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ABSTRACT

Stress relaxation measurements were made in uniaxial tension
under superposed hydrostatic pressures up to 5 kbar at temperatures
ranging from -25 to 50°C. Two lightly filled {(Hypalon-40 and
Viton-B) and one highly filled elastomer (Neoprene) were studied
because their pressure transition lie within the range of the
apparatus. The construction and operation of the apparatus are
discussed. Measurements on Hypalon and Viton were made either
by varying the temperature while maintaining the pressure constant
at1, 1,000, and 2,000 bars, or by holding the temperature constant
while varying the pressure from atmospheric to 4,600 bars. The
viscoelastic response of Neoprene was measured at 25°C and
pressures up to 4,600 bars,

The measurements were converted to a time dependent shear
modulus. Time-temperature and time-pressure superposition was
then applied to the reduced data to obtain master curves at 1, 1,000,
and 2,000 bars. By introducing either the Murnaghan or the Tait
equation of state into the free volume theory, an expression was

obtained which describes the shift factors, log a resulting from

T, P’
the empirical shifts into the master curves at atmospheric pressure.
This equation then gave an cxcellent prediction of the empirically
found shift factors resulting from forming the master curves at

1,000 and 2, 000 bars.

Because the measurements made as function of temperature



and those made as a function of pressure must be consistent, certain
ambiguities in the free volume theory have been removed. This

leads to an essential improvement in the theory.
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l. INTRODUCTION

Temperature and pressure are the two most important
processing variables in polymer science and technology. While the
effect of temperature on the mechanical properties of polymers
(particularly amorphous polymers) is fairly well understood today,
virtually no information is available on the effect of pressure.
Introducing pressure as an independent variable not only adds another
dimension to scientific observation and understanding, but fills a
technoldgical void as well,

- Amorphous polymers exist as liquids or glasses depending
upon the temperature, pressure, and time scale of cbservation.
Elastomers, or rubbers, are amorphous polymers whose molecular
chains are crosslinked into a three-dimensional network of randomly
distributed, chemical or physical junctions. In the liquid (or rubbery)
state there is sufficient molecular mobility so that long range
molecular rearrangements may occur through cooperative segmental
motion along the polymer chains. A measure of this molecular
diffusion is the monomeric friction coefficient Lo which is a function
of temperature and pressure. For a given temperature and pressure
the magnitude of (o determines the time required for cooperative
rearrangements. When the observation time becomes shorter than
the time required for cooperative rearrangements, the response of

the system undergoes a transition from rubberlike to glasslike



behavior. In the glass, the configurational changes necessary for the
maintenance of equilibrium essentially cease. The general
molecular configuration existing when the glass is formed is
essentially frozen in; the glass is considered to be unstable relative
to some ""metastable' equilibrium state which would result from an
infinitely slow formation of the glass (1).

A polymer displays, simultaneously, both elastic and viscous
response when subjected to external forces. In the rubbery state the
elastic response is largely entropic, since the total number of
configurations available to the amorphous system is reduced as a
result of the deformation. The elastic response is reversible and
represents energy storage in the system. As the glassy response is
approached, the contribution from internal energy resulting mainly
from changes in intermolecular attraction becomes the controlling
mechanism. The viscous response results from the rearrangement
of the molecular configuration, and is most pronounced in the
transition region between the rubbery and glassy states. In this
region the ratio of the imaginary to the real component of the
viscoelastic response (i.e. the ratio of energy dissipation to ene.rgy
storage) possesses a maximum. The viscous response is irreversible

and represents energy dissipation in the system.



1.1 Phenomenological Theory of Viscoelastic Behavior

The basic hypothesis on which classical linear viscoelastic
theory is based was first formulated in 1874 by Boltzmann (2). One

form of Boltzmann's integral equation is

t
o (t) :fQ(t-u) ¢(u) du (1)

-0

where 0 (t) is the stress response at time t, ¢(u) is the strain
imposed at the previous (historic) time u, and Q(t) is a weighting
function corresponding to the time intervals (t-u) which have elapsed
since the imposition of the respective strains. The weighting
function, or relaxance, is a material function which contains all the
information necessary to completely describe the linear viscoelastic
response of the material., The Boltzmann superposition principle
is quite general and requires only that the relation between stress
and strain be linear and time translation invariant, i.e. that it be
described with linear differential equationé with constant coefficients.
Viscoelastic behavior may be represented by spring and
dashpot models. The Maxwell element is a Hookean spring in series
with a Newtonian dashpot; viscoelastic behavior may then be
represented by connecting many Maxwell elements in parallel to yield
a distribution of responses (3). An additional spring is incorporated
into the model to represent the equilibrium rubbery modulus. The

generalized Maxwell model yields



N
G(t) = G, +3° G, exp(-t/7) (2)
p=1

where G(t) is the time dependent shear modulus, Ge is the
equilibrium (or rubbery) modulus, and 'rp is the p'th relaxation time.
The latter is equal to the quotient of the Vis;:osity of the p’'th dashpot,
”ﬂp divided by the shear modulus of the p'th spring, Gp. The
generalized Maxwell model may be introduced into the Boltzmann
integral for predicting linear viscoelastic response. Numerous
variations of the spring-dashpot models exist (3). A more rigorous
and generalized treatment of the phenomenological theory has been
developed by Colelﬁan and Noll (4) and reduceé to the Boltzmann

integral for small strains.

1.2 Molecular Theories of Viscoelastic Behavior

Various molecular theories have been developed for
describing polymeric materials. The theories of Rouse (5) and
Zimm (6) consider the behavior of a bead-and-spring model at
infinite dilution. The Rouse theory has been extended to the
undiluted system by Ferry, Landel and Williams (7), to yield the

following expression for the shear modulus;

N
G(t) = ﬂ%l > exp (-t/7) (3)
p=1

where



Tp = a‘2 Z2 Z;oléﬂz p2 kT (4)
or
Tp = 67 1\/[/1T2 pZ pRT (5)

where p is the density, R is the gas constant, T is the t'emperature,
and M is the molecular weight. The relaxation times are given in
terms of 7, the steady-flow shear viscosity, k the Boltzmann
constant, o the monomeric friction factor, and az the mean-square
end-to-end distance per degree of polymerization, Z.

The front factor in Eq. (3) comes from the statistical theory
of rubberlike elasticity and represents the equilibrium shear
modulus. The statistical theory assumes that the polymer is flexible
enough for its end-to-end distance to assume a Gaussian distribution.
It is valid only above the glass transition, where the molecular
rearrangements necessary for the minimization of the free energy
may occur; the free energy is dominated by the configurational
entropy of the flexible polymer chains. The rate of rearrangements,
or relaxation times, predicted by the Rouse theory depend upon the
steady-flow viscosity, ", or the monomeric friction factor Zo. A
change in temperature affects both the rate of rearrangements and
the value of the equilibrium modulus. Additionally, Eqgs. (4) and (5)
indicate that all relaxation times should be affected in a similar
fashion by a change in tcmperature or pressure through the

dependence of 7, o and p on temperature and pressure,



1.3 Time-Temperature Superposition Principle

Complete characterization of the linear viscoelastic
behavior of an elastomer requires measurements over 10 to 20
decades of time or frequency. Such a wide "experimental window"
is virtually inaccessible. Thus, a major advancement in the
rheology of amorphous polymers has been the utilization of time-
temperature superposition; the time-temperature superposition
principle was originally proposed by Leaderman (8), applied by
Tobolsky (9), and finally given a theoretical interpretation by Ferry
and co-workers (10). It states that the general effect of temperature
on the rate of molecular rearrangement is to multiply all
relaxation times by a common factor, usually designated a- This
factor is defined as the ratio of a particular relaxation time at

temperature T to that of a reference temperature To’

ar = Tp(T)/'p(To) (6)

where ’Tp(T) is the p'th relaxation time at temperature T. A
material satisfying this criterion is termed thermorheologically

simple.
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Figure 1. Superposition of time and temperature effects.

Time-temperature superposition is depicted diagrammatically
in Fig. 1, where values of the shear modulus G(t) are shown over
the experimentally accessible time regime (the experimental
window) at a series of temperatures, T_3 to T3. The horizontal
shift along the logarithmic time axis required to superpose log
G(t) at various temperatures into a single master curve at the
reference temperature TO is log ar (T) = log ar- Thus,
experimental information over a lirr?ited time regime,\ but covering
a range of temperatures, has been shifted in logarithmic time to
describe the material response at a single reference temperature,
but covering a significantly expanded time scale.

The reduced modulus GTO(t/aT) resulting from the super-

position is related to the original moduli through the relation



1]

clo (t/a) dTGT(t) (7)

where

1

dp = p T /p T (8)

The expression for dT results from the statistical theory of
rubberlike elasticity and therefore requires that both T and TO be
above the glass transition, where the configurational entropy
dominates. As the glassy response is approached, the internal
energy contribution to the total free energy of the system becomes
increasingly more significant and eventually becomes the controlling
mechanism.

A more general development of time-temperature super -

position by McCrum and Morris (11, 12) suggests that

T °T T T T
o) T e - Q
G (t/aT) dT [dTG (t) G.. ] +Gr o (%)
where
3 T .. T
cp = Gu 0/Gu (10)
and
ap = G Tosa T (11)
where GuT, GrT and GUTO, GTTO are the limiting unrelaxed and

relaxed (r) shear moduli at temperature T and the reference
temperature TO. The above expression reduces to Eq. (7) by

choosing Cr equal to unity and dT as defined in Eq. (8). Unfortunately,



the relaxed and unrelaxed moduli at each temperature are
experimentally unobtainable within the confines of the experimental
window through which measurements are being made (if they were,
time-temperature superposition would not be necessary). However,
this expression. does indicate that in the glassy region, additional
adjustments should be made to the magnitude of the moduli where the
statistical theory is no longer valid.

Uncrosslinked polymers do not exhibit equilibrium properties.
However, measurements of the steady-flow viscosity- as a function
of temperature should also yield the temperature dependence of ar.
Molecular theory, Eqgs. (5) and (6), predict that the viscosity should

be related to ar by the relation

- T|Topo (12)

a
T iOTpT

The functional dependence of ar determined fromviscosity measure-
ments is found to correlate quite well with viscoelastic measure -
ments.

The effect of temperature on the viscosity of liquids has been
widely studied. As early as 1920, Vogel (13) and Tamman and

Hesse (14) proposed the empirical equation

In T=A 4 s (13)
v



10

where AV and B"r are constants, and T is a reference temperature

at which the viscosity becomes infinite. An Arrhenius type relation

N = Aexp (AH_/RT) (14)

was later proposed by Andrade in 1930, and subsequently given a
theoretical interpretation, in the liquid state, by Eyring (15). In the
absolute rate theory of Eyring, AHa and A are, respectively, the
enthalpy and entropy of activation for viscous flow. Combining
Eqgs. (12) and (14) yields

AH T »

_ 1 _1__) oo
log a1 = 5353R (T T_) *loe 7 (15)

which is found to describe the viscosity in both glasses and liquids
(T<T + 100°C); values of BH_ vary from between 5 to 30 kcal/mole,
If the Vogel equation is introduced into Eq. (12), and the

effects of T and p in Eq. (12) are neglected, we have

o
-c, (T -T)
log ar = 10 o (16)
c +T - T
2 o
where
o = —
¢, = BV/2.303 (T. Tm) (17)
CZo = TO - T, (18)

This equation was proposed by Williams, Landel and Ferry in 1955
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and is known as the WLF equation (10). It is found to predict the
temperature dependence of viscous and viscoelastic behavior, of

both polymers and other glass forming systems, over the temperature
range of Tg <T< Tg +100°C. If the reference temperature TO is
chosen to be the glass transition temperature Tg’ the constants
become clg and czg, and are nearly the same for most polymers,
This implies that the temperature dependence of molecular mobility

is nearly independent of molecular structure; the primary effect of

temperature is on the mechanisms controlling molecular mobility.

1.4 Free Volume Theory of the Tempcrature Dependence of

Viscoelastic Behavior

The classical approaches to studying the vitrification process
have been viscometric and volumetric measurements as a function of
temperature. Viscosity plotted against temperature results in a
curve quite similar to the master curve shown in Fig. 1, with the
ordinate being log " and the abscissa being T; the inflection point of
the transition region is usually within a few degrees of T
Volumetric measurements yicld the thermal expansivity o as a
function of temperature. The thermal expansivity is usually linear
above and below the glass transition as shown in Fig. 2.
Experimentally the thermal expansivity changes smoothly from the
expansivity of the rubber, @., to the expahsivity of the glass crg;

the intersection of the extrapolated linear values are taken to be
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Tg. It is a natural consequence of such measurements that the
molecular mobility in the rubbery (or liquid) state be attributed to
the additional, or "excess', volume. This approach was first used
by Batchinski (16) for describing the viscosities of liquids,

In 1951 Doolittle (17) proposed an empirical equation for the
viscosity dependence on the excess, or free, volume;

T= A exp(BfV¢/Vf) , V¢ +Ve =V (19)

where Af and Bf are constants, and V¢ and Vf are the occupied and
free volumes respectively. Conceptually, the dependence of 7 on the
frce volume assumes that the rate controlling step for viscous flow
at low shear stresses is the formation of a void into which a
molecular segment can jump. A simple, thearetical interpretation
of this equation has been given by Turnbull and Cohen (18), by
calculating the average diffusion rate of a hard, spherical molecule
surrounded by a cage of nearest neighbor molecules. Fluctuations in
density allow redistribution of the free volume without affecting the
energy of the system. Transport occurs when the free volume
reaches a critical volume V.* Using standard statistical mechanics,
the mean diffusion rate may be expressed in the form of the

Doolittle equation; the Stokes-Einstein equation is then used to relate
the mean diffusion rate to the shear viscosity. The thermal

expansivity of the free volume is taken to be the difference between
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the thermal expansions of the liquid and the glass (ozf= o, - ag); the

1
free volume thus defined is depicted in Fig. 2.
The free volume theory was expressed by Williams, Landel

and Ferry (10) in terms of the fractional free volume.

