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The problem of partitioning inte classes by means of a binary
equivalence relation is investigated. Several algorithms for detex-
mining the number of components in the graph associated with a
particular set of elements are constructed and compared. When the
classification process operates on independently drawn samples of
n distinct elements from a population, the expected number of
components is shown to be obtainable recursively for a class of
problems called separable; in all cases, estimates are availabie to
reach any desired level of accuracy. Clustering models in
Fuclidean space are analyzed in detail and asymptotic formulas
ohiained o complement experirnents. Conjeciures concerning the
general behavior of the expected number of components are pre-
sented also. Finally, several computational fools of general interest

are improved significantiy.
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Chapier I

Introduction

The purpose of this study is to investigate problems of
partitioning into classes. Glven any binary relation defined for all
pairs of elements in the set to be partitioned, a corresponding binary
equivalence relation can be defined. Using an undirected graph, the
edges of which indicate that the relation holds for adjacent vertices,
we optain a certain number of components, each component corre-
sponding to one of the equivalence ciasses of the vertex set. The
expected number of components is of interest in problems in physical
chemistry and in other fields.

Given a graph on n vertices, the number of componenis can
he expressed in terms of the inverse of the row sums of the n-1lst
Boolean power of the graph incidence matrix. This mathematical
forrnulation provides one method for computing the number of com-
ponents but others, more efiicient, also can be constructed. An
important problem that we examine is the defermination of the
expected value of the number of compenents when the classification
process operates on independently drawn samples of n distinct
elements from a population. Of course, for some rather simple
examples, such as discrete and continuous cccupancy problem on the
line, we find analytical answers, but in the majority of cases we
cannot hope for closed-form solutions and must resort to computa-
tional experimentaiion. For a ceriain class of problems cailed
separable, such as some random graphs and rooks problems, powerful

recursive caiculations can be used {o obtain expected values. However,



if the structure of the relaiion is far too complex or only stalistically
MOown, our more modest alm is fo derive estimates for the probabile
number of components. Depending upon the toil that we are ready o
face, various approximate methods ranging from simple a priovi
zstimation to lengthy Monte Carle sampling are available in order to
reach any desired level of accuracy.

Among ail binary equivalence relations there are some which
deserve special attention since they are closely related to practical
problems. In that respect we shall apalyze in detail discrete and
continuous adjacency problems in 1, 2 or 3 dimensions which form
simplified clustering models in Euclidean space.

Throughout this work great care is exercised in using analyt-
ical answers, asymptiotic expansions and computational estimates in
a barmonious conjunction. A resulf of this comprehensive study is
the inference of conjectures concerning the general behavior of the
expected number of components,

Finally, the search for efficient specialized algorithms and
conclusive experiments has resuited in a variety of significantly
improved computational tools which potentially ofier a wide

appiicabiiity.
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1.1, Binary Classification, PBinary FKouivalence Relstion

We consider a popuiation (ﬁ:g of N individuals i% P IERRRE NS ¥
i I

for any pair of elaments a.s ;;;}E #, let a cennected binary relation
/& be defined. Connectedness simply implies that between any two
o ; ‘o -1 -
distinct g??mmem‘oaxs, either V4 or & holds. We perform n
. b b x . 3.0 3 5
experiments ;:;,1_, s s each experiment being defined as the

seiection of a member of £ accerding to some prescribed probability

law, The space ﬁ:: of experiments ., is simply

i

.

{ 3
= 4z w
; id‘i’ Ags ees aN’%
and the probability of an elementary event aj is

¢

pi(aj}’ ie é}"’ 2y wens Il} : jﬁgia 2y e N}

X . . Lo : -4
The outcomes of our combined experiment p= ffg? ® gzx PR Xgn

i

are ordered n~typles Q (ai R 2, } forming the space

i Z T
W o= P xFPPP

The probability of an event (e @is ?(ai 2B yree, A } which, i the
: i

1 72 0
experiments are independent, becomes
sl
S
pla. .2, seswsa. J o= i oplia.d
1,77 i LTI
iz n =1 i

Fach event Q involves n elements of ?39, distinet or not,
R 1 . - £oal el 1’;’@ .
which can be grouped into classes by means of the reiation ¢0, This

classification process is performed under the following conditions:
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. . 1. i . - .
{1} for anv pair ai,a,ﬁkﬁ, a. T‘ﬁa. , ina class £ there exists somme
] i 3
saquence
1 41

L g
-;:‘»»z{i%&@ Aa:,ﬁh.a' aa-‘»:a!(?e*ia-
1 i ! i
i P ]

£}

iis a subkset, possibly empty, of the elements

where {a, P T - W
Ky Ky “u

in O,

{2} if an individual in a class is in the relation . or = with another
individual, then the second individual is in the same class as the [irst
one,

The purpose of condition (1) is to accommodate irreflexive and
non~reilexive binary relations. By irreflexive we mean that no
membpetr of P bears the relation 4 to itsell, whereas non-reilexive
means that each (-member does not bear the velation /& to itself.
Also it establishes the chaining property among elements of the same
class. aié%:(‘;"”jlaj means either a £b or bia or both. The identity
binary relation = is an equivalence relation used to group into the
same class identical elements. It is convenient to let (ai) repre -
sent that subset of (¢ which forms the class to which 2, belongs.

Theorem - ¥ or any binary relation £, under hypothesis {1) and (2),

the classification is unigue and the resulting classes are mutually
exclusive,

proof: a simple construcitive proof proceeds as follows; Construct

an undirected grapn by adding a vertex for a, I 2, ¢ ia
¥

EICIE B

i 1.0
14
U H 2

&, % .l 8. indeed forms a new vertex, connect it by singie edges
1,
Lo 1 i

. . . 1 s .
to all other vertices for which &, # = or both hold. This construction



clearly satisiles conditions (1) and {2}; each c¢lass is obtained by
arbitrarily selecting one vertex and picking out all dependent
branches until the nodes are exhausted.
Notice that, although we do not reguire £ to be an equiv-
alence relation, conditions {1) and {2} ensure that the classification
-~ - ] - ' .
is done in terms of an equivalence relation ég derived irom ff

and such that

a.éfﬁ;a. st a.fga. or a;‘fa. or both
i j i 3 i

1
afga o e £

f {
ada, and afa = ada
i 3 i K i k
o ! ’
Of course, &  cdepends on the pavticular sample chosen
since it is defined to be transitive. In practice, we periorm a

series of elementary pairwise tests with a symmetric reflexive

relation, transitivity only being obtained indirectly,



ol (m

CIHAPTER 11

Class Counting Algorithms

In a very lmited number of cases, we can {ind anzalytical

seiutions and possibly asymptotic estimates for the number of

- » a * b3 2 E =
classes given a population #, an equivalence relation /L and a
sampling distribution over . Most of the time, however, the
alternative has to be chosen which reguires computing sampile
statistics,

Several algorithms to determine the number of ciasses,
given the elements of some sample &, can be proposed, They
all have, as a commeon characteristic, their generalily of use

- 5 - £ - & ;
since they are applicable to any equivalence relation R and
finite sample ({ from a finite or infinite population if‘D, As a
matier of fact, their only interface with the outside world is at

h and jth element of the current

the following level: are the it
sample in the relation é‘?ﬁi with each other?

in order to appreciate the merits of these algorithius, we
can use criteria based upon their speed {count of operations),
storage requirements and accuracy, Accuracy here refers to
cases in which the number of classes is only estimated without
actually performing the complete counting., The result is in
general no longer an integer but a certain range of integer values
which includes the true answer and the accuracy is then measured
by the extent of the range, In the present chapter we are siricily
concerned with exact counting algorithims but in chapter ( IV

approximate metheds will be presented foo.



An esseniial choice to make i3 to select 2 data sitructure
representation for the connectivity information among elements of (4.
Gf course, one may construct the 0-1 incidence moatrix but this

; : TR S : R , ‘ ;
reqguives ftesting a priovi all {\,3,} pairs of distingt elements (a., g
i i L 1

H t
for the relation fl  to hold. Also, if the probability that a.f a. holds
i

]
is small, any storage representation which accommnodates all of the

{2} entries will appear extremely wasteful, Oop the other hand, if
we choose to only keep track of the less likely outcomes, here
those pairs for which aié%! &j , the retrieval effiort is bound to be
significantly larger than beiore, Yet, we can develop an algorithm
which does not necessarily require the fuil incidence mairix and

i
which tests aié‘g aj at most once, This list structure algorithm is
presentea last and is probably the most useful, Nevertheless, we
feel that the two following alporithms have interesting characteristics
in their own vight which amply justify their analysis,

2.1, Algorithm 1: Iterative Computation on the Incidence Matrix

The incidence matrix A of the undirected graph Gn wiith n

vertices, single edges and po loops is

i
a..=1.5,. i v.it v, (2.1
i) 1] 1 J
= 0 if vﬁv.
L

i
The binary relation £ is an equivalence relation derived from &
{see section { 1.1 ]} and A is thus an n¥n symmetric mairix with
U diagonal elements,
=L, e . P - .
Liet ai} be the (i, i} element of the k¥ power of A ;

H
. S o . - ; . \
physically, a’ij represents the number of paths of length k from
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vy o Vj . Since the shortest path between any tweo vertices in G

cannot be of length greater than n-1, vy and v. belong to the same
3

&

class if and only if
-1
> a
— 53}{ aij >0 (2.2

for any set of coefficients ﬁk such that

p

k%"é% =0, 1, ..., n-1

in particular, consider the matrix

D= A+ 1

) C o s : : ; st
where 1 is the identity matrix of order n . Its {n-1}" power has

the expression

=)
ot

1

[ S W L S

™1

-0k ,
xg\k}A (2.3)

-

which is of the type { 2,2 ). Consequently, {?,{Vi} %{?{vj} , G (v}
designating the class or set of vertices to which the vertex v belongs,

. U oY
if and only if dijl*::s(}..
S . e . .
Let U be the column vecter with all n  components equal to 1.

e . . . b
For any vector V with non-zero componenis Vi define as V  the

s . ; i
inverse vector having components el

i
Theorem - The numbexr of classes of a graph Gn with incidence

matrix A is

] E' T ey
- E]

c=U * min{UU

!
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P . - . s C o IRV - B B e
Prooll as previousiy snown, ihe {i, ji element of {A+ I} i eitneyr
Zi or 0, depending upon whether or not there exisis a path {rom

i Tk 41 D P ,*11"1 1) LR PR
v, to v,. Taking the minimum of mﬁ y 13 vieids a {0.1) matrix,
- J . .
e e g \ . At ~ . s
indeed a truth matrix for the relation &  on G . Applying this

transformation to U , produces a row sum vector, the i i commponent
of which is the size of the class of which v is a member. In the last
operation to be performed, each row i5 counted with a welgiht inversely
proportional to the size of the class to which it belongs, therehy
vielding ¢ by simply taking the scalar product of 2 unit row vector

with the inverse of the row sum vector as defined above,
A1

. . . n-1 ) . e
Remark on the computation of {A+ 1) : For the purpose of obtain-

. . . . e .3 Ti~2
ing the number of classes, the intermediate mairices A, A7 ,47,,..,A

need not be explicifly computed and a shortcut may be used. As a
matier of fact, the next paragraph is not only relevant to matrix powers

but also to other transformations, provided they are associative.

Liet the binary representation of n-1 be

,_ ooyl -
b o=1 bV€%§,1} =0, 1, ..., m-1

then

o oy
p™ 1o 1 ph? (2.5}
Y=0

£
operation which involves 2= mtim -1 matrix multiplications, if there
1 A .
are exactly m non-zero by's. This number T salisiies



=4 4;«

H i ; R
Al ; i (2.5
e - L. d
which is significantly better than the n~2 multiplications by D in

the straightiorward approach, Of course, unless we ave in the

3 3 -~ T Rey 4 b - " 3 e £ a5 - 2 .
gpecial case n-1=2"", the present scheme necessitates two matrices
, ; zV byt
te be kept all along, namely, D and (] 2
i=0
act a very serious objection, especially for symmetric matrices, in

. But it is certainly

which case the above two matrices can conveniently be housed in the
upper and lower halves of an (n+tlxn} matrix,

Iset us now return to the specific case of class computation.

A . 1 T e dw 2 . < 1 Toy cnde 111”1
As we have already pointed out, we only need to know whether 4,

is 0 or 21 or equivalently whether di' is, for N » n-i . Choosing
I 3] J

{log.fn- 1)

S TOER /

-

simplifies greatly our task since we can now dispense

2 N

. , 4 - X
with one matrix and only calculate D, D7 ,D7, -, 10", Furthermore,

, . ,th . . : v
let uws assume that at the ¥ stage, i.e., when computiag D% from
V.1 V-1
2

cyn 2
O , we still have 4. . = 0. We must then {ovm the scalay
2
.o sth L R = S _
product of the i row oi D with its j column, but as soon as
this product becomes greater than 1 we need not go any further; we
2‘;!
just set diA =

1. Also, we have tacitly assumed from the beginning

that every matrix product is peviormed in place, the updated values

dij = 1 being used as soon as they are found, Consequently, we never
i . 2 4 N p . , th
even really compute D ,007,...,D but at the completion of the ¥

¥ I
Tl 2 s . )
stage we obtain a matrix D ¥ D" . So much the better! Finally, the

algorithm terminates when either N is reached or a complete swesp

¥l 2V N
of the matrix produces no update since D =D =D = o

-
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circumstance must correspond to a grapn with the smailest number
of edges, that is a tree on n vertices, since adding any edge can
only decrease or leave unchanged the distance between any two
vertices., Furthermore, proceeding by induction on the number of
edges, that tree must be a linear chain; the adjunction of an edge
to 2 linear chain maximizes {2, 81 07 { 2.9 7 1 & is made at the end
of the chain producing the seguence of distances Q:g = n-f£,
£=1,2,...,n-1; as

n-1
Lo ()

any other sequence can be constructed by repeatedly borrowing 1

from some g and adding 1 to @p such that '5} :752 but
Z

o that the mmaximum number of scalar products

p]

| SR,

Loz 4] 2 loxy

is expressed by

n-1 "
T = Z Lionggj (n-£) < {n~xj log, x dx (2. 10)
€ =2 1
Using
n ~
f{‘ P4 { 1303 N ’;?
o N 1 b An-18n-dy 0 1 !
j} (n-3xjlog, x cx log?lém?"m&‘n T i~ ) },Qg?,j

the number of scalar products will then be at w.r;:urst %«w log,n +jin"}.
Zach such operation involves at most n fesis which are performed as
logical intersection (AND) operations rather than multiplications.

We have thus shown that in the worst possible case of a linear

3

chaln, the number of tests to perform is bounded above by —— iogzn .
) =3
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* class ¢counting by powers of incidence matrix

do part 2 for h=1
#0 to step 1.2 07

b

n=1&h=1

do part k& for i=1{1in for c=0

type ¢ in form 1

b=h*2 Tor e=h for h={

do part 3 if ali,i)=0 for j=i+1(1)n for i=1(1)n
s=-1 {f ali,klaallk,]) for k=1{sin for s=1
ali,ji=%1 for a(j,i)=1 for h=1 if s=-1

classes



However, in practice the average number of tests is much smaller

equal to P Y

number of tests periormed during a scalar product, before a maich

i . ;
1@;;} S japny = =P =1, P representing the average
£ P >

-

is encountered, In practice P is small and the algorithm is quite
simple so that it proves more eilicient than using (Wrathall)

1 . A
TR = I+ EA 4+ E7ATE L.,
that is, perviorming an actual matrix inversion {o obtain the non-zero
entries in the final incidence matrix.

Figure (2, 1) shows an implementation of algorithm 1 in

CITRAN (CIT translatey) which exhibits itz simplicity.

2.2, Algorithm 20 Recursive Computation on the Incidence Matrix

We take the opporiunily nere to comment brieily on the inter-
relationship between programming languages ana the algorithms they
host, QOiten, we find that the convenient way of attacking & given
problem from a numerical standpoint does not correspond to fhe in-
tultive approach we would use if we were asked o obiain the solution
in a few simple cases. In some instances, this discrepancy can be
explained by our inability to think along the lines of an efficient but
too complex algorithm. Most of the time, however, we tend to formu-
iate the problem in terins of those basic processes which are most

natural to the prograymming language used., IFor instance, a language

like FORTHRAN is especially suiled for iiervaltive caleularions but has

jor
e
o
&
[

no buill-in recursion capability, whereas, the contrary is tru
McCarthy's LISP 1.0, Conseguently, changing the host langusge and
periorming a literal translation of an aigorithm may not necessarily
vield the same algorithm as we would obtain had we directly used the

latter language. If neither language is a subset of the other one, this
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will in general be the case., By wav of illustration, we now examine
a "natural'’ algorithm.

Given a graph Gﬁ withh n vertices, the separation of its
vertex set into disjoint connecied classes can be achieved by selecting

one of the remaining vertices and “"pulling out' all of its dependent

cnes, that is, removing the connected subgraph of the class to which
it belongs, and so on uniil no vertex remains, I we think in terms of

a rigid physical structure, the selection process is a single operation,
all nodes of the subgraph being moved at once, If the structure is

now articulated with loose joints, the removal mavy be considered to
take place in stages. First, all vertices at a distance 1 from the
chosen vertex are marked; then all vertices not previcusly marked

and having an edge in common with one of the last vertices marked

are themselves selected, and so forth. We have thus introduced a
hierarchical structure with respect to an arbitrary node acting as the
root of each subgraph; each vertex al a distance d from the root is
responsible for coliecting the vertices to whomn it is directly connecied
and whickh have not vet been marked, This intuitive procedure can be
easily implemented as a recursive program operating on the upper
half of the incidence matrix., Ior any 243 =1, row 1 and colursn ]
are scanned cne posifion at a time, always moving away irom =
under the following rules (assuming we are presently moving along

Tow 1)

i

« i g, 0, confinue;
e if a.. = i and is already marked as a member of the same
S

class as as. do not examine any further elements along this direction;
o
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1.01% recursive class counting 2lgorithm

1.1 Vikd={k=1} for H{k)=(k=1) for «=n{~1)1

1.2 do part 2 if ali,])=1 for j=ill)ln for i=1{(1)n
1.3 type k-1 in form 2

2.1 do part 3 for 1{1)=1 for J{1}=] for k=k+l for 1=1
3.0 a(i{1),4{1) 1=k

3.0 go to step 3.20 if uT=1%u7=0 for usvIiJ(1})
3.1 g0 pavt b for £{1)=1(1)-1{531 Tor s=~}

3.2 do part b for E{V)=i{i1+1{s)d(1) for s=1

3.26 go to step 3.0 0T u7=1&u7=0 for u=H{i{3i3)
3.3 do part 5 For E(Vi=d{1)-1{s31(Y) for s=-1

.4 do part 5 for f{ii=J(13+1(s)n for s=1

3.6 1=1~1

L,02 dome (7 alf{1),4(3))=0
L.05 go to step 4.5 For s=-s5 i7f alb{l),Jd{1}i=k
H.1 done 1F OGI{E(T) YT
L2 H{EQT =1+l i7 H{F{1)3=0
.3 do part 3 Tor i=1+1 For i{1+1)=F01} for J{O1+10=d(13
.5 done
5.02 done if a{1{13,8{1))=0
5.05 go to step 5.5 for s=-=5 1f a{i{1),5{1))=k
5.1 done §if OKV{E(T1))3
5.2 VIELI))=T1+1 1f V(F{1))=0
5.3 do part 3 for 1=1+1 for 1(i1+1=1(1) for J{1+1)=E(1)
5.5 done
Form 2
classes

Figure 2,2



e if a., = 1 butcolurnn k  has already been assigned for

scanning by some clement a,ﬁ}_ , s 4, continue: otherwise, assign
e

column K for scanning by A and initiate the scan in that coiumn,
7 ik

ks

This process staris with a{l, 1}, proceeds to {ind all of the

vertices in its class, then ends up at a(l, 1}; the diagonal elements

are examined one at a tirme, until one is found which has not been
assigned to a class yet. The algorithm starts again with this new
element until all diagonal pesitions are assigned to specific
classes,

To show the conciseness of the algorithm when writien in an
appropriate language, figure { 2.2) is a listing of the corresponding
CITRAN (CIT translator) program, paris 3, 4 and 5 being reentrant,

The number of tests to be performed is approximately constant

A . ) .
é{n ) but we musi take into account the greater complexity of the

algorithm.

