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ABSTRACT

The effects of the atormic electrons on nuclear gamma emission
are considered. It is found that the electrons, excited by the
nuclear electrostatic field, can emit gamma rays coherently with
the nucleus and thus add to the observed intensity of radiation.
The correction is corputed for X electrons, for electric dipole
and quadrupcle radiation, and is found to be small, of the order of
a few per ceﬁt, for energies equal to the K binding energy. It
drops rapidly with increasing energy, varying inversely as the
square of the gamma ray energy. The Z-dependénce of the effect
ié essentially Z-l, For gamma ray energles corresponding to
electron transitions between bound levels large resonances may
occur, but they are of narrow width and thelr observation would

ve fortuitous.
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IITTRODUCTION

The techniques for observing and measuring low intensity
garma rays, such as those erltted in the decay of low-lving nuclear
states, have been improved greatly in recent years, so that ft'is
becoming possible to get more precise informatlon than order of mag-
nitudes on the lifetimes of nuclear levels. These lifetines, in
turn3 can be compared with calculations based on various as$umptions
for nuclear wvave functiong, and information about the nuclear states
may be obtained. In addition, less precise measurements of gamma
ray intensities are often used to determine the multipolariﬁy of the
radiation, and thus to obtain information about the angular momen-
tum and parity of the states involved.

The usual approach to computation of the nuclear garma ray life-
times lgnores the surrounding electrons in the aton, and gives ‘the
lifetime expected for the decay of a bare nueleus. It is the pur-
pose of this paper to investigate what effect, if anj, the atomic
electrons héve on the gamma rays observed during the decay of an ex-
cited nucleus. |
| It is well known that the principal effect of the atomic elec-
trons is to provide an additional mode of decay for the nucleus =--
"internal conversion." This occurs when the electrbns are in states
characteristic of the ground state of the nucleus and the nucleus 1is
in an excited state., The non-spherical ¢istribution of charge in the
" nucleus acts as a perturbation potential which indﬁcés transitions

in the atomic electrons. In particular, it may induce a transition



‘to a continuum state, so that the atom can decay by exeilting and
- emitting one of iﬁs electrons. This process competes with the garma
ray decay, so that effectively the excited nuclear 1ifetime’is ré-
duced. Calculations and observations show that for the heavier
atoris, where the 1owflying nuclear levels are at energles near the
electron binding enefgies, the probability of internal conversion
7 ils comparable to that for gamma ray emission.(l)

There are other effects which the atomic electrons can have on
the nucleus. It is possible for the nucleus to emit a gamﬁa ray
and for this gamma ray then to be scattered by the surrounding elec-
tron cloud. An inelastic scattering, which alters the gamma ray
energy,’would be observationally distinguishable from the ofiginal
nuclear gamma ray, but might, in extreme cases, be confused with
the decay of another close-by nuclear level. This effect, however,
is of second order relative to the "bare” nuclear enission; further-
more,vit is incoherent with it, since the final states aré different.
%fm%amww%tMsﬂmwmlmﬂ%ﬁcmm%ﬁ@"%WMbe
essentially negligible in its observed effects.

An elastic scattering ("internal Rayleigh scatgering") is also

(2)

possible. Cormack has recently congidered this effec£ and con-
cluded that it is also very small. His reasoning is questionable,
however, since he has made a classical calculation in which the ori-
ginal gamma emission and the scattering are considered separately.

It is, of course, incorrect to do this, since the elastic séattering
after emission is coherent with the undisturbed emission (same initial

and finsl states), so that the comparison should be one of amplitudes

rather than probabiliteis. Nevertheless, the relative effect is



'still seccnd order, so that the ratio of the arpiitudes 1s expeﬁted
to be of the order of ezg rather than the square of thils gquantity.
The effect, then, is swall, if not very small. In any case, thié
elaétib scattering could not alter the total gamma ray intensity,
but would changes the aﬂgularrdistribution,

>‘»There is anothéf effect which would alter the total intensity
and which 1s more comparable in size., It is‘well known that the
rates of garmma transitions for exeited electronic sﬁéﬁes {even %o
the continuur, as in the photoelectric effect) are séveral orders
of magnitude fTaster than the ratés for nuclear transitions, It is
possible for the nucleus to decay by exciting an electroh,,as7in
.internél conversion, and then for the electron to de-excite by
eritting a gamma ray, which it can do rather'easily; vThis.effect'
is thus only one order higher than the straight nuclear énission;
furthernore, it is coherent with it, since we have (ifvthe eiectron
returns to its original state) a gamma ray of the samé energy‘ and
multipolarity emerging. The observed gamma ray intéﬁéity, fhen,
is due to the sum of the amplitudes for these two processes;

Otheﬁ investigators,'concerning themselves wifh the higher
order effects on internal conversion coefficients, have épnsidered
corrections to the gamma rey intensity. In all cgses'no note geers
to have been teken of the coherent nature of the procesé;,{hat is,
for various reasons, they have taken into account Only a real phéton
emltted by the nucleus and then rescattered by the electrcné,

(3)

Taylor anc Mott'~' cast out the coherent part of their matrix ele-
rent by argulng that 1t just represents a refracﬁioh;”or scattering§
of a real photon. This is not true 1f, as In our casé,,the major

interaction with the 2lectron is due to the electrostatic field of



the nucleus rather fhan the absorption of a real photon emitted by
the nucleus. Tralll and Goertzel(u) formilate the problem more

| generally, but in evaluating sums for second-order matrix elements
thev. neglect the principal value (or coherent) terms because this
type of term "is usually neglected." In ‘a.ddi’cion, all theizf' matrix
elements are takenwith energy conserved, so that they effecfivély
neglect all virtual processes (the coherent onés) as,oppésed to the
real (incoherent) terms. Cgish(S), in commenting on,this*iast ,
Qork, implies the same‘neglect. In neither of these,latter-works
are any numerical estimates or computations made.

We can estimate the magnitude of this effect by looking at the
cross-sections for internal conversion and for the photoeleéffic
éffegta

The infernal conversion effect is usually expresséd by a co-
efPizient which gives the ratioc of the number of électron; to‘the

number of photons emitted. Thus

lo®

2
Oy = (151)
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vhere (IC), (RN) are the matrix elements of the potentials for
internal conversion and for nuclear gamma emission, and pe;p7 are
the densities for final states corresponding to an electron or a
gamma ray.

