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Chapter 4 

Virtual Ligand Screening of Chemical Libraries for Mouse MrgC11 

Receptor: Combination of QSPR and Docking Methods1 

4.1 Introduction 

High-throughput screening (HTS) of chemical libraries is the widely adopted method for 

finding novel lead compounds in drug discovery. It enables a large number of compounds to be 

screened using highly automated, robotic techniques. Although HTS makes it possible in 

principle to test all available compounds, it is not necessarily feasible for a number of practical 

reasons. One of reasons is the cost of such screenings: even though the robotics and 

miniaturization have significantly reduced the unit cost, the huge number of compounds now 

available from many companies means that the overall expense can be significant. Moreover, as 

the available databases get larger and larger, the hit rates in HTS dramatically decrease. A 

possibility to avoid these problems is not to screen the whole compound set in the library 

experimentally, but only a small subset, which is likely to bind to the target protein receptor. This 

pre-selection can be performed by virtual screening (VS), which uses computer-based methods to 

select most promising compounds from the ligand databases for experimental assays. Virtual 

screening can be carried out by searching databases for molecules fitting either a known 

pharmacophore (ligand-based) or a three-dimensional structure of macromolecular target 

(structure-based). In the case of GPCRs, the limited availability of the structural data has forced 

the computational design of ligands to heavily rely on ligand-based drug design techniques. 

                                                 
1 This work was carried out in collaboration with the Tropsha group of the University of North Carolina. 
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Indeed, the natural ligands can provide a good starting point, leading to useful pharmacophore 

models that can be used for virtual screening to identify lead structures with novel scaffolds[1]. 

The application of this method has been successfully demonstrated in the discovery of subtype 

selective agonists to the somatostatin receptor[2] and non-peptide antagonists to the urotensin II 

receptor[3]. Structure-based screening should be potentially more powerful than the ligand-based 

method since by exploiting structural information taken directly from the active site, it is possible 

to discover ligands with both diverse chemotypes and binding modes. However, it still suffers 

from docking/scoring inaccuracy, and in addition it requires the knowledge of the 3D structure of 

the target protein. Therefore, it has mostly been applied to targets for which a high resolution X-

ray crystal structure is known. However, along with the deciphering of human genome, 

computational chemists are facing an overwhelming number of potential targets for which very 

little experimental 3D information is available. Therefore it will be very important in the near 

future to be able to use not only X-ray or NMR structures, but also protein models for structure-

based virtual screening of chemical libraries.  

The structure-based virtual screening mainly relies on a fast and accurate docking/scoring 

function that can be used to identify the correct binding mode. Theoretically, the most accurate 

estimate of the binding affinity can be obtained using force-field based methods. Examples 

include free energy perturbation (FEP)[4] or linear interaction energy (LIE) approaches[5]. 

However, the computational cost of such methods is too high to afford calculation in a high-

throughput fashion.  Therefore the huge chemical libraries should be filtered through a rapid pre-

screening tool to identify the most promising compounds prior to engaging more computationally 

intensive docking approaches. The ligand-based similarity searching technique could be used for 

this purpose. In this approach, the ligand structures are typically represented by multiple chemical 

descriptors and the statistical data modeling techniques are used to establish quantitative 

correlation between descriptors and target properties of interest, such as binding constants or 



 104

specific biological activities[6]. Recently the Tropsha group in the University of North Carolina 

had developed a novel structure-based chemoinformatics approach to search for complimentary 

ligands based on receptor information (CoLiBRI)[7]. CoLiBRI is based on a representation to 

characterize both receptor active sites and their corresponding ligands in the same universal, 

multidimensional, chemical descriptor space. Mapping of both binding pockets and 

corresponding ligands onto the same multidimensional chemistry space would preserve the 

complementarity relationships between the binding sites and their respective ligands.  

In this study, we carried out virtual screening for the mouse MrgC11 receptor, one of 

orphan GPCR receptors as an effort to identify small molecule ligands that behave as selective 

agonists or antagonists. Despite of the success of orphan GPCR-natural ligand pairing through 

reverse pharmacology many scientists focused on discovering new drugs appear to be bypassing 

the conventional deorphanizing step due to the difficulty in developing peptide libraries to look 

for the ligand. They perform initial high-throughput assays to find synthetic small-molecule 

agonists, which then can be used to explore the physiological aspects of the receptor. Here we 

first pre-screened compounds in the chemical database using the CoLiBRI and the resulting 

candidates were subsequently docked using the MSCDock method. The ‘hit’ compounds from 

docking were experimentally tested with the intracellular calcium release assay. In the following 

sections, we describe the computational methods in details and discuss the screening results. 

