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QUANTUM THEORY OF THE SPINNING EL1CTROB. 

Abstract. 

The following thesis comprises calculations and 

discussion pertaining to the hypothesis of a spinniD.P' 

electron,ohiefly for hydrogen-like atoms. 

Part I is a historical introduction. 

Part II contains results obtained in the e-pring 

of 1926 ,and presented to the Oakland meeting of the 

.Anerican Physical Sooiety in the :following June. The 

calculations are based on classical mechanics, tl:e final 

results being obtained by an artificial modification. 

These results are discussed and shownto completely 

•epreeent the observatione;they ere equivalent to those 

of other investigators. 

Part.III,which was worked out in 1927 and published 

in preliminary form in the Proceedings of the National 

Academy for June of that year,treats the same J'l"Oblem in 

wave mechanics. The results are not satisfaotory,owing to 

a difficulty also encountered by others. 

Part IV is a oonclusion,in which some very recent 

developments are briefly referred to. 
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QUANTUM: THEORY OF THE SPINNING ELECTROB 

Part I. Histor7 of the R7Pothes1a 

Sect. 1. Introduction. !he writer of this thesis 

has had the good fortune to be engaged in one of the 

most actively developing fields of research in modern 

physics. Since the appearance in print of the f'unda-

mental hTPotheaea o~ Uhlenb&ok 'and Goudami t in 19 25 and 

1926 •• rithe conception of the spinning eleatron has been 

extended over the whole of atomic theory, until a bib

liography of contemporary papers referring to the spinning 

electron would be nearly equivalent to a bibliography of 

the entire subject. 

Mattera are still more complicated by the circumstance 

that at the precise moment when it is necessary to bring 

this thesis to completion. the theory in question ha.a be

gun a new and ra}.id development. which ie not yet in de

finitive form. 

-----------------~---~-~--------~-~-~------------------*Jlumbers refer to items in the b1bliograph7. 



Ia view of this situation it seems proper to de

velop the earl7 portion of the theory historically; 

next. to present in detail the writer's own caloulations 

on the subject, in their proper relation to the published 

work ot others; and to oloee w1 th a short summar7 of the 

present state of the question. 

:following the .fundamental papers of Bohr (1913) and 

Bjerrma ( 1912) the quantum theory of series and band 

spectra entered on a course of comparativel7 rapid de• 
~ 

velopment. which began to signs of slaokening at about 
~ 

1918. In the interim the theor7 had been applied to 

praoticall7 ever7 atomic phenomenon for which it was 

capable of giving exact quantitative results. fhe 

oases in question were almost exclusively those of atoms 

with a single electron, which in praotioe restricts the 

discussion to the spectra of h7drogen and ionifed helium. 

:Beaidea these the theory had before 1918 found fruitfUl 

application to the kay spectra of heavy atoms. Even 

this involved certain approximations; and the main course 

of the quantum theory from 1918 to 1924 consisted of ap• 

plicationa in which it often could give only approximate 

or even merely qualitative results. This theoretical in

vestigation was accompanied by e:xtensi ve programs of ex

perimental work, which sometimes verified and sometimes 

conflicted with the more remote theoretical results. oc

oasionallJ revealing wholly new phenomena, and with in

creasing accuaracy uncovering a wealth of minor departures 

from the theory. 
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As pointed out by Uhlenbeck and Goudsmit among· 

others, these difficulties were of two distinct types, 

due to two causes whioh were initially indistinguishable. 

The question is still open whether these two sources of 

d1sorepano7 may not ultimately be reduced to one; but 

trom the standpoint of our present kncsledge (Kay, 1928). 

we may separate, following Uhlenbeck and Goudsmit, the 

diffioul ties due to inacouracy of the mechanics applied 

from the difficulties due to incompleteness of the meohan

ioal model. In some physical oases, notably in the anom

aloua Zeeman effects, these two sets of difficulties ap

pear together, but even in such oases it is possible-to 

study them independently• 

We may tabulate the principal difficulties of what 

has somewhat paradoxically become known as the "classical" 

quantum theory as follows: 

A. D:i fficulties due to 1naoouaracy of the meohamlcs. 

1. Prediction of intensities. 

2. Theory of dispersion. 

3 •. The helium atom. 

4. Half quanta in 

a. Band spectra. 

b. Anomalous Zeeman effect. 

c. Multiplet spectra. 



B. Difficulties due to inoompletenees of the model. 

l. Magnetic effects. 

a. Anomalous Zeeman effect. 

b. Paschen-Baok effect. 

o. Multiplets 

2. Relativity interpretation of X-ray doub1eta. 
+ 

3. J'ine structure at. H and He speotra. 

a. J.ppearanoe of forbidden lines. 

b. Apparent discrepancy of HO( doulil. et. 

c. Paeohen-:Saok effect of H. 

Beginning with group A. it should be observed that 

the very form of the oorrespondence principle was a con-

stant reminder of the provisional state of the theory. 

~he most obvious oase of this was the well-known crudity 

and uncertainty attached to all theoretical estimates of 

1ntens1tiee, contrasting sharply with the precision of 

the empirical whole number rules of :Burgers and Dorgelo. 

Closely related to this is the conflict with Kiroh

ha:lr' a law, into which the quant1llll theory was led by its 

assumption of a series of mechanical freq1~encies in the 

atom differing from its emitted frequencies. This con

flict provided an apparently insuperable obstacle to a 

rational theory of dispersion. 

Of a slightly different character was the failure 

to develop a theory of the helium atom. The poor eucoeas 



6 

of early attempts at a sol~tion was natuarally ascribed 

to the intrinsic diffionltiea of the three•t1.od7 problem; 

but Born and Heisenberg succeeded in demonstrating that 

the difficult7 wae not any such purely analytical one, 

but that the theoq tn · the form then in use was incap

able of giving the correct energy levels for either the 

excited or the normal state of helium. 

:l!he appearance of half•quanta was a further symptom 

of disintegration of the original theor7. ~he half-quanta 

appearing in band spectra might possibly be explained b7 

special hypotheaee; but the peculiar appearanci'e of half

quanta in the anomalous Zeeman effeot, in which it ie 

necessary to replace the eq~are of an integer, say 32 , 

b7 ( J+j-)( J-i-) • pointed to the neoesai ty of a far more 

profound modification. The same remark of course ap

plies to the appearance of half-quanta in multiplet; 

in faot, multiplets may be regarded ae the Zeeme.n paterns 

of the series electroD.:.in the magnetic field of the whole 

atom. 

We shall not discuss these matters in detail; the7 

have all been cleared up by the introduction of the new 

quantum dynamics, which, in the form of either matrix 

or of w•ve mechanics, appears capabl·e of removing all 

the difficulties of our first group. !he second group 

of difficulties, those removed by introducing the 



h7Pothesis of a spinning electron or some equivalent. 

will form the subject of the remainder of this dieoua-

sion. 

Sect. 2. Diftioultiea leading to the hypothesis 

of a spinning electron. ~he anomalous, or better the 

oomplex,Zeeman effect is the f'undamental phenomenon 

for an understanding of the empirical and theoretical 

developments which led to the introduction of the by

pothes is of a spinning electron. Its simplest :f'orm is 

that which it takes in the doublet spectra of elements 

with a single series electron, such as the arc spectra 

of alkali metals and the first spark spectra of the -al

kaline earths. 
"t1ai 

The typical example is that of AD lines, which 

oorrespond to ls-2p of the sodium arc spectrum. The 

very fact there exist two lines - the phenomenon of 

nml tipleta • 1 teelf calls for explanation. This is 

done on the Bohr-Sommerfeld theor7 by assuming that 

the principal and aazimuthal quantum numbers deter

mine only the shape of the orbit..& ~hird, the inner 

quantum number, specifies the orientation. Thia hy

pothesis was supported b7 the Stern-Gerlaoh experiment 

(orientation of atoms in a magnetic field). In the 

case of a hydrogen-like atom 1 t was e:::.:pected, w1 th ap

parent experimental verification, that the energy 

6 



levels for two such orientations would coincide. In 

sodium, however, there ie the complex "oore•, consist-

ing of the completed K and L shells of the atom. Dif

ferent orientations with respect to this core might be 

expected to correspond to elightl7 different energies. 

By a proper choice of the inner quantum number 3 cor

responding to these orientations, and by means of the 

selection princ1ple.Li3•0 or +l which would be derived -
from the correspondence principle, it became possible 

to account for at least the number of components of 

most multiplet lines. 

., 

The orientations of these orbits mu.at natuare.lly be 

with respect to some axis in the atom itself. on the 

basis of the Stern-Gerlach experiment, and of the con-

sequences here about to be developed, this axis was 

considered to be that of a magnetic field. It was 

natural to associate this field with the core; that is, 

in the oaee of the sodium atom, with the closed K and L 

shells. 

Apart from the exceptional cues in which the mag

netic moment of the core was exactly neutralised by that 

of the series electron, the whole now became a D19gnet 

with all its parts in fixed relation to one another. Ae

eooiated with the resultant magnetic moment was a resultant 
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angular momen~um about the same axis. consequently, 

when placed in a weak homogeneous magnetic field the 

whole atom would precess about the direction of thie 

field. This motion could be quantized, and it ie found 

that the angle between the magnetic axis of the atom and 

the direction of the field was restricted to certain fixed 

Taluea • a space quantization which ie confirmed b7 the 

Stern-Gerlach experiment. 

It was now found that these considerations led to 

formulae which correctl7 represented the observed ener87 

levels • but only by introducing two drastic and theoreti

cally unjustified modifications, corresponding precisely 

to the two groups of difficulties we have mentioned.· 

OD the classical mechanics the ratio of the magnetic 

moment of an electron moving in an orbit to its angular 

momentum is a fixed scale or quantity, e/2mo; eo that to 

the Bohr unit of angular momentum, h/27r, oorresponde the 

Bohr magneton eh/41flDO• ~is ie easily extended to an atom 

with any number of electrons,• so that in general f</p•e/2-. 
where ft is the magnetic moment and P is the angular momentim • 

In order to obtain the above mentioned representation 

of the energJ' es derived from a model it is necessary to 

introduce the magnetic moment µ.0 and angular momentum Po 

of the core, as well as those of the series electron; and 

now it is found that the reenlts bear ho relation to experi

ment if A /p is given the above normal value, but that the 
0 0 

----------------------------------------------------~-------
*Appendix l. 



ratio"must be doubled, ao thatf1.0 /p
0
•e/mc. This sur

prising circumstance constitutes the real nanomal7" in 

the complex Zeeman effect. 

9 

A second peculiarity appears as follows. Into the 

expression for the energy enters the cosine of the angle 

between the momentum vectors of the core and the series 

electron. Thie expression contains the squares of several 

quantum numbers, associated with various angular momenta. 

Each of these numbers, sq a 2
.- must be replaced by a( e+l) 

in Sommerfeld' a notation, or by (S+i)CS-i} in Lancfe•a, 

to obtain the correct formula. !his clearly involves a 

modification of dynamical principles, and was one of the 

starting points for Heisenberg's quantum mechanics. 

Kore significant for our purposes is a further dif

fioul ty in the procedure. We have seen that it :B neces

sary to ascribe a magnetic moment to the core in the al

kali metals. !his core ia of identical structure, apart 

from the increased nuclear charge, with the atom of the 

preceding noble gas4 for 11 thium 1 t corresponds to .,.the 

helium atom. Bow the noble gaaea in general, and helitnn 

in partioula.r. are known to be diamagnetic; ao that it 

was necessary to assume some unknown disturbing faotor 

in the experiments bearing on thie point. Moreover it 

was pointed out by Pau11'8that the orbital precession of 

the aeries electron, due to suoh a magnetism in the core, 



should result for the heavy elements in a relativity 

oorreotion to the Zeeman separation which is not found 

experimentally. 

Using the classical mechanics, suppose the applied 

magnetic field increased. The forces exerted by this 

10 

field on the series electron will eventually become com

parable with those due to the magnetic field of the core. 

There ensues a curious type of motion, the complexity of 

which 1e reflected in the corresponding spectra. Finally, 

when the intensity of the applied field is very high, its 

effect dominates over that due to the core. The core and 

the orbit of the series electron then precess independent

ly and at different rates a1)·out the axis of the external 

field. The energy levels of the electron are given by the 

Larmor precession. This leads to the levels of the "nor

mal" Zeeman effect, giving the LorentM triplet in the 

spectrum. This is the Paschen-Back effect, which in it

self involves no new theoretical elements, and consequently 

no difficulties, beyonf those already introduced. 

!he general theory of multiplets has not contributed 

greatly to the development we are studying. fb.e extensive 

systematization now going on is largely dependent on· the 

use of the spinning electron or o t equivalent hypotheses; 

but the theoretical fUnctiona of this subject, which wae 

Yery imperfectly understood in 1924, have broadly speaking 
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been two in number. In the first place, several hypotheses, 

which were adequate to account for doublet spectra, failed 

when applied to the more oomplex cases. Secondly, the 

alternation of even and odd multiplet structure made it 

impossible to avoid the introduction of half-quanta some

where in the scheme; but this is a matter of the quantum 

dJ1lSl!lioa. and not of the spinning eleotron. 

A diffioult7 in the theory of atomic structure of an 

altogether UDtJq>ected character was unearthed b7 llillikan 
I? ,.,. 16 and Bowen, and was also emphasized by Lande. Tb.ere ap-

peared a conf'l.iot between the established interJ;l'etations 

of X-rar and of visible spectra. In the normal L shell, 

which is considered to consist of electrons with principal 

quantum number n•2, there are three energy levels, desig

nated by Sommerfeld as L11 • L21 , L22• !he energr di:tter

enoe L22-L21 Tari es as the fourth power of the atomic 

number, which is the law to be expected, on Sommerfeld's 

relativistic theory, for the difference in energy be

tween two orbit• having the principal but different azi

muthal quantum numbers. On the other hand, the energy 
2 

difference L21-L11 is closely proportional to (Z•a) , 

where Z is the atomic number and s 1sa•acreening con

stant.• This led to the follar. ing interpretation: Sinoe 
~ 

n•2, the azimuthal quantum number k is either 2(oorrespoad-

1ng to a circle) or l(oorresponding to an ellipse). It ie 
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assumed that L22 is a circular orbit, and that L21 an.4 

L11 are elipsee at different 9r1entat1ons. Consequently 

L22 differs from L21 and Itii b7 the large ~elatiTit7" 

term, while L21 and L11 differ f'rom each other by a 

small term due to the difference in the screening of the 

nucleus by the X eleotrons along two differentl7 in• 

olined paths. 

It is a point of importance for later dieouesion 

that the L22-L21 doublet agrees tuantitat1T•l7 with 

Sommerfeld's relativistic expression. not merely to 

terms of order Y2/c2, (v being the velocitJ of the 

electron, o that of light) but al.so to order v4/o4 and 

probably also to higher ordera. Sommerfeld'& explana

tion was therefore accepted with considerable con:fid• 

ence, and the results of Bowen and Millikan occasioned 

some consternation. It was found that the L-doublet 

oould be traced downward from the X-ray spectra througb 

a whole series of spectra of stripped atoms. without a 

doubt of identification at any step; and that when this 

was done the doublet in question proved to be identical 

with a doublet in optical spectra, on which Bohr. with 

the strongest kind of evidence, had placed a diametrical.-

17 opposed interpretation. The level r,_1 corresponds. 

as it should, to an optical level with azimuthal quantum 
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number :t-1; but both L21 abd L22 correspond to levele 

with k•2. L21 and L22 should therefore correspond to 

circular orbi ta; they differ in inclination, not in eo

centrioi ty, and should apparently show a •soreening

doublet." L11 representing an ellipse, should be sepa

rated b7 the relativit7 doublet from L21 • !he evidence 

for each of the two conflicting interpretations was 

overwhelming; but the conflict wae real. !he situation. 

as pointed out b7 Jlillikan and Bowen, appeared to demand 

the aseumption of a new non-rel ativiatic oauae,which 

should give rise to a term in the energy of exactly the 

aame form as the relativistic term. so as t-0 restore L21 
to nearly the level of L:ii• 

A more obscure and leas certain, but as later ~p

pea.red fundamentally important, set of difficul.ties 

arose as the observation of the fine structures in the 

spectra of hydrogen and ionized helium was improved in 

precision. In the observations of Pasohen in 1916, 

which were acoepted as experimental confirmation of 

Sommerfeldts theory of fine structure, it was found that 

certain "forbidden• lines in the :fine structure of the 
- . 

helium line ~4686 appeared with unexpectedly high inten-

ai t7. It was attempted, b7 Kram.era eepecia.117, to ex

plain thie aa the result of a Stark effect of stra7 elec

tric fields; but this was not entirely satisfactor7. 



Burther. for the lie( doublet Sommerfeld's theory predicts 

Av •0.365 cm-1 , while direct measurement eonsietently 

yields a lower value of about 0.33. Yinally, and moat 

significant, was the apparent discovery of a Paschen-Be.ck 

effect on observing the :fine structure of hydrogen in a 

magnetic field. Thie result was somewhat uncertain, and 

was generally questioned, einoe if true it neoesse.rily 

implied an additional dynamical. degree of freedom in 

hydrogen-like atoms. 