The photoelectric effect is expressed as a cross?section, or more

conveniently, as the ratio of its cross-section to that for Thompson

scattering: »
2
PE _ 2n I% | %, (12)
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vhere (Re) is the matrix element for electronic radiation and
' ; 2
To is the elassical electron radius = §~§ .
e

The effect we are concerned with is expreséible as the pfoduct
of the amplitudes for the twe previous processes. Since it ié‘
second order, we should sum over all possible intermediaté states
and use an aypropriate energy denominator. This procedurevcan be
approximated by dividing by some average energy characteriéﬁic of the
processes involved, which in this case should be of the order df_
the garma ray energy. The ratio of the amplitude to thdt for straight

miclear emission will then he approxirmately

(1¢) (Re) 1 (‘hc
(Ry) o F

2
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To estimate the magnitude of this expression, we can take

PE T
105 near the K edge. These figures give a result of about one per

peﬁ\m 1; Ey/WQE‘m 107t for heavy atoms; Oz, ~ 1, and o F/c w103 to

cent, which could be in error by a factor of ten or twenty in either
direction. In particular, if any resonance effect appearedAthe’result
might be considerably larger. In any case, this very{rough‘estimafe
indicates that the effect 1ls not negligibly small, especially at the

lower energies; we will proceed to a more accurate evaluation.



BASIC ASSUMPTIONS

In making the detailed computation of this effect. we will be
concerned mainly with gamma ray energies comparasble with the electron
X shell binding energy or several times as large. We will consider
the electrons as non-relativistic particles and we will neglect re-
tardation effects in computing radiation matrix elementst This
latter spproximation is certainly justified for the low energies
we‘consi&er; the gamma ray wave lengths will be many tires lafger
than the atomic dimensions. For the heaviest atoms the X biﬁding
energy is roughly 20 per cent of the electron mass; here relativis-
tlc effects are no longer completely negligible. They should not,
hoﬁever, change the results significantly.

Iﬁ compufing the internal conversion we will consider only

~the effects of the electrostatic field and not the transverse electro-
magnetic field. This is equivalent to neglecting terms oonrder v/c
in electric multipole radiatioﬁ and 1s compatible with:the neglect
of relativistic effeets., This approximation 1s, of course, not
pcséible for thé computation of magnetic multipole radiation, which
we will not undertake here.

o In computing the behavior of the electrons during the process
e treat them as independent, and use Coulomb wave functions; this
neglects the effect of the other atomic electrons on the one in
question, vhich consists of a screening of the nuclear field as

well as some (small) correlation between electrons. »We will discuss
later the magnitude of this effect and how it may be approximately
taken into account. In addition, we neglect the exclusion principle
during the calculation, justifying this procedure at a more appro-

priate point.
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We will compute the effect only for those electrons in the
K-shell, and adduce arguments that the effect of the L and higher

shells is small,
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GAMIMA RAY ENERGIES GREATER THAW X BINDING ENERGY

Since our effect is of second order in the elsctromagnetic
field, it is appropriate to treat it by perturbation theory in a
time-independent manner. Only when this theory diverges, as iﬁ the
case of resonances, must we go to a more sophisticated treatment.
This will be done in a later section. Here we consider only.gamma
ray energles larger than the X binding energy.

The transition probability for the emission of an eleétfic
I, pole gamma ray of energy h® from an excited bare nucleus is
given by

2
21 m{2 0
= |m = af)y (3;1)
g ‘ 2 ‘ (Eﬂc)aﬁ

vhere H," contains the angular dependence of the garmma ray as srell

2
as the nuclear matrix element. That ig,
m n my, '
Hy =B, (0,) 2o, 1> (3;2)
where

Z |
<f,sz‘1> =e Z<®NflRi£ ng*(ﬂi) l@m> (3;3)
=1

is the matrix elemwent between initial and final nuclear states of

+h *
the I ,m—— electric roment.

*
Tae spherical harmonics, Yzm(Q,ﬁ), are used with the normelizations

given in Blatt and Weisskopf, Appendix A.



The potential at r, exclusive of the central Coulorb field,
on an external electron due Lo the eleectrostatic field of the

nucleus is given by

Z

e2 Ze2 |
E + - (334)
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(This form is valid for r > R17 thaﬁ is, for the electrﬁn outside
the nucleug. The effects due to the electron within the nuecleus
‘are negligible, and this form for V can be used everywhere,)

Note that this potential 1s of order e2, i.e.,1s alreédy
second order 1n the electromagnetic field., This is characteristic
of any static potential such as this which can alsofbe'interpreted
as the exchange of a (longitudinal) photon.

The matrix element for emission of a gamma ray ffom aﬁ‘excited
electron is given by the same expression Hzm as for the nucieus,

- with the necessary modifications for the charge iﬁ éign of the
charge. For an electric £,m -pole garma ray emitted Dby én'excited

electron, then, we have

m m 1, m* NG .
T @ef]r T, (@) | ‘“?’e} . (3;6)

The second order process we are considering consists of the ex-
citation of an electron by the potential V, coupled with the de-

excitation of the nucleus, followed by the de-excitation of the



electron by emission of a garmma ray. The energy of the intermedi-
ate state isvgiven ﬁy EJ’ the execited electron energy.

The proeessvcan also ocecur in reverse order, in whlch Tirst
the electron radiates end then the potential V acts. Here the inter-
mediate energy is given by Ej + B+ L) , vhere () is the‘éxcitation
energy of the nucleus. The initial energy is 0 +.Eg, the electron
ground state energy.

There is another physical picture to explain this @rocesso
Because of the static interaction between nucleus and electron,
the initial state can be considered as a supérposition.bf staﬁes
consisting of the basiec state - nuéleus excited and electrop ih its
ground state -~ plus those states for which the nueleus is in its
ground state and the electron is excited. Then the gamma‘ray‘Can be
emitted either by the excited nucleus or by the excited electrén.
- Bince short times are involved in the electronie radiation,‘it is
not necessary for energy to‘be conserved in the admixtufe oftexcited
electron states. The mathematics which deseribes this physical
situatioh is‘exactly the same as that used in the descfiption as a
second order process.

The matrix element for this process is then given by the sum of

two terms and 1s equal to

12;2;-?-1 <©ﬂf’@' m@m> B (9 ) .
{ Z Crgle! 1™ ey gt Yzm|*!fg2

Eg + 0 - Ej

partpery)
J

E + o - FJ - E
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_gm ﬁﬂee ~ .8
R IR-T s B (3;8)

Here we’have assumed, as is usual, that the excitationvstate
of the nucleus is such that only a pure electriec £,m -polg gammsa ray
can be emitted. |

Overall conservation of energy dictates that the gamra ray
energy egual the nueclear excitation energy, that is, Em=:S].; thus
‘ the’only difference in the matrix elements for the two pfocesses is
in the sign ofﬁg}in the denominator of the sums. Note that for very
large gamma ray energiles, the two terms cancel to first order in
l/Em, It is convenient, for this reason, to perform an integration
by parts and eliminate this first order term.