A v
_ £ f
f= 5 ~ v— (20)
$
They assumed a linear relationship
t=f +o. (T-T 21
gt (T-T)) (21)
where
Qp =y - o/¢ for T = Tg (22a)
and
o, T o -, for T<T 22b
£7 % "% g (22b)

Here fg is the fractional free volume at the glass transition, and
oy Q'g’ and a¢ are the thermal expansivities of the liquid, glass,
and occupied volumes respectively (it is common practice to let
o = Aw = @ - a/g). Combining Eqs. (12), (19), and (20) yields the
WLF equation, where the coefficients are defined as

C

g _
o= Bf/2.303fg (23a)

and

g _
c,® = fg/ o (23b)

Or, in terms of the Vogel equation,
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Bf
fg-— 5 (Tg - T) (24a)
v
and
o = Bf/Bv (24Db)

It is instructive to write the W LLF equation in this form:;

-B, T-T,
log ap = 53537 T A T T (25)
g g f g

Doolittle found B to be approximately unity for the low molecular

weight liquids he studied. On this basis, the nearly universal

! and 51.6°C, respectively) imply

4oc-1

values of clg and czg (—17.440C—

that fg and o, are of the order of 0.025 and 4.8 x 10~

f
respectively., However, it should be pointed out that the WLF

equation is fairly sensitive to small changes in clg and czg. Further -
more, Tg is not well defined, nor are Bf, ol and fg' Thus there are
considerable degrees of freedom in fitting experimental data to this
equation. Simha and Boyer (19) have tabulated data on 14 polymers
with Tg’s ranging from 143 to 378°K, and e ranging frém 3.0 to

4 OC—l. This implies that either o, # A, o, varies
; P £ f

9.3 x 10~
considerably, or both. Interestingly enough they found the product
Ao Tg to be nearly constant (0.113) for the materials studied. Based
on this observation, they considered the glass transition to be an
iso-free volume state; this approach had been proposed earlier by

Fox and Flory (20). The iso-free volume approach leads to still

another definition of fg; the various definitions are shown
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diagrammatically in Fig. 2. More detailed discussic of the
various free volume approaches can be found in the re ws by

Boyer (21), Kaelble (22), and Shen and Eisenberg (23).

<
o)

' 8

Specific Volume
<
o
H <

[}

¢ T g

Temperature - °k

Figure 2. Free Volume as defined by Williams, Landel and Ferry
(WLF), Simha and Boyer (S-B) and Turnbull and Cohen

(T-C).

Two approaches to describing the temperature dependence
of molecular mobility have been discussed. The rate theory of
Eyring treats the probability of a molecule or segment obtaining
sufficient energy to jump from one equilibrium position to an
adjacent site. The free volume approach of Turnbull and Cohen
considered the probability of a sufficient void occurring to accept

the molecule. Based on the argument that a successful jump
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depends upon both sufficient energy to overcome the potential energy
barrier and sufficient void space into which to jump, Macedo and

Litovitz {24) combined the two approaches into the hybrid equation

AH_ BVQS
n= Aoexp "t T 7 (26)

3

This expression has been given a theoretical interpretation by
Naghizadeh (25); the derivation parallels that of Turnbull and Cohen,
but considers the energy associated with the free volume, &(V), as
a quadratic expression in (V - V). Equation (26) has been used
successfully to describe the temperature dependence of many low

molecular weight liquids,

1.5 Excess Entropy and Enthalpy Theories of the Temperature

Dependence of Viscoelastic Behavior

The glass transition displays mény characteristics of a
second order phase transition, e, g. the thermodynamic state
functions, such as the volume V, cntropy S, and enthalpy H, are
continuous across the transition whereas their derivatives with
respect to ftemperature and pressure, the thermal expansivity «,
isothermal compressibility B, and specific heat Cp’ are
discontinuous. Assuming equilibrium in the liquid and glassy states,
the following analogues of the Clapeyron-Clausius equation, known

as the Ehrenfest equations, may be derived at the phase transition
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dTg/dP = AB/Aw (27a)

dT /dP = T V Aw/AC (27b)
g g g P

where Ao, AB, and ACp are the differences in the thermal
expansivity, compressibility, and specific heat across the transition.
Equation (27a) results from assuming the volume, whereas Eqg. (27b)
results from assuming the entropy or enthalpy to be continuous
across the transition.

Experimentally, Eq. (27a) results in the inequality
dTg/dP < AB/Aw (28)

whereas Eq. (27b) is usually found to hold. Davies and Jones have
shown that Eq. (28) would result were it necessary to describe the
glassy state in terms of two or more ordering parameters (26); these
ordering parameters are additional independent thermodynamic
variables introduced to describe the configurational state of the
glass (27). However, the equality, Eq. (27b), would still be valid.
Based on these results, Goldstein has suggested that either the
excess enthalpy or the excess entropy, rather thanthe free, or
excess, volume would better describe the glass transition (28).
Substituting an excess enthalpy (28), or an excess entropy (29), in
place of the free volume in the Doolittle equation yielcis the WLF

equation with an appropriate redefinition of the parameters ‘clg and
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c.8in Eq. (23).

2
Various approaches have been used to describe the glass
transition in terms of an excess entropy. The most quantative of
these is due to Gibbs and DiMarzio (30) who argue that although the
observed transition is a kinetic phenomenon, the underlying
mechanism represents a true second order thermodynamic transition;
the observed transition Tg is merely an artifact resulting from the
impossibility of performing an infinitely slow experiment. Using a
quasi-lattice model, and assuming that the vibrational and electronic
degrees of freedom do not significantly interact with the external
translational and rotational states of the molecule, they calculated
the confi.gurational partition function of the polymer system. In an
infinitely slow experiment, the equilibrium configurational entropy
becomes zero at the theoretical glass transition temperature, T,.
The gap between the equilibrium theory of Gibbs and
DiMarzio and the empirical kinetic approach (WLF equation) was
bridged by Adams and Gibbs (31). By calculating the probability that
a group of segments reside in a region susceptible to cooperative
rearrangement, an expression similar to the WLF equation results
in which the constants are interpreted in terms of the entropy. Using
experimental heat capacity data, the nearly universal values of these
constants were recovered. Since the predictions of the various
theories reduce essentially to the same form, it has not been

possible to determine their relative merits, nor, in fact, has it been
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possible to establish the molecular parameters of the WLF equation.
Thus one immediate advantage of including pressure as an additional
variable will be a reduction in the number of degrees of freedom for °
choosing these parameters.

In concluding this section it should be noted that although the
entropy based Gibbs-DiMarzio and Adams-Gibbs theories yield
added insight into the molecular mechanisms underlying the glass
transition phenomenon, they do not preclude the usefulness of the
free volume approach. The argument of Goldstein is possibly
wrong since it is based upon an inconsistent analysis of the
experimental data. Referring to Eqs. (27a) and (27b), let us consider
the technique typically used to apply these equations to the
experimental results. The value of dTg/dP is assumed approximately
constant and equal to (Tg,l - Tg,Z)/(Pl - P,), where T and

g,1

T are the glass transitions at P, (usually one bar) and P2

g2
(typically of the order or 2000 bar) respectively. The quantities in

1

Eq. (27b) are almost invariably measured at atmospheric pressure,
Pl’ in the area of the glass transition 'Ig 13 let us define the

parameters so determined as Ay (Tg, 1° Pl) and ACp(Tg 1 P}).

b

However, Af is almost invariably measured at an elevated pressure,
AB(Tg 5 PZ)' Experimentally it is usually found that
dTg/dP <OAB(T PZ)/,_/\a(T

g,zs g,l'p]) (293)

whereas
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dTg/dP = Tg, lvg, 1 Aa(Tg, 1 Pl)/Acp(Tg, 10 Py) (29b)
Bridgeman found that both the compressibility and thermal
expansivity decrease with increasing pressure; furthermore, the
thermal expansivity decreases significantly less than the compressi-

bility (32). Since P2 is usually greater than P. by several thousand

1
bars, it is not too surprising that the inequality (29a) is found rather
than the equality (27a); furthermore, the quantities in Eq. (27b) are
consistently determined.

This is further substantiated by extensive volumetric measure-
ments carried out by Breuer and Rehage (33) and Quach and Simha
(34) on polystyrene. Breuer and Rehage found AP vary considerably
with both temperature and pressure. However, they had sufficient
data over a range of pressure and temperature to extrapolate to
atmos pheric pressure to achieve AB(Tg’ 1 Pl)' Comparing the
extrapolated value of AB with Ao resulted in the equality, Eq. (27a).

Quach and Simha found similar results on both polystyrene and

poly (orthomethylstyrene).

1.6 Time-Pressure Superposition

It has been well established that the viscosity of simple
liquids increases with the application of a hydrostatic pressure(32).
The free volume approach used for describing the temperature

dependence of viscosity is easily extended to the description of the
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pressure dependence by defining the free volume as

(P) = £ - B

(P -P) (30)
where Bf is the compressibility of the free volume. Combining
Eq. (30) with the Doolittle equation, Eq. (19), yields

(B/2.303 £ ) (P - P_)
[ 7B, -(P-P)
o] 0]

log ap = (31)
Eq. (31) was proposed by Ferry and Stratton (35). The
compressibility of the free volume Bf is assumed to be of the order
of AB. Since the compressibility is quite nonlinear with pressure,
this expression should be valid only over a limited range of
pressure,

Although the pressure dependence of the compressibility is
nonlinear, the bulk modulus, which is simply the reciprocal of the
compressibility, depends linearly on pressure for a wide variety of

materials, and may be expressed as
K(P) = K + kP (32)

where K is the bulk modulus at zero pressure, and k is the slope.

If the compressibility is defined as

8(P) = - (&%) (33)
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Eq. (32) may be integrated to give

B K' + kP
(V- V)V, = ¢ Inlgrs kP, (34)

which is known as the Tait equation (36). If the compressibility is

defined in the usual sense as

5]

8(P) = - = (—‘L)T (35)

Q

integration of Eq. (32) yields
K" 4+ kP \ -1/k
LA p— (36)
\% ¥ T kD
o] o]

which is known as the Murnaghan equation (37). Both expressions,
(34) and (36), describe the pressure dependence of the volume
remarkably well,

Dielectric relaxation measurements (38) performed under
constrained bulk compression up to 1,380 atmospheres showed a
linear pressure dependence of log ap Based on these results
O'Reilly (38) assumed

fo + ozf(T - Tg)

a' + b'P

which, when substituted into the Doolittle equation, yields
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c'f P-ga.a' (T -T )
_ o} f g
T,P fo [fo-l-ozf(T-Tg)]

log a (38)
In Eq. (38), a' and c' are constants, and are not to be confused with
the constants, k and K*, in Eq. (32); Eq. (38) predicts the free
volume to be inversely proportional to pressure, whereas Eq. (32)
predicts the compressibility to be inversely proportional to the
pressure.

The complex bulk modulus (or compliance) of several
polymers, including elastomers, has been the subject of several
investigations (39, 40). In such measurements, however, pressure
is the primary variable corresponding to the shear or tensile stress
in measurements of the shear or tensile modulus., We are
concerned here with the effect of pressure as a secondary variable,
i.e. with the effect of pressure on the (time dependent) shear or
tensile modulus. Few investigations have been directed towards
studying this effect,

The effect of pressure on the tensile and ultimate behavior of
polymers has been studied in a number of investigations; this field
has recently been reviewed by Radcliff (41). In general, these
investigations have not been concerned with the time dependent
properties, put specifically with yield and fracture criteria.
Tensile measurements on elastomers by Patterson (42) under
superposed hydrostatic pressure clearly established that the effect

of increasing pressure on Young's modulus was similar to the effect
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of decreasing temperature (c.f. Fig. 1).

Zosel {(43) used the torsion pendulum for stress relaxation
measurements to study the effect of superposed hydrostatic pressures
up to 1,000 atmos pheres on the mechanical properties of poly
(vinyl chloride). The results did not extend over a wide enough
pressure range to decide between Egs. (31) or (38). It will be
shown in Chapter 4 that Zosel's results may be described by the
proper application of the Tait equation to the free volume model.

