations for 4,z 4, obtained by variation of those quantities in Lagrangian
Lagrangian density:
a. £=8;+Lng
b, j?,G:_uﬁ,,)vlwhpo locty o ter ok foy (py¥/?

: 8
dzg da, \V? daty -
c. £m:z f[-—m,,( ~&un oy Dy e, Ay Ffﬁ‘}dh‘w’i'f,«)““s“) I T RS
A

=L metrict Leorr »

where £, the “correction term” in the Lagrangian, which represents the amount by which the
purely electromagnetic portion of the Lagrangian fails to have metric form, satisfies

Leorn =0 (F*?) [see Eqs. (33) .
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soragain one can conclude that effects resulting
from the deviation in the matter response equa-
tion from Eq. (37) will be < 107* of PN effects.
Thys for all PN phenomena we can neglect Lecon
and treat the BS theory as a metric theory.

B. From Point Particles to Perfect Fluid

Inone of their original papers' Belinfante and
Swihart, when solving their gravitational field
equations with the sun as the external source, use
anad hoc perfect-fluid stress-energy tensor for
TH#Y rather than the expression given in Eq. (5).
Their 'T,,,, is precise enough to yield an adequate
treatment of the “three classical gravitation tests”
but is not precise enough to adequately handle
such effects as the effective gravitational mass of
gravitational energy (cf. “Nordtvedt effect” in Ref.
5} To avoid such problems, and lo ensure self-
consistency of the theory when dealing with gravi-
tating sources in the solar system, we will build
up the fluid BS stress-energy tensor T*" as an
average over charged point particles and their
electromagnetic fields {cf. Eq. (27) and Table I}.

The kinetic -theory procedure for constructing
a.perfect fluid out of interacting particles is the
same in any metric theory as in general relativity,
and the same in general relativity as in special
relativity (“equivalence principle”).*® By following
that standard procedure and by neglecting the
resulting nonperfect fluid terms, we obtain the
standard stress-energy tensor:

TH= (¢ +p) utu +pg*” . (39)

Here u” is a suitable macroscopic average of the
microscopic particle 4-velocities, ¢ is the density
of'total mass-energy (rest mass plus kinetic ener-
gy of particles plus electromagnetic energy) as
measured in the macroscopic rest frame, and p

is the similarly measured averaged pressure.

C. The Parametrized Post-Newtonian (PPN} Formalism

References 5 and 6 present a “parametrized
post-Newtonian formalism” in which the PN limit
of every metric theory is summarized by the
coefficients of various integral functions in its
metric. These coefficients, the so-called PPN
parameters, are obtained by the previously men-~
tioned perturbation solution (PN limit) of the
gravitational field equations. We have constructed
such a solution for our new mathematical repre-
sentation of the BS theory, using Eqs. {35} and {38}
and Table I. The details are spelled out in Ref.
14, (Actually Ref. 14 is the presentation of an
exaet gravitation theory closely related to the met -

ric-theory approximation of the BS theory.) We
refer the reader to Ref. 14 and here quote only
the PPN parameters of the BS theory:

Y=¥+0W), §,=0, a,=0Ww),
B=B+0), £,=0, a,=0W), (40)

£, =0, £,=0

€4 a,=0

Here ¥ and B are given implicitly in terms of a
and f by

a=1/(2y+2), [CHY]

10B+67F-17% -8 -6
A ToR T Ery sy (42)

and to obtain the correct Newtonian limit one must
require

16K% —4aK+a+3f
—-——mf—)—«—-— =2 . (43)
By O(w), we denote terms involving the cosmo-
logical boundary values of k,, (see Ref, 14 for
further details). Imposing Eq. (43) reduces the
number of arbitrary parameters to two {¢ and f,
for example); so we may regard ¥ and J as being
arbitrary. For comparison, general relativity
has no arbitrary parameters and its only nonzerc
parameters are y=3=1,

V. EXPERIMENTAL CONSEQUENCES
AND TESTS OF THE THEORY

In his 1972 Varenna Lectures, Will® summarizes,
within the PPN framework, the constraints which
may be placed on a metric theory’s parameters by
current solar system gravitation éxperimenis. As
has been indicated in 8ec, IV, the difference
between the BS theory and a metric theory for
PPN-type experiments is less than one part in 10%,
For most experiments the microscopic internal
energies play a minor role; e.g., it is the macro-
scopic rotation of the earth which produces the
macroscopic Lens-Thirring precession of gyro-
scopes. For such experiments ‘the BS theory
is effectively a metric theory to a much higher
accuracy than indicated above. In summary, so
far as PN experiments are concerned, to the
precision of the technology of the 1970's the BS
theory is accurately summarized by the values of
its PPN parameters, Egs. (40). We refer the
reader to Ref. 8 for the experimental consequences
of those values. Here we merely point out a few
salient features.
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Perhaps the most important feature is this: If
the O(w) terms in the parameters are sufficiently
small, and if the arbitrary parameters are chosen
sothat ¥=pF=1, then the PN predictions of the
metrié-theory approximation to BS are the same
a8 the PN predictions of general relativity. in
particular, the predictions for the “three classical
tests” are the same as Belinfante and Swihart!
themselves deduced by complicated calculations.

A, Preferred-Frame Effects

For the coordinate system in which 5 is Min-
kowskian, it is natural to set the boundary values
of :h to zero when treating the solar system, as
was done originally by Belinfante and Swihart.
However, the correct way to determine the bound-
ary values of k is through the solution of the
cosmological probler. If the solution produces
nonzero cosmological boundary values of i, then
those values will effect certain of the PPN param -
eters [cf. O(w) terms in Egs. (40)]. In the case of
the BS theory the presence of such terms is a
direct consequence of the presence of the “absolute
gravitational field” 7* (cf. Table I), and leads to
various preferred-f;ame effects® such as anom-
alous solid earth tides and contributions to the
perihelion shift of mercury. We refer the reader
to Ref. 14 for a more complete discussion of the
derivation of such effects in the BS theory.

B. Precession of Gyroscopes

We specifically mention this experimental test
only because there seems to be some confusion®
as to the predictioh of the BS theory. Using for-
mulas from Ref. 8 and the BS PPN parameters,
Eq. (40), one obtains for the precession of the spin
3 of a gyroscope orbiting the earth

a8 _ =
ds QX§ R (44)
where
£2= 0 Lo Thicriog + 2 soodenc {45a)
Qur =547 +4+0w)] (0.05" of are/year) ,
(45b)
Qg =3[1+2¥7+O0@)] (7" of arc/year). (45¢)

Thus the results of the upcoming Everitt-Fairbank'®
gyroscope experiment {to be launched before 1977)
can only place upper limits on the cosmological
boundary values of ky, [cf. Olw) terms in Egs.

(45)] for a given choice of 7.
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C. The Weak Equivalence Principle and
Edttvis-Dicke-Type Experiments

We conclude by considering the Edtvds-Dicke
(ED) type experiments, '°*!" which test gravity
so precisely that they fall outside of the PN realm
of precision. Braginsky," in his recent version of
the ED experiment, reports that the difference in
acceleratione of test bodies of aluminum and
platinum in the gravitational field of the sun is
smaller than one part in 10", Such a result rep-
resents & strong validation of the weak equivalence
principle® (WEP). Consider the contribution of
electromagnetic energy at order F** (see bottom
of Table 1) to the gravitational mass and accelera-
tion a of a test body:

i1 E electromagnetic energy) h‘]
3 total energy

_ electromagnetic energy
= total mass

2
g

U, (46)

where #~ U? and §= $U.
ing relation holds:

For platinum, the follow -

electromagnetic energy 10-9

total mass '
and the Newtonian potential due to the sun at the
earth is

Um 1070,

Equation (46) and the above numerical estimates
indicate that the ED experiment can distinguish
between the BS theory and its metric~theory
approximation(cf. £or in Table I). All metric
theories satisfy WEP identically. The BS theory,
however, as is shown in Rel. 9, predicts

) 5 i
gt
! é

6x 1071

~ <electroma.gnetic energy) v
total mass

in clear violation of the Dicke*® and Braginsky®*
versions of the experiment. The reader is re-
ferred to Ref. 9 for complete details as to the
derivation of Eq. (47) from considerations of par-
ticles interacting with gravity and electromagnet -
ism.
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ABSTRACT

We present a Lagranglan-based metric theory of gravity with three adjust-
able constants and two tensor fields, one of which is a nondynamical "flat-
space metric" n- With a suitable cosmological model and a particular choice
of the constants, the "Post-Newtonian limit" of the theory agrees, in the
current epoch, with that of General Relativity (GRT); consequently our theory
is consistent with current gravitation experiments. Because of the role of
1, the gravitational 'constant” G is time depeundent and gravitational waves

travel null geodesics of n rather than the physical wmetric g. Gravitational
waves possess sixdegrees of freedom. The general exact static spherically
symmetric solution is a four parameter family and ome of these solutions is

investigated in detail. Future experimental tests of the theory are dis-

cussed.
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I. TINTRODUCTION AND SUMMARY

Within the past few years an elegant thecoretical formalism, the "Para-

metrized Post-Newtonian" (PPN) framework, has been developedl to analyze
metric2 theories of gravity. The PPN framework is structured around the
"yeak gravitational flelds" and low velocities of the gravitational matter
which characterize typical solar-system tests of gravity. It classifies each
gravitation theory as to its form "in the Post-Newtonian (PN) limit." At
first it was hoped, and indeed seemed to be true, that the PN limit of each
theory of gravity is unique — thus by solar-system experiments alone, one
could, in principle, determine the "correct PN limit," which would then
correspond to one and only one "correct theory of gravity." 1In addition,
it was hoped and is hoped, that the "correct PN limit" is that of General
Relativity (GRT) (although we try not to let this fact prejudice our investi-
gations). To play devil's advocate, a program was initiated to attempt to
formulate theories of gravity with the same PN limit (and hence PPN para-
metersl) as GRT. The aims of such a program are two-fold, as one can ask
the following questions: (i) If such theories exist, how complex and con-
trived are their formulations? (ii) Do such theories have anything in com-
mon and in what respect do they differ from GRT outside of the PN limit?
The first question is primarily only of aesthetic interest. But the second
has the possibility of identifying powerful new theoretical and experimental
tools for testing relativistic gravity — indeed that has been the case (see
Sec. VI and Refs. 3 and k).

In this paper we present and analyze a new theory of gravity — one
which has the same PN limit (for the current epoch) as GRT, given a suitable

'cosmological model and a particular choice of the adjustable constants.



Analysis of our new theory provides partial answers to questions (i) and
(i1} above.

A further motivation for study of this particular theory is to analyze
in detail the role of prior geometryg in gravitation theories, a role which
will be investigated in more general terms in another paper.5

To date the authors are aware of three other new metric theories which
are candidates for sharing the property of having the same PN limit as GRT
{candidates in the sense of contingency upon the existence of special but
acceptable cosmological solutions and certain choices of the available adjust-
able constants). These theories are the Hellings-Nordtvedt theory,6 Ni's

7
theory, and the Will-Nordtvedt theory.8 Of these three, Ni's theory con-

tains prior geometric elements like our own.

A. The Lagrangian Formulation

The equations of the theory are obtained, in the usual way, by varying

the dynamical variables in the Lagrangian:

L = J"_{G(Q,g) dhx + I{Nc(gﬂﬁ d*x , (1a)
g = glnh), (1b)
Riem(yn) = 0 (1¢)

where n,h,g are second-rank symmetric tensor fields: 7 is an absolute
variable® (not varied in L), h is dynamical, and g 1s constructed algebra-
ically from 5 and E. The Riemann tensor constructed out of 7 is denoted by
Riem(n), and consequently Eq. (lc) states that n is a "flat-space metric.”
It is Eq. (lc), the "fleld equation"” fory, that introduces geometrical

structure into the theory which is independent of the matter distribution
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— thus the "prior geometry." The gravitational Lagrangian demsity is denoted

by ib while the nongravitational Lagrangian density,2 e is the same as the

NG’
corresponding quantity in other metric theories, (e.g., GRT), with q% repre-
senting the matter fields. The "physical metric," governing the response of
matter to gravity, is denoted by g.

Explicitly, £G and g are defined by the following:

-1 0B Mi_po /2
Zo = = (16m) 7 qn T (ahy ok g+ £y b ) (- m) / ,(2)
g = (1-mm2a"a (3a)
wv Ah TV’
" a _1_ oy @
£le g e, o)

Conventions and definitions for the above are the following:
(1) Greek indices run 0-3, Latin 1-3.
(1i) units chosen such that G = ¢ = 1 (gravitational constant today
and speed of light) (see Sec. VI).
(ii1) slashes "{" and semicolons ";" denote covarignt differentiation
with respect to the flat space-metric Nog and the curved-space
.metric g respectively. Comma ''," denotes a partial coordinate
derivative.
(iv) 7 is the determinant of Nog"
(v) 50; is the Kronecker delta.
(vi) Ahv is defined by Eq. (3b).

(vii) indices on Do and hoﬁ only are raised and lowered with Ny

o o - o o
f.e., h = h Tog = h, and n Ty = ) 7; indices on all other
tensors will be raised and lowered with goﬁ.

(viii) signatures of 7 and g are + 2.
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(ix) a,f,K are adjustable constants.

Motivation for the rather ungainly expression for the metric {Egs. (3)]
comes from an analy5139 of the Belinfante-Swihart theory of gravitylo — a
theory which can be reformulated, at lowest order, into a metric theory
with "effective metric" of the form of Egs. (3). From that suggested alge-

braic form for the metric we have constructed the present full metric theory.

B. Summary

Section II includes a discussion of the field equations and a calcula-
tion of the PN limit of the theory. It is shown that there are mathemati-
cally ten degrees of freedom in the initial value problem for huv (compared
with two for guv in GRT). In the PN limit there are, in general, "preferred
frame effe?é";l such effects are, however, functions of only the cosmolo-
gical boundary values of huv' By a certain choice of the cosmological model
one can make these effects vanish for the current epoch. We suspect that
such time-dependent preferred-frame effects are a common property of prior
geometric gravitation theories. At any rate, the observed absence of
preferred-frame effects can only place upper limits on the cosmological
boundary values of huv'

Section III derives and discusses the equations of stellar structure
for static, spherically symmetric stars. The equations are much more com-
plicated than the corresponding omes in GRT (see Table I) and there is prob-
ably no analytic solution even for a star of constant density. In addition,
a stellar model is not uniquely specified by giving its equation of state
and central pressure, as is the case in most other theories., The exact
exterior, static spherically symmetric solution is obtained and is found to

be a L-parameter family.
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Section IV includes an analysis of a special exterior spherically
symmetric solution. For this special solution, the effective potentlals
for particles and photons are similar to the corresponding quantities in
the Schwarzschild geometry of GRT, outside of a couple of "Schwarzschild
radii.” However, the physical manifold extends only to p = 1.5 m,11 which
is a "point at infinity"” (not reachable in finite affine parameter by any
geodesic).

There are no singularities or horizons (i.e., no black hole) in the
physical manifold in this exact solution, but a peculiar geometrical effect
in which the proper surface areas of concentric spheres centered on p = O
pass through a minimum and then increase as one moves radially inward
(decreasing p and increasing proper time for radially falling observer).
The minimum of areas is approximately 97nm2 and occurs near p = 2.7 m. The
areas then increase to infinity at p = 1.5 m, although space is not flat
there.

It is also found that one cannot embed the entire constant time,
equatorial geometry in a Euclidean 3-space, but that a pseudo-Euclidean
space is necessary for 1.5 m< p € 2.1 m.

Section V discusses time-dependent solutions, conservation laws, and
gravitational waves, Birkhoff's theorem12 does not hold in this theory,
i.e., the exterior geometry of a spherically symmetric and asymptotically
flat spacetime need not be static — collapsing stars can radiate monopole
gravitational waves. The general plane gravitational wave has six physical
degrees of freedom, the maximum number possible in a metric theory of gravity.5

As the theory 1s Lagrangian-based, conservation laws follow and one can
construct a gravitational stress-energy complex. Appropriately defined, the

stress energy-density of this object is positive definite for all possible

P



~132-

polarizations of plane waves. In addition there is a purely gravitational
éu&ntity conserved all by itself, probably of only mathematical interest.
Section VI discusses the time dependence of the gravitational 'constant”
and further possible experimental tests of the theory. In particular, a
search for time delays between reception of gravitational and electromagnetic
bursts and a search for "non-GRT"' type polarizations of gravitational waves
promise to be important future experimental tests of the theory. Such tests
would also be crucfal in the theories of Refs. 6, 7, 8; and their identifi-

cation represents an important success in our program of "devil's advocate.”

ITI. FIELD EQUATIONS AND POST-NEWTONIAN LIMIT

Variation of Eq. (1) with respect to the dynamical field variable huv

yields the following gravitational field equations:

(- Y2 w™ e B o) - ) g/ ) (xa)
where
MR R & }
3 h E q h ‘Q;B , (41))
8 o )R (s gy foeg) (1)

and 5 is the variational derivative.
From the matter equatioms, obtained by variation of a in Eq. (1), one

can show in the usual manner (see, e.g., Ref. 13)

Equation (5) 1s the typical "matter response equation’ in metric theories.
Contraction of Eq. (La) with Ty yields an equation for h alone, which

can be substituted back into Eq. (La) to yield
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o = - O/a) (- )P )PP ke Tt T 0 ) (se)

where

Yoo e /oh .
gaﬁ - Bl [IRY (6v)

The linearized limit of Eq. (6a) is

1

oY o (unfa) TR 5) V(£ & oka)(a + LE)TT] . (7

g " s Wu
Unlike metric theories without prior geometry, the four Eqs. (5) do

not follow from the gravitational field equations; they are additional

equations.5 However, there isno problem of overdetermination because all

of the 10 components of vV are now dynamical variables; i.e., 1if all of the

essential coordinate freedom is used up in choosing a frame in which og

has a particular set of components, [usually diag(-1,1,1,1)], then there is

no coordinate freedom left to adjust the components of huv‘

For example, for a perfect fluid TQB

is described by four matter
variables once an equation of state is given (3 components of four velocity
and energy density, for example). Thus Eqs. (5) and (6a) comprise a system
of fourteen independent equations for the fourteen unknowns.

We also note that all of the ten Egs. (6a) involve second time deriva-
tives of hpv' Thus in the Cauchy problem all of the h‘W are to be regarded
as dynamical variables and there are ten degrees of freedom. Once gOB has

been constructed from o and h however, coordinate transformations can

op’
be performed and so there can only be six "physical" degrees of freedom.
This is to be contrasted with GRT in which not only can four of the go6 be
chosen arbitrarily by coordinate conditions, but also four of the field

equations involve only first time derivatives. Thus in the corresponding

Cauchy problem, the Einstein gravitational field has only two physical
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degrees of freedom.

The PPN framework of Nordtvedt, Will, and others can be used to analyze
the predictions of all metric theories with respect to solar-system experi-
ments (e.g., light bending, perihelion shift, gravimeter data, earth-moon
separation, etc.). The reader is referred to Ref. 1 for a complete summary
of the PPN framework. Briefly, this formalism involves expanding the metric,
in the manner of Chandrasekhar,lh in the small dimensionless quantities which

occur in the solar system stress energy tensor, e.g.,

: -7
ve U~ (p/o) ~ i~ 0(c%) =~ 107" | (8)

where v2 is the squared velocity of a typical fluid element, U is the
Newtonian potential, P/o is the pressure divided by energy density (specific
pressure) and J| is the specific internal energy. It is found that, in a
particular coordinate gauge, and for most metric theories — including ours
— there are only nine different functionals which can occur in the metric
at PN order and only nine independent parameters multiplying these functionals.
Almost all twentieth century gravitation experiments to date can be summa-
rized by their constraints on these nine parameters, the "PPN parameters."
We now calculate in our theory the PN limit, which will involve a
perturbation solution of Eq. (8a). For calculational ease we assume a

coordinate system in which o takes on Minkowski values. Before we begin,

n

]
a crucial point must be recognized.”” The metric goﬁ has the form

8y~ g * O(B)

and we know that far away from the sclar system there 1s some coordinate

system in which goﬁ takes on Minkowski values. However, this coordinate

system will, in general, not be the same frame in which noﬁ takes on
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Minkowski values; there is no a priori reason why the boundary values of
huv should be zero in this coordinate system. Thus in solving Eg. (8a)
we are not at liberty to set equal to zero for all time the "arbitrary
constant' which may be added to huv; this complicates considerably the con-
struction of the PN limit of our theory. However, we feel that this com-
plication and its origin are of sufficient educational value to warrant a
detailed discussion.

Denote the nearly constant boundary values of huv by muv (wuv can
only change on a cosmological time scale by definition) and the part tied

*
directly to the solar system by hpv; i.e.,
h = h + oW . (9)

Now use the six-parameter invariance group of the Minkowski metric to
pick a coordinate system in which By is diagonal, reducing wuv to four
components, Without justification, but for simplicity, we now assume that
the three spatial components of wuv are equal. Such an assumption does not

affect the qualitative conclusions of this section. Further assume that

o, f<<1 (10)

although Yy does not have to be as small as the 0(c) indicated in Eq. (8),

Equation (10) will turn out to be an assumption consistent with the ultimate

experimental limits on the mpv.