- Before proceeding with this step and with.thevmore détailéd
computations, we note that the total transition probability for
gamma emission involves the square of the sum of the maﬁrix‘elements
for ﬁhe bare nucleus and for this effect. Furthef, the matrix
element we have just expressed is a (real) multiple:df the bare
nucleus matrix element. (It is real‘ifbthe wave functions,’gj, in-
volved, are real; we shall see later that the majbf contribution is
“due to their real parts.) This means that we have a’cofrection
factor of the form’(l + :t‘)2 to apply if we wish to compute the
nuclear matrix element from the observed gamma intensity,

Since f is small, the correction is approximately givenby
1 + 2f for = single electron. Actually, there are two electrons in
the K-shell, so that the correction factor has the form (1 +;2f)2,
or approximately, 1 + Le.

Thus, we must divide the observed gama intensity by the correction
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factor; 1 + hffK » before making comparisons with intensities com~

puted for the nucleus alone.

We return now to the calculation. We have (since for over-

all energy conservation () = E.):

’H‘:e Z Vg lr %\‘*"’3> éyalr—zr_lyzm“"?
+ Eg: - Ej .

8

~f-1._ my,
Z N WE><X'Y L g> (339)
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. 1, mE . . .
since r Y£ is & solution of the homogeneous Laplace's equation.

Thus

a2 afS VIO G
E, m E.
i

Eg + EQ -

- l m 2 m
Z <g|r J—>E<J‘ VG, ™) . ;{g> (519)
g J '

Since vg for the K-shell is spherically symmetric - that is,

2 . ) , ,
= (7’3/11)‘a e vhers 7 = Z/ay = Zmegfﬁ?--g operating on Wy is

: . G .
Just - 1A ir wg = 1hy wga Thus

f =

g 782 ﬁ? <<?lr£-lyzm*lj:><:jlr-z-lem'g;>
n z :
3

51+1 E Eg + Em - By
-1-1, m 1-1, m*
glr I Jlr I
Z < | . ‘E>< { | > (331h)
3 g J
or

i Sut b4 EK | .l
f=2 7 5 { B, - B_} (3;15)

since %-Ze27 = By, the ¥ binding energy.
Before proceeding, we note that for very large garma ray ener-

gles we can neglect Eg - Ej in the denominators and find

' 72
‘g >~ 1631 2'§+1 mE% Zé”! i ﬂ‘ ><J '(zmlg'>
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_16n 2 (E;_)g 27 i o277
Z 21+1 E. n
- (S
2
16 4 By
=7 2I+1 (F) ’ E,>> B » (3;16)

This agrees with the classical limit corputed by traating
fhe motion of the électron as that of a forced oscillator. Iote
that this represents an increése in the garma ray infensitya The
correction becomes negligibly small for gamma ray énergies ten or
more timesg the X binding energy, if we consider atbms with Z ~ 50.
We return again to the exact calculation., Since wg is spheri-
cally éymmetric, we can readily perform the angular infegrationsa

Defining the "reduced" radial eigenfunctions by

wt ot jm ™, (3527)
~m2 24+1 | |
'B+ = ;{-‘:—» dr dr? 1,1' (T) r G (,wv 5 I I‘t) ‘Er (r')r' (3;18)
and
e o9+l | ‘ |
B_=— |ar | ar wg(r)r G, (B r, rf) ‘*‘e’g(r')rf (3;19)

where the Green's functions, GE(E3 r, r'), are for the reduced
radial equation and are defined and evalusted in Appendix A. They

ares;

om [Y(141-1a)

1 » 1 = e m—
G,(E ;5 r, ') = 2 Tere

@(Hl-ia; 21+2; -2ikr ) \}\(;Hl -ia; 24+2; -Qikr y (3320)
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vhere Hok> = 2m% , and a = 7/k.

.}. )
@ and LIJ are thé regular and irregulasr confluent hyper-
georetric functions as defined by Bateman (Chap. 5).(7)

T

< and r, ere the greater and lesser of r and r'.

* ‘ - ' - -icr?
) - . 2o a1 b_)(gK)%-%le ke =KT

= 2 er+2

Gz(E;; r, r') =G
: 1

@(zuu’n; 21+2; ,2%{?<) \Xj(m,-b; 21423 2KZ‘>) | (3;21)

where ‘ﬁez{‘? = -2mE_ = Qm‘E_s, and b = 7/’}{,’ For E+ = O, we have

om . s 1) 7
¢, (0, r, ¥') = - =& gi (rr?) -2 J2£+1(2 J27r<)Hézzl~(2\/27r>')
" ‘7 : ,

(3322)

vhere Jv and Hu are Bessel and Hankel functions; Hy(l) = Jv A+ in.
If we substitute these expressions into those. for B and re-

write in dimensionless forrn, we have:

B =-2—2
X

2041 T(p+1-1a) (! 183
4 : a

m2m+2

f[dx&y o~la-i)x -(e-1)y 2041, (E(z-u-ia; 24+2; -2ix_)

D(es2-ta; 20425 -21x)  (3323)

5 oo 2 2041 r'g.e-pl-b) o3
- N(2z+2
”dxd.y o~ (1p)x -(1b)y 20+l @(Hl—b; 24+2; 2x.)

\Il(m.-b 3 20423 zng) (3324)
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(3;25)

These expressions for B cannot in general be evaluateg eﬁactly
analytically, for they involve an integrand of discontinuous form.
what is requiréd is‘a knovledge of the indefinite integral’of the
confluent hypergeometric function multiplied by ah eﬁponéntial, The
use of series and asyx@tofic expansions for these functidns does not
heip, as too many terms of the resulting double suﬁmation‘aré ‘
needed for convergence.

Bo.can be evaluated exactly, however, since an inﬁegral repre -
sentation exists for the product of Bessel fundtions involved.»
{Appendix C) TFurther, the integrand of B_ feduces to a combination
of Besgsel functions for b = 0, %§ or 1; again an integrél‘repre-
sentation can be found and these points may be evaiuated exactly.
(Appendices B, C, D.) | |

In addition, we can obtain limiting forms for B+ and B_ for
~smali a and b; that is, for large gamma»energiesf :As beforé,
this arises because the hypergedmetric funcﬁions tend tp‘Bessei
 functions in this limit. (Appendix D.) 4 |

We can then plot these exact evaluations of B and draw an
ihterpolated curve with reascnable accuracy (estiﬁated at about
t 10 per cent Qf the final result.). We have made‘fhese calcula-
tions for 2 =1and £ = 2; that is, for electric dipole aﬁd quadru-
pole radiation. ' ,

