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Abstract

This thesis presents a computational method for seamlessly bridging the atomistic and the

continuum realms at finite temperature. The theoretical formulation is based on the static

theory of the quasicontinuum and extends it to model non-equilibrium finite temperature

material response.

At non-zero temperature, the problem of coarse-graining is compounded by the presence of

multiple time scales in addition to multiple spatial scales. We address this problem by first

averaging over the thermal motion of atoms to obtain an effective temperature-dependent

energy on the macroscopic scale. Two methods are proposed to this end. The first method

is developed as a variational mean field approximation which yields local thermodynamic

potentials such as the internal energy, the free energy, and the entropy as phase averages of

appropriate phase functions. The chief advantage of this theory is that it accounts for the

anharmonicity of the interaction potentials, albeit numerically, unlike many methods based

on statistical mechanics which require the quasi-harmonic approximation for computational

feasibility. Furthermore, the theory reduces to the classical canonical ensemble approach

of Gibbs under the quasi-harmonic approximation for perfect, isotropic, infinite crystals

subjected to uniform temperature. In the second method, based on perturbation analysis,

the internal energy is derived as an effective Hamiltonian of the atomistic system by treating

the thermal fluctuations as perturbations about an equilibrium configuration.
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These energy functionals are then introduced into the quasicontinuum theory, which facili-

tates spatial coarse-graining of the atomistic description. Finally, a variational formulation

for simulating rate problems, such as heat conduction, using the quasicontinuum method

is developed. This is achieved by constructing a joint incremental energy functional whose

Euler-Lagrange equations yield the equilibrium equations as well as the time-discretized

heat equation.

We conclude by presenting the results for numerical validation tests for the thermal expan-

sion coefficient and the specific heat for some materials and compare them with classical

theory, molecular dynamics results, and experimental data. Some illustrative examples of

thermo-mechanical coupled problems such as heat conduction in a deformable solid, adia-

batic tension test, and finite temperature nanoindentation are also presented which show

qualitative agreement with expected behavior and demonstrate the applicability of the

method.
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Chapter 1

Introduction

That all natural phenomena are inherently multiscale is a fascinating notion. In the context

of material response, it means that what we see on the scale of observation is a manifestation

of the mechanics of the underlying microstructure and microscopic processes. Furthermore,

there is an order in this hierarchy, and typically, we can distinguish these length scales as

(i) the atomic scale at which the interactions are dictated by quantum mechanics, (ii) the

microscopic scale at which the dynamics of the atoms and molecules is the key player, and

(iii) the macroscopic scale at which the system may be treated as a continuous medium and

the physical behavior is governed by the laws of continuum thermodynamics. Phenomena

at these length scales also exhibit an hierarchy of time scales.

What makes this multiscale nature even more intriguing is that our perception of physical

quantities and phenomena also has to change across the scales. A primary example that

illustrates this point and which is the focus of this work is the concept of temperature. A

measure of heat in a body is an elementary understanding of temperature. In thermodynam-

ics, it is introduced empirically as a state variable associated with a system in equilibrium.

The zeroth law states that when two systems are brought into contact, they are in thermal

equilibrium only when their temperatures are equal. This need for an empirical definition

for the temperature field stems from the fact that the origin of the notion of temperature
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lies in the microscopic nature of material. At this scale, macroscopic entities such as stress,

strain, and temperature result purely from the dynamics of the atoms or molecules. In

classical theory, this implies solving Newton’s equations of motion for the atomic degrees of

freedom given an interaction potential. Then, the temperature may be defined naturally as

the “average” energy of the atomic oscillations. This link between the macroscopic temper-

ature field and microscopic dynamics has been well-understood owing to the fundamental

contributions of Boltzmann, Gibbs and others to statistical thermodynamics [6, 41, 45]. As

we shall see in Chapter 2, based on the canonical ensemble of Gibbs, the temperature for a

system in thermal equilibrium can be defined rigorously as the phase average of the kinetic

energy of the system using an appropriate probability density –

3
2
kBT = 〈 1

2
|p |2 〉 . (1.1)

Thus, established theory ranging from quantum mechanics to statistical mechanics to con-

tinuum thermodynamics and efficient computational models such as molecular dynamics,

monte carlo methods, and finite element analysis exist at each of these spatio-temporal

scales, which have been rigorously developed and used for traditional scientific pursuit and

engineering applications.

1.1 Motivation for multiscale modelling of materials

Recent years have witnessed a drive towards developing unified multiscale methods to facil-

itate material modelling across several spatial and temporal scales. The rapidly progressing

area of nanotechnology, with its miniaturization of devices and efforts to design materials

with specific properties at small scales, has provided the primary impetus. Furthermore,
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ever-increasing computing power has established computational modelling as a complement

to theory and experiment for studying natural phenomena. Although the same has also

made possible the simulation of very large fully-atomistic systems to study their behavior

across scales using atomistic models, the interest in multiscale analysis is immense. This

is largely due to the fact that in atomistic methods, the length scale is determined by in-

teratomic spacing, which is on the order of a few angstroms, while a typical time step in

molecular dynamics, for instance, is of the order of femtoseconds. Evidently, this imposes

a severe limitation on the size of the material sample and the time span of the process that

can be modelled. Thus, in the context of materials science, multiscale modelling may be

viewed as a paradigm whose ultimate goal is the predictive simulation of full-scale systems

on the sole basis of fundamental theories, thereby

• reducing empiricism from macroscopic models by establishing a link between macro-

scopic material response and the underlying microscopic processes, and

• facilitating the simulation of material response at length and time scales inaccessible

to atomistic models.

1.2 Brief review of some existing methods

Several multiscale methods have been developed till date [24] such as the quasicontinuum

method (QC), the heterogenous multiscale method (HMM), the macroscopic atomistic ab

initio dynamics (MAAD), and the coarse-grained molecular dynamics method (CGMD), to

name a few. The basic philosophy of the methods other than QC is the efficient coupling of

an atomistic model, such as molecular dynamics, with a macroscopic model. They are dis-

tinct with regards to the coupling technique, the pathway of information exchange between
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the different scales and applicability. HMM was developed by E and Engquist [11, 12] as a

general framework for designing numerical methods for dynamical problems and is capable

of employing different physical models at different scales. It is a top-down model in that the

microscopic solver is used only to supplement the macroscopic model wherever information

from the fine scale is needed. It has been shown to have a wide applicability to modelling the

behavior of fluids as well as solids. MAAD was developed by Abraham and coworkers [24]

to address problems involving several length scales and combines the quantum-mechanical

tight binding approach, molecular dynamics and the finite element method. One of the

limitations of this approach is that the time-step used in the entire domain is that of the

domain of quantum mechanics, which may be a computational overburden. CGMD was

developed by Rudd and Broughton [31] and bears some resemblance with QC in that both

are based on constructing an effective macroscopic energy for the system from atomistics.

It is derived solely from the molecular dynamics method and uses statistical ensemble aver-

ages to obtain the coarse-grained description. Their basic idea is to derive the equations of

motion for a mean displacement field defined on the nodes. MAAD and CGMD have been

effectively applied to dynamic problems such as crack propagation. Since all these methods

can support dynamics and exploit atomistic models at the fine scale, they are suitable for

finite temperature calculations.

The static theory of the quasicontinuum was originally developed by Tadmor et al. [38]

and furnishes a computational scheme for seamlessly bridging the atomistic and the contin-

uum realms. This is achieved by introducing kinematic constraints such that full atomistic

resolution is retained in the region of interest, such as defects, whereas coarse-graining is

systematically introduced as we move away from this region and the displacement field

becomes slow varying on the scale of the lattice. The equilibrium configurations are deter-
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mined by minimizing the energy of the system constructed from the interatomic potential.

An appealing feature of the QC method is that it is “seamless”, which means that the

energy calculation in the fine region as well as the coarse-grained region is based purely

on the atomistic model. Hence, there are no distinct interfaces separating the regions with

varying degree of coarse-graining. Different variants of the QC theory have been developed

and applied to many applications such as nanoindentation, dislocations, atomic scale frac-

ture, grain boundaries, and nanovoids [25, 26, 27]. However, one of the main limitations of

the quasicontinuum method is that it is a static theory and, hence, energy minimization is

performed at zero temperature.

1.3 Finite temperature QC: existing methods and challenges

Temperature plays an important role in many physical phenomena. The thermal energy of

the system affects processes such as dislocation nucleation and propagation, void growth,

and, under extreme conditions, can also lead to failure by melting. Moreover, thermal

expansion also changes the properties of the material (such as thermal softening) and con-

sequently affects the material response. An example to illustrate the effect of temperature

is the failure of a nanowire carrying current and having a geometric defect. The failure may

occur by melting or necking in the region of the defect, as the current causes an increase in

temperature due to Joule heating.

However, the problem of incorporating finite temperature effects in the quasicontinuum

theory is a challenging one due to many reasons. As described earlier, at finite tempera-

ture, atoms oscillate about their equilibrium positions and temperature is defined as the

statistical average of the energy contained in the phonons or the thermal fluctuations of

the atoms. Thus, the conversion between phonons and temperature requires some kind of
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averaging. Moreover, the time period of these fluctuations is on the order of picoseconds.

However, macroscopic processes such as thermal expansion have much longer relaxation

times. Consequently, the problem of coarse-graining at finite temperature is compounded

by the presence of multiple time scales in addition to multiple spatial scales. The seam-

lessness of the QC method also adds to the complexity of the problem of adding thermal

effects in the form of atomistic dynamics in the atomistic zone and of temperature in the

coarse-grained region.

Some effective methods have been proposed to date to address this issue. The work of

Shenoy et al. [33] is based on deriving an effective coarse-grained free energy for the sys-

tem by integrating out the constrained degrees of freedom using the canonical distribution.

The calculation is simplified further by assuming the Einstein model to obtain the local

frequencies, and the resulting free energy is minimized using Monte Carlo simulations. It

has been used to study the temperature dependence of the core structure of dislocations in

Al. Another method has been proposed by Wu and coworkers [43] in which they define a

coarse-grained partition function based on the canonical ensemble but depending only the

representative atoms. The coarse-grained energy and nodal forces are derived from it by

computing phase averages, which are evaluated using Monte Carlo simulations. Dupuy et

al. [10] address this problem by integrating MD with the quasicontinuum framework. Their

basic idea is also to derive an effective potential energy by integrating out the constrained

degrees of freedom. The equations of motion of representative atoms are derived from the

coarse-grained Hamiltonian. The method has been used to show the temperature depen-

dence of nanoindentation in Al. One of the limitations of the methods proposed by Shenoy

et al. and Dupuy et al. is that they employ the local quasi-harmonic approximation for

computational efficiency, which restricts them to temperatures about half the melting point
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of the material. More importantly, all the above methods have so far been developed only

for equilibrium problems at constant temperature. Thus, due to these limitations of existing

methods, the problem of adding temperature effects to QC merits further investigation in

order to develop an extension of the quasicontinuum theory that retains all the attractive

features and also possesses wider applicability in terms of finite temperature phenomena.

As a first step to this end, we propose a three-dimensional non-equilibrium finite temper-

ature version of the theory of quasicontinuum. This goal is achieved in two steps. The

basic idea is to first eliminate dependence on the thermal motion of the atoms by averaging

and obtaining temperature-dependent potentials. Thus, the energy of the oscillations is

represented in the macroscopic energy functional through the dependence on temperature.

We propose two methods for achieving this coarse-graining on the time scale. One method

is developed as a mean field theory and uses the principle of maximum entropy to obtain

the probability distribution functions for the system. The other method is based on pertur-

bation theory, or formal asymptotics, to arrive at an effective Hamiltonian for the atomistic

system which may be interpreted as the internal energy for systems undergoing quasistatic

processes. Finally, we incorporate the energy functionals furnished by the aforementioned

methods into the quasicontinuum framework to achieve a seamless coarse-graining on the

spatial scale. We also extend this framework for simulating non-equilibrium processes such

as heat conduction. This is based on the work of Yang et al. [44] on the variational for-

mulation of rate problems for general dissipative solids. This enables the quasicontinuum

method to be applied to problems such as thermal expansion, heat transport through the

crystal under non-uniform temperature, and thermo-mechanical coupled phenomena.
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1.4 Organization of the thesis

The thesis is structured as follows. Chapter 2 presents the theoretical formulation of the

method based on the principle of maximum entropy. The probability distribution functions

for the atomistic system are derived and used to obtain thermodynamic potentials. The

chapter concludes with some simple analytical results, providing insight into the method

and establishing a link with statistical mechanics. In Chapter 3, we apply this approxi-

mation scheme to develop a finite temperature version of the quasicontinuum method. A

variational formulation for extending QC to simulate heat conduction through a crystal is

proposed. Chapter 4 presents the theoretical formulation for the averaging scheme based

on perturbation theory. The scope of the method and its integration with the quasicon-

tinuum method are discussed. In Chapter 5, we analyze the proposed methods by way of

computations. The results for various validation tests simulating bulk properties of mate-

rials are discussed. The applicability of the method is demonstrated by way of illustrative

examples such as heat conduction in a deformable solid, adiabatic tension tests, and finite

temperature nanoindentation. We conclude by summarizing the highlights and limitations

of the work and presenting some avenues for future investigations in Chapter 6.
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Chapter 2

The max-ent method

In this chapter, we propose a computational method based on maximum entropy formalism

for coarse-graining atomistic dynamics at finite temperature. As in statistical mechanics, the

basic idea is to account for the energy contained in the thermal oscillations of the atoms to

obtain effective macroscopic thermodynamic potentials while circumventing the treatment

of all the atomic degrees of freedom. We achieve this goal by constructing a probability

distribution function for the system by way of a mean field approximation. Owing to its

development from the maximum entropy principle, we shall refer to this method as the max-

ent method in subsequent sections. The key distinction of this approach from statistical

thermodynamics based on the Gibbs canonical ensemble is that we impose local constraints

on the mechanics of the atoms instead of constraining the energy, thereby obtaining local

analogs for the probability distribution functions which are Gaussian in form. This imparts

the method its two main features:

• ability to derive local forms of the thermodynamic potentials, which enables the mod-

elling of non-equilibrium phenomena; and

• ability to account for the anharmonicity of the interatomic potentials, albeit numeri-

cally, in the macroscopic free energy.



10

The chapter is structured as follows. In section 2.1, we present an outline of the maximum

entropy principle and use it to obtain local probability distribution functions and partition

functions. Section 2.2 presents the derivation of some thermodynamic potentials from ap-

propriate phase functions. In section 2.3, we discuss our approach as a variational mean

field theory. In section 2.4, we demonstrate the application of the max-ent approach in cal-

culating the internal energy and the free energy for some empirical interaction potentials.

Section 2.5 aims to provide a deeper insight into the implications of the max-ent approach

by way of some simple analytical results and their comparison with those derived from

statistical mechanics.

2.1 Local max-ent distribution

Let us consider a system of N atoms in configuration space X. Let q ∈ X ≡ R3N represent

the array of atomic positions and p ∈ Y ≡ R3N be the array of corresponding momenta.

For simplicity of subsequent calculations, let q and p be mass-reduced coordinates defined

as

qa →
1√
ma

qa , pa →
√

ma pa , (2.1)

where qa and pa denote the position and the momentum of atom a. Then, the Hamiltonian

of the system is

H(q, p) =
1
2
|p|2 + V (q) , (2.2)

V (q) being the potential energy of the system. Thus, (q,p) denotes a point in the phase

space X×Y . Any function f(q, p) whose instantaneous value can be completely determined

by the microstate, i.e., the positions and momenta of the atoms at that instant of time, is

referred to as a phase function. According to a fundamental premise of statistical mechanics
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[6, 41], there exists a function, p(q,p) ≥ 0, known as the probability distribution function

and interpreted as the probability that the system be at point (q, p) in the phase space.

The phase average of a function f(q, p) with respect to p(q,p) is defined as

〈f〉 =
1

N !h3N

∫

Γ
p f dq dp , (2.3)

where we have used the following to simplify the notation:

dq dp ≡
N∏

a=1

3∏

i=1

dqaidpai .

Γ denotes the phase space and h is the Planck’s constant. The factor (N !h3N )−1 arises

from taking the classical limit of the analog of the phase averaging operation in quan-

tum mechanics. It is also essential for the entropy to be extensive in classical statistical

thermodynamics.

Principle of maximum entropy

We now wish to determine the probability distribution of the system under consideration

based on the principle of maximum entropy [19]. To this end, we define the global entropy

of the system as postulated by Boltzmann

S = − kB

N !h3N

∫

Γ
p log p dq dp , (2.4)

where kB is the Boltzmann constant introduced as a proportionality constant. The principle

of maximum entropy is very well established in the field of statistical mechanics and has

its origin in the information-theoretical point of view of the notion of entropy. Information
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theory was first introduced in statistical mechanics by Jaynes [16]. From this perspective,

entropy is defined as a measure of the uncertainty in the information about a system of

particles. For instance, let us consider a thought experiment of observing a given system

at an arbitrary instant of time. Any point (q, p) in the phase space accessible to the

system constitutes an outcome. Then, the entropy defined by Eq. (2.4) is the uncertainty

associated with the experiment. The principle of maximum entropy then states that the

least biased probability distribution function maximizes the entropy of the system subject to

all the imposed constraints or the information about the system which is already known.

Thus, our objective is to find the probability distribution that maximizes the entropy of

the system subject to the following constraints. First, the probability distribution should

satisfy the normalization condition

1
N !h3N

∫

Γ
p dq dp = 1 , (2.5)

which simply means that the system certainly has to be at some point in the phase space

at any instant of time. Suppose in addition that we have additional knowledge of the

configuration of the ensemble. In particular, suppose that we know that atom a moves in

the vicinity of point q̄a with standard deviation
√

3 τa and has momentum in the vicinity

of p̄a with standard deviation
√

3σa. Thus, q̄a and p̄a are the mean position and the mean

momentum of atom a defined as the first moment of qa and pa, respectively,

〈 qa 〉 = q̄a , 〈pa 〉 = p̄a , ∀ a = 1, . . . , N . (2.6)

Physically, we interpret q̄a and p̄a as variables on the continuum scale following the dy-

namics of the system on the macroscopic time scale. For instance, for a quasistatic process,
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p̄ = 0 and q̄ represents an equilibrium configuration of the system. Taking second moments

of qa and pa introduces the following constraints:

〈|qa − q̄a|2〉 = 3τ2
a , ∀ a = 1, . . . , N , (2.7a)

〈|pa − p̄a|2〉 = 3σ2
a , ∀ a = 1, . . . , N . (2.7b)

The factor of 3 is included merely to keep the subsequent expressions simple and to motivate

the physical interpretation of these parameters. In order to simplify the interpretation

further, we replace the parameter τa by ωa defined as

ωa =
σa

τa
, (2.8)

and having the unit of frequency. This changes Eq. (2.7a) to

ω2
a 〈|qa − q̄a|2〉 = 3σ2

a , ∀ a = 1, . . . , N . (2.9)

σa and ωa are also macroscopic variables. As we shall see in section 2.5, they establish

a link between the energetics of the microscopic scale and the thermodynamic quantities.

Adding Eq. (2.7b) and Eq. (2.9) yields

〈|pa − p̄a|2〉+ ω2
a 〈|qa − q̄a|2〉 = 6σ2

a , ∀ a = 1, . . . , N . (2.10)

Introducing the N +1 constraints given by Eq. (2.5) and Eq. (2.10) as Lagrange multipliers
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[22], the extremum problem may be stated as

sup
p
− kB

N !h3N

∫

Γ
p log p + pλ + p

N∑

a=1

βa

[|pa − p̄a|2 + ω2
a|qa − q̄a|2

]
dq dp , (2.11)

where λ corresponds to Eq. (2.5) and the N Lagrange multipliers βa correspond to Eq. (2.10).

Taking the variation of Eq. (2.11) with respect to p and enforcing stationarity yields

∫

Γ

[
log p + 1 + λ +

N∑

a=1

βa

(|pa − p̄a|2 + ω2
a|qa − q̄a|2

)
]

δp dq dp = 0 , (2.12)

where δp is an admissible variation. The solution of this maximization problem gives the

desired probability distribution function

p(z|z̄, {σ}, {ω}) = Z−1 exp

[
−

N∑

a=1

βa{|pa − p̄a|2 + ω2
a|qa − q̄a|2}

]
, (2.13)

where Z = exp [1 + λ] is the partition function of the system. For economy of notation, we

have also introduced z ≡ (q, p) to denote the microstate and z̄, {σ} and {ω} to represent

the corresponding arrays of macroscopic variables. Thus, z̄ ≡ (q̄, p̄) and {σ}, {ω} ∈ RN .

“|” is used to separate the microscopic and the macroscopic variables. Z may be evaluated

by substituting Eq. (2.13) in Eq. (2.5). This yields

Z =
1

N !h3N

∫

Γ
exp

[
−

N∑

a=1

βa{|pa − p̄a|2 + ω2
a|qa − q̄a|2}

]
dq dp . (2.14)

This integral may be evaluated analytically to give

Z =
1

N !h3N

N∏

a=1

(√
π

βa

)3 (√
π

βa

1
ωa

)3

. (2.15)
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By substituting Eq. (2.13) in either Eq. (2.10) or Eq. (2.7b) and using Eq. (2.15) we obtain

the Lagrange multipliers as

βa =
1

2σ2
a

. (2.16)

The final expressions for the max-ent probability distribution and partition function are

p(z|z̄, {σ}, {ω}) = Z−1 exp

[
−

N∑

a=1

|pa − p̄a|2 + ω2
a|qa − q̄a|2

2σ2
a

]
, (2.17a)

Z =
1

N !h3N

N∏

a=1

(√
2πσa

)3
(√

2π
σa

ωa

)3

. (2.17b)

It may be striking to note that p and Z do not depend on the interaction potential of the

system. However, the dependence is implicit in the {ω} which are unspecified so far. We also

observe that owing to the local constraints, the global partition function and probability

distribution are derived naturally as products of terms associated with each atom. This

enables us to write Eq. (2.17a) and Eq. (2.17b) as

p(z|z̄, {σ}, {ω}) =
N∏

a=1

pa(za | z̄a, σa, ωa) , (2.18a)

Z =
N∏

a=1

Za . (2.18b)

In statistical thermodynamics, this multiplicative form is obtained as a consequence of

treating the system as comprising of small systems locally in thermal equilibrium and in

weak interaction with each other [41]. In our approach, although the constraint equations

are based on both the assumptions, the latter is not enforced on the potential energy when

computing phase averages.

