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ABSTRACT 

-i - Lne  probicrn of partitionins into classes by rncans of n binary- 

equivalence reiation i s  i;ivt:siiigatcd. Severai algorithms .. for deter- 

mining the number of components in the gralzh associated witn a 

particular se t  of eicments a r e  constrlicted and compared. J Ihcn tine 

classification process operates on independently drawn samples of 

n distinct elements from a popuiation, the expected number of 

components is shown to be 0bta.inabI.e recursivcLy for a class of 

problems called separable; in  a i l  cases ,  est imates a r e  available to 

reach any desired. level of accuracy. Clustering inodeis in 

Euclidean space a r e  analyzed in detail and asymptotic forrniiias 

obtained to cornplomcrnt experiments. Conjeczure s concerrir~g the 

general behavior of the expected number of cornponeats a r e  pre- 

sented also. FinaLiy, severa l  computational tools of general interest  

a r e  improved significantiy. 
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Chapter X 

Introduction 

The purpose of this s k d y  i s  to investigate p rob I~n l s  of 

partitioning into c i rsse  s .  Given a.ny biriary relation defiiicd for ai l  

pairs of elements in ii? set  to be partitioned, a cnrrespundi?ig binary 

eqci-ralence relat;.on can be defincu. Using an undircctcd graph, tlie 

edges of which indicate that the relation holds for a.djaceilt vertices,  

we obtain a certain number oi components, each component corre-  

sponding to one of the equivalence classes of the vertex set. The 

expected nurnjer of componerits i s  of interest  in problems in pnysical 

chemistry and in ocher fields. 

Given a graph on n vert ices,  thc number of components can 

be expressed in t e rms  of the inverse of the row sums of tire n-1st 

Boolean power of the graph incidence matrix. This maiiiernatical 

lorrnliiation provides one method for computing the number of ccm- 

ponents but others,  more  efSicienL also can be coi~structed. An 

imlor tant  problem that we examine i s  %he determination of the 

expected value of the number of comi?onerits v.<lcn the classification 

process operates on independently drawn samples of n distinct 

elements from a population. Of course, for some rather  simple 

exam?les, such a s  discrete ailu contirruous occupancy problem on the 

line, we find analytical answers,  but in the majority of cases we 

canzot hope lor  closed-form solutions and must  r esor t  to com21~ta- 

tionai experimentalion. For a certain class of problems called 

separable, such a s  some random graphs and rooks problems, powerful. 

recursive calculations can be used to obtain expected valiies, However, 



i f  ihc structure of the relation is  far  too cornpiex or only jtatiscbcaily 

hiown, our more  n ~ o d c s t  aim i s  to dcrivc cslirnates Ior the probabic 

nii:nber of campor;cnts. Depending bpon the toil. ilia1 wc a r e  ready t o  

face, variorii a?;,ro:iimate merhcxls ranging f r o ~ n  simple s prinri  

estimation to ienglny Monte Carlo sampling a r e  avaiiable in order  to 

reiich any desired level of acciiracy. 

Among a i l  binary equivalence relations there a r e  sonlc which 

deserve special attention since they a r e  closely related to practical 

problems. in that respect  we s l~a l i  analyze in betail discrete and 

continuous adjacency problems in 1, 2 o r  3 dimensions which forin 

silnpiified clustering models in Euclidean space. 

Throughout this work great care  i s  exercised in using analyi- 

ical answers, asymptotic expansions and coinp.xtational estimates in 

a harmorlious conjunction. A resul t  of this comprehelisive study i s  

C .  _ inference of conjectures concerning the general behavior of the 

expected number oi components, 

Finally, Qle search for efficient specialized algorithms and 

conclusive experiments has  resulted in a variety of significantly 

improved computational tools which potentiaily oiler a wide 

applicability. 



1. I .  Binary Ciassii ication . B i r ~ a r  E ~ ~ u i v n l e n c e  Xc:l;tinn " 2 --- 
. .. 1 i 

We consider a ;?opa.tai~.on @ of N ind iv i i l i a ;~  1 a,, a,,, . . , , a- ;; 
i i  i. :t'j 

:or any ?a i r  oi e lements  a .  ; 6 0 ,  let a cunnc;ct.,id !,i,n-ry r<:lation 
1' &J - 

VS) be defined. Connectedness simply im;?i ics that i?c,tweeii any two 

1 
distinct &-members ,  e i ther  & o r  &- holds. We: per iarrn n 

i- w 
experiments Fi,. . ', pn , each experirncrit being deiincc a s  the 

si:iection of a member  of @ according to some j?rescribed probability 
%- d of experiments @ .  i s  simply law. The space 

I 

and tne probability o i  an  elementary event a .  i s  
J 

The outcomes of our combined experiment g= El x P P 2 X  ... s $ ~  
are ordered  n-typles = (ai , a, , , . . , a j forming the s p c e  

i ' 2  1 
I1 

The probability a: an event a e  @'is p(a.  , a .  , . . . , a .  ) which, il: the 
I1 I2 I a 

experiments  a r e  indepniient ,  becomes 

Each event & invoives a elemesits of & distinct o r  not, 

which can be grouped into c l a s ses  by means oi  the r e h t i o n  &, This 

classification p rocess  i s  per formed under the f oilowing conditions: 



j i j  for  any pair a , ,  a ~ 8 ,  a ,  $ a .  , in a class G tbere exists some 
1 J I J 

sequence 

where { a ah2.. . . . a  is  a subset. possibly empty. oi the e~erneilcs i "~d 
in C . 
{ Z )  if an individ~a.1 in a class i.s in the relation d?. or EE with another 

individual, then the second individual i s  in the same class a s  the f i r s t  

one. 

Tne purpose of condition ( I )  i s  to accomniodate irreflexive and 

non-reilexivc binary relations. By irreiiexive we mean that no 

rncmber oi O) bears the relation h? to itself, whereas nun-reflexive 

means that each @?-member does not bear the relation h? to itself, 

Also it estabiishei the chaining property among eiements of the same 

class. a .g iS.  means cither a i@b or bk!a or both. The identity 
1 3 

binary relation E i s  an equivalence relation used to group into the 

same class identicai elements. It i s  convenient to let e ja.) repre- 
1 

sent that subset of (;i which forms the class to  which a ,  belongs. 
1 

Theorem - F o r  any binary reiation I%, under hypothesis (1) and (21, 

the classification i s  unique and the resulting classes a r e  mutually 

exciusive, 

?roof: a simple constructive proof proceeds a s  follows; Construct 

i 
i n  undirected graph by adding a, vertex for a .  ii a. C iail,zaiZ,. . . , 

v 3. 
U 

a, . If ai indeed forms a new vertex, connect it by single edges 
"u- 1 V I 

to ai l  other vertices for which h?, 02 or  both. hold. This construction 



clearly satisiies conditioni ( I )  and ( 2 ) ;  each class is obtained by 

arbitrari ly si:iecliiig one vertex and picking out a.ii dependent 

branches -anti1 thr? rioies a r e  exhausted. 

X ~ t i c e  that, altbougii s;.;i: do nut require & to be an equiv- 

alence relation, conditions (1)  and (2 )  ensure that the classification 

is  done in terms of an equivalence reiation 4' derived from @f 

and such that 

a . R a .  +== a . R a l  o r a .&a .  or both 
J J . l i  

0' a . n  a .  and a &a. =3 aikfak 
1 3  j LC 

0: course, if depends on the particular sample chosen 

since it is  Refined to be transitive, In practice, we perform a 

ser ies  of elementary pairwisa tests with a symmetric reiiexive 

relation, transitivity only being obtain& indirectly. 



CTLAPTXR I1 

C?ass Coiuntin:: Algorithms 

-. 
In a ve ry  irimited :~uiuber  of cases ,  we c a r  find anal:iiiral 

soiutions and possibly asymptotic es t imates  for  the number of 

c l a s ses  given a po2ula'iion p, an equivalence relation R' an* a 

sampling distribution over G) . Most of the t ime, however, the 

alternative has  to be chosen which requi res  computing sampie 

statist ics.  

Several  algorithms to  determine the cumber of c l a s s e s ,  

given the elements  of some sample a, can be proposed. They 

a l l  have, a s  a common character is t ic ,  the i r  generality of use 
t 

since they a r e  applicable to  any eqiii-galence relati-on 6? and 

finite sample Ck f r o m  a finite o r  infinite p o ~ u l a t i o n  @. As a 

ma t t e r  of fact, their only interface with the outaide world is at 

th 
the foliowii~g level: a r e  the i and jth element of the cur rent  

sampie in the relation 8' with each o the r?  

Xn o rde r  to  appreciate  the m e r i t s  of these  algorithms, we 

can use c r i t e r i a  based upon :;heir speed (count of operations),  

s torzge requirements  and accliraey. Accuracy he re  r e i e r s  to  

c a s e s  in  which the number of c l a s ses  is only est imated wit;hout 

actually performing the complete cocintirig. The resul t  is in 

general  no longer an integer  but a cer!ain range of integer values 

which iccludes the t rue  answer and the accuracy is then measured  

by the extent of the range. In the present  chapter vre a r e  s t r ic t ly  

concerned with exact counting algorithms but in  chapter ( IV 

approximate methods wil i  be presented too, 



An essenciai choice to rnaice i s  to select a data s t r ~ c w r e  

representation for the connectivity inlorxn;ition among elcineni-6 of a. 
01 course, one may construct tlie 0-1 incidence rr.;itrix but this 

r n j  
requires testing a priori  rill pairs of d i s t i~ ic l  elements (ai, a;; \ 2 1 J 

$31. the rclstion &' to hold, Also, i f  the proirability that a , d a :  holds 
J 

is  s~nali, any storage reprosentation 'ijhfcli accomn~oclates all oi the 

jn) entries will appear extremely urastefui, On t k c  other hand, ii 
1 2  

we choose to  only keep track of the less liiieiy outcomes, here 

those pairs for  which a.it;&. , the r e t r i e ~ a l  effort i s  bound to be 
J 

significantly larger than before, Yet, we can develop a n  algorithm 

which does not necessarily require the full incidence matrix and 

which tests a . ~ ' a .  at  most once, This list  structure algorithm is  
1 ,I 

presenten iast and is probabiy tbe most useful. Kever~heiess ,  we 

feel that the two following algorithms have interesting characteristics 

in their own right which arnply justify their analysis. 

2, 1. Algorithm 1: Iterative Coix13utaiion on the InciL,cnce h,ftitrIx 

The incidence matrix A of the undirected graph Gn witn n 

vertices, single edges and no loops i s  

The binary relation i s  an eq~uivaience relation derived from 

{see section [ 1. 1 1)  and A .is t h s  b r r  m n  ~y-mmetrie rfiatr'ix with 

O diagonal elements. 

k .  th 
Let a.. oc the t i ,  3 )  element 01 the k power of A ; 

1J 
k 

physically, a . .  represcats the aiimber of paths of length k f rom 
1J 



v. to v. . Since tile shortest  path between any two ver t ices  in G 
1 J n 

cannot be  u i  icngrii g rea te r  than n-1 , v. and v: belong to  the same 
1 J 

c la s s  ii and only ii 

fo r  any se t  of coefiicients skch that k 

in par t icular ,  consider the mat r ix  

s t  
where 1 is the identity matrix of order  n . Its in-:) power has  

the expression 

which is of the type ( 2. 2 1. Consequently, e ( v i )  ~ e j v  ) , @jv)  
J 

designating the c l a s s  o r  se t  of ver t ices  to  wnich the ver tex  v belongs, 

n-: 
i f a n d o n l y  ii d . .  3, 0 .  

* 
13 

Let  U be the column vector with all n cornTonenis equal to 1. 
-.e- -- l 

F o r  any vector V with non-zero components v.  define a s  V the 
I 

i 
inverse vector  having components - . 

v. 
1 

-r. 7- 
i . ~eore rn  - The number oi c l a s ses  of a grapI" - wi th incidence n 

m a i r k  A i s  



n- i 
prooi: a s  shown, the (i, j; cLernent oi (A+ 1) is either 

1 or  0 , depending uiron wiietl~er or :~ot there exists a ~ ; ~ . t h  Lram 

> .I1 - 1 
v; to v: . Taking the minilntirn oi ju. .  , i j  yielids a (0-1) firatrix, 

j 13 . . tneced a t ruth matrix for the r':Latinn b?' on C . AppL;.lng tn i s  
II 

a t i ,  
transiorrnation to II , produces a row sun1 vector, ti-:c i corn2onev.r: 

of which i s  the size of the class of whi.ch v. is  a rni:miser. k~ the last  
1 

operation to be performed, each row is  co~intce v ~ i c h  a vreig2:t inverseiy 

proporciol~al to the size of the class to which it beioays, thereb; 

yielding c by simply taking the scalar product of a unit rovr vector 

with the inverse nf the row sum vector a s  Gciir.e(i above, 

n- i Remark on the computation of (/it I) : Fur  the purpose of obtain- 

2 3 n-2 ing the number of classes, the intermcdia.te matrices A, /i *.A # , .  . ,PA 
 nee^ not be explicitly computed and a shortcut may be useci. As a 

rnztter of fact, the next paragraph is not oniy relevant to matrix powers 

but also to other transformations, proviced tiley a r e  associat~ue.  

Lei the binary representation of n- l  be 

then 

operation which involves %'= mi. m - 1 matrix m-ultiplications, S there 
I 

a re  exactly rn i~on-zero bU1s .  T h i s  nunber  Z satisfies 



rhc  straigki iarward approacil, Of course,  unless v ~ e  a r c  iri the 

m A .  special  case  n - I=% , ~ i , e  present  sc l~erne  necessi ta tes  two ma t r i ces  

2k' ls:zi 
to be kept a l l  along, namely, D a.nd i 3 * . But it is certainly 

i = 3  
not a ve ry  ser ious  objection, especially f o r  symmetr ic  mat r ices ,  in 

which case  the above two ma t r i ces  can canven ie~~ t ly  be house6 in the 

upper and lower halves of an (ni-1 x n j  matrix. 

Let u s  now re tu rn  to the specific case  oi  c la s s  coi~i~putatior~. 

n- l 
A s  we have already pointed out, we only need to  -mow whether d-. 

+. 
LJ 

I\ . 
i s  0 o r  > I  o r  equivalently whe2iier 1.; IS, fo r  N > a-i . Choosing 

IJ 

K = Z  great ly  our t a sk  s i r ~ c e  we can now dispense 

2 4 DN 
wit;? one ma t r ix  and only calculate D, D , D , ... , . Fur the rmore ,  

th 
le t  u s  a s s u m e  that a t  the ld stage, i. e . ,  when computing D2*frorn 

DZ U- 2- l 
; 2 , we still have u,  . = 0 . We must  th.eri f o r m  the sca la r  

th ' U-I 
product of the i row o i  112 with i t s  jth column, but a s  soon a s  

this ;?roduct becorries g rea te r  than 1 we need not go any fur ther ;  we 
%' 

just se t  d2. = 1. Aiso, we have tacit ly assumed f r o m  the beginning 
'3 

tnat every mat r ix  product i s  performed in place, the updated values 

d . .  = i being used a s  soon a s  they a r e  found. Coasequeniiy, w e  never  
1J 

2 -4 even real ly  compute D , u , . . . , 3N but at the completion of the &' 
th 

2 2" 
stage we obtain a rrAatrLx D ---O So much the bet~ei"! E'lnaily, tLe 

aigorirhrn te rminates  when ei ther  N is reached o r  a complete sxve~ep 

?i- i 
of the mat r ix  prodaces no update since D' 2 L  2@ x =a -93 = D  



Q y3eas. 0% :palenl-t.na aq  paau s:anpozd i z l e s s  an I = ?  - !z N 3" \U 

f l  z 
LTUO ' 

nzc a 13nposd ayi r~ + p a3tie;lslp aqa :rt. 2i.e ;:a!q~ 
f t Z  



c i r c u m s t a i ~ i e  must  correspond to a graph with the smalicst  number 

or' cdgcs,  that is a t r e e  on n vert ices ,  since aiiding any edge can 

only i e c r e s s e  o r  icavcl uncinangi:d the distance betlvcen any two 

c,ges, mat t r ee  be a l inear chain; the adjunction of an eaye 

." 
t o  a l inear  chain -masirnizes ( 2. 8 ) o r  ( 2. 9 ) 5 it i s  madre zt the e n i  

oi the chain proiucing the seqaence of distances a = n- 8,  Z 
I?= l,Z,,..,n-I; a s  

any othcr sequence can be constructed by rcpcatediy borroiving 3 

f r o m  some cu and adding i to a,, such that 4; =.12 b ~ t  
8 1 " 2 

ioa I <  L * 2  ?! li -, L lo- -2 .t?2) SO thzt the maximurn n u m b e r  of sca la r  products 

i s  expressed  by 

U s i n g  

n 2 
the n u d e r  of sca la r  2roducts wiil t h e n  be at wors t  

2 
log2" +@in j . 

Each such operarion iiivo?ves at most  n t e s t s  which a r c  per iormed as  

logical 'ntersection (AXT,) operations r a the r  than mukiplications. 