The final result is given in fig. 1, vhere BfZ/iooiis plotted

against Ew/EK for 2 =1 and 1 = 2.
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Fig. 1. Correction term for eleetric dipole and quadrupole radia-

tion. llote thet for Z = S0, the corvection, 4f, is read dlrsesly

from the owwrve.
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GAMMA RAY ENERGIES SMALLER THAN K BINDING ENERGY

As wag noted previously, the Green's functidn propagators
for the Coulorb field are singular for énergies corresponding to’
those of the bound states. The second order perturbationtfheory
émployed in the 1aét section thus breaks down and cannot be applied
for energles Em < EK. To overcome this difficulty we need to Llook
more carefully at the equations governing the reacﬁion énd take
into account the darmping, or interaction of,radiation yith radiated
field.(g)

We are interested, then, in the emission probability for
gamma’rays of energy less than the K-binding, and near thé ekcita-
tion energy from the X to another shell. As befofe, states of all
energies are in prineciple available as interrediate staﬁes; how-
| ever, 1t is clear that the major contribution will cémérfrdm that
single state vhich 1s in, or nearly in, resonance with fhe ground
state and gamms ray. .

We thus will consider the time-dependent tregtment of a pro-
blem in which three types of states enter: .

The initial state: nucleus excited, electron’in‘ground
state, and no gamma ray;

The-intermediate state: nucleus in grqund'state, electron
in state n, no gamma ray;

The final state: nucleus in ground state, electron in
ground state, a gamms ray of energy huw,

Let b

b be the time dependent amplitudes of these

o’ “n’ bf{if



stetes in the interaction representation, andqfl, € and
be the energies of the three types of states (relative to the
ground state energy of the unperturbed atom).

The unperturbed Hemiltonian, H., is taken to be that for

0
the electron in a Coulomb field; +he perturbing (or a&difiioml)
parts of the total Hamiltonian are the radiation field for both
nucleus and electron, and the electrostatic‘interaction between
nucleus and electron, exclusive of the spherically symmétric Coulomb

field.

The exact equations for the amplitudes are then (n = c = 1):

. % i() - )t O i
bl=-1V b e n -'E ZZAbmei{ﬂ'ff‘m (431)

i

£ pol A_
' i(en -0 1(en~w)~t
b; = -1Vb_ e -1 E E B by, © (1t;2)
o pol A
7 (e )t
T A h |
bh,==-1A Db_e -1B b e A (133)

vhere A* ; éN, B% = CR are respectively the time,independentimatrix
elements for emisslon of a given multipole gamma ray froﬁ,the nucleus
and from the excited electron. In each case the initial state is

the excited, and the final state the ground, level cf the nucleus,

or electron. C represents the common factors whi;h‘include the
angular dependence of the gamma ray, the various éonstamts, ete.

V is the interactlon between the nucleus and +the electron, by means
of which the nucleus is de-excited and the electro# is excitéd.' As
was seen previously, we may write V as the producf‘of é.nuéléar and

an electron matrix element, V = NX .



Further, in the absence of interactions, we have for the rate

of emission from the nucleus or from the excited electronic state:

[, =2 Z Z [c|P (m)?

pol A

Foeme 37 bl af

vhere p is the density of final states associated with.an emitted

]

(bsh)

gamma, ray.

Ve want to solve the time-dependent equations with the initial

 conditions

b (0) =1 5 Db (0) =1bg(0) =0 . - (5)
We will look for a solution of the form

bo(t) e Mt/2

(456)

p

i

' o ile -t
b_(t) [e'(qt/e e U - e'7t/2]’

If we can find such a solution, then f*/er, we shall see,
is the factor (1 + f)2 which we considered previoﬁsly'- the ratio
of the number of gamma rays from the atom to that from the bare
nueleus.

Substituting the ansatz into the equation for bf&'and inte~

grating, we find

/ 1S V . - ;&}‘_
b, (t) = [ﬁf.+ B%'] eV E/2 ei(G; )ty -pp r6/2 1(2-ey)t _
fo - e n-o-1if/2 e - iy/2 .

(37)
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To determine F‘, 7, and B, we substitute back inte (43;1) and
(432) and eQuate coefficients of terms with like time dependence.

We make use of the relation:

;(wb-m)t

-7t/2 -
E £e) = s v o= dw £(e)e(e)e 7/ 2 - (4;8)

- - 1772
o 7

&

when f£(®) is a slowly varying function of ® (compared to the width
of the resonance term).

We find from (43;2) that

y=emy 3 3% - [T,  (59)

which is as expected; the excited electron decays by emission of a

gamma ray as in the unperturbed condition.

Also
%
8 = - 1V - ﬂpZZA B (h.wlo)
y "'r‘ i(E _ﬂ) ’
5 T A€y
“and
BB =-A 7/2. 3 iF : (4311)

7 -
2 + i(en -ﬂ)

Qhere F = XR and we have substituted for A‘ande from their de-
finitions.

If we now substitute into (1) to determine r1 we find:

'2: /2 _ {iV%B + 71p Z\ ZUAIE + AB*B)] e’ rt/2

) [i‘l}'%ﬁ N ﬂpZZAB%ﬁ] e-)’t/”a ei(ﬂ-_en)t (4312)



The term in the last bracket is not zeroc, so that we cannot
satisfy this equation exactly; however, we already havé found 7 =|_;a
1f ™ is of the order of r‘n, the nuclear width, ﬁheﬂ F<<y, so
| thét for times not near Zero the second term is negligib;e coﬁpared
to the first.

 witn this'quaiification, then, we find
2
-EI;- - g- + i(en -Q0.- 2*5')]

I -y [ 7-r

T + i(En -Q)

. (h313)

Calculations of F and 7 for particular electron states indicate
' . . . 2 ‘ -
thet our assumption [ < < ¥ is valid, and that F~/7 > > .

Thus we have, approximately:

. ; or®
N ?,l" z 2 . (k)

 We see that far away from resonance (en ~£1]ﬁrge);l"f€> r%ﬁ
as is expected. k

Separating real and imaginary parts, we find

(4315)

Wle note that near resonance Rl r’> > Im.rz which 1s consistent
with our line of thinkiﬁg.
Further, we are initerested primearily in the resl part of f‘,

which gives the rate of decay of the initial state; the imaginery



part is merely a slight shift in the energy of the line.
To corplete the discussion, we note that the distribution of

gamma rays is given by

« 2 (- ¢ + F)2
lbfmﬁcs)!g = lad 2 - 2 " (k;516)
Cae? T e

Since the first factor is a ruch sharper resonance than. the

second, we can write

> [l m-€n+F)2 - 'Lik\é

Ibfm(w)l = > 2 P-R 2

Q-)= + T @1-€n) Sl g Gldwlh T
(h317)

near resonance.
This is to be compared with
2 .
5 (0) (G")‘ |2l (1318)
ﬂ.