Investigations performed by Jones and Tabor (44) and
Billinghurst and Tabor (45) have utilized the torsion pendulum to
study the effect of pressure on the isochronal shear modulus and
loss tangent (tan §) of a large variety of plolyrners, including
elastomers. In general, these studies have been too sketchy for any

quantitative conclusions,
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2. APPARATUS AND EXPERIMENTAL PROCEDURE

This chapter describes the apparatus, procedure, and
materials used in the study of the effect of pressure on the

viscoelastic response of elastomers.

2.1 Aggaratus

Several investigators have used a freely oscillating torsion
pendulum to measure an isochronal shear modulus and loss peak
(tan ¢) up to 1.5 kbar pressure (43-45). There are two major
disadvantages to this approach. First, moduli or compliances are
functions not only of the frequency but of the damping constant as
well., Both frequency and damping depend on apparatus parameters,
besides the properties of the specimen. Thus, although the pressure
(or temperature) at which tan 5 exhibits a peak can be obtained
from measurements in free oscillations, the moduli or compliances
have at best qualitative meaning only, except at very low damping.
Second, utilization of the torsion pendulum at high pressures
requires that the viscous damping contributed by the medium be
taken into account. None of the investigators reported the magnitude
of the viscous forces. Judging from the relative sizes of the
pendulum and specimen, they were most probably equivalent, if not
greater than, the specimen forces being measured. Zosel (43) also

performed stress relaxation measurements in torsion by using the
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torsion pendulum in the aperiodic mode. Such measurements defy
satisfactory analysis.

Creep and stress relaxation measurements in uniaxial
tension have bcen carried out under superposed hydrostatic pressures
up to 2.0 kbar (46). The stress relaxation measurements utilized
a spring for extending the specimen to some fixed extension; the
subsequent relaxation was then measured with strain gages mounted
inside the pressure vessel. The creep measurements were
performed by loading the specimen with a weight within the vessel
and measuring the subsequent creep with an LVDT. Both measure-
ments were initiated by fusing a wire once the desired pressure and
temperature were obtained. The effect of the heat generated in this
way on the temperature of the system was not discussed. The
measurements were not extensive enough for any quantative analysis
of the effect of pressure on the viscoelastic response. In creep
measurements, again, viscous forces contributed by the pressurizing
medium must be taken into account,

The simplest technique for measuring the intrinsic time
dependence of the mechanical properties of materials is stress
relaxation in uniaxial tension. No geometric complexities arise
since the specimen can easily be made long enough so that end
effects may be neglected and a uniform stress field is obtained.
Furthermore, once the specimen is extended, no further changes in

size or shape occur, thus further simplifying the analysis. These
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advantages become particularly attractive when studying the effect of
pressure on the material's response. Once the experiment is
initiated, the resulting measurements are static; thus viscous forces
contributed by the pressurizing medium have no effect on the measure-
ments. The only constraint on the apparatus is that it be versatile
enough to measure material properties over about three decades of
response, i.e. from rubbery to glassy behavior. Thus the apparatus

must accommodate a variety of displacements and forces for exciting

the specimen.
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Figure 3. High pressure apparatus ~0 - 5 kbar: D, rupture disk;
G, Bourdon gage; H, hand pump; I, 10:!1 intensifier;
P, high pressure vessel; R, fluid reservoir; S, 1:t
separator; V, (wo-way valve.
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The apparatus designed, constructed and used for the stress
relaxation measurements is shown diagrammatically in Fig. 3. The
heart of the system is the stress relaxometer; its function is to
impose a step function of strain to the specimen and measure the
resulting stress decay as a function of time., The hydrostatic
environment is obtained by placing the relaxometer in a suitable
pressure vessel. The remainder of the system comprises the

necessary equipment for the generation and measurement of the

required temperatures and pressures.

2.11 Stress Relaxometer

The relaxometer, Fig. 4b and Appendix A, was fabricated
by the Chemical Engineering Machine Shop. The specimen is held
between two spring-loaded concentric cylinders (I and O). A
removable snap-ring (SR) allows springs of various stiffness to be
inserted between the cylinders, depending upon the force required.
A small hole (H) drilled through the U-shaped copper strips
cemented to the ends of the specimen (E) allows the specimen to be
attached to the removable end cap (C). The specimen is then
lowered into the cylinders and attached to the bottom clevis (G) with a
screw-pin; clearance holes through the outer and inner cylinder
allow easy insertion of the pin. The bottom clevis assembly is

attached to the outer cylinder via a dowel pin (P). The inner

cylinder is slotted for this pin, thus allowing vertical travel without
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rotation. Pre-stressing the spring (S) forces the two cylinders apart
until the bottom cap éngages the dowel pin; spacers of various
thickness may be inserted in this space to change the amount of
travel, and, consequently, the displacement of the specimen., When
the two cylinders are pressed together, a hook machined on the
bottom cap engages the latch (L). The latch is shaped such that the
mechanism is triggered when the solenoid (D) is activated. In
practice, the proper combination of spring and spacer is chosen so
that the encrgy of the compressed spring is greater than the energy
required to extend the specimen. When this condition is satisfied,
the cylinders are extended until the bottom cap of the iﬁner cylinder
engages the dowel pin. The specimen is extended simultaneously
and held fixed throughout the experiment. The resulting force decay
or relaxation of the specimen is then measured via the strain gages

incorporated in the lower clevis assembly.
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Figure 4. Stress relaxometer (a) and pressure vessel (b): A, AE
cone connection; C, end cap; CP, closure plug; D,
solenoid; E, specimen; G, strain gage assembly; H, attach
hole; I, inner cylinder; 1, latch; N, nut; O, outer
cylinder; P, dowel pin; R, relaxometer; S, spring; and
SR, snap-ring.

Considerable difficulties were encountered with the triggering
mechanism. As the experimental pressures become higher, so does

the response of the specimen, since the glassy state is being



31

approached. Thus a stiffer spring is desired in order to extend the
specimen. A stiffer spring requires a stronger impulse from the
solencid in order to trigger the mechanism, The Electromechanisms
SP-37 solenoid consists of a steel rod which slides in a nylon tube
around which the coils are wound; this rod is both guided and pulled
by a steel bushing when the coil is energized. Thus, in order for the
rod to move, it must overcome the viscous resistance of the
pressure generating fluid between the nyloﬁ tube and the rod, and
displace the fluid in its path. Both displacements become more
difficult as the viscosity increases due to higher operating pressures,
Thus the mechanism becomes progressively more difficult to
activate with increasing pressures. For successful operation at the
higher pressures the latch had to be carefully set so that the
slightest jar would trigger it. This practice requires repeated
attempts at inserting the relaxometer in the pressure vessel without
triggering the mechanism. Furthermore, when the desired pressure
and equilibrium is obtained, sometimes the solenoid will not fire_ the
mechanism. The system must then be depressurized, dismantled,
and reloaded.

Two J. P. Semiconductors (JP 090 120) strain gages are
mounted on the stainless steel ring incorporated in the lower clevis
assembly. The half-bridge circuit minimizes the effects of
pressure and temperature on the calibration of the gages. The two

gages are mounted on the inner and outer diameters of the ring to
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minimize nonlinearity of the output of the gages. Subsequent
calibration of the gages (see 2.17) showed the output voltage of the
bridge circuit to be linear with force; although both pressure and
temperature shifted the zero of the bridge, only temperature affected
the response of the gages.

Considerable difficulties were encountered in obtaining
success with this arrangement. The first and second strain gage
assemblies had excessive cement between the semiconductor gage
and the stainless steel ring; calibration of the gages showed
unacceptable hysteresis due to relaxation of the epoxy bonding agent.
This problem was solved by minimizing the amount of cement. The
third and fourth assemblies failed at elevated pressures due to
cracking of the gage mounted on the inner diameter of the ring. This
was found to result from the high pressure compressing the cement
and forcing the relative brittle, flat gage to assume the circular
configuration of the ring, The problem was solved by flattening the
ring in the area where the gages were mounted. The fifth asscembly
failed due to a faulty gage. The sixth attempt was successful and no
further problems have occurred. The first three assemblies were
made by the Chemical Engineering Machine Shop; the latter

assemblies were accomplished by J. P. Semiconductors.



33

CR

Ly
aryyye)

YWy

Figure 5. Electrical Circuit for Stress Relaxometer: C, capacitor;
CR, strip chart recorder; D, diode; G, strain gage;
L, safety light: R, resistor; S, switch; SD, solenoid; and
V, voltage supply.

The electrical circuitry for measuring the output of the strain
gages and for firing the solenoid is shown in Fig. 5. The solenoid
(SD) is fired through a 10,000 pfd capacitor (Ci) in parallel with a
250 ohm resistance (R4) from a Hewlett-Packard Model 621 8A
voltage supply (V1 ). The 40 V silicone diode (Di) protects the strain
gages against inductive feedback from the solenoid. The strain
gages (G1 and GZ) form a half-bridge compensated by another half-
bridge consisting of a 100 ohm precision resistor (R3), and two ten-
turn helipots (R1 and RZ) in parallel. The output from the strain

gages is recorded on a Hewlett-Packard Model 7100 BM two-pen
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strip chart recorded (CR); the second pen is used either to monitor
the voltage across the bridge or to measure the output of a thermo-
couple placed in the temperature bath. Since electrical leads into
the high pressure vessel are at a premium, the common lead to the
strain gages is also used to fire the solenoid to ground. A three-
way switch is used so that the remaining two leads for the strain
gages may be opened (Position 1) when firing the solenoid. The
electrical leads in the bottom plug of the pressure vessel
periodically short out due to pressure cycling; this causes the 40
volts used to fire the solenoid to be put across the strain gage having
the shorted lead, which ruins the gage. Thus the center position

(2) of the three-way switch is a test position for shorts.

2.12 Pressure Vessels

Two pressure vessels are incorporated into the system, the
larger of these, Fig. 4b, houses the stress relaxometer. It
consists of a 16 inch long beryllium copper cylinder of 5 inch outer
and one inch inner diameter. The relaxometer (R) is held in
position by the closure plug (CP) which in turn is secured by the
stainless steel nut (N). The smaller vessel, an 8 inch long
beryllium copper cylinder by 2.5 inch outer diameter, houses the
coil of manganin wire used for measuring the pressure in the high
pressure portion of the system. Both vessels were fabricated by the

Chemical Engineering Machine Shop and subsequently heat treated
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at 6000F per hour per inch of material. After approximately 100
pressurizations in the neighborhood of 5 kbar, the sealing area of
the inner diameter was found to have expanded in both vessels to the
extent that an adequate seal was no longer possible. Thus, the
sealing areas were remachined and new bottom closure plugs and
bevel rings made. Both vessels use the AE-Cone connection by
Autoclave engineering for connecting the high pressure line to the

vessel, as indicated in Fig. 4b.

2.13 Closure Plug

The bottom closure plug (see Fig. 6) serves as a base
for the relaxometer and contains the three electrical leads (L) for
the strain gages and the solenoid. The pressure seal is due to
Warschauer and Paul (47). A standard O-ring (O) makes the initial
seal. TFixpansion of the beveled ring (B) with increasing pressure
forms a seal al the higher pressures. The plug, riﬁg and the three
cones (C, only one is shown in the figure) are made of beryllium
copper and heat treated at 600°F for one hour.

The plug is assembled by first soft soldering #22 AWG
stranded wire leads to the bottom of the cones. The leads are then
soldered to the tips of the cones, and all flux is removed with
acetone. The leads are straightened until the cone falls naturally in
place when inserted into the closure plug. The cone is removed and

a small amount of epoxy is applied around the tip of the cone.
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Figure 6. Boitom Closure Plug: B, beveled ring; C, cone; E, epoxy
seal; and O, O-ring.

The cone is now ''gently' pulled into place with a slight rotation to
distribute the epoxy uniformly. Seating the cone too deeply results
in a short circuit; too much epoxy causes premature failure by
cracking of the epoxy. These seals were found to endure
approximately 40 pressurizations to 3 kbar before replacement was
necessary.

The cones are removed by placing a hot soldering iron on the
base until they can be pulled out. Since this procedure destroys the
other two leads as well, all three must be replaced together. The

epoxy adhering to the cone may then be removed with a razor blade
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using extreme care not to scratch the cone. The epoxy remaining in
the plug is drilled out; that remaining in the conical section of the
plug may be removed with an Exacto knife, again using extreme
caution not to scratch the beryllium copper. The components are
then soaked in benzene and reassembled. It was found that after
rebuilding the plug several times, the epoxy became fairly easy to

remove because residual silicone o0il acted as a release agent.