2.3, Algorithm 3: Class Counting by Means of List Structuves

Definition - A coniraction H of a graph Gr is a graph whose
&
vertices are connected subgraphs of Gﬁ forming a partitioning of the

vertex set of (32 .

&
Two vertices of H are adjacent il the corresponding subgraphs
have adjacent vertices in {33 .

Lemma -~ The number of classes is invariant under a contraction oper-

ation.

prooi: let a; and @ be two distinct vertices of G, . Each one

corresponds to unigue subgraphs H. and Hj in the partitioning of
A

i
GR , therefore, to unique vertices hi and h, of H. I a,ifg aj ,
3



A

. Hi and H, ave connected sub-
J J

graphs with af leasi ocne edge in common, thus E‘Eiéj E‘ij is connected

1 ]
a,cH, , a.eH.®h. &h.. ¥ h&n
i 3 J i

Definition - A contraction H of Cxﬂ is minimal if s vertex
set is independent. The number of classes in Gn is equal to the
number of vertices in its minimal contraction.

An elermentary contraction is the replacement of a pair of adjacent
vertices by a single vertex,

Any contraction of Gn can be realized as a seguence of
elementary contractions.

The minimal contraction of G is obtained after exactly n-c
contractions.

We now describe how a very simplified ring structure can be

advantageously used to obiain the minimal contraction of G . The

s

£ =Y

- ] . 1 o -

elements a, e, v= %i, Zyunn, oy, will always be referenced by
2

o

means of their index ¥ . A ring is a linked subset of 0} such that
each elerment contains the index of the next ring element. The first
element of a ring has a lower index than ils predecessor.

At any stage of the process, a ring link and a class identifier
are associated with each element, Members of the same class are
chained to form a ring; at the beginning, all elements belong to single
element rings {i. e., their ring link is egual to iheir index). The class
identifier of an element is the index of the beginaing of the ring to which
it belongs.

Bach element is tested in turn with every element of higher

t
index for the relation & to hold, provided that they do not already



o

belong to the same class as a result of the transitivity property of

£ . Whenever a matching element is found, the new class obtained is
igned a class identilier eqgual to the minimum of the pair of identi-
fiers. The next step of the elementary contraction is to merge both
rings wiaile assigning the new class identifier to all elements en-
countered,

Aiter repeating this procedure n times, we obtain ¢ classes,
¢ being egual to n minus the number of mergers performed. The
actual classes can be trivially obtained by walking around the rings,
starting wita their element of lowest index,

Notice that the ilnks were careiully chosen in order to make
the merging process simple and eificient; the new c¢lass identifier is
the index at which merging is to stari; it then proceeds by updating
ring links and class identifiers of both rings until their {irst element

-

8 reached.
Algorithm 3 diifers from the previous ones in the fact that it
< - . - - ~ 2} ' =
makes use of the transitivity property of 5’2 to periorm as few ltests
) ) ' 1
as possible. This may be of special importance if the relation &
is costly to evaluate. At the same tline, since the whole incidence
matrix is never needad, the amount of storage required is kept to a
small vaiue, namely, 3 a words.
The number of operaltions invoived can be analyzed as {ollows:

in the worst possible case, every contraction associates a single
vertex of G with a subgraph H,, of G . The corresponding ring
3 .

merging requires therefore 2{(v+ 1) operations. For ¢ classes of

sizes NysTyes. D the ving operaiion count is bounded by
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1
between positive and negative tests, the fest being posilive i aiy’% a .,
d

negative i a, i a., all of the negative tests have fo be carried out

of the elements in the sample (L {we assume here that a.fL a. cannot
be deduced from the outcome of previous tests involving a, or aj
i

separately). The number of negative tests performed is always

c~1 o c
./ \
DI NIRTIN
- - ""‘—"",3 A il EE ) P i
SN E TR &N

whereas the minlmum pamber of positive tests corresponds to the
total number of branches necessary to span each class with a tree,

1

that is {n-¢) tests. The mindmam number of {esis is thereiore

1
K

w’“‘“‘“““*m\\
bt
e

1

’ [‘\/’] o
o)
B R
W"”’
4
5
1
¢

o1 as a iraciion of the toial nurnver of tesis

o o
1/ 2 2.\ Yy o2,
= \ﬂ - ,ﬁ; }'@“ n~c a n:& + 2o - An
o = jlzi I ot (2.13)
5 n{n-1j n{n-1}

The total number of operations T is hounded by



c o
ny LI I3
2 n{n-1j nint+ 1) P ) .
n-oe -+ n. + = -Zc+ 3y n {Z
T -é‘:g TVt ] 2 i Ler
i=1 i=1
but ia general it will be much smaller. Indeed the lower bound of
the ring coperation count ig

i
i=) =1
; .
c ; ; : mgzni%w 1 \\
:}, ? . % i..- b &
= 4 'y ﬂii}“ogznaj 2 + 2/]
IER N
A H )
2 > | log L~ 4 {n-cj .
= 2 4.{_., nxiiogznu 4i{n-cj (2.1
i=1
which restricts ¢ to be in the range
/ < (o} o
i/, X 2 . H b a{nt 1) o 2
R N . - - S T A n. -4
2 \ L. ™ “ nzaiggznaj Aol T 2 24 2y N
i=1 i=1 iw
(2. 186)
A point of interest is the variation of

¢ with the ordering of
sample elements,

For a fixed number of clasges ¢, @ is minimum
when is maxinyim subject to
/ !

e

n. Inc-dimensional
1 i

e
B
#

Fuclidean space, ihe solutions are points with integer coordinates

C
greater than or equal to 1 in the hyperplane Y n, -n=0, They
Feedy L

i=1
are of the form {1, 1, ..., I, n-o¥+ 3} PR

or any permutaiion of the
vector elements by symmetry; the corresponding o



P Ay

o S cwl F {_n»cﬁ ii7 4 2c¢-3n 7 . (n-cjln-c-1) (2.17)
min n{n-i} ni{n-1i) Vee 2
The zlgovithm will payv off i & is close to o and o is itseli
=4 pay

min rin

small, which requires having as few classes as possible, the classes
being as large as possible. Consequently, if we have the possibility
of ordering the elements within the sample drawn, we should rank

B - < 3 . g -
tnem according to the probability that they are in the relation ﬁ with

o I P

ail of the other sample elements, Notice by the way, that the ordering
only matters within each class; as we already pointed oul, we cannot

kY

avoid performing all negative tests anywayv. That probiem is some-

n

what akin to the connector problem of communication theory, Detween
any fwo nodes of a given network, a direct connecting line can be
established at a given cost and the problem is to draw the cheapest
networlk, the cost of a tree being the sum of the costs of its edges. A
minimal cost tree can be s%mpiy constructed by choosing at each step,

the cheapest connector until a spanning tree is obtained. This spanning

tree is called an economy tree and can be shown to be of minimal cost,

i

The - otk 3 41 1 = 13 a1 4F 1 5
fnie same method couid be applied ¥ we were to evaluate a‘.fz & .
i3 ¥ j
- ] * . (= vl o £ s D - N
for all acll, assigning a cost 1 i &, f+ &j’ G it &ié?, a. . oDut, i we
J

try to minimize the number of times & has to be computed, only a
probabilistic cost can be assigned to each element a, € #. This cost

can be taken to be

Y
P, = l-xm aTEP ?{336@}
Ei”\;?



L=

In the graph G?\I , this is equivalent to assigning to each vertex a
N

certain welight,

A

epending upon which vertices it has edges in
Txrf il TE =1 P H & 3 oy e 3 S T o 2T 1 - -
comraon with, If the sampie is obtained by uniformly sampling

&

# with replacernent, the weight w, of a; is simply related to the

;
iocal degree p. of 8y by
14 p.
w, = i
i N

and the elements of {4 should then be ordered by decreasing weight
to make o optimal.
In practice, even though we may not explicifly know the logal
degrees in the graph G,. , we may still be able to estimate w,, For
2 N i
- . E . 4 T e &2 . 3y
instance, take the slmple case where the velation 7 isitwo integers

in the range [1,N7] are multiples of each other., w. is then a de-
*

creasing monotone sequence if the integers in the sample {4 form

an ascending scquence.

In the previous paragraphs, we described how the ring algorithm
can be used most eificienily by ordering the sample elements. Alter-
natively, il we do not perforim any rearrvangement, the algorithm can
be used to compute at the sare tlme the number of classes in samples

£ ] . ih . - > o - .
&E, ;:4?, sems ﬁﬁ . the ¥ sample being a subset of i; with elements
&

j53

; ]. This constitutes the greatest advantage of algo-
2 )

rithm 2 and makes it about an order of marnitude faster than cther
g

algorithros for this particular type of multiple sampling.
g P ¥B P piing



raph on n vertices with no slings {a

I.et G be a comnplele

i+S

sling is an edge connecling a vertex to itsell) and single edges (no

edges in paralliel), G forms an n-clique in Berge's notation, Let
I
V{G ) be the vertex set of G F{G } its set of adges; elG ) desig-
? & &
n n a n
nates the number of clementis in E(Gn} , 1. @, , the number of edges,

Cur experiment consists of selecting a spanning subgraph

H of G such that
7 n

the probability of choosing any particular subgraph Gn being only

dependent upon its number of edges

s———
g
i

where s {3y = 1 {3. 1)

.r-”'"’*'-.,.
\3’;5
o S
M/
Fd
i
<

The outcome of the experiment is the pumber of components in
the subgraph I, L. e,, the minimum number of connected subgraphs
which span . The probability that the number of components be

A om

egual to - is of course

5 £{e(H,)
E}{C:‘g} - gﬁét’ _‘\""E_’“; W (j.ai
& 0” “nT <y \2)
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A particular case of interest corresponds to the choice

/;

1
fle} = {12/
©

\

which arises when selecting k distinct edg
each edge having the same probability of sslection,

Delinition - A random n-graph with e edges is a

complete graph G_ with exactly e dist
i3

T
Sarnpiingy

¢ uniformly and without repiacement B{Grj‘s
b3

§€§$1

‘ges oul of LG
subgraph of a
tinct edges oblained by

»

Ve now praesent a computational method to {ind the

probability distribution of the number of components in a r

graph.

,...:
)
s
by 3
o

Theorem - The probab

i

components is given by the

andom

i, ¢} that a random n-graph has <

recurrence formula

i
1 ‘i:q ’fﬂa 1 ! {n“ya o
Pl c) =z £, {y) -9 Vply, Lpla-w,c-1) (3. 4)
V=i
c=2, 3 ....n;n=2
it
S
pln, 1) = 1 -~ L. »io, ¢ {3.5)
Ed
proofl: consider a random n-graph with ¢ components, obiained

by sampling from
probability p=pi2,1}. I <

two disjoint subgraphs with,

ponant and n~-3/ veriices,

an n-cligue, each edge being chosen with

=2,

this graph can be broken inio

respectively, JJveriices, one com-

c-1 components provided that no edge



) Con .- - e AT
crogsas the pariition, which oocurs with probability {%—p;V{ <

For the {amily of pariitions satisiving the same consiraint we get

‘ ’“"1‘1 }J{A Vi

e o, Lipln-2, c=1)
\

after multiplying by the number of subsets of V vertices. These
partial results still have to be swamed over all possible Vs,
however in the process of singling out every connected subgrap!
we count each configuration as many times as it has components,
that is exactly ¢ times, The theorem follows,

It is intevesting to notice that these recurrence formulas
must be used in a precise seguence, The computation of the prob-
ability that a random graph be strongly connected is based upon
the knowledge of the probability distribuiion for more than one
component, Therefore, we proceed as follows:

i} assume all terms plk, V) known for 1 <k €V €n-1

ii) compute pin,} 2 =Y sn-]

iii} subsequently obtain p(n, 1)

iv) repeat steps i) through 111} {or n = o+l

Theorem -~ The probability oin, ¢, 8} that a random n-gravh with
% &

e edges has ¢ componenis is given by the recurrence formuias



2]
, S 1 \
pla, e, e) = = -
2 LA

E

2/ ipiy, 1, Mpln-v, -1, e-)) (3.6)

N

ppt? o)

in
ex{},},,,.,,&g ;o omd, 3, ...,0;
o
/ 254
p{ﬂ,i,e}ziwgi?gn, <, ¥ (3.7)

proof: this formula is most easily deduced from formula { 3. 43,

Fiy

since the probability pin, ¢, e} is in fact equal to the coeflicient o

coli)

pil-ph

in pn, ¢} divided by the sum of these coeificients {or

jf{f‘l}\
. P2 .. s
c=1, 2, ..., -k, i.e,, \ - ; Alternatively,

[
BN
PRI A E3) (5.8)
plnyc) =/ p (-2 \2) | pin, c, e) 3
=0 \e

p(2,2) = i-p

)
1t

The probabilities p{n, ¢} have the {oilowing polynomial repre-

sentation in terms of » and g,
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i

pln, ¢ S;mﬂ /3 n, ¢

= e, ) T :
J@\ijp }?% {3393

Another simplification yet can be achieved if we use the new integer

funciion

i
Lok
»
[y
£

Py

) ) N
gin, ¢, e} = p{n, ¢, e;i\e

which satisfies the recurrence {ormula

g(n, c, e} =

;’3[!'“‘

; T g{ph 1, Mgn~¢, c-1, e~} (3.11)

v{n-~ w}ﬁ\v

it should be clear that those integer coefflicients g{n, c, e}

actually represent the number of graphs with exactly e edges and

¢ components among all possible 2 subgraphs of Gr , From a
- i

numerical standpoing, they are moesi converniently evaluaied for

reasonable N as long as we stayv within the range of integer
B 7 &

arithmetic., Table {3, 1} shows the values of ni{n,c) for n=1,2,.,.,06

Lemma - For any random n-gvraph, the following relationship holds

/i
n-c € e = \jl g%}) {3.12)

propei: fivst, examine the ineguality on the left; let n, be the number

-

Eh e
of vertices in the 17 component, thus

The minimum number of edges in the i~ component is reached for



)
-3

any tree on n, veritices, the number of edges being then ﬁi—vfi ;

summing over alli components we get
g
e 2 7 in,.-1)=n-C
é,msd,g i
AT

Similariy, for the inegqualily on the right, the maximum number of
. . .th . g " . -

edges in the 17 component corresponds to an n.-cligue and has

{77\ ,

\Zjedges s0 fhat

c c
TNy S 2 N
i
e = j ! 2 xzw %’i‘ ;3 2’;1 - IE/}
[ o
et 1=3
c o
v 5 . PR A . - 5
Now, the maximum of _.“—’-wai Y subject to the constraint £ ny=n
A

is attzined for a vector of the form {1,1,...,1,n-ctl} or anvy

permutation of its elements. See a more general proof in section

{4.1) . Finally

f,.z

c." E E H 4 ) ”(\" e
e o Cwi + (n-o+i} «5;; =

s
(W]
.
ot
Lt

o

g

Ihis lemma has a direct practical application to the

compuiation of recurrence formulas (3, 13 for gin,c,e) Indeed,

by sharpening tne 1imits of summmation, it becomes no longer

necessary to store and refer to null values of gi{n, c,e); these

would actually be a considerable nuisance if we were o appiy

formulas {3, 11 straightforwardly,
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After introducing the bounds just computed, we obtain

. gr ,f*z}‘ﬂé
mind e-n"%y%;:h};,i- 1
i 271
L J
* - Ly g1, Lnigin-v, c-1, e~}
; _ o
k”m&X§y~3;e*iﬁ” yoer 2) (3.14)
j
i” : /n-ct1
i€ c€n g n.,c:se(»:&ﬂ”g'r )

gln,c,e) =0 , otherwise

The great savings in computing time and storage space, definitely

justily the slight increase in complexity,

3,2, Expected Number of Components

- . . . . s @ |
The polynomials (3.9 ) invelve monomials of the form p g

o

which can be transformed to a single varieble p or g, simply by
making use of the binomial theorem. This is especially interesting
wien either p or g is small compared to 1 and when we compute

the expecied number of classes. As a matter of fact, we get

N Nay
. /N 3 U
pin,c) = ;?M&T\i“s}{n,cxv;p z(hk iPki”*i?{
"Jj::ﬁ :G /
N

i
o
Tt
.
P
b
"
S
ke
)
*a
¢}
L
i
L
s
Ll
.
o
(%31
e



which, after reversing the order of summation, vields

N Mk |
N S WA 1= 74 ]
pia = ) N ) )T e e (1T
S J
= v s %
*i"t{;" 5?‘3 y\ : - £t
= Z{) {-1] E}i‘zi\g L /,ég(n o, M 1 {3, 1b6;
o

In the variable ¢ , the compuiation proceeds in an identical

fashion to give the polynomial

) ?'”“ 1 =
g:“*""', z £

i iig‘i“jb’}fgi?”}*"% ;
}?\n Cj—-L ﬁﬂ Z{"E} \N"kf?@i , €, DN 2;! {3. E?}

K=o | 5ED

| S—

which could actually be devived directly from {3.10) since exchanging

~

the roles of p and g is eguivalent to permuting the monoimials
@ N-o o T : 53t o h
] and ;) g, which in turn means exchanging the coellicients

g(n, ¢, %) and g{n, ¢, N-24 . The corresponding graph interpretation is

[

simpiy to repiace H_ by its complement graphin G .
E
If we use the single variable polynomials, we get for the ex-

pected number of components in a random n-graph the foliowing ex-

Dressions
N mx n 7
oy H : a i
SR I | Sf”' k- T/N-V ! ]
éi\cuip}/ - Z’ P ; - {WA; g/ii\:-=i‘§,j Z Cg(l’i C‘ZJE {3'18}
k=0 L3;ﬁ 5 =3 __}
R kN Rk-VINSTS Ty .
Blealal) = 4, @ L \o¥-k EM cgln, e, N-23 (3.19)
k=0 | =0 c=i 4
A
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thege resulls, we
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T

¥

@ actual numericsl evaluation o

P

would obvicusly apply the last lemma, as we formerly did, and use

the following formulas
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The polynomials pin, c) can be found in table { 3,1} and the
expected value of the number of compoenents ig given in tables { 3,2}
and { 3.3 ). Figure (3,1 ) shows the variation of the expectied value
for varicus probability levels from :G to 1 by increments of 05, It

is convenient to define a clustering coeificient p by

waich variation can be found in figure { 3,2 ) for n ranging between

Z and 20,
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RANDOM GRAPH: AVERAGE NUMBER OF COMPONENTS

c.i{pj=1
X
C—zi?? =2 - =
cp)=3-3p +p
N 3 6
c p) =4 ~0p +4p” + 3p -~ b6p” + 2p
= 3 5 6 7 8 S
c(p) =5 - 10p + 10p” + 15p™ - 18p” - 60p° + 130p” - 10555 + 40p°
- opl?
colp) = 6 - 15p +20p> + 45p% - 18p” - 330p° + 60p” + 2445,% - 6assy?
5 3 P 15
+8712p " - 7206 ph o+ 392551 - 1350507 4 270p1% | 24,10
co(p) = 7 - 21p + 38p° + 10557 + 425° - 980p° - 195057 + 1176055
ppmnn 1 Y | 1
+ 1235657 - 182721500 + 5392810 - 1128820p1% + 15025507 3
. :
- 14713050 + 1084104p7° - 603435518 4 250950017 - 75310p18
G k]
+15750p 7 - 2016p°0 + 120p°