Seot. 3. Origin and Introduction of the Spinning 

Electron Hlpothesis. !he )1;1pothea1s of a apinnir.i.g 

electron had historically an origin and development 

quite independent of that of the new dynamics. ~he 

oredi t of laying the foundation on which Uhlenbeck and 

Goud.emit erected their theory belongs to Pauli.If In 

order to avoid the difficulties encountered in ascribing 

a magnetic moment to the core in the alkali metals, Pauli 

suggested the association of a fourth quantum number, of 

unspecified phyaic al meaning, with each 1nd1 v14usJ. elec

tron. on the hypothesis that no two electrons in the 

same atom can have the same set of four quantum numbers, 

a very considerable measure of order could then be brought 

into the systematizatio~ of multiplet spectra; in part1c-
'28 

ular, Stoner's scheme for the grouping of electrone in 
.. 

normal atoms was at once derived. This is the celebrate4 



exclusion principle of Psuli,which has pla7e4 and is s 

still plqing a leading part in the progress of 

quantum mechanics. Thie new contribution was rapidl7 

utilised b7 a large group of 1nvest1gators,1nluding 

Pauli himself,Rund,Goudsmit,Russell,Saunders,and 

others.and has led to a degree of speotrosoopio 

s7stematization aitounding to those who,like 'Ille 

present writer,have not been in a position to follow 

these advances very closel7. 

In constructing the theory ot doublet spectra on 

this new basis it was found by Goudsmi t and Uhlenbeck 11 

and by Slater 2' that it beoa.me poesible,ancl perbapa 

neoessar7,to plaoe an entirely new interpretation on 

16 

the hydrogen tine atruoture. llloreover,:1n the theoey of 

the Zeeman effect the anomalous magnetic moment whi•h 

1'.u previously asaooiated with the core ,and for which 

the ratio ft/p has twice the value expected fe»r orbital 

motion,could be transferred to the electron 1 tat•. Bow 

this "anomalous" ratio 1e exaotl7 that to be expected 

for a rotating sphere with a surface charge.• !bis ia 

the :fUndamental observation at the bottom of the h.J'poth

esia of Uhlenbeck and lou.Allti ~. 

The aonalusion,however,is not so obvious as might 
I appear. Oompton,for instanoe,had proposed a spinning 

electron long before as an explanation of certain 

-----;i;;;~di;-2:-------------------------------------
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peculiar phenomena observed in ionization ohambere and 

in X-ray scattering. (!his was not known to Uhlenbeok 

and Goudami t. ) But an7 such hypothee1a, for whatever 

purpose put forward,encountered at first sight a con

siderable diffioulty. !he spinning electron would 

constitute a small magnet,with a moment of the order 

of a Bohr magneton. Suoh a magnetic,moving in the 

electrostatic :field of the nucleus of a hydrogen-like 

atom,would be dei'J.eoted by electromagnetic torcea. The 

energy levels would be altered,and the Whole Sommerfeld 

theory of tine etruoture,beautita.117 verified as it 

seemed to be,would apparentl7 be deatro7ed. 

It required no small acumen to observe,as Uhlenbeok 

and Goudamit d14,that (1) the modi:fioations in 1he 

energy levels are of the same order of magni tu.de as 

the Sommerfeld second-order fine struoture,ooatain1ng 

the identical faotor R o{l1'.11n which the variation with 

the fourth power of the atomic number is of the utmost 

importanoe;that (2) the combination with the Sommerfeld 

levels for half-integral asimuthal quantum number k 

leads precisely to the reinterpraation of the hydrogen 

fine structure demanded by Pauli's theory;and that (3) 

a similar re1nterpretation,applie4 to the X-ray levels, 

removes the conflict discovered by Jlillikan and Bowen. 

The details of these and other applications of this 



theor7 are given in Part II.where the appropriate 

mathematical apparatus is developed. At this point it 

is onl7 possible to gove a short eummar7 of resulta, 

passing in order over the difficulties discussed in 

the 'Preceding section. We grou'P theee again as referr

ing to (ll magnetic effeots,(2)X-ray doublete,and (3) 

h7drogen and io.qa:'.ized helium. 

l'I 

(1). The hypothesis is introduced preoisel7 to 

account for the anomelou.a factor 2 in the Zeeman effeof, 

which was the principal difficulty of the model. It 

therefore allows a complete theory of this and of the 

Paschen-Baok effect;and,in oonJunot1on with Pauli' a 

exclusion principle,leads to a correct representation 

ot multiplet spectra. 

(2). As just mentioned,the Jlillikan-Bowen diffioultJ' 

is removed by the exact realization of the expected non

relativi ty cause producing a "relativityn term. It 

should be mentioned,ho11B'er,that thie is true only to 

terms of order v2/o2. The exact result is only obtained 

by the most recent modifications of the theory.in which 

the spinning electron as a distinct hypothesis no longer 

ap-pears. 

(3). The appearance of •torbidden• lines 1a ex

plained by the substitution of the selection principle 

.AJ•O or tl for the principle Ll k • *1; this :i.eads to a 
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reinterpretation of the experimental results on the Ho( 

doablet,whioh now appear much more nearly in agreement 

with theory. This is brought about by the theoretical 

expectation of fine-struoture lines prev1oual7 looked 

upon as forbidden,which alters the expected distribution 

of intensity over the fine-structure pattern,and thus 

changes the relation of this "8-ttern to the observed 

maxima of intensity. Binally,the Paschen-Baok effect in 

hydrogen-like spectra is e%Iif:d,n ed,as it proves to be 

of exactly the same character as the similar effect 

in the alkali-doublet spectra. 



Part II. Theory of the Spinning Electron in 

Classical Mechanics 

19 

Seat. l. Certain difficulties. We shall now pro

oeed to develop as exactly ae possible the theory of 

these phenomena in its original !or.m. based on the clas

sical mechanics and the Bohr form of the quantum theory. 

The oaloulatione for hydrogen-like atoms are given a.a 

worked out by the writer in the spring of 1926. A pre

liminary report of the results was presented to the Oak

land meeting of the American Phyaioal Society in JUne• 

1926. 1 2.. The details were not published; the results are 

equivalent to thoae obtained in a different manner by 

Uhlenbeok and Goudamit. l3 It should be mentioned that 

the method here used. as developed by Professor Epstein, 

is free from arbitrariness in the choice of co8rdinates 

for quantization. These coerdinates are 1l.D811lbiguously 

defined by the method itself, involving no assumption 

beyond that of the Hamiltonian fD.nction of the system; 

this constitutes the decisive advantage of the present 

method over those employed by others. 

Before entering the discussion of the theory proper, 

mention must be made of three serious difficulties which 

appeared in the earliest attempts at such a theory. The 

lightest of these is the following: Consider for s1mpl1c11f' 
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an isolated electron, which is assumed to have a constant, 

quantized angular momentum; this should be h/2-Tf on the 

simple quantum theory. To obtain the corresponding mag

netic moment of two Bohr magnetons it is assume4* that 

the eleo*ron is a sphe~e with a surface charge. It fol

lows 1mmed1atel,* that the peripheral velocity of the 

electron at ite equator is 2 x io13 cm/sec, llhieh is far 

above that of light. !his result hae occasioned mu.ch 

dieoueeion .... needleasl7, in the present writer's opinion. 

As an analogous CaBe, au~poae that we have a prob1ea re

quiring a body with a rest mass of 10 grams to have a 
12 momentum of 10 o.g.s. units. Obviously the velocity 

io11 cm./sec which we obtain by simple division ie mean

ingless; the true velocity is lees than that of light. 

Similarly in the case of the spinning electron we cannot 

assume that our simple formulae will hold exactly at 

high angular velocities. If it be objected that our 

electromagnetic formulae apparently include a relativity 

oorreotion, the reply is that an investigation on the 

basis of general relativity is necessary; this leads to 

the well-known uncertainties of the theory of relativity 

for rotation. In spite of these oonsideratione, the fol• 

loWing theory retains the simple value 2e2a/9c2 far the 

moment of inertia. 
-----~-----------------------------------------~----------*Appendix 2. 



A aecond and more serious source of doubt relates 

to the mass of the electron. The total energy of rota

tion, namely the energy of the magnetic tield produced, 

ie given in Appendix 2 as!• 91.2c..~/J67T"'2.e-ic.t. 

Dividing by c2 , this gives an equivalent inertial me.ea 

of the order of l0-22 grams, which is io5 times the ob-
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served mass of the electron. Thie :ls true on the usual 

assumption a.a to the radius of the electron; but.matters 

cannot be much improved unless the electron becomes of 

nearly atomic aize. A way out of thiB oontrad:Se tion was 

suggested by the late R.A. Lorentz in his lectures at 

this Institute in 1927. If the electron is not distorted 

by its high angular velocity. it is necessary to assume 

that it is retained in its spherical form by 1ntern&I. 

stresses. !he potential energy of these stresses ma7 

then be auch as to compensate the kinetic energy of ro• 

tation represented by the magnetic field. 

!'he third and most serious 41.:ti'iculty, empirioally 

stated, is that the correction term. which a simple the

oretical consideration of the spin effect& introduces in• 

to the Hamiltonian :tunction of the system. must be divided 

by 2 in order to re-present the facts of observation. Rigbcy 

recondite derivations of this factor t have been presented 

b7 !homaa l.1and FrenkelJ It 18 hardly unfair to suggest, 

that, had the theoretical formulae been thought to correctly 



represent the facts, no such considerations as theirs 

would have been put forward. !he Tery uncertain con-
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di ti on of this theory is well illustrated by the fact 

that Professor Lorentz, in the series of lectures pre

viously referred to, arrived at a factor of 2 instead 

oft. The whole problem, in fact, has a somewhat 

mystifying fertility in sources of error lihioh multiply 

the results by 2 and t. In the present state of the 

theory these matters are chiefly of historical interest, 

and it appears advisable to present the line of reasoning 

originally employed by the writer and others, which leads 

to a Hamiltonian :function from which the desired result1 

CBll be derived. 

Sect. 2. !he effect of a dipole in the nucleus. !he 

spinning electron, as we have assumed it, constitutes a 

magnetic dipole, or elementary magnet. Thia mgnet, moving 

in the electrostatic field af the nucleus, will be subject 

to a magnetie force. by reason of v.tJ. ich it will deviate 

from the path of a point electrostatic charge in the given 

field. Let the charge on the electron by -e, that on the 

nucleus +Ze • and the magnetic moment f . !hen it is easily 

shown* that the force of translation on the electron is 

exactly that on a non-magnetic electron moving in the field 

of a nucleus with charge +Ze and magnetic moment -Zfl• the 

------------------------------------------------------------*Appendix 3. 



negative sign indicating opposite direction. 

If we now assume that the axis of the spinning 

electron is fixed in direction, the problem ia eas117 

solved. This assumption ie unjustified, as will ap

pear in the next section; but the relations obtained 

are very close to those in the actual problem, et.nd will 

be of use in the third p.rt of this disouseion, when we 

attack the corresponding problem in wave mechanics. 
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According to a well-known theorem due to Schwars

achil d, the introduction of tbe magnetic fields adds to 

the Lagrangian function a term - §< I•v) • where ;J: is the 

vector potential of the field in question, and 'i 18 the 

velocity of the electron. In this simple case it follows 

directly that the effect on the Hamiltonian tu.notion is 

the addition of a term+ ;(X•v). plus terms involving 

A2 , which are here neglected. 'rh1a pr turbation term can 

then be &%pressed in terms of the co8rdinates and momenta 

of the UilJ'erturbed problem; the error introduced is of 

the second order of small quantities. 

:ror a dipole of moment -zji. 1 I' • - ~ [r x f.l · 
· ~(A·v) = - ~a ([li:x~]· v) $ + ~ (,P-·[n.xvJ) 

= + ZeF f'<p 
,if the axis of polar co8rdinate4 m c./La 

is taken in the direction of the vector µ., • 



p <f is cyolio. Putting P<f • p. and tatroduoing a third 

constant of integration Y • the equation separates into 

'f,fl =:. -k- V2 lk -W-It."-+ -z_~ qe ~ -1 a. - Z.Fls .e..,u Jo I 

------- c.. /'\... 
~=- V~-~ 
~<f:;:, r 

The quantum integrals are of a standard type.• 

Their evaluation gives Z t7 
A-. P , -:::: 2-rr( J1c ~ ~ _ v) _ .et_/' . ZTTK< f.l<l.. ~ n ,1 
':!'I II.. (;4,J\, . I Y-:i:~ -w- v <:_ y~ I 'I\ 

9> P ~"9 -= 1-Tr( cr-r J '2: h 2- -t._ 

<P Pr qr=: z;,r r ~ j-1.. 
Adding the last two equations, { •( j+n2)h/211. 

Putt1Ilh j+n2 • k, k+nJ. • n,and )"- • ~ eh/4 mo, )l being 

provisionally lett undetermined,we find 

2--11 Ze2-~-=- {n+~')lt 
, and o( • ~2 

is Sommerfeld• s 
Ac.-

fine structure constant. ltenoe 

'2--111 
Pt z ~ 'f ., . - -

~2-(J.t;.9')'1..-

1 ' .A.a q ie small ,we can expand W in powers of Q. To the 

first order , 

w /h • - !5.3--2- + ) R ~ 7j ~ --=-
3
0-v.3 • 

'lt ,_. 11.: ,.., 

*Of. Born,J.tommeobanik,pp. 346ff. 
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!be factor Rotz'ii is the same as that occurring in Som

merfeld' a relativistic formula. Since n,k.j are integers, 

the effect is seen to be of precisely the order of mag

ni tuae required. 

!fb.is procedure has not been discussed in detail, 

since the neglect of the angular momentum of the rotating 

electron, and of the consequent precession of its axis in 

apace, raises numerous questions which oan onl7 be settled 

by the more exact treatment lhioh here follows. 

Sect. 5. !he Legrangian f'llnotion for qdl'ogen-lik• 

!toms having a rotating spherical electron. The for4e 

on a magnetic pole of strength 1l moving in an electro

magnetic field is given by 

Y.ll( Jr-g ft! ) ( 3) 

!he second term cm be interpreted to mean that any 

magnetic system. moving with a velocity v through an 

electrostatic I', behaves as if in a magnetic field 

1'1 •-! Vxl • !he rotating electron may be eoDBidered as 
0 ~ 

such a system; and now if we put I'• ~ , which is the 

field due to the nucleus. we have jf• • 11-_ ~ [ VX Ti J 
which is precisely the magnetic field of a charge equal. 

• 

to that of the nucleus moving with velocit7 -v through its 

position. !his field can be derived :from the vector po• 

tential I•-~ ; and we can now apply Schwarzachild'a 
~fl, 

general theorem. referred to in tbe previous section, to 



tbe elements de of the oharge on the spi*111ng electron; 

eo that we have added to the Lagrangian .function a term 

26 

tii=-ff ~fA·Y), (Lf) 

where Vis the velocit7 of the element of charge with 

respect to the oenter of the electron, A is the above 

vector potential, and the integration extends over the 

surface of the electron. In substituting the value of 

'I we take i as the velocity of the center at. the elec

tron; for r we put r'• the distance trom the nucleus to 

the element of charge considered. !Urther,we ma.'1 put 

v-f!;~ where £:; is the angular velocity of the spin and 

i is the vector from the center to the surface element. 

4 L = ~ ff d.e (v. r~ xa]) 
L '1., I 

It 

~hen 

The result of the integration is* 

i1 l =- + 7ie
2

0...
4 

(cvx~] · n) 
3c?·Jl3 

~he complete Legrangian function will thus contain 

(1) the kinetic energy of translation of the electron. 

(2) the kinetic energy of rotation, (3) the electro

etatio potential energy, ( 4) the a.bo'Ye termll L Aiyided 

Rz...A1 and (5) terms representing the relativity correc

tion. 

( s) 

--------------------------------------------------------*Appendix 4. 
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Of these terms (1) and 13) are the same as for the 

ordinary theory of hydl'Cgen-like atoms without relativity. 
2 

(2) is sim-plytiw •where I is the moment of inertia o-.f 

the spinning electron and<.> 1s the angular velocity of 

spi21. AJ!I to ( 5), we here omit relativity terms. These 

of course should be included in a o omplete theory. which 

would also contain interaction terms between the relativity 

and spin effects. However the present analysis is carried 

out only to terms of order v2/c2• !he interaction terms 

between the relativity and spin terms of order v2/o2 are 

of order v4/o4; accordingly the relativity and spin cor

rections can be computed separately, and tt1e complete re

sults to the required degree of approximation obtained by 

th,e:lr addition. * 
Zhe di vision of L\L by 2 contains an irremedi~ sr

bi trarinese • 6 L as computed includes terms only in the 
ct('~ 

velocity of the oenterAeleotroh. ~here are also foraee 

dependent on its acoeleration.~or the case of a Coulod:i. 

field ti1ese :forces are stated by Thomas to be -t times 

the forces depending on the velocity; aooordingly, the 

total foroe can by represented as derived from a Lagrangian 

f'unotion ~L. However, as already mentioned, Pro1eseor 

Lorentz arrived at a factor 2 instead of-~; so that it 

seems best here to follow the procedu1·e adopted by others• 

and arbitrarily di vi de ~L by 2 w1 thout attempting a physical 

----~~-~~---------------~-----~------------------~--------
*:B-1or 8.l'l additional juet:1ficat1on see Section 8 below. 
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interpretation. We can then wri ta 

L -:: .L m v 2. +- i. r ~ ,_ -r ~ - rz e,-ia..L !JY x ~J . A: ) ( f,) 
2 2 Jt (~C~ Ji 3 l 1 

tfa,_~ 
To discuss represented by this Legrangian ftlnotion 

J\ 
we introduce the following coerdinates: 

/l.. 1 ~ <}, polar co~rdinates ot the center of the 

electron reffered to. the nucleus as origin. 

e) ~p, Eulerian angles Of the electron; polar axis 

parallel to that of "9- ut <f • 

e • angle between the polar axis and an axis B 

fixed in the body of the electron. 