W e  have thas  shown 'inat in tne wors t  possi?iie case  01 a l inear  

re 3 
chain, the number of rests t o  perform i s  bounded above by 5- loa n . '.. -2  



is:* c l a s s  countin..  b y  pc?:.rers of incidence n a t r i x  
1 . 2  d o  pa r t  2 -?or h = l  
1 - 3  -o t o  s t e p  1 . 2  i f  bin- l? :h=:  
9 . 4  do p a r t  4 f o r  i = l i I l n  f o r  c=C 
1.5 tyne c  i n  f o r a  1 

2 , 1  b = b * 2  f o r  e = b  f o r  5=O 
2 . 2  i n  p a r t  5 i f  aCi,j)=0 f o r  j = i + 1 ( i ) n  f o r  i = l ( l ) f i  

3 . 2  s=-I i f  a ( i , k ) " i a [ k , j )  f o r  k = l ( s i n  f a r  s=: 
3 . 3  a(i,J9=l f o r  a ( j , i i = i  f o r  h = l  i f  s=-1 

4,: s = s + a ( i , j )  f o r  j = l i i ) n  f o r  s=O 
4 . 2  c = c + l / s  

For3 I 
- c l a s s e s  



Ziowever, in pract ice  the average  number  of t e s t s  i s  much ~i:~ili'ir 
1.. - 1 

i 
equal to  13 i 1 il$ 9" . - 6 5 4 1 , p re:prescnting the average  

E2 l" 4 Y n 
number  of res ts  periorxried ciaring a s ca i a r  product,  b'rlori: a m z k n  

is  encoantered.  h praci i t t :  p is srsail and the aigori;hrn i s  qaite 

s imple  s o  that it proves  m o r e  efficient than using {Wrath-il l  a L, 

that  i s ,  performing an  actual  ma t r ix  invers ion to  obtain the non-zero  

en t r i e s  in thr  f inal  incidence matrix. 

F igu re  ( 2 ,  1) snows an  im-glemer~tation of algorithm 1 in  

CITRAI; (CIT t r ans l a to r )  which ex l~ lb i t s  i t s  siiriplicity. 

2. 2, Algorithm 2: R.ecursive CompiAa.tion orr the incidence Matr ix  

We take the opportunity h e r e  to  comment  briefly on the in t e r -  

relationship between programming languages arid the a igor i thms  they 

host. Oiter~,  we i ind that the convenient way  of attaching a given 

srobiern f r o m  a numerical ,  standpoint does not c o r r c s p o n j  the in- 

tuitive approach we urould u s e  if we w e r e  :iskcci to  obtain the solution 

ii: r; few simple ca ses ,  In some  instances,  th is  discrepancy can be 

explaineci by our  inability lo  think along the limes of a n  cflicieiit bu t  

too cornpiex algorithm. Most oL tile t ime,  iio-wever, we tend to  fo rmu-  

la te  the problem in te r jns  of those bas i c  p r o c e s s e s  whicn a r e  m e s t  

na tura l  to  the programming iaiiguagc used, F o r  instance,  a language 

. . like FORTRAN is especlaily suited Lor i t e ~ a t i v e  ca ic i~ ia t inns  j u t  has  

no buil t- in recuriiicin ca2abiiif-ji, whereas ,  the cni i t rsry  i s  rrGe for  

McCarthy 's  LLSP 1. 0,  Consec;ucntl.y, ci3an;jir;g ~, the has: la11 G'.' ,uc>ne - arid 

. . 
performing a l i t e r a l  t ransla t ion of an  algoriliirn ma.y not i:ecc.-ssariiy 

yield tile s a m e  algori thm a s  we woiiid obtain had we d i rec t iy  used the 

i a t t e r  language. If nei ther  language is a subset  of the other  one, tiiis 



will in general b e  the ca.sc, By way of ilristration, we now exam:cie 

a "na.uraIv a.Igoritiirn, 

,.. . uiven ZI. g r a i h  G rvltii n vcrliccs, t1:i: sepai:atior 3; iii 
xi 

. . vertex set into iisjoiiii conrlectec! c:ssses can bc achic;-ed 0;. seleiti--' '-6 

one of the remaining vertices a;ld "p~liii;~ out'' a i l  (ii i ts  dcpa~fideot 

ones, zhat is,  removing the connected subgraph of the ciast: to which 

i t  belongs, and so  on until no vertex remains. Zi vie think in tcrms of 

zi rigid physical str-acture, the selection process is  a single o;icrstion, 

al l  nodes of the subgraph being moved a.t once. E tile structure is  

now articalated with loose joints, tbe removai may be considered to 

take place in stages. r ' irst ,  al l  vertices a t  a ciistance i i rom :hc 

chossri vertex a r e  inarlieri; then ail vertices not ~revim.s ly  marked 

and having an cdge in corr>rnon with one of tnc i a ~ t  vex ices  markcii 

a r e  themselves selected, and so forth. We have thas introduced a 

hierarchical structure with respect to ax arbitrary node acting a s  the 

root o.f each subgraph; each vcrtex at a distance d from the root i s  

responsible for coilecting the vertices to whom it i s  directiy connected 

and which have not yet been marked. This intuitive priiced-*re can be 

easily impierncn";ed a6 a rrcursive program o?era,ting on t i l e  upper 

- half of tiic incidence matr'k. *. or any a . .  = 1 , ruw i znd coinm j 
1J 

a r e  scanned o m  position at a time, always mo-ling away f rom a , .  , 
1; 

unaer the ioilowing rules (assuming we a r e  presently moving along 

row i) 

." u a .  = 0 , centime; 
1k 

i f  a. = 1 an& i s  already r0arki.d as  a member oi the same ;k 

class a s  a.. , do not examine any further eiemcnts along th i s  ciireciinn; 
=J 



I.C1* r e c u r s i v e  class c o u n t i n g  a l ~ o r i : b , r n  - - 1 - i  V(kj=(k=i) for  U ( k ) = ( k = l )  for  k=n(- : ) i  
1 . 2  do p a r t  2 i f  a(i,j)=l f o r  j=i(1lri f o r  i=1(l)n 
1.3 t y p e  k-1 i n  fern 2 

2.1 do p a r t 3  f o r  iii)=i f o r  J(ii= f o r  k = k + l  f o r  i=i 

3.05 a(ii:),J(I))=Z 
3.65 go t o  ste;, 5-25 15 u'=?\uq=3 f o r  u=V(J(lj) 
3.1 do 4 f o r  E ( - - I - \  , , - ~ < t , - l ~ s > l  for s=-1 
3 . 2  l o  s a r t  4 f o r  E::9=i(i)+l;s)d(l) f o r  s = i  - >.;t; r;o ;o s t e p  3 . 6  i f  u-=i&"-=i j  f o r  u=:;< i ( 1  j )  

3.3 do p a r t  5 f o r  Eil:=J(ij-i(sjlill f o r  s=-i 
3.1 do  p a r t  5 f s r  E ( i i = J ( l ) + i ( s l n  f o r  s=i 
3 . 6  1 x 1 - 1  

4 .02  done if a(E(:),Jil ) ) = t i  
4.65 c o  to s t e g  4 . 5  * for  s=-5 i f  aiE(i),Jill)=L: 
4.1 done i f  U<:4:E(i))<S 
4.2 iI(E(1))=:+1 i f  tl(E(l))=O 
1.3 do p a r t  3  f o r  I=l+1 f o r  i(l+:)=F(l) f o r  J(l+l)=J;l) 
4.5 done 

5.62 done i f  a(I(ll,E;l))=O 
5.05 go to s t e p  5.5 For s=-s i f  ailil),Eil))=k 
5.1 dons i f  O<V(E(l)j<I 
5.2  V(Eil))=l+I i f  V(F(I))=C 
5.3 do ? a r t  3 f u r  l=i+1 f o r  i(l+ij=i(l) f o r  J(i+ij=Eil) 
5.5 done 

Forti? 2 
c l a s s e s  



if a.; = 1 br;t colurnn ic na,s a lready been assigi ie i  fo r  
i s  

scamir.g by some tlcrrLi;nt am!:, , f! -i: i , con.tini;e; o ~ h e r w i s e ,  assign 

coiurnn k f o r  scanning by and initiate the  sczn i.n that c o i i l m ,  'k 

This process  szartc with a(l, I), proceccds to find ail of ihe 

ver t ices  in i t s  c lass ,  then ends up a t  a i l ,  i) ; the iiiagonai el.crnerits 

a r e  examined one a t  a t ime, until one is found wilicii has not been 

assigned to  a c l a s s  yet. The algoriihm s t a r t s  again with tilis new 

element until ail diagonal positions a r e  assigned to specific 

c lasses ,  

T o  show tile conciseness of the algori thm when written in an 

aaproariate  language, figure ( 2 .2  ) is a listing of the corresponiiing 

CITAUN (CIT t r ans l a to r )  program,  pa r t s  3 ,  4 and 5 being reentrant.  

The riiimber of t e s t s  t o  be se r fo rmed  is approximately constant 

@($) but we must  :ake into account the g rea te r  complexity of the 

algori-ihrn. 

2. 5, Algorithm 3: Glass  CoufitirLg by Means oi List StriicL--Ires 

Definition - A con~rac t ion  I3 of a graph G is a grapn whose 
a 

ver t ices  a r e  connected subgraphs of G forming a partitioning of the 
n 

vertex se t  of G . 
n - ;wo ver t ices  of 13 a r e  adjacent if the correspxiding subgraphs 

have adjacent ver t ices  in Ci . n 

Lemma - The number of c la s ses  is i rvar ian t  nnder a contrbction oper-  

ation. 

urooi: let ai and 
a .i be "Lwu distinct ver t ices  of G, . Eacn one 

corresponds to unique subgraphs W; and 3. in the p r t i t i o a i a g  US 
J 

Gn , therefore,  t o  unique ver t ices  h. and h; of E.; . IX a j k 1 a .  , 
i J J 



I 
I ,  a.eH. a h .  63 i l .  . E i h , H and 3 a re  cor~i~ectcd sub- 
1 i ' J J J 1 . j  1 j 

zraphs with nr icasr  cnc cdgc i;i common, thus I- tJ 1.1 is connected 
j 

and a. f i n ,  , 
1 ,  

. . , . *  . i3clinition - A c~nt:action 1-1 oi G i s  $ ~ , % n i r - a ~  xi ~ t s  vertcx 
n 

set is  indepndcnt. The namber of ciassei  in G i s  ec,ual to the 
n 

number oi vertices in its minimal eontraclioi.,. 

An elementary coztraction is  tile replacement of a pair oi aujaceni: 

verliccs by a single vertex. 

Any contraction of G can be reaiized a s  s sequence of n 

elementary coiltract~ons. 

The mininxal contraction of G is odtained azter exactly n-c 

contractions. 

7 r v% e now rlcscribe how a very sirn?iiiied ring structure ca;1 ue 

advantageo-asiy used to  obtain the minimal contractiorr oi G , The n 
> 

elements a. c a, ?I= j i , Z , .  . . , nj , will. always be referenced by 
Iu 

r means of their index z/ . h ring is  a linked subset of d s ~ c h  th;t 

each eiement contains the index of rkc next ring element. The f i r s t  

element of s ring has a 'lower index than i ts  predecessor. 

At any stage of tF~e srocess ,  a r i n g  link and a class identifier 

a r e  associated with cach elel-ilent. Members oi :he same class a r e  

chzined to io rm a riog; st the begiming, al l  elements bcloag to single 

element rings (i, e, , their ring link i s  eqaal to tkeir inc1ri:x). The ciass 

icientifier of an element is  tine intiex of the beginnin: of the ring to which 

it belongs. 

Each element is testcd in turn wi"ch every clemenr of higher 

iridex Lor &he relation &IL( to hold, srovided that they do aot  already 



belong to  tilc same , L s s  - , , -  as s resul t  of the transit ivity progcriy 01 
9 

& . ?irkenevcr a aatchin,g ~c;erneni; i s  foiind, thc :iew c lass  obt&ined i s  

- . .  
assigned a c i a s s  identifier cc4.ua.i to the i r~ in i rn i r~r  of thc pz i r  a: :uenti- 

i i e r s .  Tt,c nes t  stej? of the eiementa,ry contractisn is to merge  both 

rings while assigning tiic new c ia s s  identifier t o  a l i  e lements  en- 

countered, 

Airer repeating this procedure n t imes,  we obtain c cciasses, 

c being i:c,iiai t o  n minus the number ef m e r g e r s  performed. The 

actual c l a s ses  can be trivially obtained by waiking around the r i n g s ,  

starting with the i r  e1ernen.t of lowest index. 

Xoticc that the l inks were  carefully chosen iii order  to  make 

the merging p rocess  simp1.e and efficient; the new c ia s s  identifier is 

the index a t  which mcrging i s  t a  s ta r t ;  it thexi proceeds by updating 

ring links and c l a s s  identifiers oi both rings until the i r  f i r s r  element 

i s  reached. 

Algorithm 3 dZfers  f r o m  the previous ones in the i a c t  that it 
I 

makes use  of tile transit ivity 2roper ty  of b? t o  per torrn a s  feiv t e s t s  
t 

a s  possibie. This may be  of special  importance i C  the reLation k 
i s  costly to evaluate. At the same  t ime,  since the whole incidence 

mat r ix  i s  iiever ili?cciea, the amountcf s torage required is kept to  a 

sma l l  value, namely, 3 n words. 

T~ A n e  num.ber of opera ti or:^ invoi,tped can he analyzed as  loiiov~s: 

in the wors t  possible case ,  every coniractien assoc ia tes  a sZagLe 

m> vertex of G ~ 4 t h  a subgraph H of Cn . i n e  corres;3onding rizg n 74 

merging rcqui res  therefore Z(Vf  1) operations, c c l a s ses  of 

s izes  n i ,  n2,. . . , x i  the ring operz-iion count i s  Sonnded by 
C 



1,1* Ciass countina by 3ist a r o c t s s l n z  
1 . 3  C ( j ) = j  f s r  ; . { j j = , j  f o r  j = l . ( l ) n  
1 . 4  do p a r t  2  o r  i = i . i i i i i n  f o r  k = l i % ) n - 1  f o r  c=n  
1 .5  t y p e  c i n  f o r m  4 

2 . 1 3  30es r e : a t i on  hold? . - 2 . 1 2  d o n e  : r  ""- t, t.j =C 1 ) 
- .  

2 . 1 7 *  p a r t  2C se t s  ;=i i f  R holds, L o t h e r w i s e ;  
2.14 do ? a r t  23 
2 ... T ;j ,,: "oiie i i f = O  
2 . 2  p= :C(k j= - l i  f o r  .:1=::1in;";k),C(lN f o r  c=c-1 
2-22 R!p)=C!ij f o r  Ril-pj=C(kj 
2 . 2 3  R ; 0 j = L ( c t O j )  for S = R ( O )  for p=O 
2 . 2 4  p=i- ;>  i f  f i ( s ) i R : l - p )  
2 - 2 6  z ( F : ( 1 ) j = l ? i  j f  ~ = l  

C 2 . 2 8  t =L !d )  f o r  d = ? ( p )  l o r  L(d)=R(?) 
2 . 3  go co s t c ~  2 . 2 4  f o r  R(p l=:  i f  r j d  
2 . 3 2  L ( d ) = i l ( p )  f o r  p = i - 2  
2 . 3 4  d o n e  i f  p=O 
2 .36  t = L [ ; : ( p ) l  f o r  C i R : p > i = m  
2 . 1 8  go t o  s t e p  2 . 3 6  f o r  R ( p ) = t  i f  t > R ( p )  
2 . k  ? (R(p) )= rn  

Fori;] ii 
- c l a s s e s  found 

r i e l a t i o n  R: 2 iri;egcrs a r e  r;iul t i p l e s  ( 1 0  n u , a h e r s i  

5 c l a s s e s  f o ~ . r , d  
C l a s s  1: $ 4  2 7  3 7 2 8 4 
C i a s s  2 :  * 6  
Class 5: 1 7  
C;ass I: 2 0 10 
C l a s s  5 :  8 G 



. . 
Z c s i d e s ,  r; numiscr of ?.i:sts a. (2 a; a,re pcriormeci; i3 wc. distingti.;s;; 

i a 
1 

berw-een positive aiid negative tests,  the test being positive if a . g  a,., 
1 j 

negaiivc ii 
aitx' a .  

all oi the negative t e s t s  have ro be carried mi- 
3 

whereas the nurnl~er a: positive tests i s  dependezit u2oa tire ordering 

o i  the eiemerits in the sarzple a {we a s s u n e  hero that a;(, .d7' a, cannot 
J 

be deduced f rom the auicome of previous tests  involving a. o r  a .  
i J 

s epra te ly) .  The usi-t-her of negative tests  performed i s  always 

whereas the minimum nar,iber of positive tests  corresponds to t'nc 

total n-uinber of branch.(:s nesessbry to s2an each clzss with a tree,  

that i s  jn-c) rests. The mii-iimiim number of testa i s  therefore 

or a s  a fraetlon of the :oal  ncrrioer of tests 

- The toral r,;rr;jer iir operations is boirnded by 



b ~ t  in general it will be xr~ucli smzlier. .Endeed ti;e l*;wer So-anti of 

the ring operation count is 

wbicn res t r ic ts  r to be in the range 

A point of interest i s  the variation of o: wit11 the ordering u i  

sample elements. Fo r  a i ~ x e c i  number of ciasses c , i* i s  minimum 

C c 
T- when L_ n,' is  maximum subject t o  ni = n . Ln c-dimensional 
i= l i 

1= I 

Euciiciean space, the solutions are points witn integer coordinates 

c 
nreaier than or eyual to  1 in the hyperplane ni - n = 0 . They 
0 "-" 

1'1 

a re  o: tile form (1, 1, . . . , 1, a-c+ 1; 0;- ar,y permnut;cion of t h e  

vector elements by symmetry; the corresponding c. 
min is by ( 2 ,  1 3 )  



The zlgrsrithrn vzill 2ay 3 i E  i f  GI i s  close to  a . anri v is i lsci f  
irnm rnin 

s-- :~ , which requi res  having z s  few c la s ses  as possibie,  the  c lasses  

being a s  i a rge  as 23ss?oie. Conseq~en t ly ,  ii we have t::c possibility 

oi ordering the eiemcnts  within the sample drawn, we should rank 
I 

them accorciing to the ?robzbiltty tha t they  a r e  in the relation &? \with 

a l l  of the other sample elements. Notice by the way, that tke o r d e r k g  

only ma t t e r s  wiihin each class;  a s  we a l ready pointed out, we cannot 

avoid performing all negative zests anyway. That problem is s o a e -  

viilat akin to  the connector probierri of comrCunica:ion theory, Between 

any two nodes of a given network, a d i rec t  coixnecting line can be 

established at a given cost and the problem is to draw the cheapest 

network, the cost  of a t r e e  being the siim of the costs  of i t s  edges, A 

n in i ina l  cost t r e e  can be  simply constructed by choosing a t  each ste2, 

the cnea;lest connector until a spanning t r e e  i s  obtained, This spanning 

t r e e  i s  called an econamy t r e e  and can be  shown to be of minimal  cost, 

-. I i n e  szme  meti-od col;id be zppiied S we were  to evaiuate a , &  a. 
i j  

r )  . . t i  

f o r  all a <a, asslgnlxg ;i cost  1 if a.f i  a., 0 i f  z. 87 a: . 3ikt, i f  we " = J 

t r y  zo minimize the number of t imes  &I has  to be co rny~ ted ,  only a 

probabilist ic cost c s n  be assigned to each element a .  t: 2, This cost  
1 

can be taken to be  



In the graph Gx , ahis i s  cquiva?cnt to assigning :G each vcriex a 

. . 
c c r z ~ i n  wezgst, depending upon which ver t ices  i t  bas  edges in 

common with. Lf the sam2ie a is obttiined by uniiormly san;piir~g 

iocai degree (I; of a ,  by 
1 

and the e l enxn t s  of a shoulri the;-' be ordcred  by decreasing weinht L- 

t o  make a optimal. 

