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QUANTUM THEORY OF THE SPINNING ELnCTRON.
Abstract.

The following thesis comprises calculation3~and
discussion pertaining to the hypothesis of & spinning
electron,chiefly for hydrogen-like atoms.

Part I is & historical introduction.

Part II conteins resunlts obtained in the spring
of 1926 ,and presented to the Oakland meeting of'ﬁ1§
American Physicel Socolety in the following June. The
calculations are based on classicel mechanics,tre final
results being obhtained by an artificial modificat ion.
These results are discussed and shownto completely
represént the observations;they are equivalent to those
of other investigators.

Part JII,which was worked out in 1927 and published
in preliminary form in the Proceedings of the Nakbional
Acadeny for June of that year,treats the same problem in
wave mechanics. The results are not satisfactory,owing to
a2 @iffioculty also encountered by othersa.

Part IV is a conclusion,in which some very recent

developments ere briefly referred to.
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QUANTUM THEQORY OF THE SPINNING ELECTRON

Part I, History of the Hypothesis

Sect. 1, Introduction. The writer of this thesis

haa had the good fortune to be engaged in one of the
moet actively developing fields of research in modern
physios. Since the appearance in print of the funda-
mental hypothesea of Uhlenback-and Goudsmit in 1925 and
1926,*'ztha conception of the spinning electron has been
extended over the whole of atomic theory, until a bib-
liography of contemporary papers referring to the spinning
alectron would be nearly equivalent {to a bibliography of
the entire subjects

Matters are still more compliceated by the circumstance
that at the precise moment when it is neceasary to bring
thie thesis to completion, the theory in question hss be=-
gun & new and rapd development, which is not yet in de=

finitive form.
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*numbers refer to items in the bibliography.




In view of this situation it seems proper to de-
velop the early portion of the theory historically;
next, to present in detail the writer's own calculations
on the subjJect, in their proper relation to the published
work of others; and to close with & short summary of the
presenf state of the gquestion.,

Following the fundamental papers of Bohr (1913) and
Blerrum (1912) the gquantum theory of series and band
gspeoctra entered on & course of comparetively rapid dee
velopment, which begen toT:?;;a of slackening‘at gbout
1918, 1In the interim the theory had been applied to
practically every atomic phenomenon for whieh it was
capable of giving exact quantitative resultse. Thé
cases in guestion were almost exclusively those of atoms
with a single electron, which in presctice restricts the
discussion to the spectra of hydrogen and ioniged helium,
Besides these the theory had before 1518 found fruitful
application to the X¥ray spectra of heavy atoms. Even
this involved certain approximations; and the main course
of the quantum theory from 1918 to 1924 consisted of ap~-
plications in whioch it often counld give only approximate
or even merely qualitative resultse Thia theoreticel in-
vestigation was accompanied by extensive programe of exw
verimental work, which sometimes verified and sometimes
conflicted with the more remote theoretical results, oc=
ecasionally revesling wholly new phenomena, and with in-

ereasing accuaracy uncovering a wealth of minor departures

from the theorye.



As pointed out by Uhlenbeck and Goudsmit'samong
otherg, these difficulties were of two distinet types,
due to two'oauaea which were initially indistinguishable.
The question is still open whether these two sources of
discrepancy may not‘ultimately be reduced to one; but
from the etandpoint of our present knowledge (May, 1928),

we mey separate, following Uhlenbeck and Goudémit. the
difficulties due to inacouracy of the mechaniecs apﬁlied

from the difficulties due to incompleteness of the mechan-
ical models, In some physical cames, notably in the anomw
alous Zeeman effects, these two sets of difficulties ap-
pear together, but even in such cases it is possible to
study them independently.

We may tabulate the principal difficulties of what
has somewhat paradoxically become known as the "elassical"”
quantum theory as follows:

A. Difficulties due to inaccuaracy of the mechamdcs.
1, Prediction of intensities.
2. Theory of dispersion.
3+. The helium atom.
4, Half quanta in
| a. Band spectra.
b. Anomelous Zeeman effect.

¢. Multiplet spectra.
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B, Difficulties due to incompleteness of the model.
l, Megnetic effects.
a. Anomalous Zeeman effect.
b. Paschen-Back effect.
¢c. Multiplets
2, Relativity interpretation of X-ray doublets.
3¢ Fine structure of H and He ' spectra.
&. Appearence of forbidden lines,
b. Apparent discrepancy of Ho doutl et,
c. Paschen~Back effect of H.
Beginning with group A, 1t should be observed that

the very form of the correspondence principle was a con-
stant reminder of the provisional state of the theory.
The most obvious case of this wes the well-known crudity
and uncertainty attached to all theoretical estimates of
intensities, contrasting sharply with the precision of
the empirical whole number rules of Burgers and Dorgelo.
Closely related to this is the conflict with Kirche
haoff's law, into which the quantum theory was led by ite
sgsumption of a series of mechanical frequencies in the
atom differing from its emitted frequencies. This con-

fiiet provided an apparently insuperable obstacle to a
rational theory of dispersion,

0f a slightly different charscter was the failure
to develop & theory of the helium atom. The poor success
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of early attempts at a solution was natusrally ascribed
to the intrineic difficulties of the threewbody problem;
but Born and Heisenberg succeeded in demonstrating that
the difficulty was not any such purely analytical one,
but that the theory in" the form then in use was incap-
ablq of giving the correct energy levels for eithei the
excited or the normal state of helium,

The appearence of half-gquanta was a further symptom
of disintegration of the original theory. The half-quanta
appearing in band spectra might possibly be explained by
special hypotheses; but the peculiar sppearande of half-
gquanta in the anomalous Zeeman seffect, in which it is
necessary to replace the sqrare of an integer, say jz.
by (J+k)(JI=t), pointed to the necessity of a far more
profound modification. The same remark of course ap-
plies to the appearance of haelf-quanta in multiplet;
in fset, multiplets may be regarded as the Zeemen paterns
of the series electron.in the magnetic field of the whole
atom.

We shall not discuss these matters in detail; they

have gll been cleared up by the introduvction of the new
quantum dynamics, which, in the form of either matrix

or of wave mechanics, appears capable of removing all
the difficulties of our first group. The second group
of diffiounlties, those removed by introducing the



hypothesis of a spinning electron or some equivalent,
will form the subject of the remainder of this discus~-

sion.

sect. 2. Diffigulties leading to the hypothesis

of a spinning electron. The enomalous, or better the

somplex,Zeeman effect is the fundamental phenomenon

for an understanding of the empirical and theoretical
developmenta which led to the introduetion of the hy-
pothesis of a spinning electron. 1Its simplest form is
that which it takes in the doublet spectra of elements

with a2 single series electron, such as the are spectra
of alkali metals and the first spark spectra of the ale

kaline earths.

The typical exemple is that ot':?D lines, which
aorrespond to 1s-2p of the sodium arc spectrum. The
very faect there exist two lines = the phenomenon of
multiplets = itself calls for explanation. This is

done on the Bohr-Sommerfeld theory by esssuming that
the principal and aazimuthal quantum numbers deter-

mine only the shape of the orbit.A Yhird, the inner
gquantum number, specifies the orientation. This hy-
pothesis was supported by the 8tern-Gerliach experiment
(orientation of atoms in a magnetic field)e In the
case of a hydrogen-like atom it was e:pected,with ap-
parent experimentsl verification, that the energy



levels for two such orientations would coincide. In
sodium, however, there is the complex "eore", consist-
4ng of the completed K and L shells of the atom. Dif-
ferent orientations with respect to this core might be
expected to correspond to slightly different energies.
By a proper choice of the inner guantum number J cor-
rosﬁonding to these orientations, and by means of the
gelection principlejﬁj-o or 1 which would be derivea
from the correspondence principle, it became possible
to mccount for at least the number of oomponehta of
most mmltipiet linese

The orientationg of these orbits must natuarelly be
with respect to some axis in the atom itself, On the
basis of the Stern=Gerlach experiment, and of the con=-
Bequencee here about to be developed, this axis was
considered to be that of a magnetic field. It was
naturel to associate this field with the core; that is,
in the ocase of the sodium atom, with the cloaéd K and L
shells.

Apart from the exceptional cases in which the mag-
netic moment of the core was exactly neutrslized by that
of the sBeries electron, the whole now became a magnet
with all its parts in fixed relation to one another. As-

gocinted with the resultant magnetiec moment was a resultant



angular momentum about the same axis., Consequently,
when placed in & weak homogeneous magnetic field the
whole aﬁom would precess about the direction of this
field. This motion could be quantized, and it is found
that the angle between the magnetic axis of the atom and
the direction of the field was restricted to certain fixed
valuea = a space quantization which is confirmed by the
Stern-Gerlach experiment.,

It was now found that these considerationm led to
formlae which correctly represented the observed energy
levels = but only by introducing two drasstic and theoreti-
cally unjustified modifications, corresponding precisely
to the two groups of difficulties we have mentioned. -

On the classical mechanice the ratio of the magnetic
morient of an electron moving in an orbit to its angular
momentum is a fixed scale or quantity, e/zmc; 8o that to
the Bohr unit of angular momentum, h/2y, corresponds the
Bohr msgneton eh/4ymos This is easily extended to an atom
with any number of electrons,® so that in general /</p=e/2mo,
where A 18 the magnetic moment and p is the angular momentwun .

In order to obtain the above mentioned representation
of the energy mas derived from a model it is necessary to
introduce the magnetic moment W, and angular momentum p,
of the core, a8 well as those of the series electron; and
now it is found that the resvlts bear ho relation to experi-
ment 1f'Mi/P° is given the mbove normal value, but that the
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ratio must be doubled, 8o that A /p,=e/mc. This sur-
prising circumstance constitutes the real "anomaly" in
the complex Zeeman effect,

A second peculiarity appears 88 follows, Into the
expression for the energy enters the cosine of the angle
between the momentum vectors of the core and the series
electron. This expression contains the squares of several
quantum numbers, associated with vaerious angular momenta.
Each of these numbers, say 32,'muat be replaced by s(s+l)
in Sommerfeld's notation, or by (8+#)(S=k) 1n‘Landg'u,
to obtein the correct formulas This'claarly involves a
modification of dynamical principles, and was one of the
starting points for Heisenberg's quantum meochanics. |

More significant for our purposes is & further dif=-
fioculty in the procedure. We have seen that 1t &8 neces-
sary to aseribe a magnetic moment to the core in the al=
kali metals. This core is of identical struscture, apart
from the increased rmclear charge, with the atom of the
preceding noble gasj for lithium it corresponds to,the
helium atom. Now the noble gases in genersasl, and helium
in particular, are known to be diamagnetic; so that 1%
was necessary to assume some unknown disturbing fastor
in the experiments bearing on this point, Moreover it
was pointed out by Panlilgthat the orbital precession of

the series electron, due to such a magnetism in the core,
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should result for the heavy elements in a relativity
sorrection to the Zeeman separation which ie not found
experinmentally.

Using the classicsal mechanices, suppose the applied
magnetic field increased. The forces exerted by this

field on the series electron will eventually become com=-
parable with those due to the magnetie field of the core.
There ensues & curious type of motion, the complexity of
which is reflected in the corresponding spectra. Finally,
when the intensity of the applied field is very high, its
effect dominates over that due to the core. The core and
the orbit of the series slectron then precess independent=

ly and at different rates about the axis of the external
field. The energy levels of the electron are given by the

Larmor precession. This leads to the levels of the "nor-
mal® Zeeman effect, giving the Lorentz triplet in the
spectrum. This is the Paschen-Back effect, which in it~
self involves no new theoretical elemente, and consequently
no difficulties, beyonf those slready introduced.

The general theory of multiplets has not contributed
greatly to the development we are studying. The extensive

systematization now going on is largely dependent on the
use of.the spinning electron or of equivalent hypotheses;
but the theoretical functions of this subject, which was
very imperfectly understocd in 1924, have brosdly speaking
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been two in number. In the first place, several hypotheses,

which were adequate to aceount for doublet spectra, failed
when applied to the more complex cases. Secondly, the

alternation of even and 0dd multiplet structure made it
impoesible to avoid the introduction of half-quanta some-
where in the scheme; but this is a matter of the quantum
&ynamici, and not of the gpinning elesctron.

A diffioulty in the theory of atomiec structure of an
altogether unexpected character was unearthed dy Millikan

17

end Bowen, and wes aleo emphasized by Landﬁ;nswhere ap~

veared a conflict between the established intermetations
of X-ray and of visible spectra. In the normal 1 shell,
which is considered to consist of electrons with principal
gquantum number n=2, there are three energy levels, desig-
nated byISOmmarrald a8 Lll’ Lpys Ligge The energy differ-
enoce Lpo~Lpy Vvaries ae the fourth power of the atomie
number, which ie the law to be expected, on Sommerfeld's
relativistic theory, for the difference in energy be-
tween two orbits having the principal bdut different agi-
muthal quantum numberse. On the other hand, the energy
difference Lgi~L1y is closely proportional to {Z—s)z.
where Z2 is the stomic number &and s isa“screening con-

gtant.™ Thie led to the follawing intefpretation: Sinoce

n=2, the azimuthal quantum number k is either 2(correspomd-

ing to a eirele) or l(corresponding to an ellipse). It is
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sssumed that L,, is a circulsr orbi¥, and that Lp) end
111 are elipaés at different orientations., Consequently
Ly, differs from Lg; and Lll by the large "relativity"”
term, while Lgj and L3y d4iffer from each other by &
small term due to the difference in the screéning of the
nucleus by the K eleotrons along two differently ine
¢lined paths.

It 18 & point of importance for later discussion
that the Lpp=Loy douvblet agrees fuantitatively with
Sommerfeld'’s relativistic expression, not merely to
terms of order v2/c?, (v being the velocity of the
electron, ¢ that of 1ight) but also to order v /e? and
probably also to higher orders. Sommerfeld's explang-
tion was therefore accepted with considerable confid=
ence, and the results of Bowern and Milliken occasioned
some consternation. It was found that the Ledoublet
could be traced downward from the X-ray spectra through
a whole seriee of spectra of stripped atoms, without a
doubt of identification at any step; and that when this
was done the doublet in question proved to be identical
with a doublet in opticel speetra, on which Bohr, with
the strongest kind of evidence, had placed a diametrical-
ly opposed interpretation. The level Lll gorresponds,
a8 1t should, to an optical level with azimuthal quantum
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mumber k=1; but both Lzl abd Ly Gorrespond to levels
with k=2, 521 and L22 should therefore correspond to
circular orbite; they differ in inclination, not in eo-
centricity, and should epparently show a "screening-
doublet." ILjj representing an ellipse, should be sepa-
rated byhthe reletivity doublet from Lo;. The evidence
for each of the two conflicting interpretations was
overwhelming; but the conflict wes reel. The éitﬁation,
88 pointed out by Millikan and Bowen, asppeered to demand
the assumption of a new non-rd ativistic cause,which
should give rise to a term in the energy of exactly the
same form as the relativistic term, so as to restore Ipy
to nearly the level of Inq.

A more obscure and leas certain, but as later ap=
peared fundasmentally important, set of diffieulties
arose a8 the observation of the fine structures iﬁ the
spectra of hydrogen and ionized helium was improved in
precision. In the observaiions of Paschen in 1916,
which were acoepted a8 experimental confirmatioh of
Sommerfeld's theory of fine struetvre, it was found thet
certain "forbidden” lines in the fine structure of the
helium line \4686 appesred with unexpectedly high inten-
gity. It was attempted, by Kramers eépecially, to ex-
plain thie as the result of a Stark effect of stray elec-
tric fields; but this was not entirely satisfactory.
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Purther, for the H, doudlet Sommerfeld's theory predicts

1, while direct messurement consistently

AV 20,365 em-
yields & lower velue of about 0.33, Finally, and most
significant, was the apparent dliscovery of a Paschen-Back
effect on observing the fine structure of hydrogen in a
magnetic field. Thise result was somewhat uncertain, and
wap genersally questioned, since if true it necesserily
implied an additional dynemiceal. degree of freedom in
hydrogen-like stoms.