4.2 Materials and methods 

4.2.1 Pre-screening of compounds in chemical libraries 

Pre-screening the compounds of the chemical libraries was carried out using the CoLiBRI 

program. CoLiBRI is based on the quantitative structure-property relationship (QSPR) method. It 

generates the molecular descriptors that capture key properties of the molecules, using the 

transferable atom equivalent (TAE)/RECON method. The TAE/RECON method that was 

developed by Breneman and co-workers[8] rapidly generates molecular electron density  
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Table 4.1 Electron-density-derived TAE descriptors; ρ(r) represents the electron density distribution[9] 
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distributions and evaluates the electronic surface properties, which are used for generating 

descriptors. It contains a library of the atomic types in a form which can transfer electron density 

properties. The RECON program reconstructs the electronic density properties of a molecule by 

assigning the closest match from a library of atom types for each atom in the molecule. The 

additivity principle is applied to calculate molecular descriptors by summing up the individual 

descriptor type values for all atoms in the molecule, using the RECON method. Therefore it is 

possible to derive pseudo-molecular descriptors for any group of atoms, e.g., active site fragment, 

making the TAE descriptors well suited for our approach. Table 4.1 shows a complete list of TAE 

descriptors. The local average ionization potential (PIP) of the molecule, one example of the 

electronic surface properties is shown onto its 0.002 e/au3 (electrons per cubic Bohr) electron- 
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Figure 4.1 TAE local average ionization potential (PIP) surface property and its histogram distribution[9]. 

density surface in Figure 4.1. The distribution of this property is then presented as a histogram 

such as that shown on the right side of the figure. Each bin of the histogram is used as a 

descriptor, as well as statistical information such as maximum, minimum, and average of each 

surface property. 

A computational geometry technique known as Delaunay tessellation is utilized to isolate 

receptor atoms that make contacts with bound ligands. Let us consider a collection of randomly 

distributed points in 2D (Fig. 4.2). By analogy, the red and blue dots represent the ligand atoms 

and the receptor atoms in the binding site, respectively. Delaunay tessellation partitions the space 

occupied by these points into a set of space filling, irregular triangles (tetrahedrons in 3D) with 

the original points as vertices. Therefore this method identifies all nearest neighbor triplets of 

vertices, including two types of interfacial triplets as shown in Figure 4.2: one ligand atom point 

and two receptor atom points; two ligand atom points and one receptor atom point. Applied to the 

3D receptor-ligand complex case, it will generate three types of interfacial quadruplets: one 

ligand atom and three receptor atoms; two ligand atoms and two receptor atoms; three ligand 

atoms and one receptor atom. Therefore it provides a way of detecting all receptor atoms that are 

nearest neighbors of ligand atom. The TAE descriptors are then generated for a pseudo-molecule 

composed of these receptor atoms.  

Using the TAE/RECON method, multiple descriptors as listed on Table 4.1 are generated 

for the receptor binding sites and their corresponding ligands so that each chemical entity is  
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represented as a vector in a multidimensional TAE/RECON chemical space.  Since every 

descriptor may not be important for determining receptor-ligand complementarity, the subset of 

descriptors that best reflect this complementarity is determined, using a leave-one-out (LOO) 

cross-validation approach, in which each data value is left out in turn and a model derived using 

the remainder of the data.  The overall procedure for selecting an optimal subset is as follows: 

(1) A subset of nVar descriptors (nVar is a predefined number between 1 and the 

total number of available descriptor) is randomly selected.  

(2) One of the receptors is chosen in the training set and the k nearest 

neighboring (kNN) receptors are selected in the nVar-dimensional descriptor 

Figure 4.2 Delaunay tessllation of a collection of random points in 2D (modified from reference7) 
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space of the binding site. The coordinates of the chosen receptor’s virtual 

ligand in the ligand space are predicted based on the relative orientation of 

ligands known to bind with the kNN receptors. This step is repeated until 

every receptor in the training set is eliminated once and all the receptor’s 

virtual ligands are predicted. This resulting set of virtual ligands is called a 

CoLiBRI model. 