Ln pract ice,  even though we may  not explicitly .know the local  

degrees  'in the graph G - , we may still be able to  estirnz.te u;: . F o r  h 
- 7 .  instance, take the s i rLp le  case  where the relation Pk 1s:two integers  

in  the range [ 1 ,  ] a,-e mukipies of each  other. w .  is then a de- 
i 

creasing monotone sequence i f  tne integers  in the siirnpl,e a fo rm 

an  ascending seciuence, 

liJlltiple Size Sampling 2.4. 

Ln tne previous paragraphs,  we described how the ring a i p r i t h m  

can be used  =ost efiicienrly by ordering the sample elements.  Kitcr-  

natively, if we do not ; i c r f o r i ~ ~  any rearrangement, the algoritnrn can 

be  used to compute a t  tbc  same time thc m n b c r  of c l a s ses  in s x n p l e s  

fi GI, %ii' ' . . 4 * the 7/"\sample being a subset oi vc with elcrnenrs 
n - a a .  , . *his constitutes "ie grea tes t  zrivaricage of algo- 

1 11 '2 

ri:hm 3 and makes  i t  aborti an ordcr  of rnagnitudc f a s t e r  tham other 

algorithms f o r  this par t icu lar  type of multiple sam2ling. 



. . 
LC: G_ be a cnrn ; i i ee  grapli on i? vcrliccs with  zlc slan.r;i ( a  

A A  
c. 

sling is ari edge c o n n e c t i ~ g  a vertex to  itsel;) an6 single edgcs (no 

edges in parslicl),  G forms an n - c l i q ~ i ?  in Berge ' s  notation. Let  
n 

V(Gnj be the vertex se t  of - CI1 , :&(G j i t s  s e t  of edges; e ( G  j ciesig- 
n n 

nates  the nunlber oi e lements  in E(Gnj ,  i, e . ,  the number oi edges. 

Qar  experiment cons is ts  of selecl'mg a spanning subgraph 

H of Gn such that 
n 

tne probability of choosing any ?articular subgraph G being on1.y n 

dependent upon i t s  number of e6,ges 

-- ii:e outcome oi the experiment is thc nurnbor of components in 

--  . 
the subgraph ki , I. e ,  , the m i n i n r n  i*u;ni>cr oi connected subgraphs 

-. which span 1-; . 1 ne 2robal3ility that t i e  aurnber of colr~ponents be 

equal to  4 i s  of cour se  



-30-  

A parzicular case  of in te res t  corres;londs to the choice 

wSLcii a r i s e s  when selecting k distinct edges out n i  S ( G  ) , 
r. 

each edge having rhe same  probability o i  selection, 'J'e define 

Definition - A random n-graph with e eriges is a subgrzph of a 

complete graph 6- with exactly e distinct edges obtained by 
A ,  

sarcplic;; uGi lo rx iy  and without replacement E(Cli) . 
We fiow present  a computational method to I ind the 

probability distribxtion of the number of c o m p n e n t s  in a random 

graph.  

m~ i ceo re rn  - The probability p(n, c )  that a random n-graph has  e 

components is given by the  r ecu r rence  formula 

proof: cozsider  a raildoin n-grapk with c car.ponents, obtained 

by sampling from an n-ciique, each edge being chaserL with 

probability p=2(2, 1)  . If c 2 , this graph can 'be broker, into 

two dis jointsubgraphs with, respectively,  Uve r r i ce s ,  one coni- 

ponent and n - - j  ver t ices ,  c - ?  components p r o v i ~ e d  that no edge 



&/(" - g) 
crosses  the parst ion,  wilich occilrs wit11 probability (1-pj 

For the farrriZy of p;rtit:i;>us satisfying the sarre constrairit we get 

after rnuleipiying by the number of subsets of U vertices. These 

p a r t i d  results s d l  have to be su~nrned over all possiide U's , 

however in the process of singii~tg out every connected s-~ i?graph 

we count each configuration a s  many times as it  Itas componei?ts, 

that i s  exactly c times, The theorem ioliov-.s, 

It is interesting to notice that k e s e  recurrence i c ~ r ~ i i l a s  

railst be used in a precise seq-uence, The computation of the prob- 

ability that a random graph ;le strongly connected i s  based lipon 

the knowledge of the probability distribution for more  than one 

cornponerit. Therefore, we proceed a s  follow-, a. 

i) asscme d l  t e rms  pjk, r/j known for I 6 k < V S nn- l 

i i )  cornTute p ( n , t i )  2 < v ' ~  o - i  

i i i j  subsequently obtain pjn, 3 ) 

tv) repeat steps i) rhrougln iii) i u r  ri : iii'l 

Theorem - The probability pjn, c, e )  that a ranriorr. n-graph with 

e edges has c components i s  given by t h e  recurrence formulas 



proof: :his formula i s  most easily deduced Eroim form~ula (3.43, 

since the probability p(n, c ,  e )  is in fact equal to t i e  coefficient of 

~ ~ ( 1 - p )  i n  p(n, c )  divided by the sum of these coefiicients f o r  

c = l ,  2 ,  ..., n-1, i . e . ,  : Alternatively, 

To relieve the b-urden of notatioc, le t  us define 

-. i fie probabilities pjn, c) have the iollowing polynomial repre-  

seritation in  t e rms  of p and q , 



Another sirn$iiica:ion yet cam be aclliaved i f  we use the *lev$ integer 

iuncrion 

which satisfies the reciirrence formula 

It should be ciear that those integer coefficients g(ri, c ,  e )  

actually represent the number of graphs with exactly e edges and 

N c components among all possibie 2 subgraphs of G . From a 
ri 

numericai staniipoii~t, they a re  most  conveaicaziy evaluate6 for 

reasonable 1; a s  long a s  we stay within the rafige of integer 

arithmetic. Table ( 3,  1) shows the values of ?jn, c )  for n=1,  Z , ,  . , , 6. 
Lemma - For  any raindom n-gra?h, the foliowing relationship holds 

n-c S e < (3. 12) 

proof: i ~ r s t ,  examine "Le inequality on zhe ?eft; let  n be the nurriber 
1 

. tX 
of vertlces in the i component, t h ~ s  

-, . ih  ~ n e  rninirnur;-~ riiimber of edges in t i l e  I componentis reache2 for 



any tree on n. vertices, the niin~ber of edges being then n.-1 ; 
1 1 

si;a:xni.zg over all co,%ponents -we get 

- .  
l a y  lor the inequality On tie right, the rna;;ti*r,um nn!mber of 

ti5 . . 
edges in the i cor~~ponerit corresponds to a11 n.-clique anc nas a 

/'%I \ 2,eciges so that 

2 
c --, 

Xow, the ;r&xirnmn of ,L," n, subject to the constraint n.=n 
r = i  i 1:1 1 

is attzined for  a vector of the form (1, 1,. . . , l ,  n-c-ilj or any 
perr=utarion oi' its elements. See a more general proof in section 

( 4 1) Finaiiy 

?I., lnis :zrarna has a direct ~racricai application to r-ic 

tor. ,I. put- ,A t: .on or recurrefice formulas (3. 12 for  g(n, c, el. indeed, 

by stsrpenir,g 5;e  i i im i t s  ai sii~nrnation, it becones no longer 

cecessary to store and refer to iidi values of gjn, c, e j  ; i i i e s e  

wolfid aci.a;;ily be a considera>le n~isarice if w e  were to ap21y 

formulas (3. !I) straig?-ttforwai-dly. 



Aicer ixitroducing tile bounds just cornpileu, w e  obtain 

g(n, c, e )  = 0 , otherwise 

The great savings in com~puting t i m e  and storage space, definitely 

justify the slight increase in compiexity, 

3 ,  2 .  Expected Kumber oL Coz~~3oner1ts 

-, a $  ine po1ynomia:s ( 3 , 9  ) involve monomials oZ the iorm p i, 

which can be transformed to n singie va-;able p or c, , simply by 

making use c)i the binomial theorem, This is especialiy interesting 

when either p or q i s  srnali compared to i and when w e  coimpute 

the expected nunlher oi ciasses. As a rnztter of fact, w e  get 



wnich, af ier  seversin: i:l+: o r d s r  ol sumr?la;ion, yields 

In :he varia.de q , t h e  compu:a:ion proceeris ir, an idcnt icd  

fashion to give the polynomial 

whicil could. zictvally be dertved directly f rom (3,16) since exchanging 

t i l e  ro les  of p and q is eq-~ivalenr to  pe r r rucng  the ~monomiais 

a T-CY x-a a 
2 (; and p q , which in ti;rn means exchanging t h e  cuefficients 

g j i ~ ,  c ,Y) an2  g(n ,  c ,  X-jii . The corresponding graph inierpretatiori i s  

-" . simpl:-, to replace i d  oy i t s  con3plernent gra2'n in G 
n n ' 

If we ~xse  the single var iable  poiyiiorrxiais, we yet f o r  the ex- 

pected ncmber  of cornponecis in a ranciom n-graph the foliowing ex- 

pressions 



F o r  t>a2 actual f i - x . - -  a-ic;l ~ A a ~ ~ t , h  e evnl;:aZion of these res-elis, -+-$e 

vvoulh o'bvioasly a;;sl:r tile last ;eix~nz, as we fo rmcr iy  tiis, and \isc 

tiii: fokio;sJing 

T- i r e  -- polynomials pjn, c )  can be founci in table i 3 .  1) and ti:.? 

expected value of t he  nlir;*oer of com2onents is ziven in ~a5?cs  ! 3. 2 )  

an6 ( 3 .  3  ). Figure  ( 3. i ) shows the variazion of tne ex2ecied v s h e  

i o r  var ious probability levels f rorn 0 to I by increments  ol ,05. It 

i s  convenient to uefine a cluixering coefficient p by 

I. 

f' = --yT"-r 

which variat ion can be found in f igure ( 3 - 2  ) f o r  n ranging between 





2 ANDOM GRAPH: AVERAGX XGhISER OF COMFOSZXTS 







.. . When eiiker p or c; lieconni:~ sma;;, the v- a = ~ a ~ l o n  * ' - * - -  oi the 

. . rt::nl?~er of c l a s ses  c;;n be ezsiiy es.tirnsred using the foi:ossikg 

lemma,  

LeirArna - The e x ~ e c t c d  ririnber of coil-,po;lerits ir. a raadorn n-gra;i;i 

is 

proof: as a starzing ~ o i n t  we use expressions (3.2 0 j ar,d (3.2 1 j 

f o r  the e x ~ e c t e d  -values. 3 r o m  our lemma, together with some 

sirnpie georr'etrical consideratio~~s w e  know that 

X X We now c o r n ~ u t e  zhe coefficients of p then q . 
i) polynomial in p : 



m ( X i  /'x- I\ 
L 2=n\ N-2, )gin, n, 0)-  jn-l j ik7  ].g(n, x-i, 1 j<~(c- t c r ( ~ ~ p  n-2, 2 )  
I-', 

but this zerm is mere;y the n~,;nî uer o: triangles which cafi be formed 

- /il \ with th ree  edges an.6 n ve r t i ce s ,  i. e. , C 
? , 3  - j 3 j  . i;l";hogk, vuie 

do cot explicitly co-i^?ute G i t  is c l e a r  frox-XI t h e  s t r ~ c t i i r e  of 2,"; * 
ro ' ,  4 ,  [ 3.20j  that C = ;in r whick yieliis i u r r n d a  (5.2Z), 

P, 4 

ii) ~olynorr~?.al in q: 







-.,- previui;s rcs-iirs . do not exciusively q;>;y to the random 

thaz the probability o: s:ly  given coafiyuratfon be .tinic;~cly detei-  

-- ' , ' i~eii by its nii~xber of edges, al: 2 iV co~.iigcrarions being feasib;e, 

Icdeed, knowing g j n ,  c, c )  vjhich is the nu,mber of ~ o n f i ; i ; ~ r ~ t i o ~ j  

f~i.rniir*g C classes fo i  i'ixcd e , i t  i s  a sin;jie rriatrer "i obtain 
1 . . 

?jn, c )  for some edge 2iatribr;tinr. f(n, .J) such rhat i j n , v ) = l .  
id 

7 l ~ O  
7 

The probability of c components 'becomes 

and the averzge nurnbcr oi components i s  

A i i  of these val-iies are  reaiiily oktainel froin t h e  table j 3.4) and 

exrensions of thrii tablie. 



3. 4< :>scrc.';e S(;$o l--.-. :;: '3 -... :,I ..:,qs 
.!&A'-L,.e L &,.,,,.<c--. - - 

-. ne appror-:h t;;ier i z  :.he cssc of the  rancioz~ gra??. car, 

be exteraecd to erbcir-~n:;yj wider class nros;errs .;Ila? X Z J ~  jlr,a;i 
A '- * 

I I ~ ~ ~ ~ ~ ~ ~ ~ ~ " .  me a p : - i l i t a b i : c d - y  ..a.b -' ~ n e  method i s  base6 q o n  our 

abiiity t o  GxTress any coniigcration w'ih c classes a s  the sum of 

. . 
pairs  oi configi;ration w:t~, ieslectiveiy, ir and c-t /  ciasses, 

-. 1 e -  . Ine  set s f  n points i s  thh-;s broken into subsets of 

k and x-k p o i ~ ~ t s  forming 7~ and c -  zi classes. All other 

., . parameters descnaing the configuration must be s - m i n e d  and the 

method w-ill succeed i f  all of these sums can 'se cspresced in zerzr~s 

"~ of sirLlpler co---- AzA,b~A,,Atioas .r-.w.; exciusiveiy, i, e, , cofifigurations already 

evaI-~azc<. Xotice that the prolbabiiity of having a single class i s  

iDW1& I;>,~L, by ;-.icing 2 the 6i i~erencc . - a  5eb.veen the total  nurnScr 

of configsirations and the ni;rI(ije: oi configu+a%iuns i~avir,g 2, 3, . , . 
or  n classes for a fixed set d parameters. 

i i i e  now in-~estigaze in some detail ar, example of se?ara.ble 

problem, 

3. 5. Xocks Prot j i rn  on  a C&ss'bi,srd 

Given an n x m  reciax~g~dar  board I3 with j?osi";icns n, In 

b, ., i S1 < n ,  I S j S nnl , we can speak of r.:;ni.be+ o i  rooks  
-'J 

classes i o r r ~ e i ;  by k marks an 13 ' z r y  "i.;hpo ;narr>:s b. n* r* 11, j. ' - 
5. a r e  in the same ciai js i f  and sn;y i f  there exists some 

j, 



sequer;ce oP marks 

Tor which eicker ip i ,  . and jy :k j - 5 
pi IJ.+.L i 

. , .  i 1si /<e 
a "  

or ":Fiv+l nQ J v -  - J ~ ~ + ~  
i 

Let g(n, ;̂ ?, c, k)  be t>;e nwxber of distinct cofifigurario~s 

of k marks or, E forming c rool-s classes. Let &in2 m, C, k j  n A? 

be the correspor~dir,g courit whec the co~iiigurati~n~ are co~~st ra is ied  

r:o occ-2,ny exactly n rows an2 rm ccr1111:xn:s; si~ck conf",u.:atians 

are called dense, It is cLvlous f i a t  by symmetry 

Or, 3 the Aiurnsar of cor,fig-iizatioas can be ex2ressed in terms nm ' 

of derlse coniigurziiions by 

L ~ ~ ~ ~ ,  "-mi." A >  s eyT--  .~. ,A.L.J;oc "- i~ tiirlzs of dense configurziions will be 

Jmy configuration formirig c c:asses, c 2 2 , can ;ic';-ual?y 

be decomposed into a  pair of paTterns  or, sma2,icr 'mzrds 13 n. rnT 
I * 

;,rd i3 called sub-'t>oaxis, which together comprise aLi 
n-nq rn-:~~. 

i 

of rile k marks (that is, the colr3pie;rj,en: of t h e  minn of the sub- 



. .  is con-~2;e~eiy ---!.--. r , ~ ~ . ~ , ~ e d  :r, aa1y sne  of the two sub-boards. LE 

marks forming c slavses on 73 is giver, by the rcc~rrcficc 
fir. 