RANDOM GRAPH: AVERAGE NUMBER OF COMPONENTS

c.{g} =1
S
colgl=1+4g , ;
cylgi = 1+ 39" - g
4 Faig i
. 43 . & ;B &
quq;ﬁ 4 + 37 - bglyig
5 :‘?‘ H
cp{gh =1 +5g° +10g" - 10 ¢ - 355;8 rgf;i}q% - fm:;&{j
> 5 .8 9 1] 12 1 14
colgl =1+ 6g” 4 15g° ~ 507 - 60g™" + 25¢™" + 90¢ - 90t
sy oA ;,5
ﬁ—;::‘.éx%
1 7% “3 - A LA k]
eolg) = 1 + 7q ® +21¢*7 - 219t 5 3517 10590 % - 105¢1 " ¢ 4z0gt7
- m{}%z‘ff‘ - 5049°0 . 120g°1
’ W 12 kA “ 4
cglg) = 1 +8g  +28g°° - 28077 4 569°7 + 35910 - 16857 4 11207
£ " - o -
- 280q7 - 210677 + 5606°% + 1400°% + 1680g%7 - 31507
- 11766%7 + 50400%° - 335047 + 7204%"

Table 3.3
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When either p or ¢ becomes srozail, the variation of the
x

number of classes can be easily estimated using the following
lemma,
Lemma - The

s
w

pProoi;

for the expected values,

simple geometrical considerations we know

We now compute the

i) polynomial in

i

-
i
P

PEOm ourxr

Y
7 - A (O
gin, 1, N-z4 = Vi S/

W
st

Vs
gn, n-14) =\
coefficients of

P

C? o = ng{n,a, 0;
, &

starting point we use expressions {3.20) and (3.21;

lemma, together with some

that

#

1 1

s
b

4.1 j){
then q ,

expected number of components in a random n-~grash
£y é} Yy

{3.23)
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g, n-1
since it corresponds to one isola ated vertex and an n-1 clicue
cligue,

Similarly n 1 = i i
ly when n-1 <« i< 2n.-3, equation (3, 21} yields
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3.5,

Tbe previcus resulls do not exclusively apply to the
graph problem wherse the probability distribution of the numbe
edges is binomial but also to more general distributions provided
that the probability of any given configuration be uniguely deter-
mined by its number of edges, all 2N configurations being feasible,

ndeed, knowing gi{n, c, ¢} which is the number of configurations
forming ¢ classes for fixed e, itis a simple matter to obtain

7 ~ 5 5= - s ~ 4 : . R o LY
pin, ¢} for some edge distribution £(n, 2/} such that 2, o, =1,

The probability of ¢ comnonenis becomes
jS Y

is

(3.25)

All of these values are readily obtained from the table {3, 4) and

extensions of that table,



o k3 o 1 Lt .

he extendsd to encompass a wider class of problems that we shall

ability to express any configuration with ¢ classes as the sum of
pairs of configuration with, respacitively, ¥ and c-y/ classes,

I =V¥Vse-1, The set of n points is thus broken into subsets of

oy

and n-k peints forming ¥ and ¢-% classes, All cther
parameters descriding the configuration must be swmimed and the
method will succeed if all of these suwms can be expressed in fermasa

o

of simpler configuraiions exclusively, i, e., configurations aiready
evaiuated. Notice that the probabilily of having a singie class is
always found last by taking the difference between the total number
of configurations and the number of configurations having 4, 3, ...
or n classes for z fized set of parametiers,

We now investigaie in some detail an example of separable

problam,

Given an axm veciangwiar board B with positions
, T
“i);j, TEL S, 1€ Em , we can speaw of the number of rooks
&
cizsses formed by & marks on 13 5 any two marks bi [
) 1y

are in the same class if and

By
&{?’Jfr



seguence

o
of marks
%23, . j . % s bi;}
T o
R A 2id

and j,, #

AT

4

rresponding

[
—

\{ 1

Tyl j

rooks classes,

count when the configuraiion:

&

P

be the number of distinct configuralions

Let din,m, e,k

to occupy exactly n rows and mm coluwmnmns; such configurations

are calied dense,

Co B
nIn

of dense configurs

later,

given shar

De decom

[ Y £ Ty
s . 4% Y3z " e -
gin, m, c éf..‘g"_', ‘j p }c:;.g;«,g,i.x 3 (3.26]
$=1 }::; AN
this expansion in texrms of dense configuraiions will be
per limits by weeding ouf the =null 4 values,
Any condfiguration forming ¢ classes, ¢ 24, can actually
posed into a pair of paltterns on smaller boards B
o, m,
£ i

and B

=D, TN,
i

of

! Tt — . F
i1, I, ¢, Ky = Hix

7 . 3%
di{n, m, ¢, k}

tions by

ES

the k marks (that is the complement of

4

it is cbvious that by symrmeiry

dlm, n,e, k)

e

risk

on of

, the number of f::m:;izgh,,ami) 18 Can be expressed in {ermns

called sub-hoards, which together comprise all

the sub-
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in
Theorem - The nuwmnber gin, m, ¢, k) of configurations of k
marks forming ¢ classes on 3 is given by the vecurrence
relations
n-1 m-i k-1  nen, memn,
Tﬂ. P— sy T - - &
E 5 %, > Ay *
I 1.
gi“:m:as‘ﬁ}“’é‘ ,54’2 ;‘;_!n “_.; ‘o / - f?
I, =i I, =L A&, wmi Ti,=i 0 IT

FY c"i{nuin,i,i,kg} ci{zag,mz,é:n’%?kwkg} {(3.27)

2= ¢ minin, m)

i
P
&3
g
ol
yi?
et
H
e
w

13 iz
*

. oy L. ) .
din, m, 0,1 = glo,m, ¢, 5%) - L, Lo ()T Ky (3.29)
i=c ji=

ij < nm

1=k €nm D% o = midnin, mj
101 Yo 347 VoL 3 ‘o P
g(1,31,1,1; = 4{1,1,1,1} = 1 {3, 305

prooi; let us first establish how to put B in a canonical order,
i &
Fick the first mark b encountersd when sceanlng successively

"
A
the first row, then first column, second row then second column,....
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The mark 8., . is a member of some class which has row set

i 1 E,
i., gy ea., i Tes e i §
i 1 toe 3 nss 1 LI n-t,
i i
E’_ X K i \{’
3 H
;Ki’ »;2; * % 8 g }m)gg 3» I L] ;}m“’mqs
i i
i H H
safisfvin F U I { i.51, 4 3
I3 IVing 1 o e <. i 2 1 A fien

314"5;“1’ TSy :”i_ “é:’ ' ”"{“"]znwmﬂ
A i

The sub-board Bn o how contains a unigue ciass forming a
dense configuration, I we repeat this process for D

Ti=T1, Ti-310

H 1
.

until all classes have been transiormed into their dense sguivalent,

we say that B ig now in canonicai formn, Designate by
& the dense eguivaient of . Each dense con-
:'{}.2 Zml? D=3, Y~TT0,
& 3 i

guragtions by appropriately permuling rows and columns in-

me configura-

tion in several ways, ihepermuiations musl preserve the eorder
of the rows and columns of Bﬁ o, BRODZ themselives; this also
ik b4
171
holds for those of B anc for the smptly rows and columns

e

s

12 coefficient in the summation is then

A-Ti =Ry, F=Th, -1 Eﬁ

sirmnply the product of the number of crdered partitions {n.,n
A

>

n-n, ~n2} of the row and column set of B_ which is



B lm

o ! (ni%nz)CT\ian‘?}/ n )( m )
| P ” i T 7 - . T i
X}a}i;‘nz,(zm--111 nz}, xnl,mz,(m my ma). - m kn tnt v 'é"mz

1 1 172 i

Still, some identical configurations are multiply counted
since Bniml is going to represent successively each one of the
¢ classes on B ., Thus, formulas {3.27) and (3.28) follow
immediately, Formula (3.29) derives the number of dense con-
figurations on B by removing from the total number of con-
figurations of k marks forming ¢ classes, those configurations
which have a dense representation on proper sub-boards of Enm,

Lemma ~ The only possibly non-vanishing terms g{n, m, ¢, k) and

d{n, m, ¢, k) occur under the following conditions

g{n, m, c, k) if ¢ £k €£nm -~ {¢c-1) {(n+m-c)

1 €¢ =min (n, m)

d(n, m, ¢, k) if ntm-¢ £k €nm - (¢c-1)}{ntm-c)
1 €£¢c €£min {n, m)
prooi: obvious from geometrical considerations,
Using that lemma, formulas {3, 27) through (3.29) can be
made more efficient computationally by sharpening the limits of

summation, thus reducing greatly the numerical toil, We obtain

n-1 m-1 nl___ml n-n, min{-m»ml, c:-«l%—k-«ki ~n2)

H
g(nr m, C!“K) :"E Z Z Z

nixi méxl kizni+mi—1 nz—cwi mzwcw-l

nl%nz ml-‘rrnz\ n ¥ri
x n mn T, +0 m., i

1 1 / 1 i 2

x d(niyml,lgki} d(nz,ma,c-»l,kmkl) (3.31)

2 £ ¢ €min (n, m)
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min{n, m)
gin, m, 1, k) :<nén>_ Zg g{n, m, ¢, k) (3.32)
Y.

n min{m, ctk-1)

g{n, m, ¢, k) - Z Z (n)(r}n) d{i, j, ¢, k)

: : i
i=c j=c

d{n, m, ¢, k)

i

> (3.33)
1] < nm
g{l,1,1,1) = d{1,1,1,1) = 1 {3.34)

These formulas must of course be used in a definite sequence,
Assume all values g(n,m,c,k) and d{n,m,c, k) known for
nm = Nz,

Using formula (3, 31), we can compute g(n, m, ¢, k) for
n=N+tl, m=1,2,,,.,N+1 and all permissible values of ¢ and
k., This process requires only sub-boards nm %Nz and is
therefore successful,

Then (3.32) gives g(n, m, 1,k} for all the newly computed
nxm boards, Finally {3.33) produces d{n,m, ¢, k} which will be
required in the computation of larger boards, All values of d
and g for nm =€ (N+1)2 are now known, which completes the
induction proof,

It is clear that by symmetry we only need to compute ex-
plicitly g{n,m, ¢, k} and d{n,m,c, k) for n=m,

Of course, the previous resulis can be interpreted as
the probability that k marks distributed at random on Bn

i

form c¢ rooks classes if we introduce
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g{n: m, C, k)
{nm) (3.35)
: k

?(nx n, C, k) =

and formulas (3, 31) through {3, 34} can then be rewritien in
terms of p{n,m, ¢, k).
We can also proceed as in the random graph case and

derive class polynomials by assigning to each configuration of

nin

x ) k““p}nmwk’ Let ¢ = 1-p, we

T

K marks a probability (

get

nm-{c~1H{n+m-c)

(nm) ?k qnm«k

pi{n,m,c) = Kk

pi{n, m, ¢, k)
k=c

nm-(c~1){ntm-c)

= P "™ K g(n, m, ¢, k) (3. 36)

k=c

Transformation to a single variable polynomial is straight-

forward by means of

n 12 1

- . N
Z ap'q’ = Z piz a; (-1)7 (?ﬂ:’
1=0 i=0 j=0 J

n i
DR

i=0 j=0 n-j

We obtain the following polynomials in p or q, ex~

pressing the expected number of classes:
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Table 3.5

RECTANGULAR BOARD, ROCKS POLYNOMIALS

pli,1,0) =¢q
pli,1, 1) =p

2
p{z, 1, 0) =4

2

pld,1,1) = 2pg +p

4
p(2,2,0) =q

3 2 2 3
p(2,2,1}) = 4pg~ +4p q~ +4p q+P4
p(2,2,2) = 2pq°

3
p(3,1,0) =q R
2 3

p(3.1,1) = 3pq +3p g+p
2(3,2,0) = q°
p(3,2,1) = 6pq5»¥992q4-%1ép3q3~%15p4q2'+épSQg+pé

24 33
p(3,2,2) = 6pq +6pTyg
p(3,3,0) =’ |
(3,3, 1) = 9pq +18p°g +42p qOr81p% 11170 0 184p0 7 +36p 2+ 9pSqup
p(3,3,2) = 1szq?-+36?3g6~%45p4q5-¥9psq4

3 6

p{3,3,3) = 6pTg

4
pl4,1,0) =g - .

3 3

p(4.1,1) =4pq” +6p q +4pTqtp

8
pl4,2,0) =g
p(4,2,1) = 8pg +16p°q H32p g 456p g 456p°q +28pCq%esp qip®
p(4,2,2) = 12p°q° +24p°q° + 14piq?

12
pl4,3,0) =g

1 2 10 4 8 6 6

p(4,3,1) = 12pg  1+30p%q Pr88p3q 92377 B 5287 T+83450
10,2,,, 11_, 12

495p8q%1220p7¢ 2 +66p 1 0 %125 gt

%780p?q5

b4, 3,2) = 36p°q  V+108p q 222p%q B +264p7 Tr00p0q 01207

pl4, 3,3) = 2%§3q9%~36?4q8

pﬁaé,ﬁ)ﬁqlé

(4,4, 1) = 16pq  2148p°c  H176p7q  21620p% g 4196857 Lr5040p04 10
+9664p 7 +12228p 0811296570 17992p1 O Prasespt iy
+182091%;%566p3Eq3%izﬁpi%qz+lép15q+plé
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Table 3, 5a
RECTANGULAR BOARD, ROOKS POLYNOMIALS

pl4,4.2) = 12p°q H288p g P hasspta A1 968p° ¢  1i2896p0q % 1776p 74 ?
+642p8qg+14ép9q7%iépiaqé

pi4,4,3) = Qép3q13+28894q12%432p5q11+?Zp6q1§

P4, 4,4) = 24pTqt?

p(5,1,0) = q°

p(5,1,1) = 5pq4~Fiszq3-¥1Op3q2+5p%q-ﬁp5

p(5,2,0) = g*?

p(5,2,1) = 10pq 425p°q +60p g +140p%¢P+222p°¢ " 1210p0¢ % 1120p ¢
+45p8q2+10p9q+?10

p(5,2,2) = 20p°q" + 60p°q " + 70p%q® +30p%4®

p(5,3,0) = q'”

p(5.3,1) = 15pq ' F4a5p®q 1415557 2 h5255%0 11533p7 1 %43580p04 7
+5805p g +6285p5q T+4990p 7% +3003p 00 +1365p 1 1ot
+455p1 234 105p 32 15pt qupt®

p(5, 3,2) = 60p°q" 2+240p°q 2 +660pq ! Lr1320p°q 1 041425054 P +630p P
+150p8q7+15p9q6

3 12 4 11 5 10

p{5,3,3) = 60p7qg " +180p q "+150p q



(1, 1) =
c{2,1) =
c(2,2) =
o(3,1) =
c(3,2) =
{3, 3) =
cl4, 1) =
cl4,2) =

cl4, 3) =

c{4,4) =

c{5,1) =

c(5,2} =

C(B, 3) =

~56m

Table 3.6
AVERAGE NUMBER OF CLASSES

P

Zp*pz

ép-4p3+P4

Bp~3pz+p3

6p-9p°+2p +3p"-p"
99—18p2+6p3+9p4~18p?
4

+18p8-5p9

4p~6pz+4p3~p

8p«16p2+8p3+494~4p6+p8

& 1 11

12p-30p°+16p +15p% +6p0-72p 139p84100p7 - 144p 0172

~13pl?

16p-48p°+32p +28p +48p®-288p7+84p84208p%+1608p 10

11 12

-5472p" '+7576p' “-5856p" *+2664p 41 672p  P173510

5p-10p°+10p°>-5p41

3 6 16

%Spa«p

+3p°+20p%-180p +15p8

+2p3+295~10p
4

109—25p2+20p

3 10

15p-45p°+35p
11

+15p +550p7-573p

~210p* t4775p % 600p  34210p 1t 29515
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Table 3.7
AVEBAGE NUMBER OF CLASSES

C(l; 1) = 1*‘(}

c{2,1) = l-qz

c(2,2) = 142¢°-4q +g?
e(3,1) = 1-q°
c{3,2}) = I%éq3—12q4+6q5~q6

8 9

c(3,3) = 1+9q4~42q6+54q?~2?q
4

+5q
c{4,1) = 1-q
c(4,2) = 1+14q%- 32 +244%-8q 745

c(4,3) = 1412q°+6q°-2497-96¢%+240q?-2109 O gaqll -1 312

o(4,4) = 1+16g°-16q +664°-96q%-152¢ 1 O448q L4972 1 2. 176041 ?
+1344q14v496q15%?3q16

¢(5,1) = 1-q°

c{5,2) = 1 +30q°-80°+80q "-40q%410¢7-¢ 0

c(5,3) = 1415q°+15¢ -30¢%-45¢%-210q C+855q11-1110¢ 2470541 3
-225q 4429415
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min{n, m) nm

i
B e = ; ¢ iZC ’ngzn m, ¢, §) (117 (";’*‘i (3.37)

i=
min{n, m} mn m1n{1 nm-e)
Z Z Z gin, m, c,nm~j)(~1)j (nin“})
c=1 i j=0 -

(3,38
Tables { 3.5 } and (3. 5a) list the rooks polynomials for
each class while tables (3.6) and {( 2,7 ) contains the corres-

ponding class polynomials,

3.6. Interface Counting

Often however, the foregoing method may not be applicable
if the problem is not of the separable type, Notwithstanding, even
if an elegant analytical approach seems remote, numerical treat-
ment can yield fast and accurately, answers for small cases;
some insight into the behavior of the general solutions may hope-
fully be gained from these results, We illustrate these remarks
with some rooks problem,

Suppose that the board Bnm has a set of arbitrary
restricted positions and the rooks relationship holds across
them, We can think of building B ,, Py successively appending
1 rTow to Bim s 1 €1 =n-1; the characteristic feature of this
problem is that, for the purpese of class counting, configurations

of k marks forming ¢ classes on Bim can be described in
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e e
terms of g{i, c,k,W) where W is an m-dimensional column
. . .th - . th
assignment vector, The j component of W is Wj =z/ if the j
column belongs to the thh class; classes are rarked according to
the order in which their first column is encountered when success~
ively looking at columns 1 through m, When ¥ marks are distri-
buted in the unrestricted positions of the newly appended row, a
!
configuration with k+r marks, ¢ c¢lasses and column assign-
i
ment vector W' results; this configuration is thus counted in the
1 T
term gl{i+l,c ,k+r, W ).
Computations of that type are bound to be rather lengthy
since they simply provide an ordered way to review all feasible
configurations, However, significant improvements can be achieved

if it is possible to lump together groups of configurations, For in-

stance, consider a rooks problem on a semi~triangular board

whereby row i+l has the same column set as row 1 plus
m{i+l)-m(i} extra positions, The new feature of this problem lies

in that configurations of k marks and ¢ classes on Bi can

ym(i}

be counted in terms of g(i, c, kﬁ?} where

I} c
v .| )3
= @ -'-<~: & = i M
v y vy SV, S, {vﬂ . ' vj m{i} ;
VC 331

here Yo designates the number of empty columns and vj s 371,404, €
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the number of columns occupied by the jth class when those classes
have been ranked according to the number of columns they own. As

a new row containing r marks is appended, we have to take into
c

V. :
consideration all W (;) ways in which r. marks can fall into
i=0\'] g
the set of vj columns, j =0, 1, ..., ¢, subject to the constraints
C
) s
j=0 J
rj = *vj i=0,1, «v., C