Next expand Eqs. (3a) and (3b) in a power series in huv:

2 3 T
- h 4 K%hSy - 2K e
guv Ny 2th”v Ry + Ty 2 hhuv + g h“Th v o+ (11)

When Eq. (9) is substituted into Eq. (11) one obtains
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* * 2 2 * * 3 E3 ?
= e - - - - 2
Zo0 Dy + By Moy - Foh - KhT - zka bt - 2 S (12a)
= D Eh . 4 F5, b - 2Kh'h. . + K°h 2 SN (12b)
Byg ” PByy P ERgy B R - 157 it T Yiy <
* .
gOk - HhOk 3 (1&(:)

where all of the constants appearing in Egs. (12) have the form:
Dy =1+ 0(w), etc., and are given explicitly to O(me) in Appendix A, along
with other constants appearing below. Using Eqs. (12) and a perfect fluid

for the matter stress-energy tensor, one obtains from Eq. (6a)

MY - - (hn/a) I‘lovava(l + Ilhgo + Igh* + Igvg)[(l - ZKw) a“gs"a
+ quﬁnuv + % Suawvﬁ + Mnuvubﬁ + Nquvqﬁﬁh*
+ % SHah*va - P.Kh*s,“opve + qu}h*cﬁ] (13)
In Eq. (13) I, Il’ 12, 13, M, N are all functions of a, f, K| ;uv (see
Appendix A) and
wE Bug - W (1ka)
v axPae (14b)
0 = proper mass-energy density measured
in the rest-frame of the fluid. (1ke)

To simplify an already complex presentation, we have omitted the pressure
from the perfect fluid stress energy tensor and included the internal energy
in the total proper energy density p. (Such terms are not omitted in quot-

ing the final PPN parameters.) We now write

iy Wy | (@)
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in a perturbation expansion and obtain (see Appendix A for notation)

*
P (Dm0 _ hmpl(l S BKw) ¢ L - o (D . M)} = - Lmp ¢ (16a)
0'2 0’
. . -
o2 (Lp*is -lmpT(MwO T I AN cls” , (18b)
2 (1) %0 :
14 ( )h k TR )«‘T{TO{Vk(l - KoY s 3 ;ulvk] =z - hno C/ij , (16‘:)
* A" * s
o (E)h 00 )mvofs\(l/h 90 g <1)h + Bwvo) “>h 00 (1ed)
C 1 , 00
2 (2) %13 l i, i3, (1) %00 (1) * 2 (1), *ij -
7 h < - bR WV g (R1 h + Ry Th - BV )l - h’OO , {(1ge)
where
-1
vz (al) (17)
Solutions of the equations are
*i
(l)h 0o _ Cl (18a)
. :
(1)p*13 aijclu , (18b)
1), *¥Ok
( >h = CV (18¢)
(2,0 Isc . s (3¢, - c)le. « tBo, + C.x (18d)
070 17 o'f¥e2 ov'1 oM 00 Ve
(2), *13 i} 1]
= rR & - . 3 - C)
h RS+ T 1RICO s Ry(3C) - ¢ 0,
I T (
B G g (18e)
where we have defined the five "potentials" U, Vk’ Gl’ ¢ Jij, and the
""superpotential’ ¥ aa follows:
1 1 -1 3 1
U(x, t) = f plx',e)x - x' |77 d7x" (19a)
1 ' -1 k.3 1
Vi) = Fols O fx - w17 viax {19m)
o L
op(x ) = [olx', ) v7 |x - x| HER T (19¢)
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o, 050) = [olx', Ul - =7 ulx',0) x| (19d)
%M&t)gfp@ﬂtﬂ§-§'flv%jd%‘ , {1%e}
TX = U . (126

Using Eqs. (12) and our sotutions, %us. (13), we now compute the metric:

= - 5 7o I 1 {, ¢ (e )
800 Do+ Kyl o KU Kooy v K@y 4 KX e ia)
85y~ Byy(D+ KU}, {200}
8o = - HELVp Gcay;

Notice that the metric does not approvach the standard Minkowski tensor far
away from the solar system {when the potentials U, T 2o Vk‘ ¥ + Q) beceuse

of the leading constants DO and Dl' We must therefore make a 'scaling”

transformation:

r‘— 1,/ ’ T

o . (z1a)

t =D

x - D M® X (21b)

In the tensor transformation law for the metric

- SXQ \\)Xa 7oy
guv(Q) = gQB(X) :iﬁ» :E; = gﬂﬁ{u<¥'t)’ 11(§,t), L) )]

we also need to express the potentials as functions of the new (barred)
coordinates. An example of the procedure is the following: since p is a

scalar

S50 - olmt) (ama)

Ulx, ) = [olet,ehix - x 17 a0k - x0T alx
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In a similar manner one finds

o (xt) = DT (x 1), (23¢)
e

006 t) = DD 0 (x,8) (23d)
oo P

Vk<>f,t) Dol/‘D 5/2 Vk(f,t) R (23e)

¥ b DX (22£)

*, 00 ot en hes

, 00

Making the transformation i{ndicated in Eqs. (22) and (23) and then dropping

the bars, guv becomes

~ -1,.-1 -1 -2 2 -1.-2 -
Boo = - 1+ Dy DTKU + DTIDTIRUT + D7D K, + D

2 -2
Kby + D KX oo

-2
8i5 " 51j<1 + DKL),

8ok = T HCP Al

A final coordinate transformation must be made to remove the X term from
,

00

1

and reduce the metric to "standard PPN form." However, additional

€00
transformations of the form of Eqs. [23) are now negligible corrections and

no distinction need be made between functions of new and old coordinates.

2

The result of the final transformationm, t - t +1/2 D~ le o is
’
-2

> - , e
8o 7 Boo ~ K9P X oo o (25a)

- .
Big " Byy o (25b)

1 -2

> + = K N e

Bor ” Bok T L K0 (V- W), (25¢)

where wk is a new potential defined by

(- x) T = x 7 (- @ (26)

(2ha)
(2kb)

(2he)
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We now demand the proper Newtonian limit, i.e.,

which requires

(a consequence of our choosing units in which the gravitatlonal constant is
unity today). Equation (27) expresses a constraint between the three adjust-
able constants a, £, and K for a given set of W Comparing Egs. (2h)-(25)

1
with the definitions of the PPN parameters andusing Eq. (27) to simplify.

one finds
1 -2 -
7= D K5 = v(a, £,8) + 0(u) , (e8a)}
1. -1-2 -
P=-5Dy DK,z Bla, £,K) + O(w) (28b)
Ly = b= ba = ) = =0, (23¢)
o - eﬁcgn"8 - by o= O(w) (284d)
a -pDp b ofw) (28e)
2 o -/
where 7 and B are defined implicitly by the relations
— PR
a=(2r +2) , : (29a)
= -2 = = 2,-1
£ = (108 + 65 B - 7% - 8y - 6)[2(y + 1)(3y - 5 - 4B)°17 " . (29p)

In GRT, » = B = 1 and the other seven parameters vanish. In our theory it
is clear that the two adjustable constants, a and f, may be so chosen to
give any value to y and B. For example, if the wuv are all zero, one can
satisfy Eq. (27) and have ¥y = B8 = 1 with the choice

1 5 1.
(8, £, = (p - 70 16/ - (30)
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It has been shown16 that the nonvanishing of & Qé’ or leads to non-
invariance of the functional form of the metric of Eqs. (2L)-(25) under
post-Galilean transformations17 (curved-space versions of Lorentz trans-
formations). WNew terms, involving the velocity of the Lorentz boost with
respect to the current ''preferred frame" and multiplied by combinations of
Ql’ Qé, QB' appear in the metric. Nordtvedt and Willl8 have calculated the
experimental consequences of the resulting "preferred-frame effects" and
find that they lead to periodic anomalies in such phenomena as the solid
earth tides, secular perihelion shifts, etc. The reader is referred to

their paper for further details and we quote here only the current experi-

mental limits on al and a2:

Q. = 0.02 . (31b)

We have calculated explicitly the quite complicated functions Qﬁ(wuv%
Oé(wuv) and have examined their numerical values over a large range of con-
stants a and f (consistent with the experimental limits on v and B). We
find that the experimental comstraints indicated in Egqs. (31) require appro-

ximately
[+ ju b €016 . (32)

Even if we had not made the simplifying assumptions about the form of w "
its individual elements presumably would still be required to satisfy roughly
the constraint of Eq. (32).

Since the wuv are cosmological boundary values of huv’ one must solve
the cosmological problem for a particular cosmological model to obtain the

theoretical values of the uhv. Because of the absolute nature of Neg? it
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should be possible to construct cosmologies such that, during the current
epoch, the curved and flat-space metrics approach Minkowski form, far from
the solar system, in the same coordinate system. Such a cosmology would
guarantee that the wpv vanish at present, although a time dependent cos-
mology would certainly cause nonzero values of uhV to occur over cosmolo-
gical time scales. Indeed, preliminary results from a cosmological solution19

possible to make all of the w,, arbitrarily small for the current
indicate that it is/epoch — and still have a reasonable cosmological model.
Thus, a consistent solution exists for which the PN limit of our theory is
arbitrarily close to that of GRT in the current epoch.

Further details regarding the time dependence of the wpv are given in

Sec. VI.

IITI. THE GENERAL STATIC SPHERICALLY SYMMETRIC
SOLUTION AND EQUATIONS OF STELLAR STRUCTURE

A. The General Exterior Static Spherically Symmetric Solution

Before writing down the equations of stellar structure for a static
spherically symmetric star, let us construct the general static spherically
symmetric exterior solution (which must then be joined onto the solution

inside the star).

First of all, choose a coordinate system in which

h = 2 . (33)

rzsingg

The most general form of h v in this coordinate system which satisfies the

symmetry requirements is
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o(r) ulx) 0 0
p(r)  y(r) 0 0
huv . 0 0 rg?\(r) o] (3t)
0 0 o] r2sin29 )

The homogeneous field equations for huv are simply

0B, pv ; =
n o h |W|B = 0 . (35)

s

The solutions to Eqs. {35) which are well behaved at infinity enred1

al/r - Eau/r2 0 0
- Qah/rg ae/r - 2a /r3 0 0
= 3 2 3
wv ¢ o r(a,/r + a,/r”) 0
e 5 2,2 3
0 ) 0 r“sin Q(ag/r + 33/r ),
where a5, 85 g, and a) are arbitrary constants. We remind the reader that

the r coordinate in Eq. (36) has, at this point, no interpretation other than
its relation to the group — theoretically defined assumption of spherical
symmetry. Construction of 8,y from h;w is purely algebraic [see Eqs. (3)],
and the details will not be given here. Since huv has off-dlagonal terms,
so will guv' However, having obtained guv’ we can make the coordinate trans-
formation

t»t+(‘i)5 ar (37)

° 800

which then diasgonalizes the metric, and we finally obtain

2
a a a2
800 = (1-;@1)272[_1;;_ (1é ~§+-§)] , (38a)

x T

(36)



a 2
L -1 -3
a 2 at (T){Q +g(a) - ag) v apr ]
g = (1- k‘n)2 72 (1 +—1‘ —i> - b 4 —= (38b)
T 2 r rﬂ a 2 a a 2 ’
b 1.1 2.3
[ T2 r 3
r r
a a \-2
_ ST U i T
goo = (1 - xb) r(l—2 rTE 3 , (38¢)
gw = sin'6 gy (38d)
h = r'l(Ba - a,) (38e)
- 2 1 ’ :
-1
1 -1 1 -2 -3 2 1 -l
7 = [1 + §(a1 - ag) L - CPC RS (ah * 5 a1a3> r } , (38£)
2 2 2 2 2 =
ds” = goodt + grrdr + gggdg + gwmdu . (39)

Equations (38) for the metric indicate a L-parameter family of solutions for
the general static spherically symmetric exterior metric. One can convince
himself that all four of the parameters are physical (not removable by coordi-
nate transformations) by transforming to curvature coordinates and verifying
that four arbitrary parameters remain.22 In Sec. IV we will investigate

more closely a particular member of the 4-parameter family.

B. Stellar Models

We idealize a star as a spherically symmetric, static mass of perfect

fluid and assume a temperature-independent equation of state

p = plp) , (10)

where p is the pressure and p the energy density. We work in the coordinate
system in which ﬂHV has the form of Eq. (33).23 For mathematical simplicity

we seek solutions for huv which are diagonmal, i.e., with u{r) = 0 in Eq. (3k)}.
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Such solutions represent a subclass of all possible solutions and corres-

. i
pond to the condition a, = O in the exterior metric [cf. Egs. (38) and (28)1.°

The metric now has the form

- e
g = (1- kn)? (1-éw)"2 2 1 -2
v (1 - 5 )
r251n29(1 - —; \)'9 , {k1a)
where
Rz -ty o+ 20 . (L1b)

Equations (5) and (6a) together with Eq. (40) are the necessary set for
computing the structure of our stellar model., With the usual fluid stress

energy tensor

og o8 o
T = (o + p) u'd” 4 pg (42)

one finds that the only nonvacuous equation resulting from Eqs. (3) 1is

-1

dp/dr = (o + p)|2k(1 - ')} dhjar + (1 4 Loyt av/ar (13)

2

Using the Christoffel symbols for n, one finds that Egs. (6a) yield

the following:

“h= - bar(a + BE)THBK(p - 3p) 4 (1 - ww)[p(1 - 1) 07y ep(1 - Lt
1 -1
-t g1 (iha)
W= (£/a)5% - (uxfalr[extap - o)+ (10 Lot (12| (4sb)
GV = by - 2) 2 - (g/a) $Ph - Cerfadr|ex(e - 3p) ¢ (1 - L)1 - kp], (uie)

where
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o 2 a%ar s ot oafar (15a)
z - - -
rs= (1~ Kn)” (1« ém) ! (1 _«é W) ! (1 - é n) 2 (Lsb)

Equation (44a) follows from taking the trace (with respect to 1) of Eq. (8a).

Equations (4hb) and (khc) are the 0-0 and r-r components respectively of

Eq. (6a). Altogether, Egs. (h0), (43)-(hh) are five nhighly nonlinear coupled

equations for the five unknowns p, p, ¢, *, and ¥. Linear combinations of

Egqs. (bb) can be taken to yield

- = A/ -

which is an equation we will

- - -
3wt a-dw Voer P o), (ue)

later discuss.

Outside of the star the physically acceptable solutions to the homo-

geneous forms of Egs. (L4) are [cf. Eq. (38)]

The constants & a

v T

at the surface of the star.

S al/r , (L7a)
. ag/r - 233/r3 , (L7b)
- ag/r + 33/1‘3 . (L7e)

and a, are to be determined by matching conditions

The general procedure in constructing stellar

models is to choose various central values for the variables, integrate the

equations outward from the center until the pressure vanishes, and thus

establish the surface of the star. Various boundary conditions must typi-

cally be satisfied, but in the case of GRT, for example, the conditions can

be satisfied in a trivial manner without multiple trial integratioms. The

situation here, as we shall see, is vastly more complicated.

As long as the denominators do not vanish (see discussion below),
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Eqgs. (44) are regular at the stellar surface and hence require that rg, 1,
rA and their first derivatives be continuous across the surface. Using Eqgs.
(47) and denoting quantities evaluated at the surface by a subscript s, one

obtains the six matching conditions:

2 .
¥ " al/R' (w,r)s v al/R ’ (k3a)
= - ?a,/ o - e + 6 4 L3
Vg o ay/R - 2a, /R, (h g - ap/RT - sag/R (bab)

/ 5 2 b ,
Ay = a /R4 a, /R (x7r)s s - a/RT - 3a /R (48¢)

where r = R is the surface of the star.

What are the appropriate central quantities to be specified? Suppose
we regard (¥ -~ A), and ¢ as the three independent gravitational potentials.
Then a possible but nonunique solution to Eq. (k&) is ¥ - A = O everywhere,
corresponding to considering r an isotropic radial coordinate. However,
forgetting this special case for the moment, the regular solution of Eq.

(48) near the origin is

~

2
¥ - A ~ const. T

Thus one central condition to be specified is

where we denote by ¢ quantities at the center, analogously to the quantities
at the surface discussed above. The equations for h and © are regular at
the origin as long as the potentials are sufficiently small and therefore,
in analogy with the corresponding electrostatic equatioms, the derivatives
at the center, of ¢ and A must vanish. However, the central values of the

potentials themselves must be specified, and hence the two other central
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parameters are P, and 7\‘:. Thus in general we have six parameters to adjust,
e.ge, 8y, 8y 85 P, Aer (v - X)/rz}c in order to satisfy the six matching
constraints given in Eqs. (48), for a given equation of state and central
pressure. One way of viewing the boundary conditions is that D /\C,
(v - 7\)/1‘2]C must be so chosen as to match onto a regular exterior solution
at the star's surface — such a two-point boundary value problem in general
has a discrete set of solutions, i.e., for a given P, and equation of state
there may be no ‘cpc, Ao (v - X)/re]cl such that there is a solution, or
there may be many different sets. Thus the central pressure and equation

of state do not uniquely specify the stellar model in general. However, we
do know that for a weakly gravitating star (pc/<p) <« 1, @ A V<< 1),
Equations (4h4) become linear and do indeed have unique and well behaved solu-
tions for each central pressure (Newtonian, and post-Newtonian regimes, see
Sec. IT). However, we can expect that as the models become more and more
relativistic, a point is reached where each 1 and equation of state branches
into a discrete spectrum of stellar models.

If one trys as a solution to Eq. (46) ¥ = A, then a more convenient

form of the boundary condition is

fo/(xe )= -1, (hga)
[(3h + xh )/3M] :—32)— ) (k9b)

One then adjusts A, and B, to satisfy Eqs. (49) and defines a; and a,

(33 = 0) by

a, = Ryp_ , (50a)

L

1 -
a, =3 R(ZN + R?\’r)s . (50b)
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If ¥ # A, then the proper constraints are

[m/rrp,r}s = -‘1 s (51a)
N o~ N 2 (o1p)

[(3r 4 ru,r)/(a R 2D TR {£1b
\ - Iy 3y

R, - A /0w - E (ste)

2
and one adjusts xc, iR and [ (v - K)/r ]C to satisfy these three constraints;

defining a, and a, as in Eqgs. (50), and

z
- - 52)
R (AS ﬂs) . (52)

[
i
[SS RS

As far as the exterior metric is concerned, all of the information

about the stellar model is contained in the parameters a,, a,, and a, {and

e

a) in the general case). Each different set of values for these constants
corresponds to a different mass and radius of the star. Indeed, the total
mass-energy of the star (gravitating mass") as determined by 8yo and using

Eqs. (41) and (47) is

1 .
5 e+ K(Sag - al) s (53)

(a1 and 32 determined by matching conditions at the surface). It is dif-
ficult to say what each parameter corresponds to physically (in terms of
integrals over the source, etc.) because of the complexity of the inhomo-
geneous equations [cf. Eqs. (44)]. The only definite statement is that the

particular combination of a, and a, given in Eq. (53) corresponds to the

1
total mass.
A further interesting fact is that, for a given choice of a, £, K, the

PPN parameters y and £ — as determined by a 1/r expansion of the isotropic

version of the metric are functions of 2 and a, and in general are not



" equal to their values as determined in the PN limit. (This situation is
also true in the Dicke-Brans-Jordan theory.)25 Only in the case of a weakly
gravitating star can one be sure that the two different determinations of v
and B will agree approximately {to within PN precision). In GRT, on the
other hand, expansion of the Schwarzschild metric gives ¥ = 8 = 1 regardless
of stellar model, and in agreement with the 7 and B as determined in the PN
limit of the theory.

Table I gives a comparison between our stellar-structure equations

and those of GRT.

IV. ANALYSIS OF AN EXACT EXTERIOR SOLUTION

A. The Metric

As pointed out in the last section, the general exterior metric of a
statlc spherically symmetric spacetime is a lL-parameter family [cf. Eq. (38)].
Let us analyze a member of that family. First of all, for simplification,
we choose &3 =8 = 0, which puts the metric of Eq. (38) in isotropic form.
Next, using Eq. (53) as a definition of the mass m, we choose a,, a,, and K
such that a 1/r expansion of the metric indicates that the PPN parameters

7 and B are both unity (see Sec. II). In other words, choose a, a., and K

172
such that11
2 -3
Boo = = 1+ 2w/o - 2(n/p)" + 0(p™7) (sha)
-2
gy = - Bij(l + emfp) + 0(p™%) , (sbb)
which requires
aj/m=1, (55a)
a,/m=13 , (55b)

K= 1/168 . (55¢)
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It is interesting to note that the value for K given in Eq. (55¢) is the same
value required for y = B = 1 in the weak-field PN expansion {cf. Sec. II and
Eq. (30)]. Using Eqs. (55) and Eq. (38), one can now write the line element

as

1 2 1 2
(1 - 5 w/o) (1 -3 a/p)
ds® - - f 5 ae? 4 2 (dp2 + 02d92 + pgsingedwe) . (58)
3 2
(1 + 5 m/D) (1 - 5 m/P)

The line element given in Eq. (56) is the simplest static spherically sym-

metric metric which yields the same light bending and perihelion shift (viz.,
y =P = 1) as in GRT. (Note that the value of 8yo 18 identical to the correspond-
ing term in the isotropic form26 of the GRT Schwarzschild geometry.)

B. Geodesic Completeness and Radial Geodesics

A glance at Eq. (56) reveals that p = 1.5 m is an infinite proper radial
distance away from any p > 1.5 m. To investigate whether this point is
removed from the physical manifold we need to look at null and timelike
geodesics. Consider equatorial orbits (no loss of generality with spheri-
cal symmetry) and consider the first integrals of the motion for particles

and photons:

a ., 2 00 0,2 2 o
wuy = - 1= (u)" g + Spp(“) +(u¢) g, (57a)

2 00 2 o 2
Bop(Pp) " + &8 (By)" + g7 (R)" =0, (57b)

where u” = dxoydt for particles and p” = dxa/dk (with A\ the affine para-
meter) for photons. It is well known (see, e.g., Ref. 27) that for a metric
of the form of Eq. (26), U Yy and (Pm/PO) are all constants of the motion,
which we shall denote by - E, i, and f, respectively. Physically, these

constants are energy per unit rest mass, angular momentum per unit rest mass,
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and impact parameter respectively.