Seot, 3. Origin and Introduction of the_gginniqg

Electron Hypothesis. The pypothesie of a spinning

electron had historically an origin and development

quite independent of that of the new dynamics. The
credit of leying the foundation on which Uhlenbeck and
Goudemit erected their theory belongs to Panli./7 In
order to avoid the diffieculties encountered in aseribing
& magnetic moment to the core in the alkali metals, Paull
suggested the association of & fourth quantum number, of
unspecified physical meaning, with each individual elec~
tron. On the hypothesis that no two electrons in the

same atom can have the same set of four quantum numbers,
8 very considerable measure of order could then be brought
into the syatematizationk of multiplef spectra; in pértic-
ular, Stoner's acheméu§or the grouping of electrons in

normsal atomafwas at once derived., This is the celebrated
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exclusion principle of Panli,which has played end is e
8ti1l playing a leading pert in the progreas of
quantum mechenics. This new contribution was rapidly
ﬁtilizod by a lerge group of investigators,imiuding
Pauli himsel f,Hund,Goudsmit ,Russell,Saunders,sand
others,and has led to a degree of spectroscopic
systematization adtounding to those who,like the
present writer,have not been in a position to follow
these advances very c¢losely.

In constructing the theory of doublet apéctra on
thie new basie it was found by Goudsmit and Uhlenbeck 'l
and by Slater Zélthat it became poesible,and perhsps
necespary, to place an entirely new interpretation on
the hydrogen fine struecture. Horeover,in the theory of
the Zeoeman effect the anomalous magnetic moment whish
¥ad previously assooiated with the core,and for which
the ratio M/p has twice the value expected for orbitel
motion,could be transferred to the electron itedf. Now
this "enomalous"” ratio is exactly that to be expected
for a rotating sphere with a surface charge.* This is
the fundamental observation at the bottom of the hypoth-
esig of Uhlenbeck and Gondsmit.

The conclusion,however,is not sd obvious as might
appear. Oompton!for instance,had proposed a spinning
electron long before &8 an explanation of certain

*Appendix 2.
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peculiar phenomens observed in lonization chambers and
in X-ray scattering. (This was not known to Uhlenbeck
and Gondsmit.) But any such hypothesis,for whatever
purpose put forward,encountered at first sight a con-

siderable diffionlty. The spinning electron wounld
| constitute a small magnet,with a moment of the order
of a Bohr magneton. Such a magnetic,moving in the
electrostatic field of the nucleus of a hydrogen-like
atom,would be deflected by electromagnetic forced. The
energy levels would be altered,and the whole Sommerfeld
theory of fine structure,beauntifully verified as it
seemed to be,would apparently be destroyed.

It required no small acumen to observe,as Uhlenbeck
end Goudsmit did,that (1) the modifications in the
energy levels are of the sanme order of magni tude as
the Sommerfeld second-order fine structure,containing

the identieal factor chza‘;in which the variation with

the fourth power of the atomic number is of the utmost
importance;that (2) the combination with the Sommerfeld
levels for half-integral agzimuthal quentum number k
leads precisely to the reinterprdmtion of the hydrogen
fine structure demanded by Pauli's theory;and that (3)
& 8imiler reinterpretation,applied to the X~ray levels,
removes the confliet discovered by Milliken and Bowen.
The details of these snd other epplications of this
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' theory are given in Part II,where the appropriate

mathematical apparatus is developed. At this point it

is only possible to gove a short summary of results,

passing in order over the difficulties discussed in

the preceding section. We group these again as referr-

ing to (1) megnetic effects,(2)X-ray doublets,end (3)

hydrogen and ioqiized heliun.

{1). The hypothesis is introduced precisely to
account for the anomdous factor 2 in the Zeeman effect,
which was the principal difficulty of the model. It
therefore allows a complete theory of this and of the
Paschen-Back effect;and,in conjunction with Pauli's
exclusion principle,leads to a correct rapresentatioﬁ
of multiplet spectra.

(2). A just mentioned,the Millikan-Bowen diffioculty
i8 removed by the exact realization of the expected non-
relativity cause producing a "relativity" term. It
should be mentioned,howwer,that this is true only to
terme of order v2/o2. The exact result is only obtained
by the most recent modifications of the theory,in which
the spinning electron as a distinet hypothesis no longeér
appears.

(3). The sppearance of "forbidden" lines is ex-
plained by the substitution of the seléction prineiple
A3=0 or 21 for the principle Ak = %i1:this Jeads to &
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reinterpretation of the experimental results on the‘Hc(
dofiblet ,which now appear much more nearly in agreement
with theory. Thie is brought about by the theoretical
expectation of fine-structure lines previously looked
npon a8 forbidden,which alters the expected distrihution.
of intensity over the fine-structurse pattern,and thus
changes the relstion of this pattern to the observed
maxima of intensity. Finally,the Paschen-Back effect in
hydrogen-like spectra is exgain ed,as 1t proves to be
of exactly the same character as the similar effect

in the aslkali-doublet spectra.
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Part II. Theory of the Spinning Electron in

Classicsl Mechanics

Sect. 1. Certain difficultiea, We shall now pro-

ceed to develop as exactly as possible the theory of
these phenomena in its original form, based on the clas—
sicel mechanics and the Bohr form of the quantum theory.
The celculations for hydrogen-like atoms are given as
worked out by the writer in the spring of 1926, A pre-
lininary report of the results was presénted to the opak-
land meeting of the American Phyesical Society in June,

1926, 2%

The details were not published; the results are
equivalent to those obtained in s different manner by
Uhlenbeck and Goudsmit, '3It should be mentioned that
the method here used, as developed by Professor Epstein,
is free from arbitrariness in the choice of coBrdinates
for quantigation. These cod3rdinatee are unnmbiguously
defined by the method itself, involving no assumption

beyond that of the Hamiltonian function of the system;
this constitutes the deciesive advantage of the present

method over those employed by others.
Before entering the discussion of the theory proper,
mention must be made of three serious difficulties which

appeared in the earliest attempts at such a theory. The

lightest of these is the following: Consider for simplicity
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en isolated electron, which is assumed to heve & constant,
quantized angular momentum; this should be h/zn'on the
simple quantum theory. To obtain the corresponding mag=—
netic moment of two Bohr magnetons it is assumed® that
the eleegron is a sphere with a surface charge. It fol=
lows immedietely* that the peripheral velocity of the
electron at ite equator 1s 2 x 10%° em/sec, which is far
above that of light. This result has ocoasioned muoch
discussgion =~ needleasly, in the present writer'é opinion,
As an anslogous case, suppose that we have & §rcb1en YOw
quiring a body with a rest mass of 10 grams to have a
momentum of 10°% c.g.s. units. Obviously the velooity
10'! om/sec which we obtain by simple divieion is mean-
ingless; the true velocity is less than that of light.
Similerly in the cese of the spinning eleotron we cannot
asgume thet our simple forrulae will hold exsctly at
high angulear velocities, If it be obJjected that our
electromagnetic formulae apparently include a relativity
correction, the reply is that an investigation on the
basis of general relativity is necessery; this leads to
the well-known uncertainties of the theory of relativity
for rotation. In spite of these considerations, the folw

lowing theory retains the simple value 2e°s/9c® far the

moment of inertie.

-—— o v aa S S . S e -

*Appendix 2.
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A gecond and more serious source of doubt relates
to the mase of the electron. The total energy of rotew
tion, namely the energy of the magnetic field produced,
is given in Appendix 2 as %= quc;/ 16 T e*a .

Dividing by ca, this gives an equivalent inerticl mess

" of the order of 10“22 grams, which is ZI.O5 times the Obe
gerved mass of the electron, This is true on the usual
assumption a8 tc the radius of the electron; 'but,mattors
cannot be much improved unless the electron becomse of
nearly atomic s8ize. A way out of this contradie tion was
suggested by the late H.A, Lorentz in his leotures at
this Institute in 1927, If the eleotron is not distorted
by ite high angular velocity, it is necessary to sssume
that 1t is retained in its sphericsl form by internal
stresses. The potential energy of these stresses may
then be such as to compensate the kinetic energy of row=
tation represented by the magnetic field.

The third and most serious Aifficulty, empirically
gstated, is that the correction term, which & simple the-
oretical congideration of the spin effectdé introduces ine
to the Hemiltonian funetion of the system, must be divided
by 2 in arder to represent the faste of observation. Highly
recondite derivations of this factor # have been presented
by Thomaemand Frankel? It 18 hardly unfair to suggest.
that, had the theoretical formulae been thought to correclly
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represent the facts, no such considerations as theirs
would have been put forwsrd. The very uncertain cone
dition of thig theory is well illustrated by the fact
that Professor Lorentz, in the series of le ctures pre-
viously referred to, arrived at a factor of 2 instead
of 4, The whole problem, in fact, has a somewhat
mystifying fertility in sources of error which multiply
the results by 2 and #. In the present atate of the
theory these matters are chiefly of historical interest,
and 1t aprears advisable to present the line of ressoning
originelly employed by the writer and others, which leads
to 2 Hamiltonlan funetion from which the desired results
can be derived,

Sect. 2. The effect of a dipole in the nucleus, The

gpinning electron, as we have assumed it, sonstitutes a
magnetic dipole, or elementaery magnet. Thizm megnet, moving
in the electrostatic field of the mnucleus, will be subject
to & megnetié¢ force, by reason of which it will deviate
from the path of a point elestrostatiec charge in the given
field. Lot the charge on the electron by -e, that on the
mucleue +%e, and the magnetic moment‘/(. Then 1t is easily
shown® thet the force of translation on the electron is
exactly that on a non-mesgnetic electron moving in the field

of a nueleus with cherge +Ze and megnetic moment -;/4. the

- e T - —— S S e A e G G G S S e . o G S G G S SR da T e e T G G R S G- S . S S e

*Appendix 3.
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negative sign indicating opposite direction,

If we now assume that the axis of the spinning
electron is fixed in direction, the problem is casily
solved. This assumption is unjustified, as will ap~
pear in the next section; but the relations obtained
are very close to those in the sctual problem, and will
be of use in the third part of this discussion, when we
attack the corresponding problem in wave mechanios.

According to a well-known theorem due to Schwarg-
schild, the introduction of the magnetic fields adds to
the Lagrangian function & term ~ Z(A°V), where I is the
vestor potential of the field in question, snd V is the
velocity of the electron. In this simple case it follows
directly that the effeet on the Hamiltonian function is
the addition of a term + 5(1-?). plus terms involving
Az, which are here neglected. This per turbation term can
then be expressed in terms of the colrdinates and momenta
of the unperturbed problem; the error introduced is of
the second order of small quantities.

Por & dipole of moment -Z/u. L= - -5 [r x /:_{

L E(RV)= ~ Ze ([zxAl- v)=+_s. (k. [JLXV]>

cn?

=y Lepky

mcad
is teken in the direction of the veetor . .

,if the axie of polar colrdinated
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From this

H=s (b +£4f’?> Ze+ e — W ()

S O »:c)z3
Pg is8 cyoelic. Putting Py = p,and introducing a thirad
constant of integration J ,the equation sepg.ratea into
?’,z = -//{L' VZ»«V/L"»):Z»"Z@% -y - Z{%ﬂ !
4™
o= 25
Pq‘?: f’

The quantum integrsls are of a standard type.*

Their evaluation gives

Ohdn = 2SS - y) - BYP 2T T n 4
PPodd = 20y )= Nk
P fpdo= 2mp = f4
Adding the last two equations, ) =(jsng)h/27 .
Puttinh Jj+mnp = k, kenl = n,and /‘fs N eh/¢ mo, ) being
provisionally left undetermined,we find

21 fe Ykﬂ (n+ Q)4

2
where ¢ = ") Z ,and & = 272° 45 Sommerfeld's
2Kk3 AC

fine structure constant. Hence
2,
X e vA
~r A
Ar(n+ @)™
As Q 18 smell,we can expand W in powers of Q. To the

e -

firet order

W/h-’_?-+7\R LTI (2)

n3 K3

¥

*Cf. Born,Atommechanik,pp. Z46fL.
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The factor R %% is the same as that occurring in Som-
merfeld's relativistie formule. Since n,k,J are integers,
the effect is seen to be of precisely the order of mag-
nitude required.

This procedure has not been discussed in detail,
since the neglect of the angular momentum of the rotating
electron, and of the consequent precession of its axis in
gpase, raises numerous questions whioh oa&n only be settled

by the more exsect treatment which here follows.

Sect. 3. The Legrangiasn function for hydro gen-like

atoms having a rotating sphericsal electron, The forde

on a megnetic pole of strength M moving in an alectré-
magnetiec field ie given by
Fou(E-1 ¥aE ) (3)

The second term cen be interpreted to mean that any
megnetic system, moving with & veloeity ¥ through an
electrostatic E, behaves ss if in a magnetic field
H"'?:]: VvxE . The rotating electron may be sonsidered as
such a system; and now if we put E= "Z_fé?: , which is the

field due to the nuoleus, we have H'= g % [VxR ] ’
which is precisely the magnetic field of a charge equal

to that of the nucleus moving with veloeity =v through its
position, This field can be derived from the vector po-
$ential E=- %2V . and we can now apply Schwarzschild's

’
e
general theorem, referred to in the previous section, to
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the elements de of the charge on the spikning eleotron;
8o that we have added to the Ligrangian function a term
Al =~ |f L(AV), (4)

where V is the velocity of the element of charge with

respect to the center of the electron, X is the above

vector potential, and the integration extends over the
surface of the electron, In substituting the value of
K we take Vv a8 the velocity of the center of the 6lec=~
tron; for r we put r', the distance from the nucleus to
the element of charge considered. Burther,we mey put

V-[Bx?g. where ¢, 18 the angular velocity of the spin and

8 is the vector from the center to the surface element.
"R AL D ([de(Foraea])
Cc* n!

The result of the integration 4is*
_ ( - ") »
= -+ VxR (5
Z:Zl 3n3 [' ] )

The complete Legrangian function will thus contain

(1) the kinetic energy of translation of the electron,
(2) the kinetic energy of rotation, (3) the electro=

static potentiasl energy, (4) the above termAL divided
by 2, and (5) terms representing the relativity correoc-

tion,

——— e o G S S A S I m— . T S e S S % G G S G T G S G G S G e S e G e W G D G e T WY G - -

*Appendix 4.
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0f these terms (1) and (3) are the same as for the
ordinary theory of hydrcgen-like atomes without relativiiy.
(2) is simply %Ia?. where I is the moment of inertia of
the spinning electron and wis the angnlar veloecity of
spin. 48 to (H), we here omit relativity terms. These
of course should ve included in & complete theory, which
would &lso contsin intersction terme between the relativity
and spin effects. HKHowever the present snalysis is carried
out only to terms of order vS/o~. The intersction terms
between the relativity and spin terms of order v /e° are
of order 74/a4; accordingly the relativity and spin cor=
rections can be computed sepsrately, and the complete re~-
sulta to the required degree of approximation obtained by
their addition. *

The division of AL by 2 contains an irremedisie ar-

bitraeriness. AL 8s computed includes terms only in the

K the
velocity of the centegﬂelectrcn. There are also forces

dependent on 4its acceleration.¥or the case of & Coulonli
field tiese forces are stated by Thomas to be -+ times

the forces depending on the velocity; accordingly, the
total force can by represented as derived from a Legrangian

function #0L. However, as already mentioned, Professox

Lorentz arrived at & factor 2 inetead of ¥; so that 1%

geems best here to follow the procedure adopted by others.

and arbitrerily divide AL by £ without attempting & physicsl

A G oo S0 e U . S S e g BT ity WA e Bt e WK A G DK S g S oy i S TS W W iy W W B o S Y s A P 403 U T Sy

* *For an additionsl justification see Section & below.
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interpretation. We can then write

| = Lmv*+ LTomr Zﬁiﬁ % (&xiﬂ - ) (6}

-

To discus:::armnted by this Legrangian funetion
we introduce the following colrdinates:

/L;/\9} ¢, polar codrdinates of the center of the
electron reffered to the nueleuvs as origin.