Since equations (2.7a) and (2.7b) play a key role in the development of the max-ent ap-
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proach, they merit further elucidation. First, the local-equilibrium hypothesis [19, 45, 8]

is implicit in the statement of the constraints and forms a basis of all our later work. It

postulates that if a system can be hypothetically split into subsystems, each very close

to thermal equilibrium, then the thermodynamic relations hold within each cell. Thus, it

assumes the existence of two relaxation times – the relaxation time for the establishment

of statistical equilibrium in the whole system and another, much shorter, for establishing

equilibrium within a small cell. This enables a rigorous definition of thermodynamic state

variables such as temperature and entropy locally. Hence, the local-equilibrium hypothesis

forms a fundamental premise of classical non-equilibrium thermodynamics. Likewise, in our

approach, it enables us to define phase averages locally and also introduce atomic notions

of entropy and temperature.

Second, the constraints distinguish our approach from the canonical ensemble approach of

Gibbs in that the latter imposes a constraint on the global energy of the system. For a

system in thermal equilibrium, this may be stated as

〈H(q, p) 〉 = E , (2.19)

where H is the Hamiltonian, and E the total internal energy of the system. The resulting

probability distribution function has the form

p(q,p) = Z−1 exp
[
− H

kBT

]
. (2.20)

This form may also be used to derive local thermodynamic quantities by assuming local

thermal equilibrium. However, due to the difficulty of integrating this function in the case

of anharmonic interaction potentials, the partition function and the thermodynamic po-



17

tentials may be obtained analytically only for the harmonic approximation. In contrast,

the probability distribution function given by (2.17a) involves Gaussian functions. Conse-

quently, the phase averages may be computed analytically for many functions, or at least

numerically by Gauss quadrature in order to obtain macroscopic properties.

Finally, we emphasize that our approach of determining a simplified solution for the prob-

ability distribution by imposing additional constraints may be regarded as a variational

mean field approach. We also note that in this process we have introduced into the problem

2N additional unknowns, {σ} and {ω}, referred to as the mean field parameters. For the

purpose of computing thermodynamic quantities, it will suffice to accept them as known

macroscopic variables. In section 2.3, we shall discuss in detail the variational theory of

mean field approximation and seek a way to determine these mean field parameters.

2.2 Thermodynamic potentials

Having constructed a suitable probability distribution, we proceed to obtain the desired

thermodynamic potentials, namely, the entropy, the internal energy, and the free energy.

In particular, we seek local forms of these potentials and hence appeal to the hypothesis of

local thermal equilibrium described earlier.

Entropy

Substituting the probability distribution and the partition function given by Eq. (2.17a)

and Eq. (2.17b) in the expression (2.4), the integral for the global entropy evaluates to

S = kB

[
− log N ! + 3N + 3

N∑

a=1

log
σ2

a

~ωa

]
. (2.21)
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For a system with a very large number of particles, we use Sterling’s formula [6]

log N ! ≈ N log N −N (2.22)

to reduce Eq. (2.21) to

S = kB

[
−N log N + 4N + 3

N∑

a=1

log
σ2

a

~ωa

]
. (2.23)

We know that the entropy is an extensive property of the system. That is, if we consider

two systems with entropy SA and SB, each in thermal equilibrium, then the entropy of the

combined system will be SA + SB. Hence, we can write

S ≡
N∑

a=1

Sa , (2.24)

where

Sa = 3kB log
σ2

a

~ωa
+ 4kB − kB log N (2.25)

can be interpreted as the contribution of atom a to the total entropy. The relation (2.25)

can be inverted to yield

σa =
√
~ωa exp[

Sa

6kB
− 4

6
+

1
6

log N ] . (2.26)

Thus, we have an explicit expression for the parameter σa, and we use it henceforth to

replace σa by a function of Sa and ωa.
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Internal energy

In order to derive the internal energy of the system, we suppose that the atoms move

according to a Hamiltonian H(z). In statistical mechanics, internal energy is defined as the

phase average of the Hamiltonian of the system [41]:

E(z̄, {S}, {ω}) = 〈H 〉 =
1

N !h3N

∫

Γ
H(z) p (z | z̄, {S}, {ω}) dq dp . (2.27)

Suppose that the Hamiltonian has an additive structure

H(z) =
N∑

a=1

Ha(z) , (2.28)

and let Ha(z) be of the form

Ha(z) =
1
2
|pa|2 + Va(q) . (2.29)

We emphasize that Eq. (2.28) does not involve any localizing approximation since Va(q)

comprises of all the bonds involving the atom a. This is denoted by the dependence of Va(q)

on the entire array q ∈ X. Then, Eq. (2.27) becomes

E(z̄, {S}, {ω}) =
1

N !h3N

N∑

a=1

∫

Γ

[
1
2
|pa|2 + Va(q)

]
p (z|z̄, {S}, {ω}) dq dp . (2.30)

The phase average of the kinetic energy can be computed analytically atom by atom and
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reduces to

〈1
2
|pa|2〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
2
|pa|2

1
(
√

2πσa)3
exp(−|pa − p̄a|2

2σ2
a

)
3∏

i=1

dpai (2.31a)

=
1
2
(3σ2

a + |p̄a|2) . (2.31b)

Unlike kinetic energy, the integration of Va(q) involves all the neighbors of atom a, and in

most cases, cannot be computed analytically. Traditionally, the harmonic approximation

is used in order to facilitate analytical calculations. However, in our approach, the phase

integrals may be computed numerically even for anharmonic potentials by way of Gauss

quadrature, and we defer the discussion on the numerical integration of the potential energy

till section 2.4. Finally, we summarize that for a system undergoing a quasi-static process,

i.e., a process with p̄ = 0, the internal energy of the system has the form

E(q̄, {S}, {ω}) =
3
2

N∑

a=1

~ωa exp[
Sa

3kB
− 4

3
+

1
3

log N ] +
N∑

a=1

〈Va(q) 〉 , (2.32)

where we have made use of Eq. (2.26) to replace σ2
a.

Equipartition of energy

The equipartition of energy is a fundamental result of statistical mechanics which, loosely

speaking, distributes the total energy of the system equally among all the degrees of freedom.

More precisely, it states that for a system in thermal equilibrium, each quadratic term in

the Hamiltonian contributes kBT/2 to the mean Hamiltonian or the internal energy of

the system, where the phase average is taken with respect to the canonical distribution.

Furthermore, under the assumption of local thermal equilibrium, the equipartition also

holds locally. In the present work, we enforce the equipartition of energy through the local
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kinetic energy as

〈1
2
|pa|2〉 =

3
2
kBTa . (2.33)

Comparing this relation with Eq. (2.31b) for a quasistatic process yields a direct interpre-

tation of σa in terms of the local temperature:

σ2
a = kBTa (2.34)

Using this definition of σa in Eq. (2.25) gives an equilibrium relation between the local

entropy and the local temperature:

Sa = 3kB log
kBTa

~ωa
+ 4kB − kB log N . (2.35)

As we shall see later, although the above expression is local, it is not independent of the

atom’s surrounding since ωa contains the effect of the interactions of the atom with its

neighbors.

Helmholtz free energy

The Helmholtz free energy is defined as a Legendre transformation of the internal energy

with respect to the entropy:

F (q̄, {T}, {ω}) = inf
{S}

{
E(q̄, {S}, {ω})−

∑
a

TaSa

}
. (2.36)

The minimization with respect to Sa yields the equilibrium relation

Ta =
∂E

∂Sa
(q̄, {S}, {ω}) . (2.37)
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Since the ensemble average of the potential energy V (q) can only be computed numerically,

Eq. (2.37) cannot be solved to obtain a closed-form relation between Ta and Sa. However,

such a relation is furnished by Eq. (2.35). Although due to the aforementioned reason,

the equivalence between Eq. (2.37) and Eq. (2.35) cannot be established analytically, we

have verified numerically that if we use Eq. (2.35) in our calculations, Eq. (2.37) is satisfied

automatically at equilibrium.

Thus, once we have the internal energy, other thermodynamic potentials such as the free

energy and the enthalpy may be derived by appropriate Legendre transformations [6, 22].

Then, for a quasistatic process, the problem of finding the equilibrium configurations may

be stated as a minimization problem:

inf
q̄

Φ , (2.38)

where Φ is a thermodynamic potential appropriate for the process. For instance, the

Helmholtz free energy is a suitable energy functional for isothermal conditions. However,

the problem still involves the unspecified parameters, {ω}. As will be elucidated in the next

section, these parameters are also determined by minimizing the free energy.

As a concluding remark, we note that for a dynamic process, i.e., with p̄ 6= 0, the mini-

mization problem may be replaced by the canonical equations derived from the macroscopic

Hamiltonian:

˙̄q =
∂H̄

∂p̄
; ˙̄p = −∂H̄

∂q̄
, (2.39)

where H̄ = 〈H 〉. However, we shall not pursue this direction in our current work and shall

restrict ourselves to quasistatic processes.
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2.3 Variational mean field theory

Mean field theory was developed essentially as an approximation tool for facilitating a theo-

retical treatment of critical phenomena such as phase transitions ([6], [5]). The basic idea is

to study one particle in the system and treat its interactions with the neighboring particles

as an average molecular field exerted by the atom’s environment. This significantly reduces

the degrees of freedom in the problem. In order to understand our max-ent approach as

a mean field approximation, we briefly review the variational framework for deriving gen-

eralized mean field theories. The variational method is implemented as follows: First a

simplified functional form with free unspecified parameters is chosen as the trial probability

distribution function. We denote it by p. We also let the approximate free energy obtained

using this trial function be Fp. Since the effect of the ambience of a particle is approxi-

mated as a “mean field”, the trial probability distribution is obtained as a product of local

probability distribution functions

p =
N∏

a=1

pa . (2.40)

As described in section 2.1, the trial functional form may be derived by maximizing the

global entropy subject to certain constraints. Then, the trial probability distribution func-

tion that best approximates the actual probability distribution function is determined by

minimizing the approximate free energy, Fp, with respect to the unspecified parameters in

p. The last claim is based on a result known as the Bogoliubov’s inequality, which states

that the approximate free energy based on any probability distribution provides an upper

bound for the actual free energy of the system [5]. That is,

F ≤ Fp (2.41)
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for any p satisfying the basic properties of a probability distribution. An outline of the

proof is as follows. For convenience we use the following notation:

〈·〉 =
∫

(·) dq dq , (2.42a)

〈·〉p =
∫

(·) p dq dq , (2.42b)

and neglect the factor of (N !h3N )−1 since it is simply carried over through the calculations.

We begin by reviewing the proof of the following inequality for any random variable.

Claim 2.3.1. For any random variable φ and an associated probability distribution p,

〈e−λφ〉p ≥ e−λ〈φ〉p , (2.43)

where λ ∈ R is any constant.

Proof. Due to the convexity of the exponential function, the inequality

eφ ≥ 1 + φ (2.44)

is valid for any φ ∈ R. Thus, applying this inequality we have

e−λφ = e−λ〈φ〉p e−λ(φ−〈φ〉p) ≥ e−λ〈φ〉p [1− λ(φ− 〈φ〉p)] . (2.45)

Taking the phase average of both sides of the above inequality yields

〈e−λφ〉p ≥ 〈e−λ〈φ〉p [1− λ(φ− 〈φ〉p)]〉 = e−λ〈φ〉p , (2.46)



25

which proves the inequality (2.43). In statistical thermodynamics, for a system in thermal

equilibrium at temperature T , the actual Helmholtz free energy of a system is defined by

the relation

e−βF = 〈 e−βH 〉 , (2.47)

where

β =
1

kBT
,

and H(z) is the Hamiltonian of the system. As an aside, we mention that the right hand

side of Eq. (2.47) is the partition function for the Gibb’s canonical distribution described by

Eq. (2.20). However, in the present work, the right hand side does not identify with the par-

tition function, as is evident by comparing Eq. (2.47) and Eq. (2.17b). In thermodynamics,

the Helmholtz free energy is also defined by the following Legendre transformation

F = E − TS (2.48)

with

T =
∂E

∂S
. (2.49)

By substituting the definitions for the entropy and the internal energy given by Eq. (2.4)

and Eq. (2.27), respectively, Eq. (2.48) can be written as

Fp = 〈H 〉p + kBT 〈 log p 〉p (2.50a)

= 〈H +
1
β

log p 〉p (2.50b)
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where Fp is an approximation to the free energy based on the probability density p. Taking

exponential of both sides of Eq. (2.50b) and using the inequality (2.43) shows that

e−βFp = e
−β〈H+ 1

β
log p〉p (2.51a)

≤ 〈e−βH−log p〉p = 〈e−βH 1
p
p〉 = 〈e−βH〉 . (2.51b)

Equations (2.47) and (2.51b) together lead to the Bogoliubov’s inequality (2.41). Conse-

quently, the minimization of Fp with respect to the free parameters in p gives the best

approximation for the free energy.

To summarize, we have used the variational structure of the mean field theory in order

to derive approximate probability distribution functions. The optimal value of the free

parameters that we introduced for this purpose can now be determined by minimizing the

free energy. We recall that {σ} can be eliminated by using expression (2.26) or (2.34). Thus,

the complete problem of ascertaining the equilibrium configurations of a system undergoing

a quasistatic process may be enunciated as

inf
q̄

inf
{ω}

F (q̄, {T}, {ω}) , (2.52)

F being the Helmholtz free energy of the system evaluated by the max-ent approximation.

2.4 Phase averages by Gauss quadrature

Sections 2.1 and 2.2 describe the procedure for arriving at temperature-dependent potentials

as phase averages based on the local max-ent approximation scheme. We recall that the

average of the kinetic energy can be computed analytically, thereby reducing internal energy
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to a function of the state variables as given in Eq. (2.32):

E (q̄, {S}, {ω}) =
3
2

N∑

a=1

~ωa exp[
Sa

3kB
− 4

3
+

1
3

log N ] +
N∑

a=1

〈Va(q) 〉 . (2.53)

We now wish to evaluate the phase average of the potential energy V (q). To this end, we

suppose that each function Va(q) involves a small number of neighboring atoms. Then, the

integrals in 〈Va(q) 〉 are likewise of small dimensionality and can effectively be computed

by means of Gaussian quadrature, i.e., with integration points and weights corresponding

to a Gaussian weight function. This is due to the specific form of the max-ent probability

densities. We begin by considering an n-body interaction potential, φ(q1, . . . , qn). The

expectation value of this function is computed as

〈φ(q1, . . . , qn)〉 =
1

N !h3N

∫

Γ
φ(q1, . . . , qn)

n∏

a=1

pa dpa dqa (2.54a)

=
n∏

a=1

1
(
√

2πσa/ωa)3

∫
φ(q1, . . . , qn)

n∏

a=1

exp(− ω2
a

2σ2
a

|qa − q̄a|2) dqa (2.54b)

=
(

1√
π

)3n ∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̃(x1, . . . , xn) exp(−|x1|2 − · · · − |xn|2) dx1 · · · dxn ,

(2.54c)

where

φ̃(x1, . . . ,xn) = φ(q1(x1), . . . , qn(xn)) .

Eq. (2.54c) is the result of a change of variables:

xa =
1√
2

ωa

σa
(qa − q̄a) . (2.55)
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The multiple integral in Eq. (2.54c) is of dimension 3n and may be computed by using

the Hermite-Gauss quadrature rule appropriate for the dimension of the space [36, 13]. An

M -point quadrature reduces the integral to

〈φ(q1, . . . , qn)〉 ≈
(

1√
π

)3n M∑

k=1

φ̃(ξk)Wk , (2.56)

where k denotes a quadrature point in phase space, Wk is the corresponding weight and ξ

is a vector of dimension 3n:

ξ = (x1, . . . ,xn) ∈ R3n . (2.57)

In our calculations, we use quadrature rules for multiple integrals developed in the work of

Stroud [36]. A limiting factor in the choice of quadrature formulae is the dimension of the

domain of integration. For a pair potential, we have the choice of using quadrature rules of

degrees 3 and 5. For many-body potentials, we are restricted to 3rd degree quadrature due

to the high dimension of the space of integration. The details of the quadrature rules that

we have used in this work are provided in Appendix B.

Thus, the max-ent distribution provides a way to compute an approximate internal energy

of the system, which should be exact for up to 3rd or 5th order Taylor expansion of the

potential energy about an equilibrium configuration. This implies a considerable improve-

ment over the quasi-harmonic approximation used typically in obtaining thermodynamic

quantities from the microscopic dynamics. An important implication of this higher order

approximation is the ability to account for the anharmonicity of the interaction potential,

although approximately, in studying the thermodynamic behavior of materials.

In the remaining part of the section, we demonstrate the above calculations for two empirical

interatomic potentials, namely the Lennard-Jones pair potential and the embedded atom
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method involving many-body interactions. Since our ultimate aim is the minimization of

free energy, we also provide the expressions for the derivatives of the energy with respect to

the atomic positions and the mean field variables, {ω}. We also remark that these are mere

examples to illustrate the generality of applying the max-ent distribution to any empirical

interatomic potential and crystal structure.

2.4.1 Lennard-Jones potential

The phase average of the potential energy based on the Lennard-Jones pair potential is of

the form

〈V 〉 =
1
2

∑
a

∑

b

〈φ(rab)〉 , (2.58)

where

φ(r) = 4ε
[
(
σ

r
)12 − 2(

σ

r
)6

]
(2.59)

represents the bond energy and rab denotes the distance between atoms a and b. Typically,

b denotes the nearest neighbors of atom a. Since the potential involves only pairwise inter-

actions, the phase averages can be computed over individual bonds involving two atoms.

Consequently, the dimension of the domain of integration is 6. Applying the change of

variables given in Eq. (2.55), we have

rab = |qa − qb| (2.60a)

= |
√

2
σa

ωa
xa −

√
2
σb

ωb
xb + q̄a − q̄b| . (2.60b)
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Then, the energy of each bond calculated by quadrature is

〈φ(rab)〉 ≈
(

1√
π

)6 M∑

k=1

˜φ(ξk)Wk . (2.61)

As described in Appendix B, the 3rd degree quadrature formula requires 12 quadrature

points while the 5th degree formula requires 44 quadrature points. Taking the derivative of

the energy with respect to the atomic positions yields

∂

∂q̄a

〈V 〉 =
∑

b

∂

∂q̄a

〈φ(rab)〉 (2.62a)

=
(

1√
π

)6 ∑

b

M∑

k=1

φ′(rab(ξk))
rab

rab
Wk , (2.62b)

where prime denotes differentiation with respect to r. Taking the derivative of the internal

energy with respect to ωa yields

∂

∂ωa
〈V 〉 =

∑

b

∂

∂ωa
〈φ(rab)〉 (2.63a)

= − 1√
2

(
1√
π

)6 ∑

b

M∑

k=1

σa

ω2
a

φ′(rab(ξk))
rab

[rab · xk
a]Wk (2.63b)

and

∂

∂ωa
〈1
2
|pa|2〉 =

3
2
~ exp[

Sa

3kB
− 4

3
+

1
3

log N ] , (2.64)

where Eq. (2.63b) gives the contribution of the potential energy, whereas Eq. (2.64) gives

that of the kinetic energy.
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2.4.2 EAM potential

The potential energy based on the embedded-atom method [7, 18] is of the form

V =
∑

a

F (ρa) +
1
2

∑
a

∑

b

φ(rab) . (2.65)

In addition to a pair potential, we now have a term F (ρa) for each atom, which is known

as the embedding function and which depends on the electron density at site a due to

all its neighbors. In our calculations, we use two analytical forms for the EAM potential,

one proposed by Johnson [18] and another proposed by Sutton and Chen [37]. They are

described in Appendix A.2. Although the functional form of the pair potential is different,

the expressions for its phase average and its derivatives are identical to those shown for the

Lennard-Jones potential. The expressions for the embedding term are calculated below.

Let us define

V2 =
N∑

a=1

F (ρa) . (2.66)

Then,

〈V2〉 =
∑

a

〈F (ρa) 〉 =
(

1√
π

)3n M∑

k=1

F (ρa(ξk))Wk , (2.67)

where n includes the atom a and its contributing neighbors. For an fcc crystal with nearest-

neighbor interactions, n = 13 for an atom having all its neighbors. The derivative of 〈V2〉

with respect to the atomic positions is of the form

∂

∂q̄a

〈V2〉 =
(

1√
π

)3na ∑

b

Ma∑

k=1

F ′(ρa(ξk))f ′(rab(ξk))
rab

rab
Wk

+
(

1√
π

)3nb ∑

b

Mb∑

l=1

F ′(ρb(ξl))f ′(rab(ξl))
rab

rab
Wl ,

(2.68)
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where

F ′ =
d

d ρ
, f ′ =

d

d r
.

Similarly, the derivative of 〈V2〉 with respect to the local mean field parameters is

∂

∂ωa
〈V2〉 = − 1√

2

(
1√
π

)3na σa

ω2
a

∑

b

Ma∑

k=1

F ′(ρa(ξk)) f ′(rab(ξk)) [rab · xk
a] Wk

− 1√
2

(
1√
π

)3nb σa

ω2
a

∑

b

Mb∑

l=1

F ′(ρb(ξl)) f ′(rab(ξl)) [rab · xl
a] Wl .

(2.69)

In Eq. (2.68) and Eq. (2.69), na is the total number of atoms in the neighborhood of atom

a, and Ma is the number of quadrature points used to compute the phase average 〈F (ρa)〉.

Using the 3rd degree quadrature formula for an atom in an fcc crystal with all its nearest

neighbors present requires 78 quadrature points.

It bears emphasis that although ω is introduced as a local parameter associated with each

atom, Eq. (2.63b) and Eq. (2.69) show that the minimization of the free energy with respect

to ωa cannot be achieved atom by atom. This reveals the non-local nature of {ω}, indicating

that it is related to the atomic interactions.

2.5 Analysis of the max-ent method

In this section, we present some analytical results that afford some insight into the max-

ent approach and its connection with the canonical distribution of statistical mechanics.

In particular, the first validation test that we demonstrate is the derivation of the ideal

gas law using the max-ent distribution. Next, we seek a physical interpretation of the

mean field parameters, {ω}. This is achieved by using a quasi-harmonic approximation

for the potential energy in order to compute the thermodynamic potentials for the system
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analytically and to determine the {ω}. Finally, we review the thermodynamic potentials

determined from the canonical ensemble approach and compare with those obtained with

the max-ent approach, thereby establishing a connection between the two methods, at least

under certain conditions.

2.5.1 The ideal gas law

q

v

F

D

Figure 2.1: Ideal gas enclosed in a container with a piston.

We consider a system of N identical monatomic molecules of an ideal gas in a container of

volume V as shown in Figure 2.1. Let p(q, p) be the probability distribution function for

the system. Since the particles are non-interacting, the only constraint on the positions of

the particles is that

q ∈ D ,

where D is the region enclosed by the container. That is, the probability of finding a particle

inside the container is 1 and zero outside. Consequently,

τa = 0, ∀ a . (2.70)
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As before, the probability distribution function is determined by maximizing the entropy

S = − kB

N !h3N

∫

Γ
p log p dq dp , (2.71)

subject to the normalization constraint (2.5) and the constraint on the momenta

〈|pa − p̄a|2〉 = 3σ2
a ∀ a = 1, . . . , N . (2.72)

We consider the system to be in thermal equilibrium at a uniform temperature T and with

q̄ = 0. Consequently, we can assume

σa = σ ∀ a . (2.73)

This gives the partition function and the probability distribution as

Z =
kB

N !h3N
(
√

2πσ)3NV N (2.74a)

p = Z−1 exp

[
− 1

2σ2

N∑

a=1

|pa|2
]

(2.74b)

since
∫

D

N∏

a=1

dqa = V N .