Using the above, Eq. (57a) can be written as

P = dofar = (5 - D (5 + Dlp - DIEF - rALE) (s8a)
where
S =ofm L=Llfm ete. | (59b)
and
rETe) = 6D TNG - DT G - HHYE (s8e)

The function I' plays the role of an effective potential, which we shall

discuss later. Equation (57b) can be written as
L

~ 3

P ~% -

2 1 ? 2

(dp/dt)” = = :“’% " -, (59a)
el P+ 3

where

- 3)~1

y 7 o(p + »é)(b -5 . (59b)

Consider first radial geodesics (L = f = O). Then Eq. (58a) indicates clearly
that T = 3/2 is an infinite proper time away from timelike geodesics. If

one then uses the fact that P =

5 = Boo dt/dA = constant for the null radial

geodesics together with Eq. (593), then it is also easy to show that

b= 3/2 is an infinite affine parameter distance away for null radial geo-
desics. Equations (58) and (59) indicate that nonradial geodesics between
any two values of p take even longer proper time and affine parameter than
do radial geodesics. Thus we have shown that p = 3/2 is really unreachable
by particles and photons; in particular, the manifold covered by our coordi-
nate system is maximal.28 Since one can also show that there are no singu-

— 2
larities for p 2 3/2, our manifold is geodesically complete. &

For the special case of radial geodesics, we integrate Eq. (58a) to



yield
a1 | @&+ 2e(p - %) 1 5/2 . -1f2ds - 1 - E°
r=2]-b"n R— - a7+ a7 %sin” (-ufliLf:¥l-—) (60a)
O—-‘§ 2E

+ const. for l< E<l ,

5
where
b = (uﬁg - 1)1/2 , (60b)
c=oEC -1, (60c)
a=s1-E° (80d)
x=[(1+5) 5 - e+ Y2 (60e)

We will not be interested in analytic solutions for values of E other than
those indicated in Eq. (60). To obtain the functional relationship between
coordinate time t and p for 1/2 < E < 1, add to Eq. (60a) a factor of L
multiplying the log term and a factor of (3 - 252) multiplying the inverse
sine term.

For radial photon geodesics, Eq. (59a) can be integrated to yield
— — — 3
t =% (p+ 2in|o - 5!) + const. . (81)

Figure 1 illustrates a few of the radial geodesics for photons and particles,
the latter released from rest at p = 10 and p = 5. It is interesting to note
that the analogous metric in GRT is geodesically incomplete: o = 1/2 can be
reached in finite proper time, but requires infinite coordinate time.

It can be shown, from analysis of the metric, that another complete
universe exists for 1/2 = p = 3/2, However, if we assume the geometry to be
produced by a star which originated in our universe, then its surface lies

outside p = 3/2. 1In the following we consider only the reglon p > 3/2.



B. Proper Surface Areas and Embedding Diagrams

There are some curious geometrical effects in our manifold, not to be
found in the Schwarzschild geometry of GRT. The proper surface area of a

sphere described by p = const. is

2 2, 1,2 .
A= bm® 555 - 2) (p—%

-2
5 )

. (62)

A plot of this area is given in Fig. 2, in which the abcissa is marked off

not only by p but also by the proper time as measured by a radially falling

observer. As can be seen inthe figure, the observer sees the sequence of

surface areas pass through a winimum, A . = b (Lg/4 + 5/8) at

= 3/2 4+ 1/2/%, and then increase without bound as p = 3/2 is approached.
Another interesting feature arises when we examiune the intrinsic geo-

metry of the 2-surface: t = const., © = ﬂ/2 by the use of an embedding

diagram. By equating the two-dimensional metric

2 1 3,-2 2 -
ds” = (p - 5 2 (o - 5) (dp” + ppdgg) (62a)

to the metric of a surface of revolution in a Euclidean 3-space

o]
ds® = dz° 4 dr° + redwg =[ (dz/dr)” + 1} ar’ rgdcp2 , (62b)

one can visualize the geometry of Eq. (63a). If we can find z(r), or more
easily z(p) and r(p), then the line element of Eq. (63b) can be drawn.

Clearly

R TR R (6)

The function z(p) is the solution of the equation

L2 .2 342
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dfdo =5 MAE g DM D (650)

The right-hand side of Eq. (65b) becomes complex at

b = §<5 +V/13) ~ 2.1 or 1~ k.3 . (p€)

This indicates that for 1.5 < o < 2.1 we will have to embed in a pseudo-
Euclidean space, i.e.,

5 5
ds® - - dz° & dr° 4 rgdrr2 . (67)

The embedding diagram {s given in Fig. 3 and includes both the Euclidean
part and the pseudo-Euclidean part. The surface is obtained by rotating

the curve about the z or iz axis.

C. Particle and Photon Orbits

Analysis of orbits is facilitated by use of the effective potential.
Equations (58c) and (59b) give the effective potentials for massive particles
and photons. For a given value of i, the particle is allowed only in those
regions for which r(i,E) = E. For photons, 72 acts as an "inverse" effec-
tive potential; photons are allowed only in regions for which y & f. Figures
L and 5 4llustrate the effective potentials for particles and photons, respec-
tively, with the dots in Fig. 4 indicating extrema of the potential (circular
orbits). The closest stable circular orbit for particles occurs for Z ~ 2.88
at o ~ 7. For particles with larger i, the circular orbits with p < 7 are

unstable and those with 5 > 7 are stable. The circular photon orbit occurs

= 1.5 +/3 or r ~ 5. This can be compared with the corresponding value

o
i

at

3 in GRT.

ol
i

of
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V. GRAVITATIONAL WAVES AND CONSERVATION LAWS

A. Monopole Waves

In the full theory (no linearized approximation) the homogeneous field

equations are, as indicated previously,

Y e 0 (en)

and gravitational waves travel geodesics of n rather than g The impli-
cation of this last fact will be explored later. The simplicity of the
vacuum field equations [cf. Eq. (68)] is of great help in constructing
solutions.

Consider a time-dependent spherically symmetric solution to Eq. (88),

for example

h - r-leiw(r—t)

00 . (69a)

h, . S r—lei“(r't)
1] 1]

. (89b)

The Riemann tensor constructed from the resulting time-dependent spherically
symmetric metric is itself time dependent., From this we conclude the pre-
gsence of physical monopole waves; thus there is no analogue of Birkhoff's
t:heorem12 in this theory. The existence of such solutions in our .theory

and the accompanying monopole radiation complicate the problem of the spheri-
cal collapse of a star. As will be shown below, there are other "non-GRT"

type gravitation-wave modes in addition to the monopole waves.

B. Linearized Theory and Plane Gravitational Waves

In analyzing weak gravitational waves, one should restrict one's atten-
tion to the form and behavior of the Riemann tensor, not only because it is

gauge invariant (under infinitesimal coordinate transformations) but also



because it 1s that feature of the gravitational wave which interacts directly
with test bodies. Work in a coordinate system in which WMV is Minkowskian

and huv is small (small deviations from flat space). Then

2 2
= - 3 = ! -
By " My h“v 2Khnuv + 0(h") Ty * hpv + o(h") , (70)
and
1
R = —(h! h! - n' - h! . 71
aers ~ 2 M, T My T Paes T Phea) (71)

Furthermore, restrict one's attention to those solutions of Eq. {68) which

represent plane waves travelling in the z direction, i.e.,

ho- A eik(z-c)
v v

where Auv is a constant amplitude and k a wave number. To analyze the

decomposition of R into independent "wave modes' in as invariant a manner

oBrs

as possible, one should investigate the transformation properties of Rqsyg

under those Lorentz transformations which leave the wave direction fixed.
With such transformations in mind one selects a new basis in which the com-

ponents of R are to be computed — the quasi-orthonormal tetrad basis

oBrs

(see, e.g., Ref. 29 for a complete discussion of the "tetrad formalism').

k = 2"1/2(w1,o,o,1) R ' (72a)

L= 2"1/9(1,0,0,1) R (72b)
m = 2'1/2(0,1,1,0) , (73¢)
@ = 2‘1/2(0,1,-1,0) . (73d)

Note that one of the "tetrad legs' points along the direction of the wave.

In such a basis the components of the Riemann tensor are

_ By §
R g Roﬁ78n W g , etc. . (714)
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Using Egs. (71)-(7:) one finds that the only nonvanishing components of the
Riemann tensor are those with two {'s — thus there are six possible degrees
of freedom. Since there are no restrictions on the Riemann tensor once

Egqs. (68) are satisfied, all six tetrad components will in general be non-

vanishing and our theory thus has six independent gravitational wave modes.

In GRT, as a contrast, the field equations R/ﬁ = O imply vanishing of

Rlzkfk’ le[m, lel;’ and Rfmf?ﬁ so that there are only two degrees of freedom

and its complex conjugate R — —

— th d .
those represented by R;m Py

Im

The reader is referred to Refs. 7 and L for details of the transformation

properties of the objects indicated in Eq. (7L). Here we quote only the

results: We denote the six wave modes by Y., V,. ©.. ¥y ¥ 0 and in
2

3 L 22

terms of the tetrad components of the Riemann tensor and "electric" coordi-
nate components of the Riemann tensor (those which are directly physically

measurable) these are

1 1

ER- s oo 5

¥ 6 Rrwk 5 Rezez (75a)
1 1

= o. — = = ~ 75b)
¥y 2 lelm 2<Rtxtz iRcytz) ’ (75b)
- 1 1 -

F o~ == R s + 1 cc)
¥z 2 "fk{m S(chtz 1Rtytz> 4 (75¢)
¥y o= o - = - 24 724
! R imim Rtyty Reztz '1Rtxty ’ (724)
W= R ™ Rtyty " Rizes " 21Rtxt:y ' (75e)

[ =1 R, —=-R - R (75£)
22 2 “fmim txtx tyty -

The presence or absence of a \1"? component in a gravitational wave is Lorentz
invariant. If \y2 is absent in a particular wave, the presence or absence

of \j;s (or -\173) in that wave is also Lorentz invariant. As outlined in Refs.
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3 and L, if either ¥, or ¥, is present in a wave (in many theories they are

2 3

always absent, but not ours), then it is impossible to decompose the wave
into states of definite helicity (spin) in a Lorentz invariant manner: what
one observer identifies as '"pure spin 0" another observer will identify as
"pure spin O plus “pure spin 1," etec. . Only waves containing only 022.

¥, and @L can be decomposed into pure spins: spin O and spin 2. In general,
then, there is no unique spin decomposition of waves in our theory and it is
of class II6 (see Refs. 3 and L for a complete discussion of the "classifica-

tion scheme"). The physical imprints of the various modes will be discussed

in Sec. VI.

B. The Stress-Energy Pseudo Tensor for Gravitational Waves

For all Lagrangian.based theories a very general method, with roots

0 )
going back to Noether, exists for constructing conserved quantities (see

Ref. 5 and the references quoted therein for a more complete discussion).

Invariance of the gravitational Lagrangian under coordinate transformations
leads to the following identities:

'v v A =
(e v eh co (1)

where ib is the gravitational Lagrangian density, {bA is the variational
derivative of j% with respect to field Y occurring in i%,
a{‘G

v
T s W
i BUG 3y,

yAyU\, b (/73)
, vV

and UpAV is defined by the functional changes of the Ypr SYps under infini-

tesimal coordinate transformations, i.e.

® oMy g“ R (77b)
. Vo i

: =U Tt - . 77
“Ya pA Ty yA,ug (77¢)
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" We have assumed Jb contains no higher than first derivatives of the yA;
generalization to higher derivatives is straightforward. Equatioms (78)

are of the form of conservation laws and our object is to identify in a
physically meaningful way the gravitational portion of the conserved quantity.
To facilitate the computation, we assume Jb has been rewritten in terms of

)]

”aﬁ and gOB [which can be done in principle by solving for hoﬁ<guv'wpv

Using the tensor transformation law for gqﬁ and noﬁ’ one easily shows
v v .
U = - 3, (dde) T Yy T Yo (78)
where parentheses denote symmetrization of indices. Using Eq. (78) we

find the relation

lA, £ v 1/ _oo e vr.': 3
Ua 26 = 7 2y Pey (B8] - 2 (o) Ctp/og) (79)

where

If we now use the field equations
1 R ©
el /5800 o/ OB (80)

and Eq. (bec), Eq. (79) becomes

v

A X ' e e v v 1/2_ v
Ut = - ey (ylongg) ¢ )P T 9P L e

H

ks
We point out that although Eqs. (76) are "strong conservation 1aws”\'1
(identities), one must use Egqs. (80) to get out a physically useful result.

Substitution of Eq. (81) into Eq. (7€) yields

v /e v
e (- g) o - .
(tu (87T, ),v o, (82a)
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where
t Zt'v—/\uv . (3217)
The conserved energy momentum vector is then
0 /2. 0\ 3 .
P,F(t - (- T)dx. (83)
poov A (- &) il
Since P“ in Eq. (83) contains a contribution from the matter stress energy
tensor, we know we are on the right track. Problems arise when we notice
that the quantity defined in Eq. (82b) is in general not positive definite,
as a result of contributions from guv. However., it can be shown from the
generalized Bianchi {dentities of this theory (see Appendix B) that Auv

obeys the equation

,\uvlv =0 . (aL)

Actually, Eddington52 was the first to point out that conservation laws of
o

the form of Eq. (84) follow from theories with absolute objects.” If we

now choose to work in the coordinate system in which s 8 the globally

constant Minkowski metric, Eq. (84) becomes
A =0 , (85)

and we see that AHV is conserved by itself, independently of emnergy gain or
loss from matter (Tﬁv). Since our usual idea of total energy conservation
involves interactions, it is perhaps more useful to omit the separately con-
served Auv from consideration and to define, in this frame, the gravitational
stress-energy tensor as

e Ve Y, (ar)

v : ;
Thus Au represents the energy density of a quantity associated with the
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absolute field quv; at present we must regard it as a purely mathematical
quantity whose noninteraction with matter mirrors the absolute nature of
qpv‘ (As an aside, there always exists a tHV which is a real tensor and
not a pseudo-tensor in prior-geometric theories of gravity.g)

We point out that in the linearized approximation Eq. (37) is always
the expression of Eq. (84) in all frames related to the global Minkowski

frame by infinitesimal coordinate (gauge) transformations. We proceed by

explicitly caleulating tuv for the linearized theory. From Eq. (77a)

et ’ B .
e V. 5 Ve J{G g . Vo o, “%b hv%,\ e (57)
P o g SRR e L
W w6 %Bog .y B, 1 w6 jhyg,w ”gaﬁ,v B, u

Inverting the linearized relation between 8 and h_ , [<f. Eq. (70)] and

o8
taking the required partial derivatives, we find
_ ('\1 B);V )‘1 Oﬁ,;v . (

ahmu/agoﬁ’v =550 ¢ 2k(1 - 8K Nys

Using Eqs. (87), (88), and Eq. (2) for 7, we finally obtain

v o -1 vV, 70,B , C
tu = (161) [5H (ah hmB + fh h,()(} - 2{ah

B, v v
"h .- + fh h”7)]. (89
o, u s H )1 (89)

Since huv transforms as a tensor, the above expression is gauge invariant.
Equation (89) expresses a naturally defined stress-energy complex for the
gravitational field.
Consider the energy density in a plane gravitational wave
ik xa

Wo o A% & quo‘ =0 . (90)

Then the first two terms in Eq. (89) do not contribute to tuv and one obtains

« k kO, (91a)
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with

.

7. (87) Haf ¥ fn 0% (91b)

t h
0 8,0 J0°
With the suggested values for a and f {cf. Eq. (30)], Eq. (91b) indicates a

positive definite energy density. Tt is encouraging to note that for pure

spin 2 waves (only ), present}, Eq. (91b) becomes. for a - 1/L [cf. Eq. (20)].

t o = a(hn}‘l(h

Ospin 2

o
&

)

(180) 7 0 D% (92)

x, 0

b

xx,0

which is identical to .the corresponding expression in GRT.

VI. THE GRAVITATIONAL CONSTANT AND FURTHER EXPERIMENTAL TESTS

A. A Time-Dependent Cravitational Constant

As discussed in Sec. TI, a number of existing solar system experiments
place upper limits on the cosmological boundary values of huv fcf. Eqgs.
(31)-(32)]. These constraints can always be satisfied in a given epoch. A
more relevant point is the time dependence of the VQV' which is directly
reiated to the time dependence of the gravitational constant G. With the
choice of adjustable constants given in Eq. (30), and using the explicit

functional forms for K1 o D, one finds from Eq. (27) and Appendix A that

L Ny L ‘
1 - 16 (19‘,‘,1 ¥ /‘A,O) + 00 = 6 . {93a)

Thus

1
(—G) dG/at = - 1113 (19uv1/dc ! 7dw0/dt) . (93b)

Shapiro et 31.33 have placed limits on the time dependence of the gravita-
tional constant by comparing the periods of planets with the ticking rates

of atomic clocks. They find
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1(%) (do/de) | « 1 x 10" year . (9h)

This constitutes an experimental constraint on the magnitude of the time

derivatives of “y occurring in Eq. (92b). Preliminary results from our
S S R

cosmological solution indicate that the time dependences of “ and wy

satisfy Eq. (9h), but an improved Shapiro experiment might still prove to

be a crucial experimental test of our theory.

B. Gravitational-Wave Experiments

The analysis of the preceding section reveals two crucial new experi-
mental tests of our theory involving gravitational waves — two tests which
have blossomed from our current program {see introductory remarks in Sec.
1) — two tests which emphasize gravitational wave detection as a powerful

- The two tests are (i)

3
new tool for probing metric theories of gravity.
time delay between simultaneously emitted gravitational and electromagnetic
waves and (ii) polarizations of gravitational waves.

Since gravitational waves travel along geodesics of the "'fast metric"

and electromagnetic waves travel along geodesics of the "slow metric"

Mo
805’

for example, in simultaneous bursts by a supernova explosion. For waves

there should be a time delay in reception of the two waves — emitted,

emitted at the center of the galaxy, an order of magnitude estimate indicates

Time Delay ~ (m/r) (1ight travel time)

galaxy ’

~ (5 x 10—7) (3 % th light years) ~ 5 days . (93

Much longer delay times would hold for the Virgo Cluster.

Polarization information is also a crucial experimental test. Equations
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(75) indicate a purely longitudinal mode <W2), mixed longitudinal-transverse

quadrupole type modes (ws,'? a purely transverse 'breathing" mode (

) o)

and the familiar transverse quadrupole modes of GRT (1b, QL>' If an observer
knows the direction of the wave, he can use Egs. (79) to unambiguously catalogue
the modes. If he does not know the direction of the source. he can still draw

some conclusions. For example, if displacements do occur in more than ome

plane, then either the longitudinal-transverse modes (., 33) are present,

or the purely longitudinal mode (W?) is mixed in with one of the purely trans-

22>'

It is important to note that until the problem of the generation of the

verse modes (wh, @ﬁ, o

various types of waves by particular sources is solved, our theory can only
be verified by the presence of -~ but not ruled out by the absence of — the
various possible modes indicated in Egs. (75). This is unfortunate. But
new doorways have been opened in the area of experimental tests and it is
clear that gravitational tests outside of the PPN formalism must be contem-

plated in the future.
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APPENDIX A

CONSTANTS APPEARING IN PN LIMIT (Sec.

11)
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APPENDIX B

RELATIONS FOLLOWING FROM GENERALIZED BIANCHI IDENTITIES

Assume that LG has been rewritten as a function of Ty and guv' Since

LG is a scalar, its variation under infinitesimal coordinate transformations

must vanish, i.e.,

: P! ,
s )
sl » T b e g d s (B1)
e j‘( g, Be) 0¥ o
Under the coordinate transformation
0
FOORT e (B2)

Sgp = Topt T et e T et o
E 2T(a§6>, where i = q&ﬁsb s (B3)
T (55)
Now define
/o T (- SRART (85)
and use the field equations to write
B2l /58 0 —-é - )2 r® (86)

Using Egs. (B2)-(B6), Eq. (Bl) can be written in the form

R T T O AT P IR R E R S

L
- (= U)I/E 705'6 Tey dx . (B7)

(64 o

Now if we remember that
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(o MR e e (83)

and also the corresponding equation for the covariant derivative with respect

to g the first two terms in (B7) vanish with proper boundary conditions

of’

on & . Now use the matter equations, Eqgs. (%), and the arbitrariness of

ga (and hence Tq) to get from Eq. (B7)

w2
©

Equation (B9) is not an identity; we had to use both the matter and gravi-
tational field equations to obtain it. [We would have obtained an identity
in the place of Eq. (B9) had we not enforced the dynamical equations.] Since
n is covariantly constant with respect to "slash,” Eqs. (B5) and (B9) imply

the desired relation

M, o0 (310)
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TABLE T

Comparison of Construction of Stellar Models

GRT Two-Metric
Theory
Number of coupled differential equations 2 L

which must be integrated to find star's surface

Type of differential equations used in deter-

mining metric functions

Number of quantities whose central values must

be chosen to satisfy boundary conditions

Analytic Solutions

Uniqueness of solution for given central pres-

sure and equation of state

Number of parameters in exterior metric

First-order

linear

Second order

nonlinear

Probably

not

No
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FIGURE CAPTIONS

Radial Geodesics of Particles and Photons. The numbers-along the
curves indicate proper time values for massive particles released
from rest at p = 10, 5. One of the curves is a photon geodesic and
all curves have t ~ « and affine parameter » « as p - 1.5,

Proper Surface Area of Sphere p = Const. The upper abcissa gives
the proper time of an observer released from p = 10 as a local
coordinate marker,

Embedding Diagram for Equatorial Geometry. Solid line indicates
Euclidean embedding (refers to z ordinate) and dashed line indi-
cates pseudo-Euclidean embedding (refers to iz ordirate). Numbers
along curve indicate values of E.

Effective Potential for Massive Objects. Dots indicate circular
orbits.