Q,H{@. Eulerian angles of the electron; polar exis
parallel to that of A amd D

9 = angle betwéen the polar axis and an axis B
fixed in the body of the @lectron.

-E{] = gzimuth of the axis B about the polar axis;
initial plane parallel to that of ¢ .

@ = angle of rotation of the electron about B.

Using these coBrdinates we have* .

2 e« T z . . had
[ = 2 (iAe e Rallo¢ ) + S (64T NRIIN-17
ra
y 2 AXS {m((f—cp)&é —oin Gpa (@-9)DP

Ju Gt

i coo A9 A (C.ﬂ~<P)C/?é + oo O cp‘ty
+[axll,‘9'cw9 »Mﬁmﬁ%@@(?ﬂ)]fp‘ @}

( 7 /

A T e e i G S e SR G i G G T A e G T et U S G e S SR S G A G s B S W A WU e W T S G G S e e < S G S g W

*appendix 6.
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Sect. 4. The Hamiltonisn function. Method of per-

turbations. Applying {the definitions
PL.:‘)%L)H'— L+ZL‘FZ‘Z"—)

we find* that
}f Ho +"}+\

h LS
w ereHo‘-_Z';(ﬂ*%_+ ,‘>+21[P9 +p§.}. 3 (Pq, Pglwe)]

a .
o H = Ze {m(y—t#)/;g?9+wt9m(f{’~‘4’) T P p

m 0‘,(3 /
—CdceMCCF*‘P)r,&Pi—‘”’5“9"”;‘[%‘(4)),’??9 (8)

1+t St & i lg-g)] P@@-wﬁwe‘”(‘f’”"”rﬁ’@ } -

For the quantization of the solution of this
equation to terms of the order desired we mske use of
the method of perturbationa of Delaunay, the application
of which to the purposes of the quantum theory has been
worked out by Professor Epsteinwé;,This method, as pre=
viously mentioned hes the sdvantage of unambiguously fix~
ing the co¥rdinates for quantization,

The first step is to find the mean value of the pes
turbation term I-Il over the first intermediate motion,
that is, the motion represented by EH=H . In our case
this motion 48 that of an electron moving in an elliptical
orbit end simultaneously spinning, the two motions not
affecting one another. The plene of the orbit is then

fixed; we may choose the polar axis normal to this pleane,

——— — D = G G e 5 G B R S S G G B S - T A D S s e S0 G By o O A e WS S G b S M T O GRS S S SR B G v G S S G e S

*iprendix 6.
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80 thatc@'- 5 and ﬁ; 0. The axis of spin &8 nox fixed
in the body of the electronj;we choose it as the axis B,
and a8 it is also fixed in space we hawe [, = O,HPZ’D@ wb |
where F, f5,0 are all constant. The perturbation then
reduces to r
H= s 0 Oty Py
The only variable in thie expression 1s 1/r%;snd,ss is
well known,* the mean value of 1/r® in & Kepler ellipse
18 1/0%,where b 18 them:i(;r;;r amis. Consequently the
mean value of Hl ie
o= L w0l Py . (9)
The Hamiltonian function is now taken as
E=H, + B
this completes the first approximation.
Sect. 5. Introduction of angular variables. The

next step ias to introduce into Hp andfﬁi the angular
variables and angle momenta of the first intermediate
motiongthe angle momenta being defined by “i'fJSPiaqi*
and the angular variables w4 being the canonical
conjugates to these with respect to Ho. **

In the ordinary theory of hydrogen-like atome
(H = Ho),1it 18 found that b = (Yo )(%#kf)/mze’i. From
the same theory and from the theory of the rotator,

T T g W ey S 0> YD e i W e WP . Gty wy D W Gy i gy GEL NS N W) T e T NS MR WS W B T s YEe WE Wk G S T SR T T Yo W

*Gf. Born,Atommechanik,p.164.
**The properties of these variables are to be found in
Appendix 7 and in the papers of Epstein®” referred to.
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Lastly,in equation (9) R? and QE refer to a partieular
choice of axes. In general ﬂp mst be replaced by 4 +4Yqp,
and }’Q- by Uo +4P~ . For G we put 6',which is the angle
between the normal to the plane of the ellipse and the
angular momentum of the rotating electron. Computing
ooe ©! in terms of the variables we are using,and
substituting for all the quantities ocourring in Ho+Hjp,
we arrive at the new Hamiltonian funotion®
H"-M’Zl (L(Qf'u‘l))?'
2 (uq+uo¥4q) ™ 2T
L w74 < B oo [Hpuiz)~(wawoil fieeriorug] 4 er-at]

2c* (“(9{4(@} (NA+QA,¢fH(pj3 -

the Uy

(i0)

Sect. 6. Canonical Transformations and Solution.

We carry out two scanomical transformations in succession.

The first of these consists of a transformation already

7

in use in the simple hydrogen problem, together with

the analogous traasformation for the rdmtor:
k= Z{q,) B =Wep-Wy , B=tUegtlep, F2=Wo ~W, Py =Ugt"eo + g, 2:3:”4;

Be e, Qus Wi Bz it @z we Py =45, @y = wgr .
This results in
S O ARl TR L
2p* 2T Zor P33 — (1)
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*Appendix 7.
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The second canonicel transformation is as follows:
P=P1,q=Q=-q1; P=11 +PL R =q;.
The Hamiltonian function now becomes
2t - %
mze’ k "Z o /(B2-0-0] 72 (P-p)
- — - + ~p)
= W (12 )

All the variasbles are now e¢yclio except gq. The

pro'blem is therefore completely separated,and we have as

quantum conditions
nk - /
% zn)g 'i'?r"l'-f?‘l? ¢/N(g nh

1% we write as a definition of F

' 2.4 Fz'z ¥ 3 ;
W:'-Zf:‘r;:f +‘%’§;§%._3.F4) (/5)

the last qnantum condition gi ves*

m (*VE -g -£)= w4, 5 '-(7§+s+&)i‘;.r)

and putting n* + g « k = ]
- :b:' r 42 2
Fegm(-x2-02), (|Y4)
so that finally

_2x*mZe’ ll'if,:."Ze -
W= W + 3rT g;er +n3ﬂ-_z_‘¢ (i ﬁ 3 )

2 : \
'R'Z s*h R« Z ‘2,2 ez ¥
or Le - 5E torm T g TA-ST), (5
K =2Fe*/hc
In these equations n and k have the same meaning as

in the unperturbed Kepler ellipse. j,k,s are 277 /h times

**Strictly,the degree of freedom represented by P is
degenerate and should not be quantized. ¢f.Sect.l0.
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the total angular momentum,the orbital angular momentum,
and the angular momentum of rotation,respectively.* A6-
‘eordingly the quantization of the resultant anguler
momentum,which requires a separate discussion in other
forms of this theory,here appears as & natural _and‘
necessary consequence off the conditions of the problem.

Section 7. Reletivity corrections. The energy levels

for the hydrogen-like spectrum. In pursuance of out plan

we now add to our expression (/J)the terms arising from
Sommerfeld’s relativity correction. The whole expression

then becomes **
Z s* Zt" R‘(lz‘f —_ T
RZ 37!’/"\1: ?sp (=57~ T ( ) Ié)

The corpection terms due to spin and relativity can be
combined,and written in the form
sy 43T 3 [
Ra* (m-;” q-hw) (i7)

If n,j,k,s are all integers,as demanded by the simple
quantum theory,then of course this does not represent
the observed levels,which are then givén by Sommerfeld's
term slone. But the above formula as it atande cannot be
made to represent the observed levels by ahy reasonable
choice of §,k,8, even allowing half-integers;n of scourse
remaina unaltered,as it determines the ;rincipal term in‘w.

D U e S S S S G W A e TRS s GED e G O W M W d YD e S GRS Gwe G S e e G S G e

*For this interpretation of j see Appendix 8.
**cr. Born,Atommechanik,p.£33.
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The desired result can be obtained,as suggssted by
Uhlenbeck amd Goudsmit,by what they called & "Heisenberg
substitution.”™ This was slready known from the anomalous
Zeeman effect (c¢f. Sect.// below);as is now known,it
corresponds to the relation between an angular momentum
in classical dynamics and the corresponding matrix in
quantum dynamics. This substitution is mede by putting
I2ud K2} ,858-% for BXe®respectively. The ¥ ocourring
in the d;nomiﬁator is replaced by K(Ka-%) The first

tern in parentheses in equation (17) thus becomes
| I3 g
83 K(K-%)
If now,as8 proposed by Uhlenbeck and Goudsmit,we take
S = 1, J = Ka¥,this term reduces to simply ~1/n3J.
Thus in place of equation.(wd we obtsin
. _ KZ wr}_ﬂ*(fﬁ-~i) (13)
k e 3zr“1 n¥ J v .

This is identical with Sommerfeld's originsal result,
except that J occurs in place of k. By assigning
integral values to J,we oan therefore obtaein the whole
observed fine structure.

From the interpretation of J,k,s in terms of anguler
monenta it follows that J muat 1ie between the limits
k-8 and k+s. If we carry thie over to our new quantum
numbers &nd regquire J to lle betweeh K-S and KeS ,
then since J is integral . K is half-integral.,end 8 1is 1
the restriction J = K &« # follows at once. The case J = O

cannot occur,
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This leads to the Uhlenbeck-Goudsmit reinterpretation
of the hydrogen-type fine structiure. The factor k in x2,
for whish p;;i#z;fsimply K,hes 1te origin partly in the
k of the Sommerfeld term. Accordingly,ik if the spin terms
were not present we should put K for k. We ehould then
obtain levels for half-integral azimpthal guantum numbers,
1ying between the o0ld Sommerfeld levels. As will be
pointed out later (Section // ),thess levels have &
physical significence in connection with the Paschen-Back:
effect;but under normel circumstances they are mesked
by the spin terms. Since there are two values of J for
every K,each of these relativity levels is split wup imbo
two levels due to relativity plus spin,occupying two
different levele of the old scheme. Thus for K = 3/g
we have J = 1 and J = 2,corresponding to k = X and 2 of
the old theory. For K = & we have only J = 1;the level
J = O,which the formula would assign an infinite energy,
does not exist. |

Each of the snergy levels in the fine structure,which
on the Sommerfeld scheme corresponded only to one state
of the atom,here represente two such stetes.- Bach line in
the observed spectrum thus may originate in more than one
way. Moreover,lines which were "fordidden™ on the 0ld schem
are now permitted. For J,being éasociatad with the total
engular momentum,cbeye the selection principle for the
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‘,inner quantum number, Z)J‘B 0 or ¢+ 1l;whereas Sormerfeld's
'k was restricted to Ak =11 only. The 1lines corresponding
to ZSJ = 0 are accordingly permitted in the present theory,
byt fordidden in Sommerfeld's. As mentioned in the
introduction, these lines are sctually observed with
considersble intensity. The present theory removes the
apparent contradietions involved in their appearance.
Moreover,the genecral redistribution of theoretically
predicked intensities,consequent on the sltered interpretetion
of their origin,leads to results whieh are in genersal in
better sgreement with observetion than the previdua ones,
and which appear to remove at least the larger portions
of the inconsistences apparent in experimental detefminu
ations of the By doublet.

Seoction 8. Motions in the Model. Correspondence Prinw

ciple. It 18 of interest to investigate the exact nature
of the motions in the mechanicel model we are'uaing.even
though recent theory renders this model inaptiicdble. For
thia ﬁurpose we weite out the Hamiltonian funotion given
by equation ,with the addition of Sommerfeld's terms
expressed in the same variables: |

- MZQ Lz WA > /p b ke .3
b+ B T ) )

It i8 obvious that the inclusion of these terms alters

nothing in our process of quantization. The equation is
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geparable in the same variables as before;and if we denote
by P the same quantity as previously,the form of the
integral ¢pdq will be unchanged. The computed value of P
will then be the same as before,and we shall arrive at
precisely equation (/() of Section 7. This furnishes an
additional Judification of our treatment of these rela-
tivity terms.

If we introduce F = %(G& - pé - ng). G being Jn/2r,
we have as the final expression of the Hamiltonian in
terme of the angle monata of the whole problamt

_ wget P omZte? w1 B3
e et 2t (GP “B)+ 2&,;‘,(;1 7) (20)

The sngulaer veriables conjugate to these moments
are lineer functions of the time. Three of these,qy,qz,
and Qg,are'known from the first intermediate motion.

In the Kepler motion qg i1s the angle between the

major axis and the line of ascending nodes;the variation
of qg 18 & precession of the ellipse in its plene. q,

is the mean anomaly in the orbit;its variation is the
motion in the ellipse. Qg is analogous to qg;it the
angle of rotation of the eleotron about its axis of
rotational angular momentum,measured from the line of
nodes in which its equator cuts the plane 9 = l{ . Its
variation constitutes the gpin.

The remaining degree of freedom is best treated by
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observing that,as the polar axis ie arbitrary,we can tske
it in the direction of the total asngular momentum G. How
P =p) + P is the component of G in the direction of the
polar exis;so that in this cese G = P. The conjugate angu-
lar veriable to G,which we may denote by rj,then differs
from Q only by an easily détermined constant;so thaf the
raté of incresse of f‘ is the same as that of Q,and its
physicel significence essentially the same, Nowlq = q3,
and q; in the Kepler ellipse is the azimuth of the line
of nodes. The veaeristion of Q or of r1 consequently means
& precession of the ellipse about the polar axis. This
polar axis we ha#e teken to be the direction of the-
‘resultant sngulsr momehtum,which is fized. Consequently
the normsl to the plane of the ellipse and the axis of
spin must remain in a plane through the wholar exis,
abont which the whole system precesses unifozmly;

Applying to the Hamiltonian (260 the canonieal
equation Z é’g we find that the frequency §, of
precession of the ellipse in its plene is due partly
to the spin end partly to reletivity;that the orbital
frequency 4§z 1is affected by both spin and relativity;
that the frequency of spin ag is eltered hy intersction
w?th the orbitsl motion;end finally that the precession
f1 is due altogether to the spin effect.
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These considerations fac#litate an application of
Bohr's correspondence principle. As this whole theory
has been rendered obsolete by the quantum dynarmics,we
shall only use it to derive the selection prineiples.

The problem is that of expanding the three compon=~.
ents of the electric moment of the atom in Fourier geries
in the angle variables. This amounts to finding such an
expansion for the Caresisn co8rdinstes x,y,x of the
center of the eleetrqn,since rotation of the electron
csnnot alter the moment of the atom. The spiy will
enter only in so far as it alters the motion of fhe
center. A plece of expetrimental evidence for this will
be pointed out in connection with the Paschen-Back effect
(Section ’l e

We have seen that three of our angle variables‘
coincide essentially with the angle variables ql,gz,qs
of the Kepler ellipse. The fburth;qz,is only an angle
of rotation of the electron,and does not conéérn us here.
Aeeordingly;tha required expansions for x,y,z &re in
form identicel with those for the unpertubed Kepler
ellipse;the difference is only that for the unperturbed
ellipse qj and‘az are constant,while here they are
linear functions of the time,like qgz.