Using Eq. (2.74a) and Eq. (2.74b) in Eq. (2.71), the entropy of the system becomes

S = kB log Z +
3
2
N

= −kB log(N !h3N ) + 3NkB log(
√

2πσ) + NkB log V +
3
2
N . (2.75a)
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The Hamiltonian of an ideal gas with N particles is

H(p) =
1
2

N∑

i=1

|pa|2 . (2.76)

Then, the internal energy of the system is

E = 〈H 〉 =
3
2
Nσ2 . (2.77)

As we saw in section 2.2, enforcing the equipartition of energy yields

σ =
√

kBT . (2.78)

Substituting the above in Eq. (2.77) yields the internal energy for an ideal gas as desired:

E =
3
2
NkBT . (2.79)

Next, the free energy of the system may be computed as

F = E − TS

= −kBT log(N !h3N )− 3
2
NkBT log(2πkBT )−NkBT log V , (2.80a)

where we have used Eq. (2.79), Eq. (2.75a), and Eq. (2.78). Then, the pressure p of the gas

is defined as

p = −∂F

∂V
= NkBT

1
V

, (2.81)
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which yields the ideal gas law

pV = NkBT . (2.82)

This shows that the equation of state for an ideal gas can also be derived from the max-

ent mean field approximation.

2.5.2 Interpretation of the mean field parameters

In this section we investigate the connection between our approach and statistical mechanics

in order to obtain an interpretation of the mean field parameters. We have already observed

in section 2.2 that σa is equivalent to kBTa. Through the calculations that follow, we

conclude that ωa for an atom is indeed an approximate average of the local frequencies

associated with that atom. In order to make analytical calculations feasible, we begin by

considering a quasi-harmonic approximation for the potential energy of the system. This is

obtained as a second-order Taylor expansion of V (q) about an equilibrium configuration:

V (q) ≈ V (q̄) +
1
2
xT K(q̄) x , (2.83)

where K(q̄) ∈ R3N × R3N is the stiffness matrix of the system given by

K(q̄) =
∂2V

∂q2

∣∣∣∣
q=q̄

(2.84)

and

x = {x1, . . . , xN} with xa = qa − q̄a .
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By further assuming weak interactions between the atoms, we reduce Eq. (2.83) to

V (q) ≈ V (q̄) +
∑

a

1
2
xT

a Ka(q̄)xa =
∑

a

Va(q) , (2.85)

where Ka is the 3× 3 local dynamical matrix associated with each atom and defined as

Ka(q̄) =
∂2V

∂q2
a

∣∣∣∣
qa=q̄a

. (2.86)

This is known as the local quasi-harmonic approximation since it regards each atom as a

harmonic oscillator with all its neighbors fixed and, hence, neglects the off-diagonal terms

of K(q̄). We note that the coupling of an atom with its neighborhood is retained through

the dependence of the local dynamical matrix on the macroscopic variables q̄. Then, the

phase average of the potential energy may be computed analytically as

〈Va〉 =
1

(
√

2πσa/ωa)3

∫ [
Va(q̄) +

1
2
xT

a Ka(q̄) xa

]
exp

[
− ω2

a

2σ2
a

|xa|2
]

dxa (2.87a)

= Va(q̄) +
1
2

1
(
√

2πσa/ωa)3

∫
[Ka

11 x2
a1 + Ka

22 x2
a2 + Ka

33 x2
a3]

3∏

i=1

exp
[
− ω2

a

2σ2
a

x2
ai

]
dxai

(2.87b)

= Va(q̄) +
1
2

σ2
a

ω2
a

TrKa(q̄) . (2.87c)

On substituting the above in Eq. (2.32) the internal energy of the system becomes

E(q̄, {S}, {ω}) =
∑

a

Va(q̄) +
∑

a

1
2

[
3 +

1
ω2

a

TrKa(q̄)
]

hωa

2π
exp[

Sa

3kB
− 4

3
+

1
3

log N ] , (2.88)
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where Tr denotes the trace of the matrix. The partial derivative of the internal energy with

respect to the local entropy yields the equilibrium relation

Ta =
∂E

∂Sa

=
1

6kB

[
3 +

1
ω2

a

TrKa(q̄)
]

hωa

2π
exp[

Sa

3kB
− 4

3
+

1
3

log N ] . (2.89a)

We invert the above relation to obtain Sa in terms of Ta. Substituting it in Eq. (2.88) gives

the internal energy as a function of the local temperatures:

E(q̄, {T}, {ω}) = V (q̄) +
∑

a

3kBTa , (2.90)

which is a well known result from statistical mechanics in agreement with the equipartition

of energy. By substituting these expressions for the internal energy and the entropy as

functions of the temperature in Eq. (2.36), the free energy becomes

F (q̄, {T}, {ω}) = V (q̄)−3kB

∑
a

Ta

[
log

6kBTa

~
− log

{[
3 +

1
ω2

a

TrKa(q̄)
]
ωa

}
+

4
3
− 1

3
log N

]
.

(2.91)

Minimizing F with respect to ωa gives

ω2
a =

1
3
TrKa =

1
3

3∑

i=1

ω̄2
ia(q̄) , (2.92)

where ω̄ia denotes the three frequencies associated with the atom a. This implies that

for a quasi-harmonic approximation, ω2
a equals the arithmetic mean of the squares of the

quasi-harmonic frequencies associated with that atom. Furthermore, substituting this in
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Eq. (2.89a) verifies that at equilibrium

σ2
a = kBTa , (2.93)

as derived in section 2.2. Thus, we conclude that for a system with a general anharmonic

potential energy, ωa provides an approximate average of the local frequencies of the atom

a. This is an important result since it reveals the physical nature of the parameters ωa and

confirms that the {ω} and {σ} establish the link between the energetics of the microscopic

dynamics and their cumulative effect on the thermodynamic potential.

2.5.3 Comparison with Gibbs canonical distribution

Here, we present a comparison between the thermodynamic potentials furnished by the

max-ent approach and those obtained by using the Gibbs canonical ensemble. To this end,

we first use the calculations presented in the previous section to summarize the expressions

for the thermodynamic potentials for a system under thermal equilibrium at uniform tem-

perature T . For such a system, the max-ent partition function and probability distribution

are

Z =
1

N !

(
1
β

)3N N∏

a=1

ω−3
a (2.94a)

ρ = Z−1 exp

[
−β

1
2

∑
a

{|pa − p̄a|2 + ω2
a|qa − q̄a|2

}
]

, (2.94b)
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where β = σ−2
a = (kBT )−1. Using Eq. (2.92) and Eq. (2.93), the entropy, the internal

energy, and the Helmholtz free energy have the following forms

E =
∑

a

Va(q̄) + 3NkBT (2.95a)

F =
∑

a

Va(q̄) + kBT log N !(h)3N − 3NkBT log 2πkBT +
3
2
kBT

∑
a

log

[
1
3

3∑

i=1

ω̄2
ia

]

(2.95b)

S = 3NkB − kB log N !(h)3N + 3NkB log 2πkBT − 3
2
kB

∑
a

log

[
1
3

3∑

i=1

ω̄2
ia

]
, (2.95c)

where we have assumed p̄ = 0. We now review the calculations of these thermodynamic

quantities based on the canonical ensemble approach of Gibbs. We recall that the partition

function and the probability distribution for a system under uniform thermal equilibrium

are

Z = 〈eβH〉 (2.96a)

p = Z−1eβH , (2.96b)

where H is the Hamiltonian

H =
1
2
|p|2 + V (q) . (2.97)

As remarked earlier, the ensemble averages using the canonical distribution can be computed

analytically only in the case of a quasi-harmonic approximation for the potential energy.

The resulting expressions involve the computation of the 3N frequencies of the system.

Although these results are amiable to theoretical analysis, their numerical implementation

poses a severe computational challenge as the size of the system increases. This problem is
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invariably circumvented by invoking the local quasi-harmonic approximation. Hence, using

Eq. (2.85), the expressions for the internal energy, entropy, and free energy are obtained as

[41]:

E = V (q̄) + 3NkBT (2.98a)

F = V (q̄) + kBT log N !(h)3N − 3NkBT log 2πkBT + kBT
∑

a

log

[
3∏

i=1

ω̄ia

]
(2.98b)

S = 3NkB − kB log N !(h)3N + 3NkB log 2πkBT − kB

∑
a

log

[
3∏

i=1

ω̄ia

]
. (2.98c)

On comparing the results furnished by both the methods, we note that the internal energy

is identical in both the cases, as it follows directly from the equipartition of energy. The

entropy and the free energy are also identical except for the terms involving the frequencies.

Specifically, Eq. (2.95b) and Eq. (2.95c), derived from the max-ent distribution, involve the

trace of the local stiffness matrices, whereas Eq. (2.98b) and Eq. (2.98c), derived from the

canonical distribution, involve the determinant of the local stiffness matrices. Nevertheless,

under certain conditions the equivalence of the two methods may be established, as shown

by the following propositions.

Proposition 2.5.1. For an infinite perfect and isotropic crystal, subject to uniform tem-

perature,

Fmax−ent = FGibbs (2.99)

Smax−ent = SGibbs (2.100)

Proof. Consider an infinite perfect crystal subject to a homogeneous deformation such as

thermal expansion under uniform temperature. The local quasi-harmonic approximation

assumes each atom as a harmonic oscillator with all neighbors fixed at their current mean
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positions. Hence, assuming the crystal to be isotropic, the frequencies of each atom should

be equal. That is,

ω̄1a = ω̄2a = ω̄3a = ω̄a, ∀ a . (2.101)

Consequently,

3
2

log

[
1
3

3∑

i=1

ω̄2
ia

]
= 3 log ω̄a = log ω̄3

a = log

[
3∏

i=1

ω̄ia

]
. (2.102)

By substituting the above simplification in Eq. (2.95b) and Eq. (2.95c), they, respectively,

become identical to Eq. (2.98b) and Eq. (2.98c). This proves the equivalence of the free

energy and the entropy obtained from the max-ent distribution and the canonical distribu-

tion.

Under less stringent conditions on the crystal, one may also prove the following convergence

between the two methods.

Proposition 2.5.2. Consider an infinite perfect crystal subject to uniform temperature.

Applying the Mie-Grüneisen approximation locally,

(
∂F

∂qa

)

max−ent

=
(

∂F

∂qa

)

Gibbs

(2.103)

(
∂S

∂qa

)

max−ent

=
(

∂S

∂qa

)

Gibbs

(2.104)

Proof. As before, consider an infinite perfect crystal subject to a homogeneous deformation

such as thermal expansion under uniform temperature. According to the Mie-Gruneisen

approximation, the Gruneisen parameter for the crystal depends only on the volume V and

not on the temperature explicitly and, hence, is the same for all the modes of an atom. It
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is defined as

γa(q̄) = −
(

∂ ln ω̄ia(q̄)
∂ lnV

)

T

, i = 1, 2, 3 (2.105a)

= −
(

V

ω̄ia

∂ω̄ia

∂V

)

T

. (2.105b)

Using Eq. (2.105b) we also note that

∂ω̄ib

∂q̄a

(q̄) =
∂ω̄ib

∂V

∂V

∂q̄a

= −ω̄ib
γa(q̄)

V

∂V

∂q̄a

. (2.106)

The classical approach gives the following forces by minimizing the free energy,

∂F

∂q̄a

=
∂V

∂q̄a

+ kBT
∂

∂q̄a

∑

b

log

[
3∏

i=1

ω̄ib(q̄)

]
(2.107a)

=
∂V

∂q̄a

+ kBT
∑

b

∑

i

1
ω̄ib

∂ω̄ib

∂q̄a

(2.107b)

=
∂V

∂q̄a

+ kBT
∑

b

∑

i

−γa(q̄)
V

∂V

∂q̄a

(2.107c)

=
∂V

∂q̄a

− 3kBT
∑

b

fa(q̄) , (2.107d)

where we have used Eq. (2.106) to go from Eq. (2.107b) to Eq. (2.107c) and where

fa(q̄) =
γa(q̄)

V

∂V

∂q̄a

. (2.108)
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Similarly, the max-ent approach yields the following forces

∂F

∂q̄a

=
∂V

∂q̄a

+
3
2
kBT

∂

∂q̄a

∑

b

log

[
1
3

3∑

i=1

ω̄2
ib(q̄)

]

=
∂V

∂q̄a

+ 3kBT
∑

b

1∑
i ω̄ib

2 ∑

i

ω̄ib
∂ω̄ib

∂q̄a

=
∂V

∂q̄a

+ 3kBT
∑

b

−γa(q̄)
V

∂V

∂q̄a

=
∂V

∂q̄a

− 3kBT
∑

b

fa(q̄) , (2.109a)

where we have made use of Eq. (2.106) and Eq. (2.108). Thus, comparing Eq. (2.107d) and

Eq. (2.109a) shows that the forces obtained from both the methods are equal. Since only

the last terms of Eq. (2.98c) and Eq. (2.95c) contribute to the derivative of the entropy

with respect to q̄a, the calculations are similar to those obtained above. Consequently, we

can prove Eq. (2.104).
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Chapter 3

Non-equilibrium finite temperature
quasicontinuum method

The prime accomplishment of Chapter 2 is the development of an approximation scheme

to construct a macroscopic temperature-dependent energy functional from the microscopic

dynamics. However, we emphasize that although we have eliminated the dependence of

the energy, E(q̄, {S}, {ω}), on the microstate or the instantaneous configuration of the

system, it is still a function of variables defined at each atom. In other words, the max-

ent method described so far essentially achieves a homogenization in time of the energy of

the system. The macroscopic problem of determining the equilibrium configurations of the

system still involves minimization over atomistic degrees of freedom, q̄ ∈ R3N , {S} ∈ RN ,

and {ω} ∈ RN . This presents a significant computational hindrance as we endeavor to model

systems of reasonable size on the continuum scale. In this chapter, we seek to alleviate this

problem by coarse-graining the atomistic description in space. This is accomplished by

formulating a finite temperature version of the quasicontinuum theory using the results

furnished by the max-ent approach.

The discretization of the domain required for the spatial coarse-graining also provides a

means of modelling non-equilibrium processes such as heat conduction by solving the heat

equation. In this chapter, we also propose a computational scheme for a non-equilibrium
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finite temperature framework for the quasicontinuum method. The development is based

on the work of Yang et al. [44] on a variational framework for modelling coupled thermo-

mechanical problems for dissipative solids. The basic idea is the construction of a joint

potential whose Euler-Lagrange equations yield the equilibrium equations and the heat

equation in addition.

The chapter is structured as follows. In section 3.1, we review the static theory of the

quasicontinuum for zero temperature. Section 3.2 extends the framework of section 3.1 to

equilibrium thermodynamic processes. In section 3.3, we present a convergence analysis of

the method for homogeneous deformations such as uniform thermal expansion. In section

3.4, we introduce the variational formulation of coupled thermo-mechanical problems, which

forms the basis of our work. Finally, section 3.5 presents the details of the non-equilibrium

finite temperature formulation of the quasicontinuum method.

3.1 The quasicontinuum method

The theory of the quasicontinuum furnishes a computational scheme for seamlessly bridging

the atomistic and the continuum realms. The chief objective of the method is to systemati-

cally coarsen an atomistic description by the judicious introduction of kinematic constraints.

Although different versions of the theory have been developed, here we review the three-

dimensional version of the static quasicontinuum method developed by Knap and Ortiz [21]

for zero temperature conditions, which we shall extend to the finite temperature case.

We consider a crystal with N atoms in reference configuration occupying a subset L of a

simple d-dimensional Bravais lattice. Denoting the basis vectors by {ai ; i = 1, . . . d}, the
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reference coordinates of the atoms are

X(l) =
d∑

i=1

liai, l ∈ Z ⊂ Rd . (3.1)

l are the lattice coordinates associated with individual atoms, Z is the set of integers, and

d is the dimension of space. We define q ∈ X ≡ RNd as the array of atomic positions in the

deformed configuration, where X denotes the configuration space of the crystal. We shall

also use q(l), l ∈ L to denote the coordinates of an individual atom.

At zero temperature, since the atoms do not exhibit rapid oscillations around their mean

positions, the energy of the crystal is a function E(q) expressed through the use of inter-

atomic potentials. In the case of applied loads, we assume them to be conservative and to

derive from an external potential Φext(q). Hence, the total potential energy is

Φ(q) = E(q) + Φext(q) . (3.2)

In addition, the crystal may be subjected to displacement boundary conditions over parts of

its boundary. Then, the problem of determining the metastable equilibrium configurations

of the system is a problem of seeking the local minima of the energy functional Φ(q),

consistent with the essential boundary conditions. This may be stated as

min
q∈X

Φ(q) . (3.3)

For systems with a very large number of atoms, this minimization problem presents a sig-

nificant computational burden. The essence of the theory of the quasicontinuum lies in

replacing Eq. (3.3) by an approximate minimization problem having the flexibility of pre-
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serving atomistic resolution in the regions of interest and treating atoms collectively where

deformations are slow varying on the scale of the lattice. There are three key components

of the quasicontinuum framework that impart the method its capabilities. We review these

below.

Constrained minimization

The main step in the method is to replace Eq. (3.3) by a constrained minimization of

Φ(q) over a suitably chosen subspace Xh of X. Xh is constructed by selecting a reduced

set Lh ⊂ L of Nh < N representative atoms or nodes. The selection is done based on

the local variation in the deformation field. Introducing a triangulation Th over Lh, the

positions of the remaining atoms are determined by piecewise linear interpolation of the

nodal coordinates. By construction, the interpolated position of an atom denoted by qh(l)

is

qh(l) =
∑

lh∈Lh

ϕ(l|lh)qh(lh) , (3.4)

where ϕ(l|lh) denotes the continuous and piecewise linear shape function associated with

the representative atom, lh ∈ Lh, evaluated at the point X(l). Its domain is restricted to

the simplices K ∈ Th incident on lh, and it satisfies

ϕ(l′h|lh) = δ(l′h|lh) (3.5a)

∑

lh∈Lh

ϕ(l|lh) = 1 , (3.5b)

where δ is the Dirac delta function. Eq. (3.5b) ensures that a constant field is interpolated

exactly by the basis functions. The constrained minimization problem may now be stated
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as

min
qh∈Xh

Φ(qh) . (3.6)

The corresponding reduced equations of equilibrium are

fh(lh) =
∑

l∈L

f(l) ϕ(l|lh) = 0 , (3.7)

where

f(l) =
∂Φ

∂q(l)
(q) . (3.8)

Sampling over clusters

For a large crystal, performing full lattice sums as required in (3.7) is also an expensive

computation. In particular, summing over all the atoms in the regions where the defor-

mation field is slow varying beats the purpose of the method. A way to circumvent this

difficulty is provided by sampling the behavior of the crystal over clusters of atoms around

the representative atoms, as shown in Figure 3.1. This is demonstrated as follows. Let

C (lh) be a cluster of lattice sites within a sphere of radius r(lh) centered at the node lh.

That is,

C (lh) = {l : |X(l)−X(lh)| ≤ r(lh)} . (3.9)

Let g(l) be a lattice function whose sum over the lattice is

S =
∑

l∈L

g(l) . (3.10)
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Figure 3.1: Clusters of atoms in the triangulation Th of the crystal.

Then, the cluster summation rule approximates S by

S ≈ Sh =
∑

lh∈Lh

nh(lh)S(lh) , (3.11)

where S(lh) denotes the sum over all atoms in the cluster C (lh), i.e.,

S(lh) =
∑

l∈C (lh)

g(l) . (3.12)

The cluster weights nh(lh) associated with the nodes, lh ∈ Lh, are computed by requiring

that the cluster summation rule (3.11) be exact for all basis functions. That is,

∑

l∈L

ϕ(l|lh) =
∑

l′h∈Lh

nh(l′h)
∑

l∈C (l′h)

ϕ(l|lh), ∀ lh ∈ Lh . (3.13)

Using the cluster summation rule (3.11), the equations of equilibrium (3.7) are further
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reduced to the form

fh(lh) ≈
∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

∂F

∂q̄(l)
ϕ(l|lh)


 = 0 . (3.14)

Adaptive refinement

The flexibility of the quasicontinuum method is further enhanced by the use of mesh adap-

tion in order to tailor the computational mesh to the structure of the deformation field.

Due to the lack of a rigorous theory relating the mesh size to suitable bounds on the en-

ergy for discrete systems, empirical adaption indicators based on the displacement field of

the crystal are currently used. Specifically, the adaption indicator ε(K) for simplex K is

measured as

ε(K) =
√
|IIE(K)|h(K) , (3.15)

where IIE(K) is the second invariant of the Lagrangian strain tensor for simplex K, and

h(K) is the size of K. The element K is deemed acceptable if

ε(K)
b

< TOL (3.16)

for some prescribed tolerance TOL < 1 and is targeted for refinement otherwise. b denotes

the magnitude of the smallest Burgers vector of the crystal. Thus, the adaption criterion is

designed so that full atomistic resolution is attained when the simplex slips by a full Burgers

vector. Evidently, the value of TOL involves a compromise between conflicting demands on

accuracy and computational efficiency.

This summarizes the static theory of the quasicontinuum method. For further details and

study of convergence characteristics, we refer the reader to [21].
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3.2 Extension to equilibrium thermodynamics

As a precursor to the development of the full non-equilibrium finite temperature quasicon-

tinuum method, we present here the framework for modelling equilibrium thermodynamic

processes using the quasicontinuum method. One of the merits of our approach is that the

finite temperature quasicontinuum method is in accord with the philosophy of the static the-

ory and consequently bears all the features of the latter. Simply put, the finite temperature

formulation for equilibrium systems possesses the same structure as the zero temperature

formulation, with the distinction that the energy functional to be minimized is no longer the

potential energy given in Eq. (3.2) but a temperature-dependent energy furnished by the

max-ent method. Examples of systems in thermal equilibrium include systems undergoing

thermal expansion at uniform temperature or subjected to quasistatic processes, such as

nanoindentation or void growth under isothermal conditions. For such phenomena, we wish

to determine the metastable configurations of the crystal when the crystal is in thermal

equilibrium at a uniform temperature T under the applied loads and boundary conditions.

Based on the max-ent approximation scheme, the minimization problem describing such

processes may be enunciated as

min
q̄∈X

min
{ω}∈RN

Φ(q̄, T, {ω}) (3.17)

with

Φ(q̄, T, {ω}) = F (q̄, T, {ω}) + Φext(q̄) , (3.18)

where we have assumed, as before, that the external loads are conservative and hence

derivable from an external potential, Φext(q̄). F is the Helmholtz free energy of the crystal,
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derived by substituting the local relation (2.35) in the Legendre transformation of the

internal energy given in Eq. (2.36).