¥ • azimuth of the axis B about the polar &%is; 

initial plane parallel to that of tf • 
~ • angle of rotation of the electron about B. 

Using these co8rdinates we have~ -i. • "1. .. ~ . _. • 

L = :r { n. ,_ +A'.9. 't,.,_•.;: .9 c; '-) + ~ { e +IF t ~ + 2c... e ie-f) 
+- ~ - z e.2v.. l r~ ( Cf-41} j e -~ e ~ ( cp~ <p) st 

Jt. '<-'ll 
-~.J ~·tt9 ~(Cf- 'PJcje -1-~ .,_B cp-tj! 

+ r,,,.:. '-.s-"" e - ,,..;... ,s coo .'7 ~ e iO" c r -if J J qi cf ] 
( 1- ~ ' 

I ) 

~-------------------------------------~------------------*Appendix 5. 
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Sect. 4. The Hamiltonian function. Method of per

turbations. Applying the definitions 
. ~ . . r'- = CJ~ J H- = - la T- t f"i it J 

Bor the quantization of the solution of this 

equation to terms of the order desired we make use of 

the method of perturbations of Delauna7. the ap~lication 

of whioh to the purposes of the quantum theory has been 

' 'l worked out by Professor Epstein. / This mett:i. od. as pre-

viously mentioned has the advantage of unambiguously fix

ing the coerdinates for quantization. 

The first step is to find .the mean value of the pe:P

turbation term H1 over the first intermediate motion, 

that is, the motion represented by H•R
0

• In our case 

this motion is. that of an electron moving in an elliptical 

orbit and simultaneously s~i11lling, the two motions not 

~ffecting one another. The plane of the orbit is then 

:fixed; we may choose the polar axis normal to this plane. 

-----------------------------------------~-----------------*.A.ppendix 6. 

(8) 
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so that~• f and /b-• O. The arls of spin ta nar fised 

in the body of the electron;we ohoose it as the axis B, 

and as 1 t is also fised in spaoe we base /36 • 0, l°ll'=f12 U>& , 

where J".,_,, l'fJ e are all constant. The perturbation then 

reduces to rz e'L C\ 

H1 = :z..,b __ -;-~ CAJd of <f' rr_ . 
!he only variable in this expression is l/r3;and,as ia 

well known,* the mean value of l/r3 in a Kepler ellipse 
~-

18 l/b3,where b is the minor aaia. Consequently the 

" mean value of Bl ie 
t'V 'Z "2- ~ ( ) H1 ::: 2:-ze ~ 3 l(J'O e f <pr~ * Cf 

~he Hamiltonian tu.notion is now taken as 
rV 

H • Ho + B1 

this completes the first approximation. 

Sect. 5. Introduction of &IJSU.lar variables. ~he 
,,_ 

next step is to introduce into Ho and Bl the angular 

variables and angle momenta of the first intermediate 

motion;the angle momenta being defined by u1 •j)p1dqi• 

and the angular variables w1 being the canonical 

oon~ugates to these with respect to Bo.** 

In the ordinary theory of hydrogen-like atoms 

( R • H0 ) , 1 t is found that b • (~ ) ('tf~) /mZe2. From 

the same theory a~d-, from the theory of the rotator, 

-------------~-----------------------------------------*Cf. Born,Atommeohanik,p.164. 
**!he properties of these variables are to be found in 

Appendis: 7 and in the papers of Epstein 61 .., referred to. 
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Lastly, in equation ('1) l'cr and ft refer to a particular 

ahoice of axes. In general l'cp must be replaced b;y "'I +""cp J 

and l'q_ by l<e +-l<~ • For tf we put tJ I ,which is the angle 

between the normal to the plane of the ellipse and the 

angular momentum of the rotating electron. Computing 

008 e1 in terms of the variables we are using.and 

substituting for all the quantities ooourring in lio+R1, 

we arrive at the new Hamiltonian tu.notion• 

-1- ( l.( e t- U.4-1 ) 
L 

1.. 
2. ( U11. +4"9{(..('1') 2- L . --'71 

+ )1.( z If< 8 ((r.;l[l..,(('-WAY)-(1t1""-weil VE"f1f'49lL-~]g~~tt<sf"-l<4lj 

(10) 

Sect. 6. Canonical Transformations and Solution. 

We oarr7 out two oanoaical transformations in succeaaion. 

The first of these consists of a transformation alrea4J 

in use in the simple hydrogen problem, 7 together with 

the analogous tr.a.a.formation for the rcator& 
Jo1 ..,. ucpJ -g 1 :::. w'P- ltl.6; P'l.- ::= lf~+u<f', 'lz...= Wfi -wl\.; r3 =-tttl+'<,cd-'-<<f.1 f3 =-w /I_ _,j, 

'Pi = u~, '\> 1.::- w4'-1«1a >Pi..::. Z4e +u4J/f'-= we-; ~ == t{ ~ _) 9 3 = '11 ~ • 

Thie resul ta in 

/-} __ )>i 21e 't + P,'- .,,, '}, "eff c.>(S,-<ll iV {~·-~ ')(P,_ '-f,'J' + }\ 1l 
- '2-f3]_.- 2.I + Zc.>- fJ/'3.3 -- {ll) 

---~-------~-~---~------------------------~-~----------*£ppend1x 'I. 
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The second canonical transformation is as follows: 

P • P1,q • Q1-q1' P • Pl + Pi ,Q • ql. 

fhe Hamiltonian f'll.nct1on now becomes 

H = - 111 z\ 't + £. + )1 z \~ 'l r{,(TJ9_ ~'L--(1-;t] fl'~z-t] + Jo(F'-;~ 
2 })7.. 2.J: 2c.'2..f!.,,'2l 0- ') 

'3 z. 3 

=vv. (1i) 

All the variables are now cyolio except q. !be 

problem is there~ore completely &9parated,and we have as 

quantum conditions ** 

'3:: ~;' /', = ~;) rz = ~ , 7'= -i:; } ~ t"i-= n'h . 

(13) 

and putting n' + a + k • ~ 

x- . 
.. • § r ( ~2 - k2 - a2) • (I if) 

so that finally 

'7 2.. ..,.. 2. 9 'l. lJ-rlfz'*' ' ( . ~ "1. ) 
_ 2ff2."' 1.1 e s '"' -t ""' e f - ~ - 5 ~ 

w • 11.2.J. ~ + frr nl~t.1-(f-

2. 2. 9 t:> 2. l7 q. 
w _ ~ .J- s 1'\. + '' °' . 4 ( . 2 _ L-2.- S z) I J ~ ) 

or h • ?t~ 8'11$ zn3Aa J 1<. ; l 
o< = 2 ITe""/J. c. 

In these equations n and k have the same meaning as 

in the unperturbed Kepler ellipse. 3 ,k,s are 27f /h times 

-~~------------------~--------~--~---------~----------~~ *Appendix 8 • ., 

**Striotly,the degree of freedom represented by p is 
degenerate and should not be quantized. Cf .Sect.lo. 
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the total angular momentum,the orbital angular momentum, 

and the angular momentum of rotation,respectively.* Al

oordingly the quantization of the resultant angular 

momentum,whioh requires a separate discussion in other 

forms of this theory ,here appears as a natural and 

necessary consequence o~ the conditions of the problem. 

Section 7. Relativitz corrections. ~e energ1 levels 

for the hydrogen-like spectrum. In purauaaae of o11Z plan 

we now add to our expression {J.f)the terms arising from 

Sommerfeld's relativity correction. The whole expression 

then beooim s ** 'I? ~ 211- { 3 ) 
! . _ lf!.'Z.+ 5"LA. + A'o<,_Z'f (~z.-i1.__:)1-)- ~.- ~,__-Lt· .(ll) 
h 11 '2- arr i..>t 1 f~ 0 l-t ,.. " 

The oorirection terms due to spin and relativity can be 

oombined,and written in the form 

'1w R 2t?t( i 2

-3k'--s"L 
h . cf.._ "t.J 2>t. .3 I< ~ ( 17 ) 

If n,j,k,s are all integera,as demanded by the simple 

quantum 1haory,then of course this does not represent 

the observed levels,which are then given by Soillil8rfeld'a 

term alone. But the above formula as it stands cannot be 

made to represent the observed levels by ~ reasonable 

choice of f._]c,s, even allowing half-1ntegers;n of course 

remains unaltered,as it determines the p:inoipal term in w. 
-------------------------------~-~---------~-------------*For this interpretation of 3 see Appendix a. 

**Cf. Born,Atommechanik,p.233. 



The desired result can be obtained.as sug89sted by 

Uhlenbeck a?ll GoudBmit,by what they called a "Heisenberg 

substitution." fh1e wae already known from the anomalous 

Zeeman effect (of. Sect.// below) ;as is now known,1 t 

oorrespon4a to the relation between an angular momentum 

in olassioal dJDamics and the corresponding matrix in 

quantum d7Il8mics. This substitution is made by putting 

J2-t,x2-t-,s2-i for j;~a2respeot1vel7. !he 'JLZooourring 

in the denominator is replaced by X(X2-i). The first 

term in parentheses in equation {17) th~s becomes 
JL-31<")_- ~"2.. -t-~ -2n:3 K(K2-~) 

If now ,as proposed by Uhlenbeck and Goudamit,we take 

S • l, J • Kt.i~this term reduces to sim-ply •l/n3J. 

Thus in place of equation {IG) we obtain 

_ w _ g2. ~ - Ro\i.z\f (~ _ -1) 
ii • 723 + 32{"1.I n}t ;r 't . ( J i3 J 

This is identical with Sonmerfeld's original result, 

except that J occurs in place of k. ~ assigning 

integral values to J,we oan therefore obtain the whole 

observed fine structure. 

From the interpretation of j,k.a in terms of angular 

momenta it follows that J must lie between the limits 

k-s and k+s. If we carry this over to our new quantum 

numars end require J to lie betweeh X-S and X•S , 

then since J is integral ,X is half-integral. and s ia 1 

the restriction J • X • i follows at once. fh.e oase J • O 

oannot occur. 
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Thie leads to the Ublenbeck-Goudemit reinterpretation 

ot the hydrogen-type fine structure. ~e factor k in k3, 
~~ 

for whi•h put bat simply X,hae its origin partly in the 

k of the Sommerfeld term. Acoordingly,Sk if the spin terms 

were not present we should jut K for k. We should then 

obtain levels for half-integral azimp:thal quantum numbers, 

lying between the old Sommerfeld levels. AB will be 

pointed out later (Section /j ),these levels have a 

ph1sieal significance in connection with the Paschen-Back· 

effect;but under normal circumstances they are nasked 

by the spin terms. Since there are two values of J for 

every X,each of these relativity levels is split up into 

two levels due to relativity plus spin,oooupying two 

different levels of the old scheme. Thus for X • 3/2 

we have J • 1 and J = 2,corresponding to k • 1 and 2 of 

the old theory. For X • i we have only J = l;the level 

J • O,wh1ch the formula would assign an infinite energy, 

do es not e::ctst. 

Each of the energy levels in the fine atructur&,which 

on the Sommerfeld scheme corresponded onl7 to one state 

of the atom,here represents two such states.- Bach line in 

the observed spectrum thus ma7 originate in more than one 

way. lloreover,lines which were "forbidden" on the old scheia 

are now permitted. For J,being associated with the total 

angular momentum,obeys the selection principle for the 



inner quantum number, L) J = 0 or t l;whereas Sommerfeld' a 

k was restricted to ~ k = t l only. The lines corresponding 

to ~J • 0 are accordingl7 permitted in the present theor7, 

b~t forlidden in Sommerfeld's. As mentioned in the 

introduction, these lines are actually observed with 

considerable intensity. The present theory removes the 

apparent contradictions involved in their appearance. 

Jloreover,the general redistribution of theoreticall7 

predidad inteneities,consequent on the altered .in12rpretat:lon 

of their origin,leads to results which are in general in 

better agreement with observation than the previous ones, 

and which appear to remove at least the larger portions 

of the inconsistences apparent in experimental determin• 

ations of the Ro( doublet. 

Section 8. ?lotions in the Jlodel. Correspondence Prin• 

ciple. It is of interest to investigate the exact nature 

of the motions in the mechanical model we are uaing,even 

though recent theory renders this model inapplicable. For 

this purpose we n1te out the Hamiltonian function given 

by equation ,with the addition of Sommerfeld'• terms 

expressed in the same variables: 

17
2 * 1) "2.. '1 't ~ f ,, ~ ~ Mi l\t?(~ 1) Ll::. - Jn"(. + 1-- +ht IJ (. ""'r [k2.-(P-L)).] [P~'L-1>iJ-+~(r-11J +-2.-. ~--

11 2 P. 2 2.I 2 ,_ f, 3 ~ l O i.. r If· l.<- lj" Pi.. 'I 
J G~3 (I~) 

It is obv1oue that the inclusion of these terms alters 

nothing in our process of quantization. !he equation is 
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separable in the same variables as before;and if we denote 

b7 Y the same quantity as previously,the form of the 

integral ~pdq will be unchanged. !he oomputed value of r 

will then be the eame aa be:tore,and we shall arrive at 

preoieel;r equation (16) of Section '1. !his :tu.rnisbaa an 
' 

a441 tional Jul!tl.:fication of our treatment of these rela-

tivity terms. 

If we introduce F • iC GE - Pi - P22 ), G being 3h/2Jf' , 

we have as the final expression of the Ramil tonien in 

terms of the angle moaata of the whole probluu 

H:: -)hrz~'tt ~+- ,., tz'te s (~-~2-t2.)..,. ">tt rz.,.e.s (!i -!-) (2 o) 
'2-/'

3 
i. 2! lh,-z.pp "3t. . i i. 2 c_ 2. /'

3 
"f /'2. f · 

The angular variables conjugate to these momenta 

are linear functions of the time. !hree of theee,q2,q3, 

and Q2,are known from the first intermediate motion. 

In the Kepler motion q2 is the angle between the 

major axis and the line of ascending nodes;the variation 

of q2 is a precession of the ellipse in its plane. q3 
is the mean anomaly in the orbit;its variation is the 

motion in the el11pse. Q2 is analogous to q2;1t the 

angle of rotation of the electron about its axis of 

rotational angular momentum,meaeured from the line of 

nodes in Which its equator cuts the plane e • ~. Its 

variation ooneti tu tea the q;>in. 

The remaining degree of freedom is best treated b7 



observing that,as the polar axis is arbitrary,we can take 

1 t in the direction of the total angular momentum G. :low 

P • Pl + P1 is the component of G in the direction of the 

polar axis;so that in this case G • P. !he conjugate angu

lar, variable to G,which we may denote by r ,then differs 

from Q only by an easily determined conetant;so that the 

rate of increase of f1 is the same as that of Q.and its 

physical significance essentially the same. low Q • q1, 

and q1 in the Xwpler ellipse is the azimuth of .the line 

of nodes. !he variation of Q or of r consequently means 

a precession of the ellipse about the polar axis. !his 

polar axis we have taken to be the direction of the· 

resultant angular moaeatum,which is f:l.s:ed. Conseqaentl7 

the normal to the plane of the ellipse and the axis of 

spin must remain in a plane through the l'>')olar axis, 

about which the whole system precesses uniformly. 

Applying to the Hamiltonian ( 20) the canonical. 
r - ~ 

equation fi - J;;, we find that the t.requency t 2 of 

precession of the ellipse in its plane is due partl7 

to the spin and partly to relativity;that the orbital 

frequency t3 is affected by both spin and relativity; 
• that the frequency of spin Q2 is alte•ed h7 interaction 

with the orbital motion;and finally that the precession . 
f1 is due altogether to the spin effect. 
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These considerations facilitate an application of 

Bohr's cosrespondence principle. As this whole theo17 

has been rendered obsolete by the quantum dynamios,we 

shall only use it to derive the selection principles. 

!he problem is that of expanding the three compon

ents of the electric moment of the atom in Fourier series 

in the angle variables. This amounts to ~nding such an 

expansion for the Cal'fesian co8rdinatea x,y,s of the 

center of the electron,sinoe rotation of the electron 

cannot alter the moment of the atom. !he spi• will 

enter only in so far as it alters tbe motion of the 

center. A piece of expe~1mental. evidence for this will 

be pointed out in connection with the Pasohen-Back effect 

( S eot ion I \ ) • 
We have seen that three of our angle variables 

coincide essentially with the angle variables q1,12 ,q5 
of the Kepler ellipse. The fourth,Q2,1s only an angle 

of rotation of the eleotron,and does not concern us here. 