- 1  rn-1 1.-i  n-n, :x~-m? 
T - 7  rL r a  
i g(n, m, c, k )  = - a - .  

i L _ r L i ,  
fiq=1 m l = l  x7 =I  n -1 -' 
i A ,. 2-  2-" 

proof: let us 5rsz astabfish how to put 3 in  a canonical order. 
nrn 

Pick thc itrst mark 5. . encoantered w h e ~  scmniag  sitccessive'~~ 
I' ; -"I 

i 

t5e first row, then first c o ? u m ,  second row tke*eo second culurm,. . . 



-. Ire mar;< s. . is a. z;,emjer of some class wticil has row set 
1 .I. 

\ I i  I !. . : 1 ---~.r"-, 2 :  : . 8 (1.1. .&...in-i L;irC,. ~ll)ii~ iiii O C C  s b?jropiatc per- 
* * \ J - i ? ' - ' d  m i  -r- 

1" -. . n;i:a:ioris are :hi:;; ; ipp~reo l o  :'ie rows rr,d crilurrns in order to 

The su3-ooard 9 noiv conlairLs a unique c~ass forming a * jm3 

". . . dense coi.,LigcraZ;ori, If we repat t k i s  proccss for 5 n-nlm-rn, 

until all classes have been trz>sfarx;?ed into their dzfise equivalent, 

w e  say that B,,? . ;, c now in canonical form. Designate -by 
.a 

3 the  dense equiva.ient of  3 Eacli dense COG- n ~ L I  u-n3 m-m7 ' 
2 2 i i 

i igirai ion can now be eqsnlied i a lo  a -~-uiiiSer of eq~iivaieni con- 

fig~ra"ions by apprcpria2cl.y permuting rows azd colcmns in- 

. - -. dependently. Hw+.rever, to farbid genc:rati;,g ';ke same coniroara- C) 

tion in several ways, tl:eperrsl-;zatiuns ,mAclsi. preserve the or6er 

of the rows and c o i ~ m n s  of B amo:~g themselves; t h i s  also 
nq iTi? 
i r 

h n l a s  for  those of I3 and fur the crn2ty rows a7,d c o l i i z m s  
n, rn 

&. 2 
. , B , The coe5licieni in t i l e  srimArnatiion is then n-n, -n2' rri-n;, 

i A -rn~ 

simply the prod-cc; of the n-amber of ordered -;ia-+'"; r i-~aoli~ l i ~ ,  n * 2' 
" .  n-al-n2) of the :ow and colux~n s e t o f  aZll+ wzzch is 

A '9 



Still, same irlentical configurations a r e  multiply counted 

since B i s  going to represent successively each one of the n m 
1 1  

c classes on B 
nm' Thus, formulas (3, 2 7 )  and ( 3 . 2 8 )  follow 

immediately. Formula (3.29) derives the numher of dense con- 

figurations on B by removing from the total number oi con- nm 

figurations of k marks  forming c classes, those configurations 

which have a dense representation on proper sub-boards of Brim. 
Lemma - The only possibly non-vanishing te rms  g(n, m, c, k )  and 

d(n, m, c, k )  occur under the following conditions 

g(n, m, c, k )  if c S k  S n m  - (c-1) (n+m-c) 

1 < c S min (n, m )  

d(n9 m, c, k) if n+m-c 6 k < nm - (c - l ) (n tm-c)  

1 < c <min (n, m )  

proof: obvious from geometrical considerations. 

Using that lemma, formulas ( 3 .  27) through (3. 29) can be 

made more efficient computationally by sharpening the limits of 

summation, thus reducing greatly the numerical toil. We obtain 

n-1 m-1 n m c-1Ck-k -n ) 
1" 1 2  

g(n, m, c, k) =-  
C n -1 m,=i  k -n irn -1 n -c- l  m -c-1 1- A 1- 1 I 2- 2- 

x d ( n l m I ,  l . k l )  d(n2, mZ, c - I ,  k-k 1 ) ( 3 .  3 1)  

2 6 c 6 min (n, m )  



These formulas must of course be used in a definite sequence. 

Assume all values g(n, m, c, k) and d(n, m, c, k )  known for 

2 
nm 4 h- . 

Using formula (3. 3 i ) ,  we can compute g(n, rn, c, k j  for 

n = E+l, m = 1, 2, ...,Hi 1 and al l  permissible values of c and 

2 
k . This process requires only sub-boards nm 4 N  and i s  

therefore successful. 

Then ( 3.32) gives g(n, m, 1, k)  for all the newly computed 

nxm boards. Finally (3.331 produces d(n, n ~ ,  c, k )  which will be 

required in the computation of larger  boards. All values of d 

2 
and g for  nm 4 (NS1) a r e  now known, which completes the 

induction proof, 

It is clear that by symmetry we only need to compute ex- 

plicitly g(n, rn, c, k )  and d(n, rn, c ,  k )  for n a m  . 
Of course, the previous results can be interpreted a s  

the probability that k  marks distributed at random on B 
nm 

form c rooks classes i f  we introduce 



and iormulas (3. 31) through (3. 34) can tnen he rewritten i n  

terms of p(n, m, c, k )  . 
\\*r t . . 111  . t l s u  procccd as in Lhc random graph case and 

derive class polynomials by assigning to each configuration of 

k k marks  a probability r?) ( I  -p) 
nm-k . Let q = l -p, we 

get 

nm-(c-l)(n+m-c) 

- - k nm-k 1 P q  g(n, m, c, k) (3. 36) 
k=c 

Transformation to a single variable polynomial i s  straight- 

forward by means of 

- - f Pi a ( - i ) i - j  n-1 
i = O  j = O  n - j  (i- i )  

W e  obtain the following polynomials in p or q , ex- 

pressing the expected number of classes: 





Table 3 .5a  

RECTANGULAR BOARD, ROOKS POLYiiOMiALS 

~ ( 5 ,  1, 01 = q 
5 

4 2 3 3 2  4 
~ ( 5 , 1 9 1 )  = 5pq + l o p  q + l o p  q +5p q t p  

5 

pi53 290) = q 
10 

9 2 8 3 7 4 6 5  5 6 4  7  3 p ( 5 , 2 , 1 )  = lOpq +25p q +bop q +140p q iZZ2p q +ZlOp q t l 2 0 p  q 
8 2 9 10 145p q + lop  q t p  

2 8 3 7 4 6 5  5 p(5 ,2 ,2)  = 20p q + 60p q + 70p q i 30p q 



Table 3. 6 

AVERAGE NUAMBER Or" CLASSES 



Table 3.7 

AVERAGS KUMRER O F  CLASSES 



Tables ( 3. 5 ) and (3, 5a) l i s t  the rooks polynomials for 

each class while tables ( 3 . 6 )  and ( 3 . 7  ) contains the corres-  

ponding class polynomials. 

Often however, the foregoing method may not be applicabie 

i f  the problem i s  not of the separable type. Notwithstanding, even 

i f  an elegant an-~lytical approach seems remote, numerical treat- 

ment can yield fast and accurately, answers for small cases; 

some insight into the behavior of the general solutions may hope- 

fully be gained from these results, We illustrate these remarks 

with some rooks problem. 

Suppose that the hoard Bnrn has a set of arbitrary 

restricted positions and the rooks relationship holds across  

them. We can think of building Brim by successively appending 

1 row to B. 1 i - 1  ; the characteristic feature of this 
xm * 

problem i s  that, for the purpose of class counting, configurations 

of k marks  forming c classes on B can be described in 
i m  



- + 
terms of g(i, c, k,W) where Vv' i s  an m-dimensional column 

th - 
assignment vector. The J component of W i s  w. = LI i f  the j 

th 
J 

th coliimn belongs to the Z/ class; classes a r e  rarked according to 

the order in  which their f i rs t  c o l ~ m n  is encotintered when success- 

ive1.y looking at columns 1 through m .  When r marks  a r e  distri- 

buted in the urirestricted positions of the newly appended row, a 
I 

configuration with k t r  marks, c classes and column assign- - 
ment vector W' results; this configt1ra:ion i s  thus counted in the 

I "i 
t e rm g(i+l,  c , kl-r, W ) . 

Computations of that type a r e  bound to be rather lengthy 

since they simply provide an ordered way to review all feasible 

configurations, However, significant improvements can be achieved 

if  it i s  possible to lump together groups of configur2tions. Fo r  in- 

stance, consider a rooks problem on a semi-triangular board 

whereby row i t 1  has the same column set as  row i plus 

m(ii-1)-m(i) extra positiorls. The new feature of this problem lies 

in that configurations of k marks  and c classes on B. can 
1, m(i)  

be counted in t e rms  of g(i ,  c, k , m  where 

here  v designates the number of empty columns and v., j=i,. . . , c 
0 1 



the number of columns occupied by the jth class when those classes 

have been ranked according to the number of columns they own. As 

a new row containinq r marks i s  appended, we have lo take injo 
c 

consideration all ways in which r marks cari fall  ictu 
j=O j 

the se t  of v. coluinns, j = 0, 1, . .. , c ,  subject to the constraints 
J 

Let r , r .  , . . . , r .  be the only non-zero r values for 
3 1  J 2  J , 

I 

some particular choice of r s. Classes jl ,  j2, .. js collapse 

to a single class and 

where 

1 
v 

c i l  
I: v. + v. + . . . +v. i- r0 

J l  J2 J s 
t t  I i 9 i , 

and vl ,  ..., v i s  the sequence obtained from vl, v2, . . . , v 
cS.1-s ci-1 

by ordering its elements into non-decreasing order, null components 

being removed, The arrow in ( 3.59) means that the te rm na the 



right contributes additively to the value of the te rm on the left 

which had an initiai n u l l  value. 

The basic step we have just described i s  to be repeated for 

0 < r Sm( i )  and for any such r , all partitions into c C 1  groups 

or  l ess  must be generated. Because of the special role played by 

the vo empty columns, it i s  convenient to split r into r and 
0 

r - r  marks; this latter group i s  broken into r. , r. , . . . , r .  
0 

J L  32 J R  

marks subject to the above constraints; t h i s  decomposition can 

9 -* 
be carr ied out in a ( r ,  ro; S, V )  ways where 

;11 r .  = r - r  
y = l  JY 0 

which would numerically be computed using the formula 

) xnintv. , r-r - r .  ) min(v. , r - r  -r .  -,.. -r. ) 
0 32 o JI J S  O J 1  Js-2 

cr(r, ro; s, vi Z . . . 
r .  =1 r .  = I  

1 
r ,  = I  





Table 3. 9 

AVERAGE NUMBER OF COMPONENTS 

Table 3. 10 

AVERAGE NUMBER O F  COMPOKENTS 

~ ~ ( 4 )  = 1 - q  

~ ~ ( 4 )  = 1 f q - 2q 
2 

2 3 4 
c3(q)  = 1 t 4 q  - 6q + q  

3 4 5 6 
c4(q) = 1 + 6q + 3q - 28q + 28g - 12q7 + zq8 

4 5 6 7 8 9 c5(q) = 1 t 7 q  +2q t14q  -46q -95q +341q - 3 9 0 ~ ~ ~ + 2 2 4 ~ ~ ~ - 6 6 ~ ~ ~  

+&13 

5 6 8 c6(q)  = l+8q +q t41q -37q9-120q10-276q11+515cL12t2~0~q13-7031q14 

16  + 8 9 1 0 q ~ ~ - 6 2 5 8 q  +2568q17-580q18+56q19 



Of course, when 

r - r  S m i n v .  
0 J 2.' 

g=l , . . .  , s 

-.. * 
the coefficient a ( r ,  r - S, V )  can simply be expressed using 

0' 

nd 
Stirling numbers of the 2 kind a s  (::) [r;rO]. 

An example of the application of this method, the number 

of configurations on a triangular board rn( l i l )=m(i)  t l  , I G i  5 , ( .  
m ( l )  = 1) with k marks and c classes i s  presented in table 

( 3. 8). From these coefficients, we derive the expected number 

of classes a s  a function of the probability p that any given 

position on the board be selected, The resulting polynomials in 

p and q=l -p  a r e  shown in table ( 3. 9 )  and ( 3 .  10). 

3 . 7 .  Implementation of the Interface Algorithm 

Without describing the chores of actual machine compu- 

tation, a few remarks a r e  still worth making. The integer function 

-C 

g in formula ( 3 . 3 9 )  i~ indexed by the vector V which i s  of variable 

P 

dimension. Although one could assume that V has a fixed maximum 

dimension with a number of zero components, a more refined (thus 

l e s s  costly) approach i s  to consider this problem as  the computation 

of a functional and im2lement it with standard list  processing 

techniques. With each triplet in, k, c) i s  associated a t ree  of 

vectors such that the branching decision on the dth level i s  



based upon the component v once a given sequence vl ,  v2,.  . . v P t - 1  
has been encountered; then the actual g values a r c  at the terminal 

ncdes, Processes a r e  provided for creating and updating trees a s  

-,.. 
new V's a r e  generated. One may of course look at those t rees  

a s  sub-trees of one unique tree,the f i r s t  three levels of which 

contain the n, k, c links, respectively. 



CI-IAPTER ZV 

Estimation of thc ?<rimber of Components 

In the preceding chapter, comltinatorial solutions were found 

which led to an exact determination of tbe expected value of the 

number of components. Unfortunately, this situation only occurs 

in rather simple instances, in most cases the problem is  either 

too complex or uncompletely specified so  that we can only aim at  

estimates of tile probable number of components. 

F rom a graph theoretic standpoint, we f i r s t  investigate the 

relationship between bounds on the local degrees and bounds for  

the number of edges and components. If we actually choose a parti- 

cular sequence of local degrees, we can either derive bo-unds for 

the expected number of components o r  perform a Monte Carlo 

sampling of the space of graphs with prescribed degree sequence 

in order to obtain the expected value with any degree of accuracy. 

Last, we present a conjecture for the general behavior of 

the expected number of components provided that the sampled space 

, forms a connected graph. LF this is  not the case, the result of n- 
sampling B)D! can be simply expressed in terms of the individual 

outcomes in each one of its components. 



4. 1. A P r i o r i  Estirnales of the Number of C las ses  

Let  us  examine under what conditions we can derive es t i -  

ma tes  fo r  the number of c l a s ses  without actually performing a 

complete counting. This can be especially i*sefuL i f  the number of 

ver t ices  of the graph i s  extremely la rge ,  making the full computa- 

tion too costly o r  if the graph is only known f r o m  a s tat is t ical  stand- 

point, f o r  instance, by the distribution of i t s  local  degrees.  

We f i r s t  determine the relationship between the number of 

ver t ices ,  edges and components in a graph G . n 

Theorem - Let  Gn be  a graph with single edges and no loops having 

n ver t ices  and c connected components. E the local  degrees  p f o r  

a l l  ver t ices  satisfy p _c p _c pU where 1 6 p g p then the numher 
8 & U '  

of components is bounded by 

and the number of edges by 

where 

tn 
proof: i) upper bound let  n.  be the s ize  of the i connected compo- 

1 

nent. The number of edges is then equal t o  



W e  show that e is maximum for the choice 

{ = { 1 . .  t i ,  n-y ( p  + l ) - ~ c - ~ - l ) ( ~ ~ + l ) ~ ~ ~ + ~ ~ ~ - ~ *  P u  
\ pt, I C + 11 

V 
- 

u c-1/-I 

Let us assume that there exist two'ciasses of size n and n. scch 
il l2 

that 

These a r e  repiaced by two classes of s ize  

and 

Their sum remains constant since 

The corresponding variation in the number of edges is 

1 ' 2  ' 2  2 2 
2 

6 e = T ( n .  I i n .  - n  ( p + i )  + ( n  i n .  - (p+1))  -n.'-n.') 
1 I2 l1 ll ' 2  % I  lz 

2 = ( p t  I )  - ( p t  i ) ( n .  t 
l l  



P " P4 if n. + n. 6 p u t  p + 2  
'1 '2 e 

P = Pu otherwise 

We see  that 6e 3 0 if p+ 1 k ni , n. [ , which was  our 1 1 
hypothesis. 

In the definition of the solution vector  [n i j  the value of v is 

determined by the inequality 

p + I s  n -y (p  + 1) - (c-7ir-l)(pu+ 1) < pu t  1 
4' .1 

o r  equivalently 

s o  that 

The maximum number of edges i s  then obtained as 

ii) lower bound: le t  p ( a , )  be the degree of ver tex  ai . It is c lear  that 
1 

f o r  a connected graph 

Consequently f o r  p > I B 



if ,,I2 or  n / 2  e min ifpu r/ 9 
P fn-1) p n t  1 

ii $[2 and nk2 e p.!+I - 4 - L i p -  
min - 2 2 if ~ - 3 %  + f l  

therefore 

Two cases have not been considered yet., namely, p =O and p =I. e .e 
Bllt 

e = 0 for n = 1 if O _ C  P 6 P U S  1 
4 

and 

e = n - 1  f o r a n y n  if p u 2 1 

so that 

e min n.11 = ma(n-lt 1.q) 
since the only cases of interest require pU 1 for  edges to  exist. 