The result of this expansion is fairly well known.
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If we denote the arguments of the trigonometric terms by
njq] + ngqp + n3qz, it is found that nz may have any
velue in all three expansions. ng takes only the values
gl, while ny is O in the expansion for z,end ¢ 1 in those
for y and g. Now ae the gquantum numbers associated with
41+92.43 8re J,k,n respectively,this means that
Aj=0ors1, /Jlkx=211, and A n 1s unrestricted.
Moreover,when /\ § = O the light is polarized parallel
to the axis of total angular momentun,and when,A §= 21
the light is cireulerly polerized at right angles to
this axis.

Section 9. Theory of @dogblets in ppticsl end X-ray
spectra. After the discuvssion of the hydrogen spectrunm
in Section 7 it is fairly evident that the present
theory is adegquate to remove fthe Millikan-Bowen 4iffi-
eulty in the interpretation of X-ray spectra. It.vill be
recalled that thelcomparison of X~-ray and aptical doublets
demands an interpretation of the former which conflicts
with Sommerfeld's relativistioc theory. This theory makes
use of the fact that the deviation of the electrie field
about the K and L electrons from Coulomb's lew is slight,
eand that the whole effect of the remaining electrons can
be summed up in & "sereening oconstant" subtracted from
the atomic number of the rucleus. It follows that the

large doublet differences,varying with the fourth power

0
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‘Fof this diminished atomic number,can be expleined as &ue

" %o the difference in energy of two orbits having the same
principal quantum number but different azirmthal quantum
rnumber ,while the small doublet differences are attributed
to differences im screening,for different orientations,
of two orbits having both aziruthel and rrincipal quantum
nunbers the same.

On the spinning electron model this interpretation
is prsctically reversed. The large fourthppovlr_differencas

ére seen to be due fo differences in our guantum number
J,which in fact specifies am orientatioh with respect to
the axia of totel sngular momentumj;the amall differences
are between states having the same n and ] but m.fféfent
k. As in the hydrogen-like spectrum,there are in general
two such states. These coincide in hydrogen,but are
slightly separated in X-ray spectrs,owing to the siight
difference in screening between elliptical orbits of
differing eccentricity - a mueh more sa$istaéfory hypoth~
esis fhan the previous one,which required such orbits
to have the same screening constant proiided the orient-
ation was unchanged. ’

Thus the theory of X-ray spectra is cleared of
contradictions,provided of eourse that there is no
necessity of altering Bohr's interpretation of the
alkali doublets. That this is 80 appears reasdily as
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follows;r - \ ~

If instead of a Coulomb field we aésume that the
electron moves in any central field of forcw,and neglect
the spin effect,the problem is still separable in polar
éoardinates.and we can introduce the angle varisbles ql,
Qg;qa just a8 before. The path is confined to & pla;e;
and since the orientation of this plane in space cannot
affect fhe energy,B=W will be independent of py.

Now suppose the deviation from a Coulomb field is
small. There will then be & small correction to bur
expression for the spin effect,due to this deﬁartnré
from a Coulomb field;but since the spin effect is already
& small term,this correction will be of the second -
order of small quantiti es and can be neglected. Finally,
since the only correction term admitted depends oniy
on pp and p; and is independent of pj,the quantizetion
will be unaffected, just as it is unaffected by”thé
intfoduction of the relativity term. |

| The result is that the three effeets due to rels-
tivity,spiﬂ,and deviation from & Coulomb field ere
additive in the first order,at.least for the energy
levels. HNow the effeet of & non-Coulomb field,as exemp—
lified in the spectra of alkali metels,is a very con-
ciderable separation of the devels for verying k with
constant n; this separation is what distinguishes the
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' several series of such a spectrum. The smell relativity

- eorrection is absorbed into these large differences;but

et each of the levels thus defined by m end k there is
found a doublet,whose separstion,allowing for the "soreen-
ing*and other effects which slter the effective nuolear
chaige.is precisely that beﬁween the two spin levelq‘for
which J is K+# and E~# - K being k-#. An exception
oceurs in the case k=1,K=8. The level J=0 does not exist;
a8 for hydrogen,this level corresponds to 1nfinitg energy,
and osnnot occur. Thus the s levels,for which k=1,are,es
is well known,singlets.

Section 10. Degenerate Begressof freedom. It will

be noticed that our final expression of the energy of &
hydrogen-like atom (/6) contains only the four quantum
numbers n,k}a.j, although the original prodlem is one of
8ix degrees of freedom. This oceurrence of only four
quantum numbers is8 in agreement with experiment;bﬁt it
indicates the existence of two degrees of degeneracy,which
we proceed to investigate. |

If we return to our first expression (JO) for the
mean value of the Hamiltonian iy terms of the angle momen=
ta of the first intermediate motion,we observe thet tﬁc
momentum uy is missing. It follows $Bat the conjugate

angle ,@ »1s8 constant;which means that there is no rota-
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tion sbout our axis of reference B fixed in the body of
- the electron. This is obviously the case;for a sphere
is incapable of two simultaneous rotations,and the
rétation of the eleectron is completely specified by'ue
- and uy . In other words,we have a degeneracy due to the
gpherical symmetry,as a result of which all choices 6f
the axis B are equivelent. This degeneracy could only
' be removed by an inequality in the three axes of inertia,
or by the association of some property with an axis fixed
in the body of the electron. An argument for the sphericity
of the eléotron-is thus proviged;an sspheriecity would
introduce an additional degree of frecdom and a new quantum
number ,muitiplying the levels beyond those observed.

The second degeneracy is that represented by the
momentum P,which appears in the form (/%) for the Hamil-
tonian,and was there set egual to 2:5 . It will be notéted
that P is absent from the energy,and consequently from the
final form of the Hamiltonian in terms of anglo variesbles,
given in (20). How P is the component of the total angular
momentum G in the direetion of the polar’axis. Its
quantization is aceordingly a space quantizatién,whioh
is Juetified only when the corresponding degeneraey is
removed. This can be done,as in the simple theory of the
hydrogen etom,by the introduction of a magnetic field;the

number /il then enters as the megnetic quantum humber.
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Sect. 11. Magnetic Effect8. The application of &

homogeneous megnetic field with lines of force parsllel
to the poler exis adds two terms proportional to the

fields strength }f to our Hamiltonian function. (Terms
imolving){”gm neglected.) The first of these,
associated with the orbital motion of the electron,is
the same term i%E.RP which occurs in the simple theory
of the Zeeman effect.* The second,associated with the
spin,is —ﬁ Py ithe feotor 2 arises from the doubled
ratio of magnetic moment to angular momentum of spin.
Expressed in terme of the angle variables of our problem

without magnetic field,these may be writiten together a8

Sk (P+p).

yARYS
Thia is added to a Hamiltonian funetion whioch

containg corrections for relativity end spin effects,
and also for deviation from s Coulomb field. The result
depends on the relative megnitdde of these terms to

the magnetic correction. We shall first assume that

the latter is small compared to all other terms.

If this is B0 we can again apply the method of
perturbetions;we have to find the mean value of the
magnetic term,taken over the unperturbed motion,express
this mean in terms of the angle variables of the un-
perturbed motion,and quantize the Hamiltonien contain-

ing this mean value in place of the above expression.

T e W g U T D Tt T o G VTt s v D W S S S WO - G G W = s S W W W W . W B WP mm - ams S e e S S

*Cf. Born,Atommechanik,pp. 237ff.,and Appendix 1.
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P,a8 we have sesn,is a constant in the unperturbed
motion,so that we have only to find the average of p.
Now p = Pj,vwhich is the component of Pp in the direction
of the polar axis. The vector represented by Pp precesses
uniformly about the vector represented by G;acceordingly,
the mean value of Pp is Ppoos(P2,G). But the vectors
r2.,P2,G form a veetor triangle,so that

p22 = Bo® + G2 - 2PpG cos (Pg.G).

Henoce the mean velue of By is (P,2 + G2 - py®)/26.
The mean value of P3; is the component of this in the
direction of the polar axis;but as P ie the component of
G in the direction of the axis we find,for the mesn
value of P1, (Pp® + 6% = p,2)P/262,and for the meen value
of the whole term which we are Beeking

Aw= SN pe ¥ ()
2Zm 2G*

The entire approximate Hamiltonian will now depend

only on these momenta,which can accordingly be quantized,
giving

' PR L
AW = .S:kﬁg . (/~# {
Yrmc

2d‘1_"_ ) (22>

If now we make the "Heisenberg substitution,” we find
e | +05) +(855 ) ~(k |
' —m ’ (2_3)

AW = Lf-"n“f_ 2—(0—1“{7_

which is Landé‘s formula for the anomalous Zeeman effect.
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Our proof applies only to the cazse of doublet spectra;
but the formula is general.

We have here assumed the magnetic correction small
in comperison to the relativity and spin effects. If we
nov make the opposite assumption,that these effects are
snell perturbations of the motions produced in the
magnetic field - which must be the case if the field
strength is sufficiently increased - we have quite
different conditions. We have first to solve the motion
without the gpin and relativity corrections. If
the electron moves in & central field,ﬁhe non—magnetic
terms will then depend on pp,pz,and Pp,while the ﬁagnetic
terms ars f%;;;_(Pl + 2P1). Consquenttly p; and Py

‘ : mh p . [Tk
are quantized;we can write p; = s °F1 e

The effect on the spectrum is cleer. Quantum
transitions in 771 and rr]cocur independently. Those in
™ gplit up wvery non-magnetic line into & "nmormal™

Lorentz triplet. Those 1n111 should lead,ambﬁg other

things,to lines at double the normal Lorentz displace-
ment. On the correspondence prineciple the intensity of
these lines should be zero,for they do not correspond to
& change in the electric miment ¢f the atom;this is so
because the omission of the spin terms makes the orbital
motion independent of the spin. Lines of this genersal

type &re observed,and their intensity drops to zero
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for very hgih fields - that is,the probability of such a
transition vanishes when it ceases to alter the orbital
motion of the electron;this is a partisl justification
of our use of the correspondence prineciple.

A further interesting result appears when,after
solving the problem with megnetic field,but without
8pin or relativity terms,we intoduce these latter terma
es small perturbations. By our general rule,they have
to be averaged over the unperturbed motion,and expressed
1h terms of the anglé variables of that motion. For the
relativity term this is simple;as it depends only on pp
and pz,which are constants of the unperturbued motion,
its average is given simply by writing it in terms éf
P2 and pz. The average of the spin jerm is best obtalned
from equation (9 ).,by observing that it is a éonstant
miltiplied by 1/v® and the sceler product of the orbit-
al and rotational anguler momenta. b,the minor axis of
the ellipse,is of course & constant of the ﬁnperturbed
motion (i# depends only on P2,Pg,8nd constants). For
the scalar product we observe that the #ectora repre-
genting the two angular moments in gquestion precess uni-
formly at different rates about the polar axis. The
scalar product then reducee to the produect of their com-
poments in the direction of the axis;this is P1P1.,.80
that the required average of the epin term is simply
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const.pyBy /b3,
| The quantization accordingly consists in putting
all the angle momenta of thévnnyerturbed motion equal
to 4uantum numbers times h/2T[. For the relativity
term this means adding the Sommerfeld correction;but
we must take half-integral K instesd of integrel k,as
expléined in Section 7. The spin term is proporti onal
to1n[” « These two energy terms are superposed on those
due to the unpertubsd motion,including the magnetie |
effect and the deviation from e Coulomb field,this
last being assumed relatively smell. The sum represents
tthe Pascheh~Back effect of a doublet spectrum for high
fields;and it is worth while to examine its relation %o
the undisturbed doublet discuesed in Section 8.
The principal lines observed will be those of the
Normal Lorentz triplets,corresponding to tranaifidns in
elone. Other lines will be weak,since the effect of
the spin on the orbital motion is by hypothesis small.
The energy differences corresponding to the outer lines
of these triplets,for whiech A m = :l,will cantain spin
terms,s0 that there will be slight deviations frum.the
normel separation of the Zeeman pattern. Thé central
lihe,on the other hand,is given by A M = 0;end for this
line the spin effect vanishes,so that 4ts position is
determined by the principal energy levels and the rela~-
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tivity terms. These lines accordingly appear as if they
were transitions between the Sommerfeld levels for half-
integral K,while the originel doublet 1inea sppear as
transitions between these levels for integral k (=J}.
The two values of J corresponrding to & doublet with
given K are J) = K~%,Jp = K+k. It essily seen that
J1(1/31 - 1/K) = J2(1/K - 1/32); in other words,if we
esasign the weights Jl and Jp to the corresponding douwb-
let levels,and find the resulting ocenter of graxify,
this center coineides with the level which enters into
the ceatral line of the Paschen-Bask triplet. (This
neglecta the spin term,which drops out of the energy
difference and thus cannot be observed.) This is8 a
woell-known fact of observation;and by means of these
oenters of gravity the relativity levels for half-
ihtegral K acquire a direct physicel eignificance.

It is well known that the Paschen-Baok effect is
frequently partial. Since the separation of doublets
with different K's,say of a p and & 4 term,may have
quite different values,it is possible for the same
magnetic field to be large with respect to one tarm
and smell with respect to the other. The £4st then
shows & Paschen-Back effect,the second an anomalous
Zeeman effeot,and the combination of the two gives a
system of spectral lines intermedizte betwemn tlhe two

types.
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This Treouw.t is familiar;but it is not so well known
that the Paschen-Back effect as observed for s-p dou¥lete,
even when carried through to 'ﬁhe appearance of & normsl
Zeeman triplet,as by Kentgs still only the partial
effect. On the o0ld theory this is not the case;the 8
state 18 a singlet,snd the pMenomens of the Pasclem-Back
$rensformation enter the 8-p lines only through the p
term. Accordingly,the appearznce of a Lorentz triplet
with its central component at the "center of grar dty"
of the originel pettern- between the two doublet
lines- is taken as the final effect. But for an 8 level
J = 1l,while K = %;80 that a sufficiently high field
should produce a Paschen~back effect of the s-term,in
the sense that the center of the triplet should shift
from its position between the original doublet lines to
Xx & position considersbly outeide; for 1/% - 1/1 = 1,
while the separation of the p doublet on the same
scale 18 1/1 - 1/2 = &, This effect is probadly not
accessible to experiment;for in the most favorable case,
thet of lithium, }S_ the seperation of the p-doublet is
au:fficienﬁ} 1argeiothat extremely high fields are required
to produce the partial effeet;and the separation of
the levels J = 1 and K = % 1s probably even greater than
the above result would indicate,owing to en incresse in

the effective quantum number.
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Section 12. Other results. This Part will now be

concluded with & brief mention of certain further con-
sequences of the theory which have been developed by¥y
various investigators.

The discussion of magnetio effects in the preceding
gsection referrsd only to the two extreme cases in which
the effect of the megnetic field ie small (anomalous
Zeeman effeot) or very largs {Paschen-Beck transforma-
tion) in comparison with the xnnttigigxlllxgx terms. I¥
ig @lso possible to discuss the intermediate Paschen-
Back effect,in which the megnetic and spin terms are of
the same order of magnitude. This has been carried out
on the matrix dynemics by Heisenberg and Joidanlin a
paper which handlee the whole subject matter of the
present part from that point of view. .

It is aleso posaible to discuss the behaviour of the
hydrogen-like fine structure in a magnetic field. Here
what corresponds to the anomalous Zeeman effect can
gcarcely be observed. The intervals between the seperate
non-megnetio lines are already nesr the limit of obser-
vation,so that & Zeeman pattern small in comparison to
these intervals is hardly accessibhle to experiment. If
now the field is increased,the magnetic effect becomes
simultaneously of the same order of magnitude as the

interval between lewls of differing J and of differéng X,



| 53
which gives a very complex intermediate Paschen-Back
effect;while for high fields,in which the experi mental
technique becomes diffioult,there is a complicated
overlapping of the Lorentz triplets due to the veadous
values of Kithese tripléés should overlap with out
disturbing one another.