Effective Potential for Photons.
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b) Gravitational-Wave Observations as a Tool for Testing Rela-
tivistic Gravity
i) Brief Overview (Paper VIII; collaboration with D.M. Eardley,
D.L. Lee, R. V. Wagoner and C.M. Will, published in Phys.
Rev. lLett., 30,884k, 1973)
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Gravitational-wave observations can be powerful tools in the testing of relativistic the~
orles of gravity, Future experiments should be designed to search for six different types
of polarization, and for anomalies in the propagation speed of the waves: bcg," waves

-1,
~Com waves 12107 Cer yaves -
measurements,

Several viable gravitation theories now exist
that differ radically when describing strong gravi-
tational fields, but that can be made to be identi-
cal to each other and to general relativity in the
“post-Newtonian limit.” During the next twenty
years, one will probably not be able to distin-
guish these theories from general relativity or
from each other by means of “solar-gystem ex-
periments” (gravitational redshift, perihelion
shift, light deflection, time delay, gyroscope
precession, lunar-laser ranging, gravimetry,
Earth rotation, ...). However, gravitational-
wave experiments offer hope: These theories
differ in their predictions of (i) propagation speed
and (i1} polarization properties of gravitational
waves,

(i) Some of the competing theories’ ™ predict
the same propagation speed for gravitational
waves (cg) as for light {c.). But others® " pre-
dict a difference that, in weak gravitational fields,
is typically

{eg= Cem)/c~(1/c%) x |Newtonian potential |

~1077, for waves traveling in our region of the
Galaxy or in the field of the Virgo cluster. An
experimental limit of < 107° would disprove most
such theories and would stringently constrain fu-
ture theory building. Perhaps the most promising
way to obtain such a limit is by comparing arriv-
al times for gravitational waves and for light that
come from the onset of a supernova, or from
some other discrete event. If current experimen-

This Letter outlines the nature and implications of such

tal efforts continue unabated, by 1980 one may de~
tect gravitational-wave bursts from supernovae

in the Virgo cluster (~three supernovae per year,
11 Mpc from Earth). Then a limit of

leg~ ceml/c =107 x (time-lag precision)/

(1 week)

will be possible.

(i1) All of the currently viable theories fall into
a class called “metric theories of gravity.”®:*
Recently, we have completed an analysis of the
polarization properties of the most general weak,
plane, null wave permitted by any metric theory.
In general, the wave involves the metric field g,
and also auxiliary gravitational fields, such as
the scalar field ¢ in Dicke-Brans~Jordan® theory.
We include all these contributions by basing our
analysis on the resultant Riemann tensor, the
only directly measurable field. Our analysis al-
so applies to waves that are approximately, rath-
er than exactly, null.”!° Details will be published
elsewhere !

Our main result is that the Riemann tensor of
the most general wave is composed of six modes
of polarization, which are expressible in terms
of the six “electric” components Ry,,, (i, spatial)
that govern driving forces in a detector.’® Conse-
quently, currently feasible detectors can obtain
all measurable information contained in the mos!
general wave permitted by any metric theory of
gravity, Tt is important that future experiments
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be designed to measure all six "electric” compo-
nents.

The amplitudes of the six polarization modes
are related to the “electric” components R,,,, in
the following manner: Use coordinates fxyz; let
the wave propagate in the +z direction. The six
amplitudes are, in the notation of Newman and
Penrose,’® two real functions ¥,(u), $,,(4) and
the real and imaginary parts of two complex func-
tiona ¥, (u), ¥,(u), where u=t—~z/c i8 the “retard-
ed time.” Then

¥, == 4R ey

¥ = (- Ry + iR 0,

¥, =R js0 = Rgro + 2R 100,

@™ = (Rygso t R0
Figure 1 shows the action of each mode on a
sphere of test bodies. ¥, and %,, are purely
trangverse, ¥, is purely longitudinal, and ¥, is
mixed. General relativity permits only the two
¥, modes.

The entire Riemann tensor of any observed
wave can be reconstructed from these amplitudes.

FIG. 1. The six polarization modes of a wesk, plana,
null gravitational wave permitted in the generic metric
theory of gravily. Shown is the displacement that each
mode induces on a sphers of test particles, The wave
propagates in the +z direction {(arrow at wpper right)
and has time dependepce cos{w?). Solid Hos, snapshot
at we =0; the broken line, one at wi =7, There {8 no

)} t perpendicular to the plane of the figure,

a

Comparison with waves permitted by various met-
ric theories of gravity then allows one to rule out
some theories. To facilitate this comparison,

we have set up a clagsification scheme {or waves
based on the properties of the six amplitudes un-
der certain Lorentz transformations. We choose'™
a restricted set of “standard observers™ such

that {a) each observer sees the wave traveling in
the +z direction, and (b) each observer sees the
same Doppler shift, e.g., each measures the
same frequency for a monochromatic wave. These
standard observers are related by the subgroup
of Lorentz transformations that leaves the wave
vector R, k= Vi, invariant (“little group”). The
six amplitudes {‘1/2, ¥, ¥, @22} are generally ob-
server dependent. However, there are certain
“invariant” statements about them that are true
for all standard observers if they are true for
one. These statements characterize invariant
classes of waves:

Class II,: ¥,#0. All standard observers mea-
sure the same nonzero amplitude in the ¥, mode.
(But the presence or absence of all other modes
is observer dependent.}

Class III,;: ¥,=0#¥, All standard observers
measure the absence of ¥, and the presence of ¥,.
(But the presence or absence of ¥, and $,, is ob-
server dependent.)

Class N;: ¥,=0=¥, ¥ #0¥%,,. Presence or
absence of 211 modes is independent of observer.

Class N2 ¥,=0=¥, ¥,#0=9,, Independent
of observer.

Class 0,: ¥,=0=¥, ¥,=0¥%_. Independent
of observer. Class II, is the most general; as
one demands that successive amplitudes vanish
identically, one descends to less and less gener-
al classes. The class of the most general per-
mitted wave in some currently viable metric the~
ories is, for general relativity, N,; Dicke-Brans-
Jordan,* Ny; Will-Nordivedt,® IM1,; Hellings-Nordt-
vedt,? N; Ni’s new theory,® II;; and Lightman-
Lee,® I, All these but Dicke-Brans-Jordan theo-
ry can be adjusted to have the same posgt-New-
tonian 1imit as general relativity, for certain
choices of possible cosmological models and ar-
bitrary theory parameters.

We see that measuring the polarization of grav-
itational waves provides a sharp experimental
test of theories of gravity., The class of the “cor-
rect” theory is at least as general as that of any
observed wave. The observation of a wave more
general than A, would contradict general relatiy-
ity but would be consistent with other viable theo-
ries.®”® Weber" has initiated such experiments
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by searching for the ¢,, mode, with negative re-
suits.

To test theories, an experimenter must classi-
fy the waves that he detects. If he knows the di-
rection of a wave a priori (e.g., from a particu-
lar supernova), he can directly extract the am-
plitude of each mode {rom his data and determine
the class. If he does not know the direction, he
cannot extract the amplitudes or determine the
direction without applying some further assump-
tion to his data (e.g., that the wave is no more
general than N, and is therefore purely trans-
verse). But he can always place limitations on
what the clags may be (e.g., if driving forces in
his detector do not remain in one plane, the wave
must be more general than N,, ie., I, or IIl,).

We now sketch the arguments that lead to these
results. Consider a weak, plane, null wave de-
scribed by a linearized Riemann tensor Rag,é(u),
with Vu-Vu =0. Work in an approximately con-
stant quasiorthonormal null tetrad™?® (k, I, &, m~),
where k=Vu. The Bianchi identities imply that
there are six functionally independent real com-
ponents of the Riemann tensor; take them to be
{‘Pz, V., ¥, %}, as above, (The other components
are &, =¥, -2A=§d, =V, b = =0t =¥ =¥
=0,) Consider the “little group"“’ E(Z) of Lorentz
transformations of the tetrad which fix k. k *k,
@ =e' (M +ak), "=T+a*@+afi*+aa*k, where a
is complex and ¢ i8 a real phase. The action of
E(2) on the amplitudes {¥,, ¥, ¥,, ®,.} is

b =¥, Y=o Y 4 3 ),
Y, ="k, + da M, + BaRE), (1)
22’ = Pp +20% 4+ 207 ¥+ B ta Y,

The invariant classes of waves that are defined
above correspond precisely to the different repre-
sentations of E(2) that can arise through Egs. (1).

The helicity (spin) decomposition of a wave is
£(2) invariant only for classes N,, N,, and 0,.
Theories in classes N,, N,, and O, provide a uni-
tary representation of £(2) which is a direct sum
of one-dimensional massless-particle representa-
tions,'®"!® containing at most spins 0,+ 2. Theo-
ries in classes II, and III, provide a reducible
representation of E(2) which is not completely re-
ducible and is therefore nonunitary'®; it is likely
that such theories cannot be quantized. No other
representation of £(2) (such as one with “continu-
ous spin”*®) can occur.

We are grateful to Dr. Kip S. Thorne for help-
ful suggestions and comments on presentation.

*Work supported in part by the National Aeronautics
and Space Administration Contract No. NGR 05-002~
256 and the Natjonal Science Foundation Contracts No.
GP-36687X, GP-28027 at Caltech; by the National Sci-
ence Foundation Contract No. GP26068 at Cornell; and
by the National Science Foundation Contract No, GP-
34721X at Chicago.
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ABSTRACT

Gravitational-wave observations can be powerful tools in the
testing of relativistic theories of gravity — perhaps the only tools
for distinguishing between certain extant theories in the foreseeable
future. 1In this paper we examine gravitational radiation in the far
field using a formalism that encompasses all "metric theories of
gravity.'" There are six possible modes of polarization, which carn
be completely resolved by feasible experiments. We set forth a
theoretical framework for classification of waves and theories, based
on the Lorentz transformation properties of the six modes. We also
show in detail how the six modes may be experimentally identified
and to what extent such information limits the "correct” theory of

gravity.
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I. INTRODUCTION

Within the past few years, as experimental tests of gravity have been
analyzed and refined, and as gravitation theories have been systematically
compared,l most extant theories have been ruled out. Indeed, analysis of
data from existing "solar system” experiments promises to distinguish more
and more clearly between the theories that today remain viable. [For
example, within the next two years, a search for the Nordtvedt efﬁectp in
lunar laser ranging datas should either rule out general relativity (GRT),h
or place a limit of w > 30 on the Dicke coupling constant of Dicke-Brans-
Jordan theory.s] An elegant theoretical formalism, the "Parametrized Post-
Newtonian" (PPN) framework,G exists for analysis of metric theories  in the
limit of weak gravitation and slow motion. All gravitation experiments
that have played key roles in ruling out theories, except the Edtvis-Dicke
experiment,8 fall within the PPN framework. The EBtvds-Dicke experiment
itself probably forces the ''correct" theory of gravity to be a metric
theory7’9 and, in fact, there are no known complete7 nonmetric theories
which do not violate the Edtvds-Dicke experiment.

in the last year or so, it has become evident that the PPN framework
has fundamental limitations. New metric theories of gravity,LO_lS with
widely varying structures, have been invented which are wvirtually indis-
tinguishable from one another and from GRT in the post-Newtonian limit.
Existing and proposed solar-system experiments cannot hope to distinguish
between such theories in the foreseeable future. There is, however, a
strong element of hope: that new theoriesm—l5 and GRT differ markedly in

the observable properties of their gravitational waves. With this motiva-

tion, we have embarked upon a program to develop a theoretical foundation
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for the analysis of gravitational waves in arbitrary metric theories of
gravity - a foundation which is theory-independent and analogous to the
PPN framework. (Gravitational-wave phenomena fall outside of the PPN ,
framework.) We feel that experiments to detect gravitational waves from
astronomical sources can prove to be a powerful experimental tool, in the
foreseeable future, for ruling out gravitation theories.

The idea of building a theory-independent framework for analyzing
- gravitational-wave experiments was first conceived in mid-1972 by Robert
v. Wagoner.lh At about the same time, and independently, our group was
analyzing the gravitational-wave properties of a particular metric theory —
one that two of us had recently invented.13 When our analysis was near
completion (several months after we learned of Wagoner's ideas), we suddenly
realized that our theory exhibits the most general type of gravitational
wave admitted by any metric theory — and that, therefore, with a mere change
of viewpoint, our analysis would become the general framework that Wagoner
had proposed constructing. Upon contacting Wagoner we discovered that he
and Clifford M. Will had already proceeded far toward the construction of

this same framework. We therefore published a brief account of the frame-

5
work jointly with them in Physical Review Letters.lJ This paper presents a

more detailed account of our "Caltech' version of the framework.

In a future paper we hope to treat the generation of waves by particular
sources in arbitrary theories and thereby '"move in from the far field."

Our fundamental results are that the most general null or nearly null
wave has six independent polarization modes, which can be classified accord-
ing to their behavior under Lorentz transformations, Various theories admit

some subset (perhaps all) of the six possible modes. If the wave direction
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is known, the modes can be resolved uniquely by feasible experiments; if
the direction of the wave is not known, partial but not complete resolution
can be obtained. In either case detection information limits the correct
theory of gravity.

Section 11 summarizes the properties of the general waves while Sec, 11X
gives the details of derivations. Section IV discusses application to
particular theories and their classification within the formalism; Sec. V
gives a complete prescription of how to analyze and classify waves that are
observed by means of gravitational-wave detectors. (For a review of the

prospects of gravitational-wave astronomy, we refer the reader to Ref. 18.)

II. PROPERTIES AND CLASSIFICATION OF WEAK, PLANE, NULL WAVES:

A SUMMARY OF RESULTS
A. Definition of Gravitational Waves in Metric Theories

In any metric theory of gravity,7 just as in GRT, the response of
matter to gravity is determined solely by a universal, covariant coupling
7
to the physical metric g (Einstein's Equivalence Principle ). The equa~

. . . . 17
tion of motion of matter is given by

where y is the covariant derivative associated with g, and T is the matter
stress-energy tensor. This equation ensures that test particles and photons
travel along time-like and null geodesics of g, respectively. Metric
theories differ only in the manner that matter acts back to generate g —
i.e., only in their gravitational field equations. Some theories postulate

auxiliary gravitational fields, such as the scalar field ¢ in Dicke-Brans-
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Jordan theory,5 which enter into the field equations but do not act on matter
directly.

It is the universality of the coupling to the metric that permits a
theory~independent discussion of the propagation and detection of gravita-
tional waves for metric theories. On the other hand, the emission of
gravitational waves involves the detailed structure of field equations, and
is therefore theory-dependent. Emission will not be treated in this
paper.,

Consider an experiment employing matter of negligible self-gravity in
a local region to measure the static or wavelike gravitationai fields from
faraway sources, One cannot define the absolute acceleration due to gravity
at a point in the region (Einstein's Equivalence Principle7); only the
relative, tidal acceleration between two points has observable significance.
The Riemann tensor Riem, formed from g, determines these relative accelera-
tions, and is the sole locally observable imprint of gravity.

Consider a freely falling observer at any fiducial point P in the

region. Let him set up an approximately Lorentz, normal coordinate system
i i
x7) = {t,x7},

: cos : . . c i
with P as origin. For a particle with spatial coordinates x~ at rest or
with nonrelativistic velocity in the region, the acceleration relative to

P is (for sufficiently small |x7})

GRAV j
3 7" Rigjo o (1)

where RinO are the so-called "electric"” components of the Riem due to

waves or other exterpnal gravitational influences.



-190~
~
A gravitational wave in a metric theory involves the metric field g
and any auxiliary gravitational fields that might exist. But the resultant
Riem is the only measurable field. So for this paper we define a "gravita-
tional wave" in terms of its Riem: A "weak, plane, null wave'" in a metric
theory is a weak, propagating, vacuum gravitational field characterized, in
some nearly Lorentz coordinate system, by a linearized Riem with components

that depend only upon a null "retarded time," u = t- z/c:

R = R (u).

[IR%s uvoT

yu, which is proportional to the wave vector, is null with respect to the
physical metric g: wgu-vyu = 0. In "u= t- z/c," ¢ is the speed of light,
and the coordinates are oriented such that the wave travels in the :z
direction.

Two restrictions appear in this definition: (i) Waves must travel at
exactly the local speed of light, (ii) waves must be exactly plane. These
restrictions turn out to be good approximations in feasible experiments for
all viable metric theories of gravity; see Sec's., I1II and IV for a discussion
of these points.

The fundamental properties of these waves follow immediately from the
algebraic and differential identities that Riem obeys. There are six
algebraically independent components of Riem in vacuum, (Sec. II1 proves
this assertion and succeeding ones), which correspond to six modes of
polarization. 1In a given, nearly Lorentz coordinate frame of the above type,
group these six components into amplitudes of definite helicity s (where

s = 0, +1, +2) under rotations about the z-axis. There arise two real
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amplitudes

o),

h

Yz(u>: (S = O) 3 @22(\1); (S

and two complex amplitudes

v (u), {s = 1) ; wh(u) . (s = 22).

3
Here and throughout this paper one complex amplitude is equivalent to two
real amplitudes. We will always describe a gravitational wave by its six
amplitudes {wg, Yas Y5 @22} in the six polarization modes of a given co-
ordinate frame,

These amplitudes are related to the "electric' components of Riem,

which govern relative accelerations through Eq. (1), by

1 .
vou) = - F Rypo(u) (2a)
1 i
YS(U) = 77 %020t §<Ry020 ’ (2b)
, . - o
(W)= - R * Ruogo 2 Reguo (2¢)

Opp(W) = - Repo = Roogo - (2d)

Figure 1 shows the displacement that each polarization mode induces on
a sphere of test particles; ¥y and by are purely transverse, YE is purely
longitudinal, and YB is mixed., If an experimenter knows the wave direction,
he can uniquely determine {vg, YS’ Yy ¢22} by measuring the driving forces
in his detector (see Sec. V for further details), and he can reconstruct
Riem. Therefore, currently feasible detectors can obtain all the measurable

information in the most general wave permitted by any metric theory.
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1

B. Lorentz-Invariant E(2) Classification of Plane Waves

In any metric theory, the local nongravitational laws of physics are
those of special relativity. So it is fruitful to sort waves into Lorentz-
invariant classes, depending on the behavior of the amplitudes under
Lorentz transformations. Observers in different Lorentz frames (e.g., in
relative motion) can then agree on the classification of any wave.

Rather than use the entire Lorentz group relating observers in all
frames, we choose a restricted set of 'standard observers" such that (i) each
observer sees the wave travelling in his +z direction, and (i1) each observer
sees the same Doppler shift, e.g., each measures the same frequency fér a
monochromatic wave. These standard observers are related by the subgroup of
Lorentz transformations that leaves the vector yu invariant ["little group,
E(2)"]. The parts of the Lorentz group left out of the little group are
(a) [due to requirement (i)] pure rotations of yu which merely change the
direction of wave propagation, and (b) [due to requirement (i1)] pure boosts
along vu which merely change the observed frequency and scale each amplitude
up or down independently. Without requirement (11}, different observers would
see the wave travelling along the +z direction, but generally at different
Doppler shifts. The subgroup relating the standard observers would be bigger
(4 dimensional), but the invariant classes would be the same.

The six amplitudes {wg, Yo, Yy ¢22} of a wave are generally observer-
dependent; their transformation law is given in Sec. I11. However, there
are certain "invariant" statements about them that are true for all standard
observers if they are true for any one. These statements characterize

invariant "E(2) classes" of waves: (Notation is explained in Sec. 111.)
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Class 116. Y? é G. All standard observers measure the same nonzero

amplitude in the Y? mode. (But the presence or absence of all other modes
is observer-dependent. )

Class 1115w ¥, =0 % v,. All standard observers measure the absence
« o< po)

of ¥, and the presence
¥ ¥

of v, . (But the presence or absence of ¥y, and ¢, 18

observer-dependent. )

Class N,. VY, = O =

; . > E o d
3 i Yy £ 0 & ®,,- Presence or absence of all modes

is independent of observer.

Yo =0=Y¥,., Y # O = ¢-~. Independent of observer.

?lass N o = = ¥y "

o

1 2 -

Class 0,. ¥, =0 =Y. Yy = 0 £ LIy Independent of cobserver.

Class O ¥ =0 = Y.; = ¢,.~. Independent of observer, All
< »

o
standard observers measure no wave,

Class 116 is the most general. As one demands that successive amplitudes
vanish identically, one descends to less and less general classes. Figure 2
exhibits these relations of generality among the classes. In this paper,
"more (or less) general” for classes always refers to Fig. 2. (For example:
01 is less general than NZ’ XXIS, gnd 116, but neither more nor less general

than N The E(2) class of a particular metric thebry is defined as the

2'>
class of its most general wave (see Sec. IV for illustrations).

The fundamental theoretical implication of our paper is that the class
of the 'correct’ theory of gravity is at least as general as the class of
any observed wave.

Once theorists are confident of a particular classical theory of
gravity, they will wish to quantize it. Then it should be possible to
asgociate the amplitudes {w?, w$3 ¥, 5 ng} with massless quanta of definite
and Lorentz-invariant helicity. Section III demonstrates that the helicity

content of class II, is not Lorentz-invariant, nor is that of III

6 5°
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Furthermore, an associated pathelogy arises for these classes: The ampli-

. P . 18
contradicting the tenets of relativistic quantum mechanics. Attempts to

quantize theories of Class IIF or 1115 will therefore face grave difficulties.

These difficulties do not arise for theories of class N, or less
D

general: There ¥ and ¢

¥ act like massless quantum fields with s = #2 and

22

0.