F o r  c classes, we have therefore 

3 ma. c-., [TI) (4. 9) 

- = Q - - pU > I , a graph G exists if  n p 1 2 and. then 
4 



proof: 

F o r  each class we require n.p 2 which implies n,p g 2 so  that 
1 e I I j 

Theorem - The number of classes is  bounded by 

where 

proof: the lower bound i s  obvious; whenever a row sum r .  i s  equal 
1 

to 1, the corresponding vertex is  a one element class; for  the upper 

bound, we assign to each vertex a weight equal to the inverse of its 

local degree, IE vertex v. belongs to a class of size s .  then 
1 1 



4, 2. Calculation of Botinds for the Expected Number of Classes 

Since a l l  row sums distribations a r e  invariant under any p e r m -  

tation of the n vertices of Gn , we may assume, without loss of 

generality that 

kl& kkZg ... 6 kn 

and similarly for al l  the other row sums sequences. Let 

be the joint distribution of the row sums r .  _C r .  g . . . & r. ; let 
'1 ' 2  1 

n 

be their joint density. If 

we have 

We now determine bounds for the expected value of c by calculating the 

expected values of both sides of inequality (4. 12 j as  follows 



... f f (k l ,  kZ"" .' knJ 

k n =k n-l  

4- 1 .. . f " ,  k2,. . . ,'-I 
k =2 k =k 

2 3 2 
k n =k n - l  

This last  expression can be transforlned using 

to give 





so that if we let 

Bl(n)  = 1 + f ( 1 ,  1, k3,. . . . kn)+.  . . S (n- l ) f ( l ,  I , .  . . , 1) 

k =2 kn=kn-X 
3 (4. 18) 

we have bounded the expected value of the number of classes by 

Still, the upper bound E2(n) can be refined and replaced by 

B' (n) in the form 2 

I 
n-k 

n 

~ ' ( n )  2 = f . + 1 $1 f ( k l , k 2 , - . . , ~ i  ( 4 . 2 1 )  

k = 1  k =k k =k 1 2 1 
i= 1 

n n-1 

To justify this step, consider a particular set of row sums 

{kl ,  k2,. . . , k \ ; the largest class certainly contains no fewer than n 

k members so that, at  least kn ainong the kigs must be greater 
n 

1 
than or equal to kn ; therefore we may replace C - by 

i ki 

n-k n n-k 
n 

1 kt  1 I:. L =  n i t  
i= l i=n-k 

n+ l i= 1 

and still preserve the inequality on the right. Xow, i f  k c n , the n 
I 

same reasoning may be applied again in order to decrease 3 (n) . 2 



Thus, le t  u s  define the t ransformation 5 by 

otherwise 

,I 

Theorem 1 4 Bl(n )  6 6(cn) 6 B2(n) & n 

where Bl(n) i s  given by (4. 18) and 

proof: designate by s s . . . s the s i ze  of each of the c 
C 

c lasses ;  we then est imate the sequence 

r 5 r c . * .  s r n  1 2 - 
But f o r  these values,  rT si  , 7J = i , 2 , .  . . , n a s  we can 

ZJ 
show by induction on 2/ . Clear ly  r < s .  ; a s s u m e  now r .  L. s .  , 

n -  I n J 1. 
J 

j = V ,  V +  1,. . . , n ,  then 



ii) ii s .  L S.  d o n l y  n - v i - 1  s 3 s ~ s .  
21-1 lJ 

S 1 
y- I 

* si 
I 

but iE r +3 n - g t 2  r s  2 rzSml r s i  
21-1 v- 1 v-  1 

which i s  a contradiction. Consequently ry-l & si . 
v- 1 

Let us now examine the application of transformatron Z$ to 

the initial class estimate 

The largest class i s  of size s .  r . We may replace r of the 
I n n 

r '  by rn and still preserve the above inequality provided we select 
S 

I 

the m largest r in the sequence. Furthermore, we can even be 
S 

more s h r e d  when determining the size of the largest class in the 

subsequence. We remark that 

since s.  r, r2/ -2 1/ excludes the possibility that s .  be the start  
l 7) 

1 - 
of a new class s .  s .  , . . . ; t he re fo re  s .  - 5 .  and the same 

I '  I 
U V-1 l7.J 2% 1 

reasoning may be applied to s .  7 zJ until we reach si z, rV . 
1 
Qi- 1 r-, " 

Consequently, the estimate of the size of the largest remaining class 

i s  determined by the smallest integer j 3 i) such that 

r . n-r - j  
n - r  -j n n 

which i s  equivalent to sayLril7g that the largest class must be o i  size at 
"n-r,-j 

l 
least r + j , The same argument is  valid for 1 ---- and so 

n i.. 1 *. 
I 

forth until r a  h a s  been assigned to a class. 



4. 3. Local Degrees Distribution in Subgraphs of G 
n 

Let v (d) be the number of vertices of degree d in G . n n 

Let { G ~ ]  be the family of subgraphs of Gn with k vertices. Our 

experiment is  the selection of a vertex f rom one member of IG 
i k\ 

with outcome d e 0 1 .  . , k- 1 . Let pk(d) be the probability that I 
the vertex has degree d , it is related to p,(1/) by 

result which can also be expressed in an equivalent form 

k- 1 (n-k)! V !  (n-V-1): 
(V  -d)! (n-k-U+ d)! (n- I)! ?nl') 

u=d 



4. 4. Examples f o r  Par t icu lar  Distr i jut ions p (d)  r, 

We look f ~ ~ r m a l l y  a t  some d is t r i l~ut ions  p ( d )  without worry-  n 

ing about the realizahili ty of v id) as a graph. n 

1) uniform distribution 

1 
~ n ' " )  = u2- uI+  T ill s 21 d V 2  , otherwise 0 

when v = n-1 and Ul S d 
2 

which is a l so  uniform. 

2)  binomial distribution with pa ramete r  cu 

since d 4 k- 1 the summation can  be  changed to  



n-lc 
n-k-I/ d 

CY ( 1 4 )  k-d- 1 

y = o  

which i s  also binomial with the same parameter. 

Since the binomial distribution acts a s  the kernel of the 

t ra~sformat ion ,  we define the ratios 

which, by formula (4.26), satisfy the recurrence relations 

n- 1 n-k 
n-k I n-lc 

Rkid) = 1 ( V -d ) Rn(u)  = ( y j  Rnid+vi (4.29) 

U =d V = O  

or alternatively 

Computation of the R given R i s  of course a simple k n 

matter using a triangular tableau 



Example - f o r  a square  4 x 8  board, two elementary squares  being 

connected if they sha re  an edge, t he re  a r e  

2 (4-2) points with degree 4 

4($ -2) points with degree  3 

4 points with degree 2 

s o  that a tableau R can be built s tar t ing f r o m  

It is shown in table (4. 1 ). 



d d d d d d d d d d d d d d d d  

d d d d d d d d d d d d d d d d  



4. 5. Canonical Graph Representatica 

The study of properties of graphs numerically often requires 

manipulating large families of such graphs and recognizing isomorphic 

graphs a s  being several  instances of the same member. F o r  undirected 

graphs Gn with no loops and single edges, each member is  uniquely 

represented by i ts  symmetric incidence matrix. 

For  classification purposes, one wishes to find an integer 

function which maps the family G into the positive integers, The 

mapping function should possess some essential properties: 

i) uniqueness of the image of a graph and i ts  isomorphs 

ii) computational simplicity of the mapping function 

iii) computational f easihility of the inverse mapping 

A classical fuaction which appears repetitively in the literature 

is the  permanent. Fo r  a symmetric incidence matrix A it i s  defined 

as: 

The summation in (4, 31) extends over the set 3 of al l  permutations 

of the integers f I ,  2. .  . . , n) . Clearly, the permanent has property (i) 

since it remains invariant under a n y  perm~ta t inn  of the rows arrd 

colunms. Property (ii) has to be examined more earefuiiy. Instead of 

generating the set 3 , it is  more efficient to apply t h e  principle of 

inclusion and exclusion to the permanent calculation and obtain the 

following theorem (Ryser). 



Theorem - Let A be a square nxn matrix and A be an nxr n r 

matrix obtained f rom A by selecting r of its columns. Let n 

S(A ) be the product of the row surrrs of A . Then 
r r 

- 

per (A) = 1 ( - l ?  1 ,,A n-1 .) 

i= o iAn-i) 

W e  estimate the number of operations required to compute 

the permanent by 

where addition and multiplication a r e  considered a s  identical. and k 

takes into account the number of operations required to produce the 

next combination. An approximate value of W i s  

2 w ~ z ~ - ' ( ~  +k)"n  2 n - 1  2 for  n )3 -1  

Unfortunately property iii) does not lloid. Given the permanent 

of a symmetric nxn matrix, we cannot recover the original matrix 

short of an endless t r ia l  and e r r o r  approach. 

Therefore, motivation exists to seek a different function of the 

incidence matrix having the three properties stated above, and offering 

practical advantages for numerical computation, 



4. 6 .  Binary invariants 

Definition - An incidence maLrix i s  said to be monotonic rL1- i ts  sequences 

of row and column sums a re  monotonic non-ini:reasing sequences. 

Let R = r ,  . , r be i h r  ser,uence oi row sums of the 

symmetric incidence matrix A in monotonic form. The x 's  assume 

only d distinct values and pk is  the number of row sums having the 

common value k . 
Def~nition - The binary sum of a symmetric matrix A with zero 

diagonal elements is  

( n - i -  i )  (n - i) 
-i n-j 

i=1 j= i t  1 

Definition - The binary invariant of A i s  the minimum of the binary 

sum of A taken over al l  monotonic isomorphs of A . 
n-1 n Ti (n-i+ 't)(n-i) n-j 

p =  mini C 2 A a . .  
'3 

12 i=1 j=i+ 1 

The set {2) i s  formed by f i r s t  making A monotonic, then 

applying to the rows and colulnns of the resulting matrix al l  of. the 

permutations which permutes rows with identical row sums among 

themselves and similarly for columns. These permutations form a 

proper subgroup of the synlmetric group on n objects if d 7 1 . 
This subgroup is the product of the symmetric groups on p 

0' Pi' 

objects; it i s  of degree n and order p ! p l i  pL!. . . PZ"" 'P  n- l 0 pn- 1: 

Notice that the minimum taken over all isomorphs of k 1s 

not used since it would require finding the miniinurn of a set with 

n! elements in  evcry case. By requiring the incidence matrices 

to  be monotonic, the evaluation of 9 i s  easier the larger d is. 



The number of operations involved i s  approximately 

Clearly,  this  number may become inordinately i a rge  when 

some of tine p.'s a r e  i a rge  and the permanent then turns out to  be 
1 

m o r e  readily computable. Both th.e permanent and a binary sum 

a r e  required to  allow classification and recovery of the matr ix  k . 
Using binary invariants gives u s  a simple and powerful way 

of numerically handling problems which involve undirected graphs 

with single edges and no loops. These graphs being the only ones 

that we a r e  concerned with in c l a s s  counting, we have not extended 

the definition to  encompass m o r e  general  types of graphs since that 

would entail  losing some computational efficiency. However, ex- 

tensions a r e  straightforward; f o r  instance, directed graphs with 

single edges and single slings would simply be encoded using the 

binary representation of the full  matrix. 



4.7. Finding the Set of Non-Isomor,-thic Graphs with Prescribed. 

Local  Degree23 

We now show that once a member  of the se t  i s  known, the other 

- 1 elements  can be easily obtained, using a method s imilar  to  R y s e r ' s  Lii7,. 

Let  &($) be the se t  of a l l  nxn incidence mat r ices  which a r e  

symmetr ic ,  monotonic and have p .  row sums  equal to i ( a s  usus1 
1 

the diagonal e lements  a r e  zero) .  

Consider some matr ix  A E * ( ~ )  . We define an  interchange 

mat r ix  fo r  A to be a 2x2 submatr ix of A of the fo rm 

where the elements  of cue and cu a r e  res t r ic ted  to be off diagonal 1 

elements  of A . 
The replacement  of a.  by a. (accompanied, of course,  by 

I i -i 

the interchange of the i r  conjugates to p rese rve  the symmetry  of A )  

leaves j3 unchanged s o  that &(b) i s  closed under an  a r b i t r a r y  

sequence of e lementary interchanges. 

Theorem - The graph i~lduced by the interchange operation on the 
I 

elements of *(j7) i s  strongly connected. 

A A 
proof: le t  AI ,A2 E &(if) and Al f AZ . We a r e  going to t ransform 

A A 
independently the incidence ma t r i ces  A1 and AZ .so that the i r  f i r s t  

rows become 



R 
Take A for instance. Let the f i r s t  zero  element in the 

1 

f i rs t  row be a with a = 1 for j2 ;2 ji , otherwise 2 is  
lj, qj, I. 

already in the desired form. We seek now to exchange a with 
i j ,  

a = I ,  j 2 > j l .  At the same time we must find a row i Z- 1 
1 jz 

for which a , .  = 1 and a , .  = 0 ,  i =b j2 . Such a row always exists. 
l J 1  1 J z  

If i t  did not, then column j2 would have a s  ma,ny 1's a s  column j 1 

plus am extra one in the f i rs t  row implying 

but this is  certainly false from the assumption of monotonicity. 

A 
&ter this transformation has been applied repetitively to A and i 

&z , both these matrices have identical f i r s t  row and coiumn which 

can now be removed, thereby modiiying their common degree vector. 

The resulting marices a r e  put in monotonic form, their f i rs t  row 

contaias the same number of 1 ' s  and another sequence of interchanges 

i s  performed on each one. This process terminates when the result- 

ing matrices become scainrs, 

Therefore, we have proved that i t  i s  possible to go f rom any 

element A1 to any other A2 by a sequence of interchanges, o r  

equivalently "cat the graph with the elements of tfi(7) a s  vertices, i s  

strongly connected. 

Example - Let 



a starting matrix i s  

By successive interchanges we find seven non-isorrxorpbic graphs 

Diaary invariant 

i 913408(4) 

2 1303040(iZ) 

3 1430016(2) 

aliases 

976896(41 

Let rri be the number of distinct monotonic matrices in class i. The 

probability to find a matrix of class i when sampling uniformly over 

the set of all matrices whose monotonic transforms belong to i s  

proportional to the nulr,ber of aiiases pius 1 in class i ; indeed the 

number of distinct A's is 



However, sampling by successive interchanges does not yield 

the same result since there exists a non-zero correlation between 

successive samples (the correlation vanishes if ~ ( k ~ l  A. j = P ( A ~ )  
$ 1-1 

which, in general., i s  not the case since there may not even exist a 

single interchange which transforms a prescribed A into another one). 

observed 
frequency 

This i s  illustrated by exhibiting the class transition matrices 

whereas 

14. 5 3.2 16, 1 10.5 6 . 4  ., 26.2 12,9 
16. 2 3.2 3.2 13. 13. 0 32. 4 19. 5 

I 10.7 l,3 15. 2 i.3. 3 8. 8 3 3 - 5  12.0 j 
P(5) = i 8. 8 2.3 11.7 la. '7 6.4 33.7 12.3 1 

13. A 2-7 15, o 16.3 10. 3 25.  8 
13, 4 4. 5 17. 5 17.5 7.0 27.7 12.4 

3.3 2;. 4 22.1 5.7 2 7 . 0  8 . 2 1  



4. 8.  Findins an Initial Gra.ph - 

The proof of t;he last theorem i s  constructive in the sense that 

it leads to an aignrithrn for deciding wiieti~er or not &(F) = @ . iri the 

latter case, the algorilihm constructs one feasible incidence matrix. 

initially we a r e  given some row sum vector ;i to whicn cor-  

responds a certain F ,  the incidence matrix having all zero entries 

(in the following we only refer to the upper hali of that mzitrix). 

i) f irst ,  check that the sum of the row sums i s  even. If this test 

fails, clearly no solution graph exists. 

ii) then, permute the incidence rnatr'j: into a monotonic form (i. e.,  

r i  4" rZ  2,. . . 2, r,) and process e a ~ h  row at  a time: 

i£ the row sum i s  i ~ u l l  go the next row; 

else, let d be the maximum row sum; 
rnax 

set that particuiar row sum eqiiai to 0 and decrease 
by 1 the next d rows witn highest possible row 

rnax sums; 

if this forces some row sum to becorne negative no 
solution graph exists; at the same time we set 

a(rnin(i, j), m;u:(i, j)) where i is  the row picked a s  

d and j corresponds to each row sum which has 
rnax 

been decreased by 1 ; 

After a l l  rows have been processed without early te r -  
mination, the upper haE of a is  the ineideilce matrix. 

In t e rms  of graph transformaiions, the foregoing construction 

simply says to select one of the vertices with maximum degree; cail 

the vertex a .  , i t s  ilegree being d. ; connect d. other vertices to 
=I  li '1 

a; selecting them in order of decreasing ciegrees. Then re7eat the 
" 1 t 

construction on the graph G obtained f rom G by removing a and 
1% 
i 

i ts d. adjacent edges. 
l1 



4. 9. Class Estinxition in Terms of Transitional Probabilities - 

W e  snail now exanline the behavior of tile expected number 

of cquivaienci? classes viiien random- sam2les of increasing size a r e  

selected from a population of PJ it~dividuais. If vie perform an 

expr i rnent  to  sarnple @ without replacemerit, the n-anioer of 

classes in the sample oi ni- 1 elements i s  conditioned by the n 

elements chosen earlier., regardless of their order; stiii, there 

f N'. 
exist j , / sets  of transition probabilities which express the 

probability that the particular sam2le S will have c 
n+ 1 n.. I 

classes if S had cn classes itseli. Eowever, ii we think of the n 

experiment a s  producing the nbmber of classes in a sample of size 

n ,  averaged over the space of ali  subsets of @ containing n 

elements, there exists a ~ r ~ i q u e  set ooT transition probabilities f rom 

c to c n i l '  
The discrete random variables c take the values 

n n 

1,2,. . . , n  and 

so that the sequence c forms an inho~nogeneous Markov chain. 
n 

We introduce the density 

and the transition probabilities 



together with the d iscre te  Chapman-Kolinogorov equation 

The expected number of c l a s ses  is 

and the expected value of its forward  d i f e r e n c e  



formula which i s  immediately clear. 