Sommerfeld and Uns81d 2/ have attempted anvappii‘-
cation of the summation pules of Burgers and Dorgelo
to the intensities in the fine structure,treating-it
as & special case of & doublet system. Howevar,the
theoretical foundation of these rules implies the
whole of the new dynamics;and as the equations rep-
resenting the system are now undergoing a fund amental
revision,these resﬁlts must be regarded as provisional.

Fimally,the hypodhesis of a spinning electron,in
conjunction with Pauli's exclusion principlé,hés.been
applied to the systematization of practically all
multipiet spectra,involving the theory of atoms with
more than one valence electron. This is a vast snbject
which can only be referred to here;the most available

systematic presentation is Hund,Linienspektren.
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Part III. Theory of the Spinning Electron in

VWave Mechanics.

Sect. 1. Introduction. The formulese for energy

levels derived in Part II actually represent the observed
fects,and the discussion there givem of their physical
oconsequences is substantially correct. Such a discus-
sion,being stated in terms of classical mechanics,has
the advantage of greater clearness,owing to the simple
and femilier character of the principles employed;but
it 18 theoretically unsatisfactory,since we now know
that classical dynamics 48 not strietly applicable to
atomic processes. It is even logicsally unsatisfactory,
gince the physically significant results sre obtedined
by the highly arbitrary device of a "Beisenbefg sub-
stitution," a procedure which can only be Juétified by
theoreticai congiderations based on quantum dynamics.

A less pbjectionable procedure is to introduce a
modi fication corresponding to the spinning electron inte
the uquations of quantum dynemics,and to derive the
required formula by the methods in use in that sudject.
Until recently,this has been done by teking the Hamil-
tonian equation (8) used in Part II (inecluding the
Thomas factor %),end trenslating this into gquantum dy-
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nemics by the rules in use for such purposes., Not only
ie this method subject to all the uncertainties,discussed
in Section 1 of Parf II,which attend the setting up of
thé Bamiltonian function in question,but,as shortly will
appear,it gives rise to new and unexpected difficulties
of its own.

The most adequate theory of this type is that given
by Heisenberg and Jordan in the paper already referred
to.jl+ The givern Hemiltonian function is translated into
a patrix expressions, end the energy levels are then
derived by matrix operations. The authors thus derive
the formulee found in Part II,as well as others,such as
those for the intermediate Paschen-Back effect. No
additional assumptions beyond those of Part II are
involved.

The advent of Schridinger's wave mechanics naturally
gave rise to numerous attempts at stating the theory of
Part II in thie physically interesting aend mathematically
attractive form. The writer at one time believed he had
succeeded in such an attempt,and published & preliminery
raport of his reaaul't:a;z'3 subsequently en error was dis-
covered,8ue to & difficulty clearly steted in & paper by

Darwin.?2
As the writer's investigations coincide with part of

Darwin's,the presentation of the method will teke & con-
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| siderably more abbreviated form than would have been
proper for Part II,which contains rmuch unpublished
materisl. The method is egain to take the Hamiltonian
equation of Part II,but now to translate this into wave
mechanice by the use of a rule due to Schr8dinger. THe
resulting problem can be solved,but gives rise tg the
difficulty mentioned above,namely that the boundary con-
ditions of the equation require the quantum numbér a8~
gociated with the spin to be an integer,while 1n‘¢¥der
td obtein doublet spéctra - or any spectra of even mul-
tiplteity - it is necessary to take it as & half integer.

Devices for avoiding $his difficulty were given by
Pauli 20 and by Darwin > . These form the incomplete
foundation on whieh Direc has very recently 5;vset.up a
theory of an entirely new type,which not only eliminates
the trouble just mentioned,but also disposes of the
aifficulties in setting up the Hemiltonian function,by
dispensing with the mechanical model of a spinning elec-
tron.

Before teking up the writer's now superseded investi-

gations we shall consider & problem corresponding to that

studied in Section 2,Part 1I.
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Sect. 2. The effect of a dipole &n the nucleus.

. Sohe8dinger's general equation for sn electron moving in
an eiectromagnetio field indepandont of time,neglecting
the effect of relativity,is
Pry+ e (A ve) g -evlpT o (2Y)
where A is the vector potential and V the saiar
potential. The equation for the case when the magnetic
- field 18 due to a dipole in the nucleus wes first given
by Foock ;we' derive it as follows. Let ts dipole have
a magnetic moment z/u.the vector representing this
moment being fixed in the direction of the negative z-
axis. (Thie 18 the dipole substantially equival ent in
its claessical effeoct to the spin. See Appendix 3.) ﬁan
A)(: - ‘Z—’i d, A9:+ZA;') Al: o

ang - W xYt). Buot
We now put M= eh/4rme ,supposing the electron to have
an agular momentum of half & quantunm un:lt.i.é.‘ n/4T .
Then T,z
Ze ¥ +3”‘(E+'Ze)% O
4225 2

Professor Epstein 8 has discussed this problen,
with the additional refinement of allowing for the
effect of relativity,using a method current previous

to the recent theory of Dirss. He also introduces the

Thomad factor ¥ into the dipole term.



His equation can be put in the form
2 2B, €, imQ ) _

in whioh the abbreviations are

Le*
A-"}‘”ZE(Ei-Zm’—) B"q’ﬂ}zc(f.-\—h- <, = Lt”:_?f:_ ('?‘ Zmecz J

and terms depending on the time and the square of the
vector potential are omitted. He figds for the energy

levels,to the first order of approximation,
-_RRZ" Ra-ez" I |
E= e (*’ ‘f) t e Znd  CL0+E )((4-: ) (2_7)

in which n is a positive integer . is a positive

integer or zero,and nj 1s an integer or zero, If now

ny =4 € or-{+1 the two last terms combine,and
- _ R4Z" Pu‘z“(:—; - _{{'«{ m==C-1 5 ¢
£- T{:+1ns 4 ‘f), J,*-{Ll’{n,:e (28)

wvhich rcpresents the observed fine stmoture.*

3ince the charscteristic values of the equation with
relativity correction but no dipole terms are,as
worked out by BEpstein, Sohr8dinger,and others,
: b Y% /N 3
- - RhZ L RALD (/-J 2
E.= == + — . e+ ‘)’) ( 7)
it is evident thet the characteristic values of our

present equation (25) are
Ed: - RI},Z:.,_, Rha*Z 1. AT
T ZAYE) Cle+L ) (€ 41)
This solution bears & simply demonstradble rela-

tion to that of the general equation of the spinning
electron problem,80 be set up in the next section,and

will be used to obtain the result more readily.

T wm o = ek W e WS —c—-——-——--—————-—---———--—-——»-—---————

*Note that this demands a half quartum for the spin,

The relation of E to the similar expression on classicad
mechanics (Sect.2 Part II) is interesting.
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Sect. 8. The Schr#dirger wave equation for hydrogen-

like atoms having & rotating spherical electron. We begin

by rewriting the Hamiltonien equation used in Part 11 in
the form
Tl B ) A et g

n
- % +/[me</;,f9 0 sl By +ac0 o Fo g (31

49

et sana Ry b+ (1St Ocon)hy —a?ﬁwc@ém/é’pl“@]

in which all the symbols have the meaninga with
which théy were there employed,and we Bave introduced
the two additional abbreviations o( Y - f’ and
Q= Zez/zmzc

The part of<H which depends on the momenta is s
quadratic form,so that we can at once derive the cor-
responding wave equation from Schr8dinger's #ariation
principle.‘zs The result*proves to be the same as that
eagily obteined by the operational method. éalling the

wave funetion u, since q’is in use a8 & coordinate,we

” T % o
nave V. ut Zw& 390”"6&9)_'-»« B[Jtr +3Q -Z(p&éwc)ﬂ]

ne Q@
*Z F o o 9996 a(& 9/ ;;35
+wwmoc a%fj;éwt | 1 wtdco mxja?w
= ot g % g”l"‘[)i—qt Zie”
) Tlu=0 (32
—— A e e e ——— —

*Phe caleulation is given 1n Appendix 9.
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By introdueing two very obvious abbreviations we

may write

v\v\_‘_I V/u F 1MQ.F(u)+$’1f2n [E+ u=0. (3)7)

Section 4. The solutions of the unperturbed equation.

We have now to treat the above wave equation by the

2m &
| V4
term. A theory of perturbations for this type of problem

method of perturbations, taking £(4) as the perturbing

1s given by Schr¥dinger 2T;the method used in what follows
18 a modification due to Professor Epstein.
We begin in the usual way by considering>the solutions

of the unperturbed equation

V2u0+ % V'll'(, + % [E‘;). "1_%7:‘]1(0 =0 (:3)9’)

This equation corresponds to a spherical electron
revolving about the nueleus and simultaneously rotating,
the two motions not affecting one another. A charac-
teristie function uwo is then the product of functions
characteristic of these two motions,and E, is the sum
of the corresponding energy parameters.

The first of these two partial solutions is the
well-known solution al:eadyE;éigf;;:;:;;g:;;ﬁ“vf~$hia
2art;the second is 8 special case of the solution for
the symmetrical top,worked out by Reiche s&nd Rademacher.z’
Combining these,we have |
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'h,q’+l“2_\l’+"}3§) (5 5 )

L4

Uy = XS R0 T (D) &

T(6) = (o %}"'(’@%}?P(-b [+ed+5+p, 144, A‘%) (36 )

Y Y AT
EO - “”“h',: + S,TrLI ) .

(37)

'Here 7¥S(4)13 gesin Schr8dinger's function for the
'~ quantum numbere n and { ’ &h' is an associated Legenﬁre
funetion,and F is & hypergeometric function. n is é
positive integer. n;,ng,nz, € ,d,s,p are 1ntergers‘or
zero,of which the four last cannot be negative;in fact,
@ = |ng = nz| and 8 = |n, + ngl Finally #(dse) + p =7,
so that o is a positive integer or zero. '
From the expression of E, it appeare that 4 (+l)
takes the piace of 82 in the theory of Part II. This
is the ordinary relation of the manner,inuwhichva
quantum number of the type assoclated with an sggular
momentum enters the energy in the guantum dyhamies.to
the manner in which it enters in the clessicsl dynamios.
Since we took 8 = 1,1t is natursl,and in fact almost
compulsory,to take ¢ = 1. This leads to difficulties,ss
we shell see. -
This choice of J hes the advantage of bringing sbout
a great simplification in our expressionb. The writer has
worked out the relations for any genersl value of 7 ;but
as the results are only & part of those which ﬁarwin A

has published in a more finished form,they are scarcely
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worth inclusion in this thesis. Thé relations become
extremely complicated and cumbersome to handle,and the
results contribute nothing to the solution of the
‘diffioulties in hand. They do not mswen represent the
physical facts to.a first approximation; for Darwinzhas
shown that to obtein the observed results for doublet
spectrs we must take U =% which is excluded by the
boundary conditions. The writer's work was exelsuively
with integrel values of 0 ,and econsequently failed of
even this result. |

The choice of 0 =1 limits the choice of P,&,8,n9,
and ng,end greatly sipplifies the expression for T.
We are limited to the following cases: '

P d 8 npg nj F T

1 0 O 0 0 cog® cosg®

0 2 0 21 71 1 #{1~cos0)

0 1 1 0 ¢l 1 z81nd

0 1 1 £ "0 1 +81ino ,
0 0 2 21 121 1l '%(1+eoseé o

Section 6. Introduction of method of perturbations.

Into equation (32) we now substitute w - u, + 2mQv and
E=Ey + 20Q€ . Ve sasume that v and € are small,so
that their product can be neglected;the result,correct
to the first order of small quantities, is then
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3%y
Dl fao *i’*"’f‘a”{e‘“’"‘}ww ~et Fcoe O oo ‘L'fﬁa- 0
g
Substituting for uy its value

oM i 8 e Zie”

Vvt z77v # T [Eo+ T]v
L Xéiny ‘.("'?H‘wws&)[w«?"r ' iV, aniiel PITV ot ©

- /2.3 h €
-}'i‘bn-d;o( p'Pwc® + in, pus XP WA}T’“ 1, ‘1;_‘“’"“"’“9‘0(’9?71
M oA (0 cacOPT —X nzP'T’j W“GY(I e J"""”*"Sm
— 0O | [37)

dh LT |
where P! -—'{-. and T' = ——-"’; . By putting the cosine
A 406

and sine of of into exponentiels this reduces to
— 3
VZ\/"L m 12 Y 5/_,_’,2." E, F )Ze v
TV V7 5= LEo ]

~ L T ﬁ)[eid(,vuu, PertsS) (T, Tt ©- 14 Teacg)

s X (PN TPeo) (T 1T ot 0 M3 T coc 8) Dy, P

) Srffe Xy pret TR (yo)

We now apply the reduction formulae® for P

ﬁen _ ’71. M(\QP’S g ’l(+|

B ot O R =7é€z§’7i7§/,f—n, ) B

(‘H)

where fis -1 if n3.> O ,and +1 if nj <O,while
N is +1 41f m1 D 0 ,end -1 if n7<0.

—— T . - Y - G G R Ge WD e A A3 GE YR e T T W I SN A T TR M st e D G G S G e S U TS S e S SR HOe Sl S S WD

*For these reduction formulae see Appendix 10.
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and also the reduction formt.llae for T * inithe case when
g is 1¢ ~
T4 (s, A -3 coc®) T = N2 TS (4,
T'= (reco?© =y coco) = 22 T2 ’

M2y

n .
in which the values of A,,:_ and /«(;;‘j are given in the

following tables:

):.3 ’ /‘~h3
Jg 1 0 =1 no 1 0 <1
B B3
1 ~2- 0 i o | 2 (% 3)
o ! -2 0O o O =2 |
-1 2 1 0 <1 O -1 R |

I1f we intmoduce the ‘further( notatio%) n
A (h,P_ hy vy Y4y _r Y
Rre =Y, Tie ™ =%, (e

_e H. ‘H.3 %5 §
g0 that u, = v
o] o X}; Y-f Z’IL } . | C .)
the final form of the equation is
. _ Zet
Vv + v +‘3’£,;_"3 | Eo+ %—] y
i e / n ‘h =) ‘13
—_— i Y 3 ! - v
T L A A s

+§(’1,)):: K\HIZ,,22 —2n, hL'Ye'"l ZH":]

__31/1‘"\ ¢ 7"

TS
;3\

*Appendix 10.
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We now 3ntroduce into this and equation(:*‘r) the quantity

P’ = - 4n2mZez/nh2.whereupori we obtain
Vot o VW, — [P+ S + g or@tn] =0 (11
Viv + ‘% v — [+ = s c+D] v
= ;‘; [ 10 )f‘u?((’f*":){e—k,ﬂ) Wp (M, 9,4, hyet, -t s )
+ ¢&ou) A3 uy(2,06,%, "I‘“/“L",’B)*lk,'lz_”aé")o’zé;",,'fyk_g)

+.-5i_;_‘.f€- Uo (4, 55€ xy ¥, hs ) | (M}
Qur present problem is the expansion of the right side

of (‘/ﬂ)in terms of the solutions of (‘1“7)for varying n; if

we succeed in carrying out this expansion, a large body

of general theory becomes available for our use., Now if

‘6 has the value given above, it is 4ifferent for the

different forms of 4 the functions defined by (%7 are

Bimply the product of the Schrddinger and Reiche functions,

But it 1s equally possible to regard @inL‘W)a.s & constant

independent of n. The equation is still of the Sturm-

Liouville type,* so that the solutions satis fying the

boundary conditions s8till form a complete orthogonal

system, though of course a different system from that

with variable A . The dependence on r,that is the fhrm

of the function )(S(‘), is changed; the factors depending

on the other coordinates are unaltered. The orthogonal

property is modified only with respsct to r; in place

of[’o ;Xj/,}u(,\,;o wWe now have/:‘)ffx:’: nd1r=0 *,

With this understending the possibility of expansion

- . e - . . TR S Y TS T W D M T S W T G e W S T W Awy W e T G T T S e WD e e e S D S g N W -

*Appendix 11. This highly ingenious device is
due to Professor Epstein,
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in terms of the functions u, is retained. Onw futther
property calds for remark: ,3 ,being a fixed monstant,is
to some extent arbitrary. It is th en possible to take
{6’= -47" 2mZe2/n2n,where n is the value of the quantum
number n ocourring on the left side of (¥7). one of the
functions ug then coincides with a particular one of
the originel set.*

Now it easily shown from genersl considerations**
thet 41f the right side of such an equation as (¥9)be
expanded in a series bf 1/r times the functions u
the coefficient of the term which contains the same
function as that appearing on the left musi .vanich;
otherwise v cannot satisfy the requirements of finité-
ness.