Let ., ., ..., r. be the only non-zero r wvalues for
1 1z Ig

{
some particular choice of r 5. Classes jl’ 52.’ paas js collapse

to a single class and

gl i+l, ctl-s, ktr, | "1

2

l (5.39)
|

e
<t
gl e
M /
e,
&
o
MMMM_.M»‘W”‘”:':T/
el
-
-

where

i

v = Vv -7

[ O [&]

f

v, = V. if r. = 0

‘i OJ # 3:1, zp &ty o

v, = if T 0

J J

v;+1 :v.+v.+...%~v.-§~ro
i 2 Js

A 5

g 3
and v s ae W
1 ' getles

%
17 V2r e Ve

by ordering its elements into non-decreasing order, null components

is the sequence obtained from v

being removed, The arrow in { 3. 39 means that the term on the
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right contributes additively to the value of the term on the left

which had an initiz] null value,

The basic step we have just described is to be repeated for

¢ =r sm(i) and for any such r , all partitions into ¢+l groups

or less must be generated., DBecause of the special role played by

the v, empty columns, it is convenient to split r into T, and

r-r marks; this latter group is broken into », , r. , ..., 7.
o 31 32 35

marks subject to the above constraints; this decomposition can

. . g e
be carried out in «fr, T 5, Vi ways where

f" Z S 2 /vJy
~na- -
a(r,r_; S, V) ° Z 1T (3. 40)
T xl Vallr,
Q 2 jy
~ a4
i Y. = D=
v=1 Jy ©

‘which would numerically be computed using the formula

min(v.l, r-ro) min(vj . r~r0—rj } min(vjs, z'~~r0~1'j -
s o 3 2
a(r, T S, V} . e
oflr, =1 r, =1 T, =1
J J2 Js-1

(3.41)
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Table 3.9

AVERAGE NUMBER OF COMPONENTS

citp) = p

2
c,{p} = 3p-2p

¢,lp) = bp -~ gp”+2p° +p*

o, (p) = 10p - 20p% + 10p” + 3p% - 4p7 4 2p°
cg{p) = 15pw40p2+30p3%3p4+2p5+8p6-46p?~§*1Op8+39p9+6p1G-—S(inI
+38ptl-gpl?

cy(p) = 21p - 70p°+70p°-7p 1 14p°+ 54pP238p "~ 4pB471p 123310

1 798p1243370p1 3 1733 16

19

7

-1822p *_1806p % 12922p1 6.1 7041

18

+484p~  -56p

Table 3,10
AVERAGE NUMBER OF COMPONENTS

cilq) =1-q
Z
cz(q) = 1+4+q-2q

ca{q) =1 +4q2 - 6q3 +q4

c,(a) = 1+6q” +3q% - 28q° +28¢° - 1247 + 24"

4 10 11 12

cs(@) = 1+7q%42q%+149%-2647-95¢%+341q 7390 %4224¢1 - 66q

o b3

+8q
56(6;} = I+8q5+q6+41q8~37q9~ IZGqI 0

15

i2 14

~276q 4515144220241 370314

+8910q1°-6258¢ 04256841 7-530q 8156417
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Of course, when

r-r < minv,
] 32}
yﬂlrbvuys

———
the coefiicient ofr, roi S V) can simply be expressed using

ad v r-r
Stirling nurnbers of the 277 kind as ro o °1.
o
An exarnple of the application of this method, the number
of configurations on a triangular board (m{i+1)::m(i}+1 , 1 Ei=sh
mi{l} = 1) with k marks and ¢ classes is presented in table
{ 3. 8), From these coefficients, we derive the expected number
of classes as a function of the probability p that any given

position on the board be selected, The resulting polynomials in

p and ¢g=l-p are shown in table { 3.9) and (3. 10}.

3.7, Implementation of the Interface Algorithm

Without describing the chores of actual machine compu-
tation, a few remarks are still worth making, The integer function
g in formula (3, 39) is indexed by the vector V which is of variable
dimension, Although one could assume that V has a fixed maximum
dimension with a number of zero components, a more refined (thus
less costly} approach is to consider this problem as the computation
of a functional and implement it with standard list processing

tecimiques.' With each triplet -En, Ik, c:} is associated a tree of

vectors V such that the branching decision on the {th level is



-65¢u

based upon the component vp oncea given sequence VirVareee Ve

has been encountered; then the actual g values are at the terminal

noedes, Processes are provided for creating and updating trees as
b

new V's are generated, One may of course look at those trees

as sub-irees of one unique tree,the first three levels of which

contain the n, k, ¢ links, respectively.
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CHAPTER IV

Estimation of the Number of Compounents

In the preceding chapter, combinatorial solutions were found
which led to an exact determination of the expected value of the
number of components, Unfortunately, this situation only cccurs
in rather simple instances, in most cases the problem is either
too complex or uncompletely specified so that we can only aim at
estimates of the probable number of components,

From a graph theoretic standpoint, we first investigate the
relationship between bounds on the local degrees and bounds for
the number of edges and components. If we actually choose a parti-
cular sequence of local degrees, we can either derive bounds for
the expected number of components or perform a Monte Carlo
sampling of the space of graphs with prescribed.degree sequence
in order to obtain the expected value with any degree of accuracy.

l.ast, we present a conjecture for the general behavior of
the expected number of components provided that the sampled space
é)N forms a connected graph. If this is not the case, the result of
sampling ﬁN can be simply expressed in terms of the individual

outcomes in each one of its components.
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4.1. A Priori Estimates of the Number of Classes

Let us examine under what conditions we can derive esti-
mates for the number of ¢lasses without actually performing a
complete counting. This can be especially useful if the number of
vertices of the graph is extremely large, making the full computa-
tion too costly or if the graph is only known from a statistical stand-
point, for instance, by the distribution of its local degrees.

We first determine the relationship between the number of
vertices, edges and components in a graph Gn .
Theorem - Liet C}n be a graph with single edges and no loops having
n vertices and ¢ connected components. If the local degrees p for
all vertices satisfy p <« p =< Pu where 1l <€ p < Py

f"&

of components is bounded by

s, then the number

i_ J . (4. 1)

and the number of edges by

f'p n’ .
7 - - VAN I L ef c-
m—z-—m% = g{n,c) = (?3 + l’} (1/ 5 ) + ({Ju%’ 1) ("‘2’2')

max{ n-c¢,

+ ple-p-1) {pé +1Hp t 1) ~n;f(p£,

n
* (2) (4.2)

cip. +1l)-n
'Lj = ..._......................_._.._-—_u - 1 (4.3)
pu"‘f"f

+ l)un(c»v-l)(pui- 1)

where

proof: i) upper bound: let a, be the size of the 1t connected cormpo-

nent., The number of edges is then equal to
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C
ny{n;-1) 1!/‘?“’" 2

e{n, c) = e F 5 L, n’;’-ﬂ (4.4)
i=1 \\i=1

We show that e is maximum for the choice

{ni} = {{:1{ +1,..‘,p‘£ +1, n-y (p{ +1)-{e-y-1)p 7+ ii,pu+ Livavsp t i}

A . s

L a v v
v C-1 -1
Let us assume that there exist two classes of size ni and n, such
1 z
that ‘
p, F1< n, n. <p +1
¥, k31 is et

These are replaced by two classes of size

]

n. =max{(p +1,n. +n, -p -1}

i Fig iy, Pu
and

' ( 1,p +1)

n, = min (n, +n, -p, -1,p +

i iy, Qg Py

Their sum remains constant since

T L]
ni+nizx(pf+l)+{ni+ni—p -1} if ni+n.—-

p, ~lgp +1
1 1 i 4 I R 4 o

= (p* 1)+ (ni}"% B - pe-b i ni;’ ™, Pyl = pp ¥l

The corresponding variation in the number of edges is

2
X i
fe = .%. (nig + n, 2 -niz - n,z) = %., ( {p+ 1)2% (n, + B, - {pt 1)) -n.z -n.z)
1 2 S 12

= (p+1)% - (pH1)n, + n, ) 1, B,

1 2 1R

where {4.5)
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1

P if n, tn, g pu-i—p +2

"2 R Z

P =P, otherwise

We see that e » 0 if ptl ¢ ]ﬂi » oy { , which was our
i Z
hypothesis.
In the definition of the solution vector {ni} the value of ¥V is

determined by the ineguality

Pyt noplpy 1) - (e-w-Dlpt 1) <oyt

or equivalently

c(pu+ y«n (:(pu+ lien
— 1€V
PPy PPy (4. 6)
s0 that
c(pu+ 1} - =n
Y = | e | = 1 (4.7)

Pu-p{’,

The maximum number of edges is then obtained as

w}{ AP (o1t + D24 nvipy+ D-(eop-1ip 1)) ‘r
e M?Cr{% c-p-1ip, n-wlpy+ 1)-(e-p-1lp, -n

miaXx |
J
{5} (V5 ) ey 1}2<65:y>"“ Vit (e-p-Dig 1+ we-w-Dipprlie 1)

ii} lower bound: let p{a } be the degree of vertex a; . It is clear that
i

for a connected graph

n

Z p(ai} = Ze

i=1

Consequently for pé, > 1
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if p‘e{ 2 or ngz gminm,_%m ﬁpu%‘»%
- Qe(nul) p£+l p{?r nt 1
i %fyz and ﬁ/[”‘?‘ min T T b T tp zp *1
therefore
Fp,n
€ = | 9£ 1
min i Z
Two cases have not been considered yet, namely, g?g =0 and p’g =1,
But
e = { forn=1 if Oéf?zépuél
and
e =n-1 for anyn if pu:;-l
so that
R
emin(n’ 1) = maxi{ n-~1, | Py 1
(4. 8)

since the only cases of interest require p > 1 for edges to exist.

For ¢ classes, we have thereiore

< -0

Py .

e{n,c¢c) 2 jél max ni-l s -%-}i
p. 1]

> max | n-c, -132“ (4. 9)

Corollary - If p‘g =p, > 1, a graph G exists if npg 2 and then

np
15_:(;;-5«@2{; (4.10)

np
e = "Z-g" {4.11)
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proof:

For each class we require nipg Z which implies n‘lp{,’?’ 2 8o that
npf > Zc

Theorem - The number of classes is bounded by

1
max | 1, Z 5 . éc‘g{wz -?J (4. 12)

where

prooi: the lower bound is obvious; whenever a row sum Ty is equal
to 1, the corresponding vertex is a one element class; for the upper
bound, we assign to each vertex a weight equal to the inverse of its
local degree., If vertex v, belongs to a class of size s, then

H
P
1 i

L
&,

i

so that

(4. 13)

iy

o
A
P-M
U
I
-1
Hf,....
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4.2, Calculation of Bounds for the Expected Number of Classes

Since all row sums distributions are invariant under any permu-

tation of the n vertices of Gn , We may assume, without loss of

generality that
3 1
kls_'-f_. kzé N

and similarly for all the other row sums sequences. Let

Flly, )y, en, k) = Pirilg Kieeor T, < kn}

be the joint distribution of the row sums 1, £ & 2 T let
1 2 n

£y, ky, e nsk ) = P {ri =kppaelr, ﬂkn}

. i n
be their joint density. I
R- T L
r,
i i
we have
Z'l I'Z "rn
F{p;gR} =1 . Z Z By by, nde ) (4 14)
1{1=I kzzi knmkn-l

We now determine bounds for the expected value of ¢ by calculating the

expected values of both sides of inequality (4. 12} as follows

h43
z : i 1 1
"'"""‘“+“"“"“ + » % T 1 LY i
k i‘f + + k f(kl,i{z, ,K.n)
s i 2 n
=3 .
n n-l

{4. 15}

k

klzl kZ:"Kl
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\ n n i1
E ¢ max (1, Z &i’rj) = Z Z Z ey ene k)
b 1M2 kE‘.HKl knrl{n 1
43 It
+ Z Z Z £(1, Kypennsk )
K72 ko7, kn .
+ v
13
(a-1) ) A1, 1,000, L)
k =2
+nf(l.1,....1) (4.16}

This last expression can be transformed using

¢

I3 TL
Z Z Z Bk, d e sk )
1 kn

i i~}
i1 I 1
- 1..Z z .. Z £(1,ky, k)
ko=l ka=k, ko=ko1

to give
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3_ n

n I

=1+ Z Z
k3*-“12 knmkn..

,,kn}+ Anf(l, 1,000, 1
k)
.,kﬂ}+..,+nf(i,1,..n, i}
.,kn)~§—

{4, 17)

nfll,l, ..., 1)
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so that if we let

ks ! 1
Bl{n):l+ 2 .. Z f(}-513k3;~";kn)+'*‘+(ﬂ“i)§(131""’1)
k3=2 kn:“«kn_I {4. 18}
n 1 e
1
B,(n) = Z Z LZ Ej TE S (4. 19)
k}ﬂl k?.:kl kn:knwl 1

we have bounded the expected value of the number of classes by

1€ B,(n) € Elc)) €B,nlen (4.20)

Still, the upper bound BZ{n) can be vefined and replaced by

H
Ez{n} in the form
n-k
. n n n l n )
Bz(n}:z Z Z 1—1-&—}: E £y kyynen, k) (4.21)
klﬁl k2:k1 knxﬁnwl i=}

To justify this step, consider a particular set of row sums

{kl’ kz, cus kn} ; the largest class certainly contains no fewer than

kn members so that, at least kn among the ki‘s must be greater

Z%by

than or equal to kﬂ ; therefore we may replace
i i

n-k n-x
n n

1 Z 1. 1
Z =t = - bt '
. 11 1

i=1

and still preserve the ineqguality on the right, Now, if kﬁ(. n, the

H
same reasoning may be applied again in order to decrease Bz{n) .



Thus, let us define the transformation € by

1< jez 'Y v
otherwise
v
A
@(a + Z F} =g+ 1
' i=1 '
iy

Theorem 1< Bl(n) é’:g(cn) < BZ(Z},)_{; n

where Blin) is given by (4. 18} and

B,(n) = Z Z i o Zl..}% TOS S
“Fn

klml kzrk k

1 £33 -1

proof: designate by s;< Sp oo &8

classes; we then estimate the seguence

i i, i
by
<=,
1=t = = Ty
But for these values, r., €5,
r iy,

show by induction on 2/, Clearly r_« s. ; assume now 1. £
notol

sz’:'ﬂ’*‘l,.-.,n, then

#

the size of each of the

(4.22)

(4.23)

(4,24}

V=1,2,...,n as we can

[

n

5.
1.

¥

J
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i s, =5, =P T < L& S,
L i, -1 v D)
t
i1y if s, “ 5. o only n-p+ 1 E B 8§95,
i 8 i
-1 v 3-1
but if =d npiz 13
U r = - N~ r T =T -8,
P 1 i‘y»l 5 -1 1
which is a contradiction, Consequently r_y 158
- o1

et us now examine the application of transformation % to

the initial class estimate

Y 1Y

-~ 1 1

DI DI 4-25)
v=1 v=1 v

The largest class is of size N We may replace T of the
' by r and still preserve the above inequality provided we select
8
i
the T largest Ty in the sequence. Furthermore, we can even be

more shrewd when determining the size of the largest class in the

subsequence. We remark that

Ty, >y = 8, = 8, = oew. T8,
Y
v r
v
since si' » ;> excludes the possibility that s, be the start
v
of a new class s, , s, .+ therefore s, =8, and the same
v tu-l 2
reasoning may be applied to s, > 7 until we reach s, » Ty o
vt 1 T

; ; V. .
Consequently, the estimate of the size of the largest remaining class

is determined by the smallest integer j = 0 such that

r L& n~T -]
n-r_-j n
g2

which is equivalent to saying that the largest class must be of size at
Yp-r,-}
least r +j. The same argument is valid for - and s0
1] 1

forth until 7, has been assigned to a class.
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4, 3. lsocal Degrees Distribution in Subgraphs of C}n

Let Vn{d) be the number of vertices of degree d in G, -
Liet {Gk} be the family of subgraphs of Gn with k wvertices. Qur
experiment is the selection of a vertex from one member of {Gkg
with outcome de {0, ..., k—l] . Let pk(d) be the probability that

the vertex has degree d , it is related to pn(y) by

& p, (V) (4.26)

result which can also be expressed in an equivalent form

n-1
py (d) x( k{_{l) Zd (J?&?%rfj_zkfg;];;;z;ﬂijf Pplv)
V=
m(k-l) = (¥) (2% ) o )
‘ v=d (izi)(kdl) )
n-1

- FET} (g)(gjg_-f) p, () (4.27)
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4. 4, Examples for Particular Distributions pr(ci)
IS

We look formally at some distributions pﬁ(d) without worry-
ing about the realizability of vn{d) as a graph.

1Y uniform distribution

1 .
p (V) = TTTTOTTT .2 VeV . otherwise 0
min(n-},‘ua)
1 Yy fn-i-1
k n-1 (V- Ui+ 1) d (kmdml
k-1 2" "1 ¥=max(d, ¥ )

when yz = ne.l and vy = d

G .

) e KT

pgdﬁX

which is also uniform.

2} binomial distribution with parameter «

> (¥) z(nz.}l} oV (1oa)P V-
n-1
k-1 . a1
el = (5 ) (5)e” -t
Y=d

n-d-1
_ (kél) Z (n;k) Q‘U%d <1wa)n-zj«dw1
¥=0

since d < k-1 the summation can be changed to
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n-k
pld) = (kél) ) (n;k) ¥ (1ea) Y (1 qy o
=0

z’k_},) IETIPR S

= ("3

which is also binomial with the same parameter,

Since the binomial distribution acts as the kernel of the

transformation, we define the ratios

R (4 p {(d)
(")
which, by formula {4,26), satisfy the recurrence relations
n-1 n-k
_ n-k _ f n-k .
R@ = ) (578) R = ) () Rlern) (azg)
V =d V=0
or alternatively
Ry(d) = Ry y{d) + R {d+]) (4.30)

Computation of the Rk given Rn is of course a simple

matter using a triangular tableau
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~
o
Attt
s
e
)
el
™~

Rﬂ(n-Z) Rn(nwl)

ot
el

-
faw]
fu
~
-

R oy R2y .. R (n-2)
n-1 vie1 n~1 n-1
RY (0w}

R,(0)

Example - for a square £xt board, two elementary squares being
connected if they share an edge, there are
{{‘nZ)z points with degree 4
4{f -2} points with degree 3
4 points with degree 2

so that a tableau R can be built starting from

pA
2
P L) = (1?)

. AHE-1)
Pnz(?’) = "’"‘}:’2"—-—'

4

it is shown in table (4.1},
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4.5, Canonical Graph Representatien

The study of properties of graphs numericaily often reguires
manipulating large families of such graphs and recognizing isomorphic
graphs as being several instances of the same member., For undirected
graphs Gn with no loops and single edges, each member is unigquely
represented by its symmetric incidence matrix.

For classification purposes, one wishes to find an integer
function which maps the family G into the positive integers. The
mapping function should possess some essential properties:

i} uniqueness of the image of a graph and its isomorphs
i1) computational simplicity of the mapping function
ii1) computational feasibility of the inverse mapping

A classical function which appears repetitively in the literature

is the permanent. For a symmetric incidence matrix A it is defined

as:

per (A) = Z Ay Ay ... a (4.31)
1

The summation in (4. 31) extends over the set J of all permutations

of the integers {1, Zyven ,n} . Clearly, the permanent has property (i)
since it remains invariant under any permmutation of the rows and
columns. Property {ii} has to be examined more carefully. Instead of
generating the set T, it is more efficient o apply the principle of
inclusion and exclusion to the permanent calculation and obtain the

following theorem (Ryser).
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Theorem - Liet An be a square nxn matrix and Ar e an nxr
matrix obtained from A by selecting r of its colurnns, Let

S(Ar) be the product of the row sums of Ar . Then

n-1

per (A) = Z Cut Y sa ) (4. 32)

[~ n=-1
i=0 {A }
n-i
We estimate the number of operations required to compute

the permanent by
n-1
, [ n)
AN Z \i)[n(n i 1)%1%
i=0

where addition and multiplication are considered as identical and k
takes into account the number of operations required to produce the
next combination. An approximate value of & is

-1 ZZn-i £

(n2+ k) =n or n »>> 1

Unfortunately property iii) does not hold. Given the permanent
of a symmetric nxn matrix, we cannot recover the original matrix
short of an endless trial and error approach.