IIL. DERIVATIONS
This section may be skipped without essential loss of continuity.
A. Tetrad Components of Rigy for Waves

A quasiorthonormal, null tetrad basis19 is especially suitable for

discussing null waves. At any point P, the null tetrad (g, 1, m, m! is

related to the cartesian tetrad introduced inm Sec. 11 by

k= (@7 (e ey (s2)
L= (2)72 (gi - §’§> 5 (3b)

m = {2)77 (e, - ieQ’) . (zd)

Throughout this section we follow Sec. II in orienting the axes such
that the wave travels in the +2z direction; u g t nz/c. Equivalently, we
choose k, one of the tetrad legs, proportional to the vector yu. It is

easily verified from Egs. (3) that the tetrad vectors obey the relations:

-}§-£=I’§'%§:1) (ll'>
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while all other dot products vanish.
We adopt the following notation for null-tetrad components of temsors
V.o

1L
= be’ ...
Xabe... © Xuva... anec ’

o~
921
s

where (a,b,c...) range over (k,f,m,m).

Central to our later discussions will be the transformation properties
of the components of Riem under the action of some subgroup of the Poincaré
group. In view of this, we first split Riem into irreducible parts: the
Weyl tensor, the traceless Ricci tensor and the Ricci scalar. We follow
Newman and Penrose19 in naming their tetrad components Y, ¢, and A respec-
tively.

In general, the ten y's, nine ¢'s, and A are all algebraically inde-
pendent. When we restrict ourselves to nearly plane waves, however, we
find that the differential and algebraic properties of Riem reduce the
number of independent components to six by the following arguments:

Consider a weak, plane, null wave. It is characterized by the fact
that the components of its Riem are functions of the retarded time u only.
Of their derivatives, only those with respect to the retarded time u will
be nonvanishing:
= 0

Rabcd,p ’ (€)

where (a,b,c,d) range over (k,?,m,m) while {p,q,r,...) range over (k,m,m)
only.

The covariant differential Bianchi identities and the symmetry proper-
ties of Ruvar are necessary and sufficient to guarantee that the linearized

: : : . . 20
Riem is derivable from a metric perturbation, ©

4 _=’ﬂuv+huv B (7)
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Using Eq. (6) we see that these identities imply the relations

1

=0 =% 8}
Rab(pq,ﬂ =0=3 Rabpq,l ’ (8.
where f is a fixed index. Equation (8) implies that

R (9)

abpq 0= quab ’

except for a trivial, nonwavelike constant. Consequently, all nonvanishing

components of Riem must have the form R

e piqs” Taking into account the

symmetries of Riem, we thus see that there are only six independent, non-
vanishing components. Corresponding simplifications are induced among the

1¢
Newman-Penrose quantities. For a plane wave, they are

i) Weyl Tensor

Yo =¥, =0, (10a)

y = -Lgr (1o)

o & “rkik

¥ = - % Rieem (10¢)

Yot Rmm o (104)
ii) Traceless Ricci Tensor

%0 = %01 = %10 " to2 T %20 = 9 s (11a)

bop = - Ry , (11b)

®y1 =3 Yo o (11c)

9o = Doy 7 V¥n s (114)
iii) Ricci Scalar

A= - é Yy - (12)
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As indicated in Sec. II, we shall choose the set {YE’ ¥ar Yo @22} (YS
and Yh complex) to describe, in a given null frame, the six independent
components of & wave in the generic metric theory. Equations (10) and (11)
give the members of this set in terms of the null-tetrad components of the
Riemann tensor. Egquations (2) give the members of the set in terms of the
directly observable "electric" components of the Riemann tensor.

In those cases where one calculates the Riemann tensor from a metric
perturbation huv,21 Eq. (7), the relation between {Yg, Yoo Cpg} and

derivatives of ha may be found in Appendix 1.

b

B. Behavior of Tetrad Components under lLorentz Transformation

Consider two standard observers O and O', with tetrads (k, £, m, m,)
and {k', 2', m', ®'); then k = k' « gu. Suppose O has measured the ampli-
tudes {Yg, Y25 ¥, @22} of a wave; how do we predict the amplitudes {YE',
YS" Yh" @22'} measured by 0'?

In group-theoretic language, we are asking the transformation properties
of the amplitudes under the "little group" of Lorentz transformatioms that
leaves the wave vector fixed. The various group representations formed by
the amplitudes {Wg, YS’ ¥y, ®92} provide us with a means for classifying
waves.

The most general proper Lorentz transformation relating the tetrads

22
that keeps k fixed is”™

Kook, e
w' = explig)(m + k), Hep)
T = exp(-ighm + Ak) (15¢)

' =4+ 0m+ om0k, {134d)
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. 23
where o is an arbitrary complex number that produces 'null rotations,"”

(particular combinations of boosts and rotations), while g, which ranges
from O to 2xn, is an arbitrary real phase that produces a rotation about ez
The transformations described in Eqs, (13) form a subgroup of the Lorentz
group which is globally isomorphic to the abstract Lie group E(2), the
group of proper rigid motions in the Euclidean 2-plane. In the latter
group, ¢ represents the rotations in the plane and &, the translations.

We denote a particular element of E(2) in Egs. (13) by (p,a). The law of
composition is {o',a')(p,a) = (p' + ¢, ' + exp(ig')x).

The transformation induced on the amplitudes of a wave by (¢,2) i

173

Yo' = Y (1ha)
¥, o= e v (WS + SEivg) , (14b)
¥, = eT2le (y, + h5y3 + 652\;12) s (1he)
Gpo = Gpp b RAY, + 2&»73 + Gaa\yz . (1hd)

Now consider a set of observers related to one another by z-axis rota-
tions (¢,0). A quantity M that transforms under these rotations as M' =
exp(isgp) M is said to have helicity s as seen by these observers. We see
from Eqs. (14) that the amplitudes {Yg, Yar ¥, @22} are helicity eigen-
states. Furthermore, their helicity values can be read off easily from

Eqs. (14), (setting o = 0 = Q):

‘{/2 s = O (153)
Yy ts = -1, ?3 s =41, (15b)
¥, 18 =2, Y s =42, (15¢)
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C. E(2) Classification of Waves

1t is evident from Egs. (14) that the various amplitudes {Wg, Yos Ys
®22} cannot be specified in an observer-independent manner. [Example: O
may measure a wave to have as its only nonvanishing amplitude wp(helicity 0y,
while 0', in relative motion with respect to 0, may conclude that the wave
has, in addition, v, and vy, components (helicities O, 1, and 2).] We
classify waves in an E(2)-invariant manner by uncovering all representations
of E(2) embodied in Egqs. (14). Each such representation, in which certain
of the amplitudes {vg, Yoy ¥y, s @22} vanish identically, is a distinct, in-
variant class. The name of each class is composed of the Petrov type of its
nonvanishing Weyl tensorgh (except that we do not distinguish between 1T and
D) and the maximum number of nonvanishing amplitudes {wg, YB’ ¥, Qgg} as
seen by any observer (dimension of representation). Both the Petrov type
and the dimension of representation are independent of observer.

The various classes were delineated in Sec. I1I, they are:

Class 1I.. ¥, £ O.

Class ITI.. ¥, = 0 £ Vs -
These two classes form reducible, indecomposable represcntations of

E(2). (See Appendix 2 for a brief resumé of the relevant group — fheoretic

concepts.) The maximal invariant proper subspace is the 3~diménsional one

spanned by ¥, and Dop The helicity content of classes 116 and 1115 is

observer-dependent.

it
o)
i
&
N
;‘{
LN
(]
e
&
D
D

?1333 NS' ¥,

Class N,. Y= 0= ¥y 5 ¥, £ 0= Oop
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Class 01. vz =0



200~

Classes NS’ NE’ and 01 form decomposable representations of E(2) which
decompose into l-dimensional invariant subspaces spanned by ¥, and Top
respectively, FEach of these invariant subspaces forms a unitary, massless-
particle representation of definite, Lorentz invariant, helicity (spin).

o5
They are well studied as they occur in relativistic quantum field theory.dv

Class OO' y? =0 = YS ; yh =0 = ¢22.

Class OO forms the trivial representation.

The foregoing classification scheme is patterned closely after Wigner's
classic analysis26 of wave functions of relativistic quantum particles as
members of unitary, irreducible representations of the Poincaré group.27
Wigner showed that each such wave function may be taken to have a definite
li~momen tum q, and to transform as a member of some unitary, irreducible
representation of the little group that leaves ¢ invariant. One determines
the "spin" of the particle from the eigeanvalues of the helicity operator and
its square; the spin of the particle is completely determined once the
representation formed by its associated wave functions under the little
group is known.

For our gravitational waves, yu is null and nonvanishing, and the
little group is E(2). Unfortunately, Wigner's analysis does not apply
since we are not restricted to unitary representations of E(2). 1In fact,

as we have seen, the representations generated by {~g’ Yzo Yy @22} are in

general nonunitary and indecomposable. The amplitudes in classes II, and
o)

1115 cannot be identified with massless particle fields. Consequently, it

is impossible to give a spin decomposition for these waves.

A representation which is reducible and indecomposable cam never be

unitary. This applies to the little group E(2), and hence also to the
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Poincaré group. In relativistic quantum theory, all invariance groups
must be realized by unitary representations.18 We therefore obtain the
following result: TIf a theory is of class 11, or 111, it is impossible
to quantize it in a way that is Poincaré invariant with respect to the

local Lorentz metric.

D. Spherical Waves

Thus far, we have based our discussions on the properties of plane
waves. The most physically satisfactory definition of a radiation field
is one that carries energy off to infinity from a bounded source. For
metric theories of gravity, this corresponds to that part of the Riemann
tensor that falls off as 1/(distance) asymptotically. Far away from radiat-
ing sources, one may locally approximate these approximately spherical waves
as plane waves. The following argument shows in a theory-independent manner
that the plane wave approximation will not affect the classification scheme.

Adopt a ku,r,@,@) coordinate system in the wave zone, which is assumed

to be almost Minkowskian. The line element is given by
o . - o
ds® = —du® + 2dudr + £° (d6° & sin“0 dg). . (18)

Place the origin of the coordinate system somewhere inside the source.

Single out the 1/r part of the outgoing spherical waves:
R == 8 (u,9,0) + O = (17
abed T abced 279 r2 )

In the wave zone, observer O [r = Ty © =@ = 07 carries with himself a

Cartesian tetrad (gg, g2, g§, gg) oriented such that es is along the in-

cident direction of the wave. The two coordinate systems are related by
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u=4ta-z, <188>
=247, (18b)
0= % L of-Lto (18¢)
rO ‘ r 2 ’
¢]
g=L+0 -1—2 . . (184)
o] ro

Thus 0 would measure

1 X y 1
R = — 8 u, = =2 )+ 0f—5\. (19)
abed ro abed < Ty ro> <r 2>

0

The differential Bianchi identities then imply

2 .
0= Rab[pq,-c} = O(l/ro ), ifc it (20a)
=11 2y
0 = Rab[pq;” "5, sabpq’I +o(1/r,") (20b)

where semicolon and comma denote covariant and partial differentiation
respectively. It follows immediately from Eqs. (20) that the classification
scheme based on the 1/r part of the Riemann tensor is identical to that

based on the plane waves,

IV. APPLICATIONS TO PARTICULAR THEORIES

A. Two-Metric Theories

In all of the preceding discussion we have assumed that the components
of the Riemann tensor are functions of the retarded time associated with the

" £ z -
physical metric" i.e.,

Bop
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Ragrs = Rapye (W)

where

This is indeed the proper approach, since the physical metric is associated
with the physical local Lorentz frames, which are in turn the basis for our

P ; . . 10,13
classification scheme. 1In some theories of gravity, ~’

however, gravita-
tional waves travel along null geodesics of a '"flat space,' global background
metric 7, while electromagnetic waves (and neutrinos) travel along null
geodesics of the physical metric 8. Equations (21) are then not rigorously
satisfied. On the other hand, if g differs from 7 locally by only a small
amount in the above-mentioned theories, Eqs. (21) are approximately correct

and all of the formalism developed in Secs., II and III is applicablie to a

high degree of accuracy. 1In all such "two-metric' theories that we have

studied, present experimental limits on ''preferred-frame effects”l’ll
require, in the mean rest frame of the solar system,
Bop = Tog]
R ST (22)
||
where !Wlﬁl refers to the magnitude of a typical element of T ete. In

fact, if the difference between s and WQB is due entirely to solar system
or galactic matter, then the 1077 in Eq. (22) becomes 1077, Equation {(22)
is equivalent to the relation, again as measured in the mean rest frame of

the solar system,

1077, (23)

where Cg and Com 2TE the speeds of gravitational and electromagnetic waves
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respectively. Thus, for all Lorentz observers who move at low speeds

(v << ¢) with respect to the mean rest frame of the solar system, two-metric
theories that are viable [in the sense of no preferred frame effects and so
compliance with Eq. (22)] may be included in the formalism of Secs. 11 and
111,

A further important point is that Eq. (23), a distinctive feature of
two-metric theories, suggests that a search for time delays between simul-
taneously emitted gravitational and electromagnetic bursts could prove a
valuable experimental tool. An experimental limit of < 1078 for Ecg—cemﬁ/c
would disprove most "two-metric” theories and would stringently constrain
future theory-building. If current experimental efforts continue unabated,

by 1980 one may detect gravitational-wave bursts from supernovae in the Virgo

cluster (~ 3 supernovae per year). Then a limit of

]cg-—cemg/c < 1072 « (time-lag precision)/(1 week)

will be possible,

B. Degrees of Freedom Versus Polarization Modes

We have enumerated the various independent gravitational wave modes in
the general metric theory. This does not mean, however, that for a given
theory the maximum number of nonvanishing modes for any observer is equal

X 28 . . .
to the number of dynamical degrees of freedom in the gravitational field.
For a given theory, there may be fewer or more degrees of freedom than the
number of modes; if fewer, amplitudes in the various modes are linearly
dependent in a manner dictated by the detailed structure of the theory (see

discussion following Stratified Theories below).
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C. Classification of Particular Theories

Table I gives the E(2) classification (see Secs. II and III) of some
metric theories in the literature (some of which have already been ruled
out, e.,g., the conformally flat and stratified theorie529>. The classi-
fication procedure invelves examining the far-field, linearized, vacuum
field equations of a theory and is illustrated below by several examples.

In the examples, the relevant approximated vacuum equations of a theory

will be quoted whenever necessary.

L
1. General Relativity

=0 (oha)

g
From Egs. {10), (11), and {Al.3) one can deduce that

R = R

= = =0
ik fm fiw R[k!m R[kfﬁ -’ (24b)

= (L (2he)

or Y, e

Since there are no further constraints, ¥, # 0 and the E/2) classification

is NE'

=
2. Dicke-Brans-Jordan Theory”

e = 0, (58}

30
The monochromatic plane wave solution to Eq. (25a) is

ig - x
=Gyt 9 8 (e5d)
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where P and @, are constants and the wave vector ¢ is null. The quantity
Po is the cosmological boundary value of the scalar field, and €y is a small
amplitude of a wave (work only to first order in Ql). Then from Eq. (25¢),

R = 0, (25€)

and Eq. (25b) yields

(25f)

Thus Rll is the only nonvanishing tetrad component of the Ricci tensor

and one can conclude that

= - = 0 25¢)
Rysk = Brioem = Rgsw = O F Romim (2%¢)
or
Vg = g = 0, Doo and W, £0. (25h)
Therefore for the Dick-Brans-Jordan theory, the E(2) classification is
3. Will-Nordtvedt Theory11
0K, =0 (26a)
7 v ' o)
R - R = K X’ K K -1 K K"
oB 3 Bop oyt e T E R ny
7 o y 7 “ 2 7 ~
- K - K . 26b
+%[K <Ka,ﬁ ! Kﬁ,a) Ka<K 6 0 ) KB<K joa t o ) 27 (25b)

The plane wave solution to Eq. {26a) is
K. =A_ e7” + B , (26¢)

where Aa and Ba are constant vectors and the wave vector ¢ is null. Again,

agsume Aa is small and work only to linear order in that quantity. The



=207~

vector B is of cosmological origin. Taking the trace of Eq. (26b) and

using Eqs. (26c), (Al.2b), and (Al.4), we obtain

R‘ow2 (26d)
Equation (26b) then reads
iq - %
R_=e "~ l Y B, -(B-q A . 26
o~ ¢ (a8 abgy - (B 9) &g, (262)
Equation (26e) indicates the relations
Rm;!o, Rla#o, R”%O, (26f)
or, from Egqs. (Al.3),
Vo £ O, 0, F 0 (26g)

Using Egs. (268), Eq. (26d), and the fact that there are no other constraints
on the Riemann tensor <Wh % 0), one concludes that for the Will-Nordtvedt

theory, the E{2) classification is -

4. Stratified Theories‘’
=0 (27a)
5 - <9 n* (20 L D) g @ac | (27)
or
b - J2h g * (&2 _ o2y 50a 80B ) (27)

in a particular coordinate system, where f and h are given, unequal functions
of the scalar field ¢ and dt is a time-like one-form. The wave solution to

Eq. (27a) 1is
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o7

P @yt e o (27d)

as in Eq. (25d) and one can compute the Riemann tensor from Bop using
Eqs. (Al.1), (27¢), and (27d). Contraction with o then gives the linearized
Ricci tensor:

ig - x

sier oy 00 \
Ry, = @ € [(f’ vg') g - 2(f - gt) s (qu] : (27e)

where f' = df/dyp, etc. From Eq. (27e¢) one finds
ig- x o
R -2 (f -g) e () 40 . (27¢)
From Eq. (27f), one concludes Wz # © [cf. Eq. (Al.4)], and consequently.

for stratified theories, the E(2) classification is II(

Here we have a perfect example of a discrepancy between the number of
dynamical degrees of freedom and the number of nonzero modes in the E(2)
classification. Stratified theories clearly have only one dynamical degree
of freedom, arising from the scalar field o — yet some Lorentz observers
see all six gravitational wave modes. The reason for this apparent paradox
is that the "prior geometric”7 one-form dt introduces another vector into
the problem in addition to the wave vector g — a vector which transforms in
a complicated way under the Lorentz transformations which leave ¢ fixed.

The Ricci tensor does not 'point' only along the ¢ direction [cf., Eq. (27e)]

and any pure mode feeds all the other modes under Lorentz transformations.

V. EXPERIMENTAL DETECTION AND CLASSIFICATION OF WAVES
A. The Ideal Detection Experiment
An experimenter attempting any foreseeable experiment to detect gravi-

1
tational waves 6 faces two fundamental limitations which hinder the E(2)
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classification of detected waves: (i) He can measure only the six "electric"

Z,

. 31 ‘.
components R of Riem, not all twenty. (ii) He may not know that wave

1030
direction a priori; he may be hoping to infer it from his data, as does

32 c11 s _ :
Weber. We will find that the consequences of these limitations are that
the experimenter can generally classify a wave unambiguously only if he
using a single detector. Other limitations {antenna pattern, noise, time-
resolution, bandwidth, need for coincidence detection) complicate the task
further, but to treat the heart of the classification problem, we will
ignore them.

Consider an ideal detection experiment: The experimenter uses the
coordinate system of Sec. II. He measures the relative accelerations of

test masses and obtains via Eq. (1) the six components R of Riem, with

i0 30
perfect accuracy and infinite time-resolution. He expresses his data as

a 3 X 3, symmetric, "driving-force matrix" §(t), with components

sij(t) = Rino(“> ; :

here t is his proper time, and he takes his spatial origin at his detector,
$O t = u.

The experimenter knows, by time-coherence of the signal or by some
other means, that the wave originates in a single, localized source. He

> P
spatial unit vector k. (In previous sections we have taken k = egs here

it is arbitrary.)
Let us rename, for this section only, the amplitudes of a wave with

>
direction k, measured at the detector:
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Pk t) = ¥ (u) (23a)
pg(k,t) = Re Yg(u) s (28b)
& ac)
p5<k,t) im Wg(u) , (2ac)
ph(k,t> T Re ‘}‘h(u) , (28d)
pe(k, t) ¥ Im ¥ (u) (o8e)
=,
pelk, t) = a,,(u) (28f)
Let the index A = 1, 2, ... € run over these six modes. The amplitudes

N
pA(k,t) are real.

For the case k = Eg, Egs. (2) imply

- ey, + pg) Aec - 2p,
g = —1?-13S %(ph - P6> 2?3
- 2p, 2p, - epy”
or
> >
8(t) = £, pylegt) B (eg) (29)

where "basis polarization matrices" EA(e9> belonging to wave direction

k = é? are defined by

. 000 001
El(eﬁ) -slooo}, Eg(eh) -2loo00} ,
001 100
R <o 0 ft o0
E.(ey) = 2001}, E (es) = - ={0 -1 0},
2 T8 510 L 2 00

(30)

OO = OO

o OO
S’
H]

o0
$o
5
H
O] s
5o
O - O
OO O
\\——/

Equation (29) represents S(t) as a superposition of modes with k= g@.
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>
For any other k, just rotate these matrices: Let R be a 3 X 3 rotation

s

. 53 S
matrix that takes es into k:
ko= Beﬁ
Define unit polarization matrices gA(k) for wave direction k by
- -~ T
E (k) = R E,(es) R
Then for any S(t) and anyhg, there is the unique representation
8(t) = 5, pa(k,t) E, (k) (31)

the amplitudes pA(k,t) may be extracted from $(t) by

pp(i,t) = €, Trace (g, (k) §(t)) , (%2)
where CA are normalization constants:
1 1 1
=G 5 5. 222 .

Equation (32) follows from Eq. (31) and an orthogonality property of the
>
E,(k):

Cy Trace(gA(E) EB(L)> 5

Equations (31) and (32) embody an important principle: Any measured
§(t) can be represented uniquely as a superposition of the six modes belonging
to any arbitrary wave direction k. fquation (32} specifies the amplitude in
each mode of this wave. This wave is generally of class IIG' but it can be
less general for certain §(t) and certain &.