2,14 Manganin Coil

The 64 ohm manganin coil was non-inductively wound by hand,
and seasoned according to Babbs (48) by alternatingly baking the coil
at 140°C for 8 hours and soaking it in dry ice at —lSOOC for several
hours; this process was continued for several days. The coil is then
cycled from atmospheric to the highest pressure used until the
resistance at one atmoéphere stablizes. The coil rests on the bottom
closure plug of the smaller pressure vessel. This plug is a scaled-
down version of the larger plug, except that it has but one electrical
lead. The resistance of the coil is measured with a Leeds-Northrup
Model 8067 Mueller Bridge and a Leeds-Northrup Model 2430-C
Galvanometer, The resistance-pressure coefficient of the coil was

measured to be 6506.3 ohms/bar as described in Section 2. 17.
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2.15 Pressure Generating System

Pressure is generated using two hand pumps, a 10:1
intensifier, a l:1 separator, and the necessary valves, lines, and
fittings for their connection. The two Enerpac handpumps are
connected in parallel such that the low pressure-high capacity
(10,000 psi-0.43 cubic-inch per stroke) rough pump may be
utilized for the initial compression stages; this is the range in which
most of the volume contraction occurs due to both initially high
compressibilities of the fluids and ent.rapped air. The high pressure-
low capacity (40,000 psi-0. 043 cubic inch per stroke) pump is then
used for the final compression. A Bourdon tube gage is used to
monitor the pressure on the low pressure side of the system. A one
gallon plexiglass reservoir insures an adequate supply of hydraulic
fluid for the pumps.

The 10;] intensifier was purchased from Autoclave Engineers.,
A piston ratio of 10:1 yields a pressure boost of approximately 9:1
after frictional losses are accounted for. Since the stroke of the
intensifier is only 5 inches, it is necessary to prime the high
pressure side of the system to approximately 5,000 psi before using
the intensifier,

The 1:1 separator allows the system to be primed without
contaminating the silicone oil used in the high pressure side of the
system with the hydraulic fluid used in the low pressure side. The

separator was fabricated by the Chemical Engineering Machine Shop.
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All valves, tees, burst disks and the tubing were purchased
from Autoclave Engineers, Inc., All tubing joints incorporate

Autoclave AE-Cone connections.

2.16 Temperature Control

The temperature of the relaxometer is controlled by
completely immersing the inverted pressure vessel in a continuously
stirred bath (49)., A Hallikainen 1053-B Thermotrol is used in
conjunction with a platinum resistance thermometer for sensing, and
a nichrome wire loop for heating the silicone oil bath. Excess heat
is removed by tap water, ice water, or liquid nitrogen when
controlling at or above 25°C, 15°C, or -30°C respectively. A
secondary resorvoir is used for raising and lowering the fluid level
of the bath when removing the relaxometer for specimen loading.

The hole through the bottom plug of the inverted pressure
vessel serves as a well for a mercury thermometer capable of being
read within +,01°C. An iron-constantan differential thermocouple is
used for temperature measurements below 0°C. The second pen of
the strip chart recorder may be used for measuring the voltage
across the thermocouples; generally, however, this pen is used to
monitor the voltage across the strain gage bridge. The temperature
of the bath was found to be controllable within +.02°C throughout an
experiment,

To monitor the temperature lag between the bath and the
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interior of the pressure vessel and to determine the effect of firing
the solenoid, a calibrated platinum wire was placed across two of the
three electrical leads. Approximately 20 minutes were required for
the interior of the vessel to reach the temperature of the bath after

a 5°C temperature increment; no temperature rise was found when
firing the solenoid. In practice, both temperature and pressure
affected the zero of the strain gage bridge circuit; thus it was easy
to determine when equilibrium was obtained by monitoring the zero
of the bridge.

The vessel containing the manganin coil was originally
intended to operate in the open at room temperature. However, under
these circumstances several hours were required for equilibrium
to be reached after the adiabatic temperature rise following
compression. The problem was solved by immersing the vessel ina
Dewar flask at 0°C. Approximately 20 minutes were required for

equilibrium ance installed in the bath,

2.17 Calibration

The following procedures were used to calibrate the
extension of the relaxometer for measuring the strain imposed on
the specimen, the voltage-force coefficient of the strain gages used to
measure the stress relaxation of the specimen, the resistance-
pressure coefficient to the manganin coil for measuring the pressure

of the system, and the effect of temperature and pressure on the
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various calibrations. The extension of the relaxometer when
triggered was measul;ed with a 0 - 1.0 inch dial indicator capable of
measuring within 0. 0002 inch. The relaxometer was clamped in a
vice and the dial indicator placed over it using a height stand. The
extensions resulting from inserting the various spacers in the
relaxometer were measured. The spacers were then marked to
insure that they would always be used in the same orientation.

The strain gages were calibrated by simply hanging known
weights from the clevis portion of the strain gage assembly; the
response was found to be linear from 0 to 8 pounds. No measurable
change in the length of the strain gage assembly was detected with the
8 Ib. load. In practice, the voltage across the bridge (approximately
1.5 volts) is adjusted so that 5.00 millivolts are measured with a
1.0 pound weight.

The effect of temperature and pressure on the strain gages
was determined by loading a light spring (about 1.0 lb. when
extended 0.5 inch) in the relaxometer in place of a specimen. The
system was then pressurized to various pressures (or brought to
various temperatures) and the relaxometer was triggered. Since
temperature and pressure have negligible effects on the spring's
modulus, the difference in output may be attributed to the strain
gages. Pressure had no effect on the output of the gages, although
the zero was shifted. Temperature shifted the response of the gages

3

by 2.43 x 107" 1bs/°C in a linear fashion.



42

The resistance-pressure coefficient of manganin wire is
linear up to approximately 12 kbar. Unfortunately the actual value
of this coefficient varies considerably from batch to batch; in fact
coils wound from the same spool may vary (48). It is therefore
necessary to calibrate each coil. A single point calibration at the
freezing point of mercury (7,565 bar at OOC) is reported to allow
pressure measurements within 0, 5% to be made (48). Thus, both the
resistance and the voltage drop across a mercury reservoir were
measured as a function of pressure. Although both methods
detected the transition, it was not sharp enough to assign a specific
value to it. The smeared transition was probably due to contamination
of the mercury, perhaps by the silicone o0il. Mercury is very
undesirable around solder joints. About four attempts all resulted in
mercury contamination of the solder joints of the bottom closure
plug. Since these joints may not be resoldered without ruining the
epoxy seals, the entire plug had to be rebuilt each time,

The calibration was finally made with a Heiss Boﬁrdon tube
gage. The coil was calibrated at 10,000, 20, 000, and 25,000
psi within 0. 1%. The ;:alibration was linear with pressure up to
25,000 psi and was extrapolated to the higher pressures. Since the
coil was always used at 0°C, it was not necessary to determine the

effect of temperature on the calibration.
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2.2 Experimental Procedure

The experimental procedures described below were
developed in the course of the measurements. This probably
explains why the last material studied, Hypalon, showed the least
experimental error. Various improvements in technigue may still
be made, and suggestions are given where problem areas persist.

The experimental procedure consists of ten basic steps:

(1) specimen preparation; (2) loading the specimen; (3) loading the
relaxometer into the pressure vessel; (4) pressurizing the system;
(5) obtaining the desired temperature; (6) achieving specimen
equilibrium; (7) triggering the mechanism; (8) recording the
relaxation of the specimen; (9) depressurization; and (10) specimen
removal. The specimens were cut to size (0.080 x 0, 080-0, 375 x
4.4 inches) by the Chemical Engineering Machine Shop from 0. 080
inch thick rubber sheets. The copper end clips were then bonded to
the ends of the specimens to yield approximately 4.5 inches between
holes, In order to achieve a satisfactory bond between the copper
clips and the rubber specimen, the copper clips were cleaned in
dilute HC1, rinsed with distilled water, and dried. The specimen
was lightly buffed with a wire wheel in the area to be bonded; this
area was then wiped clean with acetone and allowed to dry. A quick
drying cement (Eastman 910 or Zip-Grip 10} was lightly applied to
the specimen and allowed to set for about one minute. This allows

the cement to absorb moisture from the air. The copper clip was
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then held with a pair of pliers, and the specimen was quickly slipped
into place and aligned. The copper clip was then gently squeezed to
the specimen for one minute. Too much pressure will squash the
specimen. Too little pressure results in a poor bond. Once a
copper clip or specimen has been exposed to the silicone 0il no
further attempts at bonding should be made. Also, bonding should
be carried out in an area removed from the apparatus, with
separate tools, and care must be taken not to expose one's hands to
the silicone oil. In general, specimen preparation should not be
taken lightly; considerable time can be wasted in inserting a poorly
bonded specimen into the pressure vessel, pressurizing the system,
waiting for equilibrium, and having the bond fail when the specimen
is extended. When this happens, the removable end cap may be
retrieved from the bottom of the pressure vessel, using considerable
patience, with a piece of brazing rod having a right-angle hook at
onc end,

Once the strain gages are calibrated (see Section 2. 17) the
specimen may be loaded into the relaxometer. Selecting a specimen
of proper width and a spacer of proper thickness requires some
experience. The maximum permissible force is about five pounds;
stronger springs may be used, but triggering becomes difficult.
Recording forces less than about 0.2 pounds resulted in considerable
error; this may have been due in part to using the 2.0 millivolt scale

on the recorder which tended to have considerable drift.
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Additionally, overextending the specimen will result in a nonlinear
response of the specimen. In general, the experiments at one
atmosphere may be run with a 0. 375 inch wide specimen and
maximum displacement; linearity should then be verified by
duplicating the test with a smaller displacement. Experiments at
higher pressures are then conducted using decreasingly smaller
specimens and displacements. The region of linear response also
decreases as the glass transition is approached, therefore making it
necessary to continually verifying linearity.

Assuming a specimen and spacer of the proper size have been
chosen, the specimen is loaded in the following manner. The
relaxometer is latched in the down position, and the spacer is put in
place. The specimen is inserted in the clevis of the removable end
cap, and the screw-pin is put in place. The relaxometer is then held
upright while the specimen is lowered into position and secured with
the other screw-pin. The relaxometer is then inverted and the nut
on the end cap is adjusted to remove the slack from the connection;
the recording pen is used to dectect this point. Once the O-ring and
the beryllium copper bevel ring are straightened, the relaxometer is
ready to be inserted into the pressure vessel,

The relaxometer is lowered into the pressure vessel until the
O-ring comes in contact with the se.aling diameter of the inner bore.
Valve V6 is opened to allow the silicone oil in the pressure vessel to

be transferred back into the filling reservoir. The relaxometer
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is then pushed firmly into the pressure vessel, and the stainless
steel nut screwed into place. Throughout the loading operation, the
output of the strain ga;ges should be monitored; a sharp jump usually
indicates accidental triggering of the mechanism. This is

especially critical when the experiment to be run is to be in the
glassy or transition region since both the specimen size and extension
will be small, resulting in a very small response at atmospheric
pressure.

The triggering mechanism rarely fired prematurely after the
system was primed to approximately 5, 000 psi through the 1:1
separator. Furthermore, a metallic click could usually be detected
if there was little background noise in the room., Thus, initial
pressurization should always precede preparation of the temperature
bath, since the impeller motor makes considerable noise. Once

primed, valve V. is closed, valve Vi opened, valve V5 closed, and

7
valve Vé opened respectively; it is important that valve V6 be opened
throughout the experiment since any leakage occuring in valve V7
will introduce high pressures into the 1:1 separator. The low
pressure side of the system is then pressurized to 5,000 psi with the
rough pump, PZ’ using the Bourdon tube gage to estimate the
pressure in the high pressure side of the system. When the desired
pressure is approached, pump P, is used in conjunction with the

manganin coil to obtain the final pressure. The pressurc will

continue to drop until equilibrium is established from the adiabatic
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heating, or due to leaks in the system. Leaks usually result from
either bad electrical leads of bad O-rings. Since both kinds of leak
show drips from the bottom nut of the corresponding vessel, they
can not be distinguished from one another, If replacing the O-ring
does not stop the leak, the electrical leads should be rebuilt,

Operating the temperature bath at 25°C requires a coolant to
remove the excess heat formed in circulating the silicone oil bath;
it also reduces the thermal lag of the system and allows the
Hallikainen Thermotrol to operate more smoothly., Circulating tap
water through the cooling coils of the temperature bath provided
adequate cooling in the winter months. For operation in the summer-
time, it was necessary to cool the tap water with ice; this was
accomplished by placing additional cooling coils in a Coleman ice
chest, For operation at lower temperatures, liquid nitrogen is
circulated through the cooling coils. The lowest temperature
obtainable with the ice chest arrangement was about 16°C, This
took about four hours due to the thermal inertia of the bath,

The temperature is measured by placing a mercury thermo-
meter in the bottom nut of the pressure vessel, When operating the
bath below 0°C, the differential iron-constantan thermocouple is used
in conjunction with the chart pen normally used to monitor the
input voltage to the strain gage bridge circuit, This allows the top
of the bath to be covered, Also the nitrogen exhaust may be

circulated over the surface of the bath. This decreases the amount
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of ice formed when removing the relaxometer for specimen loading.
The tygon tubing used for circulating the nitrogen is placed down into
the pressure vessel to prevent ice formation in the bore.