Theorem 

(n- u) {n -  v- 1) 
Pj+ ij (7/ + 1, V )  s nin-l) (4.37) 

j=l 

proof: iet Gn have vd vertices of degree d , d = l , Z , .  . . ,n-L . 
F o r  a sample of p' vertices, 0 g, V 6 n , we express in two ways 

the probability that the ( a / +  i ) s t  selected element increases the 

sumber of classes by 1 



which reveals the ir~fluencc of the sam?le size if  we tranhform to 

E is  thus a monotone decreasing function of V and bounds + 
for  E+ can he derived by examining two limiting cases: Gni  an 

n-clique and G a linear chain of n vertices. We look for the 
n2 

maximum and minimum of E+ over the space of a l l  connected 

graphs on n vertices. The coefficier~t of v as  seer* from the 6 ' 
f i r s t  expression ( 4 .  38) of E+ , i s  a monotone decreasing function - 
of d . The minimum of E i s  obviousiy achieved for V, = (0, 0,. . , , n) 

t 1 

..s 

where V = (vl, vZ,.  . . )v ) . That grzph i s  an n-clique for which 
n- 1 

E+ = 6oil . Similarly, the maximum of E r must correspond to a - 
vector oi degrees V2 = ( 2 ,  n-2,G,. , . , 0 )  since the connection con- 

straint of the graph precludes using such vectors a s (n, 0,. . . , 0) . - 
The fol:owing argum-en:. shows why V corresponds to the maximum. 2 

The maximum rnust occur for some tree with n vertices so  that 

Pick 5ny vertex; there is at least one edge attache6 to it 

by connectivity. Select eacli incident edge in turn; ii it is incident 

to a vertex of degree higker than 1 , dctach it f rom that vertex and 

attach it again to any vertex of lowesi possible aegree, This 

procedure can be repezted 'adefinitelv but once wc reach a linear 



chain, the t ransiormation is ec,uivdieilt t o  a rear rangement  of the 

ve r t i ces  of the chain. Replacing now in (4. 39) vd by v =2, 1 

v =n-2 we obtain 2 

Case  Cx = 1 

Conjecture - The expected number of components g ( c  ) 
n 

f o r  an  n subgraph obtained by uniformly sampling without replace-  

ment  the ver tex  se t  of a connected grapth G is such that Pi 

Since c , = c  - = I  , the behavior of E ( c  ) is then weli  de ter -  
L & n 

mined; i t  i nc reases  monotonically starting at c = I  and a s  soon a s  i t  
i 

s t a r t s  to decrease ,  i t  must  continue to  do so  unti; i t  reaches  1. 

Kotice that g ( c  ) i s  in  genera l  not convex. Altnough we have shown 
I1 

e a r l i e r  that the b i r th  process  f o r  components i s  monotonically de- 

creasing with n , t he re  s t i l l  remains  the possibility that the death 

p rocess  dec reases  suddenly so  that the overal l  resu l t  is  an  increase  

in the expected nurnher of cornponen?s. 

A 2ar t ia i  a :~alysis  can be ca r r i ed  out a s  ioilows. Assume 

,. 
and consider the resul t  of adding two ver t ices  x and y to  a con- 

figuration with c c iasses .  Let Ax be th2 variation in  the nuniscr n- i 



of components when bdding x alone, Ay f o r  y alone ana s imilar ly 

Ajx, y) when adding both x and y .  We distinguish between 

cases:  

i )  A x  +o,ay 7 0 or both 

if xi&?Y acx, = ex + A,..] 

s o  that 

A(x, y) ,c i i- min (nx, b y )  

ii ) A x  S O  and By& 0 

then 

Aix* Y) s min (Ax ,  y 1 

Let  a designate the probability of creating a new com2onent 

a = p{ax = I )  = p(ay = 1) 

P = pixRy) 

W e  have the inequaiity 

- n- l 
2 

6 x - S O  ( & ( A ~ )  + q.) i rp i2-a)  - ( l - - ) i ( A x i  

(4.44) 

where q sat isf ies  



Expression ( 4.4 4) can be transformed to yicid 

I .  
thus the conjecture is at l c a s ~  correct  when (3 3 - IL a >  2 

The condition i s  explicitly 



Case  Cx > 1 

If the graph co r~espond ing  to 83 is not connected, tile ex- s 
pected number of cnm;lonents can be derived f r o m  the know-],edge of 

the individual outcomes when sampling each  component oi pN in- 

\ 
Let  c i n l  be the expected number of component when 

1 I 
th  selecting uniformly without replacement n. ver t ices  f r o m  the i 

1 

component of such that N 

Then 

where 



then we have simply 

C ECc,) = W(rl. ri, . . . , r inl .  nZ, . . . , n 1 F(ciini)  C~ Cri  . 1 n l i n  t.. . i n  =n 
2 I =  i 

c~ (4. 50) 

the summation being per formed over all points with positive integer 

coordinates in the hyperpiane 

-. i n e  weight function is silnply a hypergeometric p robab i l~ ty  d i s t r i -  

bution in C - dimensions. Pi 



Case  CN = 2 

i c t  

F (F; n) = 1 
2 [ (  c 2 (n-nl)  \ (4. 51) 

L J 

4. 

where F (T; n) means g (cn)  eval l~ated when r = i r i ,  r 2 )  . We 2 

can approximate the hypergeometric distribution w ( n i )  = (:;) ( :;) 
I N i  
\ n i  

by a binomial probability law since the f i r s t  two moments of win ) 
n r  r I 

a r e  
r~ 1 2 Pj-n 

and - which, if n64n '  , coincide with those of -2- K - 1  
n r 

a binomial probability law witn pa ramete r s  n and 1 
T 

But f o r  l a rge  values of n , the binomial distribution can itself be 

approximated by a Poisson distribution :.f tile form 

s o  that we have approximztely 



CI-blPTZR V 

Discrete  and Continuoiis Rcljacency Problcrns 

ir, this  chapter,  we esarnine adjacency problems and compare 

the resu l t s  obtained in 1, 2 and 3 dir:?ensictns. This anaiysis  is 

r a the r  detailed because those clustering mcldeis have potential 

applications. 

The f i r s t  problem i s  an adjacency problem fo r  d iscre te  

positions on the line with extension to adjacency on a 2 dimensional 

rectangular chessboard. Although the same  method would work in 

3 dimensions the formulas  have not been explicitiy written. The 

second problem is  a continuous cluster ing problem in I ,  2 and 3 

dimensions whicb reduces to an overlap problem on the l ine and in 

a circle ,  As we expect, ana.lytica1 solutions including the d is t r i -  

bution functions, a r e  found in  the 1 dimensional case.  Eowever, in 

2 and 3 d i m e ~ s i o n s ,  only an  approximate analysis  can be performed 

but leads to  usable est imates .  



5. 1. Discrete Giusterbig Ori the Line 

- 7  , i ;ns  i s  of course the Least frustrating of all cases since 

most results have convenient analytical forms,  Let us consider a 

discrete clustering problem on the line. 

Let (x )  be the set Ix l ,  x2, . . . x 
n 

I .  . I  Two elements x x .  t 1x3 a r e  adjacent i f  { Z - J ,  = i' J 
1 .  L7 some 

cases we shall deal with periodic sets,  i. e. where x an6 x a r e  1 n 

considered to be adjacent, 1 i - j  I = L mod-ulo n-2.  A cluster (y)  

i s  a subset of 
L 

- i 
at  most 2 xi& j y)  3 e~:her x.#L x. 

i 14 : or x d x .  
i 1-1 

h? being the adjacency relationsliip. 

V J e  now perforri  an experiment which i s  the seiection of k 

x's  out of n with equal probability. Wnat i s  the expected number 

of clusters? 

Let A(i1, k, c )  denote the number of arrangements of k 1 ' s  

and (n-k) 0 's  forming c c i~ . s te r s .  l i~troduce an extra Cr in any of 

the n+ i available positions, thus raising n to n+ l for constant 

k ;  if the number of clusters i s  now c-t 1, we can write the re- 

currence formula 



meaning that either we had already ( c t  1) c lus t e r s  on n points 

and the new 0 did not fall amid any existing c ius te r ,  o r  we had 

ordy c c lus te rs ,  one of which was  broken into two. The prob- 

ability of obtaining c ci i ls ters  is related to the number of 

a r rangements  by 

Recurrence  formula  (5. ? ) now yields 

k- c 
P C  = (1 - - 1 ,  k, c )  i. ( 

k - c t  1 
n n i p(n- l ,  k, e-1) 

(5.4) 

Define the generating function g ( 2 )  by 
n, k 

, 1 = L p i n ,  k, c )  r 
C 

i s c ~ k  

By recurrence  formula  ( 5 , 4 ) ,  gn. kiz) can be expressed as 



k- c 
(z)= 1 [p(n- j ,  k, ~)(l-----)+~(~~-1, k, =-l)( k-c t  11 c gn, k n ?r;cs'a " J  11 

c ' T 
n pin-1, k, c-1)z - A  p(n-1, k, c-ljczc 

%c <k n 
%c& 

(5 .6)  
Sy differentiation of g (2) w e  get 

n, k 

so that the generating function must satisfy the i;iiierential equation 



From that equation, we can now derive the expected value 

of c a s  

-1 

which yields 

I : r I 

g,, k ( l )  = - ikg (1) + in-l)g,-l,k 
1 

i , - lpk " 3 (5.9) 

The f i r s t  term i s  

so that finally 

It i s  easy to see that the general term satisfying relatior: 

(5. iOj  i s  of the forin 

since g, , j = 1 and 
K, X 

I 3 (II-~+IYK , k - (11-k+2 )IK 
(I) =-  T ---- - %+I. k n+l n n+ l 11 

wkicn proves that the e q e c t e d  number of clusters of 1 's  i s  



A similar result clearly holds f o r  the ni;mZer of cliisters of 0's 

P (n-l<)(kt 1) 
G(co) = n (5.12) 

and if c = c l t c o  then 



It i s  tsmpting to  derive some further results from the 

differential eqaation ( 5. 7 ). F o r  instance 

?--" 
\ Z ' r ? 2 

var(c,)  = c pin, k, c )  -1 ccp(n, k, = j :  
I&c$ 1 L 1$2& 1 

The second derivative of a On, k i z )  has the form 

which evalbated ZL z=1 yields 

r-. i n e  f i r s t  t e rms  prociuced by this recurrerice re;;iiion a r e  



and w e  can prove by induction that the general t e r m  is 

since 

Therefore, tne variance of c is equal to 1 



5. 2 Explicit Rcpreser,ta.:ioa of :.he Generating Function 

Lnstet~d of dealing with recurrence  iormula  ( 5.71, we c o ~ l d  

have determined a s e r i e s  representation of g z )  . We f i r s t  
n, n 

show by induction on n that the s e r i e s  can be written ir; the fo rm 

(k- 1 ir! y 
gn, k ( ~ j  = Z n-ici- 1,V (k-vj: n: 

with 

gk, ki~)  = z 

Re2lacing g (z) in the recurrence  relatlon ( 5.7) we 
n, k 

obtain s u c c e s s ~ v e l y  



where a satisfies n -k i  2,V 

Table ( 5 .  i )  shows the f i r s t  values of a .  

The f i r s t  t e r m s  of g i z )  a r e  explicitly 
n, k 

These coefficients can stil i  be expressed i11 another way. 

- 
.c or  convenience, let 2=n-k+ 1 . Then, if we wri te  :bat 

Qi i-I, i (1) = 1 for  i = 1,2,. . . , k+ K we obtain a sys tem of i inear 

equations in the unhzowns a e 

o r  in matrix f o r m  



The inver se  of A i s  found without difficulty since i t  is also 

t r ianguiar  

with g e n e r a i  e l rnez t  

- 1 
It sufiices to ve r i iy  that indeed (Ah ). .=6 . .  

'2 3 13 



Xow, the coef,!icients of the s e r i e s  a r e  obtained using the 

b v e r s e  matrix; we obtain 



5. 3 .  Discrete Ghs te r i ? i .  on a Xectar~riyular Board  

. . . . 
A norraal tkc? prcc,.:il:?y -?I-ori!.cr: i~ s t o  con- 

sider a a~jacc;ic:r ml.. f o r  i; % dimcn::ionai chessboard. 

The pssticu:zr probiem that we exar-nine i s  to estimate the 

average number of c lus te rs  formed by k rmarks occupying k d is -  

tinct positions selected with equal probability f r o m  the n m  avail- 

able ones of an  n x m  rectangular board B . Xence b . .  = 1 or  r ~ m  iJ 

O iepending upon whether a m a r k  i s  preser2  o r  not in the (i, j)  

position. Two simple adjacency ru le s  a r e  reviewed: 

( i  j ) - d 1'  i) on E3 ,n , j ) a r e  adjacent ii 1 ii - i. 1 i 1 ji 
2 2 n m '  i ' l  2 ;  , 

4. *. 
ii) on Brim "they a r e  adjacent ti 

mod rn-2 and il = i 
2 

Therefore,  two m a r k s  a r e  adjacent ti they occupy positions next to  
:% 

each other in ei ther  the same row o r  the same  c o b ~ m ~ .  13 i s  
nrn 

assumed to be  wrapped around on s to rus  s o  that o;jposite s ides  of 

- the board become adjacent. i h e  adjacency rule is clear ly an equiva- 

ience relation and determines cli isters among the k marks.  

The compiemeni of a cbsster oi K m a r k s  is a se t  of nm-k 

marics b..  = 0 . On a'* we make the foil.owing defiritions: a 
13 nrn 



>: 

c lus ter  i s  cal'led l inear  i f  i t s  complement oil B consis ts  oi only 
Ximi 

one c lus te r ,  otherwise i t  is c;;lj.cd cyclic; the c o - ~ p i e m e n t  of a c h s t e r  

always consis ts  of l inear  cl.istcrs. The nurnbcr of cycles 0 4  a c lus te r  

i s  Lhr? xurr,iier of cuts to he  porSos;nc& to obtain rr l inens c lus te r  out of 

a cyclic c luster .  The meaning oi a cut: i s  intiiitively clear :  i t  is the 
p 

removal  f r o m  r of a l inear  c lus te r  c 1 which possesses  m a r k s  

aljacenl: to exactly two distinct l inear  c lus te rs  of the corn2lernent of 
.,, !-' on - 3  . i ne re fo re ,  if tile complement of r i s  made up of V 

l inear  c lus te rs ,  t/- 1 cu:s will be  necessa ry  to  connect them while 

I-- 
t r a n s f o r ~ ~ i n g  i into a l inear  cluster.  

To pe r fo rm the aetuzi counting we now mzke use  oi some nice 

to2clogical proper t ies  of l inear  and cyclic c lusters .  Assume that 
.,, 

with every m a r k  on B"' we associate  a weight I ,  0 o r  - i de- 
n m  ' 

2enciing upon the occu2ancy of th ree  neighboring positions north, 

west  and northwest a s  L~llows:  

w . .  = r i f  K, XY a r e  both empty 
1; 

w . .  = - 1 i f  only N W  is empty 
'J 

w..  = 0 otherwise 
1J 

(type t ) 

(type -i 

(type G j  

w . .  b.. = $=: c lus ters  - $# cycles (5.26) 
i j 

proof: we decide to ignore any mark which tias t i t h e r  an K or VJ 

neighbor, o r  ail th ree  V J ,  KYJ r~cighbors ,  ietting e i i i e r  VJ o r  

N act  z s  a p s s i b l e  c lus te r  r e p s e s e ~ c a t i v r ? ~  A c lus ter  representative,  



assigned a w e i g h  1 , i s  ill an  q p e r  ii:it corner  position with neither 

an  N nor a W neigl~lior ( K l V  i s  immater ia l  s lace it 4s not direct ly  

adjacent), iIoviever, even a l inear  cl~uste?r can have seve ra l  such 

c lus t e r  representat ives  a s  shown in :;he f igure below. B-ut LC it does 

have V -k marks ,  then i t  must  a l s l  have V- i - m a r k s  to satisf-y 

conneciivky ( this  can be shown by examining the per imeter  c-arve). 

The - m a r k  then c a r r i e s  the information that the c lus te rs  sternimi.ng 

f r o m  i t s  N and Ur neighbors a r e  actu;.l;y pa r t s  of t h e  same  unicjue 

c lus te r  snd i t s  weight i s  se t  equal to - i to compensate f o r  tihe fact  

t h i t  they will be  counted twice. However, tnis assumption uoes not 

hold i f  tile N and Yr c h s t c r s  a r e  i ~ d e c d  car;-ected eisewkere to 

f o r m  a cycle in which case  vue have inadvertently r e d ~ c e d  the c l a s s  

count by 1 fo r  each cycle. 
:; 

Designate by c j n r , , ~ )  z n l  c (nm, k)  the exgected num.ber 

of c lus te rs  on boards B and B;x res2ectively. We have the 
r ~ m  a m  " 

fol iowkg resu l t  

Theorem 
;i: 2 i (k-lj(k-2)E : 

c (nm, k) = - I - + 1 )  - p(nrn,X) 
( 1  - 3 6 )  ! 

J 
( 5 .27 )  



where $(nrr,, k) is monotone ciecrczsirig lo: fixed nrn ;ind sat isf ies  

proof: using the cwarting argiirnent presented in the 1.ast lemma,  we 

can wr i te  immediately 

in which p(nm, k) is an  un'moih-n function re;sresentir,g the fract ion 

of - m a r k s  actually beionging to  Linear c lus te rs ;  therefore  @(am, kj= I ,  

i S k <7  since the smal les t  cyclic c lus te r  is of s ize  8. After 

simpliiication 

To  derive a s imi l a i  e x p e s s i o n  l o r  33 hoard with no wrap  around, nm' 

we have to dtstinguisi; between four regions: 

I) (1,1) = 1 2d W ~ i  - 1 b i L  - 

2) (1, j )  Z i j < m  w > .  = L i f  = 1 
i J  

, -  - 
3 )  (i, 1 ) 2s i S  n w.. = i  il b, - 1 

i i ,- 1 1 - 
... -,. 

4) otherwise appiy the  same r-ale a s  ior B in, mj. 