Accordingly,the required expansions for x,7,s are in 

form identical with those for the unpertut>ed Kepler 

ellipse;the difference ia onl7 that for the unperturbed 

ellipse ql and i2 are constant.while here they are 

linear functions of the time,like q3• 

The result of this expansion is fairly well known. 
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If we denote the arguments of the trigonometric terms by 

n1 qi + n2q2 + nzqz, 1 t is found that n3 may have 8J17 

value 1n all three expansions. n,e takes only the values 

&J., while n1 ie 0 in the expansion for z,and • l in those 

for y and z. How as the quantum numbers associated with 

q1,q2,q3 are ~,k,n respeotivel7,this means that 

.!l 3 • O or -t;l, L1 k • t 1, and ~ n is unrestricted. 

Koreover,when ~~ • O the light ia polarized parallel 

to the uis of total angular momentum,and when ,'1 j • ~l 

the light ie circularly polarized at right angles to 

this axis. 

Section 9. !heory of .lot.blets in _fttical end X-ray 

spectra. After the discussion of the hydrogen spectrum 

in Section 7 it is fairly evident that the present 

theory is adequate to remove the llillikan-Bowen 41ff1-

cul ty in the interpretation of X-ray spectra. It will be 

recalled that the ·compe:tiaon of X-ray and dpttoal doublets 

demands an interpretation o~ the former which conflicts 

with Sonaerfeld's relativistic theory. This theory makes 

use of the ~act that the deviation of the electric field 

about the X and L electrons from Coulomb's law is slight, 

and that the whole effect of the remaining electrons can 

be summed up in a "screening constant• subtracted from 

the atomic number of the nucleus. It follows that the 

large doublet differenoes,varying with the fourth power 

0 
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of this diminished atomic number,oan be explained as clue 

80 the difference in energ1 of two orbits having the same 

principal quantum number but different azimuthal quantum 

number,while the small doublet differences are attributed 

to differences ia aereening,for different orientations. 

of two orbits having both azimuthal and principal quantum 

numbers the same. 

on the spinning electron model this interpretation 

is practicallJ reversed. !he large fourth•powar difference 

are seen to be due to differences in our quantum number 

3,which in fact specifies a.a orientation with respect to 

the a.Jda of total angular momentum; the small differences 

are between states having the.same n and 3 but different 

k. As in the hydrogen-like spectrum.there are in general 

two such states. fhese coincide in hydrogen,but are 

slightl7 separateA in x-r~ apectra,owing to the siight 

difference in screening between elliptical orbits of 

differing eccentrieit7 - a IIIUCh more aatis:tactory ~oth

esis than the previous one,which required such orbits 

to have the same soreening constant prowided the orient

ation was unchanged. 

Thus the theory of X-rq spectra is cleared of 

oontradictions,provided of course that there ie no 

necessity of altering Bohr's interpretation of the 

alkali doublets. !hat this is ao appears readily as 
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follows. 

If' instead of a Coulomb field we assume that the 

electron moTes in any central field of' f'orcw,and neglect 

the spin effect,the problem is still separable in polar 

eo8rdinates,e.nd we can introduce the angle variables ql. 

q2 1 q3 just as before. The path is confined to a plaae; 

and sinoe the orientation Of this plane in space cannot 

affect the energy,B•W will be independent of' P1• 

low suppose the deviation from a Coulomb field 1e 

small. There will then be a small correction to iur 

expression for the spin effect, due to this departure 

from a Coulomb field;but since the spin effect is alread.7 

a small term,this correction will be of the second 

order of small quantitl es and can be neglected. Finally, 

since the only correction term admitted depends only 

on P2 and p3 and is independent of' P1,the quantization 

will be unaffected, just as 1 t is unaffected by the 

introduction of the relativity term. 

!he result is that the three effects due to rela

t1v1 ty,spin,and deviation from a Coulomb field are 

adlitive in the first order,at.least for the energy 

levels. Bow the efteet of a non-Coulomb field.as exetnp

l1f1ed in the spectra of alkali metals ,is a ver7 con

siderable separation of the levels for var)ing k with 

constant n; this separation is what distinguishes the 
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several series of such a spectrum. The small relativit7 

correction is absorbed into these large differences;but 

at each of the levels thus defined b7 n and k there ie 

found a doublet,whoee separation,allowing for the •soreen

ing&and other affects which alter the effective nuclear 

oharge,is precisely that between the two spin levels for 

which J is x+t and X-i- - X being k-i. An exception 

occurs in the case k-1,X•t. The level J•O does not exist; 

as for hydrogen,this level corresponds to infinite energJ, 

and cannot occur. Thus the s levels,for which k•l,are,as 

ie well known,singlets. 

Section 10. Degenerate aegreesof freedom. It will 

be noticed that ouz final expression of the energy of a 

hydrogen-like atom c/6) contains only the four quantmn 

numbers n,k,e,~, although the original problem is one of 

six degrees of freedom. Thie occurrence of only four 

quantum numbers iB in agreement with experiment; but 1 t 

indicates the existence of two degrees of degeneracy,whieh 

we proceed to investigate. 

If we return to our :first expression (Jo) for the 

mean value of the Hamiltonian 1• terms of the &Dgle momen

ta of the first intermediate motion,we observe that the 

momentum Uf" is missing. It follows tlla.t the conjugate 

angle:~ ,is constant;which means that there is no rota-
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tion a-out our axis of reference B fixed 1n the body of 

the electron. !hie is ob'Viously the oase;for a sphere 

is incapable of two simultaneous rotations,and the 

rotation of the electron is completely specified b7 ue 

an.d u 'I' • ln other words, we have a degeneracy due to the 

spherical symmetry,as a result of which all choices of 

the axis B are equi Valent. This degeneracy could only 

be removed by an inequality in the three axes of inertia, 

or by the association of some property with an axis fixed 

in the body of the electron. AD argument for the sphericit7 

of the electron is thus proviaed;an aspherieity would 

introduce an additional degree of freedom and a new quantum 

number,multiplying the levels beyond those observed. 

The second iegeneracy is that represented by the 

momentum !,which appears in the form(/~) for the Ha.mil-

t 
mA . tonian,and was here set equal to z:;;:;;. It will be not4ted 

that P is absent from the energy.and consequently from the 

final form of the Hamiltonian in terms of eagle variables, 

given in (20). Bow Pis the component of the total angular 

momentum G in the direction of the polar axis. Its 

quantization ie accordingly a space quantization,wJlioh 

is justified only when the corresponding degeneracy is 

removed. ~his can be done,as in the simple theory of the 

hydrogen atom,by the introduction of a magnetic fieli;the 

number 17Tthen enters ae the magnetic quantum number. 
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Sect. 11. !agnetio Effectl. The application of a 

homogeneous magnetic field with lines of force parallel 

to the polar axis adds two terms proportional to the 

f':l. elds strength }-{ to our Ramil tonian function. (Terms 

involving )ti.. f!re n_~glected.) The first of these. 

associated with tbe orbital motion of the eleotron,1s 

the eame term l!c. rt, which occurs in the simple theor7 

of the Zeeman effect.* The seo·ond,asaooiated with the 

spin.is 'YJ_ ftv ;the factor 2 arises from the doubled 
lfrC T 

ratio of magnetic moment to angular momentum of spin. 

ExPreesed in terms o:f the angle variables of our problem 

without magnetic field.these may be written together as 

gJl CP+r). 
Z.J.h (_ 

~iia is added to a Hamiltonian function wh1oh 

contains corrections for relativity and spin effects. 

and also for deviation from a Coulomb field. The result 

depends on the relative m.agnitllde of these terms to 

the magnetic oorreotion. We shall first assume that 

the latter is small compared to all other terms, 

If this is so we oan again apply the method of 

perturbatione;we have to :find the mean value of the 

magnetic term.taken over the unperturbed motion.express 

this mean in terms of the angle variables of the un

perturbed motion,and quantize the Hamiltonian contain

ing this mean value in place of the above expression. 
------------------~------------------------------------*Cf. Born,Atommeohanik,pp. 237ff.,ana Appeniix 1. 
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p ,as we have seen, is a constant in the unperturbed. 

motion,so that we have only to find the average of p. 

Bow p = P1 .which is the component of P2 in the direetion 

of the polar axis. The vector represented by P2 preoeeses 

uniformly about the vector represented by G;accordingly, 

the mean value of P2 is P2oos(P2,G). But the vectors 

p2,P2,G form a vector triangle,so that 

P22 • P22 + G2 - 2P2G cos (P2,G). 

Renee the mean value of 1 2 is (p22 + a2 - p22)/2G. 

The mean value of P1 is the component of this in the 

direction of the polar axis;but as Pis the component of 

G in the direction of the axis we :f:lnd,for the mean 

value of P1, (P2
2 + G2 - p2

2 )P/2G2,and for the mean value 

of the whole term which we are seeking 

~ 'vv ~ e }{ p ( I+ G
2 +r, 2 -ll_J_) 

2-ktc_ 2G2-

The entire approximate Hamiltonian will now depend 

only on these momenta,which can aocordingl) be quantised, 

giving 

Llw.::: eJ-f_.m 
'f-Tr1't c 

If now we make the "Heisenberg substitution," we 'find 

e.-}f (I + cr-t;) +($z-4.)-(k~~) ) 
t1 w- ~ ~ (_ I 111 I 2- ( J L_ 4 

/ 

which is Lande's formula for the anomalous Zeeman effect. 
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Our proof applies only to the case of doublet spectra; 

but the for1m.ila is general. 

We have here assumed the magnetic correction small 

in comparison to the relativity and spin effects. If we 

now make the opposite aesumption,that these effects are 

small perturbations of the motions produced in the 

magnetic field - which must be the case if the field 

strength is sufficiently increased - we have quite 

different conditions. We have first to solve the motion 

without the spin and relativity corrections. If 

the electron moves in a central field,the non-magnetic 

terms will then depend on P2.p3,and Pz,while the magnetic 

terms are ~i{- (Pl + 2P1). Oonstl(uenttly Pl and P1 
2>1L mk 

are quantized;we can write Pl • 7!!J. ,Pl • -::;-:-- • z.rr .e-lf 
The effect on the spectrum is clear. Quantum 

transitions in 7TI and fll aoour independentl7. Those in 

-rn split up wvery non-magnetic line into a "normal" 

Lorentz triplet. Those 1nTTl should lead,among other 

things,to lines at double the normal Lorentz displace

aent. On the correspondence principle the intensit1 of 

these lines should be zero,for they do not correspond to 

a change in the electric mtment of the atom;this is so 

because the omission of the spin terms makes the orbital 

motion independent of the spin. Linea of this general 

type are observed,and their intensity drops to zero 
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for very hgih fields - that is ,the probability of auoh a 

transition vanishes when it ceases to alter the orbital 

motion of the eleotron;this is a partial juetifioation 

of our use of the correspondence principle. 

A f\1.rther interesting result appears when,a~er 

solving the problem with magnetic field,but witnout 

tpin o.r relativity terms .we ini'oduce these latter term& 

as s'1&11 perturbations. By our general rule,the7 bave 

to be averaged over the unperturbed motion,and expressed 

in terms of the angle variables of that motion. ror the 

relativity term this is simple;as it depends onl7 on p2 
and p3,which are constants of the unperturbued motion; 

its average is given simply by writing it in terms of 

P2 and p3. The average of the spin ;t;erm is best obtained 

from equation ( Cf ) • by observing that 1 t is a constant 

ll1lltiplled by l/b3 and the scal.ar product of t-n. orbit

al and rotational angular momenta~ b,the minor axis of 

the ellipse.is of course a constant of the unperturbed 

motion (it depends only on pa,pa,and constants). For 

the scalar product we observe that the vectors repre

senting the two angular momenta in question precess uni

formly at different rates about the polar axis. The 

scalar product then reduces to the product of their com

poaente in the direction of the ~e;this is P1P1.so 

that the required average of the spin term is aimpl7 
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oonst.p1P1/b3 • 

The quantization accordingly consists in putting 

all the angle momenta of the unperturbed motion equal 

to tuantum numbers times h/2 Tf. For the relativity 

term this means adding the Sommerfeld correotion;but 

we ma.st take half-integral K instead of integral k,as 

explained in Section 7. !he spin term is proportional 

to 70 m . These two energy terms are superposed on those 

due to the unpertubsd motion,inolud.ing the magnetic 

effect and the deviation from a Coulomb field,this 

last being assumed relatively small. fhe sum represents 

tthe Pasoheh•Back effect of a doublet spectrum for high 

fields;and it is worth while to examine its relation to 

the undisturbed doublet discussed in Section 8. 

The principl&i lines observed will be those of the 

Bormal Lorentz ttiplets,corresponding to transitions in 

alone. Other lines will be weak.since the .effect of 

the spin on the orbital motion ie by hypothesis small. 

The energy differences corresponding to the outer lines 

of these triplets ,for which L\ 7T1 • *l.will contain spin 

terms,eo that there will be alight deviations fram the 

norm&l separation of the Zeeman pattern. The central 

liAe,on the other hand,1s given btA m • O;and for this 

line the spin effect vanishes,so that its position ia 

determined bt the principal energ7 levels and the rela-
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tiTit7 terms. These lines accordingly appear as if they 

were transitiona between the Sonmerfeld levels for half

integral x,while the original doublet lines appear as 

transitions between these levels for integral k (•J). 

The two values of J oorreeponding to a doublet with 

given X are J1 • x-t,J2 • x+t. It easily seen that 

J1(l/J1 - 1/X) • J2(l/X - l/J2); in other worda,if we 

assign the weights Jl and J2 to the correepondi:ng doub

let levels,and find the resulting center of grav.tt7, 

this center coincides with the level whioh enters into 

the oatral line of the Pasohen-Baok t:r1 plet. (!his 

neglects the spin term,whioh drops out of the energy 

difference and thus cannot be observed.) !his is a 

well-known fact of observation;and by means of these 

oenters of gravity the ~elativit7 levels for bal:f'

ihtegral X acquire a direct physical aignificanca. 

It is well known that the Paachen-Baok effect is 

frequently partial. Since the separation of doublets 

with different K'e,sa7 of a p and a d term,may have 

quite different valuea,it ia possible for the same 

magnetic field to be large with respect to one 1a rm 

and small with respect to the other. The jltst then 

shows a Pasohen-Baok effect,the second an anomalous 

Zeeman effect ,and the combination of the two gives a 

system of spectral lines intermediate between tie two 

types. 



This reb""-'-~ is familiar;but it is not so well known 

that the Paschen-Back effect as observed for s-p dou•lete, 

even when carried through to the appearance of a noraal 
15 

Zeeman triplet,as by Kent,is still only the partial 

effect. On the old theory this is not the oaae;the a 

state is a singlet ,and the plilaomena of the Paeclla-Baok 

yre.nsformation enter the a-p lines only through the p 

term. Aocordingly,the appearance of a Lorentz triplet 

with its oentral component at the "center of grar•ty" 

of the original pattern- between the two doubat 

lines- is taken as the final effect • .But for an a level 

J • l,while K • t;so that a sufficiently high field 

should produce a Pasohen-back effect of the a-term,in 

the sense that the center of the triplet should shift 

from its position between the original doublet lines to 

.. a potition coneiderablW outside; for l/t - 1/1 • l, 

while the separation of the p doublet on the same 

scale is 1/1 - 1/2 • i. Thie effect is probably not 

accessible to experiment;for in the most favorable oase, 

that of lithium, JS- the separation of the p-doublet is 
5o 

sufficien~ largeAthat eztremely high fields are required 

to produce the partial effeot;and the separation of 

the levels J • l and X • t is probably even greater than 

the aboYe result would indicate,owing to &n increase in 

tlB effective quantum number. 
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Section 12. Other results. This Part will now be 

concluded with a brief mention of certain further 00.11-

sequenoee of the theory which have bean developed br 
various investigators. 

The discussion of magnetic effects in the preceding 

section referred only to the two extreme oaeee in which 

the effect of the magnetic field is small (anomalous 

Zeeman effect) or very large (Pasahen-Baok transforma-
epin 

tion) in comparison with the e 6• ·J • • • • ·~ • 4 I I • fr terms. It 

is aleo possible to discuss the intermediate paachen

Baok effect,in which the magnetic and spin terms are af: 

the same order of magnitude. This has been carried out 

on the matrix dynamics by Heisenberg and Jo~dan~ln a 

paper which hand.lee the whole aubjeot matter of the 

present part from that point of view. • 

It is also possible to discuss the behaviour of the 

hydrogen-like fine structure in a magnetic field. Here 

what corresponds to the anomalous Zeeman effect oan 

scaraely be observed. The intervals between the separate 

non-magnetic lines are already near the limit of obser

vation,so that a Zeeman pattern small in comparison to 

these intervals is hardly accessible to experiment. If 

now the field is increased,the magnetic effect beoomea 

simultaneously of the same order of magnitude as the 

interval between le'\11.s of differing J and of dif:fer6ng x. 
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which gives a very complex intermediate Pasohen-Back 

etfeot;while for high fields,in which the experimental 

technique becomes diffioult,there is a complicated 

overlapping of the Lorentz triplets due to the vsd.ous 

values of K;these tripl6ts should overlap with out 

disturbing one another. 

So:rmerfeld and Uns5ld ~~ have attempted an appli

cation of the summation :tmles of Burgers and Dorgelo 

to the intensities in the fine structure.treating it 

ae a special oase of a doublet system. Rowever,the 

theoretical foundation of these rules implies the: 

whole of the new dynamics;and as the equations rep

resenting the system are now undergoing a :fund.ament&l 

revision,these results must be regarded as provisional. 