Therefore, motivation exists to seek a different function of the
incidence matrix having the three properties stated above, and offering

practical advantages for numerical computation,
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4,6, DBinary nvariants

Definition -~ An incidence matrix is said to be monotonic if its sequences

of row and cclumn sums are monotfonic non-increasing sequences.
Jet R = {ri, zz, . h e x‘n} e the seguence of row sums of the

symmetric incidence matrix A in monotonic form. The r's assume

only d distinct values and Pl is the number of row sums having the

common value k.

Definition - The binary sum of a symmetric matrix A with zero

diagonal elements is

-1~ 3){n -~ 1)

n-1 n 4 T (4.33)
Z Z a,, &
i

i=l =it

Definition - The binary invariant of A is the minimum of the binary

sum of A taken over all monotonic isomorphs of A .

n-1 n {n-i+ é)(n—q) -

P = min Z Z 2 %’ij {4. 34}
iﬁ} i=1  j=it ]

The set {@% is formed by first making A monotonie, then
applying to the rows and columns of the resulting matrix all of the
permutations which permutes rows with identical row sums among
themselves and similarly for columns., These permutations form a
proper subgroup of the symmetric group on n objects if d > 1.
This subgroup is the product of the symmetric groups on P Pys

Poreess P objects; it is of degree n and order poi p}i pg.’, cen P L.

n-1
Notice that the minimum taken over all isomorphs of A is
not used since it would require finding the minimum of a set with
1

n! elements in every case. Dy requiring the incidence matrices

to be monoctonic, the evaluation of @ is easier the larger d is.
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The number of operations involved is approximately

Fiw L
54 py
p.-
=0 '

Clearly, this number may become inordinately large when
some of the pi‘s are large and the permanent then turns out to be
more readily computable, Both the permanent and a binary sum
are required to allow classification and recovery of the matrix A,

Using binary invariants gives us a simple and powerful way
of numerically handling problems which involve undirected graphs
with single edges and no loops. These graphs being the only ones
that we are concerned with in class counting, we have not extended
the definition to encompass more general types of graphs since that
would entail losing some computational efficiency. However, ex-
tensions are straightforward; for instance, directed graphs with
single edges and single slings would simply be encoded using the

binary representation of the full matrix.
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4.7. Finding the Set of Non-Isomorphic Graphs with Prescribed

Local Degrees

We now show that once a member of the set is known, the other
elements can be easily obtained, using a method similar to Ryser's [Z’i’};.

Let oh(F) be the set of all nxn incidence matrices which are
symmetric, monotonic and have p; TOW sums equal to i (as usual
the diagonal elements are zero),

Consider some matrix Aesk{p). We define an interchange
matrix for A to be a 2x2 submatrix of A of the form

1 o fo 1]
E

or oy =)
L d Ll 0

where the elements of o:o and a’l are restricted to be off diagonal

elements of A,

The replacement of @, by @y 5 (accompanied, of course, by
the interchange of their conjugates to preserve the symmetry of A)
leaves T unchanged so that &%{ﬁ} is closed under an arbitrary
sequence of elementary interchanges.
Theorem - The graph induced by the interchange operation on the
elements of J"Y{;‘a’) is sirongly connected.
proof: let A},Az € \?’5((53 and ﬁl =+ IRZ . We are going to transform
independently the incidence matrices ffii and ?;2. 50 that their first

rows become
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Fas
Take AI for instance. Let the first zero element in the

first row be a, . with ay . = 1 for 32 >ji , otherwise &

5
b J2

1
already in the desired form. Ws seek now to exchange a;. with
i
alj =1, 32 o j‘1 . At the same time we must find a row 1 > 1}
2
for which a,. =1 and a,, =0, is j, . Sucha row always exists.
1jy ii, FA
If it did not, then column jZ would have as manv 1's as column j1

plus an exira one in the first row implying

but this is certainly false from the assumption of monotonicity,
After this transformation has been applied repetitively to ‘ﬁi and
ﬁz ., both these matrices have identical first row and column which
can now be removed, thereby modifying their common degree vector.
The resulting matrices ax;e put in monotonic form, their first row
contains the same number of 1's and another sequence of interchanges
is performed on each one. This prcac:ess terminates when the result-
ing matrices become scalars,

Therefore, we have proved that it is possible to go from any
element Al to any other A, by a sequence of interchanges, or

equivalently that the graph with the elements of A(P) as vertices, is
strongly connected.

Example - Let

=4

It
TN
ot ot P 002 gy



a starting matrix is

[ S v T~ R v S
[ T o B o o

Sd

[ BN B B B A e

B

[ae S e oo SR oo B o SR o N
[s- R o o SR o B o B o L
oI o B o B B O

B(A) = 1008640

By successive interchanges we find seven non-isomorphic graphs

ot

[ON]

binary invariant

913408{4;

1303040(i2)

1430016(2)
1433856(2)

1874432(4)
1878272(1)

1892356(4)

aliases
A76R06({4)

1493504(2)
1747456(2)

1499264(2)
1761296(2}
1906176(4)
1880192(1)
1G10016(1)
1921032(1)
1983504(1)

1925122(4)

1008640(4)

1525248(2)
17792 00(2)

1531968(2)
17940562}

1969664(4)

1886240(1
1912896(1
1975424(1
1984520(1

{

)
)
)
)
1990657{4)

1683968(2)
1695776(2)
1888272(1;

1917984(1)
1976384(1)

Let @ be the number of distinct monotonic maitrices in class i. The

probability to find a matrix of class 1 when sampling uniformly over

the set of all mairices whose monotonic transforins belong to 0‘%{}3’} is

proportional to the number of aliases plus 1 in class 1i; indeed the

number of distinct A's is

z0 that
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However, sampling by successive interchanges does not yield
the same resuit since there exists a non-zmero correlation beftween

successive samples {the correlation vanighes if p{Ai] A,

RS U plA,)

which, in general, is not the case since there may not even exist a

single interchange which transforms a prescribed A into another one),

ohserved
irequency plae Ci)

i 3134068 12.5 g, 8
2 1303040 3.1 2.9
3 1430016 15.9 17.6
4 1433856 7.2 17.6
5 1874432 7.4 8.8
6 16878272 31.6 35,3
7 1892356 i2.3 8.8

This is illustrated by exhibiting the class transition matrices

.o
ng)-Pv%%£€CAAv€CJ

15.2 a. 23.2 15.2 0. 35,2 11.2 \
0. 0. 32,3 67.8 0. 0. 0. \
iz, 10.7  26.4 8.2 17.6  24.6 0.
P(1) = | 11.1 6.1 9.9  22.7 0. 21.6 26,8
0. 0. 44. 6 . 16,8 44,7 0.
11. 4 0. 8.9 14. 6 12. 38. 15,2
25.2 0. 0. 27.7 0. 35, 12. 2
whareas
14,5 3.2 16, 1 10,5 6.4  36.2  12.9
16.2 3.2 3.2 13, 13,0 3Z. 4 19,5
| 10.7 1.3 15,2 18. 3 8.8 33,5  12.0 |
P{5)= | 8.8 2.3 11.7 18,7 6.4 39.7 12,3 |
13. 6 2.7 15.0  14.3 10.9  25.8  16.3 |
13. 4 4.5 17.5 17. 5 7.0 7.7 124 |
13, 9 3.3 20.4  22.1 5.7  27.0 8.2 /
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4. 8. Finding an Initial Graph

The proof of the last theorem is constructive in the sense that
x . = 1 -+ I e - -
it leads to an algorithm for deciding whether or not (¥} = ¢ . In the
latter case, the algorithm construcis one feasible incidence matrix,
Initially we are given some row sum vector R to which cor-
4 x it - . . 3 . .
responds a certain p , the incidence matrix having all zero entries
{in the following we only refer to the upper half of that matrix).
i} first, check that the sum of the row sums is even. If this test
fails, clearly no solution graph exists.
i1} then, permute the incidence matrix into a monotonic form {i. e.,
Ty E:ra e _:;rn) and process each row at a time:
if the row sum is null go the next row;
else, let d he the maxXimum row suim;
max
set that particular row sum equal to 0 and decrease
by 1 the next érrax rows with highest possible row
sums; )

if this forces some row sum to become negative no
solution graph exists; at the same time we sei
a{min(i, ity max{i, jﬁ where 1 is the row picked as

d and j corresponds to each row sum which has

max
been decreased by 1 ;

After all rows have been processed without early ter-
mination, the upper half of a is the incidence matrix.
in terms of graph transformations, the foregoing construction
simply says to select one of the vertices with rmaximum degree; call

the vertex a, , its dezvee being d. ; connect 4, other vertices to
i & A1 i

1 i 1
2. selecting them in order of decreasing degrees. Then repeat the
£
1 1
construction on the graph G obtained from G by removing 2, and

1
its di adjacent edges,
i
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4. G, Class Estimation in Terms of Transitional Probabilities

We shall now exarnine the behavior of the expected number
of equivalence classes when random samples of increasing size are
selected from a population A~ of N individuals., If we perform an
experiment to sample & without replacerment, the number of
classes in the sample of nt 1l elements is conditioned by the n
elements chosen earlier, regardless of their order; still, there

[N . " - : .
exist \n) sets of transition probabilities which express the

probability that the particular sample 5 will have .

+ 1

classes if Sn had ¢, classes itseif. However, if we think of the

nt i

experiment as producing the number of classes in a sample of size
n, averaged over the space of all subsets of » containing n
elements, there exists a unigue set of transition probabilities froem

€, 1o o1 The discrete random variabies ¢, take the values

1,2,...,n and

P{Cn - inxcnml TS LA B ii} ipiﬁn - lnscn-l N in-.i}

0 that the sequence <, forms an inhomogeneous Markov chain,

We introduce the density
An}) = P = i}’
pl{ ) {Cn
and the transition probabilities.

Pij{n"é} = }f’ic Ziécg :jg‘ n> 4

which satisiy
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T

)

]
T

P, (0, £) p.(£)

o
i
froors

ﬁ

Pifn’f} = 1

i=]

together with the discrete Chapman-Kolmogorov equation

r
P (n,¢) = ) P ) Pt d) B o
k=1

The expected number of classes is

1

§(9n> = E: ip,(n)

i=1

and the expected value of its {orward diiference

AC = ¢ - O
n

n+ 1 2!

is

{4.35)
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nt+i
| 1
By = ) il pylati) - pyn)|
i=1 L J
i 1 I‘n .
- Z ‘;i Z ?ij{‘rﬁ 1, m) pj{ﬂ) - pi(n)j
i=1 Li=l
n nt+ i
= Z p.(nj Z iP,. . (nt+1l,n) -
j=1 i=1
n gt i
=Y e Y (- ) Pyt in) (4. 36)
=1 i=1

formula which is immediately clear.

Theorem

Y
, (n~z){n-w-1)
Bo < ) V) Py (v 1) e B (4.37)
=1

proof: let G have vy vertices of degree d, d=1,2,...,n-1.
For a sample of ¥ vertices, 0= ¥ £ n, we express in two ways

the probability that the (py+ 1)st selected element increases the

pumber of classes by 1

. . n-¥-1 [/mmgwi)

_ g \
B, 07 ijw)?ﬁij(y“"j’ == Vg "rasho
=1  d=1 ( v)
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which reveals the influence of the sample size if we transform to

n-p-1 gfnw}}ml
i T v\ d .
E'E‘ - "ﬁ* ’&’d - (4» 39)
d=1

el

E, is thus a monotone decreasing function of ¥ and bounds
for E, canbe devived by examining two limiting cases: G _, an
n-clique and an a linear chain of n vertices. We look for the
maximum and minimum of E‘+ over the space of all connecied
graphs on n vertices. The coeificient of Vi » a8 seen irom the
first expression (4. 38 of E+ » 18 a monotone decreasing function

of 4. The minimum of E+ is obviously achieved for {:;E ={0,0,...,n)
where V = {v}, Voo ’vn-l} . That graph is an n-clique for which
E+ = 5{);} . Similarly, the maximum of E+ must correspond to a
vector of degrees %2 ={2,n-2,¢,...,0) since the connection con-
straint of the graph precludes using such vectors as {n, 0,...,0).
The following argument shows why ?2 corresponds to the maximum,
The maximum must occur for some iree with n vertices so that

n-1

Z d vy F 2in-1)

d=1

Pick any vertex; there is at least one edge attached to it
by connectivity. Select each incident edge in turn; if it is incideant
to a vertex of degree higher than 1, detach it {rom that vertex and
attach it again to any veriex of lowest possible degree, This

procedure can be repeated indelinitely bul once we reach a linear



chain, the transformation is equivalent to a rearrangement of the

vertices of the chain, Replacing now in (4.39) v by w,=2,

a1 1

vzmnm'& we ootain

n~pin-v-1) {4.40)
n{n-1} ' '

byg® E v s

Case CN = 1

Conjecture - The expected number of components g(cn)
for an n subgraph obtained by uniformly sampling without replace-

ment the vertex set of a connected graph Gy is such that
o .
E(cﬁ_}) = Ele) ::;}g{cn}?;?’{cnk}»l} (4. 41)

Since c,= C"\E:} , the behavior of E{c ) is then well deter-
1 7t n

mined; it increases monotonically starting at cizl and as soon as it
starts to decrease, it must continue to do so unfil it reaches 1.
Notice that E(cn) is in general not convex, Although we have shown
earlier that the birth process for components is monotonically de-
creasing with n , there still remains the possibility that the death
process decreases suddenly so that the overall result is an increase
in the expected number of components.

A partial analysis can be carried out as follows. Assume

o 4

Ele, ) = gley

By

and consider the result of adding two vertices x and y to a con-

figuration with Cn 1 classes., Let &Nx be the variation in the number
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of components when adding x alone, Ay for y alone and similarly
Dix, y) when adding both x and y. We distinguish between
cases:

iy Ax :z-ﬁ)&y = U or both

i xfly  Mxy) = bx+ Dy

i xfy Nz, vy = Ax + Oy
so that

Alx,y) < 1+ min Qx, Ay) (4.42)
ii) Ax €0 and fJyeg 0
then

A=, y) < min (Ax, by) (4. 43)

liet « designate the probability of creating a new component

N
it

p{éxx =1} = p{é\y = 1}

plx#y)

o]
1§

We have the inequality

A
(ﬂ(x,y}‘j < ﬁ{min (bx, &y}‘} + oB(2-a) - {1 - %\}t) (A x)
- -l 2
& @{bix) - (1-e) (g{AX) + c_;) + aP(2-a) ;«<1 - 5 ) E(Ax)
{4.44)

where ¢ satisfles
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Ehx) = o- (1 -a)q

Expression { 4. 44} can be transformed to yield

.

E(Ay) € B0 | 1+« ~(z %e) Fa(l-28) - a(l - p)
(4. 45)
. . . . . I .. [ n-138
thus the conjecture is at least correct when [ » 5 i cg;»x‘l - “""i{‘“) .

IO

The condition is explicitly

r 1 -] Z-i
g(&x}ilvg(*«—l{%—-)§+1~§~043-«o:u2,;3s0 (4. 46)
4
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Case C’N = 1

if the graph corresponding to # . is not connected

N , the ex-

pected number of components can be derived from the knowledge of
the individual outcomes when sampling each component of £, in-

dependently.

Let g\ {5, )] be the expected number of component when

selecting uniformly without replacement n. vertices from the it

component of .f)N such that

CN
0 &n, « 5. . Z 5. = N
i i ; i
i=1
Then (
min{n, r,) min{n-n,r,} MIin{n-N, = e =0 , T }
Z i Z.& 20 1 CNwZ CN««l
nlxﬁ n,a:(} nc r:(}
(cn) = {4, 47}
E ri\/rz HG/TCN
: i j : 3:1,/) n \\n .
+n—i—o“+n :11\1\2 C;\
N
where

AT V]
\\nﬂ Lﬁ{ciinz)} + ve. F g( °c '{nC v)}} (4, 48}

If we pose now
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N /Sr.
Vi,
- : =1 i
’W(r}, Tor eweey T IMye Do, eony D } :”}”—M—fﬁ“w {4, 49)
N vl
n
then we have simply
“x
E{cn) = Z W{rl, Toreens IC\T;HI’ LPTRI ﬁCN) g{ci{ﬂ%})
nyta,t...+tn =L + i=1i
172 CN
(4, 50)

the summation being performed over all points with positive integer

coordinates in the hyperplane

Foo, ... =
ni*rn&+ i n

The weight function is simply a hypergeometric probability distri-

bution in C,q dimensions.
i
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Case C‘N =2

I'}\a ;!_/ I‘Z
/A
Il.if? \Z}.-‘K}.l

n
szm)zz /N)

[(n;$c{nn)§;
J

i

{4.51;

where FZ(?; n) means E(cn) evaluated when © = (_ri,r 1. We
ESAVE SR
(n:{) ny
TTNY
(n)
by a binomial preobability law since the {irst two moments of win
nr nr.T

can approximate the hypergeometric distribution ‘\R’(l‘i}) =

1)
are —=— and —-—-——%—%— ii——; which, if n<<N , coincide with those of
nr

a binormizal probability law with parameters n and Wﬁlw

1/ r,
win, )= ( ) (4. 52)

But for large values of n , the binomial distribution can itself be

approximated by a Poisson distribution of the form

ri (n rl\% 1
By R/
wing) o e L e (4, 53)
iz

so that we have approximately

I 1’1}
n rl(‘" 1N
mn ki m""‘?"‘m ga "%
FA¥F  n)= N Iy | ﬁ%«c{nn}i =
Zg_;., j R~ e : g_}i / 2 ij {4. 54
n,t
L, =0 1
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CHAPTER V

Discrete and Continuous Adjacency Problems

In this chapter, we examine adjacency problems and compare
the results obtained in 1, 2 and 3 dimensions. This analysis is
rather detailed because those clustering models have potential
applications,

The first problem is an adjacency problem for discrete
positions on the line with extension to adjacency on a 2 dimensional
rectangular chegsboard., Although the same method would work in
3 dimensions the formulas have not been explicitly written. The
second problem is a continuous clustering problem in 1, 2 and 3
dimensions which reduces to an overlap problem on the line and in
a circle. As we expect, analytical solutions including the distri-
bution functions, are found in the 1 dimensional case. However, in
2 and 3 dimensions, only an approximate analysis can be performed

but leads to usable estimates.
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5, 1. Discrete Clustering On the Line

This is of course the least frustrating of all cases since
most results have convenient analytical forms. let us consider a

discrete clustering problem on the line.

Liet {x} he the set gxl, XZ.’ e ey xn}

Two elements X Xj € {*{} are adjacent if [i-j; = 1. In some

cases we shall deal with periodic sets, i.e. where xs ang x  are

censidered to be adjacent, finjg =1 module n-2. A cluster {yl
J

is a subset of %xri such that

T’; at most 2 xiéiyé > either x%g’xﬂ_} or Xi@ * 3
# being the adjacency relationship.

We now perform an experiment which is the selection of k
x's out of n with equal probability. What is the expected number
of clusters?