2.

(@) +

~ in the absence of interaction.

We see that the main difference in the two expressions near
resonance is the substitution of the altered wi&th.r‘for the "bere"
width I"N’ This.supports our earlier contention that the ratio
fﬂ/r%.is the ratioc of the gamme erission rates for the atom and bare
nucleus.

This can be explained very easily @hysically,f[" gives the

decav rate of the excited nucleus, which decays in two ways - by



emitting photons and by exciting an electron. The electron redia-
tion rate is so ruch faster than this that essentially all the
excited electrons decay by emitting additional photons. Thus the
photon emission rate is effectively the‘same as the nuclear decay
rate,

We can corpute the ratio ‘jﬂ?& for various energies correspon-
ding to electronic transitions between boundylevels.‘ We note that
the widtﬁ of the resonances involved is essentially’the‘electronic
radiation width, or about 10‘6 E,.-

At the resonance, our formula gives

I 1F2

— e (4319)
2507 ’

where the electronie radiation width

21+l 2
hl—; _ 8r(4+1) y (_g__) 2 \Rzm,] - I (4320)
t[(2rs1) 12 |
with
m 77 +2 -yr , .
R, = - (3{) arr" " e g, () . (4321)

Qng(r) is the radial wave function for an electroh‘in the

excited state.

2 1
he 35 m ‘ 1-4  -7r
F 577 (n7”) R, dr r e | & g{r)
° : (h322)
2 1
_ he L33 m,m
sieT (7)) Ry X,



Thus
r 2 , Li+2 (I.\2
SR P A +1)11 (20 - 3]2 (9.. (_g.) .
= - () [(eml)jj(ez yu]® (2 T O (423)

where Il’ 12 are the radial‘integrals involved in R and X..
We can easily compute these integrals if we use Coulomb wave

functions. Yie find

6
[:- = Eh (l%l) for the 1 8§ = 2 P transition,

[

and

=~

6 .
) for the 1 5 —= 5P transition.

% =5h(13

Y

Thus, ezactly at those energies corresponding to a pcssibie exci-
© tation of a K eiectron, the gamma radiation is vefy greatly enhanced;
’howeverﬁ as noted previously, the spread of this enhancément is

very small, so that 1t would be guite fortultous if‘it were ever
Aobserved,,for this would require a nuclear excited stafe at pre-
cisely the right energy. In addition, we expect'ﬁo effect from

. transitions such as the 1 § - 2 P, since these stétes'are already
ocecupied; the effect will be seen only for transitions ﬁo eﬁpty
levels. Finally, in our theory we considered the effect of only

the one level in approximate resonance with fhe nuclear excitation;
clearly, if we had considered all levels we would have sorme con-
tinuous backgrcund, probably of the saﬁe order of magnitude as the

effect computed in the previous section.
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EFFECT OIT INTERNAL CONVERSICH COEFFICIENTS

The internal conversion coefficient ig defined as the ratio
of the nﬁmber of ' electrons emerging from an atom with excited
nucleus to the number of quanta observed. This raticvis indepen-
dent of the specific nuclear properties other than the muitipolari1
of the radiation, and its measurement isthus a conveﬁieﬁt way of
determining this quantity. In addition, the L torK branéhing ratic
or the number of electrons ejected from the L shell (with conse-
guent higher energy) compared to the number ejected frpm the K
shell, is a sensitive function of the multipolarity of thg’tfansi—
tion and again gives a means of determining this gquantity. Both
of these measurements dealing with total intensities are obviously
more susceptible to measurement than an analysis Qf the aﬁgﬁlar
distrivution of the radiation or electrons, which»is ﬁandicapped
by the low intensities involved and the more complicated equipment
needed. |

Theofetical calculations of the internal conversion coefficients
have been made is some debtail with progressively‘increasing accuracy
ineluding the effects of screening and relativity. ‘In all these
calculations, however, only first order effects have ﬁeen congidered.
That is, the gamma ray emission has been expresséd for a‘bare
nucleus, and the intermnal conversion has been computed for a Single
interaction with the electron.

It is clear that if the atomlc electrons affécﬁ the rate of
garma emission, they will also affect the internél gonversion co-

efficient. At first glance one might expect the internal conversion



coefficlent is altered by Jjust the same factor as the gamma enission
rate; however, to be consistent, we should consider effects of the
samne crder in the electron ejection and use the ratic of the two
corrections.

We have found that the effect on gamma emission rates is
appreciable only at quite low energies, and is due mainly toAthe
direct electrostatic interaction between mucleus and electron. In
considering the effect on electron ejection, we will be conéistent
if we . again neglect the effécts of transverse fields (which will
be of order (v/c)2 ) except where a real photon is eoncérnsd, As
before, we will neglect relativistic effects, screening, eﬁc.

It 1s convenient in analyzing this problem to céﬁsi&er first
a "one electron" atom (that is, an atom in whiéh only one K electiron
cén take'part in the interaction) and then consider the case where
both K electrons can interact.

The first order effects, as usually'c@mputed; corfeqund to
the "one electron" picture.

The garma emission is represented by the matrix element for

the process:




H
ny
]

and She internal conversion by the process

Tor the energies we are considering, the interaction between
nucleus and electron is an instantaneous electrostatic potential,
The correction to the garma emission rate was represented by

the process

= —— ———— -

and its analogue with the order of interactions on the electron
reversed.

To thils same order, for the "one electron” atom, there is no
correction term for the internal conversion, for radiaﬁiﬁe correc -~

tions of the type

s mon o v
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are being neglected as being of order (v/c)2 = (Zfl37)2 relative
to the magnitude of the effects considered. (The possibility of
a resonance in the energy denominator for this effect does not
invaliaate this reasoning, for the same resonénce occurs in the
correction term evaluated abovey the fact that we are congernéd
with the principal’parﬁ reduces its effect considerably. An @5«
timate similar to that carried out in the iﬁtroduction éénfirms
this.)
Thus, if fK is the correction matrix element for the .

emission rate, and a, is the first order internal conversion co-

efficient, we will have

O10 ~

‘1 + le2 "

Ceorr = Olo(l - EfK) *

With both K electrons interacting there are additioﬁal cOrrec-
tion terms which correspond to the nucleus interactiﬁg‘%ith}ona eleetron
and‘thisvone in turn intersecting with the other. It is‘not clear how
this effect should be taken into account, for i1t will depend on the
degree %o thch‘inter-electron interaction has been coisidered in fhe
éalculation of the internal conversion. It is not real;y a radiative
correction at all, but rather one aspect of fhe problem of using correct

atomic wave funections in the computations.