Our aim is to determine the solutions of Eq. (3.17) by using the three building blocks

of static QC : (i) constrained minimization of the atomistic free energy of the crystal;

(ii) cluster summation rules to compute effective equilibrium equations; and (iii) adaptive

refinement of the computational mesh to track the displacement field. We note, however,

that the third component plays a role only in incremental minimization problems and not

in problems with one-step solutions such as uniform thermal expansion. Following the

procedure described in section 3.1, we select a reduced set Lh of Nh < N representative

atoms based on the local variation of the displacement field. The positions, temperature,

and approximate frequencies of the remaining atoms are interpolated over the nodes using

piecewise linear shape functions defined before:

q̄h(l) =
∑

lh∈Lh

ϕ(l|lh)q̄h(lh) (3.19a)

Th(l) =
∑

lh∈Lh

ϕ(l|lh)Th(lh) (3.19b)

ωh(l) =
∑

lh∈Lh

ϕ(l|lh)ωh(lh) . (3.19c)

We must emphasize that since the mean field parameter ω(l) is an approximation for the

average local frequency of that atom, the variation in {ω} follows the displacement field.

This is because the frequencies of an atom are computed from the eigenvalues of the lo-

cal dynamical matrix associated with that atom, which in turn depends on the deformed

configuration of the neighborhood of the atom. Therefore, in the regions where the dis-

placement field is uniform, {ω} also varies slowly on the scale of the lattice, since all the
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atoms experience very similar environment. This provides a rationale for assuming the

frequencies as a continuous field far from the atomistic domain and interpolating it over

the representative atoms. The equilibrium equations are obtained by taking variations of

the energy functional with respect to the nodal unknowns (q̄h(lh), ωh(lh)) and enforcing

stationarity. The computational cost of solving the equilibrium equations can be further

reduced by avoiding full lattice sums. Introducing cluster summation rules, the final form

of the equilibrium equations is

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

∂Φ
∂q̄(l)

ϕ(l|lh)


 = 0 (3.20a)

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

∂Φ
∂ω(l)

ϕ(l|lh)


 = 0 . (3.20b)

Using the calculations shown in section 2.4 for different interatomic potentials, the deriva-

tives of the free energy required in the above equations are evaluated as

∂F

∂q̄(l)
=

∂

∂q̄(l)

[
E(q̄, {S}, {ω})−

∑

l

T (l)S(l)

]
(3.21a)

∂F

∂ω(l)
=

∂

∂ω(l)

[
E(q̄, {S}, {ω})−

∑

l

T (l)S(l)

]
, (3.21b)

where we have replaced S(l) by its local expression given in Eq. (2.35).

Finally, we require an appropriate adaption criterion in order to refine the mesh according to

the deformation of the crystal. In problems such as nanoindentation at finite temperature,

the entire crystal undergoes thermal expansion in addition to the localized deformation

under the indenter. Since we are interested in tracking atomistically the deformation in the

vicinity of the indenter, we modify the adaption criterion as follows to eliminate or at least
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reduce the remeshing due to thermal expansion. We define ε(K) as

ε(K) =
√
|IIEd(K)|h(K) , (3.22)

where IIEd(K) is the second invariant of the deviatoric part of the Lagrangian strain tensor.

However, we found that this may not suffice to inhibit mesh refinement all over the crystal

under certain boundary conditions that do not allow the crystal to expand freely. We

circumvent this difficulty by allowing the crystal to expand freely prior to indentation and

then using the deformed configuration as a reference configuration for computing IIEd(K)

during the subsequent load increments.

3.3 Convergence analysis

In this section, we present a convergence analysis of the finite temperature quasicontinuum

approach under isothermal conditions. In particular, we seek to understand the effect

of coarsening on the energetics of the system by computing the error introduced by the

quasicontinuum approximation. To this end, we consider a perfect crystal with periodic

boundary conditions subjected to uniform temperature. We show that for a homogeneous

deformation, the quasicontinuum approach gives the exact energy of the crystal irrespective

of the degree of coarse-graining.

Theorem 3.3.1. Consider a perfect crystal with N atoms and periodic boundary conditions

occupying a subset L of a simple d-dimensional Bravais lattice. Let Lh ⊂ L be a collection

of Nh < N representative atoms of the crystal. Then, for a homogeneous deformation under
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uniform temperature,

∑

lh∈Lh

nh(lh)


 ∑

l∈C (lh)

E(l)


 =

∑

l∈L

E(l) . (3.23)

Proof. When an infinite perfect crystal or a perfect crystal with periodic boundary condi-

tions is subjected to uniform temperature or, more generally, a homogeneous deformation,

every atom sees exactly the same environment and, consequently, has the same energy:

E(l) = E1, ∀ l ∈ L .

Thus, the total internal energy of the system furnished by the max-ent approach becomes

E(q̄, {S}, {ω}) =
∑

l∈L

E(l) = NE1 . (3.24)

The quasicontinuum approximation of the total energy is obtained by using the cluster

summation rule:

Eh(lh) =
∑

lh∈Lh

nh(lh)
∑

l∈C (lh)

E(l) (3.25a)

=
∑

lh∈Lh

nh(lh)N(lh)E1 , (3.25b)

where N(lh) is the number of atoms in the cluster around node lh. We recall that the

weights used in the cluster summation rules are determined such that the shape functions

associated with all the nodes are summed exactly. That is,

∑

l′h∈Lh

nh(l′h)
∑

l∈C (l′h)

ϕ(l|lh) =
∑

l∈L

ϕ(l|lh), ∀ lh ∈ Lh . (3.26)
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Summing both sides over lh ∈ Lh, rearranging the sums, and using the property

∑

lh∈Lh

ϕ(l|lh) = 1 , (3.27)

Eq. (3.26) reduces to

∑

l′h∈Lh

nh(l′h)N(lh) = N . (3.28)

Multiplying Eq. (3.28) by E1 and comparing the expressions with Eq. (3.24) and Eq. (3.25b),

we conclude that

Eh = E (3.29)

and that this equality of energy is independent of the degree of coarsening.

As a concluding remark, we note that this result is valid for infinite crystals and that for

finite crystals, the surface effects should introduce some error. Nevertheless, the result

demonstrates that in the regions within the bulk of the crystal and away from defects, the

atoms experience similar environments and deformations and, consequently, the quasicon-

tinuum energy should be a very good approximation.

3.4 Variational formulation for thermo-mechanical problems

We present here a concise review of a variational formulation for coupled thermo-mechanical

boundary-value problems for general dissipative solids proposed by Yang et al. in [44].

This work forms the basis for the development of a non-equilibrium finite temperature

quasicontinuum method proposed in the next section.

The aim of this work is to characterize variationally the solutions of equilibrium problems

for an inelastic deformable solid capable of conducting heat. Specifically, the work shows



58

the existence of a joint potential function whose Euler-Lagrange equations yield the equilib-

rium equations, the kinetic relations, and the conservation of energy. A general dissipative

solid may be understood as a deformable solid, undergoing large deformations, possessing

viscosity and internal processes, and conducting heat. However, in the context of the cur-

rent work, we shall restrict this review to conducting thermoelastic solids since we do not

assume any kinetic relations such as flow and hardening rules or viscosity laws in our work.

As we shall see in the next section, the only kinetic relation that we introduce a priori is

the Fourier’s law of heat conduction.

To this end, we consider a body occupying a region B ⊂ R3 in reference configuration and

undergoing a thermodynamic process. The motion of the body is described by a time-

dependent deformation mapping ϕ : B × [a, b] → R3, where [a, b] is the time interval of the

motion. The body may be subjected to essential boundary conditions for the displacement

and temperature over parts of its boundary. Let H̄ be the prescribed outward heat flux on

the Neumann boundary ∂NB, and let T̄ be the applied traction on the traction boundary

∂T B. We assume that there exists an internal energy density expressed as a function of the

local state,

E = E(F , S) , (3.30)

where F = Gradϕ is the deformation gradient, and S is the local entropy density per unit

undeformed volume. Then, the equilibrium stress is given by

P e ≡ ∂F E(F , S) . (3.31)

A theorem of Coleman and Noll shows that the local equilibrium temperature is given by



59

the relation

Θ = ∂SE = E(F , S) (3.32)

and that all processes must satisfy the dissipation inequality. For the variational formula-

tion, it is necessary to differentiate between the equilibrium temperature Θ and an external

temperature field T . Although they are equal everywhere at equilibrium, the condition is

not imposed a priori. We also assume that a Fourier potential χ(G) exists such that

H = ∂Gχ(G) , (3.33)

where H is the heat flux, and G = −T−1GradT . χ is assumed to be quadratic and strictly

convex in G, which guarantees a unique minimum.

Variational formulation

A rate problem is understood as a problem of finding the rate of change of the state of

the body given its current state and appropriate forcing and boundary conditions. For a

thermoelastic problem, this means the problem of determining (T, Ṡ) given the current local

state (F , S). To this end, we construct a joint potential function of the following form:

Φ[T, Ṡ] =
∫

B
[(Θ− T )Ṡ − χ(G)]dV

+
∫

B
R Q log

T

T0
dV −

∫

∂NB
H̄ log

T

T0
dS ,

(3.34)

where Q is the distributed heat source per unit mass, and T0 is a reference temperature.

Then, according to [44], the problem of determining solutions for the thermoelastic rate
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problem may be stated as a two field variational problem:

inf
Ṡ

sup
T

Φ [T, Ṡ] . (3.35)

Taking variations of this potential with respect to the fields (T, Ṡ) and enforcing stationarity

yields the thermoelastic rate problem in strong form:

T Ṡ = −DivH + R Q in B, (3.36a)

H ·N = H̄ on ∂NB, (3.36b)

T = T̄ on ∂B\∂NB, (3.36c)

T = Θ in B. (3.36d)

Thus, the general rate problem for thermoelastic conducting solids is equivalent to the

stationarity principle:

δ Φ = 0 . (3.37)

Incremental formulation

We now present a time-discretized version of the variational problem as established in [44].

The purpose of time-discretization is to reduce the modelling of time-dependent phenomena

to a sequence of incremental problems, each characterized by a variational principle. For a

rigorous derivation of the variational updates, we refer the reader to [44]. Below, we give

an outline of the incremental extremum problem formulated by identifying a convenient

joint potential which is consistent with the field equations. To this end, we consider a

sequence of times t0, . . . , tn . . . and seek to characterize the state (ϕ, T, S) of the solid at
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those times. Specifically, we wish to determine approximately the state (ϕn+1, Tn+1, Sn+1)

at tn+1 assuming that the state (ϕn, Tn, Sn) is known. We construct a family of incremental

potentials based on the backward Euler finite difference scheme:

Φn[ϕn+1, Tn+1, Sn+1] =
∫

B
[En+1 −En − Tn+1(Sn+1 − Sn)−4t χn+1] dV

−
∫

B
R Bn+1 · (ϕn+1 − ϕn) dV −

∫

∂T B
T̄ n+1 · (ϕn+1 − ϕn) dS

+
∫

B
4tR Qn+1 log

Tn+1

Tn
dV −

∫

∂NB
4t H̄n+1 log

Tn+1

Tn
dS ,

(3.38)

with

χn+1 = χ (Gn+1) , Gn+1 = −Grad log
Tn+1

Tn
. (3.39)

Then the incremental variational problem becomes

inf
ϕn+1

inf
Sn+1

sup
Tn+1

Φn [ϕn+1, Tn+1, Sn+1] . (3.40)

Taking variations and enforcing stationarity as before yields the equilibrium equation, the

heat equation, and the natural boundary conditions:

Div P e
n+1 + R Bn+1 = O(4t) in B, (3.41a)

P e
n+1 ·N − T̄ n+1 = O(4t) on ∂T B, (3.41b)

Sn+1 − Sn

4t
= − 1

Tn+1
Div ∂Gn+1 χn+1 +

1
Tn+1

R Qn+1 in B, (3.41c)

∂Gn+1 χn+1 ·N = H̄n+1 on ∂NB, (3.41d)

∂Sn+1En+1 − Tn+1 = O(4t) in B. (3.41e)
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All field equations are recovered as 4t → 0. Thus, the time-discretized variational formula-

tion for dissipative solids provides a means of reducing the rate problem to an incremental

problem with a variational structure. Moreover, the incremental potential Φn reflects both

the energetics as well as the kinetics of the material. This time-discretization of the rate

problem provides a way of incorporating the heat equation into the finite temperature

quasicontinuum framework that was presented in section 3.2. We shall elaborate on this

development in the following section.

3.5 Quasicontinuum method and heat transport

In this section, we develop a non-equilibrium finite temperature version of the quasicon-

tinuum approach based on the max-ent approximation scheme. The work is based on the

variational framework for coupled thermo-mechanical behavior of dissipative solids reviewed

in the previous section. A joint potential is constructed whose Euler-Lagrange equations

are the equilibrium and the energy balance equations. The rate problem is then formulated

as an incremental minimization problem. Following the review in the previous section, we

construct an incremental potential based on the backward Euler finite difference scheme as

Φn[q̄n+1, {Tn+1}, {Sn+1}, {ωn+1}] =

(En+1 − En)−
∑

l∈L

Tn+1(l)[Sn+1(l)− Sn(l)] +
∫

B
∆n+1(Gn+1(X))4t dV

+
∫

B
4tR Qn+1 log

Tn+1

Tn
dV −

∫

∂NB
4t H̄n+1 log

Tn+1

Tn
dS ,

(3.42)

where 4t is the time step, Gn+1 = −T−1
n+1GradTn+1, and En+1 is the global internal energy

of the crystal at t = (n + 1)4t, furnished by the max-ent scheme. B ⊂ R3 denotes the

region occupied by the crystal in the reference configuration. H̄ denotes the outward heat
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flux prescribed on the Neumann boundary ∂NB. Qn+1 is the local heat generated at time

tn+1. In the current work, we neglect any heat sources and hence assume Qn+1 = 0. For

general dissipative solids, ∆ may be a kinetic potential which gives the viscosity law, rate

sensitivity, and heat conduction. In the context of this work,

∆ = −χ ,

where χ is a Fourier potential. As before, χ is assumed to be strictly convex and quadratic in

G. We also assume the Fourier law of heat conduction, which furnishes a linear dependence

of the heat flux on the temperature gradient at that point:

∂G∆n+1 = −Hn+1 = κGradTn+1(l) . (3.43)

We wish to note that the Fourier law is a phenomenological relation and, therefore, intro-

duces the heat conductivity, κ, as an empirical parameter into the model in addition to the

empirical interatomic potential. The incremental variational problem may be enunciated as

inf
q̄n+1

inf
{Sn+1}

inf
{ωn+1}

sup
{Tn+1}

Φn[q̄n+1, {Tn+1}, {Sn+1}, {ωn+1}] . (3.44)

The temperature field and {ω} can take only positive values. Therefore, for the purpose of

numerical implementation, we recast the problem in terms of new fields defined as

vn+1(l) = log
Tn+1(l)
Tn(l)

(3.45a)

µn+1(l) = log
ωn+1(l)
ωn(l)

(3.45b)
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and which can take values on the entire real line R. We follow the same procedure as

presented in sections 3.1 and 3.2 to constrain the extremum problem over representative

atoms. To this end, we also introduce the following interpolations over nodal variables using

piecewise linear shape functions:

q̄h(l) =
∑

lh∈Lh

ϕ(l|lh)q̄h(lh) (3.46a)

vh
n+1(l) =

∑

lh∈Lh

ϕ(l|lh)vh
n+1(lh) (3.46b)

µh
n+1(l) =

∑

lh∈Lh

ϕ(l|lh)µh
n+1(lh) . (3.46c)

Finally, we take variations of the incremental energy functional, Φn, with respect to the

nodal unknowns. Enforcing stationarity of the incremental potential yields the following

equilibrium equations:

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

∂En+1

∂q̄n+1(l)
ϕ(l|lh)


 = 0 (3.47a)

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

(
∂En+1

∂Sn+1(l)
− Tn+1(l)

)
ϕ(l|lh)


 = 0 (3.47b)

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

∂En+1

∂µn+1(l)
ϕ(l|lh)


 = 0 (3.47c)

and the energy balance equation:

−
∑

l′h∈L

nh(l′h)


 ∑

l∈C (l′h)

(Sn+1(l)− Sn(l)) Tn(l) exp[vn+1(l)]ϕ(l|lh)




−
∫

B
κ4t

[
GradTn(X) + Tn(X)Grad vn+1(X)

]
exp[vn+1(X)]Gradϕ(X|lh) dV

−
∫

∂NB
4t H̄n+1 ϕ(X|lh) dS = 0 .

(3.48)
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If external loads are applied, we assume them to be conservative as before, and the energy

functional E in Eq. (3.47a) is replaced by

E (q̄n+1, {Sn+1}, {ωn+1}) + Φext (q̄) . (3.49)

We recall from section 2.2 that enforcing the equipartition of energy and using the relation

σ2(l) = kB T (l) yields a local equilibrium relation between entropy and temperature:

Sn+1(l) = 3kB log
kBTn+1(l)
~ωn+1(l)

+ 4kB − kB log N , (3.50)

and we use it to substitute for Sn+1(l) in the equations above. Consequently, we do not

have to solve Eq. (3.47b). Nevertheless, we do evaluate the right-hand side of Eq. (3.47b) in

all our numerical tests and confirm that Eq. (3.47b) is satisfied automatically. Furthermore,

using Eq. (3.50), the change in the local entropy has the following form:

Sn+1(l)− Sn(l) = 3kB [vn+1(l)− µn+1(l)] . (3.51)

We observe from Eq. (3.48) that the rate term of the heat equation is computed using the

cluster summation rule of the quasicontinuum method, whereas the diffusion term in the

heat equation is an integral and is computed using the triangulation Th, as in the finite

element framework [14]. We review the details of the calculations below. Let us define

g(X) = κ4t
[
GradTn(X) + Tn(X)Grad vn+1(X)

]
exp[vn+1(X)]Gradϕ(X|lh) . (3.52)
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The volume integral in the diffusion term of Eq. (3.48) may be computed over the elements

as
∫

B
g (X) dV =

∑
eα

∫

|eα|
g (X) dV . (3.53)

In the case of isoparametric elements, these integrals over elements are further simplified

by evaluating on a standard computational domain. Denoting the integral over an element

by I, we have

I =
∫

|ê|
g(θ) Jα(θ) dθ , (3.54)

where

Jα(θ) = det
(
D fα(θ)

)
(3.55)

denotes the Jacobian of the isoparametric mapping from the element eα to the compu-

tational domain. Finally, the integral on the computational domain is computed using

numerical quadrature as

I ≈
r∑

q=1

g (θq) Jα(θq) Wq . (3.56)

In our calculations presented in Chapter 5, we have used the 5-point formula for tetra-

hedral elements tabulated in [14]. This completes the formulation of the non-equilibrium

finite temperature quasicontinuum theory for general anharmonic potentials and with heat

conduction.

3.6 Quasi-harmonic approximation

We recall that by assuming a quasi-harmonic approximation for the potential energy in

the max-ent approach, all the thermodynamic potentials can be obtained in closed form.

Moreover, for a perfect crystal with local quasi-harmonic approximation, these expressions
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become identical to those derived from the canonical ensemble approach. Hence, keeping in

view the ease of implementation and computational efficiency, we also present a formulation

of non-equilibrium finite temperature QC based on the quasi-harmonic approximation. It

also serves to establish a connection between the max-ent scheme and the formal asymptotics

method described in the next chapter. As mentioned earlier, we start with an incremental

joint potential given in Eq. (3.42). Since the mean field parameter ω(l) associated with

each atom is computed as the arithmetic average of the atom’s frequencies,

ω2(l) =
1
3

TrK(l) , (3.57)

the incremental variational problem in eq. (3.44) reduces to

inf
q̄n+1

inf
{Sn+1}

sup
{Tn+1}

Φn[{q̄n+1}, {Tn+1}, {Sn+1}] . (3.58)

Since Φn does not involve any gradients of entropy, the minimization with respect to Sn+1

can be effected atom by atom to yield

Sn+1(l) = 3kB − 1
N

kB log N ! + 3kB log
2π

h
+ 3kB log kBTn+1(l)− 3

2
kB log

[
1
3

TrKn+1(l)
]

.

(3.59)

We note that the local stiffness matrix, Kn+1(l), is computed on the deformed configuration

and hence depends on the local deformation,

Kn+1(l) = K (q̄n+1, l) .
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However, we shall omit the explicit dependence on q̄ for economy of notation. As before,

we introduce a new variable, vn+1, defined in Eq. (3.45a). Finally, we take variations

with respect to the nodal variables, q̄n+1(lh) and vn+1(lh), and enforce stationarity of

the incremental potential. This yields the equilibrium equations and the energy balance

equation

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

f(l)ϕ(l|lh)


 = 0 (3.60a)

−
∑

l′h∈L

nh(l′h)


 ∑

l∈C (l′h)

3kB

(
vn+1(l)− 1

2
log

TrKn+1(l)
TrKn(l)

)
Tn(l) exp[vn+1(l)]ϕ(l|lh)




−
∫

B
κ4t

[
GradTn(X) + Tn(X)Gradvn+1(X)

]
exp[vn+1(X)]Gradϕ(X|lh)dV = 0 ,

(3.60b)

where

f(l) =
∂Vn+1

∂q̄n+1(l)
+

3
2
kB

∑

l′

[
Tn+1(l′)

TrKn+1(l′)
∂

∂q̄n+1(l)
TrKn+1(l′)

]
. (3.61)

The summation is performed over all the atoms, denoted by l′, in the neighborhood of the

atom l. The detailed calculation of these derivatives for some interatomic potentials are

presented in Appendices A.1, A.2, and A.3. Using Eq. (3.59) for the local entropy, the

change in entropy required in Eq. (3.60b) is simplified to

Sn+1(l)− Sn(l) = 3kB

[
log

Tn+1(l)
Tn(l)

− 1
2

log
TrKn+1(l)
TrKn(l)

]
. (3.62)
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Under adiabatic conditions, i.e., when 4t → 0, the diffusion term in eq. (3.60b) vanishes.

As a result, the heat equation can be solved analytically in the atomistic region and yields

Tn+1(l) = Tn(l)

√
TrKn+1(l)
TrKn(l)

. (3.63)

It bears emphasis that this expression for the evolution of temperature in the region with

full atomistic resolution is identical to that derived using the formal asymptotics approach.