(3) The predictive mean rank (PMR) for the model is calculated. It is related to 

the chemical similarity of the virtual ligands to the known ligands. The 

similarities are evaluated as Euclidean distances in the nVar-dimensional 

descriptor space:  

∑
=

−=
Varn

d
jdidji XXDist

1

2
, )( , (Eq. 4.1) 

where Xid and Xjd are the dth selected descriptor for ligand i and j. The higher rank 

means the larger deviation of the model.   

(4) Step 2 and 3 are repeated for all possible k values 

( pairsreceptor -ligand ofnumber  totalk2 ≤≤ ). The k values that leads to 

the lowest PMR value is chosen as optimal. 

(5) The selection of nVar descriptors is optimized based on simulated annealing. 

For a model built using randomly-sampled nVar descriptors, the value of the 

fitness function, the inverse of its PMR value is calculated. By changing a 

fraction of the currently used descriptors to other randomly selected of nVar 

descriptors, a new CoLiBRI model is generated for the new trial set (repeat 

steps 1 to 4) and the new corresponding fitness function is calculated. The 

new trial set is accepted or rejected based on the Metropolis criterion. This 
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Monte Carlo approach is continued as the temperature is lowered until the 

termination condition is satisfied. 

At the end, both an optimum k value and an optimal subset of nVar descriptors are determined and 

produce a model with the best predictive ability. More detailed mathematical expression is 

described in reference 7.  

Now the CoLiBRI model is ready to be used for the ligand screening. First the target 

receptor is positioned in the selected descriptor subspace and its k nearest neighboring receptors 

from the training set are found. The known ligands of these k nearest neighboring receptors are 

then used to estimate the location of the target receptor’s virtual ligand in the descriptor space in 

the same way as step 2 above. All ligands in the chemical library are ranked based on their 

distance to this predicted virtual ligand point (using Eq. 4.1), and the ligands with the smallest 

distance are considered as the most probable hit.  

In our study the CoLiBRI models were generated for the dipeptide binding site using the 

same training set (670 complex structures from PDBbind[10]) used in reference 7 plus the 

predicted mMrgC11/R-F-OH complex structure.  

4.2.2 Chemical libraries 

Three sets of chemical libraries were screened in this study; 

(1) The first set: An older version of the database from ChemDiv with 451,345 

compounds was pre-screened using the CoLiBRI method. The multiple CoLiBRI 

models that predict complementarity were generated, varying the nVar value, a 

number of selected descriptors used in generating a CoLiBRI model as described 

in section 2.1. The compound within the top 1,000 by at least one model was 

selected and total 3,900 compounds were collected for the next docking step. 
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(2) The second set: It was taken from a newer version (fall, 2004) of the database 

from ChemDiv with 513,000 compounds. We selected compounds that were 

consistently predicted to be within the top 1,000 by all models. This resulted in 

442 hits. 

(3) The third set: The 23 drug compounds known for producing pain relief were 

docked without any pre-screening. It includes some opiates (e.g. Demerol), local 

anesthetics (e.g. Lidocaine) and capsaicin (an agonist of vanilloid receptors in 

dorsal root ganglion (DRG)). All possible protonation states were considered, 

leading to a total of 43 ligand structures for docking. 

 For the pre-screened compounds from the first and second set, hydrogen atoms were added and 

Gasteiger charges[11] were assigned using Concord program. No further optimization was carried 

out before docking. For the third ligand set, Gasteiger charges were assigned and the structures 

were optimized in gas phase using conjugate gradient minimization using the DREIDING force 

field (FF)[12] on Cerius2[13].  

The pre-screening of ChemDiv database for the di-peptide binding site was performed in 

collaboration with the Tropsha group of the University of North Carolina.  

4.2.3 Molecular docking 

MSC-Dock program was used for docking the pre-screened ligands. We used the Dock-

Diversity Completeness protocol (DDCP). As described in chapter 2, DDCP attempts to generate 

a complete set of ligand configuration families with a fixed coordinate diversity. In this study the 

diversity was set to 0.6 Å. The rejection ratio (defined as the fraction of new configuration that 

belongs to previously generated families to the fraction that leads to a new family) was set to 2.2. 