Fiaally,the hypothesis of a spinning eleotron,in 

conjunction with Pauli's exclusion principle,haa been 

applied to the systematization of practically all 

multiplet speotra,involving the theory of atoms with 

more than one valence electron. This is a vast subject 

which can only be referred to here;the most available 

systematic presentation is Hund,Linienspektren. 



Part III. Theory of the Spinning Electron in 

Wave Mechanics. 
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Sect. l. Introduction. The formulae for energy 

levels derived in Part II actually represent the observed 

facts.and the discussion there givem of their physical 

consequences is substantiall7 correct. Suoh a discus

sion,being stated in terms of classical. meohanioa,has 

the advantage of greater olearness,owing to the simp1e 

and familiar character of the principles emplo7ed;but 

it is theoretically unsatisfaotor7,since we now know 

that classical dynamics ia not strictly applicable to 

atomic processes. It is even logically unsatisfactory, 

since the phJSically significant results are obtained 

by the highly arbitrary device of a "Heisenberg sub

stitution," a procedure which can onJ.7 be justified by 

theoretical considerations based on quantum dynamics. 

A less pbjectionable procedure is to introduce a 

mod111.cation corresponding to the spinning electron into. 

the e.quations of quantum dynamics ,and to derive the 

requirea formula by the methods in use in that subject. 

Until recently,this has been done by taking the Hamil

tonian equation ( 'd ) used in Part II ( including the 

Thomae factor t),and translating this into quantum dy-
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nam1cs by the rules in use for such purposes. Bot only 

is this method subject to al.l the uncertaint1es,d1scussed 

in Section l of Part II,whioh attend the setting up of 

the Hamiltonian function in queetion,but,as shortly will 

appear,1t gives rise to new and unexpected diff:iaulties 

of its own. 

The most adequate theory of this type is that given 

by Heisenberg and Jordan in the paper already referred 

to. J4- !be given Hamiltonian function ie translated into 

a JJatrix expressions, and the energ)T levels are then 

derived by matrix operations. The authors thus derive 

the formulae found in Part II,aa well as others,euoh as 

those for the intermediate Pasohen-Back effect. Bo 

additional assumptions beyond those of Part II are 

involved. 

The advent of Scbredinger's wave mechanics naturally 

gave rise to numerous attempts at stating the theory of 

Part II in this physically interesting and mathematically 

attractive form. The writer at one time believed he had 

succeeded in such an attempt,and published a preliminary 

report of his reeulta;L3 subsequently an error was dis

covered,tue to a difficulty clearly stated in a paper by 

Darwin.2.. 

As the writer's investigations coincide with part of 

Darwin's,the presentation of the method will take a con-



siderably more abbreviated form than would have been 

proper for Part II,which contains much unpublished 

material. The method is again to take the Hamiltonian 

equation of Part II,but now to translate this into wave 

mechanics by the use of a rule due to Schr5dinger. Tl& 

resulting problem can be solved,but gives rise to the 

difficulty mentioned above,namely that the boundary con

ditions of the equation require the quantum number as

sociated with the spin to be an integer,while in order 

to obtain doublet spectra - or any spectra of even mu.l

tipltci ty - it is necessary to take it as a half integer. 

Devices for avoiding jhis difficulty were given by 

Pauli 2o and by Darwin 3 . These form the incomplete 

foundation on which Dirac has very recently 5" set up a 

theory of an entirely new type,which not only eliminates 

the trouble just mentioned,but also disposes of the 

difficulties in setting up the Hamiltonian :f'unction,by 

dispensing with the mechanical model of a spinning elec-

tron. 

Before taking up the writer's now superseded investi

gations we shall consider a problem corresponding to that 
.. 

studied in Section 2,Part II. 
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Sect. 2. The effect of a dipole In the nucleus. 

Soh•ldinger's general equation for an electron moving in 
- -

an electromagnetic fie~d independent of time,neglecting 

the effect of relativity,is ( ) 
'\l z. <y .J. '1-r~ "- ( A- V ~) +- 8 ~ [ E - .: VJ 'f = o H 

where I is the vector potential and V the sal.ar 

potential. The equation for the ease when 'the magnetic 

field is due to a dipole in the nucleus was first given 

by Fook ;we derive it as :follows. Let tJ:a dipole have 

a magnetic moment z~,the vector representing 'tllis 

moment being fixed in the direction of 1h e negative z

axis. (This is the dipole substantially equivalent in 

its classical effect to the spin. See Appendix 3.) !rhtn 

Ax=- - z; 'J) A:;==-+ ri;:; / Az.= o 

e.na A • \7 lf = - ~ ( 'J J_t_ - x J 'I- ) .:: Zft d_:t_ 
}l.3 Jx: c:>' fl.3 d'f 

We now put f' = eh/4-rrme ,supposing the electron to have 

an agular momentum of half a quantum unit,i.e. h/411 • -

Professor Epstein g has discussed this problem, 

with the additional refinement of allowing foi: 1h e 

effect of relativity,ueing a method current previous 

to the recent theory of Dire. He also introduces the 

Thoaa~ factor t into the dipole term. 
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His equation oan be put in the form 

vz.r+(A+~+(_+-~~d- )lu::::o 
}'L fl.,., . /t3 &Cf l 

in which the abbreviations are Z 2--

A q-Jf'-f( "2 4-cfZctL(.£ I ...c _L(,rt/,_'t Q - ~ = - f:·h211tc..1:} U--=. - +hfc:.L / L- ~ l - 2.1•;'-c:..'~- .) 
1i-i-c~ 1 h .... c.'. A c. "-..1 

and terms depending on the time and the square ar the 

veotor potential are omitted. He fi•ds for the energy 

levels,to the first order ot approximation, 
E ::- ~-i..- R-k<2Z'1'/!!.._,- ~) + flto<2 Zii-__ n_, __ 

)1~ h..,., lft-2: 't :2..-.,.3 f lf+f_J{(-./-1) (27) 
in whioh n is a positive integer,.( is a positive 

integer or zero,and n1 is an integer or zero, If now 

ni • + < or -e ...-1 the two last terms oombine,and 

E :: - ~z. + i lt.oel.'Z "'(~ -!- ) i :: f < ''{ ~,:. - (-I (2 g\ 
n~ l'13 J 't / d. -f-1 1 h,=- f ) 

which ropreeents the observed fine etxnoture.• 

Since the oharaoteristio values of the equation with 

relativity oorrection but no dipole terms are,ae 

worked out by Epstein, Sohr6dinger,and others, 

f. ~-1?hZ
1

+-l?Ac:1..);.z_"'(~ --~) 
n.. h. ~ Jt ..,. (' +-4:.. 1" 

it is evident that the characteristic values ~ our 

present equation (Z5 } are 
f - - "KhZ~ Rhu'i."1-'Zl..f. ~ n, 

d - -~ +- 2 >1. 3 f£e+fJte-H J 
!rhis solution bears a simpl7 demonstrable rela-

tion to that of the general equation o'f the spinning 

electron problem,to be set up in the next seot1on,and 

will be used to obtain the result more readily. 
-------------~-----~--------~~~--------~-~----~~-------*Jiote that this demands a half qua:r£um for the apin. 
The relation of E to the similar expression on classical. 

mechanics (Sect.2 Part II} is interesting. 
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Sect. 8. !he Scla.14t.qer wave equation for hydrogen

like atoms havipg a rotatil'!S spherical electron. We begin 

by rewriting the Hamiltonian equation used in Part II in 

in which all the symbols have the meanings with 

which they were ~here emploted,and we 8ave introduced 

the two additional abbreviations o( • o/ - <p and 

!fhe part of'2R which depends on the momenta is a 

quadratic form,so that we oan at once derive the cor

respondiDg wave equation from Sohr841nger's variation 
25 

principle. !he result*proves to be the same as tbat 

-----!~--------~---------------~----------~-~-------~-~ *!he calculation is given in Appendix 9. 
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B7 introduciagtwo ver7 obvious abbreviations we 

may write ' . 

\1'vt+~V'~ + ~f(it)+~[E+lf{]u==O. (33) 

Section 4. The .eolutions of the unperturbed equation. 

We have now to treat the above wave equation b7 the 

method of perturbations, taking 2~ 61 f('1) as the perturbing 

term. A theor7 of p~rturbations for this tne of problem 

is given b7 SchrBdinger ~~;the metholl used in what follows 

is a modification due to Professor Epstein. 

We begin in the usual wa7 by considering the solutions 

of the unperturbed equation 

\f2t< + ~ V'-i.l{ + ~ [E + ~] 1{ -;:::; o 
0 r p ftv 0 .Tl 0 . . 

This equation corresponds to a spherical electron 

revolving about the nucleus and simultaneously rotating, 

the two motions not affecting one another. A charac

teristic :tUnction u0 is then the product of functions 

characteristic of these two motiona,and E0 is the sum 

of the corresponding energ7 parameters. 

!he first of these two partial solutions is the 
~ l()-S~.; 

well-known solution alreaq usei in Secti-on 2 of th1a 

-ita:ct;the second is a special case of the aalution for 

the symmetrical top,worked out by Reiche and Rademacher. 2 I 

Combining these,we have 
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{AD ~ x: (1tJ ~">cl ( ((JDsJ) 'J' ( e) e__ ((Jt, <J1 +"1;i_ \f'+ "":J ~) ( 3 _7 ) 

Tl & J = ( ~ ct) ~ t ~ fl)~ F (-t 1+o1 + J+ r_, , +ot1 ~ ,__ -~ ) ( 3 b J 

E- = - ~-41. + ~ 6'(6'+1) 
0 h-L- 8'Tfi.I ( 3 /) 

Here X~(tt)is 15:€ 111 Schr8dinger•s ta.nction for the 

quantum numbers n and { , ~n, is an aasociated Lege?l&lre 

:f.Unction,and F is a lqpergeometric fllnction. n is a 

positive integer. n1,n2,n3, e ,d,s,p are intergers or 

zero,of which the four lest cannot be negative;in fact, 

d ., l n2 "'." nz \ and a • l n2 + n3~ Finally tc d+s) + p • 0 , 

so that <Tis a positive integer or .zero. 

From the expression of E0 it appears that cJ (cr+l) 

takes the place of s2 in the theory of Part II. Thia 

is the ordinary relation of the manner ,in which a 

quantum number of the type associated with an 8.IJBUlar 

momentum enters the energy in the quantum dynamics,to 

the manner in which it enters in the classical dynamics. 

Since we took s • l,it is natural,and in fact almost 

compulsory,to take tr• l. !bis leads to difficulties,as 

we shall see. 

!his choice of 0- has the advantage of bringing about 

a great simplification in our expressions. The writer has 

worked out the relations for any general value of tr ; but 

as the results are onl7 a part of tbos e which Darwin 1.v

has published in a more finished form,they are soarcel~ 
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worth inclusion in this thesis. The relations become 

extremely complicated and cumbersome to handle,and the 

results contribute nothing to the solution of the 

difficulties in hand. !hey do not 8Ven represent the 
.2.. 

physical facts to a first approximajion;for Darwin has 

shown that to obtain the observe« results for doublet 

spectra we must take CT •t ,which 1e excluded by the 

boundary conditions. The writer's work was exelau1vel7 

with integral values of tr ,and consequently failed of 

even this result. 

!he choice of 0-=l limits the choice of p,d,a,n2 , 

and n3,and greatly sil'Plifies the expression for !. 

We are limited to the :f'ollowing oases: 

p 4 s n2 n5 1 T 

1 0 0 0 0 oosi cost 
() 2 0 t.l i:1 l l(l-cose) 
0 l l 0 11 l 2sin9 
0 1 l ;tl 0 l tsin9 
0 0 2 tl ~1 l (l+oos9~ 

Section 5. Introduction of method of Eerturbations. 

Into equation (32.) we now substitute u • u0 + 2mQv and 

E = Eo + 2mQE • We aasume that v and E are small.so 

that their product can be negleoted;the result,correot 

to the first order of small quantities, is then 
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\72. + ~ v•i.v +- 8 ~ [f.o i ~~] v 't-b'~ Eu 
V J: -lt."'- /'L 'f.t2- D 

t I [ J'l..'<o , ~ 2 '<o J 2 L< Jl3 ~o( m& -~O-~oe ~ +'""-<-9~ I( ~ 
" • J.21.f 0 .f 1 ~lL<o l ~1-

-1-~ v....., ~ 3f Je +- <- '+- <ot'-9 rot e<tDo<; ~fdt' -<of P1<4<..e ~~ ;;~"' o 

Substituting for u0 its value 

,,"- + ~'V,,_ v + t~ [co + 'Z e.
2 

] v 
V v I Jt.2.- .It.. 

!: _ ;; X ~ ( n) e_ i ( >t,Cf..,_,.z.. ~+~3~) [ ""'tt-P''T' 1 -l "l:J.. .M,6( f 1 'T' 4J't- G 

+ , ~ ~ o< 1> , rr Yo.< G> .,_ c: Jf , p.,c....... 01.:r 4M:" ttY- rr ' - ,.,, ,,, ~ Cq3 °' 4't .JJ 4'i " r '11 

_,. >t >t <.pol..~ 119 '4<.Gf 'T1 ->t ..,7-p 'T1/- 87r~E llf't.)frrtf (~Cf+-"1..'l't-"3f) 
I J I j ft-i.. Jf I 

-=. 0 {3C/) 

d ft"'' d'r'~ 
where P' = J..J&- and T' = de • By putting the cosine 

and sine of~ into exponentials this reduces to 

Vlv+ ~ v'' v + &-7!2 [ Eo f- ~J v 

_ 2~, -x: 1.._) ~ ~1 ·,.,, .L,.,,., 45 J {e •"'( r'+,., r U't,.9 J (,,., ~111 '11~ & ~ '11<4' i:>J 

-le. - i o< (1 '- h, 1<..tJf"'fo) { T '+,.,2-t-r7 'tr'f-61- ->1.3'1f l41< e)-~1 112..Prp J 
- 8~~ x(' (I\.) p rr .. {:/ (>c, <f+'<z.'f" +~ g2) ( lj-() \ 
~ E:. .. -=- o I 

We now apply the reduction formulae* for P.:1 
• 

~J - ?t., ~ rB 1{' = ~ -p'l."' .... 1 
} J 

( 'l-1) r, -t ~, c-d'( ,f) ~lt·=-16et>11l1f.t-11, +1) ~"·-' 

where } is -1 if n1 :-;,. 0 ,and +l if n1 <O,while 

"I is +1 if n1 / O ,and -l if ni~O. 
---------------------~-------------------------------~--*Jor these reduction formulae see Appendix 10. 
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and also the reduction formulae for T * inL1the caee when 
' 

ois lt 

l1 '+(n-i. ~e·- rt3 Ca<9J T =A::_ 1!L~' , 
T1' - ( .. 1..~ e - >t.i CO<- e J rr := f(.,, "3 'r. "3 

. "2- H1+\ • 

1 "3 ".J in which the values of 11 '1-;i.. and f ,.,,_ are given i ri the 

following tables: 

* l 0 -l 

1 ... 2.. -\ 0 
0 -'2. 0 

-1 2 0 

~ nz 
1 

0 

-1 

1 0 -1· 

0 2 

0 -2 \ 

0 -1 -2 

If we inteoduce the fUrther notation 
-p1l1 ih, 'I'_ V"a l'T1,..3 L. (>t2-yJ-f ~ f) - zl\3 
1 e €. - i e ,; / "].... ~ - .. ~ J 

so that u • -y.f y>t• '711.3 
0 l\}J f 4 ,.l-

('f5j 

( L/.. .. h) 
• ') j .. . 

-----------------~-------------------------------------*Appendix 10. 



65 

I 

We now J..ntroduce in_to this and equationjJ'f) the quantity 

f • - 4~2mze 2/nh2 ,whereupon we obtain 
V'z.l-i 0 + 1:- 'V''-1-<

0 
- [13-i.-+ 2~ +- f: oflt-t 1Jj 1.(0 -= 0 (_ lf-1) 

1/\1 -4- ~ v'l-v - [ t'z_+i.~ t- ~ o-(o+u] v 
I , r· u "'" (f' ..e -==- .).._,_.i 1l>1.1 J1 "''1- (ff--'t.,J/e-l.i1+1) u 0 L"'..1 .1 :1 "i-'.1Jf ..... +-'.,'!J) 

+- S Ot 1 ) ) :,: l<0 l ><_,6'..1 e,, "-1+',, "i.. -1.1 ~)-l.1t1 1(_z__ 4 0 l14..1<1'.1<2,, H11 "2l "!1) 

+-t3 ·r::. t- l1o ( lt..1 Oj e) "1/¥12..J '13 ) ( 't d 
'./ 

Our present problem is the expansion of the right side 

of ('IS}in terms of tbe aolutioils of ['f7)tor varying n; if 

we euooeed in carrying out this expansion, a large body 

of general theory becomes available for our use. Now if 

f3 has the value given above, it is diff'erent for the 

di f'ferent forms of u
0

; the functions defined by ('/?)are 

simply the product of the SohrSdinger and Reiche functions. 