This method shall be discussed in detail in Chapter 4. The connection may be made clear

by rewriting Eq. (3.63) as

kBTn+1(l)√
TrKn+1(l)

=
kBTn(l)√
TrKn(l)

=
kBT0(l)√
TrK0(l)

, (3.64)

where the subscript 0 denotes the undeformed configuration of the crystal and the initial

temperature profile. This implies

Tn+1(l) = T0(l)

√
TrKn+1(l)
TrK0(l)

, (3.65)

which is the same as Eq. (4.68). Finally, substituting Eq. (3.65) in Eq. (3.61), we obtain

f(l) =
∂Vn+1

∂q̄n+1(l)
+

3 kB

2

∑

l′∈L

[
T0(l)√

TrKn+1(l)TrK0(l)
∂

∂q̄n+1(l)
TrKn+1(l′)

]
. (3.66)

Comparing this with Eq. (4.67) from Chapter 4, we realize that the expression for the forces

also become identical for the two methods. Therefore, we establish that under adiabatic

conditions the formal asymptotics approach and the max-ent approach with the local quasi-

harmonic approximation become identical when full atomistic resolution is achieved.
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Chapter 4

Coarse-graining by formal
asymptotics

As described in Chapter 1, the problem of ascertaining the thermodynamic behavior of

materials as an averaged effect of the micro-scale fluctuations at finite temperature involves

multiple scales in time. In this chapter, we propose another method for averaging out these

thermal degrees of freedom in order to obtain a temperature-dependent potential on the

continuum scale. It is based on the assumption that there exists a strict separation of

scales between the time scale of the atomic fluctuations and that of the thermodynamic

processes such as thermal expansion and heat conduction. The basic idea is to consider the

macroscopic deformation of the system as quasistatic and regard the thermal oscillations

of the atoms as perturbations about this slow trajectory. Treating these rapid oscillations

with perturbation theory yields the desired thermodynamic potential. The problem of

determining the stable equilibrium configurations of the system can then be stated as a

problem of finding the local minima of this effective macroscopic energy.
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u(t)

q(t)

t

Figure 4.1: A schematic representation of the microscopic and the macroscopic degrees of freedom.

4.1 Variational formulation

We consider a system with configuration space Y × X. The states (q,u) ∈ Y × X of the

system consist of macroscopic variables u and microscopic variables q. We assume that the

time scales of the variables are well-separated, as illustrated in Figure 4.1. That is,

τu

τq
À 1 , (4.1)

where τu and τq are the average time-periods of u and q, respectively. For the sake

of illustration, we consider a crystal at finite temperature with N atoms arranged in a

Bravais lattice, L . Without loss of generality, we shall consider a monatomic crystal.

Using the notation from Chapter 3, we denote the lattice coordinates of individual atoms

by l ∈ L ⊂ Zd, d being the dimension of space. As in Chapter 2, we normalize u and q

with the mass of each atom:

q(l) → 1√
m

q(l) , u(l) → 1√
m

u(l) . (4.2)
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For notational convenience, u or q shall represent arrays of all the atomic displacements

whereas u(l) or q(l) shall refer to the corresponding displacement of atom l. The separation

of scales then allows decomposition of the displacement of each atom into two components,

u(l) + q(l) , (4.3)

where u(l) follows the macroscopic deformation of the crystal, and q(l) is the thermal

oscillation of the atom. In this case,

X ≡ Y ≡ RNd . (4.4)

Our aim is to derive an effective energy of the system, E(u), accounting for the effect of

the micro-scale fluctuations. To this end, we consider the Hamiltonian of the system,

H(p, q, u) =
1
2

∑

l∈L

|p(l)|2 + V (u, q) , (4.5)

where p(l) = q̇(l) is the momentum associated with q(l) in the mass-reduced coordinates,

and V (u, q) is the potential energy of the system expressible through the use of empirical

interatomic potentials. We note that the inertial term due to u is neglected since u is

quasistatic. According to statistical thermodynamics, the internal energy of the system is

defined as the phase average of the Hamiltonian [41]. Since we are interested in studying

the system in the thermodynamic limit (i.e., as N → ∞ ), we shall assume ergodicity to

express the internal energy as a time average:

E(u) = lim
T→∞

1
T

∫ T

0
H

(
p(t), q(t), u(t)

)
dt . (4.6)
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The energy is expressed as a function E(u) based on the ansatz that the fluctuations satisfy,

and hence can be determined from, their Euler-Lagrange equations:

q̈ +
∂V

∂q

(
q, u

)
= 0 . (4.7)

We now wish to obtain closed-form, albeit approximate, solutions for q in terms of u by

the use of perturbation theory. Before treating the problem with perturbation analysis, we

make the inherent separation of temporal scales explicit by introducing a sequence (uε) ∈ X:

uε(t) = u(εt) ; ε → 0 . (4.8)

For fixed u, we consider a sequence of functionals

Eε(u) =
ε

b

∫ b/ε

0
H

(
pε(t), qε(t),uε(t)

)
dt (4.9a)

with q̈ε +
∂V

∂q

(
qε, uε

)
= 0 , (4.9b)

where we have replaced the time interval [0, T ] by [0, b
ε ] with ε → 0 for the sake of simplicity.

We wish to ascertain the behavior of the system as ε → 0. To this end, we first obtain the

solution to Eq. (4.9b) by using perturbation theory, as described in the following section.

Substituting this approximate solution in Eq. (4.9a) and taking the limit ε → 0 yields the

pointwise limit that we seek:

E(u) = lim
ε→0

Eε(u) . (4.10)
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4.1.1 The WKB method

The WKB method, which we shall employ to solve Eq. (4.9b), is a singular perturbation

method for obtaining approximate global solutions to linear differential equations whose

highest derivative is multiplied by a small parameter, ε. To reduce Eq. (4.9b) to such form,

we apply the following change of variables:

τ = εt . (4.11)

Since ε is a small parameter, τ denotes a long time scale with respect to t. This yields

ε2
∂2qε

∂τ2
(τ) +

∂V

∂q
(qε(τ), u(τ)) = 0 . (4.12)

One of the limitations of the WKB approach is that it can be applied only to systems

of linear ODEs. This requires linearization of the equations of motion for q. Hence, we

assume in addition that V possesses sufficient smoothness, i.e., V ∈ C2. Regarding q as

perturbations about the macroscopic equilibrium configuration, the second order Taylor

expansion of the potential energy about u yields the quasi-harmonic approximation

V (qε,u) ≈ V (u) +
1
2
qT

ε K(u)qε , (4.13)

where

K(u) =
∂2V

∂q2

∣∣∣∣
q=0

(4.14)

is the Nd×Nd stiffness matrix of the system. The superscript T denotes a transpose. The

first order term in the Taylor series expansion is zero since the system is in equilibrium. We
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also remark that the quasi-harmonic approximation differs from a strict harmonic approxi-

mation in that the latter is derived by expanding the energy about the undeformed equilib-

rium configuration and, consequently, the dynamical matrix, K, is a constant. Substituting

Eq. (4.13) in Eq. (4.9b) would give us a system of Nd linear ordinary differential equations.

However, we seek to reduce the ensuing eigenvalue problem of order Nd and thereby im-

prove the computational efficiency of the method by appealing to the local quasi-harmonic

approximation described in section 2.5.2. This yields

1
2
qT

ε K(u) qε ≈
1
2

∑

l∈L

qT
ε (l)K(u, l) qε(l) , (4.15)

where K(u, l) is the d × d dynamical matrix associated with the atom l. We note that

although we neglect the coupling of vibrations of different atoms, the coupling of the macro-

scopic behavior of atoms is retained through the nonlinear dependence of the local stiffness

matrices on the entire macroscopic displacement array, u. The local quasi-harmonic model

has been proposed in the work of LeSar and coworkers [23], in which it is proven to be rea-

sonably accurate to at least half the melting temperature for moderately strained crystals.

Substituting Eq. (4.15) in Eq. (4.9b) yields a system of linear differential equations for each

atom as follows:

ε2(l)q′′ε (l) + K(u, l) qε(l) = 0 ; ∀ l ∈ L , (4.16)

where ′ denotes differentiation with respect to τ . Since K(u, l) is real, positive-definite, and

symmetric, there exist d real eigenvalues, which we represent by ω2
i (l) and corresponding

eigenvectors, which we denote by vi(l). The uncoupled modal equations have the form

ε2Q
′′
i (l) + ω2

i (u, l)Qi(l) = 0 ; i = 1, . . . , d . (4.17)
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Qi are the coordinates in the principal directions associated with the atom l and defined as

qε(l) =
d∑

i=1

vi(l) Qi(l) . (4.18)

The frequencies and the normalized mode shapes satisfy,

vT
i K(u, l) vi = ω2

i (u, l) , vT
i vj = δij , i, j = 1, . . . , d , (4.19)

δij being the Kronecker delta function. To each of these resulting equations (4.17), we apply

the WKB method, as described in Appendix C, and solve for Qi(l). Using Eq. (4.18), we

obtain the desired approximate expression for qε(l) and the corresponding velocities:

qε(l, τ) =
∑

j

1√
ωj(u)

vj(u)
{

Aj sin (
1
ε

∫ τ

ωj(s)ds) + Bj cos (
1
ε

∫ τ

ωj(s)ds)
}

(4.20a)

dqε

dτ
(l, τ) =

1
ε

∑

j

√
ωj(u)vj(u)

{
Aj cos (

1
ε

∫ τ

ωj(s)ds)−Bj sin (
1
ε

∫ τ

ωj(s)ds)
}

.

(4.20b)

Ai and Bi are constants of integration that can be evaluated from initial conditions.

4.1.2 Effective temperature-dependent energy

We now derive the effective energy of the system. We recall the family of energy functionals

defined in Eq. (4.9a) and introduce the change of time variable from t to τ = εt:

Eε(u) =
1
b

∫ b

0
H

(
pε(τ), qε(τ), u(τ)

)
dτ . (4.21)
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Under the quasi-harmonic approximation, the Hamiltonian in Eq. (4.5) has the form

H =
1
2

∑

l∈L

|pε(l)|2 + V (u(τ)) +
1
2

∑

l∈L

qT
ε (l)K(u, l) qε(l) . (4.22)

Using the relation

pε(l) = q̇ε(l) = ε q′ε(l), ∀ l ∈ L (4.23)

and substituting the solutions given in equations (4.20a-4.20b) in the expression (4.22)

simplifies the Hamiltonian to

H = V (u) +
1
2

∑

l∈L

d∑

i=1

ωi(u, l)D2
i (l) (4.24)

with

D2
i (l) = A2

i (l) + B2
i (l) . (4.25)

Finally, using Eq. (4.24) in the expression (4.21) for the energy, we have

Eε(u) =
1

b− a

∫ b

a

[
V (u) +

1
2

∑

l∈L

d∑

i=1

ωi(u, l)D2
i (l)

]
dτ . (4.26)

We observe that Eε(u) is independent of ε. This implies that the right hand side of Eq. (4.26)

is indeed the limit E(u), and we have

Eε = E

for every u ∈ X and for ε → 0. Furthermore, we emphasize that since u is a quasistatic

deformation, τ simply serves as an index for a continuous sequence of states at uniform
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thermodynamic equilibrium. Interpreted as time, τ represents an arbitrary slow process on

the macroscopic time scale. Hence, we can rewrite the internal energy as

E(u) = V (u) +
1
2

∑

l∈L

d∑

i=1

ωi(u, l)D2
i (l) . (4.27)

Determination of Di(l)

In molecular dynamics, the equilibrium temperature is prescribed and maintained through

the atomic velocities. This is based on the equipartition of energy described earlier, which

states that for a system in thermodynamic equilibrium, every quadratic term in the Hamil-

tonian contributes kBT/2 to the internal energy, T being the equilibrium temperature. We

follow the same procedure in order to express the dependence of E(u) on the local temper-

ature through the Di(l). To this end, we introduce a local temperature, T (l), associated

with each atom. We also denote by q0(l) and v0(l) the initial positions and the initial

velocities, respectively, of the atom l. We let the initial configuration of the system be an

equilibrium state at zero temperature.

u(l)|τ=0 = u0(l) (4.28a)

qε(l)|τ=0 = q0(l) (4.28b)

q̇ε(l)|τ=0 = ε q′ε(l)|τ=0 = v0(l) (4.28c)

To determine Ai(l) and Bi(l), we substitute the above in equations (4.20a - 4.20b) at τ = 0.
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Taking the dot product of both the equations with the vector Mvi(l) yields

Bi(l) =
√

ωi(u0, l)
[
vT

i (u0, l) q0(l)
]

, i = 1, . . . d (4.29a)

Ai(l) =
1√

ωi(u0, l)

[
vT

i (u0, l)v0(l)
]

, i = 1, . . . d , (4.29b)

where we have exploited the orthogonality of the eigenvectors v(l). Writing v0(l) and q0(l)

in the principal coordinates,

v0(l) =
d∑

i=1

vi(u0, l)Vi(l) , q0(l) =
d∑

i=1

vi(u0, l)Qi(l) , (4.30)

we have

D2
i (l) =

1
ωi(u0, l)

[V 2
i (l) + ω2

i (u0, l)Q2
i (l)] . (4.31)

Assuming local equilibrium, we appeal again to the equipartition theorem to yield

1
2
[V 2

i (l) + ω2
i (u0, l)Q2

i (l)] = kBT0(l) , i = 1, . . . d , (4.32)

which in turn gives

D2
i (l) = 2

kBT0(l)
ωi(u0, l)

. (4.33)

T0(l) is the initial prescribed temperature. Thus, the internal energy of the system, given

in (4.27), becomes

E(u) = V (u) +
∑

l∈L

kBT0(l)
d∑

i=1

ωi(u, l)
ωi(u0, l)

. (4.34)

An important remark in place here is that E(u) is the internal energy of a system which need

not be in thermal equilibrium. In other words, the system may have different temperatures
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in different regions and should only satisfy the local thermal equilibrium hypothesis which

enables us to define a local temperature, T (l).

4.2 Adiabatic invariance

In this section, we seek to understand some properties of the effective energy derived in

the previous section based on its structure as given in Eq. (4.34). However, before we

proceed, it is instructive to understand our results by comparing with those obtained by

other similar studies. For this purpose, we recall that the effective Hamiltonian obtained

by formal asymptotics without the local quasi-harmonic approximation (i.e., by using the

Nd×Nd global stiffness matrix of the system) is

H(u) = V (u) +
1
2

Nd∑

i=1

D2
i ωi(u) . (4.35)

This result is identical to the effective potential derived in the work of Bornemann [3] on

the homogenization in time of singularly perturbed mechanical systems. A model problem

used in this study is a conservative dynamical system, with the displacement having a very

fast and a slow component and a constraining potential having a quadratic form. Unlike

our approach, this work uses the method of weak convergence in order to determine a

homogenized potential energy for the limiting mechanical system on the continuum scale.

For details of the analysis, we refer the reader to Chapters 1 and 2 of [3].

We now show that the internal energy given by Eq. (4.34) describes a system undergoing an

adiabatic process and, hence, the problem of finding metastable equilibrium configurations
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of the system can be enunciated as a minimization problem:

inf
u∈X

E(u) . (4.36)

We refer to the work of Bornemann [3] and present some physical arguments in support of

our claim. We first observe that the internal energy in Eq. (4.34) is a function of only one

state variable, which is the deformation of the system. Thus, the only two ways of changing

the total energy of the system are by either prescribing a different initial temperature or by

deforming it. This implies that the model based on the internal energy of the system does

not allow for heat transport between atoms and their ambience during a process. Hence,

we can conclude that the minimization problem stated in Eq. (4.36) describes a system

subjected to mechanical deformation under adiabatic conditions. This is in agreement with

classical thermodynamics in that the isentropic processes are modelled by minimizing the

internal energy. In the absence of entropy sources or sinks within the system, adiabatic and

isentropic conditions are equivalent.

This is also verified by the following calculations relating the current and the initial tem-

perature distribution within the system. For any system, the internal energy calculated

using the harmonic approximation comprises of the interatomic potential V (u), which may

be anharmonic, and the energy contained in the thermal oscillations of the atoms, which is

harmonic by assumption. If the system is in local thermal equilibrium,

E(u) = V (u) +
∑

l∈L

d kBT (l) , (4.37)
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T (l) being the current local temperature. Comparing Eq. (4.37) and Eq. (4.34), we have

d T (l) = T0(l)
d∑

i=1

ωi(u, l)
ωi(u0, l)

. (4.38)

Since the equipartition of energy implies equal distribution of the energy among all modes,

we get

T (l) = T0(l)
ωi(u, l)
ωi(u0, l)

, ∀i = 1, . . . , d . (4.39)

It is evident that the temperature of the system changes only when there is a change in

the mechanical configuration of the system. Therefore, Eq. (4.39) describes the evolution of

local temperature during an adiabatic process. This relation can also be derived rigorously

based on the adiabatic invariance of the normal action proved in [3]. For a dynamical

system whose effective potential is given by Eq. (4.35), the normal action is defined as the

energy-frequency ratio,

θi
ε =

Ei
ε

ωi(u)
. (4.40)

Ei
ε is the energy of the ith mode. By way of weak convergence, it is shown that

θi
ε ⇀ θi

0 = const . (4.41)

This is known as the adiabatic invariance of the normal action. Applying this to our

problem, we obtain the local relation

kBT (l)
ωi(u, l)

= const , (4.42)

which is the same as Eq. (4.39).
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4.3 Mie-Grüneisen approximation

Eq. (4.34) requires the computation of frequencies associated with each atom, which is an

eigenvalue problem of order d (d = 1, 2, 3) with u fixed at the current macroscopic configura-

tion. Although the eigenvalue problem is not computationally expensive, the computational

burden increases for systems in 3 dimensions with a very large number of atoms. Moreover,

we are interested in the solutions of the minimization problem

inf
u∈X

E(u) , (4.43)

where E(u) is furnished by (4.34). We observe that the computation of forces involves

derivatives of the frequencies with respect to u, which can be achieved only by numerical

differentiation. We circumvent this requirement in two ways. One way is by stating the

following claim based on the Mie-Grüneisen approximation.

Claim 4.3.1. Consider a system in local thermal equilibrium with ωi(u, l) being the phonon

frequencies associated with atom l. Then, under the Mie-Grüneisen approximation applied

locally,

ωi(u, l)
ωi(u0, l)

= const , i = 1, . . . , d . (4.44)

Proof. The Mie-Grüneisen approximation states that, for a system in thermal equilibrium,

the Grüneisen parameter, defined as

γ(V ) = −
(

∂ lnωi

∂ ln V

)

T

, i = 1, . . . , Nd , (4.45)

is the same for all modes. The implication of this approximation is that the phonon frequen-

cies are not functions of the equilibrium temperature explicitly but depend on it through
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the volume V. As we noted earlier, the system under consideration needs only to be in

local thermal equilibrium. Hence, we apply the Mie-Grüneisen approximation locally, the

Grüneisen parameter for each atom,

γ(l) = −
(

∂ ln ωi(u, l)
∂ lnV

)

T

, i = 1, . . . , d , (4.46)

being the same for the d modes of the atom. T represents an array of temperatures of all

atoms. Thus, we do not impose γ to be the same for all the atoms, although it may be

same for atoms experiencing identical environments. Eq. (4.46) can be simplified to

γ(l) = −
(

V

ωi(u, l)
∂ωi(u, l)

∂u
· ∂u

∂V

)

T

. (4.47)

By defining a new function g1(u, l), we rewrite the above equation as

∂ωi(u, l)
∂u

= −γ(l)
V

∂V

∂u
ωi(u, l) = g1(u, l)ωi(u, l) . (4.48)

At the initial equilibrium configuration, i.e., when u = u0,

γ0(l) = − V0

ωi(u0, l)
∂u

∂V

∂ωi(u, l)
∂u

∣∣∣∣
0

. (4.49)

or

∂ωi(u, l)
∂u

∣∣∣∣
0

= g1(u0, l) ωi(u0, l) (4.50)

Assuming sufficient smoothness of the function g1(u, l), we compute the higher derivatives
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of the frequencies as follows:

∂2ωi(u, l)
∂u2

= g′1(u, l) ωi(u, l) + g1(u, l) ω′i(u, l) (4.51a)

= (g′1(u, l) + g2
1(u, l))ωi(u, l) = g2(u, l) ωi(u, l) , (4.51b)

where the prime denotes differentiation w.r.t u. Eq. (4.51b) is obtained by substituting

Eq. (4.48) in Eq. (4.51a). By similar calculations, we obtain a recursive expression for the

nth derivative of ωi(u, l),

∂nωi(u, l)
∂un

= gn(u, l) ωi(u, l) , (4.52)

with

gn(u, l) = g′n−1(u, l) + g1(u, l) gn−1(u, l) , n ≥ 2 . (4.53)

At the initial equilibrium configuration,

∂nωi(u, l)
∂un

∣∣∣∣
0

= gn(u0, l) ωi(u0, l) , n ≥ 1 . (4.54)

From Eq. (4.52) we observe that all derivatives of ωi(u, l) are linear in ωi(u, l). Assuming

sufficient smoothness of ωi(u, l), the nth order Taylor series expansion for ωi(u, l) about the

initial equilibrium state is

ωi(u, l) = ωi(u0, l)+
∂ωi(u, l)

∂u

∣∣∣∣
0

·[u−u0]+
1
2

∂2ωi(u, l)
∂u2

∣∣∣∣
0

[u−u0]2+· · ·+ 1
n!

∂nωi(u, l)
∂un

∣∣∣∣
0

[u−u0]n .

(4.55)

Dividing throughout by ωi(0) and using the expressions for the derivatives given in (4.54),

ωi(u, l)
ωi(u0, l)

= 1 + g1(u0, l)u +
1
2
g2(u0, l)u2 + · · ·+ 1

n!
gn(u0, l)un . (4.56)
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Since the right hand side is independent of i, Eq. (4.56) shows that under the Mie-Grüneisen

approximation, all frequencies of an atom change in the same ratio.