The 50 families were selected with the best energies (by DOCK4.0 energy score) in the first 

phase and an average of six members in each family was generated in the second enrichment  
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phase. The final ~300 configurations were ordered by DOCK4.0 energy score and re-clustered 

with 0.6 Å of diversity to generate a new set of families. The top 5 family heads (a member with 

the best energy in each family) were conjugate gradient minimized (100 steps or 0.1 kcal/mol/Å 

of RMS force) with the ligand atoms movable and the receptor atoms fixed. Then the binding 

energies were then calculated for these 5 optimized ligand-receptor complex configurations. The 

calculated binding energy (BE) is defined by  

BE = E (ligand in fixed protein) – E (ligand in water),  

where the E (ligand in fixed protein) is the potential energy of the ligand calculated in the ligand-

receptor complex with the coordinates of the receptor fixed. This potential energy includes the 

internal energy of the ligand and the interaction energy of the ligand with the receptor. E (ligand 

in water) is the potential energy of the free ligand in its docked conformation (snap bind energy) 

and its solvation energy calculated using the analytical volume generalized born (AVGB) 

continuum solvation method (cavity_params_1.3)[14]. The final best ligand-receptor structure 

was selected as the one with the most negative binding energy. 

4.2.4 Selection of final hits 

The ligands in the final docked conformation were sorted by three criteria; the binding 

energy, the van der Waals interaction energy and the energy of hydrogen bond between the 

> 90° 

> 90° < 3.9 Å
> 90° 

< 2.5 Å

D
H

DD

DD A
AA

Figure 4.3 Geometric criteria for the hydrogen bonds. D is the donor heavy atom, H the hydrogen, A the 

acceptor, DD donor antecedent (i.e. an atom two covalent bonds away from the hydrogen) and AA 

acceptor antecedent. 
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receptor and the ligand. The intermolecular hydrogen bond was determined by the geometric 

criteria shown in Figure 4.3[15] and its energy was evaluated using the DREIDING FF. For the 

first ligand set, the top 100 ligand compounds were chosen by each sorting criterion. Then we 

selected the compounds that were consistently within the top 100 by at least two criteria. This led 

to total 52 compounds. These selected compound structures were further optimized in the protein-

ligand complex. The side chain conformation of receptor residues within 5 Å from the ligand was 

optimized using the SCREAM program and then the entire receptor-ligand complex structure was 

conjugate gradient minimized with 0.1 kcal/mol/Å of RMS force. This receptor-ligand complex 

was further refined using one cycle of annealing MD heating from 50 K to 600 K and cooling 

down back to 50 K in 50 K steps, with 1 ps of equilibration between temperature jumps. Here 

only the ligand and the receptor side chains within 5 Å of the binding pocket were allowed to 

move during the annealing cycle. At the end of the annealing cycle, the system was minimized to 

an RMS force of 0.3 (kcal/mol)/Å. The binding energy was then re-calculated for the final 

complex structure in the same way as described above. 

The compounds in the second set were also sorted by three same criteria and the common 

compounds within the top 40 were selected. The 40th best binding energy is the halfway between 

the highest one and zero. This resulted in 21 compounds, which were optimized further as in the 

first set.  

The pain-related compounds in the third set were sorted by their binding energy and the top 

10 compounds were chosen, then the same post-optimization was carried out. 

Both the protein and the ligand were described using the DREIDING FF and the protein 

charges were from CHARMM22[16]. All calculations used the MPSIM program[17], with 

nonbond interactions evaluated using the cell multipole method[18]. All simulations were 

performed in gas phase with the dielectric constant of 2.5. 
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After post-optimization, the residues of the receptor having either an intermolecular 

hydrogen bond or good van der Waals contact with the ligand were identified. By putting the 

priority on compounds having good contacts with the key residues—Tyr110 (TM3), Asp161 

(TM4) and Asp179 (TM5)—26 compounds were finally chosen for experimental test. They 

included four outliers in the docking step to expand diversity and two pain-related compounds, 

capsaicin and ibuprofen. 

4.2.5 Intracellular calcium release assay 

The intracellular calcium release assay experiment was carried out to test activity for 26 

compounds (the details are described in chapter 2). One of the known peptide agonists, F-M-R-F-

NH2 (EC50 = 168nM) was used as a control compound. To test agonistic activity, cells 

expressing stably mMrgC11 receptor proteins were treated with compounds in two different 

concentrations, 100 μM and 10 μM. To check antagonistic activity, cell sample was pre-

incubated for >5min with a compound in 100 μM and 10 μM concentration and then were treated 

with 1 μM of F-M-R-F-NH2. The inhibitory constant 50% (IC50), the concentration reducing the 

activity of 400 nM F-M-R-F-NH2 by half was measured for the compounds showing the 

antagonistic effect in two ways. First, cells were pre-incubated with a compound in various 

concentrations and F-M-R-F-NH2 was added later. Secondly, the compound was added to the cell 

sample together with F-M-R-F-NH2 at the same time and the intracellular calcium release was 

measured. 