Liet A{n, k, ¢} denocte the number of arrangements of k 1's
and {(n-k}) 0's forming ¢ clusters. ntroduce an extra U in any of
the o+l available positions, thus raising n to atl for constant
ki i the number of clusters is now o+ l, we can write the re.

currence formula

Aot ket j={nt o~ et 2} Aln, ket 1) + (k-c) Aln,k, ) (5. 1)
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meaning that either we had already {ct 1) clusters on n points

and the new 0 did not 31l amid any existing cluster, or we had

only ¢ clusters, one of which was broken into two. The prob-

ability of obtaining ¢ clusters is velated to the number of

arrangements by

Ain, k, <) m}“,, - Aln, k, ¢)

pin, k, ¢} = B 5 =
i

Recurrence formula (5.1 ) now yields

or

plat 1, k, ¢+ 1{n+ 1} = (ot c-kt2)pln, k, ct 1} + (k-c)pin, k, c}

{5, 3}
. ;. Reg Kegt 1, .
?{ﬂ, Ky C) - (1 “"""""I',"l“"""") j‘?{n"}-s kf C) + {““’"”“"'"""‘i p{n“-‘-sk’ ‘:‘}-}
(5. 4)
Define the generating function 2, k{z) by
— Z 1 v 6 -
€n, lz) = pin, &, ¢j = {5.5)

By recurrence formula (5, 4), g, k{ﬁ} can be expressed as
L3
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- ) - ]
£, %)= Z Ep{nw},,k,c}(i-—kﬁc}%‘-p{n-«l, K, c- 1)< ;"f Lyt g€

.:{1.”%} £ plu-l,k, ¢y 2% + & L nin-1, k, Cguzc
* igegk Isesk
Y“"‘
1
ﬂi%ij Z pln-1,k, -1z~ /, pln-1,k, c-1)cz®
Igegk Igegk
{5.6)

By differentiation of g, k(z) we get

H
g, (%) = Z pin, k, cyezn®
’ Igcgk

3 b
p(n-1,k, ¢-1)z% = zg, 4 k(Z} - pln-1, k, R}ZK+ -
lgcgk o

r

: i N . . P
pin-1, k, cui)czcr_gégnmi k{2}+zgn—l ” (z)-{k+ Iipin-1, &k, kKiz

l<€esgk

s0 that the generating function must satisly the differential equation

K & C
gn: k(Z}"(}“ﬁ’}gﬁ_lﬁ{( ]“f“’;{ gn.‘}’&i?i};

h

r o)

(b1l 7~ 'nai,k,k‘}zg’ i

+§‘ pey ‘}ig“@g”_,%gk{*&} ol -E

*

2 R T §
gzg i k(:@}«f’z gndzjk(z;}m(x{% iipln-1, k, k= !

A4

[ NE——
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From that equation, we can now derive the expected value

of ¢ as
‘ 3
g (i) = pin, k, cjc (5. 8)
T I €o=k
but
H
' 1§1 ) * 1 . i .}
gn, k(z}x-ﬁ-g;{gn"l’k\z}%(n_kkamﬂimz:ﬁ}gn*l,k&fz)vz(i—z)g.ﬁni,k{z}
L J
which vields
' ; 1 , ¢ {
gn’kkl) “'ﬁ'f(gn“i’k(})T{n'l}gn_l’k{l}‘i {5.9)

The first term is

A
Bnat, wll) = /., plo-lkcj=1

1 £ =k

s0 that finally

g (D=0 -5)g

n’ "a~1,K

k
(1}%-5 (5.

-
[}
it

it is easy to see that the general term satisfying relation
(5,10} is of the form

P (a-k¥llk
gn,k“) - b5}

' (1) = 2 (mekFlik ¥ (-2l

Entl . & T onidi n n+i n

which proves that the expected number of clusters of 1's is
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= o {n=kt 1l
Eley) = S (5.11)

A similar result clearly holds for the number of clusters of O's

(n-T) (et 1)

= (5.12)

Ea(ca)

and if cmcl% o then

E() = 1+ 2x(1 -9 (5.13)
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it is tempting to derive some further results from the

differential equation {5, 7). ¥For instance

"

L) N 1
var{c,]) = cpin, Kk e) -1/, epln,k, ¢
igegk ii@:ﬁk ]
f. 1 ( ) t ( {; H ‘ 2; %
=oag o AB) Y omg Az - g (2]
i i, ,k J T, K %Z“}
if 14 - 1 2 N .
=gy AT I gn,k{fuf - gy, ey (5. 14])

s : § { (R Fy
The second derivative of g Ifz;gz.) has the form
at

n, k(z)ﬂé;ﬁkg;”}’ b+ {km?;}g;”_h L2 (neier kad z_zz}g;;*}’ NE3E
i " b 1
r-zleg 152)”Zgnu3,kiZ}“LzH'z?gn.ﬁi,éZ? (5. 15)
which evaluated at z=1 vyields
L if " 2k(k-1}(n-X) | )
B, ¥ 7w | (2oBlgg T T TR | (5. 16)

‘The first terms producad by this recurrence relation are

£
g k{?t) =0,

g
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and we can prove by induction that the general term is

H _ w&ik-1Mn-kin-k+ 1)

gn, k{}) - nin-1j (5. 17)
since
i _ 1
" (1)= i gk(k—l}{nnk}{ﬂ«}_&% I¥n-1) + Zi{l~i}{n+ 1-k} |
Ent 1, ¥R -?‘fi_ no 1] o |
-

_rik-IHn-k+ i¥Mn-k+ 2}
- (a1 00

Therefore, the variance of <y is egual to

1 I RV Y 1 Tefom kY
var(e, )= =D K)n-k+ 1) | kin-kt 1) (1 _ k{n-k+ 1)
i ri{ri-1) n o
L k(k=1){n-k) (n-kt 1)
nz(n-»}.}
Similarly
k(kct 1){n-X){n-k-1
var{cm) o kit Tn-kin-k-1)

nZin-1)

et

o0
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5.2 Explicit Representation of the Generating Function

Instead of dealing with recurrence formula (5.7), we could

nave determined a series representation of g, k{x} . We {irst
2

show by induction on n that the series can be written in the form

min{k-1, n~k+ 1}
\ (k-1 &y

gn, k(zi - NE fn-kt 1,7 Teopyi o z (5.20)
with
B, 1\%) = 2
’ o

Replacing B, k{z) in the recurrence relation (5. 7) we
5

obtain successively

min{ik-1, n-le+ 1)

-1kt
nt -kt ke Z, a L_-»«an
: } 5"’3} -kt 1 ,2" ’}/}, il “

o

Bor 1, 5

L |

min{ie- 1, n-lot 1}
?""‘1

[ . 137 it

+a{l-z) R e

Y ne-xt 1LY (ki nl

= § »j

{(5.213

mingk-1, n-kt+ 1) - N
¥ e DL s (e 1
= & 7 f P R p }
ot n-lk+ 1Y (ae Ut 01 i

wl

tt

ot
o

-

min{k-1, n-k+ 2)

gy
J (e 131 K i/

= = T z (5 2%
Y M}m«z Vo (keojl (ot 13 (3. 22)
Rl 3
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where a satisfies
n-xt+ 2,7 =

B
it

T oa

g ST VYA gy T A

&
i

O 2%3, a{},iml

Table (5. 1) shows the first values of a.

" The first terms of g, k(z) are explicitly
*

B,k = 7

22+ (k-1)z%
Bt 1,k kT 1

bzt b(k-1)20 + (k-1)(k-2)z
St 2,k [ TR 2

A

_ 247 + 36(k-112" + 12{k-1}{ik-2)z"

(k-1){c-2)(k-3)2"

Bx+3,k

(kt 1i{k+ 23 (x+ 3

These coefficients can still be expressed in another way.

il » A3 El - 1 e - *
For convenijence, let < =n-kt 1. Then, if we write that

- sy - . e o as
g*@i-i-i,i(lj"} for 1i=1,2,..., &kt 1 we obtain a system of iinear

equations in the unknowns a Z

or in matrix form

(5.23)



e

e

wll3-

/ \ \
1 & FAN S
1
;f &1 / \\
L] /
1l La \ F ¢y nijer
o e 1.
@ i
12 2 E ; = (23 !
. P i |
| |
13 6 6 N -f '
N
- -4 a 5 i
Lk Mkl lk-Dik-2) K f | “ewe 1 {&k)i/{ku}zj
N
A
The inverse of A is {ound without difficulty since it is also
triangular

{5.24)

with general element

NP
(AHI}- = (-1 Mzl i€ i, otherwise U
el (1«1}

It guifices to verily that indeed {AA'Z)i ;zaij
»
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k-1
S (i-1)! Lk+j(j-l}
(AATT), = E e Tul R A e 413

i
"
ud
H
e
]
4
Rkt gt
o
T
1
(S
i
r
et

z(;}}j Z ““m(;j Y

Ogmgi-]

Now, the coefficients of the series are obtained using the

inverse matrix; we obtain

mén{}(f a-it 1} 2 (y_, 1Y
) (-1}t ki Z c W iNG-1/ (el
O M el
Vel =1 (2/-1)}
Vi i\ -1/ j-1/\ -k )
. O
- iy
V=1 ji=1 \k:}

(k=13
v LV sk iy Y
= (-1 \UWEE (-1 gﬁ y
=1 (1’1\
kj

min{k-1,n-k+ 1}
o k1N n-kt 1Y
5 { j
. /. -1/ i&ﬂzf /

yrmi z(Q ]
Vi

(5,25}

Identifying corresponding powers of z in (5,5} and {5.25) we find

[k-1Y fnedet 1Y
/ ¥ )
\ Lo ]




5, 3. Discrete Clustering on a Rectangular Board

A normal extension of the preceding sroblem 1s Lo con-
sider a similar adjacency rule for a 2 dimensional chessboard,

The pavticular problem that we examine is [0 estimate the
average number of clusters formed by k marks occupying k dis-
tinct positions selected with equal probability {rom the nwm avail-

able ones of an nxm rectangular board Br . Hepce b,. =1 or

N 993 1}
0 depending upon whether a mark is present or not in the (i, j)
position. Two simple adiacency ruleg are reviewed:

e 1

; i.,0,) and {i,, ] dj T VU IS I TR S [
i) on B__ {al,‘}i) and 112‘,Ja) are adjacent if |i, 3 T§ iy g
ii - hey are adjacent if
ii} on Bnm , they are adj

s i % =1 mod n-2 and jl =

ar

Hi

= mod me-o and ii i

Thereiore, two marks are adjacent if they occupy positions next to

e

each other in either the same row or the same colummn, Bnm is
assumed to be wrapped around on a torus so that opposite sides of
the board become adlacent. The adjacency rule is clearly an equiva-
lence relafion and determines clusters among the K maras.

The complement of a cluster of k marks is a set of nm-k

- ;k 1 -~ - e s
marks b.,. = 0. On Brvz} we make the following deflinitions: a
H E¥4
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e
cluster is called linear i its complement on Bg“

XY

consists of only
one cluster, otherwise it is called cyclic; the complement of a clustex

alwavs consists of linear clusters, The number of cycles of a cluster

e

5 the pumber of cuts to be periormed o obtain a linear cluster out of

a cyclic cluster. The meaning of a cut is infuitively clear: it is the
r - ™ whi
removal from | of a linear cluster %] which possesses marks

adiacent to exactly two distinct linear clusters of the complement of

=y e

=

, P R R .
i on Bnm . Therefore, i the complernent of i is made up of V
tinear clusters, -1 cuis will e becessary to connect them while
ol . ;-‘ . -
transforming | into a linear cluster,
To periorm the actual counting we now meke use of some nice

tonological properties of linear and cyclic clusters. Assume that

. ‘;;t . 5 . 1 -
with every mark on Bnm , we associate a weight 1, 0 or -1 de-
pending upon the occupancy of three neighboring positions north,

west and northwest as {oliows:

Wi = 1 if N, W are both empty {type +}
Wi = - 1 if only NW is empty (type -}
T 0 otherwise {type O)
Lemma
2 g W bij = g clusters - # cycles (5,26}

prooi: we decide to ignore any mark which has either an N or W

5
e

aneighbor, or ail three N, W, NW wneighbors, letting either W or

N act as a possible cluster representative. A cluster represeniative,
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B
w
o
-

igned a weight 1, is in an upper leit corner position with neither

e}

adjacent), However, even a linear cluster can have

W

several such

cluster representatives as shown in the figure below. DBut if it does

[
H
o

e

]
]
o

have ¥ + mariks, then it must also have -1 -~ marks to satisiy
connectivity {this can be shown by examining the perimeter curvel.
The - mark then carries the information that the clusters sftemming
from its N and W neighbors ave actuzlly parts of the same unique
cluster and its weight is set equal to - 1 to compensate for the fact
that they will be counted twice, However, this assumption does not
hold i the N and W clusiers are indeed connected elsewhere o
form a cycle in which case we have inadvertently reduced the class
count by 1 for each cycie.

B
Designate by cinm,k; and ¢ {(nm,k} the expected number

of clusters on boards B and B , respectively, We have the
febel nrm

Theorem

£ K -Kk§&

¢
5
i
B
=
fuand
i
v
%.{
wde
s
e
H
TR
5
@

n N nora W mneighbor (NW is immaterial since it is not directly

| I
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k)

clnm, k) = k&

{n+m-2)1-k&)
£

- i + E&n-1{m-1) ¢ (nrm, kj

{

where 2{nm, K} is monotons decreasing for fixed nm and satisfies

.28}

iGN

=

I 2 Slam, k) F ooy

prooi: using the counting argument presented in the last lemma, we

can write immediately

(nm - 3) - Blora, k) (E.m - 4%
¢ {om, k) = k k-1 . k-3 ¥ <nm -3
[ I
\ k-l ) (5.29)

in which B{nm, k) is an unknown function repressnting the iraction

of - marks actually belonging to linear clusters; thereiore PB{nm, k= 1,
1 s k =7 since the smaliest cyclic cluster is of size 8, Alter
simplification

a

kinm - k)
. .
¢ (nm, k) = T - Tinm - 27

nm - k - 1 - B{am, k)

i
i
™

To derive a similar expression for Brm’ board with no wrap around,
A

we have to distinguish between four regions:

1 3 - ir -

1y {1,1) W 1 i ’DE} 1
2y {1,733 2% 7% m Wijil if bij-lzi
3y {4, 1) 2= 1€ W&;xi if b-},..},fixi

4) otherwise apply the same rule as for B in, mj.
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We now proceed as we did before to obiain

fr;mu2§

k Lodnt ez U k-1 7 {n-iim-1) 3 .
cinm, k) = + kA ) /o4 a Lo¢ (am, K}
T AT /o gy AV EE
L)

& (14 [n+m-2Hnm-k}
nm NI L

+ 1-_%){/} '__i‘\ c*(nm,k}
\

I
{5.31)

| SO

-

. . - 1 .
For convenience of notation, let & = == - Then formulas

(5,30} and (5. 31} can be rewritten in the form

r 2
% B K1 - k&) I T Y, {r-1)(k-2)87
¢ {nm, k) = rr e § Lok e - Blam, k) ——p=mgy j
L b
- - {5,32)
-2 - kE) | .
clorm, k) = kgg 1 (ot m }Z}Ei& r\-i’;f C ot Em-li{im-ile {nm, k) (5, 33)
% ]
| .

If £<<1, that is for a sufficiently large beard, we obtain the

asymptotic formula

5 £ ) ,
¢ o, k) = k- 28 k(k-1) + KEZ| KH(1-B) + K(38-5) + 4-23] + ("€
L J (5. 34)
r gy 4
clom, k) =k-2Ek(k-1) + k] KH(1-8) + k{mt ot 35-5) + 4-2p-m-n HFE)
L d '

(5. 35)
Substituting k by nm-3 in formula (5,34 ) gives the limiting value

Blam, nm-~3} since ¢ {(am,nm-3; = 1. We find

- 1
H i ~ %7 Pl S {3
I - Bl - 28 {1 - 3&)
Ainmn U 2E “3 PO AN T r
G{nm,nm-3) % & G- 2&) Pl - 28 - DE
" |
-1+ 98 -208&°
TR S 4EWL - BEE
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In the interval 8% K% nm-4 however, P truly depends

G onynn . For instance

Z{nm, nm-4} = «%*P 5{@) (5. 36)

This analysis can indeed be viewed in several wavs:

o

i) if we ignore the variation of B with k and set p=1
formula (5, 35} provides a lower bound for the expecied nwmber of
clasters.

it} alternatively, an estimated variation of § can be
used to compute better estimates of B than the lower bound,
especially if k>> 1

iii} from a different standpoint, if we are willing to perforin

Monte Cario calculations to compute the average number of classes,
we obtain numerical estitnates of Bi{nm, k} which measure the average

number of cycles in the clusters on B

, explicitiy
nrn <

1

;ﬁ{{;‘;‘:cycles) = |1~ p{nm,k)

= I -Blorm, k) k 62'{:’1 + é; {—i—\ {5.37)

Although being a by-product of the original estimation problem,

other results such as the expected perimeter length for the clusters

and be applied to spaces of higher dimensionality.



5.4, Continuons Clustering Un An Interval

After considering a discrete occupancy problem, weo now
examine the continucus case of overlapping segments on an inter-
val, Let k segments of equal length £ £a11 on an interval

‘% 2. 5% s 5 ) P , 1
A, B of lengih 1, such that the probability distribution of the
J
middle of the segments is uniform, equal to 1 on AB, U out-

gide,

Definition ~ A k-clump is a set of k overlapping segments such
g =9

rooal
that there exists a compietely covered interval o, | containing
b o

1o
all k segmentis and there is no other interval in which !ax, Biois
s 4
properly included,
When scanning A, Bl irom A to B, anew clump
L 4

begins whenever a segment of length £ void of marks extends

to the left of a given mark, The probability of finding such a seg-~
ment to the left of x is
{- \3 % k'}-
— i r, . i
Pi(}markm§X~‘g,x}?:§;-m1n{x,{}j {s
b -
7

1 - min { xff(,"}’g plrark at x}dx = ! 1 - min {:{,f}j
4 .

gy

The expected nwmbexr of clumps is therefore

i ,
4 r sk-1
I3 fc(k,-@}\‘ = 5 i1~ min {x, ¢} dx
¢ X ;/ UI L 4
{}

Lad
o
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When -¢ is small compared to 1, it is interesting to sce

the variation of cik, &) ; we have

; s
/ N k-
Elete ) = 1+ (1 -2 + K1) ey 4§ 0%
}%?*15 2 3 l
=3 R(1 - 108+ 4 G0 (5.41)
Several related resulis can of course be obtained at once., For in-

stance, the density & of clumps is

. 1 . JE i -
o= T b (x "'"f?} {1 “‘E} if}.‘iZ}

A= 1-f (1 - %) dx:j( (1 - £1%ax
0 <
Kt 1 :
s I - {1 -4y K i
= K’i‘i had {1 "g}
k7 e ket 1 ]
R N L L 2 A (5. 43)

i .
h o= N 4 ] 5. 44
E’C*m,/; . i (5. 44}
\ Vi o+ {d-f) {kw}}/
Another approach which has the advantage of leading to the

o

actual distribution of the number of clumps is to cormnpute th
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ermined by k random

distribution of the k-1 interio
points on a unit interval, If the left and vight most intervals are

discarded, it is clear that the probability of having ¢ inner intervals
i £

Z

is the sare as that of obigining o+ 1 clumps.

greater than &
i.et the inner intervals be numbered I}, 52, A 1
Sh
for the probability that i.i;»x, I‘i = S Ii - X,
1 & 1
intervals

write ?% : 5
1727 T
for all subsets of 2/

Let S,, be the sum of P, . .
Z i,i,...1
EI ) [}
out of k-1 . Let Py intervals} be the probability that exactly 2/
=1, By

intervals are greater than x under the comnstraint Jx

applying the principle of inclusion and exclusion we obtain the

relationship
1/ E’Ei ) i -
m”‘*\g’gzj Y, et zj
. i PN _
P{V/intervals > %} = Z (ml)l S_, . [ {5. 45}
(=0 U“ﬂ{\ u )

€21

i
!

fed

ot
]
ok

ok
-
Lo

d ali j-subsets

The probability PEZ ;

{kwi\} ¢ %
S. =4 ,/E}gn}X,x«}pX,,“,Ei}X}
J L - d
P {E”{S“E}ZI PR AES r rt !;i o g
- i H ; f
=] dx, | dx, | ... ) dx. | odx. . foo. ]
S S 2 / G gLy
i s, v" Y. L dxYx, o
£ R J ey
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Assume that

1
f"} r /’” (1 - % VK-
o ’1. ee F o am, o= M (2
HET;; / Nk . e %
“X J’ U[;‘ ;_;i“-h;,
M 1

This is obviously true for m=k-1 ; by induction on m {for

i €m €k-1, we prove that formula since

T g [ 1 %
. K-+l | o -1
F— }}gnm {3“}{1%) H { i ﬁi”x?ﬂ ; !
‘i“i&m - iii § _ £Ew-
- s m s vy ! i1 Ty
X1 {&~m)] {-mntl ;! - {k-m+15!
Li:m
-

To periorm the last integration sieps corresponding to § €£m < j-1

assume that

kem
173 * - £
“{jemni-1)x £ ; 4
2] iy . {‘1 |1 - X + {m_‘lgxi

i ax L ... | dm o= % - 2
J i ri / 'S (.;{ !