DISCUSSION

Before considering the results we have obtained, we will first
discuss some of the approximations we have made - their effect,

and how they may be bettered.
Screening

We have considered fhe electrons as independent, and acting
under the influence of the nucleusg only, Obviously, there will be
sone screening of the nuclear field by the other electronsp so that
particularly at large distances from the nucleus the eiedtrons sees
& mich weaker field. This effect is often taken partly into account
by‘using'screening coefficients, or effective Zls; that is, we
can replace Z by Z - ¢, where o is often.determined empiricallx,
-The effect is wery small for the K shell, for which o is approxi-
ﬁately‘0,3. For higher shells, the correction ié_iﬁcréasingly
more impcrtant. In our problem, however, a major ?&rt.of the inter-
‘ acﬁion‘takes place in close to the nucleus; here the distortion of

(9)

the wave function is expected to be small. ‘Reitz, in calculating
internal conversion coefficients, took screening into account in

a different, and perhaps better, way. He used wave funcilonsg con-
puted for the Thomas-Fermi-Dirac statistical,atoﬁ, and found that
the correction to the unscreened model was less than 10 per cent;
for the low energles with which we are concerned in our probler,

the correction was about 3 per cent. This indicaﬁes that thé

gereening effect will not change our calculations in any signifi-

cant way.



Effects of L and Higher Shells

He haﬁe considered the effects of K electrons only. Clearly,
the other electrons in the atom can also contribute to the increase
in intensity, although their effect is expected to be smaller |
since they are in general less likely to be found neaf thé nuecleus,
Ve can estimafe this efféct in two ways.

Our effect can be considered as a combination of iﬂternal
conversion and the inverée photo-electric effect. TFor bﬁth of
these phenomena the additional effects of higher éhells have‘been
considered. Tor internal conversion, ﬁhe‘raﬁio of the ﬁnmber'of
electrons ejected from the L shell to the number ejectéd‘from the
K shell has been calculated to be approximately 10 per cent for

(1)

dipole, and about 30 per cent for quadrupole, radiation.

(10)

In the photo-electric effect, Heitler adviées that ex-
perimental date indieate that the effect of the other shells is to
increase the effect by from 20 to 25 per cent. Thus we expect a
figure of about 25 per cent to be a falr measure of the additional
| effect of other shells.

Alternatively, we can estimate the effects of theli‘and higher
shells by looking at the form of our expression fof £, UWe note that
it depends inversely on Z; this depéndence is due to‘a,direcﬁ
dependence on the radius of the K shell. In addition, it depends
inversely (at high energies) on the square of the“ratio of garma
ray to K shell energy. For the L shell, the radiusvié I times
as large, but the energy is % as greats; thus,{again we are led to

the conelusion that the L shell effect is roughly 25 per cent of

+the X shell effect.
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The BExclusicn Principle

In our calculation, we assumed that all intermediate states
were avallable to the interacting electrony that is, we ignored
the exclusion principle in that certain of these states will be
occupied by other electrons in the atom. It cen be easily éhown
that if we consider the possible interactions of all tﬁe atdmic
electroﬁé and ignore the exclusion principle with reference to
intermediate states we arrive at the same result as if we had taken
it into account. This is generally true; as long as‘fhe'initial
and final wave functions are properly anti-symmetrized, we mgy
uge any corplete set of intermediate wave functions. (Thisvis
true as long as the interactions considered are symetric; all

physical terms are of this type.)

Discussion of Results

| We turn finally %o a consideration of the results we have
obtained,‘ We noted that previous investigators, by neglecting the
| possibility of coherence, had concludea that the atomic‘eleétrons'
had a negligible effect on nuclear radiation., Our numerical re=-
sults indicate that while the effect is not completely negligible,
it is practically so; For electric dipole radiation, the addi-
tional intensity is less than one per cent (for Z‘= 50) for all
energies greater than the K binding energy, and drops very rapidly.
Although decreasing Z tends to increase the correction, this is
more than overbalanced by the lack of low energyvﬁuclearrtransi-

tions in the light elements. TFor electric guadrupoleradiation,



(o)

vhich is far more prevalent in nuclei, the correction is approxi-
mately 4 per cent (for Z = 50) at the X binding energy and again
drops very rapidly. Neither of these figures really represents
aisignificant correction when one considers the experimental
accuracy involved; in addition, any nuclear models cahnottbe
éxpected o pfedic% with anything approaching this degree of
accuracys

The effect on the internal conversion_coefficientsvis gimi-
larly essentially negligible, since here again the expgrimenﬁal
accuracy is not yet refined to this degree,

Finally, we noted that for gamma energles correspbnding to
transitions between electronic bound states there would bé a
large enhancement; here, however, we argue that bécause'of the

narrow width of these resonances it would be quite fortultous if

they were observed.
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APPEIDIX A
GREEIT'S FUNCTICHS
Ve wish to compute the Green's function propagators for the

"reduced" radial electron wave functions. That is, we want to evalu-

ate the sum:

Z ujg(r’ )ué(:'% (r) o
- TpJ = Gi(E; r’) r) (A;l)
j dead ‘.‘j -
where
ujz(r) = r? j- dle?%wj(g) 5 :(A;Q)

for xyj(g) the normalized eigenfunction for an electron of energy

E]. in the field of a nucleus of charge Ze.
) n

uj satisfies the reduced radial Schrodinger equation

a 21 +2 d 2y 2 1 Y. v A g
5t = to ,x-kj u, -[Lr—&kj;]u. = 0. (A33)
dr ;
2
Here v7=§- =-Z'-I£%—
0 el
and kezgﬁ? E. .
J o ox2

Applying the operator LM to the Green?s function, we find

SN
om k,eu.’e (r*)u z(r)
LTGQ{E‘]' r, ') i J__J J

2
h 1&2 - k.2

]

J J
3 ‘ : |
- xPe, + 2B w e . (A34)
077 J SRR
| e 7 o

Yow, the ¢ lete eigenfunctions are normalized by



Z f:fj(z’)?;r;(z) =8(z - z') , (A35)
j S
‘so thaﬁ
Z uj‘e (r’)u?(r) = (rr‘)-'gjdﬂ. [dﬂ’\ X{;l%(_r_’)?{zm(r)ﬁ(;r_ - _If)
] T ;

= (rr‘)'fe'l[a(z' -r') +8(r + r’)]

=2 B le(r - e1) Bl 4 0] (a:6)
Thus Gﬂ satisfies the equation:
(L. + kE)G (r,r?) = & -ei-2 [6(1' -r') +5(r + r’)] (A7)
T J ,,{12 o

and similarly,
(v, + 1&2)@ (r,r?) = e [S(r‘ -r) + 8(r + r’)], (A38)
r Z ‘1’12
S0 G can be expressed in the form

Glr,r') = ¢ £(r) glxr") r < rt

i}

¢ £(r*) glr) r>zrt - (859)

vhere f and g are respectively the regular and irregular (at the ori-
gin) solutions of the homogeneous equation,
- The constant C is determined by the conditions at the discon-

tinuity r = r'; one integration of the differential equation gives

ri+e : :
l -21-2
o, ey | = (A310)
r!-¢ n
or
¢ =2m L-2r-2 [gaf - fag]-l . -~ (A311)
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n
The equation (L + k¥°) u = 0 is of the form treated by Bateman 6.2(1).
It has as solutions

+

nw=e"cg(r+1l ':% 5 20 + 23 7 2xr) - (a312)
where KE = -kz, and C is a confluent hypergeometric function..