The classification procedure now splits into two cases: k known and

>
k unknown.
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B. The Case of Known Direction

The experimenter knows 1 a priori if the source of a gravitational wave
that he detects can be identified with an object observed by means of electro-
magnetic radiation {light, radio, X-ray). There are also purely gravita-
tional methods for determining i. For example, 1if several detectors a
distance 2 D apart, each wifh time-resolution << D/c, detect a sharp wave
burst with pulse-width << D/c, then experimenters can determine k from the
relative time-of-arrival at each detector. For D ~ radius of Earth,
D/c ~ 13 msec.

Knowing i, the experimenter extracts from §(t) the amplitudes pA(i,CT
by Eq. (32). Knowing the amplitudes, he classifies the wave unambiguously,
using the prescription given in Sec. II. The theoretical implications of

his results are discussed in subsection E below.

C. The Case of Unknown Direction

If the experimenter does not know i a priori, he cannot hope to
determine it from §(t) without further assumptions; he can fit §(t) equally
well for any % in the sky by using Eqs. (31) and (32). Neither can he
extract the p, unambiguously. However, knowledge of S{t) always provides
information which limits the E(?) class of the wave and also the class of the
correct theory of gravity (see E below).

He limits the possible class of the wave in the following way: For
each arbitrary % in the sky, he computes the pA(i,t) via Eq. {32) and
determines the E(2) class associated with thatnﬁ. By letting ; range all over
the sky, he obtains the set of possible E{2) classes for that wave.

For a given §(t), the following recipe yields a complete analysis of

the possible E(2) classes of the wave. One distinguishes several cases
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according to the form of §(t)A Figure 3 diagrams this recipe as a flow-
chart.
Case 1. Driving forces remain in a fixed line. There is a fixed

coordinate system in which
AMe) 00
s(t) = o 00} . (33)
¢ 00

Pattern of forces is as in Fig. 1(d); but propagation direction need not
be as in Fig. 1{(d). Conclusion: Wave is 1, or N,

Case 2. Driving forces remain in a fixed plane: There is a fixed

coordinate system in which
Ae) u(e) o
s(e) =tu(e) v(e) o), (3t)
0

but none in which Eq. (33) holds. Wave may always be IIG' In addition,
two separate determinations must be made: (a) Can the wave be Ol’ NE’ or
NS? (b) Can the wave be IIIS?

Test 2.a; for 01, N2y or NS'

Subcase 2.a.i. Driving forces are "pure monopole':

M) = v(e), u(t) =0 . . (35)

Pattern of forces is as in Fig. 1{c); but wave need not be pure @22. Con-
clusion: Wave may be 01. (Furthermore, wave cannot be III%; test (b) is
always failed.)

Subcase 2.a.ii. Driving forces are "pure quadrupole’:
AMe) = - w(t) . (38)

Pattern of forces is as in Fig. 1(a} (and the principal axes may rotate
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with time in the transverse plane); but propagation direction need not be

as in Fig. 1(a). Conclusion: Wave may be N,

Subcase 2.a.iii., Driving forces are neither "pure monopole' nor

"pure quadrupole”: Neither Eq. (35) nor Eq. (36) holds. Conclusion:
Wave may be N%'

Test 2.b; for IIIS. Wave may be IIIq if and only if there exists a

>
fixed unit vector k not normal the plane of the forces [i.e.,

k £ ep
in the coordinates of Eq. (34)] such that

%.os(e) - kzo

,~
o
I

=

The complete set of possibilities for Case 2 is IIE plus the outcomes of
Test 2.a and Test 2.b.
Case 3. Driving forces do not remain in any fixed plane: Equation

(34) does not hold in any fixed coordinate system. Wave may always be II

.

>

It may be IIIG if and only if there exists a fixed unit vector k such that
k- 8(e) - k70 . (38)

Note that when the driving forces do not occur in one plane and Eq. (38)

is violated, the wave must be IIG'

D. Guessing ;
We have emphasized that k cangnever be extracted from §(t). However,
the fact that a certain §(t) can be fitted by a wave of a certain class less
general than II6 must weigh as strong circumstantial evidence that the wave

is actually of that class. If one is willing to assume that the simplest

allowed classification is correct, then k is generally fixed uniquely (up



-215=

ES ->
to an inevitable antipodal ambiguity, k » - k).
Referring to the recipe above, the information that one can guess in
this way is as follows.
N
Case 1. TIf the wave is NB’ k lies anywhere in the plane spanned by
- >
e and e; in the coordinates of Eq. (23).
>
Case 2. TIf the wave is Ol’ NE’ or NS’ k is normal to the plane of the

forces:

e -
k=tep

>
in the coordinates of Eq. (34). If the wave is I, k is as in Eq. (37).
>
Case 3. If the wave is IIT., k is as in Eq. (38).

One can never limit the direction of a II6 wave in this way.

E. Theoretical Implications of Experimental Results

The E(2) class of the correct theory of gravity is at least as general
as that of any observed wave: This is always the fundamental implication
of any observation. We must always qualify, "at least as general,” because
in any particular theory a particular source may couple poorly or not at
all to some of the admissible modes, and therefore it may radiate only
special classes of waves. But the observation of a wave of a certain
class always rules out all theories of less general classes.

1f the wave direction is unknown, an observed wave cannot be classi-
fied unambiguously (except for some waves of class IIG). However, there
is always a least general possible class for each such wave, which limits
the correct theory.

There are still sharper implications for particular theories. In the

case of a well-understood source (e.g., binary star system), each particular
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theory should make a precise prediction about the mixture of modes radiated,
leading to a crucial test. We shall discuss this point in a future paper.
In the case of a theory for which the number of degrees of freedom is less
than the dimension of the E(2) class (see Sec. IV.B), the various admissible
modes should appear only in definite mixtures by any source, again leading
to a crucial test. Finally, the difference in propagation speed for light
and for gravitational waves leads to a crucial test for many theories (see

Sec. IV.A).
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APPENDIX 1. USEFUL FORMULAE FOR PLANE WAVES

General linearized Riemann tensor in terms of flat space perturbation

hpv‘
Ropre = 2o my * Py cn " Poyes T Mes,or) (a1.1)
Tetrad components of Riemann tensor in terms of hab:
Yo F - %lelk 1‘12 B (Al.2a)
v, T - ?l.;lelm %'ﬁk;l , (Al.2b)
¥, T - R é.k‘r" , (Al.2¢)
920 = " Romim ~ %.ﬁnﬁ ’ (a1.24)
(vhere B = d%h/du®).
Tetrad components of Ricci tensor:
Roe = Roige (A1.3a)
R, = 2R, =, (A1.3b)
R, = lelm , (A1.3c)
R = Roxsm (A1.3d)
Ricci scalar:
R=-2R, =-2R . (Al.h)

1k fkik
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APPENDIX 2. INDECOMPOSABLE GROUP REPRESENTATIONS

Let G be a group and # a linear representation of G on a lineaxr space
V. & is reducible, if it has an invariant proper subspace, VlCLV. & is
decomposable, if V is the direct sum of invariant proper subspaces. A
decomposable representation is always reducible but not vice versa; 4 is

indecomposable, if it is reducible but not decomposable. & is decomposable,

if, and only if, there is a basis of V for which each g e G is represented
< . O )
8z 85/

Indecomposable representations never occur for a finite group G, for

by a block-triangular matrix

with not all 8z vanishing.

finite-dimensional representations of a semi-simple Lie group G, or for
unitary representations of any Lie group G. Because of these facts,
physicists are not well acquainted with indecomposable representations.
For a physicist, indecomposable representations have two unpleasant attri-
butes: (i) They are always nonunitary. (ii) There is no analog of Schur's
lemma: An invariant operator is not generally constant on an indecomposable
representation; e.g., "spin" is undefined.

See Ref. 27 or Ref. 34 for a discussion of these concepts.

For waves of E(2) class II_. or 111, we deal with 6- or 5-dimensional

6
indecomposable representations of E(2). The only finite-dimensional decom-
posable representations of E(2) decompose to the familiar l-dimensional
unitary representations that describe a massless quantum particle of

25-.27

integral or half-integral helicity ; these representations arise for

E(2) classes Ng, Ny, and 0,.
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FIGURE CAPTIONS

The six polarization modes of a weak, plane, null gravitational
wave permitted in the generic metric theory of gravity. Shown
is the displacement that each mode induces on a sphere of test
particles. The wave is propagating in the +z direction (arrow
at upper right) and has time dependence cos wt. The solid line
is a snapshot at wt = 0, the broken line one at wt = n. There

is no displacement perpendicular to the plane of the figure.

The E(2) classes of weak, plane, null waves, displayed in order
of increasing generality toward the top. Descending along a
line represents specializing the class by demanding that some
amplitude vanish for all observers. One class is said to be
more general than another if it is possible to descend from one
to the other along lines.

Prescription for finding possible E(2) classes for a wave of
unknown direction ;, given the driving-force matrix §(t). Boxes
contain tests involving §(t) and circles contain possible classes.

See text of Sec. V.
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Variational Principles and Conservation

*
Laws in Metric Theories of Gravity

D. L. LE!E‘.)r and A, P. LIGHTMAN
California Institute of Technology, Pasadena, California

and

W.-T. NI

Montana State University, Bozeman, Montana

ABSTRACT

Using the generalized Bianchi and Noether identities that apply to all
Lagrangian-based theories, we specialize to Lagrangian-based, generally covar-
iant metric theories of gravity ("LBGCM theories") and prove a number of
theorems. Our most important results are the following: (i) The matter
Tesponse equations ,,l,uv.v = 0 of any LBGCM theory are a consequence of the

;
gravitational field equations iff the theory contains no absolute variables.
(11) Almost all LBGCM theories possess conservation laws of the form Ouv,v =0
(where Opv reduces to Ihv in the absence of gravity). (iii) For asymptotically
flat systems the integral Pu = f GMVdBZV is a conserved (hypersurface-
independent) quantity which one naturally interprets as energy momentum.
(1iv) Pu is expressible as a surface integral at spatial infinity, and thus

can be measured by experiments confined to the asymptotically flat region

outside the source, i€ qu is expressidble in terms of a superpotentisl,

*Supported in part by the National Aeronautics and Space Administration
Caltech/JPL Contract No. NGR 05-002-256 and the National Science Foundation
{Gp-36687X].

1'Imperial 0il Predoctoral Fellow.




Ouv = Au(va],a. In this case the existence of a conserved Pu implies the
existence of a conserved P* and vice versa. (v) While some LBGCM theories
@.g., general relativity and scalar-tensor theories) possess superpotentials,
others may not. (vi) For a theory with a superpotential P“ and P (as mea-
sured at "infinity") transform as L-vectors under Lorentz transformations,

if the varisbles of the theory are all tensors, tensor densities, and affine
connections. For other types of LBGCM theories, the‘Pu constructed from a
given qu need not be a L-vector. (vii) In Will's ten-parameter post-
Newtonian (""PPN") formalism there exists & conserved Pu if and only if the
parameters obey 5 specific constraints; two additional constraints are needed
for the existence of a conserved angular momentum Juv' (This modifies and
extends a previous result due to Will.) (viii) We conjecture that for metric
theories of gravity, the conservation of energy-momentum is equivalent to

the existence of a Lagrangian formulation; and using the PPN formalism, we
prove the post-Newtonisn limit of this conjecture. (ix) We present "stress-

energy momentum complexes' Ouv for a wide variety of specific theories of

gravity.
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I. INTRODUCTION AND SUMMARY

The variational principle is an elegant and compelling foundation upon
which fundamental theories are formulated. In fact, most complete and self-
consistent theories of gravity are derivable from variational principles
— l.e., are "Lagrangian-based." 1In this paper, a member of a seriesl'g’s'h
of papers which discuss general properties of gravitation theories, we spe-
cialize to Lagrangian-based, metric theories of gravity. It would be very
helpful for the reader to have read Ref. 1 above (hereafter referred to as
Paper 1) for definitions of the terms and concepts used in this paper.5

Our discussion focuses on the identities and conservation laws that
follow from a variational principle. We demonstrate that for the case when
all fields present in the action are varied (when there are no absolute
variables), the resulting Euler-Lagrange equations contain redundancies,
i.e., identities. As a result of the specific form of these identities,

we prove that the matter response equation QJV v " 0 is a consequence of

’

the gravitational field equations if and only if no absolute variables are
present. We also prove that all Lagrangian-based, generally covariant
metric theories in a certain broad class (denoted by ”LBGCM*" — see Sec.
I11.E) have conservation laws, so that a conserved energy momentum Pu can
be defined. Furthermore, we show that if the conserved PH can be evaluated
solely in terms of the asymptotic properties of the gravitational fields at
asymptotic infinity, a conserved, contravariant, lY-energy momentum P can
be defined and vice versa. In such cases P“ and P transform as L-vectors
under Lorentz transformations in the asymptotically flat region, if the
variables of the theory are all tensors, tensor densities, and affine con-

nections.
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In the weak field, post-Newtonian (PN) 1imit6 we derive five constraints
on the "PPN parameters" of LBGCM* theories. Our ability to explicitly con-
struct a8 Lagrangian-based theory of gravity with five arbitrary parameters
in the post-Newtonian limit particularly proves our conjecture that for
metric theories of gravity, the existence of a conserved l-energy momentum
is equivalent to the existence of a Lagrangian formulation.

The fact that the action principle admits a covarlance group can be
expreased in the form of various differential identities. Excellent reviews
on this subject abound.7 We summarize the identities in Sec. II merely to
set the framework for later discussions. We then specialize to metric theories
of gravity in Sec. III, where because of a theorem proved in Paper I, ché
nongravitational part of the Lagrangian must have a simple, universal form.
Section III.A sets up a model Lagrangian for metric theories, and Sec. III.B
specislizes the identities of Sec. II to such Lagrangians. 1In Sec. ITI.C
the resulting field equations are derived symbolically and our results regard-
ing absolute variables are proved. Section IIL.E makes use of the results
of Sec. III.B to derive conservation laws. Section III.F discusses further
the conservation laws derived in Sec. IIL.E, emphasizing in particular the
role of the conserved energy momentum in asymptotically flat spacetime.
Theories with "singular Lagrangians' - a topic somewhat unrelatéd to the
rest of the paper — are discussed in Sec. III.D for completeness. Section
IV specializes to the post-Newtonian limit.

Appendix A lists for various exemplary metric theories, the gravita-
tional portion of the divergence-free stress-energy pseudo-tensor and when-
ever available, the corresponding superpotentials. Appendix B gives the
"contravariant” and the "mixed-index' gravitational stress-energy pseudo-

tensor that enters into conservation laws in the post-Newtonian limit,



Appendix C presents a new theory of gravity with conservation laws, and its
post-Newtonlan limit, which possesses the maximum allowed number of arbi-

trary parameters: 5.

II. CONSEQUENCES OF COVARIANT ACTION PRINCIPLES

In this section, we summarize some well-known identities resulting from
the covariance of the mathematical representation of a given theory. There
is a generalized Bianchi identity corresponding to each transformation of
the covariance group. When specialized to the Manifold Mapping Group (MMG;
that covariance group corresponding to arbitrary coordinate transformation),
these identities can be written in different, but equivalent forms known as
the Noether identities. For derivations of the cited identities, see any

of Refs. 7.

Consider the action
L
W =S Y Uy Ox (1)
R ’

where for simplicity we assume the Lagrangian to be a functional of the
geometric objects ("variables" of the representation) {@A} and their first
and second order derivatives {Zk’u, Z%,uvl's Let the action principle be
invariant under some transformations characterized by the infinitesimal
descriptors ;1(x). The number of descriptors ﬁi(x) is equal to the number
of arbitrary functions characterizing the set of transformations {the
covariance group). We assume henceforth that the functional change of {WA}
[ see, e.g., Eq. {6) of Paper 1] has the form

O e . .
B~ dast Gk o Lo b @)
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where dxi and CAi are functions of the WA' This form 1s extremely general;
it holds, for example, whenever the gi are infinitesimal generators of MMG

and the WA are tensors or tensor densities. Equation (2) and the subsequent
discussions can be generalized to include a term containing the second deri-

vatives of gi for the case when @A is an affine connection field.

Bianchi identities

Corresponding to each transformation of the covariance group described

by continuous functions gi, there 1s a generalized Bianchi identity:

oty
(4 50,

-2
Ca1 5%,
where
Wyt Wy o W, ) )
LY A 2 T, et YA

is the usual variational derivative of # with respect to @A.

Noether identities

We now specialize to the case where the covariance group is MMG. Let

ﬁp be the descriptors of MMG:

In order that the action principle
51(W) = O

be invariant under MMG, the Lagrangian density i(yA. WA uv) must trans-
y

)
A

form as a scalar density (modulo 2 total divergence Q° 0)

B+ Q° g - (2 Q) g“’u Q7 ), M (s)
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On the other hand, the functional change of ¢ ia

= - g &
Bt a}a 6% * B’M;,; B'yA,u * d"A,, b A, pv

:'3/5%\

W—%’U '2<T‘*‘,v7§/ 3'17““57/) . (8)

A nv

Combining Eqs. (5) and (6), we obtain the Noether identity:

<~=€§p- WA 57/A+2"“' (V)R'U ‘“’"(W—wﬁ)

A, uv
- ’p -6) 67/A8’U , (7)

for all arbitrary functions g“.
The above items require some discussion and clarification.
(1) The Bianchi identities [Eq. (3)] and the Noether identities
[Eq. (7)] are satisfied by all "kinematically possible trajectories” (kpt;
set of values for the components of all variables, unconstrained to satisfy
the physical laws of the representation).
(i1) As an example of the Bianchi identities [Eq. {3)], consider the

following Lagrangian density:

(8,9 < (R¢° - ef g &) /75 (3)
where
R = curvature scalar formed out of the metric %gv
¢ = scalar field.
Equation (8) is the gravitational Lagrangian of the Dicke-Brans-Jordan theory?
for w = -3/2. The Lagrangian ié-D’ in addition to being generally covariant

is also invariant under the "scale transformation of the second kind":
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—%'
By = By, (9a)

¢ =g, (9b)

#

#

where 0 i1& some arbitrary spacetime function. The infinitesimal version of

Egs. (9) are

8g = - 208 , (10a)

@l
A=Y
I

g . (10b)

Here 0 plays the role of the descriptor of the transformation and comparison
with Eq. (2) gives the Cyy and dApi (the latter being zero in this case).
Further comparison with Eq. (3) ylelds the Bianchi identity corresponding to

this "scale transformation of the second kind":

ai%-D Eﬂ’EB--D

- =0 .
28, e, + ¢——¢—6 E (11)

(ii1) The Bianchi identities [Eq. (3)] corresponding to Ei being the

descriptors of the MMG [Eq. (4)] can be obtained from the Noether identities,
(7), by substituting in Eq. (2), performing an integration by parts,

and utilizing the arbitrariness of the descriptors, Ei. Thus Egs. (3) hold

for any Lagrangian which is a scalar density (modulo a total divergence).

(iv) Prom Eqs. (7) and (3), we also obtain the identity

-2 - Y, + 2lT— 6'2/—('&7—* 'Q)
6A WAHV’ ,uVS

3{/

U S B (12)
A [ s B

for all infinitesimal generators gu of MMG.

Equation (12) is known as a "strong conservation law' (see Ref. 7c) because
q g

it is an identity holding regardless of imposition of the field equations.
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I1I. LAGRANGIAN-BASED METRIC THEORIES

A. The Lagrangian

We now apply the general discussions outlined in Sec. II. to generally
covariant, Lagrangian-based metric theories of gravity. We first group the

variables {g%} into three categories:

Y= o)+ (g0 + Ta) (13)
where

{2&1 z dynamical gravitational fields, (identified in (1ka)
our notation by lower case a in symbolic sums),

{¢b} = nondynamical (absolute) gravitational fields, (1kb)
(identified by lower case b),

{q)} = nongravitational fields, (identified by ). (1ke)

The Lagrangian density can be separated into two parts, the gravitational

part (containing no matter variables) and the nongravitational part:
,e:,ecuzmﬁ ) (15)

In Paper I, we have shown that for relativistic metric theories, £NG can
contain only one gravitational field, the metric gpv. To be more general
we assume that guv may not actually appear in ib, but rather may be an
algebraic functiom of {za}, {¢b}, and perhaps some iwc} that do not appear

in xb at all.lo Symbolically,

= ) 3
2o = Loz By 2y 0 Ze o0 Po o P o (16a)
e " IaclBuy B0 8o Buvor B ) (16b)
guv ° guv(za’ ¢b’ mc) : (17)
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There will also be some "postulated" field equations of the form

F(g,, 1) -0 . (18)

<

for the asbsolute objects ¢b and LC. Our results do not preclude the possi-

bility that guv may in fact be identical to one of the za's.

B. The Identities and Their Consequences
In this subsectiom, we write down identities and relations for the
Lagrangians in Eqs. (16), assuming they admit MMGC as a covariance group.

We take the functional changes of the variables to be

gza = daqup,g - za’pgp s (19a)

o, = dbgpﬁp’q -y 8 (19b)

BAE chng,n - wc,ogp , (19¢)

SR VLR W (128)
and, in particular,

By, = - 28,058 -, f0 (19e)

where the go are the descriptors of the coordinate transformation and are
arbitrary functions. [Equations (19) must be generalized to include §D,UT
if one of the variables is an affine connection field.! For simplicity, we
further assume that zb and J%C are scalar densities {which is usually the
case) so that the @P in Eqs. (7) and (12) may be set to zero. We now pro-

ceed to list some useful identities.