4.2.6 Virtual screening of tetra-peptide binding site 

The virtual screening for the tetra-peptide binding site was independently carried out in a 

similar way. Since the loops were in the ensemble of conformations as shown in chapter 3, the 

extracellular loops in the mMrgC11 receptor were not included in screening. The dataset of 800 

ligand-receptor complexes from the PDBbind Database (PDB entry codes are listed in the 
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supporting information of reference 7) was divided into the training (used for model building; 525 

structures) and the test (used for model validation; 275 structures) sets using the sphere exclusion 

method[19]. In building CoLiBRI models, six predicted Mrg complex structures were included in 

the training set; mMrgC11/(D)F-M-R-F-NH2, mMrgC11/F-M-R-F-NH2, mMrgC11/F-(D)M-R-F-

NH2, mMrgC11/R-F-NH2, mMrgC11/R-F-OH and rat MrgA/adenine complex. The CoLiBRI 

models differ depending on the number of descriptors (4 to 40) and the content of a given number 

(10 content variations). Among these 370 models the top 100 models were chosen based on the 

PMR values for the test set of 275 receptors.  

The first set of chemical library used in the previous dipeptide case was screened for the 

mMrgC11 receptor optimized with the bound F-(D)M-R-F-NH2, which is the best known tetra-

peptide agonist. Five F-M-R-F-NH2 peptides (three agonists and two non-agonists), R-F-NH2 and 

R-F-OH were included into the ChemDiv database, leading to total 451,352 compounds. The top 

1,000 compounds were selected for each model. The models having (D)F-M-R-F-NH2, F-M-R-F-

NH2 and F-(D)M-R-F-NH2 as a hit after screening were identified, resulting in 92 out of 100 

models. The 4,735 compound hits from the ChemDiv database were predicted by at least one of 

92 models and the 16 compound hits were consistently predicted by all 92 models. However F-

M-(D)R-F-NH2 was also consistently recognized as a hit for all 92 models (false positive), 

indicating that the CoLiBRI model is not sensitive enough to completely distinguish between the 

chirally modified tetrapeptide agonists and non-agonists. Nevertheless identification of three 

agonists as hits provides some validation of the CoLiBRI models used in this study. 

The 774 compound hits which were consistently predicted by at least 50 models were 

chosen for the next docking step. We also used MSC-Dock with the same parameters except for 

the diversity of 1.0 Å since the size (number of atoms) of hit compounds in the tetra-peptide 

binding site is larger than those in the di-peptide binding site.  
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Following the same scoring method and selection criteria (the top100 were selected for 

each criterion – binding energy, van der Waals interaction and hydrogen bond energy (the 

calculated binding energy = -41.77 to 431.47 kcal/mol; the 100th is approximately halfway 

between -41.77 to 0)), final 55 compounds were identified out of 774. Then these 55 complex 

structures were optimized in the same way as described section 2.4. 

We docked F-(D)M-R-F-NH2 with the same docking parameters and scoring method. The 

RMSD of the best configuration was 0.29 Å with respect to the previously predicted “true” bound 

configuration, validating our docking procedure. 

4.3 Results and discussion 

D16114.17 

7.38 

9.99 

Y110

D179

Figure 4.4 5 Å binding pocket of mMrgC11 receptor optimized with the di-peptide agonist, R-F-OH. 

Three key residues (Y110, D161 and D179) are identified and inter-residue distances are specified in 

Å for those residues.  
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4.3.1 Hit compounds from virtual screening 

Figure 4.4 shows the 5 Å binding site of the mMrgC11 receptor complexed with one of 

dipeptide agonists, R-F-OH. This dipeptide optimized structure was used for both pre-screening 

and docking. Three key residues were previously identified in the R-F dipeptide binding. Tyr110 

had a good π-π interaction with F of the dipeptide, and two Asp residues, Asp161 and Asp179 

interacted favorably with the sidechain of R and the N-terminus. The final hit compounds after 

virtual screening were listed in Figure S4.1 for the first ligand set and in Figure S4.2 for the 

second one. The ligand atoms forming hydrogen bonds with the receptor were specified. The 

contribution of each receptor residue to the van der Waals interaction was evaluated and the 

residues for which the absolute value of the interaction energy was larger than 3 kcal/mol were 

identified. Most of ligands had at least one aromatic ring, which replaced the phenyl ring of R-F 

dipeptide and interacted with nonpolar residues present inside the pocket such as Tyr110, Phe190 

and Leu186. Some of ligands formed a hydrogen bond with Asp161 or/and Asp179, but none of 

the hydrogen bond partners were similar to the arginine sidechain. 