Temperature and pressure equilibrium is generally obtained
long before specimen equilibrium. Since increasing the pressure, or
decreasing the temperature, shortens the specimen due to volumetric
contraction, the specimen is strained from its equilibrium position
when pressurizing the system, or lowering the temperature., Time
must be allowed for this stress to relax to a negligible level relative to
the stress relaxation to be measured; otherwise the stress
relaxation measured in the experiment will correspond to the
superposition of two strains, one of unknown magnitude and history,
This effect is especially troublesome in the transition region where
considerable time is required for this relaxation to reach a negligible
level,

Elastomers in the glassy or transition region are highly
history dependent. This results in different glasses being formed
depending upon the rate of pressurization and the magnitude of the
stresses induced through volumetric contraction at constant
extension. This effect possibly explains the errors in modulus
obtained in the glassy region. Should this be the source of the error,
the following improvement in technique could be made. The
adjustment screw in the end cap could be used to compensate for the

expected contraction predicted form compressibility data.
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It would further be necessary to firmly attach the end cap to the
relaxometer, and slot the holes in the copper clips used to hold the
specimen; otherwise the specimen wouldbe in a curved configuration
prior to obtaining the fiﬁal pressure. This would allow the specimen
to remain in a stress free state until the final pressurewas obtained.
The major drawback to this approach is that monitoring the system for
premature triggering of the relaxometer during loading and
pressurization is no longer possible.

Once the relaxation has reached a suitable level, the actual
experiment may be performed. The bridge is zeroed, using
potentiometérs Rl and RZ’ and the proper voltage attenuation
(5.0 to 40 mv) of the strip chart recorder is selected. The
possibility of short circuits in the electrical leads is checked with the
middle position of the three-pole switch; if a short exists, the
electrical leads must be rebuilt before performing the experiment
since the 40 volts used to fire the solenoid will be put across the
strain gage. If there is no short the capacitor is charged, the chart
speed set to around 30 ¢cm per minute, and the mechanism is
triggered. The switch is immediately turned back to the gage
position. One of five responses may be recorded: (1) nothing; (2) the
pen will go off scale in the negative direction; (3) the pen will go off
scale in the positive direction; (4) the pen will rise to some value,
remain fairly constant for some period, and then begin recording a

relaxation curve; or (5) the pen will immediately trace out a force
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relaxation curve. No response indicates that the mechanism failed
to trigger. This is quite common at pressures above 3.5 kbar. If
about 20 more attempts still result in failure, the relaxometer should
be removed and the latch reset. The pen going off scale in the
negative direction indicates that the copper specimen clips have come
unbonded. The pen going off scale in the positive direction results,
obviously, from the choice of a too sensitive scale. Should the pen
record a fairly constant voltage for some period and then suddenly
begin relaxing, the specimen has been given too much displacement.
Measurements well in the glassy region will yield a similar response,
but there will be no sudden relaxation. If a flat spot occurs, the
experiment should be discarded and rerun with either a thinner
specimen or a smaller displacement. The reason for discarding
this type of an experiment is discussed in Section 3.1. If everything
goes correctly, a smooth force relaxation curve will be recorded.
More sensitive scales should be selected as the relaxation proceeds,
and a slower chart speed when the relaxation slows down. The 1.0
and 2.0 mv scales should be avoided since they tend to drift. The
best results were obtained when the specimen size and displacement
were such that at least 0.5 pound force was being recorded towards
the end of the experiment, i.e. after about 20 minutes.
Depressurizing the system is accomplished by first making
sure the galvanometer button on the Mueller bridge used for

measuring the pressure is up. Valve V2 is slowly opened and the
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pressure released at a rate of about 2000 psi per minute in the low

pressure side of the system. Valve V6 is shut, and valves V7 and

V, are opened. The temperature controller and circulating pump

3

are turned off, and the bath level is lowered,

Valve V6 is opened and air pressure is applied to reservoir

R, in order to fill the 1:1 separator. After removing the bottom nut

1

of the pressure vessel, valves Vl’ V,, and V() are shut, and valve

2’
V7 is opened. The relaxometer is then pumped out of the pressure
vessel with pump HZ' Once the relaxometer is completely out of the
pressure vessel, valve Vé is shut to prevent silicone oil in the

reservoir from draining back into the pressure vessel. The system

is then ready to be reloaded,

2.3 Pressure Medium

The apparatus was originally designed to be operated at
pressures up to approximately 7.0 kbar, since most of the '"standard"
elastomers, such as natural rubber (NR) and styrene-butadiene-
rubber (SBR), undergo the glass transition at around 5. 0 kbar
pressure at room temperature. Several fluids were considered
before choosing the Dow Corning 5. 0 centistoke 200 Silicone fluid.
The more important properties influencing this choice were freezing
point, viscosity, electric conductivity, and incompatibility with the
elastomers being studied.

Silicone fluids were the first choice since they are available
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in a wide range of viscosities, their viscosity is relatively
insensitive to temperature and pressure, they have a very low
electrical conductivity, and they do not readily interact with hydro-
carbons. Several experiments were performed to test whether the
natural rubber would swell at the anticipated pressures. If swelling
occurred, the relaxation processes would be affected.

Specimens of natural rubber were prepared by crossinking
with 3 parts of dicumyl peroxide at 250°F for 20 minutes at 25, 000
psi. The 0. 080 inch thick sheet was cut into 0.05 x 6.0 inch strips,
and quickly dipped in silicone o0il, wiped, and weighed on the
analytical balance. The specimens were then pressurized to 7.0 kbar,
quickly removed, wiped in the same manner, and reweighed, No
statistically significant difference could be detected within the
experimental error. Since these experiments yielded considerable
scatter due to the inherent inconsistencies in the wiping operation,
further tests were made.

From a similar sheet of natural rubber 0,080 x 0.38 x 6.0
inch strips were cut, and subjected to stress relaxation measure-
ments in the Instron tensile tester over the temperature range from
-55 to -60°C. This temperature range is about midway in the
transition from rubberlike to glasslike behavior for NR. It is there-
fore the temperature region in which any change in relaxation
behavior should be most easily detected. After the measurements

were taken, the specimens were pressurized to 7.0 kbar pressure
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for 4 hours, quickly removed, and retested in the Instron. No change
in relaxation behavior was detected. It was concluded that swelling
of natural rubber by the silicone oil was not a problem, and attention
was focused on the possibility of the pressure medium becoming
highly viscous at the higher pressures.

Ideally, stress relaxation experiments are initiafed with a
step function, although in reality one must settle for a relatively
sharp ramp function. Assuming a fairly simple viscoelastic model,
it is shown in Section 3.1 that approximately 25 times the period of
the ramp function is equivalent to that of a step function. Since it is
desirable to measure at least three decades of response in a stress
relaxation test, it is necessary to extend the specimen as quickly as
possible.. Otherwise, the total time required for an experiment
becomes prohibitive,

The first series of experiments performed with the relaxo-
meter incorporated a light spring in place of a rubber specimen for
calibrating the strain gages as a function of pressure up to 6 kbar.
After several weeks of perfecting the trigger mechanism, a
successful firing resulted at 6 kbar pressure. Approximately one
minute was required for the relaxometer to extend 0.5 inch. The
problem was attributed to the relatively high viscosity (100 centistoke)
of the silicone fluid being used at that time. To correct the problem,

a series of lighter grades of Dow Corning 200 silicone fluid were

ordered.
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The 1 c.s. silicone fluid had a relatively high vapor pressure
and also tended to leak quite readily. The 5 c.s. fluid proved to be
the lightest fluid which was still easy to handle, and was thus chosen
for all subsequent experiments. With this fluid, the relaxometer was
always fully extended in the short time required to switch from the
S1 to 83 position. After performing experiments at the highest
pressure on a particular elastomer, the specimen was quickly
removed from the pressure vessel and measured with a micrometer;

no change in specimen size was ever found with the materials used.

2.4 Materials

The materials originally selected for this inve.stigation were
natural rubber (NR) and styrene butadiene rubber (SBR). TUnfortu-
nately, the stress relaxometer failed to trigger properly at the 6 kbar
pressure necessary for obtaining glassy behavior at room temperature
with these rubbers. Since poly (ethylene-propylene-diene-monomer),
or EPDM, has a higher Tg (-50°C for EPDM compared to about
-70°C tor NR and SBR), it was hoped that in this material glassy
behavior could be induced with 5 kbar pressure. The results of these
measurements are given in Appendix B. The transition region was
not reached with the 5 kbar pressure, nor was it possible to apply
time-temperature of time-pressure superposition to the relaxation
data obtained. Lack of time-temperature superposition in EPDM has

been noted previously and has been attributed to both crystallization
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(50) and blockiness.

Patterson (42) reported the glass transition in Viton* and
Neoprene* to occur around 2 and 3 kbar respectively, at room temper-
ature. K. I. du Pont de Nemours and Co. graciously supplied molded
sheets of these two materials together with a sheet of Hypalon*. The
compounding recipes of these materials are discussed by Stevenson

(52), and are given below in parts per hundred parts of rubber,

Hypalon-40 100 Neoprene WB 50
AC,PE 617A 5 Neoprene WRT 50
SRF Black 4 Neozone A 2
Epon 828 15 Stearic Acid 0.5
MBTS 0.5 MT Black 100
Tetrone A 1.5 Hard Clay 25
DOTG 0.25 LPO 12
Cure: 30 min. at 307°F Red Lead 20
Viton- B 100 Thionex :
MgO {5 Sulfur 1
. o

MT Black 20 Cure: 20 min. at 307 F
1.D-214 3
Cure: 30 min. at BOOOF

1 hr at 212

1 hr 250

1 hr 300

1 hr 350

24 hr 400

sk

Trademark of E. I~. duPont de Nemours and Co., Inc.
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Hypalon-40 is a chlorosulfonated polyethylene containing
approximately 30 to 40% chlorine and 1.0 to 1.5% sulfur. This
implies approximately 20 chlorine atoms and 1 sulfonyl group for
every 100 carbon atoms. AC, PE 617A is a polyethylene added as a
lubricant or mold release. SRF Black is a semi-reinforcing furnace
black. It has been found to have no cffect on the relaxation processes
for strains less than 150% (51). The Epon 828 (epichlorohydrin-
bisphenol A), MBTS (benzothiazyl disulfide), Tetrone A
(dipentamethylene thiuram tetrasulfide), and DOTG (di-o-tolylguani-
dine) constitute the curing system.

Viton-B is a copolymer of vinylidene fluoride and
hexafluoropropylene having the typical polymer segment
CF,

I

- CF, - CF -

-CF2 2

—CH2 -CFZ —CI—I2 -CF‘2 -CH2

The compounding recipe contains medium thermal (MT) carbon black,
magnesium oxide, and a diamine curing system (LD-214).

Neoprene (polychloroprene) is manufactured by polymerizing
2-chlorobutadiene to yield a polymer containing approximately 98%
monomer units which have added in the 1, 4-position, and 1.5% in the
1, 2-position (52). Cross linking is belicved to result mainly from
the 1.5% monomer units which add in the 1, 2-positions. Many types
of Neoprene are available differing essentially in the curing systems
employed. The compounding recipe for the specimens used contain

Neoprene WB (noted for its processibility) and Neoprene WRT (noted
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for its resistance to crystallization). The stearic acid and LPO
(light processing oil) are processing lubricants. The Neozone A
(2 naphthylamine) serves as an antiozonant. The MT carbon black
and the hard clay are reinforcing fillers., The Red Lead (Pb304),

Thionex (tetrabutyl thiuram monosulfide), and sulfur make up the

curing system.



3. EXPERIMENTAL RESULTS

The experimental objective was to measure the effect of
temperature and pressure on stress relaxation in elastomers, and to
determine whether the effect of time, temperature, and pressure
would superpose. The major assumption made in a stress relaxation
experiment is that material response to a quick ramp function is
indistinguishable from a true step function after an appropriate lag
time; the validity of this assumption is di.scussed ih Section 3.1.

The material parameter measured in unijaxial tension is the
time-dependent Young's modulus, E(t), which is a combination of
K(t) and G(t), the time-dependent bulk and shear moduli related to
time-dependent changes in size and shap_e, respectively. Both K(t)
and G(t) depend on pressure as well as temperature. It will be shown
in Section 3.2 that proper evaluation of the superposition of time,
pressure, and temperature effects requires conversion of E{t) to
G(t), or additional information on E(t). The difficulties connected
with this conversion will also be discussed in Section 3. 2.

Section 3.3 presents the experimental data reduced in terms
of the shear modulus. These data are then empirically shifted along

the logarithmic time axis into superposition to obtain master curves.

3.1 Viscoelastic Response to a Step Function of Strain

In this section we examine the consequences of using a ramp
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excitation instead of a step function. We first consider the ideal
shear stress relaxation experiment in which a step function of strain
is imposed on the specimen at time t = 0. We express the strain

excitation as

0 for t <0
I (i_) = g h(t) = (39)

e fort=220
o

where h(t) is the unit step function. Substitution into Eq. (1) yields

ot)/ e :f Q(u) du = G(t) (40)

The shear relaxation modulus, G(t), is seen to be the response to a
step function of strain.