(1) Bianchi Identities for £

Comparison of Egs. (19) with Eq. (2) and use of the fact that £ 18 a
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scalar density by itself reduces the Bianchi identities, Egs. (3), to

&ic Sf, o )iG ¢

G a G
-z —_— - {d — d, = 0 20
a0 Bz b,p 6§b ( a p Bz, "% S¢b>m (20)

(i1) Bianchi Identities for £NG

Similarly, Egs. (3), when applied to #yo Yield

1 1/2 v g /2. ¢ - g

-1 - - - (- 10 .47 M _, 21
28uv,a( g) b , e, (-g) o Yo B, o , (21}

where we have used the usual definition of the matter stress-energy tensor:

® s gt/ TN (22)
g,

(111) Noether Identity for Jb

Equation (12), for £, becomes

_ M o, - ¥, _

a,g b,q a,p0 ’ b0 0P
& o, 8L
G — G - ) G g P
- xy—82,) - ( ) - a7 2 a9 =0 . (23)
aza,pc a’,p éab,pc b, p 5z, & gag b p® l.o

Since the t7 are arbitrary functions, the coefficient of each derivative of
¢7 1in Eq. (23) must separately vanish. Using Eqs. (19) to write out gza

and 5§, and equating to zero the coefficient of t° yields the identity
b T

¥ i it

250 4 2 4 /Y G (“WMG‘") ¢
G7p Szayc a,p a¢b,n b,p aza,rd o BP b,o7 , 7 ke

*('B”z'_c*"a ) *(‘a;(b_% ) sz 4 '\z;édbo =0 . (24)
a0 BPT by D07 5%, a0 T 5F “bolg

[Equation (24) can also be obtained from Eq. (23) by setting 7 = 5 S
q g s o
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C. The Field Equations

Variation of the action yields the dynamical equations, which may be
placed in two categories:

1. gravitational field equations

G .
g;; t e T o, (25a)

2. nongravitational field equations
&fNC

—— = O, b
8q> (25b)

If we impose the nongravitational field equations, Eq. (25b), on the Bianchi

identities for Lyer EQ- (21), we obtain the “matter response equations"
T =0 , (28)

where the covariant divergence is with respect to the metric goe. A further
useful relation may be obtained if we impose the gravitational field equations,

Eq. (25a), on Egs. (20) to obtain

e n

: X _g ?‘{c_(dﬁ’&:fcb_d ffrgg) -0 . (27)
a,n 628 byp F’E; b p fﬁ{) anp ?;Za T

Equations (25a) and (25b), together with the prior-geometric comstraints
Eq. (18) and a possible decomposition Eq. (17) for g,y in terms of (za, ¢b’ WC),
comprige the '"physical laws'" of the representation. These laws can determine

the field variables Z, ¢b’ WC, and g only up to four arbitrary functions

A
corresponding to coordinate freedom. In the case where no absolute variables
are present, this means that the field equations, Egs. {25), cannot be all

independent of one another; the number of independent field equations must

be fewer by four than the number of variables {za, q\}. This is the case,
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for example, in general relativity (CGRT), where four of the gravitational
field equations reduce to Tuvw = 0. The same is true for all other theories
b

that are devoid of absolute variables:

.. = 0 of a Lagrangian-based,

.

Theorem: The matter response equations Tuv
generally covariant, metric (LBGCM) theory of gravity follow from the gravi-
tational field equations if and only if there exist no absolute variables in
the theory (no ¢b and Wc).

Proof: The dynamical Eqs. (25a), plus Eqs. (22). plus the functional

dependence of {NG imply

Eaf &L, 3g g,
G NG 9% 1 1/2 uv nv

8z g oz - (-8 v Jz ’ (28)
a 187 a a

Also, one has identically
g o8 o8
ey o vV MV = v =
g, = ‘5-:: 5z, + ‘w; 6¢b + v SY, s (29)
which, when Eqs. (19) are used and the arbitrariness of the & is invoked,

implies the relations

g g dg
Hy v %%
= z 4 e 30
iv,p 528 a,p * &éb ¢b,o oV Wc.p ’ (30)
ag og (\7g
-2 0. H¥g0 Ya? . Hogo | 31
8o (ubv) cz, ap * , PP * . c©p (31

On the left-hand side of Eq. ({31) We have uged the explicit form for the
da“p function belonging to the functional change in guv [see Eq. (1%e)].

1f Eq. (28) is now multiplied by z,  and then dago' and Eqs. (30) and

b

(31) are used, one obtains the two relations:

e 1, /2y By 8
e - 4 LBy
*a,p s 2(-8) ™ &, T‘ﬁg ¢b.o 3V, Yeo) - (32)

g, '8
o &G‘ 1. 1/2.uv o, B 40 UYL
4% 5=+ 5(-8) e 28 (5 d + a ] - (33)

b Y c
Za P Y e
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Equations (32) and (33), when substituted into the identity, Eq. (20), yield

o g o, et
1 1/2. v G G
S(-8)"/ <8W-o -~ Bu,bv ¢b,p - ‘%‘L" i’c.o> “ o 8, (db% 5¢b\),c

[

% 8
1/2 v v Is 584 Al i
- - d —— d =0 . 3k

( g) /e <agp(u v) 4 N bp a‘i’C R p) o (34)

Finally, using the identity

R R T L T L (z5)

oz~ Va B2 uv, o

(34) becomes

2 s 1. 1/2 v Buy LY ‘ e
(-8) To s ™ " 2( g) /o <S$b ¢b.o N ‘VC.o> ¢b<0 F\@Z

&t 1/2 Lv By g
'(dbop@';), “v(-) f<7d1p+.§5; d_ O) . (38)

b

Only the gravitational field Eq. (25a) and identities were used to obtain

(36); hence it is equivalent to the gravitational field equations. Obvi-
ously, if there are no absolute variables (wc = ¢b = 0}, the right-hand side
of Eq. (36) venishes and one obtains Eq. (2f). On the other hand, if some
of the ¢b and wc do not vanish, the right-hand side of Eq. (36) does not in
general vanish'! and Eq. (27) is not implied. Thus the theorem is proved.

This theorem makes it clear that in theories with no absolute variables,
one has four fewer independent field equations than variables, so the field
equations leave the coordinate system unconstrained.

By contrast, generally convariant theories with absolute wariables
typically do not contain any redundancies among the field equatioms. 1In

this case it is the responsibility of the prior geometric constraints (18)

to avoid comstraining the coordinate system. One must be able to satisfy
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them in any desired coordinate system - and after having picked a specific
coordinate system, in which the absolute variables then take on specific
forms, one can solve all of the field equations (which are now all independent)

for the specific forms of all of the dynamical variables.

D. Singular Lagrangians

In the previous subsections, we have delineated the identities and field
equations resulting from the particular form of the Lagrangian given in Eqs.
(16). Throughout the discussions, and also in the proof of the theoremin
Sec. 111.C, we have tacitly assumed that the gravitational field equations
are consistent with the nongravitational field equations. In general, Euler-
Lagrange equations obtained from the variation of an action should be con-
sistent among themselves. Anomalies may occur, however, when the action
integral admits a partial gauge grouplg — i.e., when a portion, but not all,
of the action integral is invariant under a group of transformations generated
by arbitrary functions (called gauge group). We can find no general rule to
detect such "singular Lagrangians” but shall i{llustrate with some examples.
We will see that the "inconsistencies" can be expressed as some extraneous

constraints on the field sources.

(i) Dicke-Brans-Jordan Theory with w = - 3/2

1o 8 g e [agle, 0) dx . (D)

The gravitational part of the Lagrangian has been considered in Sec. II. It
is invariant under the '"scale transformation of the second kind." This

yields identity Eq. (11). The gravitational field equations are

[sd - et
T e G .
55 s = - 'lu R ’ga— =0 . (388)

uv
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Substituting these into Eq. {11) yields

g ™ -0

wv
This is definitely inconsistent with most of the sources one would
put in gﬂm

{i1) Lorentz Symmetric Spin-2 Theory

1= f (e + Zyo) dx

where
7c - AINE BogleBycls 7 B |pBry | T BaglaByaic
8 o) (0
Riem(n) =0
We denote by a bar "|" covariant derivatives with respect to quv.

gravitational Lagrangian {G’ admits a gauge group ({G is unchanged

the transformation)

s 0
P g P

S = -~ 2 N
bg To(u®v) * a7 Tav,p

uy

This leads to a Bianchi identity corresponding to Eq. (3},
rj;(’G

In (s Y ], =
u(a’e) ne v

<

(38b)

want to

(39a)

(39b)

{z9¢)
The

under

(10}

(b1}

Substituting in the gravitational field equations, we obtain a constraint on

the matter stress-energy tensor:

v
[qu(oﬁﬁ)

(12)
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Equation (42) is inconsistent with the matter response Eqs. (26) for most

sources 'Iuv.

E. Conservation Laws
We now derive conservation laws useful for defining a physical total
energy momentum for matter and fields. We will be interested only in con-

servation laws of the forms

H -0, (43a)

[ =0 , (43b)

where ¢"” or Ouv reduce to T or Tuv in flat spacetime {"in the absence of
gravity"; see Paper I). In some cases, identities resulting from invariance
under MMG can also be put in the form of a vanishing ordinary divergence
[see e.g., Eq. {23)]. However, the quantity that has an identically vanish-
ing divergence typically does not reduce to the matter stress-energy tensor
in the absence of gravity. Hence Egs. (23) and (24) do not directly yield
the conservation laws we seek.

Once established, Egs. (43) enable us to define conserved quantities,

T O“Vdszv , (Lka)
L

™= J’ou"dsgv . (bbb)
z

The integrals in Eqs. (44) vanish when taken over a closed three-dimensional
hypersurface Ev' If a coordinate system 18 chosen in which zv is a constant-
time hypersurface and extends to asymptotically flat infinity in space,

then P and Pu are time independent and are given by

R A (452)

0,x o
B, = [ 9% . (45b)
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If, in addition, BV s symmetric, we can likewise define the following
set of conserved quantities

P Pl o 0% o fudv o V) 08 (45¢)
£ s)

v
Since 0" reduces to the matter stress-energy tensor in the absence of gravity,
i
we can in fact interpret PO or PO’ as the total energy, P or Pi as the total

ij

momentum, and J as the total angular momentum. JOi determines the motion
of the center of mass. (See, e.g., Box 5.6 of Ref. 13.) Note that for con-
served angular momentum to exist, one must have a contravariant stress-energy
"complex" MY,

For general reference, and for purposes of clarifying the following

theorem, we define the following:

LBGCM theory: Lagrangian-based, generally covariant, metric theory of
gravity.

LBGCM* theory: LBGCM which has at least one symmetry group {group that
produces E¢b = 0 for all absolute variables ¢b) with
these properties:

i) The group has at least L dimensions.
11) 1f g“ is a generator of the symmetry group, then

H

£ > const.

and
g

o o8 a
Bw P, T Buled)
where -~ denotes the limit to asymptotically flat
infinity.
*
All LBGCM theories with no absolute variables are automatically LBGCM

theories. In all prior-geometric theories we have seen in the literature,
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constraints 1) and 1i) are obeyed; hence, the class of LBGCM  theories covers
all LBGCM theories that we have seen.

it is well known that in general relativity, quantities © “V, ﬂl, Rl
can be found. The following theorem generalizes the result:

Theorem: Conservation laws of the form of Eq. (L3b) exist for all LBGCM*
theortes.

The Lagrangians given in Egs. (16) and {17) will be used for a model
theory in the proof. They are general enough to include all specific metric
theories known to us. The theorem will be proved in two steps: first for
theories without absolute variables, then for theories with absolute variables.

Case (1) No absolute variables are present.

In this case, Eq. (23) simplifies, with the help of the field equations,

Eq. {258), to become

{-2.t" - - i 5z, + E(i) 5z, - <= (sz_)
[ 9 a0 a Bza,qT T a Bza’gT N
6=£R',‘ a o -
+ *S‘;—- d8 o £ ],()' = 0 . i3 . (}Qba)

This is already in the form [Eq. (43)] we seek because &{NG/Sza yields,

v
among other things, the matter stress-energy tensor Y. We note that there
are in fact an infinity of conservation laws embodied in Eq. {(46a) since the

go's are completely arbitrary. This richness of conserved total energy-

momentum complexes is to be associated with the absence of absolute variables,

i.e., all gravitational fields are dynamical.

o

With some particular choice of £", we can rewrite Eq. (4fa) in a wore

transparent form. Let t° = &Oa. Then, with the help of Eq. (25a) and Eq.

(33) [remembering that ¢b and Wc do not exlst], we obtain



~2h8-

3 ¥ ¥ 1/2
O A . - e ) 2 + e Z - (- T =0 . (Leb
{ G"p 62‘3’(T a,p <»>za'm LI A e (-8) o }m (heb)

This agrees with Einstein’s prescription for obtaining the stress-energy
pseudo-tensor in GRT.

Case (11) Absolute variables present.

letting £ be the total Lagrangian in Eq. (3), use the dynamical field

Eqs. (25a) to obtain

Bldg + ) o RCA i’m)
Cbp TR X - db u 5¢b N o - (47)

If Eq. (47) is now multiplied by arbitrary functions :" (and summed over u)

and Eq. (19c) is used, the result is

Bl ™ ) Al + 2ye)
g“db”u ~——~Ei%;—~«— o --§a;——~—~s¢b . (48)

Equation (48) can be rewritten, with the help of Eq. (16b), as

o, 8
a7 |0 Lg)t/? 8 P

o) oa— - N
= 8 . 9
LN EY: oF 0 ) J¢b (19)
b b b
If one now chooses g“ to be a generator of that symmetry group which appears

*
in the definition of LBGCM , i.e., a descriptor such that
;;¢b =0, (50 )

and uses the defined properties of LBGCM theories, then Eq. {49) takes on
the form of Eq. (43b). 1In a coordinate system in which the absolute objects
are constants, the total stress-energy teunsor in brackets on the LHS of Eq.
(19) reduces to a form identical to that in Eq. (Lab).

As an example, consider conformally flat theories.1L The absolute

object is v and one has



~249-

{G = :,G(T‘Oﬁ' CP) ’ (513)
= f
8op = Neefl®) (51b)
Riem(qoa) = 0 R (51e)
where f is some function of the dynamical scalar field . For Ny the dbﬂa

function 18 just
g [«
a7 2Py (52)

If one now uses Egs. {51) and (52), then Eq. (49), with its RHS zero, becomes

4
n /2, ¢ G .
(I R = R (53)

Note that the conserved stress-energy tensor in Eq. (53) is a true tensor
(density), as opposed to the corresponding quantity in theories without
absolute objects (GRT, for example). Such '"true" stress-energy tensors,
which typically exist in prior geometric theories of gravity (theories with
absolute objects), are associated with the symmetry group of the absolute
objects.

To summarize: integral conservation laws are associated with the symme-~
tries of the representation. When there are no absolute objects the symmetry
group is MMG, the conservation laws are the result of covariance underx
coordinate transformations, and the "energy-momentum complexes' qu are
typically not tensor densities. On the other hand, when absolute objects
are present, their symmetry group {emaller than MMG!) produces the conserva-

tion laws; and QHV typically are tensor densities.

F. Further Discussions

*
In Sec. II1.E we obtained conserved energy and meomentum Pu_for LBGCM
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theories in terms of a voluﬁe integral over Quo. We will limit our ensuing
treatment of such quantities to their roles in asymptotically flat spacetime,
because only there are they definable in a physically meaningful way.15 To
correspond as closely as possible to the exberimental situation, we would
like to know if we can evaluate these conserved quantities in the asymptotic
region without any detailed knowledge of the near-field behavior.

It is clear from Eqs. (45) that if and only if " and O“v are deriva-

tives of a '"superpotential’:

gtV . nvx . AAuvcr N ey (sha)

- u{ O} 3 uli 2 c
#- [ A PEEE § A" %, (55a)
. [oa] 3 012 e
Pu 3 f /\u ’Qﬁ X = § /\u d T (55b)
(Here square brackets [ | denote antisymmetrized indices.) The general

argument in Sec. III.E has no direct bearing on the existence of such
superpotentials in LBGCM* theories. 1In fact, we do not at present know of
any feature in the structure of the mathematical representations of a theory
that is tied directly to the existence of superpotentials. While it is true
that the existence of a divergenceless MY (or va) in a certain region
necessarily implies the existence of a superpotential from which the M

is derivable in that region (using the mathematics of differential forms),
we have found16 that such superpotentials either must be defined in the
interior of the region, or are nonunique when defined on the boundary of

the region. Consequently, no superpotential is guaranteed to exist which
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allows a uniqge Pu to be defined in the asymptotically flat region around
a gravitating source. Thus the existence of physically useful superpotentials
assoclated with a divergenceless ¢+ is theory-dependent (depends upon the
detailed properties of qu). Some conservative theories may have super-
potentials and some may not.

One immediate consequence of superpotentials, when they exist, is that
for every divergence-free Ouv (and hence conserved P“). a corresponding

divergence-free Ouv (and hence a conserved P“) can be constructed, and vice

versa: Given a Ouv (with a Au{va]), one simply defines a A,u[va] by, e.g.,
A.u[va] - guTAT[Va} , (56a)

and a divergenceless " is defined by
L e (s6b)

,

Thus all LBGCM* theories that possess superpotentials have a divergence-
free oV (and a conserved ﬁJ). The conservation of angular momentum hinges,
however, on the symmetries of de, and thus far, our general arguments do
not yield any useful information on this issue. In Sec. IV, we will take
a different approach and derive empirical conditions in the post-Newtonian
limit for the existence of a conserved angular momentum.

It was noted that Eq. (L6a) gives an infinity of divergence-free Ouv.
What about the corresponding Pp; are there infinitely many of them? To
seek insight into this question, one of us (DLL) has examined in detail the
Dicke-Brans-Jordan theory and has found two conserved Pu's that can be
evaluated solely in terms of the asymptotic properties of the gravitaticnal
field.l7 This leads us to conclude that the Pp's in general are notf unigue.

Once we know how to evaluate P and Pu in the asymptotic region, we



would like to know their behavior under Lorentz transformations. From Egs.
(55) we see that, if in the general covariant mathematical representation
of a theory the variables {@k} conglist of nothing but scalars, vectors,
tensors {and their respective densitlies) and affine connections, then the
conserved P and Pu thus constructed will transform as b-vectors under
Lorentz transformations at asymptotic infinity. In Appendix A we give v
for various exemplary theories. 1In cases where superpotentials exist, we
give them along with v, (As remarked earlier, there is no theory inde-
pendent way of deriving superpotentials — those given in Appendix A are
quoted from various references.) When qu is given, we use the formulas

derived in Sec. III.E.

IV. CONSERVATION LAWS IN THE POST-NEWTONIAN APPROXIMATION

In this section, we complement the analysis in Sec. III by discussing
conservation laws in the larger domain of general metric theories, not
necessarily Lagrangian-based, but restricted to the post-Newtonian approxi-
mation (gravity weak, stresses small compared to mass-energy demsity, and
relative velocities small compared to that of light) In this domain the
Paramatrized Post-Newtonian formalism6 is applicable. Our analysis is
patterned closely after the work by C. M. Will,18 except that we consider
a l0-parameter metric in the "PPN gauge' rather than the standard6 G-
parameter metric. This lO-paramefer metric was introduced recently in Ref,
Will. 1Tt allows one to encompass in the PPN formalism the theories of
Whitehead,eo Deser and Laurent,21 and Girotti and Wisnivesky.gg theories
requiring, in addition to the standard nine potential form of the metric, a

"Whitehead term." To date, the 10-parameter metric encompasses all metric

W
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theories known to us.

Following C. M. Will, we will obtain the conditions at the post-
Newtonian order for any metric theory to have a conserved P (and Pp). We
will also obtain the appropriate conditions for there to exist a conserved
.

We now proceed with the details.

A. The Metric

In the PPN coordinate system. we take the generic metric to have

the form
g =120+ 280° - bn . r g 2t 0 (57a)
00 - "1 ww H
Bqy T l‘(h7 B e BV, (e o )W {57}
01~ 2 O Yy A L T
T {57¢)
8y %ij(l + 2 (57c)
where
0<;’ !’.) 3,
U X,t) = f‘-ﬁ(——_"?[ d"x
. 3
. - ~ . - plx! t\’/¢1 - ;5? + ¢:;\ - g
o(x,t) =0, (%,0) + 0 (%, t) + 0, (5, 0) 0 (xt) = [ Pam—
1 2 1 . . 1 ) .
freplog s vtV goanlt, - 205 DU, 42500, + D)o

3
5(ty, + ) p/e

A,

b

- olx, ) (%= %) - V(%)) 3., 3,
@(x, t) = s dx v () s [ @7k
(xy ) = f Ix - X'xa i ¥ jx - P
N plxt, )lv - (x - x'))(xi - x'l\ a7 x’
Wi(x, t) = vr s
Jo - w0 17
- %, t) ofx, ¢t X %) X - ®) - e 35
Ow(x,t) = I olx',t) D(A 2t) EX' - xn; - %x’ TR (x - x') d°x'd"x

- w0

Each metric theory is characterized in the PPN limit by its values for the
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ten PPN parameters B, 7, al’ aé, a3’ 51’ gg’ €3’ Ch’ Qw. For simplicity
we have chosen to work in a coordinate system which is at rest with respect
to any 'preferred frame" that may exist in the gemeric gravitation theory.
Hence our metric of Egs. (57) does not contain 'w terms" (see Ref. 2% for

further discussion)

B. Conservation of Energy Momentum

We attempt to construct quantities " and QVV of the form

v v v
o (1 an) (Y L Yy {588)

v v v
0¥ = (1-au)(t T , 58b
AR ) W L) (s8b)

satisfying
M =0 2o . (59)
Vo oTu L,y

In Egs. (58) "a" is an undetermined comstant and tuv and t*V are the mixed-
index and contravariant gravitational stress-energy pseudo-tensors. We
will now sketch the calculations for a law of the form of Eq. (58a) and
quote the results for a law of the form of Eq. (58b).

Using the matter response Eqs. (26) present in all metric theories and
£qs. (58), we find that t"” must satisfy the equation

Y aay MV BT VT BV (50)
, v L,V v oA a v .V

where the Foey are the Christoffel symbols. The ability to construct a
j1%Y 1y . A . . A
t and consequently a ¢ rests upon integrability conditions for Eq. (80).