The original problem is degenerate;the parameter
E depends only on the two indices n &nd ¢~ . This means
that uy,8nd consequently the quantity on the rightvof‘
(Y8 )which 1s derived from i%,will in general consist of
a lineér combination of partial solutions of the type
indicated by 63) and (¥),involving all the"combinations
of the indicee { ,nj,ns,nz which are consistent wifh.the
values of n and ¢~ sppearing on the left of(*3). However,

since only nl and ng are altered in the terms on the

T s ——— Y ——— i S . S S e S M G SR g S0 S S . S S GUL B WY Y Al S A Ga G A G G S S e D R W S e G S S A S D

*It has not been thought necessary to intmiuce a
new notation for these modified functions.
** Appendix 12.
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right,it will be umnecessary to consider uo as composed
of terms with verying { or ng;the equations obtained
for the energy levels would simply breek up into a set
of independent equations,one for each level with constant
{ and ng/ (It will sppesr thet the energy is independent
of n3)

We introduce the following three expansioms the
first of whieh is assumed with undetermined ooefﬁéients,
while the last two must be constructed by inbegration.
(1) uo(n,o'.f,nl,ng,ng ,’,Z,’:, K uyl(n,,¢ ,ni.n:?,na) (“IC])
where ng on the right represents the partiel solution
given by )(,f Y?'Z:: ) ;
R A 2 D LS

P e ey

A

n’ 8 -
KmL {( ”::e =M ) U (6,0, 7, e Mzl
1

= L
& nynny o )
7)(71—, ,ﬂnJZ('f";)((’"" +) AM' l(o(n’_,o')é)n' "’}nz,""l, ﬂ3)
LY
+.L§’(,,1)A3A ‘fo(h',d'/ e, n 41, m, -1, 143)\} Lj,/

- -E {k:f 87[:_‘5- ” /“:.An) k ')ln A, "3 (en +l)l(-u,'),4h

VA LR,

"L+ '
+ '}9(". ')hnl,HA }l(o (n0, L, iy g ). (S&/

Aceording to theory*,bhe coefficient on the right

heving indices the cerme as on the left must vanish.

o W e S S0 G v e S T A R e e e G S e D g K G G S San o T e Rl S A T S e e W Ve S et S D

*Appendix 12.
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This leade to & set of 3(2¢ + 1) homogensous linear eque-
tions in the 3(2{+ 1) unknowns Iﬁ’;fbr from Schridinger's
theory - {{ nigf{ ,¥hile we have. seen that ng in our case
is =1,0,0r 1.
In order that thess equations may be conai stent the
determinant of the coefficients of the K's must vanish.
Thies gives & set of 2( + 1 cubic equations in € ,* which

are easily solved,all having the roots

--.b—t—/,'\_’l- c = ﬁ‘&‘/ - = —(€ —h::"A:‘m.
-l WASLLS =W B () e (53)

The existence of such a triplet of ievele instead of
the expected dounblet indicated that something im wrong
with our procedure;but there remesins the possibility that
the explicit expressions of Ap and B, may in some way
remove the difficulty.

The next step in order would be to compute these
coefficients Ap and Bp by integration,using thé-oitho-
gonal properties of the functions :Xf ; this is.an easy
matter for individuval states of low guantum number,and
such a case is accordingly computed in an appendix* for
the sake of en example. For any gquantum numbersin
general the process is less simple,and we shall take
refuge in a special device.

The equation for the csse of 2 fixed diple in the

T T s G D DD S G S B B v T S G e G e TS . W A S G T W S W S S e e T S I S T W S g W S WY S W S D U o S G

*Appendix 14.
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nucleus may be treated by applying the same method of
perturbations which we heve been using to equation

of Seation 2. The result has a very close relation to
that of our present problem,and it will be dhown that
we can apply Professor Epstein's solution of the dipole

problem to our more complex case.

Section 6. Application of the same method to the
Pixed-dipole problem. Equation (29)is so much simpler than

those which we have been discuasing that we can obtain
the results we need by little more than a specialization
of those melready in hand. We rewrite the equation in

the form

Vu_f_LZon)q %yrr‘m(ggz,z Ju =0 (5¢)

> 99

and substitute u = wo + 2mQv, E = E, + 2mQ¢, where

Vu+3’7“"(5 +7‘3)“o—-o >5)
We find zv+5{11“k4 ot 22 ze V~~L i% L’n'vneup (5€)

Now ug = X;, (2) P () e’ 'CP

4o
80 that g “inly ,gubetituting this and introduecing

our two expansions in terms of modified functions*CSO)

Vv 4 BT (Ept Z0) v = 205 (may ST Ju coem) (57)
Since again the coefficient of ugln, 4 ,nl) on the right
must vanish, - n, An

€= 377}”1 : Bn (58/

———— - —— - —— T > v gy e wes ) an oen g - T - — 0 T . . S G YIS Y S T Qb T e S

*The Justification of thie procedure is even simpler
than in the complicated ocase.
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From this
2er = El = ZmQ

awz'm (59)

But from Professor Epstein's reeulte we have seen that

we nmust have

I RL*Z A ™ 0
Bt T el (o)

so that the two quantities on the right must be equal.
This 18 a mere mathemastical identity,whioh we can now
apply to our problem.*

Section 7. Finsl solution of the spinning electron

problem for 4 = 1. From the results of Section b we

Ap L n®
have for our problem E; = 2mQ —

Bm gm Z2m

- ,in which

I may have any of the three values =1,{ ,- (- 1. Apply-
ing the above identity

¥ L S
B =" ket Zs A Sy
n {((+1.;)(e+1) /

We have derived this result from an equation in

which relativity is neglected. It is obvdous that &
generael equation inecluding relativity effects would
bear the same reletion to ours that the equation solved
by Professor Epstein does to our dipole egquation (5‘9.
The result will be the addition to our B of the same
terms a8 form the difference vejween the characteristic

values of (25) and (2 (’)

———.—-—————_——.--—-_——— - ma e B A . - — T T T - b S W e A A VAN N A e T n .

*This agrees exactly with the result of Appendix 14.
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For the complete expression of the energies of

our problem we have

RJ mxz( )ﬂ»xz‘* Ly

a0~ ( L)
u3 C(e+L )(eF1)

L sgain has the three values -l.Q ,-( - 1;the
energy level is'a triplet instead of the expected
doublet. There is no way out of this difficulty. We
could,indeed,represent the observed spectra by
assuming that the lpin contribution must still be
divided by 2,and throwing out the value L = 1 as
spurious;but as our original equation already in-
cluded the Thomes factor #,such a procedure would
be sltogether without justification.

Darwin hae shown thaet in general any integral
choice of ¢leads to an 0dd multiplicity,of order
27+ 1. For doublets we must have U = #;but this
conflicte with the conditions that u is singlé-valued.
It has been suggested that we might allow double-
valued functions,reserving single-valuedness for uz.
which is the physically important quantity;dbut t ie
allows n3 to take half-integral values,which intro-
duces new energy levels corresponding to haelf-integrsl
values of n,whiech confliects with observation. The

@ifficulty is only to be removed by a complete re-

vision of the theory,as will be sketched in the Con-

¢lusion.
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Part 1IV. Conclusion.

From the discussion presented in Part II it must be
evident that,in spite of numerous uncertainties and inac-
curacies,the hypothesis of Uhlenbeck and Goudsmit hes
proved one of the most fruitful in modern physica. It
has served to bring order into what was previously &
puzzling mess of complicated phenomensa.

The spinning electron has been of mogt importance
in the theory of atomiec strueture,though it enters into
the discussion of wver¥y subdivieion of the guantunm
theory. In view of the faect that the rapid growth of
the quantum dynamics has widened and deepened our con-
ceptiona of quantum phenomens to such an extent that
visualization of the mathematical relations involved is
usually difficult eand sometimes epparsmtly impossibdle,
it is well to remember that progress in physiés,eSpecial-
1y in experimentel physics,depends largely on a geomet-
ricel representation of the phenomena being studied. It
is for this reason that those investigators who are
rctively engaged in spplying the hypotheais to etomic
theory continue to use the clearer mechanical model,
despite the fact that guantum dymamics renders such an

interpretation incomiete.
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The efforss to state the hypothesis in terms of ths
new dynamical princeiples ere of course necessaery and of
the higheet importance. Until recently the only nearly
compleye success in this direction was that of Helsenberg
and Jordanfglthough most of the uncertainties attaching
to the theory of Part II remain associated with their
work.

All attemnts to represent the spinning electron in
wave mechanics at first came to griedf on the difficul~
ties explained at the close of Part III. The first escepe
from this blind alley occurs in & paper dy Panli,zo in
which he adopts the device of setting up & wave equation
involving the three components of angular momentam of the
electron instead of the three Bulerian angles of rotastion.
Paulits work was open to the obpetion that no resson
appeara why this method should succeed where the more ob-
vious one fails. An equivalent mathematical proceddre wsas
interpreted by Derwin > as meaning that the Schr8dinger
wave of the electron is a transverse wave.specifiad by
two amplitudes instesd of one.

These two theories still feiled in one respect dom-
mon to all discussions of the spinning electron previous
to the present year. The equations set up not being in-
veriant,the facte of observation were represented correct-

1y only to the first order of approximstidn,thet is,to
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terme of the ordsr va/ez,where v i& the velocity of the
electron on the Bohr theory. Moreover,one would expec?t
from & complete theory some explenation of the curious
‘feet that the spin correction comes out with exactly the
same coefficient as the relativitj term.

Both these points are settled.by‘tﬁe new theaty of
Dirae.f; Much of the mathematical spparsatus developed to
handle problems in the new dynamies depends on the fact
that the Schr8dinger wave equation is linear in the
energy parameter E. As will be seen from equation
(8ection 2,Part II1),thiswhs no longer.true of fhe rela-
tivistie generalization of the equation formerly in use.
Presupposing the necessity of such & linearity 1n.E,'
end adding thw requirement of relativédstic inveriance,
Direc has been able to set up & system pf equations
which correctly -represent all the phenomena escribed to
the spinning electron and to the relativity change of
mass ;4n particular,es shown by Darwin -+ and iy Gordon,/O
they lead without approximation to the experimentelly
verified Sommerfeld expression for the energ& levels of
the fine structure and of x-ray'spectra. Thus fhe mechan-
ical hypothesis of an electron with a given sgular momen-
tum and magnetic moment has apparently disappeared;the
present writer believes that this is a temporary eclipame,
and expects that & geometricel interpretation will short-
1y be brought forward.
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Appendix 1.

Magnetic moment of a system of electrons.

By a theorem due to Schwarzschild the Legrangian
function for & system of electrons of charge -e¢ and
mass nm,moving in a fixed electromagnetic field in
which the vector potential is X and the toml elebtro-
static potentisl energy (including mutual repuléi ons)
isu U,has the form

L= 3 ('Zg-;z)*v QZ(A v)
where the sum extends over &ll the electrons.

From this,heglecting terms in AZ,there follows
H= 3o Jpeepiery+U + £ (AV)
H 1s shus increased by the term 2 = = (A V).
Now for a homogenoue magnetic field )(
We have CZ(A_ v)= QZL(K‘[EXV]) = = ?

if the axis of polar colrdinates is in the direction oi’)f

Pk:s,

Now the potential energy of a dipoles of moment /4 in this
field 1is (}?gﬁ);so that the additional energy is exactly
that of & dipole of moment Y = ep/2me,with 41te exis in
the direction of the totsl angular momentum p.
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Theoxry of the rotating sphere with & surface charge.

The initiel problem is to find the magnetic fields
produced. The magnetic vector puiential at any point

is given by Awﬂﬂi)je,i{
2

Wyl

where de = ;;-Tsizz ;g‘;aaf;d ,;f’ is an element of eurface charge,
¥ is the veotor velocity of this element,and »' is the
distance from the element de to the point at which the
vector potential 18 being computed. Let the distance of
this point from the center be r,end choose the polar
azia so as to pass through the point. Then we may v;rite

4 /#2. b
v akttal kL

3

Further, Vv =‘-.Lgu xaj ,where .y 18 the vector angular velocity
of rotation and a is the vector from the center to de.
That s , vz wys' =G YD Yyid woklewdall G Tt - X

in which %/ vy, Y2 are all constants independent of the
integration. Moreover,the initial plane can be 80 chosen
that Uy =0;and £inelly,the terms in y'and = Wwill give no
contridbution to the integral,es they sontain G ‘}"’ and
2%’ . The ultimate result is that Ayi= 4,/ O,

while P U ;)-« s a0 I i 00207 4

Now since .. - 97,l.wo B)= g ll. ) )‘;‘_ﬂ oge dpdy 3"}"?4 A

i

only the term in the expansion of 1/r' for which n = 1
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will sontribute to the integral,giving & numericel factor

2/3. The integration over ¥ gives a facter £ 77 ,so0 that
7 o J
Ayi= AU < 2 €T s a

o - 1

!
|
|

We now have all three componente of X,and can pass to
2 systen of coldrdinates with polar axis or z-axis in the
direction of .J . We #ind in every ocase Az = 0,
For r< &, AX = '%1—% Wi i)'-h’ﬁa? and Ay _,,- L B i

For r)a, Ax = ~§f Lo f e @nd Ay = nﬁ“ ‘wa»g,dlowgq

This can be put in the form
Y.Aya""""x;Az“O

s.!»

For r <@, Ax =—mw

3ac
N P owlat - € g _
For r>a, Ax = = T3 ¥, Ay ——:;:3~x, z = 0.
These are the vector potentials of a uniform magnetic
L o ey e
field of strength S . ,and of a dipole of moment —.— ,
= ~ o

regpectively.
The magnetic field is given by H = curl X;the energy

2
density is then given by B = 5%%,. The total magnetic

energy within the sphere is found by integrating the

valne of B found Pfrom the Pfirst form of A over the

. ; e e
interior;the result is 14 = 5 'WLL .
The total energy outside the sphere is found by integrating

the second form of B over all exteriof space;this is
| et
7 T
Finally,the totel megmatic energy,or kinetic energy of

Tc"

rotation,is given by

1 €%
T=Dp+ Dy = 5 —— 1T .
] o

We can now derive all the resulte used in this thesis.



{1) T can bs written in the ordinary form of & kinetic
energy of rotation, T = #1.92 ; whence I = 2e2a/9aZ.{If we
introduce the "eleotromsgnetic mess" m = 2e2/3ecZ,we have
I = ma2/3.)The momentum p 18 I ; #,8s we have seen,is
e,/82/3e. From this '/p = e/mc,as we require.

