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Abstract 

G protein-coupled receptors (GPCRs) play an essential role in cell communications and 

sensory functions. Consequently, they are involved in wide variety of diseases and are targets for 

many drug therapies. Particularly important is the large number of orphan GPCRs, which may 

play important, albeit unknown, functions in various cells. To understand their respective 

physiological roles, it is important to identify their endogenous ligands, and to find small 

molecule ligands that would serve as selective agonists or antagonists. The mas-related gene G 

protein-coupled receptors (Mrg receptors) belong to the orphan GPCR family, which is expressed 

in a specific subset of sensory neurons known to detect painful stimuli, suggesting that they could 

be involved in pain sensation or modulation.  

The primary focus of this thesis is to predict the 3D structure and binding site of Mrg 

receptors and to identify novel ligands that would be potential agonists or antagonists. We predict 

the 3D structure for the mouse MrgC11 (mMrgC11) and the binding site for five chiral FMRF-

NH2 ligands. We correctly predict the relative binding observed for these five ligands. We find 

that Tyr110 (TM3), Asp161 (TM4), and Asp179 (TM5) are particularly important to binding the 

ligands. Subsequently, we carry out mutagenesis experiments followed by intracellular calcium 

release assays that demonstrate the dramatic decrease in activity for the Y110A, D161A, and 

D179A mutants predicted by our model.  

The all-atom molecular dynamics simulation of the mMrgC11/F-(D)M-R-F-NH2 complex 

structure in explicit water and infinite lipid membrane system shows that some conformational 

fluctuations are present, but no significant instability is detected, thus validating our structure 

prediction method. 

The virtual screening with the combination of QSPR and docking methods is carried out 

for the predicted mMrgC11 receptor. The compounds showing the antagonistic effect are 
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identified by competitive functional assays. These hit compounds are certainly good staring 

points in designing better agonists or antagonists.  

The binding site of rat MrgA receptor that shows differential binding between adenine and 

guanine is also predicted. The predicted binding affinity correlates with the availability of the 

hydrogen bonds to two Asn residues, which would be primary mutation candidates to validate the 

structure. 
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