But it is equally possible to regard~ inL'1'7) as a constant 

independent of n. The equation is still of the Sturm

Liouville type,* so that the solutions satisfying the 

boundary conditions still form a complete orthogonal 

system, though of course a di~ferent system :from that 
with variable P • ~he dependence on r, that is the fb rm 
of the function X~l•)• is changed; the factors depending 

on the other coordinates are unaltered. Tl» or1:hogonal 

property is modified only with resi;e ct to r; in place 

I "°v( x· (' 2 j°" v {1 \I -e of 
0 

11,, ;Jt..~ =- 0 we now have 
0 

n11 1-11.1 ri.4 ,_ = 0 •. 

With this understanding the possibility of expansion 

-------------------------------------------------------
*Appendix 11. This highly ingenious device is 

due to Professor Epstein. 
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in terms of the functions u 0 is retained. On• futther 

property calls for remark: f ,being a fixed sonstant,is 

to some extent arbitrary. It is 1hen possible to take 

('. = -4'Jf' 2mZe2/h2n,where n is the value of the quantum 

number n occurring on the left side of lV?). or.a of the 

functions u 0 then coincides with a particular one of 

the original set.* 

Now it easily shown from general considerations** 

that if the right side of such an eqnaiion as (~)be 

expanded in a series of l/r times the functions u
0 

the coefficient of the term which contains the same 

function as that appearing on the left ,in.st.;vanish; 

otherwise v cannot satisfy the requirements of finite-

ness. 

The original problem is degenerate;the para.meter 

E depends only on the two indices n and lT • 'fhis means 

that u 0 ,and consequently the quantity on the right of 

{V~)which is derived from it,will in general consist of 

a linear combination of partial solutions of the type 

indicated by &JJ and (B,J,involving all the combinations 

of the indices e ,n1 ,n2 ,n3 whicl1 are cons is tent wt th the 

values of n and tr appearing on the left of(v-j). However, 

since only nJ. and n2 are altered in the terms o·n the 
--------------~----------------------------------------*It has not been thought necessary to int:mluce a 
new notation for these modified functions. 

** Appendix 12. 
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right,it will be unnecesear7 to consider uo as composed 

of terms with varying t: or n3 ; the equations obtained 

for the energy levels would simply break up into a set 

o:f independent equations.one for ea.ch level w.lth constant 

.f and ni) ( It will appear that the energy is independent 

o:f n3J 

We introduce the :following three expansiona.the 

:first o:f which is assumed with undetermined ooe:fficients. 

while the last two must be co nstruoted by integration. 

( 1) u0 ( n, (), .f ,n1 ,n2 ,n3 ) = ,,f, X u0 ( n,cr-, ( .ni ,n2,n3 ) 
I &. 

where u0 on the right represents the partial solution 
V(V"'Z..,"' 

given by A>t l~ .,1--

( ) 1 "'¥'< ' L A , "'e 2 Ji3 J\ >t-::: It,., ., .A )I' ; ( 5) 

According to theory*,&~, coefficient on the right 

having indices the same as on the left must vanish. 
----------------------------------------------------

*Appendix 12. 
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This leade to a set of Z(2( + l) homogeneous linear equa

tions in the 3(2( + l) unknowns x_h-i ; for from Schr8dinger• a 
( 

theory - f\ n1' f ,while we have. seen that n2 in our oase 

is -l,Otor 1. 

In order that these equations may be oonal stent the 

determinant of the coefficients of the X's mu.et vanish. 

Thie gives a set of 2( + 1 cubic equations in E ,* which 

are easily eolved,all having the roots 

E_ - - JL__ ~ E~+e _i:- ~ E::. -(€-1-tJ ~ ~ . ( 53) 
- grfbt. 15,/ fn'"lt\ B., J ~}[ .. ~ B\1. 

The existence of such a triplet of levels instead of 

the expected doublet indioatet that somethixig ia wrong 

with our prooedure;but there remains the possibility that 

the explicit expressions of .in and Bn may in some way 

remove the difficulty. 

The next step in order would be to compute these 

coefficients An and Bn by integration,ueing the ortho

gonal properties of the tu.nctione A~ ; this is an easy 

matter for individual states of low quantum number,and 

such a case is accordingly computed in an appendirt for 

the sake of an example. For any quantum numbers in 

general the process is less simple.and we shall take 

refa.ge in a special device. 

The equation tor the case of a fixed dipie in the 
~------------------------------------------------------*Appendix 14. 
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nucleus may be treated bf applying the same method of 

perturbations which we have been using to equation 

of Section 2. Tbt resu1t haa a very close relation to 

that of our present problem,and it will be !Qlown that 

we can apply Professor Epstein's solution of the dipole 

problem to our more complex case. 

Section 6. Application of the same method to the 

fixed-dipole problem. Equation (:z.5)1s so mu.ch simpler than 

those which we have been discussing that we can obtain 

the results we need by little more than a specialisation 

of those already in hand. We rewrite the equation in 

the form . '< . ~ i. 

vi-u + ~ ~ +- }{.!!-"'.' ( E + ~ ) L< :::: o 
!l? 0 'f ., 1- -'?. 

and substitute u = u0 + 2mQv, E • E0 + 2mQ€,where 
17 2.'< +- 8 rr'1,... ( & o + ~ ) L<o :::: o 

h 'l.- A 
L5S) 

so that 
dtco _ ' u ""if- t "L-o ; eubeti tu ting this and introducing 

our two expansions in terms of modified functions*C5o) 

Vz.v+ ~~(fo+ ~i-)v=- ;~(n,Aw-875",)Ue1<"'.,e)11.) (S7) 

Since again the coefficient of u 0 ( n, .f ,n1) on the right 

must vanish, E.c: '}:;,.: >t 1 ~~ (SS) 

------------------~----------------------------~-------*The justification of this procedure is even simpler 
than in the complicated aaee. 
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From this 

But from Professor Epsteinre results we have seen that 

we must have n., 

so that the two quantities on the right must be equal. 

This is a mere mathematical identit7,whioh we can now 

apply to our problem.* 

Section 7. Final solution of the spinning electron 

problem for tr= 1. From the reeul ts of leotion 5 we 
An L h2 

have for our problem E1 • 2mQ -- -------- ,in whicn 
Bm 8112m 

L may have any of the three values -1. e .- e - 1. Apply-

ing the above 1dent1t7 
J? d. 2 rz/" It ~ 

/ ' E1 • -
h3 {C<+~Xe+tJ 

L f:_,/ ) 
I 

We have derived this result fmm an equation in 

which relativity is neglected. It is obv,ous "that a 

general equation including relativity effects would 

bear the same relation to ours that the equation solved 

by trofeeeor Epstein does to our dipole equation ( 5<lj. 

The result will be the addition to our B of the same 

terms as form the difference ve;seen the characteristic 

values of l25)and Ll-(,) • 
~--------------------- ---~----------------------------

*This agrees exactly with the result of A~pendix 14. 



For the complete expression of the energies of 

our problem we have 

L again hae the three val•es -1,~ ,-~ - l;the 

energy level is' a triplet instead of the expected 

doublet. There is no way out of thie diffioulty. We 

oould,1ndeed,represent the observed spectra by 

assuming that the apin contribution must still be 

divided by 2,and throwing out the value L = l as 

spurious;but as our original equation alrea47 in

cluded the Thomas factor t,suoh a procedure would 

be altogether without justification. 

Darwin has shown that in general any integral 

choice of ~leads to an odd multiplicity,of order 
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2A 1. For doublets we mu.et have 0= t;but this 

conflicts with the conditions that u is single-valued. 

It has been suggested that we might allow double

valued fUnctione,reserving single-valuedness for u2 , 

which is the physically important quantity; but 1h is 

allows n1 to take half-1n•egral values,whioh intro

duces new energy levels corresponding to half-integral 

values of n,which cor1flicts with observation. ~he 

difficulty is only to be removed by a complete re

vision of the theory,as will be sketched in the Con

clusion. 
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Part IV. Conclusion. 

From the discussion presented in Part II it must be 

evident that.in spite of numerous uncertainties and inac

curacies.the hypothesis of Uhlenbeck and Goudsmit has 

proved one of the moat fruitful in modern physics. It 

has served to bring order into what was prev1ousl7 a 

puzzling mass of com~licated ~henomena. 

The spinning eleotron has been of most importance 

in the theory of atomic struoture,though it enters into 

the discussion of wvert subdivision of the 11Uantum 

theory. In view of the fact that the rapid growth of 

the quantum dynamics has widened and deepened our con

ceptions of quantum phenomena to such an extent that 

visualization of the mathematical relations involved is 

usually difficult and sometimes apparaa.tly impossible, 

it is well to remember that progress in physioa,espeoial-

1¥ in experimental physics,depends largely on a geomet

rioe.l representation of the phenomena being atudi ed. It 

is for this reason that those investigators who are 

actively engaged in applying the hypotha•1s to atomic 

theory continue to use the clearer mechanical model, 

despite the fact that quantum dymamics renders such an 

interpretation incoJ1lete. 
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The effor•s to state the hypothesis in terms of tbs 

new dynamical principles are of course necessary and of 

the highest impoBtanoe. Until recently the only nearl7 

oompleye success in this direction was that of Reisenberg 

and Jord&ll~'t.lthough most of the uncertainties attaching 

to the theory of Pe.rt II remain associated with their 

work. 

All attem~ts to represent the spinning electron in 

wave mechanics at first came to grief on the difficul

ties explained at the close of Part III. The first escape 

from this blind alley occurs in a paper by Paul1,20 in 

which he adopts the device of setting up a wave equation 

involving the three components of angular momentlUll of the 

electron instead of the three Eulerian angles of rotation. 

Pauli's work was open to the o~ct1on that no reason 

appears why this method should succeed where the more ob

vious one fails. An equivalent mathematical pro01td.ve was 

interpreted by Darwin 3 as meaning that the Schr8dinger 

wave of the electron is a transverse wave,specifjad by 

two amplitudes instead of one. 

These two theories still failed in one respect 4om

mon to all discussions of the spinning electron previous 

to the present year. The equations set up not being in

variant, the facts of observation were represented correct

ly only to the first order of approximati6n,that is,to 



terms of the order v2/c2 ,where v is the velocity of Ule 

electron on the Bohr theory. Moreover,one would expect 

from a complete theory some explanation of the curious 

fact that the spin correction comes out with exactly the 

same coefficient as the relativity term. 

Both these points are settled by the new theory of 

Dir.ac. 5 Much of the mathematical apparatus developed to 

handle problems in the new dynamics depends on the fact 

that the Sohr6dinger wave equation is linear in the 

energy parameter E. As will be seen :from equation 

(leotion 2,Part III) ,this'VW&s no longer true of tha rela

tivisti• generalization of the equation formerly in use. 

Presupposing the necessity of such a linearity in E, 

and adding thw requirement of relati vtatie invariance• 

Dirac has been able to set up a system pf equati. ons 

which correctly :.represent all the phenomena ascribed to 

the spinning electron a.nd to the relativity change of 

mass; tln particular, as shown by Darwin '-+ and by Gordon ,JO 

they lead without approximation to the experimentally 

verified Sommerfeld expression for the energy levels of 

the fine structure and of X-ray spectra. Thus the mechan

ical hypothesis of an electron with a given mgular momen

tum and magnetic moment has apparently disappeared;the 

present writer believes that this is a temporary eclipse, 

and expects that a geometrical interpretation will short

ly be brought forward. 
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11lagnetio moment of a system of electrons. 

By a theorem due to Schwarzschild the Lagrangian 

function for a system o :f electrons of charge -o and 

mass m,moving in a :fixed electromagnetic field in 

which the vector potential is I and the tofal elebtro

static potential energ (including mutual repulsl ons) 

ien U,has the form 
} I ), I 1. I 2. • 'l..) - tr - '2- )" { A • v ) 
l-1 :: 2;; ti. X + '.1 i- z.. C- L Tl 

where the sum extends over all the electrons. 

From this9hegleoting terms in A2,there follows 

H = ~ l<fx'L-+P~i+Y'z./+tr -t-t (A· VJ 

H is thus increased by the term [ c (A · v) . _ 
'7 i1 _ L[}(xilJ 

Now for a homogenous magnetic field T\ _; ,-. - L 

-Q.. l-( - -} e. [L ( )/ (- -J ) e_ -)t We have -- A·V ::: C:: i.. n · llX'V = - l'o 
L ~*C I 
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if the axis of polar oo6rdinates is in the direction of )t • 
-Now the potential energy of a dipole of moment ft in this 

field is ( H -,_,M); so that the additional energy is exactly 

that of a dipole of moment 
1
,.lt = ep/2mo ,with 1 ts axis in 

the direction of the total angular momentum p. 
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Theory of the rotating sphere with a surfaae oharge. 

The initial problem is to tind the magnetic fields 

produced. The 

is given by 

magnetic vector 1;c1tentia.l 

A - - .l ')' ~ t . _;{ - (. ) . -·i'' ) 

at any point 
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e ' J where de • 4j;e1n )d,!'.7 d ·f ie an element of surface oharge, 

i is the veator velooity of thia element,and r' is the 

distance from the element de to the point at whioh the 

vector potential ie being computed. Let the distance of 

this point from the center be r,and choose the polar 

axia eo as to paee through the point. ~hen we may write 
' 1 r 11 }? 1 1 ··· · ., · - = -1-( -:-·) ~ (.,tP,f)I) 1< G\ d -- - - ) 1·~· t l. p..!}1J ,•;i · ~l 
,,, (;\ :n "" '!>\ .J • • an 11:.' - "L ~ .~ ·"' · ··• j ,... · • 

Further. i =f.i:.7i :xaJ ,where :; is the vector angular velocit;v 

of :rotation and i is the vector from the center to de • 
• J ·~1J" -w yl ,,L,1 1 V' -L-~ ~i'--.JJ)(J 'l!hat ia-> ·lx=i·Jrl -·t.i;rr.,1 ''7'- "'-", -~ .... ,,, z' ~ ""x':!!I ;;; 

in which w!(, 'll'J' v.t! are all constants independent of the , ,; / 

integration. Moreover, the inj tial plane can be so ohos en 
, J 

that '"i}i =O;and finally, the terms in 11' and :s will give no 

contribution to the integral.ea they oontain 
•!. J 
·f • !rhe ultimate result is that Ar• .a..8 1: O. 

while e .:.i j !__ 1.1 "''I · . J , t Ai = +i-' .. ) 1,1 '"';(I l-t~O' 1./ ;..,....,, !) ~ tJ tf '!~ J 

I 
and 

Now since , ," . 9 f,t l •iP ·.9) = .,~·~~ + I [~ •t-H) J--;'\+I 1 '-f"' .:r-1..J-. t t',.1-1 : ff' 

in the SK'pansion of l/r' for which n = l only the eerm 
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will aontribute to the integral,giving a numerical factor 

2/3. The integration over ~(· 
1 

gives a :t'"°t\\r 2 rr ,so that 
-e.. '1.Jx 1 e G\ ;~"v'C 1 

A"f.T} = ··-;:-:-l ,,I -l < (..\ ) - ----- ) 'L > Ct . 
" ..,._ -" 3 ·'L '2. 

We now have all three components of I.and can pass to 

a system of oo6rdinates with polar axis or z-axis in the 

direotion of ,,'J • We find in evers oaae A.z = O. 

This can be put in the form 
€W 

For r <a9 Ax =-~y, Ay • 'C 1.1' 
~x. Az • o • ... "~ 

~ .,,.,;,/· 
For r > a, Ax = - J Y, 

Jt. q,... 

-e. w a,_ 
Av= --x, A = 0 

41 3J:., 13 z . • 
Theae are the vaotor potentials of a uniform magnetic 

field of strength 
.. ,,; .J 3:_ ,and of a dipole of momen~ 

c.. -'A'-
~r-::::- • 

j '-

respectively. 

The megnetio field ia given by l1 = curl X;the energy 

density is then given by E = ~rr. The total magnetio 

energy within the sphere ie found by integrating the 

value of E found :f'rom the first form of I over the 
., j 

.L .:·"- ·O~ 
interior; the result is Ti = ,;__· 7 ----:c_~ • 

!f.t).e total energy outside the sphere is found by integrating 

the second toro ot E over all exterio* apaoe;this is 
I ·t.:;:,. .... }-"\ 

To • - -·--··--
.:.!.. 1 (._ "l... 

Finally.the total magae.tio e:nerg7,or ~inetic energy of 

rotation.is given b7 
1 

T = !ro + fi = .:.} ·--c;_, "l... • 

We can now derive all the results used in this thesis. 
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{l) T oan be written in the ordinary form of a kinetic 

energy of rotation, T = i-Iw2 ; ivhence I • 2e2a/9o2 .. ( If we 

introduce the "electromagnetic mass" m = 2e2/aao2,we have 

I = ma.2/3. )~he momentum p ie I w; ,,£-' ,a.e we have seen, is 

ecJa2/3o. From this .L11../p = e/mo,as we require. 

( 2) If the rotation is quanti.zed,p = I "~': h/21f. 

Since the equato:bial velocity is v0 • a ,,.t.> ,we have 

Vo = ab./2 ffl• Substitut1ng,v0 • 9ho2/4rr e2 ~ 9c/2 ~ 

= 617 c • l.85 x io13 om/seo. Note that this result 

depends only on universal aonatants. 

( 3) Since ~ • tI.A.>2 and Iw • h/2Tr. !I! •..; h/4rr. 
Bemembering that .;.v = v0 /a,we have from ( 2) the result 

T If 9h2c2/l6 if2e2a. 



Appendix 5. 