{2) If the rotation 1s qusntized,p = I = 1/287 .
Since the equatobial velocity i vy = a .. ,we have
v, = ah/2 7I. Substituting,v, = 9he2/4im 62 = 9c/2 %
= 617 ¢ = 1.85 x 10%° cm/sec. Note that this result
flepends only on universal sonstants.

(3) 8ince T = 3I.02 and Iw= B/2TT, T =2 h/41T.
Bemembering that w = vo/a,we have from (2) the result
T % 9h2c2/16 TZe2a.



7%

Lppendix 3.,

Torce of translation on the spliming el sstron.

A magnetic pariicle iu an electrostesic feld ¥ moves
a8 1f subJecd tu & megnetic feld ¥ = - % ["? X E:_],
vhere ¥V ig the velocdty of the particle. If the nuve
leus bes charge +Ze 198 fleld 1s F = #ZeT/r3. Hence
E= - i EV xE J . If the magnetic moment of fbe
slsctron lg represented by the veclior M the Iurce
of tramnslisticon ¥ is givem by ]

Fo= (7 Vh) Fy= (Y Hy) F= (o TH )

Suba’itngimg the velue of B and reducing
c,z.,. 2 [VEp] - 32‘ (e )[Vx ]

Sefvar]

Whey ]:4 -~ %L?[ﬂﬁg(ﬂ. n) ~‘[

o~

But E' 18 precisely the maguetio field of a dipole
of moment «z}‘whe negetive sign indicating that i%s 4l-
rection is opposite to that of & . P ls exactly the fwoe
on & charge «¢ nmoving in the field of this dipolejwhica

wes S0 be proved.
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Evaluation o:rA L.

The procedure is similer to that used in Appendix 2.

We have to evaluate the integral

ff Ae (V- DUXaJ)

..._——_.4-- S ——

(V-Lfﬁxcr]):(tvxaﬂ-&) . Let [VX®]= J ;then the integrel
becomes ( taking the z-axis parallel to T)
o )] o2 884g [ 53 (5] Pulios)] [Gra oS cogp
Oy Qe Pol @402 a om i)

O'zjjf Z ( /;)V\K (C{Df@j Lga‘yh()‘“:&"( &

I

Uma
= 2%2%2 ., 5.
S Y JL
L cat
-5 oo 02
PR
LAL S Ze@-[vxu)
2.1
dcT L



Appendix b.

Introduction of codrdinates into the Lagrangian function.

The expressions of the Knatic energy of translation #mv?®

in terms of polar colrdinates,and of the kinetic energy

of rotation $Inf in terms of the Eulerian angles,are

well known. (For the latter see Born,Atommechanik,p.3l)

There remains the expression ‘[VXC)J 'ﬁ) . This is
equal to the determinant

Using X= a e S r @
y = /LM/BW?

Z =ncod

and = Memlff ra-m‘[-)e

Wy = ¢p O @ + Y
the determinant reduces to

22§ o (§-P)F6 —pm © e (F- @) P
-—“W/&Co-osfw«« (P—&) 409
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Appendix 6.

Derivation of the Hamiltonian function from the Lagrangian.
L,,(rz 2 M09 % ”’/}cr )+,(9 2ty +QF _,Llwoetk@")-’r___

6o n

+ [ om0 - w&mﬂm@w(¢~%J¢§ + o A94”‘17:)

We mey introduce T merely ae'an abbreviation for the

part of L which depends on the veloeities: L=7-=-10.

98, g'

Since T is a homogenous quadtatic form in the velocities,

Then by definition H = =T + U + :Z

it follows by Euler's theoram that
H=T+10 =‘%ZQ?ZL*-U.

For the moments we find
}2 :)u/L'
f& P ,\91”)4,,9
P(P,m,,wl&qp-f/‘hp (Q/
Po-= 1—9'+‘ﬁé .
sz:rl:(?E}FéaDE}fvﬂL/4q)

P@: T (9+wey) %AI

where .
A§:~'§c_g fc,o(rpy)e 2t O ailp- CP)@B ’\}
6 & /
Ay = «Z_Efs«’{~m«9uon9w P-PE 4 pDG 5’
bt |
[ 2O o © — 0 ﬂ<m2994«‘6t¢3(¢9~4k942}

ZGU: { o (P PO - s B 009 aln (p- VJ}\P} ( d
A»'\y: 'ZQL( {PJA«L&CP}
bon

pg= ~TC [eOen S Tae il ngubmp Y]

bc/’l

Ag -
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Solving equations (&) for the velociti®s,we find
1 P/, :

'13 = Bo~Aes ) e

§ = LPp~Ag)) wa oD

é = (Fe~Rp)) T |

W: [(i’\},~;,¢)-e— f@)-(Aq)“wDQvAi}j/IM;LQ’

§ - LiPg- w0t b ) ~\Ag-bAy, [.ot6

/

These values may now be substituted in (b). Neglecting

higher order terms, the result is

Ab- - 7-'1«4 Z e (- Y ""WQMU{""Pj Pf L{?g’?ﬂ)

o T .6
Py = < bes l"“‘““%&wwf ~y) (& ruis- Py vé"’«r_
&7‘-’ 1 I
‘)‘LM'L&‘J)Q gt Sm&“mgl\t\)(tp"‘?ljl P@ “ZGP(P 1..
: Lot J
: - ;bl\JL X L‘i;_ \9 5" f'i- .
Ap= = 2R peldw T ,Zm ws sy,
N 25 S R P -
/}xf . Lt { J ot i

Ap= -t oniip 9 B 100 0B o) M

AR
e
Substituting equations (¢) into the Hamiltonian,
P A P B ool pg Fg ety
I A M S YL UL
A NN %’A‘g p # F A. At s
By B S Sl ki ; Feldyeadp) Pgljlﬁ@ Loé/-l'jz‘/
T Mo S j
._l I IM"H o

L5 ’*’ FPes -
~b L f:s/’m P.pAy . "949

<

PA FpA
( A nm",.:‘y protlpAg @@(&;di,&@,ﬁm

- I M«”C Wy
Ho ~ % ¢ fsho &, My foAo Aptt 4
(e TR ey fe wk'f %zzé(&ﬁg#fw |

e
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Substituting the values of the A's from (4)

- &F
| Tse eéﬁﬁ% gy PRIy
H=Hy + @o 9)} oY mbfwifg
< A ot (- y - PP 9 + Pzet,‘ff::i“ﬁ?gb
'L s

+3ﬁ6wwﬂ3%uﬁqaﬁwf@fw99?jj

Teking out the comuon factor 1/mr2I we have & coefficient
ze2a2/6me®r3I. By Appendix 2 I = ma®/3,s0 that the expres~
gion becomes ZeZ/2m2e®r3. Simplifying,

H= Mo+ Z‘f~z’w(¢ﬁ€&lﬂe+m@w L‘,”~‘V/?°zz5‘p(})

L 2.
rlikat st Oaip-y)] bl - ot Scac O @, F Fy i

The spproximations involved in this derivation are
equivalent to neglecting terms in the square of the
vector potentisl. Since the terms in the first power

gre oforder v2/c2,thess neglected terms are of order
v4/c4.



Appendix 7. 8b
Angle Variables of the Unperturbed Motion.

I. Angle variables of the Hepler motion.

For further detsils and for demonstrations not given
here refer to the following:
P.5. Epstein, Zs. f. Physik 9,92,1922.
Born,Atommechanik, pp. 168ff.

Van Vleck, Quantum Prineiples and Line Sprgtrs,

PE-. 193ff0
0f these Van Vlieck's trestment is the most detailed.

' The Kepler motion is the solution of the equation
_ -L_—" ; 2 L P L. .ii _ 7\12_
h= (P +fg1./~r ) =

e e

This aeparatea into
Froz Viw #2222 _ 27

—— 4:’——‘\ “ ar
For= Y¥ L
Fe=p
where W, )y ,p are constants of integration. Appl¥ing
the definitioa of the angle momente we find

= m Ge
Un = z«rrﬁ’ft = v_:_l_:ﬁ-;-x)

g g reag P
The three constaentes of integration then become

w et
e A9+ b =dy
W v g Y=o+, ¢




The angular varisbles w,,ws,We are now founrd by
setting up S -ﬂi,da +,)0?94¢9 "'M’fo d¢ ,expressing the
constanfs W, ¥,p which cecour ‘1n the moments in terms
of u,,u 5,0 ¢ ,8nd differentizting with tespect to

1, &and ?respectively.

If simltaneously we introduce the abbreviationa

! iy ,

3 J%( - (H—ewq)} (o = ?[ .HMCP) > (o X
A ¢ 4449.+~($o

where € 1ic the eccentricity of the ellipse

the results may be stated in the form
~ - 4 U & a

W= k"('/)
= gt ((EEAE e [1e° ’:17)_
v ( | tewry )  Jtowsy

The physicel meaning of the varieshles may be dis-
cussed as follows; uq,o = pcfs P = mrzsinzaf) ;that is,
u is the component of angular momentum in the & rec-
tion of the polsar axis. Further,the total angular
momentum is \/-;A,:#q;‘:i—t’?"uf‘g .

Comparing this witht the axpression for B, We find that
= vy u% is the .total angular momentum. It fole
lows that the angle between the polar axis end the
bhormal to the plane of the orbit has for ite cosine
u_y/u ¥* U The equentity u. + ug+ uT is con-
nected With the eccentricity by the relation
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ﬂ@on.x,'
. We add the expressions for thenmajor and minor axes:

“ -"&( u ~ T J - ou o -
az oY ot L e Lty Lty

m QR M Z-b L

The nodes are the points in which the orbit inter-
sects the plane U = 2? . Consequently for a node
cos V= 0,ca8 X = O,taan = o ,and TER KN o - tgn"¥a§
= \(»g T?C ;whence for a noitde 4 = W '!19:'.,:’5 . The
azimuth of the normal to the plane of the orbit_mtst
lie midway between that of the :nades;hence this
azimuth is preeisely “f -wy .

It will be notcied that ouz relation between r and
%) is the equation of an ellipse in polar co8rdinates
of i%s plane. r is & minimum when 4 = 0,s0 that Y is
the agzimuth in the plene of the orbit,measured from the

perihelion. w

V. is & linesr funetion of time which

vanishes when H’vanishes and igcreases by 27 when
does BoO; accordingly,wwL is the mean anomaly in the
orbit. K can be shown to be the azimuth in the orbit
measured from & node,so that W®g - w, is the
"longitude" of the node measured from perihelion.

I1YX. Angle variables of the sphericsl top.

In this case
- L p R e P |
H— [ Port to— P+ Fd a«@enﬁ@j—g

which separates into
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Py - {4 g,rWH l~— (v +r‘"ll1p6r'f”

Py=p!
P&:f"

Hence o
U= ,ix $ oA = {-2aw —p
‘?(;,,/—P/

v@p"

W is the energy;therefore W = -)*2/21,where )’ is the
total anguler momentum. From this Y’s g + vy .
Further, pq7= p' = uy is by definition the compoment
of angular~momentum parallel to the polar axis;m that
tgﬁge cosine of the angle which Xk¥x the resultant
angular momentum mekes with this exis 18 uy/(ug + uy).

The angular colrdinates w are closely mlated to
those of the Kepler motion,so that 'g{‘ W, Iroves to
be the azimuth of the axis of angrler momentum.

III. Calculation of cos 6'.

The angle 6' is that between the normal to the plane of
the ellipse and the axis of rotetion (which for a sphere
coincides with the axis of angular momentum) of the
epinning electron. Let ) » M be the poler angle and
azimuth of the narmel to the plane of the ellipse,and

/\ ,?1,those of the Bpin axis. Then by spherical

trigonometry
4o B'E oo (n-M) eia haed A + w00 ) oo
Substituting our values for the various funetions,



A

wop's W}f’cp W«9/ LWQ"WOJJ Vi-‘mﬂw@, ?’ ':{fw‘}",‘(’

@¢#ﬁgﬂ¢4q&J U@ﬂ@ﬂﬁ%@'
We can now substitute into the mean value of the

89

perturbation found in Section 8 our values of the

angular momenta,the angle between them,and the

semi-minor axis:

MZ@ - +q@)
11W¢fmwuﬁ) ‘ 2_1:
+ Z‘é/i_ o 2’3 e®

YRS - 4o (("y-wgj{ W W

Vo] E“‘I’*“ej _j

gt SRR,

‘¢

L S T
L‘q‘{"(ﬁj\_ ¢+ ;(9) W‘@)(“w‘(@ l{(f O qrf“?j

mhis is readily reduced to the form inrthé text.
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Appendix 8.
Evaluation of the quentum integral.

The problem of quantizing the motion represented by

4y %
H=-mae W ’”Z = [«ﬂg (-1 HP-p 2 W
zpr L

reduced to the evaluation of the cyelic integral g)pdq.

L
To faciliinte computation we set the qu@tity in ocurly
brackets equal.to F. As an abbreviation we' also restore

the previous notation P = p = P;. Then

cos q = —f_ bey =
Y—i')’,, pr) (PP

This equation 13 of a decidedly awkward form if'we

wish to extract p as an explicit funetion of q. Instead
of attempting this,we make & transformation which ellows
of evaluating our integral in the complex planse of p.
We observe that dq = « & comgq /y—l - ooazq].;

Substituting the above value of cosgq, it is found that
R~ )
+(F- o T =
pg < Bt b - Ty
V’?Z P4~ (F-pp )™~

Now (Pp® - p2)(pf -p.®) = (P = pp1)2 = & + bp + cp?,
where a = PEpg —P%Pa - F ;b = 22(?% + F};c--(l’g*pgﬂiﬂ‘).

pdP

Our integral is accordingly of a standard type. It has

two branch points at the roots of & + bp + e¢p2 = 0,

and five other singularities at Py = wp1, P2 = 2p,and
p = KX, The problem then becomes one in the
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calculus of residues,.

To calonlete the residue at infinity we put p = 1/0°.
Simplifying slightly,we obtain

Ap_ _ _dT P_2 -fi Ll A
Pog= o faciHio4c | O 6”‘4{}: "’*6‘ '2P°’+(Y'P‘3‘f’)'¢"9

The residue depends on the terms of gerc degree in O
within the square brackets. Such terms can only ocecur
in the product of the two parentheses. Expanding the
gsecond parenthesis in sscending powers of ¢ ,we find

that we have to take the terms of zero degree in
/ P 2 PP
(F- 7t &)[24P0 + 62+ 4P N0 ]

These terms are 2F - P2 + po° + BE + P2 = pP 4 B + 2P,
. }? __ 2T O(BHERRF)  opilhMR242r) \f 8
R 12 < S ——— e Idw ,/'I'P + F

i (B2 F

The sign of the radimal is in generalimeterminate,but
does not affect the results. |

The oalculation of the residues et the four finite
poles is simpler,but in these cases the determination
of the sign is essentiasl. This sign depends on the
posiiion of these poles with respect to the branch points.
The general method,it will be recalled,is to connect the
two braneh points,which ere the roots of s + bp + ep? = 0O,
by a ocut along the real axis {assuming both roots resal),
The path of integration then paeses in the posttive sense
around this branch cut,the eign of the radical being
teken as positive below the real axis and negative above,

and consequently as positive imaginary on the real axis
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to the right of the branch cut,negative imaginsry on
the real axis to the left of the cut, Accordingly, 1t
is necessary for our purposes to establikh that the
roots of our quadrafic are real and thet the poles of
the integrand do not lie between them,and to determine
on which side of the branch cut these poles lie.

Apparently the case of complex roots ean occur in
our problem;but the results we require msre given by
the case of real roots. In this case 1t is readily shown
that the polee lie outside the branch cut;for if either
p: = p2 or p? = Pga we have a + bp + op? reduced to
-(F - ppy)®,and the redidal is imaginary,while between
the branch points it is resl.