Experimentally, the step function must be approximated by a
ramp function of rise time t, as shown in Fig. 7c. The stress
relaxation following a ramp function of strain is usually assumed to
be within 1% of the ideal response given in Eq. (40) after a period, or
lag time, of 25t1 has elapsed. Intuitively, this lag time should be
strongly depender_;t upon the relaxation processes occurring in the
polymer. The lag time should be maximum in the transition region
where the relaxation processes are of the time scale of the
observation, and decay to zero in both the glassy and rubbery regions.

In the glassy region any relaxation process is very slow. In the
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rubbery region the relaxational processes are very fast compared to

the observation time.

The Boltzmann integral, Eq. (1), may be expressed as

t
de{u)
oty =§ G (t-u) T du (41)
/

by making a change of variables and noting in Eq. (40) that

dG(t)/dt = Q(t). When the ramp excitation,

e (t) = éoth(t) - éo(t - tl) hit - ti) (42)

is substituted into Eq. (41) we obtain
t
1
GM(t) = U(t)/eo = -t-i- fG(u) du (43)
t- t1

where G(t) is the actual shear relaxation modulus, and GM(t) is the

measured shear modulus. A fairly representative analytical

expression for G(t) is the power law approximation (3)

G_ - Ge
N - 8 &
Gl = G+ g m (44)
where G, is the equilibrium modulus, Gg is the glassy modulus, t_is
a characteristic time constant, and n is a characteristic exponent.

This expression is plotted in Fig. 7b logarithmically as a function

of t/to using the typical values of Gg = 10,000 bars, G, = 10 bars,
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and n = 2/3. Substituting Eq. (44) into Eq. (43) and integrating yields

G, -G, t, LTS t-t, )l—n]
GM(t):Ge+ —g'————(i ) ‘E'i— (1 +'F;) - (1 + to , (45)

The error resulting from using the ramp function, (GM - G)/G, is
plotted as a function of t/ti’ for various values of to/t1 in Fig. T7a.
It is seen that the largest error is around 1% for lag times of 25#:1
for to/t1 ratios between 0.001 and 10. For shorter lag times the
error rises steeply, the closer the rise time ty is to the
characteristic relaxation time to' Experimentally, this was evident
by the lack of superposition of the initial portions of the curves in
the middle of the transition region. Consequently, these portions of
the curves were discarded (cf. Figs. 8, 9, 12, 13 and 18). Calcula-

tions were also performed for n = 1/2 and n = 3/5. The results were

- not significantly different and are not reported.

3.2 Temperature and Pressure Dependence of the Time-

dependent Young's Modulus, E(t)

For isothermal-isobaric segments of E(t) to superpose by
horizoﬁtal shifts along the logarithmic time axis it is necessary that
changes in temperature and pressure affect all relaxation times in
the same manner. This is a necessary, but not a sufficient
condition. In addition, the effect of temperature and pressure on the

modulus at any fixed time must be known to allow correction of the
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isothermal-isobaric segments before shifting.
It is shown in elasticity theory that the elastic Young's
modulus, E, is given in terms of the elastic shear and bulk modului,

G and K, by

9KG

3K+G (46)

Since the Young's modulus is thus a combination of the two funda-
mental moduli, G and K, which refer to changes in shape and size,
respectively, we must examine the température and pressure
dependence of these moduli to understand that of the Young's modulus,
E,

The temperature and pressure dependence of the bulk

modulus is found to be described by

K(T, P)

K*(T) + kP

K:k(T)

K#*_  exp [-mao* (T-T_) ] (47)

where K*(T) is the bulk modulus at zero pressure, «o* is the thermal
expansivity at zero pressure, and k and m are material parameters.
K*, k, and o usually assume different values for the rubbery and
glassy states, whereas m is found to be constant (37). Eguation (47)
can be integrated to give the temperature and pressure dependence
of the volume, cf, Section 4.11,

The statistical theory of rubber elasticity predicts the
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temperature and pressure dependence of the shear modulus to be

G(T,P) = G(T_,P_)p T/e T, (48)

where G(TO,PO) is the modulus at temperature To and pressure Po'
Sharda (57) has recently shown p/pO to over correct the effect of
pressure on G; for natural rubber the effect of pressure on the

shear modulus is correctly given by

GP) = a@,) 57V (49)

where G(Po) is the shear modulus at zero pressure, J = V/Vo = po/p
and Y is a material parameter whose value is 0.2 for natural rubber.
Since the volume is also dependent onthe temperature, this result
may be extended to include the effect of temperature on the density,
i.e. J = J(T,P). The integrated form of Eq. (47) may be employed

for this purpose, cf. Section 4.11, We therefore write

G(T,P) = G(T_,P) J'YT/TO (50)

In practice this effect is found to be quite small.

In the transition and glassy regions the effects of temperature
and pressure on the shear modulus are not known. In the rubbery
region it is reasonable to assume that G <<K i.e. that the rubber is
incompressible. In this case E = 3G and any temperature and
pressure dependence of E will be the same as that of G. This

assumption can not be made in the transition and glassy regions.
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Measurements of the time-dependent shear modulus, G(t), would
have afforded an easier reduction of the data since the effect of
pressure on the modulus at fixed time would not have to be taken
into account, i.e. the effect predicted by Eq. (50) is almost
negligible for the pressures less than 5 kbar. However, experimen-
tally the determination of G(t) under hydrostatic pressure is more
difficult than that of E(t). We thus examine the effect of K on E.

For a linear viscoelastic material the constants E, G, and
K in Eq. (46) must be replaced by their Carson transforms (the

s-multiplied Laplace transforms). We thus have

E(s) = —2(8) Gls) (51)
3K(s) + G(s)

Equation (51) may be simplified by noting that the time dependence
of the bulk modulus K{t) is negligible compared to the time
dependence of G(t) or E(t); time dependent measurements of the bulk
modulus by McKinney and coworkers showed K{t) to increase only by
approximately 50% from rubbery to glassy behavior (39), whereas
the shear modulus increases by three orders of magnitude.
Assuming the bulk modulus to be independent of time, we have

K(s) = K/s and Eq. (51) may be rewritten as

E(s) = Gis) (52)
1 + sG(s)/3K

where K is independent of time but dependent on temperature and
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pressure. We now compare Eo(s), the Young's modulus at zero
pressure, to Ep(s), the Young's modulus at pressure P, and assume
ao(s) = Ep(s) based on the results of Eq. (50). Equation (52) becomes

= = 1

1 { . = = |
P 3 lg— - E:F) sE(s) Epls) (53)

P
Inverting Eq. (53) yields

t

t i 1
Eo(t) = Ep(t) + _C)-(f{; - -R—-> Eng(t) +pr(t-u) dEo(u) (54)

O

where Kp is the pressure dependent bulk modulus given by Eq. (47).
The Stieljes convolution integral in Eq. (54) can be evaluated
numerically if Ep(t) and Eo(t) are known for all times. However, we
do not know this information until we have applied time-pressure
superposition to the data. We therefore examine the possibility of
converting E(t) into G(t) at each pressure, and then utilizing Eq. (50)
for reducing the shear modulus at elevated pressures to atmospheric
pressure.

Equation (52) may be written in terms of the shear modulus

G(s) = Els)
3[1 - sE(s)/9K]

(55)

where K is given by Eq. (47). We first examine the limits of
Eq. (55) by writing Eq. (2) in terms of Young's modulus, and taking

‘the Laplace transform,
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- E
E(s) = E_/s + S (56)

where Ee is the equilibrium Young's modulus. We see that for long
times, i.e. for s—- 0, sE(s)/‘)K reduces to Ee/C,'K which is of the

order of 10_4. Hence, in the rubbery region

G(s) = E(s)/3 (8 — 0) (57a)
or

G(t) = E(t)/3 (t — =) (57b)

At short times, i.e. for s —

sE(s) = E_ +Y E_ = E (58)

where Eg is the glassy Young's modulus. Hence, sE(s)/9K reduces

to Eg/9K which is of the order of 0.1 since Eg% K. Therefore

G(s) = E(s)/2.7 (s —» ) (59a)
or

G(t) = E(t)/2.7 (t— 0) (59b)

It is erroneous, however, to infer that for 0 < t <®, the propor-
tionality constant between E(t) and G(t) must lie between 2. 7 and 3. 0.
We proceed to demonstrate this,

Unfortunately, Eq. (55) can not be inverted. A reasonable
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approximation may be obtained by expanding the denominator and

neglecting higher order terms. This yields

G(s) = E(s) [t +sE(s)/9K]/3 (60)

which may be inverted to give
t
air) = B 1+ E_/9K) +2—71R-fE(t-u) dE(u) (61)
g
0

Again, as in Eq. (54), the Stieljes convolution integral can be
evaluated numerically once E(t) is known for all times. However,
we do not have this information until the data havé been reduced, and
time~-temperature or time-pressure superposition applied to them.
We therefore seek an alternate method. Furthermore, we chose to
reduce the data in terms of the time-dependent shear modulus, G(t).

Noting that sE(s)/‘)K varies approximately between 10'4 and
10—1, we seek a useable approximation by writing

E(t)
3[1 - E(t)/9K]

G(t) = (62)

To check the validity of this assumption, and to gain intuition for the
relative error which may result, we apply the simple 3-parameter
Maxwell model

(E - Ee)-r

e = g
E(s) = E_ /3 + = (63)
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which is simply Eq. (56) for a single relaxation time, and
E = Eg - Ee. Substituting Eq. (63) into Eq. (55) and inverting yields
the exact conversion

B /344 Ty E] (-———--—"t/'r> 64
Ggp(t) = E /3 +3 | =5 - E | expl7—% (64)

where x = Eg/‘)K and the subscript on G(t) denotes the corresponding
equation from which the shear relaxation modulus was obtained.

Equation (64) may be compared with the approximate conversion

E -E
G = E_/3 + (—g-—ez [1 + x(1 - t/'r)] exp (-t/T) (65)

60t 3

obtained by substituting Eq. (63) into Eq. (60) and inverting. In
addition we have G57(t) obtained from Eq. (57), and finally the new
proposed approximation G()z(t). Table I shows Valuc_es of the various
shear relaxation moduli obtained in the indicated way for x = 0.1 and
x = 0.05, with the typical parameters Ee = 10 bar, and Eg =10, 000
bar.

The ratio log G62/GSS’ representing the deviation of the
approximation from the exact conversion, has a maximum around
t/T = 6 for the simple model and the paramecters chosen. We
conclude that G()Z.is a reasonable approximation to G(t) but we may
expect that vertical shifts will be necessary in the transition region
when applying time-temperature, or time-pressure, superposition

to the data. These shifts result from the error in calculating G(t).



X = 0.1
t/t 0.01
G 5(t) 3659
OmoAS 3627
G, (t) 3662
Omis 3300
log MMM . 0004
X = 0.05

t/ 0.01
Gy g(t) 3469
G o (t) 3463
Gy (t) 3472
Gg (t) 3300
log Mom . 0004

TABLE 1

Values of Shear Modulus, G(t), Calculated [rom Equations Noted

0.10
3315
3288
3316

3016

. 001

0.10
3155
3152
3159

3016

. 0006

0.5
2126
2124
2155

2023

. 006

2072
2074
2086

2023

. 003

0.8
1525
1530
1568

1500

. 012

0.8
1512
1515
1534

1500

. 006

1221
1228
1275

1228

.019

1.0
1226
1228
1251

1228

. 008

2.0
404
409
460

454

. 056

2.0
430
431
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We assume that the effect of this error on the shapes of the curves is
negligible. This assumption was partially checked out by comparing
the shapes of G57(t) and Géz(t); no difference was detected. Once
the master curve is obtained, we may obtain G60(t). However, since
we have fixed the asymptotic behavior of G(t), we have, essentially,
empirica.lly incorporated Eq. (55) into our data reduction scheme by
allowing the additional vertical shifts in the transition region.
Therefore, nothing would be gained by calculating G6O(t)

The most significant result of the above analysis is that it
shows that the short time behavior has a profound influence on the
conversion from E(t) to G(t). It is generally assumed that the time-
dependent shear modulus is simply 1/3 the time-dependent Young's
modulus for the region where E(t) << 9K. We have shown this to be
a2 poor assumption, except in the limit as time approaches infinity,

i. e. the rubbery region, which is the region of equilibrium, or
purely elastic response. Thus, the time-dependent shear and Young's
moduli are not simply related.

The simple model represented by Eq. (63) is a spgcial case.
However, all of the short time response in the conversion to G(t)
may be seen by noting that we may replace SE(S) in Eq. (55) by
Eg + ]:I:I(s) to give
E(s)

E_+ E(s)
_ 4

(66)
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where, from Eq. (56), we have

1+ 718

_ E
Es) = =5 1B (67)
P P

Thus, El(s) is negative and is always smaller than Eg. Hence, no
matter what the functional form of —E_(s), G(s) will depend on the
magnitude of Eg.

A more sophisticated madel than that represented by Eq. (63)
might show larger or smaller errors in the conversion from E(t) to

G(t) by the use of the approximation given by Eq. (62).