:Ei'orce of translation on the spi1ming electron. 

A :mae,rne"tie partiole in an ele1;·~roioitatie: elQ. !! mo~lEH:J 

as if aub jeot ·to s :mag:rHrti(i :field ~ = - ! [ v :x !!] ~ 
a 

vfb.e:i·e v ia the veloc i ~· o'f 1h e pa.rticl6. If' the nuo-

leus has oh&rge ·•Ze 1 ts :f1eld is i = ·~~er/r3. lie.nae 

Ii = ... ~ [v X £ J ~ If' the magneti:l moment t:ne 

electron ie l"'epresen'ted 'by the vector r the fc:roe 

of translation J is given by 

fx = (j·Vllx)) Fy== lff·-VHy)J F~={fa·VHz..) 

Substituting the value of Jr and reducing 

f::: k [v xp] - ~_!-e {µ·It)[ vx ii.] 
(/l3 c..,r 

- -~fvxtt'] 
•ihe:c$ H' :_ - ~ [t' - 3 ( 1< :,/Ji] 

Btrt ilr' ia p:recisely ·the mas11etirJ :field o:f a dipole 

of moment -zt. the negative a:lgn indicating thett :1 ts di= 

re(;tion ia opposite to that o:t' p .. F ia exao·tly the ae 

on a 1.:.iharge -e moving in the field of this di~pale;whieh 

waa to be :Proved. 
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Evaluation of J L. 

The procedure is similar to that used in Appendix 2. 

We have to evaluate the integral 

ff ~e{V~~~]) 
(v·[wxcfil:::(fvxQ}j·a) • Let [vxl:V]. ff ;then the integral 

becomes I taking the z-axis parallel tor} 

~ fJ ~ .8 oUJ-d f [:it ~ {?;: f P11 l Id"-' fl [ 0,. <t ...;.1'J ._,,,Cf 

··t- 6' '1 Q ~ i& ~ ~ +- ~-z_ a '-(fa .tJ-j 

i ::2-) f L t ;;_/' ~ L <p,& _) 4P ,s-~ }}-"- V-

- 2.... ..e__ a (}z_ 

3 Lt' ll"l 
) .. - Q • L..- ,, • ·-

/l. 

~ L LI 
LJ (, CL ' - ~ -l - . - -·---- I [ v x. 4.1-.J • ll J 
3c Ji~ l 
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Appendix 5. 

Introduction of oo~rdinatee into the Lagrangian function. 

The expressions of the Mnttic energy of translation tmv2 

in terms of polar co8rdinates,and of the kinetic ener!7 

of rotation ticJ'- in terms of the Eulerian anglee,are 

well known. (For the latter see Barn,Atonmeohanik,p.31..) 

~here 'remains the expression (fv Xli"J] ·ii) . This is 

equal to the determinant 

x 7 z 
x y .I 

Using X -=. JL ~ /)- w:> Cf 
':J =IL~ Jf)~'f 
?- == fl-"'° tt9 • • 

and wx =- ~ e- l.6Q lf ~ -~ lp-9 
tv'j = ~ e- ~rt + 41::> q; e 
'-<-h- = £u:> e ~ ..,.. ¥ 

the determinant reduces to • · 

-'L 'Z-[ 4o {_(f' -er JJ-e -~ e ~ ( cp- <JJ) tt'7 "f 
.. " 

-~ ;S-~ .8 ~ { <p-lf) cp B . 

t [ ~ ~eo-o 9 -~ rr9 4/:J<B ~ e ($) (tf-tf fJ cf ii 
. 2 • '-1 + .l-<A- .{) rw-J. 



82 

Appendix 6. 

Derivation of the Hamiltonian fUnction from the Lagrangian. 
L :: !i: i ,~ 2-+- t-i. i> 1.-1-4 ~ ~ 'J-~1' 2-J + t t e 2.-1- 9> 2-+ ~2 

+lld> e o/ cf )-r- 1P ;--~* { t<.Dlf-<fJJ i;-B -~e~c<f-'PJ~ f -~-~"°11 ~t'f--~ ipe 
6~ ~ • 

+ [llMi 2-4'-t¢.f> - ~~U.O~h f)lqj (<p-lYJJ<P! + ~ ~iplf!_ J . 
We may introduce T merely as an abbreviation for the 

part of L which depende on the velocities; L • T - U. 
d f'71 • 

Then by de:f'ini tion H = -T + U + ~ -;-.-- 8:· (, vg,_ L 

Since T is a homogenous quadjatic :form in the velocities, 

it :follows by Euler's theoraa that 

lI .. !I! + u = t [It ti. + u • 
For the momenta we find 

~ -=- "' ,.;.. 
ff}-=:- fkA"l-;, +-A-(19 
f' cp :::: ~ II,_~ i:l\9- cf +A 'f 
ffr =- Le-+ A-G 
~ = r cit+ 4Pe-~+ A'f 
P~.:: I (i+ ~elf) -1-Af 



Solving equations (a) for the velociti•e,we find 

i. = f i /»4 J . )...-

,{} : t Po - A"' l Ht. t--

f =- l l'f- flyJ I \N1 ,,:·-~it-e = l ftJ -fJe-J I T 
Y! = L <fr-~ '~J-tA<f-·-~;0{}-/l<£_1J/rµ.. 2-e--

} ~ L ( ri- - ..(De 1'9:) -v4-~-~e--~_)~ I r~l-Q 
( 
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Taking out the common factor 1/mr2I we have a co efficient 

ze2a2/6mc2r3I. By Appendix 2 I • ma2/3,so ~hat the expres

sion becomes ze2/2m2o 2r3. Simplifying, 

I+= Ho t : t:-:3 1·· 4P C 'f-~ f1-P e +'-<ft-t>-~ l t(-o/J °f«J·P ~ 
n. (.., ...... 

-,:,,~e ~ ''f-'fJ ft.9-f>~ - ...gt19~ L<(-4.l>J Pr Pg 

t [ l +-ef J-~o <4::; Lf- '-Y iJ 'r r f - L{ft .tJ-Gk g w lf-lf 1 r~· f~'J .. 

The approximations involved in this derivation are 

equivalent to neglecting terms in the square of t be 

vector potential. Since the terms in the :first power 

are o:forder v2/c2 ,these neglected terms are of order 

v4/c4. 
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Angle Variables of the Unperturbed Motion. 

I. Angle variables of the Kepler motion. 

For further details and for demonstrations not given 

here refer to the following: 

P.S. Epstein, Zs. f. Phyeik 9,92,1922. 

Born,Atommechanik, pp. 158ff. 

Van Vleck, Juantum Principles and Line Spctrs, 

pp. 19Zff. 

Of these Van Vleck's treatment is the most detailed. 

The Kepler motion is the solution of the eqllation 
- L~ l. L I.. 'P 1=_ '1 - 'lsL L._ H - i..~ f"' +r~i:..- i __ 'f ~ -

....... .t..-~ .-L..-

This separate& into 

J1 t ~ yi.."' vv- +-~.'Zt~Z-
,_, ___ .. -- - ~-, "\... 

f~= vt'.1- __ ~-~ 

fp =- f 

''J-. 1 
,:::i, ':L-

where 1J, o ,p are constants of integration. Appljing 

the definition of the angle momenta we find 
- L Ai f »t 'Ze.-2-

l<.ll- .- L~ J .I\. d.-t -= __::.~ - r 
J._ v=L~w J 

li!t1- ":'.- ~ f' l'~J. f) 7: r-p 
u 'f ~--- ±1r-' /Jfd r :::: "" 

The three constants of integration then become 
~L-€. lf' 

W = - t· ... ~-\9-+-<i 'f y.- ) r -:o <--( ~ -1- '-(_ <:t / 'f ~ « 'f -



The angular variables w-A-, W..9, w'f' are now founrd b7 

setting up S • f!a.cli -t )l/r;.d.e- +-f If; df ,expressing the 

constan;s W, Y,p which occl:r in the momenta in terms 

of uA,u "'u ct' ,and differentiating with :t:eepect to 

'L, $-;and ~respectively. 

If simultaneously we introduce the abbreviations 

L-== ~~}- ( 1 +-E-4Po/' ~-8-= Yt'<H-~q>JL.-«cp'l- ·x·· 
1 t 'i/9- + '{<r r- / .1 - --£1.e-+ "1. -rp C-60 

where E- is the eccentricity of the ellipse 

the results may be stated in the form 

\V Cf - Wtr= Cf' - t.i---\ ( ~~ -~ ~ t) 
.. f 

~~-w'L::: Y - lf> . --·1 , • 

l _, / ("F"fi' ~ '-P . ~- fl-{:; 2- ·~ lf 
w'l~ ~ { 1 +t-l4:><f' ) _,. t -

1 
t-; ~4'-

The physical meaning of the variables may ba dis

cussed as follows; uc.p• p<f• p • mr2sin2.j; ;that is, 

u is the component of angular momentum in the cltrac

tion of the polar axis. Further, the total angular 

momentum is V p~;__,;,~z+-Pf"~f} . 
Comparing this witht the expression for p~we find that 

f 1: up--+ uf is the total angular momentum. It fol

lows that the angle between the polar axis and 'fhe 

normal to the plane of the orbit has for its cosine 

u,J--{u ,_-+ u'rj. The equantity u L+ u~ + uf, is con

nected 'tlth the eccentricity by the relation 
- . ._, ~ ... --s·_ -+ L{ ~ y ]-f;_'- ~ -

\.;( 1. +Iii)~ 
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~-
We add ¥he expressions for theAmajor and minor axes: 

I ·~· -_, v -
-·-·~·--- - --- ····- --- .... ""·~-

~ ·.7..-li- L 

The nodes are the points in whioh the orbit inter

sects the plane 11:f = r . Consequently for a not.e 
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coe:~= O,cas .,X = O,tan X •,,~,and wf - w iJ- • f- tan-lr,c 

• f • !£ ;whence for a no Ide ...,, = w Cf - •o-t [ • The 

azimuth of the normal to the J:'lane of the orbit must 

lie midway between that of the ~Hla.des ;hence Shie 

azimuth is precisely •r - ws- . 
It will be notoied that out relation between r and 

~ is the equation of an ellipse in polar coarcU.nates 

of its plane. r is a minimum when 4-' = O,so that~ is 

the azimuth in the plane of the orbit,measured fra.m the 

perihelion. w,'L is a linear function of time wh:kth 

vanishes when r vanishes and i~creases by 2 lf when 

does so; accordingly ,~)l. is the mean anomaly in til.e 

orbit. \ can be shown to be the azimuth in the orbit 
I 

measured from a node,so that •'8- - w'\.. is 111.:e 

"longitude" of the node measured from perihelion. 

II. Angle variables of the spherical top. 

In this case 

~ -- L- L' p L -r ~L - LP "'-r f.'~L -2_ '-.o· e. '° 16 . .,.., . ·, .. 
II LI. '6 ~~~ ~ ~ ~ ~JJ 

which separates into 



' , 
-- ------------~---------.., 

i'e- -= -~ ~rw- -~e {p' .._,,,,:z-_1if:£Jp'I'" 

'P\f'= pf 
ff_-::- f ,, 

Hence 
[;1 e 7 i--'rr j> p o-d g ~ v= .LrW-~ Jo J 

L<.._,.,::- pl 

"{~ = p1' 
w is the energy; therefore w • -f: 2/21 ,where r 11a the 

I 
total angular momentum. From this r • ue- + u ~ • 

Further, Py• p' • U!( is by definition the oompoaant 

of angular momentum parallel to the polar axis;Bl that 
~ 

tfi6sa cosine of the angle which Skia the resultant 

angular momentum makes with this uia is ulfl/(uo- + U;p). 

The angular oo6rdinates w are closely ll!ilated to 

those of the Kepler motion,so that •w- wl7 proves to 

be the azmmu.th of the axis of angnlar momentum. 

III. Calculation of cos 91 • 
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The angle Q' is that between the normal to the plane of 

the ellipse and the axis of rotation (which ~or a sphere 

coincides with the axis of angular momentum) of the 

spinning electron. Let ~ , fi be the polar angle and 

azimuth of the nbrmal to the plane of the ellipse,and 

/\ , M , those of the spin axis. Then by spherical. 

trigonometry 
~ t: I ~ ({I<) (J-t- M) ~A~/\ ~ 'C-() A (qU /\ • 

Substituting our values for the various f'tmctions, 
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~1:: 14'~cp-'V19 ;-lw~-we) (~r-V] K;;;+"e,-a.__~j <-{If!. v(((J _ _ 
~ ··---- --~~- ·- ·- - -t-

i..._ 11 <p+u ~ .J-L 'r -1- ~ e-.,J <. "~.fJ ;(~fie1 
We oan now substitute into the mean value of the 

perturbation found in Section I our values of the 

angular momenta,the angle between them,and the 

semi-minor axis: 

It :: - h1 ~·~ y - l 44"+ <{ 19-)l--
-·-···· '\.-- ;- ·-·-········ ·····-

2--1 t( ,..:f'f ,gf'< f) 2- r: 
+- :Z.e .. --2· 1'113 A.J t .(;, I' r 
i . ..:>c ,__- · i~;~~~/h~.,F "° it'tfe-WeJ-l "'r"'e1J • 
,____ __ "<.__ _.,,___ -----

~~;J ~~ .. leeJ.'~ij.p- ll.~. "<· .. -) . -~- ~--- '!:J 'f 'f J ' ' 
,"f-r-<gA '«p~ ~&)-~ +-cVf~Jl~ ... +~J i~vsJl~r~. 

This is readily reduced to the form in the text. 
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Appendix a. 

Evaluation of the quantum integral. 

The problem of quantizing the motion represented by 

~ ,, - 1io ~~ "+- !-"~ t 111 ~~~ f t4>g Vf!l-11-JJ~ lJ,<t:/+ fl.f-1> f::. W 
Ll_ 'L. 2 I. 2 c, Ii ('j { . J 
~ -

reduces to the evaluation of the cyclic 1ntegreJ. §> pdq • 
....._ 

To fQ.oilitate computation we eet the qu~tity in ourl7 -brackets equal to r. As an abbreviation we also restore 

the previous notation P - p • t1· Then 

f - ff1 
cos q = -

Y (f'l--~ -p'l.) ( P:--P,1.-) 

This equation is of a decidedly awkward form if we 

wish to extract p ae an explicit function of q. lllStead 

of attempting thie,we make a transformation which allows 

of evaluating our integral in the complex plane of p. 

We observe that dq • - a. coaq IY 1 - ooe2q
1 

.• 

Substituting the above value of oosq,1t is found that 

( /', p ) 
f<A ~ : f',-J>+(F-f P,J 1!,,1~1,"i- ~ 1fi-f~ - ,,d. p 

W1"J. )( l,._2-l,1.) - (F- Ff, J ,__ --:) 

llow (P22 - p2)(pi -pl2) - (:r • PPJ.)2 • a+ bp + cp2, 

where a= ltfpl -PiP2 - :r2 ;b • 2P(P~ + F);c•-(~+pl•2F). 
Our integral 1e accordingly of a standard type. It has 

two branch points at the roots of a + bp + cp2 • 0, 

and five other singularities at p2 s •p1, P2 • &p,and 

p • dO • The problem then becomes one in the 



~l 
calculus of residues. 

To caloulate the residue at infinity we put p • l/<T. 

Simplifying slightly ,we obtain __ 

fd~~ - q-~;+~~+2[~- ;,_1f-~+}~(i'~~T~'J~·+~~]. 
The residue depends on the terms of zero degree in er 

within the square brackets. Such terms oan only occur 

in the product of the two parentheses. Expanding the 

second parenthesis in ascending powers of r ,we :find 

that we have to take the terms of zero degree in 

( F- - : t- ~) [2+fo- + (p,_,~ + i:z_l--tf,_Jo-1-J 

These terms are 2lf - ,2 +- P22 
+ Pf + P2 = Pf + lf + 2:r. 

, 0 __ '2-7T i 0,-z.."l-+ t~F) -2Ttt (k.._2-+1'i.2 +lFJ '1:7- i::- -
' . J\ e,o - (<: : -- -- -- --~ : :l: L1r v Pz t f L :+L f . 00 <- ± i v ,,:t'1'~-t2 f- z., 

The sign of the radiaal is in generalnil.eterminate-,but 

does not affect the results. 

The oalculation of the residues at the four f!ni te 

poles is aimpler,but in these cases the determination 

of the sign is essential. Thie sign depends on the 

position of these poles with respect to the branch points. 

The general method,it will be recalled.is to connect the 

two bran•h points.which ere the roots of a+ bp + op2 = O, 

by a out along the real a.xis {assuming both roots real). 

The path of integration then pasees in the positive sense 

around thili branch cut,the sign of the radical being 

taken as positive below the real axis and negative above, 

and consequently as positive imaginary on the real axis 



to the right of the branch out.negative imaginary on 

the real ans to the left of the cut. Aooordingly. 1 t 

ie necessary for our purposes to eatabl:t.a:h that the 

roots of our quadratic are real and that the poles of 

the integrand do not lie between them,and to determine 

on which side of the branch cut these Joles lie. 

Apparentl7 the case of complex roots can occur in 

our problem;but the results we require are given b7 
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the case of real. roots. In this case it is readily shown 

that the poles lie outside the branch cut;for if tither 

p1
1 • 112 or p2 • P2

2 we have a + bp .+ op2 reduced to 

-CF - PP1)2,and the radiaal is imaginary,while between 

the branch points it ie real. 