We now calculate the Christoffel symbols to PPN order from the wmetric

of Eqe. (57) and use the following identities

.
U k] PO iv‘f for any £ (61a)
ks Ed

PR 1
haof,ig~2(d/8x )gu, <if]j>~ 2513U,k
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-1 ~ -1 2 3 1 -
(k) U,1V2°w = - (8n) U’ifvuf - En[U(U,iu,j =5 Byl 1y
- R (61b)
+Uit—29U+vo-vx+(hn)v(vu-vx)] R
[o'ur | - p' four | - p' Jx, - x' Jx, - x
a. -9 - X 3 rﬁ_‘._z._i______;._l‘_ Ex _f N 2k PR ki
,1 1,1 ,001 J - =TTEE
Y -
=0 , (61c¢)
— - - R
x(x,t) = - f olx',t)fx - x| d7x' . (61d)
Then, Eq. (60) can be put into the form
Ov 00 01
bnt v hr(t ot ’1)
1 2
-5 15 [wi® (e s 2a - 5))
o) \
-3y +a-2)U U, 23 »a-3) U VvV . (£2a)
el VUl A ERSAERTE |
iv i0 ik
hnt ’v~hﬂ(t 0 t ’k)
:—é{i(a‘ax+h7+?+2( +AEYU LU - (Sy —a - 1) Y
at ‘2'71 2 1 W Lo ' Cod
( by + LYyuv v, .,
vlog by e ) U vy
ey (1 1 (2 oa a0 ) Ul rL (u)
g —— - - - 2L 1 PP }
é}xj 2 2 w ij
Y r Pros 2 s L or )T \
+ (2, - T@) e ey e e e (e
velty -2 a3 s )y le,) - 2, o 1) Iyl
w0y ) s hr T ey
- oYy P ; o - DT v
+{3,(1[(Otl Cz2+hv+34 1"“3) o, -1 41)wt>]yo ,,cwgij(m
1 N ; PR
R A I ST I L R SO I S
2 -
- tsc (U ) {62b)



1
B T A I PR SIS oL TR RPS LRI 35 NSNS

1 2
- E‘(al 20, v by 424 ggl) 8ij(u,0) + egwrij(u’lx’l)

13 ij
+ {57 + a - 1) Ulpvv’ + 57p) & Bﬂgng,(iU,j) - ;w}’ijﬁk’k
r | o L
LR )y - gwx¢k’kij} + brgt (62b con't.)
where
1 ) X
P =V X gy - E K (632
- plx', e} U' Ix. -~ x')
t0x,8) = [ Ix e R (63b)
D.U'
- k3,
¢k (x, t) . f T**j*;yT a"x , (83¢)
and
1 1 e 1 2
= in[E (03 "Ly ng) A P ol (Q? B Cw>
+ Lol + (I’Sgh + EQW) P+ 5% ”%ﬂ(gl + 2§w>] . {634)

We have been utterly unable to write the terms in Q1 as a combination
of gradients and time derivatives of matter variables and gravitational
Py : iy
fields. Therefore the integrability conditions on t ° are that sach term

i ;
in Q7 must vanish separately, i.e.,

. .
= (Qé + €1 T ;w = 0, (6b3>
= Lp)

Cg Hw 0 7 (5 b,

te = 0 (8le)

30, ¢ 2, -0, (6ka)

Ly v 2, =0 . (Blhe)



Equations (64) represent comstraints that must be satisfled by the PPN
parameters of a metric theory in order that there be conservation laws of
the form of Egs. (58a). A parallel calculation has been carried out for
the integrability conditions on tuv for conservation laws of the form of
Eq. (58b); the result is that the same five constraints, Egs. (6h), wmust
hold. The resulting Y and tpv are given in Appendix B. Willla

obtained the results given inm Egs. (64), except without the {,, paramerer
appearing, since his generic metric did not contain the Whitehead term @w.

Since we have proved in Sec. III.E that "mixed index" conservation
laws of the form of Eqs. (58b), (59) exist for all LBGCM theories, we can
now state the following theorem:

Theorem; For all LBGCM  theories with metric given by Eq. (57), the PPN
parameters satisfy the five constraints given in Eqs. (6L).

A survey of the literature reveals that not only do all the Lagranglan-
based metric theories satisfy the constraints in Eqs. (64), but there is no
known theory satisfying these constraints that is not Lagranglan-based.

We are thus persuaded to present the following conjecture:

Conjecture: For metric theorles of gravity, the existence of a conserved
energy momentum P [defined by Egs. (hha) and (b3a)] is equivalent to the
existence of a Lagrangian formulation.

From Eqs. (64) we see immediately that any metric theory admitting a
conserved P can have at most five arbitrary PPN parameters. To complement
this result, we have generalized "Ni's New Iheory”gb to cobtain a Lagranglan-
based metric theory (see Appendix () which has five arbitrary parameters in
the post-Newtonian approximation. This, together with the theorem presented

in Sec. I11.E proves our conjecture at the post-Newtonian order.
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C. Conservation of Angular Mowentum
Equations (64) ensure that globally conserved energy-momentum vectors

hY
P and Pp exist. As mentioned previously, a conserved angular momentum

HV)

tensor I can be defined if and only if " (and hence t is symmetric.

: R v ;
What constraints are required for a symmetric t*Y?  An examination of Eqgs.

3

(62a), (62b) reveals that t*4 1g manifestly symmetric, but toi is not equal

10

to 0, However, Eqs. (62a) and (62b) determine t"”

only up to & total

divergence. We now seek gquantities s*Y such that

st Lo (65a)

and

LI L G L AL (65b)

Clearly, we can choose Slj = 0. Setting u = i in Eq. (65a) and using the
fact that t1j = tji, one concludes that Sio = 0. An SOl must then be found

such that

-8 . (88)

o1 i0o
s = {7 - ¢t 1 0

o1y o0
i

7

With the help of Eqe. (€2a8) and (62b), Eq. (£5) becomes

(hﬂ)'l[Au’iu’O 4 BU’j(Vj’i - vi’j) TR &7}
where

A= é(al -2, - 2 eyl et ey osa (68a)

B o= é G S - 1ea (p8b)

Cz - {8 +a-1) . (88¢c}

Now, using the identity

e [ .0 (v -V, ; hapU - U U ) =0 (69)
i V00 - Wy gy 0 U gy - Yy gt e it ’ )
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we see that an SOO exists satisfying Eq. (67) if and only if A = B = - C,
or
4y~ -2, =0, (70a)
o =0 . (70b)

Equation (70a), when combined with Eq. (6le), demands that &, = 0. Equations
(70), in addition to Eqs. (6l4), represent 7 constraints which must be satis-
fied by the 10 PPN parameters in order that there be conserved emergy
momentum and conserved angular momentum in the PN approximation. Note that
the constant "a" appearing in Egs. (58) has been left unconstrained contrary

to the results of previous c31Culations.25

D. Gauge Dependence of the Constraints
The metric given in Eqs. (57) is in the so-called "standard PPN gauge.”
This is the gauge in which all solar system gravity experiments have been
analyzed. For prior-geometric theories, however, the "absolute frame”26 is
the most natural coordinate frame in which to solve gravitational field
equations for the metric, to investigate the existence of globally conserved

integrals, etc. We are thus prompted to redo the above calculations for a

more general gauge (with two additional parameters ¢ and 7):

2
Byp = 1 - 2U+ 28U - Lo + gld e 2GX,OO , (71a)
1
801:5[(0(1-a2+l+7+3+g1)v1+(a2+1-g1)wi] , (71b)
8y - -51j(1+2yu) LT (71c)

where the X potential has been defined in Eq. (61d). This metric form
encompasses the post-Newtonian limit of all known metric theories in the

absolute frame. The constraints [analogous to those in Eq. (64)] necessary
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for there to be a globally conserved P are

1
sl +t)+7148 =0, (72a)
ty+er -t =0, (72b)
C3 =0, (72¢)}
3y, + 2, v 2 =0, (724)
by v, +2r=0, (72e)

while the additional constraints [analogous to Egs. (70)] for there to be
a conserved 77 are

Gy - byt 20 - bt -2, =0, (73a)

a, - 81t = O . (73b)

The constraints [Eqs. (72) and {73a)] can be shown to be invariant under
all gauge transformations that leave the form of the metric in Egs. (71)
unchanged. Many prior geometric theories (see Appendix A) have a symmetric
o " in the absolute frame. One wonders if the existence of such symme tric
quantities is independent of the coordinate system. The results in Egs. (72)

and {73a) have provided a partial answer to this question, i.e., if the

globally congerved P and MV (to the post-Newtonian order) exist in one

coordinate frame, then they exist in all coordinate frames related by a

gauge transformation that leaves the form of the metric in Eq. (71) unchanged.
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APPENDIX A

In this appendix, we summavrize the expressions for the gravitational
portion of the divergence-free MY or qu for some metric theories of gravity.
We also tabulate the corresponding superpotentials whenever they exist.

(1) GR:

Ce)(ehy o+ Yy - v (Ala)

e

27
The gravitational stress-energy pseudo-itensor is

LILJZ - (16")* (ET’S T OIBB naﬁrrea - r7 OlFr 8 U" - 8HVgC‘T)
* gucha(F(‘VB raa T O!r‘rr g " av Fcﬁr - TUVT Iﬂ(}fS)
. gvogwa(PUuBFTBa . FTuOﬁBB R Fauﬁpnﬁr ~ in . aBR>
+ g"’%;aﬂ(rﬂ“arTVa - rO“Tra"g) , (A1)

while the superpotential is

e T e o I I LA A (alc)

>

(1i) General Scalar-Tensor Theory by Bergman, Wagoner:

We know of two distinct, conserved, energy-momentum P that arise from

the following two conservation laws:

(a)

y sy x[v(3 29
(-13)(95/950)(tu ™Yy . o a (a2a)

where the gravitational stress-energy pseudo-tenscr is

N ¢é1t; * (8’@)'1{[“(95) -1 gty - .;_ [wig) - 2) gu%,,ﬂ’a

Ov v T TV ¥ TTou T Tl
+ (8078 Irt g g g e e g e - e )

CI s34 - T
T v oo O v Wy
+ T (?g“g - g - T
T
O O il SN LD I (A2B)

ooT
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~and the superpotential is
A"[va]’a = (16xp) 1% (-8) (8" - 8% 6 - (Az)

["11.'1‘: in Eq. (A2¢) is defined by Eq. (Alb).]
()
(-8) (/BB « ) = ] 17 (a2d)

e
and

() (Fy/B (e + ) =c (A2e)

where the gravitational stress-energy pseudo-tensor is

W = gely + em(p) gl - 5 T )

+ () H(FHY _ s“vsoﬁﬂ’;.w) - (a2f)
and *
-1
M w]’a = g (16m) 7' (-g) ("% - &5 o (A2g)
(111) Vector-Metric Theory of Will-Nordtvedt:-C
(a) 1/2
e+ (021" -0, (a3a)
where
tv=-;{5v+ GK + &G g --i—g
N G u BKO,,V au 5803,1: o8, 1. Bop v 8,10
&L,
- §—G~ g Bog,u (a3b)
goﬁ,VU » ’
and
1 .
4 = (-8 %k KK 8 (a3c)

(R is the curvature scalar constructed out of 2., and the semi-colon denotes

covariant derivative with respect to guv')



(b) This conservation law does not satisfy the requirements set out in Sec.

II1.E, but its superpotential allows a physical interpretation:

() (P 4 V) - v Y (a3d)
and
(o) (™« ) =0 (A3e)
The gravitational stress-energy pseudo-tensor is
2
Vo1 52-)‘1 ((sm)~ b *v . ci]\:} i (a3£)

where 0”7 is defined in Eq. (Ab) of Ref. 30, and t‘{; is defined in Eq. (Alb).

The superpotential is

o] 1 ,.2\,~1 1 YR \
A0V o= [16x(1 + 5 K7)] L) ("8 - g ) [ (Azg)
b4 i
31 .
(iv) Hellings-Nordtvedt Theory: [wf O, n=0
(a) .
(e (-e)'/? T, =0 (aka)
where
Ve e e,
W G u <3K7 SANS Bog v o, b OBog £
&,
5 , b)Y
- <agaﬁ’w>,o’ gae'“ , (abv)
and
1/2 o Py nv pv, el
#p = (-g) IR~ (Kv,u - K“?v)\ e xﬂ‘a) g g quKng “KquR 1 {ahe)
()
~ W .
(1= )t gLy - vl (aka)

The gravitational stress-energy pseudo-tensor is
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uv -1 LV suv ERTEe NS IPRVY v 1 uv of
Y L (BT W(RUKR 5 R L gt B.e) - ()7 (r lFa vy 8T
R (Ate)

and the superpotential is

ul val wv_off LY

-1 . \
A ac (18m) [ (-g¥(g" g™ - " g Ve (abf)

(v) Ni's Lagrangian-Based Conformally Flat Thgg;z:l

VR oo (ASa)

The gravitational stress-energy pseudo-tensor in the preferred frame [in

which Ty - diag. {-1. 1, 1. 1)] is

eV - 2f1<¢)¢,q¢’an‘@;uv - LE () ,Igs’uq’v . (A5b)

133

(vi) Lightman-lee Theory:32

o)
+ (-g)l/‘ TV oo (Aga)

The gravitational stress-energy pseudo-tensor in the absolute frame [in

- . _ 1 P
which oy diag. (-1, 1, 1, 1)] is

v -1 v, 71, B N e S - v ; LV , N
£ (163) [gu {ah b @ £ R - 2(ah hf‘)’u : fh'uh Y] . (Aeb)

.
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APPENDIX Bl

Contravariant Gravitational Stress-Energy Complex for Metric Theories in the

PN Limit [satisfying the constraints of Egs. (64)]

1f the Q@ 1s zero in Eq. (£2b), then from Egs. (£2) one may read off

COO and

01

t

. v
write down Y here.

[Eq. (€7a)] and th and ¢% [Eq. (€2b)]. We therefore do not

APPENDIX B2

Mixed~Index Gravitational Stress-Energy Complex for Metric Theories in the

PN Limit [ satisfying constraints of Egs. (Ffl’}

too = (eﬂ)'1 (67 + 2a - 1) l,’U!E (B2-1)
! -1 .
= (b (% - . (a (B2~
£y (br)" " [2(3y + a - 1) U'kv[ K, 1] (a + 3y) U,OU,IJ . (B2-2)
e 0 (hn)'l [(a+ 3y -~ 1; uE . 2t U U (B2-3)
k PR T S5y 07 K e
7 -1
= - a - : - . Cr - oa))
ty (1 - a-~3y) U(oV,Vk + px“() b0 - (e, et - a)) rk[(u)

+

(07 rle) « (ke (@)« (e e e

+

-1
»
]

()" (o =y oty 2 b DV 5 e, 6Vm, s
+ (Bﬂ)fl (042 + 1 - t.\l)(Vm’ [Vmps h Vmwm,lk " avmw[m,f}k h ﬁzkv{r,sjv(r,s}
VlU’ok * _; E\’lkU,02> .
(2m)7t Cw{‘]é Uyogfgk Tl XMy T T X Rt 0 (U0
R % X,k(u,mu a3 %l gl 'é*,rs”, CRCN (B2-k)

The potential ¥, and I

x

i

j(X) have been defined previously and

ulx') ,u(x') ,dx'

Y 8
KX

T
f 2 X $ S
ix - x'1
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APPENDIX C

A Lagrangian~Based Theory of Gravity

In this appendix we present a Lagrangian-based theory of gravity. Tt
is a generalized version of Ni's New T‘neory;el‘ and it is designed to have
the maximum number (S) of unconstrained PPN parameters allowed for any theory

with conserved P,

a. Gravitational fields present: A flat background metric n, scalar fields
¢ and t, a vector field ¥, a symmetric temsor field h, and the physical

metric g.

b. Arbitrary parameters and functions: Three arbitrary functions f1(¢),
f2(¢), f3(¢) and three arbitrary parameters e, k,. k,; in the past-
Newtonian limit, with appropriate choice of the cosmological model,
there are five arbitrary parameters: a, b, d, e, and (kg/kl).

c. Prior geometry: The following constraints are imposed. ‘a priori, on the
geometrical relationships among the gravitationsl fields:

(1) flatness of the metric ¥}

(Riemann tensor constructed from q\ oo (Cla)

(11) "meshing constraints" on t, Tland .
ty = 0 [Clb)
uv

fut «m'uv SRR (cle}

(Here and below a slash denotes a covariant derivative with respect

Vo :
to [}, and ~*,u is the inverse of f

9%

S e {cid}

t h T 0. (Cle)
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(11i) algebraic equation for the physical metric in terms of the "auxil-

iary gravitational fields" f}, ¢, t, ¥ h

g- f2(¢) - [‘fl(¢) - f2(¢)‘ de@de + v ®dr » de@¥ ~ h . (Clf)

Preferred coordinate system: The prior-geometric constraints (Cl)

guarantee the existence of a preferred coordinate system in which (i)
the time coordinate is equal to the scalar field t; (ii) the components

of f' are Minkowskiian

Ty = diagonal (1,-1,-1,-1) ; (c2a)

(14i) ¥ is purely spatial
AN (cob)

(4v) h has only space-space parts non-vanishing
= h -0 2
hOH w0 ; (c2e)
2,8
{(v) the physical line element gdeldx is
2 2 >
ds® - fl(¢) at® - f?(¢)(dx' +ody” o4 dz?)
. i, 3
¥ -7 . (c2
¢ 2V dxdt + 2V dydt dzdt < hijdx dx (cPd)
Lagrangian: The field equations are determined by an action primciple
5 ‘r,—f d#x 0 (cza)

where the Lagrangian density  is

£ = LNG /Tg + 2{{1/e) uu";\, '.“Vq o Q,VQ, hv

BV
+ {f3(¢) + 1](¢‘LLC,‘JW )
WY VT A SR T

* klhpv‘;r’hﬁ fet 0 ) Z?hl;vf' PR o
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Here LNG is the standard interaction Lagrangian metric theories of gravity.
The quantities g and n are the determinants of I{guvlj and Eﬁquvil. In
the action principle (C3) one is to vary the standard matter and non-
gravitational fields that appear in LNG and the gravitarional fields ¢

and ¥, while maintaining the prior-geometric constraints KCl}. In the

preferred coordinate system (C2) the Lagrangian density reduces to

£ = Ly Vg - <§>(“’1,j‘“1,j SNy ety ) P - k(89

-2 + 2k, h, + 2k

1)
L LIPIRL IR M5, My, e (¢

/

h
2y, j¢. i
Field equations: The nongravitational field equations derived from this

action principle take on their standard metric form. The gravitational

field equations derived from the action principle are

vavIv = 2ne( /-g /y/-n) IUT(jg“T/jvv)(quv - t}ut!v)

g, -t g e L e 0 g B

- on /g T‘w(dsw/?ﬁ) =0

{G L 101T Y S A /. 1
klhw{w =[5 k2¢ +oen( feg /=) T (oe, /o0 )]

X (Y‘Hﬂ’

- t]u

t,,,}(’]w -t

In the absolute coordinate system, these equations reduce to

0i
i oW =k ”
1,957 Mo T Mo /B T

_1_ 1 { }: L D o v 75N
¢,ii - 53(¢)¢,ct +3 f 3(¢)¢,t¢,t BRI E IR TR ™ “g;w/%
h - h = - l(k /k,) @ - 2n(k yo! J-g T . {C5h)
ij, kk ij,tt 2= SO T S R ’
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Here
T ___}_ 1 é(ﬂELm)

18 8n ;ﬁ}i aguv
v oux VB
Tu = g g TOB

g. Post-Newtonian limit: The solution of Eqs. (CSa) or (C5b) proceed along

the same lines as in Ref. 21. We present only the results here.

In the preferred frame, the physical metric is

— 2 & 3y iz s} '
Boo = © 1 - 20 « 2bU° - 2[(1 + a - k2/5klc/ ¢, - (3a - 2h - 1 - k2/Lck1)@2

2 2
(Za - L - (k. /h 7. (d - + ] + ]
* ey 4 (Ta k,a/ Ckl) QL]‘ \ke/tckl) fd -1+ c%)/c jX,tt - 0(8)

Bo; = " ev, . (ceb)

gij

= 2al) - .
aij(l + 2al) (kz/bckl) X,ij (CSC)
We now perform a gauge transformation

OO X t(d S

it i
X x" o+ (k2/8ck1) )\'i s

and bring the metric into the "standard" form:

+ . 2 i
800 = 1 -2U0 + 2(b + k2/8ckl) U" - 2(1 + a - kg/ﬁckl) ¢,

- I - - ) - b - -
2(3a s 2b - 1 kg/Sckl, o, - b L \(a k2)120k1) 2,

- (leyfhek)) @+ (yfick)) o (c7a)
+ 2 2 N g 2
8p; = L€ - (@ -1+ %)V (d -1+ <Y/ ze Woo (C7b)
+ (1 U) fen
By - oyl ca . (Cic)
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The PPN parameters are thus [cf., Eq. (C7)]

= - . D¢ - ha -
8=1b+ kg/eckl, yoa, o e - ha - &
o, = - 1 - k. flbek,) fd - 1 c2>/cd y v, = 0
2 2 1 2
ty = - kg/hckl i 22 = kg/»ack2 ) g5 -0
Ly 7 - k2/12ck1 A kg/Sckl . (ca)

Where a, b, ¢, d are defined by the power series expansions of the

functions f1(¢), f2(¢) and f3(¢):

£0g) = 1 - 2cf + ohe gt L L (cga)
f1(¢) = 1+ 2acf « ... , (cob)
f3(¢) =d 4 ..., (coc)

and ¢ is set to have the value
¢ =1 - bk a/k 2 (cod)
2 1 ’

to obtain the correct Newtonian limit.
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