" For negative energies, E<OQ, Ke > 0, we impose the boundary

condition that G be finite (vanishing) at infinity. This requires

that

r

f:ebxré(l-&-l—%y 21 + 23 2«r)
| (A313)

£

it

g e-mq)(ﬂ-}'lb%,Qﬂﬁ-Q;QKr) .

where qp is the ordinary confluent hypergeometric function'knowﬂ

otherwise as ,F, , and (l) is the other solution of this equation

defined by Bateman and closely related to the Whitﬁaker’functions.
%bking uge of the Wronskian for these two solutions of the

equation we find, finally, that for negative energies. .

Gz(E; r} T!) =
7 ' -
(2 +1-%) ; \
2m rﬂ( K 2+1 -kr_=-xr? 7. . o
-%'é“ W (2x) e e @ (£+ 1 - L 21 + 23 2i<I‘<)
(2 +1-2% 20+ 23 2xr)
. K" ‘ 2 ‘->
, ' (Az1l)
where r, r, refer %o the sweller and larger ofvr, rt.
e note in passing that G becores infinite (i.e., is not defined)
wherever 1 + 1 - % is a non-positive Integer. This occurs whenever

the energy B corresponds to that of a bound state, and is to be

expected.



In addition, we note that the confluent hypergeometric functions
@ (a,c,x) or q_)(a,c,x} are readily related (by me:ans‘of derivatives,
ete.) to the functions with a and/or ¢ increased or decreased by
some integer. Turther, whenever ¢ = 2a, they reduce to Eessel func-
fions, This last feature will prove valuable in making exactvcaléu-
lations. | ;

In an exactly analogous manner, we can find the Green‘S‘func-
-tions for positive energy and for zero energy. In thesé céées fhe
solutions at infinity are oséillatory; a careful consideration of
the perturbation theory treatment of the problem shows that'we‘wish
to take that solﬁtion whieh corresponds to outgoing waveé at iﬁfinitya(ll)

For positive energies, E > 0, then, we find:

‘ 7
(5 ) ol 2D (e +1-1 k}
B T 2 e

(I)(z +1 -1

24+1 ikr ikr?
e e

(~2ik)

WIS

. e 7
1 20 + 23 -21k:<)(;!(£ +1l-dig2l+2; - 21kr>) .

(A315)

For zero energy, E = 0, the solutions reduce to Bessel functions

‘and we have:

1 N
. _2m ‘ -0-% (1) .
Gi(O’ r, ') = -.£§ gi(rr?) ~Jé£+l(2J27ré)H2£+l (2J27;>) (A316)

where Hy(l) is the Hankel function = Jv + ina



APPENDIX B

REDUCTION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

+ TO BESSEL FUNCTIONS

The confluent hypergeometric functions (a,c,x) and  (a,c,x)

reduce to Bessel functions whenever ¢ = 2a. The relationships are:

Peee 20 - Tavp G2 1, @

. ; - (B;1)
ll)(a, ca, 2x) = = (2x)"%*F Xk, (x)
O a-2
@(a, 2a, =-2ix) = r‘(a + 5), (% K)-a‘F% - Jgd (x)
(B32)

]

' cfall 1 s L
\1’(&, pa, -21x) = V£ 1 Ha-2)x (ox) 8% ¢~ g (%) (x)

Further , the confluent hypergeometrie functlons with parameters
a,c are readily related to those with parameters a pa n, c In
(n any integer)by means of simple derivatives. Of particular interest

to us are the relations:

@v(a}ch) = c-i-l e X2+a-c %-; [e-x Xc-a—l @ (a + l’» c, K)]

. ' o (B33)
\P(a,e,x) = - X yotee %}c— [e'x x¢-e-l \;l(a +1, ¢, x}j
and
| c~-1 x 4 ~-X o
@ (a?c,x) == ey © = e @ (a,cyl? X)]
(B34)

i

@(a,c,x) - et %[Q-X@(aﬂ c-1, x)}

We can use these relatlions 0 evaluate the limiting form of B+ as

a —> O end of B_as b -> 0, Also, we can evaluate B_ at the points



We find the following forms for B:

, 3, -ax _-ay _I+E _E-g L1
B+(a—> 0) = =a’i [Id.x dy e e % v J£+1]§_(}s.<) HJH?}} (;S)

(3;5)

2.3 gy o DX BT MR el oy
B(b—=>0)=-=0b fjdx dy e e Y x vy 1“%(4%)1&:“% (=)

(B;6)
B (b=1) = 2 L ax dy =L 70| L (e—}c x% I (’ {))
e ] (50 J X J ax Caed Y %

d -X %
[-a-x- (e x KH‘} (K))]}&

(B;7)

1, _ 1 1 Ax Iy 441 1-0
B-,(bz"e")"f»}?zz-»ljj@"dye S

[11(’%) - I,-z-»l(x<):l {Kz(’%) * Kz+1(x>‘)] B | | (358:’



APPENDIX C

INTEGRAL REPRESENTATIONS OF BESSEL FUNCTIONS

We are interested in finding a representation for the discon-
R ' (1) i :
tinuous forms Iv(x<) K(x>} and Jy{x<) H, (x>). In partlcglar,
we would like a form symmetrical in X and X, for then double inte-
grals could be carried out independently, greatly simplifying’the

caleculation.

Tn Bateman 7.14.2(57) we find the formila

- tv—u+l -
I (pp) X (Ba) = p" e T (at) J (b%) at  (C31)
1 Ty 2 2 v t
35+ b |
for Rep > 03 Rev > =1, a>b, Re(v - u) <2,

This is just the form we desire, if we set B = 13 that is:

o0

' tv-u+l ‘ :
1M(x<) K (x) =.’ dt ppt 3, (x) J () (c;2)
© .