3.3 Experimental Results

The experimentally measured quantities are the strain,
{L - LO)/LO, and the time dependent force, f(t). The stress is
determined by dividing the force by the cross-sectional area of the
specimen. The thermal expansivity and the isothermal
compressibility are used to correct the initial cross-sectional area
of the specimen to the area existing at the experimental temperature

and pressure. The time-dependent Young's modulus,
E() = o(t)/e, (68)

is then calculated and substituted, together with the bulk modulus,
Eq. (47), into Eq. (62) to yield the time-dependent shear modulus,

G(t), at the temperature and pressure of the experiment.
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Equation (32) is found to describe the temperature and
pressure dependence of the bulk modulus remarkable well. It is
discussed more thoroughly in Chapter 4. As the values of K* and k
were not known for Hypalon and Viton, they were assumed to be
jdentical with those for Neoprene which were obtained from the data
of Weir (55). The compressibility data (the bulk modulus is the
inverse of the compressibility) of Weir for four different elastomers
were quite similar in both shape and magnitude. This lends support
to the assumption. The values used for the various parameters are
given in Table II of Chapter 4.

To apply time-temperature-pressure superposition to G(t),
we must, before. applying the shifting procedure, remove the
effects of temperature and pressure on the modulus at fixed time.

In Section 1.3 it was noted that the elastic response of the rubber is
dominated by the configurational entropy of the system. The
configuration entropy is directly affected by the temperature, and
indirectly by the effect of temperature and pressure on the density of
the material as shown by Eq. (50). We further noted that the internal
energy becomes the controlling mechanism in the glassy state. It
follows that some combination of the two mechanisms will influence
the transition region. Finally, currenf theory (see Chapter 1)
describes behavior only in the rubbery region and at most the initial
portion of the transition region. We therefore expect that vertical

shifts of the isothermal-isobaric segments of G(t) will be
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necessary in the transition and glassy regions to allow for a shift
from entropy controlled to internal energy controlled behavior as one
approaches the glassy state. It is important to realize that these
shifts are independent of the vertical shifts resulting from the error
in the conversion to the shear modulus discussed in Section 3. 2.

This expectation was born out experimentally. To
empirically shift the segments along the logafithmic time axis, all
measured shear moduli, G(t), were adjusted using Eq. (50). This
scheme worked well in the rubbery and initial transition regions.
However, as the glassy response was approached, superposition was
unsatisfactory unless additional vertical shifts were allowed. Since
no theory exists for this region and since we anticipate error in the
magnitude of G(t), vertical shifts were admitted in the transition and
glassy regions; the criterion being best superposition of the segments.
This is consistent with the primary assumption that all relaxation
times are affected similarly by a change in temperature or pressure,
and that the error in G(t) does not affect the shapes of the segments.

The resulting shear modulus becomes

_ Y
Gr(t) = (TOJ G(t)/T) AGcor (69)

where Gr(t) is the reduced shear modulus and AGcor is the
empirical vertical shift. These shifts are plotted in Figs. 16 and 17
for Hypalon-40 and Viton-B, and are further discussed in Section

3.33. No empirical vertical shifts were needed on Neoprene and
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EPDM data (Appendix B).

It should be noted that the empirical vertical shifts are not
arbitrary. Since the isothermal-isobaric segments of G(t) are
smooth, there exists only one point in the log modulus-log time
plane that gives a good superposition of the segments, Furthermore,
since two mastercurves are constructed, one from time-temperature
superpositioning and a second from time-pressure superpositioning,
the shifting procedure must be consistent; otherwise the two master
curves will be different. The empirical vertical shifts are thus
regarded to reflect real material behavior (except for any portion of
the shift which arises from the conversion technique). Direct
measurements of G(t) as a function of both temperature and pressure
could therefore yield background data for the development of a theory
accounting for changes resulting from shifting from entropy to

internal energy controlled behavior.

3.31 HXEalon -40

The reduced isothermal-isobaric segments, Gr(t)’ are
plotted in Figs. 8 and 9 for Hypalon-40. Figure 8a shows data
obtained at 25°C as a function of pressure. Figures 8b, 9a and 9b
show data obtained at 1, 1, 000, and 2, 000 bar, respectively, as
functions of temperature. The plus sign (+) indicates the first
segment for which an additional shift, log AG . was made. The

arrow indicates the first segment which deviates from the prediction
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based on the free volume approach discussed in Chapter 4; it may be
thought of as representing the onset of glassy behavior. Figure 10
shows two master curves obtained by empirical vertical and
horizontal shifting.

The empirical horizontal shifts are recorded as log 355 0,P
and are plotted in Fig. 10b. Master curve B is obtained from

Fig. 8b. The empirical horizontal shifts are recorded as log 21 1.0

and are plotted in Fig. 11b. Thus, the reduced modulﬁs, GR(t) in
Fig. 10a, is related to Gr(t) by
Gglt) = G (t/ag p) (70)

Both curves contain the same information, i.e. the time dependence
of the shear relaxation modulus over 12 decades of time at T = 25.0°C
and P = 1.0 bar. There coincidence in the rubbery and in most of the
transition region indicates the material to be piezo-and thermo-
rheologically simple. The slight difference in the glassy region is
not suprising. Glasses formed by the application of pressure are
generally found to be denser that those formed by lowering the
temperature (34, 38, 53, 54). We would expect the denser glass to
display the greater shear modulus. The empirical vertical shifts are
plotted in Fig. 16.

Figure 11a shows the three master curves obtained by shifting
the segments of Figs. 8b, 9a, and 9b, respectively. All three curves

are reduced to the reference temperature of 25, 0°C, but left at the
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respective experimental pressures. The three master curves may
easily be brought into superposition by applying the shift factors
of Fig. 10b. Again the glasses formed at the elevated pressures

are found to display higher moduli, respectively.

3.32 Viton-B

The measurements on Viton-B are presented in the same
manner as are those on Hypalon-40. It is interesting that the
materials share almost identical behavior with respect to a change
in temperature as may be seen by comparing Figs. 8b and 12b.
However, the effect of a change in pressure on Viton is twice the
effect on Hypalon. Referring to Figs. 16 and 17, we also see that
the empirical vertical shifts applied to the two materials are quite

different. This difference will be discussed in the next section.

3.33 Empirical Vertical Shifting Behavior

The empirical vertical shifts, AGcor’ applied to the Hypalon
and Viton data are ploted in Figs. 16 and 17, respectively. The
shifts for pressures less than 2 kbar in Hypalon, Fig. 16, are not
plotted since they are all zero. The arrows indicate the pressure
or temperature at which the shift factors, log 21 p deviate from
the smooth curves in Figs. 10b, 11b, 14b, and 15h. This point,

although not the glass transition, Tg’ as defined in the classical

sense (i.e. by volumetric measurements), may be thought of as the
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onset of glassy behavior, and will be referred to here as the

inflection temperature, TI.

related to Tg. All plots in Figs 16 and 17 are seen to be relatively

In fact, it is undoubtedly closely

smooth, and display a maximum in the vicinity of TI. This
maximum corresponds to both the maximum in log Géz(t)/GSS(t)

in Table II, which resulted from the error encountered in
correcting to G(t), and to the region in which we expect the internal
energy and configurational entropy nleqhanisms to contribute about
equally.

The empirical vertical shifts for Viton, Fig. 17, are
particularly interesting; the shifts resulting from reducing the
pressure data exhibit a maximum, whereas the shifts resulting from
the temperature data exhibit a minimum except at the higher
pressures. Furthermore, the time-temperature data at the elevated
pressures exhibit hardly any shifts at all, indicating internal
consistency. The maximum at about 25°C in Fig. 17d corresponds
to the maximum at 2 kbar in Fig. 17a.

We might expect that the simple 3-parameter Maxwell model
assumed in Section 3. 2 would always over predict the true value of
G(l); this would result in all empirical vertical shift curves having
the form of Fig. 17b. However, there are several explanations for
the observed behavior: (1) the model represents the behavior of
elastomers only in a general way; the response of a real material is

quite different; (2) it was necessary to assume values of K* and k for
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the bulk modulus from data on Neoprene. Since the ratio Eg/9K
strongly influences the vertical shift factors, we could have

easily over or under predicted G(t}; (3) even had we measured G(t)
directly, thereby eliminating the above source of error, we still
anticipate empirical shifts in this region due to the shift from a
configurational entropy controlled to an internal energy controlled
mechanism. Since the main objective is the investigation of the
applicability of time-temperature-pressure superposition, we focus

our attention on the horizontal shift factors, log a and lump

T, P’
the various contributions to the vertical shifts., To unscramble
these contributions, we would need additional information which is
not available at present. We emphasize that we have not violated our
major assurnption, that all relaxational processes are affected
similarly by a change in {emperalure or pressure; as pointed out
earlicr, the vertical shifts are not arbitrary and have merely

correcled for errors in our inability to correctly characterize the

effect of temperature and pressure on the moduli.

3.34 Neoprene

The results on Neoprene are somewhat of a special case due
to the high percentage of carbon black and clay filler (100 and 25
weight percent respectively). Neoprene was included in this study to
determine whether any significant differences would arise in the

behavior of a highly [illed material. The behavior of highly filled
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elastomers typically deviates from that of the pure elastomer in two
major ways: (1) the entire master curve is shifted to higher moduli
and to somewhat longer times, and (2) nonlinear stress-strain
behavior is observed at much lower strains. The increase in
modulus can be observed in Figs. 18 and 19. | Both the rubbery and
glassy response are almost twice that observed for the Hypalon and
Viton.

Compressibility measurements by Weir (55) when plotted in
terms of the bulk modulus and measurements of Young's modulus by
Patterson (42) both showed the glass transition in Neoprene to occur
at approximately 3.6 kbar pressure at 25°C. The relaxation curves
in Fig. 18 seem to indicate that 4.6 kbar pressure still has not
induced glassy behavior. Ilowever, the initial portions of the curves
at the highest pressure tend to bend over. Furthermore, in Fig. 19b,
a break in the shift factors, log aT’ pr can be detected at about 3.8
kbar; the points above 3. 8 kbar tend to form a straight line of
different slope, similar to the behavior observed with Hypalon and
Viton, Figs. 10b and 14b.

No empirical vertical shifts were made to obtain the master-
curve in Fig. 19a. The resulting mastercurve is quite smooth in the
initial portion of the transition region. We see poor superposition in
and near the glassy region. Actually, this portion of the master-

curve can be superposed quite well, if vertical shifts much larger

than required with Hypalon and Viton, of the order of 0. 35 log units,
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are allowed. Had this been done, the break in the shift factors of
Fig. 19b would also have disappeared. These vertical shifts were
disallowed because they would have been arbitrary in view of the
lack of curvature in the isothermal-isobaric segments of Fig. 18.
Measurements at higher pressures than can be applied in the
apparatus in its current form would possibly pe rmit a resolution of

this problem.
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4. DISCUSSION AND CONCLUSIONS

In Chapter 3, information gathered over 3 decades of time,
but covering a broad range of temperatugre and pressure, was
! !
brought into superposition by shifting along the logarithmic time
axis. The resglting mastercurves were then proposed to represent
material behavior over 13 decades of time at the reference
temperature and pressure. The assumptions underlying this

reduction scheme are: (1) the general effect of temperature and

pressure on the rate of molecular rearrangement is to multiply all

relaxation times by a common factor, ar pr where |
i _ TP(T,P) i T, P)T p ~ T, P) (71)
TP~ T TP T o Mo (T, P

where 'rp(T, P) is the p'th relaxgtiop time, and N(T, P) is the steady-
flow viscosity at temperature T and pressure P; and (2) the

g.eneral effect of temperature and pressure on the moduli at fixed
time is to change the configurational entropy and the int‘ernal

energy of the system, by the factor, dT D’ where

T .,P T, P

9% = d G () | (72)

G tlay p) T, P

The configurational entropy dominates the elastic, or equilibrium,

response of the rubber, and
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dT,P = poTo/p T, p = p (T,P) (73)

from the statistical theory of rubberlike elasticity. The internal
energy dominates the elastic response of the glass, and some
corr;bination of the two control the elastic response in the transition
region; we have no theory to guide us in these regions.

Wé now assume that the temperature and pressure
dependence of the viscosity, Eq. (Ti), can be described by the

temperature and pressure dependence of the free volume through the

Doolittle equation
N = A; exp(B;Vy /Vf), Vo + V. =V (19)

where V. and V,are the occupied and free volumes, respectively.

¢
We may then combine the Doolittle equation with Eq. (71) to obtain

1 1
Inap p = By [‘f('T"','P"') - TP ] (74)
o’ o
where f(T, P) is the fractional free volume,
f(T,P) = V,/V » Vf/V¢ (75)
Since Vf << V¢. We now turn our attention to the effect of temperature

and pressure on the fractional free volume, (T, P).
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4.1 Effect of Temperature and Pressure on the Fractional Free

Volume
Since we are interested in the change in the fractional free

volume with temperature and pressure, we differentiate f to obtain

df = (%)pdT + (%)po | (76)

We now integrate Eq. (76), choosing the path which requires know-
ledge of the effect of pressure on the thermal expansivity of f. We

thus have

T,P

T},P TO’P i
_ 2f 2f
/df = / (ﬁ)T dP + (—Tr> aT (77)
P
T p . . (0]
o’ "o To’Po

T ,P
o

It is obvious from Eq. (77) that equations of state V = V(P, T)

and Vf = Vf(P, T) will be required to carry out the integration.