X . o . Ry

M X - i

which maiches our previous result at m=], The next integral then

becomes
3 e 1 o [ P -
Lo (jemm)x T N . -t [1-{j-m)x
A (IR L L Y] L. V! :
[ i-x +{m-jix l-x H{m-idm !
£ o 4 s L I "
f &Xmﬂv g
% 4 -
N {kk-m ! (k-m+1)! !
m-1 LS
BA
- ermitl
Plex L, Hm=j-1jxi
i A I

fip e L 3T
a.&ﬂsu.'*{i},

5. is thus obtained as the value of the last expression {or

m=] which is egual to
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ik
s, ;:(kj“l) NIRRT (kgi)(i-jx)k 0« jx <1 (5.46)

The probability of finding exactly 3/ inner intervals greater than

% can therefore be represented by the summation

mmaé}j{ -7 k~y-1)

- > TK
Py intervals » £) = Z (-1)* (V§11> ( %‘;;11) [Im{v% i)og.i%
i=0
min <i‘%1ﬂ«J »y,k~ywl>
k-1 ifk-v-14T . *
= <v> . (-1) ( : )iumm’:’j
i=0 (5.47)

As we have already mentioned, this result also provides the distri-
bution of the number of clumps since having »/ inner intervals
greater than £ implies that there exist ¥+ 1 clumps, so that

finally

/i1
min| ["’"J -Vt l,k_:zf>
\M )

A \ -
(-1 (ﬂffj%[l-«(vﬂwl }845 (5, 48)

L)

k-1
P{v cl =
{¥ clumps) (v‘ i )

Figure (5.1 ) shows the variation of the cluster coefficient

R | 1~ (1 -&"
p o= = = 2 (5. 49)
n - 1 1+(1w%}“gnmi)

as a function of & , length of the segments falling on an interval of
length 2. Constant density trajectories n& =d are alsc graphed.

They are given by
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)d/&

1-(1-%

digf 4
NS

which for E -0 becomes

1
P& —— v (5.50)
Ele | - 1)

so that the trajectories have a derivative at &€ =0 equal to

d/2
dp . e -1
r % PO m (5.51)

5, 5. Continuous Clustering in 2 and 3 Dimensions

We first examine the case of n overlapping discs of diameter
€ falling with uniform probability over a circle D of radius 1. The
pdf of the distance of two random points in a circle can be obtained
using Crofton's theorem. Following Kendall and Moran [ 17 ],
suppose that n points are independently distributed in an r-dimensional
domain D . The probability that a figure ¥ formed by n points

satisfies some condition only dependent upon the relative position of

the points is
b . _m (E)
n
[=o)]
where m*(E) is the L.ebesque measure in nr-dimensional space
of the set E of points at which ¥ bhas the required property.
Let V = m(D); for D;> D, m{Dl) =V+ AV, In nr.
dimensional space where F"l DB let
m(E) = U  m(E) = U + AU
The probability that F has the required property for random points

in D, is

1
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U+ AU
(v + AV

The set El can be divided into {nt+ 1} subsets E;};f (=0, 1, vv., n}
such that for Eflly, ¥ points lie in Dl—D and n-v in D . Then
1

U+ AU = U + Z (;} pyvn"’?’(ﬁvf’
V=1

where Py is the probability that points in Elj form correct

figures in Dl . From the last two equations

%
(P+AP}V+AVY = pvD 4 Z (.ﬁ"} P, v ¥ aviV

s}
AP (V+ AV = ;,;(;) (2, - P ¥ vy

and letting 4V become small, we obtain Crofton's formulia
_ . &6V

Using this result, let us compute the pdf of the distance of
two points distributed with uniform probabkility over a circle r of
radius R . lLet p{x, R}dx be the probability that the random seg-~
ment AB has a length between x and x+ dx . Similarly, let
pl{x, R} dx be the corresponding probability when A is constrained
to be on the circumference while Be F . F representing the set
of points at a distance less than or egual to R from the center.

Geometrically, we find
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A
Pyl R) =
TR
where
a8 a cos Z}%

If we hold x fixed and differentiate, we obtain

_dR
tan 8d6 = =

Using Crofton's formula, we now find
dp _ 2x0
35 2(«wz-~p> 2 tan 8
TR
or

dp _ 166 sin 290

A particular solution of the associated differential equation without

right hand side is p = cos49 ; we look for solutions of the form

?\60548 where A satisfies

_ 328 sin 6 _ 169 1
dh = “""“"’“E“dg T TEx d( Z“) (5. 54)
TRCOos 8 cos @

which yields after guadrature

p= % CDSZG {6 - sin Ocos ) + ccos48

but 4 =0 since p =0 for 6 =0. Since x=2Rcos8

_ 8 :
P = = cos 8 {8 -~ sinfcos 8)
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pix, R)

Let o= % ; the curmulative distribution is obtained by integration with

respect to x and yields

2
2 ginZ @ o
1 220 - - “"z“)

A

pld €x, R} = (5. 56)

The corresponding distributions for 2 random points in a unit

square are simpler to obtain and give[ 16 ]

p{x,1)=2x[ﬁ-4x%~x2] 0< x< 1
1
= Zx[w -2 - x2+ 4({:{2 - 1)2:- acos i) } 1 -‘Sx-@ﬁ
P4
(5.57)
3 4
2 8Bx x
pld <x, 1) = 7x" -~ + x <1
: ( 1 3
- 3{ +o(me2)xS + 4(x3,.1)2+.§.{x3-1)2
4
X 1 .
...z.._.-é’cx acos;i- i(xéﬁ
{5.58)

These results will be used in chapter { VI ) in connection with the
d2 test for random number generators. We could also examine

distributions in higher dimensions. For instance, let us compute
the pdf of Z random points in a sphere of radius R. We proceed

as before

Z
p.(x, R) = 2mx {1 « cos 8)
1 41;113

K3

where

8 = acos Fy
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Using Crofton's theorem we obtain the differential equation

d 108 2 .
3% + 9p tan® = T(incosg}aos 8 sin b

which has the solution

2 3 3
R);Ex 27 x + 9 =
A AT A LY

By integration we get the cumulative distribution in terms of « = %
3 3 27 4 1 ¢ -
= = - = = ;
p{d = x, R} e 50 © + >80 ¢ 0= a=2 (559

Liet us now examine in detail how the number of clusters can
be estimated {or a random distribution of n discs over a circle.
Later, we shall perform a similar computation in the case of spheres,

We consider 3 types of clusters containing 1, Z and 3 points,
respectively., We shall assume that the diameter & of the discs
is such that £ << 1 and neglect the abnormal behavior close to the
circumierence in case ii).

i) the expected number of isolated points is
a, = n 1.8+ 2¢ 6{&} (5.60)
1 I 5.

the expression in parenthesis representing the probability that the
distance X between & points be greater than £ . From (5,56), we

obtain
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ki

2 z
Pix =€, 1)m%(1~£2)acos%—+£(l+%—-> 1»——%»«-

=2y D.£ L0 WY A VAN A B
=s0-N g5 -Trmo) F 2SN - & - 1Ee) v 0tED

5
=1 -4 g -+ OED (5. 61)

Here, the terms of order higher than £2 represent the influence of
the boundary since the relative remaining area after removing a

circle of radius € is 1 - 52.
ii} it is most convenient to consider all remaining cases as subcases
of the event: two points Oi and Oj fall at a distance x less than & .

Designate by D, and }Dj two circles with centers Oi and Oj ,

respectively, and radius £, We distinguish between three regions

D - (DiU Dj) , (DiU Dj)— (o, N Dj) and (miﬂ Dj)

assuming that (DiU Z{}j)g'w D . This assumption is false if Oi or
Oj fall within a distance & of the circumference of D . This cir-
cular ring represents a fraction 2¢ .2 of the domain D and con-
sequently, the next calculation is expected to have a relative
accuracy 6{5) .

If all of the other (n-2} points fall into the first region, we
get a 2 point cluster, However, if one point ends up in the second
region we obtain a 3 point linear cluster and finally if it falls into

the third one, we get a 3 point cyclic cluster. ILet us now compute
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the conditional probabilities that these last two events occur, We

need the area of overlap of Di and I}j which is

m (D; O Dj) = zaz acc)sz% - fz‘i J 41€2 %2 (5. 62)

and by the foregoing remark

_ 2 ®OX Z 2 \f’ o
m{D, N Dj n D) -<25 ACOS 5 - 5 4ET -x ‘/Kl + O(E))
{5.63)
If Py designate the probability that some other point falls into

th , .
the i region, we can write

E

py = (naz)J[‘p{x, 1) i_?;*;r £ ~4€2acas§€- + % ag% _ %y 6(83)

fd}z
J

o

r
Py = (n-2) pix, 1) LZ&Z_acos«é% - ?Zi ' 482 - XZ + @(83}

&

dx

S |

| A—

and under the assumption that clusters with more than 3 points are

ignored we have

py = Pix $E,,1}-§32»p3

Those expressions are now evaluated, replacing p(x, 1) by (5,55) to

give
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v 3
acosi{;m%\vlmfw? Zﬁzgcos»ﬁ *-35 485 5% 4 0(&3) dx

£ I ) 7
= (nuz)j Ej?.xm%xz + @(xé)ﬁ 2 E° acos% @2 4672 4 @(a?’;é dx
0!. 4L §
(fr |
= {n-2) j[t 4&£7x acosfg - xz 452'- XZ dx + @(6,5)
A _
4 W3 1 |
= (m-2)€ | 7.2y 6«:&:;} (5. 64)

Similarly

p, = (n-2) 27E” P(A <&, 1) - 2p,

i

(nuZ)[Zwéz(éz + @(&3}> - 2@4 (m - 323 )
ﬂr‘

(n-2) g4

+ (5(E J (5.65)

and if we group these resuits , the probability Py that 2 discs

overlap without being part of a 3-point cluster is found to be

py = Sam%s?'* E‘i(n 2}\1‘:‘—5« 3F+ @g}> (5. 66)

The expected number of classes ¢ can now he estimated using all
of these particular counts, There are (?) distinct pairs of points
but in the counting process a linear 3-point cluster will be counted
twice and a 2-point cyclic cluster three times. Thereifors, we may

write
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3“ s

2. 4 3 n 2 4¢3
ni.1~&+§~ga+@(5 ;_} %.(2){£ »‘3.};& +
\

- 3

E 3 343 i
) (v 204 2(E) 4 1 (20 ey
)

2]
It

/} d ; !
: 4

n I«{n-«i}(aa» % E,zj

n..(z)gz,{»(g)% 3 (’"")\z +§3{:- )5 + 0@ (5.67)

it

| ]
%(“51)5*; +«<} £ %a + & n- 23( T«%}j%@{n?’gs}

H

An interesting comparison is to perform an identical compu-
tation in 3-dimensional space to determine the variation of the number

of clusters of spheres when their density is small., We {ind successively

n-1
i) nixn(z..%g,3+%§+ﬁ%5§)
1) m(D. N D, N D) = _3_:;5 1+@(6)\
i i )
;L
py = (n-2)C K%xzn LIy ﬁ%ﬁx8>%ﬁ-£gxé + Hieh
O
(3w 6 7.]
=(n-2){ € + (€ |
Msn ¢ T
p, = ma%%ﬁ e”+ (el
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CHAPTER VI

Computational Tools

In the preceding chapters, many numerical results were
obtained either by recursive calculations or Monte Carlo sampling.
In view of the importance of these results, caution had to be exer-
cised throughout the course of these computations., As a consequence,
several methods were developed in order to ensure efficiency and
accaracy. 1his chapter describes three particular areas of in-
vestigation, First, common sampling methods such as sampling
with and without replacement are compared and are shown to be
equivalent by means of suitable transformations for the purpose of
class counting. Then random storage assignment techniques used
for the storage and retrieval of large families of graphs are ex-
amined and significantly improved, Finally random number gen-
erators used in the previous experimentafion are described, their
properties compared and a method for producing reliable pseudo-

random sequences is presented.
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6.1. Relationship Between Various Sampling Methods

Most of the graph problems that we are concerned with -
require generating subgraphs, the vertices of which are selected
with equal probability from the vertex set of some complete
graph. Selecting such a sample is equivalent to generating a
random arrangement of k integers from the set {1, 2y weus n}.
Details on how to perform this operation efficiently (ﬁ{k }
operations) can be found in Reference [ 8 ]

However, when the number of vertices of the source
graph increases, the requirement that the k selected vertices
be distinct gradually loses its importance as the probability of
finding a match decreases, This is very fortunate indeed, since
the labor needed to impose that constraint increases like k
itself, Depending upon whether all elements in the sample are
© distinct or not, we get the classical sampling without or with ré-«
placement, respectively,

In the case of large samples, the approach we adopt is to
sample with replacement (which is obviously the easiest method),
then perform a transformation to recover, if need be, the results
that would have been obtained had we computed every time the
precise number of distinct elements in the sample or selected
samples of distinct elements,

Let the population CPI\E contain N distinct elements,

Our experiment is the uniform selection of samples of size k

designated by
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Sk when sampling with replacement,
81 when sampling without replacement,

For each 5, let s designate the subset of S, having k
k k, Kk 1

distinct elements léklék such that k‘l is maximum. Finally
let f be a function which is defined for every sample 4 of ®.

Theorem - For all functions { defined on samples of éPN ior which

f(Sk) = f(skl) , OLkgLN, then

g [f{sk;] = Z S %[i}g[ﬂsu)] (6. 1)

[ k] being the Stirling number of the first kind.
v

proof: givenk-tuples {x

i X, 5 eras xi§ such that
k

T 'z
xij é{xl, Hyp eees XN} s 3=1, 2, ..., k, the probability of {inding

Y/ distinct elements among the k selected is

p(N, k, 2) = N"¥ N(N-1)... (N-2/+1) {k} yel, 2, ..., k
v (6.2)
since this is a coupon collector's proﬁlem with N egualiy prob-
able distinct coupons. In this formula {i} degignated Stirling
numbers of the second kind, i,e,, the number of ways of
partitioning a set of k _elements into ¥ non-empty subsets,
The expected value of the function f evaluated over fixed size

samples depends only upon the size of the sample; for convenience
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let us write

i

glk)

£l
'

which are related, using (6,2 ), in the following way

min(k, N}
Glk) = i p{N, k, ¥} g{e/)

i

Gk}

= (N-1) NTR i Hg{w (6.3)

(N-u)

If we now look at g(k) as the kth component of a vector g and

similarly for G(k) we obtain the system
il =
G = g g

where the kxk lower triangular matrix 7% has the form

_ 1 3(N-1) (N-1}{N-2)
= = ;2- >

N N

(6. 4)
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As ¥ is lower triangular, it is not difficult to write down

its inverse by inspection, namely

1
1 N
-y T 0
7l 2 _3N N“ \g
| TRTINNTZY TRCIN-Z) (N-IHNCZ) |
!
|
z

IRt [i ]
NI

We simply have to verify that indeed, the product Z;Tff}t
produces the identity matrix

k

1 i j"l N 1
el - L N1 HN (N-p)! [V
I L TSI ST

By [
»Zj N U { ?] 5

it is important to stress that both transformation matrices

t

being lower triangular, the computation of By requires only values
of G,, uptoc P/=k. It should be clear by now that this approach
will prove advantageous for all sampling problems where the

function f is insensitive tothe presence of duplicate elements in

the sample.



~14dm

For large N and sarmple sizes satisfying k<a<N we might
even operate with a straightforward sampling with replacement
and never apply transformation & »1. We derive an estimate for
the error,

Lemma

g(k) - Gik) = Xl G + Gle-1)) + G “"z') if k<<N

{6. 6}
proof: using expression (6, 3) for G(k) we write
k-1 y Kk
L1 (N-k)! k-1 (N-K)!
g(k) - Gk} = )Z N [ }G(}}) + [N - 1} Gk}
= wW-n 1V W1
the coefficient of G(k) now becomes
k-1 {(N-k) 1
N - 1= - 1
-7 1., . 2 k=T
(1 *N)(l *ﬁ')’ {1 *‘N'*}
= 1 - 1
L Klke1) 5(3’2-)
SR L1 @(—N%) (6.7)
which yields
k|
Gll-1)
g(i) - Glioy = X522 G + [k"' J ———t (i)

= K2 Goa + Ge-1)) + 6 {?{“*z"} (6. 8)
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6,2, Random Storage Assignment

In section (4.7 ), a large number of encoded graphs, together
with their associated information, were stored and retrisved using a
random storage method which will now be described in some detail,
since it is an improvement over existing "hash' algorithms. Because
we do restrict our comparison to linear and random probing, the
reader is referred to [ZI ] and [ 22 } for other methods of
search,

Hash algorithms are primarily distinguished by the way in
which they handle collisions. Elements from a set S x{ 5

\
R T
ittty ;\f

can be mapped into a table T with n available positions

{to, tl’ e . ’tn-i} , each i:i being able fo accommuodate a single
element of # . Since the mapping function ::?Jis in general many
to 1, several elements drawn from 5 may be initially assigned the
same t position., If tj} for 'ji = Q’Z?si) is already occupied, we
have collision and some vacant t position elsewhere in the table

must be selected. Thus, any particular hash algorithm provides a

way of computing from s, a sequence tj s tj seenst. satisfying
i 2z
A
iy F zg"?(si)
£, sE, yaaest. occupied
5 ) Jy-1
L. vacant
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Iy Joreses jy forming some permutation of ¥ distinct integers
e{ 0, n-l] . The element s is subsequently assigned to slot tj
14
and can be retrieved in an identical fashion, provided that neither
£, st ,... DOTr t. have been changed to vacant in the mean-
Ji1 .}y_}_

time.

Such an algorithm will be optimal storagewise if given any
distribution of table occupancy, the probability of assigning the next
item to any of the still vacant slots is equal; optimality here means
that the expected value of the length 1/ of the probing sequence
jl’ 32, ‘e jV is minimized.