Another way to arrive at Eq. (4.44) is by using (4.39), derived in the previous section based

on the equi-partitioning of energy. Thus, we may write

ωi(u, l)
ωi(u0, l)

=
a

b
, ∀i = 1, . . . , d , (4.57)

where a/b is some constant. Further, using the algebraic identity

a

b
=

c

d
=

a + c

b + d
, (4.58)

we can write

ω2
i (u, l)

ω2
i (u0, l)

=
∑d

i=1 ω2
i (u, l)∑d

i=1 ω2
i (u0, l)

=
TrK(u, l)
TrK(u0, l)

. (4.59)

Consequently,
d∑

i=1

ωi(u, l)
ωi(u0, l)

= d
a

b
= d

√
TrK(u, l)
TrK(u0, l)

. (4.60)

Thus, the internal energy attains the following form:

E(u) = V (u) +
∑

l∈L

dkBT0(l)

√
TrK(u, l)
TrK(u0, l)

. (4.61)

We use this expression for the internal energy in our subsequent calculations. An advantage

of using Eq. (4.61) is that we can derive analytical expressions for the trace of the stiffness

matrices and hence their derivatives with respect to u. The expressions for the energy,

forces, local stiffness matrices, and their derivatives are derived in Appendices A.1 and A.2.
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4.4 Application to the quasicontinuum method

In this final section, we review the formulation of the quasicontinuum method for finite

temperature on the basis of the results of the WKB method. The basis structure of the

computational scheme remains the same, as described in detail in sections 3.1 and 3.2. A

major difference is that the energy functional to be minimized is defined as

Φ(u) = E(u) + Φext(u) , (4.62)

where the internal energy E(u) is furnished by Eq. (4.61). Then, the problem of finding

the set of minimizers of this energy functional may be stated as

min
u∈X

Φ(u) . (4.63)

Proceeding according to section 3.1, we introduce the following interpolation for the macro-

scopic displacement field u over a carefully selected set Lh of Nh < N representative atoms:

uh(l) =
∑

lh∈Lh

ϕ(l|lh)uh(lh) . (4.64)

Using Eq. (4.64) in the expression for Φ(u), taking variations with respect to the nodal

variables uh(lh), and enforcing stationarity yields the equilibrium equations. Introducing

cluster summation rules, the effective equilibrium equations are obtained as

∑

l′h∈Lh

nh(l′h)


 ∑

l∈C (l′h)

f(l)ϕ(l|lh)


 = 0 . (4.65)
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The force at each site l is evaluated as

f(l) =
∂Φ

∂u(l)
(4.66a)

=
∂E

∂u(l)
+

∂Φext

∂u(l)
(4.66b)

with

∂E

∂u(l)
=

∂V

∂u(l)
+

d kB

2

∑

l′∈L

[
T0(l)√

TrK(u0, l)TrK(u, l)
∂

∂u(l)
TrK(u, l′)

]
, (4.67)

where l′ denotes all the atoms in the neighborhood of atom l with a specified cutoff radius.

As described in section 4.2, the solutions to Eq. (4.63) yield the equilibrium configurations

of the crystal under adiabatic conditions. Furthermore, in the absence of entropy sources

within the body, this is equivalent to isentropic conditions. Consequently, if the entropy of

the system remains constant during a process, the temperature of the system must change,

as entropy and temperature are conjugate state variables. Therefore, after determining the

new equilibrium state of the crystal by solving Eq. (4.65), the new temperature distribu-

tion is obtained by evaluating the relation (4.39) at the nodes. Using the Mie–Grüneisen

approximation, this relation becomes

Th(lh) = T0(lh)

√
TrK(u, lh)
TrK(u0, lh)

. (4.68)

This concludes our discussion on the formal asymptotics approach for coarse-graining an

atomistic description at finite temperature. We recall that under adiabatic conditions, this

method becomes equivalent to the max-ent method with the quasi-harmonic approxima-

tion. For a detailed discussion, we refer to section 3.6. In the next chapter, we shall
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validate this method by modelling some thermodynamic bulk properties and comparing

with experimental data and molecular dynamics results. We shall also present the results

for a nanoindentation test simulated under adiabatic conditions using the quasicontinuum

method based on this approach.
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Chapter 5

Results and validation

Chapters 2 and 4 developed a theoretical framework based on two approaches, namely the

max-ent method and formal asymptotics, to derive averaged macroscopic energy functionals

from the microscopic dynamics. In Chapter 3, we incorporated these into the quasicontin-

uum framework to accomplish our goal of coarse-graining an atomistic description at finite

temperature. Here, we present a suit of numerical simulations that were performed using

these methods followed by a discussion of the results. The purpose of the tests is two-fold.

First, they serve to validate the proposed methods by comparing their results with classi-

cal theory, experimental data, and molecular dynamics results. These include simulations

performed to determine some bulk properties such as the specific heat and the coefficient

of thermal expansion for some materials. Second, they serve as illustrative examples that

demonstrate the ability of the proposed methods to capture thermo-mechanical coupled

phenomena. These include examples of adiabatic tension, heat conduction, and nanoinden-

tation. The results presented for these tests are qualitative and open possible directions for

further investigations.

The samples used in our simulations are face-centered cubic (fcc) crystals with the crystal-

lographic orientation as shown in Figure 5.1. The tests were performed with two materials,

solid argon and copper, both existing in fcc structure. It bears emphasis that the choice of
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Figure 5.1: Crystallographic orientation of the test sample used in the simulations.

materials is dictated by our choice of empirical interaction potentials for fcc crystals. The

proposed methods are general enough to be applied to any crystal structure and interatomic

potentials.

5.1 Bulk Properties

In this section, we present the results for the specific heat and the thermal expansion

coefficient for solid Ar and Cu. The Lennard-Jones pair potential is appropriate for solid

Ar, whereas the potentials used for Cu involve many-body interactions. We use two such

potentials for modelling copper, namely, the EAM-Johnson potential [18] and the Sutton-

Chen potential [37], both of which are based on the embedded-atom method [7].

The sample used for these tests is a cube of an fcc crystal consisting of 108 atoms. Since our

aim is to study bulk properties, periodic boundary conditions are applied in all directions in

order to simulate an infinite crystal. As in molecular dynamics simulations [30], the periodic

boundary conditions are implemented by repeating images of the original cell of 108 atoms

in the three directions. Then, the neighborhood of each atom consists of either neighbors

within the cell or images of atoms in the cell. This ensures that even surface atoms have
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all their neighbors and that, for a perfect crystal undergoing a homogeneous deformation,

every atom experiences exactly the same environment. Furthermore, since we assume the

crystal to be perfect and isotropic, its physical properties should be the same everywhere

and in all directions. This implies that the thermal expansion of the crystal should also

be uniform when it is subjected to a uniform temperature. Simply put, the crystal should

maintain its structure as a Bravais lattice even after undergoing thermal expansion. For this

reason, choosing the change in lattice parameter as the only mechanical degree of freedom

for the whole system should suffice. This reduces the energy minimization problem to

min
a

Φ , (5.1)

where Φ is an appropriate energy functional furnished by the max-ent method or the WKB

method, and a is the lattice parameter in the deformed configuration. For an fcc crystal in

three dimensional space, the lattice vectors ai may be chosen as

a1 =
a

2




1

0

0




, a2 =
a

2




0

1

0




, and a3 =
a

2




0

0

1




. (5.2)

In the following sections we present our results for the thermal expansion coefficient and

specific heat for the Lennard-Jones potential and the EAM-type potentials.

5.1.1 Thermal expansion

The numerical test for thermal expansion is conducted as follows. The sample is prescribed

a uniform temperature T0 and is equilibrated by solving the variational problem (5.1). The
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non-linear version of the conjugate gradient method is employed to do the minimization.

For the max-ent approach, the test is performed under isothermal conditions and hence

the appropriate energy functional is the free energy, F (q̄, T0, {ω}). Then, Eq. (5.1) may be

stated as

min
a∈R

min
ω∈R

F (a, T0, ω) , (5.3)

where we have incorporated the fact that

ωa = ω, ∀ a = 1, . . . , N

because every atom has the same environment, even in the deformed configuration. Since

the approach based on formal asymptotics assumes adiabatic conditions, the minimization

problem may be stated as

min
a∈R

E(a, T0) , (5.4)

where E(a, T0) is the internal energy of the system. As elaborated in section 4.2, the

temperature of a system undergoing an adiabatic process must change during the process.

The uniform temperature of the system in the deformed configuration is evaluated as

T = T0

√
TrK(a, b)
TrK(a0, b)

, (5.5)

where a and a0 denote the current and initial lattice constants, and b denotes an atom in

the crystal. This computation is performed after the system achieves equilibrium at the

prescribed temperature, and this value of T is used in plotting the thermal expansion versus

temperature. The coefficient of linear thermal expansion is then given by the instantaneous
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slope of this curve:

α(T ) =
∂ε

∂T
where ε =

a

a0
− 1 . (5.6)

We now present a discussion of our results for the thermal expansion of solid Ar and Cu.

The parameters for the potentials for solid Ar and Cu are given in appendices A.1, A.2,

and A.3, and all reduced units and corresponding normalization constants are specified in

appendix D.

Lennard-Jones potential

The plot of thermal expansion of solid Ar against temperature is shown in Figure 5.2 and

Figure 5.3. For the sake of clarity, Figure 5.2 shows only the results for methods based on

the quasi-harmonic approximation. These include (i) the max-ent method with the quasi-

harmonic approximation derived in Equations (2.95a)-(2.95c), (ii) the method based on the

WKB theory, and (iii) the canonical ensemble approach from classical statistical mechanics

derived in Equations (2.98a)-(2.98c). Figure 5.3 shows the thermal expansion of solid argon

with temperature obtained with the max-ent approach using different quadrature rules. The

results are compared with those of the classical theory, molecular dynamics simulations [42],

as well as experimental data [29]. We enlist our observations as follows.

• Figure 5.2 ratifies the analytical prediction of section 2.5.3 that the max-ent distri-

bution and the canonical distribution of Gibbs are identical under the local quasi-

harmonic approximation for an isotropic perfect crystal undergoing uniform thermal

expansion.

• It is instructive to note that the results of the WKB approach obtained for adiabatic

conditions are also identical to the classical results which are obtained for isothermal
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Figure 5.2: Thermal expansion of a perfect Lennard-Jones crystal using a) the max-ent method
with the local quasi-harmonic approximation, b) the WKB method, and c) the classical canonical
distribution. The material used is solid Argon.

conditions. This demonstrates the equivalence of the ensembles in the thermody-

namic limit [45], i.e., when the number of particles in the system is very large, the

microcanonical and the canonical ensemble yield the same thermodynamic functions.

We recall that under adiabatic conditions, the max-ent method with the local quasi-

harmonic approximation is equivalent to the WKB method. We also recall that the

thermodynamic functions obtained using the former are equivalent to those derived

from the Gibbs canonical ensemble for a perfect infinite crystal at uniform tempera-

ture. This explains the equivalence of the methods that we observe numerically.

• Since all these methods including MD are based on classical theory, they cannot

capture the low temperature behavior as observed in the experiments. This is expected

because the contribution of the quantum effects to the energy of the lattice vibrations

becomes dominant at low temperatures as seen from the Boltzmann distribution.
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Figure 5.3: Thermal expansion of a perfect Lennard-Jones crystal based on the max-ent method
using 3rd and 5th degree quadrature rules. The material used is solid Argon.

• Classical theory also predicts a linear dependence of the thermal expansion on tem-

perature as demonstrated by the molecular dynamics results. However, Figure 5.2

shows that the results based on the quasi-harmonic potentials deviate significantly

from linearity, beyond about 25 K which is less than half the melting point of solid Ar

(83 K). This indicates the failure of the local quasi-harmonic approximation at high

temperatures, when the lattice vibrations are large enough for the anharmonic terms

to become important.

• Figure 5.2 also shows that even in the linear regime, the thermal expansion coefficient

is much higher than that obtained from MD simulations. At 10 K, the value of α is

about 31 % higher than the molecular dynamics result.

• In contrast, Figure 5.3 indicates that, with an anharmonic potential, the max-ent ap-

proach provides a significant improvement over the quasi-harmonic approximation.
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This is certainly due to the accounting of anharmonicity of the interaction potentials

which becomes dominant at high temperatures.

• The curve for the 5th degree quadrature is linear in temperature as expected. How-

ever, the curve for the 3rd degree quadrature is linear only up to about 50 K and

consequently, the deviation in thermal expansion also becomes significant beyond 50

K. Thus, the range of validity is larger than that observed in the quasi-harmonic case.

This is intuitive since it implies that the error in the results decreases with increase

in the degree of quadrature rule.

• Finally, even with the 5th degree quadrature rule, the value of the thermal expansion

coefficient is higher as compared with MD. The value of α predicted by the max-

ent distribution with 5th degree quadrature rule at 40 K is close to 50 % higher than

the experimental value and 33 % higher than that predicted by MD. However, at

80 K our result is within 10 % of the experimental value, which is 6.72 × 10−4 K−1.

Some potential sources of error could be the numerical quadrature, the mean field

approximation, which leads to the Gaussian form of the local probability distribution,

and the choice of interatomic potentials. We shall elaborate on the last point when

we analyze the results obtained by using EAM-type potentials.

EAM-type potentials

As mentioned earlier, we study the thermal properties of copper using two interaction

potentials, namely, an analytical form of the embedded-atom method (EAM) proposed by

Johnson [18] and another EAM-type many-body potential proposed by Sutton and Chen

[37]. The choice of the latter was dictated by the availability of molecular dynamics results

in the work of Çağin and coworkers [4] and due to the lack of MD results for thermal
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expansion based the EAM-Johnson potential. We recall from section 2.4 that for many-body

interactions we are limited to the use of 3rd degree quadrature due to the high dimension

of the configurational phase space.
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Figure 5.4: Thermal expansion of a perfect crystal of Cu based on a) max-ent method with 3rd

degree quadrature, b) WKB method, and c) classical canonical distribution. The results are based
on the Sutton-Chen potential.

Figure 5.4 shows the thermal expansion of Cu versus temperature based on the Sutton-Chen

potential. The methods used include (i) the max-ent method with 3rd degree quadrature

formula, (ii) the method based on WKB technique, and (iii) the canonical ensemble ap-

proach from classical statistical mechanics. In this figure, ε represents the expansion with

respect to the lattice parameter at T = 300. That is,

ε =
a(T )

a(300)
− 1 .

We use T = 300 as the reference because the MD and experimental data are presented in [4]

in this form and this is the range in which the experimental data shows a linear dependence
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on temperature [28]. Based on Figure 5.4, we draw the following conclusions:

• As observed in the case of Lennard-Jones potential, the thermal expansion curve for

the formal asymptotics approach lies exactly on the curve for the classical theory.

Furthermore, both give a higher estimate of the thermal expansion coefficient due to

the quasi-harmonic approximation and fail to converge beyond 540 K.

• We observe that the thermal expansion coefficient computed with the max-ent method

is in reasonable agreement with the molecular dynamics results, although it is based

on the 3rd degree quadrature. The thermal expansion has a linear dependence on

temperature as expected. Quantitatively, at 300 K, the max-ent result for α is about

38 % higher than the MD value. However, at 1000 K, it is 18 % lower than the MD

value. Furthermore, compared to the classical results for the local quasi-harmonic

approximation, the max-ent approach reduces the error significantly at high temper-

atures.

• Finally, we observe that the results for the max-ent method as well as the molecular

dynamics simulations are not in a close agreement with the experimental data. This

is indicative of a limitation of the Sutton-Chen potential to model thermal properties

rather than that of the proposed methods since these potentials are parameterized

based on the bulk properties at 0 K and may not be suitable for finite temperature

calculations. This is also confirmed by the results for the EAM-Johnson potential.

Figure(5.5) shows the thermal expansion of Cu versus temperature based on the EAM-

Johnson potential. As before, the methods used include (i) the max-ent method with

3rd degree quadrature formula, (ii) the method based on WKB technique, and (iii) the

canonical ensemble approach from classical statistical mechanics. A significant difference



100

0 200 400 600 800 1000 1200
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Temperature (K)

C
ha

ng
e 

in
 la

tti
ce

 p
ar

am
et

er
 (

∆ 
a/

a 0)

 

 

Max−ent
WKB
Classical
Experiment

Figure 5.5: Thermal expansion of a perfect crystal of Cu based on a) max-ent method with 3rd

degree quadrature, b) WKB method and c) classical canonical distribution. The results are based
on the EAM-Johnson potential.

may be observed between the results of the Sutton-Chen potential and the EAM-Johnson

potential, the latter being able to capture the thermal expansion very well. Based on these

numerical results, we conclude the following:

• The max-ent method is in excellent agreement with the experimental observations for

the range of temperatures for which classical theory is valid.

• The results based on the WKB method and the classical canonical distribution also

show considerable improvement as compared to their counterparts based on the Sutton-

Chen potential. At 300 K, the value of α is equal to that obtained from experiments.

However, they still give higher estimates for the thermal expansion coefficients as ex-

pected at high temperatures. This is in agreement with the conclusions of LeSar et

al. [23] regarding the local quasi-harmonic approximation. At 1000 K, the value of α

becomes almost 35 % higher than the experimental.
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• Although we do not have MD results based on this potential, we may conjecture,

based on the results for Lennard-Jones and Sutton-Chen potentials, that the thermal

expansion obtained from MD should also be in very good agreement with experiments.

• We make a final note that unlike in the case of the Lennard-Jones potential, the 3rd

degree quadrature works very well for the EAM-type potentials and hence suffices for

the purpose of these calculations. This could, probably, be an effect of considering

many-body interactions in the latter as opposed to pairwise interactions in the former.

The same possibility also emerges from the study of the specific heats of copper and

solid argon given below.

5.1.2 Specific heat

The specific heat of a system in thermal equilibrium at uniform temperature T at constant

volume and at constant pressure are defined in thermodynamics as [40, 41]

Cv =
1
N

∂E

∂T

∣∣∣∣
V

, Cp =
1
N

∂H

∂T

∣∣∣∣
p

, (5.7)

where N is the number of atoms in the crystal, and H = E + pV is the enthalpy of the

system. Hence, for processes at zero pressure, H is equal to E. The specific heats in Eq. (5.7)

are expressed per atom. Recalling the expression (2.95a) for the internal energy furnished

by the canonical distribution and differentiating with respect to temperature yields

Cv = 3kB . (5.8)

This is known as the law of Dulong and Petit and is based on classical statistical thermo-

dynamics [1]. Real systems are found to be in agreement with this law only at reasonably
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high temperatures when quantum effects may be neglected. However, since the anharmonic

effects dominate at high temperatures, the specific heat is still found to be slightly lower

than 3kB. We note that all our methods based on the quasi-harmonic approximation have

the internal energy of the form

E(q̄) = V (q̄) + 3NkBT . (5.9)

These methods include the max-ent approach with the quasi-harmonic approximation and

the method based on formal asymptotics. Consequently, they yield the Dulong and Petit

model for the specific heat at constant configuration. The details of the tests for computing

the specific heats using the max-ent approach with anharmonic potentials are as follows.

The test sample and boundary conditions are as described earlier. Since the thermal ex-

pansion tests are performed at zero pressure, Cp may be evaluated as the instantaneous

slope of the internal energy versus temperature obtained from these tests. Cv is obtained

by fixing the configuration at the initial state and equilibrating the system at the prescribed

temperature T0. The minimization problem becomes

min
ω∈R

F (a0, T0, ω) . (5.10)

We now present our results for Cv and Cp for the Lennard-Jones and the EAM-type poten-

tials.

Lennard-Jones potential

Figure 5.6 and Figure 5.7 show the variation of the internal energy per atom with temper-

ature under conditions of constant volume and temperature (NVT) and constant pressure
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Figure 5.6: Comparison of the change in internal energy of a perfect Lennard-Jones crystal under
NVT conditions using the max-ent method with the Dulong and Petit model. The material used is
solid Argon.

and temperature (NPT), respectively. The energy is plotted for 3rd and 5th degree quadra-

ture rules. We enlist our observations as follows:

• Figure 5.6 shows that the change in internal energy with temperature obtained by us-

ing both quadrature rules is in very good agreement with the classical law of Dulong

and Petit. As the temperature becomes very high compared to the melting tempera-

ture of 83 K, and anharmonic terms dominate, the slopes begin to deviate from 3kB

as expected. Even at 80 K, the Cv obtained from the 3rd and 5th degree quadrature

rules are almost equal and differ from 3kB by about 1.0 %. However, this value differs

from the experimentally observed value of 2.49 × 10−4 eV per atom [9] at the same

temperature by 2.7 % .

• Based on Figure 5.7, we can draw a qualitative conclusion that the max-ent approach

satisfies the inequality Cp > Cv. However, the result for the 3rd degree quadrature
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Figure 5.7: Change in internal energy of a perfect Lennard-Jones crystal under NPT conditions
using the max-ent method with 3rd degree and 5th degree quadrature rules. The material used is
solid Argon.

rule overestimates the value of Cp. This is consistent with its behavior for thermal

expansion as shown in Figure 5.3.

• Finally, we note that these results are consistent in the sense that the 3rd degree

quadrature rule always predicts higher energy than the 5th degree quadrature since it

is closer to the quasi-harmonic case.

EAM-type potentials

Figure 5.8 and Figure 5.9 show the variation of the internal energy per atom with temper-

ature under NVT and NPT conditions for the Sutton-Chen and EAM-Johnson potentials,

respectively. As in the case of thermal expansion, these results are in better agreement

than those for the Lennard-Jones pair potential. We observe that the Cv is in very close

agreement with the classical value of 3kB for both the potentials. However, the Cv decreases

slightly at high temperatures due to anharmonic effects as expected. Again, as expected,
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Figure 5.8: Comparison of the change in internal energy of a perfect crystal of Cu under NPT and
NVT conditions using the max-ent method with the Dulong and Petit model. The results are based
on the Sutton-Chen potential.

the max-ent approach satisfies the identity that Cp > Cv. We note again that the 3rd degree

quadrature gives very reasonable results for Cv and Cp, unlike in the case of the Lennard-

Jones potential, and probably shows the sensitivity of the method towards whether the

quadrature rule is applied to the phase space for many-body or pairwise interactions.

We conclude this section by summarizing the highlights of the results presented so far.

The numerical tests confirm that by accounting for the anharmonic terms in the inter-

action potential, the max-ent approximation scheme leads to a substantial improvement

over the traditional local quasi-harmonic approximation in modelling the thermal proper-

ties numerically. It also works for a much larger temperature range. At about half the

melting temperature, it reduces the error by almost 50 % for the Lennard-Jones and the

Sutton-Chen potential, whereas for the EAM-Johnson potential, it almost eliminates the

error. We also note that the results indicate a possible dependence of the quadrature rule

on the interatomic potentials, and hence a study to determine the optimal quadrature rule
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Figure 5.9: Comparison of the change in internal energy of a perfect crystal of Cu under NPT and
NVT conditions using the max-ent method with the Dulong and Petit model. The results are based
on the EAM-Johnson potential.

for different types of interactions (pairwise, many-body) should be worthwhile. It also bears

emphasis that, like molecular dynamics, our approaches are also limited by the choice of

the interaction potential. This is due to the fact that the potential is the soul source of

empiricism in the model. It is usually parameterized using bulk properties at zero tem-

perature and hence may not be suitable for capturing the thermal behavior of materials

that we are interested in. The contrast between the results of the Sutton-Chen and the

EAM-Johnson potential for the same material serves to illustrate the point. Thus, in other

words, we can only do as good as the empirical potential. Furthermore, this also highlights

the importance of comparing the proposed methods with molecular dynamics simulations

for the same potential and test sample rather than with experiments only.
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5.2 An adiabatic tension test

This is an illustrative example by way of which we wish to verify the capability of the

proposed methods to simulate the thermo-mechanical coupling via thermoelastic effects.

A way to model thermoelastic effects is to perform a tension or compression test under

adiabatic conditions which should reflect the effect of the local mechanical deformation on

the local temperature. A description of the test and a discussion of the results are presented

below.