By comparing the hit compounds from the first set with those from the second set, we 

could see that selection of the compounds consistently predicted by all CoLiBRI models provided 

a ligand with the higher binding energy showing better chemical contacts (i.e. contacts with all 

key residues) although the hit compounds showed less diversity. MOL282 (the ligand with the 

best binding energy in the second set) showed better binding by 6 kcal/mol than Mol2190 (the 

best one in the first set) and made contacts with Tyr110, Asp161 and Asp179. 

Among the pain-related compounds, capsaicin and ibuprofen showed the best binding 

energy in docking. The binding energies were -45.11 and -43.14 kcal/mol respectively. The van 

der Waals interaction mainly contributed to the binding energy. Capsaicin formed a single 

hydrogen bond with Asp161 and ibuprofen does not have any contact with three key residues. 

4.3.2 Experimental activity test 
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Table 4.2 Inhibitory constant 50% (IC50) of hit compounds (unit: μM) 

 A B 
MOL282 46.5 ± 2.2a 74.6 ± 0.1b 
capsaicin 26.0 ± 2.7a N.A. 
capsazepine 19.2 ± 5.9b N.A. 
dihydrocapsaicin 46.6 N.A. 
N-vanillylnonamide 69.7 ± 17.7b N.A. 
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Figure 4.5 Compounds showing the inhibitory effect (a) from the hit compound set of VLS and (b) among 

the tested capsaicin analogs. 

 

The agonistic activity for total 26 compounds (24 from the virtual screening plus capsaicin 

and ibuprofen) were tested using the intracellular calcium assay. The mMrgC11 receptor was 

activated by none of them up to 100 μM concentration. However some of them showed the 

inhibitory effect – blocking the activity of the known agonist, F-M-R-F-NH2. Two compounds, 

MOL282 and capsaicin shown in Figure 4.5(a) blocked the activity of F-M-R-F-NH2. The 

measured IC50s of MOL282 are 47 μM for pre-incubation case and 75 μM for simultaneous 

addition (Table 4.2). It means that MOL282 binds to the mMrgC11 receptor kinetically at the rate 

A –  pre-incubate a compound and then add 400 nM of F-M-R-F-NH2, B –  add a compound and 400 nM of 
F-M-R-F-NH2 at the same time. 
a mean ± SEM from triplicate independent measurements, b duplicate measurements 
N.A.: no significant decrease in activity of F-M-R-F-NH2 agonist is observed in >200 μM concentration. 
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comparable to F-M-R-F-NH2. However capsaicin could not block the activity of the agonist when 

it was added together with the agonist at the same time, indicating that it is a slow binder than F-

M-R-F-NH2.  

MOL282 was predicted to have the best binding energy from our virtual screening, and this 

experimental result provides the strong evidence that our predicted mMrgC11 structure is 

accurate enough to screen chemical libraries for potential ligands. Capsaicin is a well-known 

agonist of vanilloid receptor type 1 (VR1), which functions as a molecular integrator of painful 

chemical and physical stimuli[20]. Although Dong et al. claimed that mMrgAs and mMrgD were 

expressed in the VR1- sensory neurons[21], we could observe that capsaicin was able to inhibit 

the activity of a known agonist in the mMrgC11 receptor. Next we extended the experiment to 

capsaicin analogs, and five commercially available analog compounds were tested (capsazepine, 

dihydrocapsaicin, olvanil, N-vanillylnonamide and eugenol). Among five, three compounds 

showed antagonistic effect at the tens micromolar concentration. Their chemical structures are 

shown in Figure 4.5(b). 

4.3.3 Refined docking of MOL282 and design of its derivatives 

We docked the lead compound, MOL282 again into the mMrgC11 receptor in a more 

refined docking scheme. The conformations of MOL282 were extensively explored using the grid 

sampling method. Five torsion degrees of freedom were sampled by 60° steps from the initial 

optimized structure, leading to total 7,776 conformations. These conformations were ranked by 

the force field energy in gas phase and clustered with 1.0 Å of diversity. This resulted in the set of 

final 87 conformations. Each conformation was docked independently into the same binding 

region without further optimization.  