W e  now proceed as we did before  to  obtain 

1 I 3 ,  k \,. ic+ m - 2 )  \ 1 -  1 j i ni- 1 ) -*. 
c(nrr,, k )  = - i k - -.- , -- c (nm, k) 

rum nrn /n:n.. l! sim 

I 
F o r  convenience of notation, Let E = - . Then f o r m l a s  

nm 

(5. 3 0 )  znd (5. 3 1) can be rewri t ten in the f o r m  

* i " ( 1  - "E) 
~ 1 1 - (k+ 1)C - 9tnm, k) 

2 1 ( 2 j  1 
c (nm, k) = 

(1 - E ) [ l - Z E i  1 1 -SZ i 

if & < <  1 , that is f o r  a sufficiently la rge  board, we obtain "ie  

asymptotic f o r m l a  

Subs::ituting k by nm-3 in formula (5.34) gives the limiting vaiue 
4. 

$(nm,nm-3)  s ince c*(n;n,nm-3i = : . W e  find 

i 1 ,  - j - 2.5) # 

I 
1 - 3s) p jnm, nm-3) = 1 2t - -- I i: L ~ E  , e m  3 - 3 , , 

i J 



in :he intervai  S k G nm-4 however, i: t ruly depends 

on n n .  F o r  instance 

This analysis czn indeed be viewe2 in severa l  ways: 

i) tf we igaore che variation oi p wi.tb k and se t  j3 = 1 

formala  (5. 33)  provides a l o v ~ e r  bound f o r  the expected xiumber of 

ckasters. 

ii) a?ternztive;y, an estirc;.:ed vai*i;.tion of 8 be 

use& to compcte bexter es t imates  of P than the iawer b a n d ,  

especially 3 k >> I 

iii) f r o m  a ciiiferentsstaiiipoint, 3 we a r e  willing to per form 

Monte Car lo  czlcuiations to  compute the average number oi c iasses ,  

we obtain numerical  es t imates  of ,?(nm, k)  which measure  the averzge 
:;: 

nurnber of cycles in the c lus ters  on B explicitly 
nxn ' 

r - 
t 
I . ,. 2 
a,x-: )!n-zj EM( i - k ~ )  g(# cycles) = 1 l - p(nm, k)/ --. 

; (1 i -2 I 

- 
1 7 

I 3 2 / ,  , ( - , I . . )  = I 1 - p (iirn, k) 1 k 
& -* 'V (5 .37)  

I 
i 

i 
i 

A1tiio:zgii being a by-p r i iuc t  01 the origt-lai estimation problem, 

..I &ais is definiteiy ari interesting result  in itself. 

T;  LA^ ap:;rcacli we have just taken cm?d quite ezsiiy 2rovide 

other resulrs such a s  the ex2ccte6 per imeter  Lerigth for  the c lus ters  

and be applied :o spaces of higher i i rnensional ty.  



5.4. Go--:- ,.L..,.uous Cl~sterin; :  Cis An ir-lerval 

After cor;sii,ering a Zisrrete occiipnncy prohiern, we now 

examine tEe co:;tiilr!u:;s ease  of overT-ppin:, segments on a i l  inter- 

val. Let 'x segments of eqxal iengti: -8 faZ1 on an interval 

7 
[A, B1 of length 1 , such that the probability d i t i i o n  of the 

middle of the seg:ner;ts i s  uniform, equal to I on AS , 0 out- 

side. 

Cefinifior. - A k-c1i;mp i s  a set of k overlappirg segnlents such 

r 1 
that there exists a completely covered ii;tervai la, (3 1 containing 

$. 2 

ail k segments and there i s  no other interval in which la ,  i s  
L i 

properly i n c l ~ d e d .  

r 
When scanniilg ,A, B) i rom A to 3 , a new clamp 

i J 

5egias whenever a segr:ent of length 2 void of marks  extends 

to the left of a given mark. The probability of finding such a seg- 

ment to the left of x is 

so  that the probability of startirg a clump at x i s  

* 
i ne expected number oi clamps i s  therelore 





distribution of ;?2ct k -1  in te r ior  intervals dcteri-:ined by k r;iiiriom 

2oir,ts 0x1  a -unit iccti.r:r;i, if the lz I " iant :  rig*& r , n s l  in te rva ls  a r e  

. ., . d i s c ~ ~ r d e d ,  i t  i s  cle;-r that the pro'nai;.iiiiy o: having c icner  icierva:s 

g r e a t e r  than Y! is the s;%;ne as tI:;t c,f oitzii~ii;,: C +  L slumps. 

L e t  the inner  in te rva ls  be riii:nbered I I ,  I Z z  , + ~ . Ilc-l and 

wr i te  P. . . :or the proba,';ility -hat I. >x, I, > x ,  . . . , I. > x. 
I:", . , 'I l 13 I rn in 

Let  Sy be the sum of P. . for all sii'asets of L/ in te rva ls  
1 ~ 1 ~ .  . . i xi 

obt of k-1 . Let T(2 in te rva ls )  be tiie prnbibi i i ty  t h a ~  exactly z/ 

iritzrvals a r e  g r e a t e r  than x rinder the constraint  21x G I . By 

applying the principle o i  inclusion anti exc1l;sio-i we obtain the  

relationship 

and a typical S. tern? i s  
J 

".: , ae probability P can itself be written as a multiple integral  
12..  . j 



A s s u z e  that 

-, i nis i s  obviously t rue  f a r  m=k- l ; by ind;ic'cion on in for  

j S n? < k-1 , we prove that forlm.uia s ince 

- 
L O  per fo rm the l a s t  integration srepa corresponding to O < m < j-: 

assume that  

r k-rLL l - ( j - f i l - l )x  
r !I - i lrn-j)x) 
i xm i 

Jx 
(k - mj! 

mix 

which n?atches n u r  previous result at m=j . The next in tegra l  then 

becomes 

S. i s  thus o b t a i ~ e r i  as the vzlue of the Iasi expression for  
J 

rn=l whicl~ is eqi;ai to 





The probability of finding exactly # inner ir?tervals greater  than 

x can therefore be represcntcd by the silrnrnation 

k 
P(p intervals z 4 )  = 

is0 

As we have already mentioned, this result also provides the distri- 

bution of the number of clumps since ha.ving inner intervals 

greater  than 4 implies that there exist V t  1 clumps, so  that 

finally 

k 
clumps) ; ( k - l )  -Ii I -  - 1  8 ( 5 .  i d )  

v- I J 
i= 0 

Figure ( 5 ,  ! ) shows the variation of the cluster coefficient 

a s  a function of 6 , length of the segments falling on an intervai of 

length 2. Constant deas i~y  trajectories nL = d a re  also graphed. 

They a re  given by 



P = 
1 + ( 1  -:)"!T;- l) 

which for E. - O becomes 

so  that the trajectories have a derivative at  E = O  equal to 

5. 5. Continuous Cl.ustering in 2 and 3 Dimensions 

We f i r s t  examine the case of n overlapping discs of diameter 

& falling with uniform probability over a circle D of radius I. The 

pdf of the distance of two random points in a circle can be obtained 

using Crofton's theorem. Following Kendall and Moran [ 17 1 ,  

suppose that n points a r e  independently distributed in an r-dimensional 

domain D . The probability that a figure F formed by n points 

satisfies some condition only dependent upon the relative position of 

the points i s  

.,, 

where &-(E) i s  the Lebesque measure in nr-dimensional space 

of the set E of points at  which F has the required property. 

Let V = m(D) ; for Dl 3 D , m(Dl) = V t AV . In n r -  

dimensional space where El 2 E let 

m $ ' ( ~ )  = U m ' j ~ ~ )  = U + AU 

The probability that F has the required property for random points 

in Dl i s  



The se t  E l  can be divided into (nt  1) subsets  Eiy  (v = 0, 1, .. . , n) 

such that f o r  E ly ,  2/ points l ie  in D -D and n-z/ in D . Then i 

where Py is the probability that: points in E f o r m  c o r r e c t  
I j 

f i gu res  in Dl  . F r o m  the l a s t  two equations 

and letting AV become small ,  we obtain Crofton's formula 

Using this  resul t ,  le t  u s  compute the pdf of the distance oi 

two points distributed with uniform probability eves  a c i r c l e  P of 

radius  R , Let  p(x,  R)dx we the probability that the random seg- 

meat  AB has  a length between x and x - k  dx . Similarly,  le t  

pI(x ,  R) dx be the corresponding probability when A is coilstrained 

to  be  on the circumference while Bc P , r representing the set 

of points a t  a distance l e s s  than o r  equal to 2% f r o m  the center.  

Geometrically, we find 



where 

X 
@ = a cos 

'j5K 

If we hold x fixed and differentiate, we obtain 

tan Qd6 = dR 
x- 

Using Crofton's formula, we now find 

dp - 2 ( 2xQ ) 2 tan B 3 - 7 - p  

- dp + 4 p t a n e  = 16 0 sin 28 
dB lrx 

A particular solution of the associated differential equation without 

4 
right hand side i s  p = cos 0 ; we look for  solutions of the form 

4 A cos 0 where A satisfies 

328 sin 0 = dA = lrx 
lrxcos3e 

which yields after quadrature 

16 2 4 p = - cos B (Q - sin Qcos 8) + c cos e 
1TX 

but p =0 since p = 0 for 8 = 0 .  Since x = 2Rcos Ci 





X 
Let a = ; the cumulative distribution i s  obtained by integration with 

respect to x and yields 

The corresponding distributions for 2 random points in a unit 

square a r e  simpler to obtain and give - , 

These results will bc used in chapter ( VI ) in connection with the 

2 
d test for  random number generators. We could also examine 

distributions in higher dimensions. Fo r  instance, Let us compute 

the pdf of 2 random points in a sphere of radius R . We proceed 

a s  before 

2 
p1(xS R) = 

Znx (1 - cos 8 )  

$*R3  

where 



Using Crofton's theorem we obtain the diiferential equation 

108 2 
dp + 9 p   tan^ = -----(I - cos 8) cos e s ine  3 3  X 

which has the solution 

S 
By integration we get the cumulative distribution in terms of rr = IT 

Let us now examine in detail now the number of clusters can 

be estimated for a random distribution of n discs over a circle. 

Later,  we shall perform a similar computation in the case of spheres. 

We consider 3 types of clusters containing 1, 2 and 3 points, 

respectively. We shall assume that the diameter E of the discs 

is  such that & << 1 and neglect the abnormal behavior close to the 

circumference in case ii). 

i) the expected n u d e r  of isolated points i s  

the expression in parenthesis representing tne probability that the 

distance x between 2 points be greater than 1 . From (5. 561, we 

obtain 



Here, the terms of order higher than &' represent the infl*rence of 

the boundary since the relative remaining a rea  after removing a 

2 
circle of radius 6 i s  I - & . 
ii) i t  i s  most convenient to consider al l  remaining cases a s  subcases 

of the event: two points Oi and 0. fal l  at  a distance x Less than & . 
J 

Designate by D. and D. two circles with centers 0. and 0. , 
1 J 1 J 

respectively, and radius & . We distinguish between three regions 

D - (D. U u.) , ( D ~ U  D.)- ( ~ , n  D.) and ( D ~  fl D.) 
1 J J J 3 

C assuming that (Di l l  D.) - D . This assumption i s  false if  0. or  
J 1 

0. fall within a distance E of the circumference of D . This c i r -  
J 

2 
cular ring represents a fraction 2 E - &  of the domain D and con- 

sequently, the next calculation i s  expected to have a relative 

accuracy $ ( E )  . 
.If all  of the other (n-2) points fall  into the f i r s t  region, we 

get a 2 point cluster. However, if one point ends up in the second 

region we obtain a 3 point linear cluster and finally if it falls into 

the third one, we get a 3 point cyclic cluster. Let us now compute 



the conditional probabilities that these last  two events occur. We 

need the area  of overlap of Di and D. which is  
J 

2 X 
m f D i n D )  = 2 5  acos 

.l 
= - Z tV  I 4&2'"2 

and by the foregoing remark 

,(D, f l  I?. n D) = acos - 
J ) + 6i.i) !5 .  6 3 )  

J2 Pi designate the probability that some other point falls into 

th 
the i region, we can write 

and under the assumption that clusters with more than 3 points a r e  

ignored we have 

PI = P(x SE,,  1) - gz - p3 

Those expressions a r e  now evaluated, replacing p(x, 1) by (5.55) to 

give 



L 
Similarly 

L i 
and if we group these results , the probability p; that 2 discs 

overlap without being part  of a 3-point cluster i s  found to be 

The expected number of classes c can now be estimated using all 

of these particular counts. There a r e  urstinct pairs of points 

but in the counting process a linear 3-point cluster wiil be counted 

twice and a 3-poirit cyc i ic  cluster three times. Therefore, we m a y  

write 





An interesting comparison is to perform an identical compu- 

tation in 3-dimensional space to  determine the variation of tine number 

of clusters of spheres when their dcnsity i s  smail. W e  find successiveiy 

so that the expected value or' the numb-r of classes i s  now 



Figure 5.4 



CHAPTER VI 

Com$utationril Tools - 

In the prececring ciiapter-, many n ~ ~ n i e r i c a l  resirits wcre 

obtained either by recursive calcuiati?as or Miinte rJL~rlu sam31irig. 

In view of the importance of these resuits, ca-iitiun had to Le  exer-  

cised throughout the course of Lhese computations. As a consequence, 

several methods were developed in order to ensure efficiency and 

accuracy. This chapter describes three particular a reas  of in- 

vestigation. F i r s t ,  common sampling methods such as s;;mpliiig 

with and without replacement a r e  compared and a re  shown to be 

equivalent by rneans of suitable transformations for the purpose of 

ciass counting. Then random storage assignnsent techniques used 

for  the storage and retrieval of large families of graphs a r e  ex- 

amined and significantly improved. Finally random number gen- 

era tors  used in the previous experimentation a r e  described, their 

properties compared and a method for producing reliable pseudo- 

random sequences i s  presented. 



6. 1. Relationship Between Various Sampling Methods 

Most of the graph problems that we a re  concerned with - 
require generating subgraphs, the vertices of which a r e  selected 

with equal probability from the vertex set of some complete 

graph. Selecting such a sample is equivalent to  generating a 

random arrangement of k integers from the set { I ,  2, . . . , 4. 
Details on how to perform this operation efficiently (&L j 

operations) can be found in Reference I 1. 
However, when the number of vertices of the source 

graph increases, the requirement that the k selected vertices 

be distinct gradually loses i t s  importance a s  the probability of 

finding a match decreases. This i s  very fortunate indeed, since 

the labor needed to impose that constraint increases like k 

itself. Depending upon whether a l l  elements in the sample a re  

distinct o r  not, we get the classical sampling without o r  with re -  

placement, respectively. 

In the case of large samples, the approach we adopt i s  to 

sample with replacement (which i s  obviously the easiest method), 

then perform a transformation to recover, i f  need be, the results 

that would have been obtained had we computed every time the 

precise number of distinct elements in the sample or  selected 

samples of distinct elements. 

Let the population fiJN contain N distinct elements. 

Our experiment i s  the uniform selection of samples of size k 

designated by 



S when sam;lling with replacement, 
k 

Sk 
when sampling without replacement. 

Fo r  each Sk , let sk 
designate the subset of Sk having kl 

1 

distinct elements 1 Q; k l S  k such that k,, i s  masimum, Finally 

let f be a function which i s  defined for  every sample $ of 6'. 

Theorem - F o r  all functions f defined on samples of /PN for wF.ich 

f ( S k ) = f ( s  ) O g k g N ,  then 
1 

i:l being the Stirling number of the f i r s t  kind. 

proof: given k - tuples Lxi< xi2 , . . . , x. I ] such that 
k 

x. 1. "XI. xzs . . . , j = 1, 2, . . . , k, the probabilityof finding 

J 
U distinct elements among the k selected i s  

since this i s  a coupon collector's problem with N equally prob- 

able distinct coupons. In this formula designated Stirling i:i 
numbers of the second kind, i e .  the number of ways of 

partitioning a set of k elements into Z.' non-empty subsets. 

The expected value of the function f evaluated over fixed size 

samples depends only upon the size of the sample; for  c~nvenience 



let  us write 

which a r e  related, using ( 6.2 ), in the following way 

th If we now look at  g(k) as  the k component of a vector and 

similarly for  G(k) we obtain the system 

where the kxk lower triangular matrix$ has the form 



As 'tf: i s  lower triangular, it i s  not difficult to write down 

i t s  inverse by inspection, namely 

1 g -  = 

We simply have to verify that indeed, the product 

produces the identity matrix 

It i s  imgortant to s t ress  that both transformation matrices 

being lower triangular, the computation of gk requires only values 

of GLI up to g = k .  It should be clear by now that this approach 

will prove advantageous Lor all  sampling problems where the 

function f i s  insensitive tothe presence of duplicate elements in 

the sample. 



F o r  large N and sample sizes satisfying kCcN we might 

even operate with a straightforward sampling with replacement 

- 1 
and never apply transformation % . We derive an estimate for  

the e r ro r .  

Lemma 

proof: using expression (6.3) for  G(k) we write 

the coefficient of G(k) now becomes 

which yields 





6 .2 .  Random Storage As signment 

Iri section ( 4 . 7  ), n large number nf encoded graphs, together 

with their associatee information, were stored anii retrieved using a 

random storage method which will riorxi be described in some detail, 

since i t  i s  an improvement over existii~g "hash" algorithms. Because 

we do restr ict  our cozparison to linear and random probing, the 

reader is  referred to [ i l  ] and [ 22 ] for oilier methods of 

search. 