For example, the worst strategy corresponds to

jy :jl%‘(v«}) mod =2, 3, ..., n
because if a collision has occurred at tj , the probability that a
1
collision will occur at £, + 1 is higher than the average over all

1
t's. L.inear probing is therefore replaced by random probing,

whereby a fixed permutation {fi, {2, soas fn 1} of fl, AR 1}
is used to form the probing sequence

5y =iyt -8%1 modn VY=2,3,...,n (6.9)

The probability that the (k+ 1)st item entered into the table

will require 3/ probes is
V-2
I B I S
n §=0 n-l-j

We can easily verify by induction that

k k{k-1}

ki n
n-f+

o (ﬂnl){nwa):.,(nwk} = RE

Eva b crr iR
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Thus, the expected value of ¥/ when k items are already in the

table is

Blyg,y) =

i
/""’:“m
H
2l
sl
-+
T
—
hd
Canad »
1
o
e,
f‘!
i
t
t oo
Tt
™

(Ei..é) (6.10)
y=1 j=0 \77J

the second form being based directly on the probability that the probing

sequence is of length greater than or equal to /. We rewrite

E(?”m 1) = *EM""}-E""" (6,11
“n¥l

. k. ‘
so that if o = = is the occupancy factor,

1
E(vm 1) 5-1—'_'—5,— {6.12)

The expected value of ¥ when retrieving an item from the table can

then be approximated by

é(y) < dx . . 1 log {1 - o} {6.13)
k I~ x @
o

A few values of E( 7/} are
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a ) oy, )
.1 1. 06 1. 11
.25 1. 16 1.33
.5 1.39 2. 00
.75 1.85 4. 00
.9 2.56 10, 00
.95 3.16 20. 00

However, the foregoing computation makes the tacit assumption that
the probability of occupancy of any table position is the same, which
is likely to be false if the mapping function ﬁdoes not satisfy that
property for all samples of the set S . Indeed, I is usually chosen
on intuitive grounds, hoping that it will distribute the elements of S
uniformly over the table, since the distribution of the data in the
s-space may not even be known. Consequently, the probability of
collision for the (k+1l)st element is bound to be higher than ¢ and
the above algorithm will not perform as well as expected.
Alternatively, consider now the following algorithm. The

table T has positions {to’ tl’ v tn-ls but n 1is constrained to be

prime. Compute:

- pe ‘
ip = SAle) E 0 j; S n-1
(6. 14)
{,’:J;(sul 5 1< £< n-l
then probe at
jvmjli-(z}@i)é mod n V=12, ..., n
{6.15)

until either a vacant slot or the data item is encountered, If @!‘I and

é’:é are chosen in such a way that jy and 4 are uncorrelated for all
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s€5 , then the previous estimate of the length of the probing sequence
will be valid., The probability that any two distinct elements from 5
have identical hashing sequences jl’ jz, P jy is now @ (%Z} in-
stead of @(»;1;}. The requirement that n be prime ensurais that no
matter what value € has, all table positions will have been vigited
after n probes.

@rﬂr; and &; can be chosen as {follows: consider each data
item {or some transform of the data item, for instance only a
fractional representation of it) as an integer x, Using the Chinese
remainder theorem in its simplestt form, we know that any integer
m in the range {:0, n{n-1) - 1] can be unigquely represented by the
pair of remainders Ty, rz where

Ty ‘= m mod n

(6. 16)

r, = m mod n-1

Therefore, in the present case we can simply use

f.,l
d’l: jlrx mod n

i

{(x modn-1}+ 1

Clearly, for all n{n-1} distinct pairs (jl’ £€) to be feasible, the
range of x should be at least equal to n(n-1). We can thus recom-
mend to apply to the data item a transformation which will distribute
x over as large a range as posgible; then its remainder modulo
n{n-1) should be approximately uniformly distributed. This is, of
course, the typical approach to "randomization” as implernented by

linear congruential random number generators.
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In practice, one need not compute each time j1 and ¢ ; most
of the time, for as long as the load factor is moderate, one probe
will suffice to store or retrieve an item so that only jl need be
calculated, Still, an cbjection may be raised concerning table sizes
which are primes rather than powers of two., Usually, there are two
motivations for choosing n = Zk ; tables can be simply combined or
broken to form similar tables and operations moduio n are easily
performed by just masking the high order bits. Let us remark, how-
ever, that once a table size has been chosen to implement a hash
algorithm, it cannot in general be altered. Table extensions are
usually achieved by performing multiple searches; if the item is not
found in the firs? table, a second table is searched and so forth, but
this is of course significantly worse than having a unique table set up
in the first place. As far as modulo n operations are concerned,
the objection disappears if the algorithm is implemented in a higher
level language such as FORTRAN where an honest division is actually
carried out to obtain the remainder. At any rate, the cost of division
should prove advantageous over the time required to generate the
successive permuted increments in the classical random probing
scheme as the table starts to fill up.

Finally, let us mention briefly how deletions are handled. In
order to indicate which table entries are either vacant or deleted, we
use two special codes which are not members of 5. Although it is
commonly said that lost space is reclaimed but lookup time not
reduced, still some lookup time can be eliminated. When an item is

retrieved from t. using the probing sequence £, ,t, ,...,t, , it
e N iy
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may also be moved to tif.& , 1= PV which is the first deleted
entry, if any, found in the probing sequence. I this compacting
operation takes place, tjp ig subsequently changed to deleted. Thus,
if ky items were removed from a table and assuming that all re-
maining entries have a non-zero probability of being accessed, the

expected value of the length ¥V of the probing sequence would

gradually decrease from E{yk) to ﬁ(vk K.)
1

lim By (y) = ;S(vk_kl)

Newoo

N being the number of retrievals made after the deletions occurred.
Since compacting a table inveolves a slight additional effort, it should
only be performed if any entry is accessed on the average more than
twice.

Both random probing algorithms were tested. With n = 997
and a uniform distribution of j1 between 0 and n-1, figure (6.2 )
shows the percentage improvement in the length of the probing sequence
to install or retriéve an item when the load factor is « . This per-
centage is computed as a percentage of 2/ for the classical random

probing algorithm.
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&, 3. Random Number Generation

In this section we put in their proper perspective several
methods used to generate uniformly distributed random numbers.
The mere fact that there exists several, not to say many methods,
is a clear indication that we do not have a best one in some absolute
sense. On the contrary, the situation is that of a typical engineer-
ing trade-off, cost versus quality. The cost will be measured by
the time required to produce a sequence of randormm numbers and the
guality by how well the sequence passes some carefully chosen tests
of randomness. The complexity of the problem is further com-
pounded by ocur inability to establish computable necessary and
sufficient randomness criteria valid for all situations. No wonder
then, that commonly used methods are plethoric even if we
exclude most ""random methods', the most imaginative but prob-
ably the most deceptive ones,

There are several properties of infinite, random sequences
of independent samples drawn from the uniform distribution that
the finite deterministic sequence we construct ought to have. Those
necessary conditions are that the sequence be equipartitioned,
equidistributed and white, notions which are studied at length by
Franklin [ 12} . Under those constraints, there are two possible
candidates:

i} sequences {Bﬂ”} for 8 transcendental
ii) mmultiply sequence X 4y = {axn%- b}
The former ie characterized by an inherent difficulty of generation,

since 8 has to be calculated without rounding, but has good
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statistical properties; the latter isg intrinsically mediocre since it
only has the required properties asymptotically, but is easy to
generate with a period of the order of the maXimum integer repre-
sentable in a computer word, depending upon the specific choice of
multiplier a . This multiplier can in fact be chosen a priori to
yield a pseudo random sequence with predictable statistical behavior
over the whole period, as was shown by Coveyou and Macpherson.

Unfortunately, typical Monte Carlo calculations demand more
numbers than we can affiord to generate by the first method, but would
require only a very minute fraction of the period of a typical multiply-
sequence,

K-product pseudo randorm sequence

A method for producing pseudo random sequences by combin-
ing other deterministic sequences is now described. Although
specifically treated in the case of binary sequences, extension to
an r-ary number representation is feasible.

Consider k sequences of uncorrelated stationary random

variables Xij taking only the values + 1 with probability

H
]

pix, 1y = p, i

iy i 1, ..., k

{6.17)
= - 1)

i
il
3
et
3
2
<
H

plx, ., 0, 1, 2, ...

and define as their k-product sequence, the sequence

'S
zvxTTx

i=]

iy (6.18)

k
Theorem - A k-product sequence Zy = T[' Xi:y has even moments

i=1
. . ) ) Znt 1)
unity and odd {(2n+ 1) moments in absolute value less than &
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& = ma,xIZp.

1..1[ (6.19)
ie%i,z,,”,k}

proof: the nth moment of the random variable x; can be written

-n} a" je
D= = 37| =5 Q’iej + qpe’
dow w=0
-T1 n
= j i \casw + smw(pi—qi) {6.20)
w =0
Similarly for =
n k &
~nf d o
‘?’}?n(z) = 3 — (cos a3 i (pi~i~ q;) + jsinw T (pinqi))
dew i=1 i=1 w =0
k |
-n} d®
=j n — (coséd-%« jsinf.JW (Zp.~1}> {6.21)
dw i=1 ' w =0

which becomes after separating even and odd cases

M iz)

i
S

if n even

{6.22)

i

K
M (z) = 1| @p.-1)® i n odd
n . i
i=]
Theorem - The autocorrelation RZ(%') of a k-product sequence is

bounded by

| R, 0] < +* (6.23)

where
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r o= max max {_RX’('T‘)I (6.24)
ie{l,...,k} ﬁ;’integef% 0 '

proof: the autocorrelation of x is

in(?:’) = g{ i3 xij+‘£‘} ¢ integer
For a truly white sequence we have
R, (T) = 6(c)

Here, the autocorrelation of the k-product sequence is similarly

R (T)= B {zj zjw} = ‘5§E xijxij+f} (6.25)

but because the sequences % have been assumed to be uncorrelated,

(6.25) becomes

k
R ()< [T R(T) (6.26)
i=1

However, whiteness is not a Kstrong criterion of randomness so that
we now examine the equipartition properties of these sequences.
Theorem - k-product sequences of independent + sequences are
equipartitioned and completely equidistributed asymptotically as
kw00,

proof: given A numbers Xiq Xipee ¥y taking discrete values 11,

N

they form 2}‘ distinct configurations Cj’ jéz{l, AP j . A

sequence X, is equipartioned by A if
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-A

P ({Xinxin-i-l U TR ¥}-CL) =2 (6.27)

Liet Py = Z"K + €iv designate the actual probability that

- . .th
{Xin Kbl Xin+R-—I} = CI} in the i sequence. We then

form the product sequence z = xixj s0 that

2
p({znzn+l e Fnda- 1 = ) Z:

@(}u) being the image of M under some permutation 8 of the

. pl}“‘ JB(/A} {(6.28)

integers {1, Z, ey ZR} . Using expression (b, 28) we get

_ Y
Pr({znzr&l an_l}""’”cz; (1 * /;Zlgyk JS(F.)

s My g? (6.29)

where £ = max N [E’W ’aj/u.] {6.30)
peti 2, ..., 2N
Thus if the constituent sequences are equipartitioned @{8,), the k-
product sequence will be equipartitioned @(&k) .
In the particular case of the discrete + 1 sequence, equi-
distribution by A for the A-dimensional sequence {x - ,
: in® Tint 1

ceeen X 1} is implied by equipartition and holds for every A .
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Generation of keproduct Pseudeo Random Sequences

Implementation of the k-product operation on a binary computer
with word length £ can be easily achieved by performing k-product

operations on each one of the £ bits. For that purpose, the exclusive

OR of two 0-1 sequences sy and 5, corresponds identically to the

Z-product of the + 1 sequence 84 with the complement of 8, 5 OF

52(0,1)69 82(0,1)'5?1‘5'51(1, -1y % s,{-1,1)

af
Since the exclusive OR operates on all £ Dbits in parallel and is
associative and commutative, the k-product sequence is obtained as
the outcome of {k-1) £-bits exclusive OR's,

Of course, the necessity of obtaining k independent con-
stituent sequences introduces a factor ;—é in the overall speed of the
algorithm so that we must justify the uvse of a k-product generator,
Several areas of important applications are:

i} extension of {Gn} sequencest we recall from [12] this very
good but quite costly method of producing pseudo random seguences
with all desired properties of randomness. Rather than keep
stubbornly generating {{-}n} for increasing n (one of course might
think of starting the sequence over with different transcendental 8),
a particular sequence, say 20, 000 numbers, can be stored perma-

nently and used in conjunction with a multiply sequence to form a

Z2-product sequence which will be as good as {Gﬁi but with a period

at least equal to that of the linear congruential generator, typicaily

of the order of 2“g .

ii) generation of multiply sequences with homogeneous properties

over all bits: a multiply seguence X 41 "%, + b mod m can be
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analyzed by means of the spectral test to determine its expected
accuracy over the whole period; in this sense we mean that k-tuples
of only the s, most significant bits of adjacent values can be con-
sidered essentially independent, Typically if the accuracy is 16
bits for pairs, it will be, say, 10 bits for triples, probably less
for guadruples and guintuples may not even he independent, This
can be observed quite directly by computing bit serial and cross
correlations; in particular, we have subsequently compared the

data obtained for{'ﬁ“ n} and a good multiply sequence as indicated

by the spectral fgz st

Xy © 2736731631558 xn+ cst

The degradation of serial correlation for lags up to 15 is quite
characteristic as we move from the most to the least significant

bit, The distribution of the serial correlation coefficients should

be normal with mean 0 and variance N (number of samples) as a
consequence of the De-Moivre-Laplace theorem on the limiting form
of the binomial distribution. Next, we picked 3 distinct multipliers

and combined their multiply sequences applying the transformation

k
b;= Z . mod 1 (6.31)
V=1 {i"}“(vwl)l‘%_l}mgd.{ +1$1}

for k = 3 ; here bi v designates the ™ bit of the random integer
*

1]

just obtained from the vth sequence, bi is the value of the ith bit in

the 3-product sequence. This transformation simply perferms a

circular bit permutation equal to ng bits for the Zn{i sequence
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and Zi. 'g»} bits for the third., Several tests were subsequently

performed:

. bit auto and cross correlations, bit serial correlations

. Irequency, poker and coupon collector's tests

. distance of 2 random points in a square (dZ test)

it is interesting to notice that the 3-product sequence per-
formed equally well as the sequence {Tf n} . We emphasize that the
study of k-product sequences made earlier assumes all along that
even though the constituent sequences may not be good pseudo
random sequences, they are nevertheless independent,

Results from these tests are given in appendix,
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CHAPTER VII

Conclusions

We have developed efficient computational methods to analyze
complex problems of partitioning. Examples were given to illustrate
how asymptotic expansions can be used whenever possible to relieve
the actual computing task., The analysis of the general graph problem
has given us some insight into the behavier of the expected number of
components when sampling from an arbitrary space.

Ewven though we only considered uniform distributions, it is
interesting to notice that all results obtained are also valid in situ-
ations where the probability of selection of any element is not equal.
Indeed, from the graph standpoint, each vertex can be replaced by a
p-clique whose vertices are adjacent to the same subset of vertices
as before, The number p is proportional to the probability of
selecting that particular vertex and p is finite only if these proba-
bilities are commensurate. We can now perform a sampling with
replacement of the new graph and apply the necessary transformation
to recover the result of sampling without replacement. Therefore,
the expected number of components will have the same pattern of
variation as before.

There are of course many related guestions which have been
uncovered during this study., They should be the subject of further
endeavor.

For instance, the method of sampling from the space of
graphs with constrained local degrees should lead to some interesting

estimation problems when sampling from an infinite population.
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APPENDIX

Frequency Test for Random Integers Between 1 and 10

{Chi Square with 9 Degrees of Freedom

Samples Mean Stand. Dev. Chi Square
Cbhserved 4000 0,500 6,290 4,265
4000 0.508 0.291 9. 350
4000 6. 507 0,290 8. 645
4000 0.508 0.291 7.210
4000 0,491 0, 289 10,925
Expected 4000 0.500 0.289 g.
Cumulated
Observed 20000 0.503 0.290 8. 443
Expected 20000 0.500 0,289 9.
Chi Square Sampling Distribufion
Observed mean = 8, 08 variance = 6.33
Expected mean = 9, variance = 18,
Sampies Mean Stand., Dev. Chi Square
Observed 4000 . 503 . 290 3. 845
4000 503 .284 8. 960
4000 . 504 291 17.755
4000 . 505 291 5.925
4000 . 501 . 290 7.345
Expected 4060 . 500 . 289
Cumulated
Observed 503 . 289 8,181
Expected . 500 . 289 a,

Chi Square Sampling Distribution
Observed mean = 8,77

Expected mean = 9,

variance

variance = 28, 8

18,

1
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Poker Test for Random Integers Between 1 and 10

{Chi Bquare with 5 Degrees of Freedom)

Samples Chi Square
Chserved 4000 3,753
4000 7.527
4000 3.698
4000 14,218
4000 6,617
Expected 4000 5.
Cumulated
Observed 20000 13.479
Exapected 20000 5.

Chi Square Sampling Distribution

Observed mean = 7. 16 variance = 18,46
Expected mean = 5, variance = 10,
Sarmples Chi Square
Observed 4000 3.019
4000 4, 637
4000 2,963
4000 5.360
4060 11,314
Expected 4000 5.
Cumanlated
Observed 20000 1.2489
Expected 20000 5.
Chi Square Sampling Distribution
Observed mean = 5, 46 variance = 11,79
Expected mean = 5. variance = 10, |
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i)z Test for Random Points in a Square

(Chi Sgquare with 6 Degrees of Freedom)

Samples Mean Stand, Dev, Chi Sguare
Chserved 4000 0.512 0.249 4. 914
40600 0.536 0.255 5,995
4000 0,517 0,251 1. 048
40006 0. 540 0,243 10,730
4000 0, 522 G.253 2.249
Expected 4000 0.521 6.
Cumulated
Observed 20000 0. 526 0,250 6,715
Expected 20000 0,521 6.
Chi Square Sampling Distribution
Cbhserved mean = 4, 99 variance = 14,25
Expected mean = 6, variance = 12.
Samples Mean Standard Dev.| Chi Square
Cbhserved 4000 0. 523 0. 245 1.692
44600 0.519 0,237 6,257
4000 0,529 0. 257 3,457
4000 0. 527 0, 247 6. 545
40006 0. 537 0,245 7,902
Expected 4000 0.521 6.
Cumulated
Observed 20000 0. 527 0. 246 3. 509
Expected 20000 0.521 6.
Chi Sguare Sampling Distribution
Observed mean = 5, 17 variance = 6,39
Expected mean = 6, variance = 12.
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Coupon Collector's Test for Random Intepgers Between 1 and 10
{Chi Sguare with & Degrees of Freedom]

Samples Mean Stand. Dev. Chi Square
Observed 3967 30, 053 12, 097 9,268
3982 27. 846 8.770 11,246
3995 29,593 11,678 4, 885
3983 29, 073 12,443 10, 158
3992 28,312 11,100 9. 488
Expected 29.290 11.211 8.
Cumulated
Chserved 19619 28,975 11,293 12. 039
Expected 29.290 11,211 8.
Chi Square Sampling Distribution
Observed mean = 9, 01 variance = 5, @1
Expected mean = 8, variance = 16,
Samples Mean Stand. Dev. Chi Square
Observed 3984 29.511 10,581 6,163
3987 30,907 11,029 11,972
3983 29, 287 16.612 9,919
3988 30,212 12,178 5. 448
3490 28,633 10,311 9,387
Expected 29,290 11,211 2,
Cumulated
Observed 19922 29.710 10, 962 4,438
Expected 29,290 11,211 8.
Chi Square Sampling Distribution
Observed mean = &, 58 variance = 7,40
Expected mean = 8, variance = 16,
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