If we put y = a + bp + ep2,this represents a
parabola in the py-plane,with its axis parallel to the
y-axia. The intersections of this parabola with the p-axis
are the branch pointa;two values of p for which y' has
oppoeite signs,and which lie outside the branch cut,must
consequently be on opposite sides. Now

y' = b+ Zop = 2P(Po+¥) - 2p(BR + po? + 2F).
In the speclal case when P = O the sign of y' changes
when that of p changes,so that the poles p = ¥Po are
on opposite sides of the branch cut;and as when P = O
P1 = -p,the other two poles are p = 2ps,and also lie
on opposite sides of the branch cut. Now P is quantisable,



8o that it is a constant of the motion;but P =M¢-}—’4q/ .
that is,it is the component of the total angular momentum
in the direction of the polar axis. Now this direction
is arbitrsry,which proves the conservation of angular
momentum for the system in this approximation;and as
it is arbitrary it is always poseible to choose it so
that P =_O. Consequently,since the mere choice of 8
co&rdinate system cannot affect the motions,the poles
ofhour'integrand elways have the relation to the branch
points which we have Just found.

To find the residue at p = +Pp we take the
coefficient of 1/(p-Pg) in pdg,substituting Py for p.
PZ (F-PR) ,which is +22/21.

2 v-(F-FP,>‘-
since tiis pole is to the right of the branch ecut.

The result is

The contribution to our integral is =271 times this.
or =T Pg. The pole p = =P3 also contributes = T Ps;

it lies to the left of the cut,snd the radical has
therefore been teken as negative imaginary.

For the pole p = P-py we find the contribution T(P-Pp),
and for the pole p = Peps,~TH P+py). |

Adding 8ll our resulta,
ki Y
27 (¥ oy 2r - P~ k) =n"h

~|\>-

i -
or T V&"‘)"&L'?}-F (k'+$4k) L g”
whence F = 51%( 32 - x® - 32). |

It remains to establish the physical meaning of j,
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or of its apsociated angle momentum ¢ = Jn/2 . This can

be done by comparing our definition of ¥ with the expressim .
of the mean value of thelpertmbation (Section 5,Part II,
equation (9)). The quantities there written as }% and Pi
have the same physical meeaning a8 pp and Pg. Accordingly
F = pgPp cos (pyP2).

But G2 = pp2 + Pp® + 2F = pp? + P,2 + 2pgPp cos(Pepz).
This is the ordinary form for the absolute value of
a vector sum. But the vector sum of pp and Py is the
resultant anguler momentum of the system,with which G
must therefore be identified.

The quantization of the total angular momentum,which
in other xmxkmx discussions of this problem is taken a8
a starting point,here appears as & natural result of the
general theory of guantization,nececeitating no special

theory whatever.
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Appendix 9.

Depivetion of the Wave Equation.

The general result of Schr¥dinger's variation.
process may be steted as follows: 25
Given & Hamiltonian funetion in the form H= T + U,
where 1‘ is & quadratic form in the momenta and U depends
| only on the colirdinates, the wave equation takes the‘

form,in which py is to be replaced by du/day,
Tle, P : 11,
AZZagk(A 19 /”:,P; )) +3%(E-UJQ;O

where A is the determinant of the quadratiec form.

In our case

I . _~ .

w2 o Q z Q

0 - ) R (oh - R cADaad Rucdoax
emir ~ z RF 2,3 2z s

A= O O goims Qe guedite gdisey

- , 3 z /.13 R n3
10@R @ P 1
O +i%5 2 23 2T C -
/ l &
®) ~D T Ooux ¢I+079Co?0wo< e Lei;
O 3EET I3 O apene A A0
; R Wl Daedr ey i@ L
¢ ol - S O Tir oz P
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Those elements of /\ which are due to the spin
effeet are all multiplied by the factor Q,and are none
of them on: +the principal diagonal. They will give
rise in A ,and consequently in the wave equation,to
terms only of order Q2 or higher. These we negle ot,and
sccordingly we msy take for 4 the same velue as for
the unperturbed system:

A= 1/6¢n’T> ntei> i

We find -
v i ]
il}t = % s 3)}5. - Léo‘ja( “‘6’1‘9%,‘0(’0(_',4%3 %VP@]
a7 |

Jf(f—)""}’““tﬂ‘ +M[Co1'«9ﬂ4ndfé “{‘[h“(of«\,‘oxaé@dj H&wcs@]

S)T 1 [Cav o + S e B

AT, F’r s wS Q_l ermapquil—kmaﬁwe@g J
IPp™ Lm0

T P@_‘ Py»tpe C,P_

v Lkew«x’)gﬂ (AS e B oo Pcfj

- Putting U = -Zea/r and intro&ucing the derivatiVos,

J,. J‘ ‘)b( ,___ _/ 8 K )’l
n 30, ( > )"' Wbﬁ (Paﬁ )+A‘D-'-"?G- th [P«GOQ{ 5 C’%)
ralu

o SO Y ~“l> :)_,,,_
+ m¢6 mQ [wﬁ’ > {”"1:914:70(4;’ ~2l D AC M_,('QL‘P_S 4+ 0*:\9%8&.,:(&;‘1}
oF
"';,_/F(WT&M“ d% +{l+cﬁwawij "-«ff"\gu{e o 94

' %9,_1 ‘ ‘V»., .
T 5 kmeomotal +MOLJT49WX

+§’;(-—c¢tem;aé—‘:— +§ 14t D eLO cron ] 3;? )
> 2
t- ‘; (o s 3“ - Ot D cac 6 to ‘;‘(‘F)]-}‘?%[E,LZ% Ju=0

which easily reduces to equation (¥%)of the text.
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Appendix 10.

Reduction Formulee.

I. Pormulae for 1’:‘( w ).

When n; is positive it is easily shown by differ-
entistine the deﬁr\"f* AT,
Al

61& { ®, N4

5 o =-T
By differentiating Legendre's equation

oy dre

(i~ A ) M,/ -~ 2x i +€C€h)?{-—0

that

np-1 times with respect:to x,putting x = cose ,ﬂiand finally
applying the sbave definition,there results
~ v, ~f "
2mctd Py = (Catt) Cen) By 4 P77

which a;ded to the relestion above gives
A M~
7.;_»:«;&\97} = (f-x+1 ) (et ) B !

When nj 18 negative we make use of the form
N .
" {{+"0! (l*%) 2 e+ €. n 1~ X
= , ), '3
’: (X) nlf-»)) L i+x f[ /T 2, )
from whichbit follows that
" -} "
’[X) _ (¢ 1),- E,'(X}
(H”:) .
App:‘l‘.ying this to the above relations we find
L
AP _ wtns P £
A
"’;‘(’e Fu, o B = (et )t~ w11 e

in whieh & = =1 1f nj > O,and +1 1f n3 <0,
while N = +1 if n3 > O.and -1 1f nj 0.
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II. Pormulse for [/(k,, uy,0”)

T is given as a hypergeometric function;it is not
- difficult on principle to apply the known properties of
these functions for ebtaining the formulae needed. The
writer has worked this out for any value of ¢ ;but the
result is not capable of simple statement,and the
calenlations sre long esnd swkward. Darwin,? by a chenge
of no‘tation,has put the results in a workable form.
Here we shall use the writer's original means of
attacking the problem - namely,of tekingd = i.

The following table is easily constructed;T' is
a7/ae,and D is an abbreviation for ngeote® - ng ésce T.

[o=11

ng nz T D T'-D T'+D T

1 1 -$8in0 =F8ins - 0 - ~s4n6 4(120080)
1 O #cos@® #cose 0 cos® ¥8ine
1-1 #siné #sind 0 81ino %(1;cose)
0 1 #0086 =~  #(1+8086) ~:(1l=cos®)  &ainé

0 O -sine ) -5ine -51ine cos®

0 -1 %cos@ & =i(1-cos@) #(1+cose)  #sine

-1 1 +484in6 -#8iné  8iné 0 #(1=0086)
-1 0 #cos® -Ecose cos® 0 ’ %siﬁe
-1 -1 -%8in® +8iné =-eined 0 4(1+cos@)

"y
n, 4

values of A and/v\ used in thée text ai‘e easily reed off,

and T' + D -),l_’_f:; ,the

Now since T'=D =/‘(,:§.‘



g9
dppendix 1l1.

Properties of the modified {unctions.

We are considering the equation
. A b 1/2.!3)1— ,:'L 'G_l.' =
quoffv'b(a-'[,a +2—+ $O¢ +)]“o-

The solution can obvioucly be obtained as &
product of & Reiche function,e surfacé spherical
harmonic,and & funetion of r,whisch is found to satis-f
fy the equation

0{2)& oy A'{ ({3 T )_B_g (&_—(—L) ) ,l

dar oM

If now we put P = - 47°mZeZ/nh2 this becomes the
ordinary equation for Schrldinger's functions;but if
7918 kept constant for varying n the equation has

deifferent properties. If we muXtiply by r?2

n* ”;;l{ 20 AL — ] g+t +L(.E+1)J}(—&,6n1)r_ o

Thie is of the standard form of the Sturm-—Liou—

ville equation 4 ,
py'— Pyl —B9+r AP g "

if we put y -~ X, p = P12, g=ptat H J,
P= ) A= ~28n.

From the general theory of such equations the
dunctions X:must then have the property /:’X: .,f’””l= 0
if n ¥ n'. This is easily proved directly by combining
two such equations and integrating. The theory shows
that the funetions form a complete orthogonsal system,

which Justifies our expansions in terms of thenm.,
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Appendix 12.

Application of theory of inhomogeneous equations.

* I:i};:j Jgh:; :i fV’ Y -[ 2+ 7 T |
:,’i L K (0,7 n)mtnz) Up (wh 656, 9, nd, 3

where £ (#,0,Us) =0

so that 240 = me ‘Y_;' Z:j

then in order to satisfy the conditions of finiteness
K(HJO; e,nl/ "l/ ‘73) = QO .

Since the equeation is lineer v can be built up from

& sum of solutions ,of the equations of type
Fina, vi= mK(nLa&nin)ing) ug(n!, 7, & abwl,
If in this we put v = Cuo(n', 7, {’,ni,ntz,ng,)
we find that . _ K
28(nh'=-n)
80 that 1f n' ¥ n C does not vanish unless K doss. This

method fails 1if n' = n;we have then to golve

0
F{novI= o KW, 0, gy iy (4,55€ e,y

X‘S is a solution of the equation
AX 2 dx - 2, z@3mn L € EHI] Y,

—_ dn~ * 1 o [ZB+ Ry 4 7;J,Y T e
Let Xﬁ be the second independent solution of this
equation,whick of course does not datisfy the conditions

~R V“‘z'Z w3 /
of finiteness;put U, = ;(n Ly, v, ,and substitute
v = Kuo + BUO,
where A and B are undetermined funnctions of r. As we

require only a particular solution we may impose one

further restriction, namely
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é{ﬁ Uw-/o

We find .&M’ duo ;. AB oo _
‘,UL J1 dn 30

end solving the lest two equations simultaneously

dB Kt
Av UB&Q?“%Q?;L (a)

Now (7,8, "0)=0©
ena  f(n,8, Us)=0
from which, teking into account the form of uy and Uy,

we obtain L 3
.Ul.)aauo - ogab—;*‘?;:j r ,AQ‘V‘oa ) O
.

end since ug end U, contain the same factors depending

AX JX)

on the five angles, __

Xk - Xk + T N
Putting W = 7\”7( X ”;TL

, +2
we have daw,{ J:/V 0

whence W = D/r2, D being & constant of integration.
From 7(a),because of the character of the dependence

on the angles, 4%@ - 11_1_2/

Av "W
whence [P=~ “’ faX"oln -
How as X is real )( is positive,and B cannot ‘vanishv
identically unless K = 0. But unless B does vanish
v gannot satisfy the conditions of finiteness,and

consequently K must vanish;which wes to be proved.
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Appendix 13.

Final solution for energy levels,wave mechanics.

Equation (52),page 67,leads to the following set of
equations for the conﬂ’icienta K;‘
KJ‘(@’%’EB “MWAn) + 5 K""?(n,ﬂ)/‘ 3 (t4ni)(€—m)An

2K NG, A =0,
for every possible combination of n] and n,. The cone
dition that these equations shall be consistent is the
venishing of the determinant of the quantities mmitti-
plying the K's. This determinant is of order 3(2€+1};
but it will be observed that in each equation there
occur only the three K's for which n; + np is a constante
m ,say. There are then three equations for each value
of m,independent of all the remeining equations;these
equations can be treated sepesrately,and we shall see that
the r esult is independent of 777 ,

For a given value of T thsee equetions are

'
Km-, fﬂ‘he B», "(‘IH"I)A).:] -}i K;’7(m2/“o (e+m)ie-m +1) A, =
Km BT‘»«G T2 Btz K 7(m+u/4, (t’+771+/)[( ’"]A;,"’LA’ _,}(m UA 3A ’O

~}
K.m+‘ [gﬂmc B )‘(m+l)l‘)‘a# .\“7 gm)) h3 /4,1

The sondition that they shall be consistent becomes
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8rme€
A’—
Lem-g N3 A TR B By iy miA,

LAy Iy pitsmyemi, A, D

Yo

/

= 0.

“ .’ *"3 i uﬁ'mc
\) )‘,Lf»mJ/jo /191_} 1‘ Bh.’...(n-,“*‘\_jﬂb\

B
Sividing by Ay,setting 9-"_;25. =
n

Cx-cme] {x [xrimen] = Simpqimsy 3o e ms .- m) |

= x,and expanding,

| o V2. 08 , : o
i E&m-')vlmj/\‘?/v(o-\«‘ r Ju({-m+1))§.x+( Mty = O

It will be found on examining the values of the
coefficients 5 )Z,M"*" (Appendix 10 or pages 63-64)
that ):3 ~X‘3 My3 — ~ 2 for sll values of ng,
and that §(n,)7m,,+.):§zn,-., ey = ~| for 211 values of ny.

Substituting these results and reducing,

x3 + zxz-[£(£+ 1) -1] x ={({+ 1) =0;
the roots of which are
x = =1,{ ,={-1.
From +this

’Al Ah :éi_lqn YA
<€ - §Tn B’ eg‘/m\ B, / (”’g';?}.;‘ 3



104

Appendix 14.

celculation of An/Bn.

Given the two expa.nsions (50)
ZA». n' y ZB’!' yn'
in which X( are the modified funetions with constant ,;5
we wish to find the ratio of the two particular
coeffiolents Ap and Bn.

Since f /\ ) 4+ = O when n f/ n' ,we have -

ju. ﬂ.-’fx,f)bb\ j/) jdl
e 2 OS2
Jo /'(ian€}Lvm’ /o llx"/ An

0 )/ 1L SO . 2 4.
ox bu/mn = [ (0 d/ A AL
This calculation is not easy to carry out in

general;but &t is very simple for the ceses in which

\

- <
{ =pn-1. The Punctions Xx then take the form
)X f Fg!l 2
- e ;l
£+ ’”nlf“l.ii—l
o S L

and consequently Ap/Bp = —— . )
]c’o e e -,
24

< i L
_ et/
T et /-aprers T WZ(Lu'ﬁ)(uw.)'
>
N C“f‘fr‘m‘;Zs © )
toe+l)(en) 3¢le"

Uty ety
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While thishas here been derived only for specisl
cagses,it chancee to be the general expression;for since

Ej = 2mQEe ,Q = 262/2m202,and - = 2 ég*,we find

8% Zm B,

on reduction that

7Y
E, = E_f‘j(lz _L -
n> ()R

which is the gemeral result given in the text. (él)
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