Hash algorithms a re  primarily distinguished by the way in 

which they handle coliisions. Elements f rom a set S =[ s i ,  s 2 , .  . . , s [ 
;?; 

can be mapped into a table T wit11 n available positions 

{todtl '" . ' tn-l)  , each t .  1 being able to accommodate a single 
.-. . 

element of &' . Since tne mapping function d' is  m general many 

to 1, several elements drawn from S may be initialiy assigned the 

same t position. I f  t .  for  j =&si) i s  already occupied, we 
J 1 1 

have collision and some vacant t: position elsewhere in the table 

must be selected. Thus, any particular hash algorithm provides a 

way of computing f rom s. a sequence t. , t .  , . . . , t .  satififying 
I J I  JZ J Y  

t .  , t .  ,..., t .  occupied 
Ji J Z  J y - i  



j ,  j . . . , j forming some permutation of U distinct integers 

E 0, n 1 . The element s.  i s  subsequently assigned to slot t .  [ - 1  1 JY 

and can be retrieved in an identical fashion, provided that neither 

t .  , t .  , . . . nor t .  have been changed to vacant in the mean- 
J 1  J2 Ju-1 

time. 

Such an algorithm will be optimal storagewise if given any 

distribution of table occupancy, the probability of assigning the next 

item to any of the still vacant slots i s  equal; optimality here means 

that the expected value of the length 21 of the probing sequence 

.ils J ~ * -  . - , j V  i s  minimized. 

F o r  example, the worst strategy corresponds to 

jy = j + - mod n U = 2 ,  3 ,  ..., n 

because if a collision has occurred at  t .  , the probability that a 
J 1 

collision will occur at  t .  $. 1 is  higher than the average over a l l  
J 1  

t 's .  Linear probing i s  therefore replaced by random probing, 

whereby a fixed permutation Ed1, %, . . . , tn-lj of {1,2 ,..., n- 

is used to form the probing sequence 

ju = jl + dv-l m o d n  zJ= 2 , 3 ,  ..., n (6.9) 

The probability that the (k+ 1)s t  item entered into the table 

will require Z/ probes is  

We can easily verify by induction that 

k k(k-1) k! - n 
1 + z - r +  + ... + - - 

n-k 



Thus, the expected value of 1/ when k items a r e  already in the 

table i s  

the second form being ba-sed directly on the probability that the probing 

sequence i s  of length greater than or  equal to V .  We rewrite 

k .  
so that if a = - 1s the occupancy factor, 

n 

The expected value of v when retrieving an item from the table can 

then be approximated by 

A few values of &(I/) a r e  



However, the foregoing computation makes the tacit assumption that 

the probability of occupancy of any table position i s  the same, which 

/" 
is  likely to be fa l se  if the mapping function ~4 does riot satisfy that 

property for a l l  samples of the set S . Indeed, g i s  usually chosen 

on intuitive grounds, hoping that it will distribute the elements of S 

uniformly over the table, since the distribution of the data in the 

s-space may not even be known. Consequently, the probability of 

collision for the (kt 1)st  element i s  bound to be higher than ru and 

the above algorithm will not perform as  well a s  expected. 

Alternatively, consider now the following algorithm. The 

table T has positions ( to,  t l ,  . . . tn-l ) but n i s  constrained to be 

prime. Compute: 

then probe at  

j j - m n d n  = 1 2 ,  ..., n 

(6. 15) 
r" 

until either a vacant slot o r  the data item i s  encountered, I£ and 

g2 a r e  chosen in such a way that jl and 4 a r e  uncorrelated fo r  all 



s tS  , then the previous estimate of the Length of the probing sequence 

will be valid. The probability that any two distinct elements from S 

1 
have identical hashing sequences jl, j2,. . . , i s  now 6 (IZ) in- 

j, 
1 11 

stead of I S ( - ) .  The requirement that n be prirne ensures that no n 

matter what value 4 has, al l  table positions will have been visited 

after n probes. 

r- 4 and $ can be chosen a s  fo l lws :  consider each data 

iten1 (or some transform of the data item, for instance only a 

fractional representation of i t )  a s  an integer x. Using the Chinese 

remainder theorem in i ts  simplest form, we know that any integer 

m in the range [ 0, I -  1 - 1 calt be uniquely represented by the I 
pa i ro f r ema inde r s  r r where 1 '  2 

r1 = m mod n 

rZ  = rn mod n-1 

Therefore, in the present case we can simply use 

Clearly, for  al l  n(n-I)  distinct pairs  ( j  4)  to be feasible, the I '  

range of x should be at  least equal. to n(n-I).  We can thus recorn- 

mend to apply to the data item a transformation which will distribute 

x over a s  Large a range a s  possible; then i ts  remainder modulo 

n(n-1) should be approximately uniformly distributed. This is,  of 

course, the typical approach to "randomization" a s  im~tlemented by 

Linear congruential random number generators. 



In practice, one need not compute each time j and 8 ; most 1 

of the time, for  a s  long a s  the Load factor i s  moderate, one probe 

w i l l  suffice to store o r  retrieve an item so that only jl  
need be 

calculated. Still, an objection may he raised concerning table sizes 

which a r e  primes rather than powers of two. Usually, there a r e  hvo 

motivations for choosing n = 2k ; tables can be simply combined or 

broken to form similar tables and operations modulo n a r e  easily 

performed by just masking the high order bits. Let us remark, how- 

ever, that once a table size has been chosen to implement a hash 

algorithm, it cannot in general be altered. Table extensions a r e  

usually achieved by performing multiple searches; if the i tem i s  not 

found in the f i r s t  table, a second table i s  searched and so forth, but 

this i s  of course significantly worse than having a unique table set up 

in the f i r s t  place. As f a r  a s  modulo n operations a r e  concerned, 

the objection disappears if the algorithm i s  implemented in a higher 

level language such a s  FORTRAN where an honest division i s  actually 

carried out to obtain the remainder. At any rate, the cost of division 

should prove advantageous over the time required to generate the 

successive permuted increments in the classical random probing 

scheme a s  the table s tar ts  to f i l l  up. 

Finally, let us mention briefly b ~ w  deletions a r e  handled. In 

order to indicate which table entries a r e  either vacant o r  deleted, we 

use two special codes which a r e  not members of S . Although it i s  

commonly said that lost space i s  reclaimed but lookup time not 

reduced, still some lookup time can be eliminated. When an item i s  

retrieved f rom t .  using tlse probing sequence t .  , t .  , . . , , t .  , it 
JV J I  32 J P 
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may also be moved to t .  , I < /I < y ,  which i s  the f i r s t  deleted 
JP" 

entry, if any, found in the probing sequence. If this compacting 

operation takes place, t .  i s  subsequently changed to deleted, Thus, 
J u 

i£ k items were removed f rom a table and assuming that al l  re -  1 

maining entries have a non-zero probability of being accessed, the 

expected value of the length 1/ of the probing sequence would 

gradually decrease f r o m  g(pk) to &(Vk-kl) 

N being the number of retrievals made after the deletions occurred. 

Since compacting a table involves a slight additional effort, it should 

only be performed if any entry i s  accessed on the average more than 

twice. 

Both random probing algorithms were tested. With n = 997 

and a uniform distribution of jl  between 0 and n- 1 , figure ( 6 '2  ) 

shows the percentage improvement in the length of the probing sequence 

to install o r  retrieve an item when the load factor i s  cu . T n i s  per-  

centage i s  computed a s  a percentage of i9 for the classical random 

probing algorithm. 



6 . 3 .  Random Number Generation 

In this section we put in their proper perspective several  

methods used to generate uniformly distributed random numbers. 

The mere  fact that there exists several, not to say m a n y  methods, 

is a clear indication that we do not have a best one in some absolute 

sense. On the contrary, the situation i s  that of a typical cngineer- 

ing trade-off, cost versus quality. The cost will be measured by 

the time required to produce a sequence of random numbers and the 

quality by how well the sequence passes some carefully chosen tests  

of randomness. The complexity of the problem i s  further com- 

pounded by our inability to establish computable necessary and 

sufficient randomness cri teria valid for all situations, No wonder 

then, that commonly used methods a r e  plethoric even if we 

exclude most "random methods", the most imaginative but prob- 

ably the most deceptive ones. 

There a r e  several properties of infinite, random sequences 

of independent samples drawn from the uniform distribution that 

the finite deterministic sequence we construct ought to have. Those 

necessary conditions a r e  that the sequence be equipartitioned, 

equidistributed and white, notions which axe studied at length by 

Franklin [ 12 ] . Under those constraints, there a r e  two possible 

candidates: 

i) sequences (en) for  B transcendental 

ii) multiply sequence x n t  I 

The former i s  charaxterized by an inherent difficulty of generation, 

n 
since fl has to be calculated witbout rounding, but has good 



stat is t ical  propert ies;  the l a t t e r  i s  intrinsically mediocre since it 

only has the required propert ies  asymptotically, but is easy  to 

generate  with a period of the o r d e r  of the maximum integer r ep re -  

sentable in  a computer  word, depending upon the specific choice of 

multiplier a . This multiplier can in fac t  be chosen a p r io r i  to 

yield a pseudo random sequence with predictable s ta t is t ical  behavior 

over the whole period, a s  was shown by Coveyou and Macpherson. 

Uniortunately, typical Monte Garlo calculations de,mand m o r e  

numbers  than we can afford to generate  by the f i r s t  method,but would 

require  only a very minute fraction of the period of a typical multiply- 

sequence. 

k-product pseudo random sequence 

A method f o r  producing pseudo random sequences by cornbin- 

ing other determinis t ic  sequences is now described. Although 

specifically t rea ted  in the case  of binary sequences, extension to  

an  r - a r y  number representat ion is feasible. 

Consider  k sequences of uncorrelated stationary random 

variables  x.. taking only the values I. L with probability 
13 

and define a s  the i r  k-product sequence, the sequence 

k 
Theorem - A k-product sequence z~ = xiy has  even moments 

i= l 

unity and odd {2n+ I )  moments in absitlu.te value l e s s  than ~5 k(in+ 1) 



& = m u  2pi - I I 16. 19) 

i e  { i , ~ , , . . , k )  

proof: the nth moment of the random variable xi can he  written 

Similarly for z 

k k 

a n (  z) = jmn[$ ices a i= 1 (pi+ qi) + j sin i= 1 

which becomes after separating even and odd cases 

i f  n even 

k (6.22) 

if n odd 

Theorem - The autocorrelation R (c) of a k-product sequence is 
z 

bounded by 

I R ~ ( C I (  -C r k (6.23) 



r =  +nax mas  I R  ( T ) I  
X 

i 3 
i 

i k r i n t e g e r  f 0 

proof: the autocorrelation of x i s  
i 

Z integer 

F o r  a truly white sequence we have 

Here, the autocorrelation of the k-product sequence i s  similarly 

but because the sequences x. have been assumed to be uncorrelated, 
1 

(6.25 ) becomes 

However, whiteness i s  not a strong criterion of randomness so  that 

we now examine the equipartition properties of these sequences. 

Theorem - k-product sequences of independent + sequences a r e  - 
equipartitioned and completely equidistributed asymptotically a s  

k + m .  

proof: given A numbers x. 11 xi2* ". X. taking rltscrete values + 1 , 
1A - 

A A )  
they form 2 distinct coniiguratinns . I ,  2 . . 2 A 

J 
sequence x. i s  equipartioned by A if 

1 



-X 
Let pi?/= 2 + E i V  designate the actual probability that 

X 
th 

{xin xint . . . - 2 CZI in the i sequence. We then 

form the product sequence z = X.X. so  that 
I J  

Q(p) being the image of /A under some permutation 8 of the 

integers {l ,  2. . . . , 2 Using expression (6.28) we get 

Thus if  the constituent sequences a r e  equipartitioned 6(f;), the k- 

product sequence will be equipartitioned O(ck) 
In the particula-r case of the discrete i. 1 sequence, equi- - 

distribution by A for  tile A-dimensional sequence { x. x. 
m' m+ 1' 

. . . . ,  X. 1s Implied by equipartition and holds for every A . 



Generation of k-product Pseudo Random Sequences 

Implementation of the k-product operation on a binary computer 

with word length 4 can he easily achieved by performing k-product 

operations on each one of the 8 bits. F o r  that purpose, the exclusive 

OR of two 0-1 sequences s l  and s2 corresponds identically to the 

2-product of the j 1 sequence s l  with the complement of sZ  , or 

Since the exclusive OR operates on al l  8 bits in parallel and i s  

associative and commutative, the k-product sequence i s  obtained a s  

the outcome of (k-1) l - b i t s  exclusive OR'S. 

Of course, the necessity of obtaining k independent con- 

I .  stituent sequences introduces a factor - m the overall speed of the 
k 

algorithm so  that we must justify the use of a k-product generator. 

Several a reas  of important applications are: 

i) extension of 1 en) sequences: we recall f rom [ 121 this very 

good but quite costly method of producing pseudo random sequences 

with al l  desired properties of randomness. Rather than keep 

stubbornly generating {I?") for  increasing n (one of course might 

think of starting the sequence over with different transcendental e ) ,  

a particular sequence, say 2 0 , 0 0 0  numbers, can be stored perma- 

nently and used in conjunction with a multiply sequence to form a 

2-product sequcnce which will be a s  good a s  {f3"\ but with a period 
* 

at  least equal to that of the linear congruential generator, typically 

-8 of the order of 2 . 
ii) generation of multiply sequences with homogeneous properties 

over all bits: a multiply sequence x = a x  S b mod m ca.n be 
nS 1 n 



analyzed by means of the spectral test to determine i ts  expected 

accuracy over the whole period; in this sense we mean that k - t ~ p l e s  

of only the s most significant bit.; of adjacent values can be con- k 

sidered essentially independent. Typically i f  the accuracy i s  16 

bits for  pairs,  it will be, say, 10 bits for  triples, probably less  

for  quadruples and quintuples may not even be independent. This 

can be observed quite directly by computing bit ser ia l  and c ross  

correlations; in particular, we have subsequently compared the 

data obtained for { TT n j  and a good multiply sequence a s  indicated 

by the spectral test 

x = 2736731631558 xn + cst  
n+ 1 

The degradation of ser ia l  correlation for lags up to 15 i s  quite 

characteristic a s  we move f rom the most to the least significant 

bit. The distribution of the serial  correlation coefficients should 

be normal with mean 0 and variance N (number of samples) a s  a 

consequence of the De-Moivre-iaplace theorem on the limiting form 

of the binomial distribution. Next, we picked 3 distinct multipliers 

and combined their multiply sequences applying the transformation 

k - 

t il 
for  k = 3 ; here b designates the I bit of the random integer 

i, Y 
th 

just obtained f rom the 7/ sequence, b: i s  the value of the ith bit in 
?. 

the 3-product sequence. This transformation simply performs a 

circular b ~ t  permutation equal to L i ]  bits for  the ind sequence 



and 2 [ $ ]  bits for  the third. Several tests were snbsequentiy 

performed: 

. bit auto and c ross  correlations, bit serial  correlations 

. frequency, poker and coupon collector's trbsts 

2 . distance of 2 random points in a square (d test) 

It is  interesting to notice that the 3-product sequence per-  

formed equally well a s  the sequence Tf . We emphasize that the i 
study of k-product sequences made ear l ier  assumes al l  along that 

even though the constituent sequences may not be good pseudo 

random sequences, they a r e  nevertheless independent. 

Results f rom these tests  a r e  given in appendix. 



CHAPTER VII 

Conclusions 

We have developed efficient computational methods to analyze 

complex problems of partitioning. Examples were given to illustrate 

how asymptotic kxpansions can be used whenever possible to relieve 

the actual computing task. The analysis of the general graph problem 

has given us some insight into the behavior of the expected number of 

components when sampling f rom an arbitrary space. 

Even though we only considered uniform distributions, it i s  

interesting to notice that al l  results obtained a re  also valid in situ- 

ations where the probability of selection of any element i s  not equal. 

Indeed, f rom the graph standpoint, each vertex can be replaced by a 

p-clique whose vertices a r e  adjacent to the same subset of vertices 

a s  before, The number p i s  proportional to the probability of 

selecting that particular vertex and p i s  finite only i f  these proba- 

bilities a r e  commensurate. We can now perform a sampling with - 
replacement of the new graph and apply the necessary transformation 

to  recover the result of sampling without replacement. Therefore, 

the expected number of components will have the same pattern of 

variation a s  before. 

There a r e  of course many related questions which have been 

uncovered during this study. They should be the subject of further 

endeavor. 

F o r  instance, the method of sampling f rom the space of 

graphs with eonstrained local degrees should lead to some interesting 

estimation problems when sampiing f rom an infinite po;,ulation, 



APPENDIX 

I 
I Frequency Test  for  Randon 

Observed 

1- Chi Square Sampling Distribution 
! I Observed mean = 8. 08 variance = h , 3 3  

Cumulated 

Chi Square Sampling Distribution I 1 Observed mean = 8.77 variance = 28.8 1 



Poker  T e s t  f o r  Random Integers Between 1 and 10 

(Chi Square with 5 Degrees of F reedom)  

Cumulated 

Observed 20000 1 13.479 

Expected 20000 \ 5. 

Chi Square Sampling Distribution 

Observed mean = 7.16 variance = 18.46 

Expected mean = 5. var iance = 10. 

Expected 

Observed 20000 I 1.289 

Expected 20000 I 5. 
A 

G h i  Square Sa,mpiing Distribution 

Observed mean = 5.46 variance = 11.79 

I Expected 
mean : 5. var iance = 10, 



2 
D Test for Random Points in a Square 

Observed mean = 4.99 variance = 14.25 

Cumulated 

Chi Square Sampling Distribution 
I I Observed mean = 5.17 variance = 6.39 I 

1 Expected mean = 6. variance = 12. I 



I 
i 

Coupon Coliector's Test for Ra-ndom Integers Eeisveen 1 and 10 

Observed m e a n  = 9. 01 variance = 5. 91 

Observed m e a n  = 8.58 variance = 7.40 

variance = 16. 
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