We cen prove a similar formule for the Bessel funétion Jv and HV,

Consider the_integral

Jv(bz)Hv(l)(az)z

dz
C z =P
vhere ITm 8 > 0. Let the contour C be the infinite'semi-circle in
the upper half-plane and the real axis.
If a, b real, and a > b, the integral vanishes over the semi-

circle as its radius gets very large. Théreforeﬂ we‘haVe for the integral



At e T () T (1) (at)
. t°-8
=C0 '

o ,
- at ~§E-§ [.J o) 1 ) (at) - 7 (e¥or)m (1)(e1“at)]
W kY Vv
t - v
[6] .
| (C33)
o) ' o
- at —fe T (o) | B P ar) - BV g (1) (g
. 2 .2 v v v
=B
(e} . .
since
7 (™) = e™3 (x)
v i v °
But H (1)(2) = 1 J (x)e’i”“ -J (%) S0 thaﬁy
Ty sin nv v -y ? )

(1) imv o (1) pdm y _ i [ ~inty . ey
_Hv (x) - e H, (e7'x) = T e Jv(h) - e Jv(x)

=2 Jv(x) . (o3l

Thus the integral 1s equal to

o

t
2 dt =g Jv(at) J&(bt) .
. ° 't-,B

We can also evaluate the integral by residues,fand find, for

Im B > 0, that its value is

xi I (8b) Hy(l) (Bs)

Thus we have the formula

J_ (Bo) Hv(l)(ﬁa) = %T j' dt ;5%;§~; J (%) 7 (bt) (C35)

0
for 2, b real; a2 b, Im B> 0,



o o

In particular, if we set 8 = 1, and deform the contour so as

to pass below the pole at t = 1, we hé,ve

‘ o
7,601, ) %{, a0 g, () T, () (056)
o]

0
where { signifies the change in the path of in‘tegrati'ovn. ‘
e} ' ‘



APPENDIX D

EVALUATION OF INTEGRALS

1. The BO Integral

e wish to compute

B, =-2i|lauave eV “% Topi1 (,/Su' ) Hm 4 (./8u>' ) (D;1.1)

v d

> 2 2
= -8illax ay e™ 7V 22+2y2_2£ 2£+1(J’ﬁx:)ﬂé§+i (J§1x>). (p31.2)

JJ

If vwe use the integral representation for this product of
Bessel functions (Appendix C, (C3;5) ) and interchange the order of

integration, we have
- o

0 e} o) .
22042 . -y~ 221
B, = - 10 at —— | ax e X Jé1+1(&t) ’ dy e 7 ,J2£+l(yt) )
0 T 2
. -8 A
(D;1.3)
where the integral is taken along a contour which paslses below fhe
pOle at t = ,‘8,
. We can perform the integrations on x and y and find
-l S ‘
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vhere éb is the regular confluent hypergeoretric funetion.

This can be simplified by a change of variable to

o
1

~ 2?4‘1
o ,
By = - = MEIS { ax & = @(2 20425 -x) (p;1.5)
o .




But

Q) (a3 ez+2s -X) = @(23 21+2; x)
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which can be readily integrated into elementary functions.

Thus

2€+l ’
2 -2% K 24-1 )
B, = - = rTEET.'jL dx e ‘ du e” u (L - w).(D;1.7)
o
For £ = 1 this becomes
B = -2 [e'gx(x +2) + e (x - 2)} - (D51.8)

The integral along the contour passing beneath the pole at x = 2
can be evaluated by taking the Cauchy principal value plus sl tinmes
the residue at the pole,

Thus

O
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B =-%[3+8 dx S + Brie” ] , | (D31.9)
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The prinecipal walue integral is readily expressed in terms of

the exponential integral.

m N
P dx e _ dt -e-:-t— = -a E%( ) ' (D31.10)
e e = e al , 31,10
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vhere B (a) is denoted by =®i(a) in Jahnke-Emde. Thus, for £ = 1,
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We note that the imaginary part is small enough so thet it can be

neglected, since we compare its square with twice the real part.

The computations for ! = 2 have been carried out inan aﬁalogous

manner.
2. The B_ Integral for b = -,i;
We noted that for b = %
11 A Ay 941 1-2 '
B_ = -fGx 3051 ; fdx dy e”=" e X yT (T, - I;z+1)x<(Kz + Kz+1)g'
(D32.1)

Using the integral representation (C;1), we have, after interchanging

the order of integration:
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The first integral of Bessel functions is easily evaluated

to give
® 1
:{<
I dt J;?(x<‘c) J“l(:gc) = =7 - (D32.3)
o} >

Then the integrals on x and y can be readily performed, since
we deal with elementary functions. The other integrals containing
Bessel functions are first integrated over x and y; they rbesﬂul'l: in
rational functions and radicals involving (1 + lH:E) »  The final in-
tegral over t is then elerentary and can be easily evalua.fed.

As an example, for £ = 1, it reduces to the form

0 o
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- b I ax (1 + L;x)"3 + 2 I ax (1 + x)“l(l + ux)“3 (D32.5)
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=’--2':L-7- % (Sloge-'3)=-'-9§33-:‘ | (p;2.6)

3. The B_ Integral for b = 1

For b = 1, we found that

2 1 241 1-2 |4 - 5
B_= = m j’d}{ dy x v [&— (e X 12+%(X))]

Mow
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so that the integrals involved are elementary and can be readily com-
puted.

For example, for £ = 1, we find

o 0

B_=- %&» [ I dx dy y"2 [1 - 6’2"(2:;2 + 2% + 1)]X<
e} e}
‘[e‘ex(exg + 2% + l)]’S ’ - (D33.3)
= - ;:_-L;; (D33.4)

4, The B and B, Integrals as E, —> o

Ve found in equation (3;16) that for very large gamma ray

energies,

s 2 X 16 ¢ [ %*)? | .
T=% 7 & (B, -3B) >% 571‘1’('1'3:;) - sha)

(48]

Since for large E,, 82 X b2 E/E,, we note that this implies

that in the limit of small a and b we should have

B —> i~a2
+ T

’(D k,2)
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It is a convenient check on the calculations to*éor@ute



this limiting form.

Ve saw (B36) that as b—> 0

B = -

]l

3 o ombx by +h Ees - .
b I [dx dy e e X ¥ Iz.%(x<)h£+%g}g) .

- (D3h.3)

Using the integral representation (C31), we have, after inter-

changing the order of integration:

o © ' o
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The hy:pergeometric function is expressible in terms of ele=-

mentary functions. As an example, for £ = 1, the lowest order terms

in b become, with the substitution z = u>/l+u’:
1 1 _ .
4 2 z )3 -1
B -k J 4z [(rz - sint 5 (D3 .6)
. |
m : .
.. 8 % du ———— (u - tan™t u) (D3h.7)
5 N
7t o (1+u : :



This checks, as it should, with the previous result. Exactly
~analogous caleulations for B+ as a => 0, and for higher values of

!, yield the same results.
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