If we put y • a+ bp + cp2,this represents a 

parabola in the py-plane,with its axis parallel to the 

y-axis. The intersections of this parabola with the p-axis 

are the branch pointe;two values of p for whicb y' has 

opposite eigns,and which lie outside the branch out,must 

consequently be on opposite sides. Bow 

y• • b + 2cp • 2P(P22+F) - 2p(BJ + P22 + 2F). 

In the special oase when P • O the sign of y' changes 

when that of p ohanges,so that the poles p = tP2 are 

on opposite eidee of the branch cut;and as when P • 0 

Pl • -p,the other two poles are p • ~P2,and also lie 

on opposite sides o~ the branch cut. Now P is quantisable, 



so that it is a constant of the motion; but P •licp+-li q..i ; 

that is,it is the component of the total angular momentum 

in the direction of the polar axis. Bow this direction 

is arbitrary,whioh proves the conservation of angular 

momentum for the system in this a~proximation;e.nd as 

it is arbitrary it is always posS'ible to choose it so 

that P = o. Consequently,since the mere choice of a 

co8rdinate system cannot affect the motions,the poles 

of our integrand always have the relation to the branch 

ppints whioh we have just found. 

To find the residue at p • +P2 we take the 

coefficient of l/(p-P2) in pd1,substituting P2 for p. 

The result is Pz CF-1-'P,) t'Which is +P2/21, 
Z Y:: ( F -JI' I'S"!. 

since ttls pole is to the right of the branch cut. 

The contribution to our integral is -27fi times this, 

or •1rP2• !he pole p • -P2 also contributes - Jr""P2 ; 

it lies to the left of the cut,and the radical has 

therefore been taken as negative imaginary. 

For the pole p = P-p2 we find the oontribution 7'( P-12), 

and for the pole p = P+p2,-1llP+p2). 

Adding all our result&, 
2 /J ( ~ Y.;-i-.,._+1>2--"1-+2.F I - p2-- fzJ = n' ft 

0 r ± y-;;;_;; r 2-.,_ f- .)_ f- J -:::, ( "-' +-- s 4- k ~.,, 
It whence F • ---(32 - k2 - a2). 

8it2 
It remains to establish the physical meaning of j, 
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or of ite assooiated angle momentum G • jh/2ir. This can 

be done by comparing our definition of F with the expressicn 

of the mean value of the pertuibation (Section 5,Part II, 

equation(~) ) • The quantities there written as Yf and f{f_ 
have the same physical meaning as P2 am P2. Accordingly 

F • P2P2 coa (P~2)• 

But G2 • P22 + P22 + 2:r • P2 2 + P2 2 + 2p2P2 cos(P2P2}. 

This is the ordinary form for the absolute value of 

a vector sum. :But the vector sum of P2 and P2 is the 

resultant angular momentum of the syatem,with which G 

must therefore be identified. 

The quantization of the total angular momentum,whioh 

in other •••t•• diaouesione of this problem is taken aa 

a starting point,here appears as a natural result of the 

general theory of quantisation,neceseitating no special 

theory whatever. 



Appendix 9. 

De•1vat1on of the Wave Equation. 

The general. result of Scbr8dinger's variation 
25 process may be stated as follows: 

Given a Hamiltonian function in the form R• T + U, 

where T is a quadratic form in the momenta and U depends 

only on the coerdinatea, the wave equation takes the 

form, in which Pk is to be replaced by Ju/ Jqk, 

Llr [ ~ (£-lJ7't,,,j,,_J-->) + ~~(E-V-] ~-==- o 
-A J 1A J fk It -a-
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where ~ is the determinant of the quadratic -form. 

In our ease 

10 
i 
' 

I 
iO 

0 

0 

0 

' -i.r 

0 

_ L 4PD-
---"'-~---

2.T~ie 2.1: ~e 

l toe -- --



Those elements of /j which are due to the spin 

effect are all multiplied by the factor Q,and are none 

of them on:~ the principal diagonal. They will g1 ve 

rise in .A ,and consequently in the wave equation, to 

terms onl7 of order Q2 or higher. These we negleot,ani 

accordingl7 we ma7 take for L1 the same value as :for 

the unperturbed system: 

4 ::- I/ 6 'fm3 I 3 IL'f ~-i.ril,/~ ~ & _ 
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Appendix 10. 

Reduction Formulae. 

When n1 is positive it is easily shown by differ-

that 

By differentiating Legendre's equation 'i .... , i.. J ;,P-f~ - 2 J( c!f! -r el~ kJ 1>. =- o , ttAv <:))( ( 
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n1-l times ,wi tb: respect;: to x,putting .x • cos ~and final.17 

applying the above definition.there results 
n"' ( v",-f "+ 1 2n, 4Yt CJ re 1 = f-1e1-r1) {ft-'<l) re _, fc ' 

which aAded to the relation above gives 
dl(IC( t>~I {( lf1-1 µ + >t, ~~It :::: ->t1+J) (e-f-lfl) Pe 

When n1 is negative we make use of the form 

~>\XJ:: f-f+"' 1>! ('-~} ~f{et1 -(,,n ..-1 1.:..1) 
< n,!tf-tt,)! t+x 1 

' J ~ 
from whiohbit follows that 

~-11t1 {K)-=- ((->1,)~ fo.,'Cx.) 
.( lf+"1)~ \ 

Applying this to the above relations we :tlnd 
ti r.Jc• .. ~ .,,~,+/ 
~ - lf, 4Pttt.9 p( '-=- s '< ,) 
""'° It - I cf ('J H k.I /) I 

~ f-J.t {,(yt~ fp ==" f<+i.t,)(-f- 111+•)1{ cJ.t(f- I ~ I 

in which s = -l if n1 .> 0,and +l if n1 < 0, 
while 1 = +l if n1) O,and -1 if n1"- 6. 
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f is given as a h1Pergeometr1o fu.nct1on;1t is not 

difficult on principle to apply the known properties o:f 

these fa.notions for abtaining the formulae needed. The 

writer has worked this out for any value of <T ;but the 

result is not capable of simple statement,and tbe 

calculations are long and awkward. Darwin,2 by a change 

of notation,has put the results in a workable form. 

Here we shall use the writer's original. means o:f 

attacking the problem - namely,of taltingO- = l. 
The following table is easily constructed~T' is 

d!/de,and D is an abbreviation for n2cot9f - n• cseQ !. 
[ (}:::. fJ 

n2 n3 T' D T'-D T'+D f 

1 1 -U1n9 -hin~ ..•. " -stne t<itcos9) 

l 0 icoaQ i-cos9 0 oos9 iaine 

l -1 hin9 ts1ne 9 sin& i(l-cos9) 

0 l icos9 -t i-Cl+eos9) -tc1-cos9) isln& 
0 0 -sin8 0 -sin9 -s1n9 cose 

0 -1 icos8 i -i-(l-cos9) tCl+cosG) is in& 

-1 1 ts1ne -ts1ne sin& 0 if l-cos&) 

-1 0 i-coa& -icos9 coa9 0 hine 
-1 -1 -ts1n9 ~sin& -e1n9 0 \(l+cose) 

"il X. \ Wj i, 

Bow since T'-D •A~ ,,L\1 and T' + D •1o..._T .. ;..., , the 

values of ~ and r used in th• text are easily read oft. 



l.ppend1x ll. 

Properties of the modified :f'D.net1ons. 
~ 

We are considering the equation 

... ~i. t- ~ y U - [ ~~ + ~>:- -f- ~- 0 l 0--+1 Jl i.ID ~ 0 
v '<o .l 0 r '"?.. r J 

The solution oa.n obviouzly be obtained as a 

product of a Reiche function,a surface spherical 

harmonic,and a function of r,whioh is found to satie-f 

f7 the equation 
1 x i.Jtt cA + - -- -

~--~-;_ "-- )A-
( 

l- L .c:l ~ t- f l .(_ +-. l) ) ') 
~ + ~ -~z- /'-

If now we put f • - 4w2mZe2/nh2 this becomes the 

ordinary equation for Sobr8dinger's functions;but if 

f is kept constant for varying n the equation las 

d.eifferent properties. If we muJiiiply by r2 
' A.l- ~z,l_ -r li\ 0: X - [,pl-+ < + Llf +iJj ·x -2..pn ;1 X. ·~ o 

ti fl.')., .,;(_ 1"2,,. . 

Thie is of the standard form of the Sturm-Liou-

ville equation . 
p ~ 11 _ f" ' I - '8 !:J + ,.4 ~ ~ - · 0 

if we put 'J -:. 'X'" Jo = t. 1:, I'= 2 ·L .1 g·= p >.. t ~ + { i. <__ ~ J,,, 
µ = -L J /\ = - ..:!.d ..-i. . 

From the general theory of such equations 1he 

ctunctions )"~must then have the propert7 L"6A:X.,~ ~"-= 0 
~ G 

if n , n• • This is easily proved directly by combining 

two such equations and integrating. The theory ah.owe 

that the fD.nctions form a complete orthogonal system, 

which justifies our expansions in terms of them. 



Appendix 12. 

Application of theory of inhomogeneous.equations. 

To show that 1 f 2 "" , , l i l!.!! ~ -J-
F {HJ o; v):: ~ v' t- f V y - .d2.+ "-- + .r <rLlf'+u 

where 

so that 

:.l r j( {>z~ct:,.(,n,~1t/1Yl3) Llo(ft~tfj{JJt//ttlJ ~j 
Jl.. 

,..:. l 11 1 O.J l/ 0 ) :::= o 
lt - \; £ •\T Jt, '7 k 3 

0 - tl.11 Le LI"'').... 

then 1n order to satisfy the conditions of finiteness 
xtn1 o;e,11u>-ri.1 ~3 J-=- 0 . 

Since the equetion is linear v can be built up from 
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a sum of solutions of the equations of type 
fl h; ()J V f= ~- k { vz ',, <Ti .f.., k/, ""':z-1.1 J1 3) lf o ( 1111 <1'/ .t~ "\ ~ ~J,, i.t,:,_,.. 

If in this we put v • Cu0 ( n• • r, {' .ni ,n•2,n3) 

we find that c-

so that if n• f n C does not vanish unless K does. This 

method fails if n• = n;we have then to solve 
F {>tJ er./" > = ~ k ( >1-' C0 ~ nJ} 11.i., ,. 3Ju

0
l111 a;~ '{, 111... 1-t, , 

--. l' 1 .;,_,} 
~" is a solution of the equation 

k d~ -+ ~ ct__r_ - [ f1 ~ z_ fl _Jt ,_ e·\~-~/ l X -.~ o 
dll "'- ·l. clJ\. \ ·),... J 

Let X~ be the second independent solution of this 

equation,which of course does not llatiefy the oonditione 
~( \T 1\2.. z "..3 

of finiteness;put U0 = An !1t
1 

'1;z.._ ,and substitute 

v - AU.0 + BCJ0 , 

where A and B are undetermined funnctione of r. Ae we 

require only a particular solution we may impose one 

further restriction, namely 



lOl 

and solving the last two equations simultaneously 

cf.E- - J'\ l.to '--- l Il -
-- Ck a ~O.~~ ~- a OQ 

D d.l.. J tL. 

(a) 

.Bow F{n16'1~0):-=:-0 

and f (~JO; lfo):::O 

from which, taking into account the form of u 0 and U0 , 

We Obtain 2 lTr- . d \.er , 
I\ ~.5a, -U d .. ~12 +-2-.' (J -~ -l/.o O\!Q )=:.. 0 
Vo ~11,....... o J ;\.1.- /l.. L 0 -::) 'L \}:).., 

and since u0 and U0 contain the same factors depending 

on the five angles, - {- d_ X .. J.. X }':. _ -"''Lx xd5 + -~ v - - x. ·-:r~ ~-- 0 "X JA_ 1.- - - d;t "1.- L_ ft. d.A- G\ 'L 

Putting W = )\ rAX - X ~~ d..-i. clC'L 

we have of~ +- ~TV == 0 ol !\... fl--

whence W • D/r2, D being a constant of integration. 

From (a), because of the character of the dependence 

on the angles. ~ B _ _ ~ x·z..-
o< /L - .1! -W--

whenc e 1) = - % f fl -XLol •t · 

Now as 'X is real )' 1.. is positive, and B cannot vanish 

identically unless X • O. But unless B does vanish 

v van.not satisfy the conditions of finiteness,aDl 

consequently K must vanieh;which was to be proved. 
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Appendix 13. 

Final solution for energy levels.wave mechanics. 

Equation(S2),page 67,leada to the following set of 

equations for the ooaffiaiente x::;-1 
K:;(s":~ 511 _,,.,)!,_A.,)+ i_ k~~~· l<>ti+tJf":~ (e+111+J){f-11,JA>\. 

.,. t 1<:;:' s (,.,_,) 'A::-t, A)\ = o ) 
for every possible combination of n1 and n2 • Tha con-

dttion that these equations shall be consistent is the 

vanishing of the determinant o:f the tuanti ties mul'tt!

plying the K' e. This determinant is of order 3( 2.f +1}; 

but it will be o•served that in each equation there 

occur onlt the three X's for which n1 + nz is a c onetant• 

1TJ ,say. ~here are then three equations for each value 

of "111,independent of all the remaining equations;these 

equations can be treated eeparately,and we shall see that 

the result is independent of m • 

For a given ·;;aJ.ue of "TTI t'hese equations are 

K~-1 er-;~ 'B>i -(1Jf-tJA>r_] -f-J: K;,~fmpo"a((-1m)fl-1'1-l-1)Ak-:=. D' 

VO j~..._t I J<.-1 { IJJ't3/ ) j_ I \)t 
"m .. ,,_ J31r + ~ m-t1? m+1J,_, ,e+111+1)1t-m A.,..,.. z.... km-1 j(m-Oll,~ A't~~ 

K-t ['/57!'"Jltf:.ll f(111+l).4'\ 'I·."'' (-' ) \1'..3 
m-i-1 f.t ). v h . Jij --fl: ,\ .-1 s tm "" o I..\ k .~ 0 . 

The oon&ition that they shall be consistent beoomea 
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8i1'"1f- ~ l ) /\ I ,) ~, ,, . ......., F Ph- 711 -J 1"1tJ.)'i~':7~l>f.ff1T1){t-1r1+1JA.,, ..._./ \ 

1iJ'(m-1J ~~3 A1t i 
3 1!..:l-t- 8.,._ ,t1l'""*"1~f<-~3 jf'-f-l1H.)£(-i11JAI\.\ 

- 0. 

air2m€ Bn 
•ividing by An,setting h2 I': • x,and expanding, 

[;<-tm-•il {)( [,.+(m+11]- ~ k'tm;~/111+1j \"'J.l1.;(r+m-J-1Jd- 11l)] 

-; s lm-1;~ (Jfl JA1~40"'.;"\ 1 t i111 i-t-1111-11 {)I+\ m +u J = L.. ... 

It will be found on examining the values of the 

coefficients S '7 ft~, A<~~.;:. (Appendix 10 or pages 63-64) 
J / -

"\ n3 )1J . " l\. -
that I\ o ,j.A_1 -::: ~1 3~0 ~ --:. -- .:.Z. for all values of n3, 

and that s_{1L,)~i1'\..1i-•)=jl11,-11 .. /'"'d ~_,for all values of n1· 

Substituting these results and reducing, 

x3 + 2x2 - [.( ( ~ + l) - tj :x --f ( f + 1) • O; 

the roots of which are 

:x • -1 t .,( .- ...( -1. 

From this 



Appendix 14 .. 

Calculation of An/Bn. 

Given the two expansions (5 o) n 
ve y \{ -ve. ~13 v"' 
~ = f..Ak• A,... -' flA11 = L h' fin• 
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/\."" 

in which x~ are the modified fu.notions with constant ~ t 

we wish to find the ratio of the two particular 

coefficients An and Bn. 

Since roe X ~X~·'li-t. = o when n J n' ,we have )0 11 11 r 

J,/}(J fl_, rx~tk J;~_,1 \A.JJLJ·l 
An= - B • ---------- · -' n .:>£1 • , , t .,_ 

)~ «l,.~i L x,,{ )L )It- )v :\.. { x 11 ) AA 

or An/Bn • J."" }l- 1 
( >.JJ\M/f" 11-\ A}} 2J L · 

This aaloulation ie not easy to carry out in 

general;but it is very simple 

{ • n - 1. !rhe functions I<.,< 
P1L ~ "\1 {' 

Af+I 
- (' /)_ 

and consequently An/:Bn = 

{2.{-1)} / (-2.f3f2
£ 

= l2< +~> ~ /T--1~>;i~~- -

... __ .... ____ ~ ·--

for the oases in which 

then take the form 

J 
\ ( -< +t:_) (€-HJ )j .3 ·It b 

. -
ff .f. +-£JI t t J) 



W)Jile thisbes here been derived only for special 

oaaea,it chances to be the general expreaeion;for since 

E1 = 2mQE; ,Q • ze2/2m2o2,and (- • ~ !v*,we find 
8-1f~ Bn 

on reduction that 

L 
( f { +-fJ{f f-1) 

which is the genera.J.. result given in the text. ({ l} 
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--------------------------· ... --------------------....... - -----
*Appendix 13,putting L = -l, ,or - - 1. 
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