The MSC-Dock with DDCP was used for docking as described in section 2.3. Here the top 

25 families (instead of 5) were chosen and optimized with the receptor coordinates fixed. They 

were ranked by binding energy and then the top 10 configurations were determined. These 10  
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Figure 4.6 Histograms of energy and RMSD distribution for 7,776 conformations of MOL282 in grid 

search. The pair-wise RMSD is calculated with heavy atoms only.  
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Figure 4.7 The 5 Å binding pocket of MOL282 in mMrgC11 receptor. The hydrogen bond and inter-aromatic 

ring distance are specified in Å. 

 

receptor/ligand complex structures were further optimized with the conjugate gradient 

minimization while all atoms were movable. The final structure was then chosen with the best 

binding energy. Therefore we ended up with 87 optimized complex structures. No further 

optimization such as the sidechain replacement and annealing MD was carried out.  

The best binding configuration across the 87 optimized structures is shown in Fig. 4.7. All 

three key residues interact with the ligand; Asp161 and Asp179 form hydrogen bonds with the 

ligand and Tyr110 participates in the π-π interaction with one of aromatic rings. Trp162, Leu241 

and Tyr250 form the hydrogen bonds with the carbonyl group and the other hydroxyl groups of 

the ligand. However the ligand had the strain energy of  ~15 kcal/mol (energy in gas phase with  
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Figure 4.8 Suggested better binders derived from MOL282. The binding energy is in kcal/mol. 

 

the dielectric constant of 2.5) in the docked conformation. Most strain resulted from the twist in 

θ1 torsion of Figure 4.7 (θ1=180° in the global minimum). To stabilize this twisted configuration, 

the substitution of a bulky group for the ortho hydrogen was suggested as shown in Figure 4.8(a). 

This bulky group also enhanced the van der Waals interaction with the receptor, leading to the 

increase of the binding energy. However as it became too bulky to occupy the void space in the 

binding pocket, it interfered binding (see the table in Fig. 4.8(a)).  

Since nitrogen in C=N bond of MOL282 does not play a role in binding, C=N double bond 

was replaced by C-C single bond to reduce the strain seen in the docked configuration of 

MOL282 (Fig. 4.8(b)). This derivative of MOL282 binds to the mMrgC11 receptor similarly to 

MOL282, except that one of hydrogen bond partners was switched from Tyr250 to Lys99. The  
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Figure 4.9 The 5 Å binding pocket of mMrgC11 receptor optimized with the tetra-peptide agonist, F-(D)M-R-

F-NH2. Six key residues identified in the previous prediction are shown in stick. The spheres representing 

the binding site of F-(D)M-R-F-NH2 are colored by magenta. 

 

strain energy of the ligand in the docked configuration decreased by ~7 kcal/mol and the snap 

binding energy slightly increased by ~5 kcal/mol, leading to the similar relaxed binding energy 

where the strain penalty was taken into account.  

4.3.4 Virtual screening for F-(D)M-R-F-NH2 bound site 

The 5 Å binding site of F-(D)M-R-F-NH2 is shown in Figure 4.9. Compared with the di-

peptide binding site in Figure 4.4, the site is obviously wider. The buried surface was calculated 

using the Connolly MS program from Quantum Chemistry Program Exchange (QCPE) with a 

probe radius of 1.4 Å and a surface density of 5 dots/Å2. The area for the buried part of F-(D)M-

R-F-HN2 was 466 Å2, which was larger than 263 Å2 for R-F-OH. The N-terminal F-(D)M part 

was extended towards TM6 and TM7, covering the additional TM regions. Tyr237 (TM6) is one 

of the key residues newly identified in the tetra-peptide binding site. 
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Figure 4.10 The 5 Å binding site of the best three hit compounds (a) comp242755 (b) comp241282 (c) 

comp391008. The intermolecular hydrogen bond is indicated by the dotted line and the aromatic interaction 

by the two-sided arrow. 



 124

 
The chemical structures of the final 55 hit compounds are shown in Figure S4.3, where the 

residues making a hydrogen bond or having a good van der Waals interaction (interaction energy 

with a ligand is greater than 3 kcal/mol) are identified together. Most are bulky since the surface 

area is considered as one of the descriptors, and relatively nonpolar compounds. They belong to 

the different class of compounds compared with those screened previously in the di-peptide case.  