Test problem definition

The sample used in the simulations is an fcc Lennard-Jones crystal with 4 × 4 × 12 unit

cells in the three directions comprising of 1013 atoms. The applied boundary conditions

are as follows. To treat the cube as lying on a rigid surface, only the z-displacement of the

atoms on the bottom surface is restricted. Using the symmetry of the problem, the atom at

the center of the node is fixed completely in order to avoid rigid motion. A uniform initial

temperature of 42 K (0.5Tm) is prescribed on the cube, while all the surfaces are thermally

insulated.

The test is performed using the WKB approach and the max-ent approach as it enables us

to observe the impact of the anharmonic terms. First, the sample is allowed to equilibrate

at the prescribed temperature adiabatically, which leads to a decrease in temperature. This

is achieved in the max-ent method by minimizing the internal energy at constant entropy

or simply by using 4t = 0. The relaxed sample is then subjected to the tension test, which

is implemented by applying displacement boundary conditions on the atoms of the top

surface. We use an increment of 0.05[σ], which is about 0.3 % of the length of the sample.
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Figure 5.10: Evolution of the temperature of the atom in the center of the sample versus load
increment during the adiabatic tension test. The temperature at zero load correspond to the value
after initial thermal expansion.

Discussion

Figures 5.10 and 5.11 show the change in temperature and the displacement of the node at

the center of the sample. In both the plots, the temperature and displacement at zero load

are the values obtained after the initial relaxation. Figure 5.12 shows some snapshots of

the sample at different load increments during the simulation. The contours represent the

temperature. These results enable us to make the following qualitative deductions.

• It may be observed that the temperature of the body decreases as the sample is

pulled, which is in accord with the expected behavior. As the sample is pulled,

the interatomic spacing increases which leads to a decrease in the frequencies of the

atoms. This implies a corresponding decrease in the energy in the lattice vibrations

and, hence, the temperature.

• We also note from Figure 5.12 that the surface effects lead to a larger decrease in
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Figure 5.11: z-displacement of the atom in the center of the sample versus load increment during the
adiabatic tension test. The displacement at zero load corresponds to the initial thermal expansion.

temperature on the surfaces and edges of the sample.

• Finally, on comparing the three methods, it is interesting to note that the only sig-

nificant difference in the temperature and extension of the sample occurs during the

initial relaxation.

5.3 A heat conduction example

In Chapter 3 we proposed a variational formulation for modelling non-equilibrium phenom-

ena such as heat conduction by appending to the equilibrium equations, the equation of

energy balance. Here, we seek to demonstrate the ability of the proposed QC framework to

simulate thermo-mechanical coupled behavior and the dissipation of heat through a crystal

by way of a numerical test subjecting a crystal to an initial non-uniform temperature profile.
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Figure 5.12: Temperature profile at δ = −0.5[σ] showing surface effects during the adiabatic tension
test based on the WKB method (bottom) and the max-ent method with 5th degree quadrature (top).
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Figure 5.13: The initial temperature profile in the form of a Gaussian function for the heat con-
duction example. The temperature T1 on the two ends is fixed.

Test problem definition

The sample used in the simulations is an fcc Lennard-Jones crystal with 4 × 4 × 12 unit

cells in the three directions comprising of 1013 atoms. The crystallographic orientation is

as shown before (Figure 5.1). Only first nearest neighbor interactions are considered. The

displacement boundary conditions are as follows. Atoms in the bottom surface are fixed at

their initial positions, whereas in all side surfaces the atoms are constrained to move only

in the z-direction. No displacement constraints are introduced on the top surface. Since we

shall prescribe non-uniform temperature along the z-direction, these boundary conditions

enable us to use the length of the cube in the z-direction as a measurement of thermal

expansion.

The initial temperature distribution is shown in Figure 5.13. The temperature at the two

ends is fixed at a value T1, and the initial temperature of the rest of the atoms is prescribed

to have a Gaussian profile along the z-direction. That is,

T (z) = T2 exp
[
−(z − L/2)2

λ2

]
+ T1 , (5.11)

where L is the length of the crystal in the z-direction. Thus, all atoms lying in the same
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cross-section normal to the z-direction have the same initial temperature. We have used

the following parameters for the simulations in order to avoid a very sharp peak due to the

small size of the sample:

T1 = 0.29 Tm, T2 = 0.29 Tm, λ2 = 10 ,

where the melting temperature Tm for solid Ar is 83 K. Intuitively, if we allow the crystal

to relax, the heat pulse should diffuse through the crystal, and at equilibrium, the sample

should have a uniform temperature T1 and the corresponding thermal expansion.

As discussed in Chapter 3, we treat this rate problem as an incremental extremum problem

stated in Eq. (3.44). The test is performed based on the max-ent approach with 3rd as

well as 5th degree quadrature. We use the conjugate gradient method to perform the

minimizations. However, since the conjugate gradient method cannot be used to determine

saddle points, we separate the above problem into two nested loops of conjugate gradient

method. The outer loop minimizes over q̄ and {ω}. At every line search of this conjugate

gradient loop, the nested conjugate gradient loop is called to maximize Φn with respect to

the temperature corresponding to the current values of q̄ and {ω}. The time step in the

heat equation is chosen to be 0.35 ps. The conductivity of solid Ar is 0.7W m−1K−1, which

is normalized to unity and absorbed in the reduced unit for time. The details are presented

in appendix D.

Discussion

Figure 5.14 and Figure 5.15 show the evolution of the temperature and the z-displacement

of the node in the center of the crystal. We choose this node because the cross-section in

the center experiences the highest temperature initially. Figure 5.16 shows the temperature
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profile along the sample at different time intervals during the simulation. For the purpose

of comparison, the same test is also performed on a rigid conductor. We use the same initial

and boundary conditions and the same test sample. Since the cube is rigid, the interaction

potential becomes irrelevant. We also know that the governing equation for heat conduction

in a rigid bar is the parabolic partial differential equation:

CvṪ = κ∆T, (5.12)

where we use the classical value for the specific heat, i.e., Cv = 3kB. As discussed in

Chapter 3, we discretize the equation in time based on the backward Euler finite difference

scheme and obtain the evolution of temperature by treating the problem as an incremental

variational problem. The result is shown in Figure 5.14. The exponential decay of the

Gaussian peak with time is in agreement with the analytical solution of Eq. (5.12). Based

on these results, we make the following observations:

• Both quadrature rules yield almost identical solutions for the evolution of tempera-

ture, as shown in Figure 5.14. Furthermore, the temperature evolution predicted by

the max-ent method is also exponential and in fact decays faster than in the case

of the rigid conductor. This behavior may be explained on the basis of physical un-

derstanding of the thermo-mechanical coupled problem. Since in this case some of

the energy contained in the lattice vibrations is used in the thermal relaxation of the

crystal, it accelerates the decay of the temperature pulse.

• From Figure 5.15 we observe that using the 3rd degree quadrature shows a higher

z-displacement as the crystal relaxes under the initial temperature profile. This dis-

crepancy in results for the 3rd and 5th degree quadrature rule are consistent with the
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Figure 5.14: Evolution of the temperature of the center atom of a Lennard-Jones solid with a
prescribed initial temperature profile having a Gaussian form. The temperature is normalized with
the melting temperature of solid Argon, Tm = 83K.

thermal expansion results discussed in the previous section.

• Nevertheless, after the first jump in the z-displacement of the center node, the subse-

quent change in displacement is very similar for both the quadrature rules as it follows

the exponential decay of the temperature.

• It is also verified that the max-ent solution for the thermal expansion converges to the

value obtained when the same sample is allowed to expand under isothermal conditions

at a uniform temperature T1. This is in agreement with our expectation since this is

the equilibrium solution for the heat equation consistent with the essential boundary

conditions.

• Finally, we wish to emphasize that the short time-step used in this test is selected in

order to capture the initial phase comprising of the rapid evolution of temperature

and deformation. To get an idea, the critical time step can be estimated as a function
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Figure 5.15: z-displacement of the center node of a Lennard-Jones bar during the dissipation of
the prescribed initial temperature profile having a Gaussian form.

of the mesh size as

∆ tc ≈ h2

D
, (5.13)

where D is the diffusion constant for the material. Since the sample used is atomistic,

h is the lattice spacing. Then, for solid argon,

h =
√

2× 3.4× 10−10 m, D =
κ

ρCv
= 8.346× 10−7 m2/s . (5.14)

This gives

∆ tc = 0.277 ps .

In case of a coarse-grained mesh, the critical time step would increase as the square

of the element size. Furthermore, the time-discretization of the variational problem is

based on the backward Euler finite difference scheme, which is unconditionally stable.
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Figure 5.16: Snapshots at various time intervals during the heat conduction simulation showing the
dissipation of a prescribed initial temperature profile having a Gaussian form. The test is performed
using the max-ent approach with 3rd degree quadrature rule.
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Thus, no limitation is imposed on the time step by the method. This is one of the

chief advantages of the max-ent approximation, that it allows for larger time steps and

hence can simulate very slow processes as well. This is unlike MD, which is limited

by a time step of about 10−14 seconds, which is on the order of the time-period of the

thermal oscillations of the atoms.

5.4 Nanoindentation examples

The final overarching application of the finite temperature quasicontinuum framework that

is pursued in this work is the nanoindentation problem. Nanoindentation is a conventional

experimental tool to study complex material behavior such as microstructure evolution via

defect nucleation. Since thermal effects may play a significant role in such microscopic phe-

nomena, we use nanoindentation examples to demonstrate the capabilities of the proposed

methods and open directions for future applications.

Nanoindentation with a spherical indenter

One of the nanoindentation tests that we simulate is with a spherical indenter. The test is

performed using the WKB method and, hence, under adiabatic conditions.

Test problem definition

The test sample is an fcc nearest-neighbor Lennard-Jones crystal with 32×32×32 unit cells,

or a total of 137,313 atoms. The surfaces of the sample are aligned with the cube directions

(Figure 5.1). The imposed boundary conditions are the same as in the adiabatic test in

order to allow stress-free initial thermal expansion of the crystal. The indenter is applied

on this relaxed sample. An initial temperature of 0.5Tm is prescribed, and all the surfaces

are thermally insulated. The initial mesh is tailored to the nanoindentation geometry with
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Figure 5.17: Geometry of the nanoindentation setup for a spherical indenter and the initial mesh.
A’B’C’D’ is the region shown in the snapshots of the temperature evolution.

atomistic resolution just under the indenter and an increasingly coarser triangulation away

from this region. Figure 5.17 shows the triangulation of a cross-section through the center of

the cube with y = const. The initial number of nodes is 757 which is a significant reduction

from the total number of atoms.

For the spherical indenter, we use a model proposed by Kelchner et al. [20] and used in the

analysis of the quasicontinuum method presented in [21]. The indenter is implemented as

an external potential interacting with atoms on the top surface of the cube. The potential

is of the form

Φext(r) = AH(R− r) (R− r)3 , (5.15)

where R is the radius of the indenter, r is the distance between a site and the center of

the indenter, A is a force constant and H(r) is the step function. In our calculations, the

parameters have the following values:

R = 25 [σ], A = 2000 [4ε/σ3] . (5.16)
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Figure 5.18: Force versus indenter depth plot for the nanoindentation test with a spherical indenter
using the WKB method.

Discussion

Figures 5.19 and 5.20 show the snapshots of the temperature profile in the vicinity of the

indenter at various indenter depths during the simulation. The images are of the region

A’B’C’D’ of the cross-section under the indenter, shown schematically in Figure 5.17. Figure

5.18 also shows a comparison of the force versus indenter depth curves obtained at finite

temperature and zero temperature. These results enable us to make the following qualitative

interpretations:

• Figures 5.19 and 5.20 show a significant change in temperature during the nanoin-

dentation simulation. This is true even as the crystal deforms elastically before the

nucleation of defects. Although the prescribed temperature is 0.5Tm, the tempera-

ture at the start of indentation is about 0.32 Tm since the initial thermal expansion is

adiabatic. The maximum temperature reached when δ = −1.8 [σ] is about 0.58Tm,

which is a 80% rise. Based on the analysis of the results for bulk properties and the
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Figure 5.19: Snapshots showing the temperature profile of a section under the indenter at different
indentation depths during the simulation. The test is performed using the WKB approach under
adiabatic conditions.
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Figure 5.20: Snapshots at subsequent load increments showing the temperature profile under the
indenter after a dislocation has nucleated. The test is performed using the WKB approach under
adiabatic conditions.
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Figure 5.21: Dislocation structure under a spherical indenter predicted by the quasicontinuum
method at indentation depth δ = 1.7[σ] under adiabatic conditions based on the WKB approach.
The figure displays the energetic atoms (red) under the top surface of the crystal (blue).

adiabatic tests, we note that this may be an implication of the quasi-harmonic approx-

imation, which is found to give higher estimates for thermal expansion. Consequently,

it should also predict greater change in the local temperatures, which depend on the

local deformation through Eq. (4.68). This rationale needs further investigation by

comparing with molecular dynamics studies.

• Another manifestation of the quasi-harmonic approximation is the significant thermal

softening observed in Figure 5.18 on comparison with the force versus indenter depth

curve for zero temperature. Although softening is expected based on our understand-

ing of behavior of solids on the continuum scale, the predictions may be overestimates

due to the aforementioned reason.

• We also note from Figure 5.19 that at non-zero temperature the first dislocation is

nucleated at the indenter depth of 1.5 [σ], and the corresponding force is about 4282.3
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pN. This is also indicated by a slight reduction in the slope of the force-indenter

depth curve, although it is not very sharp. In the zero temperature case, the first

dislocation is observed at δ = −1.6 [σ], and the corresponding indenter force is 5462.5

pN. This confirms that defects are nucleated earlier, that is, at lesser force as well as

lesser indenter depth, at finite temperature. This is in qualitative agreement with the

observation of Dupuy et al. [10] and the experimental study by Schuh et al. [32].

• The difference in the images at δ = −1.4 [σ] and δ = −1.5 [σ] shows that the dislocation

leads to an increase in temperature under the indenter along the (111) slip plane. On

continuing the loading (Figure 5.20), the dislocation is observed to move towards the

free surface while the hot region under the indenter along the slip plane continues to

spread.

• Figure 5.21 shows the dislocation structure under a spherical indenter predicted by

our method. The defect structures are extracted using the centrosymmetry parameter

as described in [20]. The result is in agreement with defect structures observed in fcc

crystals [15]. We observe that a partial dislocation loop is emanated under the indenter

along the (111) plane. Moreover, since the nearest-neighbor Lennard-Jones potential

has zero stacking fault energy, we observe that the stacking fault grows in area as the

indentation continues.

Nanoindentation with a rectangular indenter

Here we describe a nanoindentation test with a rectangular indenter based on the max-

ent approach with 3rd degree quadrature rule. Nanoindentation using this indenter has

been studied in [34] as a plain strain problem. We choose to use the 3rd degree quadrature

based on the fact that the results for the tension test using the 3rd and the 5th degree
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quadrature rules were almost alike and that the simulations in the former case are faster

due to fewer quadrature points. Since the max-ent scheme allows for heat conduction, we

perform the tests at two different indentation velocities. The first test is performed under

locally adiabatic conditions, while the second is performed at a finite indentation velocity.

The description of the tests and the results are provided below.

B

A

C

D

A B

CD

PP

Figure 5.22: Geometry of the nanoindentation setup for a rectangular indenter.

Test problem definition

The sample is the same as used in the previous nanoindentation example, consisting of

137,313 atoms. The indenter is a rigid flat punch and is applied along one of the diagonals

of the top surface of the cube, as shown in Figure 5.22. Since the [111] planes are the

preferred slip planes, the dislocations may be observed conveniently in the [110] plane,

denoted by ABCD in Figure 5.22. The initial mesh comprises of atomistic region only in

the vicinity of the indenter and has 3506 representative atoms. A cross-section of the initial

triangulation is shown in Figure 5.23. The boundary conditions imposed on the lateral and

bottom surfaces are the same as before. The indenter is applied as displacement boundary

conditions on a strip of atoms on the top surface corresponding to the width of the punch.
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In our calculations, we used the following parameters for the punch:

W = 9 [σ], δ = −0.1 [σ] .

Before the indentation process, the cube is allowed to equilibrate isothermally at a uniform

temperature of T = 0.5Tm. On this sample, the adiabatic test is performed by specifying

4t = 0, which is corresponds to high speed indentation. The second test is performed at

4t = 50 [κσ/kB], which is equivalent to a time step of 17.4 ps. This allows the heat to

diffuse through the cube. The indenter velocity may be calculated as

V =
δ

4t
= 1.95 m/s . (5.17)

A‘ B‘

C‘ D‘

A B

C D

Figure 5.23: Initial mesh for the nanoindentation test with rectangular indenter. A’B’C’D’ is the
region shown in the snapshots of the temperature evolution.

Discussion

Figures 5.25 and 5.26 show the snapshots of the temperature profile under the indenter for

the adiabatic test, whereas Figure 5.27 shows images of the temperature in the test with

heat conduction, i.e., with a non-zero time step. Figure 5.24 presents a comparison of the
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force versus indenter depth curves for the two cases. A qualitative discussion of the results

is as follows.
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Figure 5.24: Force versus indenter depth plot for a rectangular indenter using the max-ent approach
under adiabatic and isothermal conditions.

• Based on Figures 5.25 and 5.26, we observe the evolution of temperature as the in-

dentation proceeds in the adiabatic case. In the last image in Figures 5.26, when the

indenter depth is −0.12 [σ], the temperature under the edges of the punch is 0.6Tm,

which is a 20 % rise from the prescribed temperature. This is significantly less than

that observed with the WKB method, but is expected. Since the anharmonicity of

the potential is accounted for here, these results should be more accurate. It would

be insightful to compare the results of this study based on molecular dynamics simu-

lations.

• The heating under the edges of the indenter is expected. In addition, we note that this

hot region spreads out along the (111) plane as the dislocation propagates. However,

the significant temperature difference at the dislocation core needs further investiga-
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tion. It is probable that the temperature difference is mediated by the deformation

field above and below the slip plane. Furthermore, since the test is adiabatic, the

system is unable to diffuse the heat generated. However, we also observe that the slip

plane ends where the coarse-grained region begins, which may be a potential source of

numerical error. This limitation may be rectified by lowering the refinement tolerance

and by allowing the system to equilibrate and remesh at the same load.

• Figure 5.24 indicates a negligible variation in the force indenter curve for the adiabatic

and isothermal cases. We also note that the dislocation nucleation occurs at the same

indenter depth for both speeds. Furthermore, unlike in the case of spherical indenter,

the drop in the force is much more pronounced due to higher stress concentration

caused by the sharp edges.

• Figure 5.27 shows the temperature profile under the indenter when heat can diffuse

through the crystal. The negligible change in temperature implies that the indentation

speed is slow enough to allow dissipation of the heat generated locally. In other

words, the time step used in the test is such that the indenter velocity is less than

the critical velocity for the material, thereby making the process isothermal. We use

the diffusivity, D, of solid Ar and the lattice constant specified in 5.14 to evaluate the

critical velocity as

Vc =
D

a
= 17.3 m/s , (5.18)

which confirms that the indentation velocity used is in the isothermal range since

V < Vc.

• Finally, we note that the time step of 17.4 ps is about 1800 times larger than a

typical time step used molecular dynamics simulations. This demonstrates that the
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proposed method for modelling non-equilibrium phenomena using the quasicontinuum

framework does not impose any limitations on the time step. Thereby, it facilitates

the simulation of the entire spectrum of thermodynamic processes, ranging from very

slow or isothermal processes to processes that are fast but may still be modelled by

neglecting the inertial or dynamic effects.

• Figure 5.28 shows the dislocation structure under a rectangular indenter. As expected,

we observe that the first partial dislocation is emitted along the (111) plane followed

by a stacking fault ribbon. Since the nearest-neighbor Lennard-Jones potential has

zero stacking fault energy, we do not observe a second partial dislocation. Moreover,

the stacking fault grows in size as the indentation proceeds. As observed in Figures

5.26 and 5.27, the slip creates a step at the top surface of the crystal.

This concludes the presentation of our results that serve to validate the methods developed

in this work as well as demonstrate their applicability. The results for the nanoindentation

tests described here are illustrative and preliminary, and we intend to investigate them

further using the non-equilibrium finite temperature QC developed here.
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d = -0.9 [s]

d = -0.6 [s]

d = -0.1 [s]

Figure 5.25: Snapshots showing the temperature profile of a section under the indenter at different
indentation depths during the simulation. The test is performed using the max-ent approach under
adiabatic conditions.
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d = -1.1 [s]

d = -1.0 [s]

d = -1.2 [s]

Figure 5.26: Snapshots at subsequent load increments showing the temperature profile under the
indenter after a dislocation has nucleated. The test is performed using the max-ent approach under
adiabatic conditions.
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d = -1.2 [s]

d = -1.0 [s]

d = -1.1 [s]

Figure 5.27: Snapshots at subsequent load increments showing the temperature profile under the
indenter after a dislocation has nucleated. The test is performed using the max-ent approach with
heat conduction. The negligible variation in temperature shows that the conditions are isothermal.
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Figure 5.28: Dislocation structure under a rectangular indenter predicted by the quasicontinuum
method at indentation depth δ = 1.2[σ] under adiabatic conditions. The figure displays the energetic
atoms (red) under the top surface of the crystal (blue).
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Chapter 6

Concluding remarks and future
directions

Before closing, we summarize the primary accomplishments of this thesis and discuss some

of the limitations and potential directions for future investigations.

This work proposes two computational methods for deriving thermodynamic potentials by

systematically averaging over the atomistic dynamics, or the thermal motion of atoms.

These approximation schemes essentially achieve a homogenization on the temporal scale,

thereby facilitating the simulation of quasistatic processes and systems in thermodynamic

equilibrium. The main advantage of the methods over atomistic models such as molecular

dynamics lies in the elimination of the need to keep track of all the degrees of freedom in

the system. Nevertheless, in the spirit of the quasicontinuum theory, all input regarding

the behavior of the atoms is purely atomistic. Furthermore, both methods are very general

and may be applied to any material and crystal structure given an appropriate interaction

potential. We recall that the max-ent approach furnishes a Gaussian probability distribu-

tion function, which can account for the anharmonicity of the interatomic potential in the

macroscopic energy of the system up to 5th order for pairwise interactions, and 3rd order for

many-body interactions. Our results predict that this leads to a significant improvement

over many methods based on the canonical distribution from statistical mechanics, which
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require the local quasi-harmonic approximation for numerical implementation especially for

very large systems. Thus, the max-ent method is capable of modelling material behavior

at high temperatures, even close to the melting point of the material, where the harmonic

approximation fails.

The macroscopic energy functionals, derived in Chapters 2 and 4, provide a natural way of

formulating a finite temperature version of the quasicontinuum theory. We recall that the

energy functionals obtained after the max-ent or the WKB treatment are functions of the

state variables only. For instance, the free energy is a function of the mean atomic posi-

tions, the temperature, and the mean field parameters, in the case of the max-ent approach.