4.11 Equation of State for the Volume

We make use of the experimental fact,

K(T,P) = K*(T) + kP
(78)

K*(T) = K*(Tc) exp [-m o*(T - TO)]

where K*(T) is the zero pressure bulk modulus, o the zero pressure
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thermal expansivity, and m and k are material parameters of the
order of 5 and 10, respectively. It was shown in Section 1.6 that
either the Murnaghan or the Tait equation may be obtained from
Eq. (78), depending upon the definition of the compressibility. We

choose the classical definition of the cbmpressibility,

1 zv>
2= -3 (F)e (79)
which, yields

V o= VE (1 + kP/K#*) -1/k (80)

when integrated with respect to Eq. (79), and is known as the
Murnaghan equation; V* is the volume at zero pressure. We next

define the thermal expansivity at zero pressure as

Integrating Eq. (81) yields

Vi = Vi exp [o#(T - T )] & V_* [1+a#(T - T_)] (82)

where VO* is the volume at P = 0, T = To' In order to integrate
Eq. (77), we need the pressure dependence of the thermal

expansivity, o(P). Making use of Egs. (80), and (78), we obtain
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_ 1(5V R mP
ofP) = 5 (5%) = 0"[1 - ‘K“r@‘] (83)

We now have all the volumetric relations necessary for integrating
Eq. (77).

4.12 Equation of State for the Fractional Free Volume

We assume the temperature and pressure dependence of the

free and occupied volumes to have the same functional form as the

total volume described in Section 4.11. We further assume that

Ve << V.
We now consider the partial differentials in Eq. (77).

By
Eq. (75)

oV v
) -4 (o) - )

H
Q

2

i

R
R

-

- fo (84)

where e and o are the thermal expansivities of the free volume and

rubber respectively. Since Vf =V - V4, we have

VL),
Y "?TT“P VFT“P v ‘ﬁ-P

or

f T AL - (86)
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where 2y is the thermal expansivity of the occupied volume.

Similarly, we find

of ~ L an = -B. =8B 8 (87)
t AN A T
T T
or
Bf = Br - 5¢ (88)
4.13 Effect of Temperature and Pressure on the Fractional
Free Volume
We may now substitute Eqs. (84) and (87) into Eq. (77) to
obtain
T,P T, P T,P
df = - § BT )P + f o (P) AT
T ,P T ,P T,P
o’ o o’ o o
or (89)
f- fo = -fTO(P) + fP(T)

where fo is the fractional free volume at the reference temperature

and pressure. We first consider fT (P), and make use of Eqgs. (80)
o
and (89) to obtain
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P P

fTO(P) :f B (T )dP / By (T ) dP

PO P,

1 krP 1 k¢P
:-E—ln1+K* _I{-Eln 1+'—KE;— (90)
r r
where we have let Po = 0. For fP(T) we obtain similarly
T
£, (T) :fozf(P)dT
T
o
= o(P) [T - T ] (91)

We assume the pressure dependence of af(P) to be described by

Eq. (83). This implies that the parameter m of the total and
occupied volumes are equal. This has been shown to be true for the
rubbery and glassy states (37), and therefore should be a good
assumption for the occupied volume.

Substituting Eq. (89) into Eq. (74) yields

B, fr (P) - £5(T)
log ar p = 2303 T | T T IS TP (92)
T, P 303 & o + P - To )

where fT (P) and fP(T) are given by Egs. (90) and (91) respectively.
o

If we set P equal to zero and T equal to Tg’ the WLF equation,

Eq. (25), is recovered., If we let T = TO and assume the
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compressibility to be linear with pressure, fT (P) = Bf(P - Po),

o
we recover the Ferry-Stratton equation, Eq. (31).
Neither the Ferry-Stratton equation nor the O'Reilly
equation, Eq. (38), were able to describe the experimental shift

factors, log a presented in Chapter 3. It is usually assumed

T, P’
that the O'Reilly relationship is based on the Tait equation. This
probably explains why neither the Tait nor the Murnagham equations
have been applied to the free volume theory. If the Tait equation is
properly applied, Eq. (90) is unchanged; the only difference is the
values of the parameters kr and kg, since they are evaluated differ-

ently for the Tait equation. Both equations describe the data quite well

over the range of temperature and pressure used in this investigation.

4.14 Determination of the Expansivity and Compressibility of

the Occupied Volume

When predicting the shift factors obtained from superposing
isobaric stress relaxation segments measured at different
temperatures, the parameters required for the log aT’ Po equation
are: Bf’ fo’ e and Uy e Of these only @ can be measured
independently. The common practice is to assume that B, = L. If
one further assumes that g = cvg, fo can be determined from fitting
the data. This does not, in general, lead to a satisfactory
description. One therefore varies both fO and o -

Conversely, when predicting the shift [actors resulting from
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superposing isothermal relaxation segments measured at different
pressures, one needs the parameters: Bf, fo, Kr’ kr’ K&’ and kq,.
Here, Kr and kr may be obtained independently. One could again

proceed essentially as in the isobaric case.

When isobaric and isothermal measurements are combined,
however, the situation changes. Since Bf and fo must be the same
in both sets of experiments, and since the mastercurves must
coincide, it becomes possible to choose the appropriate values of
vaand fo. The process is carried out by first assuming the param-
eters of the occupied volume to be identical to those of the glass.
Bf, fo’ U s k¢, and K’igb are then determined using an iterati’ve |
fitting procedure with the constraint that Bf and fo, respectively,

must be the same for the isobaric and isothermal mastercurves.

4.15 Comparison of Theoretical Prediction to Experimental

Results
It is usually assumed that the thermal expansivity and
compressibility of the occupied volume, U4 and By, are simply that
of the glass. Based on this assumption, Eqgs. (90-92) were applied to
the shift factors, log aT’ P’ resulting from superposing the two
mastercurves of Fig. 10a. It was possible to fit independently both
and log a

log a P quite well with this assumption; however,

T,P T,
the parameters Bg and fo obtained from fitting the two sets of data

were not equal. Since both mastercurves are reduced to the same
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reference temperature and pressure, B, and fo must be constant.

f
In order to make Bf and fo’ respectively, the same, it was necessary
to conclude that Uy = a'g, nor Bd, = Bg. By allowing (14) and B¢ to
vary, the best fit was obtained with the constraint that Bf and fO be
equal for the time-temperature and the time-pressure superposition.
The resulting curves are plotted in Figs. 10b, 14b, and 19b; the
values of the parameters used, together with the values of the glass,
are reported in Table II, The point at which the experimental data
deviate from the predicted response indicates the onset of glassy
behavior.

Having fitted the parameters in Eq. (92) with the shift factors
resulting from the mastercurves of Figs. 10a and 14a, the validity
of the model was tested by predicting the time-temperature
behavior at 1,000 and 2,000 bar. Using Eq. (83) to predict the
effect of pressure on o (this is a fairly small correction), the
predictions are plotted in Figs. 11b and 15b, along with the
experimental points. The value of m was taken from data on
polystyrene by Quach and Simha (34). This value gave a satisfactory
fit for the Viion, but overpredicted the Hypalon results. A
satisfactory fit was obtained with half the value. This is consistent
with the fact that pressure has twice the effect on Viton relative to
Hypalon.

The three-dimensional character of Eq. (92) is displayed in

Figs. 20 and 21 for the Hypalon and Viton respectively. The shape
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of the glassy behavior is mostly conjecture since little information
was obtained in this region. It is seen that the inflection temperature,

TI’ occurs at a constant value of log a This is consistent with

T,P’
the experimental results, and implies that time-pressure super-
position yields the same results as time-temperature superposition.

The intersection of the rubbery and glassy behavior is a
straight line for the Viton, and is nearly a straight line for Hypalon.
This implies that dTg/dP is a constant for these materials over this
range of temperature and pressure.

In order to check the applicability of Eq. (92) on a non-
crosslinked polymer, the results of Zosel (43) on poly(vinylchloride)
were fitted. The values of Kr and kr were ca.lculatéd from the
compressibility data of Hellwege et al. (56). The results of applying
Eq. (92) are displayed in Fig. 22, and the parameters are reported
in Table II . Zosel was not able to fit the data with either the
Ferry-Stratton or the O'Reilly equations.

The value of fO reported in Table II is calculated by assuming
Tg to be approximately ’II, and using the value of @ shown. If
o

f

Hypalon and Viton. The time-temperature data can be fitted very

is assumed to be (a'r - ag), fg is approximately 0.025 for both

well by assuming op = Q- o./g, since there is sufficient latitude in

choosing B, and fo. However, in applying Eq. {92) to both the time-

temperature and time-pressure data, these degrees of freedom are

lost, and we must allow @, to assume different values.
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Figure 22. Application of Eq. (92) to the empirical shift
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Zosel (43).

The implication is that fg is not 0. 025 since o is not @ - ozg.

We may not make any conclusions on the compressibility
since we were forced to assume the effect of pressure on the
Hypalon and Viton. The values of kq, reported for the Hypalon and
Viton are high, but could easily result from the assumed behavior
of the rubber. The value for Neoprene is also high, but may result
from the high filler content of the system. The value of 12.5 for
PVC is quite satisfactory. Unfortunately, the data of Hellwege did

not cover the glassy region. The compressibility of PVC was also

measured by Weir (55) up to 10 kbar pressure. In the rubbery
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TABLE II

Material Parameters

Parameter Hypalon Viton Neoprene PVC

f25 0.040 0.0398 0.058 0.036
f (g T,) .012 0.010

Bf 0.246 0.202 1. 34 0.428
(yr(10)4°C°1 7.3 7.2 7.25
o 4.4 4.1 - _——
g

g 6.66 6.73 _—— .

kr 10. 8 10.8 10.8 7.7

k. ' 11,1 11.1 11.1 -
g

k¢ 18.2 38.0 16.4 12.5

Kr>i<(10)_4bar 2.30 2.30 2.30 2.40
Kg>i<(10)'4bar 2.64 2.64 2.64 R

K%‘<(1'O)_4bar 3.23 3.46 3.51 5.38
m 3.2 6.5 - -

region sufficient data were not available to obtain a value of Kr;
plotting the data in terms of K yielded kg = 3.9. This is very low
for the slope in the glassy region and is possibly in error. We
expect the slope to be higher for the glass than the rubber, since

the material has a finite compressibility. As a result we may not
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make any absolute conclusions on the nature of B¢ relative to Br and
Bg, but it appears from the results on P that they are .probably not
simply related. We may conclude, however, that the.Murnaghan or
Tait equations adequately describe the behavior of the fractional free

volume.

4,2 Conclusions and Recommendations

The work presented here has demonstrated that a proper
extension of the free volume theory provides a satisfactory way to
account for the effect of pressure on the relaxational properties of
polymeric materials. Previous attempts to extend the free volume
theory either failed to take into account the pressure dependence of
the compressibility or introduced it in an incorrect way. It is shown
in this investigation that either of two closely related expressions,
the equations of Tait and of Murnagham, will lead to the desired
result.

It is an important aspect of the work reported here that
the use of pressure in addition to temperature allows the removal of
some ambiguities in the free volume theory which could not be
resolved in any other way. The parameters %, B, and fo in the WLF
equation can not be determined from shift factors resulting from
time-temperature superposition alone, since the system is not
conpletely determined. By employing the additional variable of

pressure, these ambiguities are removed. Since time-temperature-
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pressure superposition must predict the same master curve, no
degree of freedom remains in both shifting the data and in fitting

the log a equation. It was found that Bf is generally not equal to

T,P
unity and that oy is not equal to o - a/g.

This investigation was limited to elastomers having relatively
low pressure transitions due to problems with the triggering
mechanism. The investigation should be extended to a number of
other polymers, including the technologically important elastomers

such as natural rubber and SBR; this extension should further include

compressibility measurements of these materials.
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APPENDIX B

The EPDM elastomer was prepared by curing 100 parts U.S.
Rubber Co. Royalene 301 T with 3 phr Di-cup R. Royalene 301T is an
ethylene-propylene copolymer containing a coﬁtrolled amount of non-
conjugated diene. Di-cup R is a 98 - 99 % active dicumyl peroxide
manufactured by Hercules, Inc.

The reduced shear moduli, Gr(t), are .plotted in Figs. 23 and
24. Fig. 23 shows the results of measurements at 25.0 °C as a
function of pressure. The inability to apply time-pressure super-
position to the segments is exhibited by the extreme downward
curvature of the ends of the segments, and is particularly evidenced
in segments (1 - 4). The lack of superposition is again found for the
measurements at 1.0 bar as a function of temperature reported in
Fig. 24. The segments measured as a function of temperature are
seen to display similar behavior to the segments measured as a
function of pressure. In both cases, thé relaxation times are affected

differently by either a change in temperature, or a c.hange in pressure.
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