The detailed binding modes of the compounds with the best (comp242755), the second best 

(comp241282) and the third best (comp391008) binding energy are described in Figure 4.10. In 

comp242755, three aromatic rings interact with Trp162 (TM3), Phe180 (TM5) and Tyr237 

(TM6). The t-butyl group has a favorable hydrophobic interaction with Tyr110 (TM3). The side 

chains of Trp162 (TM4) and Asp179 (TM5) are involved in the formation of hydrogen bond. 

However the hydrogen bond with Asp179 is unlikely if the carboxylate group in the benzoic acid 

part of comp242755 is deprotonated (pKa of benzoic acid = 4.20 for water at 25 °C). Since the 

buried receptor site might provide the different dielectric medium, the neutral form of 

comp242755 could be taken into account. 

In comp24282, two key residues, Asp161 and Asp179 form hydrogen bonds with the 

ligand. Only two residues are shown to have good van der Waals interaction, but the ligand form 

two more hydrogen bonds with Trp162 (TM4) and Leu238 (TM6). 

The comp391008 interacts with the receptor mainly through the hydrophobic interactions. 

The aromatic groups are well stacked with Phe190 (TM5), Tyr110 (TM3), Trp162 (TM4) and 

Phe180 (TM5). Asp161 and Asp179 do not interact with the ligand and are stabilized through the 

hydrogen bond or electrostatic interaction with Thr183 and Lys99 respectively as shown in the 

apo protein. 
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Although the hit compounds do not form as many hydrogen bonds as F-(D)M-R-F-NH2, 

the nonpolar character would relieve the desolvation penalty in aqueous solution to help binding 

to the buried pocket of the receptor.  

4.4 Summary and conclusions 

The virtual screening with the combination of QSPR and docking method was carried out 

for the predicted mMrgC11 receptor. The antagonist ligand, MOL282 (IC50 = 46.5 μM) that had 

the best calculated binding energy was identified by mining ChemDiv database for the di-peptide 

binding site. The interactions with Asp161, Asp179 and Tyr110 shown in the agonist binding 

were also observed in MOL282. The novel ligands were derived from MOL282 in getting rid of 

the strain energy in its docked conformation. The identification of MOL282 as a hit provides the 

strong validation of our predicted binding site and low trial and error in the experiment (only 24 

compounds were tested) demonstrates efficiency of our virtual screening method.  

 The different class of compounds was identified in virtual screening for the tetra-peptide 

binding site, having a large contribution of van der Waals interaction to the binding affinity. The 

experimental test of some of the top compounds would be needed to provide further validation. 

The hit compounds identified in this study are certainly good staring points in designing 

new agonists or antagonists for the mMrgC11 receptor, and variation on the functional group in 

the series of ligands could be used to characterize the binding pocket. Moreover chemical 

characteristics of the hit compounds could provide some clues in deorphanizing Mrg receptors.   
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Supporting Figures 

 

 
Figure S4.1 Hit compounds from the first ligand set after docking.
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Figure S4.1 (continued) Hit compounds from the first ligand set after docking. 
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Figure S4.1 (continued) Hit compounds from the first ligand set after docking. 
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Figure S4.1 (continued) Hit compounds from the first ligand set after docking. The ligands whose names 

are enclosed by rectangular box were tested in experiment. The number in parenthesis corresponds to the 

calculated binding energy in kcal/mol. Residue in blue makes a hydrogen bond through its side chain with 

the atom indicted by the blue arrow. The residue in red has backbone atoms involved in the hydrogen bond. 

The residues in box have good van der Waals interactions with a ligand (E > 3 kcal/mol). 
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Figure S4.2 Hit compounds from the second set after docking. 
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Figure S4.2 (continued) Hit compounds from the second set after docking. 
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Figure S4.3 Hit compounds after virtual screening for the tetra-peptide binding site. 
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Figure S4.3 (continued) Hit compounds after virtual screening for the tetra-peptide binding site. 
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Figure S4.3 (continued) Hit compounds after virtual screening for the tetra-peptide binding site. 
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Figure S4.3 (continued) Hit compounds after virtual screening for the tetra-peptide binding site. The 

residues involved in the intermolecular hydrogen bonds or the van der Waals interactions are indicated in 

the same way as Figure S4.1.  

 