Then, for quasistatic processes such as thermal expansion, or isothermal nanoindentation,

the problem of determining the metastable equilibrium configurations of the system is equiv-

alent to the minimization of the free energy over appropriate state variables. The solution to

this minimization problem is effectively achieved by using the quasicontinuum framework,

which facilitates a spatial coarse-graining of the atomistic description. In Chapter 3, we

also propose an extension of the finite temperature quasicontinuum theory, based on the

work of Yang et al. [44], to model non-equilibrium thermodynamic processes such as heat

conduction through the system. The variational formulation is developed by constructing a

joint incremental energy functional whose Euler-Lagrange equations yield the equilibrium

equations as well as the time-discretized heat equation. This version, in conjunction with

the existing features of the quasicontinuum method, possesses several capabilities desired

in a computational tool for material modelling. The most notable is the ability to simulate

microstructural evolution along with the associated thermo-mechanical coupled behavior

of the material. Another advantageous feature is the flexibility regarding the choice of a

time-step. Since the rate problem is treated as an incremental minimization problem on
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the macro-scale with the energy of the phonons already accounted for, the time step is not

restricted by the scale of the atomic oscillations. Moreover, we use the backward Euler

finite difference scheme for the time-discretization, which is unconditionally stable. This

provides the max-ent method the flexibility to simulate thermodynamic processes that may

be very slow or isothermal and, hence, beyond the reach of atomistic models such as molec-

ular dynamics. These features are demonstrated qualitatively by the nanoindentation tests

presented in Chapter 5. Furthermore, being a seamless multiscale method, the quasicon-

tinuum method does not involve an interface separating the fine and the coarse-grained

regions, unlike many other multiscale methods which require additional artifacts or special

treatment of the boundary at finite temperature.

Apart from the above features, it is vital to bear in mind the limitations born out of the

approximations made in the work. Many of them also make challenging problems for future

research. Due to the use of the quasi-harmonic approximation, the method based on formal

asymptotics is restricted to reasonably low temperatures where the anharmonic effects as

well as the quantum effects may be negligible. Furthermore, it is suitable only for locally

adiabatic conditions, that is, for processes that are so fast that there is not sufficient time

for the atoms to exchange heat with their environment. Consequently, this method does not

support heat transport through the system. The max-ent method uses Gauss quadrature

to compute phase averages of the atomistic system approximately, which is a source of

numerical error. Hence, as suggested by the results for bulk properties, it is important to

perform a convergence study in order to determine the optimal degree of quadrature rule

depending on whether the interatomic potential involves only pairwise terms or many-body

interaction terms. The results in Chapter 5 indicate that the 3rd degree quadrature rule

suffices for the embedded-atom method which involves many-body interactions whereas,
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the Lennard-Jones pair potential requires the 5th degree formula at high temperatures.

The entire work is based on the local thermal equilibrium assumption in addition to the

quasistatic assumption for macroscopic processes. Thus, it assumes the existence of two

relaxation times – the relaxation time for the establishment of statistical equilibrium in the

whole system and another, much shorter, for establishing equilibrium within a small cell in

the domain. Furthermore, in many problems, it may be insightful or sometimes essential

to model the actual dynamics of the atoms in the localized regions of high activity. For

instance, in order to model adiabatic or very fast processes, it is important to take the

inertial effects into account. However, the quasicontinuum theory described in this work

can model only quasistatic processes. Thus, coupling of atomistic models such as molecular

dynamics with finite temperature QC presents a worthwhile direction for future research.

Such a problem would involve the modelling of the conversion between phonons in the

atomistic region and heat in the coarse-grained region. A possible way of achieving this is

provided by the max-ent method, which introduces the mean atomic momenta as additional

variables. The equilibrium equations can then be replaced by the Hamilton’s equations in

order to model a dynamic problem. One of the remaining challenges in using the QC

framework for dynamic processes, which is essentially a numerical one, is the problem of

spurious reflections of the high frequency waves at the fine-coarse interface as they cannot

propagate into the coarse regions.

Among the short term goals, we wish to pursue the validations tests further, especially

for the heat conduction and the nanoindentation tests. We wish to investigate the effect of

surfaces on the heat conductivity of nanowires and compare with experimental observations.

We intend to continue the nanoindentation test for a range of temperatures and a range

of indenter velocities in order to quantitatively study their effect on dislocation nucleation
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and heat diffusion through the crystal. We also aim to simulate these tests for materials

with more complex interaction potentials such as the embedded-atom method for pure

metals. The tests demonstrated here also serve to indicate other interesting applications

such as failure of a nanowire with a geometric defect under tension and void growth at finite

temperature.

As noted earlier, the interatomic potential introduces empiricism into the model. The

Fourier law of heat conduction, which is appended to the equilibrium equations, is also

a phenomenological relation. Thus, the method depends significantly on these empirical

factors for accurately predicting material response at finite temperature. Since phonon-

phonon interactions, accounted for by the anharmonicity of the interaction potential, is

understood to facilitate heat or energy transport, the possibility of deriving heat conduction

directly from the atomistic dynamics by considering the anharmonic terms using the max-

ent approach is a problem worth exploring. Finally, the idea of appending additional

empirical models through the energy functional opens a possible avenue for incorporating

additional physics such as mass diffusion and electrical-thermo-mechanical coupling into the

theory of the quasicontinuum.
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Appendix A

Calculations for some interaction
potentials

The following sections describe the details of the calculations for the two empirical in-

teratomic potentials used in this work, namely, the Lennard-Jones pair potential and the

Sutton-Chen form of many-body potentials. The analytical expressions for the interaction

potentials, the corresponding energy of the crystal, the force on each atom, the dynamical

matrix of each atom based on the local quasi-harmonic approximation, and the derivative

of its trace are presented.

A.1 Lennard-Jones potential

The Lennard-Jones pair potential has the form

φ(r) = 4ε
[(σ

r

)12
− 2

(σ

r

)6
]

, (A.1)

where r is the interatomic distance, σ is the first nearest neighbor distance at equilibrium

at zero temperature, and −4ε is the corresponding energy of the bond in that state. For
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solid Argon, the parameters have the following values:

σ = 0.34 nm, 4ε = 0.0104 eV . (A.2)

The total potential energy of the crystal is

V =
N∑

a=1

1
2

∑

b

φ(rab) . (A.3)

The summation over b excludes the case where a = b. The force experienced by atom a is

given by

∂V

∂qa

=
∑

b

φ′(rab)
rab

rab
, (A.4)

where

∂rab

∂qa

=
1

2rab

∂

∂qa

rab · rab =
1

rab
rab (A.5)

with

rab = qa − qb .

Differentiating A.4 again with respect to qa gives the 3×3 dynamical matrix, Ka, associated

with the atom a as

∂2

∂qa∂qa

V =
∑

b

[
φ′(rab)

rab
δ +

(
φ′′(rab)− φ′(rab)

rab

)
1

r2
ab

rab ⊗ rab

]
, (A.6)

δ being the 3×3 identity tensor. Consequently, the trace of the stiffness matrix is computed

as

TrKa =
∑

b

[
φ′′(rab) + 2

φ′(rab)
rab

]
(A.7)
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. In the quasi-harmonic case, the local stiffness matrices are not constants, but depend on

the macroscopic deformation of the crystal. Taking partial derivative of the traces of Ka

and Kb with respect to qa, respectively, yields

∂

∂qa

TrKa =
∑

b

[
φ′′′(rab) + 2

φ′′(rab)
rab

− 2
φ′(rab)

r2
ab

]
rab

rab
(A.8a)

∂

∂qa

TrKb =
[
φ′′′(rab) + 2

φ′′(rab)
rab

− 2
φ′(rab)

r2
ab

]
rab

rab
. (A.8b)

A.2 EAM-Johnson potential

The embedded-atom method is an empirical many body potential developed for modelling

the behavior of fcc transition metals ([7], [18]). The total potential energy of the crystal is

given as

V =
N∑

a=1

[
D

2

∑

b

φ(rab) + F (ρa)

]
, (A.9)

where the first term is a pairwise repulsive term, while the second represents a density

dependent cohesion term known as the embedding function. In our calculations, we use the

analytical forms for these functions proposed in the work of Johnson [18].

φ(r) = φe exp[−γ(
r

re
− 1)] (A.10a)

F (ρ) = −Ec

[
1− α

β
ln

ρ

ρe

]
(

ρ

ρe
)α/β − Φe(

ρ

ρe
)γ/β (A.10b)

ρa =
∑

b

f(rab) (A.10c)

f(r) = fe exp[−β(
r

re
− 1)] , (A.10d)
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where re and ρe are, respectively, the nearest neighbor distance and the density at equilib-

rium at 0 K. α, β, γ, φe, Ec and fe are material parameters optimized by fitting material

properties such as cohesive energy and bulk modulus at 0 K. For Cu, the parameters have

the following values:

a = 0.361 nm, Ec = 3.54 eV, φe = 0.59 eV

α = 5.09, β = 5.85, γ = 8.00 .

(A.11)

The force experienced by each atom is, then, given by

∂V

∂qa

=
∂F

∂qa

(ρa) +
∑

b

∂F

∂qa

(ρb) +
∑

b

∂

∂qa

φ(rab)

= F ′(ρa)
∂ρa

∂qa

+
∑

b

F ′(ρb)
∂ρb

∂qa

+
∑

b

φ′(rab)
∂rab

∂qa

=
∑

b

{
[F ′(ρa) + F ′(ρb) ] f ′(rab) + φ′(rab)

} rab

rab
, (A.12a)

where

∂ρa

∂qa

=
∑

b

f ′(rab)
∂rab

∂qa

,
∂ρb

∂qa

= f ′(rab)
∂rab

∂qa

(A.13)

and

∂rab

∂qa

=
1

2rab

∂

∂qa

rab · rab =
1

rab
rab (A.14)

with

rab = qa − qb .
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The summations over b exclude the case where a = b. The 3 × 3 dynamical matrix, Ka,

associated with each atom a has the form

∂2

∂qa∂qa

V = F ′′(ρa)

[∑
c

f ′(rac)
rac

rac

]
⊗

[∑

b

f ′(rab)
rab

rab

]

+
∑

b

F ′′(ρb)[f ′(rab)]2
1

r2
ab

rab ⊗ rab

+
∑

b

[F ′(ρa) + F ′(ρb) ]
[
f ′(rab)

rab
δ +

(
f ′′(rab)− f ′(rab)

rab

)
1

r2
ab

rab ⊗ rab

]

+
∑

b

[
φ′(rab)

rab
δ +

(
φ′′(rab)− φ′(rab)

rab

)
1

r2
ab

rab ⊗ rab

]
.

(A.15)

The trace of the stiffness matrix is of the form

TrKaa =
∑

b

[
φ′′(rab) + 2

φ′(rab)
rab

]

+
∑

b

F ′′(ρb) [f ′(rab)]2 +
∑

b

F ′′(ρa)f ′(rab)

{∑
c

f ′(rac)
rac

rac

}
· rab

rab

+
∑

b

[F ′(ρa) + F ′(ρb) ]
[
f ′′(rab) + 2

f ′(rab)
rab

]
.

(A.16)
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Differentiating the trace of Ka with respect to qa yields

∂

∂ua
TrKa =

∑

b

[
φ′′′(rab) + 2

φ′′(rab)
rab

− 2
φ′(rab)

r2
ab

]
rab

rab

+
∑

b

[F ′(ρa) + F ′(ρb)]
[
f ′′′(rab) + 2

f ′′(rab)
rab

− 2
f ′(rab)

r2
ab

]
rab

rab

+
∑

b

2F ′′(ρb) f ′′(rab)f ′(rab)
rab

rab

+
∑

b

F ′′(ρb)f ′(rab)
[
f ′′(rab) + 2

f ′(rab)
rab

]
rab

rab

+
∑

b

F ′′′(ρb)[f ′(rab)]3
rab

rab

+
∑

b

F ′′(ρa)
[
f ′′(rab) + 2

f ′(rab)
rab

] {∑
c

f ′(rac)
rac

rac

}

+
∑

b

F ′′′(ρa)

[{∑
c

f ′(rac)
rac

rac

}
·
{∑

c

f ′(rac)
rac

rac

}]
f ′(rab)

rab

rab

+
∑

b

2F ′′(ρa)

[∑
c

{
f ′(rac)

rac
δ +

(
f ′′(rac)− f ′(rac)

rac

)
1

r2
ac

rac ⊗ rac

}]
f ′(rab)

rab

rab
.

(A.17)
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Differentiating the trace of Kb with respect to qa, b being a neighbor of atom a, yields

∂

∂ua
TrKb =

[
φ′′′(rab) + 2

φ′′(rab)
rab

− 2
φ′(rab)

r2
ab

]
rab

rab

+ [F ′(ρa) + F ′(ρb) ]
[
f ′′′(rab) + 2

f ′′(rab)
rab

− 2
f ′(rab)

r2
ab

]
rab

rab

+ 2F ′′(ρa) f ′′(rab)f ′(rab)
rab

rab

+ F ′′(ρb)f ′(rab)

[∑
c

{f ′′(rbc) + 2
f ′(rbc)

rbc
}
]

rab

rab

+ F ′′′(ρb)f ′(rab)

[{∑
c

f ′(rbc)
rbc

rbc

}
·
{∑

c

f ′(rbc)
rbc

rbc

}]
rab

rab

− 2F ′′(ρb)
(

f ′′(rab)− f ′(rab)
rab

) [{∑
c

f ′(rbc)
rbc

rbc

}
· rab

rab

]
rab

rab

− 2F ′′(ρb)
f ′(rab)

rab

{∑
c

f ′(rbc)
rbc

rbc

}

+ F ′′(ρa)[f ′′(rab) + 2
f ′(rab)

rab
]

{∑
c

f ′(rac)
rac

rac

}

+ F ′′′(ρa)[f ′(rab)]2
{∑

c

f ′(rac)
rac

rac

}

+
∑

d

F ′′′(ρd)f ′(rad)[f ′(rab)]2
rad

rad

+
∑

d

F ′′(ρd)f ′(rad)
[
f ′′(rbd) + 2

f ′(rbd)
rbd

]
rad

rad
.

(A.18)

The last two terms include the contributions from those neighbors of b, which are also

neighbors of a and we denote them by d.

A.3 Sutton-Chen potential

This is another empirical many-body potential developed for fcc transition metals by Sutton

and Chen [37]. Since the potential energy in the case of the embedded-atom method has

the same form as Eq. (A.9), all expressions derived in section A.2 remain valid. Only the
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analytical forms given in Eqs. (A.10a-A.10d) are replaced by the following:

φ(r) = D
(σ

r

)n
(A.19a)

F (ρa) = −Dca
√

ρa (A.19b)

ρa =
∑

b

f(rab) (A.19c)

f(r) =
(σ

r

)m
, (A.19d)

where σ is the lattice constant for the metal at 0 K. The parameters D, c, m, and n are

optimized to fit material properties such as the cohesive energy and the bulk modulus at 0

K. For Cu, the parameters have the following values:

a = 0.361 nm, D = 0.012382 eV,

c = 39.432, m = 6, n = 9 .

(A.20)
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Appendix B

Gauss Quadrature for multiple
integrals

This appendix presents a brief summary of the third and fifth degree quadrature rules for

multiple integrals in a space of dimension n used in our calculations. The expressions and

the quadrature tables were obtained from the work of A. H. Stroud [36]. In particular, we

are interested in the following integrals with gaussian weighting functions:

I(f) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, . . . , xn) exp[−x2

1 − · · · − x2
n]dx1 . . . dxn . (B.1)

An M -point numerical quadrature approximates the integral as

I(f) ≈
M∑

k=1

f(νk)Wk , (B.2)

where νk is an n-dimensional vector at the kth quadrature point:

νk = ν1k, . . . , νnk .

The expressions for the quadrature points and the associated weights are given below.
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B.1 Third degree quadrature

This formula has 2n points. The points and coefficients are obtained by requiring that

the formula should integrate all monomials of degree ≤ 3 exactly. Since the domain of

integration is Rn and the gaussian weight has the property

w(x) = w(−x) ,

the distribution of quadrature points is assumed to be fully symmetric. That is, we assume

that the formula consists of 2n points νk and −νk and that the coefficient of νk equals that

of −νk. Thus, for an n-dimensional space, the points are

(± r, 0, . . . , 0)

...

(0, . . . , 0,± r)

with the coefficient

Wk =
1
2n

V, k = 1, . . . , n ,

where

V = I(1) = πn/2, r2 =
n

2
. (B.4)

B.2 Fifth degree quadrature

This formula has n2 +n+2 points. The formula is obtained by requiring that it be exact for

all monomials of degree ≤ 5. Owing to the symmetry of the domain, the formula consists of
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1
2(n2 + n + 2) points νk and their negatives, −νk. The coefficient of νk equals that of −νk.

For an n-dimensional space, the 5th degree quadrature points and their coefficients can be

written as follows using 8 parameters:

(η, η, . . . , η, η) A

(λ, ξ, . . . , ξ, ξ) B

...

(ξ, ξ, . . . , ξ, λ) B

(µ, µ, γ, . . . , γ) C

(µ, γ, µ, . . . , γ) C

...

(γ, . . . , γ, µ, µ) C

(−η,−η, . . . ,−η,−η) A

(−λ,−ξ, . . . ,−ξ,−ξ) B

...

(−ξ,−ξ, . . . ,−ξ,−λ) B

(−µ,−µ,−γ, . . . ,−γ) C

(−µ,−γ,−µ, . . . ,−γ) C

...

(−γ, . . . ,−γ,−µ,−µ) C .

The values of the eight parameters for different dimensions are provided in [35].
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Appendix C

The WKB approximation

The WKB method is a perturbation technique for obtaining approximate global solutions

to linear differential equations whose highest derivative is multiplied by a small parameter

ε. The WKB approximation for such singularly perturbed problems is illustrated using the

following example from [2]. Consider the ODE

ε2ÿ(t) + ω2(t)y(t) = 0 . (C.1)

We wish to ascertain the asymptotic behavior of the solutions in the limit of ε → 0. The

formal WKB expansion is

y(t) ∼ exp

(
ε−1

∞∑

n=0

εnSn(t)

)
. (C.2)

The first and the second derivatives of y(t) are

ẏ(t) ∼ ε−1

( ∞∑

n=0

εnṠn(t)

)
exp

(
ε−1

∞∑

n=0

εnSn(t)

)
(C.3a)

ÿ(t) ∼


ε−1

∞∑

n=0

εnS̈n(t) + ε−2

( ∞∑

n=0

εnṠn(t)

)2


 exp

(
ε−1

∞∑

n=0

εnSn(t)

)
. (C.3b)
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Substituting these in Eq. (C.1) and gathering terms of order 1 and ε we obtain

Ṡ2
0 + ω2(t) = 0 ⇒ S0 = ±

∫ t

0
iω(s)ds (C.4a)

S̈0 + 2Ṡ0Ṡ1 = 0 ⇒ S1 = −1
4

ln{iω2(t)} . (C.4b)

Therefore, the first–order WKB approximation is

y(t) ∼ eε−1S0+S1

∼ ω−1/2(t)
{

A cos
(

ε−1

∫ t

0
ω(s) ds

)
+ B sin

(
ε−1

∫ t

0
ω(s) ds

)}
.

(C.5)
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Appendix D

Dimensionless units

In the computational implementation of the methods developed in Chapters 2 - 4, we

express all physical quantities in dimensionless units. Here, we present an overview of all

the reduced units used in the calculations. The mass, distance, and energy are regarded as

fundamental quantities and have the following material constants, respectively, as units:

• m – mass of an atom of the material under consideration. For solid argon and copper,

m has the following values:

Ar : m = 39.948× 1.6726× 10−27 kg

Cu : m = 63.55× 1.6726× 10−27 kg

(D.1)

• σ0 – nearest neighbor distance for a crystal structure. For solid Ar, σ0 = 0.34 nm,

and for Cu, σ0 = 0.3615 nm.

• e – the energy constant for the empirical interatomic potential. For solid Ar, e =

0.0104 eV for the Lennard-Jones potential, and for Cu, e = 0.59 eV for the EAM-

Johnson potential.

The units of the remaining quantities are derived as appropriate combinations of these. We

shall denote the normalized quantities by the superscript “∗”. Thus, the reduced energy
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functional E∗ has the units of e. Recall that we introduced mass-reduced coordinates in or-

der to simplify our analyses. Consequently, all distances may be expressed in dimensionless

units as

q∗ =
q√
mσ0

, q̄∗ =
q̄√
mσ0

, u∗ =
u√
mσ0

. (D.2)

In the mass-reduced coordinates given in (2.1), the momentum has the unit of the square

root of energy. Hence,

p∗ =
p√
e
, σ∗ =

σ√
e

, (D.3)

where σ is the standard deviation of the atomic momenta defined in the max-ent approach.

The dimensionless unit of force is obtained as e/
√

mσ0 since

f∗ =
∂E∗

∂q∗
=

∂E

∂q

√
mσ0

e
=
√

mσ0

e
f , (D.4)

where f is the force in mass-reduced coordinates expressed in N/
√

kg. Similarly, the stiffness

matrix K is expressed in N/kg.m and, hence, it follows that

K∗ =
mσ2

0

e
K . (D.5)

Since the frequencies are square roots of the eigenvalues of the stiffness matrix, K,

ω∗ = σ0

√
m

e
ω . (D.6)

The unit of temperature is e/kB, where kB is the Boltzmann constant and has the value

8.617× 10−5 eV. This comes from the fact that kBT has the unit of energy. Normalizing it
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with e gives

T ∗ =
kB

e
T, k∗B = 1 . (D.7)

Similarly, since TS also has the unit of energy, the dimensionless unit of entropy is kB. We

note that ~ω also has the unit of energy, where ~ is the Planck constant. By normalizing

~ω with e and using Eq. (D.6), we can derive the dimensionless unit for ~ consistent with

the above as

~∗ =
~

σ0
√

me
. (D.8)

Using the values of mass, energy and σ0 in consistent units, we obtain the following values

for ~∗ for Ar and Cu

Ar : ~∗ = 0.029395

Cu : ~∗ = 0.004158 .

(D.9)

Finally, since the time enters our computations explicitly only as the time step 4t, we

use the heat equation to derive a convenient dimensionless unit for the time step. The

calculation is performed by normalizing Eq. (3.48) by e and all physical quantities by the

appropriate constants provided above. This yields

4t∗ =
κσ0

kB
4t, κ∗ = 1 , (D.10)
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where κ is the conductivity of the material. For solid Ar and Cu we have the following

correspondence between the reduced and the physical units:

Ar : κ = 0.7 W m−1K−1 ⇒ 14t∗ = 0.05798 ps

Cu : κ = 401 W m−1K−1 ⇒ 14t∗ = 0.135 fs .

(D.11)
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